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 About This Book 

 All of the elements about database design are here together in a single resource 
written by the best and brightest experts in the fi eld! Databases are the main 
repository of a company ’ s historical data — its corporate memory — and they 
contain the raw material for management ’ s decision support system. The increas-
ing volume of data in modern business calls for the continual refi nement of data-
base design methodology.  Database Design: Know It All  expertly combines the 
fi nest database design material from the Morgan Kaufmann portfolio into a single 
book, making it a defi nitive, one-stop-shopping opportunity so that readers can 
have the information they need available to quickly retrieve, analyze, transform, 
and load data — the very processes that more and more organizations use to 
differentiate themselves. Each chapter is authored by a leading expert in the 
fi eld; the book consolidates introductory and advanced topics ranging from ER 
and UML techniques to storing XML and querying moving objects. In this way, 
what is here is an invaluable resource for anyone working in today ’ s fast-paced, 
data-centric environment.  
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 CHAPTER

1     Introduction 

  Database technology has evolved rapidly in the three decades since the rise and 
eventual dominance of relational database systems. While many specialized data-
base systems (object-oriented, spatial, multim, etc.) have found substantial user 
communities in the science and engineering fi elds, relational systems remain the 
dominant database technology for business enterprises. 

 Relational database design has evolved from an art to a science that has been 
made partially implementable as a set of software design aids. Many of these design 
aids have appeared as the database component of computer-aided software engi-
neering (CASE) tools, and many of them offer interactive modeling capability using 
a simplifi ed data modeling approach. Logical design — that is, the structure of basic 
data relationships and their defi nition in a particular database system — is largely 
the domain of application designers. These designers can work effectively with 
tools such as ERwin Data Modeler or Rational Rose with UML, as well as with a 
purely manual approach. Physical design, the creation of effi cient data storage and 
retrieval mechanisms on the computing platform being used, is typically the 
domain of the database administrator (DBA). Today ’ s DBAs have a variety of 
vendor-supplied tools available to help them design the most effi cient databases. 
This book is devoted to the  logical  design methodologies and tools most popular 
for relational databases today. This chapter reviews the basic concepts of database 
management and introduce the role of data modeling and database design in the 
database life cycle.  

   1.1     DATA AND DATABASE MANAGEMENT 
 The basic component of a fi le in a fi le system is a  data item , which is the smallest 
named unit of data that has meaning in the real world — for example, last name, 
fi rst name, street address, ID number, or political party. A group of related data 
items treated as a single unit by an application is called a  record . Examples of 
types of records are order, salesperson, customer, product, and department. A  fi le  
is a collection of records of a single type. Database systems have built upon and 
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expanded these defi nitions: In a relational database, a data item is called a  column  
or  attribute ; a record is called a  row  or  tuple ; and a fi le is called a  table . 

 A  database  is a more complex object. It is a collection of interrelated stored 
data — that is, interrelated collections of many different types of tables — that serves 
the needs of multiple users within one or more organizations. The motivations for 
using databases rather than fi les include greater availability to a diverse set of users, 
integration of data for easier access to and updating of complex transactions, and 
less redundancy of data. 

 A  database management system  (DBMS) is a generalized software system for 
manipulating databases. A DBMS supports a logical view (schema, subschema); 
physical view (access methods, data clustering); data defi nition language; data 
manipulation language; and important utilities, such as transaction management 
and concurrency control, data integrity, crash recovery, and security. Relational 
database systems, the dominant type of systems for well-formatted business data-
bases, also provide a greater degree of data independence than the earlier hierar-
chical and network (CODASYL) database management systems.  Data independence  
is the ability to make changes in either the logical or physical structure of the 
database without requiring reprogramming of application programs. It also makes 
database conversion and reorganization much easier. Relational DBMSs provide a 
much higher degree of data independence than previous systems; they are the 
focus of our discussion on data modeling.  

  1.2     THE DATABASE LIFE CYCLE 
 The database life cycle incorporates the basic steps involved in designing a global 
schema of the logical database, allocating data across a computer network, and 
defi ning local DBMS-specifi c schemas. Once the design is completed, the life cycle 
continues with database implementation and maintenance. This chapter contains 
an overview of the database life cycle, as shown in  Figure 1.1   . The result of 
each step of the life cycle is illustrated with a series of diagrams in  Figure 1.2   . 
Each diagram shows a possible form of the output of each step, so the reader 
can see the progression of the design process from an idea to actual database 
implementation. 

    I.       Requirements analysis.   The database requirements are determined by inter-
viewing both the producers and users of data and using the information to 
produce a formal requirements specifi cation. That specifi cation includes the 
data required for processing, the natural data relationships, and the software 
platform for the database implementation. As an example,  Figure 1.2  (step I) 
shows the concepts of products, customers, salespersons, and orders being 
formulated in the mind of the end user during the interview process.  

  II.       Logical design.   The  global schema , a conceptual data model diagram that 
shows all the data and their relationships, is developed using techniques such 
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as entity – relationship (ER) or UML. The data model constructs must ultimately 
be transformed into normalized (global) relations, or tables. The global schema 
development methodology is the same for either a distributed or centralized 
database. 
  a.      Conceptual data modeling.  The data requirements are analyzed and 

modeled using an ER or UML diagram that includes, for example, semantics 

  FIGURE 1.1  

   The database life cycle.    
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  FIGURE 1.2  

   Life cycle results, step-by-step.      

Step I  Requirements Analysis (reality)

Step II  Logical design
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Step II(a)  Conceptual data modeling

Step II(b)  View integration
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fororder

N1
customer places order

for optional relationships, ternary relationships, supertypes, and subtypes 
(categories). Processing requirements are typically specifi ed using natural 
language expressions or SQL commands, along with the frequency of 
occurrence.  Figure 1.2  (step II(a)) shows a possible ER model representa-
tion of the product/customer database in the mind of the end user.  

  b.      View integration.  Usually, when the design is large and more than one 
person is involved in requirements analysis, multiple views of data and 
relationships result. To eliminate redundancy and inconsistency from the 
model, these views eventually must be  “ rationalized ”  (resolving inconsis-
tencies due to variance in taxonomy, context, or perception) and then 
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Step III  Physical design

Step   II(c)  Transformation of the conceptual model to SQL tables

Step II(d)  Normalization of SQL tables

Customer

Product

prod-no prod-name qty-in-stock

cust-no

sales-name

sales-name

addr

addr

dept

dept

job-level

job-level job-level

vacation-days

vacation-days

Order-product

order-no prod-no

Order

order-no sales-name cust-no

cust-name . . .

Salesperson

Decomposition of tables and removal of update anomalies

Indexing
Clustering
Partitioning
Materialized views
Denormalization

Salesperson Sales-vacations

create table customer
     (cust_no integer,
     cust_name char(15),
     cust_addr char(30),
     sales_name char(15),
     prod_no integer,
     primary key (cust_no),
     foreign key (sales_name)
          references salesperson
     foreign key (prod_no)
          references product);

FIGURE 1.2

Continued.
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consolidated into a single global view. View integration requires the use of 
ER semantic tools such as identifi cation of synonyms, aggregation, and 
generalization. In  Figure 1.2  (step II(b)), two possible views of the product/
customer database are merged into a single global view based on common 
data for customer and order. View integration is also important for applica-
tion integration.  

  c.      Transformation of the conceptual data model to SQL tables.  Based on a 
categorization of data modeling constructs and a set of mapping rules, each 
relationship and its associated entities are transformed into a set of DBMS-
specifi c candidate relational tables. Redundant tables are eliminated as part 
of this process. In our example, the tables in step II(c) of  Figure 1.2  are 
the result of transformation of the integrated ER model in step II(b).  

  d.      Normalization of tables.  Functional dependencies (FDs) are derived from 
the conceptual data model diagram and the semantics of data relationships 
in the requirements analysis. They represent the dependencies among data 
elements that are unique identifi ers (keys) of entities. Additional FDs that 
represent the dependencies among key and nonkey attributes within enti-
ties can be derived from the requirements specifi cation. Candidate rela-
tional tables associated with all derived FDs are normalized (i.e., modifi ed 
by decomposing or splitting tables into smaller tables) using standard tech-
niques. Finally, redundancies in the data in normalized candidate tables are 
analyzed further for possible elimination, with the constraint that data 
integrity must be preserved. An example of normalization of the  Sales-
person  table into the new  Salesperson  and  Sales-vacations  tables is 
shown in  Figure 1.2  from step II(c) to step II(d). 

 We note here that database tool vendors tend to use the term  logical 
model  to refer to the conceptual data model, and they use the term  physi-
cal model  to refer to the DBMS-specifi c implementation model (e.g., SQL 
tables). Note also that many conceptual data models are obtained not from 
scratch, but from the process of  reverse engineering  from an existing 
DBMS-specifi c schema (Silberschatz, Korth,  &  Sudarshan, 2002).     

  III.       Physical design.   The physical design step involves the selection of indexes 
(access methods), partitioning, and clustering of data. The logical design 
methodology in step II simplifi es the approach to designing large relational 
databases by reducing the number of data dependencies that need to be ana-
lyzed. This is accomplished by inserting conceptual data modeling and integra-
tion steps (II(a) and II(b) of  Figure 1.2 ) into the traditional relational design 
approach. The objective of these steps is an accurate representation of reality. 
Data integrity is preserved through normalization of the candidate tables 
created when the conceptual data model is transformed into a relational 
model. The purpose of physical design is to optimize performance as closely 
as possible. 

 As part of the physical design, the global schema can sometimes be refi ned 
in limited ways to refl ect processing (query and transaction) requirements if 



there are obvious, large gains to be made in effi ciency. This is called  denor-
malization . It consists of selecting dominant processes on the basis of high 
frequency, high volume, or explicit priority; defi ning simple extensions to 
tables that will improve query performance; evaluating total cost for query, 
update, and storage; and considering the side effects, such as possible loss of 
integrity. This is particularly important for Online Analytical Processing (OLAP) 
applications.  

  IV.       Database implementation, monitoring, and modifi cation.   Once the 
design is completed, the database can be created through implementation of 
the formal schema using the data defi nition language (DDL) of a DBMS. Then 
the data manipulation language (DML) can be used to query and update the 
database, as well as to set up indexes and establish constraints, such as refer-
ential integrity. The language SQL contains both DDL and DML constructs; for 
example, the  create table  command represents DDL, and the  select  command 
represents DML. 

 As the database begins operation, monitoring indicates whether perfor-
mance requirements are being met. If they are not being satisfi ed, modifi ca-
tions should be made to improve performance. Other modifi cations may be 
necessary when requirements change or when the end users ’  expectations 
increase with good performance. Thus, the life cycle continues with monitor-
ing, redesign, and modifi cations.     

  1.3     CONCEPTUAL DATA MODELING 
 Conceptual data modeling is the driving component of logical database design. 
Let us take a look at how this component came about, and why it is important. 
Schema diagrams were formalized in the 1960s by Charles Bachman. He used 
rectangles to denote record types and directed arrows from one record type to 
another to denote a one-to-many relationship among instances of records of the 
two types. The ER approach for conceptual data modeling was fi rst presented in 
1976 by Peter Chen. The Chen form of the ER model uses rectangles to specify 
entities, which are somewhat analogous to records. It also uses diamond-shaped 
objects to represent the various types of relationships, which are differentiated 
by numbers or letters placed on the lines connecting the diamonds to the 
rectangles. 

 The Unifi ed Modeling Language (UML) was introduced in 1997 by Grady Booch 
and James Rumbaugh and has become a standard graphical language for specifying 
and documenting large-scale software systems. The data modeling component of 
UML (now UML 2.0) has a great deal of similarity with the ER model, and will be 
presented in detail in  Chapter 3 . We will use both the ER model and UML to 
illustrate the data modeling and logical database design examples. 

 In conceptual data modeling, the overriding emphasis is on simplicity and 
readability. The goal of conceptual schema design, where the ER and UML 

1.3 Conceptual Data Modeling  7
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approaches are most useful, is to capture real-world data requirements in a simple 
and meaningful way that is understandable by both the database designer and the 
end user. The end user is the person responsible for accessing the database and 
executing queries and updates through the use of DBMS software, and therefore 
has a vested interest in the database design process. 

 The ER model has two levels of defi nition — one that is quite simple and another 
that is considerably more complex. The simple level is the one used by most 
current design tools. It is quite helpful to the database designer who must com-
municate with end users about their data requirements. At this level you simply 
describe, in diagram form, the entities, attributes, and relationships that occur in 
the system to be conceptualized, using semantics that are defi nable in a data dic-
tionary. Specialized constructs, such as  “ weak ”  entities or mandatory/optional 
existence notation, are also usually included in the simple form. But very little 
else is included, to avoid cluttering up the ER diagram while the designer ’ s and 
end users ’  understandings of the model are being reconciled. 

 An example of a simple form of ER model using the Chen notation is shown 
in  Figure 1.3   . In this example, we want to keep track of videotapes and customers 
in a video store. Videos and customers are represented as entities  Video  and  Cus-
tomer , and the relationship  rents  shows a many-to-many association between 
them. Both  Video  and  Customer  entities have a few attributes that describe their 
characteristics, and the relationship  rents  has an attribute due date that repre-
sents the date that a particular video rented by a specifi c customer must be 
returned. 

 From the database practitioner ’ s standpoint, the simple form of the ER model 
(or UML) is the preferred form for both data modeling and end user verifi cation. 
It is easy to learn and applicable to a wide variety of design problems that might 
be encountered in industry and small businesses. As we will demonstrate, the 
simple form can be easily translated into SQL data defi nitions, and thus it has an 
immediate use as an aid for database implementation. 

due-datecust-id

cust-name

N N
Customer Video

video-id

copy-no

title

rents

  FIGURE 1.3  

   A simple form of ER model using the Chen notation.    



 The complex level of ER model defi nition includes concepts that go well 
beyond the simple model. It includes concepts from the semantic models of arti-
fi cial intelligence and from competing conceptual data models. Data modeling at 
this level helps the database designer capture more semantics without having to 
resort to narrative explanations. It is also useful to the database application pro-
grammer, because certain integrity constraints defi ned in the ER model relate 
directly to code — for example, code that checks range limits on data values and 
null values. However, such detail in very large data model diagrams actually 
detracts from end user understanding. Therefore, the simple level is recommended 
as the basic communication tool for database design verifi cation.  

  1.4     SUMMARY 
 Knowledge of data modeling and database design techniques is important for 
database practitioners and application developers. The database life cycle shows 
the steps needed in a methodical approach to designing a database, from logical 
design, which is independent of the system environment, to physical design, 
which is based on the details of the database management system chosen to 
implement the database. Among the variety of data modeling approaches, the ER 
and UML data models are arguably the most popular ones in use today, due to 
their simplicity and readability. A simple form of these models is used in most 
design tools; it is easy to learn and to apply to a variety of industrial and business 
applications. It is also a very useful tool for communicating with the end user 
about the conceptual model and for verifying the assumptions made in the mod-
eling process. A more complex form, a superset of the simple form, is useful for 
the more experienced designer who wants to capture greater semantic detail in 
diagram form, while avoiding having to write long and tedious narrative to explain 
certain requirements and constraints.   

  1.5   LITERATURE SUMMARY 
  Much of the early data modeling work was done by Bachman (1969, 1972), Chen 
(1976), Senko et al. (1973), and others. Database design textbooks that adhere to 
a signifi cant portion of the relational database life cycle described in this chapter 
are Teorey and Fry (1982), Muller (1999), Stephens and Plew (2000), Simsion and 
Witt (2001), and Hernandez and Getz (2003). Temporal (time-varying) databases 
are defi ned and discussed in Jensen and Snodgrass (1996) and Snodgrass (2000). 
Other well-used approaches for conceptual data modeling include IDEF1X (Bruce, 
1992; IDEF1X, 2005) and the data modeling component of the Zachmann Frame-
work (Zachmann, 1987; Zachmann Institute for Framework Advancement, 2005). 
Schema evolution during development, a frequently occurring problem, is 
addressed in Harriman, Hodgetts, and Leo (2004).  
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2
   

  Entity – Relationship 
Concepts 

  Until now we have dealt with databases made up of a number of distinct tables, 
without concerning ourselves very much with how the tables and their constitu-
ent columns were originally generated.  Logical database design , also known 
simply as  database design  or  database modeling , studies basic properties and 
interrelationships among data items, with the aim of providing faithful representa-
tions of such items in the basic data structures of a database. Databases with dif-
ferent data models have different structures for representing data; in relational 
databases the fundamental structures for representing data are what we have been 
calling  relational tables.  We concentrate on relational databases in this chapter 
because design for the object-relational model is still in its infancy. 

 It is the responsibility of the database administrator (DBA) to perform this 
logical database design, assigning the related data items of the database to columns 
of tables in a manner that preserves desirable properties. The most important test 
of logical design is that the tables and attributes faithfully refl ect interrelationships 
among objects in the real world and that this remains true after all likely database 
updates in the future. 

 The DBA starts by studying some real-world enterprise, such as a wholesale 
order business, a company personnel offi ce, or a college registration department, 
whose operation needs to be supported on a computerized database system. Often 
working with someone who has great expertise about the details of the enterprise, 
the DBA comes up with a list of data items and underlying data objects that must 
be kept track of (in college student registration, this list might include  student _
 names ,  courses ,  course _ sections ,  class _ rooms ,  class _ periods , etc.), together 
with a number of rules, or  constraints , concerning the interrelatedness of these 
data items. Typical rules for student registration are the following:

    ■      Every registered student has a  unique  student ID number (which we 
name  sid ).  

   ■      A student can be registered for  at most one  course section for a given 
class period.  
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   ■      A classroom can house  at most one  course section for a given class 
period.  

   ■      And so on.    

 From these data items and constraints, the DBA is expected to perform the 
logical design of the database. Two common techniques covered in this chapter 
are used to perform the task of database design. The fi rst is known as the 
 entity – relationship  approach (or  ER  approach), and the second is the  normaliza-
tion  approach. The ER approach attempts to provide a taxonomy of data items to 
allow a DBA to intuitively recognize different types of data classifi cation objects 
(entities, weak entities, attributes, relationships, etc.) to classify the listed data items 
and their relationships. After creating an ER diagram that illustrates these objects, a 
relatively straightforward procedure allows the DBA to translate the design into 
relational tables and integrity constraints in the database system. The normalization 
approach seems entirely different, and perhaps less dependent on intuition: all the 
data items are listed, and then all interrelatedness rules (of a recognized kind, known 
as  dependencies ) are identifi ed. Design starts with the assumption that all data items 
are placed in a single huge table and then proceeds to break down the table into 
smaller tables. In the resulting set of tables, joins are needed to retrieve the original 
relationships. Both the ER modeling approach and the normalization approach are 
best applied by a DBA with a developed intuition about data relationships in the real 
world and about the way those relationships are ultimately modeled as relational 
tables. The two approaches tend to lead to identical relational table designs and in 
fact reinforce one another in providing the needed intuition. We will not attempt 
to discriminate between the two in terms of which is more applicable. 

 One of the major features of logical database design is the emphasis it places 
on rules of interrelationships between data items. The naive user often sees a 
relational table as made up of a set of descriptive columns, one column much like 
another. But this is far from accurate, because there are rules that limit possible 
relationships between values in the columns. For example, a  customers  table, 
conceived as a relation, is a subset of the Cartesian product of four domains,  CP  
 =   CID   ×   CNAME   ×   CITY   ×   DISCNT . However, in any legal  customers  table, two rows 
with the same customer ID ( cid ) value cannot exist because  cid  is a unique 
identifi er for a  customers  row. Here is a perfect example of the kind of rule we 
wish to take into account in our logical database design. A faithful table represen-
tation enforces such a requirement by specifying that the  cid  column is a  candi-
date key  or the  primary key  for the  customers  table. A candidate key is a 
designated set of columns in a table such that two table rows can never be alike 
in all these column values, and where no smaller subset of the key columns has 
this property. A primary key is a candidate key that has been chosen by the DBA 
for external reference from other tables to unique rows in the table. 

 A faithful representation in a computerized database table of a candidate key 
or a primary key is provided when the table is created with the SQL Create Table 
statement (see the syntax given in the declaration in  Figure 2.1   ). 
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 The fact that the  ssn  column is declared as  not null unique  in a Create Table 
statement simply means that in any permitted  customers  content, two rows 
cannot have the same  ssn  value, and thus it is a candidate key. When  cid  is 
declared as a primary key in the Create Table statement, this is a more far-reaching 
statement, making  cid  the identifi er of  customers  rows that might be used by 
other tables. Following either of the table defi nitions of 2.1, a later SQL Insert or 
Update statement that would duplicate a  cid  value or  ssn  value on two rows of 
the  customers  table is  illegal  and  has no effect.  Thus, a faithful representation of 
the table key is maintained by the database system. 

 Also a number of other clauses of the Create Table statement serve a comparable 
purpose of limiting possible table content, and we refer to these as  integrity con-
straints  for a table. The interrelationships between columns in relational tables 
must be understood at a reasonably deep level in order to properly appreciate some 
constraints. Although not all concepts of logical design can be faithfully represented 
in the SQL of today, SQL is moving in the direction of modeling more and more such 
concepts. In any event, many of the ideas of logical design can be useful as an aid to 
systematic database defi nition even in the absence of direct system support. 

 In the following sections, we fi rst introduce a number of defi nitions of the ER 
model. The process of normalization is introduced after some ER intuition has 
been developed.  

   2.1     INTRODUCTION TO ER CONCEPTS 
 The ER approach attempts to defi ne a number of data classifi cation objects; the 
database designer is then expected to classify data items by intuitive recognition 
as belonging in some known classifi cation. Three fundamental data classifi cation 
objects introduced in this section are  entities, attributes,  and  relationships.  

  2.1.1     Entities, Attributes, and Simple ER Diagrams 

 We begin with a defi nition of the concept of  entity . 

       Defi nition: Entity.   An entity is a collection of distinguishable real-world objects 
with common properties.       

 For example, in a college registration database we might have the following 
entities:  Students ,  Instructors ,  Class _ rooms ,  Courses ,  Course _ sections , 

 FIGURE 2.1  

   SQL declaration of  customers  table with primary key  cid  and candidate key  ssn .    

 create table customers (cid char(4) not null, ssn integer not null unique,

    cname varchar(13), city varchar(20), discnt real, primary key (cid));
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 Class _ periods , and so on. (Note that entity names are capitalized.) Clearly the 
set of classrooms in a college fi ts our defi nition of an entity: individual classrooms 
in the entity  Class _ rooms  are distinguishable (by location — i.e., room number) 
and have other common properties such as seating capacity (not common values, 
but a common property).  Class _ periods  is a somewhat surprising entity — is 
 “ MWF from 2:00 to 3:00  PM  ”  a real-world object? However, the test here is that 
the registration process deals with these class periods as if they were objects, 
assigning class periods in student schedules in the same sense that rooms are 
assigned. 

 To give examples of entities that we have worked with a good deal in the 
CAP database, we have  Customers ,  Agents , and  Products . ( Orders  is also 
an entity, but there is some possibility for confusion in this, and we discuss it a 
bit later.) There is a foreshadowing here of entities being mapped to relational 
tables. An entity such as  Customers  is usually mapped to an actual table, and each 
row of the table corresponds to one of the distinguishable real-world objects 
that make up the entity, called an  entity instance , or sometimes an  entity 
occurrence.  

 Note that we do not yet have a name for the properties by which we tell one 
entity occurrence from another, the analog to column values to distinguish rows 
in a relational table. For now we simply refer to entity instances as being distin-
guishable, in the same sense that we would think of the classrooms in a college 
as being distinguishable, without needing to understand the room-labeling scheme 
used. In what follows we always write an entity name with an initial capital letter, 
but the name becomes all lowercase when the entity is mapped to a relational 
table in SQL. 

 We have chosen an unusual notation by assigning plural entity names: 
 Students ,  Instructors ,  Class _ rooms , and so forth. More standard would be 
entities named  Student ,  Instructor , and  Class _ room . Our plural usage is chosen 
to emphasize the fact that each represents a  set  of real-world objects, usually 
containing multiple elements, and carries over to our plural table names (also 
somewhat unusual), which normally contain multiple rows. Entities are repre-
sented by rectangles in ER diagrams, as you can see by looking at  Figure 2.2   . 

 Note that some other authors use the terminology  entity set  or  entity type  in 
referring to what we call an  entity.  Then to these authors, an  entity  is what we 
would refer to as an  entity instance.  We have also noticed occasional ambiguity 
within a specifi c author ’ s writing, sometimes referring to an entity set and some-
times to an entity; we assume that the object that is represented by a rectangle 
in an ER diagram is an entity, a collection of real-world objects, and authors who 
identify such rectangles in the same way agree with our defi nition. It is unfortunate 
that such ambiguity exists, but our notation will be consistent in what follows. 

 In mathematical discussion, for purposes of defi nition, we usually represent 
an entity by a single capital letter, possibly subscripted where several exist (e.g., 
E, E 1 , E 2 , etc.). An entity E is made up of a set of real-world objects, which we 
represent by subscripted lowercase letters: E  =  {e 1 , e 2 ,  .  .  .  , e  n  }. As mentioned 
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above, each distinct representative e  i   of an entity E is called an entity  instance  or 
an entity  occurrence.  

       Defi nition: Attribute.   An attribute is a data item that describes a property of an 
entity or a relationship (defi ned below).       

 Recall from the defi nition of  entity  that all entity occurrences belonging to a 
given entity have common properties. In the ER model, these properties are 
known as  attributes . As we will see, there is no confusion in terminology between 
an attribute in the ER model and an attribute or column name in the relational 
model, because when the ER design is translated into relational terms, the two 
correspond. A particular instance of an entity is said to have attribute values for 
all attributes describing the entity (a null value is possible). The reader should 
keep in mind that while we list distinct entity occurrences {e 1 , e 2 ,  .  .  .  , e  n  } of the 
entity E, we can ’ t actually tell the occurrences apart without reference to attribute 
values. 

 Each entity has an  identifi er , an attribute, or set of attributes that takes on 
unique values for each entity instance; this is the analog of the relational concept 
of  candidate key . For example, we defi ne an identifi er for the  Customers  entity 
to be the customer identifi er,  cid . There might be more than one identifi er for a 
given entity, and when the DBA identifi es a single key attribute to be the univer-
sal method of identifi cation for entity occurrences throughout the database, this 
is called a  primary identifi er  for the entity. Other attributes, such as  city  for 
 Customers , are not identifi ers but  descriptive attributes , known as  descriptors . 
Most attributes take on simple values from a domain, as we have seen in the rela-
tional model, but a  composite attribute  is a group of simple attributes that 
together describe a property. For example, the attribute  student _ names  for the 
 Students  entity might be composed of the simple attributes  lname ,  fname , and 
 midinitial . Note that an identifi er for an entity is allowed to contain an attribute 
of composite type. Finally, we defi ne a  multivalued attribute  to be one that can 
take on multiple values for a single entity instance. For example, the  Employees  
entity might have an attached multivalued attribute named  hobbies , which takes 

 FIGURE 2.2  

   Example of ER diagrams with entities and attributes.    
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on multiple values provided by the employee asked to list any hobbies or interests. 
One employee might have several hobbies, so this is a multivalued attribute. 

 As mentioned earlier, ER diagrams represent entities as rectangles.  Figure 2.2  
shows two simple ER diagrams. Simple, single-valued attributes are represented 
by ovals, attached by a straight line to the entity. A composite attribute is also in 
an oval attached directly to the entity, while the simple attributes that make up 
the composite are attached to the composite oval. A multivalued attribute is 
attached by a double line, rather than a single line, to the entity it describes. The 
primary identifi er attribute is underlined.  

  2.1.2     Transforming Entities and Attributes to Relations 

 Our ultimate aim is to transform the ER design into a set of defi nitions for relational 
tables in a computerized database, which we do through a set of transformation 
rules. 

     Transformation Rule 1.  Each entity in an ER diagram is mapped to a single table 
in a relational database; the table is named after the entity. The table ’ s columns 
represent all the single-valued simple attributes attached to the entity (possibly 
through a composite attribute, although a composite attribute itself does not 
become a column of the table). An identifi er for an entity is mapped to a can-
didate key for the table, as illustrated in  Example 2.1 , and a primary identifi er 
is mapped to a primary key. Note that the primary identifi er of an entity might 
be a composite attribute, which therefore translates to a set of attributes in the 
relational table mapping. Entity occurrences are mapped to the table ’ s rows.  ■     

     EXAMPLE 2.1  

   Here are the two tables, with one example row fi lled in, mapped from the  Students  and 
 Employees  entities in the ER diagrams of  Figure 2.2 . The primary key is underlined. 

      students   

    sid      lname    fname    Midinitial  

 1134  Smith  John  L. 

  .  .  .    .  .  .    .  .  .    .  .  .  

      employees   

    eid      staddress    city    state    zipcode  

 197  7 Beacon St  Boston  MA  02122 

  .  .  .    .  .  .    .  .  .    .  .  .    .  .  .  
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     Transformation Rule 2.  Given an entity E with primary identifi er  p , a multivalued 
attributed attached to E in an ER diagram is mapped to a table of its own; the 
table is named after the plural multivalued attribute. The columns of this new 
table are named after  p  and  a  (either  p  or  a  might consist of several attributes), 
and rows of the table correspond to (  p, a ) value pairs, representing all pairings 
of attribute values of  a  associated with entity occurrences in E. The primary 
key attribute for this table is the set of columns in  p  and  a .  ■     

     EXAMPLE 2.2  

   Here is an example database of two tables refl ecting the ER diagram for the  Employees  
entity and the attached multivalued attribute,  hobbies , of  Figure 2.2 . 

      employees   

    eid      staddress    city    state    zipcode  

 197  7 Beacon St  Boston  MA  02102 

 221  19 Brighton St  Boston  MA  02103 

 303  153 Mass Ave  Cambridge  MA  02123 

  .  .  .    .  .  .    .  .  .    .  .  .    .  .  .  

      hobbies   

    eid        hobby    

 197  chess 

 197  painting 

 197  science fi ction 

 221  reading 

 303  bicycling 

 303  mysteries 

  .  .  .    .  .  .  

       Defi nition: Relationship.   Given an ordered list of m entities, E 1 , E 2 ,  .  .  .  , E  m   
(where the same entity may occur more than once in the list), a relationship R 
defi nes a rule of correspondence between the instances of these entities. Specifi -
cally, R represents a set of m-tuples, a subset of the Cartesian product of entity 
instances E 1   ×  E 2   ×   .  .  .   ×  E  m  .        
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  2.1.3     Relationships among Entities 

 A particular occurrence of a relationship, corresponding to a tuple of entity occur-
rences (e 1 , e 2 ,  .  .  .  , e  n  ), where e  i   is an instance of E  i   in the ordered list of the 
defi nition, is called a  relationship occurrence  or  relationship instance . The 
number of entities  m  in the defi ning list is called the  degree  of the relationship. 
A relationship between two entities is known as a  binary relationship . For 
example, we defi ne  teaches  to be a binary relationship between  Instructors  
and  Course _ sections . We indicate that a relationship instance exists by saying 
that a particular instructor teaches a specifi c course section. Another example 
of a relationship is  works _ on , defi ned to relate the two entities  Employees  and 
 Projects  in a large company:  Employees works _ on Projects . 

 A relationship can also have attached attributes. The relationship  works _ on  
might have the attribute  percent , indicating the percent of work time during 
each week that the employee is assigned to work on each specifi c project (see 
 Figure 2.3   ). Note that this  percent  attribute attached to the  works _ on  relationship 
would be multivalued if attached to either entity  Employees  or  Projects ; the 
 percent  attribute is only meaningful in describing a specifi c employee – project 
pair, and it is therefore a natural attribute of the binary relationship  works _ on . 

 A binary relationship that relates an entity to itself (a subset of E 1   ×  E 1 ) is called 
a  ring , or sometimes a  recursive relationship . For example, the  Employees  entity 
is related to itself through the relationship  manages , where we say that one 
employee manages another. Relationships are represented by diamonds in an ER 
diagram, with connecting lines to the entities they relate. In the case of a ring, 
the connecting lines are often labeled with the names of the roles played by the 
entity instances involved. In  Figure 2.3  the two named roles are  manager _ of  and 
 reports _ to . 

 Note that we often leave out attributes in an ER diagram to concentrate on 
relationships between entities without losing our concentration in excessive 
detail. 

 FIGURE 2.3  

   Examples of ER diagrams with relationships.    
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     EXAMPLE 2.3  

    The  orders  Table in CAP Does Not Represent a Relationship 

 Per the relationship defi nition, the  orders  table in the CAP database is not a relationship 
between  Customers ,  Agents , and  Products . This is because  (cid, aid, pid)  triples in 
the rows of the  orders  table do not identify a subset of the Cartesian product,  Customers  
 ×   Agents   ×   Products , as required. Instead, some triples of  (cid, aid, pid)  values occur 
more than once, and no doubt clearly the designer ’ s intention, since the same customer 
can order the same product from the same agent on two different occasions. Instead of a 
relationship, the  orders  table represents an entity in its own right, with identifi er attribute 
 ordno . This makes a good deal of sense, since we might commonly have reason to look up 
a row in the  orders  table for reasons unconnected to relating entity occurrences in  Cus-
tomers ,  Agents , and  Products . For example, on request, we might need to check that a 
past order has been properly billed and shipped. Thus, the entity  Orders  occurrences are 
dealt with individually as objects in their own right.       

 Although the  orders  table doesn ’ t correspond directly to a relationship, it is 
clear that there are any number of possible relationships we could defi ne in terms 
of the  orders  table between the  Customers ,  Agents , and  Products  entities. 

     EXAMPLE 2.4  

   Assume that we are performing a study in which we commonly need to know total sales 
aggregated (summed) from the  orders  table by  customers ,  agents , and  products  for the 
current year. We might do this, for example, to study sales volume relationships between 
 agents  and  customers , as well as between  customers  and  products , and how those 
relationships are affected by geographic factors ( city  values). However, as we begin to plan 
this application, we decide that it is too ineffi cient to always perform sums on the  orders  
table to access the basic measures of our study, so we decide to create a new table called 
 yearlies . We defi ne this new table with the following SQL commands:

    create table yearlies (cid char(4). aid char(3). pid char(3).   
               totqty integer, totdoll float);   
   insert into yearlies   
               select cid, aid, pid, sum(qty), sum(dollars) from orders   
               group by cid, aid, pid;     

 Once we have the new  yearlies  table, the totals can be kept up to date by application 
logic: As each new order is entered, the relevant  yearlies  row should be updated as well. 
Now the  yearlies  table is a relationship, since the  (cid, aid, pid)  triples in the rows 
of the table identify a  subset  of the Cartesian product,  Customers   ×   Agents   ×   Products ; 
that is to say, there are now no repeated triples in the  yearlies  table. Since these triples 
are unique,  (cid, aid, pid)  forms the primary key for the  yearlies  table.      

 A relationship on more than two entities is called an  n-ary relationship.  The 
 yearlies  relationship on three distinct entities is also known as a  ternary rela-
tionship.  An  n -ary relationship with  n   >  2 can often be replaced by a number 
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of distinct binary relationships in an ER diagram, and this is a good idea if the 
replacement expresses true binary relationships for the system. Binary relation-
ships are the ones that are familiar to most practitioners and are suffi cient for 
almost all applications. However, in some cases, a ternary relationship cannot be 
decomposed into expressive binary relationships. The  yearlies  relationship of 
 Example 2.4  expresses customer-agent-product ordering patterns over a year, a 
ternary relationship that cannot be decomposed (exactly) into binary relation-
ships. In converting an ER design to a relational one, a relationship is sometimes 
translated into a relational table, and sometimes not. (We will have more to say 
about this in the next section.) For example, the  yearlies  relationship (a ternary 
relationship) is translated into a relational table named  yearlies . However, the 
manages relationship between  Employees  and  Employees , shown in  Figure 2.3 , 
does not translate into a table of its own. Instead, this relationship is usually trans-
lated into a column in employees identifying the  mgrid  to whom the employee 
reports. This table is shown again in  Figure 2.4   . 

 Note the surprising fact that  mgrid  is  not  considered an attribute of the 
 Employees  entity, although it exists as a column in the  employees  table. The  mgrid  
column is what is known as a  foreign key  in the relational model, and it corre-
sponds to the actual  manages  relationship in the ER diagram of  Figure 2.3 . We 
deal more with this in the next section, after we have had an opportunity 
to consider some of the properties of relationships. To summarize this section, 
 Figure 2.5(a) and (b)    lists the concepts introduced up to now.   

  2.2     FURTHER DETAILS OF ER MODELING 
 Now that we ’ ve defi ned some fundamental means of classifi cation, let ’ s discuss 
properties of relationships in the ER method of database design. 

 FIGURE 2.4  

   A table representing an entity,  Employees , and a ring (recursive relationship),  manages .    

employees

eid ename mgrid

e001 Jacqueline null

e002 Frances e001

e003 Jose e001

e004 Deborah e001

e005 Craig e002

e006 Mark e002

e007 Suzanne e003

e008 Frank e003

e009 Victor e004

e010 Chumley e007



 FIGURE 2.5  

   Basic ER concepts: (a) entities and attributes, and (b) relationships.    

Classification Description Example

Entity
A collection of distinguishable real-world 
objects with common properties

Customers, Agents, 
Products, Employees

Attribute
A data item that describes a property of an 
entity or relationship

See below

Identifier (set 
of attributes)

Uniquely identifies an entity or 
relationship occurrence

customer identifier: cid, 
employee identifier: eid

Descriptor
Non-key attribute, describing an entity or 
relationship

city (for Customers), capacity 
(for Class_rooms)

Composite 
attribute

A group of simple attributes that together 
describe a property of an object

emp_address (see Figure 2.2)

Multi-valued 
attribute

An entity attribute that takes on multiple 
values for a single entity instance

(a)

(b)

hobbies (see Figure 2.2)

Classification Description Example

Relationship
Named set of m-tuples, identifies subset 
of the Cartesian product E1 × E2 × . . . × Em

Binary
relationship

A relationship on two distinct entities teaches, works_on (see Figure 
2.3)

Ring, recursive
relationship

A relationship relating an entity to itself manages  (see Figure 2.4)

Ternary 
relationship

A relationship on three distinct entities yearlies (see Example 2.4)

  2.2.1     Cardinality of Entity Participation in a Relationship 

  Figure 2.6    illustrates the concepts of  minimum  and  maximum cardinality  with 
which an entity participates in a relationship.  Figure 2.6(a), (b), and (c)  represent 
entities E and F on the left and right, respectively, by two sets; elements of the 
two sets are connected by a line exactly when a relationship R relates the two 
entity occurrences represented. Thus, the connecting lines themselves represent 
instances of the relation R. Note that the diagrams of  Figure 2.6  are  not  what we 
refer to as ER diagrams. 

 The minimum cardinality with which an entity takes part in a relationship is 
the minimum number of lines that the DBA allows to be connected to each entity 
instance. Note that the diagrams of  Figure 2.6  would normally only give examples 
of relationships at a given moment, and the line connections might change, just 
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as the row content of a table can change, until some entity instances have differ-
ent numbers of lines connected. On the other hand, the minimum and maximum 
cardinality properties of an entity are meant to represent rules laid down by the 
DBA for all time, rules that cannot be broken by normal database changes affect-
ing the relationship. In  Figure 2.6(a) , the DBA clearly permits both entity sets E 
and F to take part in relationship R with minimum cardinality 0; that is to say, the 
DBA does not  require  a connecting line for each entity instance, since some ele-
ments of both sets have no lines connected to them. We symbolize this by writing 
min-card(E, R)  =  0 and min-card(F, R)  =  0. The maximum cardinality with which 
E and F take part in R is not obvious from  Figure 2.6(a) , however. No entity 
instance has more than one line connected to it, but from an example as of a given 
moment we have no guarantee that the line connections won ’ t change in the 
future so that some entity instances will have more than one line connected. 
However, we will assume for purposes of simple explanation that the diagrams 
of this fi gure are meant to represent exactly the cardinalities intended by the DBA. 
Thus, since no entity instance of E and F in  Figure 2.6(a)  has more than one inci-
dent connecting line, we record this fact using the notation max-card(E, R)  =  1 
and max-card(F, R)  =  1. 

 In  Figure 2.6(b) , assuming once again that this set of lines is representative of 
the designer ’ s intention, we can write min-card(E, R)  =  0, since not every element 
of E is connected to a line, but min-card(F, R)  =  1, since at least one line is con-
nected to every element of F, and our assumption implies that this won ’ t change. 
We also write max-card(E, R)  =  N, where N means  “ more than one ” ; this means 
that the designer does not intend to limit to one the number of lines connected 
to each entity instance of E. However, we write max-card(F, R)  =  1, since every 
element of F has exactly one line leaving it. Note that the two meaningful values 
for min-card are 0 and 1 (where 0 is not really a limitation at all, but 1 stands for 

 FIGURE 2.6  

   Examples of relationships R between two entities E and F.    

E             R             F E             R             F E             R             F

(a) One-to-one relationship (b) Many-to-one relationship (c) Many-to-many relationship
min-card(E, R) = 0 min-card(E, R) = 0 min-card(E, R) = 0
max-card(E, R) = 1 max-card(E, R) = N max-card(E, R) = N
min-card(F, R) = 0 min-card(F, R) = 1 min-card(F, R) = 0
max-card(F, R) = 1 max-card(F, R) = 1 max-card(F, R) = N

F is the "many" side here.



the constraint  “ at least one ” ), and the two meaningful values for max-card are 1 
and N (N is not really a limitation, but 1 represents the constraint  “ no more than 
one ” ). We don ’ t try to differentiate numbers other than 0, 1, and many. Since 
max-card(E, R)  =  N, there are multiple entity instances of F connected to one of 
E by the relationship. For this reason, F is called the  “ many ”  side and E is called 
the  “ one ”  side in this many-to-one relationship. 

  Note particularly  that the  “ many ”  side in a many-to-one relationship is the side 
that has  max-card value 1!  In  Figure 2.6(b) , the entity F corresponds to the 
 “ many ”  side of the many-to-one relationship, even though it has min-card(F, R)  =  
max-card(F, R)  =  1. As just explained, the  “ one ”  side of a many-to-one relationship 
is the side where some entity instances can participate in multiple relationship 
instances,  “ shooting out multiple lines ”  to connect to  many  entity instances on 
the  “ many ”  side! Phrased this way the terminology makes sense, but this seems 
to be an easy idea to forget, and forgetting it can lead to serious confusion. 

 In  Figure 2.6(c)  we have min-card(E, R)  =  0, min-card(F, R)  =  0, max-card(E, 
R)  =  N, and max-card(F, R)  =  N. The meaning of the terms used for the three 
diagrams — one-to-one relationship, many-to-one relationship, and many-to-many 
relationship — are defi ned later. 

     EXAMPLE 2.5  

   In the relationship  teaches  of  Figure 2.3 ,  Instructors teaches Course _ sections , the 
DBA would probably want to make a rule that each course section needs to have at least 
one instructor assigned to teach it by writing min-card( Course _ sections ,  teaches )  =  1. 
However, we need to be careful in making such a rule, since it means that we will not be 
able to create a new course section, enter it in the database, assign it a room and a class 
period, and allow students to register for it, while putting off the decision of who is going to 
teach it. The DBA might also make the rule that at most one instructor can be assigned to 
teach a course section by writing max-card( Course _ sections ,  teaches )  =  1. On the other 
hand, if more than one instructor were allowed to share the teaching of a course section, 
the DBA would write max-card( Course _ sections ,  teaches )  =  N. This is clearly a signifi cant 
difference. We probably don ’ t want to make the rule that every instructor teaches some 
course section (written as min-card( Instructors ,  teaches )  =  1), because an instructor 
might be on leave, so we settle on min-card( Instructors ,  teaches )  =  0. And in most 
universities the course load per instructor is greater than one in any given term, so we would 
set max-card( Instructors ,  teaches )  =  N.      

       Defi nition.   When an entity E takes part in a relationship R with min-card(E, R)  =  
x (x is either 0 or 1) and max-card(E, R)  =  y (y is either 1 or N), then in the ER 
diagram the connecting line between E and R can be labeled with the ordered 
cardinality pair (x, y). We use a new notation to represent this minimum-maximum 
pair (x, y): card(E, R)  =  (x, y).       

 According to the above defi nition and the assignments of  Example 2.5 , the edge 
connecting the entity  Course _ sections  to the relationship  teaches  should be 
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labeled with the pair (1, 1). In  Figure 2.7    we repeat the ER diagrams of  Figure 2.3 , 
with the addition of ordered pairs (x, y) labeling line connections, to show the 
minimum and maximum cardinalities for all ER pairs. The cardinality pair for 
the  Instructors teaches Course _ sections  diagram follows the discussion of 
 Example 2.5 , and other diagrams are fi lled in with reasonable pair values. We make 
a number of decisions to arrive at the following rules: Every employee must work 
on at least one project (but may work on many); a project might have no employees 
assigned during some periods (waiting for staffi ng), and of course some projects 
will have a large number of employees working on them; an employee who acts in 
the  manager _ of  role (see discussion below) may be managing no other employees 
at a given time and still be called a manager; and an employee reports to at most 
one manager, but may report to none (this possibility exists because there must 
always be a highest-level employee in a hierarchy who has no manager). 

 In the  Employees-manages  diagram shown in  Figure 2.7 , the normal notation, 
 card(Employees ,  manages) , would be ambiguous. We say that there are two dif-
ferent  roles  played by the  Employees  entity in the relationship: the  manager _ of  
role and the  reports _ to  role. Each relationship instance in  manages  connects a 
 managed employee  ( Employees  instance in the  reports _ to  role) to a  manager 
employee  ( Employees  instance in the  manager _ of  role). We use the cardinality 
notation with entities having parenthesized roles to remove ambiguity. 

     card(Employees(reports _ to). manages)  =  (0. 1)     

 and 

     card(Employees(manager _ of). manages)  =  (0. N)     

 And from these cardinalities we see that an employee who acts in the  manager _ of  
role may be managing no other employees at a given time and still be called a 
manager; and an employee reports to at most one manager, but may report to 
none (because of the highest-level employee in a hierarchy who has no manager —
 if it weren ’ t for that single person, we could give the label (1, 1) to the  reports _
 to  branch of the  Employees-manages  edge). 

 FIGURE 2.7  

   An ER diagram with labels (x, y) on ER connections.    

Employees Projectsworks_on

percent

Instructors Course_sectionsteaches

Employees manages

ename

reports_to

manager_of

(0, 1)

(1, 1)

(0, N)

(0, N)

(0, N)

(1, N)



       Defi nition.   When an entity E takes part in a relationship R with max-card(E, R)  =  
1, then E is said to have  single-valued  participation in the relationship R. If 
max-card(E, R)  =  N, then E is said to be  multivalued  in this relationship. A binary 
relationship R between entities E and F is said to be  many-to-many , or N-N, if 
both entities E and F are multi-valued in the relationship. If both E and F are 
single-valued, the relationship is said to be  one-to-one , or 1-1. If E is single-valued 
and F is multivalued, or the reverse, the relationship is said to be many-to-one, 
or N-1. (We do not normally speak of a 1-N relationship as distinct from an N-1 
relationship.)        

  2.2.2     One-to-One, Many-to-Many, and Many-to-One Relationships 

 Recall that the  “ many ”  side in a many-to-one relationship is the side that has 
single-valued participation. This might be better understood by considering the 
relationship in  Figure 2.7 ,  Instructors teaches Course _ sections , where  card
(Course _ sections ,  teaches)   =  (1, 1), and the  Course _ sections  entity represents 
the  “ many ”  side of the relationship. This is because one instructor teaches  “ many ”  
course sections, while the reverse is not true. 

 In the last defi nition, we see that the values max-card(E, R) and max-card(F, 
R) determine whether a binary relationship is many-to-many, many-to-one, or 
one-to-one. On the other hand, the values min-card(E, R) and min-card(F, R) 
are not mentioned, and they are said to be independent of these characterizations. 
In particular, the fact that min-card(F, R)  =  1 in  Figure 2.6(b)  is independent of 
the fact that that fi gure represents a many-to-one relationship. If there were addi-
tional elements in entity F that were not connected by any lines to elements in E 
(but all current connections remained the same), this would mean that min-card(F, 
R)  =  0, but the change would not affect the fact that R is a many-to-one relation-
ship. We would still see one element of E (the second from the top) related 
to two elements of F; in this case, the entity F is the  “ many ”  side of the 
relationship. 

 Although min-card(E, R) and min-card(F, R) have no bearing on whether a 
binary relationship R is many-to-many, many-to-one, or one-to-one, a different 
characterization of entity participation in a relationship is determined by these 
quantities. 

       Defi nition.   When an entity E that participates in a relationship R has min-card(E, 
R)  =  1, E is said to have mandatory participation in R, or is simply called mandatory 
in R. An entity E that is not mandatory in R is said to be optional, or to have optional 
participation.        

  2.2.3     Transforming Binary Relationships to Relations 

 We are now prepared to give the transformation rule for a binary many-to-many 
relationship. 
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     Transformation Rule 3. N – N Relationships:  When two entities E and F take part 
in a many-to-many binary relationship R, the relationship is mapped to a rep-
resentative table T in the related relational database design. The table contains 
columns for all attributes in the primary keys of both tables transformed from 
entities E and F, and this set of columns forms the primary key for the table T. 
Table T also contains columns for all attributes attached to the relationship. 
Relationship occurrences are represented by rows of the table, with the related 
entity instances uniquely identifi ed by their primary key values as rows.  ■     

     EXAMPLE 2.6  

   In  Figure 2.7 , the relationship  works _ on  is many-to-many between the entities  Employees  
and  Projects . The relational design in  Figure 2.8    follows Transformation Rule 1 to provide 
a table for the entity  Employees  (as specifi ed in  Example 2.2 ) and a table for the entity 
 Projects ; it also follows Transformation Rule 3, to provide a table for the relationship 
 works _ on . 

 We generally assume that the  eid  column in the  employees  table and  prid  column for 
the  projects  table cannot take on null values, since they are the primary keys for their 
tables and must differentiate all rows by unique values. Similarly, the  (eid, prid)  pair of 
columns in the  works _ on  table cannot take on null values in either component, since each 

 FIGURE 2.8  

   Relational design for  Employees works _ on Projects  of  Figure 2.7 .    

employees works_on

eid straddr city state zipcode eid prid percent

197 7 Beacon St Boston MA 02102 197 p11 50

221 19 Brighton St Boston MA 02103 197 p13 25

303 153 Mass Ave Cambridge MA 02123 197 p21 25

. . . . . . . . . . . . . . . 221 p21 100

303 p13 40
projects

303 p21 60
prid proj_name due_date

. . . . . . . . .

p11 Phoenix 3/31/99

p13 Excelsior 9/31/99

p21
White 
Mouse

6/30/00

. . . . . . . . .



row must uniquely designate the employee – project pair related. Note that no primary key 
column of a relational table can take on null values. Note that although we refer to this as 
the  entity integrity rule , it applies as well to tables arising out of the relationships in the ER 
model. Note also that the SQL Create Table command provides syntax to impose an integ-
rity constraint on a table that guarantees this rule will not be broken, that no nulls will be 
assigned. For example, the SQL statement   

   create table projects (prid char(3) not null  .  .  .);     

 guarantees that the  prid  column of the  projects  table cannot take on null values as a result 
of later Insert, Delete, or Update statements. There are other constraints as well that have 
this effect.      

     Transformation Rule 4. N – 1 Relationships:  When two entities E and F take part 
in a many-to-one binary relationship R, the relationship will not be mapped to 
a table of its own in a relational database design. Instead, if we assume that 
the entity F has max-card(F, R)  =  1 and thus represents the  “ many ”  side of the 
relationship, the relational table T transformed from the entity F should include 
columns constituting the primary key for the table transformed from the entity 
E; this is known as a  foreign key  in T. Since max-card(F, R)  =  1, each row of 
T is related by a foreign key value to at most one instance of the entity E. If F 
has mandatory participation in R, then it must be related to exactly one 
instance of E, and this means that the foreign key in T cannot take on null 
values. If F has optional participation in R, then each row of T that is not related 
can have null values in all columns of the foreign key.      ■ 

     EXAMPLE 2.7  

    Figure 2.9    shows a relational transformation of the  Instructors teaches Course _ 
sections  ER diagram of  Figure 2.7 . Recall that we made the rule that one instructor can 
teach multiple course sections, but each course section can have only one instructor. The 
 insid  column in the  Course _ sections  table is a foreign key, relating a  course _ sections  
instance (row) to a unique  instructors  instance (row). 

 The Create Table command in SQL can require a column not to take on null values; 
therefore, it is possible to guarantee a faithful representation for mandatory participation by 
the  “ many ”  side entity in a many-to-one relationship. Here we can create the  course _ 
sections  table so no nulls are allowed in the  insid  column. What we mean by  “ faithful ”  
is that it becomes impossible for a user to corrupt the data by a thoughtless update, because 
SQL does not allow a  course _ sections  row with a null value for  insid . SQL can also 
impose a constraint that the foreign key  insid  value in a row of the  course _ sections  table 
actually exists as a value in the  insid  primary key column in the  instructors  table. This 
constraint is known as  referential integrity.       

 Unfortunately, it is not possible in standard SQL to guarantee a mandatory 
participation by the  “ one ”  side of a many-to-one relationship, or by either side of 
a many-to-many relationship. Thus, in  Example 2.7  there would be no way to 
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provide a faithful representation in an SQL table defi nition that would guarantee 
that every instructor teaches at least one course. 

 Note that there are differences of opinion among texts on some of these ER 
transformation rules for relationships. Teorey (1994) gives the equivalent to Trans-
formation Rule 4 for N-1 relationships, but Batini et al. (1992) provides an alternate 
transformation where the relationship is mapped onto a table of its own if the 
entity at the  “ many ”  side of the relationship has an optional participation. The 
reason for this is to avoid possibly heavy use of null values in the foreign key 
( insid  in  course _ sections  in  Example 2.7 ); but since there seems to be nothing 
wrong with using null values, we follow the transformation of Teorey (1994). 

     Transformation Rule 5. 1-1 Relationships, Optional Participation:  Given two 
entities E and F that take part in a one-to-one binary relationship R, where 
participation is optional on either side, we wish to translate this situation into 
a relational design. To do this, we create a table S to represent the entity E, 
following the prescription of Transformation Rule 1, and similarly a table T to 
represent the entity F. Then we adjoin to the table T a set of columns (as a 
foreign key) constituting the primary key for table S. If we wish, we may also 
adjoin to table S a foreign key set of columns referring to the primary key of 
table T. For any relationship instance in R, a unique entity instance in E is 
related to a unique instance in F — in the corresponding rows of S and T, the 
foreign key column values fi lled in to reference the row in the other table 
arising from the instances related by R.  ■   

   Transformation Rule 6. 1-1 Relationships, Mandatory Participation on Both 

Sides:  In the case of a one-to-one relationship with mandatory participation 
on both sides, it is most appropriate to combine the tables for the two entities 
into one, and in this way avoid any foreign keys.  ■     

 We do not present transformation rules for all possible  n -ary relationships with 
 n   >  2. Usually such an  n -ary relationship is transformed into a table of its own, 
but if all but one of the entities of the relationship participate with max-card  =  1, 
then it is possible to represent the relationship with  n   −  1 foreign keys in the one 
table that participates with greater cardinality.   

 FIGURE 2.9  

   Relational design for  Instructors teaches Course _ sections  of  Figure 2.7 .    

instructors course_sections

insid lname office_no ext secid insid course room period

309 O'Neil S-3-223 78543 120 309 CS240 M-1-213 MW6

123 Bergen S-3-547 78413 940 309 CS630 M-1-214 MW7:30

113 Smith S-3-115 78455 453 123 CS632 M-2-614 TTH6

. . . . . . . . . . . . . . . . . . . . . . . . . . .



  2.3     ADDITIONAL ER CONCEPTS 
 In this section we introduce a number of additional concepts useful for ER 
modeling. 

  2.3.1     Cardinality of Attributes 

 To begin with, we note that the min-card/max-card notation can be used to 
describe the cardinality of attributes attached to entities. 

       Defi nition.   Given an entity E and an attached attribute A, we write min-card(A, E) 
 =  0 to indicate that the attribute A is optional, and min-card(A, E)  =  1 to indicate 
that the attribute A is mandatory. An attribute that is mandatory should correspond 
to a column declared in the table representing the entity E with no nulls allowed. 
We write max-card(A, E)  =  1 to indicate that the attribute is single valued, and max-
card(A, E)  =  N to indicate that the attribute is multivalued. An attribute A is said 
to have card(A, E)  =  (x, y) when min-card(A, E)  =  x and max-card(A, E)  =  y. The 
(x, y) pair can be used to label an attribute – entity connection in an ER diagram 
to indicate the cardinality of the attribute.       

 Attributes that have unlabeled connectors in an ER diagram can be assumed 
to have cardinality (0, 1) if they are descriptor attributes, and cardinality (1, 1) if 
they are identifi er attributes.  Figure 2.10    recapitulates  Figure 2.2  with labeled 
attribute – entity connectors. (Note that these are not the default cardinalities only 
because of lack of notation.) 

 In  Figure 2.10  we note that the attribute  midinitial  is optional (some people 
don ’ t have middle names). The composite attribute  student _ names  is mandatory 
for  Students , but  emp _ address  is optional for  Employees . However, given that 
 emp _ address  exists, all four simple attributes making up the address are manda-
tory. Both  sid  and  eid  have cardinality (1, 1); this is always the case for entity 
identifi ers. The multivalued  hobbies  attribute has max-card N, as we can also tell 

 FIGURE 2.10  

   ER diagrams with labeled attribute – entity connectors.    
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staddress
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from the fact that it is connected to its entity by a double line. The fact that min-
card( hobbies ,  Employees )  =  1 is somewhat surprising and indicates that the 
employee  must  name at least one hobby for inclusion in the database. 

       Defi nition: Weak Entity.   A weak entity is an entity whose occurrences are 
dependent for their existence, through a relationship R, on the occurrence of 
another (strong) entity.        

  2.3.2     Weak Entities 

 As an example, we have been assuming in our CAP design that an order specifi es 
a customer, agent, product, quantity, and dollar cost. A common design variant 
that allows multiple products to be ordered at once will create an  orders  table 
that relates to  customers  and  agents  rows, as well as a  line _ items  table contain-
ing individual product purchases; a number of rows in the  line _ items  table relate 
to one master  orders  occurrence. The design of this in the ER model is given in 
 Figure 2.11   . 

 As we see, the entity  Orders  is optional in its relationship to  Line _ items , since 
each order must start without any line items.  Line _ items  is mandatory in the 
relationship, because a line-item order for a product cannot exist without a master 
order containing it to specify the customer and agent for the order. If the  Orders  
occurrence goes away (the customer cancels it), all occurrences of the weak entity 
 Line _ items  will likewise disappear. A dead giveaway for a weak entity is the fact 
that the primary identifi er for  Line _ items  ( lineno ) is only meaningful within 
some order. In fact, what this implies is that the primary identifi er for the weak 
entity  Line _ items  must include the attributes in the primary identifi er for the 

 FIGURE 2.11  

   A weak entity,  Line _ items , dependent on the entity  Orders .    

Ordersrequests

ordno
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 Orders  entity. Attributes such as  Line _ items  are known as  external identifi er  
attributes. 

 When the  Line _ items  weak entity is mapped to a relational table  line _ items , 
an  ordno  column is included by Transformation Rule 4 to represent the N-1 
 has _ item  relationship; thus, the primary key for the  line _ items  table is con-
structed from the external attribute  ordno  and the weak entity identifi er  lineno . 
Note that it is also sometimes diffi cult to distinguish between a weak entity and 
a multivalued attribute. For example,  hobbies  in  Example 2.2  could be identifi ed 
as a weak entity  Hobbies , with an identifi er  hobby _ name . However,  Figure 2.11  
obviously implies  Line _ items  is a weak entity rather than a multivalued attribute, 
since  Line _ items  is separately related to another entity,  Products .  

  2.3.3     Generalization Hierarchies 

 Finally, we introduce the concept of a  generalization hierarchy  or  generaliza-
tion relationship . The idea is that several entities with common attributes can be 
generalized into a higher-level  supertype entity , or, alternatively, a general entity 
can be decomposed into lower-level  subtype entities . The purpose is to attach 
attributes at the proper level and thus avoid having attributes of a common entity 
that require a large number of null values in each entity instance. For example, 
assume that we distinguish between  Managers  and  Non _ managers  as  subtype  
entities of the  supertype   Employees  (see  Figure 2.12   ). Then attributes such 
as  expenseno  (for expense reports) can be attached only to the  Managers  
entity, while nonmanager attributes such as  union status  can be attached to 
 Non _ managers . Consultants might form another entity type sharing many proper-
ties with  Employees , and we could create a new supertype entity named  Persons  
to contain them both. An ER diagram showing a generalization hierarchy normally 
has arrows (unnamed) directed from the subtype to the supertype entities. 

 The arrow relationship between the subtype entity and the supertype entity 
is often referred to as an  is-a relationship , since a consultant  is a  person, a 
manager  is an  employee, and so forth. Object-relational database systems express 

2.3 Additional ER Concepts  31

 FIGURE 2.12  

   A generalization hierarchy with examples of attributes attached.    
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Non_managers union_noexpenseno Managers



32  CHAPTER 2 Entity–Relationship Concepts

these concepts using  type inheritance , where objects (rows) of a given subtype 
contain specifi c attributes but  inherit  all attributes of their  supertype . In particu-
lar, INFORMIX and SQL-99 support inheritance of object types. 

 The relational model provides no support for the concept of generalization 
hierarchy, so it is necessary to reconfi gure such a design element into simpler 
concepts. This can happen either prior to transformation into relational tables or 
as part of the transformation. Here we give an idea of how to perform such a 
reconfi guration while remaining in the ER model, before transformation into 
a relational representation. We consider one level of generalization hierarchy at a 
time and give two alternatives. 

    1.     We can collapse a one-level generalization hierarchy of subtype and supertype 
entities into a single entity by adding all attributes of the subtype entities to 
the supertype entity. An additional attribute must be added to this single entity, 
which will discriminate among the various types. As an example, the  Employ-
ees  entity in  Figure 2.12  could be augmented to represent managers and 
nonmanagers as well, by affi xing the attributes  union _ no ,  expenseno , 
and  emptype  to the  Employee  entity. Now the  union _ no  attribute will be null 
when  emptype  has value  “ Manager, ”  and similarly  expenseno  will be null when 
 emptype  is  “ Nonmanager. ”  The  emptype  attribute might also designate the 
supertype case, an important alternative when some entity instances in the 
supertype fall in none of the named subtypes.  

  2.     We can retain the supertype entity and all subtype entities as full entities and 
create explicit named relationships to represent the is-a relationships.    

 Alternative 2 is particularly useful when the various subtypes and supertype are 
quite different in attributes and are handled differently by application logic. 

 We do not investigate all concepts of the ER model in full depth here. See the 
references at the end of this chapter for a list of texts devoted to complete cover-
age of the ER model and logical database design.   

  2.4     CASE STUDY 
 Let us try to perform an ER design from the beginning, ending up with a set of 
relational tables. Consider a simple airline reservation database handling (only) 
outgoing fl ights from one airline terminal. We need to keep track of passengers, 
fl ights, departure gates, and seat assignments. We could get almost arbitrarily 
complex in a real design, since a  “ fl ight ”  actually brings together a fl ight crew and 
an airplane, serviced by a ground crew, slotted into a regularly scheduled depar-
ture time with an assigned fl ight number on a specifi c date. But for simplicity, we 
will assume that we can represent fl ights with an entity  Flights , having primary 
identifi er  flightno  (unique identifi er values, not repeated on successive days) and 
descriptive attribute  depart _ time  (actually made up of date and time); other 
details will be hidden from us. Passengers are represented by another entity, 



 Passengers , with primary identifi er attribute  ticketno ; a passenger has no other 
attribute that we care about. We also need to keep track of seats for each fl ight. 
We assume that each seat is an entity instance in its own right, an entity  Seats , 
identifi ed by a seat number,  seatno , valid only for a specifi c fl ight (different fl ights 
might have different airplane seat layouts, and therefore different sets of seat 
numbers). We see therefore that seat assignment is a relationship between 
 Passengers  and  Seats , which we name  seat _ assign . 

 Now think about this specifi cation for a moment. The  Passengers  entity is 
easy to picture, and so is the  Flights  entity. The  depart _ time  attribute for 
 Flights  is composite, consisting of simple attributes  dtime  and  ddate . We can 
add another entity  Gates , with primary identifi er  gateno . We have already defi ned 
a  Seats  entity, but the entity seems to be a little strange: The  seatno  primary 
identifi er for  Seats  is only meaningful when related to a  Flights  instance. This 
is what is referred to in the previous section as a weak entity, and thus there must 
be a relationship between  Flights  and  Seats , which we name  has _ seat . The 
identifi er for  Seats  is partially external, encompassing the identifi er of the contain-
ing fl ight. 

 What other relationships do we have? If we draw the ER diagram for what we 
have named up to now, we notice that the  Gates  entity is off by itself. But clearly 
passengers go to a gate to meet a fl ight. We model this as two binary relationships 
rather than as a ternary relationship: each passenger is related to a specifi c fl ight 
through the relationship  Passengers travels _ on Flights , and gates normally 
act as marshaling points for multiple fl ights (at different times) through the rela-
tionship  Gates marshals Flights .  Figure 2.13    shows the ER diagram so far. The 
arrow from  seatno  to  flightno  symbolizes the fact that the primary identifi er for 
 Seats  includes the identifi er for the master entity  Flights . 

 FIGURE 2.13  

   Early ER design for a simple airline reservation database.    
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 Now we need to work out the cardinalities with which the various 
entities participate in their relationships. Considering the  marshals  relationship 
fi rst, clearly there is exactly one gate for each fl ight, so card( Flights ,  marshals ) 
 =  (1, 1). A single gate might be used for multiple fl ights at different times, 
but there is no rule that a gate must be used at all, so card( Gates ,  marshals )  =  
(0, N). Now each passenger must travel on exactly one fl ight, so card( Passengers , 
 travels _ on )  =  (1, 1). A fl ight must have multiple passengers to fl y (the fl ight 
will be canceled and the gate reassigned if there are too few), but the database 
needs to hold information starting from no passengers, so we set a minimum of 
0, and card( Flights ,  travels _ on )  =  (0, N). A fl ight must have numerous seats 
for passengers, so card( Flights ,  has _ seat )  =  (1, N), and each seat is on a 
unique fl ight, so card( Seats ,  has _ seat )  =  (1, 1). Each passenger must have a 
seat, and only one, so card( Passengers ,  seat _ assign )  =  (1, 1), and seats can be 
used by at most one passenger and may go empty, so card( Seats ,  seat _ assign ) 
 =  (0, 1). The ER diagram with these cardinality pairs added is pictured in 
 Figure 2.14   . 

 Now the ER design is complete, and we need to transform the design into 
relational tables. We can begin by creating tables to map entities, even though 
this means that we might overlook some attributes that will be needed to repre-
sent foreign keys for relationships. We will simply have to return later when we 
consider the relationships and add attributes to these tables. To begin with, we 
notice with the  Flights  entity that we don ’ t have multivalued attributes in rela-
tional tables, so following the hint of Transformation Rule 1, we create columns 
for  ddate  and  dtime  in the  flights  table. All other tables are easily mapped, 
except for the  seats  table, where we take the easy way out and use the single 
column  seatno , even though this is not a complete key for the table. Here are 
the tables so far: 

 FIGURE 2.14  

   ER design with cardinalities for a simple airline reservation database.    
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  passengers    gates    fl ights    seats  

   ticketno      gateno      flightno     ddate    dtime     seatno   

  .  .  .  

 Now consider the relationship  has _ seat , which is N-1 in  Figure 2.14 , with 
 Seats  on the  “ many ”  side. By Transformation Rule 4, a foreign key in the  seats  
table will connect each  seats  row to the appropriate  flights  row. This com-
pletes the primary key for the  seats  table, which represents a weak entity and 
therefore needs a foreign key to identify each row. 

  passengers    gates    fl ights    seats  

   ticketno      gateno      flightno     ddate    dtime     seatno     flightno  

  .  .  .  

 The  seat _ assign  relationship is 1-1, with optional participation by  Seats , so by 
Transformation Rule 5 we can represent this by adjoining to the  passengers  table 
a foreign key for seats (this requires two additional columns). We don ’ t expect that 
we will ever need to look up the passenger for a given seat, so we place no additional 
foreign key on the  seats  table. The resulting table defi nitions are as follows: 

  passengers    gates  

   ticketno     seatno    flightno     gateno   

  .  .  .  

  fl ights    seats  

   flightno     ddate    dtime     seatno      flightno   

 Now consider the  marshals  relationship. This is N-1, with  Flights  on the 
 “ many ”  side, so by Transformation Rule 4 a foreign key in the  flights  table, 
 gateno , will connect each  flights  row to the appropriate  gates  row: 

  passengers    gates  

   ticketno     seatno    flightno     gateno   

  .  .  .  
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  fl ights    seats  

   flightno     gateno    ddate    dtime     seatno     flightno  

 Similarly the  travels _ on  relationship is N-1, with  Passengers  on the  “ many ”  
side, so by Transformation Rule 4 a foreign key,  flightno , in the  passengers  
table will connect each  passengers  row to the appropriate  flights  row. This 
column already exists in the  passengers  table, however, so the relational table 
design is complete.  

  2.5     NORMALIZATION: PRELIMINARIES 
 Normalization is another approach to logical design of a relational database, which 
seems to share little with the ER model. However, it will turn out that a relational 
design based on normalization and a careful ER design transformed into relational 
form have nearly identical results, and in fact the two approaches reinforce each 
other. In the normalization approach, the designer starts with a real-world situa-
tion to be modeled and lists the data items that are candidates to become column 
names in relational tables, together with a list of rules about the relatedness of 
these data items. The aim is to represent all these data items as attributes of tables 
that obey restrictive conditions associated with what we call  normal forms . These 
normal form defi nitions limit the acceptable form of a table so that it has certain 
desirable properties, thus avoiding various kinds of anomalous behavior. There is 
a series of normal form defi nitions, each more restrictive than the one before; the 
forms covered in this chapter are fi rst normal form (1NF), second normal form 
(2NF), third normal form (3NF), and Boyce-Codd normal form (BCNF). Other types 
of normalization, 4NF and 5NF, are less commonly considered and are not covered 
in detail in this chapter. 

 To begin with, a table in 1NF is simply one that has no multivalued (repeating) 
fi elds. SQL language accepts this rule as basic.  In what follows we assume that 
tables are in 1NF unless otherwise specifi ed . 2NF turns out to be of mainly his-
torical interest, since no sensible designer would leave a database in 2NF but 
would always continue normalization until the more restrictive 3NF was reached. 
From an initial database containing data items that are all in the same table (some-
times referred to as a  universal table ) and relatedness rules on these data items, 
there is a procedure to create an equivalent database with multiple tables, all of 
which are in 3NF. (This is what we mean by having a database in 3NF — that all 
of its tables have 3NF form.) As we proceed through this chapter we will fi nd that 
any table that does not obey 3NF can be factored into distinct tables in such a 
way that (1) each of the factored tables is in a valid 3NF, and (2) the join of all 
these factored tables contains exactly the information in the table from which 



they were factored. The set of 3NF tables resulting from the initial universal table 
is known as a 3NF  lossless decomposition  of the database. 

 There is a third desirable property that we can always provide with a 3NF 
decomposition. Note that when a new row is added to one of the tables in the 
3NF decomposition (or an old row is updated), it is possible that an erroneous 
change might break one of the rules of data item relatedness, mentioned earlier 
as part of the design input. We wish to impose a constraint on Insert and Update 
operations so that such errors will not corrupt the data. The third property that 
we consider important in a decomposition, then, is (3) when a table Insert or 
Update occurs, the possible relatedness rules that might be broken can be tested 
by validating data items in the single table affected; there is no need to perform 
table joins in order to validate these rules. A 3NF decomposition constructed to 
have the three desirable properties just mentioned is generally considered an 
acceptable database design. It turns out that a further decomposition of tables in 
3NF to the more restrictive BCNF is often unnecessary (many real-world databases 
in 3NF are also in BCNF), but in cases where further decomposition results, prop-
erty (3) no longer holds in the result. Many database designers therefore settle on 
3NF design. 

 We will need a good deal of insight into the details of the normalization 
approach before we are able to properly deal with some of these ideas. Let us 
begin to illustrate them with an example. 

  2.5.1     A Running Example: Employee Information 

 We need an example to clarify some of the defi nitions of database design that 
follow. Consider the data items listed in  Figure 2.15   , representing the employee 
information that must be modeled by the personnel department of a very large 
company. 

 FIGURE 2.15  

   Unnormalized data items for employee information.    
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 The data items beginning with  emp _ all  represent attributes of what we would 
refer to in the ER approach as the entity  Employees . Other entities underlying the 
data items of  Figure 2.15  include  Departments  where employees in the company 
work and  Skills  that the various employees need to perform their jobs. In the 
normalization approach, we leave the entity concept unnamed but refl ect it in the 
data item interrelatedness rules that will be explained shortly, rules known as 
 functional dependencies . The data item  emp _ id  has been created to uniquely 
identify employees. Each employee works for some single department in the 
company, and the data items beginning with  dept _   describe the different depart-
ments; the data item  dept _ name  uniquely identifi es departments, and each depart-
ment normally has a unique manager (also an employee) with a name given in 
 dept _ mgrname . Finally, we assume that the various employees each possess some 
number of skills, such as typing or fi ling, and that data items beginning with 
 skill _   describe the skills that are tested and used for job assignment and salary 
determination by the company. The data item  skill _ id  uniquely identifi es the 
skill, which also has a name,  skill _ name . For each employee who possesses a 
particular skill, the  skill _ date  describes the date when the skill was last tested, 
and  skill _ lvl  describes the level of skill the employee displayed at that test. 

  Figure 2.16    provides a universal table,  emp _ info , containing all the data items 
of employee information from  Figure 2.15 . Because of 1NF, there can only be 
atomic values in each row and column position of a table. This poses a diffi culty, 
because each individual employee might have any number of skills. It is inappro-
priate to design a table with unique rows for each  emp _ id  and a distinct column 
for each piece of skill information — we don ’ t even know the maximum number 
of skills for an employee, so we don ’ t know how many columns we should use 
for  skill _ id-1 ,  .  .  .  ,  skill _ id-n . The only solution that will work in a single 

 FIGURE 2.16  

   Single employee information table,  emp _ info , in 1NF.    

emp_info

emp_id emp_name ... skill_id skill_name skill_date skill_lvl

09112 Jones . . . 44 librarian 03-15-99 12

09112 Jones . . . 26 PC-admin 06-30-98 10

09112 Jones . . . 89 word-proc 01-15-00 12

12231 Smith . . . 26 PC-admin 04-15-99 5

12231 Smith . . . 39 bookkeeping 07-30-97 7

13597 Brown . . . 27 statistics 09-15-99 6

14131 Blake . . . 26 PC-admin 05-30-98 9

14131 Blake . . . 89 word-proc 09-30-99 10

. . . . . . . . . . . . . . . . . . . . .



(universal) table is to give up on having a unique row for each employee and 
replicate information about the employee, pairing the employee with different 
skills on different rows. 

 The intention of the database designer in the  emp _ info  table of  Figure 2.16  is 
that there is a row for every employee – skill pair existing in the company. From 
this, it should be clear that there cannot be two rows with the same values for 
the pair of attributes  emp _ id  and  skill _ id . The table  emp _ info  has a (candidate) 
key consisting of the set (pair) of attributes  emp _ id  and  skill _ id . We confi rm 
that these attributes form a key by noting that the values they take on distinguish 
any pair of rows in any permissible content of the table (i.e., for any rows u and 
v, either u( emp _ id )  ≠  v( emp _ id ) or u( skill _ id )  ≠  v( skill _ id )), and that no subset 
of this set of attributes does the same (there can be two rows u and v such that 
u( emp _ id )  =  v( emp _ id ), and there can be two rows r and s such that r( skill _ id ) 
 =  s( skill _ id )). We assume in what follows that  emp _ id  and  skill _ id  is the 
primary key for the  emp _ info  table. 

 It turns out that the database design of  Figure 2.16  is a bad one, because it is 
subject to certain anomalies that can corrupt the data when data manipulation 
statements are used to update the table.  

  2.5.2     Anomalies of a Bad Database Design 

 It appears that there might be a problem with the  emp _ info  table of  Figure 2.16  
because there is replication of employee data on different rows. It seems more 
natural, with the experience we have had up to now, to have a unique row for 
each distinct employee. Do we have a good reason for our feeling? Let us look at 
the behavior of this table as SQL updates are applied. 

 If some employee were to get a new phone number, we would have to update 
multiple rows (all rows with different skills for that employee) in order to change 
the  emp _ phone  value in a uniform way. If we were to update the phone number 
of only one row, we might  corrupt  the data, leaving some rows for that employee 
with different phone numbers than others. This is commonly known as an  update 
anomaly , and it arises because of  data redundancy , duplication of employee 
phone numbers and other employee attributes on multiple rows of  emp _ info . 
Calling this an  “ anomaly, ”  with the implication of irregular behavior under update, 
may seem a bit extreme, since the SQL language is perfectly capable of updating 
several rows at once with a Searched Update statement such as:

    update emp _ info set emp _ phone  =  :newphone where emp _ id  =  :
eidval;     

 In fact, the consideration that several rows will be updated is not even appar-
ent from this syntax — the same Searched Update statement would be used if the 
table had a unique row for each  emp _ id  value. However, with this replication of 
phone numbers on different rows, a problem can still arise in performing an 
update with a Positioned Update statement. If we encountered a row of the 
 emp _ info  table in fetching rows from a cursor created for an entirely different 
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purpose, the program might execute the following statement to allow the user to 
correct an invalid phone number:

    update emp _ info set emp _ phone  =  :newphone   
               where current of cursor _ name;     

 This would be a  programming error , since an experienced programmer would 
realize that multiple rows need to be updated in order to change an employee 
phone number. Still, it is the kind of error that could easily occur in practice, and 
we would like to be able to create a  constraint  on the table that makes such an 
erroneous update impossible. It turns out that the best way to provide such a 
constraint is to reconfi gure the data items into different tables so as to eliminate 
the redundant copies of information. This is exactly what is achieved during the 
process of normalization. We sum up the idea of an update anomaly in a defi nition 
that makes reference to our intuitive understanding of the ER model. 

       Defi nition: Update Anomaly.   A table T is subject to an update anomaly when 
changing a single attribute value for an entity instance or relationship instance 
represented in the table that may require that several rows of T be updated.       

 A different sort of problem, known as the  delete anomaly , is refl ected by the 
following defi nition. 

       Defi nition: Delete Anomaly, Insert Anomaly.   A table T is subject to a delete 
anomaly when deleting some row of the table to refl ect the disappearance of some 
instance of an entity or relationship that can cause us to lose information about 
some instance of a different entity or relationship that we do not wish to forget. The 
insert anomaly is the other face of this problem for inserts, where we cannot rep-
resent information about some entity or instance without including information about 
some other instance of an entity or relationship that does not exist.       

 For example, assume that a skill possessed by an employee must be retested 
after fi ve years to remain current for that employee. If the employee fails to have 
the skill retested (and the  skill _ date  column updated), the skill will drop off the 
 emp _ info  list (an automatic process deletes the row with this  emp _ id  and  skill _
 id ). Now consider what happens if the number of skills for some employee goes 
to zero in the  emp _ info  table with columns of  Figure 2.16 :  No row of any kind 
will remain for the employee!  We have lost the phone number and the depart-
ment the employee works in because of this delete! This is clearly inappropriate 
design. The  insert anomaly  exists in the  emp _ info  table because we cannot enter 
a new employee into the table until the employee has acquired some skill; thus 
it becomes impossible to hire an employee trainee. Clearly this is just the other 
face of the delete anomaly, where information about an employee is lost when 
the employee loses his or her last skill. 

 Let us jump ahead to a solution for some of the problems mentioned so far. 
We simply factor the  emp _ info  table and form two tables, the  emps  table and the 



 skills  table, whose column names are listed in  Figure 2.17   . Notice that the  emps  
table has a unique row for each  emp _ id  (and  emp _ id  is the key for this table), 
while the  skills  table has a unique row for each  emp _ id  and  skill _ id  pair, and 
this pair forms a key for the table. Since there are multiple skills associated 
with each employee, the  emp _ id  column that we have included in the  skills  
table acts as a foreign key, relating skills back to employees. When we form the 
natural join of these two tables, the result is exactly the  emp _ info  table we started 
with. (We will need to demonstrate this fact in what follows, but for now you 
should take it on faith.) However, the delete anomaly is no longer a problem, since 
if we delete all rows corresponding to skills for any individual employee, this 
merely deletes rows in the  skills  table; the  emps  table still contains the informa-
tion we want to retain about the employee, such as  emp _ phone ,  dept _ name , and 
the like. 

 In the sections that follow we will learn how to perform normalization, to 
factor tables so that all anomalies are removed from our representation. Note that 
we haven ’ t yet achieved this with the tables of  Figure 2.17 ; as we will see shortly, 
a number of anomalies still exist. We will need a good deal of insight into the 
details of the normalization approach before we are able to properly deal with 
fundamental normalization concepts. In the following sections we present some 
needed mathematical preliminaries to database normalization. Because it is not 
always possible to show a real-life application for all these concepts as they are 
introduced, we ask the reader to be patient. The value of the concepts will 
become clear in the end.   

  2.6     FUNCTIONAL DEPENDENCIES 
 A  functional dependency  (FD) defi nes the most commonly encountered type of 
relatedness property between data items of a database. We usually only need 
to consider relatedness between column attributes of a single relational table, 
and our defi nition refl ects this. We represent rows of a table T by the notation 

 FIGURE 2.17  

   The  emp _ info  database with two tables.    
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r 1 , r 2 ,  .  .  .  , and follow standard convention by referring to attributes, rather than 
columns, of the table T. Individual attributes of a table will be represented by 
letters such as A, B,  .  .  .  , and the letters X, Y,  .  .  .  will refer to subsets of attributes. 
We follow the notation that r i (A) represents the value of row r i  at attribute A. 

       Defi nition.   Given a table T containing at least two attributes designated by A and 
B, we say that A  →  B (read  “ A functionally determines B ”  or  “ B is functionally 
dependent on A ” ), if and only if it is the intent of the designer, for any set of rows 
that might exist in the table, that two rows in T cannot agree in value for A and 
disagree in value for B. A more formal way of saying this is: Given two rows r 1  and 
r 2  in T, if r 1 (A)  =  r 2 (A), then r 1 (B)  =  r 2 (B). We will usually try to use the less formal 
statement in what follows.       

 This defi nition is comparable to the defi nition of a  function  in mathematics: 
For every element in attribute A (which appears on some row), there is a unique 
corresponding element (on the same row) in attribute B. See  Figure 2.18    for a 
graphical representation of the functional dependency concept. 

     EXAMPLE 2.8  

   In the  emp _ info  table of  Figure 2.16 , the following functional dependencies hold:

    emp _ id  →  emp _ name   
   emp _ id  →  emp _ phone   
   emp _ id  →  dept _ name     

 FIGURE 2.18  

   Graphical depiction of functional dependency.    
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 In ER terms, we know this is true because  emp _ id  is an identifi er for the  Employee  
entity, and the other data items simply represent other attributes of the entity; once the entity 
is identifi ed, all the other attributes follow. But we also recognize these facts intuitively. 

 If we saw two rows in the single table  emp _ info  design of  Figure 2.16  with the same 
 emp _ id  value and different  emp _ phone  values, we would believe that the data are corrupted 
(assuming that every employee has a unique phone), but if we saw two rows with the same 
 emp _ phone  value and different  emp _ id  values, our fi rst thought would be that they repre-
sented different employees who shared a phone. But the two situations are symmetric; it is 
simply our understanding of the data that makes the fi rst one seem to imply corrupted data. 
We look to  emp _ id  to break ties and uniquely identify employees. Note that what we are 
saying implies that, while  emp _ id  functionally determines  emp _ phone ,  emp _ phone  does  not  
functionally determine  emp _ id . We sometimes express this second fact with this notation: 

 emp _ phone  /→  emp _ id      

     EXAMPLE 2.9  

   Following are three tables to investigate for functional dependencies between attributes (note 
that some of the tables break the unique row rule, but we accept them as valid tables for 
purposes of illustration). In these tables we assume that it is the intent of the designer that 
 exactly  this set of rows should lie in each table — no changes will ever occur in the tables. 
Thus, we can determine what functional dependencies exist by examining the data. This is 
a  very unusual situation . Normally we determine functional dependencies from understand-
ing the data items and rules of the enterprise (e.g., each employee has a single phone 
number, employees can share a phone, etc.), as in  Example 2.8 . These rules exist before 
any data have been placed in the tables. 

 T1  T2  T3 

 Row #  A  B  A  B  A  B 

 1   x1  y1  x1  y1  x1  y1 

 2  x2  y2  x2  y4  x2  y4 

 3  x3  y1  x1  y1  x1  y1 

 4  x4  y1  x3  y2  X3  y2 

 5  x5  y2  x2  y4  X2  y4 

 6  x6  y2  x4  y3  X4  y4 

 In table T1 we can easily see that A  →  B; we merely need to check that for every pair 
of rows r 1  and r 2 , if r 1 (A)  =  r 2 (A), then r 1 (B)  =  r 2 (B). However, there is no pair of rows in T1 
with equal values for column A, so the condition is trivially satisfi ed. At the same time, in 
T1, B  →/   A (read  “ column B does  not  functionally determine column A ” ), since, for example, 
if r 1  is row 1 and r 2  is row 3, then r 1 (B)  =  r 2 (B)  =  y1, but r 1 (A)  =  x1  ≠  r 2 (A)  =  x3. In table 
T2, we have A  →  B (we just need to check that rows 1 and 3, which have matching pairs 
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of A values, also have matching B values, and similarly check rows 2 and 5), and B  →  A. 
Finally, in table T3, A  →  B but B  →/   A (note that if r 1  is row 2 and r 2  is row 6, then r 1 (B)  =  
r 2 (B)  =  y4, but r 1 (A)  =  x2  ≠  r 2 (A)  =  x4).      

 It is obvious how to extend the defi nition for functional dependency to its full 
generality, dealing with  sets  of attributes. 

       Defi nition.   We are given a table T with two sets of attributes, designated by X  =  
A 1  A 2 ,  .  .  . , A k  and Y  =  B 1  B 2 ,  .  .  . , B m , where some of the attributes from X may 
overlap with some of the attributes from Y. We say that X  →  Y (read  “ X functionally 
determines Y ”  or  “ Y is functionally dependent on X ” ), if and only if it is the intent of 
the designer, for any set of rows that might exist in the table, that two rows in T 
cannot agree in value on the attributes of X and simultaneously disagree in value 
on the attributes of Y. Note that two rows agree in value on the attributes of X if 
they agree on  all of  the attributes of X, and they disagree in value on the attributes 
of Y if they disagree on  any of  the attributes of Y. More formally, given any two 
rows r 1  and r 2  in T, if r 1 (A i )  =  r 2 (A i ) for every A i  in X, then r 1 (B j )  =  r 2 (B j ) for every B j  
in Y.       

     EXAMPLE 2.10  

   We list here what we claim are all the functional dependencies for the  emp _ info  table of 
 Figure 2.16  (with missing attributes in  Figure 2.15 ). With this FD list, all the information 
needed for the normalization procedure has been provided.   

  1.      emp _ id  →  emp _ name emp _ phone dept _ name   
  2.      dept _ name  →  dept _ phone dept _ mgrname   
  3.      skill _ id  →  skill _ name   
  4.      emp _ id skill _ id  →  skill _ date skill _ lvl     

 You should be able to interpret each of these functional dependencies and see if you 
agree with them. For example, FD 1 states that if we know the  emp _ id , then the  emp _ name , 
 emp _ phone , and  dept _ name  are determined. Note that FD 1 is just another way of stating 
the FDs of  Example 2.8 . That is, if we know the FDs given there,   

   emp _ id  →  emp _ name, emp _ id  →  emp _ phone, and emp _ id  →  dept _ name,     

 we can conclude that FD 1 holds. 
 To say this in yet another way, the three FDs of  Example 2.8  together imply FD 1. 

Similarly, from FD 1 we can conclude that the three FDs of  Example 2.8  hold. A simple rule 
of FD implication is used to arrive at these conclusions, based on the FD defi nition. We will 
learn more about such rules shortly. 

 Because the FDs given in 1 – 4 are  all  the FDs for the  emp _ info  table, we can conclude, 
for example, that the designer does  not  intend that  skill _ name  be unique for a specifi c 
skill. Since  skill _ id  is a unique identifi er for the skill, to have a unique  skill _ name  would 
presumably mean that  skill _ name  →  skill _ id , the reverse of FD 3. However, this FD 
does not exist in the set, nor is it implied. (A quick test to see that it isn ’ t implied is to note 
that  skill _ name  does not occur on the left side of any FD in the set.) We also note that 



we do not have the FD  dept _ mgrname  →  dept _ name , which presumably means that 
although each department has a unique manager, one manager might simultaneously 
manage more than one department. Finally, note that  skill _ lvl  and  skill _ date  are only 
meaningful as attributes of the  relationship  between an  Employee  entity and a  Skill  entity. 
If we said that a given employee had a skill level of 9, it would be necessary to ask,  “ For 
what skill? ” ; and if we said that we know there is a skill level of 9 for  “ typing, ”  we would 
wonder,  “ What employee? ”  Thus, we need to name both the  emp _ id  and the  skill _ id  to 
determine these attributes.      

  2.6.1     Logical Implications among Functional Dependencies 

 In  Example 2.10  a number of conclusions were drawn that depended on under-
standing implications among functional dependencies. In what follows, we will 
derive certain rules of implication among FDs that follow directly from previous 
defi nition. The reader needs to understand many such rules at both a rigorous and 
an intuitive level to properly appreciate some of the techniques of normalization 
that are presented in later sections. We begin with a very basic rule. 

       Theorem 2.1: Inclusion Rule.   We are given a table T with a specifi ed heading 
(set of attributes), Head (T). If X and Y are sets of attributes contained in Head(T), 
and Y  ⊆  X, then X  →  Y.   

   PROOF.  To show that X  →  Y, we need only demonstrate that there is no pair of 
rows u and v that agree in value on the attributes of X and simultaneously 
disagree in value on the attributes of Y. But this is obvious, since two rows 
can never agree in value on the attributes of X and simultaneously disagree on 
a subset of those attributes.  ■           

 The inclusion rule provides us with a large number of FDs that are true for any 
table of attributes, irrespective of the intended content. 

       Defi nition: Trivial Dependency.   A trivial dependency is an FD of the form X  →  
Y, in a table T where X  ∪  Y  ⊆  Head(T), that will hold for any possible content of 
the table T.       

 We can prove that trivial dependencies always arise as a result of the inclusion 
rule. 

       Theorem 2.2.   Given a trivial dependency X  →  Y in T, it must be the case that 
Y  ⊆  X.   

   PROOF.  Given the table T with a heading containing the attributes in X  ∪  Y, 
consider the set of attributes Y  −  X (attributes in Y that are not in X). Since X 
 →  Y is a trivial dependency, it must hold for any possible content of the table 
T. We will assume Y  −  X is nonempty and reach a contradiction. If the set 
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Y  −  X is nonempty, let A be an attribute contained in Y  −  X. Since A  ∉  X, it is 
possible to construct two rows, u and v, in the table T, alike in values for all 
attributes in X, but having different values for the attribute A. But with these 
two rows in T, the dependency X  →  Y does not hold, since rows u and v agree 
in value on attributes of X and disagree on attributes of Y (because A  ∈  Y). 
Since a trivial dependency is supposed to hold for any possible content of the 
table T, we have created a contradiction, and from this we conclude that the 
set Y  −  X cannot contain an attribute A, and therefore Y  ⊆  X.  ■            

 FIGURE 2.19  

   Armstrong ’ s Axioms.    
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  2.6.2     Armstrong ’ s Axioms 

 The inclusion rule is one rule of implication by which FDs can be generated that 
are guaranteed to hold for all possible tables. It turns out that from a small set of 
basic rules of implication, we can derive all others. We list here three basic rules 
that we call Armstrong ’ s Axioms ( Figure 2.19   ). 

       Defi nition: Armstrong ’ s Axioms.   Assume in what follows that we are given a 
table T, and that all sets of attributes X, Y, Z are contained in Head(T). Then we 
have the following rules of implication.   



  1.      Inclusion rule:  If Y  ⊆  X, then X  →  Y.  
  2.      Transitivity rule:  If X  →  Y and Y  →  Z, then X  →  Z.  
  3.      Augmentation rule:  If X  →  Y, then X Z  →  Y Z.    

 Just as we list attributes with spaces between them in a functional dependency 
to represent a set containing those attributes, two sets of attributes in sequence 
imply a union operation. Thus, the augmentation rule could be rewritten: If X  →  Y, 
then X  ∪  Z  →  Y  ∪  Z.       

 We have already proved the inclusion rule, in Theorem 2.1, so let us prove the 
augmentation rule now in Theorem 2.3. 

       Theorem 2.3: Augmentation Rule.   We wish to show that if X  →  Y, then X Z  →  
Y Z. Assume that X  →  Y, and consider any two rows u and v in T that agree on 
the attributes of X Z (i.e., X  ∪  Z). We need merely show that u and v cannot dis-
agree on the attributes of Y Z. But since u and v agree on all attributes of X Z, they 
certainly agree on all attributes of X; and since we are assuming that X  →  Y, then 
u and v must agree on all attributes of Y. Similarly, since u and v agree on all 
attributes of X Z, they certainly agree on all attributes of Z. Therefore, u and v agree 
on all attributes of Y and all attributes of Z, and the proof is complete.  ■        

 From Armstrong ’ s Axioms we can prove a number of other rules of implication 
among FDs. Furthermore, we can do this without any further recourse to the FD 
defi nition, using only the axioms themselves. 

       Theorem 2.4: Some Implications of Armstrong ’ s Axioms.   Again we assume 
that all sets of attributes below — W, X, Y, and Z — are contained in the heading of 
a table T.    

  1.      Union rule:  If X  →  Y and X  →  Z, then X  →  Y Z.  
  2.      Decomposition rule:  If X  →  Y Z, then X  →  Y and X  →  Z.  
  3.      Pseudotransitivity rule:  If X  →  Y and W Y  →  Z, then X W  →  Z.  
  4.      Set accumulation rule:  If X  →  Y Z and Z  →  W, then X  →  Y Z W.    

     PROOF.  We prove only 2 and 4 here. For 2, note that Y Z  =  Y  ∪  Z. Thus, Y Z 
 →  Y by the inclusion rule (axiom 1). By transitivity (axiom 2), X  →  Y Z and 
Y Z  →  Y implies X  →  Y. Similarly, we can show X  →  Z, and the decomposi-
tion rule (2) has been demonstrated. For 4, we are given that (a) X  →  Y Z and 
(b) Z  →  W. Using axiom 3, we augment (b) with Y Z to obtain Y Z Z  →  Y Z 
W. Since Z Z  =  Z, we have (c) Y Z  →  Y Z W. Finally, by transitivity, using (a) 
and (c), we have X  →  Y Z W, and the set accumulation rule (4) has been 
demonstrated.  ■           

 We state without proof the rather startling result that  all  valid rules of implica-
tion among FDs can be derived from Armstrong ’ s Axioms. In fact, if F is any set 
of FDs, and X  →  Y is an FD that cannot be shown by Armstrong ’ s Axioms to be 
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implied by F, then there must be a table T in which all of the FDs in F hold but 
X  →  Y is false. Because of this result, Armstrong ’ s Axioms are often referred to 
as being  complete , meaning that no other rule of implication can be added to 
increase their effectiveness. 

 Recall that in  Example 2.10  we pointed out that the three FDs from  Example 
2.8 , 

     emp _ id  →  emp _ name, emp _ id  →  emp _ phone, and emp _ id  →  dept _ name,     

 allowed us to conclude that FD 1 holds:

   1.      emp _ id  →  emp _ name emp _ phone dept _ name .    

 This fact follows from two applications of the union rule of Theorem 2.4. The 
inverse implication, that FD 1 implies the fi rst three, follows from two applications 
of the decomposition rule in the same theorem. Whenever we have some set of 
attributes X on the left of a set of FDs, we can take a union of all sets of attributes 
on the right of these FDs and combine the FDs into one. For example, assume we 
have the attributes A, B, C, D, E, F, and G in the heading of a table T, and we 
know that the following FDs hold: 

  B D A  B D C  B D E  B D F  and B D G→ → → → →, , , , .      

 Then we can combine these FDs into one by successive applications of the 
union rule: 

  B D A C E F G→      

 As a matter of fact, we can add the trivial dependency B D  →  B D and 
conclude 

  B D A B C D E F G→      

 However, we normally try to avoid including information in a set of dependen-
cies that can be derived using Armstrong ’ s Axioms from a more fundamental set. 
Thus, we might want to return to the FD form of B D  →  A C E F G. Note that if 
we had another attribute H in the heading of the table T not mentioned in any 
FD, we could conclude that in addition to this FD, the following FD holds: 

  B D H A C E F G H→      

 But since this FD can be derived from B D  →  A C E F G by using the augmen-
tation rule, we would once again prefer this shorter FD. 

     EXAMPLE 2.11  

   List a minimal set of functional dependencies satisfi ed by the following table T, where we 
assume that it is the intent of the designer that  exactly  this set of rows lies in the table. Once 
again, we point out that it is unusual to derive FDs from the content of a table. Normally we 



determine functional dependencies from understanding the data items and rules of the 
enterprise. Note that we do not yet have a rigorous defi nition of a minimal set of FDs, so we 
simply try to arrive at a minimal set in an intuitive way. 

 T 

 Row #  A  B  C  D 

 1  a1  b1  c1  d1 

 2  a1  b1  c2  d2 

 3  a2  b1  c1  d3 

 4  a2  b1  c3  d4 

  Analysis 

 Let us start by considering FDs with a single attribute on the left. Clearly we always have 
the trivial FDs, A  →  A, B  →  B, C  →  C, and D  →  D, but we are asking for a minimal set of 
dependencies, so we won ’ t list them. From the specifi c content of the table we are able to 
derive the following. (a) All values of the B attribute are the same, so it can never happen 
for any other attribute P (i.e., where P represents A, C, or D) that r 1 (P)  =  r 2 (P), while r 1 (B) 
 ≠  r 2 (B); thus, we see that A  →  B, C  →  B, and D  →  B. At the same time no other attributes 
P are functionally dependent on B, since they all have at least two distinct values, and so 
there are always two rows r 1  and r 2  such that r 1 (P)  ≠  r 2 (P), while r 1 (B)  =  r 2 (B); thus, B  →/   A, 
B  →/   C, and B  →/   D. (b) Because the D values are all different, in addition to D  →  B of part 
(a), we also have D  →  A and D  →  C; at the same time D is not functionally dependent on 
anything else since all other attributes have at least two duplicate values. So in addition to 
B  →/   D of part (a), we have A  →/   D and C  →/   D. (c) We have A  →/   C (because of rows 1 
and 2) and C  →/   A (because of rows 1 and 3). Therefore, we can list all FDs (and failed 
FDs) with a single attribute on the left. (Letters in parentheses are keyed to the parts above 
that give us each fact.)   

  (a) A  →  B      (a) B  →/   A      (c) C  →/   A      (b) D  →  A  
  (c) A  →/  C      (a) B  →/   C      (a) C  →  B      (a) D  →  B  
  (b) A  →/  D      (a) BvD         (b) C  →/   D      (b) D  →  C    

 By the union rule, whenever a single attribute on the left functionally determines several 
other attributes, as with D above, we can combine the attributes on the right: D  →  A B C. 
From the analysis so far, we have the following set of FDs (which we believe to be 
minimal):

   1. A  →  B   2. C  →  B   3. D  →  A B C    

 Now consider FDs with  pairs  of attributes on the left. (d) Any pair containing D deter-
mines all other attributes, by FD 3 above and the augmentation rule, so there is no new FD 
with D on the left that is not already implied. (e) The attribute B, combined with any other 
attribute P on the left, still functionally determines only those attributes already determined 
by P, as we see by the following argument. If P  →/   Q, this means there are rows r 1  and r 2  
such that r 1 (Q)  ≠  r 2 (Q), while r 1 (P)  =  r 2 (P). But because B has equal values on all rows, we 
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know that r 1 (B P)  =  r 2 (B P) as well, so B P  →/   Q. Thus, we get no new FDs with B on the 
left. 

 (f) Now the only pair of attributes that does not contain B or D is A C, and since A C 
has distinct values on each row (examine table T again!), we know that A C  →  A B C D. 
This is new. We can show most of this by inference rules: It is trivial that A C  →  A and AC 
 →  C, by inclusion, and we already knew that A  →  B, so it is easy to show that A C  →  B. 
Thus, the only new fact we get from A C  →  A B C D is that A C  →  D, and we are searching 
for a minimal set of FDs, so that is all we include as FD 4 in the list below. If we now con-
sider looking for FDs with triples of attributes on the left, we see that we can derive from 
the FDs we already have that any triple functionally determines all other attributes. Any triple 
that contains D clearly does, and the only triple not containing D is A B C, where A C alone 
functionally determines all other attributes. Clearly the same holds for any set of four attri-
butes on the left. 

 The complete set of FDs implicit in table T is therefore the following:

   1. A  →  B   2. C  →  B   3. D  →  A B C   4. A C  →  D    

 The fi rst three FDs come from the earlier list of FDs with single attributes on the left, 
while the last FD, A C  →  D, is the new one generated with two attributes listed on the left. 
It will turn out that this set of FDs is not quite minimal, despite all our efforts to derive a 
minimal set. We will see this after we have had a chance to defi ne what we mean by a 
minimal set of FDs.        

  2.6.3     Closure, Cover, and Minimal Cover 

 The implication rules for FDs derived from Armstrong ’ s Axioms mean that when-
ever a set F of functional dependencies is given, a much larger set may be 
implied. 

       Defi nition: Closure of a Set of FDs.   Given a set F of FDs on attributes of a 
table T, we defi ne the closure of F, symbolized by F  +  , to be the set of all FDs implied 
by F.       

     EXAMPLE 2.12  

   Consider the set F of FDs given by 

  F {A B, B C, C D, D E, E F, F G, G H}= → → → → → → →      
 By the transitivity rule, A  →  B and B  →  C together imply A  →  C, which must be included 

in F  +  . Also, B  →  C and C  →  D imply B  →  D. Indeed, every single attribute appearing prior 
to the terminal one in the sequence A B C D E F G H can be shown by transitivity to func-
tionally determine every single attribute on its right in the sequence. We also have trivial 
FDs such as A  →  A. Next, using the union rule, we can generate other FDs, such as A  →  
A B C D E F G H. In fact, by using the union rule in different combinations, we can show 
A  →  (any nonempty subset of A B C D E F G H). There are 2 8   –  1  =  255 such nonempty 
subsets. All FDs we have just derived are contained in F  +  .      



 Functional dependencies usually arise in creating a database out of common-
sense rules. In terms of ER concepts, it is clear that data items corresponding to 
identifi ers of entities functionally determine all other attributes of that entity. 
Similarly, attributes of relationships are uniquely determined by the identifi ers 
of entities that take part in the relationship. We would normally expect to start 
with a manageable set F of FDs in our design, but as  Example 2.12  shows, the 
set of FDs that is implied by F could conceivably grow exponentially. In 
what follows, we try to fi nd a way to speak of what is implied by a set F of FDs 
without this kind of exponential explosion. What we are leading up to is a way 
to determine a  minimal set  of FDs that is equivalent to a given set F. We will also 
provide an algorithm to derive such a minimal set in a reasonable length of 
time. 

       Defi nition: FD Set Cover.   A set F of FDs on a table T is said to cover another 
set G of FDs on T, if the set G of FDs can be derived by implication rules from the 
set F, or in other words, if G  ⊆  F  +  . If F covers G and G covers F, then the two sets 
of FDs are said to be equivalent, and we write F  ≡  G.       

     EXAMPLE 2.13  

   Consider the two sets of FDs on the set of attributes A B C D E: 

 F {B C D, A D E, B A}= → → →      
 and 

 G B {C D E, B A B C, A D E}= → → →      
 We will demonstrate that F covers G, by showing how all FDs in G are implied by FDs 

in F. In what follows we derive implications of FDs in F using the various inference rules 
from previous defi nitions and Theorem 2.4. Since in F we have (a) B  →  C D and (b) B  →  
A, by the union rule we see that (c) B  →  A C D. The trivial functional dependency B  →  B 
clearly holds, and in union with (c), we get (d) B  →  A B C D. By the decomposition rule, 
B  →  A B C D implies (e) B  →  A D, and since (f) A D  →  E is in F, by transitivity we conclude 
(g) B  →  E. This, in union with (d), gives us B  →  A B C D E. From this, by decomposition 
we can derive the initial two FDs of the set G, and the third one also exists in F. This dem-
onstrates that F covers G.      

 In  Example 2.8  a technique was used to fi nd  all  the attributes functionally 
determined by the attribute B under the set F of FDs. (This turned out to be all 
the attributes there were.) In general, we can do this for any set X of attributes 
on the left, fi nding all attributes functionally determined by the set X. 

       Defi nition: Closure of a Set of Attributes.   Given a set F of FDs on a table T 
and a set X of attributes contained in T, we defi ne the closure of the set X, denoted 
by X  +  , as the largest set Y of attributes functionally determined by X, the largest 
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set Y such that X  →  Y is in F  +  . Note that the set Y contains all the attributes of X, 
by the inclusion rule, and might not contain any other attributes.       

 Here is an algorithm for determining the closure of any set of attributes X. 

       ALGORITHM 2.1: Set Closure.   This algorithm determines X  +  , the closure of a given 
set of attributes X, under a given set F of FDs. 

  I  =  0; X[0]  =  X;    / *  integer I, attribute set X[0]     * /  
  REPEAT    / *  loop to fi nd larger X [ I ]      * /  
              I  =  I  +  1;    / *  new I     * /  
              X [ I ]   =  X [ I-1 ] ;    / *  initialize new X [ I ]      * /  
              FOR ALL Z  →  W in F    / *  loop on all FDs Z  →  W in F     * /  
                          IF Z   ⊆   X [ I ]     / *  if Z contained in X [ I ]      * /  
                                      THEN X [ I ]   =  X [ I ]   ∪  W;       / *  add attributes in W to X [ I ]      * /  
              END FOR    / *  end loop on FDs     * /  
  UNTIL X [ I ]   =  X [ I-1 ] ;    / *  loop until no new attributes     * /  
  RETURN X  +    =  X [ I ] ;    / *  return closure of X     * /  

 Note that the step in this algorithm that adds attributes to X [ I ]  is based on the set accu-
mulation rule, proved in Theorem 2.4: If X  →  Y Z and Z  →  W, then X  →  Y Z W. 

 In our algorithm we are saying that since X  →  X [ I ]  (our induction hypothesis) and after 
fi nding Z  →  W in F with Z  ⊆  X [ I ] , X [ I ]  can be represented as Y Z (Y  =  X [ I ]   −  Z), so we 
can write X  →  X [ I ]  as X  →  Y Z. Now since F contains Z  →  W, we conclude by the set 
accumulation rule that X  →  Y Z W, or in other words, X  →  X [ I ]   ∪  W, and our induction 
hypothesis is maintained. 

 Set closure is an important milestone in our development. It gives us a general way of 
deciding whether a given FD is implied by a set F of FDs, without worrying about the 
exponential explosion that  Example 2.12  showed could occur in calculating F  +  . For 
example, suppose we need to know if the functional dependency X  →  A is implied by set 
F of FDs. We simply calculate X  +   under F by the set closure in Algorithm 2.1, and determine 
if it contains A: If so, X  →  A is in F  +  ; that is, it is implied by F. 

 We will see that a key for a table is just a minimal set of attributes that functionally 
determines all the attributes of the table. To determine if X is a key, we just compute X  +   
under F, the set of FDs for the table ’ s attributes, and see if it includes all of them, then 
check that no subset of X does the same.  ■        

     EXAMPLE 2.14  

    Set Closure and a Compact Derivational Notation for It 

 In  Example 2.13  we were given a set F of FDs, which we number:

   F: 1. B  →  C D   2. A D  →  E   3. B  →  A    

 Given X  =  B, we determined that X  +    =  A B C D E. Using Algorithm 2.1, we start with 
X[0]  =  B. Then X[1]  =  B, and we begin to loop through the FDs. Because of (1) B  →  CD, 
we get X[1]  =  B C D. As a notational device to show that C and D were added after B 
because of FD 1, we write this as B C D (1). The next FD, (2) A D  →  E, does not apply at 
this time, since A D is not a subset of X[1]. Next, from (3) B  →  A, we get X[1]  =  A B C D 
(or, in our notation to refl ect derivation order, B C D (1) A (3)). Now X[0] is strictly contained 
in X[1] (i.e., X [ 1  –  1 ]   ⊂  X[1]), so X [ 1  –  1 ]   ≠  X[1]. 



 Thus, we ’ ve made progress in the prior pass of the loop and go on to a new pass, setting 
X[2]  =  X[1]  =  A B C D (i.e., B C D (1) A (3)). Looping through the FDs again, we see all of 
them can be applied (but we skip the ones that have been applied before, since they will 
have no new effect), with the only new FD, (2) A D  →  E, giving us X[2]  =  A B C D E, or in 
the derivational notation, B C D (2) A (3) E (2). At the end of this loop, the algorithm notes 
that X[1]  ⊂  X[2]. Progress has been made, so we go on to create X[3] and loop through the 
FDs again, ending up this pass with X[3]  =  X[2]. Since all of the FDs had been applied 
already, we could omit this pass by noting that fact. Note that a different  ordering  of the 
FDs in F can change the details of execution for this algorithm. In exercises where the 
derivational notation is requested to demonstrate that the proper derivation was determined, 
the order is crucial; for example, the derivation above yields the compact notation 

 B C D(1)A(3)E(2)      
 and  not  

 B C D(1)E(2)A(3).            

 Given a set F of FDs on a table T, we use the following algorithm to determine 
a minimal set of dependencies M that covers F. The set M will be minimal in the 
sense that none of its FDs can be dropped in their entirety or changed by dropping 
any attributes on the left-hand side, without losing the property that it covers F. 

       ALGORITHM 2.2: Minimal Cover.   This algorithm constructs a minimal set M of FDs 
that covers a given set F of FDs. M is known as the minimal cover of F — or, in some texts, 
as the canonical cover of F. 

  Step 1.   From the set F of FDs, we create an equivalent set H of FDs, with only single 
attributes on the right side. 

  H  =   Ø ;    / *  initialize H to null set     * /  
  FOR ALL X  →  Y in F    / *  loop on FDs in F     * /  
              FOR ALL A IN Y    / *  loop on attributes in Y     * /  
                          H  =  H  ∪  {X  →  A};    / *  add FD to H     * /  
              END FOR    / *  end loop on attributes in Y     * /  
  END FOR    / *  end loop on FDs in F     * /  

 Since step 1 derives H by successive applications of the decomposition rule, and F can 
be reconstructed from H by successive applications of the union rule, it is obvious that 
F  ∫  H.  

  Step 2.   From the set H of FDs, successively remove individual FDs that are  inessential  
in H. An FD X  →  Y is inessential in a set H of FDs, if X  →  Y can be removed from H, with 
result J, so that H  +    =  J  +  , or H  ≡  J. That is, removal of the FD from H has no effect on H  +  . 
See  Figure 2.20    for an example of an inessential FD. 

  FOR ALL X  →  A in H    / *  loop on FDs in H     * /  
              J  =  H  –  {X  →  A};    / *  try removing this FD     * /  
              DETERMINE X  +   UNDER J;    / *  set closure algorithm 2.6.12     * /  
              IF A  ∈  X  +      / *  X  →  A is still implied by J     * /  
                          H  =  H  –  {X  →  A);    / *  . . . so it is inessential in H     * /  
  END FOR    / *  end loop on FDs in H     * /  
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 Each time an FD is removed from H in step 2, the resulting set is equivalent to the previous, 
larger H. It is clear from this that the fi nal resulting H is equivalent to the original. However, 
a number of FDs might have been removed.  

  Step 3.   From the set H of FDs, successively replace individual FDs with FDs that have 
a smaller number of attributes on the left-hand side, as long as the result does not change 
H  +  . See  Figure 2.21    for an example of an FD that can be simplifi ed in this manner. 

  HO  =  H    / *  save original H     * /  
  FOR ALL X  →  A in H with #X  >  1    / *  loop on FDs with multiple attribute lhs     * /  
              FOR ALL B  ∈  X    / *  loop on attributes in X     * /  
                          Y  =  X  –  {B}    / *  try removing one attribute     * /  
                          J  =  (H  –  {X  →  A}  ∪  {Y  →  A};    / *  left-reduced FD     * /  
                          GENERATE Y  +   UNDER J, Y  +   UNDER H;    / *  set closure algorithm 2.6.12     * /  
                          IF Y  +   UNDER H  =  Y  +   UNDER J    / *  if Y  +   is unchanged     * /  
                                      UPDATE CURRENT X  →  A in H    / *  this is X  →  A in outer loop     * /  
                                                  SET X  =  Y;    / *  change X, continue outer loop     * /  
              END FOR    / *  end loop of attributes in X     * /  
  END FOR    / *  end loop on FDs in H     * /  
  IF H  <  > HO    / *  if FD set changed in Step 3     * /  
              REPEAT STEP 2 AND THEN GOTO STEP 4    / *  retest: some FDs may be inessential now     * /  

  Step 4.   From the remaining set of FDs, gather all FDs with equal left-hand sides and use 
the union rule to create an equivalent set of FDs M where all left-hand sides are unique. 

 FIGURE 2.20  

   Example of an inessential FD: X  →  A.    
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 FIGURE 2.21  

   Example of a functional dependency X  →  A, where B can be dropped from the left-hand 
side.    
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  M  =   Ø ;    / *  initialize M to null set     * /  
  FOR ALL X  →  A in H    / *  loop on FDs in H     * /  
              IF THIS FD IS FLAGGED, CONTINUE;    / *  if already dealt with, loop     * /  
              FLAG CURRENT FD;    / *  deal with FDs with X on left     * /  
              Y  =  {A};    / *  start with right-hand side A     * /  
              FOR ALL SUCCESSIVE X  →  B in H    / *  nested loop     * /  
                          FLAG CURRENT FD;    / *  deal with all FDs, X on left     * /  
                          Y  =  Y  ∪  {B};    / *  gather attributes on right     * /  
              END FOR    / *  gathering complete     * /  
              M  =  M  ∪  {X  →  Y};    / *  combine right sides of X  →  ?     * /  
  END FOR    / *  end outer loop on FDs in H     * /  

 We state without proof that this algorithm grows in execution time only as a polynomial 
in n, the number of attributes in the listed FDs of F (counting repetitions). Step 3 is the 
most costly, since we need to perform the set closure algorithm once for each attribute 
on the left-hand side of some FD in H. Note that if we performed step 3 before step 2, we 
would not have to go back and repeat step 2, as prescribed at the end of step 3 above; 
however, in general it would take more work for the costly step 3 without the cleanup 
action of step 2 occurring fi rst.  ■         

     EXAMPLE 2.15  

   Construct the minimal cover M for the set F of FDs, which we number and list:

   F: 1. A B D  →  A C,   2. C  →  B E,   3. A D  →  B F,   4. B  →  E    

 Note that it is important to  rewrite  the set of FDs as you begin each new step where the 
FDs have changed, so you can refer to individual ones easily in the next step.   

  Step 1.     We apply the decomposition rule to FDs in F, to create an equivalent set with 
singleton attributes on the right-hand sides (rhs) of all FDs. H  = 

   1. A B D  →  A,   2. A B D  →  C,   3. C  →  B,   4. C  →  E  

  5. A D  →  B,   6. A D  →  F,   7. B  →  E     

  Step 2.     We consider cases corresponding to the seven numbered FDs in H. 

  1.     A B D  →  A is trivial and thus clearly inessential (since A B D  +   contains A), so it can be 
removed. The FDs remaining in H are (2) A B D  →  C, (3) C  →  B, (4) C  →  E, (5) A D 
 →  B, (6) A D  →  F, and (7) B  →  E.  

  2.     A B D  →  C cannot be derived from the other FDs in H by the set closure algorithm, 
Algorithm 2.1, because there is no other FD with C on the right-hand side. (A B D  +  , with 
FD (2) missing, will not contain C. We could also go through the steps of Algorithm 2.1 
to demonstrate this fact. See also substep 6, below.)  

  3.     Is C  →  B inessential? Is it implied under the set of other FDs that would remain if this were 
taken out: {(2) A B D  →  C, (4) C  →  E, (5) A D  →  B, (6) A D  →  F, (7) B  →  E}? To see if C 
 →  B is inessential, we generate C  +   under this smaller set of FDs. (We use the set closure 
Algorithm, 2.1, to generate X  +   in what follows, and use the derivational notation introduced 
in  Example 2.14 .) Starting with C  +    =  C, FD (4) gives us C  +    =  CE. To indicate the use of FD 
(4) notationally, we write C  +    =  CE (4). Now with FD (3) removed, no other left side of an 
FD is contained in the set C E, so we have reached the full closure of the attribute C. Since 
C  +   doesn ’ t contain B, (3) C  →  B is essential and remains in H.  
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  4.     C  →  E is inessential as shown by the working out of set closure on C with FD (4) missing. 
We get C  +    =  C B (3) E (7). Thus, since E is in C  +   after FD (4) is removed, we can drop 
FD (4). The FDs remaining in H are (2) A B D  →  C, (3) C  →  B, (5) A D  →  B, (6) A D 
 →  F, and (7) B  →  E.  

  5.     Is A D  →  B inessential under the set of FDs that remain with (5) missing: {(2) A B D  →  
C, (3) C  →  B, (6) A D  →  F, and (7) B  →  E}? In the set closure algorithm, A D  +    =  A D F 
(6) and nothing more. So FD (5) is essential and cannot be removed.  

  6.     Is A D  →  F inessential given the set of other FDs that would remain: {(2) A B D  →  C, 
(3) C  →  B, (5) A D  →  B, (7) B  →  E}? Clearly with this set of FDs we can derive A D  +   to 
contain A D B (3) C (2) E (7), all the attributes there are on the right except F, so we 
cannot derive A D  →  F without FD (6). Another way to say this is that with FD (6) removed, 
no FD has F on its right-hand side, so A D  →  F cannot be implied.  

  7.     Is B  →  E inessential under the set of other FDs that remains: {(2) A B D  →  C, (3) C  →  
B, (5) A D  →  B, (6) A D  →  F}? The answer is no, since deriving B  +   with this set of FDs 
gives only B.       

 We end step 2 with the set H  =  {(2) A B D  →  C, (3) C  →  B, (5) A D  →  B, (6) A D 
 →  F, (7) B  →  E}, which should be renumbered for ease of reference in step 3.    

  H  =  1. A B D  →  C,   2. C  →  B,   3. A D  →  B,   4. A D  →  F,   5. B  →  E      

  Step 3.     We start with FD (1) and note that there are multiple attributes on the left-hand 
side; we call this set on the left side of FD (1), X  =  A B D. Therefore, we need to try to reduce 
this set X by removing any single attributes and creating a new set J of FDs each time. 

   Drop A?  We try to do away with the attribute A in FD (1), so the new set J is given by: (1) B D 
 →  C, (2) C  →  B, (3) A D  →  B, (4) A D  →  F, (5) B  →  E. To show that this reduction gives 
an equivalent set of FDs, we need to show that B D  +   (under H) is the same as B D  +   (under 
J). The risk here is that B D +  under J will functionally determine more than B D  +   under 
H, since J has an FD with only B D on the left that H does not. We claim that the two sets 
H and J are equivalent FD sets if and only if B D  +   (under H) is the same as B D  +   (under 
J). So we calculate B D  +   under H to be B D E (5), and that ’ s all. Under J, B D +  is B D C 
(1) E (5). Since these are different, we can ’ t replace (1) A B D  →  C with (1) B D  →  C.  

   Drop B?  We repeat the method. Now J contains (1) A D  →  C, (2) C  →  B, (3) A D  →  B, (4) A 
D  →  F, (5) B  →  E, and A D  +   under J is A D C (1) B (2) F (4) E (5). But under H, A D  +    =  
A D B (3) F (4) E (5) C (1). These are the same sets, but note the different order of gen-
eration. You need to use derivational notation with the proper order to show that the set 
closure algorithm is being applied on the proper FD set. Under H, FD (3) is the fi rst one 
that expands the A D  +   closure, and FD (1) comes in the second pass. Under J, we can 
use each FD as we come to it in order on the fi rst pass. In any event, since A D  +   under H 
is the same as A D  +   under J, we can reduce FD (1) to A D on the left-hand side, and the 
FD set H is now  

  H  =  1. A D  →  C,   2. C  →  B,   3. A D  →  B,   4. A D  →  F,   5. B  →  E     

   Drop D?  We have already considered dropping A from the left side of FD (1), A B D  →  C, 
and we don ’ t need to repeat this now that B is dropped. But we must consider dropping 
D. Now J will contain: (1) A  →  C, (2) C  →  B, (3) A D  →  B, (4) A D  →  F, and (5) B  →  
E, and we need to consider taking A  +   under H(A  +    =  A) and under J(A  +    =  A C (1) B (2) 
E (5)). Since they are different, we cannot remove D from FD (1).       



 We note FD (2), C  →  B, cannot be reduced on the left side, and (3) A D  →  B also 
cannot be reduced on the left side, since A  +   and D  +   under H will contain only these attributes, 
whereas under the relevant J the closures will contain B. The argument that (4) A D  →  F 
cannot be reduced is similar. 

 Now since the set of FDs in H has changed in this pass through step 3, we need to return 
to step 2. When we reach FD (3) and consider dropping it, (3) A D  →  B, we fi nd now that 
A D  +   under {(1) A D  →  C, (2) C  →  B, (4) A D  →  F, (5) B  →  E} gives A D C (1) B (2), so since 
A D  +   contains B with FD 3 missing, this FD is inessential and may be dropped. (Surprised? 
Repeating step 2 is a crucial step!) The fi nal answer out of step 3 is    

  H  =  1. A D  →  C,   2. C  →  B,   3. A D  →  F,   4. B  →  E    

 This set is minimal. If you wish, you can perform step 2 and step 3 a fi nal time to assure 
yourself there are no other changes. 

 Finally, step 4 leads to the fi nal set of FDs.    

  H  =  1. A D  →  C F,   2. C  →  B,   3. B  →  E         

 To understand what we have accomplished, you might go through  Example 
2.15  and think about each change that was made in the set of FDs, then try to use 
Armstrong ’ s Axioms to demonstrate that each change that was actually performed 
will result in the same FD closure. (Don ’ t duplicate the set closure argument, but 
instead fi nd a direct proof that the change is legal.) 

     EXAMPLE 2.16  

   The set of functional dependencies stated in  Example 2.10  for the  emp _ info  database,   

  1.      emp _ id  →  emp _ name emp _ phone dept _ name   
  2.      dept _ name  →  dept _ phone dept _ mgrname   
  3.      skill _ id  →  skill _ name   
  4.      emp _ id skill _ id  →  skill _ date skill _ lvl     

 already forms a minimal set; that is, the minimal cover Algorithm 2.2 will not reduce it 
further. We leave this derivation as an exercise.      

 The algorithm for fi nding a minimal cover of a set F of FDs will be crucial in 
later sections for algorithms to perform appropriate design by the method of 
normalization.   

  2.7     LOSSLESS DECOMPOSITIONS 
 The process of normalization depends on being able to  factor  or  decompose  a 
table into two or more smaller tables, in such a way that we can recapture the 
precise content of the original table by joining the decomposed parts. 

       Defi nition: Lossless Decomposition.   For any table T with an associated set of 
functional dependencies F, a  decomposition  of T into k tables is a set of tables {T 1 , 
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T 2 ,  .  .  .  , T  k  } with two properties: (1) for every table T  i   in the set, Head(T  i  ) is a proper 
subset of Head(T); (2) Head(T)  =  Head(T 1 )  ∪  Head(T 2 )  ∪   .  .  .   ∪  Head(T  k  ). 

 Given any specifi c content of T, the rows of T are projected onto the columns 
of each T  i   as a result of the decomposition. A decomposition of a table T with an 
associated set F of FDs is said to be a  lossless decomposition , or sometimes a 
 lossless-join decomposition  if, for any possible future content of T, the FDs in F 
guarantee that the following relationship will hold: 

   T T T T1 2= . . . kÆ Æ Æ                
 When a table T is decomposed, it is sometimes not possible to recover all the 

information that was originally present in some specifi c content of table T by 
joining the tables of the decomposition, not because we don ’ t get back all the 
rows we had before, but because we get back other rows that were not originally 
present. 

     EXAMPLE 2.17  

    A Lossy Decomposition 

 Consider the following table ABC: 

 ABC 

 A  B  C 

 a1  100  c1 

 a2  200  c2 

 a3  300  c3 

 a4  200  c4 

 If we factor this table into two parts, AB and BC, we get the following table contents: 

 AB  BC 

 A  B  B  C 

 a1  100  100  c1 

 a2  200  200  c2 

 a3  300  300  c3 

 a4  200  200  c4 



 However, the result of joining these two tables is 

 AB Join BC 

 A  B  C 

 a1  100  c1 

 a2  200  c2 

 a2  200  c4 

 a3  300  c3 

 a4  200  c2 

 a4  200  c4 

 This is  not  the original table content for ABC! Note that the same decomposed tables 
AB and BC would have resulted if the table we had started with was ABCX, with content 
equal to AB Join BC above, or either of two other tables, ABCY or ABCZ. 

 ABCY  ABCZ 

 A  B  C  A  B  C 

 a1  100  c1  a1  100  c1 

 a2  200  c2  a2  200  c2 

 a2  200  c4  a3  300  c3 

 a3  300  c3  a4  200  c2 

 a4  200  c4  a4  200  c4 

 Since we can ’ t tell what table content we started from, information has been lost by this 
decomposition and the subsequent join. This is known as a  lossy decomposition , or some-
times a  lossy-join decomposition .       

 The reason we lost information in the decomposition of  Example 2.17  is that 
attribute B has duplicate values (200) on distinct rows of the factored tables (with 
a2 and a4 in table AB and with c2 and c4 in table BC). When these factored tables 
are joined again, we get cross-product rows that did not (or might not) exist in 
the original: 

 a2  200  c4 

 and 

 a4  200  c2 
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     EXAMPLE 2.18  

    A Different Content for Table ABC 

 Now let ’ s say that table ABC started with a different content, one that had no duplicate 
values in column B. 

 ABC 

 A  B  C 

 A1  100  c1 

 A2  200  c2 

 A3  300  c3 

 The question is this: If we decompose this table ABC into the two tables AB and BC as we 
did in  Example 2.17 , is the resulting decomposition lossless? The answer is no, because the 
defi nition of a lossless decomposition requires that the join of the factored tables recapture the 
original information for  any possible future content  of the original table. But the table ABC 
content we have just shown could change with the insert of a single row to give the content of 
 Example 2.17 . There doesn ’ t seem to be any rule that would keep this from happening.       

 What sort of rule would we need to limit all possible future content for table 
ABC so that the decomposition into tables AB and BC would be lossless? Of course, 
functional dependencies spring to mind, because they represent rules that govern 
future content of a table. Notice that in the previous defi nition of a lossless decom-
position, a set F of FDs is considered to be part of the table T defi nition. 

       Defi nition: Database Schema.   A database schema is the set of headings of all 
tables in a database, together with the set of all FDs that the designer wishes to 
hold on the join of those tables.       

     EXAMPLE 2.19  

    Table ABC with a Functional Dependency 

 Assume that table ABC is defi ned, which obeys the functional dependency B  →  C. Now the 
table content of  Example 2.18  is perfectly legal: 

 ABC 

 A  B  C 

 a1  100  c1 

 a2  200  c2 

 a3  300  c3 



 But if we tried to insert a fourth row to achieve the content of  Example 2.17 , 

 a4  200  c4 

 this insert would fail because it would break the functional dependency B  →  C. A new row 
with a duplicate value for B must also have a duplicate value for C in order for B  →  C to 
remain true: 

 a4  200  c2 

 Is it true, then, that this new content for ABC can be decomposed and then rejoined 
losslessly? The answer is yes. Starting with: 

 ABC 

 A  B  C 

 a1  100  c1 

 a2  200  c2 

 a3  300  c3 

 a4  200  c2 

 if we factor this table into two parts, AB and BC, we get the following table contents: 

 AB  BC 

 A  B  B  C 

 a1  100  100  c1 

 a2  200  200  c2 

 a3  300  300  c3 

 a4  200 

 Note that four rows are projected onto three in table BC because of duplicate values. 
Now when these two tables are joined again, the original table ABC with the functional 
dependency B  →  C results.       

 Because of the functional dependency B  →  C in table ABC of  Example 2.19 , 
the projection of ABC on BC will always have  unique values  for attribute B. Recall 
that this means attribute B is a  key  for table BC. The reason that the decomposi-
tion of ABC into AB and BC is lossless is that no cross terms can ever arise in 
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joining them: Although duplicate values for column B can occur in table AB, every 
row in table AB joins with a  unique  row in table BC (assuming that this B value 
exists in table BC, as it always would in an initial decomposition that projects 
rows from ABC). This is reminiscent of what happened with our CAP database 
when we joined  orders  with  customers . We simply extended rows of  orders  
with more information about individual customers. Although duplicate values can 
exist in the  cid  column of the  orders  table, the  cid  values in the  customers  table 
are unique, so every row in  orders  joins to exactly one row in  customers . 

 We generalize the preceding discussion somewhat to deal with sets of 
attributes. 

       Theorem 2.5.   Given a table T and a set of attributes X  ⊆  Head(T), the following 
two statements are equivalent: (1) X is a superkey of T; (2) X  →  Head(T); that is, 
the set of attributes X functionally determines  all  attributes in T. Equivalently: X  +    =  
Head(T).   

   PROOF. (1) implies (2) . If X is a superkey of table T, then for any content of 
table T, two distinct rows of T must always disagree on X; that is, distinct rows 
cannot agree in value on all attributes of X. But from this it is clear that two 
rows u and v cannot agree on X and disagree on some other column in Head(T) 
(since if two rows agree in X, then they both represent the same row), and 
this means that X  →  Head(T).

  (2) implies (1) .  Similarly if X  →  Head(T), then for any possible content of 
T, two rows in T cannot agree in value on X and simultaneously disagree 
on Head(T). But if the two rows u and v don ’ t disagree on any attributes of 
Head(T), then they must be the same row. Therefore, this argument has shown 
that two distinct rows cannot agree in value on X, and therefore X is a super-
key for T.  ■           

 We have reached a point where we can give a general rule for the kind of 
lossless decomposition we will need in performing normalization. 

       Theorem 2.6.   Given a table T with an associated set F of functional dependencies 
valid on T, a decomposition of T into two tables {T 1 , T 2 } is a lossless decomposition 
of T if and only if Head(T 1 ) and Head(T 2 ) are both proper subsets of Head(T), 
Head(T)  =  Head(T 1 )  ∪  Head(T 2 ) (i.e., all attributes of T are duplicated either in T 1  
or T 2 ), and one of the following functional dependencies is implied by F:

   1.     Head(T 1 )  ∩  Head(T 2 )  →  Head(T 1 )    

 or   

  2.     Head(T 1 )  ∩  Head(T 2 )  →  Head(T 2 ).      

   PROOF.  We take as given table T, its decomposition into T 1  and T 2 , and FD 1, 
Head(T 1 )  ∩  Head(T 2 )  →  Head(T 2 ). (The case with FD 2 is proven similarly.) 



In what follows, we denote by X the set of attributes Head(T 1 )  ∩  Head(T 2 ); Y 
is the set of attributes in Head(T 1 )  −  Head(T 2 ), and Z is the set of attributes in 
Head(T 2 )  −  Head(T 1 ). To begin, we note by the defi nition of decomposition 
that T 1  and T 2  are projections of T, and Head(T 1 )  ∪  Head(T 2 )  =  Head(T). From 
this we can demonstrate that T  ⊆  T 1   Æ  T 2 . Every column of T appears in T 1   Æ  
T 2 , and if u is a row in T, we say that the projection of u on Head(T 1 ) is given 
by y 1 x 1 , a concatenation of attribute values, where y 1  represents values for 
attributes in Y and x 1  represents values for attributes in X; similarly, x 1 z 1  is the 
projection of u on Head(T 2 ). Clearly the projection of u on Head(T 1 ) has the 
same values as the projection of u on Head(T 2 ) on all attributes in X  =  Head(T 1 ) 
 ∩  Head(T 2 ), and by the defi nition of join, row u, a concatenation y 1 x 1 z 1 , will 
appear in T 1   Æ  T 2 .  

  Now we show under the given assumptions that T 1   Æ  T 2   ⊆  T. Assume that 
from row u in T, we get by projection a row y 1 x 1  in T 1 . Similarly assume that 
from row v in T, we get row x 2 z 2  in T 2 , with x 2  representing values for attri-
butes in X. Now assume that the two rows y 1 x 1  and x 2 z 2  in T 1  and T 2  are join-
able so that x 1  is identical in all attribute values to x 2 , and y 1 x 1 z 2  is in T 1   Æ  T 2 . 
This is the most general possible form for a row in T 1   Æ  T 2 , and we have only 
to show that the row is also in T. We denote the additional attribute values of 
u that project on y 1 x 1  in T by z 1 , so that u  =  y 1 x 1 z 1 , and claim that z 1   =  z 2 . This 
is because the row u is identical to v in the attributes of X, and X  →  Head(T 2 ), 
so in particular X  →  Head(T 2 )  −  Head(T 1 )  =  Z, and since u and v are alike on 
X, they must be alike on attributes of Z. Thus, z 1   =  z 2  and row y 1 x 1 z 2  that is in 
T 1   Æ  T 2  is identical to row y 1 x 1 z 2  in T.  ■           

     EXAMPLE 2.20  

   In  Example 2.19 , we demonstrated a decomposition of table T with heading A B C and 
functional dependency B  →  C, into two tables T 1  and T 2  with Head(T 1 )  =  A B and Head(T 2 ) 
 =  B C. If we apply Theorem 2.6, we have Head(T 1 )  ∩  Head(T 2 )  →  Head(T 2 ); that is, A B  ∩  
B C  →  B C, or B  →  B C, which is clear from B  →  C.      

     EXAMPLE 2.21  

   Consider the table  custords  from  Example 2.18 , created by joining  customers  with 
 orders . Clearly  ordno  is a key for  custords , since it has unique values, and the reader 
can also verify that we have the FD  cid   →  Head( customers ). Now we note that 
Head( customers )  ∩  Head( orders )  =   cid , the key for  customers , so Head( customers )  ∩  
Head( orders )  →  Head( customers ). Thus, by Theorem 2.6,  custords  has a lossless join 
decomposition into  custs  and  ords , with the same headings as  customers  and  orders , 
respectively (we would need to verify that the rows projected from  custords  onto  custs  
and  ords  give the same rows that we ’ re used to in  customers  and  orders ). The reason 
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that this decomposition seems intuitive is that by joining  customers  and  orders , we 
extend each of the rows in the  orders  table with columns from customers associated 
with the unique  cid  value in that row. It seems clear, therefore, that we don ’ t lose any 
information by decomposing the join back onto the headings of  customers  and  orders . 
Of course, we might have lost some information originally in creating  custords  — if there 
were some customers who didn ’ t place any orders, for example. But our lossless decompo-
sition starts with the table  custords  and guarantees that no information is lost in the 
decomposition.      

 Theorem 2.6 shows how to demonstrate that a decomposition of a table T into 
two tables {T 1 , T 2 } is a lossless decomposition. In cases where three or more tables 
exist in the decomposition, {T 1 , T 2 ,  .  .  .  , T k }, with  k   ≥  3, we can demonstrate 
losslessness by using the two-table result in a recursive manner. 

     EXAMPLE 2.22  

    Lossless Join Decomposition with Multiple Tables 

 Assume that we are given the table T with Head(T)  =  A B C D E F and the FD set given by 
(1) A B  →  C, (2) A  →  D, and (3) B  →  E. Notice there is no FD for the attribute F, but A B 
forms a key for A B C D E, since its closure includes all these attributes. Therefore, the key 
for table T must be A B F, since the key must functionally determine everything in Head(T). 
A perfectly acceptable lossless decomposition of T is {T 1 , T 2 , T 3 , T 4 }, where Head(T 1 )  =   A B  
C (the keys for these tables are underlined), Head(T 2 )  =   A  D, Head(T 3 )  =   B  E, and Head(T 4 ) 
 =   A B F . The union of these tables contains all the attributes in T, so we merely need to 
demonstrate losslessness. Note that if we join tables in the following order by pairs, each 
parenthesized table join so far will ensure a lossless decomposition with the table that is 
joined next by Theorem 2.6. 

   ((T T ) T ) T1 2 3 4Æ Æ Æ          

 We note that Head(T 1 )  =  A B C, Head(T 2 )  =  A D, Head(T 1   Æ  T 2 )  =  A B C D, Head(T 3 ) 
 =  B E, and Head((T 1   Æ  T 2 )  Æ  T 3 )  =  A B C D E. Thus, the following FDs yield losslessness 
for the multitable join desired.   

  Head(T 1 )  ∩  Head(T 2 )  =  A  →  Head(T 2 )  =  A D, because of (2) A  →  D  
  Head(T 1   Æ  T 2 )  ∩  Head(T 3 )  =  B  →  Head(T 3 )  =  B E, because of (3) B  →  E  
  Head((T 1   Æ  T 2 )  Æ  T 3 )  ∩  Head(T 4 )  =  A B  →  Head(T 1 )  =  A B C, because of 

(1) A B  →  C    

 Since the join operator is associative, losslessness does not require a specifi c order of 
join and we can remove the parentheses in the expression ((T 1   Æ  T 2 )  Æ  T 3 )  Æ  T 4 .       

 In the last few sections we have developed algorithms to determine a minimal 
set of FDs for a given set F and defi ned what is meant by a lossless decomposition. 
In the coming section, we learn how a minimal set of FDs helps us create an 
appropriate normal form decomposition for a database.  



  2.8     NORMAL FORMS 
 Let us return now to the example of bad database design from  Section 2.5  that 
motivated the long mathematical digression of the last two sections. Recall that 
we wish to create a database on a set of data items given in  Figure 2.15 , with rules 
of interrelatedness stated in the set of functional dependencies in  Example 2.1 . 
We repeat these here as  Figure 2.22   . 

 We started with a 1NF table,  emp _ info , that combined all these data items (see 
 Figure 2.16 ) and noted a number of design problems, referred to as  anomalies . 
In the following section, we perform a sequence of table factorizations, which are 
in fact lossless decompositions, to eliminate redundancies from the employee 
information database. 

 As explained earlier, a database schema is the set of headings of all tables in a 
database together with a set of all FDs intended by the designer. The  emp _ info  
table in  Figure 2.23   , together with the FDs given, make up such a database 
schema. 

  2.8.1     A Succession of Decompositions to Eliminate Anomalies 

 One anomaly of the database represented in  Figure 2.23  is that if the number of 
skills for some employee goes to zero in the  emp _ info  table, no row of any kind 
will remain for the employee. We have lost the phone number and the department 
the employee works in because of deleting this skill. At the end of  Section 2.5 , 
we proposed a solution for this anomaly by factoring the  emp _ info  table into two 
tables, the  emps  table and the  skills  table, whose column names were given in 
 Figure 2.17  and are repeated in  Figure 2.24   . 

 When the  emps  and  skills  tables were originally proposed, a number of fea-
tures of this factorization were mentioned without justifi cation. We are now in a 
position to demonstrate these points. 

 FIGURE 2.22  

   Data items and FDs for the employee information database.    

emp_id dept_name skill_id

emp_name dept_phone skill_name

emp_phone dept_mgrname skill_date

skill_lvl

(1) emp_id → emp_name emp_phone dept_name

(2) dept_name → dept_phone dept_mgrname

(3) skill_id → skill_name

(4) emp_id skill_id → skill_date skill_lvl
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       Proposition 2.1.   The key for the  emp _ info  table is the attribute set  emp _ id  and 
 skill _ id . This is also key for the  skills  table, but the  emps  table has a key consist-
ing of the single attribute  emp _ id .   

   PROOF.  By Theorem 2.5 we can determine a superkey for a table T by fi nding a 
set of attributes X  ⊆  Head(T) such that X  →  Head(T). Then, to show the set 
X is a key, we need merely show that no properly contained subset Y of X has 
this property. We start our search by fi nding the set closure of X for all attribute 

 FIGURE 2.23  

   Employee information schema with a single table,  emp _ info .    

(1) emp_id → emp_name emp_phone dept_name

(2) dept_name → dept_phone dept_mgrname

(3) skill_id → skill_name

(4) emp_id skill_id → skill_date skill_lvl

emp_info

emp_id emp_name ... skill_id skill_name skill_date skill_lvl

09112 Jones . . . 44 librarian 03-15-99 12

09112 Jones . . . 26 PC-admin 06-30-98 10

09112 Jones . . . 89 word-proc 01-15-97 12

14131 Blake . . . 26 PC-admin 05-30-98 9

14131 Blake . . . 89 word-proc 09-30-99 10

. . . . . . . . . . . . . . . . . .  . . .

 FIGURE 2.24  

   Employee information schema with two tables,  emps  and  skills .    

(1) emp_id → emp_name emp_phone dept_name

(2) dept_name → dept_phone dept_mgrname

(3) skill_id → skill_name

(4) emp_id skill_id → skill_date skill_lvl

slliksspme

di_pmedi_pme

emp_name skill_id

emp_phone skill_name

dept_name skill_date

dept_phone skill_lvl

dept_mgrname



sets X found on the left-hand side of any of the FDs in  Figure 2.23 , repeated 
here.

   1.      emp _ id  →  emp _ name emp _ phone dept _ name   
  2.      dept _ name  →  dept _ phone dept _ mgrname   
  3.      skill _ id  →  skill _ name   
  4.      emp _ id skill _ id  →  skill _ date skill _ lvl   ■              

 Starting with X  =   emp _ id skill _ id  (the left side of FD 4 above), we use Algo-
rithm 2.1 and the FD set F given to determine X  +  . Starting from X  +    =   emp _ id 
skill _ id  and applying FD 4, we get X  +    =   emp _ id skill _ id skill _ date skill _
 lvl . Next, applying FD 3, since  skill _ id  is in X  +  , we add  skill _ name  to X  +  . 
Applying FD 1, since  emp _ id  is in X  +  , we add the right-hand side of FD 1 to get 
X  +    =   emp _ id skill _ id skill _ date skill _ lvl skill _ name emp _ name emp _
 phone dept _ name . Finally, we apply FD 2, and since  dept _ name  is now in X  +  , we 
add the right-hand side of FD 2 to get X  +    =   emp _ id skill _ id skill _ date 
skill _ lvl skill _ name emp _ name emp _ phone dept _ name dept _ phone dept _
 mgrname . This fi nal list contains all the attributes in  emp _ info  — that is, Head( emp _
 info ). By the defi nition of X  +  , this means that 

     (2.1)   emp _ id skill _ id  →  Head(emp _ info)     

 By Theorem 2.75 then,  emp _ id skill _ id  is a superkey for  emp _ info . 

 To show that  emp _ id skill _ id  is in fact a key for  emp _ info , we need only 
show that no subset (either  emp _ id  or  skill _ id  alone) functionally determines 
all these attributes. Let us take the closure of the set  emp _ id  to fi nd what attributes 
are functionally determined. We can immediately apply FD 1 to get  emp _ id  →  
emp _ id emp _ name emp _ phone dept _ name . Next we can apply FD 2, and derive 

     (2.2)   emp _ id  →  emp _ id emp _ name emp _ phone dept _ name dept _ phone dept _
 mgrname     

 Since  skill _ id  is not in the right-hand set of (2.2), no other FDs can be applied, 
so this is the maximum right-hand set that is functionally determined by  emp _ id . 

 Finally, starting with  skill _ id  alone in the set X to be closed, FD 3 is the only 
one that can be applied, and we see that the maximum right-hand set functionally 
determined by  skill _ id  is given as 

     (2.3)   skill _ id   →   skill _ id skill _ name     

 Neither (2.2) nor (2.3) contains all attributes of  emp _ info , and thus we can 
conclude from (2.1) that 

     (2.4)   emp _ id skill _ id  is a key for the  emp _ info  table    

 In addition, we note from (2.2) that  emp _ id  functionally determines all attri-
butes in the  emps  table of  Figure 2.24 , and since no subset of a singleton set can 
be on the left side of an FD, 
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     (2.5)   emp _ id  is a key for the  emps  table    

 Finally, we note that the  skills  table has attributes that are not functionally 
determined by either  emp _ id  or  skill _ id  individually,  skill _ lvl  is not on the 
right-hand side in either (2.2) or (2.3), and therefore the only possible key for the 
 skills  table is  emp _ id skill _ id :

    (2.6)   emp _ id skill _ id  is a key for the  skills  table    

       Proposition 2.2.   The factorization of the  emp _ info  table into the  emps  and  skills  
tables is a true lossless decomposition.    

   PROOF.  To see that this is a valid decomposition, we note that Head( emps )  ∪  
Head( skills )  =  Head( emp _ info ). Furthermore, Head( emps )  ∩  Head( skills )  =  
 emp _ id , and since functional dependency (2.2) shows that  emp _ id   →  Head( emps ), 
by Theorem 2.6, the decomposition is lossless.  ■           

 From Proposition 2.2, we see that the decomposition that brings us from the 
 emp _ info  table of  Figure 2.23  to the  emps  and  skills  tables of  Figure 2.24  will 
always allow us to recapture any content of  emp _ info  by a join of the two factored 
tables. But the real motivation for this decomposition was to deal with the various 
anomalies mentioned earlier. 

 How did the delete anomaly mentioned in  Section 2.5  arise in the  emp _ info  
table of  Figure 2.23 ? The basic reason is that the pair of attributes  emp _ id skill _
 id  form the key for that table, but there are attributes that we wish to keep track 
of that are functionally determined by a single one of those two attributes,  emp _ id . 
If we delete the last  skill _ id  value for some specifi c  emp _ id , we no longer have 
any ( emp _ id skill _ id ) pairs with that specifi c  emp _ id ,  but we still have infor-
mation that is dependent only on   emp _ id ,  which we don ’ t want to lose!  Putting 
this in terms of the ER model, employees are real entities whose attributes we 
want to keep track of (and so the employee identifi er,  emp _ id , shows up on the 
left of a functional dependency). 

 In the decomposition of  Figure 2.24 , we factored the  emps  table out of the 
 emp _ info  table so that we wouldn ’ t lose information in this way. With this new 
schema, we can keep a row for a given employee in the  emps  table even if the 
employee has no skills. Recall that the insert anomaly is the inverse face of the 
delete anomaly, making it impossible to insert a new employee without skills — a 
trainee — into the  emp _ info  table. As before, this problem is solved by factoring 
out the  emps  table, since a new row can be inserted into  emps  that doesn ’ t have 
any join to a row of the  skills  table. As far as the update anomaly is concerned, 
this problem arises in the  emp _ info  table once again because attributes dependent 
only on  emp _ id  are in a table with key  emp _ id skill _ id ; we can therefore have 
multiple rows with the same employee phone number in this table that must all 
be updated at once. Once again, factoring out the  emps  table solves this problem, 
because each employee is now represented by a single row. 



 The question now is this: Are there any more anomalies remaining in the data-
base schema of  Figure 2.24 ? The answer, perhaps unsurprisingly, is yes. There is 
another anomaly of the kind we have just analyzed in the  skills  table. This table 
has the primary key ( skill _ id emp _ id ), and we recall FD 3 of  Figure 2.22 :

    (2.7)   skill _ id   →   skill _ name     

 What this FD seems to be saying is that  skills  is an entity in its own right, 
that  skill _ id  is an identifi er for the entity, and that  skill _ name  is a descriptor. 
(There might be two distinct skills with different  skill _ id  values but the same 
 skill _ name , since  skill _ name   →   skill _ id  is not an FD that is implied by the list 
we presented.) But recall that the key we have discovered for the skills table is 
 emp _ id skill _ id . This situation seems to be symmetric with the one that caused 
us to factor out the table  emps  from  emp _ info . Can we construct (for example) a 
delete anomaly of the kind that led to this step? The answer is yes, for if we assume 
that some skill is rare and diffi cult to master, and we suddenly lose the last 
employee who had it, we would no longer have any information about the skill 
at all, neither the  skill _ id  nor the  skill _ name . We therefore need 
to factor out another table to solve this anomaly, and we see the result in 
 Figure 2.25   . 

 From examination of the new  emp _ skills  table and  skills  table of  Figure 
2.25 , it should be clear that these two tables form a lossless decomposition of the 
 skills  table of  Figure 2.24 . Indeed, the three tables of  Figure 2.25  form a lossless 
decomposition of the single  emp _ info  table we started with in  Figure 2.23 . Most 
importantly, we have dealt with the anomalies that arise from keeping attributes 
of skills entities in a table with a key of two attributes. In terms of the ER model, 

 FIGURE 2.25  

   Employee information schema with three tables.    

(1) emp_id → emp_name emp_phone dept_name

(2) dept_name → dept_phone dept_mgrname

(3) skill_id → skill_name

(4) emp_id skill_id → skill_date skill_lvl

emps emp_skills skills

emp_id emp_id skill_id

emp_name skill_id skill_name

emp_phone skill_date

dept_name skill_lvl

dept_phone

dept_mgrname
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what we have just done is to factor out the relationship  emp _ skills  from the two 
entities  Emps  and  Skills . 

 Consider now the three tables of  Figure 2.25 . Everything in the  emps  table, as 
we showed earlier in Proposition 2.1, is functionally determined by the singleton 
attribute  emp _ id ; a similar situation holds with the  skills  table, as we see from 
the FD in (2.7); in the  emp _ skills  table, a glance at (2.2) and (2.3) makes it clear 
that no remaining attributes in this table are dependent on a subset of the ( emp _ id 
skill _ id ) key. We ask then if any further anomalies can remain in these tables. 
Once more, the answer is yes! 

 To see how this is possible, consider what would happen if we had a large 
reorganization in the company, so that every employee in one department are to 
be transferred to other departments (even the manager will be transferred — pre-
sumably, at some later time, different employees will take their place in the depart-
ment that has just been emptied). Now notice that when the last employee is 
removed, there remains no row in the  emps  table containing information about 
the department: We have lost even the phone number of the department and the 
name it goes under! The solution to this problem is obvious: We must factor out 
a separate table for departments. This will result in the  emp _ info  database of 
 Figure 2.26   ; this database is in 3NF, or equivalently in this case, in BCNF. We will 
give defi nitions for these normal forms shortly. 

 With the factorization of the  depts  table of  Figure 2.26 , the update anomaly 
relating to department information will no longer trouble us. In terms of the ER 
model, what we have done is to differentiate between the two entities  Emps  and 
 Depts , between which there is a many-to-one relationship (represented by the 
foreign key  dept _ name  in the  emps  table). 

 At this point, we claim that the database schema of  Figure 2.26  is in some sense 
a fi nal result — no anomalies remain in the representation to trouble us. For the 

 FIGURE 2.26  

   Employee information database schema in 3NF (also in BCNF).    

(1) emp_id → emp_name emp_phone dept_name

(2) dept_name → dept_phone dept_mgrname

(3) skill_id → skill_name

(4) emp_id skill_id → skill_date skill_lvl

emps depts emp_skills skills

emp_id dept_name emp_id skill_id

emp_name dept_phone skill_id skill_name

emp_phone dept_mgrname skill_date

dept_name skill_lvl



rationale to justify this statement, we look to the four FDs listed that must be 
maintained in the database, which we refer to in what follows as the set F of FDs. 
In every case where we have noted an anomaly in earlier schemas, the underlying 
reason for the anomaly has turned out to hinge on the fact that some attribute (it 
could have been a set of attributes in a different schema) on the left-hand side of 
an FD in F might have multiple duplicate occurrences (or possibly zero occur-
rences) in the table where it appeared. The solution was to create a separate table, 
placing the attributes on the left-hand side of this FD, together with all attributes 
on the right-hand side in that table, while the attributes on the right-hand side 
were removed from the table where they previously appeared. Look carefully at 
the successive decompositions presented in  Figures 2.23 through 2.26  to see that 
this is an accurate description of what was done. Since the attributes on the left-
hand side of the FD are in both the old and the new tables and determine all other 
attributes in the new table, the decomposition is lossless. Thus, FD 1 generates 
the  emps  table, FD 2 the  depts  table, FD 3 the  skills  table, and FD 4 the  emp _
 skills  table. Since no more FDs exist in F, we maintain that no more anomalies 
will arise, and therefore no further decomposition is necessary. Thus, we have 
reached a fi nal form.  

  2.8.2     Normal Forms: BCNF, 3NF, and 2NF 

 The tables in the fi nal schema of  Figure 2.26  each have unique candidate keys, 
which we may think of as primary keys for the tables. One way to characterize 
why no further decomposition is needed to address anomalies in these tables is 
to say that all functional dependencies involving attributes of any single table in 
this schema arise from the table keys alone. We provide defi nitions to make this 
idea precise. 

       Defi nition.   Given a database schema with a universal table T and a set of func-
tional dependencies F, let {T 1 , T 2 ,  …  , T  k  } be a lossless decomposition of T. Then 
a functional dependency X  →  Y of F is said to be preserved in the decomposition 
of T, or alternatively the decomposition of T preserves the functional dependency 
X  →  Y, if for some table T  i   of the decomposition, X  ∪  Y  ⊆  Head(T  i  ). When this is 
the case, we also say that the FD X  →  Y is preserved in T  i   or that it lies in T  i   or is 
in T  i  .       

     EXAMPLE 2.23  

   We have derived a number of successive decompositions of the employee information 
schema of  Figure 2.23  with a universal table and a set F of FDs: a decomposition with two 
tables ( Figure 2.24 ), three tables ( Figure 2.25 ), and four tables ( Figure 2.26 ). Each of these 
decompositions preserves all dependencies in F. For example, in the four-table decomposi-
tion of  Figure 2.26 , FD 1 lies in the  emps  table, FD 2 lies in the  depts  table, FD 3 lies in 
the  skills  table, and FD 4 lies in the  emp _ skills  table.      
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 Because every FD in F is preserved in one of the four tables of  Figure 2.26 , 
whenever any single table in the schema is updated, it is possible to verify that 
any FD affected by the update is still valid by testing its validity in that single table, 
without any need for a join. This is the motivation for seeking to preserve func-
tional dependencies in a decomposition. 

       Defi nition: Boyce-Codd Normal Form.   A table T in a database schema with 
FD set F is said to be in Boyce-Codd normal form (BCNF) when the following 
property holds. For any functional dependency X  →  A implied by F that lies in T, 
where A is a single attribute that is not in X, X must be a superkey for T. A database 
schema is in BCNF when all the tables it contains are in BCNF.       

 Consider a table T, and let X  →  A be a functional dependency in T. If the BCNF 
property holds for this case, then X is a superkey, so for some set K of attributes 
representing a key for T, K  ⊆  X. (Note that there might be a number of different 
sets K 1 , K 2 ,  …  that are candidate keys for T, as we consider in  Example 2.26  below.) 
If the BCNF property fails, then X does not contain a key set K, and K  −  X is non-
empty for all K. Then two cases are possible: either (1) X  −  K is empty for some 
K — that is, X  ⊂  K, and we say that some attributes of T are functionally determined 
by a  proper subset  X of a key K; or (2) X  −  K is nonempty for all K, so some attri-
butes are determined by a set X at least partially outside each K. In the second case, 
we say that some attributes of T are functionally determined by a  different  set of 
attributes that does not contain and is not contained in any key set. 

     EXAMPLE 2.24  

   In the  emp _ skills  table of  Figure 2.26 , the only key consists of the set  emp _ id skill _ id , 
as we can easily demonstrate by set closure arguments: Any set of attributes that function-
ally determine all attributes in the  emp _ skills  table must contain both of these attributes. 
We claim that the table is in BCNF and will demonstrate this in  Example 2.25 . As we just 
pointed out, the BCNF property implies that no attributes of this table are functionally deter-
mined by any  subset  of this key set, or any  different  set of attributes that does not contain 
this key set. 

 In the  skills  table of  Figure 2.24 , the unique key for this table consists of the two 
attributes  emp _ id skill _ id , while the FD  skill _ id   →   skill _ name  also lies in the table. 
Clearly the left-hand side of this FD is a  subset  of the key  emp _ id skill _ id . Because of 
this, the BCNF property fails for this table (and we pointed out that an anomaly arose requir-
ing us to perform further decomposition). 

 In the  emps  table of  Figure 2.24  (identical to the  emps  table in  Figure 2.25 ), the unique 
key for the table consists of the attribute  emp _ id , while the FD  dept _ name   →   dept _ phone  
is implied by FD 2 of F and lies in the table. Since the left side of this FD is  different  from 
the key set (neither a subset nor a superset), the BCNF property fails, and further decom-
position is necessary. Note, by the way, that a table  emps2  containing all the attributes of 
 emps  except the attribute  dept _ phone  would still not obey the BCNF property. Although the 
FD  dept _ name   →   dept _ phone  does not lie in the table  emps2 , the FD  dept _ name   →   dept _
 mgrname , which is also implied by FD 2, does lie in  emps2 .      



     EXAMPLE 2.25  

   We claim that the database schema of  Figure 2.26  is in BCNF. We need to show that for 
any functional dependency X  →  A implied by F that lies in one of the tables of  Figure 2.26 , 
where A is an attribute not in X, then X contains a key for that table. We have shown in 
 Example 2.23  that for the set of tables in  Figure 2.26 , one FD of F lies in each table, and 
this FD has as its left side the key for the table. This does not quite conclude the issue, 
however, because we also need to consider all FDs that are implied by F; that is, all FDs 
that are true in the schema. In Proposition 2.1, FDs (2.1), (2.2), and (2.3), we determined 
the closure of all sets X of attributes that fall on the left side of three FDs of F, and showed 
that these three sets form keys for three of the tables. For the fourth FD, we need merely 
take the closure of  dept _ name , which is easily seen to consist of the set  dept _ name , 
 dept _ phone ,  dept _ mgrname , or Head( depts ):

    (2.8)   dept _ name   →  Head( depts )    

 Now we claim that all attribute sets Z that do not contain one of the sets X, the left side 
of an FD in F and therefore a key for one of the  Figure 2.26  tables, must have trivial closure 
Z  +    =  Z. This follows from the fact that no FDs of the form X  →  Y exist with X  ⊆  Z, and by 
Algorithm 2.1, no attributes will ever be added to Z ’ s set closure. 

 From this we can easily see that all of the tables in  Figure 2.26  are BCNF, because if 
X  →  A holds and A is an attribute not contained in the attribute set X, then X  →  A X, and 
therefore X  +   is not identical to X. But we have just shown that any attribute set that does 
not contain a table key has a trivial closure, and this must mean that X contains some table 
key K. In that table, we have also included all attributes functionally determined by K, and 
therefore A is in that table as well.      

     EXAMPLE 2.26  

   Suppose we changed the rules in the employee information database so that  dept _ mgrname  
was a second identifi er of the  Departments  entity duplicating the effect of  dept _ na me. This 
would add a new FD to the set F:  dept _ mgrname   →   dept _ name ; by transitivity, since 
 dept _ name  is a key for the  depts  table in  Figure 2.26 ,  dept _ mgrname  would also be a key. 
The question now is whether the  depts  table is still in BCNF. And the answer is yes, because 
the BCNF property was specially constructed not to require a unique key for the table. The 
only thing that has changed in the  depts  table is that there are now two keys, but any FD 
of the form X  →  Y in this table has the necessary property that X contains  dept _ mgrname  
or X contains  dept _ name .      

 Recall that every FD in F is  preserved  in one of the four tables of  Figure 2.26 , 
so that whenever any table in the schema is updated, it is possible to verify that 
an affected FD still holds by testing data items in that table alone. We would like 
to be able to guarantee that this property, preservation of FDs, can always be 
achieved starting from a universal table and proceeding to a lossless decomposi-
tion into BCNF. Unfortunately this is not true, because the BCNF criterion for a 
table is too strict. 
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     EXAMPLE 2.27  

   We wish to add a number of attributes to the employee information database of  Figure 2.22  
to keep track of the full addresses of all employees (assumed to be living in the United 
States):

    emp _ cityst, emp _ straddr, emp _ zip     

 Here  emp _ cityst  refl ects the city and state,  emp _ zip  the zip code, and  emp _ straddr  
the street name, number, and apartment, if any. We fi nd that when we reach the decom-
position of  Figure 2.26 , the  emps  table contains all of these attributes in addition to the ones 
that are already there, as we see in  Figure 2.27   . 

 We assume that each employee is required to provide a single address, so it is clear 
that the  emp _ id  value functionally determines all these new attributes, and FD (1) is 
modifi ed accordingly:

   1.      emp _ id  →  emp _ name emp _ phone dept _ name emp _ straddr emp _ cityst emp _
 zip     

 No keys for any other tables of  Figure 2.26  are affected, and the key for the  emps  table 
is still  emp _ id . 

 But the post offi ce has assigned zip codes to cover regions of a city (determined by 
street address) and never to cross city boundaries, so we also have the following new FDs 
to add to the set F:

   5.      emp _ cityst emp _ straddr  →  emp _ zip regions of city determine the zip 
code   

  6.      emp _ zip  →  emp _ cityst zip codes never cross city boundaries     

 Since the left side of FD 5,  emp _ cityst emp _ straddr , is not a superkey of the  emps  
table, we need to perform a further decomposition to achieve the BCNF property. If we did 
not do this and deleted the last employee in some zip code, we would lose what information 
we have about that zip code — namely, what city and state it is associated with. After the 
prescription explained in the discussion following  Figure 2.26 , we place the attributes on 
the left side of FD 5, together with all attributes on the right side of this FD in a separate 

 FIGURE 2.27  

   The  emps  table extended to contain employee addresses.    
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table ( empadds ), while the attributes on the right side are removed from the table where 
they previously appeared ( emps ). The result is given in  Figure 2.28   . This is a perfectly rea-
sonable lossless decomposition of the previous table (lossless because of Theorem 2.6, 
since  emp _ cityst emp _ straddr  is a key for  empadds , and this is also the intersection of 
the headings of the two tables). We note too that  emp _ zip emp _ straddr  is an alternate 
candidate key for  empadds , since taking the closure of this set, we get  emp _ cityst  by FD 
6. Thus, we have the new derived FD 7. It is easy to see by closure that no other candidate 
keys exist for empadds.   

  7.      emp _ zip emp _ straddr  →  emp _ cityst (FD derived from (5) and (6))     

 The  emps  table of  Figure 2.28  is now in BCNF, since neither FD 5 nor 6 lies in  emps , 
and the only remaining FD, FD 1, requires that any superkey for the table will contain 
 emp _ id . This decomposition also preserves FDs 5 and 6, which both lie entirely in the 
 empadds  table. However, at this point FD 6 forces us to perform further decomposition of 
 empadds  to achieve BCNF, since  emp _ zip   →   emp _ cityst , and  emp _ zip  does not contain 
either candidate key of  empadds . Clearly this new decomposition must contain at most two 
attributes in each table, and we require one table ( zipcit  in  Figure 2.29   ) to have heading 
 emp _ zip emp _ cityst  to contain FD 6. The other table only has two possible pairs of attri-
butes for a heading, the left-hand side of FD 5 or the left-hand side of FD 7, both keys for 
the  empadds  table. Choosing the left-hand side of FD 5,  emp _ cityst emp _ straddr , would 

 FIGURE 2.28  

   A 3NF decomposition of  Figure 2.27 .    
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 FIGURE 2.29  

   A BCNF decomposition of  Figure 2.28 .    
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not result in a lossless decomposition, since the only attribute it would have in common with 
 zipcit  is  emp _ cityst , and this wouldn ’ t contain a key for either table. We therefore choose 
BCNF decomposition shown in the fi gure. 

 The decomposition of  Figure 2.29  is lossless for the following reasons:  emp _ zip  is the 
key for the  zipcit  table, the intersection of Head( zipstr ) and Head( zipcit ), so that join 
is lossless; the union of the  zipstr  and  zipcit  table headings contains all the attributes 
of the previous  empadds  table, so  zipstr  and  zipcit  join to form the  empadds  table of 
 Figure 2.28 ; the  empadds  table formed a lossless join with the  emps  table, so the three tables 
join losslessly. Furthermore, both new tables in  Figure 2.29  are in BCNF form. The only FD 
in the  zipcit  table is FD 6, and  emp _ zip  is the key. The  zipstr  table has no FD in it, so 
the unique key includes both attributes,  emp _ zip emp _ straddr , which was also an alternate 
candidate key for the  empadds  table of  Figure 2.28 . 

 But the decomposition in  Figure 2.29  does  not  preserve dependencies of the extended 
set F, since FD 5 does not lie in either table. This can have an unfortunate effect, in that 
we must perform programmatic checking to ensure that a given street address, city, state, 
and zip code being entered conform with the post offi ce assignment.      

 It seems that we have gone too far in decomposition if we really want to pre-
serve functional dependencies. What we ’ d like is a defi nition for normal form that 
allows us to stop at  Figure 2.28  and not press on to  Figure 2.29 . In order to do 
this, we have to come up with a new defi nition for normal form (3NF, as it turns 
out). We achieve this with the following defi nitions. 

       Defi nition: Prime Attribute.   In a table T, an attribute A is said to be prime if and 
only if the attribute A exists in some key K for the table.       

       Defi nition: Third Normal Form.   A table T in a database schema with FD set F 
is said to be in third normal form (3NF) under the following condition. For any func-
tional dependency X  →  A implied by F that lies in T, where A is a single attribute 
that is not in X, one of the two following properties must hold: either (1) X is a 
superkey for T; or (2) A is a prime attribute in T. A database schema is in 3NF 
when all the tables it contains are in 3NF.       

     EXAMPLE 2.28  

   Consider the database schema of  Figure 2.29 . Each of the tables in this schema is in BCNF, 
and therefore in 3NF. The BCNF prescription for a table requires that the table has property 
1 of the 3NF defi nition, and it doesn ’ t permit the  “ escape clause ”  of property 2. Therefore, 
any table in BCNF is also in 3NF, but the reverse doesn ’ t hold.      

     EXAMPLE 2.29  

   Consider the  empadds  table of  Figure 2.28 . This table is in 3NF but not in BCNF. The reason 
we required a further decomposition of this table was that the  empadds  table of  Figure 2.28  
had as a key the attributes  emp _ cityst emp _ straddr , and at the same time FD 6,  emp _ zip 



 →  emp _ cityst  lies in the table. This is an FD whose left-hand side does not contain a key 
of  empadds , so the FD does not fulfi ll the BCNF property. However, we note that the attribute 
on the right of this FD does lie in some key and is therefore prime. Thus, the FD does fulfi ll 
property 2 of the 3NF defi nition.      

     EXAMPLE 2.30  

   We are given a table T with Head(T)  =  A B C D, and FD set F as follows:

   1. A B  →  C D,   2. D  →  B    

 Clearly A B is a candidate key for T, and we see by closure that A D is another one: A D  +   
 =  A D B (2) C (1). It is easy to confi rm that there are no others. Now we maintain that table 
T is already in 3NF, because the only FD implied by F that does not contain A B on the 
left-hand side (and is not trivial) depends on FD 2, D  →  B, and since B is a prime attribute, 
table T is 3NF by the  “ escape clause ”  of property 2. 

 If we did wish to decompose T losslessly to a BCNF form, we would want to start by 
projecting on a table that contains FD 2 — that is, table T 2  with Head(T 2 )  =  B D. Then we 
will want table T 1  to contain a candidate key for T as well as the attribute C, but if we create 
T 1  with Head(T 1 )  =  A B C, then the headings of T 1  and T 2  won ’ t intersect in D and therefore 
won ’ t join losslessly. Thus, we must create table T 1  with Head(T 1 )  =  A D C. And so we have 
the BCNF decomposition {A D C, B D}.      

 In decomposing a database with a given set of functional dependencies F 
to achieve a normal form, the BCNF and 3NF forms are often identical, as we 
saw in  Example 2.28 . They differ exactly when there exist two nontrivial FDs 
implied by F, X  →  Y and Z  →  B, where Z  ⊂  X  ∪  Y and B  ∈  X. In  Example 2.30 , 
FD 1 gave us A B  →  C D and FD 2 gave us D  →  B, with D  ⊂  C D and B  ∈  A B. 
Further decomposition to achieve BCNF will cause dependencies not to be 
preserved. Many database designers aim for a 3NF design that preserves 
dependencies. 

 Another defi nition for a table property, known as  second normal form  (2NF), 
is weaker than 3NF and of mainly historical interest, since no advantage arises 
from stopping short of 3NF. When a table fails to be 3NF, it must contain a valid 
nontrivial functional dependency X  →  A, where A is nonprime and X is not a 
superkey for T. Recall from the previous discussion of BCNF that if X is not a 
superkey for T, then two cases are possible: Either X  ⊂  K for some K and we say 
that some attributes of T are functionally determined by a proper subset X of a 
key K, or else X  −  K is nonempty for all keys K in T, and we say that some attri-
butes of T are functionally determined by a different set of attributes that does 
not contain and is not contained in any key set. This latter case is also known as 
a  transitive dependency , since we have K  →  X for any key K, and given X  →  A, 
the functional dependency K  →  A is implied by transitivity. A table in 2NF is not 
allowed to have attributes that are functionally determined by a proper subset of 
a key K, but it may still have transitive dependencies. 
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       Defi nition: Second Normal Form.   A table T in a database schema with FD set 
F is said to be in second normal form (2NF) under the following condition: For any 
functional dependency X  →  A implied by F that lies in T, where A is a single attri-
bute that is not in X and is nonprime, X is not a proper subset of any key K of T. 
A database schema is in 2NF when all the tables it contains are in 2NF.        

  2.8.3     An Algorithm to Achieve Well-Behaved 3NF Decomposition 

 For a number of technical reasons it turns out that the approach of successive 
decompositions to achieve a 3NF lossless join decomposition preserving func-
tional dependencies is distrusted by many practitioners. This is the only approach 
we have seen, used in  Figures 2.23 through 2.26 . Problems can arise because the 
set F of functional dependencies used in the successive decompositions has not 
been carefully defi ned, and as we saw in  Section 2.6 , numerous equivalent sets F 
are possible. Algorithm 2.3 provides a straightforward method to create the desired 
decomposition. 

       ALGORITHM 2.3   This algorithm, given a universal table T and set F of FDs, generates a 
lossless join decomposition of T that is in 3NF and preserves all FDs of F. The output is a 
set S of headings (sets of attributes) for tables in the fi nal database schema. 

  REPLACE F WITH MINIMAL COVER OF F;    / *  use algorithm 2.6.13     * /  
  S  =    Ø  ;    / *  initialize S to null set     * /  
  FOR ALL X  →  Y in F    / *  loop on FDs found in F     * /  
              IF. FOR ALL Z   ∈  S, X   ∪   Y   ¢   Z    / *  no table contains X  →  Y     * /  
                          THEN S  =  S   ∪   Heading (X   ∪   Y);    / *  add new table Heading to S     * /  
  END FOR    / *  end loop on FDs     * /  
  IF, FOR ALL CANDIDATE KEYS K FOR T    / *  if no candidate Keys of T     * /  
                          FOR ALL Z   ∈  S, K    Z    / *  are contained in any table     * /  
              THEN CHOOSE A CANDIDATE KEY K AND    / *  choose a candidate key     * /  
                          SET S  =  S   ∪   Heading(K);    / *  and add new table to S     * /  

 Note that the function Heading(K) generates a singleton set containing the set K of 
attributes, which can then be added to the set S, which is a set of sets of attributes.  ■        

     EXAMPLE 2.31  

   To see why the choice of a candidate key might sometimes be necessary in Algorithm 2.3, 
consider the following small school database. We are given a universal table T with 
heading.    

   Head(T)  =  instructor class _ no class _ room text     

 and FD set F given by   

   F  =  {class _ no  →  class _ room text}     

 In ER terms, there is an entity  Classes , identifi ed by  class _ no , and the actual class 
holds all its meetings in the same classroom with a unique text. Whether or not there is an 
entity  Class _ rooms  with identifi er  class _ room  is a matter of opinion. Since there is no FD 



with  class _ room  on the left, such an entity would have no descriptor attributes, and so no 
table exists for it in the relational model; thus, we can think of  class _ room  as a descriptor 
attribute for  Classes  if we like. The same argument can be applied to the  text  attribute 
in Head(T). But the  instructor  attribute in Head(T) is a different situation. Since the 
 instructor  attribute is not functionally determined by  class _ no , there can be several 
instructors for the same class, and since  instructo r does not determine  class _ no , this 
means that one instructor might teach several classes. From this it is clear that instructors 
have independent existence from classes and in fact represent an entity,  Instructors . 
Indeed, table T contains a relationship between  Instructors  and  Classes . 

 By standard BCNF/3NF normalization, since the attributes  class _ room  and  text  
depend on  class _ no  alone in table T, we need to factor T into two tables, T 1  and T 2 , with   

   Head(T 1 )  =  class _ no class _ room text   
   Head(T 2 )  =  instructor class _ no     

 But in Algorithm 2.3, only table T 1  will be created in the initial loop on FDs, since the 
instructor attribute does not fi gure in any FDs of F. However, it is clear from the standard 
set closure approach that the unique candidate key for T is  class _ no  instructor. Therefore, 
the loop on candidate keys in Algorithm 2.3 is necessary to create table T 2  for set S.      

 It is commonly said that the normalization approach and the ER approach 
reinforce one another.  Example 2.31  gives an example of this. Without consider-
ing functional dependencies, it is not clear why the  instructor  data item must 
represent an entity but the  class _ room  data item might not. On the other hand, 
the ER approach gives the motivation for why the loop on candidate keys in 
Algorithm 2.3 is appropriate to create table T 2 . We need table T 2  to represent the 
relationship between the  Instructors  and  Classes  entities.  

  2.8.4     A Review of Normalization 

 In the normalization approach to database design, we start out with a set of data 
items and a set F of functional dependencies that the designer wishes to see main-
tained by the database system for any future content of the database. The data 
items are all placed in a single universal table T, and the set F is replaced by an 
equivalent minimal cover; then the designer determines a decomposition of this 
table into a set of smaller tables {T 1 , T 2 ,  .  .  .  , T k }, with a number of good proper-
ties, as follows. 

    1.     The decomposition is lossless, so that T  =  T 1   Æ  T 2   Æ   .  .  .   Æ  T n .  
  2.     To the greatest extent possible, the only FDs X  →  Y in table T i  arise 

because X contains some key K in T i ; this is the thrust of the BCNF/3NF 
defi nitions.  

  3.     All FDs in F of the form X  →  Y are preserved in tables of the 
decomposition.    

 The value of property 2 is that we can avoid the various anomalies defi ned in 
 Section 2.5 . It is also important that with these normal forms we can guarantee 
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that functional dependency will not be broken, so long as we guarantee the 
uniqueness of all keys for a table. The Create Table statement of SQL gives us a 
way to defi ne such keys K for a table, and the uniqueness of these keys will then 
be guaranteed by the system for all SQL table Update statements that follow (an 
update that breaks such a uniqueness constraint will result in an error). As we 
will see a bit later, such a uniqueness condition is a particularly easy condition to 
check with an index on the key columns involved, whereas a general functional 
dependency X  →  Y in a table T i , where multiple rows with the same value for X 
can exist, is more diffi cult. Standard SQL does not provide a constraint to guaran-
tee such general dependencies against update errors. 

 The value of property 3 should also be clear, since we want to guarantee that 
all functional dependencies provided by the designer hold for any possible content 
of the database. Property 3 means that FDs won ’ t cross tables in the fi nal database 
schema, so that if an update of one table occurs, only FDs in that table need to 
be tested by the system. On the other hand, the very decomposition we are pro-
viding does result in a certain amount of join testing, since the standard lossless 
join decomposition into tables T 1  and T 2  leads to a key for one table with attributes 
in both — that is, a key consisting of (Head(T 1 )  ∩  Head(T 2 )). Standard SQL provides 
a constraint, known as  referential integrity , that can be imposed with the Create 
Table statement to guarantee that these attribute values continue to make 
sense between the two tables they join, a constraint also known as a  foreign key 
condition . 

 To sum up, the standard 3NF decomposition eliminates most anomalies and 
makes it possible to verify effi ciently that desired functional dependencies remain 
valid when the database is updated. 

 Additional normal forms exist that are not covered here, 4NF and 5NF. In 
particular, fourth normal form, or 4NF, is based on an entirely new type of depen-
dency, known as a  multivalued dependency . You are referred to Teorey (1994) 
and Ullman (1988) for good descriptions of these. 

 We should mention at this point that  overnormalization , factoring a database 
into more tables than are required in order to reach 3NF when this is the goal, is 
considered a bad practice. For example, if we factored the  depts  table into two 
tables, one with  dept _ name  and  dept _ phone  and a second with  dept _ name  and 
 dept _ mgrname , we would certainly still have a 3NF database, but we would have 
gone further than necessary in decomposition. Unnecessary ineffi ciencies would 
arise in retrieving all department information together, because of the join that 
would now be required.   

  2.9     ADDITIONAL DESIGN CONSIDERATIONS 
 The ER and normalization approaches both have weaknesses. The ER approach, 
as it is usually presented, is extremely dependent on intuition, but if intuition fails 
there is little fallback. As we saw in  Example 2.31 , it can be diffi cult on the basis 



of intuition alone to determine whether a data item represents an entity or not. 
It helps to have the concept of functional dependency from normalization. Nor-
malization is more mathematically based and mechanical in its application, but 
the idea that you can write down a complete set of FDs as a fi rst step of logical 
database design is often a delusion; it may be found later that some have been 
missed. The intuitive exercise of trying to discover entities and relationships and 
weak entities and so on aids the designer in discovering FDs that might otherwise 
be overlooked. 

 Another factor affecting the normalization approach is that a certain amount 
of judgment might be needed to decide whether a particular functional depen-
dency should be refl ected in a fi nal design. Consider the CAP database schema 
we discussed earlier in the chapter. It might seem that all functional dependencies 
that hold for the database are refl ections of the table key dependencies, so that 
all the tables are in BCNF. However, there is a rather unexpected FD of the fol-
lowing form:

    (2.9)   qty price discnt  →  dollars     

 That is, for each order, from the order quantity, product price, and customer 
discount we can calculate the dollars charge for the order. This is expressed in 
the following SQL Insert statement (2.10). Clearly the FD as it stands crosses tables, 
and therefore the decomposition does not preserve dependencies. Note that we 
can create another table,  ddollars , that contains all the attributes on both sides 
of FD (2.9),  qty price discnt dollars , and simultaneously remove the  dollars  
attribute from  orders . The result, a fi ve-table schema for CAP including the  ddol-
lars  table, is a 3NF design that would be arrived at by Algorithm 2.3. The unique 
key for the  ddollars  table is  qty price discnt , and the only FD is given in (2.9). 
There is a problem with this design, however. Whenever we want to retrieve the 
dollar cost for an order, we have to perform a join with  products  to get  price , 
 customers  to get  discnt , and  ddollars  to read off the  dollars  value for the 
given  qty ,  price , and  discnt . Is all this really necessary? 

 If we consider the original motivations for a decomposition such as this, we 
have two: to remove anomalies and to validate all FDs whenever changes are made 
in the data. But do we really want to validate this FD by a unique key constraint 
in normal form? Presumably when a new order is inserted, the program logic does 
a calculation of the dollars amount to store, something like this:

    (2.10)   exec sql insert into orders   
                                    values (:ordno, :month, :cid, :aid, :pid, :qty,   
                                    qty * :price  –  .01 * :discnt * :qty * :price:     

 With this Insert statement we guarantee the FD (2.9); and more than that, we 
guarantee an exact numerical relationship that an FD is incapable of representing. 
The only validation that the  ddollars  table is capable of providing is this: If a 
previous row exists with a given  qty ,  price , and  discnt , then the calculated 
 dollars  value will be identical. This seems like a rather strange validation, since 
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if there are a lot of products and customers, with real variation in order sizes and 
some limit on the number of orders tracked, we can expect to be adding many 
 (qty, price, discnt)  triples for the fi rst time. Thus, the unique key constraint 
offers no real value in verifi cation: There is no old row with the same key to 
compare with it. You would much rather depend on the Insert statement (2.10) 
to perform the correct calculation. In this regard, it certainly makes sense to 
provide this insert in a tested function that must be used by all logic-performing 
inserts of new orders. 

 Now the delete and insert anomalies amount to saying that we don ’ t want to 
lose track of any  (qty, price, discnt)  triples, but this is a questionable prop-
osition given that we don ’ t really value this method of validation. As for the update 
anomaly, we consider the case of needing to update all dollars values at once for 
a given  (qty, price, discnt) . Presumably this might happen if the  price  or 
 discnt  value needed to be changed for orders that were previously entered, 
perhaps because that value was originally entered erroneously and now has to be 
corrected. But this change would be so unusual and have such major ramifi cations 
for a wholesale business that it is unreasonable to assume that an inexperienced 
programmer might write code to correct a single row in  orders  by mistake. 
Indeed many designers would model the  dollars  column as an insert-only quan-
tity that should not be updated at all (except to correct input errors). We are 
therefore willing to forgo the protection from the update anomaly. 

 We have gone into detail here to exemplify a type of situation that arises with 
some frequency in commercial applications, a need for  denormalization  to 
improve performance. Most design practitioners will agree that there is frequently 
a need for this. 

  2.9.1     Database Design Tools 

 A number of commercial products are aimed at providing environments to support 
the DBA in performing database design. These environments are provided by 
 database design tools , or sometimes as part of a more general class of products 
known as  computer-aided software engineering  (CASE) tools. Such tools usually 
have a number of components, chosen from the following kinds. It would be rare 
for a single product to offer all these capabilities. 

  ER Design Editor 
 A common component is an interface in which a designer can construct ER dia-
grams, editing and making changes to the diagrams using the graphical drag-and-
drop methods common to products such as the Apple Macintosh and Microsoft 
Windows.  

  ER to Relational Design Transformer 
 Another common component of such tools is a transformer that automatically 
performs a transformation of an ER design to a set of relational table defi nitions, 



following the steps outlined in  Section 2.3  and exemplifi ed in the case study of 
 Section 2.4 . 

 With database design tools, the fl ow of development usually starts with ER 
design and proceeds to a relational table defi nition. However, a number of prod-
ucts deal with functional dependencies. One tool advises loading a small universal 
table and abstracts from these data the possible functional dependencies that 
might hold for the data. A transformation to BCNF/3NF for this set of FDs can 
then be automatically generated.  

  FD to ER Design Transformer 
 Another type of component that is sometimes offered takes a set of FDs for the 
database and generates a valid ER diagram to refl ect the rules of the data. 

 As indicated in the previous section, a design that is theoretically perfect may 
also be ineffi cient in terms of performance. Thus, a good design tool tries to analyze 
the performance implications of a design and accepts designer decisions to perform 
certain kinds of denormalization to improve performance. In addition, a tool must 
be forgiving of errors and omissions in FDs and entity classifi cations, in order to 
produce some kind of best guess at a design that the designer can picture while 
making corrections. This brings up another kind of standard tool component.  

  Design Analyzers 
 These components analyze design in the current stage and produce reports that 
might help the DBA to correct errors of various kinds. 

 For an excellent overview of database design tools, you are referred to the last 
chapter in Batini, Ceri, and Navathe (1992).     

   2.10    SUGGESTIONS FOR FURTHER READING 
  Many variations in terminology are prevalent in the fi eld of logical database design. 
The ER approach is sometimes referred to as  semantic modeling.  The real-world 
objects known as  entity occurrences  in our notation are often referred to in the 
literature as  entities , and the  entity  in our notation that makes up a category of 
entity occurrences then becomes an  entity type . Attributes are also sometimes 
called  properties.  

 Let us try to give an idea of what is meant by semantic modeling. In a program-
ming language, the  syntax  of the language specifi es how the statements are 
formed out of basic textual elements. The syntax does not associate any meaning 
with the statements, however. A specifi cation of how programming language 
statements act under all possible conditions, what the statements mean in terms 
of their effect, is known as the  semantics  of the language. The term  semantic 
modeling  implies that in the ER approach, we are getting into the topic of what 
data items  really mean  in order to model their behavior in terms of database 
structures such as relational tables. 

2.10 Suggestions for Further Reading  83



84  CHAPTER 2 Entity–Relationship Concepts

 References  1, 2, and 4  cover the topic of logical database design. Reference  1  
also contains as its fi nal section an article by David Reiner on commercial products 
used for database design, known as database design tools. References  3 and 5  also 
contain excellent coverage of many normalization concepts that are not covered 
in the current chapter. Reference  3 , in particular, is extremely advanced and 
represents the state of the art in this fi eld. Reference  6  is at the same level as this 
text and covers both entity – relationship and normalization. 
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 CHAPTER 

3     Data Modeling in UML 

   3.1     INTRODUCTION 
 Although semantic approaches to information modeling appeared in the early 
1970s, no single approach has yet achieved universal adoption. By and large, the 
history of information systems modeling has been characterized by a plethora of 
techniques and notations, with occasional religious wars between proponents of 
different approaches. Each year, many new approaches would be proposed, 
leading to groans from academics who were charged with teaching the state of 
the art. This is referred to as the  “ yama ”  (Yet Another Modeling Approach!) or 
 “ nama ”  (Not Another Modeling Approach!) syndrome.  Figure 3.1    shows this as a 
mountain of modeling methods, piled on top of one another, which nicely ties in 
with the Japanese meaning of  yama  (mountain), depicted as a kanji that is high 
in the middle and low on the ends. 

 While diversity is often useful, the modeling industry would benefi t if practi-
tioners agreed to use just a few standard modeling approaches, individually suited 
for their modeling scope, and collectively covering the tasks needed to model a 
wide variety of applications. This would improve communication between model-
ers and reduce training costs, especially in an industry with a high turnaround of 
employees. 

 Recently, the rapid rise of the Unifi ed Modeling Language (UML) has been 
accompanied by claims that UML by itself is an adequate approach for modeling 
any software application. Some UML proponents have even been so bold as to 
claim that  “ the modeling wars are over — UML has won. ”  This claim has been 
strongly rejected by several experienced data modelers, including Dave Hay, who 
argues that  “ there is no such thing as  ‘ object-oriented analysis ’     ”  (Hay 1999a), only 
object-oriented design, and that  “ UML is  .  .  .  not suitable for analyzing business 
requirements in cooperation with business people ”  (Hay 1999b). 

 To date, UML is mainly used in industry for designing object-oriented program 
code. Although it can be used for designing databases, UML has so far had little 
success in displacing other approaches such as entity – relationship (ER) for this 
purpose. Given UML ’ s object-oriented focus, and the dominance of relational 
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database management systems (DBMSs), this is perhaps not surprising. Neverthe-
less, UML is a very important language that could well become popular for data-
base design in the future. 

 Initially based on a combination of the Booch, Object Modeling Technique 
(OMT), and Object-Oriented Software Engineering (OOSE) methods, UML was 
further developed by a consortium of companies and individuals working within 
the Object Management Group (OMG). It includes adaptations of many other 
techniques (e.g., Harel ’ s state charts) and is continually being refi ned and 
extended. 

 Version 1.1 of UML was adopted in November 1997 by the OMG as a language 
for object-oriented analysis and design. Versions 1.2, 1.3, 1.4, and 1.5 were 
approved in 1998, 1999, 2001, and 2003, respectively. Version 1.4.2 was accepted 
as a standard by the International Standards Organization (ISO). A major revision 
(2.0) was recommended in 2004, comprising infrastructure and superstructure 
specifi cations, plus related specifi cations on the Object Constraint Language (OCL) 
and diagram interchange. In 2007, UML 2.0 was updated to version 2.1.1 (see 
 www.omg.org/technology/documents/formal/uml.htm ). When using a UML tool, 
be aware that vendor support typically lags behind the latest OMG adopted version 
(e.g., some tools are still at UML 1.2). 

 As discussed later, the UML metamodel and notation have inconsistencies, with 
some unresolved problems being fundamental. Despite these issues, UML is the 
closest thing to a de facto standard in industry for object-oriented software design, 
and therefore is worthy of study. 

 The UML notation is really a set of languages rather than a single language. It 
includes a vast number of symbols, from which various diagrams may be con-
structed to model different perspectives of an application. The 9 main diagram 
types in UML 1.5 are use case (use case diagram); static structure (class diagram, 
object diagram); behavior (statechart, activity diagram); interaction (sequence 
diagram, collaboration diagram); and implementation (component diagram, 
deployment diagram). UML 2.0 extended these to 13 diagram types, as set out in 
 Table 3.1   . 

 FIGURE 3.1  

    Yama  — Japanese for  “ mountain. ”     



 Some of these diagrams (e.g., collaboration diagrams) are useful only for 
designing object-oriented program code. Some (e.g., activity diagrams and use 
case diagrams) can be useful in requirements analysis, and some (e.g., class dia-
grams) have limited use for conceptual analysis and are best used for logical 
design. 

 The UML specifi cation provides syntax and semantics for these diagram types, 
but not yet a process for developing UML models, other than to suggest that model 
development should be use case driven, iterative, and architecture centric. Various 
companies promote their own modeling process for UML, such as the Rational 
Unifi ed Process (RUP). 

 Although all the UML diagram types are worth studying, this book focuses on 
information modeling for databases. This chapter addresses data modeling in UML, 
so it considers only the static structure (class and object) diagrams. Class diagrams 
are used for the data schema, and object diagrams provide a limited means to 
discuss data populations. 

 Like ER, UML uses attributes. Attributes are great for logical models, but are 
best modeled as relationships when performing conceptual analysis, since this 
facilitates validation and minimizes the impact of change. For such reasons, we 
believe the best way to develop UML data models is to fi rst do an ORM model and 
then map it to UML. Since Object – Role Modeling (ORM) will be used to clarify 
the data modeling concepts in UML, to gain the full benefi ts of this clarifi cation, 
you should be familiar with the ORM concepts. 

 No language is perfect, ORM included. Overall, UML provides a useful suite of 
notations for both data and process modeling, while ORM is currently focused on 
data modeling only.  

 Table 3.1      The 13 Predefi ned UML 2.0 Diagram Types  

 Structure  Class 
 Object 
 Component 
 Deployment 
 Package 
 Composite Structure 

 Behavior  Use Case 
 State Machine 
 Activity 

 Interaction  Sequence 
 Collaboration 
 Interaction Overview 
 Timing 
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  3.2     OBJECT ORIENTATION 
 UML facilitates object-oriented (OO) code design because it covers both data and 
behavioral modeling, and lets you drill down into physical design details relevant 
to OO code. The class diagram in  Figure 3.2    models a class whose instances are 
screen dialog boxes. 

 The class shape in  Figure 3.2  has three compartments. The name compartment 
includes the class name, as well as a tagged value naming the author of the class. 
The attribute compartment lists the visibility, name, and type of each attribute. 
The visibility settings  + ,  − , #, and ~ indicate whether the attribute is public, 
private, protected, or package. These visibility settings are software, not concep-
tual, issues. The size attribute is initialized to a given area value. The operation 
compartment specifi es what operations are encapsulated in instances of the class. 
In this example, the operations may be implemented by methods to display the 
dialog box at a specifi c position, and to hide the dialog box. 

  Figure 3.3    shows another class diagram that depicts  Employee  and  Car  classes, 
as well as an association corresponding to the ORM fact type  Employee drives 
Car . The association is depicted by a line between the classes. The role name 
 “ driver ”  on the left end of the association clarifi es the intended semantics (an 
association reading could also be supplied). The open arrow at the right end of 
the association is a navigability setting indicating that fast access is required from 
employee instances to their car instances. This may be implemented by including 

 FIGURE 3.2  

   Example of a UML class.    

 FIGURE 3.3  

   The navigability setting demands fast access from the  Employee  class to the  Car  class.    
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pointers from employee objects (software objects) to the car objects that model 
the cars that they drive. Navigability settings are implementation issues related to 
performance, not conceptual issues about the business domain. 

 By omitting implementation details such as attribute visibility and association 
navigability, class diagrams can be used for conceptual analysis. When used in this 
way, class diagrams are somewhat similar to ER models. But there is a signifi cant 
difference arising from the OO perspective. If you look at the classes in  Figures 
3.2 and 3.3 , what strikes you as missing? 

 You guessed it! No identifi cation schemas are provided for the classes. In 
object-oriented programming, objects may be identifi ed by their memory addresses 
or internal object identifi ers (oids), so UML does not require that you provide a 
value-based identifi cation scheme for use by humans in communicating about the 
objects. For conceptual analysis, however, such human-oriented reference schemes 
(e.g., dialog box numbers, employee numbers, car registration numbers) must be 
supplied. UML does allow you to add such attributes, but has no standard notation 
for declaring them to be preferred identifi ers or even for declaring them to be 
unique. For this, we choose  “ {P} ”  for preferred reference and  “ {U n } ”  for unique-
ness ( n   >  0), where  n  is used to disambiguate cases where the same U constraint 
might apply to a combination of attributes. Various UML tool vendors choose dif-
ferent notations for such constraints. 

 In  Figure 3.4   , for example, employee number ( nr ) and car registration number 
( regNr ) attributes have been added as the primary identifi ers of the  Employee  and 
 Car  classes, respectively. This entails that they are mandatory and unique. Addi-
tionally, the combination of employee name and birth date has been declared 
unique. We also dropped the navigation arrow, as it is irrelevant to the business 
semantics. 

 The requirement that each class has a value-based identifi cation scheme distin-
guishes both ORM and ER from UML. ORM classifi es objects into entities (non-
lexical objects) and values (lexical objects) and requires each entity to be identifi ed 
by a reference scheme used by humans to communicate about the entity. ORM 
uses  object, entity , and  value  to mean  object instance, entity instance , and  value 
instance , respectively, appending  “ type ”  for the relevant set of all possible 
instances. Entities may be referenced in different ways, and typically change their 
state over time. Glossing over some subtle points, values are constants (e.g., 

 FIGURE 3.4  

   Adding nonstandard notations for preferred reference and uniqueness.    
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character strings) that basically denote themselves, so they do not require a refer-
ence scheme to be declared. 

  Figure 3.5(a)    depicts explicitly a simple reference scheme in ORM. If an entity 
type has more than one candidate reference scheme, one may be declared pre-
ferred to assist verbalization of instances (or to refl ect the actual business prac-
tice). A preferred reference scheme for an entity type maps each instance of it 
onto a unique, identifying value (or a combination of values). In  Figure 3.5(a) , the 
reference type has a sample population shown in a reference table (one column 
for each role). Here icons are used to denote the real-world employee entities. 

 Simple reference schemes may be abbreviated by enclosing the reference 
mode in parentheses, as in  Figure 3.5(b) , and an object type ’ s reference table 
includes values but no icons. References verbalize as existential sentences — for 
example,  “ There is an Employee who has the  EmployeeNr 101 . ”  Entity instances 
are referenced elsewhere by defi nite descriptions — for example,  “ The Employee 
who has the  EmpNr 101 . ”  

 In a relational database, we might use the preferred reference scheme to 
provide value-based identity or instead use system-generated row-ids. In an object-
oriented implementation, we might use oids (hidden, system-generated object 
identifi ers). Such choices can be added later as annotations to the model. For 
analysis and validation purposes, however, we need to ensure that humans have 
a way to identify objects in their normal communication. It is the responsibility 
of humans (not the system) to enforce constraints on preferred reference types. 
Assuming humans do enforce the reference type constraints, the system may be 
used to enforce the elementary fact type constraints. 

 UML classifi es instances into objects and data values. UML  objects  basically 
correspond to ORM entities, but are assumed to be identifi ed by oids. Although 
UML does not require entities to have a value-based reference scheme, we should 
include value-based reference in any UML class intended to capture all the con-
ceptual semantics. UML  data values  basically correspond to ORM values: They 
are constants (e.g., character strings or numbers) and therefore require no oids 
to establish their identity. Entity types in UML are called  classes , and value types 

 FIGURE 3.5  

   A simple reference scheme in ORM, shown (a) explicitly and (b) implicitly.    

(a) (b)



are basically  data types . Note that  “ object ”  means  “ object instance, ”  not  “ object 
type. ”  A relationship instance in UML is called a  link , and a relationship type is 
called an  association .  

  3.3     ATTRIBUTES 
 Like other ER notations, UML allows relationships to be modeled as attributes. For 
instance, in  Figure 3.6(a)    the  Employee  class has eight attributes. The correspond-
ing ORM diagram is shown in  Figure 3.6(b) . 

 In UML,  attributes are mandatory and single valued by default . So the 
employee number, name, title, gender, and smoking status attributes are all man-
datory. In the ORM model, the unary predicate  smokes  is optional (not everybody 
smokes). UML does not support unary relationships, so it models this instead as 
the Boolean attribute  isSmoker  with possible values  True  or  False . In UML, the 
domain (i.e., type) of any attribute may optionally be displayed after it (preceded 
by a colon). In this example, the domain is displayed only for the  isSmoker  attri-
bute. By default, ORM tools usually take a closed-world approach to unaries, which 
agrees with the  isSmoker  attribute being mandatory. 

 The ORM model also indicates that  Gender  and  Country  are identifi ed by codes 
(rather than names, for example). We could convey some of this detail in the UML 
diagram by appending domain names. For example,  Gender.code  and  Country.

 FIGURE 3.6  

   UML attributes (a) depicted as ORM relationship types (b).    

(a) (b)
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code  could be appended to  gender:  and  birthcountry:  to provide syntactic 
domains. 

 In the ORM model it is  optional  whether we record birth country, social secu-
rity number, or passport number. This is captured in UML by appending   [ 0..1 ]   
to the attribute name (each employee has zero or one birth country, and zero or 
one social security number). This is an example of an  attribute multiplicity con-
straint . The main multiplicity cases are shown in  Table 3.2   . If the multiplicity is 
not declared explicitly, it is assumed to be 1 (exactly one). If desired, we may 
indicate the default multiplicity explicitly by appending   [ 1..1 ]   or   [ 1 ]   to the 
attribute. 

 In the ORM model, the uniqueness constraints on the right-hand roles (includ-
ing the  EmployeeNr  reference scheme shown explicitly in  Figure 3.5(a) ) indicate 
that each employee number, social security number, and passport number refer 
to at most one employee. As mentioned earlier, UML has no standard graphic 
notation for such  “  attribute uniqueness constraints , ”  so we ’ ve added our own 
{P} and {U n } notations for preferred identifi ers and uniqueness. UML 2.0 added 
the option of specifying  {unique}  or  {nonunique}  as part of a multiplicity decla-
ration, but this is only to declare whether instances of collections for multivalued 
attributes or multivalued association roles may include duplicates, so it can ’ t be 
used to specify that instances of single-valued attributes or combinations of such 
attributes are unique for the class. 

 UML has no graphic notation for an inclusive-OR constraint, so the ORM con-
straint that each employee has a social security number or passport number needs 
to be expressed textually in an attached  note , as in  Figure 3.6(a) . Such  textual 
constraints  may be expressed informally, or in some formal language interpretable 
by a tool. In the latter case, the constraint is placed in  braces . 

 In our example, we ’ ve chosen to code the inclusive-OR constraint in SQL 
syntax. Although UML provides OCL for this purpose, it does not mandate its use, 

 Table 3.2      Multiplicities  

 Multiplicity  Abbreviation  Meaning  Note 

 0..1  0 or 1 (at most one) 

 0.. *    *   0 to many (zero or more) 

 1..1  1  exactly 1  Assumed by default 

 1.. *   1 or more (at least one) 

  n .. *    n  or more (at least  n )   n   ≥  0 

  n ..m  at least  n  and at most  m    m   ≥   n   ≥  0 



allowing users to pick their own language (even programming code). This of 
course weakens the portability of the model. Moreover, the readability of the 
constraint is typically poor compared with the ORM verbalization. 

 The ORM fact type  Employee was born in Country  is modeled as a  birth-
country  attribute in the UML class diagram of  Figure 3.6(a) . If we later decide to 
record the population of a country, then we need to introduce  Country  as a class, 
and to clarify the connection between  birthcountry  and  Country , we would 
probably reformulate the  birthcountry  attribute as an association between 
 Employee  and  Country . This is a signifi cant change to our model. Moreover, any 
object-based queries or code that referenced the  birthcountry  attribute would 
also need to be reformulated. ORM avoids such semantic instability by always 
using relationships instead of attributes. 

 Another reason for introducing a  Country  class is to enable a listing of coun-
tries to be stored, identifi ed by their country codes, without requiring all of these 
countries to participate in a fact. To do this in ORM, we simply declare the 
 Country  type to be independent. The object type  Country  may be populated by 
a reference table that contains those country codes of interest (e.g.,  “ AU ”  denotes 
Australia). 

 A typical argument in support of attributes runs like this:  “ Good UML modelers 
would declare  Country  as a class in the fi rst place, anticipating the need to later 
record something about it, or to maintain a reference list; on the other hand, 
features such as the title and gender of a person clearly are things that will never 
have other properties, and therefore are best modeled as attributes. ”  This argu-
ment is fl awed. In general, you can ’ t be sure about what kinds of information you 
might want to record later, or about how important some model feature will 
become. 

 Even in the title and gender case, a complete model should include a relation-
ship type to indicate which titles are restricted to which gender (e.g.,  “ Mrs., ”  
 “ Miss, ”   “ Ms., ”  and  “ Lady ”  apply only to the female sex). In ORM this kind of con-
straint can be captured graphically as a join-subset constraint or textually as a 
constraint in a formal ORM language (e.g.,   If  Person 1  has  a  Title  that  is 
restricted to Gender 1   then  Person 1  is of Gender 1  ). In contrast, attribute 
usage hinders expression of the relevant restriction association (try expressing 
and populating this rule in UML). 

 ORM includes algorithms for dynamically generating ER and UML diagrams as 
attribute views. These algorithms assign different levels of importance to object 
types depending on their current roles and constraints, redisplaying minor fact 
types as attributes of the major object types. Modeling and maintenance are itera-
tive processes. The importance of a feature can change with time as we discover 
more of the global model, and the domain being modeled itself changes. 

 To promote semantic stability, ORM makes no commitment to relative impor-
tance in its base models, instead supporting this dynamically through views. Ele-
mentary facts are the fundamental units of information, are uniformly represented 
as relationships, and how they are grouped into structures is not a conceptual 
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issue. You can have your cake and eat it too by using ORM for analysis; and if you 
want to work with UML class diagrams, you can use your ORM models to derive 
them. 

 One way of modeling this in UML is shown in  Figure 3.7(a)   . Here the informa-
tion about who plays what sport is modeled as the  multivalued attribute  sports. 
The  [ 0.. *  ]  multiplicity constraint on this attribute indicates how many sports may 
be entered here for each employee. The 0 indicates that it is possible that no 
sports might be entered for some employees. UML uses a  null value  for this case, 
just like the relational model. The presence of nulls exposes users to implementa-
tion rather than conceptual issues and adds complexity to the semantics of queries. 
The  “  *  ”  in  [ 0.. *  ]  indicates there is  no upper bound  on the number of sports of a 
single employee. In other words, an employee may play many sports, and we 
don ’ t care how many. If  *  is used without a lower bound, this is taken as an 
abbreviation for 0.. * . 

 An equivalent ORM schema is shown in  Figure 3.7(b) . Here an optional, many:
many fact type is used instead of the multivalued  sports  attribute. As discussed 
in the next section, this approach may also be used in UML using an  m    :    n  
association. 

 To discuss  class instance populations , UML uses  object diagrams . These are 
essentially class diagrams in which each object is shown as a separate instance of 
a class, with data values supplied for its attributes. As a simple example,  Figure 
3.8(a)    includes object diagrams to model three employee instances along with 
their attribute values. The ORM model in  Figure 3.8(b)  displays the same sample 
population, using fact tables to list the fact instances. 

 For simple cases like this, object diagrams are useful. However, they rapidly 
become unwieldy if we wish to display multiple instances for more complex cases. 
In contrast, fact tables scale easily to handle large and complex cases. 

 ORM constraints are easily clarifi ed using sample populations. For example, in 
 Figure 3.8(b)  the absence of employee 101 in the  plays  fact table clearly shows 
that playing sports is optional, and the uniqueness constraints mark out which 
column or column-combination values can occur on at most one row. In the 
 EmployeeName  fact table, the fi rst column values are unique, but the second 
column includes duplicates. In the  plays  table, each column contains duplicates; 

 FIGURE 3.7  

   (a) Multivalued UML sports attribute depicted as (b) ORM  m    :    n  fact type.    

(a) (b)



only the whole rows are unique. Such populations are very useful for checking 
constraints with the subject matter experts. This validation-via-example feature of 
ORM holds for all its constraints, not just mandatory roles and uniqueness, since 
all its constraints are role based or type based, and each role corresponds to a fact 
table column. 

 As a fi nal example of multivalued attributes, suppose that we wish to record 
the nicknames and colors of country fl ags. Let us agree to record at most two 
nicknames for any given fl ag and that nicknames apply to only one fl ag. For 
example,  “ Old Glory ”  and perhaps  “ The Star-Spangled Banner ”  might be used as 
nicknames for the United States ’  fl ag. Flags have at least one color. 

  Figure 3.9(a)    shows one way to model this in UML. The  [ 0..2 ]  indicates that 
each fl ag has at most two (from zero to two) nicknames. The  [ 1.. *  ]  declares 
that a fl ag has one or more colors. An additional constraint is needed to ensure 
that each nickname refers to at most one fl ag. A simple attribute uniqueness con-
straint (e.g., {U l }) is not enough, since the nickname ’ s attribute is set valued. Not 
only must each nickname ’ s set be unique for each fl ag, but each element in each 
set must be unique (the second condition implies the former). This more complex 
constraint is specifi ed informally in an attached note. 

 Here the attribute domains are hidden. Nickname elements would typically 
have a data type domain (e.g.,  String ). If we don ’ t store other information about 
countries or colors, we might choose  String  as the domain for country and color 
as well (although this is subconceptual, because real countries and colors are not 
character strings). However, since we might want to add information about these 
later, it is better to use classes for their domains (e.g.,  Country  and  Color ). If we 
do this, we need to defi ne the classes as well. 

 FIGURE 3.8  

   Populated models in (a) UML and (b) ORM.    

(a) (b)
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  Figure 3.9(b)  shows one way to model this in ORM. For verbalization we iden-
tify each fl ag by its country. Since  country  is an entity type, the reference scheme 
is shown explicitly (reference models may abbreviate reference schemes only 
when the referencing type is a value type). The  ≥ 2 frequency constraint indicates 
that each fl ag has at most two nicknames, and the uniqueness constraint on the 
role of  Nickname  indicates that each nickname refers to at most one fl ag. 

 UML gives us the choice of modeling a feature as an attribute or an association. 
For conceptual analysis and querying, explicit associations usually have many 
advantages over attributes, especially multivalued attributes. This choice helps us 
verbalize, visualize, and populate the associations. It also enables us to express 
various constraints involving the  “ role played by the attribute ”  in standard nota-
tion, rather than resorting to some nonstandard extension. This applies not only 
to simple uniqueness constraints (as discussed earlier) but also to other kinds of 
constraints (frequency, subset, exclusion, etc.) over one or more roles that include 
the role played by the attribute ’ s domain (in the implicit association correspond-
ing to the attribute). 

 For example, if the association  Flag is of Country  is depicted explicitly in 
UML, the constraint that each country has at most one fl ag can be captured by 
adding a multiplicity constraint of  “ 0..1 ”  on the left role of this association. 
Although  Country  and  Color  are naturally conceived as classes,  Nickname  would 
normally be construed as a data type (e.g., a subtype of  String ). Although asso-
ciations in UML may include data types (not just classes), this is somewhat 
awkward; so in UML,  nicknames  might be best left as a multivalued attribute. Of 
course, we could model it cleanly in ORM fi rst. 

 Another reason for favoring associations over attributes is stability. If we ever 
want to talk about a relationship, it is possible in both ORM and UML to make an 
object out of it and simply attach the new details to it. If instead we modeled the 
feature as an attribute, we would need to fi rst replace the attribute by an associa-
tion. For example, consider the association  Employee plays Sport  in  Figure 
3.8(b) . If we need to record a skill level for this play, we can simply objectify this 
association as  play , and attach the fact type  Play has SkillLevel . A similar 

 FIGURE 3.9  

   A fl ag model in (a) UML and (b) ORM.    

(a) (b)



move can be made in UML if the  play  feature has been modeled as an association. 
In  Figure 3.8(a) , however, this feature is modeled as the sports attribute, which 
needs to be replaced by the equivalent association before we can add the new 
details about skill level. The notion of objectifi ed relationship types or association 
classes is covered later. 

 Another problem with multivalued attributes is that queries on them need 
some way to extract the components, and therefore complicate the query process 
for users. As a trivial example, compare queries  Q1  and  Q2 , expressed in ConQuer 
(an ORM query language) with their counterparts in OQL (the Object Query Lan-
guage proposed by the ODMG). Although this example is trivial, the use of mul-
tivalued attributes in more complex structures can make it harder for users to 
express their requirements. 

    (Q1) List each Color that is of Flag  “ USA ” .  
  (Q2) List each Flag that has Color  “ red ” .  
  (Q1a) select x.colors from x in Flag where x.country  =   “ USA ”   
  (Q2a) select x.country from x in Flag where  “ red ”  in x.colors    

 For such reasons, multivalued attributes should normally be avoided in analysis 
models, especially if the attributes are based on classes rather than data types. If 
we avoid multivalued attributes in our conceptual model, we can still use them 
in the actual implementation. Some UML and ORM tools allow schemas to be 
annotated with instructions to override the default actions of whatever mapper is 
used to transform the schema to an implementation. For example, the ORM 
schema in  Figure 3.9(b)  might be prepared for mapping by annotating the roles 
played by  Nickname  and  Color  to map as sets inside the mapped  Flag  structure. 
Such annotations are not a conceptual issue, and can be postponed until 
mapping.  

  3.4     ASSOCIATIONS 
 UML uses Boolean attributes instead of unary relationships, but allows relation-
ships of all other arities. Optionally, each association may be given at most one 
name. Association names normally start with a capital letter.  Binary associations 
are depicted as lines  between classes. Association lines may include elbows to 
assist with layout or when needed (e.g., for ring relationships). Association roles 
appear simply as line ends instead of boxes, but may be given role names. Once 
added, role names may not be suppressed. Verbalization into sentences is possible 
only for infi x binaries, and then only by naming the association with a predicate 
reading (e.g.,  Employs ) and using an optional marker (e.g.,  � ) to denote the 
direction. 

  Figure 3.10    depicts two binary associations in both UML and ORM. On the 
UML diagram, the association names, their directional markers, and some role 
names are displayed. In UML, association names are optional, but role names are 
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mandatory. If a role name is not supplied, the role ’ s name is assumed to be the 
name of its class (e.g.,  Employee ).  If two or more roles are played by the same 
class, the roles must be given different names to distinguish them  (e.g.,  buyer  
or  acquisition ). In the ORM diagram, forward and inverse predicate readings are 
shown; at most, one of these may be omitted. Role names are optional in ORM, 
and their display (in square brackets) may be toggled on or off. 

  Ternary and higher arity associations in UML are depicted as a diamond  
connected by lines to the classes, as shown in  Figure 3.11(a)   . Because many lines 
are used with no reading direction indicator, directional verbalization is ruled out, 
so the diagram can ’ t be used to communicate in terms of sentences. This nonlin-
ear layout also often makes it impractical to conveniently populate associations 
with multiple instances, unless we use role names for column names. Add to this 
the impracticality of displaying multiple populations of attributes, and it is clear 
that class diagrams are of little use for population checks. 

 FIGURE 3.10  

   Binary associations in (a) UML and (b) ORM.    

(a)

(b)

 FIGURE 3.11  

   Ternary associations in (a) UML and (b) ORM.    

(a) (b)



 As discussed earlier, UML does provide object diagrams for instantiation, but 
these are convenient only for populating associations with a  single  instance. 
Adding multiple instances leads to a mess (e.g., Blaha and Premerlani, 1998, p. 
31). Therefore, as noted in the  UML Notation Guide ,  “ the use of object diagrams 
is fairly limited. ”  

 The previous section discussed how UML depicts multiplicity constraints on 
attributes. A similar notation is used for associations, where the relevant multi-
plicities are written next to the relevant roles.  Figure 3.12(a)    adds the relevant 
multiplicity constraints to  Figure 3.10(a) . A  “  *  ”  abbreviates  “ 0.. * , ”  meaning  “ zero 
or more ” ;  “ 1 ”  abbreviates  “ 1..1, ”  meaning  “ exactly one ” ; and  “ 0..1 ”  means  “ at most 
one. ”  If no multiplicity is supplied for an association role,  “  *  ”  is assumed by default 
(unlike attributes, where 1 is the default multiplicity). 

 UML places each multiplicity constraint on the  “ far role, ”  in the direction in 
which the association is read. Therefore, the constraints in this example mean 
that each company employs zero or more employees, each employee is employed 
by exactly one company, each company acquired zero or more companies, and 
each company was acquired by at most one company. 

 The corresponding ORM constraints are depicted in  Figure 3.12(b) . Recall that 
multiplicity covers both cardinality (frequency) and optionality. Here the manda-
tory role constraint indicates that each employee works for at least one company, 
and the uniqueness constraints indicate that each employee works for at most one 
company, and each company was acquired by at most one company. 

 For comparison purposes,  Figure 3.13    depicts the  n    :   1 association  Moon orbits 
Planet  in various notations. The instance diagram in  Figure 3.13(a)  includes a 
sample population of moons (p  =  Phobos, d  =  Deimos, c  =  Callisto) and planets 
(v  =  Venus, m  =  Mars, j  =  Jupiter). For illustration purposes, the ORM diagram in 

 FIGURE 3.12  

   UML multiplicity constraints (a) and equivalent ORM constraints (b).    

(a)

(b)

3.4 Associations  99



100  CHAPTER 3 Data Modeling in UML

 Figure 3.13(e)  also includes the sample object and fact populations. The popula-
tion is signifi cant with respect to multiplicity constraints. Each planet orbits 
exactly one moon, and the same planet may be orbited by zero or more moons. 

 The UML ( Figure 3.13(b) ) and Information Engineering ( Figure 3.13(c) ) 
approaches are similar because both express the constraints in terms of multi-
plicities/cardinalities. In contrast, Barker ER ( Figure 3.13(d) ) and ORM ( Figure 
3.13(e) ) capture some constraints in terms of mandatory/optional roles and other 
constraints in terms of cardinality/uniqueness constraints. As shown later, the 
failure of UML to separate out these two kinds of constraint prevents it from 
graphically capturing various cases it might otherwise have handled. 

 For binary associations, there are 4 possible uniqueness constraint patterns 
( n    :   1, 1   :    n , 1   :   1,  m    :    n ) and 4 possible mandatory role patterns (only the left role 
mandatory, only the right role mandatory, both roles mandatory, both roles 
optional). Therefore, if we restrict ourselves to a maximum frequency of one, 
there are 16 possible multiplicity combinations for binary associations. The 16 
cases are shown in  Figure 3.14   , in both UML and ORM. 

 UML allows multiplicity constraints with whole numbers other than zero or 
one, and also supports multiplicity lists or ranges (e.g.,  “ 1..7, 10 ” ). For such cases, 
ORM uses frequency constraints instead of uniqueness constraints. ORM is more 
expressive in this regard, since it can apply such constraints to arbitrary collec-
tions of roles, not just single roles. 

 For an elementary  n -ary association, each internal uniqueness constraint in 
ORM must span at least  n  -   1 roles. In UML, a multiplicity constraint on a role of 
an  n -ary association effectively constrains the population of the other roles com-
bined. For example,  Figure 3.15(a)    is a UML diagram for a ternary association in 
which both  Room-HourSlot  and  HourSlot-Activity  pairs are unique. For simplic-
ity, reference schemes are omitted. 

 FIGURE 3.13  

   A mandatory:optional,  n    :   1 association in various notations.    

(c)

(b)

(a)

(e)

(d)



 FIGURE 3.14  

   Equivalent constraint patterns in UML and ORM.    
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 An ORM depiction of the same association is shown in  Figure 3.15(b) . The 
left-hand uniqueness constraint indicates that  Room-HourSlot  is unique (i.e., for 
any given room and hour slot, at most one activity is booked). The right-hand 
uniqueness constraint indicates that  HourSlot-Activity  is unique (i.e., for any 
given hour slot and activity, at most one room is booked). An extended version 
of this example was discussed in  Section 1.2 , where the ORM diagram better 
facilitated constraint checking by verbalization and population. 

 Because it covers some  n -ary cases like this, UML ’ s multiplicity constraint nota-
tion is richer than the optionality/cardinality notation of typical ER. However, 
there are many cases with  n -ary associations where the multiplicity notation of 
UML is incapable of capturing even a simple mandatory role constraint, or a 
minimum frequency constraint above 1. In contrast, the mandatory, uniqueness, 
and frequency constraint notation of ORM can capture any possible constraint of 
this nature, on roles or role sequences, on predicates of any arity. So ORM is far 
richer in this regard. 

 For example, suppose we modify our room-booking example to indicate 
that all activities have a  Room-HourSlot  booking and also have unique names as 
well as their identifying codes. The modifi ed example, including reference 
schemes, is shown in  Figure 3.16    in both UML and ORM. Because UML bundles 
both mandatory and uniqueness into a single notion of multiplicity, it cannot 
capture the constraint that each activity has a booking graphically. The best we 
can do is add a note, as shown in  Figure 3.16(a) . This constraint may be expressed 
graphically in ORM using a mandatory role constraint, as shown in  Figure 
3.16(b) . 

 This defi ciency in UML is a direct consequence of choosing to attach minimum 
multiplicity to a role other than the immediate role. For the same reason, UML 
multiplicity constraints are also unable to capture various ORM frequency con-
straints. In general,  given any n-ary (n  >  2) association, if an ORM mandatory 
or frequency constraint applies to at least 1 and at most n  -  2 roles, this cannot 
be captured by a UML multiplicity constraint.  Some examples of such cases are 
shown in  Figure 3.17   . Further discussion on such cases may be found in Halpin 
(2000c). 

 FIGURE 3.15  

   Constraints on a ternary in (a) UML and (b) ORM.    

(a) (b)



 Unlike many ER versions, both UML and ORM allow associations to be objecti-
fi ed as fi rst-class object types,  called association classes  in UML and  objectifi ed 
associations  or  nested object types  in ORM. UML requires the same name to be 
used for the original association and the association class, impeding natural ver-
balization of at least one of these constructs. In contrast, ORM nesting is based 
on linguistic  nominalization  (a verb phrase is objectifi ed by a noun phrase), thus 
allowing both to be verbalized naturally, with different readings for each. 

 Although UML identifi es an association class with its underlying association, it 
displays them separately, connected by a dashed line (see  Figure 3.18(a)   ). Each 
person may write many papers, and each paper is written by at least one person. 
Since authorship is  m    :    n,  the association class  Writing  has a primary reference 
scheme based on the combination of  Person  and  Paper  (e.g., the writing by 
person  “ Norma Jones ”  of paper 33). The optional  period  attribute stores how 
long that person took to write that paper. 

  Figure 3.18(b)  shows an ORM schema for this domain. The objectifi ed asso-
ciation  Writing  is marked independent (by the  ! ) to indicate that a writing object 
may exist, independently of whether we record its period. ORM displays  Period  
as an object type, not an attribute, and includes its unit. 

 UML allows any association (binary and above) to be objectifi ed into a class, 
regardless of its multiplicity constraints. In particular, UML allows objectifi cation 
of  n    :   1 associations, as shown in  Figure 3.19(a)   . While this is allowed in ORM 2.0, 

 FIGURE 3.16  

   (a) UML resorts to a note to capture (b) a mandatory constraint in ORM.    

(a) (b)

 FIGURE 3.17  

   Some ORM constraints that can ’ t be captured by UML multiplicities.    
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it is often a case of poor modeling. For example, given that a moon orbits only 
one planet, an orbital period may be related directly to the moon without includ-
ing the planet. So instead of objectifying, we could model the orbital period in 
UML as an attribute of  Moon , or in ORM as an association between  Moon  and 
 Period . 

 Earlier we saw that UML has no graphic notation to capture ORM external 
uniqueness constraints across roles that are modeled as attributes in UML. There-
fore, we introduced a {U n } notation to append textual constraints to the con-
strained attributes. Simple cases where ORM uses an external uniqueness constraint 
for  coreferencing  can also be modeled in UML using  qualifi ed associations.  Here, 
instead of depicting the relevant ORM roles or object types as attributes, UML uses 
a class, adjacent to a  qualifi er,  through which connection is made to the relevant 
association role. A qualifi er in UML is a set of one or more attributes whose values 
can be used to partition the class, and is depicted as a rectangular box enclosing 
its attributes.  Figure 3.20    is based on an example from the offi cial UML specifi ca-
tion, along with the ORM counterpart. 

 Here each bank account is used by at most one client, and each client may use 
many accounts. In the UML model, the attribute  accountNr  is a qualifi er on the 
association, effectively partitioning each bank into different accounts. In the ORM 
model, an  Account  object type is explicitly introduced and referenced by combin-
ing its bank with its (local) account number. 

 FIGURE 3.18  

   Writing depicted as an objectifi ed association in (a) UML and (b) ORM.    

(a) (b)

 FIGURE 3.19  

   Objectifi cation of an  n    :   1 association in (a) UML and (b) ORM.    

(a) (b)



 The UML notation is less clear and less adaptable. For example, if we now want 
to record something about the account (e.g., its balance) we need to introduce 
an  Account  class, and the connection to  accountNr  is unclear. For a similar 
example, see Fowler (1997, p. 92), where  product  is used with  Order  to qualify 
an order line association; again, this is unfortunate, since we would normally 
introduce a  Product  class to record data about products, and relevant connections 
are then lost. 

 As a complicated example of this defi ciency, see Blaha and Premerlani (1998, 
p. 51), where the semantic connection between  Node  and  nodeName  is lost. The 
problem can be solved in UML by using an association class instead, although this 
is not always natural. The use of qualifi ed associations in UML is hard to motivate, 
but may be partly explained by their ability to capture some external uniqueness 
constraints in the standard notation, rather than relying on nonstandard textual 
notations (such as our {U n } notation). 

 ORM ’ s concept of an external uniqueness constraint that may be applied to a 
set of roles in one or more predicates provides a simple, uniform way to capture 
all of UML ’ s qualifi ed associations and unique attribute combinations, as well as 
other cases not expressible in UML graphical notation (e.g., cases with  m    :    n  
predicates or long join paths). As always, the ORM notation has the further advan-
tage of facilitating validation through verbalization and multiple instantiation.  

  3.5     SET-COMPARISON CONSTRAINTS 
 Set-comparison constraints declare a subset, equality, or exclusion relationship 
between the populations of role sequences. This section compares support for 
these constraints in UML and ORM. 

 As an extension mechanism, UML allows subset constraints to be specifi ed 
between  whole associations  by attaching the constraint label  {subset}  next to a 

 FIGURE 3.20  

   (a) Qualifi ed association in UML, and (b) coreferenced type in ORM.    

(a) (b)
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dashed arrow between the associations. For example, the subset constraint in 
 Figure 3.21(a)    indicates that any person who chairs a committee must be a 
member of that committee.  Figure 3.21(b)  shows the same example in ORM. 

 ORM has a mature formalization, including a rigorous theory of schema con-
sistency, equivalence, and implication. Since formal guidelines for working with 
UML are somewhat immature, care is needed to avoid logical problems. As a 
simple example, consider the modifi ed version of our committee example shown 
in  Figure 3.22(a)   , which comes directly from an earlier version of the UML spec-
ifi cation, with reference schemes added. Do you spot anything confusing about 
the constraints? 

 You probably noticed the problem. The multiplicity constraint of 1 on the 
chair association indicates that each committee must have at least one chair. The 
subset constraint tells us that a chair of a committee must also be a member of 
that committee. Taken together, these constraints imply that each committee must 
have a member. Therefore, we would expect to see a multiplicity constraint of 
1.. *  (one or more) on the  Person  end of the membership association. However, 
we see a constraint of  *  (zero or more) instead, which at best is misleading. An 
equivalent, misleading ORM schema is shown in  Figure 3.22(b) , where the upper 
role played by  Committee  appears optional when in fact it is mandatory. 

 One might argue that it is okay to leave these schemas unchanged, as the 
constraint that each committee includes at least one person is implied by other 
constraints. However, while display options for implied constraints may some-
times be a matter of taste, practical experience has shown that in cases like this 

 FIGURE 3.21  

   A subset constraint in (a) UML and (b) ORM.    

(a) (b)

 FIGURE 3.22  

   (a) A misleading UML diagram, and (b) a misleading ORM diagram.    

(a) (b)



it is better to show implied constraints explicitly, as in  Figure 3.23   , rather than 
expect modelers or domain experts to fi gure them out for themselves. 

 Some ORM tools can detect the misleading nature of constraint patterns like 
that of  Figure 3.22(b)  and ask you to resolve the problem. Human interaction is 
the best policy here, since there is more than one possible mistake; for example, 
is the subset constraint correct leading to  Figure 3.23 , or is the optional role 
correct resulting in  Figure 3.21 ? 

 If a schema in  Figure 3.23  is mapped to a relational database, it generates a 
referential cycle, since the mandatory fact types for  Committee  map to different 
tables (so each committee must appear in both tables). The relational schema is 
shown in  Figure 3.24    (arrows show the foreign key references, one simple and 
one composite, which correspond to the subset constraints). 

 Although referential cycles are sometimes unavoidable, they are awkward to 
implement. In this case, the cycle arose from applying a mandatory role constraint 
to a nonfunctional role. Unless the business requires it, this should be avoided at 
the conceptual level (e.g., by leaving the upper role of  Committee  optional, as in 
 Figure 3.21 ). 

 Since UML does not allow unary relationships, subset constraints between 
ORM unaries need to be captured textually, using a note to specify an equivalent 
constraint between Boolean attributes. For example, the ORM subset constraint 
in  Figure 3.25(b)   , which verbalizes as  Each Patient who smokes is cancer 
prone , may be captured textually in UML by the note in  Figure 3.25(a) . 

 UML 2.0 introduced a  subsets property  to indicate that the population (exten-
sion) of an attribute or association role must be a subset of the population 
of another compatible attribute or association role, respectively. For example, 

 FIGURE 3.23  

   All constraints are now shown explicitly in (a) UML and (b) ORM.    

(a) (b)

 FIGURE 3.24  

   The relational schema mapped from  Figure 3.23 .    
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adorning the  citizen  role in  Figure 3.26(a)    with  {subsets resident}  means that 
all citizens are residents (not necessarily of the same country).  Figure 3.26(b)  
shows the equivalent ORM schema. 

 However, there are still many subset constraint cases in ORM that cannot be 
represented graphically as a subset constraint in UML. For example, the subset 
constraint in  Figure 3.27(b)    that each student with a second given name must 
have a fi rst given name is captured as a note in  Figure 3.27(a)  because the relevant 
ORM fact types are modeled as attributes in UML, and the required subset 
constraint applies between student sets, not name sets. The subset constraint in 
 Figure 3.25(b)  is another example. 

 Moreover, UML does not support subset constraints over arguments that are 
just parts of relationships, such as the subset constraint in  Figure 3.27(b)  that 
students may pass tests in a course only if they enrolled in that course. 
 Figure 3.27(a)  models this constraint in UML by transforming the ternary into a 
binary association class ( Enrollment ) that has a binary association to  Test . 
Although in this situation an association class provides a good way to cater for a 
compound subset constraint, sometimes this nesting transformation leads to a very 
unnatural view of the world. Ideally the modeler should be able to view the world 

 FIGURE 3.25  

   (a) UML note for (b) ORM subset constraint between unaries.    

(a) (b)

 FIGURE 3.26  

   A single role subset constraint in (a) UML and (b) ORM.    

(a) (b)



naturally, while having any optimization transformations that reduce the clarity of 
the conceptual schema performed under the covers. 

 As another constraint example in UML, consider  Figure 3.28   , which is the UML 
version of an OMT diagram used in Blaha and Premerlani (1998, p. 68) to illustrate 
a subset constraint (if a column is a primary key column of a table, it must belong 
to that table). Can you spot any problems with the constraints? 

 One obvious problem is that the 1 on the primary key association should be 
0..1 (not all columns belong to primary keys), as in  Figure 3.29(a)   . If we allow 
tables to have no columns (e.g., the schema is to cater for cases where the table 
is under construction), then the  *  on the defi ne association is fi ne; otherwise it 
should be 1.. * . Assuming that tables and columns are identifi ed by oids or artifi cial 

 FIGURE 3.27  

   (a) UML model capturing (b) some subset constraints in ORM.    

(a)

(b)

 FIGURE 3.28  

   Spot anything wrong?    
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identifi ers, the subset constraint makes sense, but the model is arguably subopti-
mal, since the primary key association and subset constraint could be replaced by 
a Boolean  is-aPKfield  attribute on  Column . 

 From an ORM perspective, heuristics lead us to initially model the situation 
using natural reference schemes as shown in  Figure 3.29(b) . Here  ColumnName  
denotes the local name of the column in the table. We ’ ve simplifi ed reality by 
assuming that tables may be identifi ed just by their name. The external uniqueness 
constraints suggest two natural reference schemes for  Column :  Name  plus  Table , 
or  Position  plus  Table . We chose the fi rst of these as preferred, but could have 
introduced an artifi cial identifi er. The unary predicate indicates whether a column 
is, or is part of, a primary key. If desired, we could derive the association  Column 
is a primary key field of Table  from the path:  Column is in Table  and  
Column is a primary key column  (the subset constraint in the UML model is 
then implied). 

 What is interesting about this example is the difference in modeling approaches. 
Most UML modelers seem to assume that oids will be used as identifi ers in their 
initial modeling, whereas ORM modelers like to expose natural reference schemes 
right from the start and populate their fact types accordingly. These different 
approaches often lead to different solutions. 

 The main thing is to fi rst come up with a solution that is natural and under-
standable to the domain expert, because here is where the most critical phase of 
model validation should take place. Once a correct model has been determined, 
optimization guidelines can be used to enhance it. 

 One other feature of the example is worth mentioning. The UML solution in 
 Figure 3.29(a)  uses the annotation  {ordered, unique}  to indicate that a table 
is composed of an ordered set (i.e., a sequence with no duplicates) of columns. 
UML 2.0 allows the unique property to be specifi ed with or without the ordered 
property. By default,  ordered   =  false and  unique   =  true. So either of the settings 
 {ordered}  or  {ordered, unique}  may be used to indicate an ordered set. That 
is, either no setting or the single setting  {unique}  indicates a set (the default). If 
 {nonunique}  is allowed in this context (this is unclear in the UML specifi cation), 

 FIGURE 3.29  

   A corrected UML schema (a) remodeled in ORM (b).    

(a) (b)



one could specify a bag or sequence with the settings  {nonunique}  or  {ordered, 
nonunique} , respectively. 

 In the ORM community, a debate has been going on for many years regarding 
the best way to deal with constructors for collection types (e.g., set, ordered 
set, bag, sequence) at the conceptual level. Our view is that such constructors 
should not appear in the base conceptual model, thus the use of  Position  in 
 Figure 3.29(b)  to convey column order (the uniqueness of the order is conveyed 
by the uniqueness constraint on  Column has Position ). Keeping fact types 
elementary has so many advantages (e.g., validation, constraint expression, fl exi-
bility, and simplicity) that it seems best to relegate constructors to derived 
views. 

 In ORM, an  equality constraint  between two compatible role sequences is 
shorthand for two subset constraints (one in either direction) and is shown as a 
circled  “  = . ”  Such a constraint indicates that the populations of the role sequences 
must always be equal. If two roles played by an object type are mandatory, then 
an equality constraint between them is implied (and therefore not shown). UML 
has no graphic notation for equality constraints. For whole associations we could 
use two separate subset constraints, but this would be very messy. In general, 
equality constraints in UML may be specifi ed as textual constraints in notes. 

 As a simple example, the equality constraint in  Figure 3.30(b)    indicates that if 
a patient ’ s systolic blood pressure is measured, so is his or her diastolic blood 
pressure (and vice versa). In other words, either both measurements are taken or 
neither. 

 This kind of constraint is fairly common. Less common are equality constraints 
between sequences of two or more roles.  Figure 3.30(a)  models this in UML as a 
textual constraint between two attributes for blood pressure readings. 

 Subset and equality constraints enable various classes of schema transforma-
tions to be stated in their most general form, and ORM ’ s more general support 
for these constraints allows more transformations to be easily visualized. 

 Although UML does not include a graphic notation for a pure exclusion con-
straint, it does include an  exclusive-OR constraint  to indicate that each instance 
of a class plays  exactly one  association role from a specifi ed set of alternatives. 

 FIGURE 3.30  

   A simple equality constraint in (a) UML and (b) ORM.    

(a) (b)
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To indicate the constraint,  {xor}  is placed beside a dashed line connecting the 
relevant associations.  Figure 3.31(a)   , which is based on an example from the UML 
specifi cation, indicates that each account is used by a person or corporation but 
not both. For simplicity, reference schemes and other constraints are omitted. 

 Prior to UML 1.3,  {or}  was used for this constraint, which was misleading 
since  “ or ”  is typically interpreted in the inclusive sense. The equivalent ORM 
model is shown in  Figure 3.31(b) , where the exclusive-OR constraint is simply an 
orthogonal combination of a disjunctive mandatory role (inclusive-OR) constraint 
(circled dot) and an exclusion constraint (circled  “ X ” ). 

 Although the current UML specifi cation describes the exclusive-OR constraint 
as applying to a set of associations, we need to apply the constraint to a set of 
roles (association ends) to avoid ambiguity in cases with multiple common classes. 
Visually this could be shown by attaching the dashed line near the relevant ends 
of the associations, as shown in  Figure 3.32(a)   . Unfortunately, UML attaches no 
signifi cance to such positioning, so the exclusive-OR constraint could be misin-
terpreted to mean that each company must lease or purchase some vehicle rather 
than the intended constraint that each vehicle is either leased or purchased, a 
constraint captured unambiguously by the ORM schema in  Figure 3.32(b) . 

 UML has no symbols for exclusion or inclusive-OR constraints. If UML symbols 
for these constraints are ever considered, then  {x}  and  {or} , respectively, seem 
appropriate; this choice also exposes the composite nature of  {xor} . 

 UML exclusive-OR constraints are intended to apply between single roles. The 
current UML specifi cation seems to imply that these roles must belong to different 

 FIGURE 3.31  

   Exclusive-OR: each account is used by a person or corporation but not both.    

(a) (b)

 FIGURE 3.32  

   The exclusive-OR constraint should apply between association roles.    

(a) (b)



associations. If so, UML cannot use an exclusive-OR constraint between roles of 
a ring fact type (e.g., between the husband and the wife roles of a marriage asso-
ciation). ORM exclusion constraints cover this case, as well as many other cases 
not expressible in UML graphic notation. As a trivial example, consider the differ-
ence between the following two constraints: No person both wrote a book and 
reviewed a book, and no person wrote and reviewed the same book. ORM clearly 
distinguishes these by noting the precise arguments of the constraint (compare 
 Figure 3.33(a)    with  Figure 3.33 (b) ). 

 The pair exclusion constraint in  Figure 3.33(b)  can be expressed in UML by a 
note connected by dotted lines to the two associations, as shown in  Figure 3.33(c) . 
Alternatively, one could attach a textual constraint to either the  Person  class (e.g., 
 “  bookAuthored  and  bookReviewed  are disjoint sets ” ) or the  Book  class (e.g.  “  author  
and  reviewer  are disjoint sets ” ), but the choice of class would be arbitrary. 

 UML has no graphic notation for exclusion between attributes, or between 
attributes and association roles. An exclusion constraint in such cases may often 
be captured as a textual constraint. For example, in  Figure 3.34(a)   , the exclusion 
constraint that each employee is either tenured or is contracted until some date 
may be captured by the textual constraint shown. 

 Here the constraint is specifi ed in OCL. The expressions  - >  isEmpty()  
and  - >  notEmpty()  are equivalent to  “ is null ”  and  “ is not null ”  in SQL.  Figure 
3.34(b)  depicts the exclusion constraint graphically in ORM. There are other ways 
to model this case in UML (e.g., using subtypes) that offer more chances to capture 
the constraints graphically.  

  3.6     SUBTYPING 
 Both UML and ORM support  subtyping,  using substitutability ( “ is-a ” ) semantics, 
where each instance of a subtype is also an instance of its supertype(s). For 
example, declaring  Woman  to be a subtype of  Person  entails that each woman is a 
person, and therefore  Woman  inherits all the properties of  Person . Given two object 
types,  A  and  B,  we say that  A  is a  subtype  of  B  if, for each database state, the 

 FIGURE 3.33  

   (a) Nobody wrote and reviewed a book; (b) nobody wrote and reviewed the same book; 
(c) UML version of (b).    

(a) (b) (c)
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population of  A  is included in the population of  B.  For data modeling, the only 
subtypes of interest are  proper  subtypes. We say that  A  is a proper subtype of  B  
if and only if  A  is a subtype of  B,  and there is a possible state where the popula-
tion of  B  includes an instance not in  A.  From now on, we ’ ll use  “ subtype ”  as 
shorthand for  “ proper subtype. ”  

 In both UML and ORM,  specialization  is the process of introducing subtypes, 
and  generalization  is the inverse procedure of introducing a supertype. Both UML 
and ORM allow single  inheritance,  as well as multiple inheritance (where a 
subtype has more than one direct supertype). For example,  AsianWoman  may be 
a subtype of both  AsianPerson  and  Woman . In UML,  “ subclass ”  and  “ superclass ”  
are synonyms of  “ subtype ”  and  “ supertype, ”  respectively, and generalization may 
also be applied to things other than classes (e.g., interfaces, use case actors, and 
packages). This section restricts its attention to subtyping between object types 
(classes). 

 In ORM, a subtype inherits all the roles of its supertypes. In UML, a subclass 
inherits all the attributes, associations, and operations/methods of its supertype(s). 
An operation implements a service and has a signature (name and formal 
parameters) and visibility, but may be realized in different ways. A method is an 
implementation of an operation, and therefore includes both a signature 
and a body detailing an executable algorithm to perform the operation. In 
an inheritance graph, there may be many methods for the same operation ( poly-
morphism ), and scoping rules are used to determine which method is actually 
used for a given class. If a subclass has a method with the same signature 
as a method of one of its supertypes, this is used instead for that subclass ( over-
riding ). For example, if  Rectangle  and  Triangle  are subclasses of  Shape , all 
three classes may have different methods for  display() . This section focuses on 
data modeling, not behavior modeling, and covering inheritance of static proper-
ties (attributes and associations) but ignoring inheritance of operations or 
methods. 

 FIGURE 3.34  

   An exclusion constraint modeled in (a) UML and (b) ORM.    

(a) (b)



 Subtypes are used in data modeling to assert typing constraints, encourage 
reuse of model components, and show a classifi cation scheme (taxonomy). In this 
context, typing constraints ensure that subtype-specifi c roles are played only by 
the relevant subtype. 

 Since a subtype inherits the properties of its supertype(s), only its specifi c roles 
need to be declared when it is introduced. Apart from reducing code duplication, 
the more generic supertypes are likely to fi nd reuse in other applications. At the 
coding level, inheritance of operations/methods augments the reuse gained by 
inheritance of attributes and association roles. Using subtypes to show taxonomy 
is of limited use, since taxonomy is often more effi ciently captured by predicates. 
For example, the fact type  Person is of Gender {male, female}  implicitly 
provides the taxonomy for the subtypes MalePerson and FemalePerson. 

 Both UML and ORM display subtyping using  directed acyclic graphs.  A directed 
graph is a graph of nodes with directed connections, and  “ acyclic ”  means that 
there are no cycles (a consequence of proper subtyping).  Figure 3.35    shows a 
subtype pattern in UML and ORM. An arrow from one node to another shows that 
the fi rst is a subtype of the second. UML uses a thin arrow shaft with an open 
arrowhead, while ORM uses a solid shaft and arrowhead. As an alternative nota-
tion, UML also allows separate shafts to merge into one, with one arrowhead 
acting for all (e.g.,  E  and  F  are subtypes of  C  ). Since subtypehood is transitive, 
indirect connections are omitted (e.g., since  E  is a subtype of  C,  and  C  is a subtype 
of  A , it follows that  E  is a subtype of  A , so there is no need to display this implied 
connection). 

 UML includes four predefi ned constraints to indicate whether subtypes are 
exclusive or exhaustive. If subtype connections are shown with separate arrow-
heads, the constraints are placed in braces next to a dotted line connecting the 
subtype links, as in  Figure 3.35(a)  (top). We assume that this line may include 
elbows, as shown for the disjoint constraint, to enable such cases to be specifi ed. 

 FIGURE 3.35  

   Subtyping displayed by directed acyclic graphs in (a) UML and (b) ORM.    

(a) (b)
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If the subtype connections are shared, the constraints are placed near the shared 
arrowhead, as in  Figure 3.35(a)  (bottom). The  {overlapping}  and  {disjoint}  
options, respectively, indicate that the subtypes overlap or are mutually exclusive. 
Originally  {complete}  simply meant that all subtypes were shown, but this was 
redefi ned to mean exhaustive (i.e., the supertype equals the union of its subtypes). 
The  {incomplete}  option means that the supertype is more than the union 
of its subtypes. The default is  {disjoint, incomplete} . Users may add other 
keywords. 

 By default, ORM subtypes may overlap, and subtypes need not collectively 
exhaust their supertype. ORM allows graphic constraints to indicate that subtypes 
are mutually exclusive (a circled  “ X ”  connected to the relevant subtype links), 
collectively exhaustive (a circled dot), or both (a circled, crossed dot), as shown 
in  Figure 3.35(b) . ORM ’ s approach is that exclusion and totality constraints are 
enforced on populations, not types. An overlapping  “ constraint ”  does not mean 
that the populations must overlap, just that they may overlap. Therefore, from an 
ORM viewpoint, this is not really a constraint at all, so there is no need to depict 
it. In ORM, subtype exclusion and totality constraints are often implied by other 
constraints in conjunction with formal subtype defi nitions. 

 For any subtype graph, the top supertype is called the  root,  and the bottom 
subtypes (those with no descendants) are called  leaves.  In UML this can be made 
explicit by adding  {root}  or  {leaf}  below the relevant class name. If we know 
the whole subtype graph is shown, there is little point in doing this, but if we 
were to display only part of a subtype graph, this notation makes it clear whether 
or not the local top and bottom nodes are also like that in the global schema. For 
example, from  Figure 3.36    we know that globally  Party  has no supertype and 
that  MalePerson  and  FemalePerson  have no subtypes. Since  Party  is not marked 
as a leaf node, it may have other subtypes not shown here. 

 UML also allows an ellipsis  “  …  ”  in place of a subclass to indicate that at least 
one subclass of the parent exists in the global schema, but its display is suppressed 
on the diagram. Currently ORM does not include a root/leaf notation or an ellipsis 

 FIGURE 3.36  

    Party  may have other subtypes not shown here.    



notation for subtypes. Such notations could be a useful extension to ORM 
diagrams. 

 UML distinguishes between  abstract  and  concrete  classes. An abstract class 
cannot have any direct instances and is shown by writing its name in italics or by 
adding  {abstract}  below the class name. Abstract classes are realized only 
through their descendants. Concrete classes may be directly instantiated. This 
distinction seems to have little relevance at the conceptual level and is not 
depicted explicitly in ORM. For code design, however, the distinction is important 
(e.g., abstract classes provide one way of declaring interfaces, and in C +  +  abstract 
operations correspond to pure virtual operations, while leaf operations map 
to nonvirtual operations). For further discussion of this topic, see Fowler (1997, 
pp. 85 – 88) and Booch et   al. (1999, pp. 125 – 126). 

 Like other ER notations, UML provides only weak support for defi ning sub-
types. A  discriminator  label may be placed near a subtype arrow to indicate the 
basis for the classifi cation. For example,  Figure 3.37    includes a  “ gender ”  discrim-
inator to specialize  Patient  into  MalePatient  and  FemalePatient . 

 The UML specifi cation says that the discriminator names  “ a partition of the 
subtypes of the superclass. ”  In formal work, the term  partition  usually implies 
the division is both exclusive and exhaustive. In UML, the use of a discriminator 
does not imply that the subtypes are exhaustive or complete, but at least some 
authors argue that they must be exclusive (Fowler 1997, p. 78). If that is the case, 
there does not appear to be any way in UML of declaring a discriminator for a set 
of overlapping subtypes. 

 The same discriminator name may be repeated for multiple subclass arrows to 
show that each subclass belongs to the same classifi cation scheme. This repetition 
can be avoided by merging the arrow shafts to end in a single arrowhead, as in 
 Figure 3.37 . 

 FIGURE 3.37  

    Gender  is used as a discriminator to partition  Patient .    

3.6 Subtyping  117



118  CHAPTER 3 Data Modeling in UML

 In  Figure 3.37 , the  gender  attribute of  Patient  is used as a discriminator. This 
attribute is based on the enumerated type  Gendercode , which is defi ned using the 
stereotype   « enumeration »  , and listing its values as attributes. The notes at 
the bottom are needed to ensure that instances populating these subtypes have the 
correct gender. For example, without these notes there is nothing to stop us popu-
lating  MalePatient  with patients that have the value  f  for their gender code. 

 ORM overcomes this problem by requiring that if a taxonomy is captured both 
by subtyping and a classifying fact type, these two representations must be syn-
chronized, either by deriving the subtypes from  formal subtype defi nitions  or 
by deriving the classifi cation fact type from asserted subtypes. For example, the 
populated ORM schema in  Figure 3.38    adopts the fi rst approach. The ORM parti-
tion (exclusion and totality) constraint is now implied by the combination of the 
subtype defi nitions and the three constraints on the fact type  Patient  is of 
 Gender . 

 While the subtype defi nitions in  Figure 3.38  are trivial, in practice more com-
plicated subtype defi nitions are sometimes required. As a basic example, consider 
a schema with the fact types  City is in Country  and  City has Population , 
and now defi ne  LargeUScity  as follows:   Each  LargeUScity  is a  City  that  
is in Country  “ US ”   and  has Population  >  1000000 . There does not seem 
to be any convenient way of doing this in UML, at least not with discriminators. 
We could perhaps add a derived Boolean  isLarge  attribute, with an associated 
derivation rule in OCL, and then add a fi nal subtype defi nition in OCL, but this 
would be less readable than the ORM defi nition just given.  

  3.7     OTHER CONSTRAINTS AND DERIVATION RULES 
 A  value constraint  restricts the population of a value type to a fi nite set of values 
specifi ed either in full ( enumeration ), by start and end values ( range ), or some 

 FIGURE 3.38  

   With formal subtype defi nitions, subtype constraints are implied.    



combination of both ( mixture ). The values themselves are primitive data values, 
typically character strings or numbers. 

 In UML, enumeration types may be modeled as classes, stereotyped as enu-
merations, with their values listed (somewhat uninmitively) as attributes. Ranges 
and mixtures may be specifi ed by declaring a textual constraint in braces, using 
any formal or informal language. For example, see  Figure 3.39(a)   . 

  Figure 3.39(b)  depicts the same value constraints in ORM. Value constraints 
other than enumeration, range, and mixture may be declared in UML or ORM as 
textual constraints — for example,  {committeeSize must be an odd number} . 
For further UML examples, see Rumbaugh et   al. (1999, pp. 236, 268). 

 A ring fact type has at least two roles played by the same object type (either 
directly or indirectly via a supertype). A  ring constraint  applies a logical restric-
tion on the role pair. For example, the association  Person is a parent of 
Person  might be declared acyclic and intransitive. 

 UML does not provide ring constraints built in, so the modeler needs to specify 
these as a textual constraint in some chosen language or as a note. In UML, if a 
textual constraint applies to just one model element (e.g., an association), it may 
be added in braces next to that element, as in  Figure 3.40(a)   . Here the  {acyclic, 
intransitive}  notation is nonstandard but is assumed to be user supported. 

 It is the responsibility of the modeling tool to ensure that the constraint 
is linked internally to the relevant model element and to interpret any textual 
constraint expressions. If the tool cannot interpret the constraint, it should 

 FIGURE 3.39  

   Data value restrictions declared as enumerations or textual constraints: (a) using any formal 
or informal language, and (b) in ORM.    

(a) (b)

 FIGURE 3.40  

   Ring constraints expressed in (a) UML, (b) UML, and (c) ORM.    

(a) (b) (c)
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be placed inside a note (dog-eared rectangle), without braces, showing that it is 
merely a comment, and explicitly linked to the relevant model element(s), as 
shown in  Figure 3.40(b) .  Figure 3.40(c)  displays the ring constraints graphically 
in ORM. 

 A  join constraint  applies to one or more role sequences, at least one of which 
is projected from a path from one predicate through an object type to another 
predicate. The act of passing from one role through an object type to another role 
invokes a conceptual join, since the same object instance is asserted to play both 
the roles. Although join constraints arise frequently in real applications, UML has 
no graphic symbol for them. To declare them on a UML diagram, write a constraint 
or comment in a note attached to the model elements involved. 

 For example,  Figure 3.41    links a comment to three associations. This example 
is based on a room-scheduling application at a university with built-in facilities in 
various lecture and tutorial rooms. Example facility codes are PA  =  personal 
address system, DP  =  data projection facility, and INT  =  Internet access. 

 ORM provides deep support for join constraints. Role sequences featuring as 
arguments in set comparison constraints may arise from projections over a join 
path. For example, in  Figure 3.42   , the subset constraint runs from the  Room-
Facility  role pair projected from the path:  Room at  an  HourSlot is booked 
for  an  Activity  that  requires  a  Facility . This path includes a conceptual 
join on  Activity . The constraint may be formally verbalized as:   If a  Room at 
 an  HourSlot is booked for  an  Activity  that  requires  a  Facility  then 
that  Room provides  that  Facility .  Figure 3.42  includes a satisfying popula-
tion for the three fact types. This again illustrates how ORM facilitates validation 
constraints via sample populations. The UML associations in  Figure 3.41  are not 
so easily populated on the diagram. 

 FIGURE 3.41  

   Join constraint specifi ed as a comment in UML.    



 In UML, the term  aggregation  is used to describe a  whole/part relationship.  
For example, a team of people is an aggregate of its members, so this membership 
may be modeled as an aggregation association between  Team  and  Person . Several 
different forms of aggregation might be distinguished in real-world cases. For 
example, Odell and Bock (Odell 1998, pp. 137 – 165) discuss six varieties of aggre-
gation (component-integral, material-object, portion-object, place-area, member-
bunch, and member-partnership), and Henderson-Sellers (Barbier et   al., 2003) also 
distinguishes several kinds of aggregation. 

 UML 2.0 associations are classifi ed into one of three kinds: ordinary association 
(no aggregation), shared (or simple) aggregation, or composite (or strong) aggre-
gation. Therefore, UML recognizes only two varieties of aggregation: shared and 
composite. Some versions of ER include an aggregation symbol (typically only one 
kind). ORM and popular ER approaches currently include no special symbols for 
aggregation. 

 These different stances with respect to aggregation are somewhat reminiscent 
of the different modeling positions with respect to null values. Although over 
20 kinds of null have been distinguished in the literature, the relational 
model recognizes only 1 kind of null. Codd ’ s version 2.0 of the relational model 
includes 2 kinds of null, and ORM argues that nulls have no place in base concep-
tual models (because all its asserted facts are atomic). But let ’ s return to the topic 
at hand. 

  Shared aggregation  is denoted in UML as a binary association, with a  hollow 
diamond  at the  “ whole ”  or  “ aggregate ”  end of the association.  Composition  
( composite aggregation ) is depicted with a  fi lled diamond.  For example,  Figure 

 FIGURE 3.42  

   A join-subset constraint in ORM.    

3.7 Other Constraints and Derivation Rules  121



122  CHAPTER 3 Data Modeling in UML

3.43(a)    depicts a composition association from  Club  to  Team  and a shared 
aggregation association from  Team  to  Person . 

 In ORM, which currently has no special notation for aggregation, this situation 
would be modeled as shown in  Figure 3.43(b) . Does  Figure 3.43(a)  convey any 
extra semantics that are not captured in  Figure 3.43(b) ? At the conceptual level, 
it is doubtful whether there are any additional useful semantics. At the implemen-
tation level, however, there are additional semantics. Let ’ s discuss this in more 
detail. 

 The UML specifi cation declares that  “ both kinds of aggregation defi ne a transi-
tive  .  .  .  relationship. ”  The use of  “ transitive ”  here is somewhat misleading, since 
it refers to indirect aggregation associations rather than base aggregation associa-
tions. For example, if  Club  is an aggregate of  Team , and  Team  is an aggregate of 
 Person , it follows that  Club  is an aggregate of  Person . 

 However, if we wanted to discuss this result, it should be exposed as a  derived 
association.  In UML, derived associations are indicated by prefi xing their names 
with a  slash   “ / ” . The  derivation rule  can be expressed as a constraint, either 
connected to the association by a dependency arrow or simply placed beside the 
association as in  Figure 3.44(a)   . 

 In ORM, derived fact types are marked with a trailing asterisk, with their 
derivation rules specifi ed in an ORM textual language (see  Figure 3.44(b) ). In many 
cases, derivation rules may also be diagrammed as a join-subset or join-equality 
constraint. As this example illustrates, the derived transitivity of aggregations can 
be captured in ORM without needing a special notation for aggregation. 

 The UML specifi cation declares that  “ both kinds of aggregation defi ne a transi-
tive, antisymmetric relationship (i.e., the instances form a directed, noncyclic 
graph). ”  Recall that a relation  R  is antisymmetric if and only if, for all  x  and y, if 
 x  is not equal to  y , then  xRy  implies that not  yRx.  It would have been better to 
simply state that paths of aggregations must be acyclic. 

 At any rate, this rule is designed to stop errors such as the one shown in  Figure 
3.45   . If a person is part of a team, and a team is part of a club, it doesn ’ t make 
sense to say that a club is part of a person. Since ORM does not specify whether 
an association is an aggregation, illegal diagrams like this can ’ t occur in ORM. 

 FIGURE 3.43  

   Composition (composite aggregation) and shared aggregation in (a) UML and (b) ORM.    

(a)

(b)



 Of course, it is possible for an ORM modeler to make a silly mistake by adding 
an association such as  Club is part of Person , where  “ is part of ”  is informally 
understood in the aggregation sense, and this would not be formally detectable. 
But avoidance of such a bizarre occurrence doesn ’ t seem to be a compelling 
reason to add aggregation to ORM ’ s formal notation. There are plenty of associa-
tions between  Club  and  Person  that do make sense, and plenty that don ’ t. In some 
cases, however, it is important to assert constraints such as acyclicity, and this is 
handled in ORM by ring constraints. That said, there have been some recent pro-
posals to add formal semantics for various forms of the part-of relationship to 
ORM. For example, Keet (2006) proposes adding several different mereological 
part-of predicates as well as four kinds of meronymic relations. 

 Composition does add some important semantics to shared aggregation. To 
begin with, it requires that each part belongs to at most one whole at a time. In 
ORM, this is captured by adding a uniqueness constraint to the role played by the 
part (e.g., see the role played by  Team  in  Figure 3.43(b) ). In UML, the multiplicity 
at the whole end of the association must be 1 or 0..1. If the multiplicity is 1, as 

 FIGURE 3.44  

   A derived aggregation in (a) UML and (b) ORM.    

(a)

(b)

 FIGURE 3.45  

   Illegal UML model. Aggregations should not form a cycle.    
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in  Figure 3.43(a) , the role played by the part is both unique and mandatory, as in 
 Figure 3.43(b) . 

 As an example where the multiplicity is 0..1 (i.e., where a part optionally 
belongs to a whole), consider the ring fact type of  Figure 3.46   ,  Package contains 
Package . Here  “ contains ”  is used in the sense of  “ directly contains. ”  The UML 
specifi cation notes that  “ composition instances form a strict tree (or rather a 
forest). ”  This strengthening from directed acyclic graph to tree is an immediate 
consequence of the functional nature of the association (each part belongs to at 
most one whole), and therefore ORM requires no additional notation for this. In 
this example, the ORM schema explicitly includes an acyclic constraint. This 
direct containment association is intransitive by implication (acyclicity implies 
irrefl exivity, and any functional, irrefl exive association is intransitive). 

 UML allows some alternative notations for aggregation. If a class is an aggregate 
of more than one class, the association lines may be shown joined to a single 
diamond, as in  Figure 3.47(a)   . For composition, the part classes may be shown 
nested inside the whole by using role names, and multiplicities of components 
may be shown in the top right corners, as in  Figure 3.47(b) . 

 Some authors list kinds of associations that are easily confused with aggregation 
but should not be modeled as such (e.g., topological inclusion, classifi cation inclu-
sion, attribution, attachment, and ownership (see Martin  &  Odell, 1998; Odell, 
1998). 

 FIGURE 3.46  

   Direct containment modeled in (a) UML and (b) ORM.    

(a) (b)

 FIGURE 3.47  

   Alternative UML notations for aggregation.    

(a) (b)



 For example,  Finger belongs to Hand  is an aggregation, but  Ring belongs 
to Finger  is not. There is some disagreement among authors about what should 
be included on this list. For example, some treat attribution as a special case of 
aggregation — namely, a composition between a class and the classes of its attri-
butes (Rumbaugh et   al., 1999). 

 For conceptual modeling purposes, agonizing over such distinctions might not 
be worth the trouble. Obviously there are different stances that you could take 
about how, if at all, aggregation should be included in the conceptual modeling 
phase. You can decide what is best for you. The literature summary at the end of 
the chapter provides further discussion on this issue. 

 Let ’ s now look at the notion of  initial values.  The basic syntax of an attribute 
specifi cation in UML includes six components as shown. Square and curly brack-
ets are used literally here as delimiters (not as Backus – Naur Form  [ BNF ]  symbols 
to indicate optional components). 

    visibililty name multiplicity type ression initial valu[ ]: - -exp = ee property string{ }      

 If an attribute is displayed at all, its name is the only thing that must be shown. 
The visibility marker ( + , #,  − , and ~ denote public, protected, private, and package, 
respectively) is an implementation concern and will be ignored in our discussion. 
Multiplicity has been discussed earlier and is specifi ed for attributes in square 
brackets (e.g.,  [ 1.. *  ] ). 

 For attributes, the default multiplicity is 1 — that is,  [ 1..1 ] . The type expression 
indicates the domain on which the attribute is based (e.g.,  String ,  Date ). Initial 
value and property string declarations may be optionally declared. Property strings 
may be used to specify aspects such as changeability. 

 An attribute may be assigned an initial value by including the value in the attri-
bute declaration after  “  =  ”  (e.g.,  diskSize   =  9;  country   =  USA;  priority   =  normal). 
The language in which the value is written is an implementation concern. 

 In  Figure 3.48(a)   , the  nrColors  attribute is based on a simple domain (e.g., 
 PositiveInteger ) and has been given an initial value of 1. The resolution attribute 
is based on a composite domain (e.g.,  PixelArea ) and has been assigned an initial 
value of (640,480). 

 Unless overridden by another initialization procedure (e.g., a constructor), 
declared initial values are assigned when an object of that class is created. This is 
similar to the database notion of  default values,  where during the insertion of a 
tuple an attribute may be assigned a predeclared default value if a value is not 
supplied by the user. 

 However, UML uses the term  default value  in other contexts only (e.g., tem-
plate and operation parameters), and some authors claim that default values are 
not part of UML models (Rumbaugh et   al., 1999, p. 249). 

 The SQL standard treats  null  as a special instance of a default value, and this 
is supported in UML, since the specifi cation notes that  “ a multiplicity of 0..1 pro-
vides for the possibility of null values: the absence of a value. ”  So an optional 
attribute in UML can be used to model a feature that will appear as a column with 
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the default value of null, when mapped to a relational database. Presumably 
a multiplicity of  [ 0.. *  ]  or  [ 0.. n  ]  for any  n  >   1 also allows nulls for multivalued 
attributes, even though an empty collection could be used instead. 

 Currently, ORM has no explicit support for initial/default values. However, 
UML initial values and relational default values could be supported by allowing 
default values to be specifi ed for ORM roles. At the meta-level, we add the fact 
type  Role has default- Value . At the external level, instances of this could be 
specifi ed on a predicate properties sheet, or entered on the diagram (e.g., by 
attaching an annotation such as  d:  value   to the role, and preferably allowing 
this display to be toggled on/off). For example, the role played by  NrColors  in 
 Figure 3.48(b)  is allocated a default value of  1 . When mapped to SQL, this should 
add the declaration  default 1  to the column defi nition for  ClipArt.nrColors . 

 To support the composite initial values allowed in UML, composite default 
values could be specifi ed for ORM roles played by compositely identifi ed object 
types (coreferenced or nested). When coreferencing involves at least two roles 
played by the same or compatible object types, an order is needed to disambigu-
ate the meaning of the composite value. For example, in  Figure 3.48(b)  the role 
played by  Resolution  is assigned a default composite value of (640,480). To 
ensure that the 640 applies to the horizontal pixel count and the 480 applies to 
the vertical pixel count (rather than the other way around), this ordering needs 
to be applied to the defi ning roles of the external uniqueness constraint. ORM 
tools often determine this ordering from the order in which the roles are selected 
when entering this constraint. 

 If all or most roles played by an object type have the same default, it may be 
useful to allow a default value to be specifi ed for the object type itself. This could 
be supported in ORM by adding the meta fact type  ObjectType has default- 
Value  and providing some notation for instantiating it (e.g., by an entry in an Object 
Type Properties sheet or by annotating the object type shape with  d:  value  ). This 
corresponds to the default clause permitted in a create domain statement in the 
SQL standard. Note that an object type default can always be expressed instead by 
role-based defaults, but not conversely (since the default may vary with the role). 

 FIGURE 3.48  

   Attributes assigned initial values in (a) UML and (b) ORM extension.    

(a) (b)



 Specifi cation of default values does not cover all the cases that can arise with 
regard to default information in general. A proposal for providing greater support 
for default information in ORM is discussed in Halpin and Vermeir (1997), but this 
goes beyond the built-in support for defaults in either UML or SQL. Default infor-
mation can be modeled informally by using a predicate to convey this intention 
to a human. For example, we might specify the default medium (e.g., CD, DVD) 
preferences for delivery of soft products (e.g., music, video, software) using the 
1   :    n  fact type  Medium is default preference for SoftProduct . 

 In cases like this where default values overlap with actual values, we may also 
wish to classify instances of relevant fact types as actual or default (e.g.,  Shipment 
used Medium ). For the typical case where the uniqueness constraint on the fact 
type spans  n   −  1 roles, this can be achieved by including fact types to indicate 
the default status (e.g.,  Shipment was based on Choice {actual, default} ), 
resulting in extra columns in the database to record the status. While this approach 
is generic, it requires the modeler and user to take full responsibility for distin-
guishing between actual and default values. 

 In UML, restrictions may be placed on the  changeability  of attributes, as well 
as the roles (ends) of binary associations. It is unclear whether changeability may 
be applied to the ends of  n -ary associations. UML 2.0 recognizes the following 
four values for changeability, only one of which can apply at a given time:

    ■      unrestricted  
   ■      readOnly  
   ■      addOnly  
   ■      removeOnly    

 The default changeability is unrestricted (any change is permitted). The value 
unrestricted was formerly called  “ changeable, ”  which itself was formerly called 
 “ none. ”  The other settings may be explicitly declared in braces. For an attribute, 
the braces are placed at the end of the attribute declaration. For an association, 
the braces are placed at the opposite end of the association from the object 
instance to which the constraint applies. 

 Recall that in UML a  “ link ”  is an instance of an association. The value  readOnly  
(formerly called  “ frozen ” ) means that once an attribute value or link has been 
inserted, it cannot be updated or deleted, and no additional values/links may be 
added to the attribute/association (for the constrained object instance). 

 The value  addOnly  means that although the original value/link cannot be 
deleted or updated, other values/links may be added to the attribute/association 
(for the constrained object instance). Clearly, addOnly is only meaningful if the 
maximum multiplicity of the attribute/association role exceeds its minimum mul-
tiplicity. The value  removeOnly  means that the only change permitted for an 
existing attribute value or link is to delete it. 

 As a simple if unrealistic example, see  Figure 3.49   . Here employee number, 
birth date, and country of birth are readOnly for  Employee , so they cannot be 
changed from their original value. For instance, if we assign an employee the 
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employee number  “ 007, ”  and enter his or her birth date as  “ 02/15/1946 ”  and birth 
country as  “ Australia, ”  then we can never make any changes or additions to 
that. 

 Notice also that for a given employee, the set of languages and the set of coun-
tries visited are addOnly. Suppose that when facts about employee 007 are initially 
entered, we set his or her languages to  {Latin, Japanese}  and countries visited 
to  {Japan} . As long as employee 007 is referenced in the database, these facts 
may never be deleted. However, we may add to these (e.g., later we might add 
the facts that employee 007 speaks German and visited India). 

 By default, the other properties are changeable. For example, employee 007 
might legally change his name from  Terry Hagar  to  Hari Seldon , and the coun-
tries he wants to visit might change over time from  {Ireland, USA}  to  {Greece, 
Ireland} . 

 Some traditional data modeling approaches also note some restrictions 
on changeability. The Barker ER notation includes a diamond to mark a relation-
ship as nontransferable (once an instance of an entity type plays a role with an 
object, it cannot ever play this role with another object). Although changeability 
restrictions can be useful, in practice their application in database settings is 
limited. 

 One reason for this is that we almost always want to allow facts entered into 
a database to be changed. With snapshot data, this is the norm, but even with 
historical data changes can occur. The most common occurrence of this is to allow 
for corrections of mistakes, which might be because we were told the wrong 
information originally or because we carelessly made a misspelling or typo when 
entering the data. 

 In exceptional cases, we might require that mistakes of a certain kind be 
retained in the database (e.g., for auditing purposes) but be corrected by entering 
later facts to compensate for the error. This kind of approach makes sense for 
bank transactions (see  Figure 3.50   ). For example, if a deposit transaction for $100 
was mistakenly entered as $1000, the record of this error is kept, but once the 
error is detected it can be compensated for by a bank withdrawal of $900. As a 
minor point, the balance is both derived and stored, and its readOnly status is 

 FIGURE 3.49  

   Changeability of attributes and association roles.    



typically implied by the readOnly settings on the base attributes, together with a 
rule for deriving balance. 

 Some authors allow changeability to be specifi ed for a class, as an abbreviation 
for declaring this for all its attributes and opposite association ends (Booch et   al., 
1999, p. 184). For instance, all the  {readOnly}  constraints in  Figure 3.50  might 
be replaced by a single  {readOnly}  constraint below the name  Transaction . 
While this notation is neater, it would be rarely used. Even in this example, we 
would probably want to allow for the possibility of adding nonfrozen information 
later (e.g., a transaction might be audited by zero or more auditors). 

 Changeability settings are useful in the design of program code. Although 
changeability settings are not currently supported in ORM, which focuses on static 
constraints, they are being considered in extensions to support dynamic con-
straints. In the wider picture, being able to completely model security issues 
(e.g., who has the authority to change what) would provide extra value. 

 As discussed earlier, UML allows  {ordered}  and  {unique}  properties to be 
specifi ed for multivalued attributes and association ends. Since  {unique}  is true 
by default, the use of  {ordered}  alone indicates an ordered set (a sequence with 
no duplicates). For example,  Figure 3.51(a)    shows one way of modeling author-
ship of papers in UML. Each paper has a list or sequence of authors, each of whom 
may appear at most once on the list. 

 FIGURE 3.50  

   All attributes of  Transaction  are read only.    

 FIGURE 3.51  

   An ordered set modeled in (a) UML and (b) ORM.    

(a) (b)

3.7 Other Constraints and Derivation Rules  129



130  CHAPTER 3 Data Modeling in UML

 This may be modeled in fl at ORM by introducing a  Position  object type to 
store the sequential position of any author on the list, as shown in  Figure 3.51(b) . 
The uniqueness constraint on the fi rst two roles declares that for each paper, an 
author occupies at most one position; the constraint covering the fi rst and third 
roles indicates that for any paper, each position is occupied by at most one author. 
The textual constraint indicates that the list positions are numbered sequentially 
from 1. 

 Although this ternary representation may appear awkward, it is easy to popu-
late and it facilitates any discussion involving position; for example, who is the 
second author for paper 21? From an implementation perspective, an ordered set 
structure could still be chosen. 

 An ordered set is an example of a collection type. Some versions of ORM allow 
collections to be specifi ed as mapping annotations in a similar way to UML, and 
some ORM versions allow collections to be modeled directly as fi rst-class 
objects. 

 UML 2.0 introduced the notion of  association redefi nition.  This concept is 
complex and applies to generalizations as well as associations. One main use of 
it is to specify stronger constraints on an association role that specializes a role 
played by a supertype. For example, in  Figure 3.52(a)    the  executiveCar  role 
redefi nes the  assignedCar  role, applying a stronger multiplicity constraint on it 
that applies only to executives. Effectively, the association  Executive is assigned 
CompanyCar  is treated as a specialization of the  Employee is assigned Company-
Car  association. Although some versions of ORM support a similar notion, most 
ORM versions require the stronger multiplicity to be asserted in a textual con-
straint, as shown in  Figure 3.52(b) . 

 Now let ’ s consider  derived data.  In UML, derived elements (e.g., attributes, 
associations, or association roles) are indicated by prefi xing their names with  “ / ” . 
Optionally, a  derivation rule  may be specifi ed as well. The derivation rule can be 
expressed as a constraint or note, connected to the derived element by a dashed 
line. This line is actually shorthand for a dependency arrow, optionally annotated 

 FIGURE 3.52  

   Association redefi nition in (a) UML and (b) ORM.    

(a) (b)



with the stereotype name   « derive »  . Since a constraint or note is involved, the 
arrow tip may be omitted (the constraint or note is assumed to be the source). 
For example,  Figure 3.53(a)    includes  area  as a derived attribute.  Figure 3.53(b)  
shows the ORM schema. 

 The UML dependency line may also be omitted entirely, with the constraint 
shown in braces next to the derived element (in this case, it is the modeling tool ’ s 
responsibility to maintain the graphical linkage implicitly). A club membership 
example of this was included earlier. 

 As another example,  Figure 3.54(a)    expresses  uncle  information as a derived 
association. For illustration purposes, role names are included for all association 
ends. The corresponding ORM schema is shown in  Figure 3.54(b) , where the 
derivation rule is specifi ed in relational style. 

 Although precise role names are not always elegant, the use of role names in 
derivation rules involving a path projection can facilitate concise expression of 
rules, as shown here in the UML model. By adding role names to the ORM schema, 

 FIGURE 3.53  

   Derived  area  association in (a) UML and (b) ORM.    

(a) (b)

 FIGURE 3.54  

   Derived  uncle  association in (a) UML and (b) ORM.    

(a) (b)
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the derivation rule may be specifi ed compactly in attribute style as follows: 
  *   defi ne  uncle  of  Person  as  brother  of  parent  of  Person . More complex 
derivation rules can be stated informally in English or formally in a language such 
as OCL. 

 One advantage of ORM ’ s approach to derivation rules is that it is more 
stable, since it is not impacted by schema changes such as attributes being later 
remodeled as associations.  

  3.8     MAPPING FROM ORM TO UML 
 The  UMLmap procedure  in  Table 3.3    provides basic guidelines for mapping ORM 
schemas to UML class diagrams. Selected entity types and value types map to 
object classes and data types, including attribute domains when associations are 
replaced by attributes. We now illustrate this procedure. As a preparatory move, 
step 1 binarizes any sets of exclusive binaries, as shown in  Figure 3.55   . 

 Table 3.3      UMLmap Procedure  

 Step  Action 

 1  Binarize any sets of exclusive unaries. 

 2  Model selected object types as classes, and map a selection of their  n    :   1 and 1   :   1 
associations as attributes. To store facts about a value type, make it a class. 

 3  Map remaining unary fact types to Boolean attributes or subclasses. 

 4  Map  m   :   n  and  n -ary fact types to associations or association classes. Map objectifi ed 
associations to association classes. 

 5  Map ORM constraints to UML graphic constraints, textual constraints, or notes. 

 6  Map subtypes to subclasses, and if needed, subtype defi nitions to textual constraints. 

 7  Map derived fact types to derived attributes/associations, and map semi-derived fact types 
to attributes/associations plus rules. 

 FIGURE 3.55  

   Step 1: replace any set of exclusive binaries by a binary fact type.    

(a) (b)



 In step 2, we decide which object types to model as classes and which  n    :   1 
and 1   :   1 ORM associations to remodel as attributes. Typically, entity types that 
play functional fact roles become classes. Functional binary ( n    :   l and 1   :   1) asso-
ciations from an entity type  A  to a value type  B , or to an entity type  B  about which 
you never want to record details, usually map to an attribute of  A.  If you have 
specifi ed role names, these can usually be used as attribute names, with the object 
type name becoming the attribute ’ s domain name. 

 The mapping in  Figure 3.56    illustrates several of these step 2 considerations, 
as well as step 6 (map ORM constraints to UML graphic constraints, textual con-
straints, or notes). The {P} and {Ul} annotations for preferred identifi er and unique-
ness are not standard UML. The value constraint on gender codes is captured using 
an enumeration type. 

 In rare cases, value types that are independent, play an explicit mandatory role, 
or play a functional fact role in an 1   :    n  fact type map to classes. The example in 
 Figure 3.57(a)    deals with cases where we store title – gender restrictions (e.g., the 
title  “ Mr. ”  is restricted to the male gender). The example in  Figure 3.57(b)  uses a 

 FIGURE 3.56  

   Step 2: map selected  n    :   1 and 1   :   1 associations to attributes.    

(a) (b)

 FIGURE 3.57  

   Step 2: rare cases of value types mapping to classes.    

(a) (b)
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multivalued attribute to store all the genders applicable to a title (e.g., the title 
 “ Dr. ”  applies to both male and female genders). The  Title  class gives fast access 
from title to applicable gender, but slow access from gender to title. As discussed 
earlier, multivalued attributes should be used sparingly. 

 In step 3 we map unaries to Boolean attributes or to subclasses. The example 
in  Figure 3.58    assumes a closed-world interpretation for the unary. With an open-
world approach, the  isSmoker  attribute is assigned a multiplicity of  [ 0..1 ]  and the 
 {complete}  constraint is removed from the subclassing. 

 In step 4, the remaining fact types are mapped to associations. Any  m    :    n  asso-
ciations should normally remain that way. In the example in  Figure 3.59   , the  n    :   1 
fact type is retained as an association because it relates two entity types that 
become classes in the mapping. Even if the  m    :    n  association did not apply, we 
would normally retain  Country  as a class, since now or later we are likely to record 
details for it (e.g., country name). 

 If an  m    :    n  association involves a value type (e.g.,  Employee has PhoneNr ) 
instead of using a multivalued attribute, see if it is possible to transform the  m    :    n  
association into multiple  n    :   1 associations (e.g.  Employee has PhoneNr1 ;  Employee 
has PhoneNr2 ; etc.). 

 If each object type in an  n -ary fact type should map to a class (e.g., it 
plays other functional roles), then map the  n -ary fact type to an  n -ary association. 
 Figure 3.60    provides an example. 

 FIGURE 3.58  

   Step 3: map unaries to Boolean attributes or subclasses.    

(a) (b) (c)

 FIGURE 3.59  

   Step 4: map remaining fact types to associations.    

(a) (b)



 If an object type in a ternary fact type should not map to a class (typically an 
 m    :    n    :   1 uniqueness pattern with it outside the uniqueness constraint), then objec-
tify the rest of the association as an association class and map its role as an attri-
bute.  Figure 3.61    shows an example. 

 Objectifi ed associations map to association classes, as shown earlier in  Figure 
3.18 . Some cases of coreference could be mapped into qualifi ed associations, but 

 FIGURE 3.60  

   Step 4: map some  n -ary fact types to  n -ary associations.    

(b)

(a)
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 FIGURE 3.61  

   Step 4: map some  n -ary fact types to association classes.    

(b)

(a)



136  CHAPTER 3 Data Modeling in UML

 Table 3.4      Mapping Main ORM Graphic Constraints to UML (for step 5)  

 ORM Constraint  UML 

 Internal UC  Maximum multiplicity of 1, or {U n } 

 External UC  Qualifi ed association or textual constraint 

 Simple mandatory  Minimum multiplicity of 1, or textual constraint 

 Inclusive-OR  Textual constraint (unless within exclusive-OR) 

 Frequency  Multiplicity or textual constraint 

 Value  Enumeration or textual constraint 

 Subset and Equality  Subset(s) or textual constraint 

 Exclusion  Textual constraint (unless within exclusive-OR) 

 Ring constraints  Textual constraint 

 Join constraints  Textual constraint 

 Object cardinality  Class multiplicity 

mapping to separate attributes or associations supplemented by a textual compos-
ite uniqueness constraint offers a more general solution. 

 In step 5, the simplest constraints in ORM usually map in an obvious way to 
multiplicity constraints, as illustrated earlier. The more complex ORM constraints 
have no graphic counterpart in UML, so you need to record these separately in 
textual form.  Table 3.4    summarizes the main correspondences. 

 In step 6, subtypes are mapped to subclasses, adding relevant subclassing 
constraints. Subtype defi nitions are handled with discriminators and/or textual 
constraints. For example, the ORM schema considered earlier in  Figure 3.38  maps 
to the UML schema in  Figure 3.37 . 

 In step 7, we map derived and semi-derived fact types. The schemas in 
 Figures 3.53 and 3.54  provide simple examples. 

 With these hints, and the examples discussed earlier, you should now have 
enough background to do the mapping manually for yourself.  

  3.9     SUMMARY 
 UML has been adopted by the OMG as a method for object-oriented analysis and 
design. Although mainly focused on the design of object-oriented programming 



code, it can be used for modeling database applications by supplementing its 
predefi ned notations with user-defi ned constraints. 

 UML 2.0 includes 13 main diagram types, comprising 6 for structure (class, 
object, component, deployment, package, and composite) and 7 for behavior (use 
case, state machine, activity, sequence, collaboration, interaction overview, and 
timing). When stripped of implementation details, class diagrams are essentially 
an extended form of ER diagrams minus a standard notation for value-based 
identifi cation. 

 The basic correspondence between data structures and instances in UML and 
ORM is summarized in  Table 3.5   . Classes are basically entity types and are depicted 
as named rectangles, with compartments for attributes and operations, and so 
forth. In UML, facts are stored either in attributes of classes or in associations 
among two or more classes. Binary associations are depicted as lines. Ternary and 
longer associations include a diamond. Role names may be placed at association 
ends, and an association may be given a name. An association may be objectifi ed 
as an association class, corresponding to nesting in ORM. Associations may be 
qualifi ed to provide a weak form of coreference. 

 Table 3.5      Correspondence between ORM and UML Data 
Instances and Structures  

 ORM  UML 

 Entity  Object 

 Value  Data value 

 Object  Object or Data value 

 Entity type  Class 

 Value type  Data type 

 Object type  Class or Data type 

  —  {use relationship type}  Attribute 

 Unary relationship type   —  {use Boolean attribute} 

 2 + -ary relationship type  Association 

 2 + -ary relationship instance  Link 

 Nested object type  Association class 

 Coreference  Qualifi ed association   §   

   §     =  incomplete coverage of corresponding concept.  

3.9 Summary  137



138  CHAPTER 3 Data Modeling in UML

 Attributes and association ends may be annotated with multiplicity constraints 
that indicate both optionality and cardinality (e.g., 0..1  =  at most one, 1  =  exactly 
one,  *   =  zero or more, 1.. *   =  one or more). Attributes have a default multiplicity 
of 1, and association ends have a default multiplicity of  * . Refer to  Table 3.4  for 
the main correspondences between constraints in UML and ORM. 

 Subset constraints are allowed only between whole associations and are 
denoted by  {subset}  next to a dashed arrow. An exclusive-OR constraint is 
depicted by  {xor}  next to a dashed line connecting the relevant associations. 

 Subclasses are connected to their superclasses by a line with an open arrow-
head at the superclass end. Subclassing may be annotated using the keywords 
 {complete} ,  {incomplete} ,  {disjoint} ,  {overlapping} ,  {root} , and  {leaf} . A 
discriminator (e.g., gender) may be used to indicate the basis for a subclass 
graph. 

 Whole/part associations may be displayed as aggregations using a small diamond 
at the whole end. A hollow diamond denotes shared aggregation (a part may 
belong to more than one whole), and a fi lled diamond indicates composition or 
composite aggregation (a part may belong to at most one whole at a time). 

 Attributes may be assigned initial (default) values. Derived attributes and asso-
ciations are indicated by prepending  “ / ”  to their name. Attributes and binary 
association roles may be assigned a changeability setting: unrestricted, readOnly, 
addOnly, or removeOnly. ReadOnly means that once an attribute value or link has 
been inserted, it cannot be updated or deleted, and no additional values/links may 
be added to the attribute/association (for the constrained object instance). AddOnly 
means that although the original value/link cannot be deleted or updated, other 
values/links may be added to the attribute/association (for the constrained object 
instance). 

 A multivalued attribute or multivalued association end may be adorned with 
 {ordered}  to indicate implementation as an ordered set. One way of modeling 
this in ORM is to explicitly introduce a  Position  object type to indicate the 
order. 

 An association may be redefi ned by declaring an association role to be a special 
case of a compatible role played by a superclass. One use of this is to strengthen 
the constraints on the specialized association roles. 

 UML models are best developed by mapping them from ORM models and 
noting any additional ORM constraints as comments.  

  3.10     LITERATURE SUMMARY 
 The UML specifi cation is accessible online at   www.omg.org/uml/  . For a detailed 
discussion of UML by  “ the three amigos ”  (Booch, Rumbaugh, and Jacobson), see 
Booch et   al. (1999) and Rumbaugh et   al. (1999). Their suggested modeling process 
for using the language is discussed in Jacobson et   al. (1999). Martin and Odell 
(1998) provide a general coverage of object-oriented modeling using the UML 



notation. Muller (1999) provides a detailed treatment of UML for the purposes of 
database modeling. A thorough discussion of OMT for database applications is 
given in Blaha and Premerlani (1998), although their notation for multiplicity 
constraints differs from the UML standard. The Object Constraint Language is 
covered in detail in Warmer and Kleppe (2003). Bennett, McRobb, and Farmer 
(2006) provide a detailed discussion of how to use UML 2.0 for object-oriented 
systems analysis and design. 

 On the topic of aggregation, Rumbaugh et   al. (1999, p. 148) argue: 

    Aggregation conveys the thought that the aggregate is inherently the sum of its 
parts. In fact, the only real semantics that it adds to association is the constraint 
that chains of aggregate links may not form cycles.  .  .  .  Some authors have dis-
tinguished several kinds of aggregation, but the distinctions are fairly subtle and 
probably unnecessary for general modeling.      

 There are plenty of other distinctions (apart from aggregation) we could make 
about associations, but don ’ t feel compelled to do so. For a very detailed discus-
sion arguing for an even more thorough treatment of aggregation in UML, see 
Barbier et   al. (2000). 

 The view that security issues have priority over changeability settings is nicely 
captured by the following comment of John Harris, in a thread on the InConcept 
website: 

    Rather than talk of  “ immutable ”  data I think it is better to talk of a privilege 
requirement. For instance, you can ’ t change your recorded salary but your boss 
can, whether it ’ s because you ’ ve had a pay rise or because there ’ s been a typing 
error. Privileges can be as complicated or as simple as they need to be, whereas 
 “ immutable ”  can only be on or off. Also, privileges can be applied to the inser-
tion of new data and removal of old data, not just to updates.      

 A collection of readings critiquing UML is contained in Siau and Halpin (2000). 
The Precise UML group, comprised largely of European academics, has published 
several papers mainly aimed at providing a more rigorous semantic basis 
for UML. A useful collection of their papers is accessible from their website at 
  www.puml.org  .                                                                
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 CHAPTER

4     Requirements Analysis and 
Conceptual Data Modeling 

  This chapter shows how the entity – relationship (ER) and Unifi ed Modeling Lan-
guage (UML) approaches can be applied to the database life cycle, particularly in 
steps I through II(b) (as defi ned in  Section 1.2 ), which include the requirements 
analysis and conceptual data modeling stages of logical database design.  

   4.1     INTRODUCTION 
 Logical database design is accomplished with a variety of approaches, including 
the top-down, bottom-up, and combined methodologies. The traditional approach, 
particularly for relational databases, has been a low-level, bottom-up activity, syn-
thesizing individual data elements into normalized tables after carefully analyzing 
the data element interdependencies defi ned during the requirements analysis. 
Although the traditional process has been somewhat successful for small- to 
medium-size databases, when used for large databases its complexity can be over-
whelming to the point where practicing designers do not bother to use it with 
any regularity. In practice, a combination of the top-down and bottom-up 
approaches is used; in most cases, tables can be defi ned directly from the require-
ments analysis. 

 The conceptual data model has been most successful as a tool for communica-
tion between the designer and the end user during the requirements analysis and 
logical design phases. Its success is due to the fact that the model, using either 
ER or UML, is easy to understand and convenient to represent. Another reason for 
its effectiveness is that it is a top-down approach using the concept of abstraction. 
The number of entities in a database is typically far fewer than the number of 
individual data elements, because data elements usually represent the attributes. 
Therefore, using entities as an abstraction for data elements and focusing on the 
relationships between entities greatly reduces the number of objects under con-
sideration and simplifi es the analysis. Though it is still necessary to represent data 
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elements by attributes of entities at the conceptual level, their dependencies 
are normally confi ned to the other attributes within the entity or, in some cases, to 
attributes associated with other entities with a direct relationship to their entity. 

 The major interattribute dependencies that occur in data models are the depen-
dencies between the  entity keys , which are the unique identifi ers of different 
entities that are captured in the conceptual data modeling process. Special cases, 
such as dependencies among data elements of unrelated entities, can be handled 
when they are identifi ed in the ensuing data analysis. 

 The logical database design approach defi ned here uses both the conceptual 
data model and the relational model in successive stages. It benefi ts from the 
simplicity and ease of use of the conceptual data model and the structure and 
associated formalism of the relational model. To facilitate this approach, it is nec-
essary to build a framework for transforming the variety of conceptual data model 
constructs into tables that are already normalized or that can be normalized with 
a minimum of transformation. The beauty of this type of transformation is that it 
results in normalized or nearly normalized SQL tables from the start; frequently, 
further normalization is not necessary. 

 Before we do this, however, we need to fi rst defi ne the major steps of the 
relational logical design methodology in the context of the database life cycle.  

  4.2     REQUIREMENTS ANALYSIS 
 Step I, requirements analysis, is an extremely important step in the database life 
cycle and is typically the most labor intensive. The database designer must inter-
view the end user population and determine exactly what the database is to be 
used for and what it must contain. The basic objectives of requirements analysis 
are:

    ■      To delineate the data requirements of the enterprise in terms of basic data 
elements.  

   ■      To describe the information about the data elements and the relationships 
among them needed to model these data requirements.  

   ■      To determine the types of transactions that are intended to be executed on the 
database and the interaction between the transactions and the data elements.  

   ■      To defi ne any performance, integrity, security, or administrative constraints that 
must be imposed on the resulting database.  

   ■      To specify any design and implementation constraints, such as specifi c tech-
nologies, hardware and software, programming languages, policies, standards, 
or external interfaces.  

   ■      To thoroughly document all of the preceding in a detailed requirements speci-
fi cation. The data elements can also be defi ned in a data dictionary system, often 
provided as an integral part of the database management system.    
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 The conceptual data model helps designers accurately capture the real data 
requirements because it requires them to focus on semantic detail in the data 
relationships, which is greater than the detail that would be provided by functional 
dependencies (FDs) alone. The semantics of the ER model, for instance, allow for 
direct transformations of entities and relationships to at least fi rst normal form 
(1NF) tables. They also provide clear guidelines for integrity constraints. In addi-
tion, abstraction techniques such as generalization provide useful tools for inte-
grating end user views to defi ne a global conceptual schema.  

  4.3     CONCEPTUAL DATA MODELING 
 Let us now look more closely at the basic data elements and relationships that 
should be defi ned during requirements analysis and conceptual design. These two 
life cycle steps are often done simultaneously. 

 Consider the substeps in step II(a), conceptual data modeling, using the ER 
model:

    ■      Classify entities and attributes (classify classes and attributes in UML).  
   ■      Identify the generalization hierarchies (for both the ER model and UML).  
   ■      Defi ne relationships (defi ne associations and association classes in UML).    

 The remainder of this section discusses the tasks involved in each substep. 

  4.3.1     Classify Entities and Attributes 

 Though it is easy to defi ne entity, attribute, and relationship constructs, it is not 
as easy to distinguish their roles in modeling the database. What makes a data 
element an entity, an attribute, or even a relationship? For example, project head-
quarters are located in cities. Should  city  be an entity or an attribute? A vita is 
kept for each employee. Is  vita  an entity or a relationship? 

 The following guidelines for classifying entities and attributes will help the 
designer ’ s thoughts converge to a normalized relational database design:

    ■      Entities should contain descriptive information.  
   ■      Multivalued attributes should be classifi ed as entities.  
   ■      Attributes should be attached to the entities they most directly describe.    

 Now we examine each guideline in turn. 

  Entity Contents 
 Entities should contain descriptive information. If there is descriptive information 
about a data element, the data element should be classifi ed as an entity. If a data 
element requires only an identifi er and does not have relationships, it should be 
classifi ed as an attribute. With  city , for example, if there is some descriptive 
information such as country and population for a city, then  city  should be 
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classifi ed as an entity. If only the city name is needed to identify a city, then  city  
should be classifi ed as an attribute associated with some entity, such as  Project . 
The exception to this rule is that if the identity of the value needs to be constrained 
by set membership, you should create it as an entity. For example,  state  is much 
the same as  city , but you probably want to have a  State  entity that contains all 
the valid state instances. Examples of other data elements in the real world that 
are typically classifi ed as entities include  Employee ,  Task ,  Project ,  Department , 
 Company ,  Customer , and so on.  

  Multivalued Attributes 
 Classify multivalued attributes as entities. If more than one value of a descriptor 
attribute corresponds to one value of an identifi er, the descriptor should be clas-
sifi ed as an entity instead of an attribute, even though it does not have descriptors 
itself. A large company, for example, could have many divisions, some of them 
possibly in different cities. In that case,  division  could be classifi ed as a multi-
valued attribute of  company , but it would be better classifi ed as an entity, with 
 division-address  as its identifi er. If attributes are restricted to be single valued 
only, the later design and implementation decisions will be simplifi ed.  

  Attribute Attachment 
 Attach attributes to the entities they most directly describe. For example,  office-
building-name  should normally be an attribute of the entity  Department , rather 
than the entity  Employee . The procedure of identifying entities and attaching 
attributes to entities is iterative. Classify some data elements as entities and attach 
identifi ers and descriptors to them. If you fi nd some violation of the preceding 
guidelines, change some data elements from entity to attribute (or from attribute 
to entity), attach attributes to the new entities, and so forth.   

  4.3.2     Identify the Generalization Hierarchies 

 If there is a generalization hierarchy among entities, then put the identifi er and 
generic descriptors in the supertype entity and put the same identifi er and specifi c 
descriptors in the subtype entities. 

 For example, suppose the following fi ve entities were identifi ed in an ER 
model:

    ■       Employee , with identifi er  empno  and descriptors  empname ,  address , and 
 date-of-birth .  

   ■       Manager , with identifi er  empno  and descriptors  empname  and  jobtitle .  
   ■       Engineer , with identifi er  empno  and descriptors  empname ,  highest-
degree , and  jobtitle .  

   ■       Technician , with identifi er  empno  and descriptors  empname  and 
 specialty .  

   ■       Secretary , with identifi er  empno  and descriptors  empname  and 
 best-skill .    
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 Let ’ s say we determine, through our analysis, that the entity  Employee  could 
be created as a generalization of  Manager ,  Engineer ,  Technician , and  Secretary . 
Then we put identifi er  empno  and generic descriptors  empname ,  address , and 
 date-of-birth  in the supertype entity  Employee ; identifi er  empno  and specifi c 
descriptor  jobtitle  in the subtype entity  Manager ; identifi er  empno  and specifi c 
descriptor  highest-degree  and  jobtitle  in the subtype entity  Engineer ; and so 
on. Later, if we decide to eliminate  Employee  as a table, the original identifi ers 
and generic attributes can be redistributed to all the subtype tables.  

  4.3.3     Defi ne Relationships 

 We now deal with data elements that represent associations among entities, which 
we call  relationships . Examples of typical relationships are  works-in ,  works-for , 
 purchases ,  drives , or any verb that connects entities. For every relationship, the 
following should be specifi ed: degree (binary, ternary, etc.); connectivity (one-to-
many, etc.); optional or mandatory existence; and any attributes associated with 
the relationship and not the entities. The following are some guidelines for defi n-
ing the more diffi cult types of relationships. 

  Redundant Relationships 
 Analyze redundant relationships carefully. Two or more relationships that are used 
to represent the same concept are considered redundant. Redundant relationships 
are more likely to result in unnormalized tables when transforming the ER model 
into relational schemas. Note that two or more relationships are allowed between 
the same two entities, as long as those relationships have different meanings. In 
this case they are not considered redundant. One important case of nonredun-
dancy is shown in  Figure 4.1(a)    for the ER model and  Figure 4.1(c)  for UML. If 
 belongs-to  is a one-to-many relationship between  Employee  and  Professional-
association , if  located-in  is a one-to-many relationship between  Professional-
association  and  City , and if  lives-in  is a one-to-many relationship between 
 Employee  and  City , then  lives-in  is not redundant, because the relationships 
are unrelated. However, consider the situation shown in  Figure 4.1(b)  for the ER 
model and  Figure 4.1(d)  for UML. The employee works on a project located in a 
city, so the  works-in  relationship between  Employee  and  City  is redundant and 
can be eliminated.  

  Ternary Relationships 
 Defi ne ternary relationships carefully. We defi ne a ternary relationship among 
three entities only when the concept cannot be represented by several binary 
relationships among those entities. For example, let us assume there is some 
association among entities  Technician ,  Project , and  Notebook . If each technician 
can be working on any of several projects and using the same notebooks on each 
project, then three many-to-many binary relationships can be defi ned (see  Figure 
4.2(a)    for the ER model and  Figure 4.2(c)  for UML). If, however, each technician 
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  FIGURE 4.1  

   Redundant relationships: (a) nonredundant relationships, (b) redundant relationships using 
transitivity, (c) nonredundant associations, and (d) redundant associations using transitivity.    
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is constrained to use exactly one notebook for each project and that notebook 
belongs to only one technician, then a one-to-one-to-one ternary relationship 
should be defi ned (see  Figure 4.2(b)  for the ER model and  Figure 4.2(d)  for UML). 
The approach to take in ER modeling is to fi rst attempt to express the associations 
in terms of binary relationships; if this is impossible because of the constraints of 
the associations, try to express them in terms of a ternary. 

 The meaning of connectivity for ternary relationships is important.  Figure 
4.2(b)  shows that for a given pair of instances of  Technician  and  Project , there 
is only one corresponding instance of  Notebook ; for a given pair of instances of 
 Technician  and  Notebook , there is only one corresponding instance of  Project ; 
and for a given pair of instances of  Project  and  Notebook , there is only one 
instance of  Technician . In general, we know by our defi nition of ternary relation-
ships that if a relationship among three entities can only be expressed by a func-
tional dependency involving the keys of all three entities, then it cannot be 
expressed using only binary relationships, which only apply to associations 
between two entities. Object-oriented design provides arguably a better way to 
model this situation (Muller, 1999).   

  FIGURE 4.2  

   Ternary relationships: (a) binary relationships, (b) different meaning using a ternary relation-
ship, (c) binary associations, and (d) different meaning using a ternary association.    
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  4.3.4     Example of Data Modeling: Company Personnel 
and Project Database 

 Let us suppose it is desirable to build a company-wide database for a large engi-
neering fi rm that keeps track of all full-time personnel, their skills and projects 
assigned, the departments (and divisions) they worked in, the engineering profes-
sional associations they belonged to, and the engineering desktop computers 
allocated. During the requirements collection process — that is, interviewing the 
end users — we obtain three views of the database. 

  ER Modeling of Individual Views Based on Requirements 
 The fi rst view, a management view, defi nes each employee as working in a single 
department, and defi nes a division as the basic unit in the company, consisting of 
many departments. Each division and department has a manager, and we want to 
keep track of each manager. The ER model for this view is shown in  Figure 
4.3(a)   . 

    FIGURE 4.3  

   Example of data modeling: (a) management view.
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 The second view defi nes each employee as having a job title: engineer, techni-
cian, secretary, manager, and so on. Engineers typically belong to professional 
associations and might be allocated an engineering workstation (or computer). 
Secretaries and managers are each allocated a desktop computer. A pool of desk-
tops and workstations is maintained for potential allocation to new employees 
and for loans while an employee ’ s computer is being repaired. Any employee may 
be married to another employee, and we want to keep track of these relationships 
to avoid assigning an employee to be managed by his or her spouse. This view is 
illustrated in  Figure 4.3(b) . 

 The third view, shown in  Figure 4.3(c) , involves the assignment of employees, 
mainly engineers and technicians, to projects. Employees may work on several 
projects at one time, and each project could be headquartered at different loca-
tions (cities). However, each employee at a given location works on only one 
project at that location. Employee skills can be individually selected for a given 
project, but no individual has a monopoly on skills, projects, or locations.  

  Global ER Schema 
 A simple integration of the three views over the entity  Employee  defi nes results 
in the global ER schema (diagram) in  Figure 4.3(d) , which becomes the basis for 
developing the normalized tables. Each relationship in the global schema is based 
upon a verifi able assertion about the actual data in the enterprise, and analysis of 
those assertions leads to the transformation of these ER constructs into candidate 
SQL tables. 

 Note that equivalent views and integration could be done for a UML conceptual 
model over the class  Employee . We will use the ER model for the examples in the 
rest of this chapter, however. 

 The diagram shows examples of binary, ternary, and binary recursive relation-
ships; optional and mandatory existence in relationships; and generalization with 
the disjointness constraint. Ternary relationships  skill-used  and  assigned-to  
are necessary, because binary relationships cannot be used for the equivalent 
notions. For example, one employee and one location determine exactly one 
project (a functional dependency). In the case of  skill-used , selective use of 
skills to projects cannot be represented with binary relationships. 

 The use of optional existence, for instance, between  Employee  and 
 Division  or between  Employee  and  Department , is derived from our 
general knowledge that most employees will not be managers of any division 
or department. In another example of optional existence, we show that the 
allocation of a workstation to an engineer may not always occur, nor will all desk-
tops or workstations necessarily be allocated to someone at all times. In general, 
all relationships, optional existence constraints, and generalization constructs 
need to be verifi ed with the end user before the ER model is transformed to SQL 
tables. 

 In summary, the application of the ER model to relational database design offers 
the following benefi ts:
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    ■      Use of an ER approach focuses end users ’  discussions on important relationships 
between entities. Some applications are characterized by counterexamples 
affecting a small number of instances, and lengthy consideration of these 
instances can divert attention from basic relationships.  

   ■      A diagrammatic syntax conveys a great deal of information in a compact, readily 
understandable form.  

   ■      Extensions to the original ER model, such as optional and mandatory member-
ship classes, are important in many relationships. Generalization allows entities 
to be grouped for one functional role or to be seen as separate subtypes when 
other constraints are imposed.  

   ■      A complete set of rules transforms ER constructs into mostly normalized SQL 
tables, which follow easily from real-world requirements.       

  4.4     VIEW INTEGRATION 
 A critical part of the database design process is step II(b), the integration of dif-
ferent user views into a unifi ed, nonredundant global schema. The individual end 
user views are represented by conceptual data models, and the integrated con-
ceptual schema results from suffi cient analysis of the end user views to resolve all 
differences in perspective and terminology. Experience has shown that nearly 
every situation can be resolved in a meaningful way through integration 
techniques. 

 Schema diversity occurs when different users or user groups develop their own 
unique perspectives of the world or, at least, of the enterprise to be represented 
in the database. For instance, the marketing division tends to have the whole 
product as a basic unit for sales, but the engineering division may concentrate on 
the individual parts of the whole product. In another case, one user may view a 
project in terms of its goals and progress toward meeting those goals over time, 
but another user may view a project in terms of the resources it needs and the 
personnel involved. Such differences cause the conceptual models to seem to have 
incompatible relationships and terminology. These differences show up in con-
ceptual data models as different levels of abstraction; connectivity of relationships 
(one-to-many, many-to-many, and so on); or as the same concept being modeled 
as an entity, attribute, or relationship, depending on the user ’ s perspective. 

 As an example of the latter case, in  Figure 4.4    we see three different perspec-
tives of the same real-life situation — the placement of an order for a certain 
product. The result is a variety of schemas. The fi rst schema ( Figure 4.4(a) ) depicts 
 Customer ,  Order , and  Product  as entities and  places  and  for-a  as relationships. 
The second schema ( Figure 4.4(b) ), however, defi nes  orders  as a relationship 
between  Customer  and  Product  and omits  Order  as an entity altogether. Finally, 
in the third case ( Figure 4.4(c) ), the relationship  orders  has been replaced by 
another relationship,  purchases ;  order-no , the identifi er (key) of an order, is 



designated as an attribute of the relationship  purchases . In other words, the 
concept of order has been variously represented as an entity, a relationship, and 
an attribute, depending on perspective. 

 There are four basic steps needed for conceptual schema integration:

   1.     Preintegration analysis.  
  2.     Comparison of schemas.  
  3.     Conformation of schemas.  
  4.     Merging and restructuring of schemas.    

  4.4.1     Preintegration Analysis 

 The fi rst step, preintegration analysis, involves choosing an integration strategy. 
Typically, the choice is between a binary approach with two schemas merged at 
one time and an  n -ary approach with  n  schemas merged at one time, where  n  is 

  FIGURE 4.4  

   Schemas, placement of an order: the concept of (a) order as an entity, (b) order as a relation-
ship, and (c) order as an attribute.    
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between 2 and the total number of schemas developed in the conceptual design. 
The binary approach is attractive because each merge involves a small number 
of data model constructs and is easier to conceptualize. The  n -ary approach may 
require only one grand merge, but the number of constructs may be so large that 
it is not humanly possible to organize the transformations properly.  

  4.4.2     Comparison of Schemas 

 In the second step, comparison of schemas, the designer looks at how entities 
correspond and detects confl icts arising from schema diversity — that is, from user 
groups adopting different viewpoints in their respective schemas. Naming con-
fl icts include synonyms and homonyms. Synonyms occur when different names 
are given for the same concept; these can be detected by scanning the data dic-
tionary, if one has been established for the database. Homonyms occur when the 
same name is used for different concepts. These can only be detected by scanning 
the different schemas and looking for common names. 

 Structural confl icts occur in the schema structure itself. Type confl icts involve 
using different constructs to model the same concept. In  Figure 4.4 , for example, 
an entity, a relationship, or an attribute can be used to model the concept of order 
in a business database. Dependency confl icts result when users specify different 
levels of connectivity (one-to-many, etc.) for similar or even the same concepts. 
One way to resolve such confl icts might be to use only the most general connec-
tivity (e.g., many-to-many). If that is not semantically correct, change the names 
of entities so that each type of connectivity has a different set of entity names. 
Key confl icts occur when different keys are assigned to the same entity in differ-
ent views. For example, a key confl ict occurs if an employee ’ s full name, employee 
ID number, and social security number are all assigned as keys.  

  4.4.3     Conformation of Schemas 

 The resolution of confl icts often requires user and designer interaction. The basic 
goal of the third step is to align or conform schemas to make them compatible 
for integration. The entities, as well as the key attributes, may need to be renamed. 
Conversion may be required so that concepts modeled as entities, attributes, or 
relationships are conformed to be only one of them. Relationships with equal 
degree, roles, and connectivity constraints are easy to merge. Those with differing 
characteristics are more diffi cult and, in some cases, impossible to merge. In addi-
tion, relationships that are not consistent — for example, a relationship using 
generalization in one place and the exclusive-OR in another — must be resolved. 
Finally, assertions may need to be modifi ed so that integrity constraints remain 
consistent. 

 Techniques used for view integration include abstraction, such as generaliza-
tion and aggregation to create new supertypes or subtypes, or even the introduc-
tion of new relationships. As an example, the generalization of  Individual  over 



different values of the descriptor attribute  job-title  could represent the con-
solidation of two views of the database — one based on an individual as the basic 
unit of personnel in the organization and another based on the classifi cation of 
individuals by job titles and special characteristics within those classifi cations.  

  4.4.4     Merging and Restructuring of Schemas 

 The fourth step consists of the merging and restructuring of schemas. This step 
is driven by the goals of completeness, minimality, and understandability. Com-
pleteness requires all component concepts to appear semantically intact in the 
global schema. Minimality requires the designer to remove all redundant concepts 
in the global schema. Examples of redundant concepts are overlapping entities 
and truly semantically redundant relationships; for example,  Ground-Vehicle  and 
 Automobile  might be two overlapping entities. A redundant relationship might 
occur between  Instructor  and  Student . The relationships  direct-research  and 
 advise  may or may not represent the same activity or relationship, so further 
investigation is required to determine whether they are redundant or not. Under-
standability requires that the global schema make sense to the user. 

 Component schemas are fi rst merged by superimposing the same concepts 
and then restructuring the resulting integrated schema for understandability. For 
instance, if a supertype/subtype combination is defi ned as a result of the merging 
operation, the properties of the subtype can be dropped from the schema because 
they are automatically provided by the supertype entity.  

  4.4.5     Example of View Integration 

 Let us look at two different views of overlapping data. The views are based on 
two separate interviews of end users. We adapt the interesting example cited by 
Batini et al. (1986) to a hypothetical situation related to our example. 

 In  Figure 4.5(a)    we have a view that focuses on reports and includes data on 
departments that publish the reports, topic areas in reports, and contractors for 
whom the reports are written.  Figure 4.5(b)  shows another view, with publica-
tions as the central focus and keywords on publication as the secondary data. Our 
objective is to fi nd meaningful ways to integrate the two views and maintain 
completeness, minimality, and understandability. 

 We fi rst look for synonyms and homonyms, particularly among the entities. 
Note that a synonym exists between the entities  Topic-area  in schema 1 and 
 Keyword  in schema 2, even though the attributes do not match. However, we fi nd 
that the attributes are compatible and can be consolidated. This is shown in  Figure 
4.6(a)   , which presents a revised schema, schema 2.1. In schema 2.1,  Keyword  has 
been replaced by  Topic-area . 

 Next we look for structural confl icts between schemas. A type confl ict is found 
to exist between the entity  Department  in schema 1 and the attribute  dept-name  
in schema 2.1. The confl ict is resolved by keeping the stronger entity type, 
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  FIGURE 4.5  

   View integration, fi nd meaningful ways to integrate: (a) original schema 1, focused on reports, 
and (b) original schema 2, focused on publications.    

 Department , and moving the attribute type  dept-name  under  Publication  in 
schema 2 to the new entity,  Department , in schema 2.2 (see  Figure 4.6(b) ). 

 At this point we have suffi cient commonality between schemas to attempt a 
merge. In schemas 1 and 2.2 we have two sets of common entities,  Department  
and  Topic-area . Other entities do not overlap and must appear intact in the 
superimposed, or merged, schema. The merged schema, schema 3, is shown in 
 Figure 4.7(a)   . Because the common entities are truly equivalent, there are no bad 
side effects of the merge due to existing relationships involving those entities in 
one schema and not in the other. (Such a relationship that remains intact exists 
in schema 1 between  Topic-area  and  Report , for example.) If true equivalence 
cannot be established, the merge may not be possible in the existing form. 



 In  Figure 4.7 , there is some redundancy between  Publication  and  Report  in 
terms of the relationships with  Department  and  Topic-area . Such a redundancy 
can be eliminated if there is a supertype/subtype relationship between  Publica-
tion  and  Report , which does in fact occur in this case because  Publication  is 
a generalization of  Report . In schema 3.1 ( Figure 4.7(b) ) we see the introduction 
of this generalization from  Report  to  Publication . Then in schema 3.2 ( Figure 
4.7(c) ) we see that the redundant relationships between  Report  and  Department  
and  Topic-area  have been dropped. The attribute  title  has been eliminated as 
an attribute of  Report  in  Figure 4.7(c)  because  title  already appears as an attri-
bute of  Publication  at a higher level of abstraction;  title  is inherited by the 
subtype  Report . 

  FIGURE 4.6  

   View integration, type confl ict: (a) schema 2.1, in which  Keyword  has changed to 
 Topic-area , and (b) schema 2.2, in which the attribute  dept-name  has changed to 
an attribute and an entity.    
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    FIGURE 4.7  

   View integration, the merged schema: (a) schema 3, the result of merging schema 1 
and schema 2.2.
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 The fi nal schema, in  Figure 4.7(c) , expresses completeness because all the 
original concepts ( Report ,  Publication ,  Topic-area ,  Department , and  Contrac-
tor ) are kept intact. It expresses minimality because of the transformation of 
 dept-name  from an attribute in schema 1 to an entity and attribute in schema 2.2, 
and the merger between schema 1 and schema 2.2 to form schema 3, and because 
of the elimination of  title  as an attribute of  Report  and of  Report  relationships 
with  Topic-area  and  Department . Finally, it expresses understandability in that 
the fi nal schema actually has more meaning than individual original schemas. 

 The view integration process is one of continual refi nement and reevaluation. 
It should also be noted that minimality may not always be the most effi cient way 
to proceed. If, for example, the elimination of the redundant relationships  pub-
lishes  and/or  contains  from schema 3.1 to schema 3.2 causes the time required 
to perform certain queries to be excessively long, it may be better from a perfor-
mance viewpoint to leave them in. This decision could be made during the 
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(b) schema 3.1, new generalization; and (c) schema 3.2, elimination of redundant 
relationships.        
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analysis of the transactions on the database or during the testing phase of the fully 
implemented database.   

  4.5     ENTITY CLUSTERING FOR ER MODELS 
 This section presents the concept of entity clustering, which abstracts the ER 
schema to such a degree that the entire schema can appear on a single sheet of 
paper or a single computer screen. This has happy consequences for the end user 
and database designer in terms of developing a mutual understanding of the data-
base contents and formally documenting the conceptual model. 

 An entity cluster is the result of a grouping operation on a collection of entities 
and relationships. Entity clustering is potentially useful for designing large data-
bases. When the scale of a database or information structure is large and includes 
a large number of interconnections among its different components, it may be 
very diffi cult to understand the semantics of such a structure and to manage it, 
especially for the end users or managers. In an ER diagram with 1000 entities, 
the overall structure will probably not be very clear, even to a well-trained data-
base analyst. Clustering is therefore important because it provides a method to 
organize a conceptual database schema into layers of abstraction, and it supports 
the different views of a variety of end users. 

  4.5.1     Clustering Concepts 

 One should think of grouping as an operation that combines entities and their 
relationships to form a higher-level construct. The result of a grouping operation 
on simple entities is called an  entity cluster . A grouping operation on entity clus-
ters, or on combinations of elementary entities and entity clusters, results in a 
higher-level entity cluster. The highest-level entity cluster, representing the entire 
database conceptual schema, is called the  root entity cluster . 

  Figure 4.8(a)    illustrates the concept of entity clustering in a simple case where 
(elementary) entities  R-sec  (report section),  R-abbr  (report abbreviation), and 
 Author  are naturally bound to (dominated by) the entity  Report ; and entities 
 Department ,  Contractor , and  Project  are not dominated. (Note that to avoid 
unnecessary detail, we do not include the attributes of entities in the diagrams.) 
In  Figure 4.8(b) , the dark-bordered box around the entity  Report  and the entities 
it dominates defi nes the entity cluster  Report . The dark-bordered box is called 
the EC box to represent the idea of an entity cluster. In general, the name of the 
entity cluster need not be the same as the name of any internal entity; however, 
when there is a single dominant entity, the names are often the same. The EC box 
number in the lower-right corner is a clustering-level number used to keep track 
of the sequence in which clustering is done. The number 2.1 signifi es that the 
entity cluster  Report  is the fi rst entity cluster at level 2. Note that all the original 
entities are considered to be at level 1. 



 The higher-level abstraction, the entity cluster, must maintain the same rela-
tionships between entities inside and outside the entity cluster as those that occur 
between the same entities in the lower-level diagram. Thus, the entity names 
inside the entity cluster should appear just outside the EC box along the path of 
their direct relationship to the appropriately related entities outside the box, 
maintaining consistent interfaces (relationships) as shown in  Figure 4.8(b) . For 
simplicity, we modify this rule slightly: If the relationship is between an external 
entity and the dominant internal entity (for which the entity cluster is named), 
the entity cluster name need not be repeated outside the EC box. Thus, in 

  FIGURE 4.8  

   Entity clustering concepts: (a) ER model before clustering, and (b) ER model after 
clustering.    
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 Figure 4.8(b) , we could drop the name  Report  both places it occurs outside the 
 Report  box, but we must retain the name  Author , which is not the name of the 
entity cluster.  

  4.5.2     Grouping Operations 

 Grouping operations are the fundamental components of the entity clustering 
technique. They defi ne what collections of entities and relationships comprise 
higher-level objects, the entity clusters. The operations are heuristic in nature and 
(see  Figure 4.9 ) include the following  .

  FIGURE 4.9  

   Grouping operations: (a) dominance grouping, (b) abstraction grouping, (c) constraint 
grouping, and (d) relationship grouping.    

(a)

(c)

(b)
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    ■      Dominance grouping.  
   ■      Abstraction grouping.  
   ■      Constraint grouping.  
   ■      Relationship grouping.    

 These grouping operations can be applied recursively or used in a variety of 
combinations to produce higher-level entity clusters — that is, clusters at any level 
of abstraction. An entity or entity cluster may be an object that is subject to com-
binations with other objects to form the next higher level. That is, entity clusters 
have the properties of entities and can have relationships with any other objects 
at any equal or lower level. The original relationships among entities are preserved 
after all grouping operations, as illustrated in  Figure 4.8 . 

 Dominant objects or entities normally become obvious from the ER diagram 
or the relationship defi nitions. Each dominant object is grouped with all its related 
nondominant objects to form a cluster. Weak entities can be attached to an entity 
to make a cluster. Multilevel data objects using abstractions such as generalization 
and aggregation can be grouped into an entity cluster. The supertype or aggregate 
entity name is used as the entity cluster name. Constraint-related objects that 
extend the ER model to incorporate integrity constraints, such as the exclusive-
OR, can be grouped into an entity cluster. Additionally, ternary or higher-degree 
relationships potentially can be grouped into an entity cluster. The cluster repre-
sents the relationship as a whole.  

  4.5.3     Clustering Technique 

 The grouping operations and their order of precedence determine the individual 
activities needed for clustering. We can now learn how to build a root entity 
cluster from the elementary entities and relationships defi ned in the ER modeling 
process. This technique assumes that a top-down analysis has been performed as 
part of the database requirement analysis and that the analysis has been docu-
mented so that the major functional areas and subareas are identifi ed. Functional 
areas are often defi ned by an enterprise ’ s important organizational units, business 
activities, or, possibly, by dominant applications for processing information. As 
an example, recall  Figure 4.3  (reconstructed in  Figure 4.10   ), which can be thought 
of as having three major functional areas: company organization ( Division , 
 Department ), project management ( Project ,  Skill ,  Location ,  Employee ), and 
employee data ( Manager ,  Secretary ,  Engineer ,  Technician ,  Prof-assoc ,  Work-
station , and  Desktop ). Note that the functional areas are allowed to overlap. 
 Figure 4.10  uses an ER diagram resulting from the database requirement analysis 
to show how clustering involves a series of bottom-up steps using the basic group-
ing operations. The following list explains these steps. 

    1.      Defi ne points of grouping within functional areas.  Locate the dominant enti-
ties in a functional area through natural relationships, local  n -ary relationships, 
integrity constraints, abstractions, or just the central focus of many simple 
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  FIGURE 4.10   
  ER diagram: clustering technique.    
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relationships. If such points of grouping do not exist within an area, consider 
a functional grouping of a whole area.  

  2.      Form entity clusters.  Use the basic grouping operations on elementary entities 
and their relationships to form higher-level objects, or entity clusters. Because 
entities may belong to several potential clusters, we need to have a set of pri-
orities for forming entity clusters. The following set of rules, listed in priority 
order, defi nes the set that is most likely to preserve the clarity of the conceptual 
model:
   a.     Entities to be grouped into an entity cluster should exist within the same 

functional area; that is, the entire entity cluster should occur within the 
boundary of a functional area. For example, in  Figure 4.10 , the relationship 
between  Department  and  Employee  should not be clustered unless  Employee  
is included in the company organization functional area with  Department  
and  Division . In another example, the relationship between the supertype 
 Employee  and its subtypes could be clustered within the employee data 
functional area.  

  b.     If a confl ict in choice between two or more potential entity clusters cannot 
be resolved (e.g., between two constraint groupings at the same level of 
precedence), leave these entity clusters ungrouped within their functional 
area. If that functional area remains cluttered with unresolved choices, 
defi ne functional subareas in which to group unresolved entities, entity 
clusters, and their relationships.     

  3.      Form higher-level entity clusters.  Apply the grouping operations recursively 
to any combination of elementary entities and entity clusters to form new levels 
of entity clusters (higher-level objects). Resolve confl icts using the same set of 
priority rules given in step 2. Continue the grouping operations until all the 
entity representations fi t on a single page without undue complexity. The root 
entity cluster is then defi ned.  

  4.      Validate the cluster diagram.  Check for consistency of the interfaces (relation-
ships) between objects at each level of the diagram. Verify the meaning of each 
level with the end users.    

 The result of one round of clustering is shown in  Figure 4.11   , where each of 
the clusters is shown at level 2.   

  4.6     SUMMARY 
 Conceptual data modeling, using either the ER or UML approach, is particularly 
useful in the early steps of the database life cycle, which involve requirements 
analysis and logical design. These two steps are often done simultaneously, par-
ticularly when requirements are determined from interviews with end users and 
modeled in terms of data-to-data relationships and process-to-data relationships. 
The conceptual data modeling step (ER approach) involves the classifi cation of 
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entities and attributes fi rst, then the identifi cation of generalization hierarchies 
and other abstractions, and fi nally the defi nition of all relationships among entities. 
Relationships may be binary (the most common), ternary, and higher-level  n -ary. 
Data modeling of individual requirements typically involves creating a different 
view for each end user ’ s requirements. Then the designer must integrate those 
views into a global schema, so that the entire database is pictured as an integrated 
whole. This helps to eliminate needless redundancy — such elimination is particu-
larly important in logical design. Controlled redundancy can be created later, at 
the physical design level, to enhance database performance. Finally, an entity 

  FIGURE 4.11  

   Clustering results.    
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cluster is a grouping of entities and their corresponding relationships into a higher-
level abstract object. Clustering promotes the simplicity that is vital for fast end 
user comprehension.  

  4.7     LITERATURE SUMMARY 
 Conceptual data modeling is defi ned in Tsichritzis and Lochovsky (1982); Brodie, 
Mylopoulos, and Schmidt (1984); Nijssen and Halpin (1989); and Batini, Ceri, and 
Navathe (1992). Discussion of the requirements data collection process can be 
found in Martin (1982), Teorey and Fry (1982), and Yao (1985). 

 View integration has progressed from a representation tool (Smith  &  Smith, 
1977) to heuristic algorithms (Batini, Lenzerini,  &  Navathe, 1986; Elmasri  &  
Navathe, 2003). These algorithms are typically interactive, allowing the database 
designer to make decisions based on suggested alternative integration actions. 

 A variety of entity clustering models have been defi ned that provide a 
useful foundation for the clustering technique (Feldman  &  Miller, 1986; Dittrich, 
Gotthard,  &  Lockemann, 1986; Teorey et al., 1989).   

4.7 Literature Summary  167



This page intentionally left blank



 CHAPTER

5    Logical Database Design 

   5.1     INTRODUCTION 
 If we produced a conceptual data model and had it effectively reviewed 
and verifi ed, the next step would be to translate it into a logical data model 
suitable for implementation using the target database management system 
(DBMS). 

 In this chapter we look at the most common situation (in which the DBMS is 
relational) and describe the transformations and design decisions that we need to 
apply to the conceptual model to produce a logical model suitable for direct 
implementation as a relational database. Later it may be necessary to make some 
changes to this initial relational model to achieve performance goals; for this 
purpose we will produce a physical data model. 

 The advantages of producing a logical data model as an intermediate deliver-
able rather than proceeding directly to the physical data model are:

   1.     Since it has been produced by a set of well-defi ned transformations from the 
conceptual data model, the logical data model refl ects business information 
requirements without being obscured by any changes required for perfor-
mance; in particular, it embodies rules about the properties of the data (such 
as functional dependencies). These rules cannot always be deduced from 
a physical data model, which may have been denormalized or otherwise 
compromised.  

  2.     If the database is ported to another DBMS supporting similar structures (e.g., 
another relational DBMS or a new version of the same DBMS having different 
performance properties), the logical data model can be used as a baseline for 
the new physical data model.    

 The task of transforming the conceptual data model to a relational logical 
model is quite straightforward — certainly more so than the conceptual modeling 
stage — and is, even for large models, unlikely to take more than a few days. In 
fact, many computer-aided software engineering (CASE) tools provide facilities for 
the logical data model to be generated automatically from the conceptual model. 
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(They generally achieve this by bringing forward some decisions to the conceptual 
modeling stage, and/or applying some default transformation rules, which may 
not always provide the optimum result.) 

 We need to make a number of transformations; some of these lend themselves 
to alternatives and therefore require decisions to be made, while others are essen-
tially mechanical. We describe both types in detail in this chapter. Generally, 
the decisions do not require business input, which is why we defer them until 
this time. 

 If you are using a DBMS that is not based on a simple relational model, you 
will need to adapt the principles and techniques described here to suit the par-
ticular product. However, the basic relational model currently represents the 
closest thing to a universal, simple view of structured data for computer imple-
mentation, and there is a good case for producing a relational data model as an 
interim deliverable, even if the target DBMS is not relational. From here on, unless 
otherwise qualifi ed, the term  logical model  should be taken as referring to a rela-
tional model. 

 Similarly, if you are using a CASE tool that enforces particular transformation 
rules, or perhaps does not even allow for separate conceptual and logical models, 
you will need to adapt your approach accordingly. 

 In any event, even though this chapter describes what is probably the most 
mechanical stage in the data modeling life cycle, your attitude should not be 
mechanistic. Alert modelers will frequently uncover problems and challenges that 
have slipped through earlier stages, and will need to revisit requirements or the 
conceptual model. 

 The next section provides an overview of the transformations and design deci-
sions in the sequence in which they would usually be performed. The following 
sections cover each of the transformations and decisions in more detail. A sub-
stantial amount of space is devoted to subtype implementation, a central decision 
in the logical design phase. The other critical decision in this phase is the defi ni-
tion of primary keys: Poor choice of primary keys is one of the most common and 
expensive errors in data modeling. We conclude the chapter by looking at how 
to document the resulting logical model.  

  5.2     OVERVIEW OF THE TRANSFORMATIONS REQUIRED 
 The transformations required to convert a conceptual data model to a logical 
model can be summarized as follows. 

    1.     Table specifi cation:
   a.     Exclusion of entity classes not required in the database.  
  b.     Implementation of classifi cation entity classes, for which there are two 

options.  



  c.     Removal of derivable many-to-many relationships (if our conceptual model-
ing conventions support these).  1     

  d.     Implementation of many-to-many relationships as intersection tables.  
  e.     Implementation of  n -ary relationships (if our conceptual modeling conven-

tions support these)  2   as intersection tables.   
  f.     Implementation of supertype/subtypes: mapping one or more levels of each 

subtype hierarchy to tables.  
  g.     Implementation of other entity classes: each becomes a table.     

  2.     Basic column specifi cation:
   a.     Removal of derivable attributes (if our conceptual modeling conventions 

support these).  3     
  b.     Implementation of category attributes, for which there are two options.  
  c.     Implementation of multivalued attributes (if our conceptual modeling con-

ventions support these),  4   for which there are multiple options.   
  d.     Implementation of complex attributes (if our conceptual modeling conven-

tions support these),  5   for which there are two options.   
  e.     Implementation of other attributes as columns.  
  f.     Possible introduction of additional columns.  
  g.     Determination of column data types and lengths.  
  h.     Determination of column nullability.       

 At this point, the process becomes iterative rather than linear, as we have to 
deal with some interdependency between two tasks. We cannot specify foreign 
keys until we know the primary keys of the tables to which they point; on the 
other hand, some primary keys may include foreign key columns (which can make 
up part or all of a table ’ s primary key). 

 What this means is that we cannot fi rst specify all the primary keys across our 
model, then specify all the foreign keys in our model — or the reverse. Rather, we 
need to work back and forth. 

 First, we identify primary keys for tables derived from independent entity 
classes (these are entity classes that are not at the  “ many ”  end of any nontransfer-
able mandatory many-to-one relationship;  6   loosely speaking, they are the  “ stand-
alone ”  entity classes). Now we can implement all of the foreign keys pointing 
back to those tables. Doing this will enable us to defi ne the primary keys for the 
tables representing any entity classes dependent on those independent entity 

  1   UML supports derived relationships; entity – relationship (ER) conventions generally do not. 
  2   UML and Chen conventions support  n -ary relationships; ER conventions generally do not. 
  3   UML supports derived attributes; ER conventions generally do not. 

  5   Although not every CASE tool currently supports complex attributes, there is nothing in the UML 
or ER conventions to preclude the inclusion of complex attributes in a conceptual model. 

  4   UML supports multivalued attributes. 

  6   An entity class that is at the  “ many ”  end of a nontransferable mandatory many-to-one relationship 
may be assigned a primary key, which includes the foreign key implementing that relationship. 
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classes and then implement the foreign keys pointing back to them. This is 
described, with an example, in  Section 5.5 .  

 So, the next step is as follows. 

    3.     Primary key specifi cation (for tables representing independent entity classes):
   a.     Assessment of existing columns for suitability.  
  b.     Introduction of new columns as surrogate keys.       

 Then, the next two steps are repeated until all of the relationships have been 
implemented. 

    4.     Foreign key specifi cation (to those tables with primary keys that already have 
been identifi ed):
   a.     Removal of derivable one-to-many relationships (if our conceptual modeling 

conventions support these).  7     
  b.     Implementation of one-to-many relationships as foreign key columns.  
  c.     Implementation of one-to-one relationships as foreign keys or through 

common primary keys.     

  5.     Primary key specifi cation (for those tables representing entity classes dependent 
on other entity classes for which primary keys have already been identifi ed):
   a.     Inclusion of foreign key columns representing mandatory relationships.  
  b.     Assessment of other columns representing mandatory attributes for 

suitability.  
  c.     Possible introduction of additional columns as  “ tie-breakers. ”        

 We counsel you to follow this sequence, tempting though it can be to jump 
ahead to  “ obvious ”  implementation decisions. There are a number of dependen-
cies between the steps, and unnecessary mistakes are easily made if some disci-
pline is not observed.  

  5.3     TABLE SPECIFICATION 
 In general, each entity class in the conceptual data model becomes a table in the 
logical data model and is given a name that corresponds to that of the source 
entity class (see  Section 5.7 ). 

  5.3.1     The Standard Transformation 

 There are, however, exceptions to this  “ one table per entity ”  picture:

    ■      Some entity classes may be excluded from the database.  
   ■      Classifi cation entity classes (if included in the conceptual model) may not 

be implemented as tables.  

  7   UML supports derived relationships; ER conventions generally do not. 
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   ■      Tables are created to implement many-to-many and  n -ary relationships 
(those involving more than two entity classes).  

   ■      A supertype and its subtypes may not all be implemented as tables.    

 We discuss these exceptions and additions later in the sequence in which we 
recommend you tackle them. In practice, the implementation of subtypes and 
supertypes is usually the most challenging of them. 

 Finally, note that we may also generate some classifi cation tables during the 
next phase of logical design (see  Section 5.4.2 ), when we select our method(s) 
of implementing category attributes.  

  5.3.2     Exclusion of Entity Classes from the Database 

 In some circumstances an entity class may have been included in the conceptual 
data model to provide context, and there is no actual requirement for that appli-
cation to maintain data corresponding to that entity class. It is also possible that 
the data are to be held in some medium other than the relational database, such 
as nondatabase fi les, XML streams, and so on.  

  5.3.3     Classifi cation Entity Classes 

 We do not recommend that you specify classifi cation entity classes purely to 
support category attributes during the conceptual modeling phase. If, however, 
you are working with a conceptual model that contains such entity classes, you 
should not implement them as tables at this stage but defer action until the next 
phase of logical design (column specifi cation, as described in  Section 5.4.2 ) to 
enable all category attributes to be looked at together and consistent decisions 
made.  

  5.3.4     Many-to-Many Relationship Implementation 

 A many-to-many relationship can be represented as an additional entity class linked 
to the two original entity classes by one-to-many relationships. 

  The Usual Case 
 In the same way, each many-to-many relationship in the conceptual data model 
can be converted to an intersection table with two foreign keys (the primary keys 
of the tables implementing the entity classes involved in that relationship).  

  Derivable Many-to-Many Relationships 
 Occasionally, you may discover that a many-to-many relationship that you have 
documented can be derived from attributes of the participating entity classes. 
Perhaps we have proposed  Applicant  and  Welfare Benefit  entity classes and a 
many-to-many relationship between them ( Figure 5.1   ). 
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 On further analysis, we discover that eligibility for benefi ts can be determined 
by comparing attributes of the applicant with qualifying criteria for the benefi t 
(e.g.,  birth date  compared with  eligible age  attributes). 

 In such cases, if our chosen CASE tool does not allow us to show many-to-many 
relationships in the conceptual data model without creating a corresponding 
intersection table in the logical data model, we should delete the relationship on 
the basis that it is derivable (and therefore redundant); we do not want to gener-
ate an intersection table that contains nothing but derivable data. 

 If you are using Unifi ed Modeling Language (UML), you can specifi cally identify 
a relationship as being derivable, in which case the CASE tool should not generate 
an intersection table. If you look at any model closely, you will fi nd opportunities 
to document numerous such many-to-many relationships derivable from inequali-
ties (i.e., greater than, less than) or more complex formulas and rules. For 
example:

    ■      Each  Employee Absence  may occur during one or more  Strikes  and each 
 Strike  may occur during one or more  Employee Absences  (derivable 
from comparison of dates).  

   ■      Each  Aircraft Type  may be able to land at one or more  Airfields  and 
each  Airfield  may be able to support landing of one or more  Aircraft 
Types  (derivable from airport services and runway facilities and aircraft 
type specifi cations).    

 If our chosen CASE tool does not allow us to show many-to-many relationships 
in the conceptual data model without including a corresponding intersection table 
in the logical data model, what do we say to the business reviewers? Having pre-
sented them with a diagram, which they have approved, we now remove one or 
more relationships. 

 It is certainly not appropriate to surreptitiously amend the model on the basis 
that  “ we know better. ”  Nor is it appropriate to create two conceptual data models, 
a business stakeholder model and an implementation model. Our opposition to 
these approaches is that the fi rst involves important decisions being taken without 

 FIGURE 5.1    

  A derivable many-to-many relationship.    
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business stakeholder participation, and the second complicates the modeling 
process for little gain. We have found that the simplest and most effective approach 
in this situation is to remove the relationship(s) from the conceptual data model 
but inform business stakeholders that we have done so and explain why. We show 
how the relationship is derivable from other data, and demonstrate, using sample 
transactions, that including the derivable relationship will add redundancy and 
complexity to the system.  

  Alternative Implementations 
 A DBMS that supports the SQL99 Set Type Constructor feature enables implemen-
tation of a many-to-many relationship without creating an additional table. 
However, we do not recommend that you include such a structure in your logical 
data model. The decision as to whether to use such a structure should be taken 
at the physical database design stage.   

  5.3.5     Relationships Involving More Than Two Entity Classes 

 The entity – relationship conventions that we use here do not support the direct 
representation of relationships involving three or more entity classes ( n -ary rela-
tionships). If we encounter such relationships at the conceptual modeling stage, 
we will be forced to represent them using intersection entity classes, anticipating 
the implementation. There is nothing more to do at this stage, since the standard 
transformation from entity class to table will have included such entity classes. 
However, you should check for normalization; such structures provide the most 
common situations of data that are in third normal form but not in fourth or fi fth 
normal form. 

 If you are using UML (or other conventions that support  n -ary relationships), 
you will need to resolve the relationships (i.e., represent each  n -ary relationship 
as an intersection table).  

  5.3.6     Supertype/Subtype Implementation 

 The relational model and relational DBMSs do not provide direct support for sub-
types or supertypes. Therefore, any subtypes that were included in the conceptual 
data model are normally replaced by standard relational structures in the logical 
data model. Since we are retaining the documentation of the conceptual data 
model, we do not lose the business rules and other requirements represented by 
the subtypes we created in that model. This is important, since there is more than 
one way to represent a supertype/subtype set in a logical data model and the 
decisions we make to represent each such set may need to be revisited in the 
light of new information (such as changes to transaction profi les, other changes 
to business processes, or new facilities provided by the DBMS) or if the system is 
ported to a different DBMS. Indeed if the new DBMS supports subtypes directly, 
supertypes and subtypes can be retained in the logical data model; the SQL99 



176  CHAPTER 5 Logical Database Design

(ANSI/ISO/IEC 9075) standard provides for direct support of subtypes and at least 
one object-relational DBMS provides such support. 

  Implementation at a Single Level of Generalization 
 One way of leveling a hierarchy of subtypes is to select a single level of generaliza-
tion. In the example in  Figure 5.2   , we can do this by discarding  Party , in which 
case we implement only its subtypes,  Individual  and  Organization , or by dis-
carding  Individual  and  Organization  and implementing only their supertype, 
 Party . Actually,  “ discard ”  is far too strong a word, since all the business rules and 
other requirements represented by the subtypes have been retained in the con-
ceptual data model. 

 We certainly will not discard any attributes or relationships. Tables represent-
ing subtypes  inherit  the attributes and relationships of any  “ discarded ”  super-
types, and tables representing supertypes  roll up  the attributes and relationships 
of any  “ discarded ”  subtypes. So if we implement  Individual  and  Organization  
as tables, but not  Party , each will inherit all the attributes and relationships of 
 Party . Conversely, if we implement  Party  as a table but not  Individual  or  Orga-
nization , we need to include in the  Party  table any attributes and relationships 
specifi c to  Individual  or  Organization . These attributes and relationships would 
become  optional  attributes and relationships of  Party . In some cases, we might 
choose to combine attributes or relationships from different subtypes to form a 
single attribute or relationship. For example, in rolling up  purchase  and  sale  into 
 financial transaction , we might combine  price  and  sale value  into  amount . 
This is generalization at the attribute level. 

 If we implement at the supertype level, we also need to add a  Type  column to 
allow us to preserve any distinctions that the discarded subtypes represented and 
that cannot be derived from existing attributes of the supertype. In this example 
we would introduce a  Party Type  column to allow us to distinguish those parties 
that are organizations from those who are individuals. 

 If we are rolling up two or more levels of subtypes, we have some choice as 
to how many  Type  columns to introduce. For a generally workable solution, we 
suggest you simply introduce a single  Type  column based on the lowest level of 
subtyping. In  Figure 5.3   , if you decide to implement at the  Party  level, add a 
single  Party Type  column, which will hold values of  Adult ,  Minor ,  Private 

 FIGURE 5.2    

  A simple supertype/subtype set.    

Party

Individual Organization
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Sector Organization , and  Public Sector Organization . If you want to distin-
guish which of these are persons and which are organizations, you will need to 
introduce an additional reference table with four rows as in  Figure 5.4   .  

  Implementation at Multiple Levels of Generalization 
 Returning to the example in  Figure 5.2 , a third option is to implement all three 
entity classes in the  Party  hierarchy as tables. We link the tables by carrying the 
foreign key of  Party  in the  Individual  and  Organization  tables. The appeal of 
this option is that we do not need to discard any of our concepts and rules. On 
the other hand, we can easily end up with a proliferation of tables, violating our 
aim of simplicity. And these tables usually will not correspond on a one-to-one 
basis with familiar concepts; the  Individual  table in this model does not hold all 
the attributes of individuals, only those that are not common to all parties. The 
concept of an individual is represented by the  Party  and  Individual  tables in 
combination. 

  Figure 5.6    illustrates all three options for implementing the supertype/subtype 
structure in  Figure 5.5   . (The exclusivity arc drawn across the set of relationships 
indicates that they are mutually exclusive.)  

 FIGURE 5.3  

   A more complex supertype/subtype structure.    

Party

Individual

Organization

Private Sector
Organization

Public Sector
Organization

Adult Minor

 FIGURE 5.4  

   Reference table of  Party  types.    

Party Type Organization/Individual Indicator

Private Sector Organization Organization
Public Sector Organization Organization
Adult Individual
Minor Individual
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 FIGURE 5.5  

   A conceptual data model with a supertype/subtype set.    

PARTY (Party ID, First Contact Date)
INDIVIDUAL (Family Name, Given Name, Gender, Birth Date)
ORGANIZATION (Registered Name, Incorporation Date, Employee Count)

Party

Individual Organization

  Other Options 
 There may be other options in some situations. First, we may create a table for 
the supertype and tables for only  some  of the subtypes. This is quite common 
when some subtypes do not have any attributes or relationships in addition to 
those of the supertype, in which case those subtypes do not need separate 
tables. 

 Second, if a supertype has three or more subtypes and some of those subtypes 
have similar attributes and relationships, we may create single tables for similar 
subtypes and separate tables for any other subtypes, with or without a table for 
the supertype. In this case, we are effectively recognizing an intermediate level 
of subtyping and should consider whether it is worth including it in the concep-
tual model. For example, in a fi nancial services conceptual data model the  Party 
Role  entity class may have  Customer ,  Broker ,  Financial Advisor ,  Employee , 
 Service Provider , and  Supplier  subtypes. If we record similar facts about 
brokers and fi nancial advisors, it may make sense to create a single table in which 
to record both these roles; similarly, if we record similar facts about service pro-
viders and suppliers, it may make sense to create a single table in which to record 
both these roles.  

  Which Option? 
 Which option should we choose for each supertype hierarchy? An important 
consideration is the enforcement of referential integrity. Consider this situation: 

    1.     The database administrator (DBA) intends to implement referential 
integrity using the DBMS referential integrity facilities.  

  2.     The target DBMS only supports standard referential integrity between 
foreign keys and primary keys.  8       

  8   That is without any selection of rows from the referenced table (i.e., only the rows of a subtype) 
or multiple referenced tables (i.e., all the rows of a supertype). The authors are not aware of any 
DBMSs that provide such facilities. 
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 In this case, each entity that is at the  “ one ”  end of a one-to-many relationship 
must be implemented as a table, whether it is a supertype or a subtype, so that 
the DBMS can support referential integrity of those relationships. 

 This is because standard DBMS referential integrity support allows a foreign 
key value to be any primary key value from the one associated table. If a subtype 
is represented by a subset of the rows in a table implementing the supertype rather 
than as its own separate table, any foreign keys implementing relationships to that 

 FIGURE 5.6  

   Implementing a supertype/subtype set in a logical data model.    

Option 1:
PARTY (Party ID, First Contact Date, Family Name, Given Name, Gender, Birth Date,
Registered Name, Incorporation Date, Employee Count)
Option 2:
INDIVIDUAL (Party ID, First Contact Date, Family Name, Given Name, Gender, Birth 
Date)
ORGANIZATION (Party ID, First Contact Date, Registered Name, Incorporation Date,
Employee Count) 
Option 3:
PARTY (Party ID, First Contact Date)
INDIVIDUAL (Party ID, Family Name, Given Name, Gender, Birth Date)
ORGANIZATION (Party ID, Registered Name, Incorporation Date, Employee Count)

Party

Individual Organization

Party

Individual Organization

Option 1

Option 3 

Option 2
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subtype can have any primary key value including those of the other subtypes. 
Referential integrity on a relationship to that subtype can therefore only be 
managed by either program logic or a combination of DBMS referential integrity 
support and program logic. 

 By contrast, if the supertype is represented by multiple subtype tables rather 
than its own table, any foreign key implementing relationships to that supertype 
can have any value from any of the subtype tables. Referential integrity on a rela-
tionship to that supertype can therefore only be managed in program logic. 

 Another factor is the ability to present data in alternative ways. We do not 
always access the tables of a relational database directly. Usually we access them 
through  views , which consist of data from one or more tables combined or 
selected in various ways. We can use the standard facilities available for construct-
ing views to present data at the subtype or supertype level, regardless of whether 
we have chosen to implement subtypes, supertypes, or both. However, there are 
some limitations. Not all views allow the data presented to be updated. This is 
sometimes due to restrictions imposed by the particular DBMS, but there are also 
some logical constraints on what types of views can be updated. In particular, 
these arise where data have been combined from more than one table, and it is 
not possible to unambiguously interpret a command in terms of which underlying 
tables are to be updated. It is beyond the scope of this chapter to discuss view 
construction and its limitations in any detail. Broadly, the implications for the three 
implementation options are:

   1.      Implementation at the supertype level:  If we implement a  Party  table, 
a simple selection operation will allow us to construct  Individual  and 
 Organization  views. These views will be logically updateable.  

  2.      Implementation at the subtype level:  If we implement separate  Individual  
and  Organization  tables, a  Party  view can be constructed using the  “ union ”  
operator. Views constructed using this operator are not updateable.  

  3.      Implementation of both supertype and subtype levels:  If we implement 
 Individual ,  Organization , and  Party  tables, full views of  Individual  and 
 Organization  can be constructed using the  “ join ”  operator. Some views using 
this operator are not updateable, and DBMSs differ on precisely what restric-
tions they impose on join view updateability. They can be combined using the 
union operator to produce a  Party  view, which again will not be updateable.    

 Nonrelational DBMSs offer different facilities and may make one or other of 
the options more attractive. The ability to construct useful, updateable views 
becomes another factor in selecting the implementation option that is most 
appropriate. 

 What is important, however, is to recognize that views are not a substitute for 
careful modeling of subtypes and supertypes, and to consider the appropriate level 
for implementation. Identifi cation of useful data classifi cations is part of the data 



modeling process, not something that should be left to some later task of view 
defi nition. If subtypes and supertypes are not recognized in the conceptual mod-
eling stage, we cannot expect the process model to take advantage of them. There 
is little point in constructing views unless we have planned to use them in our 
programs.  

  Implications for Process Design 
 If a supertype is implemented as a table and at least one of its subtypes is imple-
mented as a table as well, any process creating an instance of that subtype (or 
one of  its  subtypes) must create a row in the corresponding supertype table as 
well as the row in the appropriate subtype table(s). To ensure that this occurs, 
those responsible for writing detailed specifi cations of programs (which we 
assume are written in terms of table-level transactions) from business-level process 
specifi cations (which we assume are written in terms of entity-level transactions) 
must be informed of this rule.    

  5.4     BASIC COLUMN DEFINITION 
  5.4.1     Attribute Implementation: The Standard Transformation 

 With some exceptions, each attribute in the conceptual data model becomes a 
column in the logical data model and should be given a name that corresponds 
to that of the corresponding attribute (see  Section 5.7 ). The principal exceptions 
to this are:

    ■      Category attributes.  
   ■      Derivable attributes.  
   ■      Attributes of relationships.  
   ■      Complex attributes.  
   ■      Multivalued attributes.    

 The following subsections describe each of these exceptions. 
 We may also add further columns for various reasons. The most common of 

these are surrogate primary keys and foreign keys (covered in  Sections 5.5  and 
 5.6 , respectively), but there are some additional situations, discussed in  Section 
5.4.7 . The remainder of  Section 5.4  looks at some issues applicable to columns in 
general. 

 Note that in this phase we may end up specifying additional tables to support 
category attributes.  

  5.4.2     Category Attribute Implementation 

 In general, DBMSs provide the following two distinct methods of implementing a 
category attribute:
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   1.     As a foreign key to a classifi cation table.  
  2.     As a column on which a constraint is defi ned limiting the values that the 

column may hold.    

 The principal advantage of the classifi cation table method is that the ability to 
change codes or descriptions can be granted to users of the database rather than 
them having to rely on the database administrator to make such changes. However, 
if any procedural logic depends on the value assigned to the category attribute, 
such changes should only be made in controlled circumstances in which synchro-
nized changes are made to procedural code. 

 If you have adopted our recommendation of showing category attributes in 
the conceptual data model as attributes rather than relationships to classifi cation 
entity classes, and you select the  “ constraint on column ”  method of implementa-
tion, your category attributes become columns like any other, and there is no 
more work to be done. If, however, you select the  “ classifi cation table ”  method 
of implementation, you must:

   1.     Create a table for each domain that you have defi ned for category 
attributes, with  Code  and  Meaning  columns.  

  2.     Create a foreign key column that references the appropriate domain table 
to represent each category attribute.  9       

 For example, if you have two category attributes in your conceptual data 
model, each named  customer type  (one in the  Customer  entity class and the 
other in an  Allowed Discount  business rule entity class recording the maximum 
discount allowed for each customer type), then each of these should belong to 
the same domain, also named  Customer Type . In this case, you must create a 
 Customer Type  table with  Customer Type Code  and  Customer Type Meaning  
columns and include foreign keys to that table in your  Customer  and  Allowed 
Discount  tables to represent the  customer type  attributes. 

 By contrast, if you have modeled category attributes in the conceptual data 
model as relationships to classifi cation entity classes, and you select the classifi ca-
tion table option, your classifi cation entity classes become tables like any other 
and the relationships to them become foreign key columns like any other. If, 
however, you select the  “ constraint on column ”  option, you must not create tables 
for those classifi cation entity classes, but you must represent each relationship to 
a classifi cation entity class as a simple column, not as a foreign key column.  

  5.4.3     Derivable Attributes 

 Since the logical data model should not specify redundant data, derivable attri-
butes in the conceptual data model should not become columns in the logical 

  9   Strictly speaking, we should not be specifying primary or foreign keys at this stage, but the 
situation here is so straightforward that most of us skip the step of initially documenting only a 
relationship. 



data model. However, the designer of the physical data model needs to be advised 
of derivable attributes so as to decide whether they should be stored as columns 
in the database or calculated  “ on the fl y. ”  We therefore recommend that, for each 
entity class with derivable attributes, you create a view based on the correspond-
ing table, which includes (as well as the columns of that table) a column for each 
derived attribute, specifying how that attribute is calculated.  Figure 5.7    illustrates 
this principle.  

  5.4.4     Attributes of Relationships 

 If the relationship is many-to-many or  n -ary, its attributes should be implemented 
as columns in the table implementing the relationship. If the relationship is one-
to-many, its attributes should be implemented as columns in the table implement-
ing the entity class at the  “ many ”  end. If the relationship is one-to-one, its attributes 
can be implemented as columns in either of the tables used to implement one of 
the entity classes involved in that relationship.  

  5.4.5     Complex Attributes 

 In general, unless the target DBMS provides some form of  row data type  facility 
(such as Oracle TM  ’ s Nested Tables), built-in complex data types (such as foreign 
currencies or timestamps with associated time zones), or  constructors  with which 
to create such data types, each component of a complex attribute will require a 
separate column. For example, a currency amount in an application dealing with 
multiple currencies will require a column for the amount and another column in 
which the currency unit for each amount can be recorded. Similarly, a time attri-
bute in an application dealing with multiple time zones may require a column 
in which the time zone is recorded as well as the column for the time itself. 
Addresses are another example of complex attributes. Each address component 
will require a separate column. 

 An alternative approach where a complex attribute type has many components 
(e.g., addresses) is to:

 FIGURE 5.7  

   A table and a view defi ning a derivable attribute.    

Table: ORDER LINE (Order No, Product No, Order Quantity, Applicable Discount Rate,
Quoted Price, Promised Delivery Date, Actual Delivery Date)

View: ORDER LINE (Order No, Product No, Order Quantity, Applicable Discount Rate,
Quoted Price, Promised Delivery Date, Actual Delivery Date,
Total Item Cost = Order Quantity * Quoted Price * (1- Applicable Discount Rate/100.0))
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   1.     Create a separate table in which to hold the complex attribute.  
  2.     Hold only a foreign key to that table in the original table.     

  5.4.6     Multivalued Attribute Implementation 

 Consider the conceptual data model of a multi-airline timetable database in 
 Figure 5.8   . A fl ight (e.g., AA123, UA345) may operate over multiple fl ight 
legs, each of which is from one port to another. Actually a fl ight has no real 
independent existence but is merely an identifi er for a series of fl ight legs. Although 
some fl ights operate year-round, others are seasonal and may therefore have 
one or more operational periods (in fact, two legs of a fl ight may have different 
operational periods: the Chicago – Denver fl ight may only continue to Los Angeles 
in the summer). And of course not all fl ights are daily, so we need to record the 
days of the week on which a fl ight (or rather its legs) operates. In the conceptual 

 FIGURE 5.8  

   Implementing a multivalued attribute.    
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data model we can do this using the multivalued attribute  {week days} . 
At the same time we should record for the convenience of passengers on 
long-distance fl ights what meals are served (on a trans-Pacifi c fl ight there could 
be as many as three). The  {meal types}  multivalued attribute supports this 
requirement. 

 In general, unless the target DBMS supports the SQL99 Set Type Constructor 
feature, which enables direct implementation of multivalued attributes, normal 
practice is to represent each such attribute in the logical data model using a 
separate table. Thus, the  {meal types}  attribute of the  Flight Leg  entity class 
could be implemented using a table (with the name  Flight Leg Meal Type , that 
is, the singular form of the attribute name prefi xed by the name of its owning 
entity class) with the following columns:

   1.     A foreign key to the  Flight Leg  table (representing the entity class 
owning the multivalued attribute).  

  2.     A column in which a single meal type can be held (with the name  Meal 
Type , that is, the singular form of the attribute name).    

 The primary key of this table can simply be all of these columns. 
 Similarly normal practice would be to represent the  {week days}  attribute in 

the logical data model using a  Flight Leg Operational Period Week Day  table 
with a foreign key to  Flight Leg Operational Period  and a  Week Day  column. 
However, the case may be that:

   1.     The maximum number of values that may be held is fi nite and small.  
  2.     There is no requirement to sort using the values of that attribute.    

 Then, the designer of the physical data model may well create, rather than add 
an additional table, a set of columns (one for each value) in the original table (the 
one implementing the entity class with the multivalued attribute). For example, 
 {week days}  can be implemented using seven columns in the  Flight Leg 
Operational Period  table, one for each day of the week, each holding a fl ag to 
indicate whether that fl ight leg operates on that day during that operational 
period. 

 If the multivalued attribute is textual, the modeler may even implement it in 
a single column in which all the values are concatenated, or separated if necessary 
by a separator character. This is generally only appropriate if queries searching 
for a single value in that column are not rendered unduly complex or slow. If this 
is likely to occur, it may be better from a pragmatic point of view to model such 
attributes this way in the logical data model as well, to avoid the models diverging 
so much. For example,  {meal types}  can be implemented using a single  Meal 
Types  column in the  Flight Leg  table, since there is a maximum of three meals 
that can be served on one fl ight leg. 

 By way of another example, an  Employee  entity class may have the attribute 
 dependent names , which could be represented by a single column in the  Employee  
table, which would hold values such as  “ Peter ”  or  “ Paul, Mary. ”   
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  5.4.7     Additional Columns 

 In some circumstances additional columns may be required. We have already seen 
the addition of a column or columns to identify subtypes in a supertype table. 
Other columns are typically required to hold data needed to support system 
administration, operation, and maintenance. The following examples will give you 
a fl avor. 

 A very common situation is when a record is required of who inserted each 
row and when, and of who last updated each row and when. In this case, you 
can create a pair of  DateTime  columns, usually named along the lines of  Insert 
DateTime  and  Last Update DateTime , and a pair of text columns, usually named 
along the lines of  Insert User ID  and  Last Update User ID . Of course, if a 
full audit trail of all changes to a particular table is required, you will need to 
create an additional table with the following columns:

    ■      Those making up a foreign key to the table to be audited.  
   ■      An  Update DateTime  column, which together with the foreign key 

columns makes up the primary key of this table.  
   ■      An  Update User ID  column.  
   ■      The old and/or new values of the remaining columns of the table to be 

audited.    

 The  meaning  attribute in a classifi cation entity class in the conceptual data 
model is usually a relatively short text that appears as the interpretation of the 
code in screens and reports. If the differences between some meanings require 
explanation that would not fi t in the  Meaning  column, then an additional, longer 
 Explanation  column may need to be added. 

 By contrast, additional columns holding abbreviated versions of textual data 
may be needed for any screens, other displays (such as networked equipment 
displays), reports, and other printouts (such as printed tickets) in which there 
may be space limitations. A typical example is location names: Given the fact that 
these may have the same initial characters (e.g.,  “ Carlton ”  and  “ Carlton North ” ), 
simple truncation of such names may produce indistinguishable abbreviations. 

 Another situation in which additional columns may be required is when a 
numeric or date/time attribute may hold approximate or partly defi ned values such 
as  “ at least $10,000, ”   “ approximately $20,000, ”   “ some time in 1968, ”   “ July 25, but 
I can ’ t remember which year. ”  To support values like the fi rst two examples, you 
might create an additional text column in which a qualifi er of the amount in the 
numeric column can be recorded. To support values like the other two examples, 
you might store the year and month/day components of the date in separate 
columns.  

  5.4.8     Column Data Types 

 If the target DBMS and the data types available in that DBMS are known, the 
appropriate DBMS data type for each domain can be identifi ed and documented. 



Each column representing an attribute should be assigned the appropriate data 
type based on the domain of the corresponding attribute. Each column in a foreign 
key should be given the same data type as the corresponding column in the cor-
responding primary key.  

  5.4.9     Column Nullability 

 If an attribute has been recorded as mandatory in the business rule documentation 
accompanying the conceptual data model, the corresponding column should be 
marked as mandatory in the logical data model; the standard method for doing 
this is to follow the column name and its data type with the annotation  NOT NULL . 
By contrast, if an attribute has been recorded as optional, the corresponding 
column should be marked as optional using the annotation  NULL . 

 Any row in which no value has been assigned to that attribute for the entity 
instance represented by that row will have a null marker rather than a value 
assigned to that column. Nulls can cause a variety of problems in queries, as Chris 
Date has pointed out.  10    

 Ranges provide a good example of a situation in which it is better to use an 
actual value than a null marker in a column representing an optional attribute. 
The range end attribute is often optional because there is no maximum value in 
the last range in a set. For example, the  End Date  of the current record in a table 
that records current and past situations is generally considered to be optional as 
we have no idea when the current situation will change. Unfortunately, to use a 
null marker in  End Date  complicates any queries that determine the date range 
to which a transaction belongs, like the fi rst query in  Figure 5.9   . Loading a  “ high 
value ”  date (a date that is later than the latest date that the application could still 
be active) into the  End Date  column of the current record enables us to use the 
second, simpler, query in  Figure 5.9 .   

  5.5     PRIMARY KEY SPECIFICATION 
 There is the possibility that the primary key of a table may include foreign keys 
to other tables. However, at this point in the translation to a logical model, 
we haven ’ t defi ned the foreign keys, and cannot do so until we have defi ned 
the primary keys of the tables being referenced. We resolve this  “ chicken and 
egg ”  situation with an iterative approach. 

 At the start of this step of the process, you can only determine primary keys 
for those tables that correspond to independent entity classes, since, as we have 
seen, the primary keys of such tables will not include foreign keys. You therefore 
fi rst select an appropriate primary key for each of these tables, if necessary adding 

  10   Date, C. J.  Relational Database Writings, 1989  –  1991 . Pearson Education POD, 1992. 

5.5 Primary Key Specifi cation  187



188  CHAPTER 5 Logical Database Design

a surrogate key column as a key in its own right or to supplement existing 
attributes. 

 Having specifi ed primary keys for at least some tables, you are now in a posi-
tion to duplicate these as foreign keys in the tables corresponding to related entity 
classes. Doing that is the subject of the next section. 

 You are now able to determine the primary keys of those tables representing 
entity classes dependent on the entity classes for which you have already identi-
fi ed primary keys (since you now have a full list of columns for these tables, 
including foreign keys). You can then duplicate these in turn as foreign keys in 
the tables corresponding to related entity classes. You then repeat this step, 
 “ looping ”  until the model is complete. 

 This may sound complicated, but, in practice, this iterative process moves 
quickly and naturally, and the discipline will help to ensure that you select sound 
primary keys and implement relationships faithfully. The process is illustrated in 
 Figure 5.10   :

    ■       Policy Type  and  Person  are obviously independent, and  Organization 
Unit  is at the  “ many ”  end of a transferable relationship, so we can identify 
primary keys for them immediately.  

   ■       Policy  is at the  “ many ”  end of a nontransferable relationship, so it 
depends on  Policy Type  having a defi ned primary key.  

   ■       Policy Event  and  Person Role in Policy  are at the  “ many ”  ends of 
nontransferable relationships, so they depend on  Policy  and  Person  
having defi ned primary keys.     

 FIGURE 5.9  

   Queries involving date ranges.    

select TRANSACTION.*, HISTORIC_PRICE.PRICE
from TRANSACTION, HISTORIC_PRICE
where TRANSACTION.TRANSACTION_DATE between 
HISTORIC_PRICE.START_DATE and HISTORIC_PRICE.END_DATE
or TRANSACTION.TRANSACTION_DATE > 
HISTORIC_PRICE.START_DATE and HISTORIC_PRICE.END_DATE is null;

select TRANSACTION.*, HISTORIC_PRICE.PRICE
from TRANSACTION, HISTORIC_PRICE
where TRANSACTION.TRANSACTION_DATE between 
HISTORIC_PRICE.START_DATE and HISTORIC_PRICE.END_DATE;



  5.6     FOREIGN KEY SPECIFICATION 
 Foreign keys are our means of implementing one-to-many (and occasionally one-
to-one) relationships. This phase of logical design requires that we know the 
primary key of the entity class at the  “ one ”  end of the relationship, and, as dis-
cussed in  Section 5.2 , the defi nition of primary keys is, in turn, dependent on the 
defi nition of foreign keys. So, we implement the relationships that meet this cri-
terion, and then we return to defi ne more primary keys. 

 This section commences with the basic rule for implementing one-to-
many relationships. This rule will cover the overwhelming majority of situations. 
The remainder of the section looks at a variety of unusual situations. It is worth 
being familiar with them because they do show up from time to time, and, as a 
professional modeler, you need to be able to recognize and deal with them. 

 FIGURE 5.10  

   Primary and foreign key specifi cation.    
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  5.6.1     One-to-Many Relationship Implementation 

 Translating the links implied by primary and foreign keys in a relational model 
into lines representing one-to-many relationships on an ER diagram is a useful 
technique when we have an existing database that has not been properly docu-
mented in diagrammatic form. 

  The Basic Rule 
 The process of recovering the design in this all-too-frequent situation is an example 
of the broader discipline of  “ reverse engineering ”  and is one of the less glamorous 
tasks of the data modeler. 

 When moving from a conceptual to a logical data model, however, we work 
from a diagram to tables and apply the following rule (shown in  Figure 5.11   ): 

    A one-to-many relationship is supported in a relational database by holding 
the primary key of the table representing the entity class at the  “ one ”  end of 
the relationship as a foreign key in the table representing the entity class at the 
 “ many ”  end of the relationship.      

 In the logical data model, therefore, we create, in the table representing the 
entity class at the  “ many ”  end of the relationship, a copy of the primary key of 
the entity class at the  “ one ”  end of the relationship. (Remember that the primary 
key may consist of more than one column, and we will, of course, need to copy 
all of its columns to form the foreign key.) Each foreign key column should be 
given the same name as the primary key column from which it was derived, pos-
sibly with the addition of a prefi x. Prefi xes are necessary in two situations:

 FIGURE 5.11  

   Deriving foreign keys from relationships.    

to

Customer (Customer ID, Name, Address . . .)

Customer ID Loan ID

Loan (Loan ID, Customer ID*, Date Drawn . . .)



   1.     If there is more than one relationship between the same two entity classes, in 
which case prefi xes are necessary to distinguish the two different foreign 
keys — for example,  Preparation Employee ID  and  Approval Employee ID .  

  2.     A self-referencing relationship will be represented by a foreign key that con-
tains the same column(s) as the primary key of the same table, so a prefi x will 
be required for the column names of the foreign key; typical prefi xes are 
 Parent ,  Owner , and  Manager  (in a organizational reporting hierarchy).    

 Note the use of the asterisk in  Figure 5.11 . This is a convention sometimes 
used to indicate that a column of a table is all or part of a foreign key. Different 
CASE tools use different conventions. 

 A column forming part of a foreign key should be marked as  NOT NULL  if the 
relationship it represents is mandatory at the  “ one ”  end; conversely, if the relation-
ship is optional at the  “ one ”  end, it should be marked as  NULL .  

  Alternative Implementations 
 A DBMS that supports the SQL99 Set Type Constructor feature enables implemen-
tation of a one-to-many relationship within one table. However, we do not recom-
mend that you include such a structure in your logical data model; the decision 
as to whether to use such a structure should be made at the physical database 
design stage. 

 Some DBMSs (including DB2) allow a one-to-many relationship to be imple-
mented by holding a copy of  any  candidate key of the referenced table, not just 
the primary key. (The candidate key must have been defi ned to the DBMS as 
unique.) This prompts two questions:

   1.     How useful is this?  
  2.     Does the implementation of a relationship in this way cause problems in 

system development?    

 The majority of database designs cannot benefi t from this option. However, 
consider the tables in  Figure 5.12    from a public transport management 
system. The two alternative candidate keys for  Actual Vehicle Trip  (in addition 
to the one chosen) follow. 

 FIGURE 5.12  

   Tables with candidate keys.    

SCHEDULED VEHICLE TRIP (Route No, Trip No, Direction Code, Scheduled Departure 
TimeOfDay)
ACTUAL VEHICLE TRIP (Vehicle No, Trip Date, Actual Departure TimeOfDay, Route
No, Direction Code, Trip No)
PASSENGER TRIP (Ticket No, Trip Date, Trip Start Time, Route No, Direction Code)
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     Route No   +   Trip No   +   Trip Date     

 and 

     Route No   +   Direction Code   +   Trip Date   +   Actual Departure TimeOfDay     

 However, in the system as built, these were longer than the key actually chosen 
(by one and three bytes, respectively). Since a very large number of records would 
be stored, the shortest key was chosen to minimize the data storage costs of tables, 
indexes, and so on. There was a requirement to identify which  Actual Vehicle 
Trip  each  Passenger Trip  took place on. 

 In a DBMS that constrains a foreign key to be a copy of the primary key of the 
other table,  Vehicle No  and  Actual Departure TimeOfDay  would have had to 
be added to the  Passenger Trip  table at a cost of an extra four bytes in each of 
a very large number of rows. The ability to maintain a foreign key that refers to 
any candidate key of the other table meant that only  Trip No  needed to be added 
at a cost of only one extra byte. 

 Of course, exploitation of this option might be diffi cult if the CASE tool being 
used to build the application did not support it. Beyond the issue of tool support, 
there do not appear to be any technical problems associated with this option. 
However, it is always sensible to be as simple and consistent as possible; the less 
fancy stuff that programmers, users, and DBAs have to come to grips with, the 
more time they can devote to using the data model properly!   

  5.6.2     One-to-One Relationship Implementation 

 A one-to-one relationship can be supported in a relational database by implement-
ing both entity classes as tables, then using the same primary key for both. This 
strategy ensures that the relationship is indeed one-to-one and is the preferred 
option. 

 In fact, this is the way we retain the (one-to-one) association between a super-
type and its subtypes when both are to be implemented as tables (see  “ Implemen-
tation at Multiple Levels of Generalization ”  section). 

 However, we cannot use the same primary key when dealing with a  transfer-
able  one-to-one relationship. If we used  Part No  to identify both  Part Type  and 
 Bin  in our earlier example (reproduced in  Figure 5.13   ), it would not be stable as 
a key of  Bin  (whenever a new part was moved to a bin, that key ’ s bin would 
change). 

 FIGURE 5.13  

   A one-to-one relationship.    
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 In this situation we would identify  Bin  by  Bin No  and  Part Type  by  Part No , 
and we would support the relationship with a foreign key: either  Bin No  in the 
 Part Type  table or  Part No  in the  Bin  table. Of course, what we are really sup-
porting here is not a one-to-one relationship anymore, but a one-to-many relation-
ship. We have fl exibility whether we like it or not! We will need to include the 
one-to-one rule in the business rule documentation. A relational DBMS will support 
such a rule by way of a unique index on the foreign key, providing a simple prac-
tical solution. Since we have a choice as to the direction of the one-to-many rela-
tionship, we will need to consider other factors, such as performance and 
fl exibility. Will we be more likely to relax the  “ one part per bin ”  or the  “ one bin 
per part ”  rule? 

 Incidentally, we once struck exactly this situation in practice. The database 
designer had implemented a single table, with a key of  Bin No . Parts were thus 
effectively identifi ed by their bin number, causing real problems when parts were 
allocated to a new bin. In the end, they  “ solved ”  the problem by relabeling the 
bins each time parts were moved!  

  5.6.3     Derivable Relationships 

 Occasionally a one-to-many relationship can be derived from other data in one or 
more of the tables involved. (We discussed derivable many-to-many relationships 
in the  “ Derivable Many-to-Many Relationships ”  section.) The following example is 
typical. In  Figure 5.14   , we are modeling information about diseases and their 
groups (or categories), as might be required in a database for medical research. 

 During our analysis of attributes we discover that disease groups are identifi ed 
by a range of numbers ( Low No  through  High No ) and that each disease in that 
group is assigned a number in the range. For example, 301 through 305 might 
represent  “ Depressive Illnesses, ”  and  “ Postnatal Depression ”  might be allocated 
the number 304. Decimals can be used to avoid running out of numbers. We see 
exactly this sort of structure in many classifi cation schemes, including the Dewey 
decimal classifi cation used in libraries. We can use either  High No  or  Low No  as 
the primary key; we have arbitrarily selected  Low No . 

 If we were to implement this relationship using a foreign key, we would arrive 
at the tables in  Figure 5.15 . However, the foreign key  Disease Group Low No  in 
the  Disease  table is derivable; we can determine which disease group a given 

 FIGURE 5.14  

   Initial ER model of diseases and groups.    
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disease belongs to by fi nding the disease group with the range containing its 
disease number. It therefore violates our requirement for nonredundancy.   

 In UML we can mark the relationship as derivable, in which case no foreign 
key is created, but many CASE tools will generate a foreign key to represent each 
relationship in an ER diagram (whether you want it or not). In this case, the best 
option is probably to retain the relationship in the diagram and the associated 
foreign key in the logical data model and to accept some redundancy in the latter 
as the price of automatic logical data model generation. 

 Including a derivable foreign key may be worthwhile if we are generating 
program logic based on navigation using foreign keys. But carrying redundant data 
complicates updates and introduces the risk of data inconsistency. In this example, 
we would need to ensure that if a disease moved from one group to another, the 
foreign key would be updated. In fact, this can happen only if the disease number 
changes (in which case we should regard it as a new disease — if we were unhappy 
with this rule, we would need to allocate a surrogate key) or if we change the 
boundaries of existing groups. We may well determine that the business does not 
require the ability to make such changes; in this case, the derivable foreign key 
option becomes more appealing. 

 Whether or not the business requires the ability to make such changes, the 
fact that  Disease No  must be no less than  Disease Group Low No  and no greater 
than the corresponding  Disease Group High No  should be included in the busi-
ness rule documentation. 

 The preceding situation occurs commonly with dates and date ranges. For 
example, a bank statement might include all transactions for a given account 
between two dates. If the two dates were attributes of the  Statement  entity class, 
the relationship between  Transaction  and  Statement  would be derivable by 
comparing these dates with the transaction dates. In this case, the boundaries of 
a future statement might well change, perhaps at the request of the customer or 
because we wished to notify him or her that the account was overdrawn. If we 
choose the redundant foreign key approach, we will need to ensure that the 
foreign key is updated in such cases.  

  5.6.4     Optional Relationships 

 In a relational database, a one-to-many relationship that is optional at the  “ many ”  
end (as most are) requires no special handling. However, if a one-to-many relation-
ship is optional at the  “ one ”  end, the foreign key representing that relationship 
must be able to indicate in some way that there is no associated row in the refer-

 FIGURE 5.15  

   Relational model of diseases and groups.    

DISEASE (Disease No, Disease Group Low No*, Disease Name, . . .)
DISEASE GROUP (Disease Group Low No, Disease Group High No, . . .)



enced table. The most common way of achieving this is to make the foreign key 
column(s)  “ nullable ”  (able to be null or empty in some rows). However, this adds 
complexity to queries. A simple join of the two tables (an  “ inner join ” ) will only 
return rows with non-null foreign keys. For example, if nullable foreign keys are 
used, a simple join of the  Agent  and  Policy  tables illustrated in  Figure 5.16    will 
only return those policies actually sold by an agent. One of the major selling points 
of relational databases is the ease with which end users can query the database. 
The novice user querying these data to obtain a fi gure for the total value of poli-
cies is likely to get a value signifi cantly less than the true total. To obtain the true 
total, it is necessary to construct an outer join or use a union query, which the 
novice user may not know about. 

 A way around this problem is to add a  Not Applicable  row to the referenced 
table and include a reference to that row in each foreign key that would otherwise 
be null. The true total can then be obtained with only a simple query. The draw-
back is that other processing becomes more complex because we need to allow 
for the  “ dummy ”  agent. 

  Alternatives to Nulls 
  Section 5.4.9  discusses some problems with nulls in nonkey columns. We now 
discuss two foreign key situations in which alternatives to nulls can make life 
simpler. 

  Optional Foreign Keys in Hierarchies 

 In a hierarchy represented by a recursive relationship, that relationship must be 
optional at both ends. However, we have found that making top-level foreign keys 
self-referencing rather than null (see the fi rst two rows in  Figure 5.17   ) can simplify 
the programming of queries that traverse a varying number of levels. For example, 
a query to return the HR Department and all its subordinate departments does not 
need to be a union query, as it can be written as a single query that traverses the 
maximum depth of the hierarchy.  

  Other Optional Foreign Keys 

 If a one-to-many relationship is optional at the  “ one ”  end, a query that joins the 
tables representing the entity classes involved in that relationship may need to 

 FIGURE 5.16  

   Optional relationship.    
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take account of that fact if it is not to return unexpected results. For example, 
consider the tables in  Figure 5.18   . If we wish to list all employees and the unions 
to which they belong, the fi rst query in  Figure 5.18  will only return four employ-
ees (those who belong to unions) rather than all of them. By contrast, an outer 
join, indicated by the keyword  “ left, ”   11   as in the second query in  Figure 5.18 , will 
return all employees.  

 If users are able to access the database directly through a query interface, it is 
unreasonable to expect all users to understand this subtlety. In this case, it may 
be better to create a dummy row in the table representing the entity class at the 

Org Unit ID Org Unit Name Parent Org Unit ID

1 Production 1

2 H/R 2

21 Recruitment 2

22 Training 2

221 IT Training 22

222 Other Training 22

ORG UNIT (Org Unit ID, Org Unit Name, Parent Org Unit ID*)

 FIGURE 5.17  

   An alternative simple hierarchy table.    

 FIGURE 5.18  

   Tables at each end of an optional one-to-many relationship.    

Surname Initial Union Code Union Code Union Name

Chekhov P APF APF Airline Pilots’ Federation

Kirk J null ETU Electrical Trades Union

McCoy L null TCU Telecommunications Union

Scotty M ETU

Spock M null

Sulu H APF

Uhura N TCU

select SURNAME, INITIAL, UNION_NAME

from EMPLOYEE join UNION on
EMPLOYEE.UNION_CODE = UNION.UNION_CODE;

select SURNAME, INITIAL, UNION_NAME
from EMPLOYEE left join UNION on
EMPLOYEE.UNION_CODE = UNION.UNION_CODE;

  11   The keyword  “ right ”  may also be used if all rows from the second table are required rather than 
all rows from the fi rst table. 



 “ one ”  end of the relationship and replace the null foreign key in all rows in the 
other table by the key of that dummy row, as illustrated in  Figure 5.19   . The fi rst, 
simpler query in  Figure 5.18  will now return all employees.    

  5.6.5     Overlapping Foreign Keys 

  Figure 5.20    is a model for an insurance company that operates in several countries. 
Each agent works in a particular country,  and sells only to customers in that 

 FIGURE 5.19  

   A dummy row at the  “ one ”  end of an optional one-to-many relationship.    

Surname Initial Union Code Union Code Union Name

Chekhov P APF APF Airline Pilots’ Federation

Kirk J N/A ETU Electrical Trades Union

McCoy L N/A TCU Telecommunications Union

Scotty M ETU N/A Not applicable

Spock M N/A

Sulu H APF

Uhura N TCU

 FIGURE 5.20  

   ER model leading to overlapping foreign keys.    
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country . Note that the ER diagram  allows  for this situation but does not enforce 
the rule. 

 If we apply the rule for representing relationships by foreign keys, we fi nd that 
the  Country ID  column appears twice in the  Policy  table — once to support the 
link to  Agent  and once to support the link to  Customer . We can distinguish the 
columns by naming one  Customer Country ID  and the other  Agent Country ID . 
But because of our rule that agents sell only to customers in their own country, 
both columns will always hold the same value. This seems a clear case of data 
redundancy, easily solved by combining the two columns into one. Yet, there are 
arguments for keeping two separate columns. 

 The two-column approach is more fl exible; if we change the rule about selling 
only to customers in the same country, the two-column model will easily support 
the new situation. But here we have the familiar trade-off between fl exibility and 
constraints; we can equally argue that the one-column model does a better job of 
enforcing an important business rule, if we are convinced that the rule will apply 
for the life of the database. 

 There is a more subtle fl exibility issue: What if one or both of the relationships 
from  Policy  became optional? Perhaps it is possible for a policy to be issued 
without involving an agent. In such cases, we would need to hold a null value for 
the foreign key to  Agent , but this involves  “ nulling out ”  the value for  Country ID , 
part of the foreign key to  Customer . We would end up losing our link to  Customer . 
We have been involved in some long arguments about this one, the most common 
suggestion being that we only need to set the value of  Agent ID  to null and leave 
 Country ID  untouched. 

 But this involves an inconsistency in the way we handle foreign keys. It might 
not be so bad if we only had to tell  programmers  to handle the situation as a 
special case ( “ Don ’ t set the whole of the foreign key to null in this instance ” ), but 
these days program logic may be generated automatically by a CASE tool that is 
not so fl exible about handling nonstandard situations. The DBMS itself may rec-
ognize foreign keys and rely on them not overlapping in order to support refer-
ential integrity. 

 Our advice is to include both columns and also to include the rule that 
agents and customers must be from the same country in the business rule 
documentation. 

 Of course, we can alternatively use stand-alone keys for  Customer  and  Agent . 
In this case, the issue of overlapping foreign keys will not arise, but again the rule 
that agents and customers must be from the same country should be included in 
the business rule documentation.  

  5.6.6     Split Foreign Keys 

 The next structure has a similar fl avor but is a little more complex. You are likely 
to encounter it more often than the overlapping foreign key problem, once you 
know how to recognize it! 



  Figure 5.21    shows a model for an organization that takes orders from custom-
ers and dispatches them to the customers ’  branches. Note that the primary key 
of  Branch  is a combination of  Customer No  and  Branch No , a choice that would 
be appropriate if we wanted to use the customers ’  own branch numbers rather 
than defi ne new ones ourselves. In translating this model into relational tables, 
we need to carry two foreign keys in the  Ordered Item  table. The foreign key to 
 Order  is  Order No , and the foreign key to  Branch  is  Customer No   +   Branch No . 
Our  Ordered Item  table, including foreign keys (marked with asterisks), is shown 
in  Figure 5.22   . 

 But let us assume the reasonable business rule that the customer who places 
the order is also the customer who receives the order. Then, since each order is 
placed and received by one customer,  Order No  is a determinant of  Customer No . 
The  Ordered Item  table is therefore not fully normalized, as  Order No  is a deter-
minant but is not a candidate key of the table. 

 FIGURE 5.21  

   ER model leading to split foreign key.    
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 FIGURE 5.22  

   Ordered item table.    

ORDERED ITEM (Order No*, Item No, Product, Customer No*, Branch No*)
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 We already have a table with  Order No  as the key and  Customer No  as a nonkey 
item. Holding  Customer No  in the  Ordered Item  table tells us nothing new and 
involves us in the usual problems of unnormalized structures. For example, if the 
 Customer No  for an order was entered incorrectly, it would need to be corrected 
for every item in that order. The obvious solution seems to be to remove  Customer 
No  from the  Ordered Item  table. But this causes its own problems. 

 First, we have broken our rule for generating a foreign key for each one-to-
many relationship. Looked at another way, if we were to draw a diagram from the 
tables, would we include a relationship line from  Ordered Item  to  Branch ? Not 
according to our rules, but we started off by saying there  was  a relationship 
between the two;  Branch No  is in the  Ordered Item  table to support a relation-
ship to  Branch . 

 But there is more to the problem than a diagramming nicety. Any CASE tool 
that generates foreign keys automatically from relationships is going to include 
 Customer No  in the  Ordered Item  table. A program generator that makes the 
usual assumption that it can fi nd the full primary key of  Branch  in the  Ordered 
Item  table will be in trouble if  Customer No  is excluded. Again, standard facilities 
for enforcing referential integrity are most unlikely to support the special situation 
that arises if  Customer No  is excluded. 

 Whether we include or exclude  Customer No , we face serious problems. When 
you encounter this situation, which you should pick up through a normalization 
check after generating the foreign keys, we strongly suggest you go back and 
select different primary keys. In this case, a stand-alone  Branch No  as the primary 
key of  Branch  will do the job. (The original  Branch No  and  Customer No  will 
become nonkey items, forming a second candidate key.) You will lose the 
constraint that the customer who places the order receives the order. This will 
need to be included in the business rule documentation.   

  5.7     TABLE AND COLUMN NAMES 
 There are two factors affecting table and column names:

   1.     The target DBMS (if known) may impose a limit on the length of names, 
may require that there are no spaces or special characters other than 
underlines in a name, and may require names to be in all uppercase or all 
lowercase.  

  2.     There may be a standard in force within the organization as to how tables 
and columns are named.    

 If there is no name length limit and no table/column naming standard, the best 
approach to table and column naming is to use the corresponding entity class or 
attribute name, with spaces and special characters replaced by underlines if nec-
essary (e.g., the entity class  Organization Unit  would be represented by the 
table  organization _ unit ). An alternative, provided the target DBMS supports 



mixed-case names, is to delete all spaces and special characters and capitalize the 
fi rst letter of each word in the name (e.g.,  OrganizationUnit ; the so-called 
 “ CamelCase ” ). 

 In our experience, installation table/column naming standards often require 
that table names all start with a particular prefi x, typically  “ t _  ”  or  “ Tbl. ”  Our 
example table name would then be  t _ organization _ unit  or  TblOrganization-
Unit , respectively. 

 If the target DBMS imposes a name length limit, it is usually necessary to abbre-
viate the words that make up table and column names. If so, two principles should 
be observed:

   1.     Use abbreviations consistently.  
  2.     Do not also abbreviate entity class and attribute names, as these are for 

use by the business, not the database.     

  5.8     LOGICAL DATA MODEL NOTATIONS 
 How should a logical data model be presented to users and reviewers? There is a 
choice of diagrammatic and textual notations. 

 An ER diagram can be used to present a logical data model using the following 
conventions:

    ■      Each table is represented by a box as if it were an entity class.  

   ■      Each foreign key in a table is represented by a line from that table to the refer-
enced table, marked as  “ optional many ”  at the foreign key end and either  “ man-
datory one ”  or  “ optional one ”  at the primary key end, depending on whether 
the column is mandatory ( NOT NULL ) or optional ( NULL ), which will have been 
derived from the optionality of the relationship that the particular foreign key 
represents.  

   ■      All columns (including foreign keys) should be listed either on the diagram 
(inside the box representing the table) or in a separate list depending on the 
facilities provided by the chosen CASE tool and the need to produce an unclut-
tered diagram that fi ts the page.    

 If this notation is chosen, it is important to be able to distinguish the logical 
data model diagram from the conceptual data model diagram. Your chosen CASE 
tool may provide different diagram templates for the two types of model with 
different notations, but if it does not, be sure to label clearly each diagram as to 
whether it is conceptual or logical. 

 Some UML CASE tools (e.g., Rational Rose) provide a quite different diagram 
type for the logical data model; although it consists of boxes and lines, the boxes 
look quite different from those used in a class model. 

 The textual notations available also depend on the CASE tool chosen but gen-
erally conform to one of the following three formats:
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   1.      “ Relational ”  notation, as in  Figure 5.23   , in which each table name is listed and 
followed on the same line by the names of each of its columns and the entire 
set of column names enclosed in parentheses or braces.  

  2.      “ List ”  notation, as in  Figure 5.24   , in which each table name and column name 
appear in a line on its own, and the data type and length (and possibly the 
defi nition) of each column is shown.  

  3.     DDL (data description language), as in  Figure 5.25   , in which the instructions 
to the DBMS to create each table and its columns are couched.     

 FIGURE 5.23  

   Employee model using relational notation.    

EMPLOYEE (Employee Number, Employee Name, Department Number)
DEPARTMENT (Department Number, Department Name, Department Location)
QUALIFICATION (Employee Number, Qualification Description, Qualification Year)

 FIGURE 5.24  

   Employee model using list notation.    

EMPLOYEE
Employee Number: 5 Numeric—The number allocated to this employee by the Human
  Resources Department
Employee Name: 60 Characters—The name of this employee: the surname, a comma
  and space, the first given name plus a space and the middle initial if any
Department Number: The number used by the organization to identify the Department
  that pays this employee’s salary

DEPARTMENT
Department Number: 2 Numeric—The number used by the organization to identify this
  Department
Department Name: 30 Characters—The name of this Department as it appears in
  company documentation
Department Location: 30 Characters—The name of the city where this Department is
  located

QUALIFICATION
Employee Number: 5 Numeric—The number allocated to the employee holding this
  qualification by the Human Resources Department
Qualification Description: 30 Characters—The name of this qualification
Qualification Year: Date Optional—The year in which this employee obtained this 
  qualification



  5.9     SUMMARY 
 The transformation from conceptual model to logical model is largely mechanical, 
but there are a few important decisions to be made by the modeler. Subtypes and 
supertypes need to be  “ leveled. ”  Tables can represent a selected single level of 
generalization or multiple levels of generalization. 

 The allowed values of category attributes need to be specifi ed either by a 
constraint on the relevant column or by the addition of a new table to hold them. 
Care needs to be taken in the interdependent tasks of primary key specifi cation 
and implementation of relationships using foreign keys. At all stages of this phase, 
there are exceptions and unusual situations that the professional modeler needs 
to be able to recognize and deal with.                            

 FIGURE 5.25  

   Employee model using DDL notation.    

create table EMPLOYEE (
EMPLOYEE_NUMBER integer not null,
EMPLOYEE_NAME char(60) not null,
DEPARTMENT_NUMBER integer not null);
alter table EMPLOYEE add constraint PK1 primary key (EMPLOYEE_NUMBER);

create table DEPARTMENT (
DEPARTMENT_NUMBER: integer not null,
DEPARTMENT_NAME char(30) not null,
DEPARTMENT_LOCATION: char(30) not null);
alter table DEPARTMENT add constraint PK2 primary key (DEPARTMENT_NUMBER);

create table QUALIFICATION (
EMPLOYEE_NUMBER integer not null,
QUALIFICATION_DESCRIPTION char(30) not null,
QUALIFICATION_YEAR date null);
alter table QUALIFICATION add constraint PK3 primary key (EMPLOYEE_NUMBER, 
QUALIFICATION_DESCRIPTION);
alter table EMPLOYEE add constraint FK1 foreign key (DEPARTMENT_NUMBER) 
references DEPARTMENT;
alter table QUALIFICATION add constraint FK2 foreign key (EMPLOYEE_NUMBER) 
references EMPLOYEE;
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6     Normalization 

  Given any pool of entities and attributes, there are a number of ways you can 
group them into relations. In this chapter, you will be introduced to the process 
of  normalization , through which you create relations that avoid most of the 
problems that arise from bad relational design. 

 There are at least two ways to approach normalization. The fi rst is to work 
from an entity – relationship (ER) diagram. If the diagram is drawn correctly, then 
there are some simple rules you can use to translate it into relations that will avoid 
most relational design problems. The drawback to this approach is that it can be 
diffi cult to determine whether your design is correct. The second approach is to 
use the theoretical concepts behind good design to create your relations. This is 
a bit more diffi cult than working from an ER diagram, but often results in a better 
design. 

 In practice, you may fi nd it useful to use a combination of both approaches. 
First, create an ER diagram and use it to design your relations. Then, check those 
relations against the theoretical rules for good design.  

   6.1     TRANSLATING AN ER DIAGRAM INTO RELATIONS 
 An ER diagram in which all many-to-many relationships have been transformed 
into one-to-many relationships through the introduction of composite entities can 
be translated directly into a set of relations. To do so:

    ■      Create one table for each entity.  

   ■      For each entity that is only at the  “ one ”  end of one or more relationships, and 
not at the  “ many ”  end of any relationship, create a single-column primary key, 
using an arbitrary unique number if no natural primary key is available.  

   ■      For each entity that is at the  “ many ”  end of one or more relationships, include 
the primary key of each parent entity (those at the  “ one ”  end of the relation-
ships) in the table as foreign keys.  

   ■      If an entity at the  “ many ”  end of one or more relationships has a natural primary 
key (e.g., an order or invoice number), use that single column as the primary 
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key. Otherwise, concatenate the primary key of its parent or parents with any 
other column or columns needed for uniqueness to form the table ’ s primary 
key.    

 Following these guidelines, we end up with the following tables for the Lasers 
Only database:

    customer ( customer _ numb , customer _ first _ name, customer _ last _ name,   
               customer _ street, customer _ city, customer _ state, customer _ zip,   
               customer _ phone, credit _ card _ numb, card _ exp _ date)   
   item ( item _ numb , title, distributor _ numb, retail _ price,   
               release _ date, genre)   
   order ( order _ numb , customer _ numb, order _ date, order _ filled)   
   order _ lines ( order _ numb ,  item _ numb , quantity, discount _ applied,   
               selling _ price, line _ cost, shipped)   
   distributor ( distributor _ numb , distributor _ name, distributor _

 street,       distributor _ city, distributor _ city, distributor _ state, 
distributor _ zip,       distributor _ phone, distributor _ contact _ person, 
contact _ person _ ext)   

   actor ( actor _ numb , actor _ name)   
   performance ( actor _ numb ,  item _ numb , role)   
   producer ( producer _ name , studio)   
   production ( producer _ name ,  item _ numb )     

       Note:  You will see some of these relations reworked a bit throughout this 
chapter to help illustrate various aspects of database design. However, the 
preceding is the design that results from a direct translation of the ER 
diagram.       

  6.2     NORMAL FORMS 
 The theoretical rules that the design of a relation meet are known as  normal 
forms . Each normal form represents an increasingly stringent set of rules. Theo-
retically, the higher the normal form, the better the design of the relation. 

 As you can see in  Figure 6.1   , there are six nested normal forms, indicating that 
if a relation is in one of the higher, inner normal forms, it is also in all of the 
normal forms below it. 

 In most cases, if you can place your relations in third normal form (3NF), then 
you will have avoided most of the problems common to bad relational designs. 
Boyce-Codd (BCNF) and fourth normal form (4NF) handle special situations that 
arise only occasionally. However, they are conceptually easy to understand and 
can be used in practice if the need arises. 
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 Fifth normal form (5NF), however, is a complex set of criteria that is extremely 
diffi cult to work with. It is, for example, very diffi cult to verify that a relation is 
in 5NF. Most practitioners do not bother with 5NF, knowing that if their relations 
are in 3NF (or 4NF if the situation warrants), then their designs are generally 
problem free. 

  FIGURE 6.1  

   Nested normal forms.    

       Note:  In addition to the six normal forms in  Figure 6.1 , there is another normal 
form — domain/key normal form — that is of purely theoretical importance and, 
to this date, has not been used as a practical design objective.       

  6.3     FIRST NORMAL FORM 
 A table is in fi rst normal form (1NF) if it meets the following criteria:  The data 
are stored in a two-dimensional table with no repeating groups.  The key to 
understanding 1NF is therefore understanding the nature of a repeating group of 
data. 

  6.3.1     Understanding Repeating Groups 

 A  repeating group  is an attribute that has more than one value in each row. For 
example, assume that you were working with an employee ’ s relation and needed 
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to store the names and birth dates of the employee ’ s children. Because each 
employee can have more than one child, the names of children and the children ’ s 
birth dates each form a repeating group. 

       Note:  A repeating group is directly analogous to a multivalued attribute in an 
ER diagram.      

 There is actually a very good reason why repeating groups are disallowed. To 
see what might happen if they were present, take a look at  Figure 6.2   , an instance 
of the employee ’ s relation we were just discussing. 

 Notice that there are multiple values in a single row in both of the columns, 
 children ’ s names  and  children ’ s birthdates . This presents two major 
problems:

    ■      There is no way to know exactly which birth date belongs to which child. It is 
tempting to say that we can associate the birth dates with the children by their 
positions in the list, but there is nothing to ensure that the relative positions 
will always be maintained.  

   ■      Searching the table is very diffi cult. If, for example, we want to know which 
employees have children born before 1995, the database management system 
(DBMS) will need to perform data manipulations to extract the individual dates 
from the  children ’ s birth dates  column before it can evaluate the dates 
themselves. Given that there is no way to know how many birth dates there 
are in the column for any specifi c row, the processing overload for searching 
becomes even greater.    

 The solution to these problems is, of course, to get rid of the repeating groups 
altogether.  

  6.3.2     Handling Repeating Groups 

 There are two ways to get rid of repeating groups to bring a relation into confor-
mance with the rules for 1NF — a correct way and an incorrect way. We will look 
fi rst at the incorrect way so you will know what  not  to do. 

  FIGURE 6.2  

   A relation with repeating groups.    
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 In  Figure 6.3    you can see a relation that handles repeating groups by creating 
multiple columns for the multiple values. This particular example includes three 
pairs of columns for a child ’ s name and birth date. 

 The relation in  Figure 6.3  does meet the criteria for 1NF: The repeating groups 
are gone and there is no problem identifying which birth date belongs to which 
child. However, the design has introduced several problems of its own:

    ■      The relation is limited to three children for any given employee. This means 
that there is no room to store Jane Smith ’ s fourth child. Should you put another 
row for Jane Smith into the table? If so, then the primary key of this relation 
can no longer be just  employee ID . The primary key must include at least one 
child ’ s name as well.  

   ■      The relation wastes space for people who have less than three children. Given 
that disk space is one of the least expensive elements of a database system, this 
is probably the least of the problems with this relation.  

   ■      Searching for a specifi c child becomes very clumsy. To answer the question 
 “ Does anyone have a child named Lee? ”  the DBMS must construct a query that 
includes a search of all three child name columns because there is no way to 
know in which column the name might be found.    

 The right way to handle repeating groups is to create another table (another 
entity) to handle multiple instances of the repeating group. In the example we 
have been using, we would create a second table for the children, producing 
something like  Figure 6.4   . 

 Neither of the two new tables contains any repeating groups, and this form of 
the design avoids all the problems of the preceding solution:

    ■      There is no limit to the number of children who can be stored for a given 
employee. To add another child, you simply add another row to the table.  

   ■      There is no wasted space. The  children  table uses space only for data 
that are present.  

   ■      Searching for a specifi c child is much easier because the child ’ s name is 
found in only one column.     

  FIGURE 6.3  

   A relation handling repeating groups in the incorrect way.    
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  6.3.3     Problems with 1NF 

 Although 1NF relations have no repeating groups, they are full of other problems. 
To see what those problems are, we will look at the following table. (This table 
comes from Lasers Only ’ s original data management system rather than the new-
and-improved design you saw earlier in this chapter.) Expressed in the notation 
for relations that we have been using, the relation is:

    orders (customer number, first name, last name, street, city, 
state,       zip, phone, order date, item number, title, price, has 
shipped)     

 The fi rst thing we need to do is determine the primary key for this table. The 
 customer number  alone will not be suffi cient because it repeats for every item 
ordered by the customer. The  item number  will also not suffi ce, because it is 
repeated for every order on which it appears. We cannot use the  order number  
because it is repeated for every item on the order. The only solution is a concat-
enated key; in this example, this is the combination of the  order number  and the 
 item number . 

  FIGURE 6.4  

   The correct way to handle the repeating group.    
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 Given that the primary key is made up of the  order number  and the  item 
number , there are two important things we cannot do with this relation:

    ■      We cannot add data about a customer until the customer places at least one 
order because without an order and an item on that order, we do not have a 
complete primary key.  

   ■      We cannot add data about a merchandise item we are carrying without that 
item being ordered. There must be an  order number  to complete the primary 
key.    

 The preceding are  insertion anomalies , a situation that arises when you are 
prevented from inserting data into a relation because a complete primary key is 
not available. (Remember that no part of a primary key can be null.) 

       Note:  To be strictly correct, there is a third insertion anomaly in the  orders  
relation: You cannot insert an order until you know one item on the order. In 
a practical sense, however, no one would enter an order without there being 
an item ordered.      

 Insertion anomalies are common in 1NF relations that are not also in any 
of the higher normal forms. In practical terms, they occur because there are data 
about more than one entity in the relation. The anomaly forces you to insert 
data about an unrelated entity (e.g., a merchandise item) when you want to insert 
data about another entity (such as a customer). 

 First normal form relations can also give us problems when we delete data. 
Consider, for example, what happens if a customer cancels the order of a single 
item:

    ■      In cases where the deleted item was the only item on the order, you lose 
all data about the order.  

   ■      In cases where the order was the only order on which the item appeared, 
you lose data about the item.  

   ■      In cases where the deleted item was the only item ordered by a customer, 
you lose all data about the customer.    

 These  deletion anomalies  occur because part of the primary key of a row 
becomes null when the merchandise item data are deleted, forcing you to remove 
the entire row. The result of a deletion anomaly is the loss of data that you would 
like to keep. In practical terms, you are forced to remove data about an unrelated 
entity when you delete data about another entity in the same table. 

       Note:  Moral to the story: More than one entity in a table is a very bad thing.      

 There is a fi nal type of anomaly in the  orders  relation that is not related to the 
primary key: a  modifi cation , or  update , anomaly. The  orders  relation has a great 



212  CHAPTER 6 Normalization

deal of unnecessary duplicated data, in particular information about customers. 
When a customer moves, then the customer ’ s data must be changed in every row, 
for every item, on every order ever placed by the customer. If every row is not 
changed correctly, then data that should be the same are no longer the same. The 
potential for these inconsistent data is the modifi cation anomaly.   

  6.4     SECOND NORMAL FORM 
 The solution to anomalies in a 1NF relation is to break down the relation so that 
there is one relation for each entity in the 1NF relation. The  orders  relation, for 
example, will break down into four relations (customers, merchandise items, 
orders, and line items). Such relations are in at least second normal form (2NF). 

 In theoretical terms, 2NF is defi ned as follows:  The relation is in 1NF and all 
nonkey attributes are functionally dependent on the entire primary key.  

 The new term in the preceding is  functionally dependent,  a special relation-
ship between attributes. 

  6.4.1     Understanding Functional Dependencies 

 A functional dependency is a one-way relationship between two attributes such 
that at any given time, for each unique value of attribute A, only one value of 
attribute B is associated with it through the relation. For example, assume that A 
is the customer number from the  orders  relation. Each customer number is asso-
ciated with one customer fi rst name, one last name, one street address, one city, 
one state, one zip code, and one phone number. Although the values for those 
attributes may change, at any moment, there is only one. 

 We therefore can say that  first name ,  last name ,  street ,  city ,  state ,  zip , 
and  phone  attributes are functionally dependent on the  customer number . This 
relationship is often written as 

   customer number - >  first name, last name, street, city, state, 
zip, phone    

and read  “ customer number determines fi rst name, last name, street, city, state, 
zip, and phone. ”  In this relationship,  customer number  is known as the  determi-
nant  (an attribute that determines the value of other attributes). 

 Notice that the functional dependency does not necessarily hold in the reverse 
direction. For example, any given fi rst or last name may be associated with more 
than one customer number. (It would be unusual to have a  customer  table of any 
size without some repetition of names.) 

 The functional dependencies in the  orders  table are:

    customer number - >  first name, last name, street, city, state, 
zip,       phone   



   item number - >  title, price   
   order number - >  customer number, order date   
   item number  +  order number - >  has shipped     

 Notice fi rst that there is one determinant for each entity in the relation and 
that the determinant is what we have chosen as the entity identifi er. Notice also 
that when an entity has a concatenated identifi er, the determinant is also concat-
enated. In this example, whether an item has shipped depends on the combina-
tion of the item and the order.  

  6.4.2     Using Functional Dependencies to Reach 2NF 

 If you have correctly identifi ed the functional dependencies among the attributes 
in a database environment, then you can use them to create 2NF relations. Each 
determinant becomes the primary key of a relation. All the attributes that are 
functionally dependent on it become nonkey attributes in the relation. 

 The four relations into which the original  orders  relation should be broken 
are:

    customers ( customer number , first name, last name, street, city,   
               state, zip, phone)   
   items ( item number , title, price)   
   orders ( order number , customer number, order date)   
   line items ( order number ,  item number , has shipped)     

 Each of these should in turn correspond to a single entity in your ER diagram. 

       Note:  When it comes to deciding what is driving database design — functional 
dependencies or entities — it is really a  “ chicken and egg ”  situation. What is 
most important is that there is consistency between the ER diagram and the 
functional dependencies you identify in your relations. It makes no difference 
whether you design by looking for functional dependencies or for entities. In 
most cases, database design is an iterative process in which you create an initial 
design, check it, modify it, and check it again. You can look at either functional 
dependencies and/or entities at any stage in the process, checking one against 
the other for consistency.      

 The relations we have created from the original  orders  relation have elimi-
nated the anomalies present in the original:

    ■      It is now possible to insert data about a customer before the customer 
places an order.  

   ■      It is now possible to insert data about an order before we know an item 
on the order.  

   ■      It is now possible to store data about merchandise items before they are 
ordered.  
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   ■      Line items can be deleted from an order without affecting data describing 
that item, the order itself, or the merchandise item.  

   ■      Data describing the customer are stored only once, and therefore any 
change to those data need to be made only once. A modifi cation anomaly 
cannot occur.     

  6.4.3     Problems with 2NF Relations 

 Although 2NF eliminates problems from many relations, you will occasionally run 
into relations that are in 2NF yet still exhibit anomalies. Assume, for example, that 
each laser disc title that Lasers Only carries comes from one distributor and that 
each distributor has only one warehouse, which has only one phone number. The 
following relation is therefore in 2NF:

    items ( item number , title, distributor, warehouse phone number)     

 For each  item number , there is only one value for the  title ,  distributor , 
and  warehouse phone number  items. However, there is one insertion anomaly —
 you cannot insert data about a distributor until you have an item from that dis-
tributor — and a deletion anomaly — if you delete the only item from a distributor, 
you lose data about the distributor. There is also a modifi cation anomaly — the 
distributor ’ s warehouse phone number is duplicated for every item the company 
gets from that distributor. The relation is in 2NF, but not 3NF.   

  6.5     THIRD NORMAL FORM 
 Third normal form is designed to handle situations like the one you just read about 
in the preceding section. In terms of entities, the  items  relation does contain two 
entities: the  Merchandise Item  and the  Distributor . That alone should convince 
you that the relation needs to broken down into two smaller relations, both of 
which are now in 3NF:

    items ( item number , distributor)   
   distributors ( distributor , warehouse phone number)     

 The theoretical defi nition of 3NF says:  The relation is in 2NF and there are 
no transitive dependencies.  The functional dependencies found in the original 
relation are an example of a  transitive dependency . 

  6.5.1     Transitive Dependencies 

 A transitive dependency exists when you have the following functional depen-
dency pattern:

    A - >  B and B - >  C therefore A - >  C     



 This is precisely the case with the original  items  relation. The only reason that 
the  warehouse phone number  is functionally dependent on the  item number  is 
because the  distributor  is functionally dependent on the  item number  and the 
 phone number  is functionally dependent on the  distributor . The functional 
dependencies are really:

    item number - >  distributor   
   distributor - >  warehouse phone number     

       Note:  Transitive dependencies take their name from the transitive property in 
mathematics, which states that if a  >  b and b  >  c, then a  >  c.      

 There are two determinants in the original  items  relation, each of which 
should be the primary key of its own relation. However, it is not merely the pres-
ence of the second determinant that creates the transitive dependency. What 
really matters is that the second determinant is not a candidate key for the 
relation. 

 Consider, for example, this relation:

    items ( item number , UPC code, distributor, price)     

 The  item number  is an arbitrary value that Lasers Only assigns to each merchandise 
item. The  UPC code  is an industry-wide code that is unique to each item as well. 
The functional dependencies in this relation are:

    item number - >  UPC code, distributor, price   
   UPC code - >  item number, distributor, price     

 Is there a transitive dependency here? No, because the second determinant is 
a candidate key. (Lasers Only could just as easily have used the UPC code as the 
primary key.) There are no insertion, deletion, or modifi cation anomalies in this 
relation; it describes only one entity — the  Merchandise Item . 

 A transitive dependency therefore exists only when the determinant that is not 
the primary key is not a candidate key for the relation. For example, in the  items  
table we have been using as an example, the distributor is a determinant but not 
a candidate key for the table. (There can be more than one item coming from a 
single distributor.) 

 When you have a transitive dependency in a 2NF relation, you should break 
the relation into two smaller relations, each of which has one of the determinants 
in the transitive dependency as its primary key. The attributes determined by the 
determinants become the nonkey attributes in each relation. This removes the 
transitive dependency — and its associated anomalies — and places the relations in 
3NF. 

       Note:  A 2NF relation that has no transitive dependencies is, of course, auto-
matically in 3NF.        
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  6.6     BOYCE-CODD NORMAL FORM 
 For most relations, 3NF is a good design objective. Relations in that state are free 
of most anomalies. However, occasionally you run across relations that exhibit 
special characteristics where anomalies still occur. BCNF and 4NF were created 
to handle such special situations. 

       Note:  If your relations are in 3NF and do not exhibit the special characteristics 
that BCNF and 4NF were designed to handle, then they are automatically in 
4NF. As mentioned earlier in this chapter, it is extremely diffi cult to determine 
if a relation is in 5NF without the aid of a computer to do the analyses, and 
therefore we rarely use 5NF in practice.      

 The easiest way to understand BCNF is to start with an example. Assume that 
Lasers Only decides to add a relation to its database to handle employee work 
scheduling. Each employee works one or two four-hour shifts a day at the store. 
During each shift, an employee is assigned to one station (a place in the store, 
such as the front desk or the stockroom). Only one employee works a station 
during a given shift. 

 A relation to handle the schedule might be designed as follows:

    schedule (employee ID, date, shift, station, worked shift?)     

 Given the rules for the scheduling (one person per station per shift), there are 
two possible primary keys for this relation:  employee ID   +   date   +   shift  or  date  
 +   shift   +   station . The functional dependencies in the relation are:

    employee ID  +  date  +  shift - >  station, worked shift?   
   date  +  shift  +  station - >  employee ID, worked shift?     

 Keep in mind that this holds true only because there is only one person working 
each station during each shift. 

       Note:  There is very little difference between the two candidate keys as far as 
the choice of a primary key is concerned. In cases like this, you can choose 
either one.      

 This  schedule  relation exhibits overlapping concatenated candidate keys. 
(Both candidate keys have date and shift in common.) BCNF was designed to deal 
with relations that exhibit this characteristic. 

 To be in BCNF, a relation must meet the following rule:  The relation is in 3NF 
and all determinants are candidate keys.  BCNF is considered to be a more 
general way of looking at 3NF because it includes those relations with the overlap-
ping candidate keys. The sample  schedule  relation we have been considering 



does meet the criteria for BCNF because the two determinants are indeed candi-
date keys.  

  6.7     FOURTH NORMAL FORM 
 Like BCNF, 4NF was designed to handle relations that exhibit a special character-
istic that does not arise too often. In this case, the special characteristic is some-
thing known as a  multivalued dependency . 

 As an example, consider the following relation:

    movie info ( title ,  star ,  producer )     

 A given movie can have more than one star; it can also have more than one 
producer. The same star can appear in more than one movie; the producer can 
also work on more than one movie (e.g., see  Figure 6.5   ). The relation must there-
fore include all columns in its key. 

 Because there are no nonkey attributes, this relation is in BCNF. Nonetheless, 
the relation exhibits anomalies:

    ■      You cannot insert the stars of a movie without knowing at least one 
producer.  

   ■      You cannot insert the movie ’ s producer without knowing at least one star.  
   ■      If you delete the only producer from a movie, you lose information about 

its stars.  
   ■      If you delete the only star from a movie, you lose information about its 

producers.  
   ■      Each producer ’ s name is duplicated for every star in the movie. By the 

same token, each star ’ s name is duplicated for each movie producer. This 
unnecessary duplication forms the basis of a modifi cation anomaly.    

 There are at least two unrelated entities in this relation, one that handles the 
relationship between a movie and its stars and another that handles the relation-

  FIGURE 6.5  

   A relation with a multivalued dependency.    
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ship between a movie and its producers. In a practical sense, that is the cause of 
the anomalies. (Arguably, there are also  Movie ,  Star , and  Producer  entities 
involved.) 

 However, in theoretical terms, the anomalies are caused by the presence of a 
multivalued dependency in the same relation, which must be eliminated to go to 
4NF. The rule for 4NF is:  The relation is in BCNF and there are no multivalued 
dependencies.  

  6.7.1     Multivalued Dependencies 

 A multivalued dependency exists when for each value of attribute A, there exists 
a fi nite set of values of attribute B that are associated with it and a fi nite set of 
values of attribute C that are also associated with it. Attributes B and C are inde-
pendent of each other. 

 In the example we have been using, there is just such a dependency. First, for 
each movie title, there is a group of actors (the stars) who are associated with the 
movie. For each title, there is also a group of producers who are associated with 
it. However, the actors and the producers are independent of one another. 

       Note:  At this point, do not let semantics get in the way of database theory. Yes, 
it is true that producers fund the movies that the actors are starring in, but in 
terms of database relationships, there is no direct connection between the 
two.      

 The multivalued dependency can be written as:

    title - >>  star   
   title - >>  producer    

and read  “ title multidetermines star and title multidetermines producer. ”  

       Note:  To be strictly accurate, a functional dependency is a special case of a 
multivalued dependency where what is being determined is one value rather 
than a group of values.      

 To eliminate the multivalued dependency and bring this relation into 4NF, you 
split the relation, placing each part of the dependency in its own relation:

    movie stars ( title ,  star )   
   movie producers ( title ,  producer )     

 With this design, you can independently insert and remove stars and producers 
without affecting the other. Star and producer names also appear only once for 
each movie with which they are involved.   



  6.8     NORMALIZED RELATIONS AND DATABASE PERFORMANCE 
 Normalizing the relations in a database separates entities into their own relations 
and makes it possible for you to enter, modify, and delete data without disturbing 
entities other than the one directly being modifi ed. However, normalization is not 
without its downside. 

 When you split relations so that relationships are represented by matching 
primary and foreign keys, you force the DBMS to perform matching operations 
between relations whenever a query requires data from more than one table. For 
example, in a normalized database you store data about an order in one relation, 
data about a customer in a second relation, and data about the order lines in yet 
a third relation. The operation typically used to bring the data into a single table 
so you can prepare an output such as an invoice is known as a  join.  

 In theory, a join looks for rows with matching values between two tables 
and creates a new row in a result table every time it fi nds a match. In practice, 
however, performing a join involves manipulating more data than the simple 
combination of the two tables being joined would suggest. Joins of large tables 
(those of more than a few hundred rows) can signifi cantly slow down the perfor-
mance of a DBMS. 

 To understand what can happen, you need to know something about the 
relational algebra join operation. As with all relational algebra operations, the 
result of a join is a new table. 

       Note:  Relational algebra is a set of operations used to manipulate and extract 
data from relations. Each operation performs a single manipulation of one or 
two tables. To complete a query, a DBMS uses a sequence of relational algebra 
operations; relational algebra is therefore procedural. SQL, on the other hand, 
is based on the relational calculus, which is nonprocedural, allowing you to 
specify what you want rather than how to get it. A single SQL Retrieval 
command can require a DBMS to perform any or all of the operations in the 
relational algebra.      

  6.8.1     Equi-Joins 

 In its most common form, a join forms new rows when data in the two source 
tables match. Because we are looking for rows with equal values, this type of join 
is known as an  equi-join  (or a  natural equi-join ). As an example, consider the 
two tables in  Figure 6.6   . 

 Notice that the  ID number  column is the primary key of the  customers  table 
and that the same column is a foreign key in the  orders  table. The  ID number  
column in  orders  therefore serves to relate orders to the customers to which they 
belong. 

6.8 Normalized Relations and Database Performance  219



220  CHAPTER 6 Normalization

 Assume that you want to see the names of the customers who placed each 
order. To do so, you must join the two tables, creating combined rows wherever 
there is a matching ID number. In database terminology, we are joining the two 
tables  over   ID number . The result table can be found in  Figure 6.7   . 

 An equi-join can begin with either source table. (The result should be the same 
regardless of the direction in which the join is performed.) The join compares 
each row in one source table with the rows in the second. For each row in the 
fi rst that matches data in the second source table in the column or columns over 
which the join is being performed, a new row is placed in the result table. 

  FIGURE 6.6  

   Two tables with a primary key – foreign key relationship.    

  FIGURE 6.7  

   The joined result table.    



 Assuming that we are using the  customers  table as the fi rst source table, pro-
ducing the result table in  Figure 6.7  might therefore proceed conceptually as 
follows:

   1.     Search  orders  for rows with an ID number of 001. Because there are 
no matching rows in  orders , do not place a row in the result table.  

  2.     Search  orders  for rows with an ID number of 002. There are two 
matching rows in  orders . Create two new rows in the result table, 
placing the same customer information at the end of each row in  orders .  

  3.     Search  orders  for rows with an ID number of 003. There is one 
matching row in  orders . Place one new row in the result table.  

  4.     Search  orders  for rows with an ID number of 004. There are two 
matching rows in  orders . Place two rows in the result table.  

  5.     Search  orders  for rows with an ID number of 005. There are no matching 
rows in  orders . Therefore, do not place a row in the result table.  

  6.     Search  orders  for rows with an ID number of 006. There are three 
matching rows in  orders . Place three rows in the result table.    

 Notice that if an ID number does not appear in both tables, then no row is 
placed in the result table. This behavior categorizes this type of join as an 
 inner join .  

  6.8.2     What Is Really Going On: Product and Restrict 

 From a relational algebra point of view, a join can be implemented using two 
other operations: product and restrict. As you will see, this sequence of operations 
requires the manipulation of a great deal of data and, if implemented by a DBMS, 
can result in very slow query performance. 

 The  restrict  operation retrieves rows from a table by matching each row against 
logical criteria (a  predicate ). Those rows that meet the criteria are placed in the 
result table; those that do not meet the criteria are omitted. 

 The product operation (the mathematical Cartesian product) makes every pos-
sible pairing of rows from two source tables. In  Figure 6.8   , for example, the 
product of the  customers  and  orders  tables produces a result table with 48 rows 
(the six customers times the eight orders). The  ID number  column appears twice 
because it is a part of both source tables. 

       Note:  Although 48 rows may not seem like a lot, consider the size of a product 
table created from tables with 100 and 1000 rows! The manipulation of a table 
of this size can tie up a lot of disk input/output and computer processing unit 
time.      

 In some rows, the ID number is the same. These are the rows that would have 
been included in a join. We can therefore apply a restrict predicate to the product 
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  FIGURE 6.8  

   The product of the  customers  and  orders  tables.    

table to end up with the same table provided by the join you saw earlier. The 
predicate ’ s logical condition can be written as:

    customers.id _ numb  =  orders.id _ numb     

 The rows that are selected by this predicate appear in black in  Figure 6.9   ; those 
eliminated by the predicate are in gray. Notice that the black rows are exactly the 
same as those in the result table of the join ( Figure 6.7 ). 



 FIGURE 6.9  

   The product of the  customers  and  orders  tables after applying a restrict predicate.    

       Note:  Although this may seem like a highly ineffi cient way to implement a join, 
it is actually quite fl exible, in particular because the relationship between the 
columns over which the join is being performed doesn ’ t have to be equal. A 
user could just as easily request a join where the value in table A was greater 
than the value in table B, and so on.       
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  6.8.3     The Bottom Line 

 Because of the processing overhead created when performing a join, some data-
base designers make a conscious decision to leave tables unnormalized. For 
example, if Lasers Only always accessed the line items at the same time it accessed 
order information, then a designer might choose to combine the line item and 
order data into one table, knowing full well that the unnormalized relation exhib-
its anomalies. The benefi t is that retrieval of order information will be faster than 
if it were split into two tables. 

 Should you leave unnormalized relations in your database to achieve better 
retrieval performance? In this author ’ s opinion, there is rarely any need to do so. 
Assuming that you are working with a relatively standard DBMS that supports SQL 
as its query language, there are SQL syntaxes that you can use when writing 
queries that avoid joins. That being the case, it does not seem worth the problems 
that unnormalized relations present to leave them in the database. Careful writing 
of retrieval queries can provide performance that is nearly as good as that of 
retrieval from unnormalized relations. 

       Note:  For a complete discussion of writing SQL queries to avoid joins, see 
Harrington ’ s book,  SQL Clearly Explained , Second Edition, also published by 
Morgan Kaufmann.         

   6.9    FURTHER READING 
  There are many books available that deal with the theory of relational databases. 
You can fi nd useful supplementary information in S. Stanczyk, B. Champion, and 
R. Leton.  Theory and Practice of Relational Databases . Taylor  &  Rances, 2001.  
    



 CHAPTER

7     Physical Database Design 

   7.1     INTRODUCTION 
 The transition from logical to physical database design marks a change in 
focus and in the skills required. In this chapter, we are going to develop a set 
of data structures, making those structures perform on a particular hardware 
platform using the facilities of our selected database management system 
(DBMS). Instead of business and generic data structuring skills, we require 
a detailed knowledge of general performance-tuning techniques and of the 
facilities provided by the DBMS. Frequently this means that a different, more 
technical person will take on the role of database design. In this case, the 
data modeler ’ s role will be essentially to advise on the impact of changes to tables 
and columns, which may be required as a last resort to achieve performance 
goals. 

 An enduring myth about database design is that the response time for data 
retrieval from a normalized set of tables and columns will be longer than accept-
able. As with all myths there is a grain of truth in the assertion. Certainly, if a large 
amount of data are to be retrieved or if the database itself is very large and either 
the query is unduly complex or the data have not been appropriately indexed, a 
slow response time may result. However, there is a lot that can be done in tuning 
the database and in careful crafting of queries, before denormalization or other 
modifi cation of the tables and columns defi ned in a logical data model becomes 
necessary. This has become increasingly true as overall computer performance 
has improved and DBMS designers have continued to develop the capabilities of 
their optimizers (the built-in software within a DBMS that selects the most effi cient 
means of executing each query). 

 Before we go any further, we need to clarify some terminology. The data 
modeler ’ s focus will be on the tables and columns (and the views based on them). 
He or she will typically refer to the tables and columns delivered by the physical 
database design process as the  physical data model  to distinguish it from the 
logical data model. As we saw in  Chapter 5 , the logical data model is an ideal 
structure, which refl ects business information requirements and makes assertions 
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about data properties, such as functional dependency, without being obscured by 
any changes required for performance. 

 The database designer will be interested not only in the tables and columns 
but also in the infrastructure components — indexes and physical storage mecha-
nisms — that support data management and performance requirements. Since 
program logic depends only on tables and columns (and views based on them), 
that set of components is often referred to as the  logical schema ,  1   while the 
remainder may be referred to as the  physical schema .  2   These alternative uses of 
the terms  “ logical ”  and  “ physical ”  can easily lead to confusion!       

 This chapter reviews the inputs that the physical database designer needs in 
addition to the logical data model. Then it looks at a number of options available 
for achieving performance goals. The options fall into three broad categories:

   1.     Design decisions that do not affect program logic (i.e., that preserve the 
structure of the logical data model).  

  2.     Approaches to redesigning queries themselves to run faster (rather than 
changing the database structure).  

  3.     Design decisions that entail changes to the structures specifi ed in the 
logical data model.    

 Finally, we look at the defi nition of views. 
 If you are a specialist data modeler, you may be tempted to skip this chapter, 

since much of it relates to the tools and work of the physical database designer. 
We encourage you not to do so. One of the key factors in getting good outcomes 
in physical database design is the level of communication and respect between 
the database designer and the data modeler. That means understanding what the 
other party does and how they do it. Good architects maintain an up-to-date 
knowledge of building materials. 

 On the other hand, if you are responsible for physical database design, you 
need to recognize that this chapter merely scratches the surface of the many 
features and facilities available to you in a modern DBMS. Many of these are DBMS 
specifi c, and accordingly better covered in vendor manuals or guides for the spe-
cifi c product. Specialist physical database designers generally focus on one (or a 
limited number) of DBMSs, in contrast to modelers whose specialization is more 
likely to be in a specifi c business domain.  

  7.2     INPUTS TO DATABASE DESIGN 
 As well as the logical data model, the database designer will require other informa-
tion to be able to make sound design decisions. 

  1   Equivalent to the ANSI/SPARC conceptual schema and external schemas. 
  2   Equivalent to the ANSI/SPARC internal schema. 



    1.      The process model , detailing input processes (creation and updating of rows 
in tables) and output requirements (retrieval of data from the database), enabling 
the database designer to establish:
   a.     The circumstances in which rows are added to each table — how frequently 

on average and at peak times (e.g., 1 per day or 100 per second), and how 
many at a time; plus such details as whether the primary key of an added 
row depends on the time that it is added, so that rows added at about the 
same time have similar primary keys, which can impact performance both 
through contention and the need to rebalance the primary key index.  

  b.     The circumstances in which rows are updated in each table — how fre-
quently on average and at peak times plus the likelihood that rows with 
similar primary keys are updated at about the same time, which may affect 
locking (see  Section 7.5.1 ).  

  c.     The circumstances in which rows are deleted from each table — how fre-
quently and how many at a time (deletes, like inserts, affect all indexes on 
the table).  

  d.     The circumstances in which rows are retrieved from each table — what 
columns in the table are used for selecting rows, how many rows are 
retrieved, what other tables are referenced, and what columns in the refer-
ring and referenced tables are correlated or joined.     

  2.      The process/entity matrix  (often referred to as a CRUD — create, read, update, 
delete — matrix) or mapping that shows which processes access each entity 
class and how (create, update, retrieve), providing the database designer with 
a list of the processes that create, update, and retrieve each entity class.  

  3.      Nonstructural data requirements: 
   a.      Retention:  how long data in each table is to be retained before deletion or 

archiving, whether there is a requirement for data to be removed from a 
table within a certain time frame.  

  b.      Volumes:  how many rows are likely to be included in each table at system 
rollout, how many additional rows are likely to be created within a given time 
period (retention and volumes enable the database designer to establish how 
big each table will be at various times during the life of the application).  

  c.      Availability:  whether data are required on a full-time basis, and if not, for 
how long and how frequently the database can be inaccessible by users, 
enabling the database designer to plan for:
    i.     Any batch processes specifi ed in the process model.  
   ii.     Downtime during which the database can be reorganized (i.e., data and 

indexes redistributed more evenly across the storage medium).  
  iii.     Whether data need to be replicated at multiple sites to provide fallback 

in the event of network failure.     
  d.      Freshness:  how up to date the data available to those retrieving it have to 

be, enabling the database designer to decide whether it is feasible to have 
separate update and retrieval copies of data (see  Section 7.6.4 ).  
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  e.      Security requirements:  driving access permissions and possibly prompting 
table partitioning and creation of views refl ecting different subsets of data 
available to different classes of users.     

  4.      Performance requirements:  usually expressed in terms of the response time, 
the time taken by each defi ned exchange in each application/user dialog (i.e., 
the time between the user pressing the Enter key and the application display-
ing the confi rmation of the creation or updating of the data in the database or 
the results of the query). These enable the database designer to focus on those 
creates, updates, and retrieval queries that have the most critical performance 
requirements. (Beware of statements such as  “ all queries must exhibit subsec-
ond response time ” ; this is rarely true and indicates that the writer has not 
bothered to identify the critical user operations. We once encountered this 
statement in a contract that also contained the statement  “ The application must 
support retrieval queries of arbitrary complexity. ” )  

  5.      The target DBMS:  not only the  “ brand ”  (e.g., DB2, Informix, Oracle, SQL Server, 
Access, and so on), but the version, enabling the database designer to establish 
what facilities, features, and options are provided by that DBMS.  

  6.      Any current or likely limitations on disk space:  these will be a factor in choos-
ing one or the other option where options differ in their use of disk space (e.g., 
see  Section 7.6.8 ).  

  7.      Any likely diffi culties in obtaining skilled programming resources:  these may 
prompt the avoidance of more complex data structures where these impact 
programming complexity (e.g., see  Sections 7.6.4  and  7.6.5 ).     

  7.3     OPTIONS AVAILABLE TO THE DATABASE DESIGNER 
 The main challenge facing the database designer is to speed up those transactions 
with critical performance requirements. The slowest activities in a database are 
almost always the reading of data from the storage medium into main memory 
and the writing of data from main memory back to the storage medium, and it is 
on this data access (also known as I/O, input/output) that we now focus. 

 Commercial relational DBMSs differ in the facilities and features they offer, the 
ways in which those facilities and features are implemented, and the options avail-
able within each facility and feature. It is beyond the scope and intention of this 
chapter to detail each of these; in any case, given the frequency with which new 
versions of the major commercial DBMSs are released, our information would soon 
be out of date. Instead, we offer a list of the most important facilities and features 
offered by relational DBMSs and some principles for their use. This can be used 
by:

   1.     The database designer, as a checklist of what facilities and features to 
read up on in the DBMS documentation.  
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  2.     The data modeler who is handing over to a database designer, as a 
checklist of issues to examine during any negotiations over changes to 
tables and columns.    

 We fi rst look at those design decisions that do not affect program logic. We 
then look at ways in which queries can be crafted to run faster. We fi nally look 
at various types of changes that can be made to the logical schema to support 
faster queries when all other techniques have been tried and some queries still 
do not run fast enough. This is also the sequence in which these techniques should 
be tried by the database designer. 

 Note that those design decisions that do not affect program logic can be revis-
ited and altered after a database has been rolled out with minimal, if any, impact 
on the availability of the database and, of course, none on program logic. Changes 
to the logical schema, however, require changes to program logic. They must 
therefore be made in a test environment (along with those program changes), 
tested, packaged, and released in a controlled manner like any other application 
upgrade.  

  7.4     DESIGN DECISIONS THAT DO NOT AFFECT 
PROGRAM LOGIC 

 The discussion in this section makes frequent reference to the term  block . This 
is the term used in the Oracle DBMS product to refer to the smallest amount of 
data that can be transferred between the storage medium and main memory. The 
corresponding term in IBM ’ s DB2 database management system is  page . 

  7.4.1     Indexes 

  Indexes  provide one of the most commonly used methods for rapidly retrieving 
specifi ed rows from a table without having to search the entire table. 

 Each table can have one or more indexes specifi ed. Each index applies to a 
particular column or set of columns. For each value of the column(s), the index 
lists the location(s) of the row(s) in which that value can be found. For example, 
an index on  Customer Location  would enable us to readily locate all of the rows 
that had a value for  Customer Location  of (say) New York. 

 The specifi cation of each index includes:

    ■      The column(s).  
   ■      Whether it is unique (i.e., whether there can be no more than one row for 

any given value; see  “ Index Properties ”  section).  
   ■      Whether it is the sorting index (see  “ Index Properties ”  section).  
   ■      The structure of the index (for some DBMSs; see  “ Balanced Tree Indexes ”  

and  “ Bit-Mapped Indexes ”  sections).    
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 The advantages of an index are that:

    ■      It can improve data access performance for a retrieval or update.  
   ■      Retrievals that only refer to indexed columns do not need to read any data 

blocks (access to indexes is often faster than direct access to data blocks 
bypassing any index).    

 The disadvantages are that each index:

    ■      Adds to the data access cost of a create transaction or an update 
transaction in which an indexed column is updated.  

   ■      Takes up disk space.  
   ■      May increase lock contention (see  Section 7.5.1 ).  
   ■      Adds to the processing and data access cost of reorganize and table load 

utilities.    

 Whether an index will actually improve the performance of an individual query 
depends on two factors:

   1.     Whether the index is actually used by the query.  
  2.     Whether the index confers any performance advantage on the query.    

  Index Usage by Queries 
 DML (Data Manipulation Language)  3   only specifi es what you want, not how to get 
it. The optimizer built into the DBMS selects the best available access method 
based on its knowledge of indexes, column contents, and so on. Thus, index usage 
cannot be explicitly specifi ed but is determined by the optimizer during DML 
compilation. How it implements the DML will depend on: 

        ■      The DML clauses used, in particular the predicate(s) in the  where  clause 
(see  Figure 7.1    for examples).  

   ■      The tables accessed, their size, and content.  
   ■      What indexes there are on those tables.    

  3   This is the SQL query language, often itself called  “ SQL, ”  and most commonly used to retrieve data 
from a relational database. 

  FIGURE 7.1  

   Retrieval and update queries.    

select      EMP_NO, EMP_NAME, SALARY
from        EMPLOYEE
where     SALARY > 80000;

update    EMPLOYEE
set          SALARY = SALARY* 1.1
where     SALARY > 80000;
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 Some predicates will preclude the use of indexes; these include:

    ■      Negative conditions (e.g.,  “ not equals ”  and those involving  NOT ).  
   ■       LIKE  predicates in which the comparison string starts with a wildcard.  
   ■      Comparisons including scalar operators (e.g.,  + ) or functions (e.g., data 

type conversion functions).  
   ■       ANY/ALL  subqueries, as in  Figure 7.2   .  
   ■      Correlated subqueries, as in  Figure 7.3   .    

 Certain update operations may also be unable to use indexes. For example, while 
the retrieval query in  Figure 7.1  can use an index on the  Salary  column if there 
is one, the update query in the same fi gure cannot. 

 Note that the DBMS may require that, after an index is added, a utility is run 
to examine table contents and indexes and recompile each SQL query. Failure to 
do this would prevent any query from using the new index.  

  Performance Advantages of Indexes 
 Even if an index is available and the query is formulated in such a way that it can 
use that index, the index may not improve performance if more than a certain 
proportion of rows are retrieved. That proportion depends on the DBMS.  

  Index Properties 
 If an index is defi ned as  unique , each row in the associated table must have a 
different value in the column or columns covered by the index. Thus, this is a 
means of implementing a uniqueness constraint, and a unique index should there-
fore be created on each table ’ s primary key as well as on any other sets of columns 

  FIGURE 7.2  

   An ALL subquery.    

select       EMP_NO, EMP_NAME, SALARY
from         EMPLOYEE
where      SALARY > all
  (select    SALARY
  from       EMPLOYEE
  where     DEPT_NO = '123');

  FIGURE 7.3  

   A correlated subquery.    

select               EMP_NO, EMP_NAME
from                 EMPLOYEE as E1
where              exists
  (select*
  from               EMPLOYEE as E2
  where            E2.EMP_NAME = E1.EMP_NAME
  and                E2.EMP_NO <> E1.EMP_NO);
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having a uniqueness constraint. However, since the database administrator can 
always drop any index (except perhaps that on a primary key) at any time, a 
unique index cannot be relied on to be present whenever rows are inserted. As 
a result, most programming standards require that a uniqueness constraint is 
explicitly tested for whenever inserting a row into the relevant table or updating 
any column participating in that constraint. 

 The sorting  index  (called the  clustering index  in DB2) of each table is the one 
that controls the sequence in which rows are stored during a bulk load or reor-
ganization that occurs during the existence of that index. Clearly there can be 
only one such index for each table. Which column(s) should the sorting index 
cover? In some DBMSs there is no choice; the index on the primary key will also 
control row sequence. Where there is a choice, any of the following may be 
worthy candidates, depending on the DBMS:

    ■      Those columns most frequently involved in inequalities (e.g., where   >   
or   >  =   appears in the predicate).  

   ■      Those columns most frequently specifi ed as the sorting sequence.  
   ■      The columns of the most frequently specifi ed foreign key in joins.  
   ■      The columns of the primary key.    

 The performance advantages of a sorting index are:

    ■      Multiple rows relevant to a query can be retrieved in a single I/O 
operation.  

   ■      Sorting is much faster if the rows are already more or less in sequence 
(note that rows can get out of sequence between reorganizations).    

 By contrast, creating a sorting index on one or more columns may confer no 
advantage over a nonsorting index if those columns are mostly involved in index-
only processing (i.e., if those columns are mostly accessed only in combination 
with each other or are mostly involved in  =  predicates). 

 Consider creating other (nonunique, nonsorting) indexes on:

    ■      Columns searched or joined with a low hit rate.  
   ■      Foreign keys.  
   ■      Columns frequently involved in aggregate functions, existence checks, 

or  DISTINCT  selection.  
   ■      Sets of columns frequently linked by  AND  in predicates.  
   ■      Code and meaning columns for a classifi cation table if there are other 

less-frequently accessed columns.  
   ■      Columns frequently retrieved.    

 Indexes on any of the following may not yield any performance benefi t:

    ■      Columns with low cardinality (the number of different values is 
signifi cantly less than the number of rows) unless a bit-mapped index 
is used (see  “ Bit-Mapped Indexes ”  section).  
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   ■      Columns with skewed distribution (many occurrences of one or two 
particular values and few occurrences of each of a number of other 
values).  

   ■      Columns with low population ( NULL  in many rows).  
   ■      Columns that are frequently updated.  
   ■      Columns that take up a signifi cant proportion of the row length.  
   ■      Tables occupying a small number of blocks, unless the index is to be used 

for joins, a uniqueness constraint, or referential integrity, or if index-only 
processing is to be used.  

   ■      Columns with the  varchar  (variable length) data type.     

  Balanced Tree Indexes 
  Figure 7.4    illustrates the structure of a  balanced tree index  (often referred to as 
a  B-tree index ) used in most relational DBMSs. Note that the depth of the tree 
may be only one (in which case the index entries in the root block point directly 
to data blocks); two (in which case the index entries in the root block point to 
leaf blocks in which index entries point to data blocks); three (as shown in the 
fi gure); or more than three (in which the index entries in nonleaf blocks point to 
other nonleaf blocks). The term  balanced  refers to the fact that the tree structure 
is symmetrical. If insertion of a new record causes a particular leaf block to fi ll 
up, the index entries must be redistributed evenly across the index with additional 
index blocks created as necessary, leading eventually to a deeper index. 

 Particular problems may arise with a balanced tree index on a column 
or columns on which inserts are sequenced (i.e., each additional row has a 

  FIGURE 7.4  

   Balanced tree index structure.    
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higher value in those column(s) than the previous row added). In this case, the 
insertion of new index entries is focused on the rightmost (highest value) leaf 
block, rather than evenly across the index, resulting in more frequent redistribu-
tion of index entries that may be quite slow if the entire index is not in main 
memory. This makes a strong case for random, rather than sequential, primary 
keys.  

  Bit-Mapped Indexes 
 Another index structure provided by some DBMSs is the  bit-mapped index . This 
has an index entry for each value that appears in the indexed column. Each index 
entry includes a column value followed by a series of bits, one for each row in 
the table. Each bit is set to one if the corresponding row has that value in the 
indexed column and zero if it has some other value. This type of index confers 
the most advantage where the indexed column is of low cardinality (the number 
of different values is signifi cantly less than the number of rows). By contrast, such 
an index may impact negatively on the performance of an insert operation into a 
large table as every bit in every index entry that represents a row after the inserted 
row must be moved one place to the right. This is less of a problem if the index 
can be held permanently in main memory (see  Section 7.4.3 ).  

  Indexed Sequential Tables 
 A few DBMSs support an alternative form of index referred to as  ISAM  (indexed 
sequential access method). This may provide better performance for some types 
of data population and access patterns.  

  Hash Tables 
 Some DBMSs provide an alternative to an index to support random access in 
the form of a hashing algorithm to calculate block numbers from key values. 
Tables managed in this fashion are referred to as  hashed random  (or  “ hash ”  
for short). Again, this may provide better performance for some types of data 
population and access patterns. Note that this technique is of no value if partial 
keys are used in searches (e.g.,  “ Show me the customers whose names start with 
 ‘ Smi ’     ” ) or a range of key values is required (e.g.,  “ Show me all customers with a 
birth date between 1/1/1948 and 12/31/1948 ” ), whereas indexes do support these 
types of query.  

  Heap Tables 
 Some DBMSs provide for tables to be created without indexes. Such tables are 
sometimes referred to as  heaps . If the table is small (only a few blocks) an index 
may provide no advantage. Indeed if all the data in the table will fi t into a single 
block, accessing a row via an index requires two blocks to be read (the index 
block and the data block) compared with reading in and scanning (in main 
memory) the one block; in this case, an index degrades performance. Even if the 
data in the table require two blocks, the average number of blocks read to access 
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a single row is still less than the two necessary for access via an index. Many 
reference (or classifi cation) tables fall into this category. 

 Note, however, that the DBMS may require that an index be created for 
the primary key of each table that has one, and a classifi cation table will 
certainly require a primary key. If so, performance may be improved by one 
of the following:

    ■      Creating an additional index that includes both code (the primary key) and 
meaning columns; any access to the classifi cation table that requires both 
columns will use that index rather than the data table itself (which is now in 
effect redundant but only takes up space rather than slowing down access).  

   ■      Assigning the table to main memory in such a way that ensures the classifi cation 
table remains in main memory for the duration of each load of the application 
(see  Section 7.4.3 ).      

  7.4.2     Data Storage 

 A relational DBMS provides the database designer with a variety of options (depend-
ing on the DBMS) for the storage of data. 

  Table Space Usage 
 Many DBMSs enable the database designer to create multiple  table spaces  to which 
tables can be assigned. Since these table spaces can each be given different block 
sizes and other parameters, tables with similar access patterns can be stored in 
the same table space and each table space then tuned to optimize the performance 
for the tables therein. The DBMS may even allow you to interleave rows from 
different tables, in which case you may be able to arrange, for example, for the 
 Order Item  rows for a given order to follow the  Order  row for that order, if they 
are frequently retrieved together. This reduces the average number of blocks that 
need to be read to retrieve an entire order. The facility is sometimes referred to 
as  clustering , which may lead to confusion with the term  clustering index  (see 
 “ Index Properties ”  section).  

  Free Space 
 When a table is loaded or reorganized, each block may be loaded with as many 
rows as can fi t (unless rows are particularly short and there is a limit imposed by 
the DBMS on how many rows a block can hold). If a new row is inserted and the 
sorting sequence implied by the primary index dictates that the row should be 
placed in an already full block, that row must be placed in another block. If no 
provision has been made for additional rows, that will be the last block (or if that 
block is full, a new block following the last block). Clearly this  “ overfl ow ”  situa-
tion will cause a degradation over time of the sorting sequence implied by the 
primary index and will reduce any advantages conferred by the sorting sequence 
of that index. 
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 This is where  free space  enters the picture. A specifi ed proportion of the space 
in each block can be reserved at load or reorganization time for rows subsequently 
inserted. A fallback can also be provided by leaving every  n th block empty at load 
or reorganization time. If a block fi lls up, additional rows that belong in that block 
will be placed in the next available empty block. Note that once this happens, 
any attempt to retrieve data in sequence will incur extra block reads. This caters, 
of course, not only for insertions but for increases in the length of existing rows, 
such as those that have columns with the  varchar  data type. 

 The more free space you specify, the more rows can be fi tted in or increased 
in length before performance degrades and reorganization is necessary. At the 
same time, more free space means that any retrieval of multiple consecutive rows 
will need to read more blocks. Obviously for those tables that are read-only, you 
should specify zero free space. In tables that have a low frequency of create trans-
actions (and update transactions that increase row length), zero free space is also 
reasonable, since additional data can be added after the last row. Free space can 
and should be allocated for indexes as well as data.  

  Table Partitioning 
 Some DBMSs allow you to divide a table into separate  partitions  based on one of 
the indexes. For example, if the fi rst column of an index is the state code, a sepa-
rate partition can be created for each state. Each partition can be independently 
loaded or reorganized and can have different free space and other settings.  

  Drive Usage 
 Choosing where a table or index is on disk enables you to use faster drives for 
more frequently accessed data or to avoid channel contention by distributing 
across multiple disk channels tables that are accessed in the same query.  

  Compression 
 One option that many DBMSs provide is the compression of data in the stored 
table (e.g., shortening of null columns or text columns with trailing space). While 
this may save disk space and increase the number of rows per block, it can add 
to the processing cost.  

  Distribution and Replication 
 Modern DBMSs provide many facilities for distributing data across multiple net-
worked servers. Among other things, distributing data in this manner can confer 
performance and availability advantages. However, this is a specialist topic and is 
outside the scope of this brief overview of physical database design.   

  7.4.3     Memory Usage 

 Some DBMSs support multiple  input/output buffers  in main memory and enable 
you to specify the size of each buffer and allocate tables and indexes to particular 



buffers. This can reduce or even eliminate the need to swap frequently accessed 
tables or indexes out of main memory to make room for other data. For example, 
a buffer could be set up that is large enough to accommodate all the classifi cation 
tables in their entirety. Once they are all in main memory, any query requiring 
data from a classifi cation table does not have to read any blocks for that 
purpose.   

  7.5     CRAFTING QUERIES TO RUN FASTER 
 We have seen in the  “ Index Usage by Queries ”  section that some queries cannot 
make use of indexes. If a query of this kind can be rewritten to make use of an 
index, it is likely to run faster. As a simple example, consider a retrieval of 
employee records in which there is a  Gender  column that holds either  “ M ”  or  “ F. ”  
A query to retrieve only male employees could be written with the predicate 
 GENDER  <  >   “ F ”   (in which case it cannot use an index on the  Gender  column) or 
with the predicate  GENDER  =   “ M ”   (in which case it can use that index). The opti-
mizer (capable of recasting queries into logically equivalent forms that will perform 
better) is of no help here even if it  “ knows ”  that there are currently only  “ M ”  and 
 “ F ”  values in the  Gender  column, since it has no way of knowing that some other 
value might eventually be loaded into that column. Thus,  GENDER  =   “ M ”   is not 
logically equivalent to  GENDER  <  >   “ F ”  . 

 There are also various ways in which subqueries can be expressed differently. 
Most noncorrelated subqueries can be alternatively expressed as a join. An  IN  
subquery can always be alternatively expressed as an  EXISTS  subquery, although 
the converse is not true. A query including   >  ALL (SELECT  .  .  . )  can be alterna-
tively expressed by substituting   >  (SELECT MAX( .  .  . ))  in place of   >  ALL 
(SELECT .  .  . ) . 

 Sorting can be very time consuming. Note that any query including  GROUP 
BY  or  ORDER BY  will sort the retrieved data. These clauses may, of course, be 
unavoidable in meeting the information requirement. ( ORDER BY  is essential for 
the query result to be sorted in a required order, since there is otherwise no 
guarantee of the sequencing of result data, which will refl ect the sorting index 
only so long as no inserts or updates have occurred since the last table reorganiza-
tion.) However, there are two other situations in which unnecessary sorts can be 
avoided. 

 One is  DISTINCT , which is used to ensure that there are no duplicate rows in 
the retrieved data, which it does by sorting the result set. For example, if the 
query is retrieving only addresses of employees, and more than one employee 
lives at the same address, that address will appear more than once unless 
the  DISTINCT  clause is used. We have observed that the  DISTINCT  clause is some-
times used when duplicate rows are impossible; in this situation it can be 
removed without affecting the query result but with signifi cant impact on query 
performance. 
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 Similarly, a  UNION  query without the  ALL  qualifi er after  UNION  ensures that there 
are no duplicate rows in the result set, again by sorting it (unless there is a usable 
index). If you know that there is no possibility of the same row resulting from 
more than one of the individual queries making up a  UNION  query, add the  ALL  
qualifi er. 

  7.5.1     Locking 

 DBMSs employ various  locks  to ensure, for example, that only one user can update 
a particular row at a time, or that, if a row is being updated, users who wish to 
use that row are either prevented from doing so or see the preupdate row con-
sistently until the update is completed. Many business requirements imply the use 
of locks. For example, in an airline reservation system, if a customer has reserved 
a seat on one leg of a multileg journey, that seat must not be available to any other 
user, but if the original customer decides not to proceed when he or she discov-
ers that there is no seat available on a connecting fl ight, the reserved seat must 
be released. 

 The lowest level of lock is  row level  where an individual row is locked but 
other rows in the same block are still accessible. The next level is  block level , 
which requires less data storage for management but locks all rows in the same 
block as the one being updated.  Table  and  table space locks  are also possible. 
Locks may be  escalated,  whereby a lock at one level is converted to a lock at the 
next level to improve performance. The designer may also specify  lock acquisi-
tion  and  lock release  strategies for transactions accessing multiple tables. A trans-
action can either acquire all locks before starting or acquire each lock as required, 
and it can either release all locks after committing (completing the update transac-
tion) or release each lock once no longer required.   

  7.6     LOGICAL SCHEMA DECISIONS 
 We now look at various types of changes that can be made to the logical schema 
to support faster queries when the techniques we have discussed have been tried 
and some queries still do not run fast enough. 

  7.6.1     Alternative Implementation of Relationships 

 If the target DBMS supports the SQL99 Set Type Constructor feature:

   1.     A one-to-many relationship can be implemented within one table.  
  2.     A many-to-many relationship can be implemented without creating an 

additional table.    

  Figure 7.5    illustrates such implementations.  



  7.6.2     Table Splitting 

 Two implications of increasing the size of a table are:

   1.     Any balanced tree index on that table will be deeper (i.e., there will be 
more nonleaf blocks between the root block and each leaf block and, 
thus, more blocks to be read to access a row using that index).  

  2.     Any query unable to use any indexes will read more blocks in scanning 
the entire table.    

 Thus, all queries — those that use indexes and those that do not — will take more 
time. Conversely, if a table can be made smaller, most, if not all, queries on that 
table will take less time. 

  Horizontal Splitting 
 One technique for reducing the size of a table accessed by a query is to split it 
into two or more tables with the same columns and to allocate the rows to dif-
ferent tables according to some criteria. In effect we are defi ning and implement-
ing subtypes. For example, although it might make sense to include historical data 
in the same table as the corresponding current data, it is likely that different 
queries access current and historical data. Placing current and historical data in 
different tables with the same structure will certainly improve the performance 
of queries on current data. You may prefer to include a copy of the current data 

  FIGURE 7.5  

   Alternative implementations of relationships in an SQL99 DBMS.    

Department
No

Department
Code

Department Name Employee Group

Employee No Employee Name

123 ACCT Accounts 37289 J Smith

41260 A Chang

50227 B Malik

135 PRCH Purchasing 16354 D Sanchez

26732 T Nguyen

Employee
No

Employee Name Assignment Group

Project No

50227 B Malik 1234

2345

37289 J Smith 1234

Assignment Date

27/2/95

2/3/95

28/2/95
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in the historical data table to enable queries on all data to be written without 
the  UNION  operator. This is duplication rather than splitting; we deal with that 
separately in  Section 7.6.4  due to the different implications duplication has for 
processing.  

  Vertical Splitting 
 The more data there are in each row of a table, the fewer rows there are per 
block. Queries that need to read multiple consecutive rows will therefore need 
to read more blocks to do so. Such queries might take less time if the rows could 
be made shorter. At the same time, shortening the rows reduces the size of the 
table and (if it is not particularly large) increases the likelihood that it can be 
retained in main memory. If some columns of a table constitute a signifi cant pro-
portion of the row length and are accessed signifi cantly less frequently than the 
remainder of the columns of that table, there may be a case for holding those 
columns in a separate table using the same primary key. 

 For example, if a classifi cation table has  Code ,  Meaning , and  Explanation  
columns, but the  Explanation  column is infrequently accessed, holding that 
column in a separate table on the same primary key will mean that the classifi ca-
tion table itself occupies fewer blocks, increasing the likelihood of it remaining 
in main memory. This may improve the performance of queries that access only 
the  Code  and  Meaning  columns. Of course, a query that accesses all columns must 
join the two tables; this may take more time than the corresponding query on the 
original table. Note also that if the DBMS provides a long text data type with the 
property that columns using that data type are not stored in the same block as 
the other columns of the same table, and the  Explanation  column is given that 
data type, no advantage accrues from splitting that column into a separate table. 

 Another situation in which vertical splitting may yield performance benefi ts is 
where different processes use different columns, such as when an  Employee  table 
holds both personnel information and payroll information.   

  7.6.3     Table Merging 

 We have encountered proposals by database designers to merge tables that are 
regularly joined in queries. 

 An example of such a proposal is the merging of the  Order  and  Order Line  
tables shown in  Figure 7.6   . Since the merged table can only have one set of 
columns making up the primary key, this would need to be  Order No  and  Line 
No , which means that order rows in the merged table would need a dummy  Line 
No  value (since all primary key columns must be non-null); if that value were zero, 
this would have the effect of all  Order Line  rows following their associated   Order   
row if the index on the primary key were also the primary index. Since all rows 
in a table have the same columns,  Order  rows would have dummy (possibly null) 
 Product Code ,  Unit Count , and  Required By Date  columns, while  Order Line  
rows would have dummy (again possibly null)  Customer No  and  Order Date  



columns. Alternatively, a single column might be created to hold the  Required 
By Date  value in an  Order  row and the  Order Date  value in an  Order Line  
row. 

 The rationale for this approach is to reduce the average number of blocks that 
need to be read to retrieve an entire order. However, the result is achieved at the 
expense of a signifi cant change from the logical data model. If a similar effect can 
be achieved by interleaving rows from different tables in the same table space, 
this should be done instead.  

  7.6.4     Duplication 

 We saw in the  “ Horizontal Splitting ”  section how we might separate current data 
from historical data to improve the performance of queries accessing only current 
data by reducing the size of the table read by those queries. As we indicated then, 
an alternative is to duplicate the current data in another table, retaining all current 
data as well as the historical data in the original table. However, whenever we 
duplicate data, there is the potential for errors to arise unless there is strict control 
over the use of the two copies of the data. The following are among the things 
that can go wrong:

    ■      Only one copy is being updated, but some users read the other copy 
thinking it is up to date.  

   ■      A transaction causes the addition of a quantity to a numeric column in 
one copy, but the next transaction adds to the same column in the other 
copy. Ultimately, the effect of one or other of those transactions will be 
lost.  

   ■      One copy is updated, but the data from the other copy are used to 
overwrite the updated copy, in effect wiping out all updates since the 
second copy was taken.    

 To avoid these problems, a policy must be enforced whereby only one copy 
can be updated by transactions initiated by users or batch processes (the current 
data table in the preceding example). The corresponding data in the other copy 
(the complete table in the preceding example) are either automatically updated 
simultaneously (e.g., via a DBMS trigger) or, if it is acceptable for users accessing 
that copy to see out-of-date data, replaced at regular intervals (e.g., daily). 

  FIGURE 7.6  

   Separate and merged  Order  and  Order Line  tables.    

Separate: ORDER (Order No, Customer No, Order Date)
  ORDER LINE (Order No, Line No, Product Code, Unit Count, Required By Date)
Merged: ORDER/ORDER LINE (Order No, Line No, Customer No, Order Date, Product
  Code, Unit Count, Required By Date)
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 Another example of an  “ active subset ”  of data that might be copied into 
another table are data on insurance policies, contracts, or any other agreements 
or arrangements that are reviewed, renewed, and possibly changed on a cyclical 
basis, such as yearly. Toward the end of a calendar month the data for those 
policies that are due for renewal during the next calendar month could become 
a  “ hot spot ”  in the table holding information about all policies. It may therefore 
improve performance to copy the policy data for the next renewal month into a 
separate table. The change over from one month to the other must, of course, be 
carefully managed, and it may make sense to have  “ last month, ”   “ this month, ”  and 
 “ next month ”  tables as well as the complete table. 

 Another way in which duplication can confer advantages is in optimization for 
different processes. We shall see in  Section 7.6.7  how hierarchies in particular 
can benefi t from duplication.  

  7.6.5     Denormalization 

 Technically, denormalization is any change to the logical schema that results in it 
not being fully normalized. In the context of physical database design, the term 
is often used more broadly to include the addition of derivable data of any kind, 
including that derived from multiple rows. 

 Four examples of strict violations of normalization are shown in the model of 
 Figure 7.7   :

   1.     It can be assumed that  Customer Name  and  Customer Address  have been 
copied from a  Customer  table with primary key  Customer No .  

  2.      Customer No  has been copied from the  Order  table to the  Order Line  
table.  

  3.     It can be assumed that  Unit Price  has been copied from a  Product  table 
with primary key  Product Code .  

  4.      Total Price  can be calculated by multiplying  Unit Price  by  Unit 
Count .    

 Changes such as this are intended to offer performance benefi ts for some transac-
tions. For example, a query on the  Order Line  table that also requires the  Cus-
tomer No  does not have to also access the  Order  table. However, there is a down 
side: each such additional column must be carefully controlled. 

  FIGURE 7.7  

   Denormalized  Order  and  Order Line  tables.    

ORDER (Order No, Customer No, Customer Name, Customer Address, Order Date)
ORDER LINE (Order No, Line No, Customer No, Customer Name, Customer Address,
Product Code, Unit Count, Unit Price, Total Price, Required By Date)



    1.     It should not be able to be updated directly by users.  
  2.     It must be updated automatically by the application (e.g., via a DBMS 

trigger) whenever there is a change to the original data on which the 
copied or derived data are based.    

 The second requirement may slow down transactions other than those that 
benefi t from the additional data. For example, an update of  Unit Price  in the 
 Product  table will trigger an update of  Unit Price  and  Total Price  in every 
row of the  Order Line  table with the same value of  Product Code . This is a 
familiar performance trade-off; enquiries are made faster at the expense of more 
complex (and slower) updating. 

 There are some cases where the addition of redundant data is generally accepted 
without qualms and they may indeed be included in the logical data model or 
even the conceptual data model. If a supertype and its subtypes are all imple-
mented as tables, we are generally happy to include a column in the supertype 
table that indicates the subtype to which each row belongs. 

 Another type of redundant data frequently included in a database is the aggre-
gate, particularly where data in many rows would have to be summed to calculate 
the aggregate  “ on the fl y. ”  Indeed, one would never think of not including an 
 Account Balance  column in an  Account  table (to the extent that there will most 
likely have been an attribute of that name in the  Account  entity class in the con-
ceptual data model), yet an account balance is the sum of all transactions on the 
account since it was opened. Even if transactions of more than a certain age are 
deleted, the account balance will be the sum of the opening balance on a state-
ment plus all transactions on that statement.  

 Two other structures in which redundant data often feature are ranges and 
hierarchies. We discuss these in the next two sections.  

  7.6.6     Ranges 

 There are many examples of ranges in business data. Among the most common 
are date ranges. An organization ’ s fi nancial year is usually divided into a series of 
fi nancial or accounting periods. These are contiguous, in that the fi rst day of one 
accounting period is one day later than the last day of the previous one. Yet we 
usually include both fi rst and last day columns in an accounting period table (not 
only in the physical data model, but probably in the logical and conceptual data 
models as well), even though one of these is redundant in that it can be derived 
from other data. Other examples of date ranges can be found in historical data:

   1.     We might record the range of dates for which a particular price of some 
item or service applied.  

  2.     We might record the range of dates for which an employee reported to a 
particular manager or belonged to a particular organization unit.    

 Time ranges (often called  “ time slots ” ) can also occur, such as in scheduling 
or timetabling applications. Classifi cations based on quantities are often created 
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by dividing the values that the quantity can take into  “ bands ”  (e.g., age bands, 
price ranges). Such ranges often appear in business rule data, such as the duration 
bands that determine the premiums of short-term insurance policies. 

 Our arguments against redundant data might have convinced you that we 
should not include range ends as well as starts (e.g.,  Last Date  as well as  First 
Date ,  Maximum Age  as well as  Minimum Age ,  Maximum Price  as well as  Minimum 
Price ). However, a query that accesses a range table that does not include both 
end and start columns will look like this:

    select                     PREMIUM _ AMOUNT   
   from                           PREMIUM _ RULE as PR1   
   where                        POLICY _ DURATION  >  =  MINIMUM _ DURATION   
   and                              POLICY _ DURATION  <  MIN   
         (select            PR2.MINIMUM _ DURATION   
         from                     PREMIUM _ RULE as PR2   
         where                  PR2.MINIMUM _ DURATION  >  PR1.MINIMUM _ DURATION);     

 However, if we include the range end  Maximum Duration  as well as the range 
start  Minimum Duration  the query can be written like this:

    select                     PREMIUM _ AMOUNT   
   from                           PREMIUM _ RULE   
   where                        POLICY _ DURATION between MINIMUM _ DURATION   
   and                              MAXIMUM _ DURATION;     

 The second query is not only easier to write but will take less time to run (pro-
vided there is an index on  Policy Duration ) unless the  Premium Rule  table is 
already in main memory.  

  7.6.7     Hierarchies 

 Hierarchies may be specifi c, as in the left diagram in  Figure 7.8   , or generic, as in 
the right diagram.  Figure 7.9    shows a relational implementation of the generic 
version. 

 Generic hierarchies can support queries involving traversal of a fi xed number 
of levels relatively simply (e.g., to retrieve each top-level organization unit together 
with the second-level organization units that belong to it). 

 Often, however, it is necessary to traverse a varying number of levels (e.g., 
retrieve each top-level organization unit together with the bottom-level organiza-
tion units that belong to it). Queries of this kind are often written as a collection 
of  UNION  queries in which each individual query traverses a different number of 
levels. 

 There are various alternatives to this inelegant approach, including some 
nonstandard extensions provided by some DBMSs. In the absence of these, the 
simplest thing to try is the population of the recursive foreign key, as shown in 
 Figure 7.10   . 



  FIGURE 7.8  

   Specifi c and generic hierarchies.    

Division

Department

Branch

Organization
Unit

  FIGURE 7.9  

   A simple hierarchy table.    

Org Unit ID Org Unit Name Parent Org Unit ID

1 Production null

2 H/R null

21 Recruitment 2

22 Training 2

221 IT Training 22

222 Other Training 22

ORG UNIT (Org Unit ID, Org Unit Name, Parent Org Unit ID)

  FIGURE 7.10  

   An alternative way of implementing a hierarchy.    

Org Unit ID Org Unit Name Parent Org Unit ID

1 Production 1

2 H/R 2

21 Recruitment 2

22 Training 2

221 IT Training 22

222 Other Training 22

ORG UNIT (Org Unit ID, Org Unit Name, Parent Org Unit ID)
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 If that does not meet all needs, one of the following alternative ways of repre-
senting a hierarchy in a relational table, each of which is illustrated in  Figure 7.11   , 
may be of value:

   1.     Include not only a foreign key to the parent organization unit but foreign keys 
to the  “ grandparent, ”   “ great-grandparent, ”  and so on, organization units (the 
number of foreign keys should be one less than the maximum number of levels 
in the hierarchy).  

  2.     As a variation of the previous suggestion, include a foreign key to each  “ ances-
tor ”  at each level.  

  FIGURE 7.11  

   Further alternative ways of implementing a hierarchy.    

Org Unit ID Org Unit Name Parent Org Unit ID Grandparent Org Unit ID

1 Production null null

2 H/R null null

21 Recruitment 2 null

22 Training 2 null

221 IT Training 22 2

222 Other Training 22 2

ORG UNIT (Org Unit ID, Org Unit Name, Level 1 Org Unit ID, Level 2 Org Unit ID)

Org Unit ID Org Unit Name Level 1 Org Unit ID Level 2 Org Unit ID

1 Production 1 null

2 H/R 2 null

21 Recruitment 2 21

22 Training 2 22

221 IT Training 2 22

222 Other Training 2 22

ORG UNIT (Org Unit ID, Level Difference, Org Unit Name, Ancestor Org Unit ID)

Org Unit ID Level Difference Org Unit Name Ancestor Org Unit ID

1 1 Production null

2 1 H/R null

21 1 Recruitment 2

22 1 Training 2

221 1 IT Training 22

221 2 IT Training 2

222 1 Other Training 22

222 2 Other Training 2

ORG UNIT (Org Unit ID, Org Unit Name, Parent Org Unit ID, Grandparent Org Unit ID)



  3.     Store all  “ ancestor ” / ” descendant ”  pairs (not just  “ parents ”  and  “ children ” ) 
together with the difference in levels. In this case, the primary key must include 
the level difference as well as the ID of the  “ descendant ”  organization unit.    

 As each of these alternatives involves redundancy, they should not be directly 
updated by users; instead, the original simple hierarchy table shown in  Figure 7.9  
should be retained for update purposes and the additional table updated auto-
matically by the application (e.g., via a DBMS trigger). More alternatives can be 
found in Celko ’ s excellent book on this subject.  4       

  7.6.8     Integer Storage of Dates and Times 

 Most DBMSs have the  “ date ”  data type, offering the advantages of automatic 
display of dates in a user-friendly format and a wide range of date and time arith-
metic. The main disadvantage of storing dates and times using the  “ date ”  rather 
than the  “ integer ”  data type is the greater storage requirement, which in one 
project we worked on, increased the total data storage requirement by 15 percent. 
In this case, we decided to store dates in the critical large tables in  “ integer ”  
columns in which were loaded the number of days since some base date. Similarly, 
times of day could be stored as the number of minutes (or seconds) since mid-
night. We then created views of those tables (see  Section 7.7 ) in which data type 
conversion functions were used to derive dates in  “ dd/mm/yyyy ”  format.  

  7.6.9     Additional Tables 

 The processing requirements of an application may well lead to the creation 
of additional tables that were not foreseen during business information analysis 
and so do not appear in the conceptual or logical data models. These can 
include:

    ■      Summaries for reporting purposes.  
   ■      Archive retrieval.  
   ■      User access and security control data.  
   ■      Data capture control, logging, and audit data.  
   ■      Data distribution control, logging, and audit data.  
   ■      Translation tables.  
   ■      Other migration/interface support data.  
   ■      Metadata.      

  7.7     VIEWS 
 The defi nition of  views  is one of the fi nal stages in database design, since it relies 
on the logical schema being fi nalized. Views are  “ virtual tables ”  that are a selection 

  4   Celko, J.,  Joe Celko ’ s Trees and Hierarchies in SQL for Smarties . Morgan Kaufmann, 2004. 
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of rows and columns from one or more real tables and can include calculated 
values in additional virtual columns. They confer various advantages, among them 
support for users accessing the database directly through a query interface. This 
support can include:

    ■      The provision of simpler structures.  
   ■      Inclusion of calculated values such as totals.  
   ■      Inclusion of alternative representations of data items (e.g., formatting dates 

as integers as described in  Section 7.6.8 ).  
   ■      Exclusion of data for which such users do not have access permission.    

 Another function that views can serve is to isolate not only users but 
programmers from changes to table structures. For example, if the decision is 
taken to split a table as described in  Section 7.6.2  but access to that table was 
previously through a view that selected all columns of all rows (a so-called  “ base 
view ” ), the view can be recoded as a union or join of the two new tables. For this 
reason, installation standards often require a base view for every table. Life, 
however, is not as simple as that, since there are two problems with this 
approach:

    ■      Union views and most join views are not updateable, so program code 
for update facilities usually must refer to base tables rather than to views.  

   ■      As we show in  Section 7.7.3 , normalized views of denormalized tables 
lose any performance advantages conferred by that denormalization.    

 Some standards that we do recommend, however, are presented and discussed in 
the next four sections. 

  7.7.1     Views of Supertypes and Subtypes 

 However a supertype and its subtypes have been implemented, each of them 
should be represented by a view. This enables at least  “ read ”  access by users to 
all entity classes that have been defi ned in the conceptual data model rather than 
just those that have ended up as tables. 

 If we implement only the supertype as a table, views of each subtype can be 
constructed by selecting in the  WHERE  clause only those rows that belong to that 
subtype and including only those columns that correspond to the attributes and 
relationships of that subtype.  

 If we implement only the subtypes as tables, a view of the supertype can be 
constructed by a  UNION  of each subtype ’ s base view. 

 If we implement both the supertype and the subtypes as tables, a view of each 
subtype can be constructed by joining the supertype table and the appropriate 
subtype table, and a view of the supertype can be constructed by a  UNION  of each 
of those subtype views. 



  7.7.2     Inclusion of Derived Attributes in Views 

 If a derived attribute has been defi ned as a business information requirement in 
the conceptual data model, it should be included as a calculated value in a view 
representing the owning entity class. This again enables user access to all attri-
butes that have been defi ned in the conceptual data model.  

  7.7.3     Denormalization and Views 

 If we have denormalized a table by including redundant data in it, it may be tempt-
ing to retain a view that refl ects the normalized form of that table, as in  Figure 
7.12   . 

 However, a query of such a view that includes a join to another view so as to 
retrieve an additional column will perform that join even though the additional 
column is already in the underlying table. For example, a query to return the name 
and address of each customer who has ordered product  “ A123 ”  will look like what 
is shown in  Figure 7.13    and will end up reading the  Customer  and  Order  tables 
as well as the  Order Line  table to obtain  Customer Name  and  Customer Address , 
even though those columns have been copied into the  Order Line  table. Any 

  FIGURE 7.12  

   Normalized views of denormalized tables.    

CUSTOMER (Customer No, Customer Name, Customer Address)
ORDER (Order No, Customer No, Customer Name, Customer Address, Order Date)
ORDER LINE (Order No, Line No, Customer No, Customer Name, Customer Address, 
Product Code, Unit Count, Required By Date)
Views:
CUSTOMER (Customer No, Customer Name, Customer Address)
ORDER (Order No, Customer No, Order Date)
ORDER LINE (Order No, Line No, Product Code, Unit Count, Required By Date)

Tables:

  FIGURE 7.13  

   Querying normalized views.    

select CUSTOMER_NAME, CUSTOMER_ADDRESS

from ORDER LINE join ORDER on

ORDER LINE. ORDER_NO = ORDER.ORDER_NO join CUSTOMER on

ORDER.CUSTOMER_NO = CUSTOMER.CUSTOMER_NO

where PRODUCT_CODE = 'A123';
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performance advantage that may have accrued from the denormalization is 
therefore lost.  

  7.7.4     Views of Split and Merged Tables 

 If tables have been split or merged, as described in  Sections 7.6.2  and  7.6.3 , views 
of the original tables should be provided to enable at least  “ read ”  access by users 
to all entity classes that have been defi ned in the conceptual data model.   

  7.8     SUMMARY 
 Physical database design should focus on achieving performance goals while 
implementing a logical schema that is as faithful as possible to the ideal design 
specifi ed by the logical data model. The physical designer will need to take into 
account (among other things) stated performance requirements, transaction and 
data volumes, available hardware, and the facilities provided by the DBMS. 

 Most DBMSs support a wide range of tools for achieving performance without 
compromising the logical schema, including indexing, clustering, partitioning, 
control of data placement, data compression, and memory management. In the 
event that adequate performance across all transactions cannot be achieved with 
these tools, individual queries can be reviewed and sometimes rewritten to 
improve performance. 

 The fi nal resort is to use tactics that require modifi cation of the logical schema. 
Table splitting, denormalization, and various forms of data duplication can provide 
improved performance but usually at a cost in other areas. In some cases, such as 
hierarchies of indefi nite depth and specifi cation of ranges, data duplication may 
provide a substantial payoff in easier programming as well as performance. Views 
can be utilized to effectively reconstruct the conceptual model but are limited in 
their ability to accommodate update transactions.   



 CHAPTER

8     Denormalization 

  The phrase  “ smaller, faster, cheaper ”  has long been the credo of the builders of 
computer chips, personal digital assistants (PDAs), quantum computers, and even 
printers. It is well known to be a diffi cult task to optimize all three at the same 
time, and most of the time there are important trade-offs that need to be addressed. 
A similar phrase,  “ faster, better, cheaper, ”  was used in NASA, but came into serious 
question after several critical losses in the past decade, including the infamous 
 Mars Climate Orbiter  with its disastrous mix of English and metric units in the 
same system. In database design we would very much like to optimize perfor-
mance (fast queries), maintainability (fast updates), and integrity (avoiding 
unwanted deletes) if we can, but the reality is that there are often serious trade-
offs in these objectives that need to be addressed. 

 First, it is important to distinguish the difference between normalization and 
denormalization.  Normalization  is the process of breaking up a table into smaller 
tables to eliminate unwanted side effects of deletion of certain critical rows and 
to reduce the ineffi ciencies of updating redundant data often found in large uni-
versal tables. Sometimes, however, normalization is taken too far and some queries 
become extremely ineffi cient due to the extra joins required for the smaller tables. 
 Denormalization  is the process of adding columns to some tables to reduce the 
joins and is done if the integrity of the data is not seriously compromised. This 
chapter explains these trade-offs with some simple examples.  

   8.1     BASICS OF NORMALIZATION 
 Database designers sometimes use processing requirements to refi ne the database 
schema defi nition during the physical design phase or as a method for tuning the 
database if there are real performance bottlenecks. Schema refi nement, or denor-
malization, is often used in online transaction processing (OLTP) if meaningful 
effi ciency gains can be made without loss of data integrity, and if it is relatively 
easy to implement. Denormalization is also very common in online analytical 
processing (OLAP) through the use of the star schema. 
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 Relational database tables sometimes suffer from some rather serious problems 
in terms of performance, integrity, and maintainability. For example, when the 
entire database is defi ned as a single large table, it can result in a large amount of 
redundant data and lengthy searches for just a small number of target rows. It can 
also result in long and expensive updates, and deletions in particular can result in 
the elimination of useful data as an unwanted side effect. 

 Such a situation is shown in  Figure 8.1   , where products, salespersons, custom-
ers, and orders are all stored in a single table,  sales . In this table we see that 
certain product and customer information is stored redundantly, wasting storage 
space. Certain queries such as  “ Which customers (by customer number) ordered 
vacuum cleaners last month? ”  would require a search of the entire table. Also, 
updates, such as changing the address of the customer Galler, would require 
changing multiple rows. Finally, deleting an order by a valued customer, such as 
Fry (who bought an expensive computer), if that is his or her only outstanding 
order, deletes the only copy of his or her name, address, and credit rating as a side 
effect. Such information may be diffi cult (or sometimes impossible) to recover. 

 If we had a method of breaking up such a large table into smaller tables so that 
these types of problems would be eliminated, the database would be much more 
effi cient and reliable. Classes of relational database schemes or table defi nitions, 
called  normal forms , are commonly used to accomplish this goal. The creation 
of a normal form database table is called  normalization . It is accomplished by 

  FIGURE 8.1  

   Single table database for  sales .    
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analyzing the interdependencies among individual attributes associated with those 
tables and taking projections (subsets of columns) of larger tables to form smaller 
ones. 

 Let ’ s look at an alternative way of representing the same data of the  sales  
table in two smaller tables —  productSales  and  customer  — as shown in  Figure 
8.2   . These two tables can be derived (displayed) from the  sales  table by the fol-
lowing two SQL queries:

 FIGURE 8.2  

   Two table databases,  productSales  and  customer .    
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    SELECT orderNo, productName, custNo, date AS productSales   
               FROM sales;   
   SELECT custNo, custName, custAddress, creditRat AS customer   
               FROM sales;     

 These queries show that they are nothing more than projections of the  sales  
table over two different sets of columns. If we join the two tables,  productSales  
and  customer , over the common attribute  custNo , they will produce the original 
table,  sales . This is called a  lossless join  and shows that the two tables are 
equivalent to the single table in terms of meaningful content. 

 The two smaller tables,  productSales  and  customer , have nice performance 
and storage properties that the  sales  table doesn ’ t. Let ’ s revisit the problems in 
the  sales  table. 

    1.     We see that certain product and customer information is stored redundantly, 
wasting storage space. The redundant data are  custNo ,  custName ,  cust
Address , and  creditRat . In the two-table equivalent, there is only redundancy 
in  custNo . Attribute values for  custName ,  custAddress , and  creditRat  are only 
stored once. In most cases, as is the case here, this separation of data results 
in smaller tables. 

 Certain queries such as  “ Which customers (by customer number) ordered 
vacuum cleaners last month? ”  would require a search of the entire  sales  table. 
In the two-table case, this query still requires a search of the entire  product-
Sales  table, but this table is now much smaller than the  sales  table and will 
take a lot less time to scan.  

  2.     Updates, such as changing the address of the customer Galler, would require 
changing multiple rows. In the two-table equivalent, the customer address 
appears only once in the  customer  table, and any update to that address is 
confi ned to a single row in the  customer  table.  

  3.     Deleting an order by a valued customer — for example, in the case of Fry (who 
bought an expensive computer), if that is his or her only outstanding order, it 
deletes the only copy of his or her name, address, and credit rating as a side 
effect. In the two-table equivalent, Fry ’ s order can still be deleted, but his or 
her name, address, and credit rating are all still maintained in the  customer  
table.    

 In fact, the two-table equivalent is in third normal form (3NF) — actually a 
stronger form of 3NF, called Boyce-Codd normal form (BCNF). It has the property 
that only the key of the table uniquely defi nes the values of all the other attributes 
of the table. For example, the key value for 45 for  custNo  in the  customer  table 
determines that the customer name, Galler, is the only value that can occur in the 
same row as the customer number 45. The  custNo  value also uniquely determines 
the customer address and the credit rating. This property of uniqueness is useful 
in keeping tables small and nonredundant. These unique properties can be 
expressed in terms of functional dependencies (FDs), as follows. 



      sales table    
   orderNo - >  productName, custNo, custName, custAddress,   
   creditRat, date   
   custNo - >  custName, custAddress, creditRat     

      productSales table    
   orderNo - >  productName, custNo, date     

      customer table    
   custNo - >  custName, custAddress, creditRat     

 In the  customer  and  productSales  tables, only the key uniquely determines 
the values of all the nonkeys in each table, which is the condition necessary for 
3NF. In the  sales  table, you have a nonkey,  custNo , which uniquely determines 
several attributes in addition to the key,  orderNo . Thus, the  sales  table does not 
satisfy 3NF, and this dependency on nonkeys is the source of the loss of integrity 
and multiple updates in a nonnormalized database.  

  8.2     COMMON TYPES OF DENORMALIZATION 
 Denormalization is often used to suggest alternative logical structures (schemas) 
during physical design and thus provides the designers with other feasible solu-
tions to choose from. More effi cient databases are the likely outcome of evaluating 
alternative structures. This process is referred to as denormalization, because the 
schema transformation can cause the degree of normalization in the resulting table 
to be less than the degree of at least one of the original tables. The two most 
common types of denormalization are two entities in a one-to-one relationship 
and two entities in a one-to-many relationship. 

  8.2.1     Two Entities in a One-to-One Relationship 

 The tables for these entities could be implemented as a single table, thus avoiding 
frequent joins required by certain applications. As an example, consider the fol-
lowing two tables in 3NF and BCNF. 

     CREATE TABLE         report   
               (reportNum                        INTEGER,   
                  reportName                     VARCHAR(64),   
                  reportText                     VARCHAR(256),   
                  PRIMARY KEY(reportNum));     

     CREATE TABLE         reportAbbreviation   
               (abbreviation               CHAR(6),   
                  reportNum                        INTEGER NOT NULL UNIQUE,   
                  PRIMARY KEY (abbreviation),   
                  FOREIGN KEY (reportNum) REFERENCES report);     

8.2 Common Types of Denormalization  255
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 The functional dependencies for these tables are:

    ■       Table report:   reportNum - >  reportName, reportText   
   ■       Table reportAbbreviation:   abbreviation - >  reportNum   
   ■       reportNum - >  abbreviation     

     EXAMPLE QUERY 8.1  

       SELECT r.reportName, ra.abbreviation   
               FROM report AS r, reportAbbreviation AS ra   
               WHERE r.reportNum  =  ra.reportNum;     

 In this relationship we denormalize report by defi ning report2 to include abbreviation and 
thus eliminate the abbreviation table completely. The new entry in report2 is shown in 
bold. 

     CREATE TABLE report2   
               (reportNum                     INTEGER,   
                  reportName                  VARCHAR(30),   
                  reportText                  VARCHAR(256),   
                   abbreviation          CHAR(6),    
                    PRIMARY KEY (reportNum));     

 The functional dependencies for the new report table are:

    Table report2:   reportNum - >  reportName, reportText, abbreviation, abbreviation 
- >  reportNum     

 The revised table, report2, is also in 3NF and BCNF, so there can be no loss of data 
integrity due to deletes involving reportNum or abbreviation. If a report is deleted, then both 
its report number and abbreviation are deleted, so neither one is left orphaned in the 
database.       

  8.2.2     Two Entities in a One-to-Many Relationship 

 Sometimes logical design results in very simple tables with very few attributes, 
where the primary key is a foreign key in another table you want to join with. In 
such cases, when a query wants data from both tables, it may be more effi cient 
to implement them as individually named columns as an extension of the parent 
entity (table). 

 Let ’ s look at the following example. The  department  table is the  “ parent ”  table 
and  emp  is the  “ child ”  table since one department can have potentially many 
employees and each employee ( emp ) is in only one department. 

     CREATE TABLE department   
               (deptNum            INTEGER,   
                  deptName         VARCHAR(30),   
                  PRIMARY KEY (deptNum));     



     CREATE TABLE emp   
               (empNum            INTEGER,   
                  empName         VARCHAR(30),   
                  manager         VARCHAR(30),   
                  deptNum         INTEGER,   
                  PRIMARY KEY (empNum),   
                  FOREIGN KEY (deptNum) REFERENCES department);     

 The functional dependencies for these two tables are:

    ■       Table department:   deptNum - >  deptName   
   ■       Table emp:   empNum - >  empName, manager, deptNum     

     EXAMPLE QUERY 8.2  

       SELECT e.empName, d.deptName   
               FROM emp AS e, department AS d   
               WHERE d.deptNum  =  e.deptNum;     

 In this relationship we denormalize emp by defi ning emp2 to include deptName from the 
department table. The new attribute deptName in emp2 is shown in bold. 

     CREATE TABLE department   
               (deptNum               INTEGER,   
                  deptName            VARCHAR(30),   
                  PRIMARY KEY (deptNum));     

  
   CREATE TABLE emp2   
               (empNum                  INTEGER,   
                  empName               VARCHAR(30),   
                  manager               VARCHAR(30),   
                  deptNum               INTEGER,   
                   deptName         VARCHAR(30),    
                  PRIMARY KEY (empNum),   
                  FOREIGN KEY (deptNum) REFERENCES department);     

 The functional dependencies for these two tables are:

    Table department:   deptNum - >  deptName   
   Table emp2:   empNum - >  empName, manager, deptNum   
   deptNum - >  deptName          

 The  department  table is still in 3NF, but the  emp2  table has lost normalization 
to below 3NF. To compensate for the lost normalization in  emp2 , we could keep 
 department  as a redundant table. The cost of this redundancy is in storage space 
and increased update time, since updates involving  deptName  will have to be made 
to both tables. A third option is to leave the two original tables unchanged. Let ’ s 
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summarize the trade-offs for these three options based on  Example Query 8.2  (see 
 Table 8.1   ):

    ■       Option 1:  Consolidate into one table,  emp2 .  
   ■       Option 2:  Consolidate into one table,  emp2 , and retain the  department  

table as redundant.  
   ■       Option 3:  No change to  emp  and  department  tables.    

 The analysis of these three options goes as follows:

    Option 1 (   emp2   ).  This is pure denormalization. It optimizes the query time and 
usually improves the update times. Storage space can be higher or lower, 
depending on the relative sizes of the  department  and  emp  tables. The normal-
ization defi nitely is less, leaving a potential delete anomaly and loss of integrity 
if the last record containing a particular  deptNum  and  deptName  combination 
is deleted. If this is not an issue, then denormalization is defi nitely a winning 
strategy. Query and update times are usually more important than storage 
space.  

   Option 2 (   emp2    and    department   ).  This is denormalization with redundancy 
to prevent the delete anomaly between  deptNum  and  deptName . This strategy 
should only be used if the loss of integrity is a real issue here. Like pure denor-
malization, it greatly improves query time at the expense of update time and 
storage space.  

   Option 3 (   emp    and    department   ).  This is the original database schema, which 
should be kept if the query and update times are acceptable. To denormalize 
would require a reorganization of the database schema and repopulation of 
 emp2 , a potentially signifi cant overhead.    

 In summary, the key effects of denormalization are:

   1.     A defi nite improvement (decrease) in query time.  
  2.     A potential increase in update time.  

 Table 8.1      Comparison of Denormalization Options for  Example Query 8.2   

 Option  Normalization  Query Time  Update Time 
 Storage 
Space 

 1 —  emp2  only  Less than 3NF, delete 
anomaly possible 

 Low, no joins 
needed 

 Low, no redundancy  Potentially 
higher 

 2 —  emp2  and 
 department  

 3NF  Low, no joins 
needed 

 Lower due to 
redundancy 

 Highest 

 3 —  emp  and 
 department  

 3NF  Higher, join 
required 

 High, only hurt if 
 deptNum  is changed 

 Original 



  3.     A potential increase in storage space.  
  4.     A potential loss of data integrity due to certain deletions.  
  5.     The necessity for program transformations for all relevant queries.  
  6.     The overhead needed to reorganize one or more tables (e.g.,  emp  to 

 emp2 ).    

 These effects require careful consideration. The example in  Section 8.3  goes into 
more details of this analysis. 

 Many database systems have software that provides data synchronization 
between redundant data and base data, and thus supports the concept of denor-
malization using redundancy. For instance, software such as DB2 Everyplace, 
Oracle Data Hubs, Oracle Streams, SQL Server Compare (Red-Gate Software), and 
SQL Server Everywhere Edition all provide such critical data synchronization 
services.   

  8.3     TABLE DENORMALIZATION STRATEGY 
 A practical strategy for table denormalization is to select only the most 
dominant processes to determine those modifi cations that will most likely 
improve performance. The basic modifi cation is to add attributes to existing tables 
to reduce join operations. The steps of this strategy for relational databases 
follow. 

    1.     Minimize the need for denormalization by developing a clear and concise 
logical database design, including tables that are at least 3NF or BCNF. This 
establishes the requirement of an accurate representation of reality and fl exibil-
ity of the design for future processing requirements. If the original database 
does not meet performance requirements, consider denormalization as one of 
the options for improving performance.  

  2.     Select the dominant queries and updates based on such criteria as high fre-
quency of execution, high volume of data accessed, response time constraints, 
or explicit high priority. Remember this rule of thumb: Any process whose 
frequency of execution or data volume accessed is 10 times that of another 
process is considered to be dominant.  

  3.     Defi ne extended tables with extra columns, when appropriate, to reduce the 
number of joins required for dominant queries.  

  4.     Evaluate total cost for storage, query, and update for the database schema, with 
and without the extended table, and determine which confi guration minimizes 
total cost.  

  5.     Consider also the data integrity due to denormalization. If an extended table 
appears to have lower storage and processing (query and update) costs and 
insignifi cant data integrity problems, then use that schema for physical design 
in addition to the original candidate table schema. Otherwise use only the 
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original schema. Also, try very hard to use database management system (DBMS) 
features to keep the redundant data in sync with the base data.     

  8.4     EXAMPLE OF DENORMALIZATION 
 The following example illustrates how to proceed through the database life cycle, 
in a practical way, for a simple relational database. We will see how denormaliza-
tion extends a logical design methodology to attain signifi cant improvements in 
performance, given that the available access methods are known. 

  8.4.1     Requirements Specifi cation 

 The management of a large retail store would like a database to keep track of sales 
activities. The requirements for this database lead to six entities and their unique 
identifi ers, as shown in  Table 8.2   . 

 The following assertions describe the data relationships:

    ■      Each customer has one job title, but different customers may have the same 
job title. ( Note:  Consider this a special database where customer job titles are 
important.)  

   ■      Each customer may place many orders, but only one customer may place a 
particular order.  

   ■      Each department has many salespeople, but each salesperson must work in only 
one department. ( Note:  This may not be a realistic constraint for some retail 
businesses.)  

   ■      Each department has many items for sale, but each item is sold in only one 
department (item means item type, like IBM PC).  

 Table 8.2      Sales Activities Requirements  

 Entity  Entity ID 
 ID Length 
(average, in bytes)  Cardinality 

  Customer    custNum   6  80,000 

  Job    jobTitle   24  80 

  Order    orderNum   9  200,000 

  Salesperson    salesName   20  150 

  Department    deptNum   2  10 

  Item    itemNum   6  5,000 
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   ■      For each order, items ordered in different departments must involve different 
salespeople, but all items ordered within one department must be handled 
by exactly one salesperson. In other words, for each order, each item has 
exactly one salesperson, and for each order, each department has exactly one 
salesperson.     

  8.4.2     Logical Design 

 An entity – relationship (ER) diagram and a set of FDs to correspond to each of 
the assertions are given in  Table 8.3   .  Figure 8.3    presents the ER diagram. Normally 
the ER diagram is developed without knowing all the FDs, but in this example the 
nonkey attributes are omitted so that the entire database can be represented with 
only a few statements and FDs. The result of this analysis, relative to each of the 
assertions given, is shown in the table. 

 The tables needed to represent the semantics of this problem can be easily 
derived from the constructs for entities and relationships. Primary keys and foreign 
keys are explicitly defi ned. 

     CREATE TABLE customer (custNum CHAR(6),   
               jobTitle            VARCHAR(256),   
               PRIMARY KEY (custNum),   
               FOREIGN KEY (jobTitle) REFERENCES job);     

     CREATE TABLE job (jobTitle         VARCHAR(256),   
               PRIMARY KEY (jobTitle));     

     CREATE TABLE order (orderNum CHAR(9),   
               custNum               CHAR(6) not null,   
               PRIMARY KEY (orderNum),   
               FOREIGN KEY (custNum) REFERENCES customer);     

 Table 8.3      ER Diagram FDs Assertions  

 ER Construct  FDs 

  Customer(many): Job(one)    custNum - >  jobTitle  

  Order(many): Customer(one)    orderNum - >  custNum  

  Salesperson(many): Department(one)    salesName - >  deptNum  

  Item(many): Department(one)    itemNum - >  deptNum  

  Order(many): Item(many):
Salesperson(one)  

  orderNum,itemNum - >  salesName  

  Order(many): Department(many):
Salesperson (one)  

  orderNum,deptNum - >  salesName  
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     CREATE TABLE salesperson (salesName VARCHAR(256),   
               deptNum               CHAR(2),   
               PRIMARY KEY (salesName),   
               FOREIGN KEY (deptNum) REFERENCES department);     

     CREATE TABLE department (deptNum CHAR(2),   
               PRIMARY KEY (deptNum));     

     CREATE TABLE item (itemNum CHAR(6),   
               deptNum CHAR(2),   
               PRIMARY KEY (itemNum),   
               FOREIGN KEY (deptNum) REFERENCES department);     

     CREATE TABLE orderItemSales (orderNum CHAR(9),   
               itemNum               CHAR(6),   
               salesName         varCHAR(256) not null,   

  FIGURE 8.3  

   ER diagram for a simple database.    
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               PRIMARY KEY (orderNum, itemNum),   
               FOREIGN KEY (orderNum) REFERENCES order,   
               FOREIGN KEY (itemNum) REFERENCES item,   
               FOREIGN KEY (salesName) REFERENCES salesperson);     

     CREATE TABLE orderDeptSales (orderNum CHAR(9),   
               deptNum               CHAR(2),   
               salesName         VARCHAR(256) not null,   
               PRIMARY KEY (orderNum, deptNum),   
               FOREIGN KEY (orderNum) REFERENCES order,   
               FOREIGN KEY (deptNum) REFERENCES department,   
               FOREIGN KEY (salesName) REFERENCES salesperson);     

 Further logical design can be done to minimize the number of 3NF tables 
( Teorey, Lightstone, and Nadeau, 2006 ). However, we will assume the tables 
defi ned here are complete and focus on the database refi nement using denormal-
ization to increase the effi ciency for executing queries and updates.  

  8.4.3     Schema Refi nement Using Denormalizaton 

 We now look at the quantitative trade-offs of the refi nement of tables to improve 
processing effi ciency. Assume that each of the following transactions are to be 
executed once per fi xed time unit. 

     EXAMPLE QUERY 8.3  

   Select all order numbers assigned to customers who are computer engineers. 

     SELECT o.orderNum, c.custNum, c.jobTitle   
               FROM         order AS o, customer AS c   
               WHERE      c.custNum  =  o.custNum   
               AND            c.jobTitle  =   ‘ computer engineer ’ ;          

     EXAMPLE UPDATE 8.4  

   Add a new customer, a painter, with number 423378 and the customer ’ s order number, 
763521601, to the database. 

     INSERT INTO customer (custNum, jobTitle) VALUES   
   ( ‘ 423378 ’ , ’ painter ’ );   
   INSERT INTO order (orderNum, custNum) VALUES   
   ( ‘ 763521601 ’ , ’ 423378 ’ );          

     Analysis of    Example Query 8.3   The system query optimizer can choose from 
a number of different ways to execute the transaction  Example Query 8.3 . Let 
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us fi rst assume that the tables are all ordered physically by their primary keys. 
We use the sort-merge join strategy for the fi rst transaction: Sort the order table 
by  custNum , then join tables  order  and  customer  with a single scan of each, 
and select only rows that have  jobTitle  of  computer engineer . We then 
project on  orderNum  to answer the query. To simplify the analysis we assume 
that a sort of  nb  blocks takes 2  ×   nb  log 3   nb  block accesses and that computer 
engineers make up 5 percent of the customers and orders in the database.  ■     

 All row accesses are sequential in this strategy. For simplicity we have a block 
size of 4   KB (4096 bytes) and a prefetch buffer size of 64   KB, as done in DB2. We 
can estimate the input/ouput (I/O) service time by fi rst computing the effective 
prefetch blocking factors for the  order ,  customer ,  orderCust , and  compEngr  
tables: 4369 (64   KB/15 bytes per row), 2176, 1680, and 1680, respectively. We 
assume an IBM U320 146-GB hard drive with an average seek of 3.6   ms, an average 
rotational delay of 2   ms (for 15,000 RPM), and a transfer rate of 320   MB/sec. 

    I/O time for a block access in a table scan  =  rotational delay    +  
  transfer of a prefetch buffer  

            =  2   ms  +  64   KB/320   MB/sec  
            =  2.2   ms    

    Block accesses  =  sort  order  table  +  scan  order  table    +  
                         scan  customer  table  +  create  orderCust  table    +  
                         scan  orderCust  table  +  create  compEngr  table    +  
                         project  compEngr  table  

            =  (2  ×  4369 log 3  4369)  +  4369  +  37  +  120  +  120  +  6  +  6  
            =  2  ×  4369  ×  7.63  +  4658  
            =  71,329    

    I/O time  =  71,329 block accesses  ×  2.2   ms  
            =  156.9 seconds    

     Analysis of    Example Update 8.4   The strategy to execute the second transac-
tion,  Example Update 8.4 , using the same schema, is to scan each table ( order  
and  customer ) and rewrite both tables in the new  order  table.    

    Block accesses  =  scan  order  table  +  scan  customer  table    +  
                         rewrite  order  table  +  rewrite  customer  table  

            =  4369  +  37  +  4369  +  37  
            =  8812    

    I/O time  =  8812 block accesses  ×  2.2   ms  
            =  19.4 seconds    

     Defi ning the Denormalized Table    orderCust   If we combine the  customer  and 
 order  tables to avoid the join in  Example Query 8.3 , the resulting schema will 
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have a single table  orderCust , with primary key  orderNum  and nonkey attri-
butes  custNum  and  jobTitle , instead of separate tables  order  and  customer . 
This not only avoids the join, but also the sort needed to get both tables 
ordered by  custNum .    

     CREATE TABLE orderCust (orderNum CHAR(9),   
               custNum            CHAR(6) not null,   
               jobTitle         VARCHAR(256),   
               PRIMARY KEY (orderNum);     

 The strategy for  Example Query 8.3  is now to scan  orderCust  once to fi nd the 
computer engineers, write the resulting data on disk, and then read back from 
disk to project the resulting temporary table,  compEngr , to answer the query. 

    Block accesses  =  scan  orderCust   +  write 5 percent of  orderCust  on disk    +  
                      project 5 percent of  orderCust   
            =  120  +  6  +  6  
            =  132    

    I/O time  =  132 block accesses  ×  2.2   ms  
            =  0.3 second    

 The strategy for  Example Update 8.4 , using this refi ned schema, is to scan 
 orderCust  once to fi nd the point of insertion and then to scan again to reorder 
the table. 

    Block accesses  =  scan  orderCust   +  scan  orderCust   
            =  120  +  120  
            =  240    

    I/O time  =  240 block accesses  ×  2.2   ms  
            =  0.5 second    

 Common to both strategies is the addition of an order record to the  order-
ItemSales  and  orderDeptSales  tables. For the sake of simplicity, we will assume 
these tables to be unsorted, so the addition of a new order will require only one 
record access at the end of the table and, thus, negligible I/O time. 

 The basic performance and normalization data for these two schemas and the 
two transactions given previously are summarized in  Table 8.4   . The refi ned schema 
dramatically reduces the I/O time for the query transaction and the update, but 
the cost is storage space and signifi cant reduction in the degree of normalization. 
The normalization is reduced because we now have a transitive FD:  orderNum - >  
custNum - >  jobTitle  in the  orderCust  table. The implication of this, of course, 
is that there is a delete anomaly for  jobTitle  when a customer deletes an order 
or the order is fi lled (in particular, when the  jobTitle  value deleted is the last 
instance of that  jobTitle  in the database). 

 The signifi cance of these performance and data integrity differences depends 
on the overall objectives as well as the computing environment for the database, 
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and it must be analyzed in that context. For instance, the performance differences 
must be evaluated for all relevant transactions, present and projected. Storage 
space differences may or may not be signifi cant in the computing environment. 
Integrity problems with the deletion commands need to be evaluated on a case-
by-case basis to determine whether the side effects of certain record deletions are 
destructive to the objectives of the database. In summary, the database designer 
now has the ability to evaluate the trade-offs among query and update require-
ments, storage space, and integrity associated with normalization. This knowledge 
can be applied to a variety of database design problems. 

 Table 8.4      Comparison of Performance and Integrity of Original Tables and Join Table  

 Original Schema ( order  and 
 customer  tables) 

 Denormalized Schema 
( orderCust  table) 

 Query time  156.9   sec  0.3   sec 

 Update time  19.4   sec  0.5   sec 

 Storage space (relevant tables)  5.4   MB  7.8   MB 

 Normalization  3NF  Less than 3NF 

     TIPS AND INSIGHTS FOR DATABASE PROFESSIONALS  

       ■       Tip 1: Normalize fi rst, then consider denormalizing if performance 
is poor.  You can maximize the probability of a good logical design by 
carefully creating a conceptual model using the ER approach or UML. These 
modeling methods tend to result in relational databases that are close to 
being or are already normalized. Normalization tends to reduce redundancy 
and provides a high level of integrity to the database. When the actual tables 
are not conducive to good performance (e.g., when they are so small that 
dominant queries must do extra joins on them each time they are exe-
cuted), then consider merging two tables to avoid the join and reduce I/O 
time. If the benefi t of this merge (and possible denormalization) in I/O time 
saved is greater than the cost in I/O time for the redundancy of data needed 
to avoid a delete anomaly, in terms of updates, then go ahead with the 
merge.  

   ■       Tip 2: Denormalize addresses whenever possible.  Addresses can be 
very long and cumbersome to access, so it is often useful to store addresses 
separately and access them through joins only when explicitly needed. 
Furthermore, addresses are often stored redundantly across the database, 



  8.5     SUMMARY 
 In this chapter we explored an in-depth defi nition and example for the use of 
denormalization to enhance performance of a relational database. The example 
reviews the life cycle steps of logical design before the denormalization step of 
schema refi nement to increase effi ciency for query processing.   

   8.6    FURTHER READING 
  The idea for extending a table for usage effi ciency came from  Schkolnick and 
Sorenson (1980) , and practical advice on denormalization is given in  Rodgers 
(1989) . 
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so if one copy gets deleted, it can be recovered elsewhere. Usually the 
performance gains of avoiding joins most of the time and avoiding extra 
bytes in a query are worth the redundancy and the extra updates needed. 
Addresses are usually fairly static and don ’ t change often.  

   ■       Tip 3: Make use of existing DBMS-provided software to synchronize 
data between redundant data to support denormalization and 
the base data.  Examples of data synchronization software include DB2 
Everyplace, Oracle Data Hubs, Oracle Streams, SQL Server Compare 
(Red-Gate Software), and SQL Server Everywhere Edition.           
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 CHAPTER

9     Business Metadata 
Infrastructure 

   9.1     INTRODUCTION 
 Numerous things need to be kept in mind when planning an infrastructure to 
support metadata, especially business metadata. This chapter addresses these 
considerations and will serve as a guide as you determine what kind of infrastruc-
ture best fi ts your current environment. 

 The chapter discusses what kinds of business metadata you may want to track 
and provides a data model as a guide. The metadata environment is shown to be 
like a data warehouse in many respects, requiring much of the same infrastructure 
components. Special tools are often required for both the capture and display of 
business metadata. Special integration and delivery mechanisms are discussed —
 namely, data federation and service orientation. Administrative sources of records 
and historical issues should also be considered in terms of structural and storage 
considerations. Lastly, the chapter covers the issues of buy versus build, with a 
third alternative in the mix: extend an existing product.  

  9.2     TYPES OF BUSINESS METADATA 
 One of the fi rst decisions concerning infrastructure that you must make is what 
type of business metadata is important to the enterprise, as well as important 
enough to merit storage and management. Some of the major areas you will want 
to consider are:

    ■      Business terms  
   ■      Business term defi nitions (Does a term have more than one defi nition? 

What about history?)  
   ■      Business rules  
   ■      Authority/governance/stewardship  
   ■      Origin: where things came from (may be different from authority!)  
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   ■      Scope: What is the scope or boundaries of authority?  
   ■      Organizations (both internal and external)    

 These are just a few of many different types of business metadata you may 
want to collect and manage. Remember, however, that data have costs; you can ’ t 
just throw in everything. The  “ kitchen sink ”  metadata management strategy will 
be very costly, and we guarantee that it won ’ t all apply to your specifi c business 
needs. 

  Figure 9.1    shows a high-level, conceptual metamodel that you can use as a 
guide to decide which kinds of metadata to manage. It shows some of each type 
of metadata: business and technical. It is not intended to be an exhaustive model; 
in your environment you may come up with things unique to your business. 

 Entities may have a lot of detail behind them, and when made into a logical 
model, it will be larger. Each entity has a prefi x indicating whether it is business 
( BMD ) or technical ( TMD ) metadata. The model uses the Barker notation; you read 
each relationship as two sentences. For the purpose of aesthetics, we have left 
the relationship names off of the diagram, so read each with a generic verb phrase 
such as  “ is associated with. ”  A dotted line represents optional, solid is mandatory, 

  FIGURE 9.1  

   Business and technical metamodel.    
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and a crow ’ s foot is one or more. So the relationship between business term and 
defi nition would be read as follows:

    ■      Each BMD business term may be associated with one or more defi nitions.  
   ■      Each BMD defi nition must be associated with one and only one BMD 

business term.    

 Just as you may create other entities that are not shown in this model (or omit 
some!), you may not agree with the relationships shown. For example, you may 
want to enforce a rule that mandates only one defi nition for every term. That is 
your choice. The model is included as a guideline only and is not to be interpreted 
as the only way to model metadata. 

 Note that the model includes technical metadata; this is for the purpose of 
integration, which we will explain in more detail later in the chapter. It is highly 
recommended that you be able to relate business and technical metadata together, 
to serve all sorts of purposes. 

 The data profi ling metadata are indicated in the model as business metadata. 
They are actually both business and technical, but we refer to them as business 
because they enable the business to validate its defi nitions and data. Realize that the 
data profi ling metadata may have to be presented to the business user in a special 
format so that they can be understood more easily. However, many businesspeople 
are direct users of some profi ling tools, especially Data Flux, because it is so easy 
to use and it creates wonderful charts and graphs. Businesspeople like charts and 
graphs! A picture is better than a thousand words, the old proverb says. 

 The model doesn ’ t show some interesting areas that you might want to consider:

    ■      Business context, including background information such as departmental 
history and corporate reorganizations  

   ■      History and life cycle of the business metadata itself  
   ■      Modifi cation history (who modifi ed the data, when, and why)  
   ■      Aggregations, summaries, and formulas  
   ■      Business process models  
   ■      Business motivation  
   ■      Images, including pictures of personnel  
   ■      Geography  
   ■      Weather  
   ■      News feeds     

  9.3     THE METADATA WAREHOUSE 
 Business metadata are collected in various ways. The infrastructure therefore 
needs to support a variety of collection mechanisms including Web 2.0 technolo-
gies. Business metadata are also created through a transformation of technical 
metadata. The conclusion is that a good solution resembles a data warehouse 
architecture, but one designed specifi cally to handle metadata (see  Figure 9.2   ). 

9.3 The Metadata Warehouse  271
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 This means that you must have all of the necessary components that you would 
need if you were building a data warehouse; the only difference would be the 
lack of a specialized delivery structure like you normally see in the BI environment 
(e.g., star schema or cube physical structure). You will still probably have to use 
ETL or common metadata bridges, as shown in  Figure 9.2 , because the metadata 
will have to be moved to the appropriate repository in the BI environment. For-
tunately, many software and open systems fi rms provide metadata bridges or 
integration software that will help you accomplish the metadata ETL task. A quick 
search on the Internet for  “ metadata integration ”  will yield hundreds of responses 
for you to select from. 

 A special structure like a star scheme is not required because metadata in 
general and business metadata in particular do not require analytics. One possible 
exception are data-quality statistics. Most business metadata are semistructured 
textual content; some are unstructured comment text or even images. Business 
metadata add context to the data, and they usually do so with textual descriptions. 
Obviously, textual descriptions cannot be  “ sliced and diced ”  like numbers can. 
Therefore, the data delivery side of the equation, though fraught with its own 
challenges, is usually easier than data warehousing and does not require a special-
ized physical data structure. We will, however, discuss a few exceptions. 

  9.3.1     Business Metadata Differences 

 The main difference between the infrastructure required for a data warehouse and 
that required for business metadata is the type of content. Business metadata 
usually consist of text. Now, however, we are beginning to see images as business 
metadata, and even really simple syndication (RSS) feeds, maps, and weather data. 

  FIGURE 9.2  

   Metadata infrastructure, metadata data warehouse.    
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Some of these new data sources become links and do not go through ETL at all. 
A traditional ETL strategy and software may not be able to handle some of these 
types of objects, and even if they could, special hardware requirements would 
need to be considered, owing to their large size. The same can be said for the 
staging area, which in data warehouse architectures is usually a dedicated set of 
tables or separate database. The staging area that houses business metadata may 
end up being a combination of structures, including both fl at fi les and a database. 
The enterprise metadata repository may also end up being a combination, consist-
ing of a content management system and database. Databases are not the best 
technology to manage large documents and images/multimedia. Just as in data 
warehousing, the overall data architecture strategy for your metadata repository 
environment may be centralized or federated. The choice for the architecture will 
be largely dependent on the capabilities of the technology tools selected and the 
organization ’ s funding capabilities.   

  9.4     DELIVERY CONSIDERATIONS 
 From an infrastructure perspective, it is important to note the general require-
ments for the possible delivery strategies. 

  9.4.1     Delivery in the Legacy Environment 

 You may want to deliver contextual information to legacy applications, like busi-
ness term and/or form fi eld defi nitions. Legacy environments were generally not 
created using open technology, so you may have to get very creative. First, are 
your applications homegrown (developed in-house), or are they commercial off-
the-shelf software (COTS)? Obviously, you have a better chance of modifying the 
applications directly to display business metadata like term defi nitions if the appli-
cation was internally developed in-house. You may even be lucky enough to have 
someone still around who understands how this might be done! 

 Commercial products, on the other hand, are usually very closed systems. Some 
may provide extension options, but watch out! Sometimes commercial products 
will void their warranty or service agreement if you tinker with their internals. 

  Getting Creative 
 There may be a way to creatively deliver descriptive metadata in the transaction 
environment by not having to interface with the legacy applications — by using a 
portal. 

 We created a corporate dictionary/glossary for a client, which was using the 
AquaLogic portal set of tools. We created a very simple glossary search portlet 
that looks like Google ’ s one fi ll-in-the-blank text box with a  “ Go! ”  button to the 
right. We placed the portlet on the intranet home page so that it was available 
anywhere. An even better mechanism that we looked into (but did not implement 
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because it required too much work) was to have an icon on the tray for the dic-
tionary search mini-application. The problem with either method is that they are 
not context sensitive; they do not recognize where the mouse or insertion point 
is at any given point in time. 

 If your homegrown application was developed fairly recently (in the last fi ve 
to ten years), then it may have a context-sensitive help mechanism built in. This 
mechanism can be hijacked for the purpose of business metadata. However, the 
downside to this arrangement is that someone has to write it, and this process 
sounds like  “ documentation. ”  Neither users nor programmers get excited about 
this! There is a better way, as will be described later. First, however, we need to 
describe business metadata in the conventional BI environment.   

  9.4.2     Infrastructure Required for BI Environments 

 BI tools like the Cognos suite of products usually come with a means of delivering 
some descriptions to the user. For example, when browsing the tree of the busi-
ness element names, hover text is available. In other words, when your mouse 
hovers over the business element name, it can display a defi nition or description 
that you provide. Cognos, however, has its own metadata repository and requires 
that this hover text be referenced from its repository. This means that if you have 
an enterprise metadata repository, you will have to build ETL to move the defi ni-
tions from the enterprise repository into the tool ’ s specialized repository.  

  9.4.3     Graphical Affi nity 

 Special infrastructure may be required for certain delivery mechanisms — for 
example, graphical affi nity and visual analytic tools. Some of these tools can 
enhance the display of both data and metadata to add clarity that only pictures 
can provide.  “ Heat maps ”  show the concentration of documents clustered around 
specifi c topics using colors like degrees of red and blue. Affi nity diagrams can 
show how one person is tied to various cases or events in the system, and differ-
ent roles can be indicated with different symbols. 

 In these cases, special tools such as IDS Visualization, Seepower by Compu-
digm, and VisuaLinks by Visual Analytics, Inc. may be needed, and expertise in 
these tools may also be required. Consultants, such as Jordan Rose, who have 
expert knowledge in a specifi c tool, can jumpstart your project and get it up and 
running faster, because you don ’ t need to factor in the learning curve. Companies 
like PPC specialize in development of the visual analytic application and also 
mentoring your personnel, so when new views of the data are required, your staff 
can create them.  

  9.4.4     Web 2.0 Technology: Mashups! 

 A very exciting method is now available that can capture and deliver business 
metadata at the same time: mashups.  Mashups  are integrated Web applications 
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that usually consist of a collection of different types of components and 
data, all displayed together on the same Web page. The really cool feature of 
these new tools that have recently been released is their ability to allow 
ordinary users — not just programmers — to create their own mashup, with no 
programming. 

 For example, BEA has released AquaLogic Pages, a product that provides all 
the infrastructure, toolkits, and plumbing needed to allow users to design and 
create their own conglomeration of components — from fetching rows directly 
from a database to calling a Web service, accessing an RSS feed, or even creating 
their own data table or publishing a preexisting Excel spreadsheet. On the same 
Web page, the user can link objects together so that they feed data to one another, 
also with no programming.  1   For example, the user who while analyzing a BI report 
discovers declining sales in January can access a weather report for the dates in 
question and place a comment on the page stating the reason for the decline in 
sales: There was a series of major snowstorms in that geographical area. In a similar 
manner, the same technique can be used to dynamically adjust inventory: A snow-
storm is predicted for a certain geographic area, and a hardware retailer can stock 
up on sand, rock salt, and shovels to accommodate an infl ux of sales in the affected 
stores — all within the mashup.    

  9.5     INTEGRATION 
 To manage the entire metadata environment, business and technical metadata 
must sometimes be integrated. 

  9.5.1     Business and Technical Metadata Integration 

 Business changes will affect the technical environment, and the faster IT can 
respond to change, the more effectively the business can compete in the ever-
changing marketplace. One of the fi rst places that changes can be spotted proac-
tively and managed is in the metadata environment. 

 A hypothetical fl ow of events in the metadata environment is as follows:

    ■      In a wiki on marketing ’ s portal, someone makes a comment that a new fi eld is 
needed in one of marketing ’ s key applications. Marketing has determined that 
a new measure of ad campaign performance is needed that will help the depart-
ment determine the effectiveness of campaigns, move effi ciently, and respond 
faster.  

  1   For this system to work, a developer is required in the beginning to develop templates that the 
users can plug and play. The template will have the built-in  “ hooks ”  that allow it to connect 
to other components to get/receive data. Once these templates are built, the users can link 
them together with other components, allowing them to send and receive data from these other 
components. 
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   ■      The marketing representative proposing the change creates a new business term 
in the glossary and provides the formula required in the defi nition to compute 
the measure.  

   ■      IT determines where the data currently reside through analysis of technical 
metadata, using the formula entered in the glossary as a reference; the metadata 
repository is used to fi nd the data elements that are tied to the business terms 
used in the defi nition ’ s formula. IT creates a new mashup, displaying a database 
query showing examples of the actual data and posing questions on the wiki, 
seeking verifi cation that the data are correct.  

   ■      Meanwhile, marketing itself has created a mashup, accessing data from the 
marketing application and creating the required fi eld. This not only answers 
the immediate need, but also helps IT further understand the requirements of 
the fi eld, as well as be able to pose more sophisticated questions regarding the 
source data used as input for the computation.  

   ■      IT is then able to gather requirements in an asynchronous way. The require-
ments are recorded in the conversation back and forth, and clarity can be 
reached more rapidly. Meanwhile, marketing is not held hostage while IT devel-
ops the fi eld, because marketing uses its own fi eld on the mashup.    

 The integration described here is quite complex:

    ■      It requires that users understand what the data in their source systems 
mean, which dictates that defi nitions exist for data elements (the data diction-
ary, which defi nes system data elements, is not the same thing as a business 
glossary, which defi nes business terms).  

   ■      It requires that impact analysis be performed from a business metadata 
description.  

   ■      It requires software that helps businesspeople to create their own mashups.  

   ■      It may even be possible, providing the right integrated infrastructure exists, to 
generate a data model from well-placed business terms in the glossary.    

  Example of an Integrated Metadata Repository Tool 
 Tools are now starting to become available that provide the integration necessary 
between business and technical metadata, and also promote a reasonable way to 
store some business metadata. IBM, like many companies, has embarked on an 
acquisition frenzy in order to be the fi rst on the block with a truly integrated 
metadata repository across many tools. The following pieces are now integrated 
in their metadata repository, out of the box:

    ■      Business glossary  
   ■      Data profi le data  
   ■      ETL  
   ■      Data-quality data  



9.5 Integration  277

   ■      Data models (and data element defi nitions)  
   ■      Physical schema    

 A data analyst can look at the glossary and display a list of data elements that 
represent that business term in the systems throughout the enterprise. Data profi l-
ing results for a given data element can be shown side by side with the business 
defi nition in order to determine whether the data accurately refl ect what the 
defi nition indicates. In the same way, a data warehouse fi eld can be compared 
with the business term defi nition, and if they are not synchronized, ETL jobs can 
be examined to determine what the problem might be. Although most of this 
analysis will be done by technical people, the business is the ultimate benefi ciary 
of this integration, because it will be able to directly benefi t from more accurate 
data and more transparent analysis with better traceability.   

  9.5.2     Integration and Administrative Source of Record: 
Confl ict Resolution 

 Metadata reside all over the enterprise. Just as in a data warehouse, confl icts may 
arise when metadata are extracted from multiple sources. One type of metadata 
may have different values, but it is supposed to be the same piece of metadata. 
This happens in the context of master data management (MDM) projects all the 
time, when customer data is located in fi ve different systems. Which is the best? 
Which is the  “ gold copy ” ? In the case of metadata, would all values go in the 
metadata repository or only in the  “ gold copy ” ? 

 Data elements are an example of this situation. Suppose you have a data 
element called  Recognized Revenue , which shows up in three different systems, 
each time with a different defi nition. Which defi nition is correct? As you can 
imagine, these three data elements may actually represent entirely different con-
cepts, which is another issue that your metadata repository must be able to handle. 
But suppose they really are the same thing. Which defi nition is the best one? 
Which do you use? The usual solution to that problem is for you to include each 
defi nition along with each data element, but the universal data concept will need 
its own defi nition. 

 But what about stuff that is supposed to be the same metadata, which shows 
up in different places, and one gets updated and all the other locations are not 
kept in synch? Defi nitions maintained in an Excel spreadsheet are one example. 
The defi nitions are supposed to be created in the spreadsheet and copied to the 
database design tool, but then a new data modeler, who doesn ’ t know anything 
about the spreadsheet, joins the staff. He or she maintains the defi nitions in the 
database design tool. The same situation often happens across tools; the defi nition 
may be created and maintained in both Cognos and the database design tool. 
Which takes precedence? 

 One way to help resolve this problem is to create a CRUD (create, read, update, 
delete) matrix illustrating tools and fi les that maintain metadata objects. See  Table 
9.1    for an example.  
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  9.5.3     Integration Technologies 

 We have compared the metadata environment to a data warehouse and discussed 
the use of a physical metadata repository. This approach, like the data warehouse, 
has many advantages, such as the existence of a single physical source of record 
that can be always counted on to be up to date. 

  Federated Metadata 
 Another approach to integrated metadata management is virtual integration, 
known as  federated . In this approach, a user requests metadata and an integration 
engine, using confl ict-resolution rules and source information, goes out in real 
time, sources the requested data, and reconciles the data  “ on the fl y. ”  Federated 
tools (e.g., MetaMatrix) have the ability to interface with tools in both directions: 
get and receive metadata. For example, these tools would be able to get data 
defi nitions from the database design tool and feed them to the Cognos repository 
for display when viewing a data mart, all virtually with no need for a physical 
repository.  

  Business Metadata as a Service 
 Software services, or services-oriented architectures, are becoming a popular way 
to obtain integrated data. A data service — in this case a metadata service — is 
invoked, data are obtained, and all the mechanics are done by the service, inde-
pendent of hardware or software platform. Services can be invoked by software 
programs internally or by businesspeople if an interface is provided to them. 

 Business metadata service delivery can be used either with or without a meta-
data repository; it is a data delivery mechanism. If services are desired, the appro-
priate infrastructure, centralized or federated, must be in place to support the 
delivery of the service.    

 Table 9.1      Metadata System of Record Matrix  

 Meta Object 
 Strategic 
Modeling Tool 

 Tactical 
Modeling Tool 

 DBMS 
Tool 

 Data 
Integration 
Tool 

 Reporting 
Tool 

 Entity name  C 

 Entity type  C 

 Entity defi nition  C  U  R 

 Entity scope  C 

 Entity active ind  C  U 

 Entity logical business rule  C  U  U  R 



  9.6     ADMINISTRATIVE ISSUES 
 This section addresses a few of the administration issues that will have infrastruc-
ture ramifi cations. 

  9.6.1     Administration Functionality Requirements 

 The metadata infrastructure must account for how the metadata environment will 
be managed and administered. These issues include:

    ■      How security will be managed both for the access of metadata and the 
access to the reporting environment.  

   ■      How the operational activities of metadata governance, acquisition, 
confi guration, versioning, change management, and the like will be 
administered.  

   ■      How workfl ow and metadata quality checks, audits, and errors will be 
administered.  

   ■      How the program code will be managed and upgrades or new releases 
will be managed.  

   ■      How the metadata will be duplicated/replicated, how it will be backed 
up, and the processes to support disaster recovery.  

   ■      How the programs will be operationally scheduled, monitored, and 
debugged if necessary.    

 Use cases are an effective means of documenting the requirements and the 
actions that will need monitoring to administer the metadata environment. These 
issues may result in additional hardware, software, or resource requirements.  

  9.6.2     Do You Keep History? 

 Should you maintain history on each metadata object? The answer will probably 
vary, depending on the type of business metadata. For example, you may want to 
keep history of business term defi nitions. The most obvious type of business 
metadata that you defi nitely want to keep are data profi ling statistics, because they 
show how data quality is showing improvement or degradation over time. 

 Those familiar with data warehouse development will recognize that the same 
set of issues that are used to address slowly changing dimensions apply here as 
well. Those issues include:

    ■      Is the requirement to only keep and report the latest value for the metadata 
object? In this case, we overwrite the value of the metadata, and thus only the 
most recent value can be communicated.  

   ■      Is the requirement to keep a limited number of values for the metadata? This 
may be the case where the need is to keep the current version and one previ-
ous version of the metadata value. In this case, we must copy the current value 
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and overwrite the previous value, and then we must also overwrite the current 
value with the new value of the metadata.  

   ■      Is the requirement to keep all values for the metadata? In this case, we must 
keep all the history of the values for the metadata object, which is often critical 
to business processes and communications. However, the ability to achieve this 
requirement will be directly dependent on the capabilities of the hardware and 
software infrastructure.      

  9.7     METADATA REPOSITORY: BUY OR BUILD? 
 The fi rst question a chief information offi cer of a business asks very early in the 
planning process is  “ Do we buy or build it ourselves? ”  Acquiring the licenses to 
achieve many of the things we have discussed in this chapter is easily a mid-six-
fi gure endeavor. However, the software licensing price for some products can be 
less than fi ve fi gures, less than $10,000. So how do we make the decision and 
arrive at an answer to the question? Some of the issues that impact the decision 
can be funding availability and organizational/cultural related. Organizations that 
normally purchase software solutions will have a natural tendency to consider the 
 “ buy ”  alternative. Conversely, organizations that tend to develop software inter-
nally will tend to consider the  “ build ”  alternative. In either case, we recommend 
that the organization fully defi ne its metadata integration requirements prior to 
making the decision. For example, in the beginning of the chapter, we provided 
a data model to help you hone in on the specifi c business metadata you are inter-
ested in tracking. 

  9.7.1     Considerations in Making the Decision 

 Some organizations know they don ’ t have the capital funds available, and they 
also know that the metadata project must begin. In that case, the decision should 
be easy; having no capital allocation of funds means they must build it. Funding 
and time-frame pressures often force the buy or build decision to be easier. 

 The following is by no means an all-inclusive list, but the decision to buy or 
build can include these considerations:

    ■      Are the capital funds available for a purchase?  
   ■      Does the organization prefer to purchase solutions, or does it prefer to 

build solutions to fi t their specifi c needs?  
   ■      Does the organization have the skills and resources to complete a build 

solution? This can be a challenge for most organizations attempting 
metadata at an enterprise level.  

   ■      Can a compromise be achieved that limits the project scope so that the 
resources of the organization can achieve a successful build solution?  

   ■      Does a solution have to be implemented in a time frame that can only be 
achieved with a buy solution?  



   ■      Are there buy solutions available that are within our funding capabilities 
and closely match our functional requirements?    

 Note that even if the decision is to buy, a model of the desired metadata is essen-
tial to evaluate each particular package.  

  9.7.2     Special Challenges of Business Metadata 

 Business metadata is primarily unstructured and has complex relationships that 
are far closer to a network model rather than a relational model. When you 
evaluate commercially available products, you will need to realize that most, if 
not all, of these products do not support all business metadata out of the box. 
Thus, these products may not even have structures to contain and maintain busi-
ness metadata. Even IBM, which is farther along in terms of an integrated business 
and technical metadata repository, doesn ’ t support business rules (to our knowl-
edge at this time). Therefore, when you purchase a product, you will most likely 
have to extend the repository to support business metadata objects and life cycle. 
However, in order to technically integrate business metadata with your technical 
metadata, a common integration structure must exist. Again, having a data model 
of your requirements is crucial to this process.   

  9.8     THE BUILD CONSIDERATIONS 
 Building an integrated metadata solution is a signifi cant and complex custom 
software development project. These efforts can be the equivalent of a signifi cant 
data warehousing project (addressing data rather than metadata). However, busi-
ness dictionary, ontology, or taxonomy build projects can have considerably less 
complexity and risk.  

  9.9     THE THIRD ALTERNATIVE: USE A PREEXISTING 
REPOSITORY 

 There is a third alternative in addition to buy versus build: Use a repository from 
an existing tool. For example, many data warehouse tools use their own repository 
to get their jobs done:

    ■      ETL tools (Informatica, IBM, Ab Initio, etc.)  
   ■      BI tools (Cognos, Business Objects, etc.)  
   ■      Data profi ling tools (Informatica IDE, SAS Data Flux, etc.)  
   ■      Enterprise Information Integration (EII) tools (Metamatrix, Composite, 

etc.)  
   ■      Enterprise Application Integration (EAI) tools and service-oriented 

architecture (SOA) tools (BEA, IBM WebSphere, Tibco, etc.)    
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 This solution can be a workable one, because since a repository already exists, 
you don ’ t have to build it from scratch. However, you must remember that when 
you build any extension to a preexisting product, you must be careful because 
the product is subject to change. It is always recommended that you use the APIs 
(such as database views) provided by the vendor and not link your structures 
directly with the underlying structures of the product ’ s database. In addition, it is 
advisable that you isolate your structures in some way from the product ’ s struc-
tures in order to minimize the impact of upgrades and prevent your structures 
from being destroyed. For example, if you are using Oracle, put your structures 
in another schema and use a database link to link your structures to the product ’ s 
structures.  

  9.10     SUMMARY 
 There is no  “ one size fi ts all ”  infrastructure for metadata, especially business meta-
data. You must pay close attention to your specifi c requirements and focal areas, 
and select an infrastructure that supports your needs. Requirements gathering is 
always a best practice, regardless of which option you choose. 

 We have discussed different issues that an overarching metadata infrastructure 
must address. These issues include delivery methods and specialized delivery 
requirements. We have also laid out some guidelines for evaluating and selecting 
an approach to the metadata repository, outlining three alternatives: (1) buy a 
commercially available product; (2) build your own repository; or (3) retrofi t an 
existing product. 

 At this writing, commercially available product support for business metadata 
has started to emerge. In this chapter, we have pointed out some of the special 
considerations that business metadata presents, and we have highlighted the fact 
that even if you choose to buy a product, you will still most likely have to end up 
extending it in some way to support your business metadata.   



 CHAPTER

10     Storing: XML and 
Databases 

   10.1     INTRODUCTION 
 The act of querying XML obviously requires that there is XML to be queried. What 
most standards related to querying XML do not address is the question of where 
that XML is found. 

 In this chapter, we discuss several ways in which XML documents can be made 
available for querying. Among these are ordinary computer fi le systems, websites, 
relational database systems, extensible markup language database systems, and 
other persistent storage systems. Such persistence facilities may present a single 
XML document at a time, or they might provide the ability to query a collection 
of documents at once. Another source of XML, however, does not require persis-
tent storage but involves XML that is presented to a client (such as a querying 
facility) as it is generated. The capability of generating XML (usually dynamically) 
and transmitting it to one or more clients in real time is often called  streaming . 
Querying XML that is persistently stored offers several advantages and challenges, 
while querying streaming XML presents other advantages and challenges. 

 As you read this chapter, you ’ ll learn about the different ways that XML can 
be stored (persistent XML) along with the advantages and challenges involved in 
querying that persistent XML. The mechanisms for storing persistent XML data 
range up to enterprise-level database systems, with all of the robustness, scalabil-
ity, transaction control, and security that such systems offer. 

 You ’ ll also learn about the advantages and challenges associated with queries 
evaluated against XML streams. Such data might be broadcast for consumption by 
many clients (e.g., stock ticker data) or might be streamed to a single client (e.g., 
real-time communication systems, such as instant messaging). The common thread 
is that data, once transmitted, cannot be retrieved a second time. 

 There is also a middle ground in which XML is often used: message queuing 
systems. Such systems often require that data be stored in some temporary loca-
tion until they can be transmitted to the consumer, but the systems rarely involve 
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long-term persistence of the data. Such data are sometimes queried while residing 
in temporary storage locations and sometimes when they have been released from 
storage and are being transmitted to a receiving agent, and thus behave more like 
streamed data.  

  10.2     THE NEED FOR PERSISTENCE 
 A great deal of the XML data most people encounter today are stored somewhere; 
that is, they are  persistent . Storing XML data persistently makes a great deal of 
sense for data that may be used many times, especially when that data have a high 
value and may have been expensive, even diffi cult, to create. 

 Examples of such XML abound: Our movie collection is documented in an XML 
document; corporations are increasingly likely to store business data like purchase 
orders in an XML form; many technical books are being produced from XML 
sources; the W3C ’ s specifi cations themselves are all coded in XML; even computer 
applications ’  initialization and scripting information are increasingly represented 
in XML. Of course, different types of information present different requirements 
for persistent storage. Some sorts, such as the books owned by a publisher, prob-
ably need to be retained for lengthy periods of time, while others (e.g., messaging 
data) might have a lifetime measured in seconds or minutes. The various mecha-
nisms discussed in the remainder of this section easily support the wide variety 
of requirements for storing XML. 

  10.2.1     Databases 

 A  database , according to Wikipedia,  1   is  “ an information set with a regular struc-
ture. ”  A database system, or database management system (DBMS), is thus (for our 
purposes, at least) a computer system that manages a computerized database. 
While it ’ s not unknown for some people to apply the term  database management 
system  to extremely primitive data management products, the term is most often 
used to describe systems that provide a number of important characteristics for 
data integrity. Among these characteristics are:

    ■      Query tools, such as a query language like SQL or XQuery.  

   ■      Transaction capabilities that include the so-called ACID properties:  a tomicity of 
operations,  c onsistency of the database as a whole,  i solation from other concur-
rent users ’  operations, and  d urability of operations even across system crashes.  

   ■      Scalability and robustness.  

   ■      Management of security and performance, including registration and manage-
ment of users and their privileges, creation of indices on the data, and provision 
hints for the optimization of operations.       

  1   Wikipedia, The Free Encyclopedia; available at   www.en.wikipedia.org  . 
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 Several types of database management systems are in wide use by enterprises 
of all sorts, but we believe that only three are commonly employed to store and 
manage XML data: relational, object-oriented, and  “ pure XML. ”  All of these types 
of database inherently provide the ability not only to store and retrieve XML 
documents but also to search that data through the use of query languages of some 
sort. Querying XML data in a DBMS is probably more effective than querying XML 
data stored in other media, if for no other reason than the existence of various 
performance-enhancing features of a DBMS, such as indices. 

 It is worth noting one important consideration when storing XML in a database 
system: XML, by defi nition, is based on the Unicode character set.  2   Not all database 
systems support Unicode, and some support Unicode only when that character 
set was chosen when the database system was installed or when the specifi c 
database was created. Increasingly, however, we see that all of the major relational 
database systems are being updated to employ Unicode internally, implying that 
this may no longer be a serious issue in a few years. We have not investigated the 
status of Unicode in object-oriented DBMSs, but the fact that many of them have 
Java interfaces suggests that they may use Unicode internally. Naturally, pure-XML 
databases will always use Unicode internally.    

  Relational Databases 
 You won ’ t be surprised to hear that a very large fraction of persistent XML is found 
in relational databases, right along with other data vital to an enterprise ’ s business. 
Most large businesses today — and an increasing percentage of smaller businesses —
 depend on relational databases to store and protect their data. 

 Relational database management systems (RDBMSs) have been on the scene 
since the early 1980s and have arguably become the most widely used form of 
DBMS. The billions of dollars that have been invested into commercial relational 
database systems (such as Oracle ’ s Oracle database, IBM ’ s DB2, and Microsoft ’ s 
SQL Server) have given them formidable strengths in the data management envi-
ronment. Such systems are tremendously scalable, often able to handle thousands 
of concurrent users accessing many terabytes — even petabytes — of data. 

 Some say that the relational database systems — because of the two decades 
and billions of dollars invested in their infrastructure and code, their proven ability 
to adapt to new types of data, and their entrenchment in so many organiza-
tions — might never be superseded in the marketplace by other, more specialized 
database products. Whether this is mere hubris or a realistic view of the world, 
we see that the vendors of RDBMS products are adapting very quickly to a world 
in which XML support is a major requirement. 

 Starting in roughly 2001, most commercial relational database vendors began 
adding support for XML data into their products. Initially, the focus was on merely 
storing XML documents and retrieving them in whole, without the ability to 

   2     The Unicode Standard, Version 4.1.0  (Mountain View, CA: The Unicode Consortium, 2005). Avail-
able at   www.unicode.org/versions/Unicode4.1.0/  . 
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perform any signifi cant operations on the content of those documents. Some 
systems merely stored serialized XML data in character string columns or CLOB 
(character large object) columns, while others explored ways of breaking the XML 
data down into component elements, attributes, and other nodes for storage into 
columns in various tables. (This latter mechanism, commonly called  shredding  
the XML, is discussed in  Section 10.2.3 .) 

 As the vendors ’  experience with — and customers ’  requirements for — XML 
grew, the products gained more direct support for XML as a true data type of its 
own. A native XML type (see  Section 10.3 ) was defi ned for the use of database 
designers and application authors. New built-in functions were developed to 
transform ordinary relational data into XML structures of the users ’  choice. And a 
variety of ways were invented to query within XML stored in that native XML type, 
including the ability to invoke XPath and XQuery on that XML. In addition, these 
products have been given the ability to support XML metadata, largely in the form 
of XML schema. 

 Of course, we may be biased by our years of participation in the relational 
database world, but we believe that RDBMS products are rapidly becoming 
as fully capable of managing XML data as they are of managing ordinary business 
data.  

  Object-Oriented Databases 
 In the late 1980s and early 1990s, a new form of DBMS was introduced to the data 
management marketplace, the object-oriented database management system 
(OODBMS). Unlike the RDBMS products, OODBMS products suffered from not 
having a formal data model on which their design was based. As a result, the 
meaning of the term OODBMS varied widely between implementations. What they 
all had in common, of course, was that they managed  objects  instead of  tuples  of 
 attributes  or  rows  of  columns . 

 Arguably, the real world is better represented as a collection of objects, each 
having a state (data about the individual object) and behaviors (functions that 
implement common semantics of classes of objects). Object-oriented program-
ming languages (OOPLs) were coming into prominence (and have since tended 
to dominate some application domains), and it was natural to want to persistently 
store the objects being manipulated in OOPL programs. Some OODBMSs took the 
approach of allowing individual objects (or classes of objects) handled by a par-
ticular OOPL program to be  “ marked ”  with a fl ag that indicated whether or not 
the object (or members of the class) were to be automatically placed into persis-
tent storage, without any specifi c action (e.g., a  store  command) taken by the 
program. Others made the OODBMS an integral part of the OOPL so that storing 
and retrieving objects was done completely seamlessly without any application 
code involved. Still others required that the OOPL programs explicitly store and 
retrieve objects when the program made the decision to do so. 

 What was generally missing from all of these OODBMS products was a common 
query language that allowed applications to locate objects based on their states 
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and to retrieve information about specifi c objects. The RDBMS world had standard-
ized on the database language SQL, so the OODBMS community  3   decided to adapt 
SQL for use as a query language in their world; the result of that adaptation is a 
language called OQL, which is a search and retrieval – only language without built-
in update capabilities.    

 A signifi cant portion of the XML community views XML as naturally object-
oriented; for example, every node in an XML document has a unique identity, as 
do objects in all object-oriented systems. Consequently, when XML became a 
signifi cant market force, we expected that Object Data Management Group 
(ODMG) would quickly move to incorporate this new type of data, if only by 
adapting an XML data model like the Document Object Model (DOM)  4   for use in 
the context of ODMG. While the owners of the ODMG standard have not yet 
published a new version with explicit XML support, a group of academics did just 
that in a system they called Ozone.  5   Subsequently, an open-source effort providing 
an Ozone database system  6   was established. The documentation of this effort 
states that  “ ozone  [  sic  ]  includes a fully W3C-compliant DOM implementation that 
allows you to store XML data. ”           

 We are unaware of any signifi cant presence in the marketplace of OODBMS 
products that incorporate explicit support of XML as a data type (in the sense 
that the Ozone system does, at least). This may be due to the fact that OODBMSs 
in general have found secure niches in the data management community and 
that those niches have little need for XML except as a data interchange format. 
It may also be due to the fact that many (but not all) RDBMSs have embraced 
object technology and are popularly known as object-relational database 
management systems (ORDBMSs). In any case, we do not perceive a near-term 
movement toward the use of OODBMS products for large-scale management of 
XML data.  

  Native XML Databases 
 We were not surprised that a number of start-up companies as well as some estab-
lished data management companies determined that XML data would be best 
managed by a DBMS that was designed specifi cally to deal with semistructured 
data — that is, a native XML database. 

 But what, exactly, is a native XML database? One resource we found  7   defi nes 
it in terms of the following three principle characteristics.

  3   R.G.G. Cattell, et al. (eds.).  The Object Data Standard (ODBM 3.0) . Morgan Kaufmann, 2000. 
  4    Document Object Model (DOM) Level 3 Core Specifi cation Version 1.0.  Cambridge, MA: World 
Wide Web Consortium, 2004. Available at   www.w3.org/TR/DOM-Level-3-Core  . 
  5   Serge Abiteboul, Jennifer Widom, and Tirthankar Lahiri.  A Unifi ed Approach for Querying Struc-
tured Data and XML,  1998. Available at   www.w3.org/TandS/QL/QL98/pp/serge.html  . 
  6   The Ozone Database Project. Available at   www.ozone-db.org  . 
  7   Kimbro Staken.  Introduction to Native XML Databases,  2001. Available at   www.xml.com/pub/
a/2001/10/31/nativexmldb.html  . 
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    ■      Defi nes a (logical) model for an XML document.  
   ■      Has an XML document as its fundamental unit of (logical) storage.  
   ■      Is not required to have any particular underlying physical storage model.       

 Undoubtedly, the most important of those three criteria is the fi rst one: the defi ni-
tion of a model for XML documents. A number of data models for XML are in 
current use. The specifi c model chosen for a native XML database system is less 
important than the requirement that it support arbitrarily deep levels of nesting 
and complexity, document order, unique identity of nodes, mixed content, semi-
structured data, and so on. 

 Unfortunately for companies that invested heavily in the development of what 
we call pure-XML database systems, the widely accepted defi nition of  “ native 
XML ”  database systems doesn ’ t exclude other existing technologies. The defi ni-
tion cited earlier makes it clear that relational database systems can provide all of 
the required characteristics of a native XML database. This can be done either by 
building an XML-centric layer atop a relational system or by incorporating new 
XML-specifi c facilities directly into relational engines. Of course, that doesn ’ t mean 
that there is no marketplace for pure-XML DBMSs. However, we suspect that, like 
OODBMSs before them, pure-XML DBMSs will fi nd small but secure niches for 
themselves where they satisfy very specifi c needs that are not targeted by RDBMS 
(or ORDBMS) products.   

  10.2.2     Other Persistent Media 

 While a great proportion of enterprise XML data is managed by explicit DBMSs, 
we believe that a large majority of XML in the world today does not get stored in 
DBMSs at all. Instead, XML documents are found in ordinary operating system fi les 
and on Web pages. A quick search of just one of our computers found several 
thousand XML documents, most of which we didn ’ t even realize were there, since 
they were created as part of the installation of several software products. 

 The advantage of storing XML documents in ordinary fi les on your own com-
puter is, of course, that everybody with a computer has a fi le system, while most 
of us don ’ t (yet) have formal DBMSs installed on our computers or even unre-
stricted access to our organizations ’  DBMSs. Better yet, those fi les are completely 
under your control and not governed by some database administrator somewhere 
in your organization. Of course, there are disadvantages as well: You ’ re usually 
responsible for backing up your own fi les, lack of transactional control makes data 
loss more likely, and the problems of keeping track of perhaps thousands of XML 
fi les are quite tedious. Perhaps more importantly, there is usually no way to 
enforce any consistent relationships among those thousands of XML fi les — those 
documents that specify confi guration information for software products might 
defi ne the same operating system environment variable in multiple, incompatible 
ways. 

 Some people argue that a single XML document can be a sort of  “ database in 
a fi le. ”  If you take this type of approach, you would just mark up your data  “ on 
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the fl y, ”  making up tag names as you go. Unfortunately, unless you write a good 
XML schema to validate that document, it ’ s awfully diffi cult to keep that data 
internally consistent, because you might use different  “ spellings ”  of tags to repre-
sent the same conceptual entity; for example,   < SerialNumber >   one time,   < SerNum >   
another time,   < Serial-num >   a third time, all to represent the serial numbers 
of the products that you own. We recommend strongly against such an 
approach to storing your data, although the concept might be very useful for 
transporting data from one environment to another — that is, as a data exchange 
representation. 

 XML documents that are found across the World Wide Web (WWW) probably 
don ’ t outnumber those found in ordinary fi le systems, but you are personally likely 
to fi nd more Web-available XML documents than there are XML documents on 
your personal fi le system. The problem with those Web documents is that a given 
website may or may not be  “ reachable ”  at any given time, making access to those 
documents somewhat less dependable at any moment than access to your own 
documents. 

 That, of course, has implications on querying those XML documents. A 
query facility that accesses fi les stored in your local fi le system always has access 
to those fi les (subject only to the availability of your fi le system), whereas a query 
facility that searches data on the WWW may sometimes fi nd a given document 
and other times not fi nd it because of websites going offl ine temporarily (or 
permanently). 

 Nonetheless, we believe there is a market for XML querying tools that don ’ t 
depend on the existence of a DBMS but that search XML documents in local fi le 
systems and across the WWW. Many of these tools will implement XQuery, while 
others may provide some other query language.  

  10.2.3     Shredding Your Data 

 In the  “ Relational Databases ”  section we mention that some relational database 
vendors provided a way for XML documents to be broken down into their com-
ponent elements, attributes, and other nodes for storage into columns in one or 
more tables. It can be argued that such  shredding  of XML documents does not 
preserve the integrity — the  “ XML-ness ”  — of those documents. While that argu-
ment is probably valid for some shredding implementations, others manage to 
preserve the documents ’  XML-ness. In fact, such implementations usually provide 
options that allow the user to control what level of XML-ness must be preserved. 
Vendors of those products typically provide a variety of ways of reconstructing 
the XML documents from the shredded fragments. What many of the shredding 
implementations do not do particularly well is to allow queries to be written that 
depend heavily on complex structures in some XML documents or that search for 
data located at arbitrarily deep levels of nesting. 

 The purpose of shredding is to improve (relative to character string or CLOB 
representations, that is) the effi ciency of access to the data found in XML docu-
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ments. When XML serves the same purposes as its ancestor SGML — that is, rep-
resentation of  documents , such as books and technical reports — the data 
represented in the XML are semistructured by nature. However, XML is also used 
to represent much more regular, or structured, data, such as purchase orders and 
personnel records. Most people would not consider shredding an appropriate way 
of handling books or magazine articles marked up in XML. Instead, it is much 
more likely to be used for dealing with data-oriented XML. 

 Shredding can be done in a very naive manner, such as defi ning an 
SQL table for each element type (at least those that are allowed to have mixed 
content) in a document, with columns for each attribute, the nonelement 
content of those elements, and the content of child elements that are not 
allowed to have element content themselves. For simple documents, the naive 
approach might not be completely inappropriate, as illustrated in  Example 10.1  
and  Table 10.1   . 

     EXAMPLE 10.1  

    Shredding an XML Document into a Relational Database 

 First, the XML to be shredded:
     < movies >    
          < movie runtime =  “ 99 ”  >    
                < title > What About Bob? <  / title >    
                < MPAArating > PG <  / MPAArating >    
                < yearReleased > 1991 <  / yearReleased >    
                < director >    
                      < givenName > Frank <  / givenName >    
                      < familyName > Oz <  / familyName >    
                <  / director >    
          <  / movie >    
          < movie runtime =  “ 108 ”  >    
                < title > A Fish Called Wanda <  / title >    
                < MPAArating > R <  / MPAArating >    
                < yearReleased > 1988 <  / yearReleased >    
                < director >    
                      < givenName > Charles <  / givenName >    
                      < familyName > Chrichton <  / familyName >    
                <  / director >    
          <  / movie >    
          < movie runtime =  “ 90 ”  >    
                < title > Best in Show <  / title >    
                < MPAArating > PG-13 <  / MPAArating >    
                < yearReleased > 2000 <  / yearReleased >    
                < director >    
                      < givenName > Christopher <  / givenName >    
                      < familyName > Guest <  / familyName >    
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                <  / director >    
          <  / movie >    
    <  / movies >      

 Now, the defi nitions of (reasonable) SQL tables into which the shredded XML data will be 
placed:

    CREATE TABLE movies _ table (   
         movie _ id                     INTEGER PRIMARY KEY,   
         FOREIGN KEY (movie _ id) REFERENCES movie _ table(movie _ id) )     

     CREATE TABLE movie _ table (   
         movie _ id                     INTEGER PRIMARY KEY,   
         runtime                        INTEGER,   
         title                        CHARACTER VARYING(100),   
         MPAArating         CHARACTER VARYING(10),   
         yearReleased INTEGER,   
         director _ id      INTEGER )     

 Table 10.1      Result of Shredding Movies Document  

  movies _ table    movies _ table  

  movie _ id    movie _ id  

 124  124 

 391  391 

 227P  227P 

  movie _ table  

  movie _ id    runtime    title    MPAArating    yearReleased    director _ id  

 124  99   What About Bob?   PG  1991  12 

 227  90   Best in Show   PG-13  2000  418 

 391  108   A Fish Called Wanda   R  1988  693 

  director _ table  

  director _ id    givenName    familyName  

 693  Charles  Chrichton 

 12  Frank  Oz 

 418  Christopher  Guest 
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     CREATE TABLE director _ table (   
         director _ id            INTEGER PRIMARY KEY,   
         givenName                  CHARACTER VARYING(50),   
         familyName               CHARACTER VARYING(50) )           

 The data shown in  Table 10.1  contain something that the input document did 
not contain: an  id  code for each movie and each director. Since the input didn ’ t 
contain those  id  codes, where did they come from? Well, the application that 
performed the shredding simply had to make them up. 

 Now that the data have been shredded, applications are dealing with purely 
relational data and can write ordinary SQL statements to query and otherwise 
manipulate that data. At this point, it ’ s trivially easy to write SQL queries to fi nd 
out the longest movie in our collection:

    SELECT MAX(runtime) FROM movie _ table;     

 Similarly, to know the name of the director of the longest movie, we could join 
data from two tables:

    SELECT givenName  |  |   
|

   
|

   |  |  familyName   

   FROM movie _ table AS m, director _ table as d   
   WHERE m.director _ id  =  d.director _ id   
         AND m.runtime  =  (SELECT MAX(runtime) FROM movie _ table)     

 It is a bit harder to reconstruct the original structure of the input. In order to 
restore the original XML document from the shredded data, a somewhat compli-
cated SQL query would have to be written to discover the names of the tables 
and columns (using the standardized SQL schema views such as the tables and 
columns views, unless the table names are known a priori by the application), 
then join the various tables together on their respective primary key and foreign 
key relationships, and fi nally construct the resulting XML document. We leave the 
writing of such a sequence of SQL statements as an exercise for the reader; after 
all, most vendors of shredding-capable relational systems provide tools that repro-
duce the original XML document automatically.  8   We note, however, that such 
relational systems normally aim to preserve a data model representation of the 
XML documents and not the actual sequence of characters that may have been 
provided in the serialized XML input. The ordering of XML elements (remember 
that elements in an XML document have a defi ned and stable order) is preserved 
in those systems by a variety of techniques that may involve the assignment of 
some sort of sequence numbering scheme to sibling elements of a given parent.    

 More complex XML documents, like those you ’ ll undoubtedly fi nd throughout 
your organization ’ s business documents, don ’ t lend themselves to naive shredding 

  8   In fact, such tools often do not produce a new XML document that is identical in every respect 
to the initial document. Differences often include changes in nonsignifi cant white space and the 
exact representation of literals (canonical form for such literals may be used instead). 



techniques. The tools doing the shredding often permit users knowledgeable 
about the data to give clues about how the shredding should be performed (some-
times using a graphical interface) or to  “ tweak ”  the table and column defi nitions 
before the XML-to-relational mapping is fi nished. 

 There will always be a use for shredding, particularly in applications that 
merely receive structured data in an XML format and always need to store it as 
ordinary relational data.  9   However, with the increased emphasis in all major rela-
tional database implementations on true native XML support, we believe that 
shredding is going to diminish in popularity for most applications. It ’ s only fair to 
note, however, that implementers continue to come up with more and more 
sophisticated shredding techniques targeted at a variety of usage scenarios.      

  10.3     SQL/XML ’ S XML TYPE 
 There is a relatively new part of the SQL standard  10   designed to allow applications 
to integrate their XML data and their ordinary business data in their SQL state-
ments. The centerpiece of SQL/XML is the creation of a new built-in SQL type: 
the XML type. Logically enough, the name of the type is  “ XML, ”  just as the type 
intended for storing integers is named  “ Integer. ”     

 The design of SQL/XML ’ s eXtensible Markup Language type makes it a true 
native XML database type. Therefore, if you were to create a SQL table with a 
column of type XML, the values stored in that type must be XML values, and those 
values retain all of their XML-ness. In SQL/XML:2003, the XML type was based on 
the XML Information Set. The next edition of SQL/XML  11   replaced its use of the 
Infoset with the adoption of the XQuery 1.0 and XPath 2.0 data model. Along with 
the adoption of the XQuery data model, the basic defi nition of the XML type has 
been updated accordingly.    

 Of course, that does not mean that SQL/XML implementations are required to 
store values of the XML type in a collection of data structures that are isomorphic 
to the XQuery data model descriptions. Implementations might choose to store 
serialized XML documents and dynamically parse them into data model instances 
whenever they are referenced, or they might store some other already-parsed 
representation that can be mapped onto the data model defi nitions when required. 

  9   For those who need to do shredding (or, in a more generalized sense, mapping of XML to relational 
data), a number of XML mapping products make that task easier. Some with which we are familiar 
are Altova ’ s MapForce (  www.altova.com  ), Oracle ’ s XDB schema processor and the schema annota-
tions it supports (  www.oracle.com  ), and IBM ’ s Document Access Defi nition (DAD) component of 
DB2 ’ s XML Extender (  www.ibm.com  ). 
  10   ISO/IEC 9075-14:2003(E) , Information Technology — Database Languages — SQL — Part 14: XML-
Related Specifi cations (SQL/XML).  Geneva: International Organization for Standardization, 2003. 
  11   Final Draft International Standard (FDIS) 9075-14:2005 , Information Technology — Database 
Languages — SQL — Part 14: XML-Related Specifi cations (SQL/XML).  Geneva: International Organi-
zation for Standardization, 2005. 
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In fact, implementations could even choose to shred (fully or partially) those XML 
values, as long as the process is transparent to applications. The internal storage 
details of XML type values are left up to the implementation, in the same way as 
the corresponding details of  date  and  float  values are the concern of only the 
implementation. 

 With the advent of the XML type in SQL, concerns such as CLOB versus shred-
ding will, for the most part, become even less visible to the application developer. 
XML will be stored in XML columns, and native SQL facilities (augmented, when 
desired, by XQuery) will be used to manipulate those XML values.  

  10.4     ACCESSING PERSISTENT XML DATA 
 Neither XQuery nor SQL (nor, for that matter, any query language) exists in a 
vacuum — in spite of the fact that they are generally specifi ed as though nothing 
else existed. Instead, applications are typically written in one or more other pro-
gramming languages, such as C/C +  + , Java, and even COBOL. When those applica-
tions require access to a query language, they must use some sort of application 
programming interface (API) to cause their queries to be executed and the results 
to be materialized in the host language environment. 

 Most of the more conventional programming languages (such as C and COBOL) 
access SQL database systems by invoking a call-level interface such as SQL/CLI  12   
or one of the various proprietary APIs that correspond to SQL/CLI. SQL/XML:2003 
did not provide SQL/CLI extensions to deal with the XML type, but that was a 
deliberate choice. Because languages like C and COBOL do not have built-in data 
types for XML, all results of SQL statements that return a value of the XML type 
are implicitly cast to character string (that is, serialized) before the result is given 
to the invoking program.    

 Java programs typically access SQL database systems through the JDBC API.  13   
JDBC, version 3.0, contains no provisions for exchanging XML values between a 
Java program and an SQL database management system. The spec does say that it 
 “ does not preclude interacting with other technologies, including XML, CORBA, 
or nonrelational data, ”  but it offers no additional information about how such 
interaction should be done (other Java-related specifi cations provide those capa-
bilities). It ’ s not inconceivable that JDBC, version 4.0, offers more direct support 
for access to XML data handled by SQL database systems; for details of any such 
capability, see JDBC 4.0.    

 There are, however, proprietary JDBC API extensions offered by a number of 
vendors of SQL database engines and by vendors of middle-tier ( “ middleware ” ) 

  12   ISO/IEC 9075-3:2003(E) , Information Technology — Database Languages — SQL — Part 3: Call-
Level Interface (SQL/CLI).  Geneva: International Organization for Standardization, 2003. 
  13    JDBC 3.0 API . Santa Clara, CA: Sun Microsystems, Inc., 2002. Available at   www.java.sun.com/
products/jdbc/download.html#corespec30  . 



facilities. Nonetheless, the  “ most standard ”  way for Java programs to access 
the XML data stored in SQL databases is for them to retrieve XML data using 
JDBC ’ s  getObject()  method and then to cast the retrieved object to an XML 
class defi ned in another Java-related specifi cation, such as JAXP.  14   At that point, 
the interfaces defi ned in that other specifi cation can be employed to handle the 
XML data.    

 Another API will assist Java programs in accessing persistent XML data, whether 
they are stored in a relational database system, an object-oriented database system, 
a true native XML database system, or fl at fi les. This API, called XQJ,  15    “ defi nes a 
set of interfaces and classes that enable an application to submit XQuery queries 
to an XML data source and process the results of these queries. ”  In other words, 
it will provide a direct interface from Java programs to XML data sources without 
those programs having to intermix multiple APIs, such as JDBC and JAXP.    

 An Early Draft Review version of the XQJ specifi cation is available at   www.
jcp.org/en/jsr/detail?id=225  . While that document is decidedly incomplete, it 
allows interested parties to gain an idea of what the fi nal API will provide. We 
encourage readers to become familiar with XQJ because we believe that it will 
be one of the dominant APIs for querying and updating XML data from Java 
applications.  

  10.5     XML  “ ON THE FLY ” : NONPERSISTENT XML DATA 
 Throughout this chapter, we have focused on XML data that are persistently stored 
on various media. There are signifi cant advantages to be had when the XML data 
to be queried are persistently stored. For example, query processors might be able 
to access specialized data structures (such as indices) to improve a query ’ s 
performance. 

 But not all applications fi nd it suitable to store XML data persistently before 
querying them. For example, XML data containing stock market quotations might 
be broadcast to WAP-enabled cell phones that are programmed to alert their 
owners whenever particular stocks achieve a particular price. Not only are the 
phones generally incapable of storing very large quantities of data, but the nature 
of the data stream is unsuitable for storage before querying. 

 In particular, such data streams are literally neverending; they may continue 
uninterrupted for months on end, perhaps with each stock quotation represented 
as a separate XML document. In addition, the queries are supposed to detect 
the specifi ed conditions immediately and not after periodic store-and-query 
episodes. 

  14    Java API for XML Processing (JAXP) 1.3 . Santa Clara, CA: Sun Microsystems, Inc., 2002. Available 
at   www.jcp.org/aboutJava/communityprocess/pfd/jsr206/index2.html  . 
  15    XQuery API for Java  ™ . Available at   www.jcp.org/en/jsr/detail?id=225   (currently in 
development). 
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 Consequently, XML querying systems must be able to process XML documents 
that never exist on any persistent medium but that are only temporarily stored 
(perhaps in RAM) while the query is evaluated against them. There are several 
reasons why querying streaming XML is problematic. Consider the XML document 
shown in  Example 10.2 , in which we ’ ve incorporated a large number of stock 
ticker elements into a single document for illustrative purposes. 

     EXAMPLE 10.2  

    Streamed XML Document 

      < ?xml version =  “ 1.0 ” ? >    
    < stockTrades >    
          < stockTicker symbol =  “ XMPL ”  >    
                < tradeTime > 2005-06-02T14:53:13.055 <  / tradeTime >    
                < tradeUnits > 2000 <  / tradeUnits >    
                < tradePrice > 193.21 <  / tradePrice >    
          <  / stockTicker >    
          ...    
          < stockTicker symbol =  “ XDOCS ”  >    
                < tradeTime > 2005-06-02T14:56:41.683 <  / tradeTime >    
                < tradeUnits > 100 <  / tradeUnits >    
                < tradePrice > 12.45 <  / tradePrice >    
          <  / stockTicker >    
          ...    
          < stockTicker symbol =  “ XMPL ”  >    
                < tradeTime > 2005-06-02T14:58:34.002 <  / tradeTime >    
                < tradeUnits > 400 <  / tradeUnits >    
                < tradePrice > 194.65 <  / tradePrice >    
          <  / stockTicker >    
    <  / stockTrades >            

 Now imagine a query that must retrieve the current price of XMPL if and only 
if the preceding ten trades all increased in price. Further, imagine that there are 
hundreds, even thousands, of  stock-Ticker  elements represented by ellipses 
(  .  .  .  ). A query that examines this XML document — as it streams past — is forced to 
evaluate information without having access to all the information in the document. 
In this case, the query would retrieve information from this  stockTicker  ele-
ment ’ s  tradePrice  child element, if and only if this  stockTicker  element ’ s pre-
ceding sibling  stock-Ticker  element ’ s  tradePrice  child element had a lesser 
value, and that  stockTicker  element ’ s preceding sibling  stockTicker  element ’ s 
 tradePrice  child element had a lesser value than  that , and so on until the tenth 
preceding sibling  stockTicker  element ’ s  tradePrice  child element matched the 
required criterion. 

 In general, access to an element ’ s ancestors and preceding siblings (and other 
 “ reverse-axis ”  nodes) requires the ability to traverse backward in the document. 



But how can that be done when the document is too large for available storage? 
In general, it cannot. Because the stream relentlessly fl ows past, there is no way 
to go back  “ upstream ”  to capture data that have already gone by. And there lies 
the principal diffi culty in querying streaming XML. There are (again, in general) 
only two ways to resolve this problem:

   1.     Queries can be prohibited (syntactically or by means of execution-time 
checks) from accessing nodes reachable only through the use of one of 
those reverse axes.  

  2.     Queries are permitted to access such nodes only in documents (or 
document fragments) suffi ciently small to be handled using limited 
resources.    

 Most streaming XML query processors choose one of these two alternatives. 
 Queries against streaming XML are best suited for small XML documents and 

relatively simple queries, perhaps involving a transformation of source XML into 
a more desirable form of XML or directly into HTML or even plain text. Another 
form of query eminently suitable for streaming applications is the sort that depends 
solely on  “ very local ”  data. For example, if we wanted to know the trade price of 
XMPL every time a trade was recorded, it ’ s quite easy to detect those elements as 
they stream past and to supply the value of the  tradePrice  child element 
whenever a  stockTicker  element whose  symbol  attribute having the value 
 XMPL  is seen.  

  10.6     SUMMARY 
 This chapter explored the various facilities through which XML data can be stored 
persistently and the implications on querying such persistent XML. We ’ ve explored 
the pros and cons of using database technology versus ordinary fi le systems for 
storing and querying XML documents, and we ’ ve looked at shredding as a mech-
anism for storing XML documents into ordinary relational (or, indeed, other sorts 
of) databases. We ’ ve also examined the SQL standard ’ s new built-in XML type, its 
relationship to shredding, and the implications on the APIs that application pro-
grams use to access SQL database management systems. Finally, we reviewed the 
nature of streaming XML, its uses, and the diffi culties raised when querying such 
nonpersistent XML data. 

 Our conclusion, which we hope is clear from the text, is that we believe that 
most applications are better served by storing XML in some persistent medium 
and then querying those persistent XML data. Only when the XML data are 
inherently unsuitable for storing, we believe, are queries against streaming XML 
desirable.   
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 CHAPTER 

11     Modeling and Querying 
Current Movement 

  In this chapter, we consider moving objects databases from the location manage-
ment perspective. Suppose we need to manage in a database the locations of a 
set of mobile units (e.g., cars, trucks, helicopters, people carrying mobile phones) 
that are moving around  right now . We wish to be able to retrieve their current 
positions. In fact, if it is known in the database not only where they are but also 
how they are moving right now, we should also be able to ask queries about the 
future. 

 After discussing some basic assumptions and issues in  Section 11.1 , we intro-
duce a data model called MOST (moving objects spatiotemporal model) to describe 
current and expected future movement ( Section 11.2 ). Associated with it is a 
query language called Future Temporal Logic (FTL), which allows us to express 
queries about future development ( Section 11.3 ). We also study the problem of 
how often and when mobile objects should transmit updates of their current posi-
tion, and speed, to the database in order to keep the inherent imprecision in the 
database management system (DBMS) knowledge about their locations bounded 
( Section 11.4 ). Finally, in  Section 11.5  we consider  uncertain trajectories  — that 
is, motion plans with an associated bound on the uncertainty of the time-
dependent position.  

   11.1     LOCATION MANAGEMENT 
 There are various applications that need to keep track of the locations of moving 
objects. For example, a query to a database representing the locations of taxicabs 
in a city might be: Retrieve the three free cabs closest to K ö nigsallee 48 (a cus-
tomer request position). For a trucking company database, queries might be: 
Which trucks are within 10 kilometers of truck T68 (which needs assistance)? Will 
truck T70 reach its destination within the next half hour? In a military application, 
a query might be: Retrieve the friendly helicopters that will arrive in the valley 
within the next 15 minutes. 
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 Managing continuously changing positions in a database obviously is a problem, 
since normally data in a database are assumed to be constant until these data are 
explicitly updated. Sending very frequent updates would allow one to approxi-
mate the continuous movement by stepwise constant locations, but this incurs a 
very high update load and is not feasible for a large number of objects. 

 The basic idea developed in this chapter is to store a moving object not by its 
position directly but instead by its motion vector (i.e., its position as a function 
of time). In this way, the position represented in the database will change con-
tinuously, even without any explicit update to the database. It is still necessary to 
update the motion vector occasionally, but much less frequently than would be 
the case with stored positions. 

 It is important to note that within the DBMS data model, motion vectors are 
not visible explicitly (e.g., by a special data type). Instead, a concept of a  dynamic 
attribute  is introduced: an attribute that changes its value with time without 
explicit updates. The stored motion vector serves as an implementation for this 
more abstract view of dynamic attribute. Therefore, the data type of a dynamic 
attribute is the same as the corresponding static data type (e.g.,  point ), and 
queries are formulated as if they refer to static positions. However, since the value 
of a dynamic attribute changes over time, so does the result of a query: The same 
query posed at different times will in general yield different results, even if the 
database contents are the same. 

 Clearly, if dynamic attributes are available, then the database represents knowl-
edge not only about current but also about expected future positions. Therefore, 
we should be able to ask about the state of the database ten minutes from now, 
or even about a sequence of relationships between moving objects in the future. 
The FTL language is designed for this purpose. 

 Answers to queries referring to the future are always tentative, since it is pos-
sible that the database is changed by an explicit update to a dynamic attribute 
(i.e., its underlying motion vector is changed). For example, suppose, according 
to its motion vector, a truck is expected to arrive in a city within the next ten 
minutes. After this result has been given to a user, the truck stops (and sends a 
corresponding update of its motion vector). So, in fact, it does not arrive within 
ten minutes. Nevertheless, the answer given previously has to be regarded as 
correct, according to what was known in the database at that time. 

 When answers to queries can change over time even without updates to the 
database, the issue of  continuous queries  needs to be considered in a new light. 
For example, suppose a car is traveling along a highway and the driver issues a 
query: Retrieve cheap motels within fi ve miles from the current position. It makes 
sense to ask for this query to be continuously reevaluated, since the answer 
changes while the car moves. While in classical databases continuous queries 
(such as triggers) need to be reevaluated on each relevant update, here it is not 
obvious how they can be executed. In the following text, a strategy is described 
to evaluate a continuous query only once; reevaluation is only needed on explicit 
updates. 



 Another important issue is the problem of inherent imprecision and uncer-
tainty that is related to the frequency of updates. Clearly, the motion of an object 
as represented by its motion vector will normally not represent the real motion 
exactly. The distance between the database position and the real position is called 
the  deviation . Assuming that with an update the real position and speed are 
transmitted, the deviation at the update time  1   is zero, and then it generally grows 
with time. The database should be aware not only of the expected position but 
also of the range of possible deviations at a given time.  

 To keep the deviation and therefore the uncertainty about an object ’ s position 
bounded, we will assume a kind of  “ contract ”  between a moving object and the 
database managing its position: Whenever the deviation reaches a certain thresh-
old, the moving object sends an update to inform the database about its current 
position and speed. Various policies exist for doing this; these are discussed in 
 Section 11.4 .  

  11.2     MOST — A DATA MODEL FOR CURRENT 
AND FUTURE MOVEMENT 

 We now introduce the moving objects spatiotemporal (MOST) data model used 
in the remainder of the chapter. 

  11.2.1     Basic Assumptions 

 First, let us recall some standard assumptions. A database is a set of object classes. 
Each object class is given by its set of attributes. It is also assumed that spatial data 
types, such as point, line, and polygon with suitable operations, are available. 

 Some object classes are designated as  spatial , which means they have an attri-
bute representing a spatial value, such as a point or a polygon. The object itself 
is then called a  point object  or a  polygon object . Also, the operations on the spatial 
values are applied to the objects directly. So, for example, if we have two point 
objects  p  1  and  p  2  and a polygon object  pol , we can apply spatial operations such 
as DIST(  p  1 ,  p  2 ), returning the distance between the point attribute values of  p  1  
and  p  2 , or INSIDE(  p  1 ,  pol ), testing whether the point attribute value of  p  1  lies 
inside the polygon attribute value of  pol . For all of this to work, it is necessary 
that each object has  exactly one  spatial attribute. More specifi cally, we assume 
that each spatial object class is either a point class, a line class, or a polygon 
class. 

 Of particular interest in this model are point objects. A fi rst way of modeling 
point objects lets them have a special attribute called  pos , which, in turn, has two 

  1   We assume that updates are executed instantaneously (i.e., there is no time difference between 
sending the update and performing the update in the database). In other words, valid time and 
transaction time are equal. 
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components, called  subattributes , denoted  pos.x  and  pos.y  (in case of a two-
dimensional coordinate system). The data types of the subattributes may be  int  
or  real . 

 Besides object classes, a database contains a special object called  Time , which 
yields the current time at every instant. Time is discrete (i.e., the time domain is 
the natural numbers, represented as  int ), and the value of the  Time  object 
increases by one at each clock tick.  

  11.2.2     Dynamic Attributes 

 The fundamental new idea in the MOST model is the so-called  dynamic attributes . 
Each attribute of an object class is classifi ed to be either  static  or  dynamic . A 
static attribute is as usual. A dynamic attribute changes its value with time auto-
matically. For example, the schema for an object class describing cars moving 
freely in the  xy -plane might be given as:

    car (license _ plate: string,   
         pos: (x: dynamic real, y: dynamic real))     

 Not all attribute types are eligible to be dynamic. It is assumed that such a type 
has a value 0 and an addition operation. This holds for numeric types such as  int  
or  real  but could be extended to types such as  point . 

 Formally, a dynamic attribute  A  of type  T  (denoted  A:T  ) is represented by three 
subattributes,  A.value ,  A.updatetime , and  A.function , where  A.value  is of type 
 T ,  A.updatetime  is a time value, and  A.function  is a function  f :  int   →   T  such 
that at time  t   =  0,  f ( t )  =  0. The semantics of this representation are called the  value  
of  A  at time  t  and defi ned as: 

  value A t t t,( ) = + −( ) ≥A. value A. function A. updatetime A. upfor ddatetime      

 An update sets  A.updatetime  to the current time value and changes  A.value , 
 A.function , or both. 

 If a query refers to the attribute  A , its dynamic value is meant and used in the 
evaluation. Therefore, the result depends on the time when the query is issued. 
It is also possible to refer to the subattributes directly and so access the represen-
tation of a dynamic attribute. For example, a user can ask for objects for which 
 pos.x.function   =  5 (meaning  f ( t )  =  5    t ) to fi nd objects whose speed in  x -
direction is 5. While dynamic attributes are intended to support description 
of movement, they may be used to describe other time-dependent values (e.g., 
temperature).    

  11.2.3     Representing Object Positions 

 We have already seen the fi rst method to describe moving point objects by 
dynamic  x  and  y  subattributes of the position attribute  pos . This is appropriate 
for objects moving freely in the  xy -plane. 



 For vehicles, a more realistic assumption is that they move along road net-
works. The second method of modeling uses an attribute  loc  with six subattrib-
utes, called  loc.route ,  loc.startlocation ,  loc.starttime ,  loc.direction , 
 loc.speed , and  loc.uncertainty . Here,  loc.route  is (a pointer to) a line spatial 
object, which describes the geometry of a path over the traffi c network (i.e., the 
route along which the object is moving).  Loc.startlocation  is a point on  loc.
route , the location of the moving object at time  loc.starttime .  Loc.direction  
is a Boolean indicating the direction along the route (relative to east – west, north –
 south, or the end points of the route).  Loc.speed  is a function  f  giving the distance 
(along the route) from the  loc.startlocation  as a function of the time elapsed 
since the last location update — that is, since  loc.starttime . It is assumed that 
every update sets  loc.starttime  and  loc.startlocation  to the position at that 
time. Again, we require  f (0)  =  0. In the most simple form,  loc.speed  stores a 
constant  v , therefore, the distance from  loc.startlocation  at time  loc.start-
time   +   t  is  v   ×   t .  Loc.uncertainty  is either a constant or a function of the number 
of time units elapsed since the last location update. It represents a threshold on 
the deviation of the object; whenever the threshold is reached, the object will 
send a location update.  Loc.uncertainty  is used and further discussed later in 
 Section 11.4 . 

 The semantics of the  loc  attribute are again a time-dependent position 
( x, y ) in the plane, which also happens to lie on the network. At time  loc.start-
time , it is  loc.startlocation ; at time  loc.starttime   +   t , it is the position on 
 loc.route  at distance  loc.speed   ×   t  from  loc.startlocation  in the direction 
 loc.direction . Query evaluation may take the uncertainty into account. That is, 
the answer to a query for the location of object  m  at time  t  may be: The object 
is on the route  loc.route  at most  loc.uncertainty  before or behind position 
( x, y ). 

 The  uncertainty  subattribute is, of course, not specifi c to the network model-
ing; it might be added to the  pos  attribute as well. In this case, the answer to 
the query would be: The object is within a circle of radius  uncertainty  around 
position ( x, y ).  

  11.2.4     Database Histories 

 Queries in traditional database systems refer to the current state of the database. 
Queries in the MOST model may also refer to future states that are given implicitly 
by the dynamic attributes. First, we need to be more precise about what is meant 
by a database state. 

 A  database state  is a mapping that associates each object class with a set of 
objects of the appropriate type and associates the  Time  object with a time value. 
For any object  o  in a database, we denote its attribute  A  as  o . A ; if  A  has a subat-
tribute  B  it is denoted as  o . A.B . The value of  o . A  in the database state  s  is denoted 
by  s ( o . A ), and  s ( Time ) gives the time value of database state  s . For each dynamic 
attribute  A , its value in state  s  is  value ( A ,  s ( Time )). 
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 A  database history  is an infi nite sequence of database states, one for each 
clock tick. It starts at some time  u  and extends infi nitely into the future — there-
fore, it is  s u , s u    + 1 ,  s u    + 2 , and so on. We denote the history starting at time  u  by  H u  . 
The value of an attribute  A  in two consecutive database states  s i , s i    + 1  can be dif-
ferent, either due to an explicit update of  A  or because  A  is a dynamic attribute 
whose value has changed implicitly. At any time  t  the database states with a lower 
timestamp than  t  are called  past database history ; the infi nite remainder of the 
sequence with higher timestamps is called  future database history . 

 Note that an explicit update at a time  t   >   u  affects all states from  t  on of a given 
history  H u  . Suppose until  t   −  1, the history  H u   is: 

  s s s s s s su u u t t t t, , , . . . , , , , , . . .+ + − + +1 2 1 1 2      

 Then, from time  t  on, the history is: 

  s s s s s s su u u t t t t, , , . . . , , , , , . . .+ + − + +′ ′ ′1 2 1 1 2      

 Therefore, with each clock tick, we get a new database state, and with each 
update, we get a new history. We denote a history starting at time  u  and as of 
time  u   +   k  (i.e., updates have been performed until and including time  u   +   k ) by 
 H u,  k  . Therefore,  H u   ,0   =   H u  , and with  t   =   u   +   k  the history before the update is 
 H u,  k    – 1 , and after the update it is  H u,  k  . 

 Note that database histories are just a concept to defi ne the semantics of 
queries; they are not stored or manipulated explicitly, which obviously would be 
impossible.  

  11.2.5     Three Types of Queries 

 Queries are predicates over database histories rather than just a single state. This 
leads to a distinction between three different types of queries, called  instanta-
neous, continuous , and  persistent . The same query can be posed in each of the 
three modes, with different results; these are explained next. 

 As we will see in  Section 11.3 , a query has an implicit concept of the current 
time. For example, there will be language constructs to express a condition 
 “ within the next ten time units, ”  which means within ten time units from the 
current time. If nothing is said about time, the database state at the current time 
is meant. The current time is normally the time when the query is issued. We 
denote by  Q ( H ,  t ) a query  Q  evaluated on a database history  H  assuming a current 
time  t . 

 A query  Q  posed at time  t  as an  instantaneous query  is evaluated as: 

  Q H tt,( ) ( )instantaneous query      

 That is, it is evaluated on the history starting at  t , assuming  t  as the current time. 
For example, a query issued at time  t  by a car driver —  “ Find all motels within fi ve 
miles from my position ”  — will return all the motels within fi ve miles from the 
car ’ s position at time  t . 



 It is important to observe that the concept of an instantaneous query does not 
imply that only the current database state is used. For example, the driver might 
also pose the query  “ fi nd all motels that I will reach within ten minutes, ”  and this 
query refers to all database states having a timestamp between the current time 
and ten minutes later. 

 The second type of query is the continuous query. Query  Q  posed at time  t  as 
a  continuous query  is evaluated as a sequence of queries: 

  Q H t Q H t Q H tt t t, , , , , , . . .( ) +( ) +( ) ( )+ +1 21 2 continuous query      

 In other words, it is reevaluated on each clock tick as a new instantaneous query. 
The answer to the query also changes over time; at instant  u  the result of the 
instantaneous query  Q ( H u , u ) is valid. If the result of the continuous query is 
displayed to the user, the contents of the display may change without user inter-
action. For example, the car driver may decide to run the query,  “ Find all motels 
within fi ve miles from my position, ”  as a continuous query in order to be informed 
when suitable motels become available. 

 Of course, reevaluating the query on each clock tick is not feasible. Instead, 
an evaluation algorithm is given that computes the answer to a continuous query 
just once, in the form of a set of tuples annotated with timestamps. For each tuple, 
its timestamp indicates the period of time during which it belongs to the result. 
When time progresses, tuples whose time period is entered are added to the 
answer set, and tuples whose time period has expired are removed from the 
answer set. 

 As already discussed in this chapter as introduction, the answer to a future 
query is tentative. For a continuous query, this means that the result set (tuples 
with timestamps) may become invalid due to an explicit update. Therefore, a 
continuous query needs to be reevaluated on an update that may change its 
result set. 

 The third type of query, persistent query, is motivated by the fact that so far 
with continuous queries it is impossible to recognize certain kinds of develop-
ments over time. As an example, consider the query,  “  Q   =  Find all cars whose 
speed has doubled within fi ve minutes. ”  Suppose this is posed as a continuous 
query at time  t   =  20 (and let time units be minutes). Let  o  be a car with  o.loc.
speed   =  40. Further, let the speed of  o  be explicitly updated to 60 at time 22 and 
to 80 at time 24. 

 When the continuous query is evaluated as  Q ( H  20 , 20), in all future states the 
speed of  o  is 40; therefore, it is not in the result. When it is evaluated as  Q ( H  22 , 
22), in all future states the speed is 60. Similarly, when evaluated as an instanta-
neous query at time 24, in all future states the speed is 80. So  o  is never in the 
result. 

 Query  Q  posed at time  t  as a  persistent query  is evaluated as a sequence of 
queries: 

  Q H t Q H t Q H tt t t, , , , , , , , , . . .0 1 2( ) ( ) ( ) ( )persistent query      
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 Therefore, a persistent query is continuously evaluated on the history starting at 
time  t  and its answer changes when that history changes due to explicit 
updates. 

 Considering our example, when the fi fth query in the previous sequence, 
 Q ( H  24 , 20), is evaluated, the fact that the speed of  o  has doubled from time 20 to 
time 24 is recognized, and  o  is returned as a result. Again, reevaluation does not 
really occur on each clock tick; instead, it is done on each update that might affect 
its result, as is done for continuous queries.   

 We have included persistent queries in the discussion in order to show the 
different kinds of continuous queries that are possible from a semantic point of 
view. However, to evaluate persistent queries, it is necessary to keep information 
about past contents of the database (i.e., to use a kind of temporal version of the 
MOST data model). So far, the MOST model is nontemporal, in the sense that 
values of subattributes are rewritten on updates and the previous values are lost. 
Extending the MOST model in this way is beyond the scope of this chapter, and 
we will not consider the evaluation of persistent queries further.   

  11.3     FTL — A QUERY LANGUAGE BASED ON FUTURE 
TEMPORAL LOGIC 

 In this section, we describe FTL, a query language that allows us to express con-
ditions about the future. We fi rst introduce the language by some examples 
( Section 11.3.1 ), then defi ne the syntax ( Section 11.3.2 ) and semantics ( Section 
11.3.3 ) of the language precisely. Finally, in  Section 11.3.4 , an algorithm for 
evaluating FTL queries is presented. 

  11.3.1     Some Example Queries 

 Several example queries for moving objects applications have already been men-
tioned; let us see how some of them would be expressed in FTL. 

     EXAMPLE 11.1  

    Which trucks are within ten miles of truck T68? 

     RETRIEVE t   
   FROM trucks t, trucks s   
   WHERE s.id  =   ‘ T68 ’    ∧   dist(s, t)  ≤  10     

 The general form of a query is:  2    

   RETRIEVE  < target-list >  FROM  < object-classes >    
   WHERE  < FTL-formula >      

  2   In the original literature describing FTL, the  FROM  clause is omitted; a single implicit class of moving 
objects is assumed. 



11.3 FTL—A Query Language Based on Future Temporal Logic  307

 The FTL formula is the interesting part. In the fi rst example, nothing special happens 
yet. The syntax used is a theoretical one; in practice, we would replace the logical connec-
tive  ∧  by a keyword  and  and type  <  =  instead of  ≤ . Observe that the distance operator  dist  
is applied to the objects directly rather than to point attributes, as discussed in  Section 
11.2.1 .       

 The FTL language as such only deals with instantaneous queries. How we can 
get from instantaneous to continuous queries has been explained in the previous 
section. But to require a query to be evaluated as a continuous query is not within 
the scope of the language; it has to be specifi ed externally (e.g., at the user 
interface). 

 Therefore, the previous query is evaluated instantaneously at the time when it 
is issued. We assume trucks have a dynamic location ( loc ) attribute, and the dis-
tance is evaluated on the current positions of trucks  s  (T68) and  t . The distance 
function  dist  is also assumed to operate over the network; therefore, it involves 
a shortest-path computation. 

 Observe that the query is beautifully (and perhaps deceivingly) simple; nothing 
needs to be said about time, yet the query refers to the current situation and its 
result will change when posed at different times. 

     EXAMPLE 11.2  

    Will truck T70 reach its destination within the next half hour? 
 As formulated, the query would require a Boolean (yes or no) result, which is not directly 
possible. Instead, we will retrieve truck T70 if it reaches its destination in time; otherwise, 
the result will be empty. 

 We assume destinations to be modeled as a point object class  destinations , where 
points lie on the traffi c network. The  trucks  object class has an attribute  dest  giving its 
destination in the form of a reference to such a destination object. 

     RETRIEVE t   
   FROM trucks t   
   WHERE t.id  =   ‘ T70 ’    ∧   eventually _ within _ 30 (dist(t, t.dest)  =  0)     

 Here, we assume again that time units are minutes. New is the temporal operator 
 eventually _ within _ c , where  c  is a numeric constant referring to time units. It can be 
applied to a predicate  p . The meaning of  eventually _ within _ c ( p ) is: Within the next  c  
time units,  p  will become true.       

     EXAMPLE 11.3  

   To make the next example more interesting, we modify our helicopter query a bit: Retrieve 
the friendly helicopters that will arrive in the valley within the next 15 minutes and then stay 
in the valley for at least 5 minutes. 
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     RETRIEVE h   
   FROM helicopters h   
   WHERE eventually _ within _ 15 (inside(h, Valley)   ∧   
         always _ for _ 5 (inside(h, Valley)))     

 Here,  Valley  is a polygon object and  inside  an operation comparing a point object 
with a polygon object. We assume that helicopters represented in this object class are all 
friendly; therefore, there is no explicit condition for that. 

 Note that the condition says that within 15 minutes a database state will be reached 
such that helicopter  h  is inside the valley, and for the next 5 time units, this will always be 
true.      

 We can see that it is possible in the language to specify sequences of condi-
tions that must become true in a certain order and to specify bounds on the 
periods of time involved. In the next section, we defi ne the structure of the lan-
guage precisely.  

  11.3.2     Syntax 

 The interesting part of the FTL language is the FTL formulas. FTL is similar to 
fi rst-order logic; therefore, the language consists of constants, variables, function 
symbols, predicate symbols, and so forth. 

       Defi nition.   The FTL language consists of the following symbols:

   1.      Constants . These may be of the atomic data types (e.g., 54,  “ T68 ” ) or 
named objects in the database (e.g.,  Valley ). The special database object 
Time is also a constant.  

  2.     For each  n   >  0, a set of  n -ary  function symbols . Each function symbol 
denotes a function taking  n  arguments of particular types and returning a 
value of some type. Examples are  + ,  *  on type  int , or the  “ . ”  operator, 
which takes an object of some object class and an attribute name and 
returns a value of the attribute type.  

  3.     For each  n   ≥  0, a set of  n -ary  predicate symbols . Each predicate symbol 
denotes a relation with  n  arguments of specifi ed types. For example,  ≤  and 
 ≥  denote the usual arithmetic comparison operators.  

  4.      Variables . These are typed and can range over object classes or atomic 
types. For example,  h   truck   is a variable ranging over the  truck  class, and  j  int    
an integer variable. Usually the index denoting the domain of the variable is 
omitted.  

  5.     Logical connectives  ∧  and  ¬ .  
  6.     The  assignment quantifi er   ← .  
  7.     Temporal modal operators  until  and  nexttime .  
  8.     Brackets and punctuation symbols ( , ),  [  ,  ] , and ,.          
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 The MOST model and FTL language are designed to be implemented on top 
of a DBMS providing its own nontemporal query language (e.g., OQL). FTL allows 
us to embed so-called  atomic queries  from that underlying language. These are 
queries returning single values from atomic types (e.g., an integer). For example, 
the query 

     RETRIEVE d.name FROM destinations d WHERE d.id  =   ‘ d12 ’      

 is such an atomic query returning a  string  value. Within FTL, this atomic query 
is viewed as a  constant  symbol. It is also possible that such a query contains a 
variable. For example, the query 

     RETRIEVE d.name FROM destinations d WHERE d.id  =  y     

 has a free variable  y . This is viewed as a function symbol denoting a unary func-
tion that returns for a given argument a  string  value. 

       Defi nition.   A term is one of the following:

   1.     A constant  c .  
  2.     A variable  v .  
  3.     An attribute access  v . A .  
  4.     An application of a function to terms of appropriate types  f ( t  1 ,  .  .  . ,  t n  ).    

 For example, 10,  x   +  3,  dist ( x, y ), and  d.name  are terms, and  “ retrieve  d.name  from 
destinations  d  where  d.id   =   y  ”  is also a term.       

       Defi nition.   A well-formed formula is defi ned as follows:

   1.     If  R  is an  n -ary predicate symbol and  t  1 ,  .  .  . ,  t n     are terms of appropriate 
types, then  R ( t  1 ,  .  .  . ,  t n  ) is a well-formed formula.  

  2.     If  f  and  g  are well-formed formulas, then  f   ∧   g  and  ¬   f  are well-formed 
formulas.  

  3.     If  f  and  g  are well-formed formulas, then  f   until   g  and  nexttime   f  are well-
formed formulas.  

  4.     If  f  is a well-formed formula,  x  is a variable, and  t  is a term of the same type 
as  x , then ( [  x   ←   t   ]   f ) is a well-formed formula. A variable in a formula is  free  
if it is not in the scope of an assignment quantifi er of the form  [  x   ←   t   ] .          

 The semantics of all this are defi ned in the next section. Observe that FTL does 
not have the existential and universal quantifi ers of fi rst-order logic;  3   instead, the 
assignment quantifi er is offered that allows us to bind a variable to the result of a 
query in one of the states of a database history. In particular, it is possible to 

  3   It is argued that this is to avoid problems of safety, which are more severe in the context of data-
base histories. See standard database textbooks for a discussion of safety of the relational calculus, 
for example. 
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capture an atomic value at some point in time and relate it to other values at later 
points in time.  

 We have not yet discussed some constructs, such as  eventually _ within _ c , 
occurring in the previous examples. These will be shown to be derivable from 
the primitives of the language and will be discussed in the following section.  

  11.3.3     Semantics 

 Let  s u   be the state of the database when the query  “ retrieve   < target-list >   from 
  < object-classes >   where  f   ”  is entered. The semantics of formula  f  are defi ned 
with respect to the history starting with  s u   — that is, history  H u  . 

 First, we need to defi ne the meaning of the symbols of the language:

   1.      Constants  represent corresponding values from their domain. For example, 54 
represents an integer,  “ T68 ”  a character string, and  Valley  and  Time  represent 
database objects.  

  2.      Function symbols  have their standard interpretation or denote functions 
defi ned in the text. For example, the symbols  +  and  *  represent the standard 
addition and multiplication functions. The  dist  symbol represents the distance 
function described in  Section 11.3.1 .  

  3.      Predicate symbols  also have their standard interpretation. For example, 
 ≤  denotes the standard less than or equal relation.    

 In the sequel, we do not distinguish in notation between such symbols and their 
interpretation. For example, for a constant symbol  c , the value represented is also 
denoted as  c . 

       Defi nition.   A variable assignment for formula  f  is a mapping  μ  that assigns to each 
free variable in  f  a value from its domain. We denote by  μ  [  x / u  ]  the mapping obtained 
from  μ  by assigning the value  u  to variable  x  and leaving all other variables 
unchanged.       

     EXAMPLE 11.4  

   Let us assume that in the  truck  object class in  Example 11.1 , there are truck objects with 
object identifi ers  T  1  through  T  100 . Consider the formula 

     s.id  =   ‘ T68 ’   ∧  dist(s, t)  ≤  10     

 A possible variable assignment is  μ   =  {( s ,  T  10 ), ( t ,  T  20 )}.      

       Defi nition.   For a term  t , its evaluation in a state  s  with respect to a variable assign-
ment  ϕ  s, µ  , denoted  ϕ  s, µ   [  t   ] , is defi ned as follows:

   1.     If  t  is a constant  c , then  ϕ  s, µ   [  c  ]   =   s ( c ).  
  2.     If  t  is a variable  v , then  ϕ  s, µ   [  v  ]   =   μ ( v ).  
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  3.     If  t  is an attribute access  v . A , then  ϕ  s, µ   [  v . A  ]   =   s ( μ  [  v  ] . A ).  
  4.     If  t  is an application of function  f  to arguments  t  1 ,  .  .  . ,  t n  , then  ϕ  s, µ   [  f ( t  1 ,  .  .  . , 

 t n  ) ]   =   f ( ϕ  s ,  µ   [  t  1  ] ,  .  .  . ,  ϕ  s, µ   [  t n   ] ).          

 Observe that constants are evaluated in a database state; this is needed in par-
ticular for the constant  Time . Also dynamic attributes are evaluated with respect 
to the current state. We now defi ne the satisfaction of a formula at a state  s  on a 
history  H  with respect to a variable assignment  μ . Satisfaction is defi ned induc-
tively on the structure of formulas.   

       Defi nition.   Formula  f  is  satisfi ed  at state  s  on history  H  with respect to variable 
assignment  μ  (satisfi ed at ( s ,  μ ), for short):

   1.      R ( t  1 ,  .  .  . ,  t n  ) is satisfi ed : ⇔   R ( ϕ  s, µ   [  t  1  ] ,  .  .  . ,  ϕ  s, µ   [  t n   ] ) holds.  
  2.      f   ∧   g  is satisfi ed : ⇔  both  f  and  g  are satisfi ed at ( s ,  μ ).  
  3.      ¬   f  is satisfi ed : ⇔   f  is not satisfi ed at ( s ,  μ ).  
  4.      f   until   g  is satisfi ed : ⇔  either  g  is satisfi ed at ( s ,  μ ), or there exists a 

future state  s ′   on history  H  such that ( g  is satisfi ed at ( s ′  ,  μ )  ∧  for all states 
 s i   on history  H  before state  s ′ , f  is satisfi ed at ( s i  ,  μ )).  

  5.      nexttime   f  is satisfi ed : ⇔   f  is satisfi ed at ( s ′  ,  μ ), where  s ′   is the state 
immediately following  s  in  H .  

  6.     ( [  x   ←   t  ]   f  ) is satisfi ed : ⇔   f  is satisfi ed at ( s ,  μ  [  x / ϕ  s ,  µ   [  t  ]  ] ).          

 The assignment quantifi er can be used in combination with the  nexttime  
operator to detect change. 

     EXAMPLE 11.5  

   The formula ( [  x   ←   dist ( a, b ) ]  ( nexttime dist ( a, b )  >   x )) is evaluated as follows. Let us 
assume it is evaluated in a state  s , for which  s ′   is the next state. 

    ( [  x   ←   dist ( a, b ) ]  ( nexttime dist ( a, b )  >   x )) is satisfi ed at state  s   
   ⇔  ( nexttime dist ( a, b )  >   β  α ) is satisfi ed at state  s , where  α  is the distance 

between objects  a  and  b , evaluated in state  s   
   ⇔  ( dist ( a, b )  >   α ) is satisfi ed at state  s ′    
   ⇔  ( β   >   α ) where  β  is the distance between objects  a  and  b , evaluated in state  s ′      

 So the formula is satisfi ed if the distance between objects  a  and  b  increases from the current 
state to the next state.      

 Based on the given syntactical primitives for constructing formulas whose 
meanings are now well defi ned, some derived notations can be defi ned as 
follows.   

 First, in addition to the logical connectors  ∧  and  ¬ , we can also use  ∨  and 
 ⇒ , which can be defi ned in terms of the fi rst two. Second, temporal operators 
 eventually  and  always  can be defi ned as follows:
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    ■       eventually   g  means that  g  will be fulfi lled at some future state. It can be 
defi ned as  true   until   g .  

   ■       always   g  means that  g  is satisfi ed at all future states, including the present 
state. It is defi ned as  ¬  ( eventually  ( ¬   g )).    

 In addition, it is useful to have related operators that have bounded, rather 
than infi nite, periods of time. First, we defi ne bounded versions of the  until  
operator:

    ■       g   until _ within _ c   h  asserts that there exists a future time within at 
most  c  time units from now such that  h  holds, and until then  g  will be 
continuously satisfi ed.  

   ■       g   until _ after _ c   h  asserts that there exists a future time after at least 
 c  time units from now such that  h  holds, and until then  g  will be 
continuously satisfi ed.    

 Based on these, we can defi ne other bounded temporal operators:

    ■       eventually _ within _ c   g  asserts that the formula  g  will be fulfi lled 
within  c  time units from the current state, defi ned as  true  
 until _ within _ c   g .  

   ■       eventually _ after _ c   g  means that  g  holds after at least  c  units of 
time, defi ned as  true   until _ after _ c   g .  

   ■       always _ for _ c   g  asserts that the formula  g  holds continuously for the 
next  c  units of time, defi ned as  g   until _ after _ c   true .     

  11.3.4     Evaluating FTL Queries 

 An interesting issue now is how FTL queries are processed and evaluated by an 
algorithm. From the set of FTL queries that can be formed according to  Section 
11.3.2 , we here only consider the subset of so-called  conjunctive  formulas. Such 
a formula is constructed 

     ■      Without negations.  
   ■      Without the  nexttime  operator.  
   ■      Without any reference to the  Time  object ( Section 11.2.1 ).    

 The reason for excluding negations is safety (i.e., fi niteness of the result), since 
negations may introduce infi nite answers. The condition of excluding the time 
variable in queries implies that for every query  q  that is on the right side of an 
assignment in  f  (i.e., as in  [  x   ←   θ  ] ), the value returned by  q  at any time is inde-
pendent of the time when it is evaluated; it is only the result of a  function  applica-
tion assigning values to the free variables in  q ; and it depends only on the current 
positions of the objects. This condition also ensures that satisfaction of a nontem-
poral predicate when an object is at a particular position depends only on the 
position of the object but not on the time when the object reached the position. 
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 The bounded temporal operators such as  eventually _ within _ c  are admitted, 
however. Since the  Time  object must not be used, the evaluation algorithm will 
handle the two basic operators  until _ within _ c  and  until _ after _ c  explicitly. 
As an additional constraint, only instantaneous and continuous, but not persistent, 
queries are allowed.   

 The basic idea for evaluating an FTL formula is to compute for each formula  f  
with free variables  x  1 ,  .  .  . ,  x k   a relation  R f   ( x  1 ,  .  .  . ,  x k , t start , t end  ). That relation has 
one attribute for each of the free variables in  f  and two additional attributes,  t start   
and  t end  , describing a time interval. Each tuple ( o  1 ,  .  .  . ,  o k , t  1 ,  t  2 ) of  R f   represents 
one instantiation  ρ   =   <  o  1 ,  .  .  . ,  o k   >  of the variables  x  1 ,  .  .  . ,  x k   such that the formula 
is true for this instantiation during the time interval  [  t  1 ,  t  2  ] . Furthermore, for two 
tuples with the same  instantiation   ρ   =   <  o  1 ,  .  .  . ,  o k   >  of the variables  x  1 ,  .  .  . ,  x k  , 
the time intervals are disjoint and nonadjacent.   

 A set of tuples  T  with the same instantiation  ρ  and set of time intervals  I  
represents a combination of objects  <  o  1 ,  .  .  . ,  o k   >  that fulfi lls  f  during times  I . An 
FTL formula is structured into subformulas. The idea for evaluation is to compute 
relations for the atomic formulas fi rst and then to evaluate formulas bottom-up, 
translating connectives into relation operations.   

 At the beginning of this section, we said that we consider a restricted class 
of formulas where negation and  nexttime  are missing and  until _ within _ c  
and  until _ after _ c  are treated explicitly. Here is an updated defi nition for this 
case. 

       Defi nition.   A  well-formed formula  (in the restricted case) is defi ned as follows:

   1.     If  R  is an  n -ary predicate symbol and  t  1 ,  .  .  . ,  t n   are terms of appropriate 
types, then  R ( t  1 ,  .  .  . ,  t n  ) is a well-formed formula.  

  2.     If  f  and  g  are well-formed formulas, then  f   ∧   g  is a well-formed formula.  
  3.     If  f  and  g  are well-formed formulas, then  f   until   g  is a well-formed formula.  
  4.     If  f  and  g  are well-formed formulas, then  f   until _ within _ c   g  is a well-

formed formula.  
  5.     If  f  and  g  are well-formed formulas, then  f   until _ after _ c   g  is a well-formed 

formula.  
  6.     If  f  is a well-formed formula,  x  is a variable, and  t  is a term of the same type 

as  x , then ( [  x   ←   t  ]   f  ) is a well formed formula. A variable in a formula is  free  
if it is not in the scope of an assignment quantifi er of the form  [  x   ←   t  ] .          

 We now consider each of these cases in turn. Let  h  be a subformula with free 
variables  x  1 ,  .  .  . ,  x l  . 

  Case 1:  h   ≡   R  ( x  1 ,  … ,  x l  ) 
 Example:  h   ≡   dist ( x  1 ,  x  2 )  <  8 

 We assume that for each such atomic predicate an algorithm exists returning 
for each possible instantiation  <  o i , o j   >  the time intervals when the predicate 
holds. 
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 Compute a relation  R h   with all such tuples  <  o  1 ,  .  .  . ,  o l   >  and associated time 
intervals.  

  Case 2:  h   ≡   f   ∧   g  
 Let  R f   and  R g   be the relations computed for the subformulas; for example:

    R f   ( x  1 ,  x  2 ,  x  5 ,  t s , t e  )  
   R g  ( x  1 ,  x  4 ,  x  5 ,  x  7 ,  t s , t e  )    

 Then the result relation will have the schema 

     R h  ( x  1 ,  x  2 ,  x  4 ,  x  5 ,  x  7 ,  t s , t e  )    

 Suppose for an instantiation  <  o  1 ,  o  2 ,  o  4 ,  o  5 ,  o  7  > ,  f  is satisfi ed during  I  1  and  g  is 
satisfi ed during  I  2 . Then  f   ∧   g  is satisfi ed during  I  1   ∩   I  2 . Therefore, compute the 
result relation  R h   as follows. Compute a join of  R f   and  R g  ; common variables must 
be equal, and time intervals must intersect. For each result tuple its time interval 
is the intersection of the time intervals of the two joining tuples.  

  Case 3:  h   ≡   f  until  g  
 Let  R f   and  R g   be the relations computed for the subformulas, with  p   +  2 and 
 q   +  2 attributes, respectively. 

 Consider tuple  t  1  in  R f  . Let  T  1  be the set of all tuples with the same values in 
the fi rst  p  attributes (same instantiation). Let  I  1  be the set of time intervals in  T  1 . 
Similarly, consider  t  2  in  R g  ,  T  2 , and  I  2 . Figure 11.1   shows tuples  t  1  and  t  2  with 
overlapping time intervals. Clearly, if  f  holds for the instantiation of  t  1  during its 
time interval, and if  g  holds for the instantiation of  t  2  during its time interval, then 
 f   until   g  holds for the union of their time intervals.     

 Now consider the complete sets of time intervals  I  1  and  I  2  for these two instan-
tiations ( Figure 11.2   ). When does  f   until   g  hold? Remember the semantics of  f  
 until   g: f   until   g  is satisfi ed : ⇔  either  g  is satisfi ed at ( s ,  μ ), or there exists a 
future state  s ′   on history  H  such that ( g  is satisfi ed at ( s ′  ,  μ )  ∧  for all states  s i   on 
history  H  before state  s ′ , f  is satisfi ed at ( s i  ,  μ )).   

  FIGURE 11.1  

   Overlapping time intervals for two instantiations of formulas  f  and  g .    
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 Therefore,  f   until   g  holds for periods of time when there are chains of inter-
vals alternating between  t  1  and  t  2  up to the end of a  t  2  interval, as illustrated in 
 Figure 11.2 . 

 Hence, compute  R h   as follows: Compute a join of  R f   and  R g   matching pairs of 
(sets of) tuples with relation to their variable instantiations. For the two resulting 
sets of intervals  I  1  and  I  2 , compute their  maximal chains . For each maximal chain, 
construct one result tuple, with time interval corresponding to the extent of the 
chain.  

 An alternative formulation is: Compute solution intervals for any suitable pair 
of intervals of  t  1  and  t  2 . Merge all sequences of overlapping solution intervals into 
one, and return this in a result tuple.  

  Case 4:  h   ≡   f  until _ within _  c g  
 Recall the semantics of this case:  f   until _ within _  c  g  asserts that there is a future 
time within at most  c  time units from now such that  g  holds, and until then  f  will 
be continuously satisfi ed. This case is illustrated in  Figure 11.3   .   

 Let  t  1 ,  t  2  be matching pairs of tuples from  R f   and  R g   with overlapping time 
intervals. Let  d   =  max{ t  1 . l, t  2 . l   –   c }.  4   Then,  f   until _ within _ c   g  holds in the interval 
 [  d, t  2 . u  ] . Extend to chains as before — that is, merge any overlapping solution 
intervals so they are displayed as one. The result relation is computed in a join, 
similar to Case 3.   

  Case 5:  h   ≡   [  y   ←   q  ]   f  
 Here,  q  is a query yielding an atomic result; for example: 

  y ← ( )height o      

 Let  R f   be the result relation for  f . The term  q  is in general a query and has to 
yield an atomic result so that it can be assigned to  y . It usually contains some free 
variables. The result relation  R q   for  [   y   ←   q  ]  is assumed to have  p   +  3 attributes, 
where the fi rst  p  attributes relate to the free variables in  q ; the number (  p   +  1) 

  FIGURE 11.2  

   Time intervals for  f   until   g .    

  4   We denote by  t.l  the left end of the time interval for tuple  t , and by  t.u  the right end. 



316  CHAPTER 11 Modeling and Querying Current Movement

attribute stores the value of  q ; and the remaining two attributes represent a time 
interval. Each instantiation of the free variables in  q  leads to a result value stored 
as the number (  p   +  1) attribute value, and if this value holds during  n  disjoint 
time intervals,  n  corresponding tuples are stored in  R q  .  

 In our example,  R q   has four attributes. The fi rst attribute keeps the object id, 
the third and fourth attributes describe a time interval, and the second attribute 
gives the height of the object during this interval. 

 The result relation  R h   for  h  is computed by joining  R q   and  R f   with the join 
condition that for any two tuples  t  1  from  R q   and  t  2  from  R f   the attribute values 
corresponding to common variables are equal; the attribute value corresponding 
to the  y  value in  R f   is equal to the query result value in  t  1 ; and the time intervals 
of both tuples intersect. The output tuple consists of all variable attribute values 
stemming from  t  1  and  t  2 , except for the attributes corresponding to variable  y  and 
the intersection of the intervals in  t  1  and  t  2 . 

 This is what is described in the literature for Case 5. We believe there is a 
problem with this description — namely, the predicate  f  contains  y  as a free vari-
able. The relation  R f   has to be computed for all possible bindings of  y  but without 
any knowledge of the possible values for  y . Note that in the other cases variables 
were ranging over object classes, so they could be bound to all existing object 
identifi ers. It does not seem feasible to let  y  range over all integers if  height  would 
return an integer result, not to mention reals, if  height  returned a real number. 

 It seems that some additional trick is needed. For example, we might compute 
the relation  R q   fi rst. We could then project on the attribute corresponding to  y  
and use the resulting set of values as a domain for the possible bindings of  y  in 
formula  f . 

  FIGURE 11.3  

   Time intervals for  f   until _ within _ c   g .    



 This concludes the description of the algorithm for evaluating FTL formulas. 
The result relation  Answer ( Q ) can be used in the following way to answer con-
tinuous and instantaneous queries. For a continuous query  Q  at each clock tick  t , 
the instantiations of the tuples having an interval that contains  t  are shown to the 
user. Let us assume, for example, that  Answer ( Q ) includes the tuples (2, 10, 15) 
and (5, 12, 14). Then, the object with  id   =  2 is shown between the clock ticks 
10 and 15, and between the clock ticks 12 and 14 the object with  id   =  5 is dis-
played. In the case of an instantaneous query  Q , the instantiations of all tuples 
having an interval that contains the current clock tick are presented.    

  11.4     LOCATION UPDATES — BALANCING UPDATE 
COST AND IMPRECISION 

  11.4.1     Background 

 The motion of spatial objects over time necessitates the transmission of 
updates of their current position and speed to the database in order to provide 
the database with up-to-date information for retrieval and query tasks and to 
keep the inherent imprecision in the database bounded. The main issue here is 
when and how often these position updates should be made. Frequent updating 
may be expensive in terms of cost and performance overhead; infrequent updates 
result in outdated answers to position queries. Consequently, the location of a 
moving object is inherently imprecise, since the object location stored in the 
database, which we will call  database location , cannot always be identical to the 
actual location of the object. This holds regardless of the policy employed to 
update the database location of an object. Several  location update policies  may 
be applicable (e.g., the database location is updated every  n  clock tick). In this 
section, we introduce so-called  dead-reckoning  policies. These update the data-
base whenever the distance between the actual location of a moving object and 
its database location exceeds a given  threshold th  — say, 100 meters. Thus, this 
threshold determines and bounds the location imprecision. For a moving object 
 m , a query  “ What is the current location of  m ? ”  will then be answered by the 
DBMS with  “ The current location of  m  is ( x, y ) with a deviation of at most 100 
meters. ”  Here, the issue is how to determine the update threshold  th  in dead-
reckoning policies. 

 The feature of imprecision leads us to two related but different concepts: 
deviation and uncertainty. The  deviation  of a moving object  m  at a specifi c instant 
 t  is the distance between  m  ’ s actual location at time  t  and its database location at 
time  t . In our example, the deviation is the distance between the actual location 
of  m  and ( x, y ). The  uncertainty  of  m  at an instant  t  is the size of the area com-
prising all possible, current positions of  m . In our example, the uncertainty is the 
size of the area of a circle with a radius of 100 meters. Both deviation and uncer-
tainty are affl icted with a cost in terms of incorrect decision making. The deviation 
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(uncertainty) cost is proportional to the size of the deviation (uncertainty). We 
will see that the ratio between the costs of an uncertainty unit and a deviation 
unit depends on the interpretation of an answer. 

 To be able to update the database location of a moving object, we need an 
appropriate localization mechanism. In moving objects applications, each moving 
object is usually equipped with a  global positioning system  (GPS) and can thus 
generate and transmit the updates by using a wireless network. This introduces a 
third cost factor: communication or transmission cost. Furthermore, we can rec-
ognize an obvious trade-off between communication and imprecision in the sense 
that the higher the communication cost, the lower the imprecision, and vice versa. 
This leads to the issue of an information cost model in moving objects databases 
that balances imprecision and update cost. The model should also be able to cope 
with the situation where a moving object becomes disconnected and cannot send 
location updates.  

  11.4.2     The Information Cost of a Trip 

 The fi rst issue we deal with relates to an information cost model for a trip taken 
by a moving object. We have seen that during a trip a moving object causes a 
deviation cost and an uncertainty cost, which both can be regarded as a penalty 
due to incorrect decision making. Moreover, a moving object causes update cost, 
since location update messages have to be sent to the database. 

 For a moving object the  deviation cost  depends both on the size of the devia-
tion and the duration for which it lasts. The size of the deviation affects the 
decision-making process. The higher the deviation, the more diffi cult and impre-
cise it is to make a reliable decision based on the moving object ’ s current position. 
To see that the duration for which the deviation persists plays a role for calculat-
ing the cost, we assume that there is one query per time unit that retrieves the 
location of a moving object. If the deviation lasts for  n  time units, its cost will be 
 n  times the cost of the deviation lasting for a single time unit, because all queries 
instead of only one have to pay the deviation penalty. Formally, for a given moving 
object, the cost of the deviation between a starting time  t  1  and an ending time  t  2  
can be described by the  deviation cost function COST d   ( t  1 ,  t  2 ) yielding a non-
negative number. Assuming that the penalty for each unit of deviation during a 
time unit is weighted by the constant 1, the deviation cost function can be defi ned 
as: 

  COST t t d t dtd
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 where  d ( t ) describes the deviation as a function of time. We also denote this func-
tion as a  uniform  deviation cost function. It is the basis for all later descriptions 
of update policies. Of course, other deviation cost functions are conceivable. An 
example is the step deviation cost function. This function yields a penalty of 0 for 



each time unit in which the deviation falls below a given threshold  th , and it yields 
a penalty of 1 otherwise. 

 The  update cost C  1  covers the effort for transmitting a single location update 
message from a moving object to the database. It is diffi cult to determine it pre-
cisely, because it can be different from one moving object to another, or even 
vary for a single moving object during a trip (e.g., due to changing availability of 
resources such as bandwidth or computation). Of course, we have to measure the 
update cost by using the same kind of unit as for the deviation cost. With respect 
to the ratio between the update cost and the cost of a deviation unit per time 
unit, we can state that it is equal to  C  1 , since the latter cost factor is assumed to 
be 1. We can also conclude that in order to reduce the deviation by 1 during a 
time unit, the moving object will need 1/ C  1  messages. 

 The  uncertainty cost  depends on the size of uncertainty and on the duration 
for which it lasts. A higher degree of uncertainty conveys less reliable information 
for answering a query. Formally, for a given moving object, the cost of the uncer-
tainty between a starting time  t  1  and an ending time  t  2  can be described by the 
 uncertainty cost function COST u  ( t  1 ,  t  2 ) yielding a nonnegative number. Let the 
 uncertainty unit cost C  2  be the penalty for each uncertainty unit during a time 
unit. This implies that  C  2  is defi ned as the ratio between the cost of an uncertainty 
unit and the cost of a deviation unit, since the latter cost is assumed to be equal 
to 1. Then, the  uncer tainty cost function  COST u  ( t  1 ,  t  2 ) can be defi ned as: 
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 where  u ( t ) is the value of the  loc.uncertainty  attribute (see  Section 11.2.3 ) of 
the moving object as a function of time. We can now exert infl uence on the 
weighting and thus the importance of the uncertainty factor and the deviation 
factor. If for answering the query,  “ The current location of the moving object  m  
is ( x, y ) with a deviation of at most  u  units, ”  the uncertainty aspect is to be 
stressed,  C  2  should be set higher than 1, and lower than 1 otherwise. In a dead-
reckoning update policy, each update message to the database determines a new 
uncertainty, which is not necessarily lower than the previous one. Therefore, 
an increase of communication reduces the deviation but not necessarily the 
uncertainty. 

 We are now in the position to defi ne the information cost of a trip taken by 
a moving object. Let  t  1  and  t  2  be the times of two consecutive location update 
messages. Then, the  information cost  in the half open interval  [  t  1 ,  t  2  [  is: 

  COST t t C COST t t COST t tI d u[ , [ [ , [ [ , [1 2 1 1 2 1 2( ) = + ( ) + ( )      

 The result contains the message cost at time  t  1  but not at time  t  2 . Since each 
location update message writes the actual current position of the moving object 
in the database, the deviation is reduced to 0. The total information cost is calcu-
lated by summing up all  COST I  ( [  t  1 ,  t  2  [ ) values for every pair of consecutive update 
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instants  t  1  and  t  2 . Formally, let  t  1 ,  t  2 ,  .  .  .  , t n   be the instants of all update messages 
sent from a moving object. Let 0 be the time point when the trip started and  t n    + 1  
be the time point when the trip ended. Then, the  total information cost  of a 
trip is: 

  COST t COST t COST t COST t tI n d u I i i0 0 01 1 1 1, [ [ , [ [ , [ , [+ +( ) = ( ) + ( ) + ( )
ii

n

=
∑
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  11.4.3     Cost-Based Optimization for Dead-Reckoning Policies 

 Next, we consider the issue of information cost optimality. We know that the 
essential feature of all dead-reckoning update policies consists of the existence of 
a threshold  th  at any instant. This threshold is checked against the distance 
between the location of a moving object  m  and its database location. Therefore, 
both the DBMS and the moving object must have knowledge of  th . When the 
deviation of  m  exceeds  th, m  sends a location update message to the database. 
This message contains the current location, the predicted speed, and the new 
deviation threshold  K . The goal of dead-reckoning policies is to set  K , which is 
stored by the DBMS in the  loc.uncertainty  subattribute, such that the total 
information cost is minimized. 

 The general strategy is the following: First,  m  predicts the future behavior and 
direction of the deviation. This prediction is used as a basis for computing the 
average cost per time unit between now and the next update as a function  f  of 
the new threshold  K . Then,  K  is set to minimize  f . The proposed method of opti-
mizing  K  is not unique. The optimization is related to the average cost  per time 
unit  and not to the total cost between the two instants  t  1  and  t  2 , because the total 
cost increases as the time interval until the next update increases. For the case 
that the deviation between two consecutive updates is described by a linear func-
tion of time, we can determine the optimal value  K  for  loc.uncertainty . 

 Let  C  1  denote the update cost and  C  2  denote the uncertainty cost. We assume 
that  t  1  and  t  2  are the instants of two consecutive location updates, that the devia-
tion  d ( t ) between  t  1  and  t  2  is given by the linear function  a ( t   −   t  1 ) with  t  1   ≤   t   ≤   t  2  
and a positive constant  a , and that  loc.uncertainty  is fi xed at  K  between  t  1  and 
 t  2 . The statement is then that the total information cost per time unit between  t  1  
and  t  2  is minimal if   K aC C= ( ) +( )2 2 11 2      This can be shown as follows: We take 
the formula for computing the information cost in an interval  [  t  1 ,  t  2  [  and insert 
our assumptions. We obtain: 
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 Let  f ( t  2 )  =   COST I  ( [  t  1 ,  t  2  [ )/( t  2   −   t  1 ) denote the average information cost per time 
unit between  t  1  and  t  2  for update time  t  2 . We know that  t  1  and  t  2  are two con-



secutive update times. Therefore, at  t  2  the deviation exceeds the threshold  loc.
uncertainty  so that  K   =   a ( t  2   −   t  1 ). We can now replace  t  2  in  f ( t  2 ) by  K / a   +   t  1  
and obtain  f ( K )  =   aC  1 / K   +  (0.5  +   C  2 ) K . Using the derivative the minimum of  f ( K ) 
is at   K aC C= ( ) +( )2 2 11 2     . 

 What is the interpretation of this result? Assume that  m  is currently at instant 
 t  1 . This means that its deviation has exceeded the  loc.uncertainty  uncertainty 
threshold. Therefore,  m  needs to compute a new value for  loc.uncertainty  and 
transmit it to the database. Further assume that  m  predicts a linear behavior of 
the deviation. Then,  loc.uncertainty  has to be assigned a value that will remain 
fi xed until the next update. To minimize the information cost, the recommenda-
tion then is that  m  should set the threshold to   K aC C= ( ) +( )2 2 11 2     . 

 Finally, we try to detect disconnection of a moving object from the database. 
Then, the moving object cannot send location updates. In this case, we are inter-
ested in a dead-reckoning policy in which the  loc.uncertainty  uncertainty 
threshold continuously decreases between updates. As an example of decrease, 
we consider a threshold  loc.uncertainty   decreasing fractionally  and starting 
with a constant  K . This means that during the fi rst time unit after the location 
update  u , the value of the threshold is  K ; during the second time unit after  u  the 
value is  K /2; and during the  i th time unit after  u  the value is  K / i , until the next 
update, which determines a new  K . Assuming a linear behavior of the deviation, 
the total information cost per time unit between  t  1  and  t  2  is given by the function 
  f K C K C K K a K a( ) = + + + + + +( )( )1 20 5 1 1 2 1 3 1. . . .      . 

  11.4.4     Dead-Reckoning Location Update Policies 

 A  location update policy  is a position update prescription or strategy for a moving 
object that determines when the moving object propagates its actual position to 
the database and what the update values are. We discuss here a few  dead-
reckoning  location update policies that set the deviation bound (i.e., the threshold 
 th ) stored in the subattribute  loc.uncertainty  in a way so that the total informa-
tion cost is minimized. 

 The fi rst strategy is called the  speed dead-reckoning  ( sdr )  policy . At the begin-
ning of a trip, the moving object  m  fi xes an uncertainty threshold in an ad hoc 
manner and transmits it to the database into the  loc.uncertainty  subattribute. 
The threshold remains unchanged for the duration of the whole trip, and  m  
updates the database whenever the deviation exceeds  loc.uncertainty . The 
update information includes the current location and the current speed. A slight, 
more fl exible variation or extension of this concept is to take another kind of 
speed (e.g., the average speed since the last update, the average speed since the 
beginning of the trip, or a speed that is predicted based on terrain knowledge). 

 The  adaptive dead-reckoning  ( adr )  policy  starts like the  sdr  policy, with an 
initial deviation threshold  th  1  selected arbitrarily and sent to the database by  m  at 
the beginning of the trip. Then,  m  tracks the deviation and sends an update 
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message to the database when the deviation exceeds  th  1 . The update consists of 
the current speed, the current location, and a new threshold  th  2  stored in the 
 loc.uncertainty  attribute. The threshold  th  2  is computed as follows: Let us 
assume that  t  1  denotes the number of time units from the beginning of the trip 
until the deviation exceeds  th  1  for the fi rst time and that  I  1  is the deviation cost 
(according to the formula in  Section 11.4.2 ) during that interval. Let us assume 
further  a  1   =  2 I  1 / t  12 . Then,   th a C C2 2 1 22 2 1= ( ) +( )    .  where  C  1  is the update cost 
and  C  2  is the uncertainty unit cost. When the deviation reaches  th  2 , a similar 
update is sent. This time the threshold is   th a C C3 2 1 22 2 1= ( ) +( )    ,  where  a  2   =  
2 I  2 / t  22 ,  I  2  is the deviation cost from the fi rst update to the second update, and  t  2  
is the number of time units elapsed since the fi rst location update. That is, a dif-
ference between  a  1  and  a  2  results in a difference between  th  2  and  th  3 . Further 
thresholds  th i   are computed in a similar way. 

 The main difference between the  sdr  policy and the  adr  policy is that the fi rst 
policy pursues an ad hoc strategy for determining a threshold, while the latter 
policy is cost based. At each update instant  p i  , the  adr  policy optimizes the infor-
mation cost per time unit and assumes that the deviation following instant  p i   will 
behave according to the linear function  d ( t )  =  2 tI i  / t/ i   2 , where  t  is the number of 
time units after  p i , t i   is the number of time units between the preceding update 
and the current one at time  p i  , and  I i   is the deviation cost during the same time 
interval. This prediction of the future deviation can be explained as follows:  adr  
approximates the current deviation from the time of the preceding update to time 
 p i   by a linear function with slope 2 I i  / t i   2 . At time  p i   this linear function has the 
same deviation cost (i.e.,  I i  ) as the actual current deviation. Due to the locality 
principle, the prediction of  adr  after the update at time  p i   leads to a behavior of 
the deviation according to the same approximation function. 

 The last strategy we discuss is the  disconnection detection dead-reckoning  
( dtdr )  policy . This policy is an answer to the problem that updates are not 
generated because the deviation does not exceed the uncertainty threshold, but 
because the moving object  m  is disconnected. At the beginning of the trip,  m  
sends an initial, arbitrary deviation threshold  th  1  to the database. The uncertainty 
threshold  loc.uncertainty  is set to a fractionally decreasing value starting with 
 th  1  for the fi rst time unit. During the second time unit, the uncertainty threshold 
is  th  1 /2 and so on. Then,  m  starts tracking the deviation. At time  t  1 , when the 
deviation reaches the current uncertainty threshold (i.e.,  th  1 / t  1 ),  m  sends a loca-
tion update message to the database. The update comprises the current speed, 
the current location, and a new threshold  th  2  to be stored in the  loc.uncertainty  
subattribute. 

 For computing  th  2 , we use the function   f K C K C K( ) = + + + +(( 1 20 5 1 1 2.       
1 3 1 1+ + )). . . k a K a      (see  Section 11.4.3 ). Since  f ( K ) uses the slope factor 
 a  of the future deviation, we fi rst estimate this deviation. Let  I  1  be the cost of 
the deviation since the beginning of the trip, and let  a  1   =  2 I  1 / t  12 . The formula 
for  f ( K ) does not have a closed form. Therefore, we approximate the sum   
1 1 2 1 3 1 1+ + + . . . k a      by   ln 1 1k a( )     , since ln( n ) is an approximation 



of the  n th harmonic number. Thus, the approximation function of  f ( K ) is   
g K C K C K k a k a( ) = + + +( )( )1 2 1 10 5 1 1. ln     . The derivation of  g ( K ) is 0 when 
 K  is the solution of the equation ln( K )  =   d  1 / K   −   d  2  with  d  1   =  2 C  1 /  C  2  and  d  2   =  1/ C  2  
 +  4  −  ln( a  1 ). By using the well-known Newton-Raphson method, we can fi nd a 
numerical solution to this equation. The solution leads to the new threshold  th  2 , 
and  m  sets the uncertainty threshold  loc.uncertainty  to a fractionally decreasing 
value starting with  th  2 . 

 After  t  2  time units, the deviation exceeds the current uncertainty threshold, 
which is equal to  th  2 / t  2 , and a location update containing  th  3  is transmitted. The 
value  th  3  is computed as previously but with a new slope  a  2 .  I  2  is the deviation 
cost during the previous  t  2  time units. This process, which continues until the end 
of the trip at each update instant, determines the next optimal threshold by incor-
porating the constants  C  1  and  C  2  and the slope  a i   of the current deviation approx-
imation function. 

 An interesting question now is which of the three discussed dead-reckoning 
location update policies causes the lowest information costs. This has been empir-
ically investigated in a simulation test bed used to compare the information cost 
of the three policies on the assumption that the uncertainty threshold is arbitrary 
and fi xed. The result of this comparison is that the  adr  policy is superior to the 
other policies and therefore has the lowest information cost. It may even have an 
information cost that is six times lower than that of the  sdr  policy.   

  11.5     THE UNCERTAINTY OF THE TRAJECTORY 
OF A MOVING OBJECT 

 We have seen that uncertainty is an inherent feature in databases storing informa-
tion about the current and near-future locations of moving objects. Unless uncer-
tainty is captured in the model and query language, the burden of coping with it 
and refl ecting it in the answers to queries will inevitably, and at the same time 
hopelessly, be left to the user. In this section, we consider the issue of  uncertainty  
of the  trajectory  of a moving object. 

 The concept of trajectory goes beyond the simple model of motion vectors 
treated so far in this chapter. A trajectory can be viewed as a motion plan for the 
future, but it can also be used to represent a history of movement. Nevertheless, 
we treat it in this chapter, since also bounded uncertainty is involved, which is 
related to the update policies discussed in the previous section. 

  11.5.1     A Model of a Trajectory 

 Usually, the trajectory of a moving object is modeled as a polyline in three-
dimensional space. Two dimensions relate to space and the third dimension to 
time. If we in addition aim at capturing the uncertainty aspect, we can model the 
trajectory as a cylindrical volume in three-dimensional space. We can then ask for 
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objects that are inside a particular region during a particular time interval. Due to 
the uncertainty aspect, we can go a step further and take into account the  tem-
poral uncertainty  and  regional uncertainty  of objects. We can then query the 
objects that are inside the region  sometime  or  always  during the time interval 
(temporal uncertainty). Similarly, we may ask for the objects that are  possibly  or 
 defi nitely  inside the region. This allows us to pose queries such as:

    ■      Retrieve the current location of the trucks that will  possibly  be inside a 
region  R sometime  between 1:00  P.M . and 1:10  P.M .  

   ■      Retrieve the number of planes that will  defi nitely  be inside the region 
 R sometime  between 4:30  P.M . and 4:45  P.M .  

   ■      Retrieve the police cars that will  possibly  be inside the region  R always  
between 9:20  A.M . and 9:50  A.M .    

 We now characterize the spatiotemporal nature of a moving object by the 
following defi nition of a trajectory. 

       Defi nition.   A trajectory of a moving object is a polyline in the three-dimensional 
space, where two dimensions refer to space and the third dimension refers to time. 
It is represented as a sequence of points  〈 ( x  1 ,  y  1 ,  t  1 ),  .  .  . , ( x n , y n , t n  ) 〉  with 
 t  1   <   .  .  .   <   t n  . For a given trajectory  tr , its spatial projection on the  xy -plane is called 
the route of  tr .       

 The location of a moving object is here given as an implicit function of time. 
The object is at position ( x i , y i  ) at time  t i  , and during each period  [  t i , t i    + 1  ] , the 
object is assumed to move along a straight line from ( x i , y i  ) to ( x i    + 1 ,  y i    + 1 ) at a 
constant speed. 

       Defi nition.   For a given trajectory  tr , the  expected location  of the moving object at 
a point in time  t  between  t i   and  t i    + 1  with 1  ≤   i   <   n  is obtained by linear interpolation 
between the positions ( x i , y i  ) and ( x i    + 1 ,  y i    + 1 ).       

 The trajectory can be thought of as a set of points describing the future  motion 
plan  of the object. This set of points is visited and traversed by the object. 
Between two consecutive points we assume the object is moving along the short-
est path (i.e., on a straight line, with constant speed).  

  11.5.2     Uncertainty Concepts for Trajectories 

 To express the uncertainty of a trajectory or motion plan, we associate an uncer-
tainty threshold  th  with each line segment of the trajectory. In total, we thus 
obtain a three-dimensional, cylindrical  “ buffer zone ”  around the trajectory. For a 
given motion plan, the corresponding buffer zone has the following meaning for 
the moving object and the server: The moving object will update the server if its 
actual location deviates from its expected location by the distance  th  or more. 



 In practice, we can imagine that the on-board computer of the moving object 
is equipped with a GPS device, which receives an update every two seconds so 
that it knows its actual position. In addition, the moving object is aware of its 
motion plan and thus its trajectory so that, on the assumption of constant speed, 
it can interpolate its expected location at any instant. The deviation can then be 
simply computed as the distance between the actual and the expected location. 

 More formally, we can describe these uncertainty concepts for trajectories by 
the following defi nitions. 

       Defi nition.   Let  th  be a positive real number and  tr  be a trajectory. The correspond-
ing  uncertainty trajectory  is the pair ( tr, th ). The value  th  is called the  uncertainty 
threshold .       

 Next, we give a defi nition for the buffer zone. 

       Defi nition.   Let  tr   =   〈 ( x  1 ,  y  1 ,  t  1 ),  .  .  . , ( x n , y n , t n  ) 〉  be a trajectory and  th  be the uncer-
tainty threshold. For each point ( x, y, t ) along the time axis, its  th uncertainty area , 
or  uncertainty area  for short, is given by a horizontal circle with radius  th  centered 
at ( x, y, t ), where ( x, y ) is the expected location at time  t   ∈   [  t  1 ,  t n   ] .       

 An interesting issue now is which motion curves are allowed in the uncertainty 
area so that a location update does  not  have to be propagated to the database. 

       Defi nition.   Let  tr   =   〈 ( x  1 ,  y  1 ,  t  1 ),  .  .  . , ( x n , y n , t n  ) 〉  be a trajectory and  th  be the uncer-
tainty threshold. A  possible motion curve  is the image of any function of the set 
 PMC tr , th    =  { f  :  [  t  1 ,  t n   ]   →   �  2   |   f  is continuous  ∧  for all  t   ∈   [  t  1 ,  t n   ] ,  f ( t ) is located inside 
the  th  uncertainty area of the expected location of  tr  at time  t }. Its two-dimensional, 
spatial projection is called  possible route .       

 Consequently, a moving object does not have to update the database as long 
as it is on some possible motion curve of its uncertain trajectory. We are now able 
to defi ne the buffer zone around a line segment of the trajectory. 

       Defi nition.   For an uncertain trajectory ( tr, th ) and two end points ( x i , y i , t i  ) and 
( x i    + 1 ,  y i    + 1 ,  t i    + 1 ) of  tr , the  segment trajectory volume  of ( tr, th ) between  t i   and  t i    + 1  is the 
set of all points ( x, y, t ) such that ( x, y, t ) belongs to a possible motion curve of  tr  
and  t i    ≤   t   ≤   t i    + 1 . The two-dimensional, spatial projection of the segment trajectory 
volume is called the  segment uncertainty zone .       

 This defi nition can now be easily generalized to the whole trajectory. 

       Defi nition.   For a trajectory  tr   =   〈 ( x  1 ,  y  1 ,  t  1 ),  .  .  . , ( x n , y n , t n  ) 〉  and an uncertainty 
threshold  th , the  trajectory volum e of ( tr, th ) is the set of all segment trajectory 
volumes between  t i   and  t i    + 1  for all 1  ≤   i   <   n . The two-dimensional, spatial projection 
of the trajectory volume is called the  uncertainty zone .       
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 The preceding defi nitions are illustrated in  Figure 11.4   . Each segment trajectory 
volume between  t i   and  t i    + 1  has a cylindrical body. Its axis is the vector from 
( x i , y i  ) to ( x i    + 1 ,  y i    + 1 ), which specifi es the three-dimensional trajectory line segment, 
and its bases are the circles with radius  th  in the planes at  t   =   t i   and  t   =   t i    + 1 . This 
cylindrical body is different from a tilted cylinder. The intersection of a tilted 
cylinder with a horizontal  xy -plane yields an ellipse, whereas the intersection of the 
cylindrical body, which we have obtained here, with such a plane yields a circle.  

  11.5.3     Querying Moving Objects with Uncertainty 

 The interesting issue now is: How can we query moving objects with uncertainty 
given by their trajectories, and what are the most essential operators for doing 
this? First, we can identify two operators that relate to a single trajectory. This 
leads us to  point  queries. Second, we present a collection of six operators speci-
fying Boolean conditions that assess a qualitative description of the relative posi-
tion of a moving object with respect to a given region within a given time interval. 
This leads us to a concept for  spatiotemporal predicates . The application of each 
of these eight operators corresponds to a spatiotemporal  range  query. 

 The two operators for point queries are named  whereAt  and  whenAt  with the 
following signatures:

     whereAt:          trajectory   ×   time   →   point   
    whenAt:             trajectory   ×   point   →   instants     

  FIGURE 11.4  

   A possible motion curve, its possible route, and its trajectory volume.    



 The operator  whereat ( tr, t ) returns the expected location (i.e., a two-
dimensional point) on the route of  tr  at time  t . The operator  whenAt ( tr, l ) returns 
the times at which an object moving along trajectory  tr  is at an expected location 
 l . Here, the answer may be a set of times captured by a value of a type  instants , 
in case the moving point passes through a certain location more than once. If the 
route of  tr  does not traverse  l , we determine the set  C  of all those points on this 
route that are closest to  l . The operator then returns the set of times at which the 
moving object is expected to be at each point in  C . 

 Next, we consider six Boolean predicates, which all share the property that 
they are satisfi ed if a moving object is inside a given region  R  during a given time 
interval  [  t  1 ,  t  2  ] . This means we can use them for spatiotemporal range queries. 
Their differences result from existential and all quantifi cations with respect to 
three aspects. First, we can temporally quantify the validity of a predicate and ask 
whether the moving object satisfi es the condition  sometime  or  always  within 
 [  t  1 ,  t  2  ] . Second, we can spatially quantify the validity of a predicate and ask 
whether the object satisfi es the condition  somewhere  or  everywhere  within the 
region  R . Third, we can quantify the validity of a predicate with respect to uncer-
tainty and ask whether the object satisfi es the condition  possibly  or  defi nitely . 

 Since we have three kinds of quantifi cation, there are 3! different orders (per-
mutations) to arrange them. For each fi xed order, we have 2 3  possibilities to 
combine the three quantifi cation aspects. This results in 2 3   ×  3!  =  48 possible 
operators. Since it is not reasonable to require that a point object is  everywhere  
in  R , we do not consider this quantifi cation in the following. This means that the 
spatial quantifi er  somewhere  is the default. Therefore, we only obtain 2 2   ×  2!  =  8 
possible operators. These eight predicates  π   i   all have the signature:

    π    i   :  uncertainTrajectory   ×   region   ×   time   ×   time  →  bool     

 and are now defi ned. 

       Defi nition.   Let  r  be a  simple  query region (i.e., a region whose interior is connected 
and that does not have holes). Let  ut   =  ( tr, th ) be an uncertain trajectory. We can 
then defi ne the following  spatiotemporal predicates :

   1.     The predicate  PossiblySometimeInside ( ut, r, t  1 ,  t  2 ) is  true  if there is a 
possible motion curve  c  of  ut  and there is a time  t   ∈   [  t  1 ,  t  2  ]  such that  c  is 
inside  r  at  t .  

  2.     The predicate  SometimePossiblyInside ( ut, r, t  1 ,  t  2 ) is  true  if predicate 
 PossiblySometimeInside ( ut, r, t  1 ,  t  2 ) is  true .  

  3.     The predicate  PossiblyAlwaysInside ( ut, r, t  1 ,  t  2 ) is  true  if there is a possible 
motion curve of  ut  that is inside  r  for every  t   ∈   [  t  1 ,  t  2  ] .  

  4.     The predicate  AlwaysPossiblyInside ( ut, r, t  1 ,  t  2 ) is  true  if for every instant  t  
 ∈   [  t  1 ,  t  2  ]  a possible motion curve of  ut  exists that will intersect  r  at time  t .  

  5.     The predicate  AlwaysDefinitelyInside ( ut, r, t  1 ,  t  2 ) is  true  if at every time  t  
 ∈   [  t  1 ,  t  2  ]  every possible motion curve of  ut  is in  r .  

11.5 The Uncertainty of the Trajectory of a Moving Object  327



328  CHAPTER 11 Modeling and Querying Current Movement

  6.     The predicate  DefinitelyAlwaysInside ( ut, r, t  1 ,  t  2 ) is  true  if predicate 
 Always-DefinitelyInside ( ut, r, t  1 ,  t  2 ) is  true .  

  7.     The predicate  DefinitelySometimeInside ( ut, r, t  1 ,  t  2 ) is  true  if for every 
possible motion curve of  ut  a time  t   ∈   [  t  1 ,  t  2  ]  exists in which this motion 
curve is inside  r .  

  8.     The predicate  SometimeDefinitelyInside ( ut, r, t  1 ,  t  2 ) is  true  if an instant  t   ∈  
 [  t  1 ,  t  2  ]  exists at which every possible motion route of  ut  is inside  r .          

 Intuitively, the validity of the predicate in item 1 implies that the moving object 
may take a possible route within its uncertainty zone, such that this route will 
intersect  r  between  t  1  and  t  2 . In item 3, the predicate is satisfi ed if the motion of 
the object follows at least one particular two-dimensional possible route, which 
is completely contained within  r  during the whole query time interval. Item 4 
requires for the validity of the defi ned predicate that for each instant of the query 
time interval a possible motion curve can be found that intersects  r  at that instant. 
In item 5, the validity of the predicate is given if, for whatever possible motion 
curve the object chooses, it is guaranteed to be located within the query region 
 r  throughout the entire query time interval. Item 7 expresses that no matter which 
possible motion curve within the uncertainty zone the moving object takes, it will 
intersect the query region at some instant of the query time interval and thus fulfi ll 
the predicate. However, the time of intersection may be different for different 
possible motion curves. Satisfaction of the predicate in item 8 means that, for 
whatever possible motion curve the moving object takes, at the particular instant 
 t  the object will be inside the query region. 

 Due to the semantic equivalence of the predicates  PossiblySometimeInside  
and  SometimePossiblyInside  (items 1 and 2), as well as the semantic equivalence 
of the predicates  AlwaysDefinitelyInside  and  DefinitelyAlwaysInside  (items 
5 and 6), we can reduce the number of spatiotemporal predicates from eight to 
six. These two semantic equivalences could also have been formulated in two 
lemmas, whose proofs are then based on the two logical rules  ∃  x  ∃  y P ( x, y )  ⇔  
 ∃  y  ∃  x P ( x, y ) and  ∀  x  ∀  y P ( x, y )  ⇔   ∀  y  ∀  x P ( x, y ), respectively.  Figure 11.5    illustrates 
two-dimensional, spatial projections of the six predicates. Dashed lines show the 
possible motion curve(s) to which the predicates are satisfi ed. Solid lines indicate 
the routes and the boundaries of the uncertainty zone. 

 The predicates  PossiblyAlwaysInside  and  AlwaysPossiblyInside  (i.e., items 
3 and 4), as well as the  SometimeDefinitelyInside  and  Definitely-
SometimeInside  predicates (i.e., items 7 and 8), are not equivalent. Instead, only 
 PossiblyAlwaysInside ( ut, r, t  1 ,  t  2 )  ⇒   AlwaysPossiblyInside ( ut, r, t  1 ,  t  2 ), and 
 SometimeDefinitelyInside ( ut, r, t  1 ,  t  2 )  ⇒   DefinitelySometimeInside ( ut, r, t  1 , 
 t  2 ) hold. The proofs rest on the logical rule that  ∃  x  ∀  y P ( x, y )  ⇒   ∀  y  ∃  x P ( x, y ). 

 Thus, that on the left side of the implication symbol is stronger than that on 
the right side. If  r  denotes a  convex  simple region, the special case can be proved 
that  PossiblyAlwaysInside ( ut, r, t  1 ,  t  2 )  ⇔   AlwaysPossiblyInside ( ut, r, t  1 , 
 t  2 ).  Figure 11.5(b) and (c)  illustrate that the  AlwaysPossiblyInside  predicate 



may be satisfi ed by two or more possible motion curves together, none 
of which satisfi es  PossiblyAlwaysInside  by itself. Similarly, in  Figure 11.5(b)  
the query region fulfi lls  DefinitelySometimeInside , but since it does not 
contain the uncertainty zone for any time point, it does not satisfy the predicate 
 SometimeDefinitelyInside . 

 The relationship between the six predicates is depicted in  Figure 11.6   , where 
an arrow denotes an implication. More complex query conditions can be formu-
lated by composition of the operators. For instance, the query  “ Retrieve all the 
objects that are possibly within a region  r , always between the times the object 
 A  arrives at the locations  l  1  and  l  2  ”  can then be formulated as:

    PossiblyAlwaysInside ( ut, r ,  whenAt ( ut A , l  1 ),  whenAt ( ut A , l  2 ))     

  FIGURE 11.5  

   Examples (of the spatial projections) of the spatiotemporal predicates.    
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  FIGURE 11.6  

   Relationships among the spatiotemporal predicates.    
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  11.5.4     Algorithms for Spatiotemporal Operations and Predicates 

 The algorithms for implementing the two operators for point queries are straight-
forward. The  whereAt  operator applied to a trajectory with  n  line segments can 
be implemented in time O(log  n ). This time includes a binary search to determine 
the line segment between ( x  i  , y  i   ) and ( x  i     +  1  ,  y i    + 1 ) for some 1  ≤   i   <   n  such that 
 t i    ≤   t   ≤   t i    + 1  and a linear interpolation in constant time to compute the location at 
time  t . The  whenAt  operator is implemented in O( n ). Each line segment is exam-
ined in constant time for a time  t  when  tr  is at location  l . 

 Next, we present algorithms for the six spatiotemporal predicates. These algo-
rithms follow straightforward applications of computational geometry techniques 
with well-known run-time complexities. The essential idea is to reduce three-
dimensional geometric problems to the two-dimensional case, where they can be 
solved in a much easier way. For reasons of simplicity, we here restrict query 
polygons to  convex  polygons. Optimizations of part of the described algorithms 
and a generalization to concave query regions can be found in the literature (see 
 Section 11.7 ). 

 Let  t  1  and  t  2  be two instants. Two-dimensional spatial objects moving over 
time can be considered as three-dimensional objects with time as the third 
dimension. A query polygon  r  with the query time interval  [  t  1 ,  t  2  ]  can then be 
represented as a prism  p ( r )  =  {( x, y, t )  |  ( x, y )  ∈   r   ∧   t  1   ≤   t   ≤   t  2 }, which is called 
 query prism . Further, each segment trajectory volume between times  t i   and  t i    + 1  
is approximated by a  minimum bounding volume  (MBV), whose faces are all 
parallel to the three possible planes. These MBVs serve as fi lters and as a three-
dimensional indexing scheme for accelerating query processing. During the  fi lter-
ing  step, those line segments of trajectories are retrieved whose MBV intersects 
with  p ( r ). These form the  candidate set  we have to deal with. In the  refi nement  
step, the line segments of the candidate set are investigated by an exact algorithm. 
The algorithms in the following will assume the existence of a candidate set and 
restrict themselves to a description of the refi nement step. Let  v ( ut ) denote the 
trajectory volume of a given uncertain trajectory  ut   =  ( tr, th ) between  t  1  and  t  2 , 
and let  v ( ut, r )  =   v ( ut )  ∩   p ( r ) be the intersection of the trajectory volume and the 
query prism. Finally, let  π ( tr ) denote the spatial projection of  tr  on the  xy -plane 
(i.e., its route). 

 For the algorithms we also need the concept of the  Minkowski sum , denoted 
by the symbol  ⊕ . This operation takes a polygon  q  and a disk  d ( c ) with radius  c  
as operands and computes  q   ⊕   d ( c ) comprising all points in the plane that are 
either elements of the boundary of  q , elements of the interior of  q , or elements 
of the  “ sweep ”  of  d ( c ) when its center moves along the edges of  q . Therefore, for 
a convex polygon, the boundary of  q   ⊕   d ( c ) consists of straight-line segments 
between vertices of  q  and of arcs at the vertices of  q  ( Figure 11.7   ). If  q  has  n  
edges, we know from computational geometry that the run-time complexity to 
compute  q   ⊕   d ( c ) is O( n ). 



 The predicate   PossiblySometimeInside   is obviously true if, and only if, the 
intersection of the trajectory volume and the query prism is nonempty (i.e., if 
 v ( ut, r )  ≠   ∅ ). This leads us to the following algorithm. 

       ALGORITHM.      PossiblySometimeInside   (ut, r, t 1 , t 2 )  

    construct  r   ⊕   d ( th );  
   if   π ( tr )  ∩  ( r   ⊕   d ( th ))  =   ∅   then return   false ,  else return   true   endif   

   end.     

 In other words,  v ( ut, r ) is nonempty if, and only if,  π ( tr ) intersects the expanded polygon 
 r   ⊕   d ( th ). The complexity of the algorithm is O( kn ), where  k  is the number of line seg-
ments of  tr  between  t  1  and  t  2 , and  n  is the number of edges of  r . 

 For the predicate  PossiblyAlwaysInside , we can prove that it yields true if, and only 
if,  v ( ut, r ) contains a possible motion curve between  t  1  and  t  2 . The algorithm is then as 
follows.       

       ALGORITHM.      PossiblyAlwaysInside   (ut, r, t 1 , t 2 )  

    construct  r   ⊕   d ( th );  
   if   π ( tr ) lies completely inside  r   ⊕   d ( th )  then return   true   else return   false   endif   

   end.     

 Again, the complexity is O( kn ). Since we have confi ned ourselves to convex polygons, we 
can apply this algorithm also for the predicate  AlwaysPossiblyInside . 

 For the predicate  DefinitelyAlwaysInside , we can prove that it yields true if, and 
only if,  v ( ut, r )  =   v ( ut ). As an algorithm we obtain the following.       

       ALGORITHM.      DefinitelyAlwaysInside   (ut, r, t 1 , t 2 )  

     for each  straight-line segment of  tr   do   
   if  the uncertainty zone of the segment is not inside  r   then return   false   endif   

   endfor ;  
   return   true   

   end.     

 The algorithmic step to fi nd out if the uncertainty zone of a segment of  tr  is not contained 
in  r  can be processed by checking if the route segment has a distance from some edge of 
 r  that is less than  th . This requires O( kn ) time. 

 For the predicate  SometimeDefinitelyInside , we can prove that it yields true if, and 
only if,  v ( ut, r ) contains an entire horizontal disk. This holds for concave polygons as well. 
The algorithm can be formulated as follows.       

  FIGURE 11.7  

   Minkowski sum of a convex polygon with a disk.    
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       ALGORITHM.      SometimeDefinitelyInside   (ut, r, t 1 , t 2 )  

     for each  straight-line segment  s  of  tr  with  π (s)  ∩   r   ≠   ∅   do   
   if   r  contains a circle with radius  th  centered at some point on  s   then   

   return   true   
   endif   

   endfor ;  
   return   false   

   end.     

 The run-time complexity of this algorithm is again O( kn ).       

 For the last predicate, we need to defi ne the property of connectivity. This 
property usually requires the existence of some  path  between any two points in 
a given set, which in our case is a subset of  �  3 . Given any two points  a  and  b  in 
 �  3 , a path from  a  to  b  is any continuous function  f  :  [ 0, 1 ]   →   �  3  such that  f (0)  =  
 a  and  f (1)  =   b . For two instants  t  1  and  t  2 , a set  S   ⊆   �  3  is called  connected between 
t  1  and  t  2 , if two points ( x  1 ,  y  1 ,  t  1 ), ( x  2 ,  y  2 ,  t  2 )  ∈   S  exist that are connected by a path 
in  S . We can now prove that the predicate  DefinitelySometimeInside  yields true 
if, and only if,  v ( ut )\ p ( r ) is not connected between  t  1  and  t  2 . Otherwise, a possible 
motion curve exists between  t  1  and  t  2  that is completely in  v ( ut )\  p ( r ) so that the 
predicate is not fulfi lled. 

 Let  uz ( ut ) be the uncertainty zone of the trajectory volume of  ut , and let 
 uz  ′ ( ut ) be equal to  uz ( ut ) without the uncertainty areas at  t  1  and  t  2 , which are 
two circles  c  1  and  c  2 . Let  B  be the boundary of  uz  ′ ( ut ).  B  consists of (at most) 2 k  
straight-line segments and  k   +  1 arcs (at most one around the vertices of each 
segment). Let  B ′    =   B \( c  1   ∪   c  2 ). Thus,  B ′   consists of two disjoint lines  l  1  and  l  2  on 
the left and right sides of the route of  tr .  Figure 11.8    demonstrates some of the 
introduced concepts. The line  l  2  has an arc at the end of the fi rst route segment. 
The dashed semicircles belong to the boundaries of the uncertainty areas at  t  1  and 
 t  2 . They are removed when evaluating the predicate. For the query region  r , two 
paths can be found that make the predicate true — namely, the path from  u  to  v  
and the path from  w  to  z . 

  FIGURE 11.8  

   Processing of the  DefinitelySometimeInside  predicate.    



       ALGORITHM.      DefinitelySometimeInside   (ut, r, t 1 , t 2 )  

     if  there exists a path  P  between a point on  l  1  and a point on  l  2  that consists  
  completely of (parts of) edges of  r   and   P  is completely in  uz ′  ( ut )  then   
   return   true   

   else   
   return   false   

   endif   
   end.     

 This algorithm requires O( kn  2 ) time.         

  11.6     PRACTICE 
     FTL Query Language 
 In this task we consider some aspects of the FTL query evaluation. Evaluate the 
query:

    RETRIEVE f.id, g.id FROM flights f, g   
   WHERE (dist(f, g)  >  16 AND dist(f, g)  <  30)   
         until _ after _ 1 (dist(f, g)  <  10)     

 The relation  flights  has three tuples with the following values: 

 Motion (units/minute)  ID 

 (0, 0)  +  (2, 1)  a · t   LT 

 (5, 0)  +  ( − 1, 2)  b · t   IB 

 (10, 2)  +  ( − 2, 1)  c · t   AA 

 To make the calculation as easy as possible, three assumptions are made: the 
planes are nearly at the same altitude and the same velocity, so the third dimen-
sion was left out and  a   =   b   =   c   =  1; the current time corresponds to  t   =  0; and the 
 dist  function is defi ned as follows:

    dist (  f, g )  =   <   f.motion ( t )  −   g.motion ( t ),  f.motion ( t )  −   g.motion ( t )  >     

 with  <  · , ·  >  denoting the Euclidean scalar product. 

       Note:  The motion function is given in units per minute; since we can scale the 
units with an arbitrary length, every speed can be modeled. For example, if a 
unit stands for 7 kilometers, the planes will have a velocity of approximately 
900 kilometers/hour.       
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  Choosing an Optimal Threshold 
  Section 11.4.3  shows how to choose the uncertainty threshold  K  in order to 
minimize the average information cost per time unit. In that section, it is assumed 
that the future deviation is given by a linear function  a ( t  −  t  1 ), where  a  is a posi-
tive constant and  t  1  is the time at which the new threshold must be chosen. Now, 
we examine a slightly different scenario. We assume that the estimated future 
deviation is given by a quadratic function  a ( t  −  t  1 ) 

2  between  t  1  and  t  2 . This new 
deviation function yields a new formula for information cost. Find the new optimal 
value for  K  that minimizes the average information cost per time unit (i.e., perform 
an analysis analogous to the analysis in  Section 11.4.3  but with the different 
deviation function).  

  Adaptive Dead-Reckoning Policy 
 This exercise asks you to apply the adaptive dead-reckoning policy to a simple 
example. We assume that the update cost is  C  1   =   50, and the uncertainty unit cost 
is  C  2   =   1. The threshold  K  is initially set to 12. At each location update, the moving 
object transmits its current speed and its current direction to the database. The 
moving object moves linearly from (0, 0) to (10, 0) within the time interval 
 [ 0, 20 ]  (i.e., the location as a function of time is defi ned as ( t/ 2, 0)). Subsequently, 
the moving object moves linearly from (10, 0) to (0, 0) within the time interval 
 [ 20, 30 ] . In this scenario, answer the following questions:

   1.     When are location updates sent?  
  2.     What is the value of the threshold  K  at time 30?  
  3.     What is the information cost of this trip?    

 Remember that the moving object sends a location update at time 0. The 
deviation at time  t  is the Euclidean distance between the moving object ’ s actual 
location and its location according to the database. The deviation cost (needed 
for computing the new threshold,  Section 11.4.3 ) of a time interval is the integral 
of the deviation function over that time interval. You should not confuse this 
(observed) deviation with the deviation estimation by a linear function in  Section 
11.4.3 . The deviation estimation by a linear function is a mathematical assumption 
used for deriving a formula for the optimal value of  K . If that formula is applied 
to a real situation, we insert the observed deviation into that formula, not the 
estimated deviation.  

  Spatiotemporal Predicates 
 Let  r  be a simple query region and  ut   =  ( tr, th ) be an uncertain trajectory. Show 
that the following implications don ’ t hold:

   1.      PossiblySometimeInside ( ut, r, t  1 ,  t  2 ) 
   ⇒       DefinitelySometimeInside ( ut, r, t  1 ,  t  2 )     

  2.      PossiblySometimeInside ( ut, r, t  1 ,  t  2 ) 
   ⇒       AlwaysPossiblyInside ( ut, r, t  1 ,  t  2 )     



  3.      SometimeDefinitelyInside ( ut, r, t  1 ,  t  2 ) 
   ⇒       AlwaysDefinitelyInside ( ut, r, t  1 ,  t  2 )     

  4.      PossiblyAlwaysInside ( ut, r, t  1 ,  t  2 ) 
   ⇒       AlwaysDefinitelyInside ( ut, r, t  1 ,  t  2 )          

  11.7     LITERATURE NOTES 
 The presentation in this chapter is based on Sistla et   al. (1997, 1998) and Wolfson 
et   al. (1998a, 1999a, 1998b). These publications introduce a concept that focuses 
on capturing the  current  motion of moving points and their anticipated locations 
in the  near future . The concept of dynamic attributes ( Section 11.1 ), the MOST 
data model ( Section 11.2 ), and the query language FTL, as well as the evaluation 
of FTL queries ( Section 11.3 ), are described in Sistla et   al. (1997, 1998). The basic 
framework of the FTL language was introduced in an earlier article by Sistla and 
Wolfson (1995), which provided some additional details, for example, about 
bounded temporal operators. Sistla et   al. (1998) also treat a more general case 
than what has been presented here, where object positions may have an associ-
ated uncertainty (e.g., by providing a lower and upper bound on the speed). 

 The problem of balancing location update costs and imprecision ( Section 11.4 ) 
is discussed in Wolfson et   al. (1998a, 1999a, 1998b). Civilis et   al. (2004) have a 
related article discussing update policies. 

 The problem of inherent uncertainty associated with the location of moving 
points ( Section 11.5 ) is addressed in Trajcevski et   al. (2002). An extension and 
more detailed discussion of the uncertainty aspect can be found in Trajcevski et   al. 
(2004). Related works on uncertain trajectories include Pfoser and Jensen (1999) 
and Mokhtar and Su (2004). Pfoser and Jensen (1999) discuss the relationship 
between the sampling rate of GPS observations and the known precision of the 
trajectory. Mokhtar and Su (2004) offer a probabilistic model of uncertain trajec-
tories. A trajectory is viewed as a vector of uniform stochastic processes. They 
describe the evaluation of a class of queries called  “ universal range queries ” : The 
result is a set of pairs ( <  o, p  > ), where  o  is an object and  p  the probability that  o  
has been in the range all the time. Probabilistic query evaluation for uncertain 
object locations is also discussed in Cheng et   al. (2004); they consider range 
queries and nearest-neighbor queries. 

 The model described in this chapter has been realized in a prototype called 
DOMINO, which has been presented in several stages of implementation at various 
conferences (Wolfson et   al., 1999b, 2000, 2002).   
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Privileges, in UML, 139
Process design, 181
Process/entity matrices, 227
Process models, 227
Product operations, 221–223
Programming errors, 40
Project database, 148–152
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Refi nement step in spatiotemporal 
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preexisting, 281–282
tools, 276–277

Requirements analysis, 2–4, 141–142
denormalization, 260–261
overview, 142–143

Restrict operations, 221, 223
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one-to-many relationships, 191

Square brackets ([]), in UML, 125
Stability, associations for, 96
Standard transformations

column defi nition, 181
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example, 155–160
preintegration analysis, 153–154
schema comparison, 154
schema conformation, 154–155
schema merging and restructuring, 155

Views, 247–248
and denormalization, 249–250
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