M I<(

MORGAN KAUFMANN

DATABASE
DESIGN

know It all

* A 360-degree view from our best-selling authors

* Key concepts, practices, and protocols fully
explained

* The ultimate desk reference for researchers,
scientists, engineers, and practitioners

Tecrey « Simsion » Budon + Friyman « Gilling » Halpin « Haringlon
Inmon « lightstone » Mellon « Morgan « Nadeau « O'Nell
Schneider « Wi

Database Design

This page intentionally left blank

Database Design

Know It All

Stephen Buxton Thomas P. Nadeau
Lowell Fryman Bonnie O’'Neil

Ralf Hartmut Giiting Elizabeth O'Neil
Terry Halpin Patrick O’Neil

Jan L. Harrington Markus Schneider
William H. Inmon Graeme Simsion
Sam S. Lightstone Toby J. Teorey
Jim Melton Graham Witt

Tony Morgan

AMSTERDAM « BOSTON « HEIDELBERG *+ LONDON
NEW YORK * OXFORD * PARIS * SAN DIEGO
SAN FRANCISCO + SINGAPORE * SYDNEY « TOKYO M { {

e s
ELSEVIER Morgan Kaufmann is an imprint of Elsevier MORGAN KAUFMANN PUBLISHERS

Morgan Kaufmann Publishers is an imprint of Elsevier.
30 Corporate Drive, Suite 400
Burlington, MA 01803

This book is printed on acid-free paper.
Copyright © 2009 by Elsevier Inc. All rights reserved.

Designations used by companies to distinguish their products are often claimed as
trademarks or registered trademarks. In all instances in which Morgan Kaufmann
Publishers is aware of a claim, the product names appear in initial capital or all capital
letters. Readers, however, should contact the appropriate companies for more complete
information regarding trademarks and registration.

No part of this publication may be reproduced, stored in a retrieval system, or
transmitted in any form or by any means, electronic, mechanical, photocopying,
scanning, or otherwise, without prior written permission of the publisher.

Permissions may be sought directly from Elsevier’s Science & Technology Rights
Department in Oxford, UK: phone: (+44) 1865 843830, fax: (+44) 1865 853333, e-mail:
permissions@elsevier.com. You may also complete your request on-line via the Elsevier
homepage (bittp://elsevier.com), by selecting “Support & Contact” then “Copyright and
Permission” and then “Obtaining Permissions.”

Library of Congress Cataloging-in-Publication Data
Teorey, Toby J.
Database design : know it all / Toby Teorey et al.
p. cm. — (Morgan Kaufmann know it all series)
Includes index.
ISBN 978-0-12-374630-6 (alk. paper)
1. Database design. 1. Title.
QA76.9.D26T42 2008
005.74—dc22 2008040366

For information on all Morgan Kaufmann publications,
visit our Website at www.mkp.com or www.books.elsevier.com

Printed in the United States
0809101112 10987654321

Working together to grow
libraries in developing countries

www.elsevier.com | www.bookaid.org | www.sabre.org

ELSEVIER BOOKAID o he Foundation

Contents

ADbout This BOOKuuiiiiiiiiiiiiiii e ix
Contributing AUthOLSuuuiiiiiiieee e xi
CHAPTER 1 Introduction ... 1
1.1 Data and Database Management..........cccceeeeeeeeeeeeeeeeeeennnnn.. 1
1.2 The Database Life CyCleccoocviviiiiiiiiiieiieiieeieene 2
1.3 Conceptual Data MOAElngcccoeevieviienienieiiiiieeeans 7
1.4 SUMMATY .ooiiiiiiiii et 9
1.5 Literature SUMMALY........c..cccveviiiuiiiiieiieieeiieeieeeeeeeiieeenens 9
CHAPTER 2 Entity—Relationship Concepts............................ 11
2.1 Introduction to ER CONCEPLS.....ceevvrriiaiiaiiariieiiieaiieeeneans 13
2.2 Further Details of ER Modelingcccccoceveeeiieeencen, 20
2.3 Additional ER CONCEPLScvvervirieiriiiieiiaiieieesieeeiieeiveeeneens 29
2.4 CaSE StUAY ...ooouiiiiiiiiiiiie e 32
2.5 Normalization: Preliminaries...........ccocvevveerierieeiieniennens 36
2.6 Functional Dependenciesccoocurruieruieniienienienieenens 41
2.7 Lossless DECOMPOSILIONSeevvrririiieiieiieniieeiieeieeenens 57
2.8 NOMAal FOMS ..oviiiiiiiiiiiiieiieeiie et 65
2.9 Additional Design Considerations...................cc.cceveeeune.n. 80
2.10 Suggestions for Further Reading................cccooovvrviiiiren.n. 83
CHAPTER 3 Data Modeling in UML ... 85
3.1 INrOAUCHON ...t 85
3.2 Object Orentation.........ccoeviriririerieiereieieie e 88
3.3 AUEIDULES. ...t 91
3.4 ASSOCIALIONS. ..ottt 97
3.5 Set-Comparison CONSLLANTS..........covvrrvrereieriieriieriieiieeeneans 105
3.6 SUDLYPING ooviiieiiiiiieieecee e 113
3.7 Other Constraints and Derivation Rules..................c......... 118
3.8 Mapping from ORM tO UML..........cccceovreriieniieniieeiieeiieenneans 132
3.9 SUMMALY .ottt 136
3.10 Literature SUMMALY............cocviiiiuireniieeiiieeeieeeiieeeineeeneeenns 138

vi Contents

CHAPTER 4

4.1
4.2
4.3
4.4
4.5
4.6
4.7

CHAPTER 5
5.1
5.2
5.3
5.4
5.5
5.6
5.7
5.8
5.9

CHAPTER 6
6.1
6.2
6.3
6.4
6.5
6.6
6.7
6.8
6.9

CHAPTER 7
7.1
1.2
7.3
1.4
1.5
1.6
1.7
7.8

Requirements Analysis and Conceptual

Data Modeling ..., 141
INtrOAUCHON ...t 141
Requirements ANALYSiS.........ccoevvuiiioireniiieeiiieiiie e 142
Conceptual Data Modelingc.ccocoeeeviiieniieniieeieee 143
View INtegrationccoeveiiiiiiiiiiniiiiiiiiiiee e 152
Entity Clustering for ER Modelscccccooeevieeiniienneennne. 160
SUIMMIATY ..ot 165
Literature SUMMALYcceovieriiiiiiieeiieiieeiie e eee e 167
Logical Database Design ..., 169
INErOAUCTION ... 169
Overview of the Transformations Required...................... 170
Table SpecifiCation..........ccoceevieiiiiiiiiiieeee 172
Basic Column Definitionueeeeiiiiiiiiiiiiiiiiieeeeeeeeeennn. 181
Primary Key Specification............occuvvvieiiiiiiinnniiiiiiieeeene 187
Foreign Key Specification............occuvveeeiiiiiiininiiiiiiieeeeenne 189
Table and Column NAMESccceeeeeeeeeeeeeeeeiiiiiiiiiieeeeeee, 200
Logical Data Model NOtations.cceeeeevviiiiiieeeriiiiiineenns 201
SUMMATY oeeiiiiiii e 203
Normalization ..., 205
Translating an ER Diagram into Relations......................... 205
NOrmal FOMSooooiiiiiiiiiiiiiii e 206
First Normal FOrm............oouuiiiiiiiiiiiiiiiiiiiiieieeee e 207
Second Normal FOrm.............ccceeiviiiiiiiiiiiiiiiiiiiiiii 212
Third Normal FOrm...........cccccoeevviiiiiiiiiie e 214
Boyce-Codd Normal FOrmcccoooeeeiiiianiieiiie e 216
Fourth Normal FOrmM.............uuuuiiiiiiiiiiiiiiiiiiiieeeeeeeaeeeeeeennn 217
Normalized Relations and Database Performance............. 219
Further Readingcccccvvveiiiiiiiiiiiiiiieeceeeeeeeee e 224
Physical Database Design..................ccccocen, 225
INEPOAUCHION ..o 225
Inputs to Database Design...........cocveevuiiiiiieniiiiiniienineens 226
Options Available to the Database Designer..................... 228
Design Decisions that Do Not Affect Program Logic........ 229
Crafting Queries to Run Faster............ccceevvvviiiiiiiiiiininnnnnn. 237
Logical Schema DecCiSions................coeevvviiiiiiiiiiiiiiiiiiiinnnnns 238
VACWS ..ottt e 247

CHAPTER 8
8.1
8.2
8.3
8.4
8.5
8.6

CHAPTER 9
9.1
9.2
9.3
9.4
9.5
9.6
9.7
9.8
9.9
9.10

CHAPTER 10
10.1
10.2
10.3
104
10.5
10.6

CHAPTER 11
11.1
11.2

11.3
11.4
11.5

11.6
11.7

Contents

Denormalization ...,
Basics of Normalizationcoooiiiiiii .
Common Types of Denormalizationccccceeeeeeeennnn.
Table Denormalization Strat€gy...............ccococveeviiiieennnnnn.
Example of Denormalizationcccceeeevvnniiiiiieeieeeennnn.

Business Metadata Infrastructure ...
INErOAUCHION ...
Types of Business Metadata...........ooovvuviviiiieiiiinnniiiiieeee.n.
The Metadata Warehousecccooooovviiiieeeiiiiiiiiieeeeee,
Delivery Considerations.............ccceeeevviiiiiniiiiiienniiineeennene.
INEEGIaAtiON......uiiiiiiiiiie e e
Administrative ISSUESccoeeeiiiiiiiieeiiiiiiiiiee e
Metadata Repository: Buy or Build?..........ccoooviiiiiiinnnnn.
The Build Considerations.............ccc..ccovvvuieeeeeeiiiiiiiieeeeenennn,

Storing: XML and Databases ...
INErOAUCTION ...eevviiiiiiiiiiii e
The Need for PErsiStencecccccovvviiiiiiiiiiiiininiiiieeeeeee.
SQL/XML’S XML TYPE ...eevieeieeeiiiiiiiiiiiiieee e e e e
Accessing Persistent XML Data.........c....coooiiiiiiiiiin.
XML “On the Fly”: Nonpersistent XML Data.....................

Modeling and Querying Current Movement............
Location Management.........oouuuuiiiieiiiiiiiiiieeeiiiiiiiee e

MOST—A Data Model for Current and
Future MOVEMENt........cooooiiiiiiiiie e

FTL—A Query Language Based on Future
Temporal LOZICccoiiiiiiiiiiiiiiiiiiiiiee e

Location Updates—Balancing Update Cost
and IMPreCiSIONocuuvviiiiiiiiiiiiiice e

The Uncertainty of the Trajectory of
A MOVING ODJECT ..

PractiCe ..o
Literature NOTES ..o

280

This page intentionally left blank

About This Book

All of the elements about database design are here together in a single resource
written by the best and brightest experts in the field! Databases are the main
repository of a company’s historical data—its corporate memory—and they
contain the raw material for management’s decision support system. The increas-
ing volume of data in modern business calls for the continual refinement of data-
base design methodology. Database Design: Know It All expertly combines the
finest database design material from the Morgan Kaufmann portfolio into a single
book, making it a definitive, one-stop-shopping opportunity so that readers can
have the information they need available to quickly retrieve, analyze, transform,
and load data—the very processes that more and more organizations use to
differentiate themselves. Each chapter is authored by a leading expert in the
field; the book consolidates introductory and advanced topics ranging from ER
and UML techniques to storing XML and querying moving objects. In this way,
what is here is an invaluable resource for anyone working in today’s fast-paced,
data-centric environment.

This page intentionally left blank

Contributing Authors

Stephen Buxton (Chapter 10) is Director of Product Management at Mark Logic
Corporation, and a member of the W3C XQuery Working Group and Full-Text
Task Force. Until recently, Stephen was Director of Product Management for Text
and XML at Oracle Corporation. He is also a coauthor of Querying XML published
by Elsevier in 2006.

Lowell Fryman (Chapter 9) gained his extensive experience with business meta-
data during his 14 years as a data warehouse consultant, 25 years in data manage-
ment, and more than 30 years in IT. He is also a coauthor of Business Metadata:
Capturing Enterprise Knowledge published by Elsevier in 2008.

Ralf Hartmut Giiting (Chapter 11) is a professor of computer science at the
University of Hagen in Germany. After a one-year visit to the IBM Almaden Research
Center in 1985, extensible and spatial database systems became his major research
interests. He is the author of two German textbooks on data structures/algorithms
and on compilers and has published about 50 articles on computational geometry
and database systems. He is an associate editor of ACM Transactions on Database
Systems. He is also a coauthor of Moving Objects Database published by Elsevier
in 2005.

Dr. Terry Halpin (Chapter 3) is a Distinguished Professor in computer science
at Neumont University and is recognized as the leading authority on the ORM
methodology. He led development efforts in conceptual modeling technology at
several companies including Microsoft Corporation, authored more than 150
technical publications, and is a recipient of the DAMA International Achievement
Award for Education and the IFIP Outstanding Service Award. He is also a coauthor
of Information Modeling and Relational Databases published by Elsevier in
2008.

Jan L. Harrington (Chapter 6) is a full-time faculty member in the Department
of Computer Science, Information Technology, and Information Systems at Marist
College, where she teaches database design and management, object-oriented

Xii Contributing Authors

programming, data communications, and computer architecture. She is also the
author of Relational Database Design Clearly Explained published by Elsevier
in 2003.

William H. Inmon (Chapter 9), considered the father of the data warehouse, is
the author of dozens of books, including Building the Data Warehouse, Building
the Operational Data Store, and Corporate Information Factory, Second Edition.
His expertise in business metadata derives from practical work advising clients on
the use of data warehouses. He created a unique unstructured data solution that
applies to many of the problems presented in this book. He is also a coauthor of
Business Metadata: Capturing Enterprise Knowledge published by Elsevier in
2008.

Sam S. Lightstone (Chapters 1, 4, and 8) is the cofounder and leader of DB2’s
autonomic computing R&D effort and has been with IBM since 1991. His current
research includes automatic physical database design, adaptive self-tuning
resources, automatic administration, benchmarking methodologies, and system
control. Mr. Lightstone is an IBM Master Inventor. He is also one of the coauthors
of Database Modeling and Design and Physical Database Design, both published
by Elsevier in 2006 and 2007, respectively.

Jim Melton (Chapter 10), of Oracle Corporation, is editor of all parts of ISO/IEC
9075 (SQL) and has been active in SCL standardization for two decades. More
recently, he has been active in the W3C’s XML Query Working Group that defined
XQuery, is cochair of that WG, and coedited two of the XQuery specifications.
He is also a coauthor of Querying XML published by Elsevier in 2006.

Tony Morgan (Chapter 3) is a Distinguished Professor in computer science and
vice president of Enterprise Informatics at Neumont University. He has more than
20 years of experience in information system development at various companies,
including EDS and Unisys, and is a recognized thought leader in the area of busi-
ness rules. He is also a coauthor of Information Modeling and Relational Data-
bases published by Elsevier in 2008.

Thomas P. Nadeau (Chapters 1, 4, and 8) is a senior technical staff member of
Ubiquiti Inc. and works in the area of data and text mining. His technical interests
include data warehousing, OLAP, data mining, and machine learning. He is also
one of the coauthors of Database Modeling and Design and Physical Database
Design, both published by Elsevier in 2006 and 2007, respectively.

Bonnie O’Neil (Chapter 9) has more than 20 years of experience in data manage-
ment. She was one of the first data practitioners to pioneer the benefits of business
metadata and develop processes for creating and realizing business metadata initia-

Contributing Authors Xiii

tives. She is also a coauthor of Business Metadata: Capturing Enterprise Knowl-
edge published by Elsevier in 2008.

Elizabeth O’Neil (Chapter 2) is a professor of computer science at the University
of Massachusetts-Boston. She serves as a consultant to Sybase IQ in Concord, MA,
and has worked with a number of corporations, including Microsoft and Bolt,
Beranek, and Newman. From 1980 to 1998, she implemented and managed new
hardware and software labs in the UMass’s computer science department. She is
also the coauthor of Database: Principles, Programming, and Performance,
Second Edition, published by Elsevier in 2001.

Patrick O’Neil (Chapter 2) is a professor of computer science at the
University-Boston. He is responsible for a number of important research results
in transactional performance and disk access algorithms, and he holds patents for
his work in these database areas. He authored the “Database: Principles, Program-
ming, and Performance” and “The Set Query Benchmark” chapters in 7he Bench-
mark Handbook for Database and Transaction Processing Systems (Morgan
Kaufmann, 1993) and is an area editor for Information Systems. O’Neil is also an
active industry consultant who has worked with a number of prominent compa-
nies, including Microsoft, Oracle, Sybase, Informix, Praxis, Price Waterhouse, and
Policy Management Systems Corporation. He is also the coauthor of Database:
Principles, Programming, and Performance, Second Edition, published by
Elsevier in 2001.

Markus Schneider (Chapter 11) is an assistant professor of computer science at
the University of Florida-Gainesville and holds a Ph.D. in computer science from
the University of Hagen in Germany. He is the author of a monograph in the area
of spatial databases, a German textbook on implementation concepts for database
systems, and has published nearly 40 articles on database systems. He is on the
editorial board of Geolnformatica. He is also a coauthor of Moving Objects Data-
base published by Elsevier in 2005.

Graeme Simsion (Chapters 5 and 7) has more than 25 years of experience in
information systems as a DBA, data modeling consultant, business systems designer,
manager, and researcher. He is a regular presenter at industry and academic
forums and is currently a senior fellow with the Department of Information
Systems at the University of Melbourne. He is also the coauthor of Database
Modeling Essentials published by Elsevier in 2004.

Toby J. Teorey (Chapters 1, 4, and 8) is a professor in the electrical engineering
and computer science department at the University of Michigan-Ann Arbor. His
current research focuses on database design and performance of computing
systems. He is also one of the coauthors of Database Modeling and Design

Xiv Contributing Authors

and Physical Database Design, both published by Elsevier in 2006 and 2007,
respectively.

Graham Witt (Chapters 5 and 7) is an independent consultant with more than
30 years of experience in system specification, user-interface design, data model-
ing, relational database design, data quality, and metadata. During this time he has
completed a number of successful projects in these areas for major clients in a
variety of industry sectors, including education, health, telecommunications,
finance, transportation, and government. He has also developed a reputation as
an effective educator in these disciplines and is a frequent presenter at interna-
tional data management conferences. He is also the coauthor of Database Model-
ing Essentials published by Elsevier in 2004.

Database Design

This page intentionally left blank

CHAPTER

Introduction

Database technology has evolved rapidly in the three decades since the rise and
eventual dominance of relational database systems. While many specialized data-
base systems (object-oriented, spatial, multim, etc.) have found substantial user
communities in the science and engineering fields, relational systems remain the
dominant database technology for business enterprises.

Relational database design has evolved from an art to a science that has been
made partially implementable as a set of software design aids. Many of these design
aids have appeared as the database component of computer-aided software engi-
neering (CASE) tools, and many of them offer interactive modeling capability using
a simplified data modeling approach. Logical design—that is, the structure of basic
data relationships and their definition in a particular database system—is largely
the domain of application designers. These designers can work effectively with
tools such as ERwin Data Modeler or Rational Rose with UML, as well as with a
purely manual approach. Physical design, the creation of efficient data storage and
retrieval mechanisms on the computing platform being used, is typically the
domain of the database administrator (DBA). Today’s DBAs have a variety of
vendor-supplied tools available to help them design the most efficient databases.
This book is devoted to the logical design methodologies and tools most popular
for relational databases today. This chapter reviews the basic concepts of database
management and introduce the role of data modeling and database design in the
database life cycle.

1.1 DATA AND DATABASE MANAGEMENT

The basic component of a file in a file system is a data item, which is the smallest
named unit of data that has meaning in the real world—for example, last name,
first name, street address, ID number, or political party. A group of related data
items treated as a single unit by an application is called a record. Examples of
types of records are order, salesperson, customer, product, and department. A file
is a collection of records of a single type. Database systems have built upon and

2 CHAPTER 1 Introduction

expanded these definitions: In a relational database, a data item is called a column
or attribute; a record is called a row or tuple; and a file is called a table.

A database is a more complex object. It is a collection of interrelated stored
data—that is, interrelated collections of many different types of tables—that serves
the needs of multiple users within one or more organizations. The motivations for
using databases rather than files include greater availability to a diverse set of users,
integration of data for easier access to and updating of complex transactions, and
less redundancy of data.

A database management system (DBMS) is a generalized software system for
manipulating databases. A DBMS supports a logical view (schema, subschema);
physical view (access methods, data clustering); data definition language; data
manipulation language; and important utilities, such as transaction management
and concurrency control, data integrity, crash recovery, and security. Relational
database systems, the dominant type of systems for well-formatted business data-
bases, also provide a greater degree of data independence than the earlier hierar-
chicaland network (CODASYL) database management systems. Data independence
is the ability to make changes in either the logical or physical structure of the
database without requiring reprogramming of application programs. It also makes
database conversion and reorganization much easier. Relational DBMSs provide a
much higher degree of data independence than previous systems; they are the
focus of our discussion on data modeling.

1.2 THE DATABASE LIFE CYCLE

The database life cycle incorporates the basic steps involved in designing a global
schema of the logical database, allocating data across a computer network, and
defining local DBMS-specific schemas. Once the design is completed, the life cycle
continues with database implementation and maintenance. This chapter contains
an overview of the database life cycle, as shown in Figure 1.1. The result of
each step of the life cycle is illustrated with a series of diagrams in Figure 1.2.
Each diagram shows a possible form of the output of each step, so the reader
can see the progression of the design process from an idea to actual database
implementation.

I. Requirements analysis. The database requirements are determined by inter-
viewing both the producers and users of data and using the information to
produce a formal requirements specification. That specification includes the
data required for processing, the natural data relationships, and the software
platform for the database implementation. As an example, Figure 1.2 (step D)
shows the concepts of products, customers, salespersons, and orders being
formulated in the mind of the end user during the interview process.

II. Logical design. The global schema, a conceptual data model diagram that
shows all the data and their relationships, is developed using techniques such

1.2 The Database Life Cycle

Y

Information requirements

(Determine I

equirementsj -

D

A

Logical design

[multiple views]

[single view]

(Transform to SQL tables><7

A

Integrate views

Select indexes

Physical design

[special requirements]

[else]

»(Denormalize)

Implementation

(Monitor and detect changing requirements

lelse]

[defunct]

FIGURE 1.1

Y

®

3

The database life cycle.

as entity-relationship (ER) or UML. The data model constructs must ultimately
be transformed into normalized (global) relations, or tables. The global schema
development methodology is the same for either a distributed or centralized
database.
a. Conceptual data modeling. The data requirements are analyzed and

modeled using an ER or UML diagram that includes, for example, semantics

4 CHAPTER 1 Introduction

Step I Requirements Analysis (reality)

o0
o OO . Salespersons

Step ll(a) Conceptual data modeling

Step Il Logical design

N N
customer orders product

Retail
salesperson
view

salesperson

g

Step li(b) View integration

Customer 1 @ N

L customer order
view

. 1 N N
Integration customer order
of retail N
salesperson’s N N
and customer’s 1 1
views served-by salesperson product
FIGURE 1.2

Life cycle results, step-by-step.

for optional relationships, ternary relationships, supertypes, and subtypes
(categories). Processing requirements are typically specified using natural
language expressions or SQL commands, along with the frequency of
occurrence. Figure 1.2 (step II(a)) shows a possible ER model representa-
tion of the product/customer database in the mind of the end user.

b. View integration. Usually, when the design is large and more than one
person is involved in requirements analysis, multiple views of data and
relationships result. To eliminate redundancy and inconsistency from the
model, these views eventually must be “rationalized” (resolving inconsis-
tencies due to variance in taxonomy, context, or perception) and then

1.2 The Database Life Cycle

Step li(c) Transformation of the conceptual model to SQL tables

Customer create table customer
(cust_no integer,
cust-no cust-name cust_name char(15),
cust_addr char(30),
sales_name char(15),
prod_no integer,
Product primary key (cust_no),
- foreign key (sales_name)
prod-no | prod-name | qty-in-stock references salesperson
foreign key (prod_no)
references product);
Salesperson
sales-name | addr | dept job-level |vacation-days
Order Order-product
order-no | sales-name cust-no order-no | prod-no

Step II(d) Normalization of SQL tables
Decomposition of tables and removal of update anomalies

Salesperson Sales-vacations

sales-name | addr | dept job-level job-level |vacation-days

Step Il Physical design

Indexing
Clustering
Partitioning
Materialized views
Denormalization

FIGURE 1.2

5

Continued.

6

CHAPTER 1 Introduction

consolidated into a single global view. View integration requires the use of
ER semantic tools such as identification of synonyms, aggregation, and
generalization. In Figure 1.2 (step II(b)), two possible views of the product/
customer database are merged into a single global view based on common
data for customer and order. View integration is also important for applica-
tion integration.

c. Transformation of the conceptual data model to SQL tables. Based on a
categorization of data modeling constructs and a set of mapping rules, each
relationship and its associated entities are transformed into a set of DBMS-
specific candidate relational tables. Redundant tables are eliminated as part
of this process. In our example, the tables in step II(c) of Figure 1.2 are
the result of transformation of the integrated ER model in step II(b).

d. Normalization of tables. Functional dependencies (FDs) are derived from
the conceptual data model diagram and the semantics of data relationships
in the requirements analysis. They represent the dependencies among data
elements that are unique identifiers (keys) of entities. Additional FDs that
represent the dependencies among key and nonkey attributes within enti-
ties can be derived from the requirements specification. Candidate rela-
tional tables associated with all derived FDs are normalized (i.e., modified
by decomposing or splitting tables into smaller tables) using standard tech-
niques. Finally, redundancies in the data in normalized candidate tables are
analyzed further for possible elimination, with the constraint that data
integrity must be preserved. An example of normalization of the Sales-
person table into the new Salesperson and Sales-vacations tables is
shown in Figure 1.2 from step II(c) to step II(d).

We note here that database tool vendors tend to use the term logical
model to refer to the conceptual data model, and they use the term physi-
cal model to refer to the DBMS-specific implementation model (e.g., SQL
tables). Note also that many conceptual data models are obtained not from
scratch, but from the process of reverse engineering from an existing
DBMS-specific schema (Silberschatz, Korth, & Sudarshan, 2002).

III. Physical design. The physical design step involves the selection of indexes

(access methods), partitioning, and clustering of data. The logical design
methodology in step II simplifies the approach to designing large relational
databases by reducing the number of data dependencies that need to be ana-
lyzed. This is accomplished by inserting conceptual data modeling and integra-
tion steps (II(a) and II(b) of Figure 1.2) into the traditional relational design
approach. The objective of these steps is an accurate representation of reality.
Data integrity is preserved through normalization of the candidate tables
created when the conceptual data model is transformed into a relational
model. The purpose of physical design is to optimize performance as closely
as possible.

As part of the physical design, the global schema can sometimes be refined
in limited ways to reflect processing (query and transaction) requirements if

1.3 Conceptual Data Modeling 7

there are obvious, large gains to be made in efficiency. This is called denor-
malization. It consists of selecting dominant processes on the basis of high
frequency, high volume, or explicit priority; defining simple extensions to
tables that will improve query performance; evaluating total cost for query,
update, and storage; and considering the side effects, such as possible loss of
integrity. This is particularly important for Online Analytical Processing (OLAP)
applications.

IV. Database implementation, monitoring, and modification. Once the
design is completed, the database can be created through implementation of
the formal schema using the data definition language (DDL) of a DBMS. Then
the data manipulation language (DML) can be used to query and update the
database, as well as to set up indexes and establish constraints, such as refer-
ential integrity. The language SQL contains both DDL and DML constructs; for
example, the create table command represents DDL, and the select command
represents DML.

As the database begins operation, monitoring indicates whether perfor-
mance requirements are being met. If they are not being satisfied, modifica-
tions should be made to improve performance. Other modifications may be
necessary when requirements change or when the end users’ expectations
increase with good performance. Thus, the life cycle continues with monitor-
ing, redesign, and modifications.

1.3 CONCEPTUAL DATA MODELING

Conceptual data modeling is the driving component of logical database design.
Let us take a look at how this component came about, and why it is important.
Schema diagrams were formalized in the 1960s by Charles Bachman. He used
rectangles to denote record types and directed arrows from one record type to
another to denote a one-to-many relationship among instances of records of the
two types. The ER approach for conceptual data modeling was first presented in
1976 by Peter Chen. The Chen form of the ER model uses rectangles to specify
entities, which are somewhat analogous to records. It also uses diamond-shaped
objects to represent the various types of relationships, which are differentiated
by numbers or letters placed on the lines connecting the diamonds to the
rectangles.

The Unified Modeling Language (UML) was introduced in 1997 by Grady Booch
and James Rumbaugh and has become a standard graphical language for specifying
and documenting large-scale software systems. The data modeling component of
UML (now UML 2.0) has a great deal of similarity with the ER model, and will be
presented in detail in Chapter 3. We will use both the ER model and UML to
illustrate the data modeling and logical database design examples.

In conceptual data modeling, the overriding emphasis is on simplicity and
readability. The goal of conceptual schema design, where the ER and UML

8 CHAPTER 1 Introduction

approaches are most useful, is to capture real-world data requirements in a simple
and meaningful way that is understandable by both the database designer and the
end user. The end user is the person responsible for accessing the database and
executing queries and updates through the use of DBMS software, and therefore
has a vested interest in the database design process.

The ER model has two levels of definition—one that is quite simple and another
that is considerably more complex. The simple level is the one used by most
current design tools. It is quite helpful to the database designer who must com-
municate with end users about their data requirements. At this level you simply
describe, in diagram form, the entities, attributes, and relationships that occur in
the system to be conceptualized, using semantics that are definable in a data dic-
tionary. Specialized constructs, such as “weak” entities or mandatory/optional
existence notation, are also usually included in the simple form. But very little
else is included, to avoid cluttering up the ER diagram while the designer’s and
end users’ understandings of the model are being reconciled.

An example of a simple form of ER model using the Chen notation is shown
in Figure 1.3. In this example, we want to keep track of videotapes and customers
in a video store. Videos and customers are represented as entities Video and Cus -
tomer, and the relationship rents shows a many-to-many association between
them. Both Video and Customer entities have a few attributes that describe their
characteristics, and the relationship rents has an attribute due date that repre-
sents the date that a particular video rented by a specific customer must be
returned.

From the database practitioner’s standpoint, the simple form of the ER model
(or UML) is the preferred form for both data modeling and end user verification.
It is easy to learn and applicable to a wide variety of design problems that might
be encountered in industry and small businesses. As we will demonstrate, the
simple form can be easily translated into SQL data definitions, and thus it has an
immediate use as an aid for database implementation.

Customer Video

cust-name

FIGURE 1.3
A simple form of ER model using the Chen notation.

1.5 Literature Summary 9

The complex level of ER model definition includes concepts that go well
beyond the simple model. It includes concepts from the semantic models of arti-
ficial intelligence and from competing conceptual data models. Data modeling at
this level helps the database designer capture more semantics without having to
resort to narrative explanations. It is also useful to the database application pro-
grammer, because certain integrity constraints defined in the ER model relate
directly to code—for example, code that checks range limits on data values and
null values. However, such detail in very large data model diagrams actually
detracts from end user understanding. Therefore, the simple level is recommended
as the basic communication tool for database design verification.

1.4 SUMMARY

Knowledge of data modeling and database design techniques is important for
database practitioners and application developers. The database life cycle shows
the steps needed in a methodical approach to designing a database, from logical
design, which is independent of the system environment, to physical design,
which is based on the details of the database management system chosen to
implement the database. Among the variety of data modeling approaches, the ER
and UML data models are arguably the most popular ones in use today, due to
their simplicity and readability. A simple form of these models is used in most
design tools; it is easy to learn and to apply to a variety of industrial and business
applications. It is also a very useful tool for communicating with the end user
about the conceptual model and for verifying the assumptions made in the mod-
eling process. A more complex form, a superset of the simple form, is useful for
the more experienced designer who wants to capture greater semantic detail in
diagram form, while avoiding having to write long and tedious narrative to explain
certain requirements and constraints.

1.5 LITERATURE SUMMARY

Much of the early data modeling work was done by Bachman (1969, 1972), Chen
(1976), Senko et al. (1973), and others. Database design textbooks that adhere to
a significant portion of the relational database life cycle described in this chapter
are Teorey and Fry (1982), Muller (1999), Stephens and Plew (2000), Simsion and
Witt (2001), and Hernandez and Getz (2003). Temporal (time-varying) databases
are defined and discussed in Jensen and Snodgrass (1996) and Snodgrass (2000).
Other well-used approaches for conceptual data modeling include IDEF1X (Bruce,
1992; IDEF1X, 2005) and the data modeling component of the Zachmann Frame-
work (Zachmann, 1987; Zachmann Institute for Framework Advancement, 2005).
Schema evolution during development, a frequently occurring problem, is
addressed in Harriman, Hodgetts, and Leo (2004).

This page intentionally left blank

CHAPTER

Entity—Relationship
Concepts

Until now we have dealt with databases made up of a number of distinct tables,
without concerning ourselves very much with how the tables and their constitu-
ent columns were originally generated. Logical database design, also known
simply as database design or database modeling, studies basic properties and
interrelationships among data items, with the aim of providing faithful representa-
tions of such items in the basic data structures of a database. Databases with dif-
ferent data models have different structures for representing data; in relational
databases the fundamental structures for representing data are what we have been
calling relational tables. We concentrate on relational databases in this chapter
because design for the object-relational model is still in its infancy.

It is the responsibility of the database administrator (DBA) to perform this
logical database design, assigning the related data items of the database to columns
of tables in a manner that preserves desirable properties. The most important test
of logical design is that the tables and attributes faithfully reflect interrelationships
among objects in the real world and that this remains true after all likely database
updates in the future.

The DBA starts by studying some real-world enterprise, such as a wholesale
order business, a company personnel office, or a college registration department,
whose operation needs to be supported on a computerized database system. Often
working with someone who has great expertise about the details of the enterprise,
the DBA comes up with a list of data items and underlying data objects that must
be kept track of (in college student registration, this list might include student_
names, courses, course_sections, class_rooms, class_periods, etc.), together
with a number of rules, or constraints, concerning the interrelatedness of these
data items. Typical rules for student registration are the following:

m Every registered student has a unique student ID number (which we
name sid).

m A student can be registered for at most one course section for a given
class period.

12 CHAPTER 2 Entity—Relationship Concepts

m A classroom can house at most one course section for a given class
period.
= And so on.

From these data items and constraints, the DBA is expected to perform the
logical design of the database. Two common techniques covered in this chapter
are used to perform the task of database design. The first is known as the
entity-relationship approach (or ER approach), and the second is the normaliza-
tion approach. The ER approach attempts to provide a taxonomy of data items to
allow a DBA to intuitively recognize different types of data classification objects
(entities, weak entities, attributes, relationships, etc.) to classify the listed data items
and their relationships. After creating an ER diagram that illustrates these objects, a
relatively straightforward procedure allows the DBA to translate the design into
relational tables and integrity constraints in the database system. The normalization
approach seems entirely different, and perhaps less dependent on intuition: all the
dataitems are listed, and then all interrelatedness rules (of a recognized kind, known
as dependencies) are identified. Design starts with the assumption that all data items
are placed in a single huge table and then proceeds to break down the table into
smaller tables. In the resulting set of tables, joins are needed to retrieve the original
relationships. Both the ER modeling approach and the normalization approach are
best applied by a DBA with a developed intuition about data relationships in the real
world and about the way those relationships are ultimately modeled as relational
tables. The two approaches tend to lead to identical relational table designs and in
fact reinforce one another in providing the needed intuition. We will not attempt
to discriminate between the two in terms of which is more applicable.

One of the major features of logical database design is the emphasis it places
on rules of interrelationships between data items. The naive user often sees a
relational table as made up of a set of descriptive columns, one column much like
another. But this is far from accurate, because there are rules that limit possible
relationships between values in the columns. For example, a customers table,
conceived as a relation, is a subset of the Cartesian product of four domains, CP
= CID X CNAME X CITY X DISCNT. However, in any legal customers table, two rows
with the same customer ID (cid) value cannot exist because cid is a unique
identifier for a customers row. Here is a perfect example of the kind of rule we
wish to take into account in our logical database design. A faithful table represen-
tation enforces such a requirement by specifying that the cid column is a candi-
date key or the primary key for the customers table. A candidate key is a
designated set of columns in a table such that two table rows can never be alike
in all these column values, and where no smaller subset of the key columns has
this property. A primary key is a candidate key that has been chosen by the DBA
for external reference from other tables to unique rows in the table.

A faithful representation in a computerized database table of a candidate key
or a primary key is provided when the table is created with the SQL Create Table
statement (see the syntax given in the declaration in Figure 2.1).

2.1 Introduction to ER Concepts 13

create table customers (cid char(4) not null, ssn integer not null unique,

cname varchar(13), city varchar(20), discnt real, primary key (cid));

FIGURE 2.1

SQL declaration of customers table with primary key cid and candidate key ssn.

The fact that the ssn column is declared as not null unique in a Create Table
statement simply means that in any permitted customers content, two rows
cannot have the same ssn value, and thus it is a candidate key. When cid is
declared as a primary key in the Create Table statement, this is a more far-reaching
statement, making cid the identifier of customers rows that might be used by
other tables. Following either of the table definitions of 2.1, a later SQL Insert or
Update statement that would duplicate a cid value or ssn value on two rows of
the customers table is éllegal and has no effect. Thus, a faithful representation of
the table key is maintained by the database system.

Also a number of other clauses of the Create Table statement serve a comparable
purpose of limiting possible table content, and we refer to these as integrity con-
straints for a table. The interrelationships between columns in relational tables
must be understood at a reasonably deep level in order to properly appreciate some
constraints. Although not all concepts of logical design can be faithfully represented
in the SQL of today, SQL is moving in the direction of modeling more and more such
concepts. In any event, many of the ideas of logical design can be useful as an aid to
systematic database definition even in the absence of direct system support.

In the following sections, we first introduce a number of definitions of the ER
model. The process of normalization is introduced after some ER intuition has
been developed.

2.1 INTRODUCTION TO ER CONCEPTS

The ER approach attempts to define a number of data classification objects; the
database designer is then expected to classify data items by intuitive recognition
as belonging in some known classification. Three fundamental data classification
objects introduced in this section are entities, attributes, and relationships.

2.1.1 Entities, Attributes, and Simple ER Diagrams

We begin with a definition of the concept of entity.

Definition: Entity. An entity is a collection of distinguishable real-world objects
with common properties.

For example, in a college registration database we might have the following
entities: Students, Instructors, Class_rooms, Courses, Course_sections,

14 CHAPTER 2 Entity—Relationship Concepts

Class_periods, and so on. (Note that entity names are capitalized.) Clearly the
set of classrooms in a college fits our definition of an entity: individual classrooms
in the entity Class_rooms are distinguishable (by location—i.e., room number)
and have other common properties such as seating capacity (not common values,
but a common property). Class_periods is a somewhat surprising entity—is
“MWEF from 2:00 to 3:00 PM” a real-world object? However, the test here is that
the registration process deals with these class periods as if they were objects,
assigning class periods in student schedules in the same sense that rooms are
assigned.

To give examples of entities that we have worked with a good deal in the
CAP database, we have Customers, Agents, and Products. (Orders is also
an entity, but there is some possibility for confusion in this, and we discuss it a
bit later.) There is a foreshadowing here of entities being mapped to relational
tables. An entity such as Customers is usually mapped to an actual table, and each
row of the table corresponds to one of the distinguishable real-world objects
that make up the entity, called an entity instance, or sometimes an entity
occurrence.

Note that we do not yet have a name for the properties by which we tell one
entity occurrence from another, the analog to column values to distinguish rows
in a relational table. For now we simply refer to entity instances as being distin-
guishable, in the same sense that we would think of the classrooms in a college
as being distinguishable, without needing to understand the room-labeling scheme
used. In what follows we always write an entity name with an initial capital letter,
but the name becomes all lowercase when the entity is mapped to a relational
table in SQL.

We have chosen an unusual notation by assigning plural entity names:
Students, Instructors, Class_rooms, and so forth. More standard would be
entities named Student, Instructor, and Class_room. Our plural usage is chosen
to emphasize the fact that each represents a set of real-world objects, usually
containing multiple elements, and carries over to our plural table names (also
somewhat unusual), which normally contain multiple rows. Entities are repre-
sented by rectangles in ER diagrams, as you can see by looking at Figure 2.2.

Note that some other authors use the terminology entity set or entity type in
referring to what we call an entity. Then to these authors, an entity is what we
would refer to as an entity instance. We have also noticed occasional ambiguity
within a specific author’s writing, sometimes referring to an entity set and some-
times to an entity; we assume that the object that is represented by a rectangle
in an ER diagram is an entity, a collection of real-world objects, and authors who
identify such rectangles in the same way agree with our definition. It is unfortunate
that such ambiguity exists, but our notation will be consistent in what follows.

In mathematical discussion, for purposes of definition, we usually represent
an entity by a single capital letter, possibly subscripted where several exist (e.g.,
E, E,, E;, etc.). An entity E is made up of a set of real-world objects, which we
represent by subscripted lowercase letters: E = {e,, €,, ..., €,}. As mentioned

2.1 Introduction to ER Concepts 15

=

FIGURE 2.2

Example of ER diagrams with entities and attributes.

above, each distinct representative e; of an entity E is called an entity instance or
an entity occurrence.

Definition: Attribute. An attribute is a data item that describes a property of an
entity or a relationship (defined below).

Recall from the definition of entity that all entity occurrences belonging to a
given entity have common properties. In the ER model, these properties are
known as attributes. As we will see, there is no confusion in terminology between
an attribute in the ER model and an attribute or column name in the relational
model, because when the ER design is translated into relational terms, the two
correspond. A particular instance of an entity is said to have attribute values for
all attributes describing the entity (a null value is possible). The reader should
keep in mind that while we list distinct entity occurrences {e,, €,, .. ., €,} of the
entity E, we can’t actually tell the occurrences apart without reference to attribute
values.

Each entity has an identifier, an attribute, or set of attributes that takes on
unique values for each entity instance; this is the analog of the relational concept
of candidate key. For example, we define an identifier for the Customers entity
to be the customer identifier, cid. There might be more than one identifier for a
given entity, and when the DBA identifies a single key attribute to be the univer-
sal method of identification for entity occurrences throughout the database, this
is called a primary identifier for the entity. Other attributes, such as city for
Customers, are not identifiers but descriptive attributes, known as descriptors.
Most attributes take on simple values from a domain, as we have seen in the rela-
tional model, but a composite attribute is a group of simple attributes that
together describe a property. For example, the attribute student_names for the
Students entity might be composed of the simple attributes Tname, fname, and
midinitial. Note that an identifier for an entity is allowed to contain an attribute
of composite type. Finally, we define a multivalued attribute to be one that can
take on multiple values for a single entity instance. For example, the Employees
entity might have an attached multivalued attribute named hobbies, which takes

16 CHAPTER 2 Entity—Relationship Concepts

on multiple values provided by the employee asked to list any hobbies or interests.
One employee might have several hobbies, so this is a multivalued attribute.

As mentioned earlier, ER diagrams represent entities as rectangles. Figure 2.2
shows two simple ER diagrams. Simple, single-valued attributes are represented
by ovals, attached by a straight line to the entity. A composite attribute is also in
an oval attached directly to the entity, while the simple attributes that make up
the composite are attached to the composite oval. A multivalued attribute is
attached by a double line, rather than a single line, to the entity it describes. The
primary identifier attribute is underlined.

2.1.2 Transforming Entities and Attributes to Relations

Our ultimate aim is to transform the ER design into a set of definitions for relational
tables in a computerized database, which we do through a set of transformation
rules.

Transformation Rule 1. Each entity in an ER diagram is mapped to a single table
in a relational database; the table is named after the entity. The table’s columns
represent all the single-valued simple attributes attached to the entity (possibly
through a composite attribute, although a composite attribute itself does not
become a column of the table). An identifier for an entity is mapped to a can-
didate key for the table, as illustrated in Example 2.1, and a primary identifier
is mapped to a primary key. Note that the primary identifier of an entity might
be a composite attribute, which therefore translates to a set of attributes in the
relational table mapping. Entity occurrences are mapped to the table’s rows. m

EXAMPLE 2.1

Here are the two tables, with one example row filled in, mapped from the Students and
Employees entities in the ER diagrams of Figure 2.2. The primary key is underlined.

students

id | Iname | fname | Midinitial

1134 | Smith | John L

employees

eid | staddress | city state | zipcode

197 | 7 Beacon St | Boston | MA 02122

2.1 Introduction to ER Concepts 17

Transformation Rule 2. Given an entity E with primary identifier p, a multivalued
attributed attached to E in an ER diagram is mapped to a table of its own; the
table is named after the plural multivalued attribute. The columns of this new
table are named after p and a (either p or a might consist of several attributes),
and rows of the table correspond to (p, a) value pairs, representing all pairings
of attribute values of a associated with entity occurrences in E. The primary
key attribute for this table is the set of columns in p and a. [

EXAMPLE 2.2

Here is an example database of two tables reflecting the ER diagram for the Employees
entity and the attached multivalued attribute, hobbies, of Figure 2.2.

employees

eid | staddress city state | zipcode

197 | 7 Beacon St Boston MA 02102

221 | 19 Brighton St | Boston MA 02103

303 | 153 Mass Ave | Cambridge | MA 02123

hobbies

eid | hobby

197 | chess

197 | painting

197 | science fiction

221 | reading

303 | bicycling

303 | mysteries

Definition: Relationship. Given an ordered list of m entities, E;, E,, ..., E,,
(where the same entity may occur more than once in the list), a relationship R
defines a rule of correspondence between the instances of these entities. Specifi-
cally, R represents a set of m-tuples, a subset of the Cartesian product of entity
instances E; x E, x ... X E,.

18 CHAPTER 2 Entity—Relationship Concepts

2.1.3 Relationships among Entities

A particular occurrence of a relationship, corresponding to a tuple of entity occur-
rences (e, €, ..., €,), where ¢; is an instance of E; in the ordered list of the
definition, is called a relationship occurrence or relationship instance. The
number of entities 72 in the defining list is called the degree of the relationship.
A relationship between two entities is known as a binary relationship. For
example, we define teaches to be a binary relationship between Instructors
and Course_sections. We indicate that a relationship instance exists by saying
that a particular instructor teaches a specific course section. Another example
of a relationship is works_on, defined to relate the two entities Employees and
Projects in a large company: Employees works_on Projects

A relationship can also have attached attributes. The relationship works_on
might have the attribute percent, indicating the percent of work time during
each week that the employee is assigned to work on each specific project (see
Figure 2.3). Note that this percent attribute attached to the works_on relationship
would be multivalued if attached to either entity Employees or Projects; the
percent attribute is only meaningful in describing a specific employee-project
pair, and it is therefore a natural attribute of the binary relationship works_on.

A binary relationship that relates an entity to itself (a subset of E; X E,) is called
a ring, or sometimes a recursive relationship. For example, the Employees entity
is related to itself through the relationship manages, where we say that one
employee manages another. Relationships are represented by diamonds in an ER
diagram, with connecting lines to the entities they relate. In the case of a ring,
the connecting lines are often labeled with the names of the roles played by the
entity instances involved. In Figure 2.3 the two named roles are manager_of and
reports_to.

Note that we often leave out attributes in an ER diagram to concentrate on
relationships between entities without losing our concentration in excessive

detail.
<>
manager_of
Employees @ Projects | | Employees |

| reports_to

Cpercend) Gereerd
FIGURE 2.3

Examples of ER diagrams with relationships.

Course_sections|

manages

2.1 Introduction to ER Concepts 19

EXAMPLE 2.3

The orders Table in CAP Does Not Represent a Relationship

Per the relationship definition, the orders table in the CAP database is not a relationship
between Customers, Agents, and Products. This is because (cid, aid, pid) triplesin
the rows of the orders table do not identify a subset of the Cartesian product, Customers
X Agents X Products, as required. Instead, some triples of (cid, aid, pid) values occur
more than once, and no doubt clearly the designer’s intention, since the same customer
can order the same product from the same agent on two different occasions. Instead of a
relationship, the orders table represents an entity in its own right, with identifier attribute
ordno. This makes a good deal of sense, since we might commonly have reason to look up
a row in the orders table for reasons unconnected to relating entity occurrences in Cus -
tomers, Agents, and Products. For example, on request, we might need to check that a
past order has been properly billed and shipped. Thus, the entity Orders occurrences are
dealt with individually as objects in their own right.

Although the orders table doesn’t correspond directly to a relationship, it is
clear that there are any number of possible relationships we could define in terms
of the orders table between the Customers, Agents, and Products entities.

EXAMPLE 2.4

Assume that we are performing a study in which we commonly need to know total sales
aggregated (summed) from the orders table by customers, agents, and products for the
current year. We might do this, for example, to study sales volume relationships between
agents and customers, as well as between customers and products, and how those
relationships are affected by geographic factors (city values). However, as we begin to plan
this application, we decide that it is too inefficient to always perform sums on the orders
table to access the basic measures of our study, so we decide to create a new table called
yearlies. We define this new table with the following SQL commands:

create table yearlies (cid char(4). aid char(3). pid char(3).
totgty integer, totdoll float);

insert into yearlies
select cid, aid, pid, sum(qgty), sum(dollars) from orders
group by cid, aid, pid;

Once we have the new yearlies table, the totals can be kept up to date by application
logic: As each new order is entered, the relevant yearlies row should be updated as well.
Now the yearlies table is a relationship, since the (cid, aid, pid) triples in the rows
of the table identify a subset of the Cartesian product, Customers x Agents X Products;
that is to say, there are now no repeated triples in the yearlies table. Since these triples
are unique, (cid, aid, pid) forms the primary key for the yearlies table.

A relationship on more than two entities is called an n-ary relationship. The
yearlies relationship on three distinct entities is also known as a ternary rela-
tionship. An n-ary relationship with # > 2 can often be replaced by a number

20 CHAPTER 2 Entity—Relationship Concepts

employees

eid ename mgrid

€001 | Jacqueline | null
e002 | Frances e001

e003 | Jose e001
€004 | Deborah €001
€005 | Craig e002
€006 | Mark €002
e007 | Suzanne e003
e008 | Frank €003
e009 | Victor e004

€010 | Chumley e007

FIGURE 2.4
A table representing an entity, Employees, and a ring (recursive relationship), manages.

of distinct binary relationships in an ER diagram, and this is a good idea if the
replacement expresses true binary relationships for the system. Binary relation-
ships are the ones that are familiar to most practitioners and are sufficient for
almost all applications. However, in some cases, a ternary relationship cannot be
decomposed into expressive binary relationships. The yearlies relationship of
Example 2.4 expresses customer-agent-product ordering patterns over a year, a
ternary relationship that cannot be decomposed (exactly) into binary relation-
ships. In converting an ER design to a relational one, a relationship is sometimes
translated into a relational table, and sometimes not. (We will have more to say
about this in the next section.) For example, the yearlies relationship (a ternary
relationship) is translated into a relational table named yearlies. However, the
manages relationship between Employees and Employees, shown in Figure 2.3,
does not translate into a table of its own. Instead, this relationship is usually trans-
lated into a column in employees identifying the mgrid to whom the employee
reports. This table is shown again in Figure 2.4.

Note the surprising fact that mgrid is not considered an attribute of the
EmpTloyees entity, although it exists as a column in the empTloyees table. The mgrid
column is what is known as a foreign key in the relational model, and it corre-
sponds to the actual manages relationship in the ER diagram of Figure 2.3. We
deal more with this in the next section, after we have had an opportunity
to consider some of the properties of relationships. To summarize this section,
Figure 2.5(a) and (b) lists the concepts introduced up to now.

2.2 FURTHER DETAILS OF ER MODELING

Now that we’ve defined some fundamental means of classification, let’s discuss
properties of relationships in the ER method of database design.

2.2 Further Details of ER Modeling 21

Classification Description Example
Entit A collection of distinguishable real-world Customers, Agents,
4 objects with common properties Products, Employees
Attribute A d.ata item thgt des-crlbes a property of an See below
entity or relationship
Identifier (set Uniquely identifies an entity or customer identifier: cid,
of attributes) relationship occurrence employee identifier: eid
Descriptor Non.—key gttribute, describing an entity or | city (for Customers), capacity
relationship (for Class_rooms)
it A f simple attributes that togeth .
Corppom e group of simple a ribu esthattogether | @ iress (see Figure 2.2)
attribute describe a property of an object
Mu%ti—valued An entity attr‘ibute thgt tzflkes on multiple hobbies (see Figure 2.2)
attribute values for a single entity instance
(a)
Classification Description Example
. . Named set of m-tuples, identifies subset
Relationship .
of the Cartesian product E; xE; x...XE,,
Binary A relationship on two distinct entities teaches, works_on (see Figure
relationship 2.3)
Ring, recursive | A relationship relating an entity to itself manages (see Figure 2.4)
relationship
Ternary A relationship on three distinct entities yearlies (see Example 2.4)
relationship
(b)
FIGURE 2.5

Basic ER concepts: (a) entities and attributes, and (b) relationships.

2.2.1 Cardinality of Entity Participation in a Relationship

Figure 2.6 illustrates the concepts of minimum and maximum cardinality with
which an entity participates in a relationship. Figure 2.6(a), (b), and (¢) represent
entities E and F on the left and right, respectively, by two sets; elements of the
two sets are connected by a line exactly when a relationship R relates the two
entity occurrences represented. Thus, the connecting lines themselves represent
instances of the relation R. Note that the diagrams of Figure 2.6 are not what we
refer to as ER diagrams.

The minimum cardinality with which an entity takes part in a relationship is
the minimum number of lines that the DBA allows to be connected to each entity
instance. Note that the diagrams of Figure 2.6 would normally only give examples
of relationships at a given moment, and the line connections might change, just

22 CHAPTER 2 Entity—Relationship Concepts

E R F E R F E R F
(a) One-to-one relationship (b) Many-to-one relationship (¢) Many-to-many relationship
min-card(E, R) =0 min-card(E, R) =0 min-card(E, R) =0
max-card(E, R) =1 max-card(E, R) =N max-card(E, R) = N
min-card(F R) =0 min-card(F R) =1 min-card(FE R) =0
max-card(F R) = 1 max-card(F, R) = 1 max-card(F, R) =N

F is the "many" side here.

FIGURE 2.6
Examples of relationships R between two entities E and F.

as the row content of a table can change, until some entity instances have differ-
ent numbers of lines connected. On the other hand, the minimum and maximum
cardinality properties of an entity are meant to represent rules laid down by the
DBA for all time, rules that cannot be broken by normal database changes affect-
ing the relationship. In Figure 2.6(a), the DBA clearly permits both entity sets E
and F to take part in relationship R with minimum cardinality O; that is to say, the
DBA does not require a connecting line for each entity instance, since some ele-
ments of both sets have no lines connected to them. We symbolize this by writing
min-card(E, R) = 0 and min-card(F, R) = 0. The maximum cardinality with which
E and F take part in R is not obvious from Figure 2.6(a), however. No entity
instance has more than one line connected to it, but from an example as of a given
moment we have no guarantee that the line connections won’t change in the
future so that some entity instances will have more than one line connected.
However, we will assume for purposes of simple explanation that the diagrams
of this figure are meant to represent exactly the cardinalities intended by the DBA.
Thus, since no entity instance of E and F in Figure 2.6(a) has more than one inci-
dent connecting line, we record this fact using the notation max-card(E, R) = 1
and max-card(F, R) = 1.

In Figure 2.6(b), assuming once again that this set of lines is representative of
the designer’s intention, we can write min-card(E, R) = 0, since not every element
of E is connected to a line, but min-card(F, R) = 1, since at least one line is con-
nected to every element of F, and our assumption implies that this won’t change.
We also write max-card(E, R) = N, where N means “more than one”; this means
that the designer does not intend to limit to one the number of lines connected
to each entity instance of E. However, we write max-card(F, R) = 1, since every
element of F has exactly one line leaving it. Note that the two meaningful values
for min-card are 0 and 1 (where O is not really a limitation at all, but 1 stands for

2.2 Further Details of ER Modeling 23

the constraint “at least one”), and the two meaningful values for max-card are 1
and N (N is not really a limitation, but 1 represents the constraint “no more than
one”). We don’t try to differentiate numbers other than 0, 1, and many. Since
max-card(E, R) = N, there are multiple entity instances of F connected to one of
E by the relationship. For this reason, F is called the “many” side and E is called
the “one” side in this many-to-one relationship.

Note particularly that the “many” side in a many-to-one relationship is the side
that has max-card value 1! In Figure 2.6(b), the entity F corresponds to the
“many” side of the many-to-one relationship, even though it has min-card(F, R) =
max-card(F, R) = 1. As just explained, the “one” side of a many-to-one relationship
is the side where some entity instances can participate in multiple relationship
instances, “shooting out multiple lines” to connect to many entity instances on
the “many” side! Phrased this way the terminology makes sense, but this seems
to be an easy idea to forget, and forgetting it can lead to serious confusion.

In Figure 2.6(c) we have min-card(E, R) = 0, min-card(F, R) = 0, max-card(E,
R) = N, and max-card(F, R) = N. The meaning of the terms used for the three
diagrams—one-to-one relationship, many-to-one relationship, and many-to-many
relationship—are defined later.

EXAMPLE 2.5

In the relationship teaches of Figure 2.3, Instructors teaches Course_sections, the
DBA would probably want to make a rule that each course section needs to have at least
one instructor assigned to teach it by writing min-card(Course_sections, teaches) = 1.
However, we need to be careful in making such a rule, since it means that we will not be
able to create a new course section, enter it in the database, assign it a room and a class
period, and allow students to register for it, while putting off the decision of who is going to
teach it. The DBA might also make the rule that at most one instructor can be assigned to
teach a course section by writing max-card(Course_sections, teaches) = 1. On the other
hand, if more than one instructor were allowed to share the teaching of a course section,
the DBA would write max-card(Course_sections, teaches)=N. This is clearly a significant
difference. We probably don’'t want to make the rule that every instructor teaches some
course section (written as min-card(Instructors, teaches) = 1), because an instructor
might be on leave, so we settle on min-card(Instructors, teaches) = 0. And in most
universities the course load per instructor is greater than one in any given term, so we would
set max-card(Instructors, teaches) = N.

Definition. When an entity E takes part in a relationship R with min-card(E, R) =
X (x is either 0 or 1) and max-card(E, R) =y (y is either 1 or N), then in the ER
diagram the connecting line between E and R can be labeled with the ordered
cardinality pair (x, y). We use a new notation to represent this minimum-maximum
pair (x, y): card(E, R) = (X, y).

According to the above definition and the assignments of Example 2.5, the edge
connecting the entity Course_sections to the relationship teaches should be

24 CHAPTER 2 Entity—Relationship Concepts

(0, N) (1,1
Course_sections |
(0, N)

manager_of
Employees

Projects | | Employees | manages

| reports_to

@ 0,1

FIGURE 2.7
An ER diagram with labels (x, y) on ER connections.

labeled with the pair (1, 1). In Figure 2.7 we repeat the ER diagrams of Figure 2.3,
with the addition of ordered pairs (X, y) labeling line connections, to show the
minimum and maximum cardinalities for all ER pairs. The cardinality pair for
the Instructors teaches Course_sections diagram follows the discussion of
Example 2.5, and other diagrams are filled in with reasonable pair values. We make
a number of decisions to arrive at the following rules: Every employee must work
on at least one project (but may work on many); a project might have no employees
assigned during some periods (waiting for staffing), and of course some projects
will have a large number of employees working on them; an employee who acts in
the manager_of role (see discussion below) may be managing no other employees
at a given time and still be called a manager; and an employee reports to at most
one manager, but may report to none (this possibility exists because there must
always be a highest-level employee in a hierarchy who has no manager).

In the Employees-manages diagram shown in Figure 2.7, the normal notation,
card(Employees, manages), would be ambiguous. We say that there are two dif-
ferent roles played by the Employees entity in the relationship: the manager_of
role and the reports_to role. Each relationship instance in manages connects a
managed employee (Employees instance in the reports_to role) to a manager
employee (Employees instance in the manager_of role). We use the cardinality
notation with entities having parenthesized roles to remove ambiguity.

card(Employees(reports_to). manages) = (0. 1)
and
card(Employees(manager_of). manages) = (0. N)

And from these cardinalities we see that an employee who acts in the manager_of
role may be managing no other employees at a given time and still be called a
manager; and an employee reports to at most one manager, but may report to
none (because of the highest-level employee in a hierarchy who has no manager—
if it weren’t for that single person, we could give the label (1, 1) to the reports_
to branch of the Employees-manages edge).

2.2 Further Details of ER Modeling 25

Definition. When an entity E takes part in a relationship R with max-card(E, R) =
1, then E is said to have single-valued participation in the relationship R. If
max-card(E, R) = N, then E is said to be multivalued in this relationship. A binary
relationship R between entities E and F is said to be many-to-many, or N-N, if
both entities E and F are multi-valued in the relationship. If both E and F are
single-valued, the relationship is said to be one-to-one, or 1-1. If E is single-valued
and F is multivalued, or the reverse, the relationship is said to be many-to-one,
or N-1. (We do not normally speak of a 1-N relationship as distinct from an N-1
relationship.)

2.2.2 One-to-One, Many-to-Many, and Many-to-One Relationships

Recall that the “many” side in a many-to-one relationship is the side that has
single-valued participation. This might be better understood by considering the
relationship in Figure 2.7, Instructors teaches Course_sections, where card
(Course_sections, teaches) =(1, 1), and the Course_sections entity represents
the “many” side of the relationship. This is because one instructor teaches “many”
course sections, while the reverse is not true.

In the last definition, we see that the values max-card(E, R) and max-card(F,
R) determine whether a binary relationship is many-to-many, many-to-one, or
one-to-one. On the other hand, the values min-card(E, R) and min-card(F, R)
are not mentioned, and they are said to be independent of these characterizations.
In particular, the fact that min-card(F, R) = 1 in Figure 2.6(b) is independent of
the fact that that figure represents a many-to-one relationship. If there were addi-
tional elements in entity F that were not connected by any lines to elements in E
(but all current connections remained the same), this would mean that min-card(F,
R) = 0, but the change would not affect the fact that R is a many-to-one relation-
ship. We would still see one element of E (the second from the top) related
to two elements of F; in this case, the entity F is the “many” side of the
relationship.

Although min-card(E, R) and min-card(F, R) have no bearing on whether a
binary relationship R is many-to-many, many-to-one, or one-to-one, a different
characterization of entity participation in a relationship is determined by these
quantities.

Definition. When an entity E that participates in a relationship R has min-card(E,
R) =1, E is said to have mandatory participation in R, or is simply called mandatory
in R. An entity E that is not mandatory in R is said to be optional, or to have optional
participation.

2.2.3 Transforming Binary Relationships to Relations

We are now prepared to give the transformation rule for a binary many-to-many
relationship.

26 CHAPTER 2 Entity—Relationship Concepts

Transformation Rule 3. N-N Relationships: When two entities E and F take part
in a many-to-many binary relationship R, the relationship is mapped to a rep-
resentative table T in the related relational database design. The table contains
columns for all attributes in the primary keys of both tables transformed from
entities E and F, and this set of columns forms the primary key for the table T.
Table T also contains columns for all attributes attached to the relationship.
Relationship occurrences are represented by rows of the table, with the related
entity instances uniquely identified by their primary key values as rows. [

EXAMPLE 2.6

In Figure 2.7, the relationship works_on is many-to-many between the entities Employees
and Projects. The relational design in Figure 2.8 follows Transformation Rule 1 to provide
a table for the entity Employees (as specified in Example 2.2) and a table for the entity
Projects; it also follows Transformation Rule 3, to provide a table for the relationship
works_on.

We generally assume that the eid column in the employees table and prid column for
the projects table cannot take on null values, since they are the primary keys for their
tables and must differentiate all rows by unique values. Similarly, the (eid, prid) pair of
columns in the works_on table cannot take on null values in either component, since each

employees works_on
eid straddr city state zipcode eid prid percent
197 7 Beacon St Boston MA 02102 197 pll 50
221 19 Brighton St | Boston MA 02103 197 pl3 25
303 153 Mass Ave | Cambridge | MA 02123 197 p21 25
221 p21 100
303 pl3 40
projects
303 p21 60
prid | proj_name due_date
pll Phoenix 3/31/199
pl3 Excelsior 9/31/199
p21 Kzgﬁ; 6/30/00
FIGURE 2.8

Relational design for Employees works_on Projects of Figure 2.7.

2.2 Further Details of ER Modeling 27

row must uniquely designate the employee—project pair related. Note that no primary key
column of a relational table can take on null values. Note that although we refer to this as
the entity integrity rule, it applies as well to tables arising out of the relationships in the ER
model. Note also that the SQL Create Table command provides syntax to impose an integ-
rity constraint on a table that guarantees this rule will not be broken, that no nulls will be
assigned. For example, the SQL statement

create table projects (prid char(3) not null .. .);

guarantees that the prid column of the projects table cannot take on null values as a result
of later Insert, Delete, or Update statements. There are other constraints as well that have
this effect.

Transformation Rule 4. N-1 Relationships: When two entities E and F take part
in a many-to-one binary relationship R, the relationship will not be mapped to
a table of its own in a relational database design. Instead, if we assume that
the entity F has max-card(F, R) = 1 and thus represents the “many” side of the
relationship, the relational table T transformed from the entity F should include
columns constituting the primary key for the table transformed from the entity
E; this is known as a foreign key in T. Since max-card(F, R) = 1, each row of
T is related by a foreign key value to at most one instance of the entity E. If F
has mandatory participation in R, then it must be related to exactly one
instance of E, and this means that the foreign key in T cannot take on null
values. If F has optional participation in R, then each row of T that is not related
can have null values in all columns of the foreign key. [

EXAMPLE 2.7

Figure 2.9 shows a relational transformation of the Instructors teaches Course_
sections ER diagram of Figure 2.7. Recall that we made the rule that one instructor can
teach multiple course sections, but each course section can have only one instructor. The
insid column in the Course_sections table is a foreign key, relating a course_sections
instance (row) to a unique instructors instance (row).

The Create Table command in SQL can require a column not to take on null values;
therefore, it is possible to guarantee a faithful representation for mandatory participation by
the “many” side entity in a many-to-one relationship. Here we can create the course_
sections table so no nulls are allowed in the insid column. What we mean by “faithful”
is that it becomes impossible for a user to corrupt the data by a thoughtless update, because
SQL does not allow a course_sections row with a null value for insid. SQL can also
impose a constraint that the foreign key insid value in a row of the course_sections table
actually exists as a value in the insid primary key column in the instructors table. This
constraint is known as referential integrity.

Unfortunately, it is not possible in standard SQL to guarantee a mandatory
participation by the “one” side of a many-to-one relationship, or by either side of
a many-to-many relationship. Thus, in Example 2.7 there would be no way to

28 CHAPTER 2 Entity—Relationship Concepts

instructors course_sections

insid | Tname office_no | ext secid | insid | course | room period

309 O'Neil | S-3-223 78543 120 309 CS240 | M-1-213 | MW6

123 Bergen | S-3-547 78413 940 309 CS630 | M-1-214 | MW7:30

113 Smith S-3-115 78455 453 123 CS632 | M-2-614 | TTHé6
FIGURE 2.9

Relational design for Instructors teaches Course_sections of Figure 2.7.

provide a faithful representation in an SQL table definition that would guarantee
that every instructor teaches at least one course.

Note that there are differences of opinion among texts on some of these ER
transformation rules for relationships. Teorey (1994) gives the equivalent to Trans-
formation Rule 4 for N-1 relationships, but Batini et al. (1992) provides an alternate
transformation where the relationship is mapped onto a table of its own if the
entity at the “many” side of the relationship has an optional participation. The
reason for this is to avoid possibly heavy use of null values in the foreign key
(insidin course_sections in Example 2.7); but since there seems to be nothing
wrong with using null values, we follow the transformation of Teorey (1994).

Transformation Rule 5. 1-1 Relationships, Optional Participation: Given two
entities E and F that take part in a one-to-one binary relationship R, where
participation is optional on either side, we wish to translate this situation into
a relational design. To do this, we create a table S to represent the entity E,
following the prescription of Transformation Rule 1, and similarly a table T to
represent the entity F. Then we adjoin to the table T a set of columns (as a
foreign key) constituting the primary key for table S. If we wish, we may also
adjoin to table S a foreign key set of columns referring to the primary key of
table T. For any relationship instance in R, a unique entity instance in E is
related to a unique instance in F—in the corresponding rows of S and T, the
foreign key column values filled in to reference the row in the other table
arising from the instances related by R.]

Transformation Rule 6. 1-1 Relationships, Mandatory Participation on Both
Sides: In the case of a one-to-one relationship with mandatory participation
on both sides, it is most appropriate to combine the tables for the two entities
into one, and in this way avoid any foreign keys. (]

We do not present transformation rules for all possible n-ary relationships with
n > 2. Usually such an n-ary relationship is transformed into a table of its own,
but if all but one of the entities of the relationship participate with max-card = 1,
then it is possible to represent the relationship with 7 — 1 foreign keys in the one
table that participates with greater cardinality.

2.3 Additional ER Concepts 29

2.3 ADDITIONAL ER CONCEPTS

In this section we introduce a number of additional concepts useful for ER
modeling.

2.3.1 Cardinality of Attributes

To begin with, we note that the min-card/max-card notation can be used to
describe the cardinality of attributes attached to entities.

Definition. Given an entity E and an attached attribute A, we write min-card(A, E)
= 0 to indicate that the attribute A is optional, and min-card(A, E) = 1 to indicate
that the attribute A is mandatory. An attribute that is mandatory should correspond
to a column declared in the table representing the entity E with no nulls allowed.
We write max-card(A, E) = 1 to indicate that the attribute is single valued, and max-
card(A, E) = N to indicate that the attribute is multivalued. An attribute A is said
to have card(A, E) = (x, y) when min-card(A, E) = x and max-card(A, E) =y. The
(X, y) pair can be used to label an attribute—entity connection in an ER diagram
to indicate the cardinality of the attribute.

Attributes that have unlabeled connectors in an ER diagram can be assumed
to have cardinality (0, 1) if they are descriptor attributes, and cardinality (1, 1) if
they are identifier attributes. Figure 2.10 recapitulates Figure 2.2 with labeled
attribute-entity connectors. (Note that these are not the default cardinalities only
because of lack of notation.)

In Figure 2.10 we note that the attribute midinitial is optional (some people
don’t have middle names). The composite attribute student_names is mandatory
for Students, but emp_address is optional for Employees. However, given that
emp_address exists, all four simple attributes making up the address are manda-
tory. Both sid and eid have cardinality (1, 1); this is always the case for entity
identifiers. The multivalued hobbies attribute has max-card N, as we can also tell

(1,1 =N

student_names

FIGURE 2.10

ER diagrams with labeled attribute—entity connectors.

30 CHAPTER 2 Entity—Relationship Concepts

from the fact that it is connected to its entity by a double line. The fact that min-
card(hobbies, Employees) = 1 is somewhat surprising and indicates that the
employee must name at least one hobby for inclusion in the database.

Definition: Weak Entity. A weak entity is an entity whose occurrences are
dependent for their existence, through a relationship R, on the occurrence of
another (strong) entity.

2.3.2 Weak Entities

As an example, we have been assuming in our CAP design that an order specifies
a customer, agent, product, quantity, and dollar cost. A common design variant
that allows multiple products to be ordered at once will create an orders table
that relates to customers and agents rows, as well as a 1ine_items table contain-
ing individual product purchases; a number of rows in the 1ine_items table relate
to one master orders occurrence. The design of this in the ER model is given in
Figure 2.11.

As we see, the entity Orders is optional in its relationship to Line_items, since
each order must start without any line items. Line_items is mandatory in the
relationship, because a line-item order for a product cannot exist without a master
order containing it to specify the customer and agent for the order. If the Orders
occurrence goes away (the customer cancels it), all occurrences of the weak entity
Line_items will likewise disappear. A dead giveaway for a weak entity is the fact
that the primary identifier for Line_items (1ineno) is only meaningful within
some order. In fact, what this implies is that the primary identifier for the weak
entity Line_items must include the attributes in the primary identifier for the

Customers

FIGURE 2.11
A weak entity, Line_items, dependent on the entity Orders.

2.3 Additional ER Concepts 31

Orders entity. Attributes such as Line_items are known as external identifier
attributes.

When the Line_items weak entity is mapped to a relational table 1ine_items,
an ordno column is included by Transformation Rule 4 to represent the N-1
has_item relationship; thus, the primary key for the 1ine_items table is con-
structed from the external attribute ordno and the weak entity identifier 1ineno.
Note that it is also sometimes difficult to distinguish between a weak entity and
a multivalued attribute. For example, hobbies in Example 2.2 could be identified
as a weak entity Hobbies, with an identifier hobby_name. However, Figure 2.11
obviously implies Line_items is a weak entity rather than a multivalued attribute,
since Line_items is separately related to another entity, Products.

2.3.3 Generalization Hierarchies

Finally, we introduce the concept of a generalization bierarchy or generaliza-
tion relationship. The idea is that several entities with common attributes can be
generalized into a higher-level supertype entity, or, alternatively, a general entity
can be decomposed into lower-level subtype entities. The purpose is to attach
attributes at the proper level and thus avoid having attributes of a common entity
that require a large number of null values in each entity instance. For example,
assume that we distinguish between Managers and Non_managers as subtype
entities of the supertype Employees (see Figure 2.12). Then attributes such
as expenseno (for expense reports) can be attached only to the Managers
entity, while nonmanager attributes such as union status can be attached to
Non_managers. Consultants might form another entity type sharing many proper-
ties with Employees, and we could create a new supertype entity named Persons
to contain them both. An ER diagram showing a generalization hierarchy normally
has arrows (unnamed) directed from the subtype to the supertype entities.

The arrow relationship between the subtype entity and the supertype entity
is often referred to as an is-a relationship, since a consultant is a person, a
manager is an employee, and so forth. Object-relational database systems express

[|

Consu]tants| | Employees
b

expenseno Managers | | Non_managers

FIGURE 2.12
A generalization hierarchy with examples of attributes attached.

32 CHAPTER 2 Entity—Relationship Concepts

these concepts using type inbheritance, where objects (rows) of a given subtype
contain specific attributes but inberit all attributes of their supertype. In particu-
lar, INFORMIX and SQL-99 support inheritance of object types.

The relational model provides no support for the concept of generalization
hierarchy, so it is necessary to reconfigure such a design element into simpler
concepts. This can happen either prior to transformation into relational tables or
as part of the transformation. Here we give an idea of how to perform such a
reconfiguration while remaining in the ER model, before transformation into
a relational representation. We consider one level of generalization hierarchy at a
time and give two alternatives.

1. We can collapse a one-level generalization hierarchy of subtype and supertype
entities into a single entity by adding all attributes of the subtype entities to
the supertype entity. An additional attribute must be added to this single entity,
which will discriminate among the various types. As an example, the Employ -
ees entity in Figure 2.12 could be augmented to represent managers and
nonmanagers as well, by affixing the attributes union_no, expenseno,
and emptype to the Employee entity. Now the union_no attribute will be null
when emptype has value “Manager,” and similarly expenseno will be null when
emptype is “Nonmanager.” The emptype attribute might also designate the
supertype case, an important alternative when some entity instances in the
supertype fall in none of the named subtypes.

2. We can retain the supertype entity and all subtype entities as full entities and
create explicit named relationships to represent the is-a relationships.

Alternative 2 is particularly useful when the various subtypes and supertype are
quite different in attributes and are handled differently by application logic.

We do not investigate all concepts of the ER model in full depth here. See the
references at the end of this chapter for a list of texts devoted to complete cover-
age of the ER model and logical database design.

2.4 CASE STUDY

Let us try to perform an ER design from the beginning, ending up with a set of
relational tables. Consider a simple airline reservation database handling (only)
outgoing flights from one airline terminal. We need to keep track of passengers,
flights, departure gates, and seat assignments. We could get almost arbitrarily
complex in a real design, since a “flight” actually brings together a flight crew and
an airplane, serviced by a ground crew, slotted into a regularly scheduled depar-
ture time with an assigned flight number on a specific date. But for simplicity, we
will assume that we can represent flights with an entity F1ights, having primary
identifier f11ightno (unique identifier values, not repeated on successive days) and
descriptive attribute depart_time (actually made up of date and time); other
details will be hidden from us. Passengers are represented by another entity,

2.4 Case Study 33

Passengers, with primary identifier attribute ticketno; a passenger has no other
attribute that we care about. We also need to keep track of seats for each flight.
We assume that each seat is an entity instance in its own right, an entity Seats,
identified by a seat number, seatno, valid only for a specific flight (different flights
might have different airplane seat layouts, and therefore different sets of seat
numbers). We see therefore that seat assignment is a relationship between
Passengers and Seats, which we name seat_assign.

Now think about this specification for a moment. The Passengers entity is
easy to picture, and so is the Flights entity. The depart_time attribute for
Flights is composite, consisting of simple attributes dtime and ddate. We can
add another entity Gates, with primary identifier gateno. We have already defined
a Seats entity, but the entity seems to be a little strange: The seatno primary
identifier for Seats is only meaningful when related to a F1ights instance. This
is what is referred to in the previous section as a weak entity, and thus there must
be a relationship between Flights and Seats, which we name has_seat. The
identifier for Seats is partially external, encompassing the identifier of the contain-
ing flight.

What other relationships do we have? If we draw the ER diagram for what we
have named up to now, we notice that the Gates entity is off by itself. But clearly
passengers go to a gate to meet a flight. We model this as two binary relationships
rather than as a ternary relationship: each passenger is related to a specific flight
through the relationship Passengers travels_on Flights, and gates normally
act as marshaling points for multiple flights (at different times) through the rela-
tionship Gates marshals Flights. Figure 2.13 shows the ER diagram so far. The
arrow from seatno to f1ightno symbolizes the fact that the primary identifier for
Seats includes the identifier for the master entity F1ights.

(1,1

Passengers

(1,1

(0, N) '
et

Early ER design for a simple airline reservation database.

seat_assign

seatno

FIGURE 2.13

34 CHAPTER 2 Entity—Relationship Concepts

Now we need to work out the cardinalities with which the wvarious
entities participate in their relationships. Considering the marshals relationship
first, clearly there is exactly one gate for each flight, so card(F1ights, marshals)
= (1, 1). A single gate might be used for multiple flights at different times,
but there is no rule that a gate must be used at all, so card(Gates, marshals) =
(0, N). Now each passenger must travel on exactly one flight, so card(Passengers,
travels_on) = (1, 1). A flight must have multiple passengers to fly (the flight
will be canceled and the gate reassigned if there are too few), but the database
needs to hold information starting from no passengers, so we set a minimum of
0, and card(F1ights, travels_on) = (0, N). A flight must have numerous seats
for passengers, so card(Flights, has_seat) = (1, N), and each seat is on a
unique flight, so card(Seats, has_seat) = (1, 1). Each passenger must have a
seat, and only one, so card(Passengers, seat_assign) = (1, 1), and seats can be
used by at most one passenger and may go empty, so card(Seats, seat_assign)
= (0, 1. The ER diagram with these cardinality pairs added is pictured in
Figure 2.14.

Now the ER design is complete, and we need to transform the design into
relational tables. We can begin by creating tables to map entities, even though
this means that we might overlook some attributes that will be needed to repre-
sent foreign keys for relationships. We will simply have to return later when we
consider the relationships and add attributes to these tables. To begin with, we
notice with the F1ights entity that we don’t have multivalued attributes in rela-
tional tables, so following the hint of Transformation Rule 1, we create columns
for ddate and dtime in the fl1ights table. All other tables are easily mapped,
except for the seats table, where we take the easy way out and use the single
column seatno, even though this is not a complete key for the table. Here are
the tables so far:

seat_assign

seatno

FIGURE 2.14

ER design with cardinalities for a simple airline reservation database.

passengers

gates

flights

seats

ticketno

gateno

flightno

ddate

dtime

seatno

2.4 Case Study

35

Now consider the relationship has_seat, which is N-1 in Figure 2.14, with
Seats on the “many” side. By Transformation Rule 4, a foreign key in the seats
table will connect each seats row to the appropriate f1ights row. This com-
pletes the primary key for the seats table, which represents a weak entity and
therefore needs a foreign key to identify each row.

passengers

gates

flights

seats

ticketno

gateno

flightno

ddate

dtime

seatno

flightno

The seat_assign relationship is 1-1, with optional participation by Seats, so by
Transformation Rule 5 we can represent this by adjoining to the passengers table
a foreign key for seats (this requires two additional columns). We don’t expect that
we will ever need to look up the passenger for a given seat, so we place no additional

foreign key on the seats table. The resulting table definitions are as follows:

passengers gates

ticketno | seatno | flightno | gateno

flights seats

flightno | ddate | dtime | seatno | f1ightno

Now consider the marshals relationship. This is N-1, with F1ights on the
“many” side, so by Transformation Rule 4 a foreign key in the f1ights table,
gateno, will connect each f1ights row to the appropriate gates row:

passengers gates
ticketno | seatno | flightno | gateno

36 CHAPTER 2 Entity—Relationship Concepts

flights seats

flightno | gateno | ddate | dtime | seatno | flightno

Similarly the travels_on relationship is N-1, with Passengers on the “many”
side, so by Transformation Rule 4 a foreign key, f1ightno, in the passengers
table will connect each passengers row to the appropriate f1ights row. This
column already exists in the passengers table, however, so the relational table
design is complete.

2.5 NORMALIZATION: PRELIMINARIES

Normalization is another approach to logical design of a relational database, which
seems to share little with the ER model. However, it will turn out that a relational
design based on normalization and a careful ER design transformed into relational
form have nearly identical results, and in fact the two approaches reinforce each
other. In the normalization approach, the designer starts with a real-world situa-
tion to be modeled and lists the data items that are candidates to become column
names in relational tables, together with a list of rules about the relatedness of
these data items. The aim is to represent all these data items as attributes of tables
that obey restrictive conditions associated with what we call normal forms. These
normal form definitions limit the acceptable form of a table so that it has certain
desirable properties, thus avoiding various kinds of anomalous behavior. There is
a series of normal form definitions, each more restrictive than the one before; the
forms covered in this chapter are first normal form (1NF), second normal form
(2NB), third normal form (3NF), and Boyce-Codd normal form (BCNF). Other types
of normalization, 4NF and 5NF, are less commonly considered and are not covered
in detail in this chapter.

To begin with, a table in 1NF is simply one that has no multivalued (repeating)
fields. SQL language accepts this rule as basic. In what follows we assume that
tables are in INF unless otherwise specified. 2NF turns out to be of mainly his-
torical interest, since no sensible designer would leave a database in 2NF but
would always continue normalization until the more restrictive 3NF was reached.
From an initial database containing data items that are all in the same table (some-
times referred to as a universal table) and relatedness rules on these data items,
there is a procedure to create an equivalent database with multiple tables, all of
which are in 3NF. (This is what we mean by having a database in 3NF—that all
of its tables have 3NF form.) As we proceed through this chapter we will find that
any table that does not obey 3NF can be factored into distinct tables in such a
way that (1) each of the factored tables is in a valid 3NF, and (2) the join of all
these factored tables contains exactly the information in the table from which

2.5 Normalization: Preliminaries 37

they were factored. The set of 3NF tables resulting from the initial universal table
is known as a 3NF Jossless decomposition of the database.

There is a third desirable property that we can always provide with a 3NF
decomposition. Note that when a new row is added to one of the tables in the
3NF decomposition (or an old row is updated), it is possible that an erroneous
change might break one of the rules of data item relatedness, mentioned earlier
as part of the design input. We wish to impose a constraint on Insert and Update
operations so that such errors will not corrupt the data. The third property that
we consider important in a decomposition, then, is (3) when a table Insert or
Update occurs, the possible relatedness rules that might be broken can be tested
by validating data items in the single table affected; there is no need to perform
table joins in order to validate these rules. A 3NF decomposition constructed to
have the three desirable properties just mentioned is generally considered an
acceptable database design. It turns out that a further decomposition of tables in
3NF to the more restrictive BCNF is often unnecessary (many real-world databases
in 3NF are also in BCNF), but in cases where further decomposition results, prop-
erty (3) no longer holds in the result. Many database designers therefore settle on
3NF design.

We will need a good deal of insight into the details of the normalization
approach before we are able to properly deal with some of these ideas. Let us
begin to illustrate them with an example.

2.5.1 A Running Example: Employee Information

We need an example to clarify some of the definitions of database design that
follow. Consider the data items listed in Figure 2.15, representing the employee
information that must be modeled by the personnel department of a very large
company.

emp_id

emp_name

emp_phone

dept_name

dept_phone

dept_mgrname

skill_id

skill_name From one up to a large number
skill date of skills useful to the company

skill_Tvl

FIGURE 2.15
Unnormalized data items for employee information.

38 CHAPTER 2 Entity—Relationship Concepts

The data items beginning with emp_a11 represent attributes of what we would
refer to in the ER approach as the entity Employees. Other entities underlying the
data items of Figure 2.15 include Departments where employees in the company
work and Skil1s that the various employees need to perform their jobs. In the
normalization approach, we leave the entity concept unnamed but reflect it in the
data item interrelatedness rules that will be explained shortly, rules known as
functional dependencies. The data item emp_id has been created to uniquely
identify employees. Each employee works for some single department in the
company, and the data items beginning with dept_ describe the different depart-
ments; the data item dept_name uniquely identifies departments, and each depart-
ment normally has a unique manager (also an employee) with a name given in
dept_mgrname. Finally, we assume that the various employees each possess some
number of skills, such as typing or filing, and that data items beginning with
skil1_ describe the skills that are tested and used for job assignment and salary
determination by the company. The data item skil1_id uniquely identifies the
skill, which also has a name, skill_name. For each employee who possesses a
particular skill, the skil1_date describes the date when the skill was last tested,
and skil1_1v1 describes the level of skill the employee displayed at that test.

Figure 2.16 provides a universal table, emp_info, containing all the data items
of employee information from Figure 2.15. Because of 1NF, there can only be
atomic values in each row and column position of a table. This poses a difficulty,
because each individual employee might have any number of skills. It is inappro-
priate to design a table with unique rows for each emp_id and a distinct column
for each piece of skill information—we don’t even know the maximum number
of skills for an employee, so we don’t know how many columns we should use

for skil1_id-1, ..., skill_id-n. The only solution that will work in a single
emp_info
emp_id emp_name skill_id skill_name skill_date skill_Tvl
09112 | Jones ... 44 librarian 03-15-99 12
09112 Jones S 26 PC-admin 06-30-98 10
09112 Jones S 89 word-proc 01-15-00 12
12231 Smith .. 26 PC-admin 04-15-99 5
12231 Smith ... 39 bookkeeping 07-30-97 7
13597 Brown S 27 statistics 09-15-99 6
14131 Blake R 26 PC-admin 05-30-98 9
14131 Blake .. 89 word-proc 09-30-99 10
FIGURE 2.16

Single employee information table, emp_info, in 1NF.

2.5 Normalization: Preliminaries 39

(universal) table is to give up on having a unique row for each employee and
replicate information about the employee, pairing the employee with different
skills on different rows.

The intention of the database designer in the emp_info table of Figure 2.16 is
that there is a row for every employee-skill pair existing in the company. From
this, it should be clear that there cannot be two rows with the same values for
the pair of attributes emp_id and ski11_1id. The table emp_info has a (candidate)
key consisting of the set (pair) of attributes emp_id and skill_id. We confirm
that these attributes form a key by noting that the values they take on distinguish
any pair of rows in any permissible content of the table (i.e., for any rows u and
v, either u(emp_id) #v(emp_id) oru(skill_id)#v(skill_id)), and that no subset
of this set of attributes does the same (there can be two rows u and v such that
u(emp_id) = v(emp_id), and there can be two rows r and s such that r(skil1_id)
= s(skill_id)). We assume in what follows that emp_id and skill_id is the
primary key for the emp_info table.

It turns out that the database design of Figure 2.16 is a bad one, because it is
subject to certain anomalies that can corrupt the data when data manipulation
statements are used to update the table.

2.5.2 Anomalies of a Bad Database Design

It appears that there might be a problem with the emp_info table of Figure 2.16
because there is replication of employee data on different rows. It seems more
natural, with the experience we have had up to now, to have a unique row for
each distinct employee. Do we have a good reason for our feeling? Let us look at
the behavior of this table as SQL updates are applied.

If some employee were to get a new phone number, we would have to update
multiple rows (all rows with different skills for that employee) in order to change
the emp_phone value in a uniform way. If we were to update the phone number
of only one row, we might corrupt the data, leaving some rows for that employee
with different phone numbers than others. This is commonly known as an update
anomaly, and it arises because of data redundancy, duplication of employee
phone numbers and other employee attributes on multiple rows of emp_info.
Calling this an “anomaly,” with the implication of irregular behavior under update,
may seem a bit extreme, since the SQL language is perfectly capable of updating
several rows at once with a Searched Update statement such as:

update emp_info set emp_phone = :newphone where emp_id =
eidval;

In fact, the consideration that several rows will be updated is not even appar-
ent from this syntax—the same Searched Update statement would be used if the
table had a unique row for each emp_id value. However, with this replication of
phone numbers on different rows, a problem can still arise in performing an
update with a Positioned Update statement. If we encountered a row of the
emp_info table in fetching rows from a cursor created for an entirely different

40 CHAPTER 2 Entity—Relationship Concepts

purpose, the program might execute the following statement to allow the user to
correct an invalid phone number:

update emp_info set emp_phone = :newphone
where current of cursor_name;

This would be a programming error, since an experienced programmer would
realize that multiple rows need to be updated in order to change an employee
phone number. Still, it is the kind of error that could easily occur in practice, and
we would like to be able to create a constraint on the table that makes such an
erroneous update impossible. It turns out that the best way to provide such a
constraint is to reconfigure the data items into different tables so as to eliminate
the redundant copies of information. This is exactly what is achieved during the
process of normalization. We sum up the idea of an update anomaly in a definition
that makes reference to our intuitive understanding of the ER model.

Definition: Update Anomaly. A table T is subject to an update anomaly when
changing a single attribute value for an entity instance or relationship instance
represented in the table that may require that several rows of T be updated.

A different sort of problem, known as the delete anomaly, is reflected by the
following definition.

Definition: Delete Anomaly, Insert Anomaly. A table T is subject to a delete
anomaly when deleting some row of the table to reflect the disappearance of some
instance of an entity or relationship that can cause us to lose information about
some instance of a different entity or relationship that we do not wish to forget. The
insert anomaly is the other face of this problem for inserts, where we cannot rep-
resent information about some entity or instance without including information about
some other instance of an entity or relationship that does not exist.

For example, assume that a skill possessed by an employee must be retested
after five years to remain current for that employee. If the employee fails to have
the skill retested (and the skil1_date column updated), the skill will drop off the
emp_info list (an automatic process deletes the row with this emp_id and skill_
id). Now consider what happens if the number of skills for some employee goes
to zero in the emp_info table with columns of Figure 2.16: No row of any kind
will remain for the employee! We have lost the phone number and the depart-
ment the employee works in because of this delete! This is clearly inappropriate
design. The insert anomaly exists in the emp_info table because we cannot enter
a new employee into the table until the employee has acquired some skill; thus
it becomes impossible to hire an employee trainee. Clearly this is just the other
face of the delete anomaly, where information about an employee is lost when
the employee loses his or her last skill.

Let us jump ahead to a solution for some of the problems mentioned so far.
We simply factor the emp_info table and form two tables, the emps table and the

2.6 Functional Dependencies 41

emps skills
emp_id emp_id
emp_name skill_id
emp_phone skill_name
dept_name skill_date
dept_phone skill_1vl
dept_mgrname

FIGURE 2.17
The emp_info database with two tables.

skil1s table, whose column names are listed in Figure 2.17. Notice that the emps
table has a unique row for each emp_id (and emp_id is the key for this table),
while the skills table has a unique row for each emp_id and skill_id pair, and
this pair forms a key for the table. Since there are multiple skills associated
with each employee, the emp_id column that we have included in the skills
table acts as a foreign key, relating skills back to employees. When we form the
natural join of these two tables, the result is exactly the emp_info table we started
with. (We will need to demonstrate this fact in what follows, but for now you
should take it on faith.) However, the delete anomaly is no longer a problem, since
if we delete all rows corresponding to skills for any individual employee, this
merely deletes rows in the skil1s table; the emps table still contains the informa-
tion we want to retain about the employee, such as emp_phone, dept_name, and
the like.

In the sections that follow we will learn how to perform normalization, to
factor tables so that all anomalies are removed from our representation. Note that
we haven’t yet achieved this with the tables of Figure 2.17; as we will see shortly,
a number of anomalies still exist. We will need a good deal of insight into the
details of the normalization approach before we are able to properly deal with
fundamental normalization concepts. In the following sections we present some
needed mathematical preliminaries to database normalization. Because it is not
always possible to show a real-life application for all these concepts as they are
introduced, we ask the reader to be patient. The value of the concepts will
become clear in the end.

2.6 FUNCTIONAL DEPENDENCIES

A functional dependency (FD) defines the most commonly encountered type of
relatedness property between data items of a database. We usually only need
to consider relatedness between column attributes of a single relational table,
and our definition reflects this. We represent rows of a table T by the notation

42 CHAPTER 2 Entity—Relationship Concepts

B B
A A
> A - A
A functionally determines B. Each value of A does not functionally determine B. Some
A corresponds to only one value of B. values of A correspond to more than one
value of B.
FIGURE 2.18

Graphical depiction of functional dependency.

1y, 13, ..., and follow standard convention by referring to attributes, rather than
columns, of the table T. Individual attributes of a table will be represented by
letters such as A, B, . . ., and the letters X, Y, . . . will refer to subsets of attributes.
We follow the notation that r(A) represents the value of row r; at attribute A.

Definition. Given a table T containing at least two attributes designated by A and
B, we say that A — B (read “A functionally determines B” or “B is functionally
dependent on A”), if and only if it is the intent of the designer, for any set of rows
that might exist in the table, that two rows in T cannot agree in value for A and
disagree in value for B. A more formal way of saying this is: Given two rows r; and
rpin T, if ri(A) = ry(A), then ry(B) = ry(B). We will usually try to use the less formal
statement in what follows.

This definition is comparable to the definition of a function in mathematics:
For every element in attribute A (which appears on some row), there is a unique
corresponding element (on the same row) in attribute B. See Figure 2.18 for a
graphical representation of the functional dependency concept.

EXAMPLE 2.8
In the emp_info table of Figure 2.16, the following functional dependencies hold:

emp_id - emp_name
emp_id — emp_phone
emp_id — dept_name

2.6 Functional Dependencies 43

In ER terms, we know this is true because emp_id is an identifier for the Employee
entity, and the other data items simply represent other attributes of the entity; once the entity
is identified, all the other attributes follow. But we also recognize these facts intuitively.

If we saw two rows in the single table emp_info design of Figure 2.16 with the same
emp_id value and different emp_phone values, we would believe that the data are corrupted
(assuming that every employee has a unique phone), but if we saw two rows with the same
emp_phone value and different emp_id values, our first thought would be that they repre-
sented different employees who shared a phone. But the two situations are symmetric; it is
simply our understanding of the data that makes the first one seem to imply corrupted data.
We look to emp_id to break ties and uniquely identify employees. Note that what we are
saying implies that, while emp_1id functionally determines emp_phone, emp_phone does not
functionally determine emp_1id. We sometimes express this second fact with this notation:

emp_phone+ emp_id

EXAMPLE 2.9

Following are three tables to investigate for functional dependencies between attributes (note
that some of the tables break the unique row rule, but we accept them as valid tables for
purposes of illustration). In these tables we assume that it is the intent of the designer that
exactly this set of rows should lie in each table—no changes will ever occur in the tables.
Thus, we can determine what functional dependencies exist by examining the data. This is
a very unusual situation. Normally we determine functional dependencies from understand-
ing the data items and rules of the enterprise (e.g., each employee has a single phone
number, employees can share a phone, etc.), as in Example 2.8. These rules exist before
any data have been placed in the tables.

T1 T2 T3

Row # A B A |B A |B

1 x1 |yl x1 |yl x1 |yl
2 X2 | y2 X2 | y4 X2 | y4
3 x3 |yl x1 |yl x1 |yl
4 x4 |yl x3 | y2 X3 | y2
5 x5 | y2 x2 | y4 X2 | y4
6 X6 | y2 x4 | y3 X4 | y4

In table T1 we can easily see that A — B; we merely need to check that for every pair
of rows r; and ry, if ri(A) = r,(A), then ri(B) = r,(B). However, there is no pair of rows in T1
with equal values for column A, so the condition is trivially satisfied. At the same time, in
T1, B -5 A (read “column B does not functionally determine column A”), since, for example,
if ryis row 1 and r, is row 3, then r(B) = rx(B) = y1, but r;(A) = x1 # ry(A) = x3. In table
T2, we have A — B (we just need to check that rows 1 and 3, which have matching pairs

44 CHAPTER 2 Entity—Relationship Concepts

of A values, also have matching B values, and similarly check rows 2 and 5), and B — A.
Finally, in table T3, A — B but B -5 A (note that if r; is row 2 and r, is row 6, then r(B) =
ro(B) = y4, but ri(A) = x2 # rx(A) = x4).

It is obvious how to extend the definition for functional dependency to its full
generality, dealing with sets of attributes.

Definition. We are given a table T with two sets of attributes, designated by X =
AL A, ..., Acand Y = B; B,, ..., B, where some of the attributes from X may
overlap with some of the attributes from Y. We say that X — Y (read “X functionally
determines Y” or “Y is functionally dependent on X”), if and only if it is the intent of
the designer, for any set of rows that might exist in the table, that two rows in T
cannot agree in value on the attributes of X and simultaneously disagree in value
on the attributes of Y. Note that two rows agree in value on the attributes of X if
they agree on all of the attributes of X, and they disagree in value on the attributes
of Y if they disagree on any of the attributes of Y. More formally, given any two
rows r; and rp in T, if ri(A) = ry(A) for every A in X, then ry(B)) = ry(B;) for every B;
inYy.

EXAMPLE 2.10

We list here what we claim are all the functional dependencies for the emp_info table of
Figure 2.16 (with missing attributes in Figure 2.15). With this FD list, all the information
needed for the normalization procedure has been provided.

1. emp_id - emp_name emp_phone dept_name
2. dept_name - dept_phone dept_mgrname

3. skill_id - skill_name

4, emp_id skill_id - skill_date skill_1Tvl

You should be able to interpret each of these functional dependencies and see if you
agree with them. For example, FD 1 states that if we know the emp_id, then the emp_name,
emp_phone, and dept_name are determined. Note that FD 1 is just another way of stating
the FDs of Example 2.8. That is, if we know the FDs given there,

emp_id - emp_name, emp_id - emp_phone, and emp_id - dept_name,

we can conclude that FD 1 holds.

To say this in yet another way, the three FDs of Example 2.8 together imply FD 1.
Similarly, from FD 1 we can conclude that the three FDs of Example 2.8 hold. A simple rule
of FD implication is used to arrive at these conclusions, based on the FD definition. We will
learn more about such rules shortly.

Because the FDs given in 1-4 are all the FDs for the emp_info table, we can conclude,
for example, that the designer does not intend that skil11_name be unique for a specific
skill. Since ski11_id is a unique identifier for the skill, to have a unique ski11_name would
presumably mean that ski11_name - skill_id, the reverse of FD 3. However, this FD
does not exist in the set, nor is it implied. (A quick test to see that it isn’t implied is to note
that ski11_name does not occur on the left side of any FD in the set.) We also note that

2.6 Functional Dependencies 45

we do not have the FD dept_mgrname - dept_name, which presumably means that
although each department has a unique manager, one manager might simultaneously
manage more than one department. Finally, note that ski11_1v1 and skil1_date are only
meaningful as attributes of the relationship between an Employee entity and a Ski171 entity.
If we said that a given employee had a skill level of 9, it would be necessary to ask, “For
what skill?”; and if we said that we know there is a skill level of 9 for “typing,” we would
wonder, “What employee?” Thus, we need to name both the emp_id and the skil1_id to
determine these attributes.

2.6.1 Logical Implications among Functional Dependencies

In Example 2.10 a number of conclusions were drawn that depended on under-
standing implications among functional dependencies. In what follows, we will
derive certain rules of implication among FDs that follow directly from previous
definition. The reader needs to understand many such rules at both a rigorous and
an intuitive level to properly appreciate some of the techniques of normalization
that are presented in later sections. We begin with a very basic rule.

Theorem 2.1: Inclusion Rule. We are given a table T with a specified heading
(set of attributes), Head (T). If X and Y are sets of attributes contained in Head(T),
and Y c X, then X - Y.

PROOF. To show that X — Y, we need only demonstrate that there is no pair of
rows u and v that agree in value on the attributes of X and simultaneously
disagree in value on the attributes of Y. But this is obvious, since two rows
can never agree in value on the attributes of X and simultaneously disagree on
a subset of those attributes. (]

The inclusion rule provides us with a large number of FDs that are true for any
table of attributes, irrespective of the intended content.

Definition: Trivial Dependency. A trivial dependency is an FD of the form X —
Y, in a table T where X U Y < Head(T), that will hold for any possible content of
the table T.

We can prove that trivial dependencies always arise as a result of the inclusion
rule.

Theorem 2.2. Given a trivial dependency X — Y in T, it must be the case that
Y c X.

PROOF. Given the table T with a heading containing the attributes in X U Y,
consider the set of attributes Y — X (attributes in Y that are not in X). Since X
— Y is a trivial dependency, it must hold for any possible content of the table
T. We will assume Y — X is nonempty and reach a contradiction. If the set

46 CHAPTER 2 Entity—Relationship Concepts

Y — X is nonempty, let A be an attribute contained in Y — X. Since A ¢ X, it is
possible to construct two rows, u and v, in the table T, alike in values for all
attributes in X, but having different values for the attribute A. But with these
two rows in T, the dependency X — Y does not hold, since rows u and v agree
in value on attributes of X and disagree on attributes of Y (because A € Y).
Since a trivial dependency is supposed to hold for any possible content of the
table T, we have created a contradiction, and from this we conclude that the

set Y — X cannot contain an attribute A, and therefore Y < X.]
X
S T
Inclusion rule Transitivity rule

Augmentation rule

FIGURE 2.19

Armstrong’s Axioms.

2.6.2 Armstrong’s Axioms

The inclusion rule is one rule of implication by which FDs can be generated that
are guaranteed to hold for all possible tables. It turns out that from a small set of
basic rules of implication, we can derive all others. We list here three basic rules
that we call Armstrong’s Axioms (Figure 2.19).

Definition: Armstrong’s Axioms. Assume in what follows that we are given a
table T, and that all sets of attributes X, Y, Z are contained in Head(T). Then we
have the following rules of implication.

2.6 Functional Dependencies 47

1. Inclusion rule: If Y < X, then X = Y.
2. Transitivity rule: If X - Y and Y — Z, then X — Z.
3. Augmentation rule: If X - Y, then X Z - Y Z.

Just as we list attributes with spaces between them in a functional dependency
to represent a set containing those attributes, two sets of attributes in sequence
imply a union operation. Thus, the augmentation rule could be rewritten: If X — Y,
then X uZ ->YuZ

We have already proved the inclusion rule, in Theorem 2.1, so let us prove the
augmentation rule now in Theorem 2.3.

Theorem 2.3: Augmentation Rule. We wish to show that if X — Y, then X Z —
Y Z. Assume that X — Y, and consider any two rows u and v in T that agree on
the attributes of X Z (i.e., X U Z). We need merely show that u and v cannot dis-
agree on the attributes of Y Z. But since u and v agree on all attributes of X Z, they
certainly agree on all attributes of X; and since we are assuming that X — Y, then
u and v must agree on all attributes of Y. Similarly, since u and v agree on all
attributes of X Z, they certainly agree on all attributes of Z. Therefore, u and v agree
on all attributes of Y and all attributes of Z, and the proof is complete. [

From Armstrong’s Axioms we can prove a number of other rules of implication
among FDs. Furthermore, we can do this without any further recourse to the FD
definition, using only the axioms themselves.

Theorem 2.4: Some Implications of Armstrong’s Axioms. Again we assume
that all sets of attributes below—W, X, Y, and Z—are contained in the heading of
a table T.

1. Union rule: If X - Y and X — Z,then X > Y Z.

2. Decomposition rule: If X - Y Z, then X - Y and X — Z.

3. Pseudotransitivity rule: If X - Y and WY — Z, then X W — Z.
4. Set accumulation rule: If X - YZand Z - W, then X - Y Z W.

PROOF. We prove only 2 and 4 here. For 2, note that Y Z=Y U Z. Thus, Y Z
— Y by the inclusion rule (axiom 1). By transitivity (axiom 2), X — Y Z and
Y Z — Y implies X — Y. Similarly, we can show X — Z, and the decomposi-
tion rule (2) has been demonstrated. For 4, we are given that (a) X —» Y Z and
(b) Z - W. Using axiom 3, we augment (b) with Y ZtoobtainYZ Z > Y Z
W. Since Z Z = Z, we have (¢) Y Z — Y Z W. Finally, by transitivity, using (a)
and (¢), we have X — Y Z W, and the set accumulation rule (4) has been
demonstrated. [

We state without proof the rather startling result that a// valid rules of implica-
tion among FDs can be derived from Armstrong’s Axioms. In fact, if F is any set
of FDs, and X — Y is an FD that cannot be shown by Armstrong’s Axioms to be

48 CHAPTER 2 Entity—Relationship Concepts

implied by F, then there must be a table T in which all of the FDs in F hold but
X — Y is false. Because of this result, Armstrong’s Axioms are often referred to
as being complete, meaning that no other rule of implication can be added to
increase their effectiveness.

Recall that in Example 2.10 we pointed out that the three FDs from Example
2.8,

emp_id - emp_name, emp_id - emp_phone, and emp_id - dept_name,
allowed us to conclude that FD 1 holds:
1. emp_id - emp_name emp_phone dept_name.

This fact follows from two applications of the union rule of Theorem 2.4. The
inverse implication, that FD 1 implies the first three, follows from two applications
of the decomposition rule in the same theorem. Whenever we have some set of
attributes X on the left of a set of FDs, we can take a union of all sets of attributes
on the right of these FDs and combine the FDs into one. For example, assume we
have the attributes A, B, C, D, E, F, and G in the heading of a table T, and we
know that the following FDs hold:

BD—-A, BD—-C,BD—-SE BD—-F andBD = G.

Then we can combine these FDs into one by successive applications of the
union rule:

BD—-ACEFG

As a matter of fact, we can add the trivial dependency B D — B D and
conclude

BD—-ABCDEFG

However, we normally try to avoid including information in a set of dependen-
cies that can be derived using Armstrong’s Axioms from a more fundamental set.
Thus, we might want to return to the FD form of BD — A C E F G. Note that if
we had another attribute H in the heading of the table T not mentioned in any
FD, we could conclude that in addition to this FD, the following FD holds:

BDH—-ACEFGH

But since this FD can be derived from B D — A C E F G by using the augmen-
tation rule, we would once again prefer this shorter FD.

EXAMPLE 2.11

List a minimal set of functional dependencies satisfied by the following table T, where we
assume that it is the intent of the designer that exactly this set of rows lies in the table. Once
again, we point out that it is unusual to derive FDs from the content of a table. Normally we

2.6 Functional Dependencies 49

determine functional dependencies from understanding the data items and rules of the
enterprise. Note that we do not yet have a rigorous definition of a minimal set of FDs, so we
simply try to arrive at a minimal set in an intuitive way.

T
Row# |A |[B C |D
1 al | bl |cl |dl
2 al | bl |c2 | d2
3 a2 | bl |cl|d3
4 a2 | bl | c3|d4
Analysis

Let us start by considering FDs with a single attribute on the left. Clearly we always have
the trivial FDs, A—- A, B — B, C — C, and D — D, but we are asking for a minimal set of
dependencies, so we won't list them. From the specific content of the table we are able to
derive the following. (a) All values of the B attribute are the same, so it can never happen
for any other attribute P (i.e., where P represents A, C, or D) that ri(P) = r,(P), while r(B)
1,(B); thus, we see that A — B, C — B, and D — B. At the same time no other attributes
P are functionally dependent on B, since they all have at least two distinct values, and so
there are always two rows r; and r, such that ri(P) # ro(P), while ri(B) = r,(B); thus, B -5 A,
B - C, and B % D. (b) Because the D values are all different, in addition to D — B of part
(a), we also have D — A and D — C; at the same time D is not functionally dependent on
anything else since all other attributes have at least two duplicate values. So in addition to
B & D of part (a), we have A 4 D and C -+ D. (c) We have A - C (because of rows 1
and 2) and C & A (because of rows 1 and 3). Therefore, we can list all FDs (and failed
FDs) with a single attribute on the left. (Letters in parentheses are keyed to the parts above
that give us each fact.)

(a)A =B (@) B -» A (c)C -+ A (b) D= A
(c)A-HC (@B C (@C—-B (@)D —B
(b) A 5D (a) BvD (b) C 5D (b) D= C

By the union rule, whenever a single attribute on the left functionally determines several
other attributes, as with D above, we can combine the attributes on the right: D — A B C.
From the analysis so far, we have the following set of FDs (which we believe to be
minimal):

1.A-B 2C—-B 3.D—>ABC

Now consider FDs with pairs of attributes on the left. (d) Any pair containing D deter-
mines all other attributes, by FD 3 above and the augmentation rule, so there is no new FD
with D on the left that is not already implied. (e) The attribute B, combined with any other
attribute P on the left, still functionally determines only those attributes already determined
by P, as we see by the following argument. If P 4 Q, this means there are rows r; and r,
such that ri(Q) # rx(Q), while ri(P) = r,(P). But because B has equal values on all rows, we

50 CHAPTER 2 Entity—Relationship Concepts

know that ri(B P) =r,(B P) as well, so B P 5 Q. Thus, we get no new FDs with B on the
left.

(f) Now the only pair of attributes that does not contain B or D is A C, and since A C
has distinct values on each row (examine table T again!), we know that AC — A B C D.
This is new. We can show most of this by inference rules: It is trivial that A C — A and AC
— C, by inclusion, and we already knew that A — B, so it is easy to show that A C — B.
Thus, the only new fact we get from AC — AB C D is that AC — D, and we are searching
for a minimal set of FDs, so that is all we include as FD 4 in the list below. If we now con-
sider looking for FDs with triples of attributes on the left, we see that we can derive from
the FDs we already have that any triple functionally determines all other attributes. Any triple
that contains D clearly does, and the only triple not containing D is A B C, where A C alone
functionally determines all other attributes. Clearly the same holds for any set of four attri-
butes on the left.

The complete set of FDs implicit in table T is therefore the following:

1.A-B 2C—-B 3.D—-ABC 4 AC—D

The first three FDs come from the earlier list of FDs with single attributes on the left,
while the last FD, A C — D, is the new one generated with two attributes listed on the left.
[t will turn out that this set of FDs is not quite minimal, despite all our efforts to derive a
minimal set. We will see this after we have had a chance to define what we mean by a
minimal set of FDs.

2.6.3 Closure, Cover, and Minimal Cover

The implication rules for FDs derived from Armstrong’s Axioms mean that when-
ever a set F of functional dependencies is given, a much larger set may be
implied.

Definition: Closure of a Set of FDs. Given a set F of FDs on attributes of a
table T, we define the closure of F, symbolized by F*, to be the set of all FDs implied
by F.

EXAMPLE 2.12
Consider the set F of FDs given by
F={A->B,B—»C,C—>D,D>EE—-FF—>G G—H}

By the transitivity rule, A — B and B — C together imply A — C, which must be included
in F*. Also, B — C and C — D imply B — D. Indeed, every single attribute appearing prior
to the terminal one in the sequence A B C D E F G H can be shown by transitivity to func-
tionally determine every single attribute on its right in the sequence. We also have trivial
FDs such as A — A. Next, using the union rule, we can generate other FDs, such as A —
ABCDEFGH. In fact, by using the union rule in different combinations, we can show
A — (any nonempty subset of AB C D E F G H). There are 28 — 1 = 255 such nonempty
subsets. All FDs we have just derived are contained in F*.

2.6 Functional Dependencies 51

Functional dependencies usually arise in creating a database out of common-
sense rules. In terms of ER concepts, it is clear that data items corresponding to
identifiers of entities functionally determine all other attributes of that entity.
Similarly, attributes of relationships are uniquely determined by the identifiers
of entities that take part in the relationship. We would normally expect to start
with a manageable set F of FDs in our design, but as Example 2.12 shows, the
set of FDs that is implied by F could conceivably grow exponentially. In
what follows, we try to find a way to speak of what is implied by a set F of FDs
without this kind of exponential explosion. What we are leading up to is a way
to determine a minimal set of FDs that is equivalent to a given set F. We will also
provide an algorithm to derive such a minimal set in a reasonable length of
time.

Definition: FD Set Cover. A set F of FDs on a table T is said to cover another
set G of FDs on T, if the set G of FDs can be derived by implication rules from the
set F, or in other words, if G ¢ F'. If F covers G and G covers F, then the two sets
of FDs are said to be equivalent, and we write F = G.

EXAMPLE 2.13
Consider the two sets of FDs on the set of attributes A B C D E:
F={B—CD,AD—>E,B— A}

and
G=B—{CDE,B—->ABC,AD—>E}

We will demonstrate that F covers G, by showing how all FDs in G are implied by FDs
in F. In what follows we derive implications of FDs in F using the various inference rules
from previous definitions and Theorem 2.4. Since in F we have (a) B — C D and (b) B —
A, by the union rule we see that (c) B — A C D. The trivial functional dependency B — B
clearly holds, and in union with (c), we get (d) B — A B C D. By the decomposition rule,
B —- ABCDimplies (e) B— A D, and since (f) AD — Eis in F, by transitivity we conclude
(g) B — E. This, in union with (d), gives us B — A B C D E. From this, by decomposition
we can derive the initial two FDs of the set G, and the third one also exists in F. This dem-
onstrates that F covers G.

In Example 2.8 a technique was used to find all the attributes functionally
determined by the attribute B under the set F of FDs. (This turned out to be all
the attributes there were.) In general, we can do this for any set X of attributes
on the left, finding all attributes functionally determined by the set X.

Definition: Closure of a Set of Attributes. Given a set F of FDs on a table T
and a set X of attributes contained in T, we define the closure of the set X, denoted
by X*, as the largest set Y of attributes functionally determined by X, the largest

52 CHAPTER 2 Entity—Relationship Concepts

set Y such that X — Y is in F". Note that the set Y contains all the attributes of X,
by the inclusion rule, and might not contain any other attributes.

Here is an algorithm for determining the closure of any set of attributes X.

ALGORITHM 2.1: Set Closure. This algorithm determines X*, the closure of a given
set of attributes X, under a given set F of FDs.

| =0; X[0] =X; /* integer |, attribute set X[0] */
REPEAT /* loop to find larger X[I] */
l=1+1; /* new | */
X1 = X[I-11; /* initialize new X[I] */
FORALLZ - WinF /*looponall FDsZ—-WinF */

IF Z < XII /* if Z contained in X[I] */

THEN X[= X[IT U W; /* add attributes in W to X[I] */

END FOR /* end loop on FDs */
UNTIL X[1] = X[I-11; /* loop until no new attributes ~ */
RETURN X* = X[IT; /* return closure of X */

Note that the step in this algorithm that adds attributes to X[I] is based on the set accu-
mulation rule, proved in Theorem 2.4: If X > Y Zand Z - W, then X > Y Z W.

In our algorithm we are saying that since X — X[I] (our induction hypothesis) and after
finding Z — W in F with Z < X[I], X[I] can be represented as Y Z (Y = X[I] — Z), so we
can write X — X[I] as X — Y Z. Now since F contains Z — W, we conclude by the set
accumulation rule that X — Y Z W, or in other words, X — X[I] U W, and our induction
hypothesis is maintained.

Set closure is an important milestone in our development. It gives us a general way of
deciding whether a given FD is implied by a set F of FDs, without worrying about the
exponential explosion that Example 2.12 showed could occur in calculating F". For
example, suppose we need to know if the functional dependency X — A is implied by set
F of FDs. We simply calculate X" under F by the set closure in Algorithm 2.1, and determine
if it contains A: If so, X — A is in F'; that is, it is implied by F.

We will see that a key for a table is just a minimal set of attributes that functionally
determines all the attributes of the table. To determine if X is a key, we just compute X"
under F, the set of FDs for the table’s attributes, and see if it includes all of them, then

check that no subset of X does the same. [

EXAMPLE 2.14

Set Closure and a Compact Derivational Notation for It

In Example 2.13 we were given a set F of FDs, which we number:
F:1.B—->CD 2AD—-E 3.B->A

Given X = B, we determined that X* = A B C D E. Using Algorithm 2.1, we start with
X[0] = B. Then X[1] = B, and we begin to loop through the FDs. Because of (1) B — CD,
we get X[1] = B C D. As a notational device to show that C and D were added after B
because of FD 1, we write this as B C D (1). The next FD, (2) A D — E, does not apply at
this time, since A D is not a subset of X[1]. Next, from (3) B — A, we get X[11=AB CD
(or, in our notation to reflect derivation order, B C D (1) A (3)). Now X[O] is strictly contained
in X[11 (i.e., X[1 — 1] < X[11), so X[1 — 11 = X[1].

2.6 Functional Dependencies 53

Thus, we've made progress in the prior pass of the loop and go on to a new pass, setting
X[21 =X[11=AB C D (i.e., BC D (1) A (3)). Looping through the FDs again, we see all of
them can be applied (but we skip the ones that have been applied before, since they will
have no new effect), with the only new FD, (2) AD — E, giving us X[21=AB CDE, or in
the derivational notation, B C D (2) A (3) E (2). At the end of this loop, the algorithm notes
that X[1] < X[2]. Progress has been made, so we go on to create X[3] and loop through the
FDs again, ending up this pass with X[3] = X[2]. Since all of the FDs had been applied
already, we could omit this pass by noting that fact. Note that a different ordering of the
FDs in F can change the details of execution for this algorithm. In exercises where the
derivational notation is requested to demonstrate that the proper derivation was determined,
the order is crucial; for example, the derivation above yields the compact notation

B CD(1)A(3)E(2)

and not
B CD(1)E(2)A(3).

Given a set F of FDs on a table T, we use the following algorithm to determine
a minimal set of dependencies M that covers F. The set M will be minimal in the
sense that none of its FDs can be dropped in their entirety or changed by dropping
any attributes on the left-hand side, without losing the property that it covers F.

ALGORITHM 2.2: Minimal Cover. This algorithm constructs a minimal set M of FDs
that covers a given set F of FDs. M is known as the minimal cover of F—or, in some texts,
as the canonical cover of F.

Step 1. From the set F of FDs, we create an equivalent set H of FDs, with only single
attributes on the right side.

H=@; /* initialize H to null set */
FORALLX = YinF /* loop on FDs in F */
FOR ALLAINY /* loop on attributes in Y */
H=Hu{X—> A} /*add FD to H */

END FOR /* end loop on attributes in Y */
END FOR /* end loop on FDs in F */

Since step 1 derives H by successive applications of the decomposition rule, and F can
be reconstructed from H by successive applications of the union rule, it is obvious that
F=H.

Step 2. From the set H of FDs, successively remove individual FDs that are inessential
in H. An FD X — Y is inessential in a set H of FDs, if X — Y can be removed from H, with
result J, so that H" = J*, or H = J. That is, removal of the FD from H has no effect on H".
See Figure 2.20 for an example of an inessential FD.

FORALLX = AinH /* loop on FDs in H */
J=H-{X—> A} /* try removing this FD */
DETERMINE X" UNDER J; /* set closure algorithm 2.6.12 */
IFAe X /* X — Ais still implied by J */

H=H-{X->A) /* .. .soitis inessential in H */

END FOR /* end loop on FDs in H */

54 CHAPTER 2 Entity—Relationship Concepts

FIGURE 2.20
Example of an inessential FD: X — A.

FIGURE 2.21

Example of a functional dependency X — A, where B can be dropped from the left-hand
side.

Each time an FD is removed from H in step 2, the resulting set is equivalent to the previous,
larger H. It is clear from this that the final resulting H is equivalent to the original. However,
a number of FDs might have been removed.

Step 3. From the set H of FDs, successively replace individual FDs with FDs that have
a smaller number of attributes on the left-hand side, as long as the result does not change
H". See Figure 2.21 for an example of an FD that can be simplified in this manner.

HO =H /* save original H */
FOR ALL X — A'in H with #X > 1 /* loop on FDs with multiple attribute Ihs */
FOR ALL B € X /* loop on attributes in X */

Y =X -{B} /* try removing one attribute */
J=H-{X>AlUu{Y > A} /* left-reduced FD */
GENERATE Y* UNDER J, Y* UNDER H; /* set closure algorithm 2.6.12 */

IF Y* UNDER H = Y* UNDER J /* if Y* is unchanged */

UPDATE CURRENT X - Ain H /* this is X — A in outer loop */

SETX=Y; /* change X, continue outer loop */

END FOR /* end loop of attributes in X */
END FOR /* end loop on FDs in H */
IF H <>HO /* if FD set changed in Step 3 */

REPEAT STEP 2 AND THEN GOTO STEP 4 /* retest: some FDs may be inessential now — */

Step 4. From the remaining set of FDs, gather all FDs with equal left-hand sides and use
the union rule to create an equivalent set of FDs M where all left-hand sides are unique.

2.6 Functional Dependencies 55

M = @; /* initialize M to null set */
FORALLX - AinH /* loop on FDs in H */
IF THIS FD IS FLAGGED, CONTINUE; /* if already dealt with, loop */
FLAG CURRENT FD; /* deal with FDs with X on left */

Y ={A} /* start with right-hand side A */
FOR ALL SUCCESSIVE X — B in H /* nested loop */
FLAG CURRENT FD; /* deal with all FDs, X on left */

Y=Y u (B} /* gather attributes on right */

END FOR /* gathering complete */
M=Mu{X->Y} /* combine right sides of X — ? */
END FOR /* end outer loop on FDs in H */

We state without proof that this algorithm grows in execution time only as a polynomial
in n, the number of attributes in the listed FDs of F (counting repetitions). Step 3 is the
most costly, since we need to perform the set closure algorithm once for each attribute
on the left-hand side of some FD in H. Note that if we performed step 3 before step 2, we
would not have to go back and repeat step 2, as prescribed at the end of step 3 above;
however, in general it would take more work for the costly step 3 without the cleanup
action of step 2 occurring first.]

EXAMPLE 2.15
Construct the minimal cover M for the set F of FDs, which we number and list:
F:1.ABD—-AC, 2C—BE 3. AD—-BF 4B-—>E

Note that it is important to rewrite the set of FDs as you begin each new step where the
FDs have changed, so you can refer to individual ones easily in the next step.

Step 1. We apply the decomposition rule to FDs in F, to create an equivalent set with
singleton attributes on the right-hand sides (rhs) of all FDs. H =

1.ABD—A 2 ABD—-C, 3.C—-B, 4C—E
5AD—-B, 66,AD—>F 7.B—E
Step 2. We consider cases corresponding to the seven numbered FDs in H.

1. AB D — As trivial and thus clearly inessential (since A B D* contains A), so it can be
removed. The FDs remainingin Hare 2)ABD —-C, 3)C—-B,4) C—=E (B)AD
—B,6)AD > F and (7) B —» E.

2. A B D — C cannot be derived from the other FDs in H by the set closure algorithm,
Algorithm 2.1, because there is no other FD with C on the right-hand side. (A B D*, with
FD (2) missing, will not contain C. We could also go through the steps of Algorithm 2.1
to demonstrate this fact. See also substep 6, below.)

3. IsC — B inessential? Is it implied under the set of other FDs that would remain if this were
takenout: {(2)ABD—-C,(4)C—E (B)AD—B,(6)AD—F, (7)B—=E}? Toseeif C
— B is inessential, we generate C* under this smaller set of FDs. (We use the set closure
Algorithm, 2.1, to generate X* in what follows, and use the derivational notation introduced
in Example 2.14.) Starting with C* = C, FD (4) gives us C* = CE. To indicate the use of FD
(4) notationally, we write C* = CE (4). Now with FD (3) removed, no other left side of an
FDis contained in the set C E, so we have reached the full closure of the attribute C. Since
C* doesn't contain B, (3) C — B is essential and remains in H.

56 CHAPTER 2 Entity—Relationship Concepts

4. C — Eis inessential as shown by the working out of set closure on C with FD (4) missing.
We get C* = C B (3) E (7). Thus, since E is in C* after FD (4) is removed, we can drop
FD (4). The FDs remainingin Hare 2)ABD —-C,(3)C—> B, (5)AD - B, (6) AD
— F,and (7) B —» E.

5. Is A D — B inessential under the set of FDs that remain with (5) missing: {(2) AB D —
C,(3C—B,(®6)AD —F and (7) B — E}? In the set closure algorithm, AD*=AD F
(6) and nothing more. So FD (5) is essential and cannot be removed.

6. Is A D — F inessential given the set of other FDs that would remain: {(2) AB D — C,
(3)C—B, (5) AD — B, (7) B — E}? Clearly with this set of FDs we can derive A D* to
contain A D B (3) C (2) E (7), all the attributes there are on the right except F, so we
cannot derive A D — F without FD (6). Another way to say this is that with FD (6) removed,
no FD has F on its right-hand side, so A D — F cannot be implied.

7. Is B — E inessential under the set of other FDs that remains: {(2) ABD - C, (3) C —
B, (5) AD — B, (6) AD — F}? The answer is no, since deriving B* with this set of FDs
gives only B.

We end step 2 with the set H={(2) ABD - C,(3)C—-B, (5 AD—=B,(6)AD
— F, (7) B — E}, which should be renumbered for ease of reference in step 3.

H=1.ABD—-»C 2.C—»B, 3.AD—-B, 4AD—>F 5 B->E

Step 3. We start with FD (1) and note that there are multiple attributes on the left-hand
side; we call this set on the left side of FD (1), X=A B D. Therefore, we need to try to reduce
this set X by removing any single attributes and creating a new set J of FDs each time.

Drop A? We try to do away with the attribute A in FD (1), so the new set J is given by: (1) B D
—-C,(2)C—>B,3)AD—B, (4)AD—F, (5) B— E. To show that this reduction gives
an equivalent set of FDs, we need to show that B D* (under H) is the same as B D* (under
J). The risk here is that B D+ under J will functionally determine more than B D* under
H, since J has an FD with only B D on the left that H does not. We claim that the two sets
H and J are equivalent FD sets if and only if B D* (under H) is the same as B D* (under
J). So we calculate B D* under H to be B D E (5), and that’s all. Under J, BD+isBD C
(1) E (5). Since these are different, we can’t replace (1) AB D — Cwith (1) BD — C.

Drop B? We repeat the method. Now J contains (1) AD - C, (2)C— B, (3)AD — B, (4) A
D—>F (B)B—E and AD"underJisADC (1) B (2) F (4) E (5). But under H, A D* =
ADB(3)F (4)E(5) C(1). These are the same sets, but note the different order of gen-
eration. You need to use derivational notation with the proper order to show that the set
closure algorithm is being applied on the proper FD set. Under H, FD (3) is the first one
that expands the A D* closure, and FD (1) comes in the second pass. Under J, we can
use each FD as we come to it in order on the first pass. In any event, since A D* under H
is the same as A D* under J, we can reduce FD (1) to A D on the left-hand side, and the
FD set H is now

H=1.AD—>C, 2.C—»B, 3.AD—»B, 4AD—>F 5B->E

Drop D? We have already considered dropping A from the left side of FD (1), AB D — C,
and we don't need to repeat this now that B is dropped. But we must consider dropping
D. Now J will contain: (1)A—-C,(2)C—-B,(3)AD—B,(4)AD—F and (5) B —
E, and we need to consider taking A* under H(A* = A) and under J(A*=A C (1) B (2)
E (5)). Since they are different, we cannot remove D from FD (1).

2.7 Lossless Decompositions 57

We note FD (2), C — B, cannot be reduced on the left side, and (3) A D — B also
cannot be reduced on the left side, since A" and D* under H will contain only these attributes,
whereas under the relevant J the closures will contain B. The argument that (4) AD — F
cannot be reduced is similar.

Now since the set of FDs in H has changed in this pass through step 3, we need to return
to step 2. When we reach FD (3) and consider dropping it, (3) A D — B, we find now that
AD*under{(1)AD—=C,(2)C—-B,4)AD—F (5)B—E}givesADC (1) B (2), so since
A D* contains B with FD 3 missing, this FD is inessential and may be dropped. (Surprised?
Repeating step 2 is a crucial step!) The final answer out of step 3 is

H=1.AD—-C, 2.C—-B, 3.AD—>F 4B->E

This set is minimal. If you wish, you can perform step 2 and step 3 a final time to assure
yourself there are no other changes.
Finally, step 4 leads to the final set of FDs.

H=1.AD—>CF 2.C—>B, 33.B—=>E

To understand what we have accomplished, you might go through Example
2.15 and think about each change that was made in the set of FDs, then try to use
Armstrong’s Axioms to demonstrate that each change that was actually performed
will result in the same FD closure. (Don’t duplicate the set closure argument, but
instead find a direct proof that the change is legal.)

EXAMPLE 2.16

The set of functional dependencies stated in Example 2.10 for the emp_info database,

1. emp_id - emp_name emp_phone dept_name

2. dept_name - dept_phone dept_mgrname

3. skill_id - skill_name

4. emp_id skill_id - skill_date skill_Tvl
already forms a minimal set; that is, the minimal cover Algorithm 2.2 will not reduce it
further. We leave this derivation as an exercise.

The algorithm for finding a minimal cover of a set F of FDs will be crucial in
later sections for algorithms to perform appropriate design by the method of
normalization.

2.7 LOSSLESS DECOMPOSITIONS

The process of normalization depends on being able to factor or decompose a
table into two or more smaller tables, in such a way that we can recapture the
precise content of the original table by joining the decomposed parts.

Definition: Lossless Decomposition. For any table T with an associated set of
functional dependencies F, a decomposition of T into k tables is a set of tables {T;,

58 CHAPTER 2 Entity—Relationship Concepts

T,, ..., T} with two properties: (1) for every table T;in the set, Head(T)) is a proper
subset of Head(T); (2) Head(T) = Head(T,) U Head(T,) U ... U Head(Ty).

Given any specific content of T, the rows of T are projected onto the columns
of each T, as a result of the decomposition. A decomposition of a table T with an
associated set F of FDs is said to be a lossless decomposition, or sometimes a
lossless-join decomposition if, for any possible future content of T, the FDs in F
guarantee that the following relationship will hold:

T=T1[><T2><A..><1Tk

When a table T is decomposed, it is sometimes not possible to recover all the
information that was originally present in some specific content of table T by
joining the tables of the decomposition, not because we don’t get back all the
rows we had before, but because we get back other rows that were not originally
present.

EXAMPLE 2.17
A Lossy Decomposition

Consider the following table ABC:

ABC

A B C
al 100 | cl
a2 200 | c2
a3 300 | ¢3
a4 200 | c4

If we factor this table into two parts, AB and BC, we get the following table contents:

AB BC

A B B Cc
al | 100 100 |cl
a2 | 200 200 | c2
a3 | 300 300 | c3
a4 | 200 200 | c4

2.7 Lossless Decompositions

However, the result of joining these two tables is

AB Join BC
A |B C
al | 100 | cl
a2 | 200 | c2
a2 | 200 | c4
a3 | 300 | c3
a4 | 200 | c2
a4 | 200 | c4

59

This is not the original table content for ABC! Note that the same decomposed tables
AB and BC would have resulted if the table we had started with was ABCX, with content
equal to AB Join BC above, or either of two other tables, ABCY or ABCZ.

ABCY ABCZ
A B C A B c
al | 100 | cl al | 100 | cl
a2 | 200 | c2 a2 | 200 | c2
a2 | 200 | c4 a3 | 300 | c3
a3 | 300 | c3 a4 | 200 | c2
a4 | 200 | c4 a4 | 200 | c4

Since we can't tell what table content we started from, information has been lost by this
decomposition and the subsequent join. This is known as a lossy decomposition, or some-
times a lossy-join decomposition.

The reason we lost information in the decomposition of Example 2.17 is that
attribute B has duplicate values (200) on distinct rows of the factored tables (with
a2 and a4 in table AB and with c2 and ¢4 in table BC). When these factored tables
are joined again, we get cross-product rows that did not (or might not) exist in
the original:

a2

200

c4

and

ad

200

c2

60 CHAPTER 2 Entity—Relationship Concepts

EXAMPLE 2.18

A Different Content for Table ABC

Now let's say that table ABC started with a different content, one that had no duplicate
values in column B.

ABC

A B |C
Al | 100 | cl
A2 | 200 | c2
A3 [300 | c3

The question is this: If we decompose this table ABC into the two tables AB and BC as we
did in Example 2.17, is the resulting decomposition lossless? The answer is no, because the
definition of a lossless decomposition requires that the join of the factored tables recapture the
original information for any possible future content of the original table. But the table ABC
content we have just shown could change with the insert of a single row to give the content of
Example 2.17. There doesn’t seem to be any rule that would keep this from happening.

What sort of rule would we need to limit all possible future content for table
ABC so that the decomposition into tables AB and BC would be lossless? Of course,
functional dependencies spring to mind, because they represent rules that govern
future content of a table. Notice that in the previous definition of a lossless decom-
position, a set F of FDs is considered to be part of the table T definition.

Definition: Database Schema. A database schema is the set of headings of alll
tables in a database, together with the set of all FDs that the designer wishes to
hold on the join of those tables.

EXAMPLE 2.19

Table ABC with a Functional Dependency

Assume that table ABC is defined, which obeys the functional dependency B — C. Now the
table content of Example 2.18 is perfectly legal:

ABC

A|B |C

al | 100 | c1

a2 | 200 | c2

a3 | 300 | c3

2.7 Lossless Decompositions 61

But if we tried to insert a fourth row to achieve the content of Example 2.17,

a4 | 200 | c4

this insert would fail because it would break the functional dependency B — C. A new row
with a duplicate value for B must also have a duplicate value for C in order for B — C to
remain true:

a4 | 200 | c2

Is it true, then, that this new content for ABC can be decomposed and then rejoined
losslessly? The answer is yes. Starting with:

ABC

A B C

al | 100 | cl

a2 | 200 | c2

a3 | 300 | c3

a4 | 200 | c2

if we factor this table into two parts, AB and BC, we get the following table contents:

AB BC

A |B B c
al | 100 100 | cl
a2 | 200 200 | c2
a3 | 300 300 | c3
a4 | 200

Note that four rows are projected onto three in table BC because of duplicate values.
Now when these two tables are joined again, the original table ABC with the functional
dependency B — C results.

Because of the functional dependency B — C in table ABC of Example 2.19,
the projection of ABC on BC will always have unique values for attribute B. Recall
that this means attribute B is a key for table BC. The reason that the decomposi-
tion of ABC into AB and BC is lossless is that no cross terms can ever arise in

62 CHAPTER 2 Entity—Relationship Concepts

joining them: Although duplicate values for column B can occur in table AB, every
row in table AB joins with a unique row in table BC (assuming that this B value
exists in table BC, as it always would in an initial decomposition that projects
rows from ABC). This is reminiscent of what happened with our CAP database
when we joined orders with customers. We simply extended rows of orders
with more information about individual customers. Although duplicate values can
exist in the cid column of the orders table, the cid values in the customers table
are unique, so every row in orders joins to exactly one row in customers.

We generalize the preceding discussion somewhat to deal with sets of
attributes.

Theorem 2.5. Given a table T and a set of attributes X < Head(T), the following
two statements are equivalent: (1) X is a superkey of T; (2) X — Head(T); that is,
the set of attributes X functionally determines all attributes in T. Equivalently: X* =
Head(T).

PROOF. (1) implies (2). If X is a superkey of table T, then for any content of
table T, two distinct rows of T must always disagree on X; that is, distinct rows
cannot agree in value on all attributes of X. But from this it is clear that two
rows u and v cannot agree on X and disagree on some other column in Head(T)
(since if two rows agree in X, then they both represent the same row), and
this means that X — Head(T).

(2) implies (1). Similarly if X — Head(T), then for any possible content of
T, two rows in T cannot agree in value on X and simultaneously disagree
on Head(T). But if the two rows u and v don’t disagree on any attributes of
Head(T), then they must be the same row. Therefore, this argument has shown
that two distinct rows cannot agree in value on X, and therefore X is a super-
key for T. [

We have reached a point where we can give a general rule for the kind of
lossless decomposition we will need in performing normalization.

Theorem 2.6. Given a table T with an associated set F of functional dependencies
valid on T, a decomposition of T into two tables {T,, T,} is a lossless decomposition
of T if and only if Head(T,) and Head(T,) are both proper subsets of Head(T),
Head(T) = Head(T,) L Head(T,) (i.e., all attributes of T are duplicated either in T,
or T,), and one of the following functional dependencies is implied by F:

1. Head(T,) N Head(T,) — Head(T))
or
2. Head(T,) N Head(T,) — Head(T),).

PROOF. We take as given table T, its decomposition into T1 and T2, and FD 1,
Head(T1) N Head(T,) — Head(T,). (The case with FD 2 is proven similarly.)

2.7 Lossless Decompositions 63

In what follows, we denote by X the set of attributes Head(T,) N Head(T,); Y
is the set of attributes in Head(T,) — Head(T,), and Z is the set of attributes in
Head(T,) — Head(T,). To begin, we note by the definition of decomposition
that T, and T, are projections of T, and Head(T,) U Head(T,) = Head(T). From
this we can demonstrate that T < T, »< T,. Every column of T appears in T, »<
T,, and if u is a row in T, we say that the projection of u on Head(T)) is given
by yix,, a concatenation of attribute values, where y, represents values for
attributes in Y and x; represents values for attributes in X; similarly, x,z, is the
projection of u on Head(T,). Clearly the projection of u on Head(T,) has the
same values as the projection of u on Head(T,) on all attributes in X = Head(T)
M Head(T,), and by the definition of join, row u, a concatenation y,;x,z,;, will
appear in T, »< T,.

Now we show under the given assumptions that T1 »< T, € T. Assume that
from row u in T, we get by projection a row y,x,; in T,. Similarly assume that
from row v in T, we get row X,z, in T,, with X, representing values for attri-
butes in X. Now assume that the two rows y,x; and X,z, in T, and T, are join-
able so that x, is identical in all attribute values to x,, and y,X,z, is in T} »< T,.
This is the most general possible form for a row in T, »< T,, and we have only
to show that the row is also in T. We denote the additional attribute values of
u that project on y,x, in T by z,, so that u = y,x,z,, and claim that z, = z,. This
is because the row u is identical to v in the attributes of X, and X — Head(T),),
so in particular X — Head(T,) — Head(T,) = Z, and since u and v are alike on
X, they must be alike on attributes of Z. Thus, z, = z, and row y,x,z, that is in
T, »< T, is identical to row y,x,z, in T. [

EXAMPLE 2.20

In Example 2.19, we demonstrated a decomposition of table T with heading A B C and
functional dependency B — C, into two tables T, and T, with Head(T,) = A B and Head(T,)
=B C. If we apply Theorem 2.6, we have Head(T;) n Head(T,) — Head(T,); thatis, AB N
BC—BC,orB— BC, which is clear from B — C.

EXAMPLE 2.21

Consider the table custords from Example 2.18, created by joining customers with
orders. Clearly ordno is a key for custords, since it has unique values, and the reader
can also verify that we have the FD cid — Head(customers). Now we note that
Head(customers) m Head(orders) = cid, the key for customers, so Head(customers) m
Head(orders) — Head(customers). Thus, by Theorem 2.6, custords has a lossless join
decomposition into custs and ords, with the same headings as customers and orders,
respectively (we would need to verify that the rows projected from custords onto custs
and ords give the same rows that we're used to in customers and orders). The reason

64 CHAPTER 2 Entity—Relationship Concepts

that this decomposition seems intuitive is that by joining customers and orders, we
extend each of the rows in the orders table with columns from customers associated
with the unique cid value in that row. It seems clear, therefore, that we don't lose any
information by decomposing the join back onto the headings of customers and orders.
Of course, we might have lost some information originally in creating custords—if there
were some customers who didn’t place any orders, for example. But our lossless decompo-
sition starts with the table custords and guarantees that no information is lost in the
decomposition.

Theorem 2.6 shows how to demonstrate that a decomposition of a table T into
two tables {T,, T,} is a lossless decomposition. In cases where three or more tables
exist in the decomposition, {T,, T, ..., T}, with & = 3, we can demonstrate
losslessness by using the two-table result in a recursive manner.

EXAMPLE 2.22

Lossless Join Decomposition with Multiple Tables

Assume that we are given the table T with Head(T) = A B C D E F and the FD set given by
()AB—C, (2) A— D, and (3) B — E. Notice there is no FD for the attribute F, but A B
forms a key for A B C D E, since its closure includes all these attributes. Therefore, the key
for table T must be A B F, since the key must functionally determine everything in Head(T).
A perfectly acceptable lossless decomposition of T is {Ty, Ty, T3, T4}, where Head(T;) = A B
C (the keys for these tables are underlined), Head(T,) = A D, Head(T;) = B E, and Head(T,)
= A B F. The union of these tables contains all the attributes in T, so we merely need to
demonstrate losslessness. Note that if we join tables in the following order by pairs, each
parenthesized table join so far will ensure a lossless decomposition with the table that is
joined next by Theorem 2.6.

(TypeaTy) > To) e Ty

We note that Head(T,) = A B C, Head(T,) = A D, Head(T, »< T,) = A B C D, Head(T5)
=B E, and Head((T; »« T,) »« T3) = A B C D E. Thus, the following FDs yield losslessness
for the multitable join desired.

Head(T;) N Head(T,) = A — Head(T,) = A D, because of (2) A —- D

Head(T, >« T,) N Head(T;) = B — Head(T;) = B E, because of (3) B = E

Head((T; »« T,) »« T3) N Head(T,) = A B — Head(T;) = A B C, because of
()AB—>C

Since the join operator is associative, losslessness does not require a specific order of
join and we can remove the parentheses in the expression ((T; »< T,) »< T3) < T,

In the last few sections we have developed algorithms to determine a minimal
set of FDs for a given set F and defined what is meant by a lossless decomposition.
In the coming section, we learn how a minimal set of FDs helps us create an
appropriate normal form decomposition for a database.

2.8 Normal Forms 65

emp_id dept_name skill_id

emp_name dept_phone skill_name

emp_phone dept mgrname skill _date
skill_1v1

1) emp_id — emp_name emp_phone dept_name
2) dept_name — dept _phone dept_mgrname
3) skill_id — skill_name

(
(
(
(4) emp_id skill_id — skill_date skill_1vl

FIGURE 2.22
Data items and FDs for the employee information database.

2.8 NORMAL FORMS

Let us return now to the example of bad database design from Section 2.5 that
motivated the long mathematical digression of the last two sections. Recall that
we wish to create a database on a set of data items given in Figure 2.15, with rules
of interrelatedness stated in the set of functional dependencies in Example 2.1.
We repeat these here as Figure 2.22.

We started with a 1NF table, emp_1info, that combined all these data items (see
Figure 2.16) and noted a number of design problems, referred to as anomalies.
In the following section, we perform a sequence of table factorizations, which are
in fact lossless decompositions, to eliminate redundancies from the employee
information database.

As explained earlier, a database schema is the set of headings of all tables in a
database together with a set of all FDs intended by the designer. The emp_info
table in Figure 2.23, together with the FDs given, make up such a database
schema.

2.8.1 A Succession of Decompositions to Eliminate Anomalies

One anomaly of the database represented in Figure 2.23 is that if the number of
skills for some employee goes to zero in the emp_info table, no row of any kind
will remain for the employee. We have lost the phone number and the department
the employee works in because of deleting this skill. At the end of Section 2.5,
we proposed a solution for this anomaly by factoring the emp_info table into two
tables, the emps table and the skills table, whose column names were given in
Figure 2.17 and are repeated in Figure 2.24.

When the emps and skills tables were originally proposed, a number of fea-
tures of this factorization were mentioned without justification. We are now in a
position to demonstrate these points.

66 CHAPTER 2 Entity—Relationship Concepts

emp_info

emp_id emp_name skill_id skill_name | skill _date | skill_lvl
09112 Jones ... | 44 librarian 03-15-99 12

09112 Jones o] 26 PC-admin 06-30-98 10

09112 Jones . 89 word-proc 01-15-97 12

14131 Blake o] 26 PC-admin 05-30-98 9

14131 Blake ... | 89 word-proc 09-30-99 10

(1) emp_id — emp_name emp_phone dept name
(2) dept_name — dept_phone dept_mgrname
(3) skill_id — skill_name

(4) emp_id skill_id — skill_date skill_lvl

FIGURE 2.23
Employee information schema with a single table, emp_info.

emps skills
emp_id emp_id
emp_name skill_id
emp_phone skill_name
dept_name skill_date
dept_phone skill_Tvl
dept_mgrname

(1) emp_id — emp_name emp_phone dept_name
(2) dept_name — dept_phone dept_mgrname
3)
“4)

4

skill_id — skill_name
emp_id skill_id — skill_date skill_lvl

FIGURE 2.24
Employee information schema with two tables, emps and skills.

Proposition 2.1. The key for the emp_info table is the attribute set emp_id and
skill1_id. This is also key for the ski11s table, but the emps table has a key consist-
ing of the single attribute emp_id.

PROOF. By Theorem 2.5 we can determine a superkey for a table T by finding a
set of attributes X < Head(T) such that X — Head(T). Then, to show the set
X is a key, we need merely show that no properly contained subset Y of X has
this property. We start our search by finding the set closure of X for all attribute

2.8 Normal Forms 67

sets X found on the left-hand side of any of the FDs in Figure 2.23, repeated
here.

emp_id - emp_name emp_phone dept_name

dept_name - dept_phone dept_mgrname

skill_id - skill_name

emp_id skill_id - skill_date skill_Tv] []

NN =

Starting with X = emp_id skil1_id (the left side of FD 4 above), we use Algo-
rithm 2.1 and the FD set F given to determine X'. Starting from X" = emp_id
ski11_1id and applying FD 4, we get X" =emp_id skill_id skill_date skill_
Tv1. Next, applying FD 3, since skill_id is in X', we add skill_name to X"
Applying FD 1, since emp_1id is in X', we add the right-hand side of FD 1 to get
X" =-emp_id skill_id skill_date skill_Tvl skill_name emp_name emp_
phone dept_name. Finally, we apply FD 2, and since dept_name is now in X', we
add the right-hand side of FD 2 to get X" = emp_id skill_id skill_date
skill_Tvl skill_name emp_name emp_phone dept_name dept_phone dept_
mgrname. This final list contains all the attributes in emp_info—that is, Head(emp_
info). By the definition of X', this means that

(2.1) emp_id skill_id - Head(emp_info)
By Theorem 2.75 then, emp_id skill_id is a superkey for emp_info.

To show that emp_id skill_id is in fact a key for emp_info, we need only
show that no subset (either emp_id or skill_id alone) functionally determines
all these attributes. Let us take the closure of the set emp_1id to find what attributes
are functionally determined. We can immediately apply FD 1 to get emp_id -
emp_id emp_name emp_phone dept_name. Next we can apply FD 2, and derive

(2.2) emp_id - emp_id emp_name emp_phone dept_name dept_phone dept_
mgrname

Since skil1_id is not in the right-hand set of (2.2), no other FDs can be applied,
so this is the maximum right-hand set that is functionally determined by emp_id.

Finally, starting with ski11_1id alone in the set X to be closed, FD 3 is the only
one that can be applied, and we see that the maximum right-hand set functionally
determined by skill_id is given as

(2.3) skill_id—=skill_id skill_name

Neither (2.2) nor (2.3) contains all attributes of emp_info, and thus we can
conclude from (2.1) that

(2.4) emp_id skill_id is a key for the emp_info table

In addition, we note from (2.2) that emp_id functionally determines all attri-
butes in the emps table of Figure 2.24, and since no subset of a singleton set can
be on the left side of an FD,

68 CHAPTER 2 Entity—Relationship Concepts

(2.5) emp_id is a key for the emps table

Finally, we note that the skills table has attributes that are not functionally
determined by either emp_id or skill_id individually, skil1_1v1 is not on the
right-hand side in either (2.2) or (2.3), and therefore the only possible key for the
skills table is emp_id skill_id:

(2.6) emp_id skill_id is a key for the skills table

Proposition 2.2. The factorization of the emp_info table into the emps and skills
tables is a true lossless decomposition.

PROOF. To see that this is a valid decomposition, we note that Head(emps) U
Head(ski11s) = Head(emp_info). Furthermore, Head(emps) N Head(skills) =
emp_1id, and since functional dependency (2.2) shows that emp_id — Head(emps),
by Theorem 2.6, the decomposition is lossless. (]

From Proposition 2.2, we see that the decomposition that brings us from the
emp_info table of Figure 2.23 to the emps and skills tables of Figure 2.24 will
always allow us to recapture any content of emp_info by a join of the two factored
tables. But the real motivation for this decomposition was to deal with the various
anomalies mentioned earlier.

How did the delete anomaly mentioned in Section 2.5 arise in the emp_info
table of Figure 2.23? The basic reason is that the pair of attributes emp_id skill_
id form the key for that table, but there are attributes that we wish to keep track
of that are functionally determined by a single one of those two attributes, emp_id.
If we delete the last skil1_id value for some specific emp_id, we no longer have
any (emp_id skill_id) pairs with that specific emp_id, but we still have infor-
mation that is dependent only on emp_id, which we don’t want to lose! Putting
this in terms of the ER model, employees are real entities whose attributes we
want to keep track of (and so the employee identifier, emp_id, shows up on the
left of a functional dependency).

In the decomposition of Figure 2.24, we factored the emps table out of the
emp_info table so that we wouldn’t lose information in this way. With this new
schema, we can keep a row for a given employee in the emps table even if the
employee has no skills. Recall that the insert anomaly is the inverse face of the
delete anomaly, making it impossible to insert a new employee without skills—a
trainee—into the emp_info table. As before, this problem is solved by factoring
out the emps table, since a new row can be inserted into emps that doesn’t have
any join to a row of the skills table. As far as the update anomaly is concerned,
this problem arises in the emp_info table once again because attributes dependent
only on emp_id are in a table with key emp_id skil1_id; we can therefore have
multiple rows with the same employee phone number in this table that must all
be updated at once. Once again, factoring out the emps table solves this problem,
because each employee is now represented by a single row.

2.8 Normal Forms 69

The question now is this: Are there any more anomalies remaining in the data-
base schema of Figure 2.24? The answer, perhaps unsurprisingly, is yes. There is
another anomaly of the kind we have just analyzed in the skil1s table. This table
has the primary key (skill1_id emp_id), and we recall FD 3 of Figure 2.22:

(2.7) skill_id = skill_name

What this FD seems to be saying is that skills is an entity in its own right,
that skil1_1id is an identifier for the entity, and that ski11_name is a descriptor.
(There might be two distinct skills with different skil11_id values but the same
skill_name, since skill_name - skil1_id is not an FD that is implied by the list
we presented.) But recall that the key we have discovered for the skills table is
emp_id skill_id. This situation seems to be symmetric with the one that caused
us to factor out the table emps from emp_info. Can we construct (for example) a
delete anomaly of the kind that led to this step? The answer is yes, for if we assume
that some skill is rare and difficult to master, and we suddenly lose the last
employee who had it, we would no longer have any information about the skill
at all, neither the skill_id nor the skill_name. We therefore need
to factor out another table to solve this anomaly, and we see the result in
Figure 2.25.

From examination of the new emp_skills table and skills table of Figure
2.25, it should be clear that these two tables form a lossless decomposition of the
skil1s table of Figure 2.24. Indeed, the three tables of Figure 2.25 form a lossless
decomposition of the single emp_info table we started with in Figure 2.23. Most
importantly, we have dealt with the anomalies that arise from keeping attributes
of skills entities in a table with a key of two attributes. In terms of the ER model,

emps emp_skills skills
emp_id emp_id skill_id
emp_name skill_id skill_name
emp_phone skill_date

dept_name skill_1vl

dept_phone

dept_mgrname

(1) emp_id — emp_name emp_phone dept_name
(2) dept_name — dept_phone dept_mgrname
(3) skill_id — skill_name
(4) emp_id skill_id — skill_date skill_lvl
FIGURE 2.25
Employee information schema with three tables.

70 CHAPTER 2 Entity—Relationship Concepts

what we have just done is to factor out the relationship emp_skills from the two
entities Emps and SkilTs.

Consider now the three tables of Figure 2.25. Everything in the emps table, as
we showed earlier in Proposition 2.1, is functionally determined by the singleton
attribute emp_id; a similar situation holds with the skills table, as we see from
the FD in (2.7); in the emp_ski11s table, a glance at (2.2) and (2.3) makes it clear
that no remaining attributes in this table are dependent on a subset of the (emp_id
ski11_id) key. We ask then if any further anomalies can remain in these tables.
Once more, the answer is yes!

To see how this is possible, consider what would happen if we had a large
reorganization in the company, so that every employee in one department are to
be transferred to other departments (even the manager will be transferred—pre-
sumably, at some later time, different employees will take their place in the depart-
ment that has just been emptied). Now notice that when the last employee is
removed, there remains no row in the emps table containing information about
the department: We have lost even the phone number of the department and the
name it goes under! The solution to this problem is obvious: We must factor out
a separate table for departments. This will result in the emp_info database of
Figure 2.26; this database is in 3NF, or equivalently in this case, in BCNF. We will
give definitions for these normal forms shortly.

With the factorization of the depts table of Figure 2.26, the update anomaly
relating to department information will no longer trouble us. In terms of the ER
model, what we have done is to differentiate between the two entities Emps and
Depts, between which there is a many-to-one relationship (represented by the
foreign key dept_name in the emps table).

At this point, we claim that the database schema of Figure 2.26 is in some sense
a final result—no anomalies remain in the representation to trouble us. For the

emps depts emp_skills skills
emp_id dept_name emp_id skill_id
emp_name dept_phone skill_id skill_name
emp_phone dept_mgrname skill_date

dept_name skill_1vl

(1) emp_id — emp_name emp_phone dept name
(2) dept_name — dept_phone dept _mgrname
(3) skill_id — skill_name
(4) emp_id skill_id — skill_date skill_1vl
FIGURE 2.26
Employee information database schema in 3NF (also in BCNF).

2.8 Normal Forms 71

rationale to justify this statement, we look to the four FDs listed that must be
maintained in the database, which we refer to in what follows as the set F of FDs.
In every case where we have noted an anomaly in earlier schemas, the underlying
reason for the anomaly has turned out to hinge on the fact that some attribute (it
could have been a set of attributes in a different schema) on the left-hand side of
an FD in F might have multiple duplicate occurrences (or possibly zero occur-
rences) in the table where it appeared. The solution was to create a separate table,
placing the attributes on the left-hand side of this FD, together with all attributes
on the right-hand side in that table, while the attributes on the right-hand side
were removed from the table where they previously appeared. Look carefully at
the successive decompositions presented in Figures 2.23 through 2.26 to see that
this is an accurate description of what was done. Since the attributes on the left-
hand side of the FD are in both the old and the new tables and determine all other
attributes in the new table, the decomposition is lossless. Thus, FD 1 generates
the emps table, FD 2 the depts table, FD 3 the skills table, and FD 4 the emp_
skills table. Since no more FDs exist in F, we maintain that no more anomalies
will arise, and therefore no further decomposition is necessary. Thus, we have
reached a final form.

2.8.2 Normal Forms: BCNF, 3NF, and 2NF

The tables in the final schema of Figure 2.26 each have unique candidate keys,
which we may think of as primary keys for the tables. One way to characterize
why no further decomposition is needed to address anomalies in these tables is
to say that all functional dependencies involving attributes of any single table in
this schema arise from the table keys alone. We provide definitions to make this
idea precise.

Definition. Given a database schema with a universal table T and a set of func-
tional dependencies F, let {T, T,, ..., T,} be a lossless decomposition of T. Then
a functional dependency X — Y of F is said to be preserved in the decomposition
of T, or alternatively the decomposition of T preserves the functional dependency
X =Y, if for some table T; of the decomposition, X U Y < Head(T;. When this is
the case, we also say that the FD X — Y is preserved in T; or that it lies in T, or is
in T,

EXAMPLE 2.23

We have derived a number of successive decompositions of the employee information
schema of Figure 2.23 with a universal table and a set F of FDs: a decomposition with two
tables (Figure 2.24), three tables (Figure 2.25), and four tables (Figure 2.26). Each of these
decompositions preserves all dependencies in F. For example, in the four-table decomposi-
tion of Figure 2.26, FD 1 lies in the emps table, FD 2 lies in the depts table, FD 3 lies in
the skil1s table, and FD 4 lies in the emp_skil11s table.

72 CHAPTER 2 Entity—Relationship Concepts

Because every FD in F is preserved in one of the four tables of Figure 2.26,
whenever any single table in the schema is updated, it is possible to verify that
any FD affected by the update is still valid by testing its validity in that single table,
without any need for a join. This is the motivation for seeking to preserve func-
tional dependencies in a decomposition.

Definition: Boyce-Codd Normal Form. A table T in a database schema with
FD set F is said to be in Boyce-Codd normal form (BCNF) when the following
property holds. For any functional dependency X — A implied by F that lies in T,
where A is a single attribute that is not in X, X must be a superkey for T. A database
schema is in BCNF when all the tables it contains are in BCNF.

Consider a table T, and let X — A be a functional dependency in T. If the BCNF
property holds for this case, then X is a superkey, so for some set K of attributes
representing a key for T, K ¢ X. (Note that there might be a number of different
sets Ky, K, ... that are candidate keys for T, as we consider in Example 2.26 below.)
If the BCNF property fails, then X does not contain a key set K, and K — X is non-
empty for all K. Then two cases are possible: either (1) X — K is empty for some
K—that is, X c K, and we say that some attributes of T are functionally determined
by a proper subset X of a key K; or (2) X — K is nonempty for all K, so some attri-
butes are determined by a set X at least partially outside each K. In the second case,
we say that some attributes of T are functionally determined by a different set of
attributes that does not contain and is not contained in any key set.

EXAMPLE 2.24

In the emp_ski11s table of Figure 2.26, the only key consists of the set emp_id skill_id,
as we can easily demonstrate by set closure arguments: Any set of attributes that function-
ally determine all attributes in the emp_ski11s table must contain both of these attributes.
We claim that the table is in BCNF and will demonstrate this in Example 2.25. As we just
pointed out, the BCNF property implies that no attributes of this table are functionally deter-
mined by any subset of this key set, or any different set of attributes that does not contain
this key set.

In the skil1s table of Figure 2.24, the unique key for this table consists of the two
attributes emp_id skil1_id, while the FD ski11_id - skil1_name also lies in the table.
Clearly the left-hand side of this FD is a subset of the key emp_id skill_id. Because of
this, the BCNF property fails for this table (and we pointed out that an anomaly arose requir-
ing us to perform further decomposition).

In the emps table of Figure 2.24 (identical to the emps table in Figure 2.25), the unique
key for the table consists of the attribute emp_id, while the FD dept_name - dept_phone
is implied by FD 2 of F and lies in the table. Since the left side of this FD is different from
the key set (neither a subset nor a superset), the BCNF property fails, and further decom-
position is necessary. Note, by the way, that a table emps2 containing all the attributes of
emps except the attribute dept_phone would still not obey the BCNF property. Although the
FD dept_name - dept_phone does not lie in the table emps2, the FD dept_name - dept_
mgrname, which is also implied by FD 2, does lie in emps2.

2.8 Normal Forms 73

EXAMPLE 2.25

We claim that the database schema of Figure 2.26 is in BCNF. We need to show that for
any functional dependency X — A implied by F that lies in one of the tables of Figure 2.26,
where A is an attribute not in X, then X contains a key for that table. We have shown in
Example 2.23 that for the set of tables in Figure 2.26, one FD of F lies in each table, and
this FD has as its left side the key for the table. This does not quite conclude the issue,
however, because we also need to consider all FDs that are implied by F; that is, all FDs
that are true in the schema. In Proposition 2.1, FDs (2.1), (2.2), and (2.3), we determined
the closure of all sets X of attributes that fall on the left side of three FDs of F, and showed
that these three sets form keys for three of the tables. For the fourth FD, we need merely
take the closure of dept_name, which is easily seen to consist of the set dept_name,
dept_phone, dept_mgrname, or Head(depts):

(2.8) dept_name — Head(depts)

Now we claim that all attribute sets Z that do not contain one of the sets X, the left side
of an FD in F and therefore a key for one of the Figure 2.26 tables, must have trivial closure
/* = 7. This follows from the fact that no FDs of the form X — Y exist with X < Z, and by
Algorithm 2.1, no attributes will ever be added to Z’s set closure.

From this we can easily see that all of the tables in Figure 2.26 are BCNF, because if
X — A holds and A is an attribute not contained in the attribute set X, then X — A X, and
therefore X* is not identical to X. But we have just shown that any attribute set that does
not contain a table key has a trivial closure, and this must mean that X contains some table
key K. In that table, we have also included all attributes functionally determined by K, and
therefore A is in that table as well.

EXAMPLE 2.26

Suppose we changed the rules in the employee information database so that dept_mgrname
was a second identifier of the Departments entity duplicating the effect of dept_name. This
would add a new FD to the set F: dept_mgrname — dept_name; by transitivity, since
dept_name is a key for the depts table in Figure 2.26, dept_mgrname would also be a key.
The question now is whether the depts table is still in BCNF. And the answer is yes, because
the BCNF property was specially constructed not to require a unique key for the table. The
only thing that has changed in the depts table is that there are now two keys, but any FD
of the form X — Y in this table has the necessary property that X contains dept_mgrname
or X contains dept_name.

Recall that every FD in F is preserved in one of the four tables of Figure 2.26,
so that whenever any table in the schema is updated, it is possible to verify that
an affected FD still holds by testing data items in that table alone. We would like
to be able to guarantee that this property, preservation of FDs, can always be
achieved starting from a universal table and proceeding to a lossless decomposi-
tion into BCNF. Unfortunately this is not true, because the BCNF criterion for a
table is too strict.

74 CHAPTER 2 Entity—Relationship Concepts

EXAMPLE 2.27

We wish to add a number of attributes to the employee information database of Figure 2.22
to keep track of the full addresses of all employees (assumed to be living in the United
States):

emp_cityst, emp_straddr, emp_zip

Here emp_cityst reflects the city and state, emp_z1ip the zip code, and emp_straddr
the street name, number, and apartment, if any. We find that when we reach the decom-
position of Figure 2.26, the emps table contains all of these attributes in addition to the ones
that are already there, as we see in Figure 2.27.

We assume that each employee is required to provide a single address, so it is clear
that the emp_id value functionally determines all these new attributes, and FD (1) is
modified accordingly:

1. emp_id - emp_name emp_phone dept_name emp_straddr emp_cityst emp_
zip
No keys for any other tables of Figure 2.26 are affected, and the key for the emps table
is still emp_id.
But the post office has assigned zip codes to cover regions of a city (determined by

street address) and never to cross city boundaries, so we also have the following new FDs
to add to the set F:

5. emp_cityst emp_straddr - emp_zip regions of city determine the zip
code
6. emp_zip - emp_cityst zip codes never cross city boundaries

Since the left side of FD 5, emp_cityst emp_straddr, is not a superkey of the emps
table, we need to perform a further decomposition to achieve the BCNF property. If we did
not do this and deleted the last employee in some zip code, we would lose what information
we have about that zip code—namely, what city and state it is associated with. After the
prescription explained in the discussion following Figure 2.26, we place the attributes on
the left side of FD 5, together with all attributes on the right side of this FD in a separate

emps

emp_id
emp_name
emp_phone
dept_name
emp_cityst
emp_straddr

emp_zip

FIGURE 2.27
The emps table extended to contain employee addresses.

2.8 Normal Forms

75

emps empadds
emp_id emp_cityst
emp_name emp_straddr
emp_phone emp_zip
dept_name

emp_cityst

emp_straddr

FIGURE 2.28
A 3NF decomposition of Figure 2.27.

emps zipstr zipcit
emp_id emp_zip emp_zip
emp_name emp_straddr emp_cityst
emp_phone

dept_name

emp_cityst

emp_straddr

FIGURE 2.29
A BCNF decomposition of Figure 2.28.

table (empadds), while the attributes on the right side are removed from the table where
they previously appeared (emps). The result is given in Figure 2.28. This is a perfectly rea-
sonable lossless decomposition of the previous table (lossless because of Theorem 2.6,
since emp_cityst emp_straddr is a key for empadds, and this is also the intersection of
the headings of the two tables). We note too that emp_zip emp_straddr is an alternate
candidate key for empadds, since taking the closure of this set, we get emp_cityst by FD
6. Thus, we have the new derived FD 7. It is easy to see by closure that no other candidate
keys exist for empadds.

7. emp_zip emp_straddr - emp_cityst (FD derived from (5) and (6))

The emps table of Figure 2.28 is now in BCNF, since neither FD 5 nor 6 lies in emps,
and the only remaining FD, FD 1, requires that any superkey for the table will contain
emp_id. This decomposition also preserves FDs 5 and 6, which both lie entirely in the
empadds table. However, at this point FD 6 forces us to perform further decomposition of
empadds to achieve BCNF, since emp_zip - emp_cityst, and emp_zip does not contain
either candidate key of empadds. Clearly this new decomposition must contain at most two
attributes in each table, and we require one table (zipcit in Figure 2.29) to have heading
emp_zip emp_cityst to contain FD 6. The other table only has two possible pairs of attri-
butes for a heading, the left-hand side of FD 5 or the left-hand side of FD 7, both keys for
the empadds table. Choosing the left-hand side of FD 5, emp_cityst emp_straddr, would

76 CHAPTER 2 Entity—Relationship Concepts

not result in a lossless decomposition, since the only attribute it would have in common with
zipcitis emp_cityst, and this wouldn't contain a key for either table. We therefore choose
BCNF decomposition shown in the figure.

The decomposition of Figure 2.29 is lossless for the following reasons: emp_zip is the
key for the zipcit table, the intersection of Head(zipstr) and Head(zipcit), so that join
is lossless; the union of the zipstr and zipcit table headings contains all the attributes
of the previous empadds table, so zipstr and zipcit join to form the empadds table of
Figure 2.28; the empadds table formed a lossless join with the emps table, so the three tables
join losslessly. Furthermore, both new tables in Figure 2.29 are in BCNF form. The only FD
in the zipcit table is FD 6, and emp_zip is the key. The zipstr table has no FD in it, so
the unique key includes both attributes, emp_zip emp_straddr, which was also an alternate
candidate key for the empadds table of Figure 2.28.

But the decomposition in Figure 2.29 does not preserve dependencies of the extended
set F, since FD 5 does not lie in either table. This can have an unfortunate effect, in that
we must perform programmatic checking to ensure that a given street address, city, state,
and zip code being entered conform with the post office assighment.

It seems that we have gone too far in decomposition if we really want to pre-
serve functional dependencies. What we’d like is a definition for normal form that
allows us to stop at Figure 2.28 and not press on to Figure 2.29. In order to do
this, we have to come up with a new definition for normal form (3NF, as it turns
out). We achieve this with the following definitions.

Definition: Prime Attribute. In a table T, an attribute A is said to be prime if and
only if the attribute A exists in some key K for the table.

Definition: Third Normal Form. A table T in a database schema with FD set F
is said to be in third normal form (3NF) under the following condition. For any func-
tional dependency X — A implied by F that lies in T, where A is a single attribute
that is not in X, one of the two following properties must hold: either (1) X is a
superkey for T; or (2) A is a prime attribute in T. A database schema is in 3NF
when all the tables it contains are in 3NF.

EXAMPLE 2.28

Consider the database schema of Figure 2.29. Each of the tables in this schema is in BCNF,
and therefore in 3NF. The BCNF prescription for a table requires that the table has property
1 of the 3NF definition, and it doesn’t permit the “escape clause” of property 2. Therefore,
any table in BCNF is also in 3NF, but the reverse doesn't hold.

EXAMPLE 2.29

Consider the empadds table of Figure 2.28. This table is in 3NF but not in BCNF. The reason
we required a further decomposition of this table was that the empadds table of Figure 2.28
had as a key the attributes emp_cityst emp_straddr, and at the same time FD 6, emp_zip

2.8 Normal Forms 77

— emp_cityst lies in the table. This is an FD whose left-hand side does not contain a key
of empadds, so the FD does not fulfill the BCNF property. However, we note that the attribute
on the right of this FD does lie in some key and is therefore prime. Thus, the FD does fulfill
property 2 of the 3NF definition.

EXAMPLE 2.30
We are given a table T with Head(T) = A B C D, and FD set F as follows:
1.AB—-CD, 22D—>8B

Clearly A B is a candidate key for T, and we see by closure that A D is another one: A D*
=A DB (2) C(1). Itis easy to confirm that there are no others. Now we maintain that table
T is already in 3NF, because the only FD implied by F that does not contain A B on the
left-hand side (and is not trivial) depends on FD 2, D — B, and since B is a prime attribute,
table T is 3NF by the “escape clause” of property 2.

If we did wish to decompose T losslessly to a BCNF form, we would want to start by
projecting on a table that contains FD 2—that is, table T, with Head(T,) = B D. Then we
will want table T, to contain a candidate key for T as well as the attribute C, but if we create
T, with Head(T;) = A B C, then the headings of T, and T, won't intersect in D and therefore
won't join losslessly. Thus, we must create table T, with Head(T,) = A D C. And so we have
the BCNF decomposition {A D C, B D}.

In decomposing a database with a given set of functional dependencies F
to achieve a normal form, the BCNF and 3NF forms are often identical, as we
saw in Example 2.28. They differ exactly when there exist two nontrivial FDs
implied by F, X = Y and Z — B, where Zc X U Y and B € X. In Example 2.30,
FD 1 gave us AB —- CD and FD 2 gave us D — B, with D c CD and B € A B.
Further decomposition to achieve BCNF will cause dependencies not to be
preserved. Many database designers aim for a 3NF design that preserves
dependencies.

Another definition for a table property, known as second normal form (2NF),
is weaker than 3NF and of mainly historical interest, since no advantage arises
from stopping short of 3NF. When a table fails to be 3NF, it must contain a valid
nontrivial functional dependency X — A, where A is nonprime and X is not a
superkey for T. Recall from the previous discussion of BCNF that if X is not a
superkey for T, then two cases are possible: Either X c K for some K and we say
that some attributes of T are functionally determined by a proper subset X of a
key K, or else X — K is nonempty for all keys K in T, and we say that some attri-
butes of T are functionally determined by a different set of attributes that does
not contain and is not contained in any key set. This latter case is also known as
a transitive dependency, since we have K — X for any key K, and given X — A,
the functional dependency K — A is implied by transitivity. A table in 2NF is not
allowed to have attributes that are functionally determined by a proper subset of
a key K, but it may still have transitive dependencies.

78 CHAPTER 2 Entity—Relationship Concepts

Definition: Second Normal Form. A table T in a database schema with FD set
F is said to be in second normal form (2NF) under the following condition: For any
functional dependency X — A implied by F that lies in T, where A is a single attri-
bute that is not in X and is nonprime, X is not a proper subset of any key K of T.
A database schema is in 2NF when all the tables it contains are in 2NF.

2.8.3 An Algorithm to Achieve Well-Behaved 3NF Decomposition

For a number of technical reasons it turns out that the approach of successive
decompositions to achieve a 3NF lossless join decomposition preserving func-
tional dependencies is distrusted by many practitioners. This is the only approach
we have seen, used in Figures 2.23 through 2.26. Problems can arise because the
set F of functional dependencies used in the successive decompositions has not
been carefully defined, and as we saw in Section 2.6, numerous equivalent sets F
are possible. Algorithm 2.3 provides a straightforward method to create the desired
decomposition.

ALGORITHM 2.3 This algorithm, given a universal table T and set F of FDs, generates a
lossless join decomposition of T that is in 3NF and preserves all FDs of F. The output is a
set S of headings (sets of attributes) for tables in the final database schema.

REPLACE F WITH MINIMAL COVER OF F; /* use algorithm 2.6.13 */
S=0; /* initialize S to null set */
FORALLX > YinF /* loop on FDs found in F */
IF. FORALLZeS, XuY¢Z /* no table contains X — Y */
THEN S =S U Heading X U Y); /* add new table Heading to S */

END FOR /* end loop on FDs */
IF, FOR ALL CANDIDATE KEYS K FOR T /* if no candidate Keys of T */
FOR ALLZ €S, KZ /* are contained in any table */

THEN CHOOSE A CANDIDATE KEY K AND /* choose a candidate key */
SET S =S u Heading(K); /* and add new table to S */

Note that the function Heading(K) generates a singleton set containing the set K of
attributes, which can then be added to the set S, which is a set of sets of attributes. |

EXAMPLE 2.31

To see why the choice of a candidate key might sometimes be necessary in Algorithm 2.3,
consider the following small school database. We are given a universal table T with
heading.

Head(T) = idnstructor class_no class_room text
and FD set F given by
F = {class_no - class_room text}

In ER terms, there is an entity Classes, identified by class_no, and the actual class
holds all its meetings in the same classroom with a unique text. Whether or not there is an
entity CTass_rooms with identifier class_room is a matter of opinion. Since there is no FD

2.8 Normal Forms 79

with cTass_room on the left, such an entity would have no descriptor attributes, and so no
table exists for it in the relational model; thus, we can think of class_room as a descriptor
attribute for Classes if we like. The same argument can be applied to the text attribute
in Head(T). But the instructor attribute in Head(T) is a different situation. Since the
instructor attribute is not functionally determined by class_no, there can be several
instructors for the same class, and since instructor does not determine class_no, this
means that one instructor might teach several classes. From this it is clear that instructors
have independent existence from classes and in fact represent an entity, Instructors.
Indeed, table T contains a relationship between Instructors and Classes.

By standard BCNF/3NF normalization, since the attributes class_room and text
depend on class_no alone in table T, we need to factor T into two tables, T, and T,, with

Head(T;) = class_no class_room text
Head(T,) = instructor class_no

But in Algorithm 2.3, only table T, will be created in the initial loop on FDs, since the
instructor attribute does not figure in any FDs of F. However, it is clear from the standard
set closure approach that the unique candidate key for T is cTass_no instructor. Therefore,
the loop on candidate keys in Algorithm 2.3 is necessary to create table T, for set S.

It is commonly said that the normalization approach and the ER approach
reinforce one another. Example 2.31 gives an example of this. Without consider-
ing functional dependencies, it is not clear why the instructor data item must
represent an entity but the class_room data item might not. On the other hand,
the ER approach gives the motivation for why the loop on candidate keys in
Algorithm 2.3 is appropriate to create table T,. We need table T, to represent the
relationship between the Instructors and Classes entities.

2.8.4 A Review of Normalization

In the normalization approach to database design, we start out with a set of data
items and a set F of functional dependencies that the designer wishes to see main-
tained by the database system for any future content of the database. The data
items are all placed in a single universal table T, and the set F is replaced by an
equivalent minimal cover; then the designer determines a decomposition of this
table into a set of smaller tables {T,, T, ..., Ty}, with a number of good proper-
ties, as follows.

1. The decomposition is lossless, so that T =T; »<« T, >« ... > T,,.

2. To the greatest extent possible, the only FDs X — Y in table T, arise
because X contains some key K in T;; this is the thrust of the BCNF/3NF
definitions.

3. All FDs in F of the form X — Y are preserved in tables of the
decomposition.

The value of property 2 is that we can avoid the various anomalies defined in
Section 2.5. It is also important that with these normal forms we can guarantee

80 CHAPTER 2 Entity—Relationship Concepts

that functional dependency will not be broken, so long as we guarantee the
uniqueness of all keys for a table. The Create Table statement of SQL gives us a
way to define such keys K for a table, and the uniqueness of these keys will then
be guaranteed by the system for all SQL table Update statements that follow (an
update that breaks such a uniqueness constraint will result in an error). As we
will see a bit later, such a uniqueness condition is a particularly easy condition to
check with an index on the key columns involved, whereas a general functional
dependency X — Y in a table T;, where multiple rows with the same value for X
can exist, is more difficult. Standard SQL does not provide a constraint to guaran-
tee such general dependencies against update errors.

The value of property 3 should also be clear, since we want to guarantee that
all functional dependencies provided by the designer hold for any possible content
of the database. Property 3 means that FDs won’t cross tables in the final database
schema, so that if an update of one table occurs, only FDs in that table need to
be tested by the system. On the other hand, the very decomposition we are pro-
viding does result in a certain amount of join testing, since the standard lossless
join decomposition into tables T, and T, leads to a key for one table with attributes
in both—that is, a key consisting of (Head(T,) N Head(T5,)). Standard SQL provides
a constraint, known as referential integrity, that can be imposed with the Create
Table statement to guarantee that these attribute values continue to make
sense between the two tables they join, a constraint also known as a foreign key
condition.

To sum up, the standard 3NF decomposition eliminates most anomalies and
makes it possible to verify efficiently that desired functional dependencies remain
valid when the database is updated.

Additional normal forms exist that are not covered here, 4NF and 5NF. In
particular, fourth normal form, or 4NF, is based on an entirely new type of depen-
dency, known as a multivalued dependency. You are referred to Teorey (1994)
and Ullman (1988) for good descriptions of these.

We should mention at this point that overnormalization, factoring a database
into more tables than are required in order to reach 3NF when this is the goal, is
considered a bad practice. For example, if we factored the depts table into two
tables, one with dept_name and dept_phone and a second with dept_name and
dept_mgrname, we would certainly still have a 3NF database, but we would have
gone further than necessary in decomposition. Unnecessary inefficiencies would
arise in retrieving all department information together, because of the join that
would now be required.

2.9 ADDITIONAL DESIGN CONSIDERATIONS

The ER and normalization approaches both have weaknesses. The ER approach,
as it is usually presented, is extremely dependent on intuition, but if intuition fails
there is little fallback. As we saw in Example 2.31, it can be difficult on the basis

2.9 Additional Design Considerations 81

of intuition alone to determine whether a data item represents an entity or not.
It helps to have the concept of functional dependency from normalization. Nor-
malization is more mathematically based and mechanical in its application, but
the idea that you can write down a complete set of FDs as a first step of logical
database design is often a delusion; it may be found later that some have been
missed. The intuitive exercise of trying to discover entities and relationships and
weak entities and so on aids the designer in discovering FDs that might otherwise
be overlooked.

Another factor affecting the normalization approach is that a certain amount
of judgment might be needed to decide whether a particular functional depen-
dency should be reflected in a final design. Consider the CAP database schema
we discussed earlier in the chapter. It might seem that all functional dependencies
that hold for the database are reflections of the table key dependencies, so that
all the tables are in BCNF. However, there is a rather unexpected FD of the fol-
lowing form:

(2.9) qty price discnt - dollars

That is, for each order, from the order quantity, product price, and customer
discount we can calculate the dollars charge for the order. This is expressed in
the following SQL Insert statement (2.10). Clearly the FD as it stands crosses tables,
and therefore the decomposition does not preserve dependencies. Note that we
can create another table, ddo11ars, that contains all the attributes on both sides
of FD (2.9), qty price discnt dollars, and simultaneously remove the dollars
attribute from orders. The result, a five-table schema for CAP including the ddo1 -
lars table, is a 3NF design that would be arrived at by Algorithm 2.3. The unique
key for the ddol1lars tableis qty price discnt, and the only FD is given in (2.9).
There is a problem with this design, however. Whenever we want to retrieve the
dollar cost for an order, we have to perform a join with products to get price,
customers to get discnt, and ddollars to read off the dollars value for the
given qty, price, and discnt. Is all this really necessary?

If we consider the original motivations for a decomposition such as this, we
have two: to remove anomalies and to validate all FDs whenever changes are made
in the data. But do we really want to validate this FD by a unique key constraint
in normal form? Presumably when a new order is inserted, the program logic does
a calculation of the dollars amount to store, something like this:

(2.10) exec sql insert into orders
values (:ordno, :month, :cid, :aid, :pid, :qty,
qty*:price - .01*:discnt*:qty*:price:

With this Insert statement we guarantee the FD (2.9); and more than that, we
guarantee an exact numerical relationship that an FD is incapable of representing.
The only validation that the ddol1ars table is capable of providing is this: If a
previous row exists with a given qty, price, and discnt, then the calculated
dollars value will be identical. This seems like a rather strange validation, since

82 CHAPTER 2 Entity—Relationship Concepts

if there are a lot of products and customers, with real variation in order sizes and
some limit on the number of orders tracked, we can expect to be adding many
(qty, price, discnt) triples for the first time. Thus, the unique key constraint
offers no real value in verification: There is no old row with the same key to
compare with it. You would much rather depend on the Insert statement (2.10)
to perform the correct calculation. In this regard, it certainly makes sense to
provide this insert in a tested function that must be used by all logic-performing
inserts of new orders.

Now the delete and insert anomalies amount to saying that we don’t want to
lose track of any (qty, price, discnt) triples, but this is a questionable prop-
osition given that we don’t really value this method of validation. As for the update
anomaly, we consider the case of needing to update all dollars values at once for
a given (qty, price, discnt). Presumably this might happen if the price or
discnt value needed to be changed for orders that were previously entered,
perhaps because that value was originally entered erroneously and now has to be
corrected. But this change would be so unusual and have such major ramifications
for a wholesale business that it is unreasonable to assume that an inexperienced
programmer might write code to correct a single row in orders by mistake.
Indeed many designers would model the doTlars column as an insert-only quan-
tity that should not be updated at all (except to correct input errors). We are
therefore willing to forgo the protection from the update anomaly.

We have gone into detail here to exemplify a type of situation that arises with
some frequency in commercial applications, a need for denormalization to
improve performance. Most design practitioners will agree that there is frequently
a need for this.

2.9.1 Database Design Tools

A number of commercial products are aimed at providing environments to support
the DBA in performing database design. These environments are provided by
database design tools, or sometimes as part of a more general class of products
known as computer-aided software engineering (CASE) tools. Such tools usually
have a number of components, chosen from the following kinds. It would be rare
for a single product to offer all these capabilities.

ER Design Editor

A common component is an interface in which a designer can construct ER dia-
grams, editing and making changes to the diagrams using the graphical drag-and-
drop methods common to products such as the Apple Macintosh and Microsoft
Windows.

ER to Relational Design Transformer
Another common component of such tools is a transformer that automatically
performs a transformation of an ER design to a set of relational table definitions,

2.10 Suggestions for Further Reading 83

following the steps outlined in Section 2.3 and exemplified in the case study of
Section 2.4.

With database design tools, the flow of development usually starts with ER
design and proceeds to a relational table definition. However, a number of prod-
ucts deal with functional dependencies. One tool advises loading a small universal
table and abstracts from these data the possible functional dependencies that
might hold for the data. A transformation to BCNF/3NF for this set of FDs can
then be automatically generated.

FD to ER Design Transformer
Another type of component that is sometimes offered takes a set of FDs for the
database and generates a valid ER diagram to reflect the rules of the data.

As indicated in the previous section, a design that is theoretically perfect may
also be inefficient in terms of performance. Thus, a good design tool tries to analyze
the performance implications of a design and accepts designer decisions to perform
certain kinds of denormalization to improve performance. In addition, a tool must
be forgiving of errors and omissions in FDs and entity classifications, in order to
produce some kind of best guess at a design that the designer can picture while
making corrections. This brings up another kind of standard tool component.

Design Analyzers
These components analyze design in the current stage and produce reports that
might help the DBA to correct errors of various kinds.

For an excellent overview of database design tools, you are referred to the last
chapter in Batini, Ceri, and Navathe (1992).

2.10 SUGGESTIONS FOR FURTHER READING

Many variations in terminology are prevalent in the field of logical database design.
The ER approach is sometimes referred to as semantic modeling. The real-world
objects known as entity occurrences in our notation are often referred to in the
literature as entities, and the entity in our notation that makes up a category of
entity occurrences then becomes an entity type. Attributes are also sometimes
called properties.

Let us try to give an idea of what is meant by semantic modeling. In a program-
ming language, the syntax of the language specifies how the statements are
formed out of basic textual elements. The syntax does not associate any meaning
with the statements, however. A specification of how programming language
statements act under all possible conditions, what the statements mean in terms
of their effect, is known as the semantics of the language. The term semantic
modeling implies that in the ER approach, we are getting into the topic of what
data items really mean in order to model their behavior in terms of database
structures such as relational tables.

84 CHAPTER 2 Entity—Relationship Concepts

References 1, 2, and 4 cover the topic of logical database design. Reference 1
also contains as its final section an article by David Reiner on commercial products
used for database design, known as database design tools. References 3 and 5 also
contain excellent coverage of many normalization concepts that are not covered
in the current chapter. Reference 3, in particular, is extremely advanced and
represents the state of the art in this field. Reference 6 is at the same level as this
text and covers both entity-relationship and normalization.

1. C. Batini, S. Ceri, and S. B. Navathe. Conceptual Database Design. Benjamin-Cummings,
1992.

2. C.]. Date. An Introduction to Database Systems, 6th ed. Addison-Wesley, 1995.

3. David Maier. The Theory of Relational Databases. Computer Science Press, 1983.

4. Toby J. Teorey. Database Modeling and Design: The Fundamental Principles, 2nd ed.
Morgan Kaufmann, 1994.

5. Jeftrey D. Ullman. Database and Knowledge-Base Systems, Volume 1. Computer Science
Press, 1988.

6. Jeffrey D. Ullman and Jennifer Widom. A First Course in Database Systems. Prentice-
Hall, 1997.

CHAPTER

Data Modeling in UML

3.1 INTRODUCTION

Although semantic approaches to information modeling appeared in the early
1970s, no single approach has yet achieved universal adoption. By and large, the
history of information systems modeling has been characterized by a plethora of
techniques and notations, with occasional religious wars between proponents of
different approaches. Each year, many new approaches would be proposed,
leading to groans from academics who were charged with teaching the state of
the art. This is referred to as the “yama” (Yet Another Modeling Approach!) or
“nama” (Not Another Modeling Approach!) syndrome. Figure 3.1 shows this as a
mountain of modeling methods, piled on top of one another, which nicely ties in
with the Japanese meaning of yama (mountain), depicted as a kanji that is high
in the middle and low on the ends.

While diversity is often useful, the modeling industry would benefit if practi-
tioners agreed to use just a few standard modeling approaches, individually suited
for their modeling scope, and collectively covering the tasks needed to model a
wide variety of applications. This would improve communication between model-
ers and reduce training costs, especially in an industry with a high turnaround of
employees.

Recently, the rapid rise of the Unified Modeling Language (UML) has been
accompanied by claims that UML by itself is an adequate approach for modeling
any software application. Some UML proponents have even been so bold as to
claim that “the modeling wars are over—UML has won.” This claim has been
strongly rejected by several experienced data modelers, including Dave Hay, who
argues that “there is no such thing as ‘object-oriented analysis’” (Hay 1999a), only
object-oriented design, and that “UML is ... not suitable for analyzing business
requirements in cooperation with business people” (Hay 1999b).

To date, UML is mainly used in industry for designing object-oriented program
code. Although it can be used for designing databases, UML has so far had little
success in displacing other approaches such as entity-relationship (ER) for this
purpose. Given UML’s object-oriented focus, and the dominance of relational

86 CHAPTER 3 Data Modeling in UML

f’ \\
l‘; \\\\
[Er+] [Room] [osm] __,/'} I—__l S

FIGURE 3.1
Yama—Japanese for “mountain.”

database management systems (DBMSs), this is perhaps not surprising. Neverthe-
less, UML is a very important language that could well become popular for data-
base design in the future.

Initially based on a combination of the Booch, Object Modeling Technique
(OMT), and Object-Oriented Software Engineering (OOSE) methods, UML was
further developed by a consortium of companies and individuals working within
the Object Management Group (OMG). It includes adaptations of many other
techniques (e.g., Harel’s state charts) and is continually being refined and
extended.

Version 1.1 of UML was adopted in November 1997 by the OMG as a language
for object-oriented analysis and design. Versions 1.2, 1.3, 1.4, and 1.5 were
approved in 1998, 1999, 2001, and 2003, respectively. Version 1.4.2 was accepted
as a standard by the International Standards Organization (ISO). A major revision
(2.0) was recommended in 2004, comprising infrastructure and superstructure
specifications, plus related specifications on the Object Constraint Language (OCL)
and diagram interchange. In 2007, UML 2.0 was updated to version 2.1.1 (see
www.omg.org/technology/documents/formal/uml.htm). When using a UML tool,
be aware that vendor support typically lags behind the latest OMG adopted version
(e.g., some tools are still at UML 1.2).

As discussed later, the UML metamodel and notation have inconsistencies, with
some unresolved problems being fundamental. Despite these issues, UML is the
closest thing to a de facto standard in industry for object-oriented software design,
and therefore is worthy of study.

The UML notation is really a set of languages rather than a single language. It
includes a vast number of symbols, from which various diagrams may be con-
structed to model different perspectives of an application. The 9 main diagram
types in UML 1.5 are use case (use case diagram); static structure (class diagram,
object diagram); behavior (statechart, activity diagram); interaction (sequence
diagram, collaboration diagram); and implementation (component diagram,
deployment diagram). UML 2.0 extended these to 13 diagram types, as set out in
Table 3.1.

3.1 Introduction 87

Table 3.1 The 13 Predefined UML 2.0 Diagram Types

Structure Class

Object

Component
Deployment
Package

Composite Structure

Behavior Use Case
State Machine
Activity

Interaction Sequence
Collaboration
Interaction Overview
Timing

Some of these diagrams (e.g., collaboration diagrams) are useful only for
designing object-oriented program code. Some (e.g., activity diagrams and use
case diagrams) can be useful in requirements analysis, and some (e.g., class dia-
grams) have limited use for conceptual analysis and are best used for logical
design.

The UML specification provides syntax and semantics for these diagram types,
but not yet a process for developing UML models, other than to suggest that model
development should be use case driven, iterative, and architecture centric. Various
companies promote their own modeling process for UML, such as the Rational
Unified Process (RUP).

Although all the UML diagram types are worth studying, this book focuses on
information modeling for databases. This chapter addresses data modeling in UML,
so it considers only the static structure (class and object) diagrams. Class diagrams
are used for the data schema, and object diagrams provide a limited means to
discuss data populations.

Like ER, UML uses attributes. Attributes are great for logical models, but are
best modeled as relationships when performing conceptual analysis, since this
facilitates validation and minimizes the impact of change. For such reasons, we
believe the best way to develop UML data models is to first do an ORM model and
then map it to UML. Since Object-Role Modeling (ORM) will be used to clarify
the data modeling concepts in UML, to gain the full benefits of this clarification,
you should be familiar with the ORM concepts.

No language is perfect, ORM included. Overall, UML provides a useful suite of
notations for both data and process modeling, while ORM is currently focused on
data modeling only.

88 CHAPTER 3 Data Modeling in UML

3.2 OBJECT ORIENTATION

UML facilitates object-oriented (OO) code design because it covers both data and
behavioral modeling, and lets you drill down into physical design details relevant
to OO code. The class diagram in Figure 3.2 models a class whose instances are
screen dialog boxes.

The class shape in Figure 3.2 has three compartments. The name compartment
includes the class name, as well as a tagged value naming the author of the class.
The attribute compartment lists the visibility, name, and type of each attribute.
The visibility settings +, —, #, and ~ indicate whether the attribute is public,
private, protected, or package. These visibility settings are software, not concep-
tual, issues. The size attribute is initialized to a given area value. The operation
compartment specifies what operations are encapsulated in instances of the class.
In this example, the operations may be implemented by methods to display the
dialog box at a specific position, and to hide the dialog box.

Figure 3.3 shows another class diagram that depicts Employee and Car classes,
as well as an association corresponding to the ORM fact type Employee drives
Car. The association is depicted by a line between the classes. The role name
“driver” on the left end of the association clarifies the intended semantics (an
association reading could also be supplied). The open arrow at the right end of
the association is a navigability setting indicating that fast access is required from
employee instances to their car instances. This may be implemented by including

Name DialogBox - {semeees Class name

compartment {author = Fred} «---qeeeeeeene Tagged value (class-scope)
ize: = peeremninan Attribute, type, initial value

Attribute +size: Area = (200,100) yp

#isDisplayed: Boolean

compartment | -ptr; Xwindow* Visibility: + public

Operation +display (position) # P”‘*}afﬁ; i
compartment | +hide () ;-;C; E:gi

FIGURE 3.2
Example of a UML class.

aSSO(:‘faﬁOﬂ
Employee Car
name dr;ver model
birthdate
role n:ame n;wigab.-'my
FIGURE 3.3

The navigability setting demands fast access from the Employee class to the Car class.

3.2 Object Orientation 89

pointers from employee objects (software objects) to the car objects that model
the cars that they drive. Navigability settings are implementation issues related to
performance, not conceptual issues about the business domain.

By omitting implementation details such as attribute visibility and association
navigability, class diagrams can be used for conceptual analysis. When used in this
way, class diagrams are somewhat similar to ER models. But there is a significant
difference arising from the OO perspective. If you look at the classes in Figures
3.2 and 3.3, what strikes you as missing?

You guessed it! No identification schemas are provided for the classes. In
object-oriented programming, objects may be identified by their memory addresses
or internal object identifiers (oids), so UML does not require that you provide a
value-based identification scheme for use by humans in communicating about the
objects. For conceptual analysis, however, such human-oriented reference schemes
(e.g., dialog box numbers, employee numbers, car registration numbers) must be
supplied. UML does allow you to add such attributes, but has no standard notation
for declaring them to be preferred identifiers or even for declaring them to be
unique. For this, we choose “{P}” for preferred reference and “{Un}” for unique-
ness (n > 0), where 7 is used to disambiguate cases where the same U constraint
might apply to a combination of attributes. Various UML tool vendors choose dif-
ferent notations for such constraints.

In Figure 3.4, for example, employee number (nr) and car registration number
(regNr) attributes have been added as the primary identifiers of the Employee and
Car classes, respectively. This entails that they are mandatory and unique. Addi-
tionally, the combination of employee name and birth date has been declared
unique. We also dropped the navigation arrow, as it is irrelevant to the business
semantics.

The requirement that each class has a value-based identification scheme distin-
guishes both ORM and ER from UML. ORM classifies objects into entities (non-
lexical objects) and values (lexical objects) and requires each entity to be identified
by a reference scheme used by humans to communicate about the entity. ORM
uses object, entity, and value to mean object instance, entity instance, and value
instance, respectively, appending “type” for the relevant set of all possible
instances. Entities may be referenced in different ways, and typically change their
state over time. Glossing over some subtle points, values are constants (e.g.,

Employee Car
nr {P} driver regNr {P}
name {U1} model
birthdate {U1}
FIGURE 3.4

Adding nonstandard notations for preferred reference and uniqueness.

90 CHAPTER 3 Data Modeling in UML

y EmployeeNr E
has / is Of ‘~=-=meemu-]
101 Employee
(.nr)
102 101
102

(a) (b)

FIGURE 3.5
A simple reference scheme in ORM, shown (a) explicitly and (b) implicitly.

character strings) that basically denote themselves, so they do not require a refer-
ence scheme to be declared.

Figure 3.5(a) depicts explicitly a simple reference scheme in ORM. If an entity
type has more than one candidate reference scheme, one may be declared pre-
ferred to assist verbalization of instances (or to reflect the actual business prac-
tice). A preferred reference scheme for an entity type maps each instance of it
onto a unique, identifying value (or a combination of values). In Figure 3.5(a), the
reference type has a sample population shown in a reference table (one column
for each role). Here icons are used to denote the real-world employee entities.

Simple reference schemes may be abbreviated by enclosing the reference
mode in parentheses, as in Figure 3.5(b), and an object type’s reference table
includes values but no icons. References verbalize as existential sentences—for
example, “There is an Employee who has the EmployeeNr 101.” Entity instances
are referenced elsewhere by definite descriptions—for example, “The Employee
who has the EmpNr 101.”

In a relational database, we might use the preferred reference scheme to
provide value-based identity or instead use system-generated row-ids. In an object-
oriented implementation, we might use oids (hidden, system-generated object
identifiers). Such choices can be added later as annotations to the model. For
analysis and validation purposes, however, we need to ensure that humans have
a way to identify objects in their normal communication. It is the responsibility
of humans (not the system) to enforce constraints on preferred reference types.
Assuming humans do enforce the reference type constraints, the system may be
used to enforce the elementary fact type constraints.

UML classifies instances into objects and data values. UML objects basically
correspond to ORM entities, but are assumed to be identified by oids. Although
UML does not require entities to have a value-based reference scheme, we should
include value-based reference in any UML class intended to capture all the con-
ceptual semantics. UML data values basically correspond to ORM values: They
are constants (e.g., character strings or numbers) and therefore require no oids
to establish their identity. Entity types in UML are called classes, and value types

3.3 Attributes 91

are basically data types. Note that “object” means “object instance,” not “object
type.” A relationship instance in UML is called a /ink, and a relationship type is
called an association.

3.3 ATTRIBUTES

Like other ER notations, UML allows relationships to be modeled as attributes. For
instance, in Figure 3.6(a) the Employee class has eight attributes. The correspond-
ing ORM diagram is shown in Figure 3.6(b).

In UML, attributes are mandatory and single valued by default. So the
employee number, name, title, gender, and smoking status attributes are all man-
datory. In the ORM model, the unary predicate smokes is optional (not everybody
smokes). UML does not support unary relationships, so it models this instead as
the Boolean attribute isSmoker with possible values True or False. In UML, the
domain (i.e., type) of any attribute may optionally be displayed after it (preceded
by a colon). In this example, the domain is displayed only for the isSmoker attri-
bute. By default, ORM tools usually take a closed-world approach to unaries, which
agrees with the isSmoker attribute being mandatory.

The ORM model also indicates that Gender and Country are identified by codes
(rather than names, for example). We could convey some of this detail in the UML
diagram by appending domain names. For example, Gender.code and Country.

N8S mmeemeeeae .
; EmployeeName |
Employee | !
nr {P}
name
title Gender
gender (.code)

isSmoker: Boolean
birthcountry [0..1]
socialSecurityNr [0..1] {U1}
passportNr [0..1] {U2}

Employee

(.nr)

.............

- | SocialSecurityNr !
{socialSecNr s not null : o
passporthr is not null == 4 Passporthr |
(a) (b)

FIGURE 3.6
UML attributes (a) depicted as ORM relationship types (b).

92 CHAPTER 3 Data Modeling in UML

Table 3.2 Multiplicities

Multiplicity Abbreviation Meaning Note

0.1 O or 1 (at most one)

0.* * 0 to many (zero or more)

1.1 1 exactly 1 Assumed by default
1.* 1 or more (at least one)

n.* nor more (at least n) n=0

n.m at least nand at most m mz2nz0

code could be appended to gender: and birthcountry: to provide syntactic
domains.

In the ORM model it is optional whether we record birth country, social secu-
rity number, or passport number. This is captured in UML by appending [0..1]
to the attribute name (each employee has zero or one birth country, and zero or
one social security number). This is an example of an attribute multiplicity con-
straint. The main multiplicity cases are shown in Table 3.2. If the multiplicity is
not declared explicitly, it is assumed to be 1 (exactly one). If desired, we may
indicate the default multiplicity explicitly by appending [1..1] or [1] to the
attribute.

In the ORM model, the uniqueness constraints on the right-hand roles (includ-
ing the EmployeeNr reference scheme shown explicitly in Figure 3.5(a)) indicate
that each employee number, social security number, and passport number refer
to at most one employee. As mentioned earlier, UML has no standard graphic
notation for such “attribute uniqueness constraints,” so we've added our own
{P} and {Un} notations for preferred identifiers and uniqueness. UML 2.0 added
the option of specifying {unique} or {nonunique! as part of a multiplicity decla-
ration, but this is only to declare whether instances of collections for multivalued
attributes or multivalued association roles may include duplicates, so it can’t be
used to specify that instances of single-valued attributes or combinations of such
attributes are unique for the class.

UML has no graphic notation for an inclusive-OR constraint, so the ORM con-
straint that each employee has a social security number or passport number needs
to be expressed textually in an attached nofte, as in Figure 3.6(2). Such ftextual
constraints may be expressed informally, or in some formal language interpretable
by a tool. In the latter case, the constraint is placed in braces.

In our example, we’'ve chosen to code the inclusive-OR constraint in SQL
syntax. Although UML provides OCL for this purpose, it does not mandate its use,

3.3 Attributes 93

allowing users to pick their own language (even programming code). This of
course weakens the portability of the model. Moreover, the readability of the
constraint is typically poor compared with the ORM verbalization.

The ORM fact type Employee was born in Country is modeled as a birth-
country attribute in the UML class diagram of Figure 3.6(a). If we later decide to
record the population of a country, then we need to introduce Country as a class,
and to clarify the connection between birthcountry and Country, we would
probably reformulate the birthcountry attribute as an association between
Employee and Country. This is a significant change to our model. Moreover, any
object-based queries or code that referenced the birthcountry attribute would
also need to be reformulated. ORM avoids such semantic instability by always
using relationships instead of attributes.

Another reason for introducing a Country class is to enable a listing of coun-
tries to be stored, identified by their country codes, without requiring all of these
countries to participate in a fact. To do this in ORM, we simply declare the
Country type to be independent. The object type Country may be populated by
a reference table that contains those country codes of interest (e.g., “AU” denotes
Australia).

A typical argument in support of attributes runs like this: “Good UML modelers
would declare Country as a class in the first place, anticipating the need to later
record something about it, or to maintain a reference list; on the other hand,
features such as the title and gender of a person clearly are things that will never
have other properties, and therefore are best modeled as attributes.” This argu-
ment is flawed. In general, you can’t be sure about what kinds of information you
might want to record later, or about how important some model feature will
become.

Even in the title and gender case, a complete model should include a relation-
ship type to indicate which titles are restricted to which gender (e.g., “Mrs.,”
“Miss,” “Ms.,” and “Lady” apply only to the female sex). In ORM this kind of con-
straint can be captured graphically as a join-subset constraint or textually as a
constraint in a formal ORM language (e.g., If Person, has a Title that is
restricted to Gender; then Person, is of Gender,). In contrast, attribute
usage hinders expression of the relevant restriction association (try expressing
and populating this rule in UML).

ORM includes algorithms for dynamically generating ER and UML diagrams as
attribute views. These algorithms assign different levels of importance to object
types depending on their current roles and constraints, redisplaying minor fact
types as attributes of the major object types. Modeling and maintenance are itera-
tive processes. The importance of a feature can change with time as we discover
more of the global model, and the domain being modeled itself changes.

To promote semantic stability, ORM makes no commitment to relative impor-
tance in its base models, instead supporting this dynamically through views. Ele-
mentary facts are the fundamental units of information, are uniformly represented
as relationships, and how they are grouped into structures is not a conceptual

94 CHAPTER 3 Data Modeling in UML

has e \
Employee ! EmployeeName E
R el A
name
sports [0..¥]
(a) (b)
FIGURE 3.7

(a) Multivalued UML sports attribute depicted as (b) ORM m: n fact type.

issue. You can have your cake and eat it too by using ORM for analysis; and if you
want to work with UML class diagrams, you can use your ORM models to derive
them.

One way of modeling this in UML is shown in Figure 3.7(a). Here the informa-
tion about who plays what sport is modeled as the multivalued attribute sports.
The [0..*] multiplicity constraint on this attribute indicates how many sports may
be entered here for each employee. The 0 indicates that it is possible that no
sports might be entered for some employees. UML uses a null value for this case,
just like the relational model. The presence of nulls exposes users to implementa-
tion rather than conceptual issues and adds complexity to the semantics of queries.
The “*” in [0..*] indicates there is o upper bound on the number of sports of a
single employee. In other words, an employee may play many sports, and we
don’t care how many. If * is used without a lower bound, this is taken as an
abbreviation for 0..*.

An equivalent ORM schema is shown in Figure 3.7(b). Here an optional, many:
many fact type is used instead of the multivalued sports attribute. As discussed
in the next section, this approach may also be used in UML using an m:n
association.

To discuss class instance populations, UML uses object diagrams. These are
essentially class diagrams in which each object is shown as a separate instance of
a class, with data values supplied for its attributes. As a simple example, Figure
3.8(a) includes object diagrams to model three employee instances along with
their attribute values. The ORM model in Figure 3.8(b) displays the same sample
population, using fact tables to list the fact instances.

For simple cases like this, object diagrams are useful. However, they rapidly
become unwieldy if we wish to display multiple instances for more complex cases.
In contrast, fact tables scale easily to handle large and complex cases.

ORM constraints are easily clarified using sample populations. For example, in
Figure 3.8(b) the absence of employee 101 in the plays fact table clearly shows
that playing sports is optional, and the uniqueness constraints mark out which
column or column-combination values can occur on at most one row. In the
EmployeeName fact table, the first column values are unique, but the second
column includes duplicates. In the plays table, each column contains duplicates;

3.3 Attributes 95

Employee 101: Employee
nr {P} nr =101
name name = 'Smith J'
sports [0..*] sports = null 101 1Smith J
102 |Jones E
102: Employee 103 Smith J
R [iniuintadeininii s
nr = 102 ! EmployeeName ;
name = 'Jones E' e I -
sports = (‘judo’) [Em(plo;/ee
.nr
Sport
103: Employee ! (.ngme)
101 | plays / is played by
nr =103 102 102 |judo
name = 'Smith J' [103] 103 [judo
sports = (‘judo’, 'soccer’) 103 | soccer

(@) (b)

FIGURE 3.8
Populated models in (a) UML and (b) ORM.

only the whole rows are unique. Such populations are very useful for checking
constraints with the subject matter experts. This validation-via-example feature of
ORM holds for all its constraints, not just mandatory roles and uniqueness, since
all its constraints are role based or type based, and each role corresponds to a fact
table column.

As a final example of multivalued attributes, suppose that we wish to record
the nicknames and colors of country flags. Let us agree to record at most two
nicknames for any given flag and that nicknames apply to only one flag. For
example, “Old Glory” and perhaps “The Star-Spangled Banner” might be used as
nicknames for the United States’ flag. Flags have at least one color.

Figure 3.9(a) shows one way to model this in UML. The [0..2] indicates that
each flag has at most two (from zero to two) nicknames. The [1..*] declares
that a flag has one or more colors. An additional constraint is needed to ensure
that each nickname refers to at most one flag. A simple attribute uniqueness con-
straint (e.g., {U}}) is not enough, since the nickname’s attribute is set valued. Not
only must each nickname’s set be unique for each flag, but each element in each
set must be unique (the second condition implies the former). This more complex
constraint is specified informally in an attached note.

Here the attribute domains are hidden. Nickname elements would typically
have a data type domain (e.g., String). If we don’t store other information about
countries or colors, we might choose String as the domain for country and color
as well (although this is subconceptual, because real countries and colors are not
character strings). However, since we might want to add information about these
later, it is better to use classes for their domains (e.g., Country and Color). If we
do this, we need to define the classes as well.

96 CHAPTER 3 Data Modeling in UML

Flag

country {P}
nicknames [0..2]
colors [1..*]

/ 5
1 Nickname

has/isof ‘e——ceeuaoo !

Each element of nicknames
refers to at most one flag

(a) (b)

FIGURE 3.9
A flag model in (a) UML and (b) ORM.

Figure 3.9(b) shows one way to model this in ORM. For verbalization we iden-
tify each flag by its country. Since country is an entity type, the reference scheme
is shown explicitly (reference models may abbreviate reference schemes only
when the referencing type is a value type). The 22 frequency constraint indicates
that each flag has at most two nicknames, and the uniqueness constraint on the
role of Nickname indicates that each nickname refers to at most one flag.

UML gives us the choice of modeling a feature as an attribute or an association.
For conceptual analysis and querying, explicit associations usually have many
advantages over attributes, especially multivalued attributes. This choice helps us
verbalize, visualize, and populate the associations. It also enables us to express
various constraints involving the “role played by the attribute” in standard nota-
tion, rather than resorting to some nonstandard extension. This applies not only
to simple uniqueness constraints (as discussed earlier) but also to other kinds of
constraints (frequency, subset, exclusion, etc.) over one or more roles that include
the role played by the attribute’s domain (in the implicit association correspond-
ing to the attribute).

For example, if the association Flag is of Country is depicted explicitly in
UML, the constraint that each country has at most one flag can be captured by
adding a multiplicity constraint of “0..1” on the left role of this association.
Although Country and Color are naturally conceived as classes, Nickname would
normally be construed as a data type (e.g., a subtype of String). Although asso-
ciations in UML may include data types (not just classes), this is somewhat
awkward; so in UML, nicknames might be best left as a multivalued attribute. Of
course, we could model it cleanly in ORM first.

Another reason for favoring associations over attributes is stability. If we ever
want to talk about a relationship, it is possible in both ORM and UML to make an
object out of it and simply attach the new details to it. If instead we modeled the
feature as an attribute, we would need to first replace the attribute by an associa-
tion. For example, consider the association Employee plays Sport in Figure
3.8(b). If we need to record a skill level for this play, we can simply objectify this
association as play, and attach the fact type Play has SkilllLevel. A similar

3.4 Associations 97

move can be made in UML if the p1ay feature has been modeled as an association.
In Figure 3.8(a), however, this feature is modeled as the sports attribute, which
needs to be replaced by the equivalent association before we can add the new
details about skill level. The notion of objectified relationship types or association
classes is covered later.

Another problem with multivalued attributes is that queries on them need
some way to extract the components, and therefore complicate the query process
for users. As a trivial example, compare queries Q1 and Q2, expressed in ConQuer
(an ORM query language) with their counterparts in OQL (the Object Query Lan-
guage proposed by the ODMG). Although this example is trivial, the use of mul-
tivalued attributes in more complex structures can make it harder for users to
express their requirements.

(QD) List each Color that is of Flag “USA”.

(Q2) List each Flag that has Color “red”.

(Q1a) select x.colors from x in Flag where x.country = “USA”
(Q2a) select x.country from x in Flag where “red” in x.colors

For such reasons, multivalued attributes should normally be avoided in analysis
models, especially if the attributes are based on classes rather than data types. If
we avoid multivalued attributes in our conceptual model, we can still use them
in the actual implementation. Some UML and ORM tools allow schemas to be
annotated with instructions to override the default actions of whatever mapper is
used to transform the schema to an implementation. For example, the ORM
schema in Figure 3.9(b) might be prepared for mapping by annotating the roles
played by Nickname and Color to map as sets inside the mapped F1ag structure.
Such annotations are not a conceptual issue, and can be postponed until

mapping.

3.4 ASSOCIATIONS

UML uses Boolean attributes instead of unary relationships, but allows relation-
ships of all other arities. Optionally, each association may be given at most one
name. Association names normally start with a capital letter. Binary associations
are depicted as lines between classes. Association lines may include elbows to
assist with layout or when needed (e.g., for ring relationships). Association roles
appear simply as line ends instead of boxes, but may be given role names. Once
added, role names may not be suppressed. Verbalization into sentences is possible
only for infix binaries, and then only by naming the association with a predicate
reading (e.g., Employs) and using an optional marker (e.g., P) to denote the
direction.

Figure 3.10 depicts two binary associations in both UML and ORM. On the
UML diagram, the association names, their directional markers, and some role
names are displayed. In UML, association names are optional, but role names are

98 CHAPTER 3 Data Modeling in UML

Acquired »
buyer
Employee | <Fmploys Company
nr {P} employer | name {P} [acquisition

(@

Employee works for / employs
() 13
{employer]

[buyer] [acquisition]

Company
(.name)

acquired / was acquired by

(b)

FIGURE 3.10
Binary associations in (a) UML and (b) ORM.

Crop
name {P
N Crop
(.name)
Country
Season Country Season
code {P} code {P} (.code) harvested —in . (.code)
Harvest
(@) (b)

FIGURE 3.11
Ternary associations in (a) UML and (b) ORM.

mandatory. If a role name is not supplied, the role’s name is assumed to be the
name of its class (e.g., Employee). If two or more roles are played by the same
class, the roles must be given different names to distinguish them (e.g., buyer
oracquisition). Inthe ORM diagram, forward and inverse predicate readings are
shown; at most, one of these may be omitted. Role names are optional in ORM,
and their display (in square brackets) may be toggled on or off.

Ternary and bigher arity associations in UML are depicted as a diamond
connected by lines to the classes, as shown in Figure 3.11(a). Because many lines
are used with no reading direction indicator, directional verbalization is ruled out,
so the diagram can’t be used to communicate in terms of sentences. This nonlin-
ear layout also often makes it impractical to conveniently populate associations
with multiple instances, unless we use role names for column names. Add to this
the impracticality of displaying multiple populations of attributes, and it is clear
that class diagrams are of little use for population checks.

3.4 Associations 99

Acquired »

0..1|buyer

Employee |« «Employs 1| Company |.cquisition
nr{P} employer | name {P} | *

(a)

Employee

acquired / was acquired by
(b)

FIGURE 3.12
UML multiplicity constraints (a) and equivalent ORM constraints (b).

As discussed earlier, UML does provide object diagrams for instantiation, but
these are convenient only for populating associations with a single instance.
Adding multiple instances leads to a mess (e.g., Blaha and Premerlani, 1998, p.
31). Therefore, as noted in the UML Notation Guide, “the use of object diagrams
is fairly limited.”

The previous section discussed how UML depicts multiplicity constraints on
attributes. A similar notation is used for associations, where the relevant multi-
plicities are written next to the relevant roles. Figure 3.12(a) adds the relevant
multiplicity constraints to Figure 3.10(a). A “*” abbreviates “0..*,” meaning “zero
or more”; “1” abbreviates “1..1,” meaning “exactly one”; and “0..1” means “at most
one.” If no multiplicity is supplied for an association role, “*” is assumed by default
(unlike attributes, where 1 is the default multiplicity).

UML places each multiplicity constraint on the “far role,” in the direction in
which the association is read. Therefore, the constraints in this example mean
that each company employs zero or more employees, each employee is employed
by exactly one company, each company acquired zero or more companies, and
each company was acquired by at most one company.

The corresponding ORM constraints are depicted in Figure 3.12(b). Recall that
multiplicity covers both cardinality (frequency) and optionality. Here the manda-
tory role constraint indicates that each employee works for at least one company,
and the uniqueness constraints indicate that each employee works for at most one
company, and each company was acquired by at most one company.

For comparison purposes, Figure 3.13 depicts the 7: 1 association Moon orbits
Planet in various notations. The instance diagram in Figure 3.13(a) includes a
sample population of moons (p = Phobos, d = Deimos, ¢ = Callisto) and planets
(v = Venus, m = Mars, j = Jupiter). For illustration purposes, the ORM diagram in

100 CHAPTER 3 Data Modeling in UML

Moon Planet ‘?f ,,,,,,,,,, PLANET
O orbits orbited by

O =)
o2 _95 (d)
(a)
(o}
% 1 orbits / is orbited by
Moon - Planet
Orbits » Phobos | [Phobos [Mars Venus
(b) Deimos | | Deimos | Mars Mars
Callisto || Callisto |Jupiter Jupiter
Pl ©)
>O———H Planet
Moon orbits ©
(c)
FIGURE 3.13

A mandatory:optional, n:1 association in various notations.

Figure 3.13(e) also includes the sample object and fact populations. The popula-
tion is significant with respect to multiplicity constraints. Each planet orbits
exactly one moon, and the same planet may be orbited by zero or more moons.

The UML (Figure 3.13(b)) and Information Engineering (Figure 3.13(c))
approaches are similar because both express the constraints in terms of multi-
plicities/cardinalities. In contrast, Barker ER (Figure 3.13(d)) and ORM (Figure
3.13(e)) capture some constraints in terms of mandatory/optional roles and other
constraints in terms of cardinality/uniqueness constraints. As shown later, the
failure of UML to separate out these two kinds of constraint prevents it from
graphically capturing various cases it might otherwise have handled.

For binary associations, there are 4 possible uniqueness constraint patterns
(n:1, 1:n, 1:1, m:n) and 4 possible mandatory role patterns (only the left role
mandatory, only the right role mandatory, both roles mandatory, both roles
optional). Therefore, if we restrict ourselves to a maximum frequency of one,
there are 16 possible multiplicity combinations for binary associations. The 16
cases are shown in Figure 3.14, in both UML and ORM.

UML allows multiplicity constraints with whole numbers other than zero or
one, and also supports multiplicity lists or ranges (e.g., “1..7, 10”). For such cases,
ORM uses frequency constraints instead of uniqueness constraints. ORM is more
expressive in this regard, since it can apply such constraints to arbitrary collec-
tions of roles, not just single roles.

For an elementary nm-ary association, each internal uniqueness constraint in
ORM must span at least 7 — 1 roles. In UML, a multiplicity constraint on a role of
an n-ary association effectively constrains the population of the other roles com-
bined. For example, Figure 3.15(a) is a UML diagram for a ternary association in
which both Room-HourSlot and HourSlot-Activity pairs are unique. For simplic-
ity, reference schemes are omitted.

3.4 Associations 101

UML ORM

n:1 * 0.1
both roles optional A

1. 0..1 *
both roles optional

11 0.1 0.1
both roles optional

m:n
both roles optional A

A
1 —
A X 118 ———

first role mandatory

1:n *
A 0..1 1.

first role mandatory

121
A 0.1 1

first role mandatory

m T 0..1
second role mandatory

1:1 1 0..1
second role mandatory

m:n 1. *
second role mandatory

1:n: 1 * —
second role mandatory A 5 n ==
A

n:A1 1. 1

both roles mandatory

1:1
both roles mandatory

m:n A 1 1
both roles mandatory

m:n * P =
first role mandatory A = A — n

A
1:n 1 ; g n
both roles mandatory
A

FIGURE 3.14
Equivalent constraint patterns in UML and ORM.

102 CHAPTER 3 Data Modeling in UML

HourSlot

HourSlot

Room Activity

Activity

Booking ... at ... is booked for ...

(@) (b)

FIGURE 3.15
Constraints on a ternary in (@) UML and (b) ORM.

An ORM depiction of the same association is shown in Figure 3.15(b). The
left-hand uniqueness constraint indicates that Room-HourSTot is unique (i.e., for
any given room and hour slot, at most one activity is booked). The right-hand
uniqueness constraint indicates that HourSlot-Activity is unique (i.e., for any
given hour slot and activity, at most one room is booked). An extended version
of this example was discussed in Section 1.2, where the ORM diagram better
facilitated constraint checking by verbalization and population.

Because it covers some 7n-ary cases like this, UML’s multiplicity constraint nota-
tion is richer than the optionality/cardinality notation of typical ER. However,
there are many cases with n-ary associations where the multiplicity notation of
UML is incapable of capturing even a simple mandatory role constraint, or a
minimum frequency constraint above 1. In contrast, the mandatory, uniqueness,
and frequency constraint notation of ORM can capture any possible constraint of
this nature, on roles or role sequences, on predicates of any arity. So ORM is far
richer in this regard.

For example, suppose we modify our room-booking example to indicate
that all activities have a Room-HourS1ot booking and also have unique names as
well as their identifying codes. The modified example, including reference
schemes, is shown in Figure 3.16 in both UML and ORM. Because UML bundles
both mandatory and uniqueness into a single notion of multiplicity, it cannot
capture the constraint that each activity has a booking graphically. The best we
can do is add a note, as shown in Figure 3.16(a). This constraint may be expressed
graphically in ORM using a mandatory role constraint, as shown in Figure
3.16(b).

This deficiency in UML is a direct consequence of choosing to attach minimum
multiplicity to a role other than the immediate role. For the same reason, UML
multiplicity constraints are also unable to capture various ORM frequency con-
straints. In general, given any n-ary (n > 2) association, if an ORM mandatory
or frequency constraint applies to at least 1 and at most n — 2 roles, this cannot
be captured by a UML multiplicity constraint. Some examples of such cases are
shown in Figure 3.17. Further discussion on such cases may be found in Halpin
(20000).

3.4 Associations 103

HourSlot
(dhCode)

HourSlot Each activity
has a booking
dhCode {P}

T
'
&

* >
Room | g1 /‘\ 0.1 Activity

ar {p code {P}
i Booking name {U1}

(a) (b)

FIGURE 3.16
(a) UML resorts to a note to capture (b) a mandatory constraint in ORM.

FIGURE 3.17

Some ORM constraints that can’t be captured by UML multiplicities.

Unlike many ER versions, both UML and ORM allow associations to be objecti-
fied as first-class object types, called association classes in UML and objectified
associations or nested object types in ORM. UML requires the same name to be
used for the original association and the association class, impeding natural ver-
balization of at least one of these constructs. In contrast, ORM nesting is based
on linguistic nominalization (a verb phrase is objectified by a noun phrase), thus
allowing both to be verbalized naturally, with different readings for each.

Although UML identifies an association class with its underlying association, it
displays them separately, connected by a dashed line (see Figure 3.18(a)). Each
person may write many papers, and each paper is written by at least one person.
Since authorship is m2:n, the association class Writing has a primary reference
scheme based on the combination of Person and Paper (e.g., the writing by
person “Norma Jones” of paper 33). The optional period attribute stores how
long that person took to write that paper.

Figure 3.18(b) shows an ORM schema for this domain. The objectified asso-
ciation Writing is marked independent (by the !) to indicate that a writing object
may exist, independently of whether we record its period. ORM displays Period
as an object type, not an attribute, and includes its unit.

UML allows any association (binary and above) to be objectified into a class,
regardless of its multiplicity constraints. In particular, UML allows objectification
of n:1 associations, as shown in Figure 3.19(a). While this is allowed in ORM 2.0,

104 CHAPTER 3 Data Modeling in UML

Person |1 x * Paper “Writing 1"
name {P} |author : nr {P} Person Paper
| (.name) wrote (.nr)
Writing — Period
11 .
period [0..1] ook | (days?)
(a) (b)
FIGURE 3.18

Writing depicted as an objectified association in (a) UML and (b) ORM.

Moon * 1| Planet
name {P} : name {P}
Orbit
period
(a) (b)
FIGURE 3.19

Objectification of an n:1 association in (a) UML and (b) ORM.

it is often a case of poor modeling. For example, given that a moon orbits only
one planet, an orbital period may be related directly to the moon without includ-
ing the planet. So instead of objectifying, we could model the orbital period in
UML as an attribute of Moon, or in ORM as an association between Moon and
Period.

Earlier we saw that UML has no graphic notation to capture ORM external
uniqueness constraints across roles that are modeled as attributes in UML. There-
fore, we introduced a {Un} notation to append textual constraints to the con-
strained attributes. Simple cases where ORM uses an external uniqueness constraint
for coreferencing can also be modeled in UML using qualified associations. Here,
instead of depicting the relevant ORM roles or object types as attributes, UML uses
a class, adjacent to a qualifier, through which connection is made to the relevant
association role. A qualifier in UML is a set of one or more attributes whose values
can be used to partition the class, and is depicted as a rectangular box enclosing
its attributes. Figure 3.20 is based on an example from the official UML specifica-
tion, along with the ORM counterpart.

Here each bank account is used by at most one client, and each client may use
many accounts. In the UML model, the attribute accountNr is a qualifier on the
association, effectively partitioning each bank into different accounts. In the ORM
model, an Account object type is explicitly introduced and referenced by combin-
ing its bank with its (local) account number.

3.5 Set-Comparison Constraints 105

Bank 2y Bank
an — an
S

accountNr Account

.........

— A
NI AccountNr |
- ra

H ‘
]
has R

*

0.1

Client

(a) (b)

FIGURE 3.20
(a) Qualified association in UML, and (b) coreferenced type in ORM.

The UML notation is less clear and less adaptable. For example, if we now want
to record something about the account (e.g., its balance) we need to introduce
an Account class, and the connection to accountNr is unclear. For a similar
example, see Fowler (1997, p. 92), where product is used with Order to qualify
an order line association; again, this is unfortunate, since we would normally
introduce a Product class to record data about products, and relevant connections
are then lost.

As a complicated example of this deficiency, see Blaha and Premerlani (1998,
p- 51), where the semantic connection between Node and nodeName is lost. The
problem can be solved in UML by using an association class instead, although this
is not always natural. The use of qualified associations in UML is hard to motivate,
but may be partly explained by their ability to capture some external uniqueness
constraints in the standard notation, rather than relying on nonstandard textual
notations (such as our {U#n} notation).

ORM'’s concept of an external uniqueness constraint that may be applied to a
set of roles in one or more predicates provides a simple, uniform way to capture
all of UML’s qualified associations and unique attribute combinations, as well as
other cases not expressible in UML graphical notation (e.g., cases with m:n
predicates or long join paths). As always, the ORM notation has the further advan-
tage of facilitating validation through verbalization and multiple instantiation.

3.5 SET-COMPARISON CONSTRAINTS

Set-comparison constraints declare a subset, equality, or exclusion relationship
between the populations of role sequences. This section compares support for
these constraints in UML and ORM.

As an extension mechanism, UML allows subset constraints to be specified
between whole associations by attaching the constraint label {subset} next to a

106 CHAPTER 3 Data Modeling in UML

is @ member of/includes

Person member x cteeOn Committee Committee
{subset} (.name)
name {P} |1 ! * | name {P}
chair cteeChaired chairs / is chaired by
(a) (b)
FIGURE 3.21

A subset constraint in (a) UML and (b) ORM.

is a member of/includes

Person ;nember x cteeOn Committee Person Committee
{subset} (.name) (.name)
name {P} |0..1 H * | name {P}
chair cteeChaired chairs / is chaired by
(a) (b)
FIGURE 3.22

(a) A misleading UML diagram, and (b) a misleading ORM diagram.

dashed arrow between the associations. For example, the subset constraint in
Figure 3.21(a) indicates that any person who chairs a committee must be a
member of that committee. Figure 3.21(b) shows the same example in ORM.

ORM has a mature formalization, including a rigorous theory of schema con-
sistency, equivalence, and implication. Since formal guidelines for working with
UML are somewhat immature, care is needed to avoid logical problems. As a
simple example, consider the modified version of our committee example shown
in Figure 3.22(a), which comes directly from an earlier version of the UML spec-
ification, with reference schemes added. Do you spot anything confusing about
the constraints?

You probably noticed the problem. The multiplicity constraint of 1 on the
chair association indicates that each committee must have at least one chair. The
subset constraint tells us that a chair of a committee must also be a member of
that committee. Taken together, these constraints imply that each committee must
have a member. Therefore, we would expect to see a multiplicity constraint of
1..* (one or more) on the Person end of the membership association. However,
we see a constraint of * (zero or more) instead, which at best is misleading. An
equivalent, misleading ORM schema is shown in Figure 3.22(b), where the upper
role played by Committee appears optional when in fact it is mandatory.

One might argue that it is okay to leave these schemas unchanged, as the
constraint that each committee includes at least one person is implied by other
constraints. However, while display options for implied constraints may some-
times be a matter of taste, practical experience has shown that in cases like this

3.5 Set-Comparison Constraints 107

is a member of/includes

member cteeOn N
Person = 7'y +] Committee Committee
L. !{subset} . (.name)
name {P} |1 H __* | name {P}
chair cteeChaired chairs / is chaired by
@) (b)
FIGURE 3.23

All constraints are now shown explicitly in (a) UML and (b) ORM.

Committee Membership
PK, FK1 | committesName PK personName
FK1 chair N PK, FK1 | committeeName
FIGURE 3.24

The relational schema mapped from Figure 3.23.

it is better to show implied constraints explicitly, as in Figure 3.23, rather than
expect modelers or domain experts to figure them out for themselves.

Some ORM tools can detect the misleading nature of constraint patterns like
that of Figure 3.22(b) and ask you to resolve the problem. Human interaction is
the best policy here, since there is more than one possible mistake; for example,
is the subset constraint correct leading to Figure 3.23, or is the optional role
correct resulting in Figure 3.21?

If a schema in Figure 3.23 is mapped to a relational database, it generates a
referential cycle, since the mandatory fact types for Committee map to different
tables (so each committee must appear in both tables). The relational schema is
shown in Figure 3.24 (arrows show the foreign key references, one simple and
one composite, which correspond to the subset constraints).

Although referential cycles are sometimes unavoidable, they are awkward to
implement. In this case, the cycle arose from applying a mandatory role constraint
to a nonfunctional role. Unless the business requires it, this should be avoided at
the conceptual level (e.g., by leaving the upper role of Committee optional, as in
Figure 3.21).

Since UML does not allow unary relationships, subset constraints between
ORM unaries need to be captured textually, using a note to specify an equivalent
constraint between Boolean attributes. For example, the ORM subset constraint
in Figure 3.25(b), which verbalizes as Each Patient who smokes is cancer
prone, may be captured textually in UML by the note in Figure 3.25(a).

UML 2.0 introduced a subsets property to indicate that the population (exten-
sion) of an attribute or association role must be a subset of the population
of another compatible attribute or association role, respectively. For example,

108 CHAPTER 3 Data Modeling in UML

Patient

nr {P}
isCancerProne
isSmoker

is cancer prone

{isSmoker = false Patient
or

(.nr)

isCancerProne = true}

smokes

(a) (b)
FIGURE 3.25

(a) UML note for (b) ORM subset constraint between unaries.

resides in
i i t
Person r*eS|dent resndentCourz) ry1 Country —
" (passportNr)
passportNr {P} | * * | code {P}
citizen citizenship) —
{subsets resident} is a citizen of
(a) (b)

FIGURE 3.26
A single role subset constraint in (a) UML and (b) ORM.

adorning the citizen role in Figure 3.26(a) with {subsets resident} means that
all citizens are residents (not necessarily of the same country). Figure 3.26(b)
shows the equivalent ORM schema.

However, there are still many subset constraint cases in ORM that cannot be
represented graphically as a subset constraint in UML. For example, the subset
constraint in Figure 3.27(b) that each student with a second given name must
have a first given name is captured as a note in Figure 3.27(a) because the relevant
ORM fact types are modeled as attributes in UML, and the required subset
constraint applies between student sets, not name sets. The subset constraint in
Figure 3.25(b) is another example.

Moreover, UML does not support subset constraints over arguments that are
just parts of relationships, such as the subset constraint in Figure 3.27(b) that
students may pass tests in a course only if they enrolled in that course.
Figure 3.27(a) models this constraint in UML by transforming the ternary into a
binary association class (Enrollment) that has a binary association to Test.
Although in this situation an association class provides a good way to cater for a
compound subset constraint, sometimes this nesting transformation leads to a very
unnatural view of the world. Ideally the modeler should be able to view the world

3.5 Set-Comparison Constraints 109

Student Course
nr {P} * « | code {P}

givenNamel [0..1]

|
familyName |
|
givenName2 [0..1] I

Passed »
i Enrollment Test

{givenName1 is not null * *

or nr {P}

givenName2 is null}

(a)
P <has
E FamilyName : enrolled in
< has first-

Student

<has second-

(b)

FIGURE 3.27
(a) UML model capturing (b) some subset constraints in ORM.

Define {ordered, unique}
Table |1 A4 * | Column
]
i
H

{subset}

| *

tableKeyed primaryKeyColumn

FIGURE 3.28
Spot anything wrong?

naturally, while having any optimization transformations that reduce the clarity of
the conceptual schema performed under the covers.

As another constraint example in UML, consider Figure 3.28, which is the UML
version of an OMT diagram used in Blaha and Premerlani (1998, p. 68) to illustrate
a subset constraint (if a column is a primary key column of a table, it must belong
to that table). Can you spot any problems with the constraints?

One obvious problem is that the 1 on the primary key association should be
0..1 (not all columns belong to primary keys), as in Figure 3.29(a). If we allow
tables to have no columns (e.g., the schema is to cater for cases where the table
is under construction), then the * on the define association is fine; otherwise it
should be 1..*. Assuming that tables and columns are identified by oids or artificial

110 CHAPTER 3 Data Modeling in UML

is a primary
key column

Define {ordered, unique}
Table 1 A * | Column
1
1
1
|

Column

{subset}
*

0.1 Position

(.nr)

tableKeyed primaryKeyColumn
(a) (b)

FIGURE 3.29
A corrected UML schema (a) remodeled in ORM (b).

identifiers, the subset constraint makes sense, but the model is arguably subopti-
mal, since the primary key association and subset constraint could be replaced by
a Boolean is-aPKfield attribute on Column.

From an ORM perspective, heuristics lead us to initially model the situation
using natural reference schemes as shown in Figure 3.29(b). Here ColumnName
denotes the local name of the column in the table. We’ve simplified reality by
assuming that tables may be identified just by their name. The external uniqueness
constraints suggest two natural reference schemes for Column: Name plus Table,
or Position plus Table. We chose the first of these as preferred, but could have
introduced an artificial identifier. The unary predicate indicates whether a column
is, or is part of, a primary key. If desired, we could derive the association Column
is a primary key field of Table from the path: Column is in Table and
Column 1is a primary key column (the subset constraint in the UML model is
then implied).

What is interesting about this example is the difference in modeling approaches.
Most UML modelers seem to assume that oids will be used as identifiers in their
initial modeling, whereas ORM modelers like to expose natural reference schemes
right from the start and populate their fact types accordingly. These different
approaches often lead to different solutions.

The main thing is to first come up with a solution that is natural and under-
standable to the domain expert, because here is where the most critical phase of
model validation should take place. Once a correct model has been determined,
optimization guidelines can be used to enhance it.

One other feature of the example is worth mentioning. The UML solution in
Figure 3.29(a) uses the annotation {ordered, unique} to indicate that a table
is composed of an ordered set (i.e., a sequence with no duplicates) of columns.
UML 2.0 allows the unique property to be specified with or without the ordered
property. By default, ordered = false and unique = true. So either of the settings
{ordered} or {ordered, unique} may be used to indicate an ordered set. That
is, either no setting or the single setting {unique} indicates a set (the default). If
{nonunique} is allowed in this context (this is unclear in the UML specification),

3.5 Set-Comparison Constraints 111

one could specify a bag or sequence with the settings {nonunique} or {ordered,
nonunique}, respectively.

In the ORM community, a debate has been going on for many years regarding
the best way to deal with constructors for collection types (e.g., set, ordered
set, bag, sequence) at the conceptual level. Our view is that such constructors
should not appear in the base conceptual model, thus the use of Position in
Figure 3.29(b) to convey column order (the uniqueness of the order is conveyed
by the uniqueness constraint on Column has Position). Keeping fact types
elementary has so many advantages (e.g., validation, constraint expression, flexi-
bility, and simplicity) that it seems best to relegate constructors to derived
views.

In ORM, an equality constraint between two compatible role sequences is
shorthand for two subset constraints (one in either direction) and is shown as a
circled “=.” Such a constraint indicates that the populations of the role sequences
must always be equal. If two roles played by an object type are mandatory, then
an equality constraint between them is implied (and therefore not shown). UML
has no graphic notation for equality constraints. For whole associations we could
use two separate subset constraints, but this would be very messy. In general,
equality constraints in UML may be specified as textual constraints in notes.

As a simple example, the equality constraint in Figure 3.30(b) indicates that if
a patient’s systolic blood pressure is measured, so is his or her diastolic blood
pressure (and vice versa). In other words, either both measurements are taken or
neither.

This kind of constraint is fairly common. Less common are equality constraints
between sequences of two or more roles. Figure 3.30(a) models this in UML as a
textual constraint between two attributes for blood pressure readings.

Subset and equality constraints enable various classes of schema transforma-
tions to be stated in their most general form, and ORM’s more general support
for these constraints allows more transformations to be easily visualized.

Although UML does not include a graphic notation for a pure exclusion con-
straint, it does include an exclusive-OR constraint to indicate that each instance
of a class plays exactly one association role from a specified set of alternatives.

has systolic-
Patient {systolicBP is not null Patient
and
nr {P} diastolicBP is not nul!
name | _ 4 o
systolicBP [0..1] systolicBPisnull | N e
diastolicBP [0..1] and \

]
) 4

diastolicBP is null}

(a) (b)

FIGURE 3.30
A simple equality constraint in (a) UML and (b) ORM.

112 CHAPTER 3 Data Modeling in UML

is used by

Person Person

Account {xor}

Corporation Corporation

is used by

(a) (b)

FIGURE 3.31
Exclusive-OR: each account is used by a person or corporation but not both.

is leased from
vehicleleased lessor
. * 1 0.1 Vehicle
Vehicle ! {xor} ~* | Company
* 1 0..1
vehicleSold seller was purchased from

(a) (b)

FIGURE 3.32
The exclusive-OR constraint should apply between association roles.

To indicate the constraint, {xor} is placed beside a dashed line connecting the
relevant associations. Figure 3.31(a), which is based on an example from the UML
specification, indicates that each account is used by a person or corporation but
not both. For simplicity, reference schemes and other constraints are omitted.

Prior to UML 1.3, {or} was used for this constraint, which was misleading
since “or” is typically interpreted in the inclusive sense. The equivalent ORM
model is shown in Figure 3.31(b), where the exclusive-OR constraint is simply an
orthogonal combination of a disjunctive mandatory role (inclusive-OR) constraint
(circled dot) and an exclusion constraint (circled “X”).

Although the current UML specification describes the exclusive-OR constraint
as applying to a set of associations, we need to apply the constraint to a set of
roles (association ends) to avoid ambiguity in cases with multiple common classes.
Visually this could be shown by attaching the dashed line near the relevant ends
of the associations, as shown in Figure 3.32(a). Unfortunately, UML attaches no
significance to such positioning, so the exclusive-OR constraint could be misin-
terpreted to mean that each company must lease or purchase some vehicle rather
than the intended constraint that each vehicle is either leased or purchased, a
constraint captured unambiguously by the ORM schema in Figure 3.32(b).

UML has no symbols for exclusion or inclusive-OR constraints. If UML symbols
for these constraints are ever considered, then {x} and {or}, respectively, seem
appropriate; this choice also exposes the composite nature of {xor}.

UML exclusive-OR constraints are intended to apply between single roles. The
current UML specification seems to imply that these roles must belong to different

3.6 Subtyping 113

author bookAuthored
Person [+| Book
* *
reviewer; ibookReviewed

No person wrote and
reviewed the same book.

reviewed reviewed

(a) (b) ()

FIGURE 3.33

(a) Nobody wrote and reviewed a book; (b) nobody wrote and reviewed the same book;
(c) UML version of (b).

associations. If so, UML cannot use an exclusive-OR constraint between roles of
a ring fact type (e.g., between the husband and the wife roles of a marriage asso-
ciation). ORM exclusion constraints cover this case, as well as many other cases
not expressible in UML graphic notation. As a trivial example, consider the differ-
ence between the following two constraints: No person both wrote a book and
reviewed a book, and no person wrote and reviewed the same book. ORM clearly
distinguishes these by noting the precise arguments of the constraint (compare
Figure 3.33(a) with Figure 3.33 (b)).

The pair exclusion constraint in Figure 3.33(b) can be expressed in UML by a
note connected by dotted lines to the two associations, as shown in Figure 3.33(0).
Alternatively, one could attach a textual constraint to either the Person class (e.g.,
“bookAuthoredand bookReviewed are disjoint sets”) or the Book class (e.g. “author
and reviewer are disjoint sets”), but the choice of class would be arbitrary.

UML has no graphic notation for exclusion between attributes, or between
attributes and association roles. An exclusion constraint in such cases may often
be captured as a textual constraint. For example, in Figure 3.34(a), the exclusion
constraint that each employee is either tenured or is contracted until some date
may be captured by the textual constraint shown.

Here the constraint is specified in OCL. The expressions -> isEmpty()
and -> notEmpty() are equivalent to “is null” and “is not null” in SQL. Figure
3.34(b) depicts the exclusion constraint graphically in ORM. There are other ways
to model this case in UML (e.g., using subtypes) that offer more chances to capture
the constraints graphically.

3.6 SUBTYPING

Both UML and ORM support subtyping, using substitutability (“is-a”) semantics,
where each instance of a subtype is also an instance of its supertype(s). For
example, declaring Woman to be a subtype of Person entails that each woman is a
person, and therefore Woman inherits all the properties of Person. Given two object
types, A and B, we say that A is a subtype of B if, for each database state, the

114 CHAPTER 3 Data Modeling in UML

Employee

nr: Integer {P}
isTenured: Boolean
contractdate [0..1]: Date

} {(isTenured = true and is tenured

contractdate -> isEmpty())
or
(isTenured = false and
contractdate -> notEmpty())}

(a) (b)

FIGURE 3.34
An exclusion constraint modeled in (a) UML and (b) ORM.

Employee
(.nr)

population of A4 is included in the population of B. For data modeling, the only
subtypes of interest are proper subtypes. We say that A is a proper subtype of B
if and only if A4 is a subtype of B, and there is a possible state where the popula-
tion of B includes an instance not in A. From now on, we’ll use “subtype” as
shorthand for “proper subtype.”

In both UML and ORM, specialization is the process of introducing subtypes,
and generalization is the inverse procedure of introducing a supertype. Both UML
and ORM allow single inberitance, as well as multiple inheritance (where a
subtype has more than one direct supertype). For example, AsianWoman may be
a subtype of both AsianPerson and Woman. In UML, “subclass” and “superclass”
are synonyms of “subtype” and “supertype,” respectively, and generalization may
also be applied to things other than classes (e.g., interfaces, use case actors, and
packages). This section restricts its attention to subtyping between object types
(classes).

In ORM, a subtype inherits all the roles of its supertypes. In UML, a subclass
inherits all the attributes, associations, and operations/methods of its supertype(s).
An operation implements a service and has a signature (name and formal
parameters) and visibility, but may be realized in different ways. A method is an
implementation of an operation, and therefore includes both a signature
and a body detailing an executable algorithm to perform the operation. In
an inheritance graph, there may be many methods for the same operation (poly-
morphism), and scoping rules are used to determine which method is actually
used for a given class. If a subclass has a method with the same signature
as a method of one of its supertypes, this is used instead for that subclass (over-
riding). For example, if Rectangle and Triangle are subclasses of Shape, all
three classes may have different methods for display (). This section focuses on
data modeling, not behavior modeling, and covering inheritance of static proper-
ties (attributes and associations) but ignoring inheritance of operations or
methods.

3.6 Subtyping 115

Subtypes are used in data modeling to assert typing constraints, encourage
reuse of model components, and show a classification scheme (taxonomy). In this
context, typing constraints ensure that subtype-specific roles are played only by
the relevant subtype.

Since a subtype inherits the properties of its supertype(s), only its specific roles
need to be declared when it is introduced. Apart from reducing code duplication,
the more generic supertypes are likely to find reuse in other applications. At the
coding level, inheritance of operations/methods augments the reuse gained by
inheritance of attributes and association roles. Using subtypes to show taxonomy
is of limited use, since taxonomy is often more efficiently captured by predicates.
For example, the fact type Person is of Gender {male, female} implicitly
provides the taxonomy for the subtypes MalePerson and FemalePerson.

Both UML and ORM display subtyping using directed acyclic grapbs. A directed
graph is a graph of nodes with directed connections, and “acyclic” means that
there are no cycles (a consequence of proper subtyping). Figure 3.35 shows a
subtype pattern in UML and ORM. An arrow from one node to another shows that
the first is a subtype of the second. UML uses a thin arrow shaft with an open
arrowhead, while ORM uses a solid shaft and arrowhead. As an alternative nota-
tion, UML also allows separate shafts to merge into one, with one arrowhead
acting for all (e.g., £ and F are subtypes of C). Since subtypehood is transitive,
indirect connections are omitted (e.g., since E is a subtype of C, and C is a subtype
of A, it follows that E is a subtype of 4, so there is no need to display this implied
connection).

UML includes four predefined constraints to indicate whether subtypes are
exclusive or exhaustive. If subtype connections are shown with separate arrow-
heads, the constraints are placed in braces next to a dotted line connecting the
subtype links, as in Figure 3.35(a) (top). We assume that this line may include
elbows, as shown for the disjoint constraint, to enable such cases to be specified.

foo {disjoint}

{overlapping} / preseeeNC {overlapping}
B8 | c D
{complete} {complete, disjoint}
[1
Le] Lealls]
(a)
FIGURE 3.35

Subtyping displayed by directed acyclic graphs in (a) UML and (b) ORM.

116 CHAPTER 3 Data Modeling in UML

If the subtype connections are shared, the constraints are placed near the shared
arrowhead, as in Figure 3.35(a) (bottom). The {overlapping} and {disjoint}
options, respectively, indicate that the subtypes overlap or are mutually exclusive.
Originally {complete} simply meant that all subtypes were shown, but this was
redefined to mean exhaustive (i.e., the supertype equals the union of its subtypes).
The {incomplete) option means that the supertype is more than the union
of its subtypes. The default is {disjoint, incomplete}. Users may add other
keywords.

By default, ORM subtypes may overlap, and subtypes need not collectively
exhaust their supertype. ORM allows graphic constraints to indicate that subtypes
are mutually exclusive (a circled “X” connected to the relevant subtype links),
collectively exhaustive (a circled dot), or both (a circled, crossed dot), as shown
in Figure 3.35(b). ORM’s approach is that exclusion and totality constraints are
enforced on populations, not types. An overlapping “constraint” does not mean
that the populations must overlap, just that they may overlap. Therefore, from an
ORM viewpoint, this is not really a constraint at all, so there is no need to depict
it. In ORM, subtype exclusion and totality constraints are often implied by other
constraints in conjunction with formal subtype definitions.

For any subtype graph, the top supertype is called the root, and the bottom
subtypes (those with no descendants) are called leaves. In UML this can be made
explicit by adding {root} or {Teaf} below the relevant class name. If we know
the whole subtype graph is shown, there is little point in doing this, but if we
were to display only part of a subtype graph, this notation makes it clear whether
or not the local top and bottom nodes are also like that in the global schema. For
example, from Figure 3.36 we know that globally Party has no supertype and
that MalePerson and FemalePerson have no subtypes. Since Party is not marked
as a leaf node, it may have other subtypes not shown here.

UML also allows an ellipsis “...” in place of a subclass to indicate that at least
one subclass of the parent exists in the global schema, but its display is suppressed
on the diagram. Currently ORM does not include a root/leaf notation or an ellipsis

Party
{root}

T

] [

Fi
gender
|

MalePerson FemalePerson
{leaf} {leaf}

FIGURE 3.36

Party may have other subtypes not shown here.

3.6 Subtyping 117

notation for subtypes. Such notations could be a useful extension to ORM
diagrams.

UML distinguishes between abstract and concrete classes. An abstract class
cannot have any direct instances and is shown by writing its name in italics or by
adding {abstract} below the class name. Abstract classes are realized only
through their descendants. Concrete classes may be directly instantiated. This
distinction seems to have little relevance at the conceptual level and is not
depicted explicitly in ORM. For code design, however, the distinction is important
(e.g., abstract classes provide one way of declaring interfaces, and in C++ abstract
operations correspond to pure virtual operations, while leaf operations map
to nonvirtual operations). For further discussion of this topic, see Fowler (1997,
pp- 85-88) and Booch et al. (1999, pp. 125-126).

Like other ER notations, UML provides only weak support for defining sub-
types. A discriminator label may be placed near a subtype arrow to indicate the
basis for the classification. For example, Figure 3.37 includes a “gender” discrim-
inator to specialize Patient into MalePatient and FemalePatient.

The UML specification says that the discriminator names “a partition of the
subtypes of the superclass.” In formal work, the term partition usually implies
the division is both exclusive and exhaustive. In UML, the use of a discriminator
does not imply that the subtypes are exhaustive or complete, but at least some
authors argue that they must be exclusive (Fowler 1997, p. 78). If that is the case,
there does not appear to be any way in UML of declaring a discriminator for a set
of overlapping subtypes.

The same discriminator name may be repeated for multiple subclass arrows to
show that each subclass belongs to the same classification scheme. This repetition
can be avoided by merging the arrow shafts to end in a single arrowhead, as in
Figure 3.37.

Patient «enumeration»
Gendercode

nr: Integer {P}
gender : Gendercode ;“

[y
{disjoint, complete}
gender

MalePatient FemalePatient

prostateStatus [0..1] pregnancyCount

MalePatient = Patient [\\ FemalePatient = Patient]l

where gender = m where gender = f J

FIGURE 3.37
Gender is used as a discriminator to partition Patient.

118 CHAPTER 3 Data Modeling in UML

(.description)

101 [102]
103

*Each MalePatient is a Patient who is of Gender "M’
*Each FemalePatient is a Patient who is of Gender 'F'.

FIGURE 3.38
With formal subtype definitions, subtype constraints are implied.

In Figure 3.37, the gender attribute of Patient is used as a discriminator. This
attribute is based on the enumerated type Gendercode, which is defined using the
stereotype <enumeration>», and listing its values as attributes. The notes at
the bottom are needed to ensure that instances populating these subtypes have the
correct gender. For example, without these notes there is nothing to stop us popu-
lating MalePatient with patients that have the value f for their gender code.

ORM overcomes this problem by requiring that if a taxonomy is captured both
by subtyping and a classifying fact type, these two representations must be syn-
chronized, either by deriving the subtypes from formal subtype definitions or
by deriving the classification fact type from asserted subtypes. For example, the
populated ORM schema in Figure 3.38 adopts the first approach. The ORM parti-
tion (exclusion and totality) constraint is now implied by the combination of the
subtype definitions and the three constraints on the fact type Patient is of
Gender.

While the subtype definitions in Figure 3.38 are trivial, in practice more com-
plicated subtype definitions are sometimes required. As a basic example, consider
a schema with the fact types City is in Country and City has Population,
and now define LargeUScity as follows: Each LargeUScity is a City that
is in Country “US” and has Population > 1000000. There does not seem
to be any convenient way of doing this in UML, at least not with discriminators.
We could perhaps add a derived Boolean islarge attribute, with an associated
derivation rule in OCL, and then add a final subtype definition in OCL, but this
would be less readable than the ORM definition just given.

3.7 OTHER CONSTRAINTS AND DERIVATION RULES

A value constraint restricts the population of a value type to a finite set of values
specified either in full (enumeration), by start and end values (range), or some

3.7 Other Constraints and Derivation Rules 119

«enumeration» Paper

Gendercode Gender Rating
nr {P} (.code) (.nr)
m rating { value in range 1..7 }

f M, F}Y (1.7}
(a) (b)

FIGURE 3.39

Data value restrictions declared as enumerations or textual constraints: (a) using any formal
or informal language, and (b) in ORM.

Person
name {P} | Pparent Person Person
0..2 name {P} |parent
child | = 0.2 | [sodicand
i child I * intransitive _ . .
{acydlic, intransitive} is a parent of / is a child of
(@ (b) ©

FIGURE 3.40

Ring constraints expressed in (a) UML, (b) UML, and (c) ORM.

combination of both (mixture). The values themselves are primitive data values,
typically character strings or numbers.

In UML, enumeration types may be modeled as classes, stereotyped as enu-
merations, with their values listed (somewhat uninmitively) as attributes. Ranges
and mixtures may be specified by declaring a textual constraint in braces, using
any formal or informal language. For example, see Figure 3.39(a).

Figure 3.39(b) depicts the same value constraints in ORM. Value constraints
other than enumeration, range, and mixture may be declared in UML or ORM as
textual constraints—for example, {committeeSize must be an odd number}.
For further UML examples, see Rumbaugh et al. (1999, pp. 2306, 268).

A ring fact type has at least two roles played by the same object type (either
directly or indirectly via a supertype). A ring constraint applies a logical restric-
tion on the role pair. For example, the association Person 1is a parent of
Person might be declared acyclic and intransitive.

UML does not provide ring constraints built in, so the modeler needs to specify
these as a textual constraint in some chosen language or as a note. In UML, if a
textual constraint applies to just one model element (e.g., an association), it may
be added in braces next to that element, as in Figure 3.40(a). Here the {acyclic,
intransitive} notation is nonstandard but is assumed to be user supported.

It is the responsibility of the modeling tool to ensure that the constraint
is linked internally to the relevant model element and to interpret any textual
constraint expressions. If the tool cannot interpret the constraint, it should

120 CHAPTER 3 Data Modeling in UML

be placed inside a note (dog-eared rectangle), without braces, showing that it is
merely a comment, and explicitly linked to the relevant model element(s), as
shown in Figure 3.40(b). Figure 3.40(c) displays the ring constraints graphically
in ORM.

A join constraint applies to one or more role sequences, at least one of which
is projected from a path from one predicate through an object type to another
predicate. The act of passing from one role through an object type to another role
invokes a conceptual join, since the same object instance is asserted to play both
the roles. Although join constraints arise frequently in real applications, UML has
no graphic symbol for them. To declare them on a UML diagram, write a constraint
or comment in a note attached to the model elements involved.

For example, Figure 3.41 links a comment to three associations. This example
is based on a room-scheduling application at a university with built-in facilities in
various lecture and tutorial rooms. Example facility codes are PA = personal
address system, DP = data projection facility, and INT = Internet access.

ORM provides deep support for join constraints. Role sequences featuring as
arguments in set comparison constraints may arise from projections over a join
path. For example, in Figure 3.42, the subset constraint runs from the Room-
Facility role pair projected from the path: Room at an HourSlot is booked
for an Activity that requires a Facility. This path includes a conceptual
join on Activity. The constraint may be formally verbalized as: If a Room at
an HourSlot 1is booked for an Activity that requires a Facility then
that Room provides that Facility. Figure 3.42 includes a satisfying popula-
tion for the three fact types. This again illustrates how ORM facilitates validation
constraints via sample populations. The UML associations in Figure 3.41 are not
so easily populated on the diagram.

Provides » | Facility |«Requires
+| code {P} | &

HourSlot
dhCode {P}

* *
*
Room |0..1 /\ 0.1| Activity
nr {P} \/ name {P}
Booking Y

|
If a Room at an HourSlot is booked
— | for an Activity that requires a Facility,
then that Room provides that Facility

[S e T TR e]

FIGURE 3.41
Join constraint specified as a comment in UML.

3.7 Other Constraints and Derivation Rules 121

10 |PA
20 |DP
20 [INT
33 [DP
33 |INT
33 |PA

provides / is in

DP | ORM class
DP | CQ demo
INT| CQ demo
arequires

Facility
(.code)

20 | Mon @ am | ORM class
20 | Mon 4 pm| CQ demo
20 | Tue 2 pm | ORM class
33 | Mon 9am| CQ demo
33| Fri5pm Party

FIGURE 3.42
A join-subset constraint in ORM.

In UML, the term aggregation is used to describe a whole/part relationship.
For example, a team of people is an aggregate of its members, so this membership
may be modeled as an aggregation association between Team and Person. Several
different forms of aggregation might be distinguished in real-world cases. For
example, Odell and Bock (Odell 1998, pp. 137-165) discuss six varieties of aggre-
gation (component-integral, material-object, portion-object, place-area, member-
bunch, and member-partnership), and Henderson-Sellers (Barbier et al., 2003) also
distinguishes several kinds of aggregation.

UML 2.0 associations are classified into one of three kinds: ordinary association
(no aggregation), shared (or simple) aggregation, or composite (or strong) aggre-
gation. Therefore, UML recognizes only two varieties of aggregation: shared and
composite. Some versions of ER include an aggregation symbol (typically only one
kind). ORM and popular ER approaches currently include no special symbols for
aggregation.

These different stances with respect to aggregation are somewhat reminiscent
of the different modeling positions with respect to null values. Although over
20 kinds of null have been distinguished in the literature, the relational
model recognizes only 1 kind of null. Codd’s version 2.0 of the relational model
includes 2 kinds of null, and ORM argues that nulls have no place in base concep-
tual models (because all its asserted facts are atomic). But let’s return to the topic
at hand.

Shared aggregation is denoted in UML as a binary association, with a hollow
diamond at the “whole” or “aggregate” end of the association. Composition
(composite aggregation) is depicted with a filled diamond. For example, Figure

122 CHAPTER 3 Data Modeling in UML

Club | @p—— Team Person

(C)

Person
has / is in includes / is in

(b)

FIGURE 3.43
Composition (composite aggregation) and shared aggregation in (a) UML and (b) ORM.

3.43(a) depicts a composition association from Club to Team and a shared
aggregation association from Team to Person.

In ORM, which currently has no special notation for aggregation, this situation
would be modeled as shown in Figure 3.43(b). Does Figure 3.43(a) convey any
extra semantics that are not captured in Figure 3.43(b)? At the conceptual level,
it is doubtful whether there are any additional useful semantics. At the implemen-
tation level, however, there are additional semantics. Let’s discuss this in more

detail.
The UML specification declares that “both kinds of aggregation define a transi-
tive . . . relationship.” The use of “transitive” here is somewhat misleading, since

it refers to indirect aggregation associations rather than base aggregation associa-
tions. For example, if Club is an aggregate of Team, and Team is an aggregate of
Person, it follows that C1ub is an aggregate of Person.

However, if we wanted to discuss this result, it should be exposed as a derived
association. In UML, derived associations are indicated by prefixing their names
with a slash “/”. The derivation rule can be expressed as a constraint, either
connected to the association by a dependency arrow or simply placed beside the
association as in Figure 3.44(a).

In ORM, derived fact types are marked with a trailing asterisk, with their
derivation rules specified in an ORM textual language (see Figure 3.44(b)). In many
cases, derivation rules may also be diagrammed as a join-subset or join-equality
constraint. As this example illustrates, the derived transitivity of aggregations can
be captured in ORM without needing a special notation for aggregation.

The UML specification declares that “both kinds of aggregation define a transi-
tive, antisymmetric relationship (i.e., the instances form a directed, noncyclic
graph).” Recall that a relation R is antisymmetric if and only if, for all x and vy, if
x is not equal to y, then xRy implies that not yRx. It would have been better to
simply state that paths of aggregations must be acyclic.

At any rate, this rule is designed to stop errors such as the one shown in Figure
3.45. If a person is part of a team, and a team is part of a club, it doesn’t make
sense to say that a club is part of a person. Since ORM does not specify whether
an association is an aggregation, illegal diagrams like this can’t occur in ORM.

3.7 Other Constraints and Derivation Rules 123

{ Club.member = Club.team.member }

/Includes
* member | *
1 *
Club | @p——= k_>—————=%1 Person
team Team member
(a)
includes *

* Define Club includes Person as
Club has a Team that includes Person.

(b)

FIGURE 3.44
A derived aggregation in (a) UML and (b) ORM.

1 * * *

Club |[@@p———— Team K >———— Person

FIGURE 3.45
lllegal UML model. Aggregations should not form a cycle.

Of course, it is possible for an ORM modeler to make a silly mistake by adding
an association such as Club is part of Person, where “is part of” is informally
understood in the aggregation sense, and this would not be formally detectable.
But avoidance of such a bizarre occurrence doesn’t seem to be a compelling
reason to add aggregation to ORM’s formal notation. There are plenty of associa-
tions between C1ub and Person that do make sense, and plenty that don’t. In some
cases, however, it is important to assert constraints such as acyclicity, and this is
handled in ORM by ring constraints. That said, there have been some recent pro-
posals to add formal semantics for various forms of the part-of relationship to
ORM. For example, Keet (2006) proposes adding several different mereological
part-of predicates as well as four kinds of meronymic relations.

Composition does add some important semantics to shared aggregation. To
begin with, it requires that each part belongs to at most one whole at a time. In
ORM, this is captured by adding a uniqueness constraint to the role played by the
part (e.g., see the role played by Team in Figure 3.43(b)). In UML, the multiplicity
at the whole end of the association must be 1 or 0..1. If the multiplicity is 1, as

124 CHAPTER 3 Data Modeling in UML

Package

container * | subpackage .
oY G-L

Contains» contains /?contained in

(a) (b)

FIGURE 3.46
Direct containment modeled in (a) UML and (b) ORM.

Book Book

1.%
chapter: TextBody

1..* [chapter index | 0..1 0.1
index: Index
TextBody Index
(a) (b)
FIGURE 3.47

Alternative UML notations for aggregation.

in Figure 3.43(a), the role played by the part is both unique and mandatory, as in
Figure 3.43(b).

As an example where the multiplicity is 0..1 (i.e., where a part optionally
belongs to a whole), consider the ring fact type of Figure 3.46, Package contains
Package. Here “contains” is used in the sense of “directly contains.” The UML
specification notes that “composition instances form a strict tree (or rather a
forest).” This strengthening from directed acyclic graph to tree is an immediate
consequence of the functional nature of the association (each part belongs to at
most one whole), and therefore ORM requires no additional notation for this. In
this example, the ORM schema explicitly includes an acyclic constraint. This
direct containment association is intransitive by implication (acyclicity implies
irreflexivity, and any functional, irreflexive association is intransitive).

UML allows some alternative notations for aggregation. If a class is an aggregate
of more than one class, the association lines may be shown joined to a single
diamond, as in Figure 3.47(a). For composition, the part classes may be shown
nested inside the whole by using role names, and multiplicities of components
may be shown in the top right corners, as in Figure 3.47(b).

Some authors list kinds of associations that are easily confused with aggregation
but should not be modeled as such (e.g., topological inclusion, classification inclu-
sion, attribution, attachment, and ownership (see Martin & Odell, 1998; Odell,
1998).

3.7 Other Constraints and Derivation Rules 125

For example, Finger belongs to Hand is an aggregation, but Ring belongs
to Finger is not. There is some disagreement among authors about what should
be included on this list. For example, some treat attribution as a special case of
aggregation—namely, a composition between a class and the classes of its attri-
butes (Rumbaugh et al., 1999).

For conceptual modeling purposes, agonizing over such distinctions might not
be worth the trouble. Obviously there are different stances that you could take
about how, if at all, aggregation should be included in the conceptual modeling
phase. You can decide what is best for you. The literature summary at the end of
the chapter provides further discussion on this issue.

Let’s now look at the notion of initial values. The basic syntax of an attribute
specification in UML includes six components as shown. Square and curly brack-
ets are used literally here as delimiters (not as Backus-Naur Form [BNF] symbols
to indicate optional components).

visibililty name [multiplicity]: type-expression = initial-value { property string}

If an attribute is displayed at all, its name is the only thing that must be shown.
The visibility marker (+, #, —, and ~ denote public, protected, private, and package,
respectively) is an implementation concern and will be ignored in our discussion.
Multiplicity has been discussed earlier and is specified for attributes in square
brackets (e.g., [1..*D.

For attributes, the default multiplicity is 1—that is, [1..1]. The type expression
indicates the domain on which the attribute is based (e.g., String, Date). Initial
value and property string declarations may be optionally declared. Property strings
may be used to specify aspects such as changeability.

An attribute may be assigned an initial value by including the value in the attri-
bute declaration after “=” (e.g., diskSize =9; country =USA; priority = normal).
The language in which the value is written is an implementation concern.

In Figure 3.48(a), the nrColors attribute is based on a simple domain (e.g.,
Positivelnteger)and has been given an initial value of 1. The resolution attribute
is based on a composite domain (e.g., PixelArea) and has been assigned an initial
value of (640,480).

Unless overridden by another initialization procedure (e.g., a constructor),
declared initial values are assigned when an object of that class is created. This is
similar to the database notion of default values, where during the insertion of a
tuple an attribute may be assigned a predeclared default value if a value is not
supplied by the user.

However, UML uses the term default value in other contexts only (e.g., tem-
plate and operation parameters), and some authors claim that default values are
not part of UML models (Rumbaugh et al., 1999, p. 249).

The SQL standard treats null as a special instance of a default value, and this
is supported in UML, since the specification notes that “a multiplicity of 0..1 pro-
vides for the possibility of null values: the absence of a value.” So an optional
attribute in UML can be used to model a feature that will appear as a column with

126 CHAPTER 3 Data Modeling in UML

illustrates

cipat | [cipat] = &1 O has horizontal-
pictureNr {P} T mmmmmmma
topic e ! PierCountE
nrColors = 1 — S, ’
resolution = (640,480) d: (640,480)
has verticai-
(a) (b)
FIGURE 3.48

Attributes assigned initial values in (a) UML and (b) ORM extension.

the default value of null, when mapped to a relational database. Presumably
a multiplicity of [0..*] or [0..n] for any n > 1 also allows nulls for multivalued
attributes, even though an empty collection could be used instead.

Currently, ORM has no explicit support for initial/default values. However,
UML initial values and relational default values could be supported by allowing
default values to be specified for ORM roles. At the meta-level, we add the fact
type Role has default- Value. At the external level, instances of this could be
specified on a predicate properties sheet, or entered on the diagram (e.g., by
attaching an annotation such as d: value to the role, and preferably allowing
this display to be toggled on/off). For example, the role played by NrColors in
Figure 3.48(b) is allocated a default value of 1. When mapped to SQL, this should
add the declaration default 1 to the column definition for C1ipArt.nrColors.

To support the composite initial values allowed in UML, composite default
values could be specified for ORM roles played by compositely identified object
types (coreferenced or nested). When coreferencing involves at least two roles
played by the same or compatible object types, an order is needed to disambigu-
ate the meaning of the composite value. For example, in Figure 3.48(b) the role
played by Resolution is assigned a default composite value of (640,480). To
ensure that the 640 applies to the horizontal pixel count and the 480 applies to
the vertical pixel count (rather than the other way around), this ordering needs
to be applied to the defining roles of the external uniqueness constraint. ORM
tools often determine this ordering from the order in which the roles are selected
when entering this constraint.

If all or most roles played by an object type have the same default, it may be
useful to allow a default value to be specified for the object type itself. This could
be supported in ORM by adding the meta fact type ObjectType has default-
Value and providing some notation for instantiating it (e.g., by an entry in an Object
Type Properties sheet or by annotating the object type shape with d: vaTlue). This
corresponds to the default clause permitted in a create domain statement in the
SQL standard. Note that an object type default can always be expressed instead by
role-based defaults, but not conversely (since the default may vary with the role).

3.7 Other Constraints and Derivation Rules 127

Specification of default values does not cover all the cases that can arise with
regard to default information in general. A proposal for providing greater support
for default information in ORM is discussed in Halpin and Vermeir (1997), but this
goes beyond the built-in support for defaults in either UML or SQL. Default infor-
mation can be modeled informally by using a predicate to convey this intention
to a human. For example, we might specify the default medium (e.g., CD, DVD)
preferences for delivery of soft products (e.g., music, video, software) using the
1:n fact type Medium is default preference for SoftProduct.

In cases like this where default values overlap with actual values, we may also
wish to classify instances of relevant fact types as actual or default (e.g., Shipment
used Medium). For the typical case where the uniqueness constraint on the fact
type spans n — 1 roles, this can be achieved by including fact types to indicate
the default status (e.g., Shipment was based on Choice {actual, default}),
resulting in extra columns in the database to record the status. While this approach
is generic, it requires the modeler and user to take full responsibility for distin-
guishing between actual and default values.

In UML, restrictions may be placed on the changeability of attributes, as well
as the roles (ends) of binary associations. It is unclear whether changeability may
be applied to the ends of n-ary associations. UML 2.0 recognizes the following
four values for changeability, only one of which can apply at a given time:

unrestricted
readOnly
addOnly
removeOnly

The default changeability is unrestricted (any change is permitted). The value
unrestricted was formerly called “changeable,” which itself was formerly called
“none.” The other settings may be explicitly declared in braces. For an attribute,
the braces are placed at the end of the attribute declaration. For an association,
the braces are placed at the opposite end of the association from the object
instance to which the constraint applies.

Recall that in UML a “link” is an instance of an association. The value readOnly
(formerly called “frozen”) means that once an attribute value or link has been
inserted, it cannot be updated or deleted, and no additional values/links may be
added to the attribute/association (for the constrained object instance).

The value addOnly means that although the original value/link cannot be
deleted or updated, other values/links may be added to the attribute/association
(for the constrained object instance). Clearly, addOnly is only meaningful if the
maximum multiplicity of the attribute/association role exceeds its minimum mul-
tiplicity. The value removeOnly means that the only change permitted for an
existing attribute value or link is to delete it.

As a simple if unrealistic example, see Figure 3.49. Here employee number,
birth date, and country of birth are readOnly for Employee, so they cannot be
changed from their original value. For instance, if we assign an employee the

128 CHAPTER 3 Data Modeling in UML
x Wshfuwisitor countryWishedToVisit | %
Employee Country
* 1
nr {P} {readOnly} native i name {P}
name b?::?g;:fg population
birthDate {readOnly}
languages [*] {addOnly} | = *
visitor countryVisited
{addOnly}

FIGURE 3.49
Changeability of attributes and association roles.

employee number “007,” and enter his or her birth date as “02/15/1946” and birth
country as “Australia,” then we can never make any changes or additions to
that.

Notice also that for a given employee, the set of languages and the set of coun-
tries visited are addOnly. Suppose that when facts about employee 007 are initially
entered, we set his or her languages to {Latin, Japanese} and countries visited
to {Japan}. As long as employee 007 is referenced in the database, these facts
may never be deleted. However, we may add to these (e.g., later we might add
the facts that employee 007 speaks German and visited India).

By default, the other properties are changeable. For example, employee 007
might legally change his name from Terry Hagar to Hari Seldon, and the coun-
tries he wants to visit might change over time from {Ireland, USA} to {Greece,
Ireland}.

Some traditional data modeling approaches also note some restrictions
on changeability. The Barker ER notation includes a diamond to mark a relation-
ship as nontransferable (once an instance of an entity type plays a role with an
object, it cannot ever play this role with another object). Although changeability
restrictions can be useful, in practice their application in database settings is
limited.

One reason for this is that we almost always want to allow facts entered into
a database to be changed. With snapshot data, this is the norm, but even with
historical data changes can occur. The most common occurrence of this is to allow
for corrections of mistakes, which might be because we were told the wrong
information originally or because we carelessly made a misspelling or typo when
entering the data.

In exceptional cases, we might require that mistakes of a certain kind be
retained in the database (e.g., for auditing purposes) but be corrected by entering
later facts to compensate for the error. This kind of approach makes sense for
bank transactions (see Figure 3.50). For example, if a deposit transaction for $100
was mistakenly entered as $1000, the record of this error is kept, but once the
error is detected it can be compensated for by a bank withdrawal of $900. As a
minor point, the balance is both derived and stored, and its readOnly status is

3.7 Other Constraints and Derivation Rules 129

Transaction

nr {P} {readOnly}
accountNr {P} {readOnly}
tranDate {readOnly}
tranType {readOnly}
tranAmount {readOnly}
[balance {readOnly}

FIGURE 3.50
All attributes of Transaction are read only.

Person

Position

Paper | 1.x | Person ... was authored by ... in ...t
{position]
nr {P} author | ssn {P} 1 For each Paper,
{ordered} position values are sequential from 1.
(a) (b)
FIGURE 3.51

An ordered set modeled in (a) UML and (b) ORM.

typically implied by the readOnly settings on the base attributes, together with a
rule for deriving balance.

Some authors allow changeability to be specified for a class, as an abbreviation
for declaring this for all its attributes and opposite association ends (Booch et al.,
1999, p. 184). For instance, all the {readOnly} constraints in Figure 3.50 might
be replaced by a single {readOnly} constraint below the name Transaction.
While this notation is neater, it would be rarely used. Even in this example, we
would probably want to allow for the possibility of adding nonfrozen information
later (e.g., a transaction might be audited by zero or more auditors).

Changeability settings are useful in the design of program code. Although
changeability settings are not currently supported in ORM, which focuses on static
constraints, they are being considered in extensions to support dynamic con-
straints. In the wider picture, being able to completely model security issues
(e.g., who has the authority to change what) would provide extra value.

As discussed earlier, UML allows {ordered} and {unique]} properties to be
specified for multivalued attributes and association ends. Since {unique} is true
by default, the use of {ordered} alone indicates an ordered set (a sequence with
no duplicates). For example, Figure 3.51(a) shows one way of modeling author-
ship of papers in UML. Each paper has a list or sequence of authors, each of whom
may appear at most once on the list.

130 CHAPTER 3 Data Modeling in UML

This may be modeled in flat ORM by introducing a Position object type to
store the sequential position of any author on the list, as shown in Figure 3.51(b).
The uniqueness constraint on the first two roles declares that for each paper, an
author occupies at most one position; the constraint covering the first and third
roles indicates that for any paper, each position is occupied by at most one author.
The textual constraint indicates that the list positions are numbered sequentially
from 1.

Although this ternary representation may appear awkward, it is easy to popu-
late and it facilitates any discussion involving position; for example, who is the
second author for paper 21?7 From an implementation perspective, an ordered set
structure could still be chosen.

An ordered set is an example of a collection type. Some versions of ORM allow
collections to be specified as mapping annotations in a similar way to UML, and
some ORM versions allow collections to be modeled directly as first-class
objects.

UML 2.0 introduced the notion of association redefinition. This concept is
complex and applies to generalizations as well as associations. One main use of
it is to specify stronger constraints on an association role that specializes a role
played by a supertype. For example, in Figure 3.52(a) the executiveCar role
redefines the assignedCar role, applying a stronger multiplicity constraint on it
that applies only to executives. Effectively, the association Executive is assigned
CompanyCar is treated as a specialization of the Employee is assigned Company -
Car association. Although some versions of ORM support a similar notion, most
ORM versions require the stronger multiplicity to be asserted in a textual con-
straint, as shown in Figure 3.52(b).

Now let’s consider derived data. In UML, derived elements (e.g., attributes,
associations, or association roles) are indicated by prefixing their names with “/”.
Optionally, a derivation rule may be specified as well. The derivation rule can be
expressed as a constraint or note, connected to the derived element by a dashed
line. This line is actually shorthand for a dependency arrow, optionally annotated

has
{'Exec’,
Employee ‘NonExec’}
ploy Employee
nr 4P assignedCar (.nr)
1) * * | CompanyCar CompanyCar
(.regNr)

" 1 regNr {P}
Executive | executiveCar 1 Each Employee who has Rank ‘Exec’

{redefines assignedCar} uses some CompanyCar.

(a) (b)
FIGURE 3.52

Association redefinition in (a) UML and (b) ORM.

3.7 Other Constraints and Derivation Rules 131

with the stereotype name <derive>. Since a constraint or note is involved, the
arrow tip may be omitted (the constraint or note is assumed to be the source).
For example, Figure 3.53(a) includes area as a derived attribute. Figure 3.53(b)
shows the ORM schema.

The UML dependency line may also be omitted entirely, with the constraint
shown in braces next to the derived element (in this case, it is the modeling tool’s
responsibility to maintain the graphical linkage implicitly). A club membership
example of this was included earlier.

As another example, Figure 3.54(a) expresses uncle information as a derived
association. For illustration purposes, role names are included for all association
ends. The corresponding ORM schema is shown in Figure 3.54(b), where the
derivation rule is specified in relational style.

Although precise role names are not always elegant, the use of role names in
derivation rules involving a path projection can facilitate concise expression of
rules, as shown here in the UML model. By adding role names to the ORM schema,

Window

nr {P}
height
width
/area

L

{ area = height * width }lﬁ * For each Window,
area = height * width.

(a) (b)

FIGURE 3.53
Derived area association in (a) UML and (b) ORM.

is an uncle of *
{ Person.uncle = Person.parent.brother }

/UncleOf »

/uncle /niece_or_nephew is a brother of

* *

x brother

Person is a parent of

* sibling_with_brother

0..2 * * Define Person, is an uncle of Person, as
parent child Person, is a brother of some Person,
who is a parent of Person,.
(a) (b)
FIGURE 3.54

Derived unc1e association in (a) UML and (b) ORM.

132 CHAPTER 3 Data Modeling in UML

the derivation rule may be specified compactly in attribute style as follows:
* define uncle of Person as brother of parent of Person. More complex
derivation rules can be stated informally in English or formally in a language such
as OCL.

One advantage of ORM’s approach to derivation rules is that it is more
stable, since it is not impacted by schema changes such as attributes being later
remodeled as associations.

3.8 MAPPING FROM ORM TO UML

The UMLmap procedure in Table 3.3 provides basic guidelines for mapping ORM
schemas to UML class diagrams. Selected entity types and value types map to
object classes and data types, including attribute domains when associations are
replaced by attributes. We now illustrate this procedure. As a preparatory move,
step 1 binarizes any sets of exclusive binaries, as shown in Figure 3.55.

Table 3.3 UMLmap Procedure

Step Action
1 Binarize any sets of exclusive unaries.
2 Model selected object types as classes, and map a selection of their n:1 and 1:1

associations as attributes. To store facts about a value type, make it a class.

3 Map remaining unary fact types to Boolean attributes or subclasses.

4 Map m:n and n-ary fact types to associations or association classes. Map objectified
associations to association classes.

5 Map ORM constraints to UML graphic constraints, textual constraints, or notes.
6 Map subtypes to subclasses, and if needed, subtype definitions to textual constraints.
7 Map derived fact types to derived attributes/associations, and map semi-derived fact types

to attributes/associations plus rules.

[is male

Employee - = Employee — Gender .
(.nr) @ L] (.code) MR
(] is female is of
(a) (b)
FIGURE 3.55

Step 1: replace any set of exclusive binaries by a binary fact type.

3.8 Mapping from ORM to UML 133

In step 2, we decide which object types to model as classes and which 7:1
and 1:1 ORM associations to remodel as attributes. Typically, entity types that
play functional fact roles become classes. Functional binary (z:1 and 1:1) asso-
ciations from an entity type A4 to a value type B, or to an entity type B about which
you never want to record details, usually map to an attribute of A. If you have
specified role names, these can usually be used as attribute names, with the object
type name becoming the attribute’s domain name.

The mapping in Figure 3.56 illustrates several of these step 2 considerations,
as well as step 6 (map ORM constraints to UML graphic constraints, textual con-
straints, or notes). The {P} and {Ul} annotations for preferred identifier and unique-
ness are not standard UML. The value constraint on gender codes is captured using
an enumeration type.

In rare cases, value types that are independent, play an explicit mandatory role,
or play a functional fact role in an 1:7 fact type map to classes. The example in
Figure 3.57(a) deals with cases where we store title-gender restrictions (e.g., the
title “Mr.” is restricted to the male gender). The example in Figure 3.57(b) uses a

Employee
Employee -
(.nn) ar {P}
oM, FY familyName <<enumeration> >
’ faxNr [0..1] GenderCode
gender: GenderCode
ssn [0..1] {U1} ;“
has /is of ‘—---'
(a) (b)
FIGURE 3.56

Step 2: map selected n:1 and 1:1 associations to attributes.

ST T N — T N
! PersonTitle —{_1 (Gigg:; | PersonTitle T] ?iggg;
| P "is restricted to { Mmoo ! is used by :

4 L

Title Title
name {P} name {P}
restrictedToGender [0..1] applicableGender [1..*]
(@) (b)

FIGURE 3.57
Step 2: rare cases of value types mapping to classes.

134 CHAPTER 3 Data Modeling in UML

multivalued attribute to store all the genders applicable to a title (e.g., the title
“Dr.” applies to both male and female genders). The Title class gives fast access
from title to applicable gender, but slow access from gender to title. As discussed
earlier, multivalued attributes should be used sparingly.

In step 3 we map unaries to Boolean attributes or to subclasses. The example
in Figure 3.58 assumes a closed-world interpretation for the unary. With an open-
world approach, the isSmoker attribute is assigned a multiplicity of [0..1] and the
{complete} constraint is removed from the subclassing.

In step 4, the remaining fact types are mapped to associations. Any 72 : 7 asso-
ciations should normally remain that way. In the example in Figure 3.59, the 7:1
fact type is retained as an association because it relates two entity types that
become classes in the mapping. Even if the m:n association did not apply, we
would normally retain Country as a class, since now or later we are likely to record
details for it (e.g., country name).

If an m:n association involves a value type (e.g., Employee has Phonelr)
instead of using a multivalued attribute, see if it is possible to transform the m:n
association into multiple 72: 1 associations (e.g. Employee has PhoneNrl; Employee
has PhoneNr2; etc.).

If each object type in an #n-ary fact type should map to a class (e.g., it
plays other functional roles), then map the n-ary fact type to an n-ary association.
Figure 3.60 provides an example.

Employee
nr {P}
Employee — Employee {disjoint,
(.nr) or % 9 complete}
smokes ,:{> oy | bt
isSmoker: Booelan Smoker NonSmoker
(a) (b) (c)
FIGURE 3.58
Step 3: map unaries to Boolean attributes or subclasses.
was born in native birthCountry

Employee Country C Employee | * 1| Country
(—— (-code) nr {P} * L.* | code {P}
is a citizen of citizen citizenship

(@) (b)

FIGURE 3.59
Step 4: map remaining fact types to associations.

3.8 Mapping from ORM to UML

A

'
! PersonName

!

Sport
name {P}
popularityRank
Athlete)*\ Country
* *
nr {P} code {P}
(b) name Play name {U1}

FIGURE 3.60

] CountryName
(@) ‘—-meeeee S ' has/is of ~—-cew-

135

N
]
]
)

Step 4: map some n-ary fact types to n-ary associations.

Course ' "=,
(a0 | CoeeTte

oo \ J—
! PersonName St(“gf)nt (Gcrgg:)
@ ‘- - ahas : ... enrolled in ... got ... \ .

Student Course
* *
nr {P} | code {P}
name : title {U1}
Enroliment
(b) grade

FIGURE 3.61

Step 4: map some n-ary fact types to association classes.

If an object type in a ternary fact type should not map to a class (typically an
m:n:1 uniqueness pattern with it outside the uniqueness constraint), then objec-
tify the rest of the association as an association class and map its role as an attri-

bute. Figure 3.61 shows an example.

Objectified associations map to association classes, as shown earlier in Figure
3.18. Some cases of coreference could be mapped into qualified associations, but

136 CHAPTER 3 Data Modeling in UML

ORM Constraint

Internal UC

Table 3.4 Mapping Main ORM Graphic Constraints to UML (for step 5)

UML

Maximum multiplicity of 1, or {Un}

External UC

Qualified association or textual constraint

Simple mandatory

Minimum multiplicity of 1, or textual constraint

Inclusive-OR

Textual constraint (unless within exclusive-OR)

Frequency

Multiplicity or textual constraint

Value

Enumeration or textual constraint

Subset and Equality

Subset(s) or textual constraint

Exclusion

Textual constraint (unless within exclusive-OR)

Ring constraints

Textual constraint

Join constraints

Textual constraint

Object cardinality

Class multiplicity

mapping to separate attributes or associations supplemented by a textual compos-
ite uniqueness constraint offers a more general solution.

In step 5, the simplest constraints in ORM usually map in an obvious way to
multiplicity constraints, as illustrated earlier. The more complex ORM constraints
have no graphic counterpart in UML, so you need to record these separately in
textual form. Table 3.4 summarizes the main correspondences.

In step 6, subtypes are mapped to subclasses, adding relevant subclassing
constraints. Subtype definitions are handled with discriminators and/or textual
constraints. For example, the ORM schema considered earlier in Figure 3.38 maps
to the UML schema in Figure 3.37.

In step 7, we map derived and semi-derived fact types. The schemas in
Figures 3.53 and 3.54 provide simple examples.

With these hints, and the examples discussed earlier, you should now have
enough background to do the mapping manually for yourself.

3.9 SUMMARY

UML has been adopted by the OMG as a method for object-oriented analysis and
design. Although mainly focused on the design of object-oriented programming

3.9 Summary 137

code, it can be used for modeling database applications by supplementing its
predefined notations with user-defined constraints.

UML 2.0 includes 13 main diagram types, comprising 6 for structure (class,
object, component, deployment, package, and composite) and 7 for behavior (use
case, state machine, activity, sequence, collaboration, interaction overview, and
timing). When stripped of implementation details, class diagrams are essentially
an extended form of ER diagrams minus a standard notation for value-based
identification.

The basic correspondence between data structures and instances in UML and
ORM is summarized in Table 3.5. Classes are basically entity types and are depicted
as named rectangles, with compartments for attributes and operations, and so
forth. In UML, facts are stored either in attributes of classes or in associations
among two or more classes. Binary associations are depicted as lines. Ternary and
longer associations include a diamond. Role names may be placed at association
ends, and an association may be given a name. An association may be objectified
as an association class, corresponding to nesting in ORM. Associations may be
qualified to provide a weak form of coreference.

Table 3.5 Correspondence between ORM and UML Data
Instances and Structures

ORM UML

Entity Object

Value Data value

Object Object or Data value

Entity type Class

Value type Data type

Object type Class or Data type

— {use relationship type} Attribute

Unary relationship type — {use Boolean attribute}

2+-ary relationship type Association

2+-ary relationship instance Link

Nested object type Association class

Coreference Qualified association §

§ = incomplete coverage of corresponding concept.

138 CHAPTER 3 Data Modeling in UML

Attributes and association ends may be annotated with multiplicity constraints
that indicate both optionality and cardinality (e.g., 0..1 = at most one, 1 = exactly
one, * = zero or more, 1..* = one or more). Attributes have a default multiplicity
of 1, and association ends have a default multiplicity of *. Refer to Table 3.4 for
the main correspondences between constraints in UML and ORM.

Subset constraints are allowed only between whole associations and are
denoted by {subset} next to a dashed arrow. An exclusive-OR constraint is
depicted by {xor} next to a dashed line connecting the relevant associations.

Subclasses are connected to their superclasses by a line with an open arrow-
head at the superclass end. Subclassing may be annotated using the keywords

{complete}, {incomplete}, {disjoint}, {overlapping}, {root},and {leaf}. A
discriminator (e.g., gender) may be used to indicate the basis for a subclass
graph.

Whole/part associations may be displayed as aggregations using a small diamond
at the whole end. A hollow diamond denotes shared aggregation (a part may
belong to more than one whole), and a filled diamond indicates composition or
composite aggregation (a part may belong to at most one whole at a time).

Attributes may be assigned initial (default) values. Derived attributes and asso-
ciations are indicated by prepending “/” to their name. Attributes and binary
association roles may be assigned a changeability setting: unrestricted, readOnly,
addOnly, or removeOnly. ReadOnly means that once an attribute value or link has
been inserted, it cannot be updated or deleted, and no additional values/links may
be added to the attribute/association (for the constrained object instance). AddOnly
means that although the original value/link cannot be deleted or updated, other
values/links may be added to the attribute/association (for the constrained object
instance).

A multivalued attribute or multivalued association end may be adorned with
{ordered} to indicate implementation as an ordered set. One way of modeling
this in ORM is to explicitly introduce a Position object type to indicate the
order.

An association may be redefined by declaring an association role to be a special
case of a compatible role played by a superclass. One use of this is to strengthen
the constraints on the specialized association roles.

UML models are best developed by mapping them from ORM models and
noting any additional ORM constraints as comments.

3.10 LITERATURE SUMMARY

The UML specification is accessible online at www.omg.org/umli/. For a detailed
discussion of UML by “the three amigos” (Booch, Rumbaugh, and Jacobson), see
Booch et al. (1999) and Rumbaugh et al. (1999). Their suggested modeling process
for using the language is discussed in Jacobson et al. (1999). Martin and Odell
(1998) provide a general coverage of object-oriented modeling using the UML

3.10 Literature Summary 139

notation. Muller (1999) provides a detailed treatment of UML for the purposes of
database modeling. A thorough discussion of OMT for database applications is
given in Blaha and Premerlani (1998), although their notation for multiplicity
constraints differs from the UML standard. The Object Constraint Language is
covered in detail in Warmer and Kleppe (2003). Bennett, McRobb, and Farmer
(20006) provide a detailed discussion of how to use UML 2.0 for object-oriented
systems analysis and design.
On the topic of aggregation, Rumbaugh et al. (1999, p. 148) argue:

Aggregation conveys the thought that the aggregate is inherently the sum of its
parts. In fact, the only real semantics that it adds to association is the constraint
that chains of aggregate links may not form cycles. . .. Some authors have dis-
tinguished several kinds of aggregation, but the distinctions are fairly subtle and
probably unnecessary for general modeling.

There are plenty of other distinctions (apart from aggregation) we could make
about associations, but don’t feel compelled to do so. For a very detailed discus-
sion arguing for an even more thorough treatment of aggregation in UML, see
Barbier et al. (2000).

The view that security issues have priority over changeability settings is nicely
captured by the following comment of John Harris, in a thread on the InConcept
website:

Rather than talk of “immutable” data I think it is better to talk of a privilege
requirement. For instance, you can’t change your recorded salary but your boss
can, whether it’s because you’ve had a pay rise or because there’s been a typing
error. Privileges can be as complicated or as simple as they need to be, whereas
“immutable” can only be on or off. Also, privileges can be applied to the inser-
tion of new data and removal of old data, not just to updates.

A collection of readings critiquing UML is contained in Siau and Halpin (2000).
The Precise UML group, comprised largely of European academics, has published
several papers mainly aimed at providing a more rigorous semantic basis
for UML. A useful collection of their papers is accessible from their website at
www.puml.org.

This page intentionally left blank

CHAPTER

Requirements Analysis and
Conceptual Data Modeling

This chapter shows how the entity-relationship (ER) and Unified Modeling Lan-
guage (UML) approaches can be applied to the database life cycle, particularly in
steps I through II(b) (as defined in Section 1.2), which include the requirements
analysis and conceptual data modeling stages of logical database design.

4.1 INTRODUCTION

Logical database design is accomplished with a variety of approaches, including
the top-down, bottom-up, and combined methodologies. The traditional approach,
particularly for relational databases, has been a low-level, bottom-up activity, syn-
thesizing individual data elements into normalized tables after carefully analyzing
the data element interdependencies defined during the requirements analysis.
Although the traditional process has been somewhat successful for small- to
medium-size databases, when used for large databases its complexity can be over-
whelming to the point where practicing designers do not bother to use it with
any regularity. In practice, a combination of the top-down and bottom-up
approaches is used; in most cases, tables can be defined directly from the require-
ments analysis.

The conceptual data model has been most successful as a tool for communica-
tion between the designer and the end user during the requirements analysis and
logical design phases. Its success is due to the fact that the model, using either
ER or UML, is easy to understand and convenient to represent. Another reason for
its effectiveness is that it is a top-down approach using the concept of abstraction.
The number of entities in a database is typically far fewer than the number of
individual data elements, because data elements usually represent the attributes.
Therefore, using entities as an abstraction for data elements and focusing on the
relationships between entities greatly reduces the number of objects under con-
sideration and simplifies the analysis. Though it is still necessary to represent data

142 CHAPTER 4 Requirements Analysis and Data Modeling

elements by attributes of entities at the conceptual level, their dependencies
are normally confined to the other attributes within the entity or, in some cases, to
attributes associated with other entities with a direct relationship to their entity.

The major interattribute dependencies that occur in data models are the depen-
dencies between the entity keys, which are the unique identifiers of different
entities that are captured in the conceptual data modeling process. Special cases,
such as dependencies among data elements of unrelated entities, can be handled
when they are identified in the ensuing data analysis.

The logical database design approach defined here uses both the conceptual
data model and the relational model in successive stages. It benefits from the
simplicity and ease of use of the conceptual data model and the structure and
associated formalism of the relational model. To facilitate this approach, it is nec-
essary to build a framework for transforming the variety of conceptual data model
constructs into tables that are already normalized or that can be normalized with
a minimum of transformation. The beauty of this type of transformation is that it
results in normalized or nearly normalized SQL tables from the start; frequently,
further normalization is not necessary.

Before we do this, however, we need to first define the major steps of the
relational logical design methodology in the context of the database life cycle.

4.2 REQUIREMENTS ANALYSIS

Step I, requirements analysis, is an extremely important step in the database life
cycle and is typically the most labor intensive. The database designer must inter-
view the end user population and determine exactly what the database is to be
used for and what it must contain. The basic objectives of requirements analysis
are:

m To delineate the data requirements of the enterprise in terms of basic data
elements.

m To describe the information about the data elements and the relationships
among them needed to model these data requirements.

m To determine the types of transactions that are intended to be executed on the
database and the interaction between the transactions and the data elements.

m To define any performance, integrity, security, or administrative constraints that
must be imposed on the resulting database.

m To specify any design and implementation constraints, such as specific tech-
nologies, hardware and software, programming languages, policies, standards,
or external interfaces.

m To thoroughly document all of the preceding in a detailed requirements speci-
fication. The data elements can also be defined in a data dictionary system, often
provided as an integral part of the database management system.

4.3 Conceptual Data Modeling 143

The conceptual data model helps designers accurately capture the real data
requirements because it requires them to focus on semantic detail in the data
relationships, which is greater than the detail that would be provided by functional
dependencies (FDs) alone. The semantics of the ER model, for instance, allow for
direct transformations of entities and relationships to at least first normal form
(1INF) tables. They also provide clear guidelines for integrity constraints. In addi-
tion, abstraction techniques such as generalization provide useful tools for inte-
grating end user views to define a global conceptual schema.

4.3 CONCEPTUAL DATA MODELING

Let us now look more closely at the basic data elements and relationships that
should be defined during requirements analysis and conceptual design. These two
life cycle steps are often done simultaneously.

Consider the substeps in step II(a), conceptual data modeling, using the ER
model:

m Classify entities and attributes (classify classes and attributes in UML).
m Identify the generalization hierarchies (for both the ER model and UML).
m Define relationships (define associations and association classes in UML).

The remainder of this section discusses the tasks involved in each substep.

4.3.1 Classify Entities and Attributes

Though it is easy to define entity, attribute, and relationship constructs, it is not
as easy to distinguish their roles in modeling the database. What makes a data
element an entity, an attribute, or even a relationship? For example, project head-
quarters are located in cities. Should city be an entity or an attribute? A vita is
kept for each employee. Is vita an entity or a relationship?

The following guidelines for classifying entities and attributes will help the
designer’s thoughts converge to a normalized relational database design:

m Entities should contain descriptive information.
m Multivalued attributes should be classified as entities.
m Attributes should be attached to the entities they most directly describe.

Now we examine each guideline in turn.

Entity Contents

Entities should contain descriptive information. If there is descriptive information
about a data element, the data element should be classified as an entity. If a data
element requires only an identifier and does not have relationships, it should be
classified as an attribute. With city, for example, if there is some descriptive
information such as country and population for a city, then city should be

144 CHAPTER 4 Requirements Analysis and Data Modeling

classified as an entity. If only the city name is needed to identify a city, then city
should be classified as an attribute associated with some entity, such as Project.
The exception to this rule is that if the identity of the value needs to be constrained
by set membership, you should create it as an entity. For example, state is much
the same as city, but you probably want to have a State entity that contains all
the valid state instances. Examples of other data elements in the real world that
are typically classified as entities include Employee, Task, Project, Department,
Company, Customer, and so on.

Multivalued Attributes

Classify multivalued attributes as entities. If more than one value of a descriptor
attribute corresponds to one value of an identifier, the descriptor should be clas-
sified as an entity instead of an attribute, even though it does not have descriptors
itself. A large company, for example, could have many divisions, some of them
possibly in different cities. In that case, division could be classified as a multi-
valued attribute of company, but it would be better classified as an entity, with
division-address as its identifier. If attributes are restricted to be single valued
only, the later design and implementation decisions will be simplified.

Attribute Attachment

Attach attributes to the entities they most directly describe. For example, office-
building-name should normally be an attribute of the entity Department, rather
than the entity Employee. The procedure of identifying entities and attaching
attributes to entities is iterative. Classify some data elements as entities and attach
identifiers and descriptors to them. If you find some violation of the preceding
guidelines, change some data elements from entity to attribute (or from attribute
to entity), attach attributes to the new entities, and so forth.

4.3.2 ldentify the Generalization Hierarchies

If there is a generalization hierarchy among entities, then put the identifier and
generic descriptors in the supertype entity and put the same identifier and specific
descriptors in the subtype entities.

For example, suppose the following five entities were identified in an ER
model:

m Employee, with identifier empno and descriptors empname, address, and
date-of-birth.

m Manager, with identifier empno and descriptors empname and jobtitle.

m Engineer, with identifier empno and descriptors empname, highest-
degree, and jobtitle.

m Technician, with identifier empno and descriptors empname and
specialty.

m Secretary, with identifier empno and descriptors empname and
best-skill.

4.3 Conceptual Data Modeling 145

Let’s say we determine, through our analysis, that the entity Employee could
be created as a generalization of Manager, Engineer, Technician, and Secretary.
Then we put identifier empno and generic descriptors empname, address, and
date-of-birth in the supertype entity Employee; identifier empno and specific
descriptor jobtitle in the subtype entity Manager; identifier empno and specific
descriptor highest-degree and jobtitle in the subtype entity Engineer; and so
on. Later, if we decide to eliminate Employee as a table, the original identifiers
and generic attributes can be redistributed to all the subtype tables.

4.3.3 Define Relationships

We now deal with data elements that represent associations among entities, which
we call relationships. Examples of typical relationships are works-1in, works-faor,
purchases, drives, or any verb that connects entities. For every relationship, the
following should be specified: degree (binary, ternary, etc.); connectivity (one-to-
many, etc.); optional or mandatory existence; and any attributes associated with
the relationship and not the entities. The following are some guidelines for defin-
ing the more difficult types of relationships.

Redundant Relationships

Analyze redundant relationships carefully. Two or more relationships that are used
to represent the same concept are considered redundant. Redundant relationships
are more likely to result in unnormalized tables when transforming the ER model
into relational schemas. Note that two or more relationships are allowed between
the same two entities, as long as those relationships have different meanings. In
this case they are not considered redundant. One important case of nonredun-
dancy is shown in Figure 4.1(a) for the ER model and Figure 4.1(c) for UML. If
belongs-to is a one-to-many relationship between Employee and Professional-
association,if lTocated-inisaone-to-many relationship between Professional -
association and City, and if Tives-in is a one-to-many relationship between
Employee and City, then Tives-in is not redundant, because the relationships
are unrelated. However, consider the situation shown in Figure 4.1(b) for the ER
model and Figure 4.1(d) for UML. The employee works on a project located in a
city, so the works-1in relationship between Employee and City is redundant and
can be eliminated.

Ternary Relationships

Define ternary relationships carefully. We define a ternary relationship among
three entities only when the concept cannot be represented by several binary
relationships among those entities. For example, let us assume there is some
association among entities Technician, Project, and Notebook. If each technician
can be working on any of several projects and using the same notebooks on each
project, then three many-to-many binary relationships can be defined (see Figure
4.2(a) for the ER model and Figure 4.2(c) for UML). If, however, each technician

146 CHAPTER 4 Requirements Analysis and Data Modeling

lives-in

1
located-in ! City I

(a)

Project

lives-in

belongs-to

*

Professional-association

located-in

©

works-in

Project

located-in
@
FIGURE 4.1

Redundant relationships: (a) nonredundant relationships, (b) redundant relationships using
transitivity, (c) nonredundant associations, and (d) redundant associations using transitivity.

4.3 Conceptual Data Modeling 147

Technician uses Technician

| Project

uses-
notebook

N

Project N Notebook I Notebook

@ (b)

uses-notebook

P * .. .
Technician uses Technician f; ~| Project I

works-on
* *
Project X *| Notebook I
has *
Notebook I
() (@
FIGURE 4.2

Ternary relationships: (a) binary relationships, (b) different meaning using a ternary relation-
ship, (c) binary associations, and (d) different meaning using a ternary association.

is constrained to use exactly one notebook for each project and that notebook
belongs to only one technician, then a one-to-one-to-one ternary relationship
should be defined (see Figure 4.2(b) for the ER model and Figure 4.2(d) for UML).
The approach to take in ER modeling is to first attempt to express the associations
in terms of binary relationships; if this is impossible because of the constraints of
the associations, try to express them in terms of a ternary.

The meaning of connectivity for ternary relationships is important. Figure
4.2(b) shows that for a given pair of instances of Technician and Project, there
is only one corresponding instance of Notebook; for a given pair of instances of
Technician and Notebook, there is only one corresponding instance of Project;
and for a given pair of instances of Project and Notebook, there is only one
instance of Technician. In general, we know by our definition of ternary relation-
ships that if a relationship among three entities can only be expressed by a func-
tional dependency involving the keys of all three entities, then it cannot be
expressed using only binary relationships, which only apply to associations
between two entities. Object-oriented design provides arguably a better way to
model this situation (Muller, 1999).

148 CHAPTER 4 Requirements Analysis and Data Modeling

4.3.4 Example of Data Modeling: Company Personnel
and Project Database

Let us suppose it is desirable to build a company-wide database for a large engi-
neering firm that keeps track of all full-time personnel, their skills and projects
assigned, the departments (and divisions) they worked in, the engineering profes-
sional associations they belonged to, and the engineering desktop computers
allocated. During the requirements collection process—that is, interviewing the
end users—we obtain three views of the database.

ER Modeling of Individual Views Based on Requirements

The first view, a management view, defines each employee as working in a single
department, and defines a division as the basic unit in the company, consisting of
many departments. Each division and department has a manager, and we want to
keep track of each manager. The ER model for this view is shown in Figure
4.3(a).

Division ——O0—

1

N

Department

1 |1

is- is-
managed-by headed-by

N 1 1

Employee

(a)

FIGURE 4.3
Example of data modeling: (a) management view.

4.3 Conceptual Data Modeling

149

manages

1
1 is-
Employee married-to
1
i}N +
d
Manager Secretary Engineer Technician
O
belongs-to
ON
Desktop I |Workstation | Prof-assoc
(b)
skill I
N
skill-used
N
Project Employee I
1
assigned-to
N
Location I
©
FIGURE 4.3

(b) employee view, (c) employee assignment view. (Continued)

150 CHAPTER 4 Requirements Analysis and Data Modeling

Division ——O0—

1

N
Department
1 |1
is-
managed-by
Skill
N 1
N N —N
Project Employee
assigned-to
manages
Location
d
Manager Secretary Engineer Technician

Desktop Workstation Prof-assoc

(d)

FIGURE 4.3 Continued

(d) the global ER schema.

4.3 Conceptual Data Modeling 151

The second view defines each employee as having a job title: engineer, techni-
cian, secretary, manager, and so on. Engineers typically belong to professional
associations and might be allocated an engineering workstation (or computer).
Secretaries and managers are each allocated a desktop computer. A pool of desk-
tops and workstations is maintained for potential allocation to new employees
and for loans while an employee’s computer is being repaired. Any employee may
be married to another employee, and we want to keep track of these relationships
to avoid assigning an employee to be managed by his or her spouse. This view is
illustrated in Figure 4.3(b).

The third view, shown in Figure 4.3(c), involves the assignment of employees,
mainly engineers and technicians, to projects. Employees may work on several
projects at one time, and each project could be headquartered at different loca-
tions (cities). However, each employee at a given location works on only one
project at that location. Employee skills can be individually selected for a given
project, but no individual has a monopoly on skills, projects, or locations.

Global ER Schema

A simple integration of the three views over the entity Employee defines results
in the global ER schema (diagram) in Figure 4.3(d), which becomes the basis for
developing the normalized tables. Each relationship in the global schema is based
upon a verifiable assertion about the actual data in the enterprise, and analysis of
those assertions leads to the transformation of these ER constructs into candidate
SQL tables.

Note that equivalent views and integration could be done for a UML conceptual
model over the class Employee. We will use the ER model for the examples in the
rest of this chapter, however.

The diagram shows examples of binary, ternary, and binary recursive relation-
ships; optional and mandatory existence in relationships; and generalization with
the disjointness constraint. Ternary relationships skill-used and assigned-to
are necessary, because binary relationships cannot be used for the equivalent
notions. For example, one employee and one location determine exactly one
project (a functional dependency). In the case of skill-used, selective use of
skills to projects cannot be represented with binary relationships.

The use of optional existence, for instance, between Employee and
Division or between Employee and Department, is derived from our
general knowledge that most employees will not be managers of any division
or department. In another example of optional existence, we show that the
allocation of a workstation to an engineer may not always occur, nor will all desk-
tops or workstations necessarily be allocated to someone at all times. In general,
all relationships, optional existence constraints, and generalization constructs
need to be verified with the end user before the ER model is transformed to SQL
tables.

In summary, the application of the ER model to relational database design offers
the following benefits:

152 CHAPTER 4 Requirements Analysis and Data Modeling

m Use of an ER approach focuses end users’ discussions on important relationships
between entities. Some applications are characterized by counterexamples
affecting a small number of instances, and lengthy consideration of these
instances can divert attention from basic relationships.

m A diagrammatic syntax conveys a great deal of information in a compact, readily
understandable form.

m Extensions to the original ER model, such as optional and mandatory member-
ship classes, are important in many relationships. Generalization allows entities
to be grouped for one functional role or to be seen as separate subtypes when
other constraints are imposed.

m A complete set of rules transforms ER constructs into mostly normalized SQL
tables, which follow easily from real-world requirements.

4.4 VIEW INTEGRATION

A critical part of the database design process is step II(b), the integration of dif-
ferent user views into a unified, nonredundant global schema. The individual end
user views are represented by conceptual data models, and the integrated con-
ceptual schema results from sufficient analysis of the end user views to resolve all
differences in perspective and terminology. Experience has shown that nearly
every situation can be resolved in a meaningful way through integration
techniques.

Schema diversity occurs when different users or user groups develop their own
unique perspectives of the world or, at least, of the enterprise to be represented
in the database. For instance, the marketing division tends to have the whole
product as a basic unit for sales, but the engineering division may concentrate on
the individual parts of the whole product. In another case, one user may view a
project in terms of its goals and progress toward meeting those goals over time,
but another user may view a project in terms of the resources it needs and the
personnel involved. Such differences cause the conceptual models to seem to have
incompatible relationships and terminology. These differences show up in con-
ceptual data models as different levels of abstraction; connectivity of relationships
(one-to-many, many-to-many, and so on); or as the same concept being modeled
as an entity, attribute, or relationship, depending on the user’s perspective.

As an example of the latter case, in Figure 4.4 we see three different perspec-
tives of the same reallife situation—the placement of an order for a certain
product. The result is a variety of schemas. The first schema (Figure 4.4(a)) depicts
Customer, Order, and Product as entities and places and for-a as relationships.
The second schema (Figure 4.4(b)), however, defines orders as a relationship
between Customer and Product and omits Order as an entity altogether. Finally,
in the third case (Figure 4.4(c)), the relationship orders has been replaced by
another relationship, purchases; order-no, the identifier (key) of an order, is

4.4 View Integration 153

Customer

i

Product

(@)
N N
Customer @ Product I
(b)

Customer Product

I

order-no

()

FIGURE 4.4

Schemas, placement of an order: the concept of (a) order as an entity, (b) order as a relation-
ship, and (c) order as an attribute.

designated as an attribute of the relationship purchases. In other words, the
concept of order has been variously represented as an entity, a relationship, and
an attribute, depending on perspective.

There are four basic steps needed for conceptual schema integration:

1. Preintegration analysis.

2. Comparison of schemas.

3. Conformation of schemas.

4. Merging and restructuring of schemas.

4.4.1 Preintegration Analysis

The first step, preintegration analysis, involves choosing an integration strategy.
Typically, the choice is between a binary approach with two schemas merged at
one time and an n-ary approach with 7z schemas merged at one time, where 7 is

154 CHAPTER 4 Requirements Analysis and Data Modeling

between 2 and the total number of schemas developed in the conceptual design.
The binary approach is attractive because each merge involves a small number
of data model constructs and is easier to conceptualize. The n-ary approach may
require only one grand merge, but the number of constructs may be so large that
it is not humanly possible to organize the transformations properly.

4.4.2 Comparison of Schemas

In the second step, comparison of schemas, the designer looks at how entities
correspond and detects conflicts arising from schema diversity—that is, from user
groups adopting different viewpoints in their respective schemas. Naming con-
flicts include synonyms and homonyms. Synonyms occur when different names
are given for the same concept; these can be detected by scanning the data dic-
tionary, if one has been established for the database. Homonyms occur when the
same name is used for different concepts. These can only be detected by scanning
the different schemas and looking for common names.

Structural conflicts occur in the schema structure itself. Type conflicts involve
using different constructs to model the same concept. In Figure 4.4, for example,
an entity, a relationship, or an attribute can be used to model the concept of order
in a business database. Dependency conflicts result when users specify different
levels of connectivity (one-to-many, etc.) for similar or even the same concepts.
One way to resolve such conflicts might be to use only the most general connec-
tivity (e.g., many-to-many). If that is not semantically correct, change the names
of entities so that each type of connectivity has a different set of entity names.
Key conflicts occur when different keys are assigned to the same entity in differ-
ent views. For example, a key conflict occurs if an employee’s full name, employee
ID number, and social security number are all assigned as keys.

4.4.3 Conformation of Schemas

The resolution of conflicts often requires user and designer interaction. The basic
goal of the third step is to align or conform schemas to make them compatible
for integration. The entities, as well as the key attributes, may need to be renamed.
Conversion may be required so that concepts modeled as entities, attributes, or
relationships are conformed to be only one of them. Relationships with equal
degree, roles, and connectivity constraints are easy to merge. Those with differing
characteristics are more difficult and, in some cases, impossible to merge. In addi-
tion, relationships that are not consistent—for example, a relationship using
generalization in one place and the exclusive-OR in another—must be resolved.
Finally, assertions may need to be modified so that integrity constraints remain
consistent.

Techniques used for view integration include abstraction, such as generaliza-
tion and aggregation to create new supertypes or subtypes, or even the introduc-
tion of new relationships. As an example, the generalization of Individual over

4.4 View Integration 155

different values of the descriptor attribute job-title could represent the con-
solidation of two views of the database—one based on an individual as the basic
unit of personnel in the organization and another based on the classification of
individuals by job titles and special characteristics within those classifications.

4.4.4 Merging and Restructuring of Schemas

The fourth step consists of the merging and restructuring of schemas. This step
is driven by the goals of completeness, minimality, and understandability. Com-
pleteness requires all component concepts to appear semantically intact in the
global schema. Minimality requires the designer to remove all redundant concepts
in the global schema. Examples of redundant concepts are overlapping entities
and truly semantically redundant relationships; for example, Ground-Vehicle and
Automobile might be two overlapping entities. A redundant relationship might
occur between Instructor and Student. The relationships direct-research and
advise may or may not represent the same activity or relationship, so further
investigation is required to determine whether they are redundant or not. Under-
standability requires that the global schema make sense to the user.

Component schemas are first merged by superimposing the same concepts
and then restructuring the resulting integrated schema for understandability. For
instance, if a supertype/subtype combination is defined as a result of the merging
operation, the properties of the subtype can be dropped from the schema because
they are automatically provided by the supertype entity.

4.4.5 Example of View Integration

Let us look at two different views of overlapping data. The views are based on
two separate interviews of end users. We adapt the interesting example cited by
Batini et al. (1986) to a hypothetical situation related to our example.

In Figure 4.5(2) we have a view that focuses on reports and includes data on
departments that publish the reports, topic areas in reports, and contractors for
whom the reports are written. Figure 4.5(b) shows another view, with publica-
tions as the central focus and keywords on publication as the secondary data. Our
objective is to find meaningful ways to integrate the two views and maintain
completeness, minimality, and understandability.

We first look for synonyms and homonyms, particularly among the entities.
Note that a synonym exists between the entities Topic-area in schema 1 and
Keyword in schema 2, even though the attributes do not match. However, we find
that the attributes are compatible and can be consolidated. This is shown in Figure
4.6(a), which presents a revised schema, schema 2.1. In schema 2.1, Keyword has
been replaced by Topic-area.

Next we look for structural conflicts between schemas. A type conflict is found
to exist between the entity Department in schema 1 and the attribute dept-name
in schema 2.1. The conflict is resolved by keeping the stronger entity type,

156 CHAPTER 4 Requirements Analysis and Data Modeling

Department Report Contractor

N

name (_ title) (name)
(_address) (address)

contains

N

Topic-area

(name)

(@)

N N
Publication Keyword

code code
dept-name research-area

(b)

FIGURE 4.5

View integration, find meaningful ways to integrate: (a) original schema 1, focused on reports,
and (b) original schema 2, focused on publications.

Department, and moving the attribute type dept-name under Publication in
schema 2 to the new entity, Department, in schema 2.2 (see Figure 4.6(b)).

At this point we have sufficient commonality between schemas to attempt a
merge. In schemas 1 and 2.2 we have two sets of common entities, Department
and Topic-area. Other entities do not overlap and must appear intact in the
superimposed, or merged, schema. The merged schema, schema 3, is shown in
Figure 4.7(a). Because the common entities are truly equivalent, there are no bad
side effects of the merge due to existing relationships involving those entities in
one schema and not in the other. (Such a relationship that remains intact exists
in schema 1 between Topic-area and Report, for example.) If true equivalence
cannot be established, the merge may not be possible in the existing form.

4.4 View Integration 157

Publication Topic-area

dept-name research-area

(@)

Department

Publication contains Topic-area

(b)

FIGURE 4.6

View integration, type conflict: (a) schema 2.1, in which Keyword has changed to
Topic-area, and (b) schema 2.2, in which the attribute dept-name has changed to
an attribute and an entity.

In Figure 4.7, there is some redundancy between Publication and Report in
terms of the relationships with Department and Topic-area. Such a redundancy
can be eliminated if there is a supertype/subtype relationship between Publica-
tion and Report, which does in fact occur in this case because Publication is
a generalization of Report. In schema 3.1 (Figure 4.7(b)) we see the introduction
of this generalization from Report to Publication. Then in schema 3.2 (Figure
4.7(c)) we see that the redundant relationships between Report and Department
and Topic-area have been dropped. The attribute title has been eliminated as
an attribute of Report in Figure 4.7(c) because title already appears as an attri-
bute of Publication at a higher level of abstraction; title is inherited by the
subtype Report.

158 CHAPTER 4 Requirements Analysis and Data Modeling

The final schema, in Figure 4.7(c), expresses completeness because all the
original concepts (Report, Publication, Topic-area, Department, and Contrac-
tor) are kept intact. It expresses minimality because of the transformation of
dept-name from an attribute in schema 1 to an entity and attribute in schema 2.2,
and the merger between schema 1 and schema 2.2 to form schema 3, and because
of the elimination of title as an attribute of Report and of Report relationships
with Topic-area and Department. Finally, it expresses understandability in that
the final schema actually has more meaning than individual original schemas.

The view integration process is one of continual refinement and reevaluation.
It should also be noted that minimality may not always be the most efficient way
to proceed. If, for example, the elimination of the redundant relationships pub-
1ishes and/or contains from schema 3.1 to schema 3.2 causes the time required
to perform certain queries to be excessively long, it may be better from a perfor-
mance viewpoint to leave them in. This decision could be made during the

N L. N
Publication
(code)
1 N
1 N N N .
Department Report Topic-area

name (name ’
(address) (code)

research-
area

N

Contractor

(name '
(address ’

(a)
FIGURE 4.7

View integration, the merged schema: (a) schema 3, the result of merging schema 1
and schema 2.2.

Publication

1

Department

Contractor

(b)

includes

N

Topic-area

research-
area

Publication

Department

name

Contractor

©
FIGURE 4.7

Topic-area

research-
area

(b) schema 3.1, new generalization; and (c) schema 3.2, elimination of redundant

relationships.

160 CHAPTER 4 Requirements Analysis and Data Modeling

analysis of the transactions on the database or during the testing phase of the fully
implemented database.

4.5 ENTITY CLUSTERING FOR ER MODELS

This section presents the concept of entity clustering, which abstracts the ER
schema to such a degree that the entire schema can appear on a single sheet of
paper or a single computer screen. This has happy consequences for the end user
and database designer in terms of developing a mutual understanding of the data-
base contents and formally documenting the conceptual model.

An entity cluster is the result of a grouping operation on a collection of entities
and relationships. Entity clustering is potentially useful for designing large data-
bases. When the scale of a database or information structure is large and includes
a large number of interconnections among its different components, it may be
very difficult to understand the semantics of such a structure and to manage it,
especially for the end users or managers. In an ER diagram with 1000 entities,
the overall structure will probably not be very clear, even to a well-trained data-
base analyst. Clustering is therefore important because it provides a method to
organize a conceptual database schema into layers of abstraction, and it supports
the different views of a variety of end users.

4.5.1 Clustering Concepts

One should think of grouping as an operation that combines entities and their
relationships to form a higher-level construct. The result of a grouping operation
on simple entities is called an entity cluster. A grouping operation on entity clus-
ters, or on combinations of elementary entities and entity clusters, results in a
higher-level entity cluster. The highest-level entity cluster, representing the entire
database conceptual schema, is called the root entity cluster.

Figure 4.8(a) illustrates the concept of entity clustering in a simple case where
(elementary) entities R-sec (report section), R-abbr (report abbreviation), and
Author are naturally bound to (dominated by) the entity Report; and entities
Department, Contractor, and Project are not dominated. (Note that to avoid
unnecessary detail, we do not include the attributes of entities in the diagrams.)
In Figure 4.8(b), the dark-bordered box around the entity Report and the entities
it dominates defines the entity cluster Report. The dark-bordered box is called
the EC box to represent the idea of an entity cluster. In general, the name of the
entity cluster need not be the same as the name of any internal entity; however,
when there is a single dominant entity, the names are often the same. The EC box
number in the lower-right corner is a clustering-level number used to keep track
of the sequence in which clustering is done. The number 2.1 signifies that the
entity cluster Report is the first entity cluster at level 2. Note that all the original
entities are considered to be at level 1.

4.5 Entity Clustering for ER Models 161

Department Contractor
1 1
ON N

S

W Report

¢

1
N
N @ N Project

(@)
Department Contractor
1 1
o> Tdowr>
Report ON N | Report
Report
(entity cluster) | Author @ Project
N N
2.1
(b)
FIGURE 4.8

Entity clustering concepts: (a) ER model before clustering, and (b) ER model after
clustering.

The higher-level abstraction, the entity cluster, must maintain the same rela-
tionships between entities inside and outside the entity cluster as those that occur
between the same entities in the lower-level diagram. Thus, the entity names
inside the entity cluster should appear just outside the EC box along the path of
their direct relationship to the appropriately related entities outside the box,
maintaining consistent interfaces (relationships) as shown in Figure 4.8(b). For
simplicity, we modify this rule slightly: If the relationship is between an external
entity and the dominant internal entity (for which the entity cluster is named),
the entity cluster name need not be repeated outside the EC box. Thus, in

162 CHAPTER 4 Requirements Analysis and Data Modeling

Figure 4.8(b), we could drop the name Report both places it occurs outside the
Report box, but we must retain the name Author, which is not the name of the
entity cluster.

4.5.2 Grouping Operations

Grouping operations are the fundamental components of the entity clustering
technique. They define what collections of entities and relationships comprise
higher-level objects, the entity clusters. The operations are heuristic in nature and
(see Figure 4.9) include the following.

(@) (b)

(c) (d)
FIGURE 4.9

Grouping operations: (a) dominance grouping, (b) abstraction grouping, (c) constraint
grouping, and (d) relationship grouping.

4.5 Entity Clustering for ER Models 163

m Dominance grouping.
m Abstraction grouping.
m Constraint grouping.

m Relationship grouping.

These grouping operations can be applied recursively or used in a variety of
combinations to produce higher-level entity clusters—that is, clusters at any level
of abstraction. An entity or entity cluster may be an object that is subject to com-
binations with other objects to form the next higher level. That is, entity clusters
have the properties of entities and can have relationships with any other objects
at any equal or lower level. The original relationships among entities are preserved
after all grouping operations, as illustrated in Figure 4.8.

Dominant objects or entities normally become obvious from the ER diagram
or the relationship definitions. Each dominant object is grouped with all its related
nondominant objects to form a cluster. Weak entities can be attached to an entity
to make a cluster. Multilevel data objects using abstractions such as generalization
and aggregation can be grouped into an entity cluster. The supertype or aggregate
entity name is used as the entity cluster name. Constraint-related objects that
extend the ER model to incorporate integrity constraints, such as the exclusive-
OR, can be grouped into an entity cluster. Additionally, ternary or higher-degree
relationships potentially can be grouped into an entity cluster. The cluster repre-
sents the relationship as a whole.

4.5.3 Clustering Technique

The grouping operations and their order of precedence determine the individual
activities needed for clustering. We can now learn how to build a root entity
cluster from the elementary entities and relationships defined in the ER modeling
process. This technique assumes that a top-down analysis has been performed as
part of the database requirement analysis and that the analysis has been docu-
mented so that the major functional areas and subareas are identified. Functional
areas are often defined by an enterprise’s important organizational units, business
activities, or, possibly, by dominant applications for processing information. As
an example, recall Figure 4.3 (reconstructed in Figure 4.10), which can be thought
of as having three major functional areas: company organization (Division,
Department), project management (Project, Skill, Location, Employee), and
employee data (Manager, Secretary, Engineer, Technician, Prof-assoc, Work-
station, and Desktop). Note that the functional areas are allowed to overlap.
Figure 4.10 uses an ER diagram resulting from the database requirement analysis
to show how clustering involves a series of bottom-up steps using the basic group-
ing operations. The following list explains these steps.

1. Define points of grouping within functional areas. Locate the dominant enti-
ties in a functional area through natural relationships, local n-ary relationships,
integrity constraints, abstractions, or just the central focus of many simple

164 CHAPTER 4 Requirements Analysis and Data Modeling

Company
organization
functional
area

Division

1

N

Department
1 |1
is- is-
managed-by headed-by
Project
management
functional
area
N N
Project Employee :% married-to
O
. N N
assigned-to —_
manages
Location
d
Employee
data
functional
area
Manager Secretary Engineer Technician

o1 o1 o1 O N
has-
is-allocated is-allocated allocated belongs-to
1 1 ol oN

Desktop Workstation Prof-assoc

FIGURE 4.10

ER diagram: clustering technique.

4.6 Summary 165

relationships. If such points of grouping do not exist within an area, consider
a functional grouping of a whole area.

2. Form entity clusters. Use the basic grouping operations on elementary entities
and their relationships to form higher-level objects, or entity clusters. Because
entities may belong to several potential clusters, we need to have a set of pri-
orities for forming entity clusters. The following set of rules, listed in priority
order, defines the set that is most likely to preserve the clarity of the conceptual
model:

a. Entities to be grouped into an entity cluster should exist within the same
functional area; that is, the entire entity cluster should occur within the
boundary of a functional area. For example, in Figure 4.10, the relationship
between Department and Emp1oyee should not be clustered unless Employee
is included in the company organization functional area with Department
and Division. In another example, the relationship between the supertype
Employee and its subtypes could be clustered within the employee data
functional area.

b. If a conflict in choice between two or more potential entity clusters cannot
be resolved (e.g., between two constraint groupings at the same level of
precedence), leave these entity clusters ungrouped within their functional
area. If that functional area remains cluttered with unresolved choices,
define functional subareas in which to group unresolved entities, entity
clusters, and their relationships.

3. Form higher-level entity clusters. Apply the grouping operations recursively
to any combination of elementary entities and entity clusters to form new levels
of entity clusters (higher-level objects). Resolve conflicts using the same set of
priority rules given in step 2. Continue the grouping operations until all the
entity representations fit on a single page without undue complexity. The root
entity cluster is then defined.

4. Validate the cluster diagram. Check for consistency of the interfaces (relation-
ships) between objects at each level of the diagram. Verify the meaning of each
level with the end users.

The result of one round of clustering is shown in Figure 4.11, where each of
the clusters is shown at level 2.

4.6 SUMMARY

Conceptual data modeling, using either the ER or UML approach, is particularly
useful in the early steps of the database life cycle, which involve requirements
analysis and logical design. These two steps are often done simultaneously, par-
ticularly when requirements are determined from interviews with end users and
modeled in terms of data-to-data relationships and process-to-data relationships.
The conceptual data modeling step (ER approach) involves the classification of

166 CHAPTER 4 Requirements Analysis and Data Modeling

Division/
Department
cluster

2.1

—
—_

1 Division

Department

— -
—

is-

Inanaged-by headed-by

Project

management

cluster Wl
2.2

Project

assigned-to

Location manages

Manager Secretary Engineer Technician
cluster cluster cluster

2.3 2.4 2.5

FIGURE 4.11
Clustering results.

entities and attributes first, then the identification of generalization hierarchies
and other abstractions, and finally the definition of all relationships among entities.
Relationships may be binary (the most common), ternary, and higher-level n-ary.
Data modeling of individual requirements typically involves creating a different
view for each end user’s requirements. Then the designer must integrate those
views into a global schema, so that the entire database is pictured as an integrated
whole. This helps to eliminate needless redundancy—such elimination is particu-
larly important in logical design. Controlled redundancy can be created later, at
the physical design level, to enhance database performance. Finally, an entity

4.7 Literature Summary 167

cluster is a grouping of entities and their corresponding relationships into a higher-
level abstract object. Clustering promotes the simplicity that is vital for fast end
user comprehension.

4.7 LITERATURE SUMMARY

Conceptual data modeling is defined in Tsichritzis and Lochovsky (1982); Brodie,
Mylopoulos, and Schmidt (1984); Nijssen and Halpin (1989); and Batini, Ceri, and
Navathe (1992). Discussion of the requirements data collection process can be
found in Martin (1982), Teorey and Fry (1982), and Yao (1985).

View integration has progressed from a representation tool (Smith & Smith,
1977) to heuristic algorithms (Batini, Lenzerini, & Navathe, 1986; Elmasri &
Navathe, 2003). These algorithms are typically interactive, allowing the database
designer to make decisions based on suggested alternative integration actions.

A variety of entity clustering models have been defined that provide a
useful foundation for the clustering technique (Feldman & Miller, 1986; Dittrich,
Gotthard, & Lockemann, 1986; Teorey et al., 1989).

This page intentionally left blank

CHAPTER

Logical Database Design

5.1 INTRODUCTION

If we produced a conceptual data model and had it effectively reviewed
and verified, the next step would be to translate it into a logical data model
suitable for implementation using the target database management system
(DBMS).

In this chapter we look at the most common situation (in which the DBMS is
relational) and describe the transformations and design decisions that we need to
apply to the conceptual model to produce a logical model suitable for direct
implementation as a relational database. Later it may be necessary to make some
changes to this initial relational model to achieve performance goals; for this
purpose we will produce a physical data model.

The advantages of producing a logical data model as an intermediate deliver-
able rather than proceeding directly to the physical data model are:

1. Since it has been produced by a set of well-defined transformations from the
conceptual data model, the logical data model reflects business information
requirements without being obscured by any changes required for perfor-
mance; in particular, it embodies rules about the properties of the data (such
as functional dependencies). These rules cannot always be deduced from
a physical data model, which may have been denormalized or otherwise
compromised.

2. If the database is ported to another DBMS supporting similar structures (e.g.,
another relational DBMS or a new version of the same DBMS having different
performance properties), the logical data model can be used as a baseline for
the new physical data model.

The task of transforming the conceptual data model to a relational logical
model is quite straightforward—certainly more so than the conceptual modeling
stage—and is, even for large models, unlikely to take more than a few days. In
fact, many computer-aided software engineering (CASE) tools provide facilities for
the logical data model to be generated automatically from the conceptual model.

170 CHAPTER 5 Logical Database Design

(They generally achieve this by bringing forward some decisions to the conceptual
modeling stage, and/or applying some default transformation rules, which may
not always provide the optimum result.)

We need to make a number of transformations; some of these lend themselves
to alternatives and therefore require decisions to be made, while others are essen-
tially mechanical. We describe both types in detail in this chapter. Generally,
the decisions do not require business input, which is why we defer them until
this time.

If you are using a DBMS that is not based on a simple relational model, you
will need to adapt the principles and techniques described here to suit the par-
ticular product. However, the basic relational model currently represents the
closest thing to a universal, simple view of structured data for computer imple-
mentation, and there is a good case for producing a relational data model as an
interim deliverable, even if the target DBMS is not relational. From here on, unless
otherwise qualified, the term Jogical model should be taken as referring to a rela-
tional model.

Similarly, if you are using a CASE tool that enforces particular transformation
rules, or perhaps does not even allow for separate conceptual and logical models,
you will need to adapt your approach accordingly.

In any event, even though this chapter describes what is probably the most
mechanical stage in the data modeling life cycle, your attitude should not be
mechanistic. Alert modelers will frequently uncover problems and challenges that
have slipped through earlier stages, and will need to revisit requirements or the
conceptual model.

The next section provides an overview of the transformations and design deci-
sions in the sequence in which they would usually be performed. The following
sections cover each of the transformations and decisions in more detail. A sub-
stantial amount of space is devoted to subtype implementation, a central decision
in the logical design phase. The other critical decision in this phase is the defini-
tion of primary keys: Poor choice of primary keys is one of the most common and
expensive errors in data modeling. We conclude the chapter by looking at how
to document the resulting logical model.

5.2 OVERVIEW OF THE TRANSFORMATIONS REQUIRED

The transformations required to convert a conceptual data model to a logical
model can be summarized as follows.

1. Table specification:
a. Exclusion of entity classes not required in the database.
b. Implementation of classification entity classes, for which there are two
options.

5.2 Overview of the Transformations Required 171

c. Removal of derivable many-to-many relationships (if our conceptual model-
ing conventions support these).

d. Implementation of many-to-many relationships as intersection tables.

e. Implementation of n-ary relationships (if our conceptual modeling conven-
tions support these)?® as intersection tables.

f. Implementation of supertype/subtypes: mapping one or more levels of each
subtype hierarchy to tables.

g. Implementation of other entity classes: each becomes a table.

N

Basic column specification:

a. Removal of derivable attributes (if our conceptual modeling conventions
support these).?

b. Implementation of category attributes, for which there are two options.

c. Implementation of multivalued attributes (if our conceptual modeling con-
ventions support these), for which there are multiple options.

d. Implementation of complex attributes (if our conceptual modeling conven-
tions support these),” for which there are two options.

e. Implementation of other attributes as columns.

f. Possible introduction of additional columns.

g. Determination of column data types and lengths.

h. Determination of column nullability.

At this point, the process becomes iterative rather than linear, as we have to
deal with some interdependency between two tasks. We cannot specify foreign
keys until we know the primary keys of the tables to which they point; on the
other hand, some primary keys may include foreign key columns (which can make
up part or all of a table’s primary key).

What this means is that we cannot first specify all the primary keys across our
model, then specify all the foreign keys in our model—or the reverse. Rather, we
need to work back and forth.

First, we identify primary keys for tables derived from independent entity
classes (these are entity classes that are not at the “many” end of any nontransfer-
able mandatory many-to-one relationship;® loosely speaking, they are the “stand-
alone” entity classes). Now we can implement all of the foreign keys pointing
back to those tables. Doing this will enable us to define the primary keys for the
tables representing any entity classes dependent on those independent entity

"UML supports derived relationships; entity-relationship (ER) conventions generally do not.

*UML and Chen conventions support n-ary relationships; ER conventions generally do not.

*UML supports derived attributes; ER conventions generally do not.

fUML supports multivalued attributes.

>Although not every CASE tool currently supports complex attributes, there is nothing in the UML
or ER conventions to preclude the inclusion of complex attributes in a conceptual model.

An entity class that is at the “many” end of a nontransferable mandatory many-to-one relationship
may be assigned a primary key, which includes the foreign key implementing that relationship.

172 CHAPTER 5 Logical Database Design

classes and then implement the foreign keys pointing back to them. This is
described, with an example, in Section 5.5.
So, the next step is as follows.

3. Primary key specification (for tables representing independent entity classes):
a. Assessment of existing columns for suitability.
b. Introduction of new columns as surrogate keys.

Then, the next two steps are repeated until all of the relationships have been
implemented.

4. Foreign key specification (to those tables with primary keys that already have
been identified):
a. Removal of derivable one-to-many relationships (if our conceptual modeling
conventions support these).”
b. Implementation of one-to-many relationships as foreign key columns.
c. Implementation of one-to-one relationships as foreign keys or through
common primary keys.

5. Primary key specification (for those tables representing entity classes dependent
on other entity classes for which primary keys have already been identified):
a. Inclusion of foreign key columns representing mandatory relationships.
b. Assessment of other columns representing mandatory attributes for
suitability.
c. Possible introduction of additional columns as “tie-breakers.”

We counsel you to follow this sequence, tempting though it can be to jump
ahead to “obvious” implementation decisions. There are a number of dependen-
cies between the steps, and unnecessary mistakes are easily made if some disci-
pline is not observed.

5.3 TABLE SPECIFICATION

In general, each entity class in the conceptual data model becomes a table in the
logical data model and is given a name that corresponds to that of the source
entity class (see Section 5.7).

5.3.1 The Standard Transformation

There are, however, exceptions to this “one table per entity” picture:

m Some entity classes may be excluded from the database.
m Classification entity classes (if included in the conceptual model) may not
be implemented as tables.

"UML supports derived relationships; ER conventions generally do not.

5.3 Table Specification 173

m Tables are created to implement many-to-many and z-ary relationships
(those involving more than two entity classes).
m A supertype and its subtypes may not all be implemented as tables.

We discuss these exceptions and additions later in the sequence in which we
recommend you tackle them. In practice, the implementation of subtypes and
supertypes is usually the most challenging of them.

Finally, note that we may also generate some classification tables during the
next phase of logical design (see Section 5.4.2), when we select our method(s)
of implementing category attributes.

5.3.2 Exclusion of Entity Classes from the Database

In some circumstances an entity class may have been included in the conceptual
data model to provide context, and there is no actual requirement for that appli-
cation to maintain data corresponding to that entity class. It is also possible that
the data are to be held in some medium other than the relational database, such
as nondatabase files, XML streams, and so on.

5.3.3 Classification Entity Classes

We do not recommend that you specify classification entity classes purely to
support category attributes during the conceptual modeling phase. If, however,
you are working with a conceptual model that contains such entity classes, you
should not implement them as tables at this stage but defer action until the next
phase of logical design (column specification, as described in Section 5.4.2) to
enable all category attributes to be looked at together and consistent decisions
made.

5.3.4 Many-to-Many Relationship Implementation

A many-to-many relationship can be represented as an additional entity class linked
to the two original entity classes by one-to-many relationships.

The Usual Case

In the same way, each many-to-many relationship in the conceptual data model
can be converted to an intersection table with two foreign keys (the primary keys
of the tables implementing the entity classes involved in that relationship).

Derivable Many-to-Many Relationships

Occasionally, you may discover that a many-to-many relationship that you have
documented can be derived from attributes of the participating entity classes.
Perhaps we have proposed Applicant and Welfare Benefit entity classes and a
many-to-many relationship between them (Figure 5.1).

174 CHAPTER 5 Logical Database Design

qualify for

Welfare
Benefit

Applicant

be applicable to
APPLICANT (Applicant ID, Name, Birth Date, . . .)
WELFARE BENEFIT (Benefit ID, Minimum Eligible Age, Maximum Eligible Age . . .)

FIGURE 5.1
A derivable many-to-many relationship.

On further analysis, we discover that eligibility for benefits can be determined
by comparing attributes of the applicant with qualifying criteria for the benefit
(e.g., birth date compared with eligible age attributes).

In such cases, if our chosen CASE tool does not allow us to show many-to-many
relationships in the conceptual data model without creating a corresponding
intersection table in the logical data model, we should delete the relationship on
the basis that it is derivable (and therefore redundant); we do not want to gener-
ate an intersection table that contains nothing but derivable data.

If you are using Unified Modeling Language (UML), you can specifically identify
a relationship as being derivable, in which case the CASE tool should not generate
an intersection table. If you look at any model closely, you will find opportunities
to document numerous such many-to-many relationships derivable from inequali-
ties (i.e., greater than, less than) or more complex formulas and rules. For
example:

m Each Employee Absence may occur during one or more Strikes and each
Strike may occur during one or more Employee Absences (derivable
from comparison of dates).

m Each Aircraft Type may be able to land at one or more Airfields and
each Airfield may be able to support landing of one or more Aircraft
Types (derivable from airport services and runway facilities and aircraft
type specifications).

If our chosen CASE tool does not allow us to show many-to-many relationships
in the conceptual data model without including a corresponding intersection table
in the logical data model, what do we say to the business reviewers? Having pre-
sented them with a diagram, which they have approved, we now remove one or
more relationships.

It is certainly not appropriate to surreptitiously amend the model on the basis
that “we know better.” Nor is it appropriate to create two conceptual data models,
a business stakeholder model and an implementation model. Our opposition to
these approaches is that the first involves important decisions being taken without

5.3 Table Specification 175

business stakeholder participation, and the second complicates the modeling
process for little gain. We have found that the simplest and most effective approach
in this situation is to remove the relationship(s) from the conceptual data model
but inform business stakeholders that we have done so and explain why. We show
how the relationship is derivable from other data, and demonstrate, using sample
transactions, that including the derivable relationship will add redundancy and
complexity to the system.

Alternative Implementations

A DBMS that supports the SQL99 Set Type Constructor feature enables implemen-
tation of a many-to-many relationship without creating an additional table.
However, we do not recommend that you include such a structure in your logical
data model. The decision as to whether to use such a structure should be taken
at the physical database design stage.

5.3.5 Relationships Involving More Than Two Entity Classes

The entity-relationship conventions that we use here do not support the direct
representation of relationships involving three or more entity classes (n-ary rela-
tionships). If we encounter such relationships at the conceptual modeling stage,
we will be forced to represent them using intersection entity classes, anticipating
the implementation. There is nothing more to do at this stage, since the standard
transformation from entity class to table will have included such entity classes.
However, you should check for normalization; such structures provide the most
common situations of data that are in third normal form but not in fourth or fifth
normal form.

If you are using UML (or other conventions that support n-ary relationships),
you will need to resolve the relationships (i.e., represent each n-ary relationship
as an intersection table).

5.3.6 Supertype/Subtype Implementation

The relational model and relational DBMSs do not provide direct support for sub-
types or supertypes. Therefore, any subtypes that were included in the conceptual
data model are normally replaced by standard relational structures in the logical
data model. Since we are retaining the documentation of the conceptual data
model, we do not lose the business rules and other requirements represented by
the subtypes we created in that model. This is important, since there is more than
one way to represent a supertype/subtype set in a logical data model and the
decisions we make to represent each such set may need to be revisited in the
light of new information (such as changes to transaction profiles, other changes
to business processes, or new facilities provided by the DBMS) or if the system is
ported to a different DBMS. Indeed if the new DBMS supports subtypes directly,
supertypes and subtypes can be retained in the logical data model; the SQL99

176 CHAPTER 5 Logical Database Design

(ANSI/ISO/IEC 9075) standard provides for direct support of subtypes and at least
one object-relational DBMS provides such support.

Implementation at a Single Level of Generalization

One way of leveling a hierarchy of subtypes is to select a single level of generaliza-
tion. In the example in Figure 5.2, we can do this by discarding Party, in which
case we implement only its subtypes, Individual and Organization, or by dis-
carding Individual and Organization and implementing only their supertype,
Party. Actually, “discard” is far too strong a word, since all the business rules and
other requirements represented by the subtypes have been retained in the con-
ceptual data model.

We certainly will not discard any attributes or relationships. Tables represent-
ing subtypes inberit the attributes and relationships of any “discarded” super-
types, and tables representing supertypes roll up the attributes and relationships
of any “discarded” subtypes. So if we implement Individual and Organization
as tables, but not Party, each will inherit all the attributes and relationships of
Party. Conversely, if we implement Party as a table but not Individual or Orga-
nization, we need to include in the Party table any attributes and relationships
specific to Individual or Organization. These attributes and relationships would
become optional attributes and relationships of Party. In some cases, we might
choose to combine attributes or relationships from different subtypes to form a
single attribute or relationship. For example, in rolling up purchase and sale into
financial transaction, we might combine price and sale value into amount.
This is generalization at the attribute level.

If we implement at the supertype level, we also need to add a Type column to
allow us to preserve any distinctions that the discarded subtypes represented and
that cannot be derived from existing attributes of the supertype. In this example
we would introduce a Party Type column to allow us to distinguish those parties
that are organizations from those who are individuals.

If we are rolling up two or more levels of subtypes, we have some choice as
to how many Type columns to introduce. For a generally workable solution, we
suggest you simply introduce a single Type column based on the lowest level of
subtyping. In Figure 5.3, if you decide to implement at the Party level, add a
single Party Type column, which will hold values of Adult, Minor, Private

Party

[Individual }[Organization]

FIGURE 5.2
A simple supertype/subtype set.

5.3 Table Specification 177

a4 Party N\

Individual

(o) (o)

Organization

Private Sector Public Sector
Organization Organization

o /

FIGURE 5.3
A more complex supertype/subtype structure.

Party Type Organization/Individual Indicator
Private Sector Organization Organization
Public Sector Organization Organization
Adult Individual
Minor Individual
FIGURE 5.4

Reference table of Party types.

Sector Organization,and Public Sector Organization. If you want to distin-
guish which of these are persons and which are organizations, you will need to
introduce an additional reference table with four rows as in Figure 5.4.

Implementation at Multiple Levels of Generalization
Returning to the example in Figure 5.2, a third option is to implement all three
entity classes in the Party hierarchy as tables. We link the tables by carrying the
foreign key of Party in the Individual and Organization tables. The appeal of
this option is that we do not need to discard any of our concepts and rules. On
the other hand, we can easily end up with a proliferation of tables, violating our
aim of simplicity. And these tables usually will not correspond on a one-to-one
basis with familiar concepts; the Individual table in this model does not hold all
the attributes of individuals, only those that are not common to all parties. The
concept of an individual is represented by the Party and Individual tables in
combination.

Figure 5.6 illustrates all three options for implementing the supertype/subtype
structure in Figure 5.5. (The exclusivity arc drawn across the set of relationships
indicates that they are mutually exclusive.)

178 CHAPTER 5 Logical Database Design

Party

[Individual J{ Organization J

PARTY (Party ID, First Contact Date)
INDIVIDUAL (Family Name, Given Name, Gender, Birth Date)
ORGANIZATION (Registered Name, Incorporation Date, Employee Count)

FIGURE 5.5
A conceptual data model with a supertype/subtype set.

Other Options

There may be other options in some situations. First, we may create a table for
the supertype and tables for only some of the subtypes. This is quite common
when some subtypes do not have any attributes or relationships in addition to
those of the supertype, in which case those subtypes do not need separate
tables.

Second, if a supertype has three or more subtypes and some of those subtypes
have similar attributes and relationships, we may create single tables for similar
subtypes and separate tables for any other subtypes, with or without a table for
the supertype. In this case, we are effectively recognizing an intermediate level
of subtyping and should consider whether it is worth including it in the concep-
tual model. For example, in a financial services conceptual data model the Party
Role entity class may have Customer, Broker, Financial Advisor, Employee,
Service Provider, and Supplier subtypes. If we record similar facts about
brokers and financial advisors, it may make sense to create a single table in which
to record both these roles; similarly, if we record similar facts about service pro-
viders and suppliers, it may make sense to create a single table in which to record
both these roles.

Which Option?
Which option should we choose for each supertype hierarchy? An important
consideration is the enforcement of referential integrity. Consider this situation:

1. The database administrator (DBA) intends to implement referential
integrity using the DBMS referential integrity facilities.

2. The target DBMS only supports standard referential integrity between
foreign keys and primary keys.®

®That is without any selection of rows from the referenced table (i.e., only the rows of a subtype)
or multiple referenced tables (i.e., all the rows of a supertype). The authors are not aware of any
DBMSs that provide such facilities.

5.3 Table Specification 179

Option 1 Party
Option 2 Individual Organization
Party
Option 3 S~— |
Individual Organization
Option 1:

PARTY (Party ID, First Contact Date, Family Name, Given Name, Gender, Birth Date,
Registered Name, Incorporation Date, Employee Count)

Option 2:

INDIVIDUAL (Party ID, First Contact Date, Family Name, Given Name, Gender, Birth
Date)

ORGANIZATION (Party ID, First Contact Date, Registered Name, Incorporation Date,
Employee Count)

Option 3:

PARTY (Party ID, First Contact Date)

INDIVIDUAL (Party ID, Family Name, Given Name, Gender, Birth Date)
ORGANIZATION (Party ID, Registered Name, Incorporation Date, Employee Count)

FIGURE 5.6
Implementing a supertype/subtype set in a logical data model.

In this case, each entity that is at the “one” end of a one-to-many relationship
must be implemented as a table, whether it is a supertype or a subtype, so that
the DBMS can support referential integrity of those relationships.

This is because standard DBMS referential integrity support allows a foreign
key value to be any primary key value from the one associated table. If a subtype
is represented by a subset of the rows in a table implementing the supertype rather
than as its own separate table, any foreign keys implementing relationships to that

180 CHAPTER 5 Logical Database Design

subtype can have any primary key value including those of the other subtypes.
Referential integrity on a relationship to that subtype can therefore only be
managed by either program logic or a combination of DBMS referential integrity
support and program logic.

By contrast, if the supertype is represented by multiple subtype tables rather
than its own table, any foreign key implementing relationships to that supertype
can have any value from any of the subtype tables. Referential integrity on a rela-
tionship to that supertype can therefore only be managed in program logic.

Another factor is the ability to present data in alternative ways. We do not
always access the tables of a relational database directly. Usually we access them
through views, which consist of data from one or more tables combined or
selected in various ways. We can use the standard facilities available for construct-
ing views to present data at the subtype or supertype level, regardless of whether
we have chosen to implement subtypes, supertypes, or both. However, there are
some limitations. Not all views allow the data presented to be updated. This is
sometimes due to restrictions imposed by the particular DBMS, but there are also
some logical constraints on what types of views can be updated. In particular,
these arise where data have been combined from more than one table, and it is
not possible to unambiguously interpret a command in terms of which underlying
tables are to be updated. It is beyond the scope of this chapter to discuss view
construction and its limitations in any detail. Broadly, the implications for the three
implementation options are:

1. Implementation at the supertype level: If we implement a Party table,
a simple selection operation will allow us to construct Individual and
Organization views. These views will be logically updateable.

2. Implementation at the subtype level: If we implement separate Individual
and Organization tables, a Party view can be constructed using the “union”
operator. Views constructed using this operator are not updateable.

3. Implementation of both supertype and subtype levels: If we implement
Individual, Organization, and Party tables, full views of Individual and
Organization can be constructed using the “join” operator. Some views using
this operator are not updateable, and DBMSs differ on precisely what restric-
tions they impose on join view updateability. They can be combined using the
union operator to produce a Party view, which again will not be updateable.

Nonrelational DBMSs offer different facilities and may make one or other of
the options more attractive. The ability to construct useful, updateable views
becomes another factor in selecting the implementation option that is most
appropriate.

What is important, however, is to recognize that views are not a substitute for
careful modeling of subtypes and supertypes, and to consider the appropriate level
for implementation. Identification of useful data classifications is part of the data

5.4 Basic Column Definition 181

modeling process, not something that should be left to some later task of view
definition. If subtypes and supertypes are not recognized in the conceptual mod-
eling stage, we cannot expect the process model to take advantage of them. There
is little point in constructing views unless we have planned to use them in our
programs.

Implications for Process Design

If a supertype is implemented as a table and at least one of its subtypes is imple-
mented as a table as well, any process creating an instance of that subtype (or
one of its subtypes) must create a row in the corresponding supertype table as
well as the row in the appropriate subtype table(s). To ensure that this occurs,
those responsible for writing detailed specifications of programs (which we
assume are written in terms of table-level transactions) from business-level process
specifications (which we assume are written in terms of entity-level transactions)
must be informed of this rule.

5.4 BASIC COLUMN DEFINITION
5.4.1 Attribute Implementation: The Standard Transformation

With some exceptions, each attribute in the conceptual data model becomes a
column in the logical data model and should be given a name that corresponds
to that of the corresponding attribute (see Section 5.7). The principal exceptions
to this are:

Category attributes.
Derivable attributes.
Attributes of relationships.
Complex attributes.
Multivalued attributes.

The following subsections describe each of these exceptions.

We may also add further columns for various reasons. The most common of
these are surrogate primary keys and foreign keys (covered in Sections 5.5 and
5.6, respectively), but there are some additional situations, discussed in Section
5.4.7. The remainder of Section 5.4 looks at some issues applicable to columns in
general.

Note that in this phase we may end up specifying additional tables to support
category attributes.

5.4.2 Category Attribute Implementation

In general, DBMSs provide the following two distinct methods of implementing a
category attribute:

182 CHAPTER 5 Logical Database Design

1. As a foreign key to a classification table.
2. As a column on which a constraint is defined limiting the values that the
column may hold.

The principal advantage of the classification table method is that the ability to
change codes or descriptions can be granted to users of the database rather than
them having to rely on the database administrator to make such changes. However,
if any procedural logic depends on the value assigned to the category attribute,
such changes should only be made in controlled circumstances in which synchro-
nized changes are made to procedural code.

If you have adopted our recommendation of showing category attributes in
the conceptual data model as attributes rather than relationships to classification
entity classes, and you select the “constraint on column” method of implementa-
tion, your category attributes become columns like any other, and there is no
more work to be done. If, however, you select the “classification table” method
of implementation, you must:

1. Create a table for each domain that you have defined for category
attributes, with Code and Meaning columns.

2. Create a foreign key column that references the appropriate domain table
to represent each category attribute.’

For example, if you have two category attributes in your conceptual data
model, each named customer type (one in the Customer entity class and the
other in an Allowed Discount business rule entity class recording the maximum
discount allowed for each customer type), then each of these should belong to
the same domain, also named Customer Type. In this case, you must create a
Customer Type table with Customer Type Code and Customer Type Meaning
columns and include foreign keys to that table in your Customer and Allowed
Discount tables to represent the customer type attributes.

By contrast, if you have modeled category attributes in the conceptual data
model as relationships to classification entity classes, and you select the classifica-
tion table option, your classification entity classes become tables like any other
and the relationships to them become foreign key columns like any other. If,
however, you select the “constraint on column” option, you must not create tables
for those classification entity classes, but you must represent each relationship to
a classification entity class as a simple column, not as a foreign key column.

5.4.3 Derivable Attributes

Since the logical data model should not specify redundant data, derivable attri-
butes in the conceptual data model should not become columns in the logical

“Strictly speaking, we should not be specifying primary or foreign keys at this stage, but the
situation here is so straightforward that most of us skip the step of initially documenting only a
relationship.

5.4 Basic Column Definition 183

Table: ORDER LINE (Order No, Product No, Order Quantity, Applicable Discount Rate,
Quoted Price, Promised Delivery Date, Actual Delivery Date)

View: ORDER LINE (Order No, Product No, Order Quantity, Applicable Discount Rate,
Quoted Price, Promised Delivery Date, Actual Delivery Date,
Total ltem Cost = Order Quantity * Quoted Price * (1- Applicable Discount Rate/100.0))

FIGURE 5.7
A table and a view defining a derivable attribute.

data model. However, the designer of the physical data model needs to be advised
of derivable attributes so as to decide whether they should be stored as columns
in the database or calculated “on the fly.” We therefore recommend that, for each
entity class with derivable attributes, you create a view based on the correspond-
ing table, which includes (as well as the columns of that table) a column for each
derived attribute, specifying how that attribute is calculated. Figure 5.7 illustrates
this principle.

5.4.4 Attributes of Relationships

If the relationship is many-to-many or #n-ary, its attributes should be implemented
as columns in the table implementing the relationship. If the relationship is one-
to-many, its attributes should be implemented as columns in the table implement-
ing the entity class at the “many” end. If the relationship is one-to-one, its attributes
can be implemented as columns in either of the tables used to implement one of
the entity classes involved in that relationship.

5.4.5 Complex Attributes

In general, unless the target DBMS provides some form of row data type facility
(such as Oracle™s Nested Tables), built-in complex data types (such as foreign
currencies or timestamps with associated time zones), or constructors with which
to create such data types, each component of a complex attribute will require a
separate column. For example, a currency amount in an application dealing with
multiple currencies will require a column for the amount and another column in
which the currency unit for each amount can be recorded. Similarly, a time attri-
bute in an application dealing with multiple time zones may require a column
in which the time zone is recorded as well as the column for the time itself.
Addresses are another example of complex attributes. Each address component
will require a separate column.

An alternative approach where a complex attribute type has many components
(e.g., addresses) is to:

184 CHAPTER 5 Logical Database Design

1. Create a separate table in which to hold the complex attribute.
2. Hold only a foreign key to that table in the original table.

5.4.6 Multivalued Attribute Implementation

Consider the conceptual data model of a multi-airline timetable database in
Figure 5.8. A flight (e.g., AA123, UA345) may operate over multiple flight
legs, each of which is from one port to another. Actually a flight has no real
independent existence but is merely an identifier for a series of flight legs. Although
some flights operate yearround, others are seasonal and may therefore have
one or more operational periods (in fact, two legs of a flight may have different
operational periods: the Chicago-Denver flight may only continue to Los Angeles
in the summer). And of course not all flights are daily, so we need to record the
days of the week on which a flight (or rather its legs) operates. In the conceptual

4 Port /City

e

I

| Port J{ City]
AN

Flight Leg
Operational
Period

Flight Leg

PORT/CITY (Code, Name, Time Zone)

COUNTRY (Code, Name)

AIRLINE (Code, Name)

FLIGHT LEG (Flight Number, Leg Number, Departure Local TimeOfDay, Arrival Local
Time TimeOfDay, Arrival Additional Day Count, Aircraft Type, {Meal Types})

FLIGHT LEG OPERATIONAL PERIOD (Start Date, End Date, {Week Days})

FIGURE 5.8
Implementing a multivalued attribute.

5.4 Basic Column Definition 185

data model we can do this using the multivalued attribute {week days}.
At the same time we should record for the convenience of passengers on
long-distance flights what meals are served (on a trans-Pacific flight there could
be as many as three). The {meal types} multivalued attribute supports this
requirement.

In general, unless the target DBMS supports the SQL99 Set Type Constructor
feature, which enables direct implementation of multivalued attributes, normal
practice is to represent each such attribute in the logical data model using a
separate table. Thus, the {meal types! attribute of the F1ight Leg entity class
could be implemented using a table (with the name F1ight Leg Meal Type, that
is, the singular form of the attribute name prefixed by the name of its owning
entity class) with the following columns:

1. A foreign key to the F1ight Leg table (representing the entity class
owning the multivalued attribute).

2. A column in which a single meal type can be held (with the name Meal
Type, that is, the singular form of the attribute name).

The primary key of this table can simply be all of these columns.

Similarly normal practice would be to represent the {week days} attribute in
the logical data model using a F1ight Leg Operational Period Week Day table
with a foreign key to F1ight Leg Operational Periodand aWeek Day column.
However, the case may be that:

1. The maximum number of values that may be held is finite and small.
2. There is no requirement to sort using the values of that attribute.

Then, the designer of the physical data model may well create, rather than add
an additional table, a set of columns (one for each value) in the original table (the
one implementing the entity class with the multivalued attribute). For example,
{week days} can be implemented using seven columns in the Flight Leg
Operational Period table, one for each day of the week, each holding a flag to
indicate whether that flight leg operates on that day during that operational
period.

If the multivalued attribute is textual, the modeler may even implement it in
a single column in which all the values are concatenated, or separated if necessary
by a separator character. This is generally only appropriate if queries searching
for a single value in that column are not rendered unduly complex or slow. If this
is likely to occur, it may be better from a pragmatic point of view to model such
attributes this way in the logical data model as well, to avoid the models diverging
so much. For example, {meal types) can be implemented using a single Meal
Types column in the F1ight Leg table, since there is a maximum of three meals
that can be served on one flight leg.

By way of another example, an Employee entity class may have the attribute
dependent names, which could be represented by a single column in the Employee
table, which would hold values such as “Peter” or “Paul, Mary.”

186 CHAPTER 5 Logical Database Design

5.4.7 Additional Columns

In some circumstances additional columns may be required. We have already seen
the addition of a column or columns to identify subtypes in a supertype table.
Other columns are typically required to hold data needed to support system
administration, operation, and maintenance. The following examples will give you
a flavor.

A very common situation is when a record is required of who inserted each
row and when, and of who last updated each row and when. In this case, you
can create a pair of DateTime columns, usually named along the lines of Insert
DateTime and Last Update DateTime, and a pair of text columns, usually named
along the lines of Insert User ID and Last Update User ID. Of course, if a
full audit trail of all changes to a particular table is required, you will need to
create an additional table with the following columns:

m Those making up a foreign key to the table to be audited.

m An Update DateTime column, which together with the foreign key
columns makes up the primary key of this table.

m An Update User ID column.

m The old and/or new values of the remaining columns of the table to be
audited.

The meaning attribute in a classification entity class in the conceptual data
model is usually a relatively short text that appears as the interpretation of the
code in screens and reports. If the differences between some meanings require
explanation that would not fit in the Meaning column, then an additional, longer
Explanation column may need to be added.

By contrast, additional columns holding abbreviated versions of textual data
may be needed for any screens, other displays (such as networked equipment
displays), reports, and other printouts (such as printed tickets) in which there
may be space limitations. A typical example is location names: Given the fact that
these may have the same initial characters (e.g., “Carlton” and “Carlton North”),
simple truncation of such names may produce indistinguishable abbreviations.

Another situation in which additional columns may be required is when a
numeric or date/time attribute may hold approximate or partly defined values such
as “at least $10,000,” “approximately $20,000,” “some time in 1968,” “July 25, but
I can’t remember which year.” To support values like the first two examples, you
might create an additional text column in which a qualifier of the amount in the
numeric column can be recorded. To support values like the other two examples,
you might store the year and month/day components of the date in separate
columns.

5.4.8 Column Data Types

If the target DBMS and the data types available in that DBMS are known, the
appropriate DBMS data type for each domain can be identified and documented.

5.5 Primary Key Specification 187

Each column representing an attribute should be assigned the appropriate data
type based on the domain of the corresponding attribute. Each column in a foreign
key should be given the same data type as the corresponding column in the cor-
responding primary key.

5.4.9 Column Nullability

If an attribute has been recorded as mandatory in the business rule documentation
accompanying the conceptual data model, the corresponding column should be
marked as mandatory in the logical data model; the standard method for doing
this is to follow the column name and its data type with the annotation NOT NULL.
By contrast, if an attribute has been recorded as optional, the corresponding
column should be marked as optional using the annotation NULL.

Any row in which no value has been assigned to that attribute for the entity
instance represented by that row will have a null marker rather than a value
assigned to that column. Nulls can cause a variety of problems in queries, as Chris
Date has pointed out."

Ranges provide a good example of a situation in which it is better to use an
actual value than a null marker in a column representing an optional attribute.
The range end attribute is often optional because there is no maximum value in
the last range in a set. For example, the End Date of the current record in a table
that records current and past situations is generally considered to be optional as
we have no idea when the current situation will change. Unfortunately, to use a
null marker in End Date complicates any queries that determine the date range
to which a transaction belongs, like the first query in Figure 5.9. Loading a “high
value” date (a date that is later than the latest date that the application could still
be active) into the End Date column of the current record enables us to use the
second, simpler, query in Figure 5.9.

5.5 PRIMARY KEY SPECIFICATION

There is the possibility that the primary key of a table may include foreign keys
to other tables. However, at this point in the translation to a logical model,
we haven’t defined the foreign keys, and cannot do so until we have defined
the primary keys of the tables being referenced. We resolve this “chicken and
egg” situation with an iterative approach.

At the start of this step of the process, you can only determine primary keys
for those tables that correspond to independent entity classes, since, as we have
seen, the primary keys of such tables will not include foreign keys. You therefore
first select an appropriate primary key for each of these tables, if necessary adding

"“Date, C. J. Relational Database Writings, 1989-1991. Pearson Education POD, 1992.

188 CHAPTER 5 Logical Database Design

select TRANSACTION.*, HISTORIC_PRICE.PRICE

from TRANSACTION, HISTORIC_PRICE

where TRANSACTION.TRANSACTION_DATE between
HISTORIC_PRICE.START_DATE and HISTORIC_PRICE.END_DATE

or TRANSACTION.TRANSACTION_DATE >
HISTORIC_PRICE.START_DATE and HISTORIC_PRICE.END_DATE is null;

select TRANSACTION.*, HISTORIC_PRICE.PRICE

from TRANSACTION, HISTORIC_PRICE

where TRANSACTION.TRANSACTION_DATE between
HISTORIC_PRICE.START_DATE and HISTORIC_PRICE.END_DATE;

FIGURE 5.9
Queries involving date ranges.

a surrogate key column as a key in its own right or to supplement existing
attributes.

Having specified primary keys for at least some tables, you are now in a posi-
tion to duplicate these as foreign keys in the tables corresponding to related entity
classes. Doing that is the subject of the next section.

You are now able to determine the primary keys of those tables representing
entity classes dependent on the entity classes for which you have already identi-
fied primary keys (since you now have a full list of columns for these tables,
including foreign keys). You can then duplicate these in turn as foreign keys in
the tables corresponding to related entity classes. You then repeat this step,
“looping” until the model is complete.

This may sound complicated, but, in practice, this iterative process moves
quickly and naturally, and the discipline will help to ensure that you select sound
primary keys and implement relationships faithfully. The process is illustrated in
Figure 5.10:

m Policy Type and Person are obviously independent, and Organization
Unit is at the “many” end of a transferable relationship, so we can identify
primary keys for them immediately.

m Policy is at the “many” end of a nontransferable relationship, so it
depends on Policy Type having a defined primary key.

m Policy Event and Person Role in Policy are at the “many” ends of
nontransferable relationships, so they depend on Policy and Person
having defined primary keys.

5.6 Foreign Key Specification

Organization be part
Unit

be issued by

be
classified
by

include

be T be affected

+ involve

Policy Event

Person
Role in
Policy

Person

FIGURE 5.10

189

Primary and foreign key specification.

5.6 FOREIGN KEY SPECIFICATION

Foreign keys are our means of implementing one-to-many (and occasionally one-
to-one) relationships. This phase of logical design requires that we know the
primary key of the entity class at the “one” end of the relationship, and, as dis-
cussed in Section 5.2, the definition of primary keys is, in turn, dependent on the
definition of foreign keys. So, we implement the relationships that meet this cri-

terion, and then we return to define more primary keys.

This section commences with the basic rule for implementing one-to-
many relationships. This rule will cover the overwhelming majority of situations.
The remainder of the section looks at a variety of unusual situations. It is worth
being familiar with them because they do show up from time to time, and, as a
professional modeler, you need to be able to recognize and deal with them.

190 CHAPTER 5 Logical Database Design

be advanced

Customer f < Loan
be advanced
to
Customer ID Loan ID
Name Date Drawn
Address
Customer (Customer ID, Name, Address . . .) Loan (Loan ID, Customer ID*, Date Drawn . . .)
FIGURE 5.11

Deriving foreign keys from relationships.

5.6.1 One-to-Many Relationship Implementation

Translating the links implied by primary and foreign keys in a relational model
into lines representing one-to-many relationships on an ER diagram is a useful
technique when we have an existing database that has not been properly docu-
mented in diagrammatic form.

The Basic Rule
The process of recovering the design in this all-too-frequent situation is an example
of the broader discipline of “reverse engineering” and is one of the less glamorous
tasks of the data modeler.

When moving from a conceptual to a logical data model, however, we work
from a diagram to tables and apply the following rule (shown in Figure 5.11):

A one-to-many relationship is supported in a relational database by holding
the primary key of the table representing the entity class at the “one” end of
the relationship as a foreign key in the table representing the entity class at the
“many” end of the relationship.

In the logical data model, therefore, we create, in the table representing the
entity class at the “many” end of the relationship, a copy of the primary key of
the entity class at the “one” end of the relationship. (Remember that the primary
key may consist of more than one column, and we will, of course, need to copy
all of its columns to form the foreign key.) Each foreign key column should be
given the same name as the primary key column from which it was derived, pos-
sibly with the addition of a prefix. Prefixes are necessary in two situations:

5.6 Foreign Key Specification 191

1. If there is more than one relationship between the same two entity classes, in
which case prefixes are necessary to distinguish the two different foreign
keys—for example, Preparation Employee ID and Approval Employee ID.

2. A self-referencing relationship will be represented by a foreign key that con-
tains the same column(s) as the primary key of the same table, so a prefix will
be required for the column names of the foreign key; typical prefixes are
Parent, Owner, and Manager (in a organizational reporting hierarchy).

Note the use of the asterisk in Figure 5.11. This is a convention sometimes
used to indicate that a column of a table is all or part of a foreign key. Different
CASE tools use different conventions.

A column forming part of a foreign key should be marked as NOT NULL if the
relationship it represents is mandatory at the “one” end; conversely, if the relation-
ship is optional at the “one” end, it should be marked as NULL.

Alternative Implementations

A DBMS that supports the SQL99 Set Type Constructor feature enables implemen-
tation of a one-to-many relationship within one table. However, we do not recom-
mend that you include such a structure in your logical data model; the decision
as to whether to use such a structure should be made at the physical database
design stage.

Some DBMSs (including DB2) allow a one-to-many relationship to be imple-
mented by holding a copy of any candidate key of the referenced table, not just
the primary key. (The candidate key must have been defined to the DBMS as
unique.) This prompts two questions:

1. How useful is this?
2. Does the implementation of a relationship in this way cause problems in
system development?

The majority of database designs cannot benefit from this option. However,
consider the tables in Figure 5.12 from a public transport management
system. The two alternative candidate keys for Actual Vehicle Trip (in addition
to the one chosen) follow.

SCHEDULED VEHICLE TRIP (Route No, Trip No, Direction Code, Scheduled Departure
TimeOfDay)

ACTUAL VEHICLE TRIP (Vehicle No, Trip Date, Actual Departure TimeOfDay, Route
No, Direction Code, Trip No)

PASSENGER TRIP (Ticket No, Trip Date, Trip Start Time, Route No, Direction Code)

FIGURE 5.12
Tables with candidate keys.

192 CHAPTER 5 Logical Database Design

Route No + Trip No + Trip Date
and
Route No + Direction Code + Trip Date + Actual Departure TimeOfDay

However, in the system as built, these were longer than the key actually chosen
(by one and three bytes, respectively). Since a very large number of records would
be stored, the shortest key was chosen to minimize the data storage costs of tables,
indexes, and so on. There was a requirement to identify which Actual Vehicle
Trip each Passenger Trip took place on.

In a DBMS that constrains a foreign key to be a copy of the primary key of the
other table, Vehicle No and Actual Departure TimeOfDay would have had to
be added to the Passenger Trip table at a cost of an extra four bytes in each of
a very large number of rows. The ability to maintain a foreign key that refers to
any candidate key of the other table meant that only Trip No needed to be added
at a cost of only one extra byte.

Of course, exploitation of this option might be difficult if the CASE tool being
used to build the application did not support it. Beyond the issue of tool support,
there do not appear to be any technical problems associated with this option.
However, it is always sensible to be as simple and consistent as possible; the less
fancy stuff that programmers, users, and DBAs have to come to grips with, the
more time they can devote to using the data model properly!

5.6.2 One-to-One Relationship Implementation

A one-to-one relationship can be supported in a relational database by implement-
ing both entity classes as tables, then using the same primary key for both. This
strategy ensures that the relationship is indeed one-to-one and is the preferred
option.

In fact, this is the way we retain the (one-to-one) association between a super-
type and its subtypes when both are to be implemented as tables (see “Implemen-
tation at Multiple Levels of Generalization” section).

However, we cannot use the same primary key when dealing with a transfer-
able one-to-one relationship. If we used Part No to identify both Part Type and
Bin in our earlier example (reproduced in Figure 5.13), it would not be stable as
a key of Bin (whenever a new part was moved to a bin, that key’s bin would
change).

be stored
in
} } Bin
store

Part
Type

FIGURE 5.13
A one-to-one relationship.

5.6 Foreign Key Specification 193

In this situation we would identify Bin by Bin No and Part Type by Part No,
and we would support the relationship with a foreign key: either Bin No in the
Part Type table or Part No in the Bin table. Of course, what we are really sup-
porting here is not a one-to-one relationship anymore, but a one-to-many relation-
ship. We have flexibility whether we like it or not! We will need to include the
one-to-one rule in the business rule documentation. A relational DBMS will support
such a rule by way of a unique index on the foreign key, providing a simple prac-
tical solution. Since we have a choice as to the direction of the one-to-many rela-
tionship, we will need to consider other factors, such as performance and
flexibility. Will we be more likely to relax the “one part per bin” or the “one bin
per part” rule?

Incidentally, we once struck exactly this situation in practice. The database
designer had implemented a single table, with a key of Bin No. Parts were thus
effectively identified by their bin number, causing real problems when parts were
allocated to a new bin. In the end, they “solved” the problem by relabeling the
bins each time parts were moved!

5.6.3 Derivable Relationships

Occasionally a one-to-many relationship can be derived from other data in one or
more of the tables involved. (We discussed derivable many-to-many relationships
in the “Derivable Many-to-Many Relationships” section.) The following example is
typical. In Figure 5.14, we are modeling information about diseases and their
groups (or categories), as might be required in a database for medical research.

During our analysis of attributes we discover that disease groups are identified
by a range of numbers (Low No through High No) and that each disease in that
group is assigned a number in the range. For example, 301 through 305 might
represent “Depressive Illnesses,” and “Postnatal Depression” might be allocated
the number 304. Decimals can be used to avoid running out of numbers. We see
exactly this sort of structure in many classification schemes, including the Dewey
decimal classification used in libraries. We can use either High No or Low No as
the primary key; we have arbitrarily selected Low No.

If we were to implement this relationship using a foreign key, we would arrive
at the tables in Figure 5.15. However, the foreign key Disease Group Low No in
the Disease table is derivable; we can determine which disease group a given

1
classify

Disease
Group

Disease

J Be classified
by -3

FIGURE 5.14

Initial ER model of diseases and groups.

194 CHAPTER 5 Logical Database Design

DISEASE (Disease No, Disease Group Low No*, Disease Name, . . .
DISEASE GROUP (Disease Group Low No, Disease Group High No, . . .)

FIGURE 5.15

Relational model of diseases and groups.

disease belongs to by finding the disease group with the range containing its
disease number. It therefore violates our requirement for nonredundancy.

In UML we can mark the relationship as derivable, in which case no foreign
key is created, but many CASE tools will generate a foreign key to represent each
relationship in an ER diagram (whether you want it or not). In this case, the best
option is probably to retain the relationship in the diagram and the associated
foreign key in the logical data model and to accept some redundancy in the latter
as the price of automatic logical data model generation.

Including a derivable foreign key may be worthwhile if we are generating
program logic based on navigation using foreign keys. But carrying redundant data
complicates updates and introduces the risk of data inconsistency. In this example,
we would need to ensure that if a disease moved from one group to another, the
foreign key would be updated. In fact, this can happen only if the disease number
changes (in which case we should regard it as a new disease—if we were unhappy
with this rule, we would need to allocate a surrogate key) or if we change the
boundaries of existing groups. We may well determine that the business does not
require the ability to make such changes; in this case, the derivable foreign key
option becomes more appealing.

Whether or not the business requires the ability to make such changes, the
fact that Disease No must be no less than Disease Group Low No and no greater
than the corresponding Disease Group High No should be included in the busi-
ness rule documentation.

The preceding situation occurs commonly with dates and date ranges. For
example, a bank statement might include all transactions for a given account
between two dates. If the two dates were attributes of the Statement entity class,
the relationship between Transaction and Statement would be derivable by
comparing these dates with the transaction dates. In this case, the boundaries of
a future statement might well change, perhaps at the request of the customer or
because we wished to notify him or her that the account was overdrawn. If we
choose the redundant foreign key approach, we will need to ensure that the
foreign key is updated in such cases.

5.6.4 Optional Relationships

In a relational database, a one-to-many relationship that is optional at the “many”
end (as most are) requires no special handling. However, if a one-to-many relation-
ship is optional at the “one” end, the foreign key representing that relationship
must be able to indicate in some way that there is no associated row in the refer-

5.6 Foreign Key Specification 195

sell
Agent < Policy
be sold
by

FIGURE 5.16
Optional relationship.

enced table. The most common way of achieving this is to make the foreign key
column(s) “nullable” (able to be null or empty in some rows). However, this adds
complexity to queries. A simple join of the two tables (an “inner join”) will only
return rows with non-null foreign keys. For example, if nullable foreign keys are
used, a simple join of the Agent and Policy tables illustrated in Figure 5.16 will
only return those policies actually sold by an agent. One of the major selling points
of relational databases is the ease with which end users can query the database.
The novice user querying these data to obtain a figure for the total value of poli-
cies is likely to get a value significantly less than the true total. To obtain the true
total, it is necessary to construct an outer join or use a union query, which the
novice user may not know about.

A way around this problem is to add a Not Applicable row to the referenced
table and include a reference to that row in each foreign key that would otherwise
be null. The true total can then be obtained with only a simple query. The draw-
back is that other processing becomes more complex because we need to allow
for the “dummy” agent.

Alternatives to Nulls

Section 5.4.9 discusses some problems with nulls in nonkey columns. We now
discuss two foreign key situations in which alternatives to nulls can make life
simpler.

Optional Foreign Keys in Hierarchies

In a hierarchy represented by a recursive relationship, that relationship must be
optional at both ends. However, we have found that making top-level foreign keys
self-referencing rather than null (see the first two rows in Figure 5.17) can simplify
the programming of queries that traverse a varying number of levels. For example,
a query to return the HR Department and all its subordinate departments does not
need to be a union query, as it can be written as a single query that traverses the
maximum depth of the hierarchy.

Other Optional Foreign Keys

If a one-to-many relationship is optional at the “one” end, a query that joins the
tables representing the entity classes involved in that relationship may need to

196

ORG UNIT (Org Unit ID, Org Unit Name, Parent Org Unit ID*)

CHAPTER 5 Logical Database Design

Org Unit ID Org Unit Name Parent Org Unit ID
1 Production 1

2 H/R 2

21 Recruitment 2

22 Training 2

221 IT Training 22

222 Other Training 22

FIGURE 5.17

An alternative simple hierarchy table.

Surname Initial Union Code Union Code Union Name
Chekhov P APF APF Airline Pilots’ Federation
Kirk J null ETU Electrical Trades Union
McCoy L null TCU Telecommunications Union
Scotty M ETU
Spock M null
Sulu H APF
Uhura N TCU

select SURNAME, INITIAL, UNION_NAME

from

EMPLOYEE join UNION on

EMPLOYEE.UNION_CODE = UNION.UNION_CODE;

select
from

SURNAME, INITIAL, UNION_NAME
EMPLOYEE left join UNION on

EMPLOYEE.UNION_CODE = UNION.UNION_CODE;

FIGURE 5.18

Tables at each end of an optional one-to-many relationship.

take account of that fact if it is not to return unexpected results. For example,
consider the tables in Figure 5.18. If we wish to list all employees and the unions
to which they belong, the first query in Figure 5.18 will only return four employ-
ees (those who belong to unions) rather than all of them. By contrast, an outer
join, indicated by the keyword “left,”"" as in the second query in Figure 5.18, will

return all employees.

If users are able to access the database directly through a query interface, it is
unreasonable to expect all users to understand this subtlety. In this case, it may
be better to create a dummy row in the table representing the entity class at the

""The keyword “right” may also be used if all rows from the second table are required rather than

all rows from the first table.

5.6 Foreign Key Specification 197

Surname Initial Union Code Union Code Union Name
Chekhov P APF APF Airline Pilots’ Federation
Kirk J N/A ETU Electrical Trades Union
McCoy L N/A TCU Telecommunications Union
Scotty M ETU N/A Not applicable
Spock M N/A
Sulu H APF
Uhura N TCU

FIGURE 5.19

A dummy row at the “one” end of an optional one-to-many relationship.

Country ID
Country .
be serviced
in
be employed
service employ
* Country ID * Country ID
Customer Customer ID Agent Agent ID
be sold e
by
be sold
be sold
sell
Policy Policy ID

FIGURE 5.20

ER model leading to overlapping foreign keys.

“one” end of the relationship and replace the null foreign key in all rows in the
other table by the key of that dummy row, as illustrated in Figure 5.19. The first,
simpler query in Figure 5.18 will now return all employees.

5.6.5 Overlapping Foreign Keys

Figure 5.20 is a model for an insurance company that operates in several countries.
Each agent works in a particular country, and sells only to customers in that

198 CHAPTER 5 Logical Database Design

country. Note that the ER diagram allows for this situation but does not enforce
the rule.

If we apply the rule for representing relationships by foreign keys, we find that
the Country ID column appears twice in the Policy table—once to support the
link to Agent and once to support the link to Customer. We can distinguish the
columns by naming one Customer Country 1D and the other Agent Country ID.
But because of our rule that agents sell only to customers in their own country,
both columns will always hold the same value. This seems a clear case of data
redundancy, easily solved by combining the two columns into one. Yet, there are
arguments for keeping two separate columns.

The two-column approach is more flexible; if we change the rule about selling
only to customers in the same country, the two-column model will easily support
the new situation. But here we have the familiar trade-off between flexibility and
constraints; we can equally argue that the one-column model does a better job of
enforcing an important business rule, if we are convinced that the rule will apply
for the life of the database.

There is a more subtle flexibility issue: What if one or both of the relationships
from Policy became optional? Perhaps it is possible for a policy to be issued
without involving an agent. In such cases, we would need to hold a null value for
the foreign key to Agent, but this involves “nulling out” the value for Country ID,
part of the foreign key to Customer. We would end up losing our link to Customer.
We have been involved in some long arguments about this one, the most common
suggestion being that we only need to set the value of Agent 1D to null and leave
Country ID untouched.

But this involves an inconsistency in the way we handle foreign keys. It might
not be so bad if we only had to tell programmers to handle the situation as a
special case (“Don’t set the whole of the foreign key to null in this instance”), but
these days program logic may be generated automatically by a CASE tool that is
not so flexible about handling nonstandard situations. The DBMS itself may rec-
ognize foreign keys and rely on them not overlapping in order to support refer-
ential integrity.

Our advice is to include both columns and also to include the rule that
agents and customers must be from the same country in the business rule
documentation.

Of course, we can alternatively use stand-alone keys for Customer and Agent.
In this case, the issue of overlapping foreign keys will not arise, but again the rule
that agents and customers must be from the same country should be included in
the business rule documentation.

5.6.6 Split Foreign Keys

The next structure has a similar flavor but is a little more complex. You are likely
to encounter it more often than the overlapping foreign key problem, once you
know how to recognize it!

5.6 Foreign Key Specification 199

Figure 5.21 shows a model for an organization that takes orders from custom-
ers and dispatches them to the customers’ branches. Note that the primary key
of Branch is a combination of Customer No and Branch No, a choice that would
be appropriate if we wanted to use the customers’ own branch numbers rather
than define new ones ourselves. In translating this model into relational tables,
we need to carry two foreign keys in the Ordered Item table. The foreign key to
Order is Order No, and the foreign key to Branch is Customer No + Branch No.
Our Ordered Item table, including foreign keys (marked with asterisks), is shown
in Figure 5.22.

But let us assume the reasonable business rule that the customer who places
the order is also the customer who receives the order. Then, since each order is
placed and received by one customer, Order No is a determinant of Customer No.
The Ordered Item table is therefore not fully normalized, as Order No is a deter-
minant but is not a candidate key of the table.

Customer Customer No
be owned
by be placed
by
own place
Branch | Brancinio Order | OrderNo
be
for
receive)
comprise
Ordered Order No
Item Iltem No
FIGURE 5.21

ER model leading to split foreign key.

ORDERED ITEM (Order No*, ltem No, Product, Customer No*, Branch No*)

FIGURE 5.22
Ordered item table.

200 CHAPTER 5 Logical Database Design

We already have a table with Order No as the key and Customer No as a nonkey
item. Holding Customer No in the Ordered Item table tells us nothing new and
involves us in the usual problems of unnormalized structures. For example, if the
Customer No for an order was entered incorrectly, it would need to be corrected
for every item in that order. The obvious solution seems to be to remove Customer
No from the Ordered Item table. But this causes its own problems.

First, we have broken our rule for generating a foreign key for each one-to-
many relationship. Looked at another way, if we were to draw a diagram from the
tables, would we include a relationship line from Ordered Item to Branch? Not
according to our rules, but we started off by saying there was a relationship
between the two; Branch No is in the Ordered Item table to support a relation-
ship to Branch.

But there is more to the problem than a diagramming nicety. Any CASE tool
that generates foreign keys automatically from relationships is going to include
Customer No in the Ordered Item table. A program generator that makes the
usual assumption that it can find the full primary key of Branch in the Ordered
Item table will be in trouble if Customer No is excluded. Again, standard facilities
for enforcing referential integrity are most unlikely to support the special situation
that arises if Customer No is excluded.

Whether we include or exclude Customer No, we face serious problems. When
you encounter this situation, which you should pick up through a normalization
check after generating the foreign keys, we strongly suggest you go back and
select different primary keys. In this case, a stand-alone Branch No as the primary
key of Branch will do the job. (The original Branch No and Customer No will
become nonkey items, forming a second candidate key.) You will lose the
constraint that the customer who places the order receives the order. This will
need to be included in the business rule documentation.

5.7 TABLE AND COLUMN NAMES

There are two factors affecting table and column names:

1. The target DBMS (if known) may impose a limit on the length of names,
may require that there are no spaces or special characters other than
underlines in a name, and may require names to be in all uppercase or all
lowercase.

2. There may be a standard in force within the organization as to how tables
and columns are named.

If there is no name length limit and no table/column naming standard, the best
approach to table and column naming is to use the corresponding entity class or
attribute name, with spaces and special characters replaced by underlines if nec-
essary (e.g., the entity class Organization Unit would be represented by the
table organization_unit). An alternative, provided the target DBMS supports

5.8 Logical Data Model Notations 201

mixed-case names, is to delete all spaces and special characters and capitalize the
first letter of each word in the name (e.g., OrganizationUnit; the so-called
“CamelCase”).

In our experience, installation table/column naming standards often require
that table names all start with a particular prefix, typically “t_” or “TblL.” Our
example table name would then be t_organization_unit or Tb10rganization-
Unit, respectively.

If the target DBMS imposes a name length limit, it is usually necessary to abbre-
viate the words that make up table and column names. If so, two principles should
be observed:

1. Use abbreviations consistently.
2. Do not also abbreviate entity class and attribute names, as these are for
use by the business, not the database.

5.8 LOGICAL DATA MODEL NOTATIONS

How should a logical data model be presented to users and reviewers? There is a
choice of diagrammatic and textual notations.

An ER diagram can be used to present a logical data model using the following
conventions:

m Each table is represented by a box as if it were an entity class.

m Each foreign key in a table is represented by a line from that table to the refer-
enced table, marked as “optional many” at the foreign key end and either “man-
datory one” or “optional one” at the primary key end, depending on whether
the column is mandatory (NOT NULL) or optional (NULL), which will have been
derived from the optionality of the relationship that the particular foreign key
represents.

m All columns (including foreign keys) should be listed either on the diagram
(inside the box representing the table) or in a separate list depending on the
facilities provided by the chosen CASE tool and the need to produce an unclut-
tered diagram that fits the page.

If this notation is chosen, it is important to be able to distinguish the logical
data model diagram from the conceptual data model diagram. Your chosen CASE
tool may provide different diagram templates for the two types of model with
different notations, but if it does not, be sure to label clearly each diagram as to
whether it is conceptual or logical.

Some UML CASE tools (e.g., Rational Rose) provide a quite different diagram
type for the logical data model; although it consists of boxes and lines, the boxes
look quite different from those used in a class model.

The textual notations available also depend on the CASE tool chosen but gen-
erally conform to one of the following three formats:

202 CHAPTER 5 Logical Database Design

1. “Relational” notation, as in Figure 5.23, in which each table name is listed and
followed on the same line by the names of each of its columns and the entire
set of column names enclosed in parentheses or braces.

2. “List” notation, as in Figure 5.24, in which each table name and column name
appear in a line on its own, and the data type and length (and possibly the
definition) of each column is shown.

3. DDL (data description language), as in Figure 5.25, in which the instructions
to the DBMS to create each table and its columns are couched.

EMPLOYEE (Employee Number, Employee Name, Department Number)
DEPARTMENT (Department Number, Department Name, Department Location)
QUALIFICATION (Employee Number, Qualification Description, Qualification Year)

FIGURE 5.23
Employee model using relational notation.

EMPLOYEE

Employee Number: 5 Numeric—The number allocated to this employee by the Human
Resources Department

Employee Name: 60 Characters—The name of this employee: the surname, a comma
and space, the first given name plus a space and the middle initial if any

Department Number: The number used by the organization to identify the Department
that pays this employee’s salary

DEPARTMENT

Department Number: 2 Numeric—The number used by the organization to identify this
Department

Department Name: 30 Characters—The name of this Department as it appears in
company documentation

Department Location: 30 Characters—The name of the city where this Department is
located

QUALIFICATION

Employee Number: 5 Numeric—The number allocated to the employee holding this
qualification by the Human Resources Department

Qudlification Description: 30 Characters—The name of this qualification

Qudlification Year: Date Optional —The year in which this employee obtained this
qualification

FIGURE 5.24
Employee model using list notation.

5.9 Summary

create table EMPLOYEE (

EMPLOYEE_NUMBER integer not null,

EMPLOYEE_NAME char(60) not null,

DEPARTMENT_NUMBER integer not null);

alter table EMPLOYEE add constraint PK1 primary key (EMPLOYEE_NUMBER);

create table DEPARTMENT (

DEPARTMENT_NUMBER: integer not null,

DEPARTMENT_NAME char(30) not null,

DEPARTMENT_LOCATION: char(30) not null);

alter table DEPARTMENT add constraint PK2 primary key (DEPARTMENT_NUMBER);

create table QUALIFICATION |

EMPLOYEE_NUMBER integer not null,

QUALIFICATION_DESCRIPTION char{30) not null,

QUALIFICATION_YEAR date null);

alter table QUALIFICATION add constraint PK3 primary key (EMPLOYEE_NUMBER,
QUALIFICATION_DESCRIPTION});

alter table EMPLOYEE add constraint FK1 foreign key (DEPARTMENT_NUMBER)
references DEPARTMENT:

alter table QUALIFICATION add constraint FK2 foreign key (EMPLOYEE_NUMBER)
references EMPLOYEE;

FIGURE 5.25

203

Employee model using DDL notation.

5.9 SUMMARY

The transformation from conceptual model to logical model is largely mechanical,
but there are a few important decisions to be made by the modeler. Subtypes and
supertypes need to be “leveled.” Tables can represent a selected single level of

generalization or multiple levels of generalization.

The allowed values of category attributes need to be specified either by a
constraint on the relevant column or by the addition of a new table to hold them.
Care needs to be taken in the interdependent tasks of primary key specification
and implementation of relationships using foreign keys. At all stages of this phase,
there are exceptions and unusual situations that the professional modeler needs

to be able to recognize and deal with.

This page intentionally left blank

CHAPTER

Normalization

Given any pool of entities and attributes, there are a number of ways you can
group them into relations. In this chapter, you will be introduced to the process
of normalization, through which you create relations that avoid most of the
problems that arise from bad relational design.

There are at least two ways to approach normalization. The first is to work
from an entity-relationship (ER) diagram. If the diagram is drawn correctly, then
there are some simple rules you can use to translate it into relations that will avoid
most relational design problems. The drawback to this approach is that it can be
difficult to determine whether your design is correct. The second approach is to
use the theoretical concepts behind good design to create your relations. This is
a bit more difficult than working from an ER diagram, but often results in a better
design.

In practice, you may find it useful to use a combination of both approaches.
First, create an ER diagram and use it to design your relations. Then, check those
relations against the theoretical rules for good design.

6.1 TRANSLATING AN ER DIAGRAM INTO RELATIONS

An ER diagram in which all many-to-many relationships have been transformed
into one-to-many relationships through the introduction of composite entities can
be translated directly into a set of relations. To do so:

m Create one table for each entity.

m For each entity that is only at the “one” end of one or more relationships, and
not at the “many” end of any relationship, create a single-column primary key,
using an arbitrary unique number if no natural primary key is available.

m For each entity that is at the “many” end of one or more relationships, include
the primary key of each parent entity (those at the “one” end of the relation-
ships) in the table as foreign keys.

m If an entity at the “many” end of one or more relationships has a natural primary
key (e.g., an order or invoice number), use that single column as the primary

206 CHAPTER 6 Normalization

key. Otherwise, concatenate the primary key of its parent or parents with any
other column or columns needed for uniqueness to form the table’s primary
key.

Following these guidelines, we end up with the following tables for the Lasers
Only database:

customer (customer_numb, customer_first _name, customer_last_name,
customer_street, customer_city, customer_state, customer_zip,
customer_phone, credit_card_numb, card_exp_date)

item (item_numb, title, distributor_numb, retail_price,
release_date, genre)

order (order_numb, customer_numb, order_date, order_filled)

order_Tlines (order_numb, item_numb, quantity, discount_applied,
selling_price, Tine_cost, shipped)

distributor (distributor_numb, distributor_name, distributor_
street, distributor_city, distributor_city, distributor_state,
distributor_zip, distributor_phone, distributor_contact_person,
contact_person_ext)

actor (actor numb, actor_name)

performance (actor_numb, item_numb, role)

producer (producer_name, studio)
production (producer_name, item_numb)

Note: You will see some of these relations reworked a bit throughout this
chapter to help illustrate various aspects of database design. However, the
preceding is the design that results from a direct translation of the ER
diagram.

6.2 NORMAL FORMS

The theoretical rules that the design of a relation meet are known as normal
forms. Each normal form represents an increasingly stringent set of rules. Theo-
retically, the higher the normal form, the better the design of the relation.

As you can see in Figure 6.1, there are six nested normal forms, indicating that
if a relation is in one of the higher, inner normal forms, it is also in all of the
normal forms below it.

In most cases, if you can place your relations in third normal form (3NF), then
you will have avoided most of the problems common to bad relational designs.
Boyce-Codd (BCNF) and fourth normal form (4NF) handle special situations that
arise only occasionally. However, they are conceptually easy to understand and
can be used in practice if the need arises.

6.3 First Normal Form 207

Fifth
Normal

Form

FIGURE 6.1
Nested normal forms.

Fifth normal form (5NF), however, is a complex set of criteria that is extremely
difficult to work with. It is, for example, very difficult to verify that a relation is
in SNF. Most practitioners do not bother with 5NF, knowing that if their relations
are in 3NF (or 4NF if the situation warrants), then their designs are generally
problem free.

Note: In addition to the six normal forms in Figure 6.1, there is another normal
form—domain/key normal form—that is of purely theoretical importance and,
to this date, has not been used as a practical design objective.

6.3 FIRST NORMAL FORM

A table is in first normal form (1NF) if it meets the following criteria: The data
are stored in a two-dimensional table with no repeating groups. The key to
understanding 1NF is therefore understanding the nature of a repeating group of
data.

6.3.1 Understanding Repeating Groups

A repeating group is an attribute that has more than one value in each row. For
example, assume that you were working with an employee’s relation and needed

208 CHAPTER 6 Normalization

Emp. ID First Last Children’s Names Children’s Birthdates

1001 Jane Doe Mary, Sam 1/1/92,5/15/94
1002 John Doe Mary, Sam 1/1/92,5/15/94
1003 Jane Smith John, Pat, Lee, Mary 10/5/94, 10/12/90, 6/6/96, 8/21/94
1004 John Smith Michael 7/4/96
1005 Jane Jones Edward, Martha 10/21/95,10/15/89
FIGURE 6.2

A relation with repeating groups.

to store the names and birth dates of the employee’s children. Because each
employee can have more than one child, the names of children and the children’s
birth dates each form a repeating group.

Note: A repeating group is directly analogous to a multivalued attribute in an
ER diagram.

There is actually a very good reason why repeating groups are disallowed. To
see what might happen if they were present, take a look at Figure 6.2, an instance
of the employee’s relation we were just discussing.

Notice that there are multiple values in a single row in both of the columns,
children’s names and children’s birthdates. This presents two major
problems:

m There is no way to know exactly which birth date belongs to which child. It is
tempting to say that we can associate the birth dates with the children by their
positions in the list, but there is nothing to ensure that the relative positions
will always be maintained.

m Searching the table is very difficult. If, for example, we want to know which
employees have children born before 1995, the database management system
(DBMS) will need to perform data manipulations to extract the individual dates
from the children’s birth dates column before it can evaluate the dates
themselves. Given that there is no way to know how many birth dates there
are in the column for any specific row, the processing overload for searching
becomes even greater.

The solution to these problems is, of course, to get rid of the repeating groups
altogether.
6.3.2 Handling Repeating Groups

There are two ways to get rid of repeating groups to bring a relation into confor-
mance with the rules for INF—a correct way and an incorrect way. We will look
first at the incorrect way so you will know what not to do.

6.3 First Normal Form 209

Child Child Child Child Child Child
Name1 B_date1 Name2 B_date2 Name3 B_date3
1001 Jane Doe Mary 1/1/92 Sam 5/15/94
1002 John Doe Mary 1/1/92 Sam 5/15/94
1003 Jane Smith John 10/5/94 Pat 10/12/90 Lee 6/6/96
1004 John Smith Michael 7/4/96
1005 Jane Jones Edward 10/21/95 Martha 10/15/89

Emp. ID First Last

FIGURE 6.3
A relation handling repeating groups in the incorrect way.

In Figure 6.3 you can see a relation that handles repeating groups by creating
multiple columns for the multiple values. This particular example includes three
pairs of columns for a child’s name and birth date.

The relation in Figure 6.3 does meet the criteria for INF: The repeating groups
are gone and there is no problem identifying which birth date belongs to which
child. However, the design has introduced several problems of its own:

m The relation is limited to three children for any given employee. This means
that there is no room to store Jane Smith’s fourth child. Should you put another
row for Jane Smith into the table? If so, then the primary key of this relation
can no longer be just employee ID. The primary key must include at least one
child’s name as well.

m The relation wastes space for people who have less than three children. Given
that disk space is one of the least expensive elements of a database system, this
is probably the least of the problems with this relation.

m Searching for a specific child becomes very clumsy. To answer the question
“Does anyone have a child named Lee?” the DBMS must construct a query that
includes a search of all three child name columns because there is no way to
know in which column the name might be found.

The right way to handle repeating groups is to create another table (another
entity) to handle multiple instances of the repeating group. In the example we
have been using, we would create a second table for the children, producing
something like Figure 6.4.

Neither of the two new tables contains any repeating groups, and this form of
the design avoids all the problems of the preceding solution:

m There is no limit to the number of children who can be stored for a given
employee. To add another child, you simply add another row to the table.

m There is no wasted space. The children table uses space only for data
that are present.

m Searching for a specific child is much easier because the child’s name is
found in only one column.

210 CHAPTER 6 Normalization

Employees
Emp. ID First Last
1001 Jane Doe
1002 John Doe
1003 Jane Smith
1004 John Smith
1005 Jane Jones
Children
Emp. ID Child Name Birthdate
1001 Mary 1/1/92
1001 Sam 5/15/94
1002 Mary 1/1/92
1002 Sam 5/15/94
1003 John 10/5/94
1003 Pat 10/12/90
1003 Lee 6/6/96
1003 Mary 8/21/94
1004 Michael 7/4/96
1005 Edward 10/21/95
1005 Martha 10/15/89
FIGURE 6.4

The correct way to handle the repeating group.

6.3.3 Problems with 1NF

Although 1NF relations have no repeating groups, they are full of other problems.
To see what those problems are, we will look at the following table. (This table
comes from Lasers Only’s original data management system rather than the new-
and-improved design you saw earlier in this chapter.) Expressed in the notation
for relations that we have been using, the relation is:

orders (customer number, first name, last name, street, city,
state, zip, phone, order date, item number, title, price, has
shipped)

The first thing we need to do is determine the primary key for this table. The
customer number alone will not be sufficient because it repeats for every item
ordered by the customer. The item number will also not suffice, because it is
repeated for every order on which it appears. We cannot use the order number
because it is repeated for every item on the order. The only solution is a concat-
enated key; in this example, this is the combination of the order number and the
item number.

6.3 First Normal Form 211

Given that the primary key is made up of the order number and the item
number, there are two important things we cannot do with this relation:

m We cannot add data about a customer until the customer places at least one
order because without an order and an item on that order, we do not have a
complete primary key.

m We cannot add data about a merchandise item we are carrying without that
item being ordered. There must be an order number to complete the primary
key.

The preceding are insertion anomalies, a situation that arises when you are
prevented from inserting data into a relation because a complete primary key is
not available. (Remember that no part of a primary key can be null.)

Note: To be strictly correct, there is a third insertion anomaly in the orders
relation: You cannot insert an order until you know one item on the order. In
a practical sense, however, no one would enter an order without there being
an item ordered.

Insertion anomalies are common in 1INF relations that are not also in any
of the higher normal forms. In practical terms, they occur because there are data
about more than one entity in the relation. The anomaly forces you to insert
data about an unrelated entity (e.g., a merchandise item) when you want to insert
data about another entity (such as a customer).

First normal form relations can also give us problems when we delete data.
Consider, for example, what happens if a customer cancels the order of a single
item:

m In cases where the deleted item was the only item on the order, you lose
all data about the order.

m In cases where the order was the only order on which the item appeared,
you lose data about the item.

m In cases where the deleted item was the only item ordered by a customer,
you lose all data about the customer.

These deletion anomalies occur because part of the primary key of a row
becomes null when the merchandise item data are deleted, forcing you to remove
the entire row. The result of a deletion anomaly is the loss of data that you would
like to keep. In practical terms, you are forced to remove data about an unrelated
entity when you delete data about another entity in the same table.

Note: Moral to the story: More than one entity in a table is a very bad thing.

There is a final type of anomaly in the orders relation that is not related to the
primary key: a modification, or update, anomaly. The orders relation has a great

212 CHAPTER 6 Normalization

deal of unnecessary duplicated data, in particular information about customers.
When a customer moves, then the customer’s data must be changed in every row,
for every item, on every order ever placed by the customer. If every row is not
changed correctly, then data that should be the same are no longer the same. The
potential for these inconsistent data is the modification anomaly.

6.4 SECOND NORMAL FORM

The solution to anomalies in a 1NF relation is to break down the relation so that
there is one relation for each entity in the INF relation. The orders relation, for
example, will break down into four relations (customers, merchandise items,
orders, and line items). Such relations are in at least second normal form (2NF).

In theoretical terms, 2NF is defined as follows: The relation is in INF and all
nonkey attributes are functionally dependent on the entire primary key.

The new term in the preceding is functionally dependent, a special relation-
ship between attributes.

6.4.1 Understanding Functional Dependencies

A functional dependency is a one-way relationship between two attributes such
that at any given time, for each unique value of attribute A, only one value of
attribute B is associated with it through the relation. For example, assume that A
is the customer number from the orders relation. Each customer number is asso-
ciated with one customer first name, one last name, one street address, one city,
one state, one zip code, and one phone number. Although the values for those
attributes may change, at any moment, there is only one.

We therefore can say that first name, Tast name, street, city, state, zip,
and phone attributes are functionally dependent on the customer number. This
relationship is often written as

customer number -> first name, Tlast name, street, city, state,
zip, phone

and read “customer number determines first name, last name, street, city, state,
zip, and phone.” In this relationship, customer number is known as the determi-
nant (an attribute that determines the value of other attributes).

Notice that the functional dependency does not necessarily hold in the reverse
direction. For example, any given first or last name may be associated with more
than one customer number. (It would be unusual to have a customer table of any
size without some repetition of names.)

The functional dependencies in the orders table are:

customer number -> first name, Tlast name, street, city, state,
zip, phone

6.4 Second Normal Form 213

item number -> title, price
order number -> customer number, order date
item number + order number -> has shipped

Notice first that there is one determinant for each entity in the relation and
that the determinant is what we have chosen as the entity identifier. Notice also
that when an entity has a concatenated identifier, the determinant is also concat-
enated. In this example, whether an item has shipped depends on the combina-
tion of the item and the order.

6.4.2 Using Functional Dependencies to Reach 2NF

If you have correctly identified the functional dependencies among the attributes
in a database environment, then you can use them to create 2NF relations. Each
determinant becomes the primary key of a relation. All the attributes that are
functionally dependent on it become nonkey attributes in the relation.

The four relations into which the original orders relation should be broken
are:

customers (customer number, first name, Tlast name, street, city,
state, zip, phone)

items (item number, title, price)

orders (order number, customer number, order date)

line items (order number, item number, has shipped)

Each of these should in turn correspond to a single entity in your ER diagram.

Note: When it comes to deciding what is driving database design—functional
dependencies or entities—it is really a “chicken and egg” situation. What is
most important is that there is consistency between the ER diagram and the
functional dependencies you identify in your relations. It makes no difference
whether you design by looking for functional dependencies or for entities. In
most cases, database design is an iterative process in which you create an initial
design, check it, modify it, and check it again. You can look at either functional
dependencies and/or entities at any stage in the process, checking one against
the other for consistency.

The relations we have created from the original orders relation have elimi-
nated the anomalies present in the original:

m It is now possible to insert data about a customer before the customer
places an order.

m It is now possible to insert data about an order before we know an item
on the order.

m It is now possible to store data about merchandise items before they are
ordered.

214 CHAPTER 6 Normalization

m Line items can be deleted from an order without affecting data describing
that item, the order itself, or the merchandise item.

m Data describing the customer are stored only once, and therefore any
change to those data need to be made only once. A modification anomaly
cannot occur.

6.4.3 Problems with 2NF Relations

Although 2NF eliminates problems from many relations, you will occasionally run
into relations that are in 2NF yet still exhibit anomalies. Assume, for example, that
each laser disc title that Lasers Only carries comes from one distributor and that
each distributor has only one warehouse, which has only one phone number. The
following relation is therefore in 2NF:

items (item number, title, distributor, warehouse phone number)

For each item number, there is only one value for the title, distributor,
and warehouse phone number items. However, there is one insertion anomaly—
you cannot insert data about a distributor until you have an item from that dis-
tributor—and a deletion anomaly—if you delete the only item from a distributor,
you lose data about the distributor. There is also a modification anomaly—the
distributor’s warehouse phone number is duplicated for every item the company
gets from that distributor. The relation is in 2NF, but not 3NF.

6.5 THIRD NORMAL FORM

Third normal form is designed to handle situations like the one you just read about
in the preceding section. In terms of entities, the items relation does contain two
entities: the Merchandise Itemandthe Distributor. That alone should convince
you that the relation needs to broken down into two smaller relations, both of
which are now in 3NF:

items (item number, distributor)
distributors (distributor, warehouse phone number)

The theoretical definition of 3NF says: The relation is in 2NF and there are
no transitive dependencies. The functional dependencies found in the original
relation are an example of a transitive dependency.

6.5.1 Transitive Dependencies

A transitive dependency exists when you have the following functional depen-
dency pattern:

A -> B and B -> C therefore A -> C

6.5 Third Normal Form 215

This is precisely the case with the original items relation. The only reason that
the warehouse phone number is functionally dependent on the item number is
because the distributor is functionally dependent on the item number and the
phone number is functionally dependent on the distributor. The functional
dependencies are really:

item number -> distributor
distributor -> warehouse phone number

Note: Transitive dependencies take their name from the transitive property in
mathematics, which states that if a > b and b > ¢, then a > c.

There are two determinants in the original items relation, each of which
should be the primary key of its own relation. However, it is not merely the pres-
ence of the second determinant that creates the transitive dependency. What
really matters is that the second determinant is not a candidate key for the
relation.

Consider, for example, this relation:

items (item number, UPC code, distributor, price)

The item number is an arbitrary value that Lasers Only assigns to each merchandise
item. The UPC code is an industry-wide code that is unique to each item as well.
The functional dependencies in this relation are:

item number -> UPC code, distributor, price
UPC code -> item number, distributor, price

Is there a transitive dependency here? No, because the second determinant is
a candidate key. (Lasers Only could just as easily have used the UPC code as the
primary key.) There are no insertion, deletion, or modification anomalies in this
relation; it describes only one entity—the Merchandise Item.

A transitive dependency therefore exists only when the determinant that is not
the primary key is not a candidate key for the relation. For example, in the items
table we have been using as an example, the distributor is a determinant but not
a candidate key for the table. (There can be more than one item coming from a
single distributor.)

When you have a transitive dependency in a 2NF relation, you should break
the relation into two smaller relations, each of which has one of the determinants
in the transitive dependency as its primary key. The attributes determined by the
determinants become the nonkey attributes in each relation. This removes the
transitive dependency—and its associated anomalies—and places the relations in
3NF.

Note: A 2NF relation that has no transitive dependencies is, of course, auto-
matically in 3NF.

216 CHAPTER 6 Normalization

6.6 BOYCE-CODD NORMAL FORM

For most relations, 3NF is a good design objective. Relations in that state are free
of most anomalies. However, occasionally you run across relations that exhibit
special characteristics where anomalies still occur. BCNF and 4NF were created
to handle such special situations.

Note: If your relations are in 3NF and do not exhibit the special characteristics
that BCNF and 4NF were designed to handle, then they are automatically in
4NF. As mentioned earlier in this chapter, it is extremely difficult to determine
if a relation is in SNF without the aid of a computer to do the analyses, and
therefore we rarely use SNF in practice.

The easiest way to understand BCNF is to start with an example. Assume that
Lasers Only decides to add a relation to its database to handle employee work
scheduling. Each employee works one or two four-hour shifts a day at the store.
During each shift, an employee is assigned to one station (a place in the store,
such as the front desk or the stockroom). Only one employee works a station
during a given shift.

A relation to handle the schedule might be designed as follows:

schedule (employee ID, date, shift, station, worked shift?)

Given the rules for the scheduling (one person per station per shift), there are
two possible primary keys for this relation: employee ID + date + shift or date
+ shift + station. The functional dependencies in the relation are:

employee ID + date + shift -> station, worked shift?
date + shift + station -> employee ID, worked shift?

Keep in mind that this holds true only because there is only one person working
each station during each shift.

Note: There is very little difference between the two candidate keys as far as
the choice of a primary key is concerned. In cases like this, you can choose
either one.

This schedule relation exhibits overlapping concatenated candidate keys.
(Both candidate keys have date and shift in common.) BCNF was designed to deal
with relations that exhibit this characteristic.

To be in BCNF, a relation must meet the following rule: The relation is in 3NF
and all determinants are candidate keys. BCNF is considered to be a more
general way of looking at 3NF because it includes those relations with the overlap-
ping candidate keys. The sample schedule relation we have been considering

6.7 Fourth Normal Form 217

does meet the criteria for BCNF because the two determinants are indeed candi-
date keys.

6.7 FOURTH NORMAL FORM

Like BCNF, 4NF was designed to handle relations that exhibit a special character-
istic that does not arise too often. In this case, the special characteristic is some-
thing known as a multivalued dependency.

As an example, consider the following relation:

movie info (title, star, producer)

A given movie can have more than one star; it can also have more than one
producer. The same star can appear in more than one movie; the producer can
also work on more than one movie (e.g., see Figure 6.5). The relation must there-
fore include all columns in its key.

Because there are no nonkey attributes, this relation is in BCNF. Nonetheless,
the relation exhibits anomalies:

m You cannot insert the stars of a movie without knowing at least one
producer.

®m You cannot insert the movie’s producer without knowing at least one star.

m If you delete the only producer from a movie, you lose information about
its stars.

m If you delete the only star from a movie, you lose information about its
producers.

m Each producer’s name is duplicated for every star in the movie. By the
same token, each star’s name is duplicated for each movie producer. This
unnecessary duplication forms the basis of a modification anomaly.

There are at least two unrelated entities in this relation, one that handles the
relationship between a movie and its stars and another that handles the relation-

Title Star Producer

Great Film Lovely Lady Money Bags

Great Film Handsome Man Money Bags

Great Film Lovely Lady Helen Pursestrings
Great Film Handsome Man Helen Pursestrings
Boring Movie Lovely Lady Helen Pursestrings
Boring Movie Precocious Child Helen Pursestrings
FIGURE 6.5

A relation with a multivalued dependency.

218 CHAPTER 6 Normalization

ship between a movie and its producers. In a practical sense, that is the cause of
the anomalies. (Arguably, there are also Movie, Star, and Producer entities
involved.)

However, in theoretical terms, the anomalies are caused by the presence of a
multivalued dependency in the same relation, which must be eliminated to go to
4NF. The rule for 4NF is: The relation is in BCNF and there are no multivalued
dependencies.

6.7.1 Multivalued Dependencies

A multivalued dependency exists when for each value of attribute A, there exists
a finite set of values of attribute B that are associated with it and a finite set of
values of attribute C that are also associated with it. Attributes B and C are inde-
pendent of each other.

In the example we have been using, there is just such a dependency. First, for
each movie title, there is a group of actors (the stars) who are associated with the
movie. For each title, there is also a group of producers who are associated with
it. However, the actors and the producers are independent of one another.

Note: At this point, do not let semantics get in the way of database theory. Yes,
it is true that producers fund the movies that the actors are starring in, but in
terms of database relationships, there is no direct connection between the
two.

The multivalued dependency can be written as:

title ->> star
title ->> producer

and read “title multidetermines star and title multidetermines producer.”

Note: To be strictly accurate, a functional dependency is a special case of a
multivalued dependency where what is being determined is one value rather
than a group of values.

To eliminate the multivalued dependency and bring this relation into 4NF, you
split the relation, placing each part of the dependency in its own relation:

movie stars (title, star)
movie producers (title, producer)

With this design, you can independently insert and remove stars and producers
without affecting the other. Star and producer names also appear only once for
each movie with which they are involved.

6.8 Normalized Relations and Database Performance 219

6.8 NORMALIZED RELATIONS AND DATABASE PERFORMANCE

Normalizing the relations in a database separates entities into their own relations
and makes it possible for you to enter, modify, and delete data without disturbing
entities other than the one directly being modified. However, normalization is not
without its downside.

When you split relations so that relationships are represented by matching
primary and foreign keys, you force the DBMS to perform matching operations
between relations whenever a query requires data from more than one table. For
example, in a normalized database you store data about an order in one relation,
data about a customer in a second relation, and data about the order lines in yet
a third relation. The operation typically used to bring the data into a single table
SO you can prepare an output such as an invoice is known as a join.

In theory, a join looks for rows with matching values between two tables
and creates a new row in a result table every time it finds a match. In practice,
however, performing a join involves manipulating more data than the simple
combination of the two tables being joined would suggest. Joins of large tables
(those of more than a few hundred rows) can significantly slow down the perfor-
mance of a DBMS.

To understand what can happen, you need to know something about the
relational algebra join operation. As with all relational algebra operations, the
result of a join is a new table.

Note: Relational algebra is a set of operations used to manipulate and extract
data from relations. Each operation performs a single manipulation of one or
two tables. To complete a query, a DBMS uses a sequence of relational algebra
operations; relational algebra is therefore procedural. SQL, on the other hand,
is based on the relational calculus, which is nonprocedural, allowing you to
specify what you want rather than how to get it. A single SQL Retrieval
command can require a DBMS to perform any or all of the operations in the
relational algebra.

6.8.1 Equi-Joins

In its most common form, a join forms new rows when data in the two source
tables match. Because we are looking for rows with equal values, this type of join
is known as an equi-join (or a natural equi-join). As an example, consider the
two tables in Figure 6.6.

Notice that the ID number column is the primary key of the customers table
and that the same column is a foreign key in the orders table. The ID number
column in orders therefore serves to relate orders to the customers to which they
belong.

220 CHAPTER 6 Normalization

customers

ID number first name last name

001 Jane Doe
002 John Doe
003 Jane Smith
004 John Smith
005 Jane Jones
006 John Jones
orders

order number ID number order date order total

001 ooz 10/10/99 250.65
002 002 2/21/00 125.89
003 003 11/15/99 1567.99
004 004 11/22/99 180.92
005 004 12/15/99 565.00
006 006 10/8/99 25.00
007 006 11/12/99 85.00
oos 006 12/29/99 109.12
FIGURE 6.6

Two tables with a primary key—foreign key relationship.

result_table

ID number first_name last_name order_numb order_date order_tota:
002 John Doe o001 10/10/99 250.65
002 John Doe 002 2/21/00 125.89
003 Jane Smith 003 11/15/99 1597.99
004 John Smith 004 11/22/99 180.92
004 John Smith 005 12/15/99 565.00
006 John Jones 006 10/8/99 25.00
006 John Jones 007 11/12/99 85.00
006 John Jones o008 12/29/99 109.12
FIGURE 6.7

The joined result table.

Assume that you want to see the names of the customers who placed each
order. To do so, you must join the two tables, creating combined rows wherever
there is a matching ID number. In database terminology, we are joining the two
tables over 1D number. The result table can be found in Figure 6.7.

An equi-join can begin with either source table. (The result should be the same
regardless of the direction in which the join is performed.) The join compares
each row in one source table with the rows in the second. For each row in the
first that matches data in the second source table in the column or columns over
which the join is being performed, a new row is placed in the result table.

6.8 Normalized Relations and Database Performance 221

Assuming that we are using the customers table as the first source table, pro-
ducing the result table in Figure 6.7 might therefore proceed conceptually as
follows:

1. Search orders for rows with an ID number of 001. Because there are
no matching rows in orders, do not place a row in the result table.

2. Search orders for rows with an ID number of 002. There are two
matching rows in orders. Create two new rows in the result table,
placing the same customer information at the end of each row in orders.

3. Search orders for rows with an ID number of 003. There is one
matching row in orders. Place one new row in the result table.

4. Search orders for rows with an ID number of 004. There are two
matching rows in orders. Place two rows in the result table.

5. Search orders for rows with an ID number of 005. There are no matching
rows in orders. Therefore, do not place a row in the result table.

6. Search orders for rows with an ID number of 006. There are three
matching rows in orders. Place three rows in the result table.

Notice that if an ID number does not appear in both tables, then no row is
placed in the result table. This behavior categorizes this type of join as an
inner join.

6.8.2 What Is Really Going On: Product and Restrict

From a relational algebra point of view, a join can be implemented using two
other operations: product and restrict. As you will see, this sequence of operations
requires the manipulation of a great deal of data and, if implemented by a DBMS,
can result in very slow query performance.

The restrict operation retrieves rows from a table by matching each row against
logical criteria (a predicate). Those rows that meet the criteria are placed in the
result table; those that do not meet the criteria are omitted.

The product operation (the mathematical Cartesian product) makes every pos-
sible pairing of rows from two source tables. In Figure 6.8, for example, the
product of the customers and orders tables produces a result table with 48 rows
(the six customers times the eight orders). The ID number column appears twice
because it is a part of both source tables.

Note: Although 48 rows may not seem like a lot, consider the size of a product
table created from tables with 100 and 1000 rows! The manipulation of a table
of this size can tie up a lot of disk input/output and computer processing unit
time.

In some rows, the ID number is the same. These are the rows that would have
been included in a join. We can therefore apply a restrict predicate to the product

222 CHAPTER 6 Normalization

product_table

ID number first name last name ID number order number order date order total

(Customers) (Orders)

001 Jane Doe 002 001 10/10/99 250.65
001 Jane Doe 002 002 2/21/00 125.89
001 Jane Doe 003 003 11/15/99 1597.99
001 Jane Doe 004 004 11/22/99 180.92
001 Jane Doe 004 005 12/15/99 565.00
001 Jane Doe 006 006 10/8/99 25.00
001 Jane Doe 006 007 11/12/99 85.00
001 Jane Doe 0086 oo8 12/29/99 109.12
002 John Doe 002 001 10/10/99 250.65
002 John Doe 002 002 2/21/00 125.89
o002 John Doe 003 003 11/15/99 1597.99
002 John Doe 004 004 11/22/99 180.92
o002 John Doe 004 005 12/15/99 565.00
002 John Doe 006 006 10/8/99 25.00
002 John Doe 0086 007 11/12/99 85.00
002 John Doe 006 oos 12/29/99 109.12
003 Jane Smith 002 001 10/10/99 250.65
003 Jane Smith 002 002 2/21/00 125.89
003 Jane Smith 003 003 11/15/99 1597.99
003 Jane Smith 004 004 11/22/99 180.92
003 Jane Smith 004 005 12/15/99 565.00
003 Jane Smith 006 006 10/8/99 25.00
003 Jane Smith 006 007 11/12/99 85.00
003 Jane Smith 0086 oo8 12/29/99 109.12
004 John Smith 002 001 10/10/99 250.65
004 John Smith oo2 o002 2/21/00 125.89
004 John Smith 003 003 11/15/99 1597.99
004 John smith 004 004 11/22/99 180.92
004 John Smith 004 005 12/15/99 565.00
004 John smith 006 006 10/8/99 25.00
004 John Smith 006 006 10/8/99 25.00
004 John Smith 006 008 12/29/99 109.12
006 John Jones 002 001 10/10/99 250.65
006 John Jones 002 002 2/21/00 125.89
006 John Jones 003 003 11/15/99 1597.99
006 John Jones 004 004 11/22/99 180.92
006 John Jones 004 005 12/15/99 565.00
006 John Jones 006 006 10/8/99 25.00
006 John Jones 006 006 10/8/99 25.00
006 John Jones 006 o008 12/29/99 109.12

FIGURE 6.8

The product of the customers and orders tables.

table to end up with the same table provided by the join you saw earlier. The
predicate’s logical condition can be written as:

customers.id_numb = orders.id_numb

The rows that are selected by this predicate appear in black in Figure 6.9; those
eliminated by the predicate are in gray. Notice that the black rows are exactly the
same as those in the result table of the join (Figure 6.7).

6.8 Normalized Relations and Database Performance

223

joined_table

ID number first name last name ID number order number order date order total

(Customers) (Orders)

001 Jane 002 001 10/10/99

0o1 Jane 002 oo2 2/21/00

001 Jane 003 003 11/15/99

001 Jane o004 004 11/22/99

001 Jane 004 005 12/15/99

001 Jane 006 006 10/8/99

001 Jane 006 007 11/12/99

001 Jane 006 008 12/29/99

002 John oo2 001 10/10/99

o0z John ooz o002 2/21/00

on2 Jaohn 003 003 11/15/99

002 John 004 004 22/99

002 John o004 005 12/15/99

002 John 006 006 10/8/99

002 John 006 oo7 11/12/99

o002 John 006 008 12/29/99

003 Jane 002 001 10/10/99

003 Jane 002 op2 2/21/00

003 Jane 003 003 11/15/99

003 Jane o004 004 11/22/99

003 Jane 004 005 12/15/99

003 Jane 006 006 10/8/99

003 Jane 006 007 11/12/99

003 Jane 006 oo8 12/29/99

o004 John 002 001 10/10/99

o004 John 002 o002 2/21/00

004 John smith 003 003 11/15/99

o004 John Smith o004 o004 11/22/99

004 John 004 005 12/15/99

o004 John 006 006 10/8/99

004 John 006 006 10/8/99

004 John 006 008 12/29/99

006 John 002 001 10/10/99

006 John 002 002 2/21/00

006 John 003 003 11/15/99 597.99

006 John o004 o004 11/2 180.92

006 John 004 005 12/15/99 565.00

006 John 006 006 10/8/99 25.00

006 John 006 006 10/8/99 25.00

006 John 006 008 12/29/99 109.12
FIGURE 6.9

The product of the customers and orders tables after applying a restrict predicate.

Note: Although this may seem like a highly inefficient way to implement a join,
it is actually quite flexible, in particular because the relationship between the
columns over which the join is being performed doesn’t have to be equal. A
user could just as easily request a join where the value in table A was greater
than the value in table B, and so on.

224 CHAPTER 6 Normalization

6.8.3 The Bottom Line

Because of the processing overhead created when performing a join, some data-
base designers make a conscious decision to leave tables unnormalized. For
example, if Lasers Only always accessed the line items at the same time it accessed
order information, then a designer might choose to combine the line item and
order data into one table, knowing full well that the unnormalized relation exhib-
its anomalies. The benefit is that retrieval of order information will be faster than
if it were split into two tables.

Should you leave unnormalized relations in your database to achieve better
retrieval performance? In this author’s opinion, there is rarely any need to do so.
Assuming that you are working with a relatively standard DBMS that supports SQL
as its query language, there are SQL syntaxes that you can use when writing
queries that avoid joins. That being the case, it does not seem worth the problems
that unnormalized relations present to leave them in the database. Careful writing
of retrieval queries can provide performance that is nearly as good as that of
retrieval from unnormalized relations.

Note: For a complete discussion of writing SQL queries to avoid joins, see
Harrington’s book, SOL Clearly Explained, Second Edition, also published by
Morgan Kaufmann.

6.9 FURTHER READING

There are many books available that deal with the theory of relational databases.
You can find useful supplementary information in S. Stanczyk, B. Champion, and
R. Leton. Theory and Practice of Relational Databases. Taylor & Rances, 2001.

CHAPTER

Physical Database Design

7.1 INTRODUCTION

The transition from logical to physical database design marks a change in
focus and in the skills required. In this chapter, we are going to develop a set
of data structures, making those structures perform on a particular hardware
platform using the facilities of our selected database management system
(DBMS). Instead of business and generic data structuring skills, we require
a detailed knowledge of general performance-tuning techniques and of the
facilities provided by the DBMS. Frequently this means that a different, more
technical person will take on the role of database design. In this case, the
data modeler’s role will be essentially to advise on the impact of changes to tables
and columns, which may be required as a last resort to achieve performance
goals.

An enduring myth about database design is that the response time for data
retrieval from a normalized set of tables and columns will be longer than accept-
able. As with all myths there is a grain of truth in the assertion. Certainly, if a large
amount of data are to be retrieved or if the database itself is very large and either
the query is unduly complex or the data have not been appropriately indexed, a
slow response time may result. However, there is a lot that can be done in tuning
the database and in careful crafting of queries, before denormalization or other
modification of the tables and columns defined in a logical data model becomes
necessary. This has become increasingly true as overall computer performance
has improved and DBMS designers have continued to develop the capabilities of
their optimizers (the built-in software within a DBMS that selects the most efficient
means of executing each query).

Before we go any further, we need to clarify some terminology. The data
modeler’s focus will be on the tables and columns (and the views based on them).
He or she will typically refer to the tables and columns delivered by the physical
database design process as the pbysical data model to distinguish it from the
logical data model. As we saw in Chapter 5, the logical data model is an ideal
structure, which reflects business information requirements and makes assertions

226 CHAPTER 7 Physical Database Design

about data properties, such as functional dependency, without being obscured by
any changes required for performance.

The database designer will be interested not only in the tables and columns
but also in the infrastructure components—indexes and physical storage mecha-
nisms—that support data management and performance requirements. Since
program logic depends only on tables and columns (and views based on them),
that set of components is often referred to as the logical schema,' while the
remainder may be referred to as the physical schema.” These alternative uses of
the terms “logical” and “physical” can easily lead to confusion!

This chapter reviews the inputs that the physical database designer needs in
addition to the logical data model. Then it looks at a number of options available
for achieving performance goals. The options fall into three broad categories:

1. Design decisions that do not affect program logic (i.e., that preserve the
structure of the logical data model).

2. Approaches to redesigning queries themselves to run faster (rather than
changing the database structure).

3. Design decisions that entail changes to the structures specified in the
logical data model.

Finally, we look at the definition of views.

If you are a specialist data modeler, you may be tempted to skip this chapter,
since much of it relates to the tools and work of the physical database designer.
We encourage you not to do so. One of the key factors in getting good outcomes
in physical database design is the level of communication and respect between
the database designer and the data modeler. That means understanding what the
other party does and how they do it. Good architects maintain an up-to-date
knowledge of building materials.

On the other hand, if you are responsible for physical database design, you
need to recognize that this chapter merely scratches the surface of the many
features and facilities available to you in a modern DBMS. Many of these are DBMS
specific, and accordingly better covered in vendor manuals or guides for the spe-
cific product. Specialist physical database designers generally focus on one (or a
limited number) of DBMSs, in contrast to modelers whose specialization is more
likely to be in a specific business domain.

7.2 INPUTS TO DATABASE DESIGN

As well as the logical data model, the database designer will require other informa-
tion to be able to make sound design decisions.

'"Equivalent to the ANSI/SPARC conceptual schema and external schemas.
*Equivalent to the ANSI/SPARC internal schema.

7.2 |Inputs to Database Design 227

1. The process model, detailing input processes (creation and updating of rows
in tables) and output requirements (retrieval of data from the database), enabling
the database designer to establish:

a. The circumstances in which rows are added to each table—how frequently
on average and at peak times (e.g., 1 per day or 100 per second), and how
many at a time; plus such details as whether the primary key of an added
row depends on the time that it is added, so that rows added at about the
same time have similar primary keys, which can impact performance both
through contention and the need to rebalance the primary key index.

b. The circumstances in which rows are updated in each table—how fre-
quently on average and at peak times plus the likelihood that rows with
similar primary keys are updated at about the same time, which may affect
locking (see Section 7.5.1).

c. The circumstances in which rows are deleted from each table—how fre-
quently and how many at a time (deletes, like inserts, affect all indexes on
the table).

d. The circumstances in which rows are retrieved from each table—what
columns in the table are used for selecting rows, how many rows are
retrieved, what other tables are referenced, and what columns in the refer-
ring and referenced tables are correlated or joined.

2. The process/entity matrix (often referred to as a CRUD—create, read, update,
delete—matrix) or mapping that shows which processes access each entity
class and how (create, update, retrieve), providing the database designer with
a list of the processes that create, update, and retrieve each entity class.

3. Nonstructural data requirements:

a. Retention: how long data in each table is to be retained before deletion or
archiving, whether there is a requirement for data to be removed from a
table within a certain time frame.

b. Volumes: how many rows are likely to be included in each table at system
rollout, how many additional rows are likely to be created within a given time
period (retention and volumes enable the database designer to establish how
big each table will be at various times during the life of the application).

c. Availability: whether data are required on a full-time basis, and if not, for
how long and how frequently the database can be inaccessible by users,
enabling the database designer to plan for:

i. Any batch processes specified in the process model.
ii. Downtime during which the database can be reorganized (i.e., data and
indexes redistributed more evenly across the storage medium).
iii. Whether data need to be replicated at multiple sites to provide fallback
in the event of network failure.

d. Freshness: how up to date the data available to those retrieving it have to
be, enabling the database designer to decide whether it is feasible to have
separate update and retrieval copies of data (see Section 7.6.4).

228 CHAPTER 7 Physical Database Design

e. Security requirements: driving access permissions and possibly prompting
table partitioning and creation of views reflecting different subsets of data
available to different classes of users.

4. Performance requirements: usually expressed in terms of the response time,
the time taken by each defined exchange in each application/user dialog (i.e.,
the time between the user pressing the Enter key and the application display-
ing the confirmation of the creation or updating of the data in the database or
the results of the query). These enable the database designer to focus on those
creates, updates, and retrieval queries that have the most critical performance
requirements. (Beware of statements such as “all queries must exhibit subsec-
ond response time”; this is rarely true and indicates that the writer has not
bothered to identify the critical user operations. We once encountered this
statement in a contract that also contained the statement “The application must
support retrieval queries of arbitrary complexity.”)

5. The target DBMS: not only the “brand” (e.g., DB2, Informix, Oracle, SQL Server,
Access, and so on), but the version, enabling the database designer to establish
what facilities, features, and options are provided by that DBMS.

6. Any current or likely limitations on disk space: these will be a factor in choos-
ing one or the other option where options differ in their use of disk space (e.g.,
see Section 7.6.8).

7. Any likely difficulties in obtaining skilled programming resources: these may
prompt the avoidance of more complex data structures where these impact
programming complexity (e.g., see Sections 7.6.4 and 7.6.5).

7.3 OPTIONS AVAILABLE TO THE DATABASE DESIGNER

The main challenge facing the database designer is to speed up those transactions
with critical performance requirements. The slowest activities in a database are
almost always the reading of data from the storage medium into main memory
and the writing of data from main memory back to the storage medium, and it is
on this data access (also known as I/O, input/output) that we now focus.

Commercial relational DBMSs differ in the facilities and features they offer, the
ways in which those facilities and features are implemented, and the options avail-
able within each facility and feature. It is beyond the scope and intention of this
chapter to detail each of these; in any case, given the frequency with which new
versions of the major commercial DBMSs are released, our information would soon
be out of date. Instead, we offer a list of the most important facilities and features
offered by relational DBMSs and some principles for their use. This can be used
by:

1. The database designer, as a checklist of what facilities and features to
read up on in the DBMS documentation.

7.4 Design Decisions that Do Not Affect Program Logic 229

2. The data modeler who is handing over to a database designer, as a
checklist of issues to examine during any negotiations over changes to
tables and columns.

We first look at those design decisions that do not affect program logic. We
then look at ways in which queries can be crafted to run faster. We finally look
at various types of changes that can be made to the logical schema to support
faster queries when all other techniques have been tried and some queries still
do not run fast enough. This is also the sequence in which these techniques should
be tried by the database designer.

Note that those design decisions that do not affect program logic can be revis-
ited and altered after a database has been rolled out with minimal, if any, impact
on the availability of the database and, of course, none on program logic. Changes
to the logical schema, however, require changes to program logic. They must
therefore be made in a test environment (along with those program changes),
tested, packaged, and released in a controlled manner like any other application
upgrade.

7.4 DESIGN DECISIONS THAT DO NOT AFFECT
PROGRAM LOGIC

The discussion in this section makes frequent reference to the term block. This
is the term used in the Oracle DBMS product to refer to the smallest amount of
data that can be transferred between the storage medium and main memory. The
corresponding term in IBM’s DB2 database management system is page.

7.4.1 Indexes

Indexes provide one of the most commonly used methods for rapidly retrieving
specified rows from a table without having to search the entire table.

Each table can have one or more indexes specified. Each index applies to a
particular column or set of columns. For each value of the column(s), the index
lists the location(s) of the row(s) in which that value can be found. For example,
an index on Customer Location would enable us to readily locate all of the rows
that had a value for Customer Location of (say) New York.

The specification of each index includes:

m The column(s).

m Whether it is unique (i.e., whether there can be no more than one row for
any given value; see “Index Properties” section).

m Whether it is the sorting index (see “Index Properties” section).

m The structure of the index (for some DBMSs; see “Balanced Tree Indexes”
and “Bit-Mapped Indexes” sections).

|
230 CHAPTER 7 Physical Database Design

The advantages of an index are that:

m It can improve data access performance for a retrieval or update.

m Retrievals that only refer to indexed columns do not need to read any data
blocks (access to indexes is often faster than direct access to data blocks
bypassing any index).

The disadvantages are that each index:

m Adds to the data access cost of a create transaction or an update
transaction in which an indexed column is updated.

m Takes up disk space.

m May increase lock contention (see Section 7.5.1).

m Adds to the processing and data access cost of reorganize and table load
utilities.

Whether an index will actually improve the performance of an individual query
depends on two factors:

1. Whether the index is actually used by the query.
2. Whether the index confers any performance advantage on the query.

Index Usage by Queries

DML (Data Manipulation Language)® only specifies what you want, not how to get
it. The optimizer built into the DBMS selects the best available access method
based on its knowledge of indexes, column contents, and so on. Thus, index usage
cannot be explicitly specified but is determined by the optimizer during DML
compilation. How it implements the DML will depend on:

m The DML clauses used, in particular the predicate(s) in the where clause
(see Figure 7.1 for examples).

m The tables accessed, their size, and content.

m What indexes there are on those tables.

select EMP_NO, EMP_NAME, SALARY
from EMPLOYEE
where SALARY > 80000;

update EMPLOYEE

set SALARY = SALARY* 1.1
where SALARY > 80000;
FIGURE 7.1

Retrieval and update queries.

*This is the SQL query language, often itself called “SQL,” and most commonly used to retrieve data
from a relational database.

7.4 Design Decisions that Do Not Affect Program Logic 231

select EMP_NO, EMP_NAME, SALARY
from EMPLOYEE
where SALARY > all

(select SALARY

from EMPLOYEE

where DEPT_NO ='123");

FIGURE 7.2
An ALL subquery.

select EMP_NO, EMP_NAME
from EMPLOYEE as E1
where exists
(select*
from EMPLOYEE as E2
where E2.EMP_NAME = E1.EMP_NAME
and E2.EMP_NO <> E1.EMP_NO);
FIGURE 7.3

A correlated subquery.

Some predicates will preclude the use of indexes; these include:

m Negative conditions (e.g., “not equals” and those involving NOT).

m LIKE predicates in which the comparison string starts with a wildcard.

m Comparisons including scalar operators (e.g., +) or functions (e.g., data
type conversion functions).

m ANY/ALL subqueries, as in Figure 7.2.

m Correlated subqueries, as in Figure 7.3.

Certain update operations may also be unable to use indexes. For example, while
the retrieval query in Figure 7.1 can use an index on the Salary column if there
is one, the update query in the same figure cannot.

Note that the DBMS may require that, after an index is added, a utility is run
to examine table contents and indexes and recompile each SQL query. Failure to
do this would prevent any query from using the new index.

Performance Advantages of Indexes

Even if an index is available and the query is formulated in such a way that it can
use that index, the index may not improve performance if more than a certain
proportion of rows are retrieved. That proportion depends on the DBMS.

Index Properties

If an index is defined as unique, each row in the associated table must have a
different value in the column or columns covered by the index. Thus, this is a
means of implementing a uniqueness constraint, and a unique index should there-
fore be created on each table’s primary key as well as on any other sets of columns

232 CHAPTER 7 Physical Database Design

having a uniqueness constraint. However, since the database administrator can
always drop any index (except perhaps that on a primary key) at any time, a
unique index cannot be relied on to be present whenever rows are inserted. As
a result, most programming standards require that a uniqueness constraint is
explicitly tested for whenever inserting a row into the relevant table or updating
any column participating in that constraint.

The sorting index (called the clustering index in DB2) of each table is the one
that controls the sequence in which rows are stored during a bulk load or reor-
ganization that occurs during the existence of that index. Clearly there can be
only one such index for each table. Which column(s) should the sorting index
cover? In some DBMSs there is no choice; the index on the primary key will also
control row sequence. Where there is a choice, any of the following may be
worthy candidates, depending on the DBMS:

m Those columns most frequently involved in inequalities (e.g., where >
or >= appears in the predicate).

m Those columns most frequently specified as the sorting sequence.

m The columns of the most frequently specified foreign key in joins.

m The columns of the primary key.

The performance advantages of a sorting index are:

m Multiple rows relevant to a query can be retrieved in a single I/O
operation.

m Sorting is much faster if the rows are already more or less in sequence
(note that rows can get out of sequence between reorganizations).

By contrast, creating a sorting index on one or more columns may confer no
advantage over a nonsorting index if those columns are mostly involved in index-
only processing (i.e., if those columns are mostly accessed only in combination
with each other or are mostly involved in = predicates).

Consider creating other (nonunique, nonsorting) indexes on:

m Columns searched or joined with a low hit rate.

m Foreign keys.

m Columns frequently involved in aggregate functions, existence checks,
or DISTINCT selection.

m Sets of columns frequently linked by AND in predicates.

m Code and meaning columns for a classification table if there are other
less-frequently accessed columns.

m Columns frequently retrieved.

Indexes on any of the following may not yield any performance benefit:

m Columns with low cardinality (the number of different values is
significantly less than the number of rows) unless a bit-mapped index
is used (see “Bit-Mapped Indexes” section).

7.4 Design Decisions that Do Not Affect Program Logic 233

m Columns with skewed distribution (many occurrences of one or two
particular values and few occurrences of each of a number of other
values).

Columns with low population (NULL in many rows).

Columns that are frequently updated.

Columns that take up a significant proportion of the row length.

Tables occupying a small number of blocks, unless the index is to be used
for joins, a uniqueness constraint, or referential integrity, or if index-only
processing is to be used.

m Columns with the varchar (variable length) data type.

Balanced Tree Indexes
Figure 7.4 illustrates the structure of a balanced tree index (often referred to as
a B-tree index) used in most relational DBMSs. Note that the depth of the tree
may be only one (in which case the index entries in the root block point directly
to data blocks); two (in which case the index entries in the root block point to
leaf blocks in which index entries point to data blocks); three (as shown in the
figure); or more than three (in which the index entries in nonleaf blocks point to
other nonleaf blocks). The term balanced refers to the fact that the tree structure
is symmetrical. If insertion of a new record causes a particular leaf block to fill
up, the index entries must be redistributed evenly across the index with additional
index blocks created as necessary, leading eventually to a deeper index.
Particular problems may arise with a balanced tree index on a column
or columns on which inserts are sequenced (i.e., each additional row has a

Root
block
Nonleaf Nonleaf
block block
Leaf Leaf Leaf Leaf
bIock bIock block block
Data Data Data Data Data Data Data Data
block block block block block block block block

FIGURE 7.4
Balanced tree index structure.

234 CHAPTER 7 Physical Database Design

higher value in those column(s) than the previous row added). In this case, the
insertion of new index entries is focused on the rightmost (highest value) leaf
block, rather than evenly across the index, resulting in more frequent redistribu-
tion of index entries that may be quite slow if the entire index is not in main
memory. This makes a strong case for random, rather than sequential, primary
keys.

Bit-Mapped Indexes

Another index structure provided by some DBMSs is the bit-mapped index. This
has an index entry for each value that appears in the indexed column. Each index
entry includes a column value followed by a series of bits, one for each row in
the table. Each bit is set to one if the corresponding row has that value in the
indexed column and zero if it has some other value. This type of index confers
the most advantage where the indexed column is of low cardinality (the number
of different values is significantly less than the number of rows). By contrast, such
an index may impact negatively on the performance of an insert operation into a
large table as every bit in every index entry that represents a row after the inserted
row must be moved one place to the right. This is less of a problem if the index
can be held permanently in main memory (see Section 7.4.3).

Indexed Sequential Tables

A few DBMSs support an alternative form of index referred to as ISAM (indexed
sequential access method). This may provide better performance for some types
of data population and access patterns.

Hash Tables

Some DBMSs provide an alternative to an index to support random access in
the form of a hashing algorithm to calculate block numbers from key values.
Tables managed in this fashion are referred to as hashed random (or “hash”
for short). Again, this may provide better performance for some types of data
population and access patterns. Note that this technique is of no value if partial
keys are used in searches (e.g., “Show me the customers whose names start with
‘Smi’ ") or a range of key values is required (e.g., “Show me all customers with a
birth date between 1/1/1948 and 12/31/1948”), whereas indexes do support these

types of query.

Heap Tables

Some DBMSs provide for tables to be created without indexes. Such tables are
sometimes referred to as beaps. If the table is small (only a few blocks) an index
may provide no advantage. Indeed if all the data in the table will fit into a single
block, accessing a row via an index requires two blocks to be read (the index
block and the data block) compared with reading in and scanning (in main
memory) the one block; in this case, an index degrades performance. Even if the
data in the table require two blocks, the average number of blocks read to access

7.4 Design Decisions that Do Not Affect Program Logic 235

a single row is still less than the two necessary for access via an index. Many
reference (or classification) tables fall into this category.

Note, however, that the DBMS may require that an index be created for
the primary key of each table that has one, and a classification table will
certainly require a primary key. If so, performance may be improved by one
of the following:

m Creating an additional index that includes both code (the primary key) and
meaning columns; any access to the classification table that requires both
columns will use that index rather than the data table itself (which is now in
effect redundant but only takes up space rather than slowing down access).

m Assigning the table to main memory in such a way that ensures the classification
table remains in main memory for the duration of each load of the application
(see Section 7.4.3).

7.4.2 Data Storage

A relational DBMS provides the database designer with a variety of options (depend-
ing on the DBMYS) for the storage of data.

Table Space Usage

Many DBMSs enable the database designer to create multiple table spaces to which
tables can be assigned. Since these table spaces can each be given different block
sizes and other parameters, tables with similar access patterns can be stored in
the same table space and each table space then tuned to optimize the performance
for the tables therein. The DBMS may even allow you to interleave rows from
different tables, in which case you may be able to arrange, for example, for the
Order Item rows for a given order to follow the Order row for that order, if they
are frequently retrieved together. This reduces the average number of blocks that
need to be read to retrieve an entire order. The facility is sometimes referred to
as clustering, which may lead to confusion with the term clustering index (see
“Index Properties” section).

Free Space

When a table is loaded or reorganized, each block may be loaded with as many
rows as can fit (unless rows are particularly short and there is a limit imposed by
the DBMS on how many rows a block can hold). If a new row is inserted and the
sorting sequence implied by the primary index dictates that the row should be
placed in an already full block, that row must be placed in another block. If no
provision has been made for additional rows, that will be the last block (or if that
block is full, a new block following the last block). Clearly this “overflow” situa-
tion will cause a degradation over time of the sorting sequence implied by the
primary index and will reduce any advantages conferred by the sorting sequence
of that index.

236 CHAPTER 7 Physical Database Design

This is where free space enters the picture. A specified proportion of the space
in each block can be reserved at load or reorganization time for rows subsequently
inserted. A fallback can also be provided by leaving every nth block empty at load
or reorganization time. If a block fills up, additional rows that belong in that block
will be placed in the next available empty block. Note that once this happens,
any attempt to retrieve data in sequence will incur extra block reads. This caters,
of course, not only for insertions but for increases in the length of existing rows,
such as those that have columns with the varchar data type.

The more free space you specify, the more rows can be fitted in or increased
in length before performance degrades and reorganization is necessary. At the
same time, more free space means that any retrieval of multiple consecutive rows
will need to read more blocks. Obviously for those tables that are read-only, you
should specify zero free space. In tables that have a low frequency of create trans-
actions (and update transactions that increase row length), zero free space is also
reasonable, since additional data can be added after the last row. Free space can
and should be allocated for indexes as well as data.

Table Partitioning

Some DBMSs allow you to divide a table into separate partitions based on one of
the indexes. For example, if the first column of an index is the state code, a sepa-
rate partition can be created for each state. Each partition can be independently
loaded or reorganized and can have different free space and other settings.

Drive Usage

Choosing where a table or index is on disk enables you to use faster drives for
more frequently accessed data or to avoid channel contention by distributing
across multiple disk channels tables that are accessed in the same query.

Compression

One option that many DBMSs provide is the compression of data in the stored
table (e.g., shortening of null columns or text columns with trailing space). While
this may save disk space and increase the number of rows per block, it can add
to the processing cost.

Distribution and Replication

Modern DBMSs provide many facilities for distributing data across multiple net-
worked servers. Among other things, distributing data in this manner can confer
performance and availability advantages. However, this is a specialist topic and is
outside the scope of this brief overview of physical database design.

7.4.3 Memory Usage

Some DBMSs support multiple input/output buffers in main memory and enable
you to specify the size of each buffer and allocate tables and indexes to particular

7.5 Crafting Queries to Run Faster 237

buffers. This can reduce or even eliminate the need to swap frequently accessed
tables or indexes out of main memory to make room for other data. For example,
a buffer could be set up that is large enough to accommodate all the classification
tables in their entirety. Once they are all in main memory, any query requiring
data from a classification table does not have to read any blocks for that
purpose.

7.5 CRAFTING QUERIES TO RUN FASTER

We have seen in the “Index Usage by Queries” section that some queries cannot
make use of indexes. If a query of this kind can be rewritten to make use of an
index, it is likely to run faster. As a simple example, consider a retrieval of
employee records in which there is a Gender column that holds either “M” or “F.”
A query to retrieve only male employees could be written with the predicate
GENDER <> “F” (in which case it cannot use an index on the Gender column) or
with the predicate GENDER = “M” (in which case it can use that index). The opti-
mizer (capable of recasting queries into logically equivalent forms that will perform
better) is of no help here even if it “knows” that there are currently only “M” and
“F” values in the Gender column, since it has no way of knowing that some other
value might eventually be loaded into that column. Thus, GENDER = “M” is not
logically equivalent to GENDER <> “F”.

There are also various ways in which subqueries can be expressed differently.
Most noncorrelated subqueries can be alternatively expressed as a join. An IN
subquery can always be alternatively expressed as an EXISTS subquery, although

the converse is not true. A query including > ALL (SELECT ...) can be alterna-
tively expressed by substituting > (SELECT MAX(...)) in place of > ALL
(SELECT...).

Sorting can be very time consuming. Note that any query including GROUP
BY or ORDER BY will sort the retrieved data. These clauses may, of course, be
unavoidable in meeting the information requirement. (ORDER BY is essential for
the query result to be sorted in a required order, since there is otherwise no
guarantee of the sequencing of result data, which will reflect the sorting index
only so long as no inserts or updates have occurred since the last table reorganiza-
tion.) However, there are two other situations in which unnecessary sorts can be
avoided.

One is DISTINCT, which is used to ensure that there are no duplicate rows in
the retrieved data, which it does by sorting the result set. For example, if the
query is retrieving only addresses of employees, and more than one employee
lives at the same address, that address will appear more than once unless
the DISTINCT clause is used. We have observed that the DISTINCT clause is some-
times used when duplicate rows are impossible; in this situation it can be
removed without affecting the query result but with significant impact on query
performance.

238 CHAPTER 7 Physical Database Design

Similarly, a UNION query without the ALL qualifier after UNION ensures that there
are no duplicate rows in the result set, again by sorting it (unless there is a usable
index). If you know that there is no possibility of the same row resulting from
more than one of the individual queries making up a UNION query, add the ALL
qualifier.

7.5.1 Locking

DBMSs employ various locks to ensure, for example, that only one user can update
a particular row at a time, or that, if a row is being updated, users who wish to
use that row are either prevented from doing so or see the preupdate row con-
sistently until the update is completed. Many business requirements imply the use
of locks. For example, in an airline reservation system, if a customer has reserved
a seat on one leg of a multileg journey, that seat must not be available to any other
user, but if the original customer decides not to proceed when he or she discov-
ers that there is no seat available on a connecting flight, the reserved seat must
be released.

The lowest level of lock is row level where an individual row is locked but
other rows in the same block are still accessible. The next level is block level,
which requires less data storage for management but locks all rows in the same
block as the one being updated. Table and table space locks are also possible.
Locks may be escalated, whereby a lock at one level is converted to a lock at the
next level to improve performance. The designer may also specify lock acquisi-
tion and lock release strategies for transactions accessing multiple tables. A trans-
action can either acquire all locks before starting or acquire each lock as required,
and it can either release all locks after committing (completing the update transac-
tion) or release each lock once no longer required.

7.6 LOGICAL SCHEMA DECISIONS

We now look at various types of changes that can be made to the logical schema
to support faster queries when the techniques we have discussed have been tried
and some queries still do not run fast enough.

7.6.1 Alternative Implementation of Relationships
If the target DBMS supports the SQL99 Set Type Constructor feature:

1. A one-to-many relationship can be implemented within one table.
2. A many-to-many relationship can be implemented without creating an
additional table.

Figure 7.5 illustrates such implementations.

7.6 Logical Schema Decisions 239

Department |Department |Department Name Employee Group

No Code Employee No Employee Name

123 ACCT Accounts 37289 J Smith
41260 A Chang
50227 B Malik

135 PRCH Purchasing 16354 D Sanchez
26732 T Nguyen

Employee [(Employee Name Assignment Group

No Project No | Assignment Date

50227 B Malik 1234 [27/2/95

2345 2/3/95
37289 J Smith 1234 |28/2/95
FIGURE 7.5

Alternative implementations of relationships in an SQL99 DBMS.

7.6.2 Table Splitting

Two implications of increasing the size of a table are:

1. Any balanced tree index on that table will be deeper (i.e., there will be
more nonleaf blocks between the root block and each leaf block and,
thus, more blocks to be read to access a row using that index).

2. Any query unable to use any indexes will read more blocks in scanning
the entire table.

Thus, all queries—those that use indexes and those that do not—will take more
time. Conversely, if a table can be made smaller, most, if not all, queries on that
table will take less time.

Horizontal Splitting

One technique for reducing the size of a table accessed by a query is to split it
into two or more tables with the same columns and to allocate the rows to dif-
ferent tables according to some criteria. In effect we are defining and implement-
ing subtypes. For example, although it might make sense to include historical data
in the same table as the corresponding current data, it is likely that different
queries access current and historical data. Placing current and historical data in
different tables with the same structure will certainly improve the performance
of queries on current data. You may prefer to include a copy of the current data

240 CHAPTER 7 Physical Database Design

in the historical data table to enable queries on all data to be written without
the UNION operator. This is duplication rather than splitting; we deal with that
separately in Section 7.6.4 due to the different implications duplication has for
processing.

Vertical Splitting

The more data there are in each row of a table, the fewer rows there are per
block. Queries that need to read multiple consecutive rows will therefore need
to read more blocks to do so. Such queries might take less time if the rows could
be made shorter. At the same time, shortening the rows reduces the size of the
table and (f it is not particularly large) increases the likelihood that it can be
retained in main memory. If some columns of a table constitute a significant pro-
portion of the row length and are accessed significantly less frequently than the
remainder of the columns of that table, there may be a case for holding those
columns in a separate table using the same primary key.

For example, if a classification table has Code, Meaning, and Explanation
columns, but the Explanation column is infrequently accessed, holding that
column in a separate table on the same primary key will mean that the classifica-
tion table itself occupies fewer blocks, increasing the likelihood of it remaining
in main memory. This may improve the performance of queries that access only
the Code and Meaning columns. Of course, a query that accesses all columns must
join the two tables; this may take more time than the corresponding query on the
original table. Note also that if the DBMS provides a long text data type with the
property that columns using that data type are not stored in the same block as
the other columns of the same table, and the Explanation column is given that
data type, no advantage accrues from splitting that column into a separate table.

Another situation in which vertical splitting may yield performance benefits is
where different processes use different columns, such as when an Employee table
holds both personnel information and payroll information.

7.6.3 Table Merging

We have encountered proposals by database designers to merge tables that are
regularly joined in queries.

An example of such a proposal is the merging of the Order and Order Line
tables shown in Figure 7.6. Since the merged table can only have one set of
columns making up the primary key, this would need to be Order No and Line
No, which means that order rows in the merged table would need a dummy Line
No value (since all primary key columns must be non-null); if that value were zero,
this would have the effect of all Order Line rows following their associated Order
row if the index on the primary key were also the primary index. Since all rows
in a table have the same columns, Order rows would have dummy (possibly null)
Product Code, Unit Count, and Required By Date columns, while Order Line
rows would have dummy (again possibly null) Customer No and Order Date

7.6 Logical Schema Decisions 241

Separate: ORDER (Order No, Customer No, Order Date)
ORDER LINE (Order No, Line No, Product Code, Unit Count, Required By Date)
Merged: ORDER/ORDER LINE (Order No, Line No, Customer No, Order Date, Product
Code, Unit Count, Required By Date)

FIGURE 7.6
Separate and merged Order and Order Line tables.

columns. Alternatively, a single column might be created to hold the Required
By Date value in an Order row and the Order Date value in an Order Line
row.

The rationale for this approach is to reduce the average number of blocks that
need to be read to retrieve an entire order. However, the result is achieved at the
expense of a significant change from the logical data model. If a similar effect can
be achieved by interleaving rows from different tables in the same table space,
this should be done instead.

7.6.4 Duplication

We saw in the “Horizontal Splitting” section how we might separate current data
from historical data to improve the performance of queries accessing only current
data by reducing the size of the table read by those queries. As we indicated then,
an alternative is to duplicate the current data in another table, retaining all current
data as well as the historical data in the original table. However, whenever we
duplicate data, there is the potential for errors to arise unless there is strict control
over the use of the two copies of the data. The following are among the things
that can go wrong:

m Only one copy is being updated, but some users read the other copy
thinking it is up to date.

m A transaction causes the addition of a quantity to a numeric column in
one copy, but the next transaction adds to the same column in the other
copy. Ultimately, the effect of one or other of those transactions will be
lost.

m One copy is updated, but the data from the other copy are used to
overwrite the updated copy, in effect wiping out all updates since the
second copy was taken.

To avoid these problems, a policy must be enforced whereby only one copy
can be updated by transactions initiated by users or batch processes (the current
data table in the preceding example). The corresponding data in the other copy
(the complete table in the preceding example) are either automatically updated
simultaneously (e.g., via a DBMS trigger) or, if it is acceptable for users accessing
that copy to see out-of-date data, replaced at regular intervals (e.g., daily).

242 CHAPTER 7 Physical Database Design

Another example of an “active subset” of data that might be copied into
another table are data on insurance policies, contracts, or any other agreements
or arrangements that are reviewed, renewed, and possibly changed on a cyclical
basis, such as yearly. Toward the end of a calendar month the data for those
policies that are due for renewal during the next calendar month could become
a “hot spot” in the table holding information about all policies. It may therefore
improve performance to copy the policy data for the next renewal month into a
separate table. The change over from one month to the other must, of course, be
carefully managed, and it may make sense to have “last month,” “this month,” and
“next month” tables as well as the complete table.

Another way in which duplication can confer advantages is in optimization for
different processes. We shall see in Section 7.6.7 how hierarchies in particular
can benefit from duplication.

7.6.5 Denormalization

Technically, denormalization is any change to the logical schema that results in it
not being fully normalized. In the context of physical database design, the term
is often used more broadly to include the addition of derivable data of any kind,
including that derived from multiple rows.

Four examples of strict violations of normalization are shown in the model of
Figure 7.7:

1. It can be assumed that Customer Name and Customer Address have been
copied from a Customer table with primary key Customer No.

2. Customer No has been copied from the Order table to the Order Line
table.

3. It can be assumed that Unit Price has been copied from a Product table
with primary key Product Code.

4. Total Price can be calculated by multiplying Unit Price by Unit
Count.

Changes such as this are intended to offer performance benefits for some transac-
tions. For example, a query on the Order Line table that also requires the Cus-
tomer No does not have to also access the Order table. However, there is a down
side: each such additional column must be carefully controlled.

ORDER (Order No, Customer No, Customer Name, Customer Address, Order Date)
ORDER LINE (Order No, Line No, Customer No, Customer Name, Customer Address,
Product Code, Unit Count, Unit Price, Total Price, Required By Date)

FIGURE 7.7
Denormalized Order and Order Line tables.

7.6 Logical Schema Decisions 243

1. It should not be able to be updated directly by users.

2. It must be updated automatically by the application (e.g., via a DBMS
trigger) whenever there is a change to the original data on which the
copied or derived data are based.

The second requirement may slow down transactions other than those that
benefit from the additional data. For example, an update of Unit Price in the
Product table will trigger an update of Unit Price and Total Price in every
row of the Order Line table with the same value of Product Code. This is a
familiar performance trade-off; enquiries are made faster at the expense of more
complex (and slower) updating.

There are some cases where the addition of redundant data is generally accepted
without qualms and they may indeed be included in the logical data model or
even the conceptual data model. If a supertype and its subtypes are all imple-
mented as tables, we are generally happy to include a column in the supertype
table that indicates the subtype to which each row belongs.

Another type of redundant data frequently included in a database is the aggre-
gate, particularly where data in many rows would have to be summed to calculate
the aggregate “on the fly.” Indeed, one would never think of not including an
Account Balance column in an Account table (to the extent that there will most
likely have been an attribute of that name in the Account entity class in the con-
ceptual data model), yet an account balance is the sum of all transactions on the
account since it was opened. Even if transactions of more than a certain age are
deleted, the account balance will be the sum of the opening balance on a state-
ment plus all transactions on that statement.

Two other structures in which redundant data often feature are ranges and
hierarchies. We discuss these in the next two sections.

7.6.6 Ranges

There are many examples of ranges in business data. Among the most common
are date ranges. An organization’s financial year is usually divided into a series of
financial or accounting periods. These are contiguous, in that the first day of one
accounting period is one day later than the last day of the previous one. Yet we
usually include both first and last day columns in an accounting period table (not
only in the physical data model, but probably in the logical and conceptual data
models as well), even though one of these is redundant in that it can be derived
from other data. Other examples of date ranges can be found in historical data:

1. We might record the range of dates for which a particular price of some
item or service applied.

2. We might record the range of dates for which an employee reported to a
particular manager or belonged to a particular organization unit.

Time ranges (often called “time slots”) can also occur, such as in scheduling
or timetabling applications. Classifications based on quantities are often created

244 CHAPTER 7 Physical Database Design

by dividing the values that the quantity can take into “bands” (e.g., age bands,
price ranges). Such ranges often appear in business rule data, such as the duration
bands that determine the premiums of short-term insurance policies.

Our arguments against redundant data might have convinced you that we
should not include range ends as well as starts (e.g., Last Date as well as First
Date, Maximum Age as well as Minimum Age, Maximum Price as well as Minimum
Price). However, a query that accesses a range table that does not include both
end and start columns will look like this:

select PREMIUM_AMOUNT
from PREMIUM_RULE as PRI
where POLICY_DURATION >= MINIMUM_DURATION
and POLICY_DURATION < MIN
(select PRZ2.MINIMUM_DURATION
from PREMIUM_RULE as PR2
where PR2.MINIMUM_DURATION > PRI.MINIMUM_DURATION);

However, if we include the range end Maximum Duration as well as the range
start Minimum Duration the query can be written like this:

select PREMIUM_AMOUNT

from PREMIUM_RULE

where POLICY_DURATION between MINIMUM_DURATION
and MAXIMUM_DURATION;

The second query is not only easier to write but will take less time to run (pro-
vided there is an index on Policy Duration) unless the Premium Rule table is
already in main memory.

7.6.7 Hierarchies

Hierarchies may be specific, as in the left diagram in Figure 7.8, or generic, as in
the right diagram. Figure 7.9 shows a relational implementation of the generic
version.

Generic hierarchies can support queries involving traversal of a fixed number
of levels relatively simply (e.g., to retrieve each top-level organization unit together
with the second-level organization units that belong to it).

Often, however, it is necessary to traverse a varying number of levels (e.g.,
retrieve each top-level organization unit together with the bottom-level organiza-
tion units that belong to it). Queries of this kind are often written as a collection
of UNION queries in which each individual query traverses a different number of
levels.

There are various alternatives to this inelegant approach, including some
nonstandard extensions provided by some DBMSs. In the absence of these, the
simplest thing to try is the population of the recursive foreign key, as shown in
Figure 7.10.

Division

Branch

FIGURE 7.8

7.6 Logical Schema Decisions

Organization
Unit

245

Specific and generic hierarchies.

ORG UNIT (Org Unit ID, Org Unit Name, Parent Org Unit ID)

Org Unit ID Org Unit Name Parent Org Unit ID
1 Production null

2 H/R null

21 Recruitment 2

22 Training 2

221 IT Training 22

222 Other Training 22

FIGURE 7.9

A simple hierarchy table.

ORG UNIT (Org Unit ID, Org Unit Name, Parent Org Unit ID)

Org Unit ID Org Unit Name Parent Org Unit ID
1 Production 1

2 H/R 2

21 Recruitment 2

22 Training 2

221 IT Training 22

222 Other Training 22

FIGURE 7.10

An alternative way of implementing a hierarchy.

246 CHAPTER 7 Physical Database Design

If that does not meet all needs, one of the following alternative ways of repre-
senting a hierarchy in a relational table, each of which is illustrated in Figure 7.11,
may be of value:

1. Include not only a foreign key to the parent organization unit but foreign keys
to the “grandparent,” “great-grandparent,” and so on, organization units (the
number of foreign keys should be one less than the maximum number of levels
in the hierarchy).

2. As a variation of the previous suggestion, include a foreign key to each “ances-
tor” at each level.

ORG UNIT (Org Unit ID, Org Unit Name, Parent Org Unit ID, Grandparent Org Unit ID)

Org Unit ID Org Unit Name Parent Org Unit ID Grandparent Org Unit ID
1 Production null null

2 H/R null null

21 Recruitment 2 null

22 Training 2 null

221 IT Training 22 2

222 Other Training 22 2

ORG UNIT (Org Unit ID, Org Unit N

ame, Level 1 Org Unit ID,

Level 2 Org Unit ID)

Org Unit ID Org Unit Name Level 1 Org Unit ID Level 2 Org Unit ID
1 Production 1 null

2 H/R 2 null

21 Recruitment 2 21

22 Training 2 22

221 IT Training 2 22

222 Other Training 2 22

ORG UNIT (Org Unit ID, Level Difference, Org Unit Name, Ancestor Org Unit ID)

Org Unit ID Level Difference Org Unit Name Ancestor Org Unit ID
1 1 Production null
2 1 H/R null
21 1 Recruitment 2
22 1 Training 2
221 1 IT Training 22
221 2 IT Training 2
222 1 Other Training 22
222 2 Other Training 2
FIGURE 7.11

Further alternative ways of implementing a hierarchy.

7.7 Views 247

3. Store all “ancestor”/”descendant” pairs (not just “parents” and “children”)
together with the difference in levels. In this case, the primary key must include
the level difference as well as the ID of the “descendant” organization unit.

As each of these alternatives involves redundancy, they should not be directly
updated by users; instead, the original simple hierarchy table shown in Figure 7.9
should be retained for update purposes and the additional table updated auto-
matically by the application (e.g., via a DBMS trigger). More alternatives can be
found in Celko’s excellent book on this subject.*

7.6.8 Integer Storage of Dates and Times

Most DBMSs have the “date” data type, offering the advantages of automatic
display of dates in a user-friendly format and a wide range of date and time arith-
metic. The main disadvantage of storing dates and times using the “date” rather
than the “integer” data type is the greater storage requirement, which in one
project we worked on, increased the total data storage requirement by 15 percent.
In this case, we decided to store dates in the critical large tables in “integer”
columns in which were loaded the number of days since some base date. Similarly,
times of day could be stored as the number of minutes (or seconds) since mid-
night. We then created views of those tables (see Section 7.7) in which data type
conversion functions were used to derive dates in “dd/mm/yyyy” format.

7.6.9 Additional Tables

The processing requirements of an application may well lead to the creation
of additional tables that were not foreseen during business information analysis
and so do not appear in the conceptual or logical data models. These can
include:

Summaries for reporting purposes.

Archive retrieval.

User access and security control data.

Data capture control, logging, and audit data.
Data distribution control, logging, and audit data.
Translation tables.

Other migration/interface support data.
Metadata.

7.7 VIEWS

The definition of views is one of the final stages in database design, since it relies
on the logical schema being finalized. Views are “virtual tables” that are a selection

iCelko, J., Joe Celko’s Trees and Hierarchies in SQL for Smarties. Morgan Kaufmann, 2004.

248 CHAPTER 7 Physical Database Design

of rows and columns from one or more real tables and can include calculated
values in additional virtual columns. They confer various advantages, among them
support for users accessing the database directly through a query interface. This
support can include:

m The provision of simpler structures.

m Inclusion of calculated values such as totals.

m Inclusion of alternative representations of data items (e.g., formatting dates
as integers as described in Section 7.6.8).

m Exclusion of data for which such users do not have access permission.

Another function that views can serve is to isolate not only users but
programmers from changes to table structures. For example, if the decision is
taken to split a table as described in Section 7.6.2 but access to that table was
previously through a view that selected all columns of all rows (a so-called “base
view”), the view can be recoded as a union or join of the two new tables. For this
reason, installation standards often require a base view for every table. Life,
however, is not as simple as that, since there are two problems with this
approach:

m Union views and most join views are not updateable, so program code
for update facilities usually must refer to base tables rather than to views.

m As we show in Section 7.7.3, normalized views of denormalized tables
lose any performance advantages conferred by that denormalization.

Some standards that we do recommend, however, are presented and discussed in
the next four sections.

7.7.1 Views of Supertypes and Subtypes

However a supertype and its subtypes have been implemented, each of them
should be represented by a view. This enables at least “read” access by users to
all entity classes that have been defined in the conceptual data model rather than
just those that have ended up as tables.

If we implement only the supertype as a table, views of each subtype can be
constructed by selecting in the WHERE claus