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Chapter 1

The Worlds of Database
Systems

In this book the reader will learn the effective use of database management
systems, including the design of databases and the programming of operations
on databases. This chapter serves to introduce a number of important database
concepts. After a brief history of the subject, we learn what makes database
systems different from other software genres. This chapter also provides back-
ground concerning the implementation of the database management systems
that support databases and their use. An understanding of what goes on “be-
hind the scenes” is important if we are to have an appreciation of why databases
are designed as they are or why there are limits on the way operations can be
performed on databases. Finally, we review some ideas, such as object-oriented
programming, with which the reader may be familiar but that are essential in
the chapters to follow.

1.1 The Evolution of Database Systems

What is & database'? In essence a database is nothing more than a collecuon of

parlance, the term database refers to a collection of d:juxdi %158 mane
database management system, also called a DBM. 5 «@b&ﬁ @g %

structure of the data), using a specializeg
language.
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2 CHAPTER 1. THE WORLDS OF DATABASE SYSTEMS

3. Support the storage of very large amounts of data — gigabytes or more —
over a long period of time, keeping it secure from accident or unauthorized

use and allowing efficient access to the data for queries and database
modifications.

4. Control access to data from many users at once, without allowing the
actions of one user to affect other users and without allowing simultaneous
accesses to corrupt the data accidentally.

1.1.1 Early Database Management Systems

The first commercial database management systems appeared in the late 1960’s.
These evolved from file systems, which provide some of item (3) above; file
systems store data over a long period of time, and they allow the storage of
large amounts of data. However, file systems do not generally guarantee that
data cannot be lost if it is not backed up, and they don’t support eflicient access
to data items whose location in a particular file is not known.

Further, file systems do not directly support item (2}, a query language for
the data in files. Their support for (1) — a schema for the data — is limited to
the creation of directory structures for files. Finally, file systems do not satisfy
{(4). When they allow concurrent access to files by several users or processes,
a file system generally will not prevent situations such as two users modifying
the same file at about the same time, so the changes made by one user fail to
appear in the file.

The first important applications of DBMS’s were ones where data was com-
posed of many small items, and many queries or modifications were made. Here
are some of these applications. :

Airline Reservations Systems
Here, the items of data include:

1. Reservations by a single customer on a single flight, including such infor-
mation as assigned seat or meal preference.

Typical queries ask for flights leaving about a certainfime from pr%%ﬂSE
city to another, what seats are available, and at witifprices. Typical data
modifications include the booking of a flight for a custorter, assifitg DEaRoF UL L
indicating a meal preference. Many agents will be ad¥gting pa:tséoiél;pg’ﬁ

at any given time. The DBMS must allow such concun{nt£acces: N ON
problems such as two agents assigning the same seat simlli%; eq%gly, and protect 00
against loss of records if the system suddenly fails. . 'o/. . ) G‘ .

‘nt-drN
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Banking Systems

Data items include names and addresses of customers, accounts, loans, and their
balances, and the connection between customers and their accounts and loans,
e.g., who has signature authority over which accounts. Queries for account
balances are common, but far more common are modifications representing a
single payment from or deposit to an account.

As with the airline reservation system, we expect that many tellers and
customers (through ATM machines) will be querying and modifying the bank’s
data at once. It is vital that simultaneous accesses to an account not cause
the effect of an ATM transaction to be lost. Failures cannot be tolerated. For
example, once the money has been ejected from an ATM machine, the bank
must record the debit, even if the power immediately fails. On the other hand,
it is not permissible for the bank to record the debit and then not deliver the
money because the power fails. The proper way to handle this operation is

far from obvious and can be regarded as one of the significant achievements in
DBMS architecture.

Corporate Records

Many early applications concerned corporate records, such as a record of each
sale, information about accounts payable and receivable, or information about
employees — their names, addresses, salary, benefit options, tax status, and
so on. Queries include the printing of reports such as accounts receivable or
employees’ weekly paychecks. Each sale, purchase, bill, receipt, employee hired,
fired, or promoted, and so on, results in a modification to the database.

The early DBMS’s, evolving from file systems, encouraged the user to visu-
alize data much as it was stored. These database systems used several different
data models for describing the structure of the information in a database, chief
among them the “hierarchical” or tree-based model and the graph-based “net-

had statements that allowed the user to jumyfifom data element to data ele-
ment, through a graph of pointers among these alemen@M cﬁn‘gﬁrﬂgtL

able effort needed to write such programs, evEg r%y mvﬁﬁgiﬂoN s
<,
“int.driN®

1CODASYL Data Base Task Group April 1971 ReportYh) @New York.
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1.1.2 Relational Database Systems

Following a famous paper written by Ted Codd in 1970,> database systems
changed significantly. Codd proposed that database systems should present
the user with a view of data organized as tables called relations. Behind the
scenes, there might be a complex data structure that allowed rapid response to
a variety of queries. But, unlike the user of earlier database systems, the user of
a relational system would not be concerned with the storage structure. Queries
could be expressed in a very high-level language, which greatly increased the
efficiency of database programmers.

We shall cover the relational model of database systems throughout most
of this book, starting with the basic relational concepts in Chapter 3. SQL
(Structured Query Language), the most important query language based on
the relational model, will be covered starting in Chapter 5. However, a brief
introduction to relations will give the reader a hint of the simplicity of the
model, and an SQL sample will suggest how the relational model promotes
queries written at a very high level, avoiding details of “navigation” through
the database.

Example 1.1: Relations are tables. Their columns are headed by attributes,
which describe the entries in the colomn. For instance, a relation named
Accounts, recording bank accounts, their balance, and type might look like:

accountNo | balance | type

12345 1000.00 | savings
67890 2846.92

checking

Heading the columns are the three attributes: accountNo, balance, and type.
Below the attributes are the rows, or tuples. Here we show two tuples of the
relation explicitly, and the dots below them suggest that there would be many
more tuples, one for each account at the bank. The first tuple says that account
number 12345 has a balance of one thousand dollars, and it is a savings account.
The second tuple says that account 67890 is a checking account with $2846.

Suppose we wanted to know the balance of account 67890. TpLas
this query in SQL as follows:

SELECT balance
FROM Accounts
WHERE accountNo = 67890;

PLEASE
For another example, we could ask for the savings acguints wiDRRESFULL
ances by: VERSION &

omm. ACM, 13:6,

“ <°°
“ing-driN®

2Codd, E. F., “A relational model for large shared data {Ghlls,
pp. 377-387.




1.1. THE EVOLUTION OF DATABASE SYSTEMS 5

SELECT accountNo
FROM Accounts
WHERE type = ’savings’ AND balance < 0;

We do not expect that these two examples are enough to make the reader an
expert SQL programmer, but they should convey the high-level nature of the

SQL select-from-where statement. In principle, they ask the database system
to

1. Examine all the tuples of the relation Accounts mentioned in the FROM-
clause,

2. Pick out those tuples that satisfy some criterion indicated in the WHERE-
clause, and

3. Produce as an answer certain attributes of those tuples, as indicated in
the SELECT-clause.

In practice, the system must “optimize” the query and find an efficient way to
answer the query, even though the relations involved in the query may be very
large. O

IBM was an early vendor of both relational and prerelational DBMS’s. In
addition, new companies were formed to implement and sell relational DBMS’s.
Today, some of these companies are among the largest software vendors in the
world.

1.1.3 Smaller and Smaller Systems

Originally, DBMS’s were large, expensive software systems running on large
computers. The size was necessary, because to store a gigabyte of data required
a large computer system. Today, a gigabyte fits on a single disk, and it is quite
feasible to run a DBMS on a personal computer. Thus, database systems based
on the relational model have become available for even very small machines,
and they are beginning to appear as a common tool for computer applications,
much as spreadsheets and word processors did before thep

1.1.4 Bigger and Bigger Systems o VER S

On the other hand, a gigabyte isn’t much data () p. e databases often
cupy hundreds of gigabytes. Further, as stora; mnes cheaper people ﬁn%
new reasons to store greater amounts of datag3or exampl LB A& Eoften
store a terabyte (1000 gigabytes, or 10'? bytes)Xgy more mﬁm & g
the history of every sale made over a long pesled of t 'um

tory; we shall have more to say about this maar

%S‘”; VRSN

ariZother kinds of data th@

rin. drive's
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take comparatively huge amounts of space. For instance, an hour of video con-
sumes about a gigabyte. Databases storing images from satellites are expected,
by the year 2000, to hold several petabytes (1000 terabytes, or 10*° bytes).

Handling such large databases required several technological advances. For
example, databases of modest size are today stored on arrays of disks, which are
called secondary storage devices (compared to main memory, which is “primary”
storage). One could even argue that what distinguishes database systems from
other software is, more than anything else, the fact that database systems
routinely assume data is too big to fit in main memory and must be located
primarily on disk at all times. The following two trends allow database systems
to deal with larger amounts of data, faster.

Tertiary Storage

The largest databases today require more than disks. Several kinds of tertiary
storage devices have been developed. Tertiary devices, perhaps storing a tera-
byte each, require much more time to access a given item than does a disk.
While typical disks can access any item in 10-20 milliseconds, a tertiary device
may take several seconds. Tertiary storage devices involve transporting an
object, upon which the desired data item is stored, to a reading device. This
movement is performed by a robotic conveyance of some sort.

For example, compact disks (CD’s) may be the storage medium in a tertiary
device. An arm mounted on a track goes to a particular CD, picks it up, carries
it to a CD reader, and loads the CD into the reader.

Paralle] Computing

The ability to store enormous volumes of data is important, but it would be
of little use if we could not access large amounts of that data quickly. Thus,
very large databases also require speed enhancers. One important speedup is
through index structures, which we shall mention in Sections 1.2.1 and 5.7.7.
Another way to process more data in a given time is 1o use parallelism. This
parallelism manifests itself in various ways.

For example, since the rate at which data can be read from a given disk is
fa.irly low, a few mega.bytes per second we can speed processing if we Use

database, commumcate aover a high-speed network wheuRiteed
Of course, the ability to move data quickly, like the ablhty to Qckg&?rﬁE

amounnts of date, does not by itself guarantee that Wiries § e%
quickly. We still need to use algorithms that break 4lilries c@ ﬁﬁvﬁ ULL
allow parallel computers or networks of distributed corri} t&=3 to me %@ N
use of all the resources. Thus, parallel and distributgd gem

large databases remains an active area of research and Uty :o
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1.2 The Architecture of a DBMS

In this section, we shall sketch the structure of a typical database management
system. We shall also look at what the DBMS does to process user queries
and other database operations. Finally, we shall consider some of the problems
that come up in designing a DBMS that can maintain large amounts of data
and process a high rate of queries. The technology for implementing a DBMS
is not the subject of this book, however; we concentrate on how databases are
designed and used effectively.

Schema _ _
Modifications Queries Madifications

46 Query "
Processor

Transaction
Manager

Storage
Manager

>

Data

Metadata

Figure 1.1: Major components of a DBMS

1.2.1 Overview of DBMS Componeiss

o VER
™ o

Figure 1.1 shows the essential parts of a DBWRY A@he bottom, we see a
representation of the place where data is storeslW By convelibrEEd*IS Faped

components indicate a place for storage of da=3 Note bﬁ%ﬁ&?icﬁi
that this component contains not only data, butgzetada ofcrmustie
nes S ERDIAN
k%mes ﬁx y1 s of S

about the structure of the data. For example®
O

metadata includes the names of the relations,
those relations, and the data types for those attricagtes {%}g., integer or charactey,

rint.drin® s
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How Indexes Are Implemented

The reader may have learned in a course on data structures that a hash
table is a very efficient way to build an index. Early DBMS’s did use
hash tables extensively. Today, the most common data structure is called
a B-tree; the “B” stands for “balanced.” A B-tree is a generalization of
a balanced binary search tree. However, while each node of a binary tree
has up to two children, the B-tree nodes have a large number of children.
Given that B-trees normally appear on disk rather than in main memory,
the B-tree is designed so that each node occupies a full disk block. Since
typical systems use disk blocks on the order of 2!? bytes (4096 bytes),
there can be hundreds of pointers to children in a single block of a B-tree.
Thus, search of a B-tree rarely involves more than three levels.

The true cost of disk operations generally is proportional to the num-
ber of disk blocks accessed. Thus, searches of a B-tree, which typically
examine only three disk blocks, are much more efficient than would be a
binary-tree search, which typically visits nodes found on many different

.disk blocks. This distinction, between B-trees and binary search trees, is
but one of many examples where the most appropriate data structure for
data stored on disk is different from the data structures used for algorithms
that run in main memory.

string of length 20).

Often, a DBMS maintains snderes for the data. An index is a data structure
that helps us find data items quickly, given a part of their value; the most
common example is an index that will find those tuples of a particular relation
that have a given value for one of the attributes. For instance, a relation storing
account numbers and balances might have an index on account-number, so that
we can find the balance, given an account number, quickly. Indexes are part of
vhe stored data, and a description of which attributes have indexes is part of
the metadata.

In Fig. 1.1 we also see a storage manager, whose job it is to obtis

have called the query processor, although that name is somz3%0 4 misnomer.
It handles not only queries but requests for modific:30ly o Phe data or the

metadata. Its job is to find the best way to carry outffi request QRL@ 0
- and to issue commands to the storage manager that Cgl! carry th::s? out. WSE

The transaction manager component is responsiblegior the@@@ﬁﬁh!;;u LL
system. It must assure that several queries runnill@ingltan E ﬁ-&a 1
interfere with each other and that the system will not Ja% a :‘32 D éﬁQN s

a system failure. It interacts with the query manager, Giaee itlyust know what OO

rint.drin® s
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data is being operated upon by the current queries (in order to avoid conflicting
actions), and it may need to delay certain queries or operations so that these
conflicts do not occur. It interacts with the storage manager because schemes
for protection of data usually involve storing a log of changes to the data. By
properly ordering operations, the log will contain a record of changes so that
after a system failure even those changes that never reached the disk can be
reexecuted.

At the top of Fig. 1.1 we see three types of inputs to the DBMS:

1. Queries. These are questions about the data. They are generated in two
different ways:

(a) Through a generic query interface. For example, a relational DBMS
allows the user to type SQL queries that are passed to the query
processor and answered.

(b) Through application program interfaces. A typical DBMS allows
programmers to write application programs that, through calls to the
DBMS, query the database. For example, an agent using an airline
reservation system is running an application program that queries
the database about flight availabilities. The queries are submitted
through a specialized interface that might include boxes to be filled
in with cities, times, and so on. One cannot ask arbitrary queries
through this interface, but it is generally easier to ask an appropriate
query through this interface than to write the query directly in SQL.

2. Modifications. These are operations to modify the data. Like queries,
they can be issued either through the generic interface or through the
interface of an application program.

3. Schema Modifications. These commands are usually issued by authorized
personnel, sometimes called database administrators, who are allowed to
change the schema of the da.ta.base or create a new dat.abase For exa.mple,

about customers.

1.2.2 The Storage Manager PLEASE

In a simple database system, the storage managds mlgh,ﬁp@@@? Plan
the file system of the underlying operating@jter. However, for eﬂic:ency
purposes, DBMS’s normally control storage on gie §isk dlerﬁ@&!a@lMder IS
some circumstances. The storage manager ctists7nf two components, theQ

buffer manager and the file manager. ‘&.'o <+
(o} W<
nt-dr\
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1. The file manager keeps track of the location of files on the disk and obtains
the block or blocks containing a file on request from the buffer manager.
Recall that disks are generally divided into disk blocks, which are regions
of contiguous storage containing a large number of bytes, perhaps 2!2 or
2! (about 4000 to 16,000 bytes).

2. The buffer manager handles main memory. It obtains blocks of data from
the disk, via the file manager, and chooses a page of main memory in
which to store that block. The buffer manager may keep a disk block in
main memory for a while, but returns it to the disk if its page of main
memory i8 needed for another block. Pages are also returned to disk when
the transaction manager requires it; see Section 1.2.4.

1.2.3 The Query Manager

The job of the query manager is to turn a query or database manipulation,
which may be expressed at a very high level (e.g., as an SQL query), into a
sequence of requests for stored data such as specific tuples of a relation or parts
of an index on a relation. Often the hardest part of the gquery-processing task
is query optimization, that is, the selection of a good query plan or sequence of
requests to the storage system that will answer the query.

Example 1.2: Suppose that a bank has a database with two relations:

" 1. Customers is a table giving, for each customer, their name, Social Security
number, and address.

2. Accounts is a table giving, for each account, its account number, balance,
and the Social Security number of its owner. Note that each account has
a principal owner, whose Social Security number i8 used for tax-reporting
purposes; there may be other owners of an account, but these cannot be
known from the two relations given here.

Suppose also that the query “find the balances of all accounts of which Sally
Jones is the principal owner” is asked. ‘The query manager must £nd £Rwue;

plan to perform on these relations, a plan that will yield tke 2 Swr Ui
query. The fewer steps taken to answer the query, the better Ail; E(R
In general, the costly steps are those in which a disk block 0! ﬁ w he dis S /,

into a page of the buffer pool by the storage manager, orz9na written back O¢
onto the disk. Thus, it is reasonable to count only thes:RXdisk-llock erﬁ oné
in evaluating the cost of a query plan. E

In order to answer the query, we need to examineYluoe Cusgas: ﬁj%
to find the Social Security number of Sally Jones (weg! q}lgr m ]EU LL
customer with that name, although in practice there coitld %evermﬁ #3ON s

need to examine the Accounts relation to find every z(¥s, ith that Social O
Security number and print the balances of those accounts}

,o,. /nt.- dr\"e(
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A simple but expensive plan is to examine all the tuples (rows) of the
Customers relation until we find one with Sally Jones as the customer name.
On average, we shall have to look at half of the tuples before we find the one
we want. Since a bank will have many customers, the Customers relation will
occupy many disk blocks, and this step will be very expensive. Once we have
Sally Jones’ Social Security number, we are not yet done. Now we have to look
at the Accounts tuples and find those that have the selected Social Security
number. Since there may be several such accounts, we have to look at all the
tuples. A typical bank will have many accounts, so the Accounts relation will
also occupy many disk blocks. Examining them all will be quite expensive.

If there is an index on the customer name for relation Customers, then a
better plan exists. Instead of looking at the whole Customers relation, we use
the index to find only the disk block containing the tuple for Sally Jones. As
we mentioned in the box in Section 1.2.1, a typical B-tree index requires that
we look at three disk blocks of the index in order to find what we want.> One
more block access gets us the tuple for Sally Jones.

Of course we still need to do the second step: finding the accounts with that
Social Security number in the Accounts relation. That step will require many
disk accesses, typically. However, if there is an index on the Social Security
number for relation Accounts, then we can find each of the blocks containing
one of the accounts with a given Social Security number by going through this
index. To do so, we must make 2 or 3 disk accesses to go through the index,
as we discussed for indexed access to the Customers relation. If all the desired
tuples are on different disk blocks, then we shall have to access each of these
blocks. But there probably aren’t too many accounts for one person, so this
step probably uses only a few disk accesses. If these two indexes exist, then
we can answer the query with perhaps 6-10 disk accesses. If one or both of
them do not exist, and we have to use one of the poorer query plans, then the
number of disk accesses might be in the hundreds or thousands, as we scan an
entire, large relation. 0

It might appear from Example 1.2 that all there is to query optimization is
to use indexes if they exist. In fact, there is a great deal more to the subject.

the scope of this book.

1.2.4 The Transaction Manager PLEASE
As we discussed in Section 1.1, there are some sitcial gf@FAERFEA FRHBMS

must make to those performing operations (% For example, we
2 o VERSION . &

31n fact, since the root node of the B-tree is used in g
block is often found in main memory, occupying one cURAL bm ar pages so two disk- bloc

accesses usually suffice. 0 ‘
7int-driv®,
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discussed the importance that the effect of an operation never be lost, even
in the face of a severe system failure. The typical DBMS allows the user to
group one or more queries and/or modifications into a transaction, which infor-
mally is a group of operations that must appear to have been executed together
sequentially, as a unit.

Frequently, a database system allows many transactions to execute concur-
rently; e.g., something may be going on at each of a bank’s ATM machines
simultaneously. The role of assuring that all these transactions are executed
properly is the job of the trensaction manager component of the DBMS. In
more detail, “proper” execution of transactions requires what are often called
the ACID properties, after the initials of the four principal requirements on
transaction execution. These properties are:

o Atomicity. We require that either all of a transaction be executed or none
of it is. For instance, withdrawal of money from an ATM machine and
the associated debit to the customer’s account should be 2 single, atomic
transaction. It is not acceptable if the money is dispensed but the debit
is not made, or if the debit is made and the money not dispensed.

o Consistency. A database generally has a notion of a “consistent state,”
in which the data meets any expectations we may have. For example, an
appropriate consistency condition for an airline database is that no seat
be assigned to two different customers. While this condition might be vio-
lated for a brief moment during a transaction, as people are moved among
seats, the transaction manager must assure that after transactions have
completed, the database satisfies any consistency conditions assumed.

e Isolation. When two or more transactions run concurrently, their effects
must be isolated from one ancther. That is, we must not see effects caused
by the two transactions running at the same time that would not ocecur if
one ran before the other. For instance, when two airline agents are selling
seats on the same flight, and only one seat remains, one request should
be granted and the other denied. It is unacceptable if the same seat were
sold twice or not at all, because of concurrent operations.

o Durabslity. If a transaction has completed its work, its
get lost should the system fail, even if it fails immedizte
action completes.

be the subject of a book itself, and we shall not attg
here.. However, Section 7.2 discusses how, in the langitge SQ@ @«Bs@'.ﬁéei: ULL
the operations that belong in a transaction, and w1 guarantees the SQL
programmer can expect from having grouped operations jito saéﬁoEsR@ 90 N S
we shall in this section outline very briefly the commonQZ{{¢ ‘mqaies for enforcing (o]

the ACID properties.

©r, int.drn®g
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Granularity of Locks

Different DBMS’s may differ on what sorts of items have locks. For
instance, one might lock individual tuples of a relation, individual disk
blocks, or even whole relations. The bigger the thing that has a lock, the
more likely one transaction is to have to wait for another, even when the
two transactions reaily don’t access the same data. However, the smaller
the lockable item, the larger and more complex the locking mechanism is.

Locking

The principal cause of nonisolation among transactions is if two or more trans-
actions read or write the same item in the database. For example, if two
transactions try to write a new balance for the same account at the same time,
one will overwrite the other, and the effect of the first to write will be lost.
Thus, in most DBMS’s the transaction manager is able to lock the items that
the transaction accesses. While one transaction has a lock on an item, other
transactions cannot access it. Thus, for example, the first transaction to lock
the balance on account 12345 would get both to read it and to write the new
value, before another transaction would be allowed to access it. A second trans-
action would read the new balance, rather than the old balance, and the two
transactions would not interact badly.

Logging

A “log” of all transactions initiated, the changes to the database caused by
each transaction, and the end of each transaction is recorded by the transaction
manager. The log is always written to nonvolatile storage, that is, a storage
medium like disk where the data will survive a power failure. Thus, while the
transaction itself may use volatile main memory for part of its work, the log is
always written immediately to disk. Logging of all operatigns g sortant
factor in assuring durability.

Transaction Commitment

O VER
& e

For durability and atomicity, transactions are &gtlaar®y) done in a “tentative”¢
way, in which the changes to the database are cgdfputed butX} fatMES FRade

in the database itself. By the time the trant&wion is ready to complete, or
commit, the changes have been copied to a log4This 1@&@1@:&&!&5&.

to disk. Only then are the changes entered inds{heSeatab E:ﬁ
Even if the system fails in the middle of tk{Atw Aste:y S{!Q)Mem s
comes back up we can read the log and see thies e@;anges stiil need to b%o

made to the database. If the system fails before all{eitag ve been en_ter%@
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the log, we can redo the transaction, sure that we are not accidentally booking
an airline seat twice or debiting a bank account twice, for example.

1.2.5 Client-Server Architecture

Many varieties of modern software use a client-server architecture, in which
requests by one process (the client) are sent to another process (the server) for
execution. Database systems are no exception, and it is common to divide the
work of the components shown in Fig. 1.1 into a server process and one or more
client processes.

In the simplest client/server architecture, the entire DBMS is a server, ex-
cept for the query interfaces that interact with the user and send queries or
other commands across to the server. For example, relational systems generally
use the SQL language for representing requests from the client to the server.
The database server then sends the answer, in the form of a table or relation,
back to the client. The relationship between client and server can get more
complex, especially when answers are extremely large. We shall have more to
say about this matter in Section 1.3.3. There is also a trend to put more work
in the client, since the server will be a bottleneck if there are many simultaneous
database users.

1.3 The Future of Database Systems

There are many currents in the database stream today, and they lead the dis-
cipline in a variety of new directions. Some of these are new technologies —
object-oriented programming, constraints and triggers, multimedia data, or the
World Wide Web, for example — that are changing the nature of conventional
DBMS’s. Other currents involve new applications, such as warehousing of data
or information integration. In this section we give brief introductions to the
major trends for future database systems.

1.3.1 Types, Classes, and Objects

Object-oriented programming has been widely regardedgz<gf: tﬁ@r M@Q
program organization and ultimately, more reliable softygVe ! mentation. /O
First popularized in the language Smalltalk, object-ofZs 'ed@ogrammmg re-
ceived a big boost with the development of C++ andRdne migratiT]ts
of much software development that was formerly dox{Zts C. More recently, t

language Java, suitable for sharing programs across thg World@)P@E:ng U LL

also increased attention on object-oriented programiuiisls. Ehe d%usib

has likewise been attracted to the object-oriented paragliigr .,a,nd N s

panies are selling DBMS’s dubbed “object-oriented.” Tn ‘hhﬁecmon we shall OO

review the ideas behind object orientation. 'o/. . e(.
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The Type System

An object-oriented programming language offers the user a rich collection of
types. Starting with base types, commonly integers, real numbers, booleans,
and character strings, one may build new types by using type constructors.
Typically, the type constructors let us build:

1. Record structures. Given a list of types T1,7T3,...,T, and a corresponding
list of field names (called instance variables in Smalltalk) fi, fo,..., fn,
one can construct a record type consisting of n components. The ith
comporent has type T; and is referred to by its field name f;. Record
structures are exactly what C or C++ calls “structs.”

2. Collection types. Given a type T, one can construct new types by applying
a collection operator to type T'. Different languages use different collection
operators, but there are several common ones, including arrays, lists, and
sets. Thus, if T were the base type integer, we might build the collection
types “array of integers,” “list of integers,” or “set of integers.”

3. Reference types. A reference to a type T is a type whose values are
suitable for locating a value of the type T. In C or C++, a reference is a
“pointer” to a value, that is, a location in which is held the virtual-memory
address of the value pointed to. The model of pointers is often suitable
for understanding references. However, in database systems, where data
is stored on many disks, perhaps distributed over many hosts, a reference
is of necessity something more complex than a pointer. It might, for
example, include the name of a host, a disk number, a block within that
disk, and a position within the block where the referenced value is held.

Of course, record-structure and collection operators can be applied repeat-
edly to build ever more complex types. For instance, we might define a type
that is a record structure with a first component named customer of type string
and whose second component is of type set of integers and named accounts.
Such a type is suitable for associating bank customers with ti: f their
accounts.

Classes and Objects

VE
®0 Rg /O
A class consists of a type and possibly one or regncm?m%gﬁl

The

(called methods; see below) that can be execugzi¥on objects 'of

objects of a class are either values of that typg calledm by
variables whose value is of that type (called my{ddle ghjects). For example, 1f we
’ 2,5, VERSI@Mpe

object of class C, while variable s could be decla:&! ‘:@)f class C and assigned @
the value {2,5,7}. O
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Object Identity

Objects are assumed to have an object identity (OID). No two objects can have i
the same OID, and no object has two different OID’s. The OID is the value that !
a reference to the object has. We may often think of the QID as a pointer in
virtual memory to the object but, as we discussed in connection with reference
types, in a database system the OID may actually be something more complex:
a sequence of bits sufficient to locate the object on secondary or tertiary memory
of any of a large number of different machines. Further, since data is persistent,
the OID must be valid for all time, as long as the data exists.

Methods

Associated with a class there are usually certain functions, often called methods.
A method for a class C has at least one argument that is an object of class C;
it may have other arguments of any class, including C. For example, associated
with a class whose type is “set of integers,” we might have a method to compute
the power set of a given set, to take the union of two sets, or to return a boolean
indicating whether or not the set is empty.

Abstract Data Types

In many cases, classes are also “abstract data types,” meaning that they en-
capsulate, or restrict access to objects of the class so that only the methods
defined for the class can modify objects of the class directly. This restriction
assures that the objects of the class cannot be changed in ways that were not
anticipated by the implementor of the class. This concept. is regarded as one of
the key tools for reliable software development.

Class Hierarchies

It is possible to declare one class C to be a subclass of another class D. If
80, then class C inherits all the properties of class D, including the type of D
and any functions defined for class D. However, C may also have additional
properties. For example, new methods may be defined for objects of class
and these may be either in addition to or in place of methods ’
even be possible to extend the type of D in certain ways. InfRgilils
type of D is a record-structure type, then we can add ngpg W’ﬂ
that are'present only in objects of type C.

Example 1.3: Consider a class of bank account objeirs. We xmq;ﬁ L%"I".{’SE

the type for this class informally as:
ORDER FULL

%4 VERSION os

CLASS Account = {accountNo: integer;
balance: real;
owner: REF Customer;

}
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Why Objects?

Object-oriented programming offers a number of capabilities of importance
in database systems.

e Through a rich type system, we can deal with data in forms that are
more natural than relations or earlier data models. Note that the
relational model has a rather resiricted type system. Relations are
sets of records, and these records have a record structure in which the
fields (called “attributes” in the relational model} have base types.

¢ Through classes and a class hierarchy, we can share or reuse software
and schemas more readily than with conventional systems.

¢ Through abstract data types we can protect against misuse of our
data by preventing access except thiough some carefully designed
functions that are known to use the data properly.

That is, the type for the Account class is a record structure with three fields:
an integer account number, a real-number balance, and an owner that is a
reference to an object of class Customer (another class that we'd need for a
banking database, but whose type we have not introduced here).

We would also define some methods for the class. For example, we might
have a method

deposit(a: Account, m: real)

that increases the balance for Account object a by amount m.

Finally, we might wish to have several subclasses of the Account subclass.
For instance, a time-deposit account might have an additional field dueDate,
the date at which the account balance may be withdrawn by the gwnez There

VE
WO V=R,
that takes an account e belonging to the subcliSJRy: @%osit and calculates

the dueDa v o$ﬁ
and the current date; the latter would be obtz{:\le from the sys m

ORDER FULL

We shall consider object-oriented aspects offia M@ﬁ@:ﬁ@sﬂmy s
in this book. In Section 2.1 we introduce the &z ented database-design O

language ODL. Chapter 8 is devoted to object-oriejed q%y languages. The{e
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we cover both the OQL query language that is becoming a standard for object-
oriented DBMS’s and the proposed object-oriented features for SQL, the stan-
dard query language for relational DBMS’s.

1.3.2 Constraints and Triggers

Another recent trend in database systems has been the extensive use of active-
elements in commercial systems. By “active” we mean that the component of
the database is available at all times, ready to execute whenever it becomes
appropriate for it to do so. There are two common kinds of active elements
found in database systems:

1. Constraints. These are boolean-valued functions whose value is required
to be true. For instance, we might place in a banking database the con-
straint that a balance cannot be less than 0. A database modification
that violated this constraint, such as a withdrawal that would leave the
account negative, is rejected by the DBMS.

2. Triggers. A trigger is a piece of code that waits for an event to occur;
possible events are the insertion or deletion of a certain kind of data item.
When the event occurs, an associated sequence of actions is executed,
or triggered. For instance, an airline reservation system could have a rule
whose condition is triggered when a flight status is changed to cancelled.
The action part of the rule might be a query that asks for the phone
number of all customers booked on that flight, so these customers may
be notified. A more complex action would be to rebook the customers on
alternative flights automatically.

Active elements are not a new idea. They appeared as “ON-conditions”
in the programming language PL/I. They have also appeared in artificial-
intelligence systems for many years, and they are akin to “daemons” that are
used in operating systems. However, when the size of the data on which the
active elements operate is very large, or the number of active elements is’ very‘
-Iarge, there are severe techmca.l problems in implementing active elemexnt

have in common that they are much larger than the e
integers, character strings of fixed lenigth, and so on
sizes.
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The storage of mmltimedia data has forced DBMS’s to expand in several
ways. For example, the operations that one performs on multimedia data are
not the simple ones suitable for traditional data forms. Thus, while one might
search a bank database for accounts that have a negative balance, comparing
each balance with the real number 0.0, it is not feasible to search a database of
pictures for those that show a face that “looks like” a particular image. Thus,
DBMS’s have had to incorporate the ability of users to introduce functions
of their own choosing, which they may apply to multimedia data. Often, the
object-oriented approach is used for such extensions, even in relational systems.

The size of multimedia objects also forces the DBMS to modify the storage
manager so that objects or tuples of a gigabyte or more can be accommodated.
Among the many problems that such large elements present is the delivery of
answers to queries. In a conventional, relational database, an answer is a set
of tuples. These would be delivered to the client by the database server as a
whole.

However, suppose the answer to a query is a video clip a gigabyte long. It is
not feasible for the server to deliver the gigabyte to the client as a whole. For
one reason it takes too fong and will prevent the server from handling other
requests. For another, the client may want only a small part of the film clip,
but doesn’t have a way to ask for exactly what it wants without seeing the
initial portion of the clip. For a third reason, even if the client wants the whole
clip, perhaps in order to play it on a screen, it is sufficient to deliver the clip
at a fixed rate over the course of an hour (the amount of time it takes to play
a gigabyte of compressed video). Thus, the storage system of a multimedia
DBMS has to be prepared to deliver answers in an interactive mode, passing a
piece of the answer to the client on request or at a fixed rate.

1.3.4 Data Integration

As information becomes ever more essential in our work and play, we find that
existing information resources are being used in many new ways. For instance,
consider a company that wants to provide on-line catalogs for all its products, so
that people can use the World Wide Web to browse its products and pla.ce on-
line orders. A large company has many divisions. Each divisio

things.

Example 1.4: Imagine a company with seveg

ture

disks. One division’s catalog might represeni@f{y ? LE% per
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represent rotation speed at all. A division nitufpzturi Opp %iﬁ{r’mg

refer to them as “disks,” while a division many&cfTzing h Ed_?l@b@lmcall
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Central control is not always the answer. Divisions may have invested large
amounts of money in their database long before integration across divisions was
recognized as a problem. A division may have been an independent company,
recently acquired. For these or other reasons, these so-called legacy databases
cannot be replaced easily. Thus, the company must build some structure on
top of the legacy databases to present to customers a unified view of products
across the company.

One popular approach is the creation of data warehouses, where information
from many legacy databases is copied, with the appropriate translation, to a
central database. As the legacy databases change, the warehouse is updated,
but not necessarily instantaneously updated. A common scheme is for the
warehouse to be reconstructed each night, when the legacy databases are likely
to be less busy. _

The legacy databases are thus able to continue serving the purposes for
which they were created. New functions, such as providing an on-line catalog
service through the Web, are done at the data warehouse. We also see data
warehouses serving needs for planning and analysis. For example, company
analysts may run queries against the warehouse looking for sales trends, in order.
to better plan inventory and production. Data mining, the search for interesting
and unusual patterns in data, has also been enabled by the construction of
data warehouses, and there are claims of enhanced sales through exploitation
of patterns discovered in this way.

1.4 OQutline of the Book

Ideas related to database systems can be divided into three broad categories:'

1. Design of databases. How does one build a useful database? What kinds
of information goes into the database? How is the information structured?
What assumptions are made about types or values of data items? How
do data items connect?

2. Database programming. How does one express queries and other opera-
tions on the database? How does one use other capabilities
such as transactions or triggers?

iR So

matters as query processing, transaction processingg:t cﬁoamzmg stor-

PLEASE

While database implementation is a major segmerlgyi the software industr

the number of people who will design or use databaseghé excRTD 5%# ULL
that will build them. This book is intended for & ﬁru VdgmN
systems, 50 it is appropriate to concentrate on the first A0 ¢ s
programming. In this chapter we have tried to give tho¥{Z: ghmpse of the

third aspect — implementation — but we shall not ret
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book. Rather, the remaining chapters of this book divide material on design
and programming as follows.

1.4.1 Design

Chapters 2 and 3 cover design. We begin with two high-level notations for
expressing database designs in Chapter 2. One, ODL (Object Definition Lan-
guage), is an object-oriented language for declaring classes. The second, called
the E/R or Entity/Relationship model, is a graphical notation for describing
the organization of the database.

Neither ODL nor the E/R model is intended to be used directly as the defi-
nition of a database’s structure, although ODL is very close to a data-definition
language if the DBMS is object-oriented. Rather, it is expected that the design
rendered in one of these models will be translated into whatever formal notation
is used by the data-definition language associated with the DBMS being used.
Since most DBMS’s are relational, we concentrate on translating ODL or E/R
into the relational model. Chapter 3 is thus devoted to the relational model
and to the translation process. Then, in Section 5.7 we show how to render
relational database schemas formally in the data-definition portion of the SQL
language.

Chapter 3 also introduces the reader to the notion of “dependencnes, which
are formally stated assumptions about relationships among tuples in a relation.
Dependencies allow us to decompose relations in beneficial ways, through a
process known as “normalization” of relations. Dependencies and normalization
are covered in Section 3.5 and the following sections; they are an important
part of design for relational databases. The subject is useful both for those who
would design their databases directly in the relational model and those who
have converted an ODL or E/R design into relations and find some problems
with the design.

1.4.2 Programming

Chapters 4 through 8 cover database programming. We gfia
with an abstract treatment of queries in the relational

.ammmg

W
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ideas regarding queries in SQL and the expressioof dat@%gw %L
Almost all of this chapter and the following twef8itapsers is b on 3 stan
version of SQL called SQL2. However, certain aspgsts o SQUWERFRASHMIRE Mat
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Chapter 6 covers aspects of SQL concerning triggers and constraints on the
data. Since the capability of SQL2 is limited in these areas, we devote some
time to the treatment of constraints and triggers in SQL3 as well as in SQL2.

Chapter 7 covers certain advanced aspects of SQL programming. First,
while the simplest model of SQL programming is a stand-alone, generic query
interface, in practice most SQL programming is embedded in a larger program
that is written in a conventional language, such as C. In Chapter 7 we learn
how to connect SQL statements with a surrounding program and to pass data
from the database to the program's variables and vice versa. This chapter also
covers how one uses SQL features that specify transactions, connect clieats to
servers, and authorize access to databases by nonowners.

In Chapter 8 we turn our attention to emerging standards for object-oriented
database programming. Here, we consider two directions. The first, OQL
(Object Query Language), can be seen as an attempt to make C++ compatible
with the demands of high-level database programming. The second, which s the
object-oriented features found in SQL3, can be viewed as an attempt to make
relational databases and SQL compatible with object-oriented programming.
To an extent, these two approaches meet on a common ground. However, there
are also a number of ways in which they differ substantially.

1.5 Summary of Chapter 1

4+ Database Management Systems: A DBMS allows designers to structure
their information, allows users to query and modify that information, and
helps manage very large amounts of data and many concurrent operations
on the data.

4+ Database Languages: There are languages or language components for
defining the structure of data (data-definition languages) and for querymg
and modification of the data (data-manipuiation languages).

+ Relational Database Systems: Today, most database systems are based
on the relational model of data, which organizes information intgtables.
SQL is the language most often used in these systems.

+ Object-Oriented Database Systems: Some currentgda: vas S
object-oriented data-modeling ideas, including clas: ;'.,, ul type sys- /O
tems, abject identity, and inheritance of properg:Joy: classes In the ¢
future most database management systems, incluldiing re atloﬁllgﬁws E
likely to support some or all of these conceptst

F\:i FULL

4+ Secondary and Tertiary Storage: Large databalFare torecB
storage devices, usually disks. The largest databakls uwe\&.@@&?o%N s
age devices, which are several orders of magnit capacious than (o)
disks, but also several orders of magnitude slower.
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+ Components of a DBMS: The principal components of a database man-
agement system are the query processor, transaction manager, and storage
manager.

+ The Storage Manager: The storage manager handles both files of data on
secondary storage and the main-memory buffers that hold parts of these
files. A database management system normally maintains indexes, which
are data structures that support efficient access to data.

¢ The Query Manager: An important job of the query manager is to “op-
timize” queries, that is, to find a good algorithm for answering a given
query.

¢ The Transaction Manager: Transactions are elementary units of work
on the database. The transaction manager allows many transactions to
execute concurrently, while making certain that transactions have the
ACID properties: atomic, consistent, isolated, and durable.

¢ Chient-Server Systems: Database management systems usually support a
client-server architecture, with major database components at the server
and the client used to interface with the user.

4 Active Database Elements: Modern database systems support some form
of active elements, usually triggers and/or integrity constraints.

4 Future Systems: Major trends in database systems include support for
very large “multimedia” objects such as videos or images and the integra-
tion of information from many separate information sources into a single
database.

1.6 References for Chapter 1

There are a number of books that cover important aspects of the implemen-
tation of database systems. [3] and [5] cover implementation of a transaction
manager. Distributed database implementation is treated in these war
[7]. Implementation of a file manager is discussed in [11].

Object-oriented database systems are treated in [2]
of database systems is covered in [1}, [9], and [10]. &f=isy
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Chapter 2

Database Modeling

The process of designing a database begins with an analysis of what informa-
tion the database must hold and the relationships among components of that
information. Often, the structure of the database, called the datebase schema,
is specified in one of several languages or notations suitable for expressing de-
signs. After due consideration, the design is committed to a form in which it
can be input to a database management system, and the database takes on
physical existence.

In this book, we shall use two design notations. The more traditional ap-
proach, called the “entity-relationship” (E/R)} model, is graphical in nature,
with boxes and arrows representing the essential data elements and their con-
nections. We shall, in parallel, introduce ODL (Object Definition Language),
an object-oriented approach to database design that is an emerging standard
for object-oriented database systems. This chapter also mentions two other
models — the network and hierarchical models — that are primarily of histori-
cal interest. They are in a sense restricted versions of ODL, and they were used
in commercial database systems that were implemented in the 1970’s.

In Chapter 3 we turn attention to the relational model, where the world
is represented by a collection of tables. The relational model is somewhat re-

management systems are based today. Often, datab:&l:
veloping a schema using the E/R or an object-baszd
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Object-oriented

ODL\
/ Relational

Ideas \ / Relations =——=*1 DBMS
ER

Figure 2.1: The database modeling and implementation process

tive path where an ODL design becomes input to an object-oriented database
management system. In that case, the translation is rather automatic, perhaps
involving a simple translation from QDL dictions to corresponding dictions in
an object-oriented programming language like C++ or Smalitalk.

2.1 Introduction to ODL

ODL (Object Definition Language) is a proposed standard language for specify-
ing the structure of databases in object-oriented terms, as one finds in languages
such as C++ or Smalltalk. It is an extension of IDL (Interface Description
Language), a component of CORBA (Common Object Request Broker Archi-
tecture). The latter is an emerging standard for distributed, object-oriented
computing.

The primary purpose of ODL is to allow object-oriented designs of databases
to be written and then translated directly into declarations of an object-oriented
database management system (OODBMS). Since such systems usually have ei-
ther C++ or Smalltalk as their primary language, ODL must be translated
into declarations of one of these languages. ODL resembles both these languages
(but C++ more $0), so the translation suggested by Fig. 2.2 is quite straightfor-
ward In companson the translation from ODL or entlty-relatlonshlp demgns

systems (RDBMS) is considerably more complex.

ODL
C++ embedding
Abstract /

ODL \
ODL

Smalltalk embedding

Figure 2.2: Converting ODL designs into declaratic:s or@ OODBMS
‘0/- ’ A\
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Schemas and Data

ODL is a language for specifying the schema or structure of a database.
It does not provide facilities to specify the actual content of the database,
nor does ODL provide for queries or operations on the data. As we men-
tioned in Section 1.1, schema-specifying languages like ODL are often re-
ferred to as data-definition languages, while languages that allow us to
specify the content of the database or to query and modify that data are
similarly called data-manipulation languages. We shall not discuss data-
manipulation languages until we look at databases from the point of view
of the user in Chapter 4. Data-definition languages, on the other hand, are
the core of the study of databases from the point of view of the designer.

2.1.1 Object-Oriented Design

In an object-oriented design, the world to be modeled is thought of as composed
of objects, which are observable entities of some sort. For example, people may
be thought of as objects; so may bank accounts, airline flights, courses at a
college, buildings, and so on. Objects are assumed to have a unique object
identity (OID) that distinguishes them from any other object, as we discussed
in Section 1.3.1.

To organize information, we usually want to group objects into classes of ob-
jects with similar properties. The concepts of “object” and “class” in databases
are essentially the same as those notions found in object-oriented programming
languages such as C++ or Smalltalk (again, recall our discussion of object-
oriented concepts in Section 1.3.1). However, when speaking of ODL object-
oriented designs, we should think of “similar properties” of the objects in a
class in two different ways:

acctNo

balance

toOwner ---..5
Account
object
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The Nature of OID’s

As we mentioned in Section 1.3.1, object-ariented databases are often so
large that the number of OID’s needed far exceeds the number of addresses
in an address space. Thus, object-oriented database systems generally
have some scheme for creating unique strings associated with each object;
often these strings are quite long, perhaps 16 bytes. For example, an object
might get as an OID the time of its creation (measured in small enough
units that two could not be created by a single machine at one time)
together with an identifier for the host that created it (if the database
system is distributed over several hosts). '

one class and all accounts at the bank into another class. It would not
make sense to group customers and accounts together in one class, because
they have little or nothing in common and play essentially different roles
in the world of banking.

o The properties of objects in a class must be the same. When programming
in an object-oriented language, we often think of objects as records, like
that suggested by Fig. 2.3. Objects have fields or slots in which values are
placed. These values may be of common types such as integers, strings,
or arrays, or they may be references to other objects. Theéy may also be
methods, that is, functions to apply to the object. However, in our study
of ODL we shall not emphasize the use of methods, which is similar to
their use in any object-oriented programming langnage. We return to the
subject of QDL methods in Section 8.1.

While it is often helpful to think of objects as having a record structure, this
chapter is devoted to design at an abstract level. Thus, we shall emphasize
the first, more abstract notion of a class and its properties, without concerning
ourselves with the details of implementation such as how fields of a record are
ordered, or even if an object really is represented by a record structyse.

kinds:

type that does

s e, digeys
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2.1.2 Interface Declarations

A declaration of a class in QDL, in its simplest form, consists of:
1. The keyword interface.
2. The name of the interface (i.e., class).

3. A bracketed list of properties of the class. Recall these properties are
attributes, relationships, and methods.

That is, the simple form of an interface declaration is

interface <name> {
<list of properties>

}

2.1.3 Attributes in ODL

The simplest kind of properties are called attributes. These properties describe
some aspect of an object by associating with that object a value of some simple
type. For example, person objects might each have an attribute name whose
type is string and whose value is the name of that person. Person objects
might also have an attribute birthdate that is a triple of integers (i.e., a record
structure) representing the year, month, and day of their birth.

Example 2.1: In Fig. 2.4 is an ODL declaration of the class of movies. 1t
is not a complete declaration; we shall add more to it later. Line (1) declares
Movie to be a class. The keyword interface is used in ODL to indicate a
class.! Following line (1) are the declarations of four attributes that all Movie
objects will have.

1) interface Movie {

2) attribute string title;
3) attribute integer year;
4) attribute integer length;

5) attribute enum Film {color,blackAnd iy ¥R] Vo
};

The first attribute, on line (2), is namgiftitle. [tB.!’pE&élEng—a
character string of unknown length. We expecifthe m@ﬁ@tﬁﬁl@wlte
1Technically, in ODL a class is an interface plus 2% spEnentati E‘ 4 Wﬂm
and methods associated with the interface. We shalllibt uss?z ,ﬁx}ﬂu& ODI.S
interfaces in this section, but we shal! continue to re{{Jgito rface declarations as defining)
“classes.”
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in any Movie object to be the name of the movie. The next‘two attributes, year
and length declared on lines (3) and (4), have integer type and represent the
year in which the movie was made and its length in minutes, respectively. On
line (5) is another attribute filmType, which tells whether the movie was filmed
in color or black-and-white. Its type is an enumeration, and the name of the
enumeration is Film. Values of enumeration attributes are chosen from a list
of literals, color and blackAndwhite in this example.

An object in the class Movie as we have defined it so far can be thought of
as a record or tuple with four components, one for each of the four attributes.
For example,

("Gone With the Wind", 1939, 231, color)

is a Movie object. O

Example 2.2: In Example 2.1, all the attributes have atomic types. We can
also have attributes whose types are structures, collections, or collections of
structures, as we shall discuss in Section 2.1.7. Here is an example with a
nonatomic type.

We can define the class Star by

1) interface Star {
2) attribute string name;
3) attribute Struct Addr
{string street, string city} address;
};

Line (2) specifies an attribute name (of the star) that is a string. Line (3)
specifies another attribute address. This attribute has a type that is a record
structure. The name of this type is Addr and the type consists of two fields:
street and city. Both fields are strings. In general, one can define record
structure types in ODL by the keyword Struct and curly braces around the
list of field names and their types. O

2.1.4 Relationships in ODL

While we can learn much about an object by examining its attribpi: s
times a critical fact about an object is the way it connects to WAY370Dbj

S
the same or another class. ® RS/O

Example 2.3: Now, suppose we want to add to the degElati@)Of the Movie

class from Example 2.1 a property that is a set of stars. Since stars mlEESE '
selves a class, as described in Example 2.2, we cannot rfL.& this information

attribute of Movie, because attribute types must not beRclasses(@FRIEFa FULL
classes. Rather, the set of stars of a movie is a relation@j1 begween the classes
<" VERSION &

Movie and Star. We represent this relationship by a line
2 o

rint.drin® s

relationship Set<Star> stars;
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in the declaration of class Movie. This line may appear in Fig. 2.4 after any
of the lines numbered (1) through (5). It says that in each object of class
Movie there is a set of references to Star objects. The set of references is called
stars. The keyword relationship specifies that stars contains references to
other objects, while the keyword Set preceding <Stars> indicates that stars
references a set of Star objects, rather than a single object. In general, a type
that is a set of elements of some other type T is defined in ODL by the keyword
Set and angle brackets around the type T.

In physical terms, we might imagine the set stars to be represented by a
list of pointers to Star objects; the Star objects would not appear physically
inside the Movie object. However, in the database design phase, the physical
representation is not known, and the important aspect of a relationship is that
from a Movie object one can find the stars of that movie conveniently. O

In Example 2.3 we saw a relationship that associated a set of objects, the
stars, with a single object, the movie. It is also possible to have a relationship
that associates a single object with an object of the class being declared. For
instance, suppose we had given the type of the relationship in Example 2.3 as
Star rather than Set<Star>, in a line such as

relationship Star star(f;

Then this relationship would associate with each movie a single Star object.
That arrangement would not make too much sense here, since typically a movie
has several stars. However, we shall see many other examples where a single-
valued relationship is appropriate.

2.1.5 Inverse Relationships

Just as we might like to access the stars of a given movie, we might like to
know the movies in which a given star acted. To get this information into Star
objects, we can add the line

relationship Set<Movie> starredIn;

to the declaration of class Star in Example 2.2. However, t[i{
declaration for Movie omits a very important aspect offfic
movies and stars. We expect that if a star S is ipgil: ;
then movie M is in the starredIn set for star S.})’e i@)€ate this connect
between the relationships stars and starredisi y@vacing in each of their_¢
declarations the keyword inverse and the namlf of the otlprla@.@@l%. If
the other relationship is in some other class, €t usually is, then we refer to

that relationship by the name of its class, follovged by £0dele Fld F 1) 4ol
the name of the relationship.
VERSION

Example 2.4: To define the relationship stdgdiT of class Star to be th(‘e' (o)
inverse of the relationship starsin class Movie, we)avise kge declaration of cl{sg»’

7Iint-driN®
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Star to be that shown in Fig. 2.5. We see in line (4) not only the declaration of
the relationship starredIn but the fact that it has an inverse, Movie: :stars.
Since relationship stars is defined in another class, the relationship name is
preceded by the name of that class (Movie) and a double colon. This notation
is used in general when referring to a property of a different class. DO

1) interface Star {

2) attribute string name;
3) attribute Struct Addr

{string street, string city} address;
4) relationship Set<Movie> starredIn

inverse Movie::stars;

};

Figure 2.5: Class Star, showing a relationship and its inverse

In Example 2.4 the two inverse relationships each associated an object (a
movie or a star) with a set of objects. As we mentioned, there are other relation-
ships that associate an object with a single object of another class. The notion
of inverse does not change. As a general rule, if a relationship R for class C
associates with object z of class C the set of one or more objects y1,¥2,. .., ¥n»
then the inverse relationship of R associates with each of the y;’s the object z
(perhaps along with other objects).

Sometimes, it helps to visualize a relationship R from class C to some class
D as a list of pairs, or tuples, of a relation. Each pair consists of an object z
from class C' and an associated object y of class D, as:

C|D

If R is of type Set<D>, then there may be more than one pair wit
C-value. If R is of type D, then there can be only one pa.ir wi g v

reversed, as:

D | C
hi|on
Y2 | T2

PLEASE
ORDER FULL

the class “Persons” to itself.
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About the Requirement for Relationship Inverses

As an abstract design language, ODL requires that relationships have in-
verses. The interpretation of this requirement is that whenever we have a
way to go from an object, say a movie object, to its related objects such
as star objects, then it is also possible to go in the opposite direction,
from a star to the movies in which they starred. That is, given a star like
Charlton Heston, we can examine all the movie objects and check their
stars. We may then list those that Heston starred in. ODL requires that
this inverse process be given a relationship name.

However, when we turn ODL into real programming language dec-
larations, say in its C++ embedding, we know that it is possible to put
references only in the movie objects and not have references to movies in

_ the star objects. Thus, the C++ embedding of ODL allows “one-way” re-
lationships. Since we are concerned here with design, not implementation,
we shall expect that relationships have inverses.

2.1.6 Multiplicity of Relationships

It is often significant whether a relationship associates a given object with
a unique related object, or whether an object can be related to many other
objects. In ODL we can specify these options by using or not using a collection
operator like Set in the relationship declaration. When we have an inverse pair
of relationships, there are four possible options: the relationship can be unique
in either direction, in both directions, or in neither direction.

The relationship between stars and movies that we have been discussing is
unique in neither direction. That is, a movie typically has several stars, and a
star appears in several movies. The following example is an elaboration of the
previous examples, in which we introduce another class, Studio, representing
the studio companies that produce movies.

appear in lines (13) and (14). Notice that the typely 3 stricg)
rather than a structure as was used for the a ibute of class Star o,
line (10). There is nothing wrong with using agid:ibutes of @EE@AI«@\E but

different types in different classes.

In line (7) we see a relationship ownedByj}ijom @R PERE Unde
the type of the relationship is Studio, and nfiget&Studi 5 !gl ing
that for each movie there is a unique studio thzls oxgns itma‘g arﬁ;hls s
relationship is found on line (15). There we€=:Qthdyrelationship owns fro O

studios to movies. The type of this relationship igkl <<}’1@7/:'£9>, indicating et.‘k
nt-drN
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1) interface Movie {

2) attribute string title;
3) attribute integer year;
4) attribute integer length;
5) attribute enum Film {color blackAndWhite} f1lmType
6) relationship Set<Star> stars
inverse Star::starredIn;
7) relatlonshlp Studio ownedBy
inverse Studio::owns;
};
8) interface Star {
9) attribute string name;
10) attribute Struct Addr
{string street, string city} address;
11) relationship Set<Movie> starredIn
inverse Movie::stars;
};
12) interface Studio {
13) attribute string name;
14) attribute string address;
15) relationship Set<Movie> owns

inverse Movie: :ownedBy,;

};

Figure 2.6: Some ODL classes and their relationships

each studio owns a set of movies—perhaps 0, perhaps 1, or perhaps a large
number of movies. D

relationship,

1. A many-many relationship from a class C to a clgd? 1s N
% 6, stars is a

is many-many from Star to Movie. In each dif&xion, it is rrmt

the set to be empty; e.g., there might be no stths kno@ &E@aﬁ U LL
mov. VERSION &

2. A many-one relationship from class C' to class FEY here for each C (o)
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Implications. Among Relationship Types

We should be aware that a many-one relationship is a special case of a
many-many relationship, and a one-one relationship is a special case of a
many-one relationship. That is, any useful property of many-many rela-
tionships applies to many-one relationships as well, and a useful property
of many-one relationships holds for one-cne relationships too. For exam-
ple, a data structure for representing many-one relationships will work for
one-one relationships, although it might not work for many-many relation-
ships.

Notice also that if we say a relationship R is “many-many,” we really
mean that R has the freedom to be many-many. As R changes, it might at
some time be many-one or even one-one. Likewise, a many-one relationship
R might at some time be one-one.

associated with each D. In Fig. 2.6, ownedBy is a many-one relationship
from Movie to Studio. We say that the inverse relationship is one-many
from class D to class C. In Fig. 2.6, relationship owns is one-many from
Studio to Movie, for example.

3. A one-one relationship from class C to class D is one where each C is
related to a unique D and, in the inverse relationship, each D is related
to a unique C. For example, suppose we augmented Fig. 2.6 with a
class President representing the presidents of studios. We expect that
each studio has only one president, and no president can be president of
more than one studio. Thus, the relationships between studlos and their
presidents would be one-one in both directions.

"There is a subtle point in our use of terms like “unique” or like “one” in
many-one Or one-one. It is normal to expect that the “unique” or “one” element

and for each studlo there really is a president. Howevergi
reasons why the expected unique object does not exist. , redjo
might temporarily be without a president, or we mi@i#o @@ which st @?yo

owns a certain movie.

Thus, we shall normally allow that the expectzy/ unique mﬁggﬁﬁtﬁd
object might be missing. We shall see later thatg:fanull” valu sk
in a database where a true value is expected. )} ex Wnpm gil_L
programming terms we might find a nil pointgyrhese a pom o a sin
object was expected. In Section 2.5 we shall take he su‘ﬁ%&@w
constraints and see mechanisms for stipulating {:%:3 @ded unique objects @
must exist without exception.

ring.drin®y
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2.1.7 Types in ODL

ODL offers the database designer a type system similar to that found in C or
other conventional programming languages. A type system is built from a basis
of types that are defined by themselves and certain recursive rules whereby
complex types are built from simpler types. In ODL, the basis consists of:

1. Atomic types: integer, float, character, character string, boolean, and
enumerations. The latter are lists of names declared to be synonyms for
integers. We saw an example of an enumeration in line (5) of Fig. 2.6,
where the names color and blackAndWhite were defined, in effect, to be
synonyms for the integers ( and 1.

2. Interface types, such as Movie, or Star, which represent types that are
actually structures, with components for each of the attributes and rela-
tionships of that interface. These names represent complex types defined
using the rules below, but we may think of them as basic types.

These basic types are combined into structured types using the following
type constructors:

1. Set. If T is any type, then Set<T> denotes the type whose values are
all finite sets of elements of type T. Examples of using the set type-
constructor occur in lines (6), (11), and (15) of Fig. 2.6.

2. Bag. If T is any type, then Bag<T> denotes the type whose values are bags
or multisets of elements of type T. A bag allows an element to appear
more than once. For example, {1,2,1} is a bag but not a set, because 1
appears more than once.

3. List. If T is any type, then List<T> denotes the type whose values are
finite lists of zero or more elements of type T'. As a special case, the type
string is a shorthand for the type List<char>.

4. Array. Xf T is a type and 1 is an integer, then Array<T,i> denotes the
type whose elements are arrays of i elements of type T._ForfxarTle,
Array<char, 10> denotes character strings of length

5. Structures. If Ty, Ts. ..., T, arve types, and Fi,
fields, then

Struct N {T, F,, T2 Fsp,.

denotes the type named N whose elements ta-8s
The ith field is named. F; and has type T;.
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Sets, Bags, and Lists

To understand the distinction between sets, bags, and lists, remember that
a set has unordered elements, and only one occurrence of each element. A
bag allows more than one occurrence of an element, but the elements and
their occurrences are unordered. A list allows more than one occurrence of
an element, but the occurrences are ordered. Thus, {1,2,1} and {2,1,1}
are the same bag, but (1,2,1) and (2,1, 1) are not the same list.

The first four types — set, bag, list, and array — are called collection types.
There are different rules about which types may be associated with attributes
and which with relationships.

e The type of an attribute is built starting with either an atomic type or a
structure whose fields are atomic types. Then we may opticnally apply a
collection type to the initial atomic type or structure.

¢ The type of a relationship is either an interface type or a collection type
applied to an interface type.

It is important to remember that interface types may not appear in the type’
of an attribute and atomic types do not appear in the type of a relationship.
It is this distinction that separates attributes and relationships. Also notice
that there is a difference in the way complex types are built for attributes and
relationships. Each allows an optional collection type as the final operator but
only attributes allow a structure type.

Example 2.6: Some of the possible types of attributes are:
1. integer.
2. Struct N {string fieldl, integer field2}.

3. List<real>.

of an atomic type, and (4) a collection of s
These are the only four possibilities for attr}

Now, suppose the interface names Movie auls.
Then we may construct relationship types syGi as Mo
ever, the following are illegal as relationship tyess

ok 2 éﬁﬁ;, (3)ac.ollec%
R
EREUEE:
VERSION &

1. Struct N {Movie fieldl, Star fielaz'® F@!atlonshlp types ca.nn,g,p
involve structures. o) i e(
‘nt-drN
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2. Set<integer>. Relationship types cannot involve atomic types.

3. Set<Array<Star>>. Relationship types cannot involve two applications
of collection types {neither can attribute types).

a

2.1.8 Exercises for Section 2.1

Exercise 2.1.1: Let us design a database for a bank, including information
about customers and their accounts. Information about a customer includes
their name, address, phone, and Social Security number. Accounts have num-
bers, types (e.g., savings, checking) and balances. We also need to record the
customer(s) who own an account. Give a description in ODL of this database.
Pick appropriate types for all attributes and relationships.

Exercise 2.1.2: Modify your design of Exercise 2.1.1 in the following ways.
Describe the changes; do not write a complete, new schema.

* a) There is only one customer that can be listed as the owner of an account.
b) In addition to (a), a customer may not have more than one account.

c¢) Addresses have three components: street, city, and state. In addition,
customers can have any number of listed addresses and phones.

1d) Customers can have any number of addresses, which are triples as in {(c},
and associated with any address is a set of phones. That is, we need
to record for each of a customer’s addresses, which phones ring at each
address. Note: be careful of the limitations on types for attributes and/or
relationships.

Exercise 2.1.3: Give an ODL design for a database recording information
about teams, players, and their fans, including:

1. For each team, its name, its players, its team captain (oncXu¥;

and the colors of its uniform. @ﬁy‘WERS /O

2. For each player, his/her name.

Q

players, andP f-a-vEléSE

| ORDER FULL
Exercise 2.1.4: Modify Exercise 2.1.3 to record for eackl l%: the\ﬁg&SﬂON o,s

teams on which they have played, including the start dJf% "nding date (if &
they were traded) for each such team. o) . G‘ .
nt-drN

3. For each fan, his/her name, favorite teams, favou!
color.
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1) interface Ship {

2) attribute string name;

3) attribute int yearLaunched;

4) relationship TG assignedTo inverse TG::unitsOf;
h

5) interface TG {

6) attribute real number;

7) attribute string commander;

8) relationship Set<Ship> unitsOf

inverse Ship::assignedTo;

h
Figure 2.7: An ODL description of ships and task groups

*! Exercise 2.1.5: Suppose we wish to keep a genealogy. We shall have one class,
Person. The information we wish to record about persons includes their name
(an attribute) and the following relationships: mother, father, and children.
Give an ODL design for the Person class. Be sure to indicate the inverses of the
relationships, which, like mother, father, and children, are also relationships
from Person to itself. Is the inverse of the mother relationship the children
relationship? Why or why not? Describe each of the relationships and their
inverses as sets of pairs.

Exercise 2.1.8: Let us add to the design of Exercise 2.1.5 the attribute
education. The value of this attribute is intended to be a collection of the
degrees obtained by each person, including the name of the degree (eg-, B.S)),
the school, and the date. This collection of structs could be a set, bag, list,
or array. Describe the consequences of each of these four choices. What infor-
mation could be gained or lost by making each choice? Is the information lost
likely to be important in practice?
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database should include information about students, gizns
courses, which students are enrolled in which cqurg: &
teaching which courses, student grades, TA’s for 2 r@ﬁ.y 5 are studdadyh
i on you deem appr@¢

which courses a department offers, and any othg 05?1

priate. Note that this question is more free-form}2san the qﬁﬁ%& and
you need to make some decisions about multgiifcities of relat DS ‘Epro-
priate types, and even what information needs & be re@@% R FULL

éz.él: Msgeg’isxilpgn'?! TG Os

ke some modifications,

Exercise 2.1.8: In Fig. 2.7 is an ODL definiti@
(task group, a collection of ships). We would like

rint.drin® s
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to this definition. Each modification can be described by mentioning a line or
lines to be changed and giving the replacement, or by inserting one or more
new lines after one of the numbered lines. Describe the following modifications:

a) The type of the attribute commander is changed to be a pair of strings,
the first of which is the rank and the second of which is the name.

b) A ship is allowed to be assigned to more than one task group.

c) Sister ships are identical ships made from the same plans. We wish to
represent, for each ship, the set of its sister ships (other than itself). You
may assume that each ship’s sister ships are Ship objects.

*!! Exercise 2.1.9: Under what circumstances is a relationship its own inverse?
Hint: Think about the relationship as a set of pairs, as discussed in Sec-
tion 2.1.5.

*! Exercise 2.1.10: Can a type ever be legal as both the type of an ODL at-
tribute and the type of an ODL relation? Explain why or why not.

2.2 Entity-Relationship Diagrams

There is a graphical approach to database modeling, called entity-relationship
diagrams, that bears a significant resemblance to the ODL object-oriented ap-
proach. Entity-relationship (or E/R) diagrams have the same three principal
components as appeared in our initial discussion of ODL {although both the
E/R and ODL models have additional features that we shall discuss later).
These components are:

1. Entity sets, which are analogous to classes. Entities, which are members
of an entity set, are analogous to objects in ODL.

2. Atiributes, which are values describing some property of an entity. Thus,
attributes in E/R and ODL are essentially the same concept.

inverse. For example, the inverse relaticuk/lips Movie: :stars and
Star: :starredInof Fig. 2.6 would be reprsiented @«R@/Elﬁodﬁu LL
by a single relationship.
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Example 2.7: In Fig. 2.8 is an E/R diagram that represents the same real-
world information as the ODL declarations of Fig. 2.6. The entity sets are
Movies, Stars, and Studios. We shall name entity sets in the plural, while

classes are often given singular names, which explains the slight difference in
names between here and Fig. 2.6.

5

Movies Stars-in | Stars

Studios

(address )

Figure 2.8: An entity-relationship diagram for the movie database

The Movies entity set has the same four attributes that class Movie has in
Fig. 2.6 title, year, length, and filmType. Similaxly, the other two entity sets
have the name and address attributes that were declared for their corresponding
ODL classes.

We also see in Fig. 2.8 E/R relationships corresponding to the relationships

cates that each movie is owned by a unique stflills. W/shall discuss issues o

multiplicity in E/R diagrams next. O PLEASE
ORDER FULL
2.2.1 Multiplicity of E/R Relaticit:hias VERSION

As we saw in Example 2.7, arrows can be used (ifhdigate the multiplicity ofa
relationship in an E/R diagram. If a relationshipzian epgiyone from entity $t’

“int.driN®
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Visualizing E/R Relationships

It is often helpful to represent E/R relationships by a table or relation, with
each row representing a pair of entities participating in the relationship.
For instance the Stars-in relationship could be visualized as a table with
pairs such as:

Movies | Stars

Basic Instinct | Sharon Stone
Total Recall Arnold Schwarzenegger
Total Recall Sharon Stone

Of course, there is no particular way that relationships must be imple-
mented, either in ODL or in the E/R model.

This table is sometimes called the relationship set for the relationship.
The members of the relationship set are the rows of the table. Rows can
be represented as tuples, with components for each participating entity
set. For instance,

(Basic Instinct, Sharon Stone)

is a tuple in the relationship set for relationship Stars-in.

E to entity set F, then we place an arrow entering F. The arrow indicates that
each entity in set E is related to exactly one entity in set F. However, an entity
in F may be related to many entities in £.

Following this principle, a one-one relationship between entity sets E and F
is represented by arrows pointing to both E and F. For example, Fig. 2.9 shows
two entity sets, Studios and Presidents, and the relationship Runs between them
(attributes are omitted). We assume that a president can run only one studio
and a studio has only one president, so this relationship is one-one, as indicated
by the two arrows, one entering each entity set.

Studios

Figure 2.9: A one-one relationshj

PLEASE

ORDER FULL
2.2.2 Multiway Relationships VERSION s

Unlike ODL, the E/R model makes it convenient to¥s(t n%elationships in- OO
volving more than two entity sets. However, in practice} TR/ (Ehree-way)
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or higher-degree relationships are rare. A multiway relationship in an E/R
diagram is represented by lines from the relationship diamond to each of the
involved entity sets.

Stars @ Movies

Studios

Figure 2.10: A three-way relationship

Example 2.8: In Fig. 2.10 is a relationship Contracts that involves a studio,
a star, and a movie. This relationship represents that a studio has contracted
with a particular star to act in a particular movie. In general, the value of
an E/R relationship can be thought of as a relationship set of tupies whose
components are the entities participating in the relationship, as we discussed in
the box on “Visualizing E/R Relationships.” Thus, relationship Contracts can
be described by 3-tuples of the form

(studio, star, movie)

In multiway relationships, an arrow pointing to an entity set £ means that if
we select one entity from each of the other entity sets in the relationship, those
entities are related to a unique entity in E. (Note that this definition simply
generalizes the notion of multiplicity we used for two-way relationships.) In
Fig. 2.10 we have an arrow pointing to entity set Studios, indicating that for
a particular star and movie, there is only one studio with which the star has
contracted for that movie. However, there are no arrows pointing to entity sets
Stars or Movies. A studio may contract with several stars for a movie, and a
star may contract with one studio for more than one movie. 0O

2.2.3 Roles in Relationships

It is possible that one entity set appears two or Jpa’y
ship. If so, we draw as many lines from the relaly
entity set appears in the relationship. Each into the ent
different role that the entity set plays in the relc{ibonship

edges between the entity set and relationship Jiig namemeﬁf%]ﬁﬁ
% 5/ VERSION.. &

Cr vo‘&owes, one of which 1%)

ring. qrin®s

(o) VERS

: %%e in a single relatlo
hip/to the entxty set as the¢

ts a

Example 2.9: In Fig. 2.11 is a relationship
Movies and itself. Each relationship is betwe
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Limits on Arrow Notation in Multiway Relationships

There are not enough choices of arrow or no-arrow on the lines attached to
a relationship with three or more participants. Thus, we cannot describe
every possible situation with arrows. For instance, in Fig. 2.10, the studio
is really a function of the movie alone, not the star and movie jointly, since
only one studio produces a movie. However, our notation does not distin-
guish this situation from the case of a three-way relationship where the
entity set pointed to by the arrow is truly a function of both other entity
sets. In Section 3.5 we shall take up a formal notation — functional de-
pendencies — that has the capability to describe all possible alternatives.

Original

Sequel-of | Movies

Sequel

Figure 2.11: A relationship with roles

the sequel of the other. To differentiate the two movies in a relationship, one
line is labeled by the role Original and one by the role Sequel, indicating the
original movie and its sequel, respectively. We assume that a movie may have
many sequels, but for each sequel there is only one original movie. Thus, the
relationship is many-one from Segquel movies to Original movies, as indicated
by the arrow in the E/R diagram of Fig. 2.11. [

he / g@hat one S/O
studio, having a certain star under contract may furth ot ha second ¢
studio to allow that star to act in a particular movie. ')

ORDERF U LL

described by 4-tuples of the form
éudwlF SRSION -

'o’.'ht dr\‘le‘

(studiol, studio2, star, movie

meaning that studio2 contracts with studiol for the k&
studio2 for the movie.

4 s e - PO TR M e gy e 88 = Tivs s
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Stars Movies
Contracts
Studio Producing
of star studio
Studios

Figure 2.12: A four-way relationship

We see in Fig. 2.12 arrows pointing to Studios in both of its roles, as “owner”
of the star and as producer of the movie. However, there are not arrows pointing
to Stars or Movies. The rationale is as follows. Given a star, a movie, and a
studio producing the movie, there can be only one studio that “owns” the
star. (We assume a star is under contract to exactly one studio.) Similarly,
only one studio produces a given movie, 8o given a star, a movie, and the
star’s studio, we can determine a unique producing studio. Note that in both
cases we actually needed only one of the other entities to determine the unique
entity—for example, we need only know the movie to determine the unique
producing studio—but this fact does not change the multiplicity specification
for the multiway relationship.

There are no arrows pointing to Stars or Movies. Given a star, the star'’s
studio, and a producing studio, there could be several different contracts allow-
ing the star to act in several movies. Thus, the other three components in a
relationship 4-tuple do not necessarily determine a unique movie. Similarly, a
producing studio might contract with some other studio to use more than one
of their stars in one movie. Thus, a star is not determined
components of the relationship. O

Sometimes, it is convenient to associate attributzl with a rel@ﬂg@,@‘,ﬁﬁﬁ'l
than with any one of the entity sets that the relad{gaship mé§ m
consider the relationship of Fig. 2.10, which repze:bnts co. L
and studio for a movie. We might wish to rec® d 2 aﬁm

this contract. However, we cannot associate it -trzthe su iﬁ:
get different salaries for different movies. Simila:y &t @ss not meke sense to 0
associate the salary with a studio (they may pay ¢iiif3 n:ﬁn;,lanes to dlﬂ'er@

‘nt-drN
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Cie ) Cyear)
D

Contracts

Movies

Studios

(o) Gares)

Figure 2.13: A relationship with an attribute

stars) or with a movie {different stars in a movie may receive different salaries).
However, it is appropriate to associate a salary with the

(star, movie, studio)

triple in the relationship set for the Contracts relationship. In Fig. 2.13 we
see Fig. 2.10 fleshed out with attributes. The relationship has attribute salary,
while the entity sets have the same attributes that we showed for them in
Fig. 2.8.

It is never necessary to place attributes on relationships. We can instead
invent a new entity set, whose entities have the attributes ascribed to t.he rela-
tionship. If we then include this entity set in the relationship, we cangu

attributes on the relationship itself.

Example 2.11: Let us revise the E/R diagram of Fs 3“@0 M.s-ug /
salary attribute on the Contracts relationship. Insteas! we@r.eate an entity ‘Q
set Salaries, with attribute salary. Salaries becomé .e @rth entity set of

relationship Contracts. The whole diagram is shown 4¥Fig. 2.14.Pil EASE

| ORDER FULL
2.2.5 Converting Multiway Relations:y] %0 BW‘%’RS|ON

Recall that, unlike the E/R model, ODL limits us to &g ationships. How- oo
ever, any relationship connecting more than two entity g2#; cag@u converted to (

“Int.driN®

4 ¢ g e 1o
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Salaries @

Cite)  Cyeard

Movies

Stars

Studios

Figure 2.14: Moving the attribute to an entity set

a collection of binary, many-one relationships without losing any information.
In the E/R model, we can introduce a new entity set whose entities we may
think of as tuples of the relationship set for the multiway relationship. We
call this entity set a connecting entity set. We then introduce many-one rela-
tionships from the connecting entity set to each of the entity sets that provide
components of tuples in the original, multiway relationship. If an entity set
plays more than one role, then it is the target of one relationship for each role.

Example 2.12: The four-way Contracts relationship in Fig. 2.12 can be re-
placed by an entity set that we may also call Contracts. As seen in Fig. 2.15,
it participates in four relationships. If the relationship set for thegrelatienship
Contracts has a 4-tuple

(studiol, studio2, star, moig)

WO VERS/

then the entity set Contracts has an entity e. Thisgusk é«ed by relatlonshxp ¢
Star-of to the entity ster in entity set Stars. It is iiiked by re ngﬁgg

of to the entity movie in Movies. It is linked tqfGuities studiol
&

Studios by relationships Studio-of-star and Produlsl ng-stn@aR@g@1 e]FU
GEREIGH-

‘Note that we have assumed there are no atfldutes of entlt set ontrac
although the other the entity sets in Fig. 2.15 haite T seen

ever, it is possible to add attributes, such as thefse}e QL signing, to entity set O
Contracts. 0O ¢

'o"ht-d_r'\‘lev
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Stars Movies
|
Star-of Movie-of
Contracts
Studio .
ucing
Of star tudl o
Studios

Figure 2.15: Replacing a multiway relationship by an entity set and binary
relationships .

In ODL we would represent a multiway relationship like Fig. 2.12 in a man-
ner similar to the transformation described above for the E/R model. However,
since there are no multiway relationships in ODL, the transformation is not
optional; it is essential.

Example 2.13: Assume we have classes Star, Movie and Studio, correspond-
ing to each of the three entity sets in Fig. 2.12. To represent the four-viay rela-

attributes, but it has four relationships corresponding to t re foux com%&

of the E/R relationship. The QDL declaration is showgw/iPs @@ S y;

relationships are omitted. Each 4-tuple in the E/R relatly: v oontracts cor- O

responds to an object in the ODL class Contract. ¢
PLEASE

2.2.6 Exercises for Section 2.2 ORDER FULL
Exercise 2.2.1: Render the bank database of Exercise é‘r\ in thYBEREBCDN I
Be sure to include arrows where appropriate, to indi&:1 t‘fr-a multiplicity of a (o)

“, <
7Iint-driN®

relationship.
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interface Contract {
relationship Studio ownerOfStar;
relationship Studio producingStudio;
relationship Star star;
relationship Movie movie;

};
Figure 2.16: Representing contracts in ODL

Exercise 2.2.2: Modify your solution to Exercise 2.2.1 to account for the
changes suggested in Exercise 2.1.2:

a) Change your diagram so an account can have only one customer.
b) Further change your diagram so a customer can have only one account.

! ¢) Change your original diagram of Exercise 2.2.1 so that a customer can
have a set of addresses (which are street-city-state triples) and a set of
phones. Remember that we do not allow attributes to have collection
types in the E/R model, although they are permitted in ODL under lim-
ited circumstances.

1 d) Further modify your diagram so that customers can have a set of ad-
dresses, and at each address there is a set of phones.

Exercise 2.2.3: Render the teams/players/fan database of Exercise 2.1.3 in
the E/R model. Remember that a set of colors is not a suitable attribute type
for teams. How can you get around this restriction?

! Exercise 2.2.4: Suppose we wish to add to the schema of Exercise 2.2.3 a
relationship Led-by among two players and a team. The intention is that this
relationship set consists of triples

(playerl, player2, team)

such that player 1 played on the team at a time wher
the team captain.

e @e&‘vﬁgyﬂ-, 2w
‘o“ s,%

a) Draw the modification to the E/R diagr

b) Replace your ternary relationship with@¥vew entity set an%ﬁnary rela-

. tionships: ORDER FULL
, any YWERBIGH o= &
WO players are different, O

%0, <
7Iint-driN®

! ¢) Are your new binary relationships the sa
isting relationships? Note that we assun{l:Rth¢
i.e., the team captain is not self-led.

O
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Exercise 2.2.5: Modify your E/R diagram from Exercise 2.2.3 to include the
player’s history, as in Exercise 2.1.4.

! Exercise 2.2.6: Render the people database of Exercises 2.1.5 and 2.1.6 in the
E/R model. Include relationships for mother, father, and children; do not, forget
to indicate roles when an entity set is used more than once in a relationship.
Also include information about degrees obtained by each person, as described
in Exercise 2.1.6. Indicate the multiplicity for each relationship. Do you need
separate relationships for mother, father, and children? Why or why not?

Exercise 2.2.7: An alternative way to represent the information of Exer-
cise 2.1.5 is to have a ternary relationship Family with the intent that a triple
in the relationship set for Family

(person, mother, father)

is a person, their mother, and their father; all three are in the People entity set,
of course.

a) Draw this diagram (no education information is required). Place arrows
on edges where appropriate.

b) Replace the ternary relationship Family by an entity set and binary rela-
tionships. Again place arrows to indicate the multiplicity of relationships.

Exercise 2.2.8: Render your design of the university database from Exer-
cise 2.1.7 in the E/R model.

2.3 Design Principles

We have yet to learn many of the details of the ODL or E/R models, but we
have enough to begin study of the crucial issue of what constitutes a good
design and what should be avoided. In this section, we shall try to enunciate
and elaborate upon some useful principles.

2.3.1 Faithfulness

First and foremost, the design should be faithful to the speciffSxsfs. i
classes or entity sets and their attributes should reflect rea¥:d. ?@‘

an attribute number-of-cylinders to Star, although it v d@ e sense for

an entity set or class Automobile. Whatever connect'@itJar rted should
make sense given what we know about the part of the regifworld bein[;!@_o@% E

Example 2.14: If we define a relationship Stars-in bewygeen St@a%!_ ULL
should be a many-many relationship. The reason is an observation of

real world tells us that stars can appear in more than on , andIBRIGAON s
have more than one star. It is incorrect to declare thefGlatenship Stars-in (o)

to be many-one in either direction or to be one-one.

ring.drin®y
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Redundancy and Inverse Relationships

We might think that the use of a relationship and its inverse in ODL is
an example of redundant design. However, we should not assume that
the relationship and its inverse will be represented by two different data
structures, such as pointers in one direction and pointers in the other
direction. Recall the definition of relationships and their inverses merely
reflected the fact that one can, in principle, traverse a relationship in either
direction.

If we do, however, elect to implement the relationship by two sepa-
rate data structures, then we indeed run the risks associated with redun-
dancy. Since the underlying pointers are expected to be maintained con-
sistently as the data changes, the implementors of an ODL-based DBMS
must be careful how they execute database modifications. However, that
is a system-level issue, and there is a presumption that the implementors
will (eventually) get it right. There is thus less risk associated with redun-
dancy at the implementation level, and the existence of pointers in both
directions could result in a great improvement in the speed with which the
relationship can be traversed.

2.3.2 Avoiding Redundancy

We should be careful to say everything once only. For instance, we have used a
relationship Owns between movies and studios. We might also choose to have
an attribute studioName of entity set Movies. While there is nothing illegal
about doing so, it is dangerous for several reasons.

1. The two representations of the same owning-studio fact take more space
than either representation alone.

2. If a movie were sold, we might change the owning studio to which it is re-
lated by Owns but forget to change the value of its studiolimeghitribyte,

careless things, but in practice, errors are frequizd#®an
the same thing in two different ways, we ard@iy: in@;‘

These problems will be described more formai\gin Q"tion 3.7, and we shal
also learn there some tools for redesigning dataktBe schemas&h.lEg&iﬁ@ncy

and it$ attendant problems go away. ORDER FULL
2.3.3 Simplicity Counts 2 VERSION IS

(o)
Avoid introducing more elements into your design Wy t@%absolutely necessa{yfb
77 .
nt-griN®
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Example 2.15: Suppose that instead of a relationship between Movies and
Studios we postulated the existence of “movie-holdings,” the ownership of a
single movie. We might then create another class or entity set Holdings. A
one-one relationship Represents could be established between each movie and
the unique holding that represents the movie. A many-one relationship from
Holdings to Studios completes the picture shown in Fig. 2.17.

Repre-
ents

Movies

Holdings Studios

Figure 2.17: A poor design with an unnecessary entity set

Technically, the structure of Fig. 2.17 truly represents the real world, since
it is possible to go from a movie to its unique owning studio via Holdings.
However, Holdings serves no useful purpose, and we are better off without it.
It makes programs that use the movie-studio relationship more complicated,
wastes space, and encourages errors. O

2.3.4 Picking the Right Kind of Element

Sometimes we have options regarding the type of design element used to repre-
sent a real-world concept. Many of these choices are between using attributes
and using classes or entity sets. In general, an attribute is simpler to implement
than either a class/entity set or a relationship. However, making everything an
attribute will usually get us into trouble.

Example 2.16: Let us consider a specific problem. In Fig. 2.6 or Fig. 2.8, were
we wise to make studios a class or entity set? Should we instead have made
the name and address of the studio be attributes of movies and eliminated the
- studio class or entity set? One probiem with doing so is that we repeat the
address of the studio for each movie. That leads to redundancy; in addition
to the dlsa.dvanta.ges of redundancy dlscussed in Sectlon 23.2, we also face the

Sy,

no harm in making the studio name an attribute of mowi] '&QM hasz (o)
redundancy due to repeating addresses. The fact that g say the name ¢

of a studio like Disney for each movie owned by Disney & not true fmﬁ
since we must represent the owner of each movie somegL; and sayi

is a reasonable way to do so. O ORDER FU LL
In general, we suggest that if something has mor€yi foswnatiowﬁgs §|«0N

with it than just its name, it probably needs to be an '-ty%& or class.

ever, if it has only its name to contribute to the design .hc?'bt probably is 0

"Int-griN®

studio’s address.
On the other hand, if we did not record addresses of g
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better made an attribute. This distinction is closely related to the question
of “normalization” of schemas in the relational model that we shall take up in
Section 3.7.

Example 2.17: Let us consider a point where there is a tradeoff between using
a multiway relationship and using a connecting entity set with several binary
relationships. We saw a four-way relationship Contracts among a star, a movie,
and two studios in Fig. 2.12, and in Fig. 2.15 we mechanically converted it to
an entity set Contracts. Does it matter which we choose?

In an ODL design, we really have no choice, because we do not have mul-
tiway relationships. In the E/R model, either is appropriate. However, should
we change the problem just slightly, then we are almost forced to choose a con-
necting entity set. Let us suppose that contracts involve ore star, one movie,
but any set of studios. This situation is more complex than the one in Fig. 2.12,
where we had two studios playing two roles. In this case, we can have any num-
ber of studios involved, perhaps one to do production, one for special effects,
one for distribution, and so on. Thus, we cannot assign roles for studios.

It appears that a relationship set for the relationship Coniracts must contain
triples of the form

(star, movie, set-of-studios)

and the relationship contracts itself involves not only the usual Stars and Movies
entity sets, but a new entity set whose entities are sets of studios. While this
approach is permissible, it seems unnatural to think of sets of studios as basic
entities, and we do not recommend it.

A better approach is to think of contracts as an entity set. As in Fig. 2.15, a
contract entity connects a star, a movie and a set of studios, but now there must
be no limit on the number of studios. Thus, the relationship between contracts
and studios is many-many, rather than many-one as it would be if contracts
were a true “connecting” entity set. Figure 2.18 sketches the E/R diagram.
Note that a contract is associated with a single star and a single movie, but
any number of studios.

ODL. interface declaration:

interface Contract {
relationship Star theStar;
relationship Movie theMovie;

PLEASE
ORDER FULL

e g e P
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Stars Movies

Star-of Movie-of

Contracts

&>

Studios

Figure 2.18: Contracts connecting a star, a movie, and a set oftudy

PLEASE
ORDER FULL

%4 VERSION os
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! Exercise 2.3.2: In this and following exercist; all ljg\;l;%r g' gr¢
options in the E/R model for describing birtls¥ At a birt A baby
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interface Address {
attribute string addr;
relationship Set<Customer> residents
inverse Customer::livesit;

};

interface Customer {
attribute string name;
relationship Address livesAt
inverse Address::residents;
relationship AcctSet accounts
inverse AcctSet::owner;

};

interface Account {
attribute real balance;
relationship Set<AcctSet> memberOf
inverse AcctSet: :members;

};

interface AcctSet {
attribute string ownerAddress;
relationship Customer owner
inverse Customer::accounts;
relationship Set<Accounts> members
inverse Account::member0f;

};
Figure 2.19: A poor design for a bank database

2.3.5 Exercises for Section 2.3

(twins would be represented by two births), olfmothe K 865,
and any number of doctors. Suppose, therefox#:ha W(Q? @E €8 E’E&Eﬁ

Mothers, Nurses, and Doctors. Suppose we alsof{lise relatfg’xi'ﬁi?\Rl iﬁuch s
] ote that a tuple ofo

connects these four entity sets, as suggested ixf#i¥ic < 20
the relationship set for Births has the form

,o,. /nt. dr\"e(
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(baby, mother, nurse, doctor)

If there is more than one nurse and/or doctor attending a birth, then there will
be several tuples with the same baby and mother, one for each combination of
nurse and doctor.

Mothers

Babies @ Nurses

Doctors

Figure 2.20: Representing births by a multiway relationship

There are certain assumptions that we might wish to incorporate into our
design. For each, tell how to add arrows or other elements to the E/R diagram
in order to express the assumption. '

a) For every baby, there is a unique mother.

b) For every combination of a baby, nurse, and doctor, there is.a unique
mother.

¢) For every combination of a baby and a mother there is a unique doctor.

Exercise 2.3.3: Another approach to the problem of Exercise 2.3.2 is to con-
nect the four entity sets Babies, Mothers, Nurses, and Doctors by an entity set
Births, with four relationships, one between Births and each of the other entity
sets, as suggested in Fig. 2.21. Use arrows (indicating that certain of these
relationships are many-one) to represent the following conditions:

a) Every baby is the result of a unique birth, and every bi
baby.

b} In addition to (a), every baby has a unique mother, Q
Junique dofey-E ASE

Exercise 2.3.4: Suppose we change our viewpoint teg\low IYQBEDLEURV&FU LL
more than one baby born to one mother. How would™ pread?l e & HON
ershes of Kxercises

2.3.2 and 2.3.3?
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Births

Babies Mothers Doctors Nurses

Figure 2.21: Representing births by an entity set

! Exercise 2.3.5: Recast the E/R designs of Exercises 2.3.2 and 2.3.3 in ODL.
Which of the conditions of these exercises do you find it easy to enforce in
ODL? Which cannot be enforced? How would you modify your design to allow
multiple births as in Exercise 2.3.47

2.4 Subclasses

Often, a class contains certain objects that have special properties not asso-
ciated with all members of the class. If so, we find it useful to organize the
class into sudclasses, each subclass having its own special attributes and/or re-
lationships, in addition to those of the class as a whole. ODL has a simple
way to declare subclasses, which we shall discuss next. Then we shall see how
the E/R model represents class-subclass hierarchies using special relationships
called “isa” relationships (i.e., “an A i3 a B” expresses an “isa” relationship
from subclass A to class B).

2.4.1 Subclasses in ODL

Among the kinds of movies we might store in our example datzibase
toons, murder mysteries, adventures, comedies, and many¥ig @i =w
of movies. For each of these movie types, we could Qluil®e a u:gz

class Movie that we introduced in Example 2.1. WQE&in Ecm

Q(y: declaratlon w1tl'{?@
PLEASE

Example 2.18: We can declare Cartoon to bi:¥subclass of Movie, and there-
fore Movie to be a superclass of Cartoon, with #: follo@l&@E fedddal

%4 VERSION $

subclass of another class D by following the nameJé
colon and the name D.

1) interface Cartoon: Movie {

2) relationship Set<Star> voices¥

& ,o <

(o} S
nt-drN
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Here, line (1) declares Cartoon to be a subclass of Movie. Line (2) says
that all Cartoon objects have a relationship voices, the people who speak
the voices of the cartoon characters. We have not indicated the name of the
inverse of relationship voices, although technically we should do so. Notice
that relationship voices does not make sense for all movies, only cartoons, so
we would not want to make voices a relationship for the class Movie. 0O

A subclass inherits all the properties of its superclass (also called the class
from which the subclass is derived). That is, every attribute or relationship
of the superclass is automatically an attribute or relationship of the subclass.
Thus, in Example 2.18 each cartoon object has attributes title, year, length,
and £ilmType inherited from Movie (recall Fig. 2.6), and it inherits relationships
stars and ownedBy from Movie, in addition to its own relationship voices.

2.4.2 Multiple Inheritance in ODL

A class may have more than one subclass, with each subclass inheriting prop-
erties from its superclass as described in Section 2.4.1. Furthermore, subclasses
may themselves have subclasses, yielding a hierarchy of classes where each class
inherits the properties of its ancestors. It also is possible for a class to have
more than one superclass. The following examples illustrate the potential and
problems of multiple superclasses.

Example 2.19: We might define another subclass of Movie for murder mys-
teries by:

1) interf ace MurderMystery: Movie {
2) attribute string weapon;

};

Thus, all murder mysteries have an attribute indicating the murder weapon, as
well as the four attributes and two relationships possessed by all mavies.

Now, consider a movie like Who Framed Roger Rabbit?, which is both a
cartoon and a murder mystery. These movies should have both the relafsc
voices and the attribute weapon, as well as the usual Novie propeg®
describe this situation by declaring another subclass Cartoorig
which is a subclass of both Cartoon and MurderMyster @i

@rﬂystery {};
ASE

Thus, a cartoon-murder-mystery object is defined§{Jhave all the properties

of both subclasses Cartoon and MurderMystery. Wighave rQ REDE=Ru ULL
attributes or relationships belonging exclusively to »oe -murd§z

Objects of class Cartoon-MurderMystery inherit thef t? E Eng s
class MurderMystery and the relationship voices toon. In addi- oo
tion, since classes MurderMystery and Cartoon both inhgslat ﬂur attributes ( .

“ing-driN®

interface Cartoon-MurderMystery: Cartoc¥
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and two relationships from class Movie, class Cartoon-MurderMystery inherits
these six properties as well. Class Cartoon-MurdexMystery does not, however,
inherit two copies of these six properties; rather, it inherits the properties from
Movie via either of its two immediate superclasses. Figure 2.22 illustrates the
subclass-superclass relatienships involving these four classes. 0O

Movie
Cartoon MurderMystery

Cartoon-MurderMystery
Figure 2.22: Diagram showing multiple inheritance

In general, we may declare a class C to be h subclass of any number of
other classes by following the declaration of the interface name C by a colon
and a list of those other classes. The declaration of Cartoon-MurderMystery in
Example 2.19 illustrates this form. When a class C inherits from several classes,
there is the potential for conflicts among property names. Two or more of the
superclasses of C' may have an- attribute or relationship of the same name, and
the types of these properties may differ.

Example 2.20: Suppose we have subclasses of Movie called Romance and
Courtroom. Further suppose that each of these subclasses has an attribute
called ending. In class Romance, attribute ending draws its values from the
enumeration {happy, sad}, while in class Courtroom, attribute ending draws
its values from the enumeration {guilty, notGuilty}. If we create a fur-
ther subclass, Courtroom-Romance, that has as superclasses both Romance and
Courtroom, then the type for inherited attribute ending ing

Romance is unclear. 0O

Although ODL itself does not define a specific : g&@n&(&ﬁ@
ODL will provide at least one of the following megitani o that users c:
specify how to handle conflicts that arise from ;‘ple@hentance

ciass For instance, in Example 5.20 we m; demdb]} 1% @irﬁl_

romance we are more interested in wheth@ggh 1ov1e has a ¥ I sa

ending than we are in the verdict of the cougir triy E@g Ne s

would specify that class Courtroom-Rome{fes :%?ts attribute ending Q
S L troom.
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2. Giving a new name in class C for the other property with the same
name. For instance, in Example 2.20, if Courtroom-Romance inherits at-
tribute ending from superclass Romance, then we may specify that class
Courtroom-Romance has an additional attribute called verdict, which is
a renaming of the attribute ending inherited from class Courtroom.

3. Redefining for class C some properties that are defined in one or more
of its superclasses. For instance, in Example 2.20 we may decide that
attribute ending should not be inherited directly from either superclass.
Rather, for courtroom romances, we redefine attribute ending to be an
integer value, representing a satisfaction rating for the movie’s ending
from an audience poll.

Note that even in Example 2.19 there are conflicts: Cartoon-KurderMystery
inherits from each of its immediate superclasses (Cartoon and MurderMystery)
all six properties, such as title and stars, that these two classes inherited from
class Movie. However, since the definitions of title and the other properties
are identical in both superclasses Cartoon and MurderMystery, any means of
choosing which definition to use is acceptable.

2.4.3 Subclasses in Entity-Relationship Diagrams

Recall that classes in ODL are analegous to entity sets in the E/R model.
Suppose class C is a subclass of class D. To express this notion in the E/R
model, we relate the entity sets corresponding to classes C and D by a special
relationship called isa. We draw the usual boxes for entity sets C and D. Any
attributes or relationships that pertain only to C entities are attached to the
C box. Attributes that apply to both C and D are placed at D.

An isa relationship is indicated by edges with a triangle in the middle. A
vertex of the triangle should point to the superclass. The word “isa” may
optionally be placed in the triangle.

Example 2. 21 The entity set Movies and two of its subclasses Cartoons and

the relationships Stars-in and Owns that relate Movies to L) ars\@
and we have only suggested the relationship Voices that v Cartoon.s to

Stars. O
PLEASE

2.4.4 Inheritance in the E/R Model ORDER FULL

There is a subtle difference between the concept of inhestiangs in 0\{)5{5&%\!&9 N s
object-oriented models and inheritance in the E/R mcdaa MDL an object
must be a member of exactly one class. Thus, for ind2hee (7 needed in
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length filmT
s, Qo) Cite) Cyear)  CimTyps

>

Cartoons

Movies

isa isa

Murder-
Mysteries

Figure 2.23: Isa relationships in an E/R diagram

Example 2.19 to define the class Cartoon-MurderMystery to contain those
objects that were both cartoons and murder mysteries. We could not, for
example, place the Roger Rabbit object in both the Cartoon and MurderMystery
classes.

In the E/R model, we shall view an entity as having components belonging
to several entity sets that are part of a single isa-hierarchy. The components
are connected into a single entity by the isa relationships. The entity has
whatever attributes any of its components has, and it participates in whatever
relationships its components participate in.

In general the effect of this viewpoint is the same as that of ODL, since
inheritance of properties gives an object the same attributes and relationships
that its corresponding entity would collect from its components. However, there
is a difference that we discuss in Example 2.22, and in Section 3.4 we shall see
another difference when we convert ODL and E/R designs to the relational
model.

Example 2.22: Notice that in Flg 2.23 we do not needg | en*yygf# )
eas m

Roger Rabbit, has components that belong to all thice entlty sets Mot
Cartoons, and Murder-Mysteries. The three (altupokizats are connected 1nt

that are not shown in Fig. 2.23), plus the attrib t- wea kﬁlﬂgﬁetﬁﬁ:ﬁ ie.
Mysteries and the relationship Voices of entitj&% rtoomns. m?&?ﬁtﬂy

the properties that the Roger Rabbit object, i arto
inherits from its superclasses Movie, Cartoon; M'gﬁ;derﬂystery in Exa.mo

ple 219. O ‘O %
7int.griN®
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Note, however, that if there were some properties that belonged to cartoon-
murder-mysteries, but to neither cartoons nor murder-mysteries, then we would
need a fourth entity set Cartoon-MurderMysteries in Fig. 2.23, to which these
properties {attributes and relationships) would be attached. Then, the Roger
Rabbit entity would have a fourth component that belonged to Certoon-Murder-
Mysteries and provided these new properties for the Roger Rabbit entity.

2.4.5 Exercises for Section 2.4

* Exercise 2.4.1: Let us consider a database of warships, and its expression in
ODL. Each warship has the following information associated with it:

1. Its name.
2. Its displacement (weight), in tons.
3. Its type, e.g., battleship, destroyer.

In addition, there are the following special kinds of ships that have some other
information:

1. Gunships are ships that carry large guns, such as battleships or cruisers.
For these ships, we wish to record the number and bore of the main guns.

2. Carriers hold aircraft. For these we wish to record the length of the flight
deck and the setrof air groups assigned to them.

3. Submarines, which travel under water. For these we wish to record
their maximum safe depth. You may assume no gunship or carrier is a
submarine.

4. Battlecarriers are both gunships and carriers, and have all the information
associated with either.2

Answer the following questions:

a) Give the ODL design for this hierarchy of classes.

ment of 36,000 tons, mounted 8 14-inch guns, had ¢
and carried air groups “1 and 2.”

!! Exercise 2.4.2: For certain subclasses, such as Bat{ “P mﬁ%E
2.4.1, there is only one possible type, while for oth £ uch as G

Japanese battleships that were converted in 1943 to have a ﬂl g

é’nd airplane hangar oo
covering their rear halves.

&
-
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* Exercise 2.4.3: Repeat Exercise 2.4.1 for the E/R model.

! Exercise 2.4.4: Modify your “people” database design of Exercise 2.1.5 to
include the following special types of people:

1. Females.
2. Males.

3. People who are parents.

You may wish to distinguish certain other kinds of people as well, so relation-
ships connect appropriate subclasses of people. Render your design in

a) ODL.
b) The E/R model.

2.5 The Modeling of Constraints

We have seen so far how to model a slice of the real world using ODL classes
and their properties — both attributes and relationships — or using entity sets
and relationships in the E/R model. Much of the structure we are interested
in modeling can be expressed in either of these notations. However, there are
some other important aspects of the real world that we cannot model with the
tools seen so far. This additional information often takes the form of constraints
on the data that go beyond the structural and type constraints imposed by the
definitions of classes, attributes, and relationships.

The following is a rough classification of commonly used constraints. We
shall not cover all of these constraint types here. Additional material on con-
straints is found in Section 4.5 in the context of relational algebra and in Chap-
ter 6 in the context of SQL programming.

1. Keys are attributes or sets of attributes that uniquely identify an object
within :ts class or an entity within its entity set. No two ob]ects in a class

: 3,
nstraints, smce'{o@y

attrlbute(s) are uniq

require that associated with value(s) fd
values of the other attributes of the clag

mﬁhﬁ ER FULL,

3. Referential integrity constraints are xgyirezents that a

to by some object actually exists in thefldatzbase. \lﬁ%}ﬁg@ﬁgﬂty&

i %)omters in conventlonaﬁ)

programs.
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4. Domain censtraints require that the value of an attribute must be drawn
from a specific set of values or lie within a specific range. We shall cover
domain constraints for SQL in Section 6.3.

5. General constraints are arbitrary assertions that are required to hold in
the database. For example, we might wish to require that no more than
ten stars be listed for any one movie. We shall see general constraint-
expression languages in Sections 4.5 and 6.4.

There are several ways these constraints are important. They tell us some-
thing about the structure of those aspects of the real world that we are mod-
eling. For example, keys allow the user to identify objects or entities without
confusion. If we know that attribute name is a key for objects in class Studio,
then when we refer to a studio object by its name we know we are referring
to a unique object. In addition, knowing a unique value exists saves space and
time, since storing a single value is easier than storing a set, even when that
set has exactly one member.® Referential integrity and keyness also support
certain storage structures that allow faster access to certain objects.

2.5.1 Keys

In ODL, a key for a class is a set K of one or more attributes such that given any
two distinct objects Oy and O; in the class, O; and Oz cannot have identical
values for each of the attributes in the key K. In the E/R model, a key is exactly
the same, but with “class” replaced by “entity set” and “object” replaced by
“entity.”

Example 2.23: Let us consider the class Movie from Example 2.1. One might
first assume that the attribute title by itself is a key. However, there are
several titles that have been used for two or even more different movies, for
example, King Kong. Thus, it would be unwise to declare that title by itself
is a key. If we did so, then we would not be able to include information about
both King Kong movies in our database.

A better choice would be to take the set of two attributes title and year
as a key. We still run the risk that there are two movies made in the,sa
with the same title {and thus both could not be stored in ou
that is unlikely.

must again think carefully about what can serve as a ke . udlos, it is
reasonable to assume that there would not be two movie i it

clear that stars are uniquely identified by their name.

distinguish among people in general. However, since ally
chosen “stage names” at will, we might hope to find t serv!a ERE&ON s
3In analogy, note that in a C program it is simpler to repref3iigh a,&eger than it is a o

linked list of integers, even when that list contains only one integer.

rin. dr\"e(
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Constraints Are Part of the Schema

We could look at the database as it exists at a certain time and decide
erroneously that an attribute forms a key because no two objects have
identical values for this attribute. For example, as we create our movie
database we might not enter two movies with the same title for some time.
Thus, it might look as if title were a key for class Movie. However, if we
decided on the basis of this preliminary evidence that title is a key, and
we designed a storage structure for our database that assumed title is
a key, then we might find ourselves unable to enter a second King Kong
movie into the database.

Thus, key constraints, and constraints in general, are part of the
database schema. They are declared by the database designer along with
the structural design (e.g., entities and relationships). Once a constraint
is declared, insertions or modifications to the database that violate the
constraint are disallowed.

Hence, although a particular instance of the database may satisfy
certain constraints, the only “true” constraints are those identified by the
designer as holding for all instances of the database that correctly model
the real-world. These are the constraints that may be assumed by users
and by the structures used to store the database.

for class Star too. If not, we might choose the pair of attributes name and
address as a key, which would be satisfactory unless there were two stars with
the same name living at the same address. O

Example 2.24: Our experience in Example 2.23 might lead us to believe that
it is difficult to find keys or to be sure that a set of attributes forms a key.
In practice the matter is usually much simpler. In the real-world situations
commonly modeled by databases, people often go out.of their way tocreate what

unique numbers. One purpose of these ID’s is to maks @ 2 & n’.?'
database each employee can be distinguished from gk h?g, even if there
several employees with the same name. Thus, {3 g@ ee-1D attribute can
serve as a key for employees in the database. a_B)I'E %0

In US corporations, it is normal for every ginloyee io ave a vocial
Security number. If the database has an attribyl®> that @M@QS&@&L
number, then this attribute can also serve as &y 4or em
there is nothing wrong with there being several
there would be for a class of employees having
Security numbers.
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The idea of creating an attribute whose purpose is to serve as a key is quite
widespread. In addition to employee ID’s, we find student ID’s to distinguish
students in a university. We find drivers’ license numbers and automobile reg-
istration numbers to distinguish drivers and automobiles, respectively, in the
Department of Motor Vehicles. The reader can undoubtedly find more examples
of attributes created for the primary purpose of serving as keys. 0O

2.5.2 Declaring Keys in ODL

In ODL we declare one or more attributes to be a key for a class by using the
keyword key or keys (it doesn’t matter which) followed by the attribute or
attributes forming keys. If there is more than one attribute in a key, the list
of attributes must be surrounded by parentheses. The key declaration must
appear immediately after the interface declaration, before the opening curly
brace, or any attributes or relationships. The declaration itself is surrounded
by parentheses.

Example 2.25: To declare that the set of two attributes title and year form
a key for class Movie, we repalce line (1) of Fig. 2.6 by:

interface Movie
(key (title, year))
{

We could have used keys in place of key, even though only one key is declared.
Similarly, if name is a key for class Star, then we add

(key name) _
before the curly brace in line (8) of Fig. 26. O

It is possible that several sets of attributes are keys. If so, then following
the word key(s) we may place several keys separated by commas. As usual, a
key that consists of more than one attribute must have parentheses around the
list of its attributes, so we can disambiguate a key of several attributes from
several keys of one attribute each.

attributes are empID, the employee ID, and ssNo, th ”izl} «,unty number
Then we can declare each of these attributes to be a\Gy byNiself with

PLEASE
ORPERFULL

Because there are no parentheses around the list offidiri interprets

the above as saying that each of the two attributes isk) k€7 by iz REEN s
parentheses around the list (empID, ssNo), then OB 0Td interpret the two
attributes together as forming one key. That is, the im@ghcation of writing

(key empID, ssNo)
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' (key (empID, ssNo))

is that no two employees could have both the same employee ID and the same
Social Security number, although two employees might agree on one of these
attributes. O

2.5.3 Representing Keys in the E/R Model

An entity set, being in essence a class, can have keys in exactly the same sense
that ODL classes do. If a set of attributes forms a key for an entity set, then we
cannot have two entities in that set whose values agree for each of the attributes
of the key. In our E/R diagram notation, we underline the attributes belonging
to a key for an entity set. For example, Fig. 2.24 shows the entity set Movies
from Fig. 2.8 with attributes title and year serving together as the key.

CCORNEED

Movies

Figure 2.24: Movies entity set with key indicated

[n situations where there is more than one key, in the E/R model we do not
provide a formal notation to indicate all keys. 1t is customary to designate one
key the primary key, and to treat this set of attributes as if it were the only
key for the entity set. While the primary key is indicated by uuderlmlng in the
E/R model, other keys, called secondary keys, would either
would be listed in a side comment attached to the d1a 3

set does not belong to the entity set itself. We sk
“weak entity sets,” until Section 2.6.

2.5.4 Single-Value Constraints PLEASE

Often, an important property of a database degjf'4 1%h9t$@’= BmE H)!ﬁrl-
value playing a particular role. For example, Wellhas®me tWE R@Wct s
27 l'é:la movie 1s owned by a

has a unique title, year, length, and film type,
unique studio. In ODL, we have no trouble decla e assumptions, smceo
each attribute has a type. If the type is not a col nn@w A tg set), \f e
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there can be only one value for that attribute or only one related object for a
relationship. On the other hand, if an attribute or relationship is defined to
have a collection type, such as the type Set<Star> for the relationship stars
on line (6) of Fig. 2.6, then we permit more than one star to be related to a
given movie. Such a relationship is called a multivalued relationship.

We must also differentiate between a situation where there is at most one
value for an attribute or relationship and the situation where there must be
ezactly one value. When there is a relationship that connects objects in one
class to single objects of another class, and the latter object is required to
exist, we have a constraint called “referential integrity,” which we discuss next
in Section 2.5.5. When there is an attribute with a single value, we have two
choices.

1. We can require that the value of that attribute exist.

2. We can allow the value to be optional.

If an attribute forms part of the key for a class, then we generally require
that the value exist in each object. For other attributes, we could invent a
null value for that attribute, to serve in place of an actual value when no value
exists. Then, a non-null value for this attribute would be optional.

Example 2.27: For the class Movie, whose key we decided in Example 2.23
was title and year, let us require that these two attributes exist in all movie
objects. On the other hand, attribute length optionally could be missing. We
could use —1, for example, as a null value for length, since no movie could
have a negative length. If we did not know the length of a movie, we would
set the value of attribute length to —1. Similarly, we could add a third value
to the enumeration that defines the possibie values for attribute £ilmType. In
addition to values color and blackAndWhite, we could choose a value such
as NULL or Unknown to indicate that no information about the film type was
available. D

also express ¢

' '. T

E, then there is at most one entity of set E associateds
ORDER FULL

from each of the other related entity sets.
2 VERSION &

: u&‘mst.s in a given (&)
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2.5.5 Referential Integrity

While single-value constraints assert that at most one
role, a referential integrity constraint asserts that exac
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that role. We could see a constraint that an attribute have a non-null, single
value as a kind of referential integrity requirement, but “referential integrity”
is more commonly used to refer to relationships-among classes.

Let us consider the relationship ownedBy from Movie to Studic in the ODL
declarations of Fig. 2.6, line (7). One might ask how it would be possible for
there to be a studio object as the value of ownedBy and yet that studio object
not exist. The answer is that in an implementation of ODL, the relationship
ownedBy will be represented by a pointer or reference to a studio object, and
it will be possible that at some time the studio object is deleted from the class
Studio. In that case, the pointer becomes dangling; it no longer points to a
real object.

A referential integrity constraint on relationship ownedBy would require that
the referenced studio object must exist. There are several ways this constraint
could be enforced.

1. We could forbid the deletion of a referenced object {a studio in our ex-
ample).

2. We could require that if a referenced object is deleted, then all objects
that reference it are deleted as well. In our example, this approach would
require that if we delete a studio, we also delete from the database ali
movies owned by that studio.

In addition to one of these policies about deletion, we require that when a
movie object is created, it is given an existing studio object as the value of its
relationship ewnedBy. Further, if the value of that relationship changes, then
the new value must also be an existing object. Enforcing these policies to assure
referential integrity of a relationship is a matter for the implementation of the
database, and we shall not discuss the details here.

2.5.6 Referential Integrity in E/R Diagrams

We can extend the arrow notation in E/R d1agrams to indicate whether a

rounded a.rrowhead pointing to F to indicate not gnly ré‘%ﬁﬁ
many-one or one-one from E to F, but that the 2w y F relat
given entity of set E is required to exist. The gt i apphes when K 1s

PLEASE

the referential integrity constraint that the studio o} m@ 6 movie must a.lwa{s()

7Iint-driN®
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Movies Presidents

Figyre 2.25: E/R diagram showing referential integrity constraints

Similarly, we see a rounded arrow entering Studios from Runs. That arrow
expresses the referential integrity constraint that if a president runs a studio,
then that studio exists in the Studios entity set.

Note that the arrow to Presidents from Runs remains a pointed arrow.
That choice reflects a reasonable assumption about the relationship between
studios and their presidents. If a studio ceases to exist, its president can no
longer be called a (studio) president, so we would expect the president of the
studio to be deleted from the entity set Presidents. Hence the rounded arrow
to Studios. On the other hand, if a president were deleted from the database,
the studic would continue to exist. Thus, we place an ordinary, pointed arrow
to Presidents, indicating that each studio has at most one president, but might
have no president at some time. O

2.5.7 Other Kinds of Constraints

As mentioned at the beginning of this section, there are other kinds of con-
straints one could wish to enforce in a database. We shall only touch briefly on
these here, with the meat of the subject appearing in Chapter 6.

Domain constraints restrict the value of an attribute to be in a limited set.
ODL requires a type for each attribute, and this type is a rudimentary form of
domain constraint. For example, if attribute length is of type integer, then
the value of length cannot be 101.5 or any other non-integer. However, ODL
does not support more restrictive limits, such as that the length be between 60
and 240. We shall see that SQL does support such constraints in Section 6.3.

There are also more general kinds of constraints that do not fall into any
of the categories mentioned in this section. For example, there are constraints
on the degree of a relationship, such as that a movie object or entitygeanzs
be connected by relationship stars to more than 10 star objectel{ail:
the E/R model, we can attach a bounding number to the €34 a o

/'.)'k L, 1

a relationship to an entity set, indicating limits on the Q%
can be connected to any one entity of the related entity 227 ﬂ,
limit the number of stars by making the type of the =\ 2\

an array of length 10. There is, however, no way to §
at most 10 elements.

we

ORDER FULL

Example 2.29: Figure 2.26 shows how we can repiic n%l;e %@N
no movie have more than 10 stars in the E/R model. &% a&ther ; s
; ,’%nd we can think OO
of the rounded arrow of Fig. 2.25 as standing for the co 'ﬁ;@‘i—;,l.” a G‘ .
‘nt-driN
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<10
Movies | Stars

Figure 2.26: Representing a constraint on the number of stars per movie

2.5.8 Exercises for Section 2.5

Exercise 2.5.1: Select and specify keys for your ODL designs of:

* a) Exercise 2.1.1.

*c

)

b) Exercise 2.1.3.
) Exercise 2.1.5.
)

d) Exercise 2.4.1.

Exercise 2.5.2: For your E/R diagrams of:

* a) Exercise 2.2.1.
b) Exercise 2.2.3.
c¢) Exercise 2.2.6.
d) Exercise 2.4.3.

(¢) Select and specify keys, and (ii) Indicate appropriate referential integrity
constraints.

! Exercise 2.5.3: We may think of relationships in the E/R model as having
keys, just as entity sets do. Let R be a relationship among the entity sets
E\,E,,...,E,. Then a key for R is a set K of attributes chosen from the
attributes of E\, E,,...,E, such that if {e|,ey,...,en) b,

two different tuples in the relationship set for R, then i
these tuples agree in all the attributes of K. Now, sligisse
is a binary relationship. Also, for each i, let K; b
key for entity set E;. In tetms of E£; and E,, giveg
under the assumption that:

st p0351ble key for@

PLEASE
ORDER FULL
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a) R is many-many.

* b) Ris many-one from E; to Es.

c) R is many-one from E; to E,.

d) R is one-one.

'o’.'ht dr\‘le‘
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! Exercise 2.5.4: Consider again the problem of Exercise 2.5.3, but with n
allowed to be any number, not just 2. Using only the information about which
arcs from R to the E;’s have arrows, show how to find a smallest possible key
K for R in terms of the K;’s.

! Exercise 2.5.5: Give other examples (besides that of Example 2.24) from real
life of attributes created for the primary purpose of being keys.

2.6 Weak Entity Sets

There is an odd but plausible condition in which an entity set’s key is composed
of attributes some or all of which belong to another entity set. Such an entity
set is called a weak entity set.

2.6.1 Causes of Weak Entity Sets

There are two principal sources of weak entity sets. First, sometimes entity
sets fall into a hierarchy. If entities of set E are subunits of entities in set F,
then it is possible that the names of E entities are not unique until we take into
account the name of the F entity to which the E entity is subordinate.

Example 2.30: Some examples of hierarchies that lead to weak entity sets
are:

1. A movie studio might have several film crews. The crews might be des-
ignated by a given studio as crew 1, crew 2, and so on. However, other
studios might use the same designations for crews, so the attribute num-
ber is not a key for crews. Rather, to name a crew uniquely, we need to
give both the name of the studio to which it belongs and the number of
the crew. The situation is suggested by Fig. 2.27. The key for weak entity
set Crew is its own number attribute and the name attribute of the unique
studio to which the crew is related by the many-one Unit-of relationship.?

2. A species is designated by its genus and species

humans are of the species Homo sapiens; Homo is thefaus W@%
sapiens the species name. In general, a genus constEYol se\%t% gpecies, S/O

each of which has a name beginning with the gepuvegifam Lad continuing ¢

with the species name. Unfortunately, species
designate a species uniquely we need both the spw 3 mﬁ) ;
of the genus to which the species is related bygW! e%be@o x RIT;EU LL

LN

AT iqu
or more genera may have species with the samzegidecies nam“§ %E.&R%E
connecting the species to its genus. Species is a wizk Gatity sTgf WN s
comes partially from its containing genus.
2 o

ring.qrn®,
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= &
Crews Studios

Figure 2.27: A weak entity set and its connections

The second common source of weak entity sets is the connecting entity
sets that we introduced in Section 2.2.5 as a way to eliminate a multiway
relationship.® These entity sets often have no attributes of their own. Their
key is formed from the attributes that are the key attributes for the entity sets
they connect.

Example 2.31: In Fig. 2.28 we see a connecting entity set Coniracts that
replaces the ternary relationship Contracts of Example 2.8. Contracts has an
attribute salary, but this attribute does not contribute to the key. Rather, the
key for a contract consists of the name of the studio and the star involved, plus
the title and year of the movie involved. O

2.6.2 Requirements for Weak Entity Sets

We cannot obtain key attributes for a weak entity set indiscriminately. Rather,
if F is a weak entity set then each of the entity sets F' that supplies one or more
of E’s key attributes must be related to £ by a relationship R. Moreover, the
following conditions must be obeyed:

1. R must be a binary, many-one relationship® from E to F.

2. The attributes that F supplies for the key of E must be key attributes of
F.

3. However, if F is itself weak, then the key attributesgs
E may be attributes of some entity set to whic is VE

many-one relationship. ®
«eﬁ F, then each re-o

% pREE”

4The double diamond and double rectangle wili be &3uEined in Section 2.6.3.
5Note that there is no requirement in the E/R model tife hmma@%ﬁﬂfgL
although in ODL as well as some older models such asg{itAnetyrork and tier

discussed in Section 2.7, we must replace multiway relati a%ny-ory &Bﬂgﬁlp% 's
0

S$Remember that a one-one relationship is a special case
e 0 e-c%relatlonshlps as well.

we say a relationship must be many-one, we always incluf
0/. <
@
nt.griV

4. If there are several many-one relationships
lationship may be used to supply a copy
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( salary )

Contracts

Studios

Movies

Figure 2.28: Connecting entity sets are weak
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Why Are There No “Weak Classes” in ODL?

The issue of how to find a key never arises in ODL or any object-oriented
model. As we saw in Section 2.5.2, we can declare an attribute or attributes
to form a key, but there is no requirement that we do so. Objects have

“object identity,” in effect an address where they can be found, and
the object ID uniquely distinguishes objects from one another, even if
their attribute values or relationships fail to distinguish two objects. On
the other hand, the E/R model is “value oriented,” and entities are only
distinguished by their associated attribute values. Thus, we have to be
careful in E/R designs that entities of any entity set can be distinguished
from one another by values alone, without appeal to any “object identity.”

help form the key of E. Note that an entity e from E may be related
to different entities in F through different relationships from E. Thus,
the keys of several different entities from F may appear in the key values
identifying a particular entity e from E.

The intuitive reason why these conditions are needed is as follows. Consider
an entity in a weak entity set, say a crew in Example 2.30. Each crew is unique,
abstractly. In principle we can tell one crew from another, even if they have the
same number but belong to different studios. It is only the data about crews
that makes it hard to distinguish crews, because the number is not enough. The
only way we can associate additional information with a crew is if there is some
deterministic process that generates additional values that make the designation
of a crew unique. The only way we can find a unique value associated with a
crew entity is if either:

1. The value is an attribute of the Crew entity set, or

2. We can follow a relationship from a crew entity to a unique entity of some
other entity set, and that other entity has a unique associated value of

must be a key for F.

2.6.3 Weak Entity Set Notation
We shall adopt the following conventions to indjgif: that an eﬂi&ym

and to declare its key attributes. ORDER FU LL
1. If an entity set is weak, it will be showr&{ age ctanwm
border. Examples of this convention are Crepl mélg s
in Fig. 2.28.
,o, %y
nt-griN®
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2. If an entity set is weak, then the many-one relationships that connect it to
the other entity set or sets that supply its key attributes will be shown as
diamonds with a double border. Examples of this convention are Unit-of
in Fig. 2.27 and all three relationships in Fig. 2.28.

3. If an entity set supplies any attributes for its own key, then those at-
tributes will be underlined. An example is in Fig. 2.27, where the number

of a crew participates in its own key, although it is not the complete key
for Crews.

We can summarize these conventions with the following rule:

o Whenever we see an entity set that has a double border, it is weak. Its
key consists of those of its own attributes that are underlined, if any, plus
the key attributes of those entity sets to which the weak entity set is
connected by many-one relationships with a double border.

2.6.4 Exercises for Section 2.6

* Exercise 2.6.1: One way to represent students and the grades they get in
courses is to use entity sets corresponding to students, to courses, and to “en-
rollments.” Enrollment entities form a “connecting” entity set between students
and courses and can be used to represent not only the fact that a student is
taking a certain course, but the grade of the student in the course. Draw an
E/R diagram for this situation, indicating weak entity sets and the keys for the
entity sets. Is the grade part of the key for enrollments?

Exercise 2.6.2: Modify Exercise 2.6.1 so that we can record grades of the
student for each of several assignments within a course. Again, indicate weak
entity sets and keys.

Exercise 2.6.3: For your E/R diagram of Exercise 2.3.3, indicate weak entity
sets and keys.

Exercise 2.8.4: Draw E/R diagrams for the following situations involving
weak entity sets. In each case indicate keys for entity sets.
a) Entity sets Courses and Departments. A course is Oy H,%
department, but its only attribute is its number, ‘re}r%\h@ VB S
W’ has a unigue /O

can offer courses with the same number. Each dgs tl’@
name.
cativorsls SR Vot
AR REYLL

LnenERBIGN &

4 : O

0 <’

“int.driN®

*! b) Entity sets Leagues, Teams, and Pleyers. Lez
league has two teams with the same name.
the same number. However, there can be plz
on different teams, and there can be teams with'

leagues.
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2.7 Models of Historical Interest

In this section we shall introduce the reader to two additional models and some
of their terminology. The “network” and “hierarchical” models were both early
attempts to provide a foundation for database systems. They were used in the
first commercial database systems, dating from the late 1960’s and 1970’s. They
were supplanted by systems based on the relational model, which is the subject
of Chapter 3. However, several of their ideas live on in the newer object-oriented
approaches to database design.

2.7.1 The Network Model

We may think of the network model as the E/R model restricted to binary,
many-one relationships. The two principal elements of the network model are:

1. Logical record types. These are similar to entity sets; they consist of a
name for the type and a list of attributes. The members of the logical
record type are called records; they are analogous to entities in the E/R
model.

2. Links. These are many-one, binary relationships. They connect two entity
sets, one of which is the owner type and the other of which is the member
type. The link is many-one from the member type to the owner type.
That is, each record of the member type is assigned to exactly one record
of the owner type, and each record of the owner type “owns” zero, one,
or more records of the member type.

Example 2.32: Let us work our example of movies, stars and the movies in
which they star in the network model. Stars and movies €ach form a logical
record type. However, the “stars-in” relationship between movies and stars is
many-many, So we cannot use a single link to represent this relationship in the
network model. Rather, we must create a new logical record type, which we
shall call StarsIn, that serves as a “connecting” logical record type, similar to
the connecting entity sets that we introduced in Section 2.2.5. Think of each
StarsIn record as representing a star-movie pair, such that the star app eared

Stare(name, address)
Movies(title, year, length, filmType)
StarsIn()

The Stars logical record type has two attribufes: the nan@ wEAEE of
the star, while the Movies type has attributes ¥y the at;i) éﬁﬁ% d
film type of the movie. We do not represent thegcifidio jﬁﬁ ol:.jn&gl-
although a complete design would represent thaAAcéR) ectlmy ﬁgj(gj;&
connecting type StarsIn has no attributes in oylvesizy Oug

given attributes if appropriate. For example, if v

: nr&{aﬂ the amount the star o

'o’.'ht dr\‘le‘
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was paid for a particular movie, then this amount is a function of the movie-star
pair and would be an attribute of StarsIn. In this example, however, the effect
of StarsIn records is only through the links it participates in.

There are two links in our design. One link is from Stars to StarsIn; that
is, Stars is the owner type and StarsIn is the member type. This link, which
we shall call TheStar, connects a star to each of the movie-star pairs in which
the star participates. The second link is TheMovie, with owner type Movies
and member type StarsIn. Each movie record owns the movie-star pairs with
that movie. Note that both links are many-one. A StarsIn pair (m, s) is owned
by the Novies record for movie m and by the Stars record for star s.

_ Basic Total
Movies Instinct - Recall
TheMovie

Starsin 1 2 |3
TheStar
Sharon Amold
Stars Stone Schwarzenegger

Figure 2.29: Records and their links

Figure 2.29 illustrates how records of the three logical record types are
connected by the links. This diagram is not a schema. Rather, it shows in-
dividual records themselves and the ways they are connected to other records
through links. We see three StarsIn records. Number 1 represents the fact that
Sharon Stone was a star in the movie Basic Instinct. Number 2 :
Sharon Stone/ Total Recall pair, and number 3 represents thep!
negger/ Total Recall pair. The numbers are not actually pa

S/ |
)
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ORDER FULL

%‘i; MERSION £

ne arrows go from (o]
¢

2.7.2 Representing Network Schemas

In diagrams representing the logical record types andik
logical record types by ovals and links by named ari¢ge
the member type to the owner type.

ring.qrin®y
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Example 2.33: The schema diagram for the three logical record types and
two links of Example 2.32 is shown in Fig. 2.30. O

TheStar TheMovie

Figure 2.30: The network schema for the movies example

2.7.3 The Hierarchical Model

The hierarchical model can be thought of as a restriction of the network model,
where the logical record types and links form a forest (collection of trees). That
is, if we regard each link as saying that the owner type is the parent of the
member type, then the logical record types form a forest. The problem with
this requirement is that it may be impossible to achieve for some networks. For
example, we see from Fig. 2.30 that logical record type StarsIn would need two
parents, Stars and Movies, in the hierarchy. Thus, Fig. 2.30 is not a forest.

Recall that the StarsIn logical record type is really a connecting type for the
many-many relationship between stars and movies. In the hierarchical model,
we represent many-many relationships by creating a virtual copy of each of the
related types. We can. think of the virtual type as representing a pointer to a
record of the real type. Virtual types make it possible to represent any network
as a hierarchy.

virtual
Movies

Q
3 chema-forEl"? %@5&
stars example. There are two simple trees in tik fores{) ﬂ@@i@mﬁ?yﬁ_l_
i i

Stars and child virtual-Movies, while the secofjls@hag root Movies wit

virtual-Stars. VE RS I O N

We can visualize the actual data represented i§@ice Séhema of Fig. 2.31 asin _ O
Fig. 2.32. In the schema, the type Stars has child Jjigu .kk')ovies. Thus, eac S"

7Iint-driN®
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Why Hierarchies?

One might wonder why the strange requirements of the hierarchical model
were once a significant force in the database industry. The simplest argu-
ment is that by organizing data in a hierarchy, with virtual record types
only when absolutely necessary, one could store the data by clustering
records with their parents in a sequential file. Thus, we might store the
data suggested by Fig. 2.32 with a record like Sharon Stone followed by all
its “owned” records, in this case the virtual-Movies pointers shown below
that record. On the assumption that one tends to access information work-
ing down the tree, one would tend to find the needed information nearby
in the file, as one travels from parent to children records, thus reducing
the time it takes to retrieve desired information off a disk.

In this example, there is little benefit, because following the pointer
represented by the virtual types would take us to some random place on the
disk where the movie information was stored. However, except for many-
many relationships, there is often significant improvement in efficiency of
query execution resulting from a hierarchical organization.

record of type Stars has children of type virtual-Movies; the virtual records
are represented by boxes with the word “to” in them.

For instance, we see the Stars record Sharon Stone with two children. Each
is a pointer to a Movies record, in this case the records for Basic Instinct and
Total Recall. To follow the underlying many-many relationship between stars
and movies, we can start at a Stars record such as that for Sharon Stone, go
from there to the children virtual-Movies records, and from each of them to the
corresponding real Movies record. O

2.7.4 Exercises for Section 2.7
Exercise 2.7.1: Render in the network model the designs described in:

* a) Exercise 2.1.1.
b) Exercise 2.13. §$() VERg
¢) Exercise 2.1.5. < ‘0
d) Exercise 2.3.2.

Exercise 2.7.2: Repeat Exercise 2.7.1 in the hierx

PLEASE
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*| Exercise 2.7.3: Suppose we have an entity-relatigliip diagram thhE n en!l:t
sets and m binary relationships. If we convert tk am YER Iy
model design, what are the largest and smallest num/ ks we might need? (o)
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Sharon
Stone

/

to
Basic
Instinct

N
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Armold
Schwarzenegger

|

to
Total
Recall

to -
Total
Recall

Basic Total

Instinct Recall

/ N\

to to to
Sharon Sharon Armold
Stone Stone Schwarzenegge

Figure 2.32: Hierarchical representation of maggs
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!! Exercise 2.7.4: Suppose we have an entity-relationship diagram with n entity
sets and m binary relationships. Give the largest and smallest number of virtual
record types necessary if this diagram is rendered in the hierarchical model?

! Exercise 2.7.5: How do your answers to Exercises 2.7.3 and 2.7.4 change if
the relationships are k-ary for some k > 2?

2.8 Summary of Chapter 2

¢ Design Notations: Database design often is carried out using either ‘the
Entity /Relationship model or an object-oriented model such as ODL {Ob-
ject Description Language). The E/R model is intended to be translated
into the model of a real database system, often the relational model. ODL
designs can either be treated the same way or serve as (almost) direct in-
put to an object-oriented database system.

4 Object Description Language: In this language we describe classes of ob-
jects by giving their attributes, relationships and methods. Attributes
are described by their data type. The type system of ODL includes con-
ventional base types such as integers and type construction by formation
of record structures, sets, bags, lists, and arrays. Relationships are de-
scribed by the class to which they connect and are a.llowed to be either
single-valued or multivalued.

¢ Entity/Relationship Diagrams: In the E/R model we describe entity sets,
their attributes, and relationships among entity sets. Members of entity
sets are called entities. We use rectangles, diamonds, and ovals to draw
entity sets, relationships, and attributes, respectively.

¢ Multiplicity of Relationships: In either ODL or E/R, it is useful to dis-
tinguish relationships by their multiplicity. Binary relationships can be
one-one, many-one, or many-many. Relationships among more than two
entity sets (classes) are permitted in E/R but not in ODL.

set(s) to identify its own entities. A spemal nota.tlon i
and rectangles with double borders is used to distigyyp

4 Good Design: Designing databases effectively cnr that we use our ¢
chosen notation (ODL or E/R, e.g.) to represenifthe real woléi.l, %E
using appropriate elements (e.g., relationshipEttributes),

avoid redundancy — saying the same thing twil€s or sa@@@@l’@@u LL
an indirect or overly complex manner. ? VERS'ON

+ Subclasses: Both ODL and E/R support a way t ribe special cases 's
of classes or entity sets. ODL has subclasses and Wi 'aonce while E/R &)
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uses a special relationship isa to represent the fact that one entity set is
a special case of another.

4+ Keys: Both ODL and E/R allow sets of attributes to be declared keys,
meaning that their values uniquely define an object or entity. ODL also
has a notion of object identifiers, which are values that uniquely identify
objects but are not accessible to the user.

4+ Network Model: This model is rarely used today. It is similar to E/R
diagrams restricted so that relationships are all binary and many-one.

4+ Hierarchical Model: This model also appears infrequently today. It re-
sembles the E/R model with entity sets arranged in a forest and with
many-one relationships from parent to child only.

2.9 References for Chapter 2

The original paper on the Entity /Relationship model is [3]. References {4] and [1
cover entity-relationship design extensively as well as some other models useful
for design.

The manual defining ODL is [2]. It is the ongoing work of ODMG, the
Object Data Management Group. This organization offers electronic access for
updated materials on ODL through their email address infoQodmg.org and
through their Web page: http://www.odmg.org.

1. Batini, C., S. Ceri, and S. B. Navathe, Conceptual Database Design, Ben-
jamin/Cummings, Redwood City, CA, 1992.

2. Cattell, R. G. G. (ed.), The Object Database Standard: ODMG-93 Release
1.2, Morgan-Kaufmann, San Francisco, 1996.

3. Chen, P. P., “The entity-relationship model: toward a unified view of
data,” ACM Trans. on Database Systems 1:1, pp. 9-36, 1966.

4. El Masri, R. and S. B. Navathe, Fundamentals of Database Sygtems, Ben-
jamin Cummings, Menlo Park, 1994.
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Chapter 3

The Relational Data Model

While the object-oriented and entity-relationship approaches to data modeling
that we discussed in Chapter 2 are useful and appropriate ways to describe the
structure of data, today’s database implementations are almost always based on
another approach, called the relational model. The relational model is extremely
useful because it has but a single data-modeling concept: the “relation,” a two-
dimensional table in which data is arranged. ‘We shall see in Chapter 5 how
the relational model supports a very high-level programming language called
SQL (structured query language). SQL lets us write simple programs that
manipulate in powerful ways the data stored in relations.

On the other hand, it is often easier to design databases using one of the
models we learned in Chapter 2. Thus, our first goal is to see how to trans-
late designs from ODL or E/R notation into relations. We shall then find that
the relational model has a design theory of its own. This theory, often called
“normalization” of relations, is based primarily on “functional dependencies,”
which embody and expand the concept of “key” discussed informally in Sec-
tion 2.5.1. Using normalization theory, we often improve our choice of relations
representing a particular database design.

3.1 Basics of the Relational MUue \&0 VERS/O

The relational model gives us a single way to replresent dat g&*\ ficen-
sional table called a relation. Figure 3.1 is an eX@uple of arelation. I he name of

the relation is Movie, and it is intended to hold #%e sam¢$5Q b B3 o)ad
is found in the simple ODL Movie class definitfi@ofé3ig. 2.3?%?§e 2.1,
which we reproduce here as Fig. 3.2. Note that tiis %miti i RS 16 kAl
definition of the Movie class and has only the &lifgh uxﬁtitle, year, length O

: &
and £ilmType. 'o/'/'n ‘. d ‘.-‘\1 G‘ .
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title | year | length | filmType
Star Wars

Mighty Ducks
Wayne’s World | 1992 | 85 color

Figure 3.1: The relation Movie

3.1.1 Attributes

Across the top of a relation we see attridbutes; in Fig. 3.1 the attributes are
title, year, length, and filmType. Attributes of a relation serve as names
for the columns of the relation. Usually, the attribute describes the meaning of
entries in the column below. For instance, the column with attribute length
holds the length in minutes of various movies.

1) interface Movie {

2) attribute string title;

3) attribute integer year;

4) attribute integer length;

5) attribute enumeration(color,blackAndWhite) filmType;
};

Figure 3.2: An ODL description of the class Movie

Notice that the attributes of the relation Movie in Fig. 3.1 correspond to the
structure elements called “attributes” in the ODL definition of Fig. 2.4. This
approach to selecting attributes for a relation is quite common. However, in
general there is no requirement that attributes of a relation correspond to any
particular components of an ODL or E/R description of data.

3.1.2 Schemas

The name of a relation and the set of attribytes for a ggzlat!
schema for that relation. We show the schema for the rela-,
name followed by a parenthesized list of its attribute
relation Movie of Fig. 3.1 is

&MM&R
e relation / O
e schema for
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Movie(title, year, length, film

Remember that, while the attributes in a relation schepita
in order to talk about relations we often must speci
the attributes. Thus, whenever we introduce a relation schl
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list of attributes, we shall take this ordering to be the standard order whenever
we display the relation or any of its rows.

In the relational model, a design consists of one or more relation schemas.
The set of schemas for the relations in a design is called a relational database
schema, or just a database schema.

3.1.3 Tuples

The rows of a relation, other than the header row containing the attributes, are
called taples. A tuple has one component for each attribute of the relation. For
instance, the first of the three tuples in Fig. 3.1 has the four components Star
Wars, 1977, 124, and color for attributes title, year, length, and £ilmType,
respectively. When we wish to write a tuple in isolation, not part of a relation,
we normally use commas to separate components, and we use parentheses to
surround the tuple. For example, '

(Star Wars, 1977, 124, color)

is the first tuple of Fig. 3.1. Notice that when a tuple appears in isolation, the
attributes do not appear, so some indication of the relation to which the tuple
belongs must be given. We shall always use the order in which the attributes
were listed in the relation schema.

Often, one can think of tuples as representing objects, while the relation to
which they belong represents their class. Surely that is the case for our example
relation; each tuple represents a movie object. The components of our tuples
and the properties of movie objects described by Fig 3.2 are identical. However,
we should be aware that objects have identity, while tuples do not. That is, in
principle an object-oriented representation of movies could have two different
movie objects with the same values in all attributes, although as we argued in
Example 2.23 we would not expect that to be the case for movies.

Relations, however, are sets of tuples, and it is not possible for a tuple to
appear more than once in a given relation. Thus, if a relation is to represent
a class of objects, we must be sure that the relation has a sufficient set of
attributes, so that no two objects could have the same values for all attributes

&a unique m

ﬁr example relatlo

PLEASE
The relational model requires that each comnot:%‘ %Q&% Etyr!iE,L

that is, it must be of some elementary type suty as=integey! FERSED) Iy is s
not permitted for a value to be a record structu: ist, array, or any other
type that can reasonably have its values broken inCesm: '151- components. 'I‘hls()
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not expect two movies to have both the same title a
worst case we may need to create an attribute that is a
of the object itself. For example, we could give el
“movie [D” and add movieID to the set of attrijs

3.1.4 Domains
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requirement is one of the ways that attributes in ODL may not be transiatable
directly into single attributes of a relation. For example, if an ODL attribute
name has type

Struct Name {string first, string last}

then there must be two attributes, first and last, in the corresponding rela-
tion. The matter is discussed more fully in Section 3.2.2.

It is further assumed that associated with each attribute of a relation is a
domain, that is, a particular elementary type. The components of any tuple of
the relation must have, in each component, a value that belongs to the domain of
the corresponding column. For example, tuples of the Movie relation of Fig. 3.1
must have a first component that is a string, second and third components that
are integers, and a fourth component whose value is one of the constants color
and blackAndWhite.

3.1.5 Equivalent Representations of a Relation

As we learned, both the schema and the tuples for a relation are sets, not lists.
Thus the order in which they are presented is immaterial. For example, we
can list the three tuples of Fig. 3.1 in any of their six possible orders, and the
relation is “the same” as Fig. 3.1. |

Moreover, we can reorder the attributes of the relation as we choose, without
changing the relation. However, when we reorder the relation schema, we must
be careful to remember that the attributes are column headers. Thus, when we
change the order of the attributes, we also change the order of their columns.
When the columns move, the components of tuples change their order as well.
The result is that each tuple has its components permuted in the same way as
the attributes are permuted.

For example, Fig. 3.3 shows one of the many relations that could be obtained
from Fig. 3.1 by permuting rows and columns. These two relations are consid-
ered “the same.” More precisely, these two tables are different presentations of
the same relation.

Notice the effect that permuting the attributes and columns has on tuples
in isolation.

Example 3.1: The tuples
(Star Wars, 1977, 124, color)

o VER
™ o

from Fig. 3.1 and

(1977, Star Wars, color, 173 PLEASE

from Fig. 3.3 represent the same object. Yet we gtid % Q%QE%‘,EULL

equivalence if we know the order of the attributes for tybi SP&E@R@WN s
Thus, it is generally advisable to select an order for ticEXtibutes of a relation [o)
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The Formal Notion of a Tuple

While we shall in this book express tuples as lists, with an understood
ordering for the attributes of each relation, there is a formal notion of a
tuple that allows us to avoid fixing the attribute order. A tupie may be
thought of as a function from the attributes of its relation’s schema to
values — the components of that tuple for those attributes. For instance,
the tuple represented two ways in Example 3.1 may be thought of as the
function:

title — Star Wars
year — 1977
length — 124
filmType — color

year | title | filmType | length
1991 | Mighty Ducks | color | 104
1992 { Wayne’s World | color 96
1977 | Star Wars color 124

Figure 3.3: Another presentation of the relation Movie

3.1.6 Relation Instances

A relation about movies is not static; rather, relations change over time. We
expect that these changes. involve the tuples of the relation, such as insertion
of new tuples as movies are added to the database, changes to existing tuples
if we get revised or corrected information about a movie, and perhaps deletion
of tuples for movies that are expelled from the database for some reason.

situations where we might want to add or delete attnr Z3. ges)
while possible in commercial database systems, are ¥ e 1@5;‘15,5 a.5§e
each of the perhaps millions of tuples need to beYyg7rifieWWo add or s‘ﬁfﬁo
components. If we are adding an attribute, it may, or even impossible
to find the correct values for the new component s}/ tupl

We shall call a set of tuples for a given relag@¥an mstancE oln"tE'aA gﬁa
For example, the three tuples shown in Fig. 3..iorm a@@ ;Eg @ &1@2

Movie. Presumably, the relation Novie has chagfal qrer time and will continue
to change over time. For example, in 1980, MovieQidPot corlfhiz [REE LN
Mighty Ducks or Wayne’s World. However, a{gaveronal database system O
maintains only one version of any relation: the sgfof %les that are in the ©

R
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Schemas and Instances

Let us not forget the important distinction between the schema of a re-
lation and an instance of that relation. The schema is the name and
attributes for the relation and is relatively immutable. An instance is a
set of tuples for that relation, and the instance may change frequently.

The schema/instance distinction is common in data modeling. For
example, in Chapter 2 we distinguished between ODL interface definitions,
which define the structure for a class of objects, and the set of objects in
that class. The interface definition is analogous to a schema, and a set
of objects of the defined class is an instance. Similarly, entity set and
relationship descriptions are the E/R model’s way of describing a schema,
while sets of entities and relationship sets form an instance of an E/R
schema. Remember, however, that when designing a database, a database
instance is not part of the design. We only imagine what typical instances
would look like, as we develop our design.

relation “now.” This instance of the relation is called the current instance.

3.1.7 Exercises for Section 3.1

Exercise 3.1.1: In Fig. 3.4 are instances of two relations that might constitute
part of a banking database. Indicate the following:

a) The attributes of each relation.

b) The tuples of each relation.

c) The components of one tuple from each relation.
d) The relation schema for each relation.

e) The database schema.

f) A suitable domain for each attribute.

g) Another equivalent way to present each relation.

* a) Three attributes and three tuples, like the rela

VERSION
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b) Four attributes and five tuples?

¢) n attributes and m tuples?
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acctNo | type | balance
12345 | savings | 12000
23456 | checking | 1000
34567 | savings | 26

The relation Accounts

firstName | lastName | idNo | account
Robbie | Banks 901-222 | 12345
Lena Hand 805-333 | 12345
Lena Hand 805-333 | 23456

The relation Customers

Figure 3.4: Two relations of a banking database

3.2 From ODL Designs to Relational Designs

Let us consider the process whereby a new database, such as our movie database,
is created. We begin with a design phase, in which we answer questions about
what information will be stored, how information elements will be related to
one another, what constraints such as keyness or referential integrity may be
assumed, and so on. This phase may last for a long time, while options are
evaluated and opinions are reconciled.

The design phase is followed by an implementation phase using a real
database system. Since the great majority of commercial database systems
use the relational model, we might suppose that the design phase should use
this model too, rather than the object-oriented ODL model or the E/R model
that we discussed in Chapter 2.

However, in practice 1t is often easier to sta.rt with one of the mopte

designs. We discuss the conversion from the 13
in Section 3.3. Then Section 3.4 will take up
cause ODL and the E/R model treat subcla®
differently, their conversions to relations are al

Often, we include constraints as part of a c‘at« b!ae
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in ODL or the E/R model, such as key constraints and referential integrity
constiaints, can also be expressed in the relational model. An important class of
constraints, called “functional dependencies” in the relational model, is deferred

to Section 3.5. The study of other kinds of constraints on relations begins in
Section 4.5.

3.2.1 From ODL Attributes to Relational Attributes

As a starting point, let us assume that our goal is to have one relation for each
class and for that relation to have one attribute for each property. We shall see
many ways in which this approach must be modified, but for the moment, let
us consider the simplest possible case, where we can indeed convert classes to
relations and properties to attributes. The restrictions we assume are:

1. All properties of the class are attributes (not relationships or methods).
2. The types of the attributes are atomic (not structures or sets).

Example 3.2: Figure 3.2 is an example of such a class. There are four at-
tributes and no other properties. These attributes each have an atomic type;
title is a string, year and length are integers, and filmType is an enumera-
tion of two values.

We create a relation with the same name as the class, Movie in this case.
The relation has four attributes, one for each attribute of the class. The names
of the relational attributes can be the same as the names of the corresponding
class attributes. Thus, the schema for this relation is

Movie(title, year, length, filmType)

as indicated in Section 3.1.1.

An object of the class has values for each of the four class attributes. We
may form a tuple for this object by using each attribute’s value as a component
of the tuple. We have already seen the result of this conversion. Figure 3.1 was
an example of the conversion of some Movie objects to tuples. O

3.2.2 Nonatomic Attributes in Classes

Unfortunately, even when a class’ proper’ties are all attrib

. relation for each field of the structure. The only possigk 3 ﬁgﬁ\s’:&"n@N
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interface Star {
attribute string name;
attribute Struct Addr

{string street, string city} address;
};

Figure 3.5: Class with a structured attribute

Representing Enumerations and Dates

ODL has some atomic types — enumerations and dates in particular —
that are not representable directly in the standard relational model. How-
ever, these types do not present fundamental problems. For example, an
enumeration is really a list of aliases for the first few integers. Thus, an
ODL enumeration type for the days of the week could be represented by
an attribute of type integer, with only the numbers 0 through 6 used.
Alternatively, an attribute of string type could be used, with days rep-
resented by strings "Mon", "Tues", and so on. Similarly, dates in ODL
can be represented in the relational model by an attribute of type string.
When we discuss the relational query language SQL in Chapter 5 we shall
find that this language supports attribute types that are enumerations or
dates, just as ODL does.

Example 3.3: Consider the preliminary definition of the class Star from Ex-
ample 2.3, which we reproduce here as Fig. 3.5. The attribute name is atomic,
but attribute address is a structure with two fields, street and city. Thus,
we can fepresent this class by a relation with three attributes. The first at-
tribute, name, corresponds to the ODL attribute of the same name. The second
and third attributes we shall call street and city; they correspond to the two
fields of the address structure and together represent an addressy Thes, the
schema for our relation is

Star(name, street, city)

An example instance of this relation with somegdes
Fig. 3.6. O

/,
%

si@ uples is shown in

PLEASE
However, record structures are not the most Cgiplex gm@i%iuiigml_
can appear in ODL class definitions. Values cajfdsoJoe built using type con-
structors Set, Bag, Array, and List. Each presaatsSits oW/ E=RESHGE g s
migrating to the relational model. We shall onlyffsic the Set constructor, @

which is the most common, in detail.

: ©
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name ] street cily

Carrie Fisher | 123 Maple St. | Hollywood
Mark Hamill 456 Oak Rd. Brentwood
Harrison Ford | 789 Palm Dr. Beverly Hills

Figure 3.6: A relation representing stars

A Note About Data Quality :-)

While we have endeavored to make example data as accurate as possible,
we have used bogus values for addresses and other personal information
about movie stars, in order to protect the privacy of members of the acting
profession, many of whom are shy individuals who shun publicity.

One approach to representing a set of values for an attribute A is to make
one tuple for each value. That tuple includes the appropriate values for all the
other attributes besides A. Let us first see an example where this approach
works well, and then we ghall see a pitfall.

Example 3.4: Suppese that class Star were defined so that for each star
we could record a set of addresses. The ODL class definition would look like
Fig. 3.7. Suppose next that Carrie Fisher also has a beach home, but the other
two stars mentioned in Fig. 3.6 have only one home. Then we may create two
tuples with name attribute equal to "Carrie Fisher", as shown in Fig. 3.8.
Other tuplés remain as they were in Fig. 3.6. O

The reader should be aware, however, that this technique of expanding a
set into several tuples can lead sometimes to a relation that is poorly designed.
In Section 3.7 we shall consider the problems that can arise and alsc leatn how
to redesign the database schema. For thé moment, let us simply consider an
example of the problems that can arise.

interface Star {
attribute string name;

attribute Set<
Struct Addr {string streetggfitring c1tBLEASE

> address; ORDER FULL
%& VERSION

Figure 3.7: Stars with a set of aduz:ses

o VER
O R0

};
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name street | city

Carrie Fisher | 123 Maple St. | Hollywood
Carrie Fisher | 6 Locust Ln. Malibu

Mark Hamill 456 Dak Rd. Brentwood
Harrison Ford | 789 Palm Dr. Beverly Rills

Figure 3.8: Allowing a set of addresses

Atomic Values: Bug or Feature?

It seems that the relational model puts obstacles in our way, while ODL
is more flexible in allowing structured values as properties. One might be
tempted to dismiss the relational model altogether or regard it as a prim-
itive concept that has been superseded by more elegant “object-oriented”
approaches such as ODL. However, the reality is that database systems
based on the relational model are dominant in the marketplace. One of the
reasons is that the simplicity of the model makes possible elegant and pow-
erful programming languages for querying databases. We shall introduce
abstract programming languages — Relational Algebra and Datalog —
in Sections 4.1 and 4.2. Perhaps more important is their embodiment in
SQL, the standard language used in most of today’s database systems.

Example 3.5: Suppose that we add birthdate as an attribute in the defi-
nition of the Star class; that is, we use the definition shown in Fig. 3.9. We
have added to Fig. 3.7 the attribute birthdate of type Date, which is one of
ODL’s atomic types. The birthdate attribute can be an attribute of the Star
relation, whose schema now becomes:

Star(name, street, city, birthdate)

Let us make another change to the data of Fig. 3.8. Sin,
can be empty, let us assume that Harrison Ford has nofX5|
Then the revised relation is shown in Fig. 3.10. %

Two bad things have happened in Fig. 3.10. Firty Ca@\, isher’s birthdé
has been repeated in each tuple. There is thus€&u! n@cy in the information
contained in this relation. Note that her name is 2Yso repeate) k@@ﬁ@eu-
tion is not true redundancy, because without #(:§rame agie @%n each tuple

we could not know that both addresses were assglsiated
ts bei
repiiﬁ?ﬁﬁ‘ﬂ! g

difference is that the star’s name is a key for
nd 13@1; part of a key for theoo

the relation and therefore should appear in ez
represented object, so repeating the birthdate is refstiva da;@l.l e(
ht-dr\™N

In contrast, the birthdate is data about the star
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interface Star {
attribute string nane;
attribute Set<
Struct Addr {string street, string city}

> address;
attribute Date birthdate;
};

Figure 3.9: Stars with a set of addresses and a birthdate
name | street | city birthdate
Carrie Fisher | 123 Maple St. | Hollywood | 9/9/99
Carrie Fisher | 5 Locust Ln. | Malibu 9/9/99

Mark Hamill 456 Oak Rd. Brentwood | 8/8/88

Figure 3.10: Adding birthdates

The second problem is that because Harrison Ford has an empty set of
addresses, we have lost all information about him. In particular, his birthdate
is not part of the relation, even though it would appear in the Star object for
Ford. Again, the reader should remember that neither of these problems is fatal
to our methodology for converting from ODL schemas to relational schemas.
However, we must be aware of problems such as these and fix the relational
schema by “normalization” methods described in Section 3.7. O

When there are several attributes of a class that have a collection type
(which we shall call a multivalued attribute), the number of tuples we need
to represent a single object can multiply. We need to create a tuple for each
combination of values for the multivalued attributes. We shall return to this
problem in Section 3.2.5 in the context of relationships with a collectioz, :

Besides record structures and sets, an ODL class definiiyon Gatild use Bag, / O
Array, or List to construct values. To represent a 13 n@iset), in which

a single object can be a member of the bag n times, ¥ cannot simmOSE
duce into a relation n identical tuples.! Instead, we@lld add to the relation

R FULL

1To be precise, we cannot introduce identical tuples into retz(ilis o ._he%BachEational
model described in this chapter. However, SQL-based relationalNVB!<8's do wfﬁ%&@N s
tuples; i.e., relations are bags rather than sets in SQL. See Secy and 0.4‘.- OUIts
of tuples are significant, we advise using a scheme such as that¥ /T
DBMS allows duplicate tuples.
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schema anothér attribute count representing the number of times that each
element is a member of the bag. For instance, suppose that address in Fig. 3.7
were a bag instead of a set. We could say that 123 Maple St., Hollywood is

Carrie Fisher’s address twice and 5 Locust Ln., Malibu is her address 3 times
by

name | sireet city count

Carrie Fisher | 123 Maple St. | Hollywood | 2
Carrie Fisher | 5 Locust Ln. Malibu 3

A list of addresses could be represented by a new attribute position, in-
dicating the position in the list. For instance, we could show Carrie Fisher’s
addresses as a list, with Hollywood first, by:

name | street | city | position

Carrie Fisher | 123 Maple St. | Hollywood | 1
Malibu 2

Carrie Fisher | 5 Locust Ln.
Finally, a fixed-length array of addresses could be represented by attributes
for each position in the array. For instance, if address were to be an array of
two street-city structures, we could represent Star objects as:

name | street! cityl street? | city2
Carrie Fisher | 123 Maple | Hollywood | 5 Locust | Malibu

3.2.4 Representing Single-Valued Relationships

Often, one ODL class definition will contain relationships to other ODL classes.
As an example, let us consider the full definition of the class Movie from Fig. 2.6,
which we reproduce here as Fig. 3.11.

interface Movie {

attribute string title;

attribute integer year;

attribute integer length;

attribute enumeration(color,bladilad’

relationship Set<Star> stars
inverse Star::stea

relationship Studio ownedBy
inverse Studio:

PLEASE
:2ns; ORDER FULL
2 VERSION

tt‘é‘};vie class

<
“ing-driN®

};

Figure 3.11: The complete definition [

o
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Let us focus first on the relationship ownedBy, which connects each movie
to the studio that produced it. Our first thought might be that a relationship
is like an attribute. We could create a relational attribute or attributes to
represent objects of the related class, in analogy to the way we represent an
ODL attribute whose value is a structure or a set of structures. In the case
of relationship ownedBy, we would put in the schema for relation Movie one
attribute for each property of the Studio class.

One problem with this approach is that Studio objects have a property
owns, which is a relationship back to the Movie class. To represent this rela-
tionship, each movie tuple would have to contain within it information about
all the other movies that its studio made. In principle, the information about
each of those movies includes its studio, which invites us to include all the in-
formation about that studio’s movies again. Clearly this solution involves great
complication, if it is feasible at all.?

A better approach is seen if we think about how objects are really stored
in a computer’s memory. When -an object O, contains within it a reference to
another object Oz, we do not copy O into O;. Rather, there is a “pointer”
within O, that points to O;.

However, the relational model does not have the notion of a pointer or
anything closely resembling pointers. Instead, we must simulate the effect of
pointers by values that represent the related objects. What we need is a set
of attributes of the related class that form a key. If we have one, we treat the
relationship as if it were the key attribute or attributes of the related class. An
example will illustrate the technique.

Example 3.8 : Let us suppose that nane is a key for class Studio, whose ODL
definition from Fig 2.6 is: '

interface Studio {
attribute string name;
attribute string address;
relationship Set<Movie> owns inverse Movie::ownedBy;

};

We may modify our relation schema for relation Movie, fréilyg @QA{IER S/

an attribute that represents the owning studio. We shz (ﬁ@? ily choose (o)
studioName to be this attribute. In Fig. 3.12 we see tWFsddteon of attribute ¢
PLEASE

studioName and some sample tuples. O
ORDER FULL
2While the chains of movies and studios never get outside on

k3P ERBION &
approach to the relationship stars and its inverse starredIn wgfiil gtZus from a movie to

its stars, to all the movies they starred in, to all the stars of thost®alyviedgand so on, quickly oo
taking us to almost all the stars and movies in the database. . 0/. . G‘ .
nt-drN
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title | year | length | filmType | studioName
Star Wars 1977 | 124 color Fox
Mighty Ducks 1991 | 104 color Disney
Wayne’s World | 1992 | 95 color Paramount

Figure 3.12: Relation Movie with new attribute representing the owning studio

3.2.5 Representing Multivalued Relationships

The relationship stars in Fig. 3.11 presents a problem not seen when we con-
sidered the relationship ownedBy. When the type of a relationship is a class,
we say that relationship is single-valued. Relationship ounedBy, whose type is
Studio, is an example of a single-valued relationship. However, when the type
of a relationship is some collection type applied to a class, we say that the rela-
tionship is multivalued. For instance, stars is multivalued, because its type is
Set<Star>. Put another way, any one-many or many-many relationship from
class A to class B is a multivalued relationship from A to B.

To represent a multivalued relationship we need to use a combination of two
techniques:

1. As for single-valued relationships, we must find a key to represent each
related object.

2. As for attributes with set values, we need to represent a set of related ob-
jects by creating one tuple for each value. Also like set-valued attributes,
this approach leaves us open to redundancy because other attributes of
the relation will have their values repeated once for each member of the
set. This problem will be fixed in Section 3.7, but we shall accept this
defect for the moment.

title | year | length | filmType | studioName | starName
Star Wars 1977 | 124 | color | Fox Ko 4®: Fisher

Star Wars 1977 | 124 color
Star Wars 1977 | 124 color
Mighty Ducks | 1991 | 104 color
Wayne'’s World | 1992 | 95 color

Wayne’s World | 1992 | 95 color
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starName, in which we shall put the name of one of the stars of each movie.
A movie is thus represented by as many tuples as it has stars listed in the
database. Some example data is shown in Fig. 3.13. Notice the redundancy; all

the other information about each movie is repeated once for each star of that
movie. 0O

Occasionally, a class will have more than one multivalued relationship. In
that case, the number of tuples needed to represent a single object of the class
explodes. Suppose there are multivalued relationships R, Rs, ..., R for a class
C. Then the relation for class C has attributes corresponding to all the at-
tributes of C' and attributes representing the keys of all the single-valued rela-
tionships of C. It also has attributes representing the keys of the target classes
for Ry, Rs,..., Ry, as usual.

Suppose one particular object o of class C is connected to n; objects through
relationship R), ny objects through relationship Rz, and so on. Then for every
choice of an object for R,, and object for R, and so on, we create one tuple
corresponding to object 0. As a result, there are n; x nz x --- x ny tuples for
this object in the relation constructed for class C.

Example 3.8 : Suppose the class C has a set of single-valued attributes X and
two multivalued relationships R; and R,. Let these relationships connect class
C to classes whose key attributes are sets Y and Z respectively. Now consider
an object ¢ of class C that is related by relationship R to objects with keys y;
and g, and related by relationship Ry to objects with keys 2, 22, and 23. Also,
let r represent the values of object ¢ in the set of attributes X.

Then object ¢ is represented in the relation constructed from class C by six
tuples. We can think of these tuples as

(z.1,21) (z,41,22) (z,9,23)
(z,42,21) (z,92,22) (x,92,23)

That is, the keys from Y are paired with the keys from Z in all possible ways.
O

3.2.6 What If There Is No Key?

An object-oriented model like ODL permits two objects jru:Prlasa © hME R S
exactly the same values for all properties. We thus must bilsrepgged to cope /O
with problems such as two stars that have the same nar{CH then name is

not a key for class Star, and we couldn’t use it to represgut stars in [@Eﬂ?g&SE

the Movie relation. Perhaps we could add other attrit{{{=s of stars to make a

key, but in principle there would be no guarantee that they: could@fRBPE=R FULL
stars with the same name, born on the same day, liviil4g:l % m
and so on for whatever other properties of stars we inclugs i.%the Aot ION

The only solution that is guaranteed to work is to iR 2fnew attribute
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to the relation. For example, if we were not sure that name was a key for stars,
we could invent a “certificate number” for each star that might be their mem-
bership number in the Actors’ Guild. Certificate numbers are unique because

a central authority is responsible for handing them out and keeping track of
what numbers have been used.

Example 3.9: If we adopted the approach of inventing a unique certificate
number for each star and using the certificate number as a key to represent a
star in relationships, then the Movie relation would look like:

title | year | length | filmType | studioName | cert#
“Star Wars | 1977 [ 124 | color | Fox | 12345

Here, we have shown only one tuple, and we suppose 12345 is the certificate
number for Carrie Fisher. The relation Star would have to include the cer-
tificate number attribute as well as all other information about stars that is
present, in the Star ODL class definition. For instance,

cert# | name street city starredIn

12345 | Carrie Fisher | 123 Maple St. | Hollywood | Star Wars

suggests the relation schema and one of several tuples for Carrie Fisher. O

3.2.7 Representing a Relationship and Its Inverse

In principle, when translating directly from ODL to the relational model, we
represent a relationship twice, once in each direction. Thus in Example 3.7 we
stored each star for a movie in a tuple that had that movie’s title. If we designed
a relation for class Star, we would represent the starredIn relationship by
creating for each star as many tuples as the movies they starred in, with the
title and year of each movie in one of those tuples (recall that title and year
together form the key for movies).

However, representing both the stars relationship and its inverse is redun-
dant. Either provides all the information that the other provides. Thus, for ex-
ample, we could omit starredIn mformatlon altogether from the

\ y;»roa.ch is preferab
However, when a separate relation for the relavlushi the best choice the¢
“normalization” process to be discussed in Sectiasdy 3.7 will RLE %pE‘a.te

t the relationship into it elation, even\i®ve did the, initial
;);atioen ;f ;. e::g,i ip into its own reiation {fi:\sinsﬁlﬁ lﬁtﬁl_

Note that in the ODL model, the relatiovk %1 %@Wth
needed, because they imply pointers from movic:Rio st S TO
to their movies. One cannot follow a pointer “Da a..v ,” 50 pointers in botho

<
7Iint-driN®

a third approach, in which the relationship and 1t in Mua a et@
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Representing Relationships in One Direction

When we have a binary relationship between two entity sets, there is a
choice of relation in which the relationship could appear: the relation for.
either entity set. Does it matter which we choose? If the relationship is
many-many or one-one, probably not. But if the relationship is many-one,
we recommend including the relationship with the “many”; i.e., with the
entity set of which many may be associated with one entity of the other
entity set. The reason is that we thereby avoid redundancy.

For example, the relationship Owns between Movies and Studios is
best placed with Movies. That way, the relation for Movies is given an
attribute for the name of the owning studio, and each tuple is extended
with that studio name. In contrast, if we added the relationship to the
relation for Studios we would have to expand each studio tuple into many
tuples, one for each movie the studio owned. As a result, all the other
information about each studio would be duplicated, once for each movie
it owned.

directions are needed.® However, the relational model, like the E/R model, rep-
resents relationships by associating values (the keys). Tuples containing pairs
of associated keys — for example, the title and year from a movie and the name
of a star — can be used to follow the relationship in either direction.

3.2.8 Exercises for Section 3.2

Exercise 3.2.1: Convert your ODL designs from the following exercises to
relational database schemas.

* a) Exercise 2.1.1.

b) Exercise 2.1.2 (include all four of the modifications specified by that ex-
ercise). :

c) Exercise 2.1.3. - VE
Q>§O RS/O

d) Exercise 2.1.4.

* e) Exercise 2.1.5.

PLEASE
ORDER FULL
B MENSION &

z, <
"Int-drN®

f) Exercise 2.1.6.

30f course one cannot be certain that a given ODL impleméeat:
“pointers” in the expected manner, so an implementation mighigh
sentation for the pair of inverse relationships.
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Pointers: Feature or Bug?

ODL relationships are presumably implemented by pointers-or references-
from each object to its related object or objects. That implementation is
very convenient, because it lets us get from an object to related objects
quickly. In comparison, the relational model, which represents “objects”
by the value of their key rather than by a pointer, seems to require slower
navigation from an object to related objects.

For example, a Movie object was represented in Example 3.7 by having
one tuple for each star of a movie; that tuple contained only the name of
the star, not all the information about the star. If we want to find the
addresses of the stars of Wayne’s World, we need to take the name of each
star and look in the Star relation for the tuple or tuples for that star.
There we shall find the address.

One might think therefore that the absence of pointers in the rela-
tional model was a “bug” of that model. However, in practice, we can
build indexes on relations that allows us to search very efficiently for tu-
ples having a given value in a given component (see Sections 1.2.1 and

- 8.7.7). Thus, little is lost by not using pointers in practice. Moreover,
while pointers are very useful in programs that run in main memory and
whose executions exist for seconds at most, databases are very different
from such programs. Implementing pointers among objects that exist for
years and that may be distributed across many secondary storage devices
attached to widely distributed computer systems is much more difficult.
Thus, a strong case can be made for the no-pointers approach of the rela-
tional model.

Exercise 3.2.2: Convert the ODL description of Fig. 2.7 to a relational data-
base schema. How does each of the three modifications of Exercise 2.1.8 affect
your relational schema?

Exercise 3.2.3: In Fig. 3.14 is an ODL definition offeXgE¥Ss S-
objects of this class we keep a set of phones of diffgjgents ‘ <,
fax) and a set of “referrals,” in which a customer igffial
other customers to the business. Convert this
database schema.

PLEASE
ORDER FULL

3.3 From E/R Diagrams td
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base schema is similar,.©
e';@hema However, 4‘n.
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Translation from an entity /relationship diagran®fe§:
to the translation from an ODL design to a datzl
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interface Customer {

attribute Struct Name

{string first, string last} name;
attribute Set<

Struct Phone {string type, int number}

> phones;
relationship Customer referredBy inverse referrals;
relationship Set<Customer> referrals

inverse referredBy;

};
Figure 3.14: Customer records

a sense, the E/R model represents an intermediate form between an object-
oriented design and a relational design. Thus, in starting from an E/R diagram,
some of the hard work has been done for us already. Two important differences
are:

1. In the E/R model, relationships are extracted as a separate concept,
rather than being embedded as properties of classes. This difference helps
us avoid the sort of redundancy that we found in Section 3.2.2 when we
chose to embed a multivalued relationship like stars in tuples represent-
ing Movie objects.

2. In ODL, attributes can have any collection type such as <Set>. The E/R
model, while being somewhat vague about what sorts of types are per-
mitted, is generally regarded as permitting structured values but not sets
or other collection type constructors.? As a result, a set-valued attribute,
such as a set of addresses for a star discussed in Example 3.4, would force
us, in the E/R model, to treat addresses as an entity-set and define a
relationship Lives-at to connect stars and their addresses.

3. In the E/R model, relationships are permitted to have attributes.
ODL, there is no corresponding notion.

3.3.1 From Entity Sets to Relations
Let us first consider entity sets that are not weak. Weggif:\] f{%’ up the mod- O

.3};% o=t
non-weak entity set, we shall create a relation of theggiie name Eﬁlﬁﬁ;’%E

same set of attributes. This relation will not have any; ndicaw WTU |_|_
elatio ps wit

tionships in which the entity set participates; we'll
separate relations, as discussed in Section 3.3.2. VERSION I
4However, there are some formulations of the E/R model 1IN awtly the same re- oo
strictions on attribute types that ODL has: a collection of structurgXir aryshing simpler. <+
S

“ing.driN
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Example 3.10: Consider the three entity sets Movies, Stars and Studios
from Fig. 2.8, which we reproduce here as Fig 3.15. The attributes for the
Movies entity set are title, year, length, and £ilmType. As a result, the

relation Movies looks just like the relation Movie of Fig. 3.1 with which we
began Section 3.1. O

Cite ) Cyeard Crame)  Gaddress>

Mavies |—— @ St
=

Studios

=y

Figure 3.15: E/R diagram for the movie database

Example 3.11: Now consider the entity set Stars from Fig. 3.15. There are
two attributes, name and address. Thus, we would expect the corresponding
Stars relation to look like

name | address
Carrie Fisher
Mark Hamill

Harrison Ford

This relation resembles the relation Star of ¥ig. 3.6 thaifkle Fer@t@dEad in
Example 3.3. However, the latter has three adj¢loutes, 3‘50 of which — street
and city — represent a structured address. Tk differ WHR 0)
have designed our E/R diagram of Fig. 2.8 toWt3te Sireet @ E Lt attributes
for the Stars entity set, thus making its corgSjocgding %R%Eﬁ ok s
exactly like relation Star of Fig. 3.6. O Q 00

ring.qrn®,
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3.3.2 From E/R Relationships to Relations

Relationships in the E/R model are also represented by relations. The relation
for a given relationship R has the following attributes:

1. For each entity set involved in relationship R, we take its key attribute
or attributes as part of the schema of the relation for R.

2. If the relationship has attributes, then these are also attributes of relation
R.

If one entity set is involved several times in a relationship, then we must rename
the attributes to avoid name duplication. Similarly, should the same attribute
name appear twice or more among the attributes of R itself and the entity sets
involved in relationship R, then we need to rename 1o avoid duplication..

Example 3.12: Consider the relationship Owns of Fig. 3.15. This relationship
connects entity sets Movies and Studios. Thus, for the relation schema of
relation Owns we use the key for Movies, which is title and year, and the key
of Studios, which is name. A sample of this relation is

title I year | studioName

Star Wars 1977 | Fox
Mighty Ducks | 1991 | Disney
Wayne’s World | 1992 | Paramount

We have chosen the attribute studioName for clarity; it corresponds to the
attribute name of Studios.

Notice how the relation above, plus the relation of Example 3.10 that we
constructed for the entity set Movies (and which is shown in Fig. 3.1), con-
tains exactly the information in the relation of Fig 3.12 that we constructed in
Example 3.6 for the class Movie, excluding its stars property. O

Example 3.13: Similarly, the relationship Stars-In of Fig. 3.15 can be trans-
formed into a relation with the attributes title and year (the key for Hov:.e) _
and attribute starName which is the key for entity set Stars Figure 3.18)s

tributes of the Star class (attributes length and filry
schema of Fig. 3.13.

It seems that the year is redundant in Fig. 3.16!
because these movie titles are unique. Had there bee
same title, like "K'ing Kong", we would see that the
out which stars appear in which version of the movie,

everal m@h@ﬁh@E

" SRBER FULL
% v VERSION &

Observe several advantages to the database schemtlt
from an E/R diagram, compared to what we get startul @ lt]!ﬁn ODL design. )

©ring.drin®y



3.3. FROM E/R DIAGRAMS TO RELATIONAL DESIGNS 107

title year | starName
Star Wars 1977 | Carrie Fisher
Star Wars 1977 | Mark Hamill
Star Wars 1977 | Harrison Ford

Mighty Ducks | 1991 | Emilio Estevez
Wayne’s World | 1992 | Dana Carvey
Wayne’s World | 1992 | Mike Meyers

Figure 3.16: A relation for relationship Stars-In

o Relations are often “normalized,” meaning that they avoid some of the
redundancy present in design directly from the ODL description.

o Two-way ODL relationships are replaced by a single relation representing
the relationship in both directions.

Stars Movies
Contracts
Studio Producing
of star studio
Studios

Figure 3.17: The relationship Contracts

Example 3.14: Multiway relationships are also ¢ e:v(; to r%ﬁam;
Consider the four-way relationship Contracts of Fis3 éﬁeproduced here aso
Fig. 3.17, involving a star, a movie, and two stiliiios ~'the ﬁrst holding the ¢
star’s contract and the second contracting for tha/#tar’s servi sg&

We represent this relationship by a relation ColX3sacts ﬁ'ﬁ
of the attributes from the keys of the following faltr enti ﬁlﬁ!ﬁ Cﬁﬂfﬁ_L
VERSION

2. The key consisting of attributes title and yeVa mA;le movie.

<
7int-driN®

1. The key starName for the star.
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ODL-to-Relations Revisited

As we have seen, the result of translating relationships in the E/R model
to relations sometimes gives us a more appropriate relational database
schema than does the translation of ODL relationships to relations. How-
ever, we are free to borrow the E/R technique of separating out a many-one
or many-many relationship as a separate relation. That will avoid the re-
dundancy and explosion in the number of tuples that sometimes occurs
when we try to implement a multivalued ODL relationship with the class
for which it is defined. Let us again remind the reader, however, that
Section 3.7 gives us a mechanical way to fix the relation schemas that we
get directly from ODL.

3. The key studioOfStar indicating the name of the first studio; recall we
assume the studio name is a key for the entity set Studio.

4. The key producingStudio indicating the name of the studio that will
produce the movie using that star.

Notice that we have been inventive in choosing attribute names for our relation
schema, avoiding “name” for any attribute, since it would be unobvious whether
that referred to a star’s name or studio’s name, and in the latter case, which
studio. DO

3.3.3 Handling Weak Entity Sets

When a weak entity set appears in an E/R diagram, we need to do three things
differently.

1. The relation for the weak entity set W itself must include not only the
attributes of W but also the key attributes of the other entity sets that
help form the key of W. These helping entlty sets are easnly recogmzed

from W.
2. Any relationships in which the weak entity set

entity set W to other entity sets that help providijthe ke Eﬁn&éﬁu LL
be converted to a relation at all. The justificz3lh igsthat the attnbutes

for such a relationship will always be a subset 8} tfz attrigieFD WO N g
weak intity set W itself, and thus these relations/iijs5j] ide no additional (o)
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Of course, when introducing these additional attributes to build the key of a
weak entity set, we must be careful not to use the same name twice. If necessary,
we rename some or all of these attributes.

Example 3.15: Let us consider the weak entity set Crews from Fig. 2.27,
which we reproduce here as Fig. 3.18. From this diagram we get three relations,
whose schemas are:

Studios(name, addr)
Crews (number, studioName)
Unit-of (number, studioName, name)

The first relation, Studios, is constructed in a straightforward manner from
the entity set of the same name. The second, Crews, comes from the weak entity
set Crews. The attributes of this relation are the key attributes of Crews; if there
were any nonkey attributes for Crews, they would be included in the relation
schema as well. We have chosen studioName as the attribute in relation Crews
that corresponds to the attribute name in the entity set Studios.

= (=) (w0
Crews Studios

Figure 3.18: The crews example of a weak entity set

The third relation, Unit-of, comes from the relationship of the same name.
As always, we represent an E/R relationship in the relational model by a relation
whose schema has the key attributes of the related entity sets. In this case,
Unit-of has attributes number and studioName, the key for weak entity set
Crews, and a.ttnbute name, the key for entlty set Stud:os However, notice that

PLEASE
ORDER FULL
VERSION &

-étudioﬂame and name ob

o

As a consequence, we can “merge” the atty
Unit-of, giving us the simpler schema:

Oring.qrin®
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Unit-of (number, name)

However, now we can dispense with the relation Unit~of altogether, since its
attributes are a'subset of the attributes of relation Crews. 0O

Contracts
Movie-of
Studios Movies

= & ‘ k‘ L5

Figure 3.19: The weak entity set Contracts

Example 3.16: Now consider the weak entity set Contracts from Example 2.31
and Fig. 2.28 in Section 2.6.1. We reproduce this diagram as Fig. 3.19. The
schema for relation Contracts is

Contracts(starName, studioName, title, year, :IAl

These attributes are the key for Stars, suitably renamed, W%: %»Qtudws, S/O
suitably renamed, the two attributes that form the keyggi &g?fes, and the

Th

would have a schema that is a proper subset of that for & B FULL
Incidentally, notice that the relation we obtain is e&Milye: le sa.me as what

L MERSION

0 gztars, movies, (o)

& O PR
“int.driN®

we would obtain had we started from the E/R diagram
that figure treats contracts as a three-way relationship:
and studios, with a salary attribute attached to Contracts.
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The phenomenon observed in Examples 3.15 and 3.16 — that the double-
diamond relationship needs no relation — is universal for weak entity sets. The
relation for the weak entity set E has a schema that includes the schema of the
relations constructed from any of the “double diamond” relationships R that
are many-one from E to one of the other entity sets that help form E’s key. The
reason is that the relation for E includes the key attributes for £, and these
include all the key attributes for the two entity sets connected by R. Thus, we
can state the following modified rule for weak entity sets.

o If E is a weak entity set, construct for E a relation whose schema consists
of all the key attributes for ¥, including those attributes that are keys of
“helping” entity sets related to E by a many-one relationship.

e Do not construct a relation for any relationship that is many-one from
a weak entity set to another entity set, provided that relationship is a
“double-diamond” relationship that helps provide the key for the weak
entity set.

3.3.4 Exercises for Section 3.3

* Exercise 3.3.1: Convert the E/R diagram of Fig. 3.20 to a relational database
schema.

' Bookings
toCust \Q toFlt |

Customers Flights

@@

Crame> (o) VE R
AN S’o

Figure 3.20: An E/R diagram Z3vout alrlln'i@LEASE

* 3 The E/Rd f Fig. 3 ORDER FULId-
Exercise 3.3.2: The iagram of Fig. 3.7 ents sai
to be sisters if they were designed from the sanl % itzgﬁlgj @E

to a relational database schema.

,o,. /nt. dr\"e(
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Ships

The The
ship sister

<P

Figure 3.21: An E/R diagram about sister ships

v

Exercise 3.3.3: Convert the following E/R diagrams to relational database
schemas.

a) Figure 2.28.
b) Your answer to Exercise 2.6.1.
c) Your answer to Exercise 2.6.4(a).

d) Your answer to Exercise 2.6.4(b).

3.4 Converting Subclass Structures to Relations

Object-oriented and E/R models treat the notion of subclasses slightly differ-
ently. This difference leads to two different ways to organize relations that
represent a hierarchy of classes. Recall that the distinction is:

attributes and relationships.

ORDER FULL

Let us see how these two viewpoints encourage diffeZ:14st: tegleq‘ %? g'q
sign of a relational database schema. It should be born 2 md %N S
the ODL nor E/R models force one or the other appr:: ', g;.h can choose an O

approach tailored to the other model if we prefer. 'o (
~dr\
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3.4.1 Relational Representation of ODL Subclasses

First, let us see a technique for turning a hierarchy of ODL subclasses into
relation schemas. The principle we shall follow is:

¢ Every subclass has its own relation.

¢ In this relation are represented all the properties of that subclass, includ-
ing all its inherited properties.

Example 3.17: Let us consider the hierarchy of four classes from Fig. 2.22.
Recall these classes were:

1. Movie, the broadest class. It is the class discussed in numerous examples
of this chapter.

2. Cartoon, a subclass of Movie, with one additional property: a relationship
that is a set of stars called voices.

3. MurderNystery, another subclass of Movie, with an additional attribute:
weapon.

4. Cartoon-MurderMystery, a subclass of both Cartoon and MurderMyst-
ery, with no additional subclasses but (naturally) all the properties of its
three superclasses.

The schema for Movie is as before:
Movie(title, year, length, filmType, studioName, starName)

Some typical tuples appeared in Fig. 3.13. For Cartoon we add to the six
attributes of the Movie schema the voice attribute, giving us a seven-attribute
schema:

Cartoon(title, year, length, filmType,
studioName, starName, voice)

For MurderMystery we have another relation with the six attributes gfMovie,

MurderMystery(title, year, length, fi
studioName, starName, veapon)
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3.4.2 Representing Isa in the Relational Model

The philosophy behind isa hierarchies in the E/R model is that the hierarchy
is populated by entities that are related by isa relationships. Therefore, it
is natural to create a relation for each entity set and give that relation the
attributes of that entity set alone. However, to identify the entities associated
with each tuple, we need to include the key attributes for each of the entity
sets. As a result, the information for a member of some subclass is scattered
around several relations, but that would probably be the case anyway because
of the way the E/R-to-relational transformation splits information about E/R
attributes and relationships into separate relations.

There is no relation created for an isa relationship. Rather, the isa relation-
ship is implicit in the fact that related entities have the same key values.

length @ @ filmType

to Stars

>

Cartoons

Movies

183 1832 weapo

Murdes-
Mysteries

Figure 3.22: The movie hierarchy

Example 3.18: Let us work the hierarchy of Fig. 2.22 in the E/R model.
Recall that the relevant part of the E/R diagram was shown in Fig. 223, whi

) Ms MEQ—S/O
Q (4

part of the diagram are:

1. The relation Movies{title, year, length, fi
lation discussed in Example 3.10.
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4. The relation Voices(title, year, name) that corresponds to the rela-
tionship Voices between Stars and Cartoons. The last attribute is the key
for Stars and the first two form the key for Cartoons.

Notice that there is no entity set in Fig. 3.22 corresponding to the class
Cartoon-MurderMysteries. Hence, unlike the relational design of Example
3.17, there is no special relation for movies that are both cartoons and murder
mysteries. For a movie that is both, we obtain its voices from the Voices rela-
tion, its weapon from the MurderMysteries relation, and all other information
from the Movies relation or from the relation for one of the relationships in
which entity sets Movies, Cartoons, and MurderMysteries are involved.

Notice also that the relation Cartoons has a schema that is a subset of the
schema, for the relation Voices. In many situations, we would be content to
eliminate the relation Cartoons, since it appears not to contain any informa-
tion beyond what is in Voices. However, there may be silent cartoons in our
database. Those cartoons would have no voices, and we would therefore lose
the fact that these movies were cartoons. In fact, the same problem occurs
differently in the relation Cartoons from Example 3.17, where if there are no
voices, then there is no mention of the cartoon. This problem can be solved by
normalization, as discussed in Section 3.7. O

3.4.3 Comparison of Approaches

Each of the approaches of Sections 3.4.1 and 3.4.2 present their own problems.
The ODL translation keeps all properties of an object together in one relation.
However, it forces us to search several relations should we want to find an object.
For example, using the database schema of Example 3.17, to find the length of
a movie we must search four different relations, until we find the relation for
the class the movie is in.

On the other hand, the E/R translation repeats the key for an object once
for each of the entity sets or relationships to which that object (entity) belongs.
That repetition wastes space. Further, we may have to look in several relations
to get information about a single object. That would be the case, for example,
if in the database schema of Example 3.18 we wanted the lengthgand gue
used for a murder mystery.

3.4.4 Using Null Values to Combine (i3/at}

There is one more approach to representing infafge ti(@%out a hierarchy of ¢
classes. We may use a special null value, denoted JIULL. Whe I?A?Em
the component of a tuple for some attribute, it€ulans mformally that there is

no appropriate value for that attribute of that tajele. W!@ﬁ@ EﬁtFﬂLﬂh&L

traditional relational model, nulls are in fact vé i an , inent
s WERSTOR

role in the query language SQL, as we shall see in
If we are allowed to use NULL as a value in @&)es, &ve can handle a hier- O
archy of classes with a single relation. This relation®: %nbutes for all th%;.

“int.griN®
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- () G

Lab
Courses

computer
allocation

Figure 3.23: E/R diagram for Exercise 3.4.1

properties possessed by objects in any of the classes of the hierarchy. An object
is then represented by a single tuple. This tuple has NULL in each attribute
corresponding to a property that does not belong to the object’s class.

Example 3.19: If we applied this approach to the problem of Example 3.17,
we would create a single relation whose schema is:

Movie(title, year, length, filmType, studioName,
starName, voice, weapon)

A movie like Whe Framed Roger Rabbit?, being both a cartoon and a murder
mystery, would be represented by several tuples that had no NULL’s; there would
be one tuple for each “voice.”® On the other hand, The Little Mermaid, being a
cartoon but not a murder mystery, would have NULL in the weapon component.
Murder on the Orient Ezpress would have NULL in the voice attribute, while

Gone With the Wind would have NULL'’s in both voice and weapon attributes.
a

Notice that like the approach of Section 3.4.2, this approacdi}e S
find in one relation tuples from all classes in the hierarchy. @i d
t @foe&mgo'é?s o

like the approach of Section 3.4.1, it also allows us to fadg:\

about an object in one relation.

3.4.5 Exercises for Section 3.4 PLEASE
Exercise 3.4.1: Convert the E/R diagram of Fig. 3.221to a r¢@{R) PATbE J|_L

schema.
VERSION os

ha étuples for each star-
tuslhuifs30 voices and other (&)
*

. " <
“int.driN®

5 Actually, Roger Rabbit, having both stars and voices,
voice pair. A pure cartoon would need NULL in the starName a
information could be recorded.
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interface Course {
attribute int number;
attribute string room;
relationship Dept deptOf inverse Dept::coursesOf;

};

interface LabCourse : Course {
attribute int computerAlloc;

};

interface Dept {
unique attribute atring name;
attribute string chair;
relationship Set<Course> courses0f
inverse Course::dept0Of;

Figure 3.24: An ODL description of courses and lab courses

Exercise 3.4.2: In Fig. 3.24 is an ODL description of a schema similar to the
E/R diagram of Exercise 3.4.1. Convert it to a relational database schema.
Remember that Course objects have an “object identity,” and you may invent
an attribute representing this OID, e.g., CourseID. You should not, in this
exercise, mimic the strategy used to convert a weak entity set in Exercise 3.4.1
{although in principle you could do so if you wished).

Exercise 3.4.3: Convert your ODL designs from the following exercises to
relational database schemas.

* a) Exercise 2.4.1.

b) Exercise 2.4.4.

Exercise 3.4.4: Convert your E/R designs from th
relational database schemas.

2 follopyn! %eﬁiﬁ Q
@6 Sy,
& %

PLEASE

* a) Exercise 2.4.3.

b) Exercise 2.4.4.

schema.

VERSION

! Exercise 3.4.6: How would the relational dat{{ift: schema of Exercise 3.4.5 O

differ if we had started from the corresponding OD

[ — B o
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ChildOf

FatherOf

Figure 3.25: E/R diagram for Exercise 3.4.5

3.5 Functional Dependencies

The most important kind of constraint that we deal with in the relational model
is 2 unique-value constraint called a “functional dependency.” Knowledge of
this type of constraint is vital for the redesign of database schems s
redundancy, as we shall see in Sectlon 3.7. There are alsaps

PLEASE

Yy

ORDER FULL
A functional dependency on a relation R is a stafaulngof th s;i?fi
tuples of R agree on attributes A;, Az,..., A, (i.e, ta lesG;M(EE N s
values in their respective components for each of th<: tt@utes) then they
must also agree in another attribute, B.” We write thitNdepexslency formally (

nt-driN®




3.5. FUNCTIONAL DEPENDENCIES 119

as A;A;--- A, — B and say that “A,, A,,..., A, functionally determine B.”

If a set of attributes A4y, A4, ..., A, functionally determines more than one
attribute, say

A1A2"'An - B]
A1A2'-°An —> Bz

A1A2"'An - B,
then we can, as a shorthand, write this set of dependencies as
AjAy -+ A, - ByBy--- By,

Figure 3.26 suggests what this functional dependency tells us about any two
tuples ¢ and u in the relation R.

1 |
— Al el— g =P
}

Iftand Then they
uagree must agree
here, here

e e e e o o e o e .-

Figure 3.26: The effect of a functional dependency on two tuples.

we can assert the three dependencies

title year — length
title year — filmTyp,
title year — studf{d.Lme

PLEASE
ORDER FULL

Since the three dependencies each have the sarif{BLftegide, title andsyear we
can summarize them in one line by the shorthan ON s
O

title year — length filmType gidhd w@me

<
“int.driN®
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Functional Dependencies Tell Us About the Schema

Remember that a functional dependency, like any constraint, is an asser-
tion about the schema of a relation, not about a particular instance. If
we look at an instance, we cannot tell for certain that a functional depen-
dency holds. For example, looking at Fig. 3.27 we might suppose that a
dependency like title — £ilmType holds, because for every tuple in this
particular instance of the relation Movie it happens that any two tuples
agreeing on title also agree on filmType.

However, we cannot claim this functional dependency for the relation
Movie. Were our instance to include, for example, tuples for the two
versions of King Kong, one of which was in color and the other in black-
and-white, then the proposed functional dependency would not hold.

Informally, this set of functional dependencies says that if two tuples have
the same value in their title components, and they alsc have the same value
in their year components, then these two tuples must have the same values in
their length components, the same values in their £ilmType components, and
the same values in their studioName components. This assertion makes sense
if we remember the original design from which the Movie relation schema was
developed. Attributes title and year form a key for movie objects. Thus, we
expect that given a title and year, there is a unique length for the movie, a
unique film type, and a unique owning studio.

title | year | length | fiimType | studioName | starName

Star Wars 1977 | 124 color Fox Carrie Fisher
Star Vars 1977 | 124 color Fox Mark Hamill
Star Vars 1977 | 124 color Fox Harrison Ford
Mighty Ducks | 1991 | 104 color Disney Emilio Estevez
Wayne’'s World | 1992 | 95 color Paramount .
Wayne’s World | 1992 | 95 color Paramount

Figure 3.27: The relation Movie

On the other hand, we observe that the stateme

PLEASE
ORDER FULL

is false; it is not a functional dependency. We mif{{]hzge expected that de-
pendency to hold, given that title and year form a = mowbi= [

because of how the Movie class was defined, it is oni{R3q1€ %pat for each movie (o)
there is a uniquely determined set of stars. When we coo mﬂ from ODL to

"int.qrN® g

title year — starNam:
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the relational model, we had to create several tuples for each movie, and each
tuple had a different star. Thus, even though all these tuples agree in the other
properties of the Movie class, they do not agree on the star’s name. 0O

3.5.2 Keys of Relations

We say a set of one or more attributes {A, Aa,...,An} is a key for a relation
if:

1. Those attributes functionally determine all other attributes of the rela-

tion. That is, it is impossible for two distinct tuples of R to agree on all
OfAl,Az, .- .,An.

2. No proper subset of {A;, As,...,A,} functionally determines all other
attributes of R; i.e., a key must be minimal.

When a key consists of a single attribute A, we often say that A (rather than
{A}) is a key.

Example 3.21: Attributes {title, year, starName} form a key for the Movie
relation of Fig. 3.27. First, we must show that they functionally determine all
the other attributes. That is, suppose two tuples agree on these three attributes:
title, year, and starName. Because they agree on title and year, they must
agree on the other attributes — length, filmType, and studioName — as we
discussed in Example 3.20. Thus, two different tuples cannot agree on all of
title, year, and starName; they would in fact be the same tuple.

Now, we must argue that no proper subset of {title, year, starName}
functionally determines all other attributes. To see why, begin by observing
that title and year do not determine starName, because many movies have
more than one star. Thus, {title, year} is not a key.

{year, starName} is not a key because we could have a star in two movies
in the same year; thus

year starName — title

is not a functional dependency. Also, we claim that {titlepsts
a key, because we could have two movies with the samgatit/[3
years. Conceivably, these two movies could have a stighi
frankly we cannot think of an example.® O

Sometimes a relation has more than one keyS@i? so,g? is common to desig-
nate one of the keys as the primary key. In compailercial data% @g%ﬁsﬁhe

choice of primary key can influence some impl entati% ﬁlﬁﬁﬁh r:_s'jri:rl_
the relation is stored on disk.

SRemember that functional dependencies are assumptityls %serﬁ t 3 Al Ihe s
data. There is no external authority we can appeal to fogf¥\ allute decision as to whether o
a dependency holds or not. Thus, we are free to make Wrigoladizible assumptions we wisho

bout which dependencies hold. . .
about which dependenc 0/.int.dr“\le‘

PO
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What Is “Functional” About Functional
Dependencies?

AjAz--- A, — Biscalled a “functional” dependency because in principle
there is a function that takes a list of values, one for each of attributes
Ay, Ay, ..., A, and produces a unique value (or no value at all) for B. For
example, in the Movie relation, we can imagine a function that takes a
string like "Star Wars" and an integer like 1977 and produces the unique
value of length, namely 124, that appears in the relation Movie. However,
this function is not the usual sort of function that we meet in mathematics,
because there is no way to compute it from first principles. That is, we
cannot perform some operations on strings like "Star Vars" and integers
like 1977 and come up with the correct length. Rather, the function is only
computed by lookup in the relation. We look for a tuple with the given
title and year values and see what value that tuple has for length.

-

3.5.3 Superkeys

A set of attributes that contains a key is called a superkey, short for “superset
of a key.” Thus, every key is a superkey. However, some superkeys are not
(minimal) keys. Note that every superkey satisfies the first condition of a key: it
functionally determines all other attributes of the relation. However, a superkey
need not satisfy the second condition: minimality.

Example 3.22: In the relation of Example 3.21, there are many superkeys.
Not only is the key

{title, year, starName}
a superkey, but any superset of this set of attributes, such as
{title, year, starName, length}

is a superkey. O

"3.5.4 Discovering Keys for Relations

When a relation schema was developed by converting an{QPi \@Qde\s{ggt@ S/
relations, we can often predict the key of the relationg t%’ction, we shall O¢
consider the relations that come from E/R diagramsigecti SﬁdgzﬁﬁE
the situation when the relations come from ODL dggtass.

When the relation comes from either an ODL o lE/R @ﬁmufeu LL
common (although not certain) that there is onlygul: ksy 0r each Telation.
%s ERSIBN &

Qur first rule about inferring keys is:
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Other Key Terminology

In some bocks and articles one finds different terminology regarding keys.
One can find the term “key” used the way we have used the term “su-
perkey,” that is, a set of attributes that functionally determine all the
attributes, with no requirement of minimality. These sources typically use
the term “candidate key” for a key that is minimal — that is, a “key” in
the sense we use the term.

¢ If the relation comes from an entity set then the key for the relation is
the key attributes of thijs entity set or class.

Example 3.23: In Examples 3.10 and 3.11 we described how the entity sets
Movies and Stars could be converted 1o relations. The keys for these entity sets
were {title, year} and {name}, respectively. Thus, these are the keys for the
corresponding relations, and

Movies(title, year, length, filmType)
Stars(pame, address)

are the schemas of the relations, with keys indicated by underline. O

Our second rule concerns binary relationships. If a relation R is constructed
from a relationship, then the multiplicity of the relationship affects the key for
R. There are three cases:

o If the relationship is many-many, then the keys of both connected entity
sets are the key attributes for R.

e If the relationship is many-one from entity set E; to entity set Ez, then
the key attributes of E; are key attributes of R, but those of Ey are not.

o If the relatlonshlp is one-one, then the key attributes. for either of the

key for R.

The schema for ans with key attributes undefiutd, is thus

ORDERFULL
VERSION &

, relationship Sters-in @
NS gg relation

7Iing. dr\‘le

between Movies and Stars. Now, all attributes of th
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Other Notions of Functional Dependencies

We take the position that a functional dependency can have several at-
tributes on the left but only a single attribute on the right. Moreover,
the attribute on the right may not appear also on the left. However, we
allow several dependencies with a common left side to be combined as a
shorthand, giving us a set of attributes on the right. We shall also find it
occasionally convenient to allow a “trivial” dependency whose right side
is one of the attributes on the left.

Other works on the subject often start from the point of view that
both left and right side are arbitrary sets of attributes, and attributes may
appear on both left and right. There is no important difference between
the two approaches, but we shall maintain the position that, unless stated
otherwise, there is no attribute on both left and right of a functional
dependency.

Stars-in(title, year, starName)

are key attributes. In fact, the only way the relation from a many-many rela-
tionship could not have all its attributes be part of the key is if the relationship
itself has an attribute. Then, those attributes are omitted from the key. O

Finally, let us consider multiway relationships. Since we cannot describe all
possible dependencies by the arrows coming out of the relationship, there are
situations where the key or keys will not be obvious without thinking in detail
about which sets of entity sets functionally determine which other sets. One
guarantee we can make, however, is

e If a multiway relationship R has an arrow to entity set E, then there is at
least one key for the corresponding relation that excludes the key of E.

3.5.5 Keys for Relations Derived from ODL

there also may be no key at all among the attributes. I
troduce into the relation an a.ttribute that is a surrogatg

gﬂ\b ject 1dent|ﬁer O¢

However, whether the ODL class has a key for 1led from its om%ljﬁnga@ﬁ
or we must use the surrogate object ID as a key, ther g r&mm LL
under which the key attributes for the class are noig¢Rkey fo
reason is that using the approach to translation fro to re ]%W%‘EW
have adopted, we sometimes put too much into a si lOl'l e pro

arises when the class has relations as part of its deﬁm .

'o’.'ht dr\‘le‘
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First, suppose a class C has a single-valued relationship R to some class D.
Then as suggested in Section 3.2.4, we include the key for IJ in the relation for
C. The key for C is still a key for the corresponding relation.

The problem case is when C has a multivalued relationship R to some class
D. If the inverse of R is single-valued in the opposite direction (i.e., R is a one-
many relationship) then, as suggested in the box “Representing Relationships
in One Direction” in Section 3.2.7, we may represent (the inverse of) R in the
relation for D only. The inverse of R presents no problem for D, because in D
it is single-valued.

However, suppose that R is many-many, i.e., it and its inverse are multival-
ued in both C and D. Then the relation constructed for C may have several
tuples representing one. object of class C'. As a result, the key for C' is not a
key for the corresponding relation. Rather, we have to add the key for D to
the key for C to make the key for the relation.

Example 3.25: In Example 3.7 we constructed the relation for ODL class
Movie by adding to the attributes for Movie

1. The key studioName for class Studio, to which Novie is connected by
single-valued relationship ownedBy and

2. The key starName for class Star (to which Movie is related by multivalued
relationship stars).

The first of these, being from a single-valued relationship, does not affect the
key for the relation Movie. However, the second, being from a multivalued
relationship, must be added to the key for relation Movie, which therefore
becomes

{title, year, starName}

An examination of the sample Movie relation in Fig. 3.13 reveals that title and
year by themselves are not a key, but suggests that the addition of starName
is sufficient to form a key. O

¢
a key for the correspondmg relation if we fOllgv the iﬁm%m
relations given in Section 3.2, we often need o drepair

by this simple approach. The improvement orad vs%latm E‘%S m
in Section 3.7. There, we shall see that it is zleg to y

many relationships from the relation for either Githe onnected classes. Th%

rin. drine’s
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resulting collection of relation schemas will look more like those we get directly
from many E/R designs.”

3.5.6 Exercises for Section 3.5

Exercise 3.5.1: Consider a relation about people in the United States, includ-
ing their name, Social Security number, street address, city, state, ZIP code,
area code, and phone number (7 digits). What functional dependencies would
you expect to hold? What are the keys for the relation? To answer this ques-
tion, you need to know something about the way these numbers are assigned.
For instance, can an area code straddle two states? Can a ZIP code straddle
two area codes? Can two people have the same Social Security number? Can
they have the same address or phone number?

Exercise 3.5.2: Consider a relation representing the present position of mole-
cules in a closed container. The attributes are an ID for the molecule, the z, y,
and z coordinates of the molecule, and its velocity in the z, y, and z dimensions.
What functional dependencies would you expect to hold? What are the keys?

Exercise 3.5.3: In Exercise 2.3.2 we discussed four different assumptions
about the relationship Births. For each of these, indicate the key or keys of
the relation constructed from this relationship.

! Exercise 3.5.4: Suppese R is a relation with attributes A4;, Ag,...,A,. Asa
function of n, tell how many superkeys R has, if:

* a) The only key is A;.
b) The only keys are 4, and A,.
c) The only keys are {A4;,A4;} and {A3, A4}
d) The only keys are {A;, A2} and {4,, A3}

3.6 Rules About Functional Dependendaics

In this section, we shall learn how to reason about functiopt: g e};p, '“’

That is, suppose we are told of a set of dependencies th 2t ag 2l satisfies. S/O
Jaop/e can deduce

that the relation must satisfy certain other dependencrzy Thl IgLE%{SE

cover additional dependenmes is essential when we diiss the desi

ORDER FULL

7Of course, we could alternatively convert ODL designs first QGsuiBient E Eb
convert those to relational designs. While this approach wouid figlzsse Zome of N s
inherent in the direct approach of Section 3.2, it is not esser(CtiN re)atlonal design (o)



3.6. RULES ABOUT FUNCTIONAL DEPENDENCIES 127

Example 3.26: If we are told that a relation R with attributes A, B, and C,
satisfies the functional dependencies A -+ B and B — C, then we can deduce
that R also satisfies the dependency A — C. How does that reasoning go? To
prove that A = C, we must consider two tuples of R that agree on 4 and prove
they also agree on C.

Let the tuples agreeing on attribute A be (a,b,c1) and (a,be,c2). We
assume the order of attributes in tuples is A, B,C. Since R satisfies A = B,
and these tuples agree on A, they must also agree on B. That is, b = by, and
the tuples are really (e, b,c;) and (a, b, ¢z}, where b is both b, and b;. Similarly,
since R satisfies B — C, and the tuples agree on B, they agree on C. Thus,
¢; = ¢g; i.e., the tuples do agree on C. We have proved that any two. tuples
of R that agree on A also agree on C, and that is the functional dependency
A=C. O

Functional dependencies often can be presented in several different ways,
without changing the set of legal instances of the relation; we say the two
sets of dependencies are equivalent, if so. More generally, we say that a set of
functional dependencies S follows from a set of functional dependencies T if
every relation instance that satisfies all the dependencies in T also satisfies all
the dependencies in S. Note then that two sets of dependencies S and T are
equivalent if S follows from T" and T follows from S.

In this section we shall see several useful rules about functional dependencies..
In general, these rules let us replace one set of dependencies by an equivalent
set, or to add to a set of dependencies others that follow from the original
set. An example is the transitive rule that lets us follow chains of functional
dependencies, as in Example 3.26. We shall also give an algorithm for answering
the general question of whether one functional dependency follows from one or
more other dependencies.

3.6.1 The Splitting/Combining Rule
Recall that in Section 3.5.1 we defined the functional dependency
AiAs-- A, = B1B:---By,

to be a shorthand for the set of dependencies

A1A2'-'An-+ ﬁl
AIAQ'-'An—) Bz

o VER
O R0

A]_AQ"'An - B3

That is, we may split attributes on the right

Q v
Tl so that (gl!"gé,%ute
appears on the right of each functional dependeilsy.

LGRBER PELL
collection of dependencies with a common left @l @ Eh

byea single dependency wit
the same left side and all the right sides combirlad Tito on & RO Mes. s
In either event, the new set of dependencies Eadiglent to the old. Theoo

equivalence noted above can be used in two ways.

rint.drin® s
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¢ We can replace a functional dependency A1 A5--- A, = By1Bs--- By, by
a set of functional dependencies A; A;---4, — B;fori=1,2,..., By,.
This transformation we call the splitting rule.

e We can replace a set of functional dependencies A A>---A, — B; for
i =1,2,...,m by the single dependency A;A3---4, — B1By:: By.
We call this transformation the combining rule.

For instance, we mentioned in Example 3.20 how the set of dependencies

title year — length
title year — filmType
title year -+ studioName

is equivalent to the single dependency
title year — length filmType studioName

One might imagine that splitting could be applied to the left sides of func-
tional dependencies as well as to right sides. However, there is no splitting rule
for left sides, as the following example shows.

Example 3.27: Consider one of the dependencies such as
title year — length
for the relation Movie in Example 3.20. If we try to split the left side into

title — length
year — length

then we get two false dependencies. That is, title does not functionally de-
termine length, since there can be two movies with the same title (e.g., King
Kong) but of different lengths. Similarly, year does not functionally determine
length, because there are certainly movies of different lengths made in any one
year. O

3.6.2 Trivial Dependencies

A functional dependency A, A2--- A, — B is said to
the A’s. For example,

title year — title

PLEASE
ORDER FULL

ynes it says that “two
hem VEFRSYON

%on the basis of OO

rint.drin® s

is a trivial dependency.

Every trivial dependency holds in every relatiod}
tuples that agree in all of A;, 4q,..., A, agree in onzAo
may assume any trivial dependency, without having tc®UEt
beliefs about the data.
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In our original definition of functional dependencies, we did not allow a
dependency to be trivial. However, there is no harm in including them, since
they are always true, and they sometimes simplify the statement of rules.

When we allow trivial dependencies, then we also allow (as shorthands)
dependencies in which some of the attributes on the right are also on the left.
We say that a dependency 4, 4,---A,, = B By---By, is

o Trivial if the B’s are a subset of the A’s.

e Nontrivial if at least one of the B’s is not among the A’s.

o Completely nontrivial if none of the B’s is also one of the A’s.
Thus

title year — year length

is nontrivial, but not completely nontrivial. By eliminating year from the right
side we would get a completely nontrivial dependency.

We can always remove from the right side of a functional dependency those
attributes that appear on the left. That is:

e The functional dependency A, A2 --- A, = B1B2--- B, is equivalent to
A1Ay -+ A, = C1Cs---C, where the C’s are all those B’s that are not
also A’s.

We call this rule, illustrated in Fig. 3.28, the trivial-dependency rule.

3.6.3 Computing the Closure of Attributes

Before proceeding to other rules, we shall give a general principle from which
all rules follow. Suppose {A;,As,...,A,} is a set of attributes and S is a
set of functional dependencies. The closure of { A1, A2,..., A,} under the de-
pendencies in S is the set of attributes B such that every relation that sat-
isfies all the dependencies in set S also satisfies 4;A;--- A, — B. That is,
A)A;--- A, = B follows from the dependenmes of S. We deno the Josure of
a set of attnbutes AjAg--- A, by {4, Az, x

always in {A4;, 4z,...,A,}T.
Figure 3.29 illustrates the closure process. Si rt.m(frm the given sefg
attributes, we repeatedly expand the set by adGifiY, lf@nght sides of functnonml@
dependencies as soon as we have inciuded their 13k sides. Evﬁn ﬁ%@ E.nnot
expand the set any more, and the resulting set§&fahe closure. The following steps

are a more detailed rendition of the algorithm fa% compfite, D saule &fjd skt

of attributes {A,, As,...,A,} with respect tok:¥setedf mnwﬁgiﬁeﬁaes s

il ome the closure. First ,O

1. Let X be aset of attributes that eventualilj
we initialize X to be {A;, Az,...,4a}.

'o’.'ht dr\‘le‘
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Y-
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P R T S R

Iftand  Then they
uagree  rust agree
inthe A’s inthe B’s

So surely
they agree
in the C’s

Figure 3.28: The trivial dependency rule

2. Now, we repeatedly search for some functional dependency
Bl Bg SRR Bm - C

such that all of By, B, ..., B, are in the set of attributes X, but C is
not. We then add C to the set X.

3. Repeat step 2 as many times as necessary until no more attributes can
be added to X. Since X can only grow, and the number of attributes of
any relation must be finite, eventually nothing more can be added to X.

and F. Suppose that this relation has the functional dgngdes O
BC - AD,D — E,and CF — B. What is the clC
(A, B}*?

We start with X = {A, B}. First, we notice that &l the a E
left side of functional dependency AB — C are iz, @ Wa%RhE-ULL
attribute C, which is on the right side of that dependfa Thd’g‘l @"’ﬁ@:eON s
iteration of step 2, X becomes {4, B,C}.

O
Next, we see that the left side of BC — AD is novy .oﬁ’%led in X, ‘
(o} \]G
ht- dr\
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Closure

Pushing out

AN

Initial set
of attributes

Figure 3.29: Computing the closure of a set of attributes

we may add to X the attributes A and D.® A is already there, but D is not,
8o X next becomes {A, B,C,D}. At this point, we may use the dependency
D - E toadd Eito X, which is now {A, B,C, D, E}. No more changes to
X are possible. In particular, the functional dependency CF — B can not
be used, because its left side never becomes contained in X. Thus, {4, B}* =
{A,B,C,D,E}. O

If we know how to compute the closure of any set of attributes, then we
can test whether any given functional dependency A4;A;--- 4, — B follows
from a set of dependencies S. First compute {A1, A2,...,A,}" using the set
of dependencies S. If B is in {A;, 4z,...,4,}7, then

A]AQ"'An - B

does not follow from S. More generally, a dependenc wit, qet ’-s.t
on the right can be tested if we remember that thigpGzen E

for a set of dependencies. Thus, A; A>--- 4, — Ej¥ Qﬁl
of dependencies S if and only if all of By, Bz, ..

follows from

{Pl,Az,A Ay}t ’1/

Example 3.29: Consider the relation and fiidfional dependencnes o; ii!xa.m-
ple 3.28. Suppose we wish to test whether ABM— D@Mﬁumt Tehd lel

pendencies. We compute {4, B}*, which is {€%2 %E}‘féﬁ ?le that

8Recall that BC — AD is shorthand for the AT o) endencies BC -» A and o
BC — D. We could treat each of these dependencies sepaipatelZif we wished

'o’.'ht dr\‘le‘
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Why the Closure Algorithm Works

There is a simple reason that the algorithm for computing closure makes
sense. We can prove by induction on the number of times that we apply the
growing operation of step 2 that for every attribute D in X, the functional
dependency 4; A; --- A, — D holds (in the special case where D is among
the A’s, this dependency is trivial). That is, every relation R that satisfies
all of the dependencies in S also satisfies Aj A2--- 4, — D.

The basis is 0 steps. Then D must be one of A, As,...,4,, and
surely AA;--- A, — D holds in any relation, because it is a trivial
dependency. .

For the induction, suppose D was added when we used the dependency
BB ---B,, = D. We know by the inductive hypothesis that R satisfies
AjAs---A,. = B;foralli=1,2,...,m. Put another way, any two tuples
of R that agree on all of Ay, Ay, ..., A, also agree on all of By, B, ..., Bn.
Since R satisfies BBy --B,, = D, we also know that these two tuples
agree on D. Thus, R satisfies ;A2 -A, = D.

The proof above shows that the closure algorithm is sound; that is,
when it places D in {4;, A;,...,Ap}", then 41 A3--- A, — D isatrue
dependency. What we have not shown is the converse, completeness: that
whenever 4, 4,--- A, — D holds, D will be placed in {4;, 43,...,A4,}"-
That proof is beyond the scope of this book.

example. Since D is a member of the latter set, we conclude that AB — D
does follow.

On the other hand, consider the functional dependency D — A. To test
whether this dependency follows from the given dependencies, first compute
{D}*. To do so, we start with X = {D}. We can use the dependency D = E
to add E to the set X. However, then we are stuck. We cannot find any other
dependency whose left side is contained in X, so {D}* = {D,E}. Since A is
not a member of {D, E}, we conclude that D — A does not follow. 0O

3.6.4 The Transitive Rule

them from the

OBBEEFuULL

W NERSON &
4y O

: g
Oring.qrin®

If some of the C’s are among the A’s, we may elim
side by the trivial-dependencies rule.

To see why the transitive rule holds, apply the tes?
whether A1A2 R B 01(72 - C hOldS, we need
{Ay, As,..., An}T.
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Cl(;sures and Keys

Notice that {A,,As,...,A,}7T is the set of all attributes if and only if
A;, As, ..., Ay is a superkey for the relation in question. For only then
does Aj, As,..., A, functionally determine all the other attributes. We
can test if Ay, Ag,....A, is a key for a relation by checking first that
{A1,As,...,Ap}* is all attributes, and then checking that for no set S
formed by removing one attribute from {A;, Az,..., A} is St the set of
all attributes.

The functional dependency A;4s:--A, — BiB;---Bm tells us that all
of By, B, ...,Bm arein {A), A2,..., Ay }*. Then, we can use the dependency
B]B:z"'Bm —+ C’ng : "Ck to add C],Cz,. . .,Ck to {Al,Az,...,An}+. Since
all the C’s are in {A;, 43,...,A,}T, we conclude that

AlAQ"'An —b C‘l(?z---C'k

holds for any relation that satisfies both 414+ A, — BBy - By and
B,By---B,, = CHCE---C&.

Example 3.30: Let us begin with the relation Movie of Fig. 3.12 that was
constructed in Section 3.2.4 to represent the four attributes of class Movie plus
its relationship ownedBy with the Studio class. The relation and some sample
data is:

_title | year | length | filmType | studioName
Star Wars 1977 | 124 | color | Fox
Mighty Ducks 1991 | 104 color Disney
Wayne’s World | 1992 | 95 color Paramount,

~ Suppose we decided to represent some data about the owning studio in
this same relation. For simplicity, we shall add only a citi@forgie studio,
representing its address. The relation might then look WL

title | year
1977

1991
1992

Star Wars
Mighty Ducks
Wayne's World
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The first is justified because the ownedBy relationship of class Movie is single-
valued; a movie is owned by only one studio. The second is justified because in
the class Studio, attribute address is single-valued; it is of type string (see
Fig. 2.6).

The transitive rule allows us to combine the two dependencies above to get
a new dependency:

title year — studioAddr

This dependency says that a title and year (i.e., a movie) determines an ad-
dress — the address of the studio owning the movie. O

3.6.5 Closing Sets of Functional Depeﬁdencies

As we have seen, given a set of dependencies, we can often infer some other
dependencies, including both trivial and nontrivial dependencies. We shall, in
later sections, want to distinguish between given dependencies that are stated
initially for a relation and derived dependencies that are inferred using one of
the rules of this section or by using the algorithm for closing a set of attributes.
Moreover, we sometimes have a choice of which dependencies we use to rep-
resent the full set of dependencies for a relation. Any set of given dependencies
from which we can infer all the dependencies for a relation will be called a basis
for that relation. If no proper subset of the dependencies in a basis can also
derive the complete set of dependencies, then we say the basis is minimal.

Example 3.31: Consider a relation R(A, B, (') such that each attribute func-
tionally determines the other two attributes. The full set of derived dependen-
cies thus includes six dependencies with one attribute on the left and one on
the right; A -+ B,A - C,B - A/B -+ C,C - A,andC -» B. 1t
also includes the three nontrivial dependencies with two attributes on the left:
AB =+ C, AC — B, and BC - A. There are also the shorthands for
pairs of dependencies such as A — BC, and we might also include the trivial
dependencies such as A — A4 or dependencies like AB — BC that are not
completely nontnvnal (a.lthough in our stnct deﬁmtlon of what is a functlonal

or dependencies that have several attrlbutes on the right).
This relation and its dependencies have several minimal

{A—> B, B A, B;)C, C—- B

PLEASE
{A—+B,B—=C, C— A} ORDER FULL

There are many other bases, even minimal bases, for this -a%ﬁle MERSION os

we leave their discovery as an exercise. 0O Q
*

©ring.drin®y

Another is
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A Complete Set of Inference Rules

If we want to know whether one functional dependency foliows from some
given dependencies, the closure computation of Section 3.6.3 will always
serve. However, it is interesting to know that -there is a set of rules, called
Armstrong’s axioms, from which it is possible to derive any functional
dependency that follows from a given set. These axioms are:

1. Reflexivity. If {B1,B2,...,Bn} C {A1 As,...,A,}, then
Ayd2---A,, = B B;---B,,. These are what we have called trivial
dependencies.

2. Augmentation. If AAy---A, -~ ByB;---By,, then
A1Ay - A CCo--Cy - ByBy---B,CiC: - --Cy for any set of
attributes C;,C4,...,Ck.

3. Transitivity. If
ArAy - A, = By{B:---By, and BlBg"'_Bm -+ C10y---Cy

then A142---A4n = CiC2---Cy.

3.6.6 Exercises for Section 3.6

* Exercise 3.6.1: Consider a relation with schema R(A, B,C, D) and functional
dependencies AB - C,C — D,and D = A.

a) What are all the nontrivial functional dependencies that follow from the
given dependencies?

b) What are all the keys of R?

c) What are all the superkeys for R that are not keys?

dencies:

i) S(A, B,C,D) with functional dependen
B — D.

i) T(A,B,C,D) with functional dependeng
CD - A, and AD - B.

2 sMERSION 5,

,o,. /nt.- dr\"e(

iti) U(A, B, C, D) with functional dependencjzgs
and D —+ A.
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Exercise 3.6.3: Show that the following rules hold, by using the closure test
of Section 3.6.3.

* a) Augmenting left sides. If A;A;--- A, — B is a functional dependency,
and C is another attribute, then A; 43+ A,C — B follows.

b) Full augmentation. If A; A2 --- A, — B is a functional dependency, and
C is another attribute, then A, A;--- 4,C — BC follows. Note: from
this rule, the “augmentation” rule mentioned in the box of Section 3.6.5
on Armstrong’s axioms can easily be proved.

c) Pseudotransitivity. Suppose dependencies A;Ay--- 4, = ByBy--- B
and C1Cy---Cr — D hold, and the B’s are each among the C’s. Then
AyAy-- A BBy -+ E; — D holds, where the E’s are all those of the
C’s that are not found among the B’s.

d) Addition. If functional dependencies A;A;---A, — B,B;---B,, and
C\C;---Cy — D1D;---Djhold, then functional dependency

AlAz---AnCICQ"'Ck - BIBQ" 'BmDIDg---Dj

also holds. In the above, we should remove one copy of any attribute that
appears among both the A’s and C’s or among both the B’s and D’s.

! Exercise 3.6.4: Show that each of the following are not valid rules about
functional dependencies by giving example relations that satisfy the given de-
pendencies but not the one that allegedly follows.

*a)IfA - Bthen B - A
by ¥AB -+ Cand A — C,then B = C.
c)ffAB - C,then A = Cor B - C.

! Exercise 3.6.5: Show that if a relation has no attribute that is functionally
determined by all the other attributes, then the relation has no nontrivial func-
tional dependencies at all.

! Exercise 3.6.6: Let X and Y be sets of attributes. Show@3xiFir X
then X+ C Y1, where the closures are taken with respeguio¥il “@
functional dependencies. Q/

HERg)
(@)
! Exercise 3.6.7: Prove that (X*)* = X*.

PLEASE
1! Exercise 3.6.8: We say a set of attributes X is closeafysith reﬁ@eﬁt@ ﬁfu LL

set of functional dependencies) if X+ = X. ConsideggYrelatio
v % R3YON

- IR
which sets of attributes are closed, we can discover the fghilitiezal dependencies. o
What are the dependencies if:
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* a) All sets of the four attributes are closed.
b) The only closed sets are § and {A, B,C,D}.
c) The closed sets are @, {A,B}, and {4, B,C,D}.

Exercise 3.6.9: Find all the minimal bases for the dependencies and relation
of Example 3.31.

Exercise 3.6.10: Show that if a functional dependency F follows from some
given dependencies, then we can prove F' from the given dependencies using
Armstrong’s axioms (defined in the box in Section 3.6.5). Hini: Examine the
algorithm for computing the closure of a set of attributes and show how each
step of that algorithm can be mimicked by inferring some functional dependen-
cies by Armstrong’s axioms.

3.7 Design of Relational Database Schemas

We have several times noticed that converting directly from object-oriented
ODL designs (and to a lesser extent from E/R designs) leads to problems with
the relational database schema. The principal problem we have identified is re-
dundancy, where a fact is repeated in more than one tuple. Moreover, we have
identified the most common cause for this redundancy: attempts to group into
one relation both single-valued and multivalued properties of an object. For
instance, we saw in Section 3.2.2 the redundancy that results when we tried to
store single-valued information about movies, such as their length, with multi-
valued properties such as the set of stars for a movie. The problems are seen in
Fig. 3.27, which we reproduce here as Fig. 3.30. We found similar redundancy
in that section when we tried to store single-valued birthdate information for a
star with a set of addresses for a star.

In this section, we shall tackle the problem of design of good relation schemas
in the following stages:

1. We first explore in more detail the problems that agke

2. Then, we introduce the idea of “decomp-wlo%
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title | year | length | filmType | studioName | starName

Star Wars 1977 | 124 color Fox Carrie Fisher
Star Wars 1977 | 124 color Fox Mark Hamill
Star Wars 1977 | 124 color Fox Harrison Ford
Mighty Ducks | 1991 | 104 color Disney Emilio Estevez
Wayne's World | 1992 | 95 color Paramount | Dana Carvey
Wayne's World | 1992 | 95 color Paramount | Mike Meyers

Figure 3.30: The relation Novie exhibiting anomalies

3.7.1 Anomalies

Problems such as redundancy that occur when we try to cram too much into a
single relation are called anomalies. The principal kinds of anomalies that we
encounter are:

1. Redundancy. Information may be repeated unnecessarily in several tuples.
Examples are the length and film type for movies as in Fig. 3.30.

2. Update Anomalies. We may change information in one tuple but leave the
same information unchanged in another. For example, if we found that
Star Wars was really 125 minutes long, we might carelessly change the
length in the first tuple of Fig. 3.30 but not in the second or third tuples.
True, we might argue that one should never be so careless. But we shall
see that it is possible to redesign relation Movie so that the risk of such
mistakes does not exist.

3. Deletion Anomalies. If a set of values becomes empty, we may lose other
information as a side effect. For example, should we delete Emilio Estevez
from the set of stars of Mighty Ducks, then we have no more stars for that
movie in the database. The last tuple for Mighty Ducks in the relation
Movie would disappear, and with it information that it is 95 minutes long
and in color.

3.7.2 Decomposing Relations

The accepted way to eliminate these anomalies is to deco: w O
composition of R involves splitting the attributes of R (g e schemas of ¢
two new relations. Our decomposition rule also involve:¥a way of L%&%E

those relations with tuples by “projecting” the tuplegfeli R. After’'d

the decomposition process, we shall show how to piciga deco@ TR @aiFU LL
eliminates anomalies.

Given a relation R with schema {41, 4s,. .., 4,}, welaa@decerhE R SION s
two relations S and T with schemas {By, Bs, ..., Bn(@dS 1, Co, ..., Ci }, (o)
respectively, such that ¢
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1. {A11A2,---aAn}Z{BL,B%---,Bm} U {01)023'-'5Ck}-

2. The tuples in relation S are the the projections onto {B;,B,,...,B,}
of all the tuples in BR. That is, for each tuple ¢ in the current instance
of R, take the components of t in the attributes By, B, ..., B,,. These
components form a tuple, and this tuple belongs in the current instance
of §. However, relations are sets, and the same tuple of S could result
from projecting two different tuples of R. If so, we put into the current
instance of S only one copy of each tuple.

3. Similarly, the tuples in relation T are the projections, onto set of attributes
{C1,Ca,...,Ct}, of the tuples in the current instance of R.

FExample 3.32: Let us decompose the Movie relation of Fig. 3.30. First, we
shall decompose the schema. QOur choice, whose merit will be seen in Sec-
tion 3.7.3, is to use

1. A relation called Moviel, whose schema is all the attributes except for
starName.

2. A relation called Movie2, whose schema consists of the attributes title,
year, and starName,

Now, let us illustrate the process of decomposing relation instances by de-
compaosing the sample data of Fig. 3.30. First, let us construct the projection
onto the Moviel schema: o i

|
{title, year, length, filmType, stn%dioName}
|
The first three tuples of Fig. 3.30 each have the same components in these five

attributes: |
!
(Star Wars, 1977, 124, color, Fox)

The fourth tuple yields a different tuple for the first five components, and the
fifth and sixth tuple each yield the same five-component tuple. The resulting
relation for Moviel is shown in Fig. 3.31.

title | year
Star Wars 1977
Mighty Ducks | 1991
Wayne’s World | 1992

Figure 3.31

e SChWﬁR@T@ﬁMh
Ja of the attributes tltleo
year, and starName, so the result is the relationg oé.{a inFig.3.32. d ¢

“int.driN®
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title | year | starName

Star Wars 1977 | Carrie Fisher
Star Wars 1977 | Mark Hamill
Star Wars 1977 | Harrison Ford

Mighty Ducks | 1991 | Emilio Estevez
Wayne’s World | 1992 | Dana Carvey
Wayne’s World | 1992 | Mike Meyers

Figure 3.32: The relation Movie2

Notice how this decomposition eliminates the anomalies we mentioned in
Section 3.7.1. The redundancy has been eliminated; for example, the length of
each film appears only once, in relation Moviel. The risk of an update anomaly
is gone. For instance, since we only have to change the length of Star Wars
in one tuple of Moviel, we cannot wind up with two different lengths for that
movie.

Finally, the risk of a deletion anomaly is gone. If we delete all the stars for
Mighty Ducks, say, that deletion makes the movie disappear from Movie2. But
all the other information about the movie can still be found in Moviel.

It might appear that Movie2 still has redundancy, since the title and year
of a movie can appear several times. However, these two attributes form a key
for movies, and there is no more succinct way to represent a movie. Moreover,
Movie2 does not offer an opportunity for an update anomaly. We might suppose
that if we changed the year in, say, the Carrie Fisher tuple but not the other
two tuples for Star Wars, then there would be an update anomaly. However,
there is nothing in our assumed functional dependencies that prevents there
from being a different movie named Star Wars in 1997, and Carrie Fisher may
have starred in that one. Thus, we do not want to prevent changing the year
in one Star Wars tuple, nor is such a change necessarily incorrect.

3.7.3 Boyce-Codd Normal Form

The goal of decomposition is to replace a relation by several thélada¥ilot exhibit
anomalies. There is, it turns out, a simple condition under guhid?th @m\jmg
discussed above can be guaranteed not to exist. This condraley Lﬂ{&}\ d Boyce-
Codd normal form, or BCNF.

Rg /o

¢ A relation R is in BCNF if and only if: whene{lig there is anlﬂtgv%lSE
dependency A1 A2 --- A, — B for R, it is the casefihat {@F@DER}FU |_|_

is a superkey for R. VERSION I

» must be a su-
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ment of the BCNF condition is that the left side of every nontrivial functional
dependency must contain a key.

When we find a BCNF-violating dependency, it is sometimes useful to find
all the other dependencies that have the same left side, whether or not they are
BCNTF violations. The following is an alternative definition of BCNF in which
we look for a set of dependencies with common left side, at least one of which
is nontrivial and violates the BCNF condition.

o Relation R is in BCNF if and only if: whenever nontrivial dependency
AA3---A, — B1Ba---By, holds for R, it must be the case that
{A), A;,..., A} is a superkey for R.

This requirement is equivalent to the original BCNF condition. Recall that
the dependency A;A3---A, — B1By-: - B, is shorthand for the set of de-
pendencies A1 4;--- A, — B;fori=1,2,...,m. Since there must be at least
one B; that is not among the A’s (or else A;42---A, = B Ba--- By would
be trivial), A;A>--- A, — B, is a BCNF violation according to our original
definition.

Example 3.33: Relation Movie, as in Fig. 3.30, is not in BCNF. To see why,
we first need to determine what sets of attributes are keys. We argued in Ex-
ample 3.21 why {title, year, starName} is a key. Thus, any set of attributes
containing these three is a superkey. The same arguments we followed in Exam-
ple 3.21 can be used to explain why no set of attributes that does not include
all three of title, year, and starName could be a superkey. Thus, we assert
that {title, year, starName} is the only key for Movie.
However, consider the functional dependency

title year — length filmType studioName

which we know holds in Movie. Recall the reason we can assert this dependency:
the original ODL design has key {title, year}, single-valued attributes length
and filmType, and single-valued relationship ownedBy leadinggio tkg owning
studio.

Unfortunately, the left side of the above dependeula’P’s nis &gmﬁy ]
particular, we know that title and year do nc{u): cti'a e

sixth attribute, starName. Thus, the existencey Cgﬁependency vmlat@
the BCNF condition and tells us Movie is not LP3CrY . Moreover, accordin
to the original definition of BCNF, where a gjxfe attribut’dn B ATHE side

ired, i f the thr |
was reuired, we can offc any of the three Tgrtions ST E R 'lfti‘l_‘ii
2 MERSION. 4
‘4

title year — length filmTypel] d’;@N,@.m’e)t dr\\]e‘

Example 3.34: On the other hand, Moviel of
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holds in this relation, and we have argued that neither title nor year by itself
functionally determines any of the other attributes, the only key for Moviel
is {title, year}. Moreover, the only nontrivial functional dependencies must
have at least title and year on the left side, and therefore their left sides must
be superkeys. Thus, Moviel is in BCNF. 0O

Example 3.35: We claim that any two-attribute relation is in BCNF. We
need to examine the possible nontrivial dependencies with a single attribute on
the right. There are not too many cases to consider, so let us consider them in
turn. In what follows, suppose that the attributes are A and B.

1. There are no nontrivial functional dependencies. Then surely the BCNF
condition must hold, because only a nontrivial dependency can violate
this condition. Incidentally, note that {A, B} is the only key in this case.

2. A 5 Bholds, but B = A does not hold. In this case, A is the only
key, and each nontrivial dependency contains A on the left (in fact the
left can only be A). Thus there is no violation of the BCNF condition.

3. B 5 Aholds, but A — B does not hold. This case is symmetric to
case (2).

4. BothA - Band B - Ahold. Then both A and B are keys. Surely
any dependency has at least one of these on the left, so there can be no
BCNF violation.

It is worth noticing from case (4) above that there may be more than one
key for a relation. Further, the BCNF condition only requires that some key
be contained in the left side of any nontrivial dependency, not that all keys
are contained in the left side. Also observe that a relation with two attributes,
each functionally determining the other, is not completely implausible. For
example, a company may assign its employees unique employee ID’s and also
record their Social Security numbers. A relation with attributes empID and ssNo
would have each attribute functionally determining the other. Put another way,
each attribute is a key, since we don’t expect to find two tuples that agree on
either attribute. O

3.7.4 Decomposition into BCNF VE

By repeatedly choosing suitable decompositions, we caiWvr r"»&y relation S/O
schema into a collection of subsets of its attributes witkgilz' io¥S¥ing important

properties: P L E A S E

ORDER FULL
2. The data in the original relation is represented @Y

e B
the relations that are the result of the decompasi '%m a ‘$ﬁbN O's

made preclse in Sectlon 3.7.6. Roughly, we need ¥z a&e to reconstruct

1. These subsets are the schemas of relations in B&JF.
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Example 3.35 suggests that perhaps all we have to do is break a relation schema
into two-attribute subsets, and the result is surely in BCNF. However, such
an arbitrary decomposition will not satisfy condition (2), as we shall see in
Section 3.7.6. In fact, we must be more careful and use the violating functional
dependeéncies to guide our decomposition.

The decomposition strategy we shall follow is to look for a nontrivial func-
tional dependency A;A;---A, — B;Bs--- B, that violates BCNF; i.e.,
{A1,A2,...,An} is not a superkey. As a heuristic, we shall generally add to
the right side as many attributes as are functionally determined by

{‘4114427 . -':An}

Figure 3.33 illustrates how the attributes are broken into two overlapping rela-
tion schemas. One is all the attributes involved in the violating dependency, and
the other is the left side plus all the attributes not involved in the dependency,
i.e., all the attributes except those B’s that are not A’s.

Figure 3.33: Relation schema decomposition based on a BCNF violation

Example 3.36: Consider our running example, the Movie relation of Fig. 3.30.
We saw in Example 3.33 that

title year — length filmType studioName

is a BCNF violation. In this case, the right side alrge
tributes functionally determined by title and year, s,
violation to decompose Movie into:

2. The schema with all of Movie’s attributed
on the right of the dependency. Thus, we
studioName, leaving the second schema:

x?%lmw&ma@mm g
ength, filmType, andoo

ring.arin®y
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{title, year, starName}

Notice that these schemas are the ones selected for relations Moviel and
Movie2 in Example 3.32. We observed that these are each in BCNF in Exam-
ple3.34. O

E:gample 3.37: Let us consider the relation MovieStudio that was introduced }
in Example 3.30. This relation stores information about movies, their owning
studios, and the addresses of those studios. The schema and some typical tuples
for this relation are shown in Fig. 3.34.

title | year | length | filmType | studioName | studioAddr
Star Vars 1977 | 124 color Fox Hollywood

Mighty Ducks | 1991 | 104 color Disney Buena Vista
Wayne’s World | 1992 | 95 color Paramount | Hollywood
Addams Family | 1991 | 102 color Paramount | Hollywood

Figure 3.34: The relation MovieStudio

Note that MovieStudio contains redundant information. Because we added
to our usual sample data a second movie owned by Paramount, the address of
Paramount is stated twice. However, the source of this problem is not the same
as in Example 3.36. In the latter example, the problem was that a multivalued
relationship (the stars of a given movie) was being stored with other information
about the movie. Here, everything is single-valued: the attribute length for
a movie, the relationship ownedBy that relates a movie to its unique owning
studio, and the attribute address for studios.

In this case, the problem is that there is a “transitive dependency.” That
is, as mentioned in Example 3.30, relation movieStudio has the dependencies

title year — studioName
studioName — studioAddr

We may apply the transitive rule to these to get a new depepdenwi

o VER
O R0

That is, a title and year (i.e., the key for movies) functie{E\Ly @rmine a studio
address — the address of the studio that owns the moyG:. Since PLEASE

ORDER FULL

Sl WERSION &

& <
“int.driN®

title year — studioAddr

title year — length £filmTyp

is another obvious dependency, we conclude that {tivil
MovieStudio;in fact it is the only key.
On the other hand, dependency



=

3.7. DESIGN OF RELATIONAL DATABASE SCHEMAS 145

studioName — studioAddr

which is one of those used in the application of the transitive rule above, is non-
trivial but its left side is not a superkey. This observation tells us MovieStudio
is not in BCNF. We can fix the problem by following the decomposition rule,
using the above dependency. The first schema of the decomposition is the
attributes of the dependency itself, that is:

{studioName, studioAddr}

The second schema is all the attributes of MovieStudio except for studioAddr,
because the latter attribute is on the right of the dependency used in the de-
composition. Thus, the other schema is:

{title, year, length, filmType, studioName}

The projection of Fig. 3.34 onto these schemas gives us the two relations
MovieStudiol and MovieStudio2 shown in Figs. 3.35 and 3.36. Each of these
is in BCNF. The sole key for MovieStudiol is {title, year}, and the sole
key for NovieStudio2 is {studioName}. In each case, there are no nontrivial
dependencies that do not contain these keys on the left. O

title | year | length | filmType | studioName
Star Wars 1977 | 124 color Fox
Mighty Ducks 1991 | 104 color Disney
Wayne’s World | 1992 | 95 color Paramount

Addams Family | 1991 j 102 color Paramount

Figure 3.35: The relation MovieStudiol

studioName LsitudioAddr___

Fox Hollywood
Disney Buena Vista
Paramount | Hollywood

o VER
%\“ S/O

Figure 3.36: The relation Mol tuﬁ@o
E

In each of the previous examples, one judicligt]application o!_tge decompo-
sition rule is enough to produce a collection of Qations EMR ISEARBARZ ol

general, that is not the case. :
VERSION

0 T2ve a chain of functional (o)

Example-3.38 : We could generalize Example 3¢14

© e s = il A AR T s Lt
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{title, year, studioName, president, presiddr}
That is, each tuple of this relation tells about a movie, its studio, the president
of the studio, and the address of the president of the studio. Three functional
dependencies that we would assume in this relation are
title year — studioName
studioName — president

president -3 presAddr

The sole key for this relation is {title, year}. Thus the last two depen-
dencies above violate BCNF. We could decompose starting with

studioName — president
for example. First, we should add to the right side of this functional dependency
any other attributes in the closure of studioName. By the transitive rule applied
to studioName — president and president — presiddr, we know
studioName — presAddr
Combining the two dependencies with studioName on the left, we get:

studioName — president presAddr

This functional dependency has a maximally expanded right 31de, so we shall
now decompose into the following two relation schemas.

{title, year, studioName}
{studioName, president, presAddr}

The first of these is in BCNF. However, the second has {studioName} for
its only key but also has the dependency

president — presAddr

%}&‘ng the Ec-R

ght side. The

PLEASE
ORDER FULL

%4 VERSION os

which is a BCNF violation. Thus, we must decomposefly S/O
panded dependency in which president is added to tl

resulting three relation schemas,-all in BCNF, are:

{title, year, studioName}
{studioName, president}
{president, presAddr}

'o’.'ht dr\‘le‘
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In general, we must keep applying the decomposition rule as many times as
needed, until all our relations are in BCNF. We can be sure of ultimate success,
because every time we apply the decomposition rule to a relation R, the two
resulting schemas each have fewer attributes than that of R. As we saw in
Example 3.35, when we get down to two attributes, the relation is sure to be
in BCNF.

To see why decomposition always yields smaller schemas, suppose we have
a BCNF violation Ay 4> --- A, = B Bs---B,. We may assume this depen-
dency has already been expanded to include among the B’s any other attribute
functionally determined by the A’s and that any of the B’s that are also among
the A’s have been removed from the B’s.

One of the schemas of the decomposition is all the attributes of R except
for the B's. There must be at least one B, so this schema does not include all
attributes.

The other schema is all the A’s and B’s. This set cannot be all the attributes
of R, because if it were, then {4;,As,..., A} would be a superkey for R
(i.e., the A's would functionally determine all the other attributes of R). No
dependency with a superkey on the left is a BCNF violation.

We conclude that both schemas of the decomposition are smaller than the
schema of R. Thus, the repeated decomposition process must eventually reach
a collection of BCNF relations.

3.7.5 Projecting Functional Dependencies

When we decompose a relation schema, we need to check that the resulting
schemas are in BCNF. As we saw in Example 3.38 it is possible that one or
both of the new schemas themselves have BCNF violations. However, how can
we tell whether a relation is in BCNF unless we can determine the functional
dependencies that hold for that relation? In Example 3.38 we reasoned about
the dependencies that hold for the new relations in an ad hoc way. Fortunately,
there is a methodical way to find the functional dependencies for the results of
a decomposition.

Suppose we have a relation R, which is decomposed into relation S and_ some

e\getE$S/

Consider each set of attributes X that is &

attributes of S. Compute X*+. Then for egzhffittyi %ﬁe B such that O¢

PLEASE

1. B is an attribute of 5,
2. Bisin X, and
3. Bisnot in X,

%4 VERSION

the functional dependency X — B holds

'o’.'ht dr\‘le‘

ORDER FULL
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Example 3.39: Let R have schema R(A, B,C, D), and suppose the functional
dependencies A — B and B -» C are given for R. Let S(A,C) be one of
the relations in a decomposition of B. We shall compute the dependencies that
hold in §.

In principle, we must compute the closure of each subset of {A, C'}, which is
the set of attributes of S. Let us begin with {A}*. This set is easily seen io be
{A, B,C}. Since B is not in the schema of S, we do not claim that 4 —+ Bisa
dependency for S. However, C is in the schema for S, so we assert dependency
A - ClrS.

Now, we must consider {C}*. Since C is not a left side of a given depen-
dency, we get nothing new in the closure, so {C}* = {C}. In general, a set
that does not contain at least one left side of a given dependency cannot yield
any dependencies for S.

We must also consider {A,C}*, which is {A, B,C}. We therefore get no
new dependency not already found when we considered {4}*. The conclusion
is that A — ( is the only dependency we need assert for S. Of course there
are other dependencies for S that are derived from this one, such as AD = C
or the trivial dependency A — A. However, they can be obtained by the
rules given in Section 3.6 and need not be stated specifically when we give the
functional dependencies for S. O

Example 3.40: Now consider R(A, B,C, D, E) decomposed into S{A, B,C)
and another relation. Let the functional dependencies of R be A — D,
B = E,and DE = C.

First, consider {A}* = {A, D}. Since D is not in the schema of S, we get
no dependencies here. Similarly, {B}* = {B, E} and {C}* = {C}, yielding no
dependencies for S.

Now consider pairs. {A,B}* = {4, B,C,D,E}. Thus, we get the depen-
dency AB — C for S. Neither of the other pairs give us any dependencies for
S. Of course the set of all three attributes of S, {4, B,C}, cannot yield any
nontrivial dependencies for S. Thus, the only dependency we need assert for S
isAB -+ C. O

Let us now turn our attention to the question of why the s tmv'n R
gorithm of Section 3.7.4 preserves the information that (&t 1n th S/
original relation. The idea is that if we follow this alggzid/

It is possible, for example, that as in Example 3.37, thé{s
dency chain, with another functional dependency A

JON

that case, A}
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Simplifying the Search for Dependencies

When we derive the functional dependencies for a relation S from those
for R using the algorithm of Section 3.7.5, we can sometimes limit the
search by not computing the closure of all subsets of the attributes of S.
Here are some rules that help reduce the work.

1. It is not necessary to consider the closure of the set of all S’s at-
tributes.

2. It is not necessary to consider a set of attributes that does not contain
the left side of any dependency.

3. It is not necessary to consider a set that contains an attribute that
is in no left side of any functional dependency.

possibility is that B — C is the only nontrivial dependency, in which case the
only key is {A, B}. Again, the left side of B — C is not a superkey. In either
case, the required decomposition based on the dependency B — C separates
the attributes into schemas {4, B} and {B,C}.

Let 't be a tuple of R. We may write t = (a,b,¢), where a, b, and c are
the components of ¢ for attributes A, B, and C, respectively. Tuple ¢ projects
as {a,b) for the relation with schema {A, B} and as (b, ¢) for the relation with
schema {B, C}.

It is possible to join a tuple from {A, B} with a tuple from {B, C}, provided
they agree in the B component. In particular, (e,b) joins with (b,c) to give
us the original tuple ¢ = (a,b, ¢) back again. That happens regardless of what
tuple ¢ we started with; we can always join its projections to get ¢ back.

However, getting back those tuples we started with is not enough to assure
t.hat the ongmal relation H is truly represented by the decomposnlon What

’Me r%&ﬁ&

mple‘? That is, coul

Tuples u and w join, since they agree on their i
tuple is z = (a, b e). Is it possible that x is
(a,b, e) not be a tuple of R?

Since we assume the functional dependenuf#s — C fE Le%&ﬁthe
answer is “no.” Recall that this dependency ttlys an ]@Ro T?
agree in their B components must also agreegli h@ components. SInc

her ERBIGNH® &

their C' components. That means ¢ = €; i.e., thERe alues we supposed were O
different are really the same. Thus, (a, b, e) is real}j} a‘,zﬁ, : that is, z = ¢. < S)

"ing.drin®
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A B C
t
project
u
- join
X
join
w =
project
v

Figure 3.37: Joining two tuples from projected relations

Since ¢ is in R, it must be that z is in R. Put another way, as long as
functional dependency B — C holds, the joining of two projected tuples
cannot produce a bogus tuple. Rather, every tuple produced by joining is
guaranteed to be a tuple of R.

This argument works in general. We assumed A, B, and C were each
single attributes, but the same argument would apply if they were any sets
of attributes. That is, we take any BCNF-violating dependency, let B be the
attributes on the left side, C be the attributes on the right but not the left, and
A be the attributes on neither side. We may conclude:

¢ If we decompose a relation according to the method of Section 3.7.4, then
the original relation can be recovered exactly by joining the tuples of the
new relations in all possible ways.

If we decompose relations in a way that is not based on a
dency, then we might not be able to recover the originafj:
example.

Example 3.41: Suppose we have the relation R wit ﬁg‘éA?E
above, but that the dependency B — € does not hq{GMThen R might consis

of the two tuples ORDER FULL
2 VERSION
%2




3.7. DESIGN OF RELATIONAL DATABASE SCHEMAS 151

The projections of R onto the relations with schemas {A, B} and {B,C}

are
'A|B
1 ]2
4 12
and
B|C

L&
o W

respectively. Since all four tuples share the same B-value, 2, each tuple of one
relation joins with both tuples of the other relation. Thus, when we try to
reconstruct R by joining, we get

-l
MMMMm
"W oW

That is, we get “too much”; we get two bogus tuples, (1,2,5) and (4, 2,3) that
were not in the original relation B. O

3.7.7 Third Normal Form

Occasionally, one encounters a relation schema and its dependencies that are
not in BCNF but that one doesn’t want to decompose further. The following
example is typical.

Example 3.42: Suppose we have a relation Bookings with attributes:

1. title, the name of a movie.

2. theater, the name of a theater where the

3. city, the city where the theater is locategs

Q
iivie with tﬁ&%ﬁmly
QRDER FULL

encles:

VERSION £

;& (o)
O <
7Int-driv®

The intent behind a tuple (m,t,c) is that thg
being shown at theater { in city ¢.
We might reasonably assert the following fgid ti%

theater -+ city
title city — theate
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The first says that a theater is located in one city. The second is not obvious
but is based on the normal practice of not booking a movie into two theaters
in the same city. We shall assert this dependency if only for the sake of the
example.

Let us first find the keys. No single attribute is a key. For example, title
is not a key because a movie can play in several theaters at once and in several
cities at once.? Also, theater is not a key, because although theater function-
ally determines city, there are multiscreen theaters that show many movies
at once. Thus, theater does not determine title. Finally, city is not a key
because cities usually have more than one theater and more than one movie
playing.

On the other hand, two of the three sets of two attributes are keys. Clearly
{title, city} is a key because of the given dependency that says these at-
tributes functionally determine theater.

It is also true that {theater, title} is a key. To see why, start with
the given dependency theater — city. By the augmentation rule of Exer-
cise 3.6.3(a), theater, title = city follows. Intuitively, if theater alone
functionally determines city, then surely theatre and title together will do
50.

The remaining pair of attributes, city and theater, do not functionally
determine title, and are therefore not a key. We conclude that the only two
keys are

{title, city}
{theater, title}

Now we immediately see a BCNF violation. We were given functional de-
pendency theater — city, but its left side, theater, is not a superkey. We
are therefore tempted to decompose, using this BCNF-violating dependency,
into the two relation schemas:

{theater, city}
{theater, title}

There is a problem with this decomposition, concerning the functional de-

decomposed schemas that satisfy the dependency theater
be checked in the relatlon {theater, city}) but that, ¥

relations

theater | city

eater PLEASE
Guild | Menlo Park
Park Menlo Park ORDER FU LL
9In this example we assume that there are not two “current” \%wn.h ) ELR&‘JQN o,s

even though we have previously recognized that there could ies with the same
title made in different years.

rin. dr\"e(
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Other Normal Forms

If there is a “third normal form,” what happened to the first two “normal
forms”? They indeed were defined, but today there is little use for them.
First normal form is simply the condition that every component of every
tuple is an atomic value. Second normal form is less restrictive than 3NF.
It permits transitive dependencies in a relation but forbids a nontrivial
dependency with a left side that is a proper subset of a key. There is also
a “fourth normal form” that we shall meet in Section 3.8.

and

theater | title

Guild | The Net
Park The Net

are permissible according to the functional dependencies that apply to each
relation, but when we join them we get two tuples

theater | city | title

Guild | Menlo Park | The Net
Park Menlo Park | The Net

that violate the dependency title city — theater. O

The solution to the above problem is to relax our BCNF requirement slightly,
in order to allow the occasional relation schema, like that of Example 3.42 that
cannot be decomposed into BCNF relations without our losing the ability to
check each functional dependency within one relation. This relaxed condition
is called the third normal form condition:

is a nontrivial dependency, either {Al, Ag, ..
a member of some key.

Note that the difference between this 3NF ccuili @» Xad the BCN%
- dition is the clause “or B is a member of songR:ey: This clause “excuses
a dependency like theater — city in Exampify3.42, bec ighi=side,
city, is a member of a key. W@A ES

It is beyond the scope of this book to proveaat INITEATELEE @e@@ei_q_
its purposes. That is, we can always decompc: refation schema in a way that
does not lose information, into schemas that arejiv 35 anME‘R@ﬁL&&nal s
dependencies to be checked. When these relati : %ot in BCNF, there willQ
be some redundancy left in the schema, however. o

rint.drin® s

s ———— T
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It is interesting to observe that the example we found of a relation schema
that is in 3NF but not in BCNF is somewhat different from the non-BCNF
examples we have seen earlier. One of the relevant functional dependencies,
theater — city, is of the typical form, based on the fact that a theater is a
unique object located in one city. However, the other dependency

title city — theater

comes from an observation about the movie-distribution policies practiced by
movie studios. In general, functional dependencies fall into two categories:
those based on the fact that we are representing unique objects such as movies
and studios, and those based on real-world practices, such as booking movies
into at most one theater per city.

3.7.8 Exercises for Section 3.7

Exercise 3.7.1: For each of the following relation schemas and sets of func-
tional dependencies:

* a) R(A, B,C, D) with functional dependencies AB - C,C — D, and
D - A

* b) R(A, B,C, D) with functional dependencies B -+ C,and B = D.

¢) R(A, B,C, D) with functional dependencies AB — C, BC — D,
CD - A, and AD - B.

d) R(A, B,C, D) with functional dependencies 4 -+ B, B =+ C,C = D,
and D — A.

e) R{4,B,C,D,FE) with functional dependencies AB —+ C, DE - C,
and B = D.

f) R(A,B,C,D,E) with functional dependencies AB — C,C —~+ D,
D - B,andD - E.

do the following:

i) Indicate all the BCNF violations. Do not forget to cons{filzy
that are not in the given set, but follow from themg kU
necessary to give violations that have more than one 'a.tt' the right
side.

1) Decompose the relations, as necessary, into colk
are in BCNF.

i17) Indicate all the 3NF violations.

iv) Decompose the relations, as necessary, into coll¢
are in 3NF.

IﬁRS/

nons of rela%’smEﬂQasE
ORDER FULL

% VERSION &
mitlen$7of relations that Oo

©ring.drin®y
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Exercise 3.7.2: We mentioned in Section 3.7.4 that we should expand the
right side of a functional dependency that is a BCNF violation if possible.
However, it was deemed an optional step. Consider a relation R whose schema
is the set of attributes { A, B, C, D} with functional dependencies 4 — B and
A — C. Either is a BCNF violation, because the only key for R is {4, D}.
Suppose we begin by decomposing R according to A — B. Do we ultimately
get the same result as if we first expand the BCNF violation to A — BC?
Why or why not?

! Exercise 3.7.3: Let R be as in Exercise 3.7.2, but let the functional dependen-
cisbe A - Band B — (. Again compare decomposing using A — B first
against decomposing by A — BC first. Hint: When we decompose, we need
to think about what functional dependencies hold for the relations that result
from the decomposition. Is it sufficient to use only those of the given dependen-
cies that involve only attributes in one of the schemas of the decomposition?
What about dependencies that follow from the given dependencies?

! Exercise 3.7.4: Suppose we have a relation schema R(A, B,C) with func-
tional dependency 4 — B. Suppose also that we decide to decompose this
schema into S(A.B) and T(B, C). Give an example of an instance of relation
R whose projection onto S and T and subsequent rejoining as in Section 3.7.6
does not yield the same relation instance.

! Exercise 3.7.5: Suppose we decompose relation R(A, B,C, D, E) into relation
S(A, B,C) and other relations. Give the functional dependencies that hold in
S if the dependencies for R are:

*a) AB - DE,C - E,D - C,and E - A.

b)) A—- D,BD -+ E,AC - E,and DE - B.

¢) AB - D,AC » E,BC - D,D - A,and E -+ B.
d) A > BB +C,C > DD > E,andE - A

In each case, it is sufficient to give a minimal basis for the full set of dependencies
of 5.

3.8 Multivalued Dependencieg ®0 VERS Y,
A “multivalued dependency” is an assertion thgilRéwe gﬁbutes or sets of at-
tributes are independent of one another. This gundition i is, 29 ¥ 7%13
generalization of the notion of a functional def@itdency, in the sense t every
functional dependency implies a corresponding gtultivalGSRIEPE=d=hds (el
ever, there are some situations involving ind@gndgice of attribute sets that
cannot be explained as functional dependenciesh i DI Nex-
plore the cause of multivalued dependencies aflélfgze ow they can be used in (o]
database schema design.
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3.8.1 Attribute Independence and Its Consequent Redun-
dancy

There are occasional situations where we design a relation schema and find it
is in BCNF, yet the relation has a kind of redundancy that is not related to
functional dependencies. The most common source of redundancy in BCNF
schemas is the independence of two or more multivalued attributes of some
class, when we use the straightforward transformation from QDL to relations
that was described in Section 3.2.

Example 3.43: Suppose the class Star is defined to have a name, a set of
addresses, arid a set of movies starred in. The definition would be similar to
that of Fig. 2.5, but the type of attribute address would differ. The proposed
definition of Star is shown in Fig. 3.38.

interface Star {
attribute string name;
attribute Set<
Struct Addr {string street, string city}
> address;
relationship Set<Movie> starredIn inverse Movie::stars;

};

Figure 3.38: Stars defined to have sets of addresses and movies

In Fig. 3.39 we see some possible tuples in the relation that comes directly
from the definition of Fig. 3.38. We have represented sets of addresses exactly
as we did in Fig. 3.8. The tuples of that figure have been extended with compo-
nents corresponding to attributes title and year, the key for the Movie class.
These attributes represent the movies related to the star by the relationship
starredIn.

name | street | city | title

C.-?isher"rmﬁaple St. | Hollywood | Star Wars

C. Figsher | 5 Locust Ln. Malibu

C. Fisher | 123 Maple St. | Hollywood

C. Fisher | 5 Locust Ln. Malibu ack | 1980

C. Fisher | 123 Maple St. | Hollywood ej? Eg&zs
C. Fisher | 5 Locust Ln. | Malibu 'f the Je L, E

We focus in Fig. 3.39 on Carrie Fisher’s two hypothGaha m@resses and three OO
best-known movies. There is no reason to associate an aglilg s;gﬁl.one movie G‘ .

Figure 3.39: Sets of addresses independe

fip)s

ORDER FULL
LrYERSION

‘nt-drN
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and not another. Thus, the only way to express the fact that addresses and
movies are independent properties of stars is to have each address appear with
each movie. But when we repeat address and movie facts in all combinations,
there is obvious redundancy. For instance, Fig. 3.39 repeats each of Carrie
Fisher’s addresses three times {once for each of her movies) and each movie
twice (once for each address).

Yet there is no BCNF violation in the Star relation schema suggested by
Fig. 3.39. There are, in fact, no nontrivial functional dependencies at all. For
example, attribute city is not functionally determined by the other four at-
tributes. There might be a star with two homes that had the same street
address in different cities. Then there would be two tuples that agreed in all
attributes but city and disagreed in city. Thus,

name street title year -3 city

is not a functional dependency for our Star relation. We leave it to the reader
to check that none of the five attributes is functionally determined by the other
four. That observation is enough to conclude that there are no nontrivial func-
tional dependencies at all (the reader should also consider why this inference is
proper). Since there are noc nontrivial functional dependencies, it follows that
all five attributes form the only key and that there are no BCNF violations. O

3.8.2 Definition of Multivalued Dependencies

A maultivalued dependency is a statement about some relation R that when you
fix the values for one set of attributes, then the values in certain other attributes
are independent of the values of all the other attributes in the relation. More
precisely, we say the multivalued dependency

A1A2"'An —)—)BlBg"'Bm

holds for a relation R if when we restrict ourselves to the tuples of R that have
a certain value for each of the attributes among the A’s, then the

A’s, we can find in R is some tuple v thatigrees: PLEASE

ORDER FULL

VERSION
af%among the A’s or OO

ring.arin®y

1. With both ¢t and u on the A’s,
2. With t on the B’s, and

3. With u on all attributes of B that®Wa\
B’s.
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Note that we can use this rule with ¢ and u interchanged, to infer the existence of
a fourth tuple w that agrees with u on the B’s and with ¢ on the other attributes.
A’s a consequence, for any fixed values of the A’s, the associated values of the B’s
and the other attributes appear in all possible combinations in different tuples.
Figure 3.40 suggests how v relates to ¢ and u when a multivalued dependency
holds.

1
-~ A’s »e— B’s —»re— Others —
i
I

P .

e er———]—— - = — - - -

Figure 3.40: A multivalued dependency guarantees that v exists

In general, we may assume that the A’s and B’s (left side and right side) of a
multivalued dependency are disjoint. However, as with functional dependencies,
it is permissible to add some of the A’s to the right side if we wish. Also note that
unlike fun.tional dependencies, where we started with single attributes on the
right and allowed sets of attributes on the right as a shorthand, with multivalued
dependencies, we must consider sets of attributes on the right immediately. As
we shall see in Example 3.45, it is not always possible to break the right sides
of multivalued dependencies into single attributes.

Example 3.44: In Example 3.43 we encountered a multivalued dependency
that in our notation is expressed:

name — street city

Fig. 3.30:

ORDER FULL

name | street | city | title 7 VEF?;@"ON

C. Fisher | 123 Maple St. | Hollywood | Star Wil 1977
C. Fisher | 5 Locust Ln. Malibu ik
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If we let the first tuple be t and the second be u, then the multivalued depen-
dency asserts that we must also find in R the tuple that has name C. Fisher,
a street and city that agree with the first tuple, and other attributes (title
and year) that agree with the second tuple. There is indeed such a tuple; it is
the third tuple of Fig. 3.39.

Similarly, we could let ¢ be the second tuple above and u be the first. Then
the multivalued dependency tells us that there is a tuple of R that agrees with
the second in attributes name, street, and city and with the first in name,
title, and year. This tuple also exists; it is the second tuple of Fig. 3.39. O

3.8.3 Reasoning About Multivalued Dependencies

There are a number of rules about multivalued dependenciés that are similar to
the rules we learned for functional dependencies in Section 3.6. For example,
multivalued dependencies obey

¢ The trivial dependencies rule, which says that if multivalued dependency
A1Ay--- A, = BB, --- By, holds for some relation, then so does

Ady--- Ay = CCy---C

where the C's are the B’s plus one or more of the A’s. Conversely, we can
also remaove attributes from the B’s if they are among the A’s and infer
the multivalued dependency

AlAQ"-An - Dng---Dr

if the D’s are those B’s that are not among the A’s.

o The transitive rule, which says that if A;A;--- A, = B B;--- By, and
ByB;--- By, — C,Cy---Cy hold for some relation, then so does

A1A2~-'An —H'ClCz*“Ck

However, multivalued dependencies do not obey the g

‘@‘ﬁd the multwa.lu@

PLEASE
ORDER FULL

If the splitting rule were true for multivalW@ifdeZenden uld
expect %@ %ﬁg i‘if)‘ﬁ

ring. dr\"e(

Example 3.45: Consider again Fig. 3.39, whereg¥:
dependency

nane —+ street

name 3 street
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also to be true. This multivalued dependency says that each star’s street ad-
dresses are independent of the other attributes, including city. However, that
statement is false. Consider, for instance, the first two tuples of Fig. 3.39. The
hypothetical multivalued dependency would aliow us to infer that the tuples
with the streets interchanged:

name street city title year
C. Fisher | 6 Locust Ln. Hollywood | Star Wars | 1977
C. Fisher 123 Maple St. | Malibu Star Vars | 1977

were in the relation. But these are not true tuples, because, for instance, the
home on 5 Locust Ln. is in Malibu, not Hollywood. O

However, there are several new rules dealing with multivalued dependencies
that we can learn. First,

e Every functional dependency is a multivalued dependency. That is, if
A1A2' "An - 3182 "'Bm, then A1A2"'Aﬂ - B]Bz‘ " 'Bm.

To see why, suppose R is some relation for which the functional dependency
AjAg--- A, = BB By, holds, and suppose t and u are tuples of R that
agree on the A’s. To show that the multivalued dependency

AjAy---Ap o B1By- - By,

holds, we have to show that R also contains a tuple v that agrees with ¢ and
u on the A’s, with ¢ on the B’s, and with u on all other attributes. But v
can be u. Surely u agrees with ¢t and « on the A’s, because we started by
assuming that these two tuples agree on the A’s. The functional dependency
AyA;--- A, = BB, --- By, assures us that u agrees with t on the B’s. And of
course u agrees with itself on the other attributes. Thus, whenever a functional
dependency holds, the corresponding multivalued dependency holds.

Another rule that has no counterpart in the world of functional dependencies
is the complementation rule:

o If AjA;--- A, = BB, --- B, is a multivalued dependency for relation
R, then R also satisfies A1 Az - A, = C1C;-- - Ci, where the s 2
all attributes of R not among the A’s and B.

Example 3.48: Again consider the relation of Fig. 3.39, for h'o‘ WE%S
» 0

the multivalued dependency

name —-» street city

PLEASE
ORDER FULL

The complementation rule says that

name —-> title year

addresses. O
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3.8.4 Fourth Normal Form

The redundancy that we found in Section 3.8.1 to be caused by multivalued
dependencies can be eliminated if we use these dependencies in a new decom-
position algorithm for relations. In this section we shall introduce a new normal
form, called “fourth normal form.” In this normal form, all “nontrivial” (in a
sense to be defined below) multivalued dependencies are eliminated, as are
all functional dependencies that violate BCNF. As a result, the decomposed
relations have neither the redundancy from functional dependencies that we
discussed in Section 3.7.1 nor the redundancy from multivalued dependencies
that we discussed in Section 3.8.1.

A multivalued dependency Ay As --- A, = By Bs .- B, for a relation R is
nontrivial if:

1. None of the B’s is among the A’s.
2. Not all the attributes of R are among the A’s and B's.

The “fourth normal form” condition is essentially the BCNF condition, but
applied to multivalued dependencies 1nstead of functional dependencies. For-
mally:

s A relation R is in fourth normal form (ANF) if whenever
AlAz 4,, —+ BB, -- -Bm

is a nontrivial multivalued dependency, {4, 42, ..., A} is a superkey.

That is, if a relation is in 4NF, then every nontrivial multivalued dependency
is really a functional dependency with a superkey on the left. Note that the
notions of keys and superkeys depend on functional dependencies only; adding
multivalued dependencies does not change the definition of “key.”

Example 3.47: The relation of Fig. 3.39 violates the 4NF condition. For
example,

name —- street city

is a nontrivial multivalued dependency, yet name by ith); 1s a@@#& )

fact, the only key for this relation is all the attribhZs /O
Fourth normal form is truly a generalizat{f(Wof @NF Recall from Sec-¢

tion 3.8.3 that every functional dependency is z2lfo a multivg¥ed=B&B¢ency.

Thus, every BCNF violation is also a 4NF vihijERion. P tlimother , €Ve
BER FULL

relation that is in 4NF is therefore in BCNF.

However, there are some relations that a3 %NF% R‘Sﬁﬁbﬁlg—
ure 3.39 is a good example. The only key for tbiEhrelfstion i
and there are no nontrivial functional depender®yeR Tus it is surely in BCNFO
However, as we observed in Example 3.47, it is ng Bl 4‘3@’, G(
nt-drV
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3.8.5 Decomposition into Fourth Normal Form

The 4NF decomposition algorithm is quite analogous to the BCNF decompo-
sition algorithm. We find a 4NF violation, say Ay As---A, == B1Bs -+ Bp,
where {4;,A2,...,4,} is not a superkey. Note this muiltivalued dependency
could be a true multivalued dependency, or it could be derived from the cor-
responding functional dependency A1 A>--- A, — B Bs---B,,, since every
functional dependency is a multivalued dependency. Then we break the schema
for the relation R that has the 4NF violation into two schemas:

1. The A’s and the B’s.
2. The A’s and all attributes of R that are not among the A's or B’s.
Example 3.48: Let us continue Example 3.47. We observed that
name —-> street city

was a 4NF violation. The decomposition rule above tells us to replace the five-
attribute schema by one schema that has only the three attributes in the above
multivalued dependency and another schema that consists of the left side, name,
plus the attributes that do not appear in the dependenrcy. These attributes are
title and year, so the following two schemas

{name, street, city}
{name, title, year}

are the result of the decomposition. In each schema there are no nontrivial
multivalued (or functional) dependencies, so they are in 4NF. Note that in the
relation with schema {name, street, city}, the multivalued dependency

name -+ street city

is trivial since it involves all attributes. Likewise, in the relation with schema
{name, title, year}, the multivalued dependency

name —+ title year

is trivial. Should one or both schemas of the decomposition not be in
would have had to decompose the non-4NF schema(s). O

As for the BCNF decomposition, each decompositiop,siss @(@ H S
schemas that have strictly fewer attributes than we start , woeventually /O
we get to schemas that need not be decomposed fugdilr; is, they are

in 4NF. Moreover, the argument justifying the decorglvosition thes ywe=gavga
in Section 3.7.6 carries over to multivalued depend@ildles as well}.lig mE

decompose a relation because of a multivalued dependicy ORDER FULL
Az dn - BBy B 9 S VERSION
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Projecting Multivalued Dependencies

-When we decompose into fourth normal form, we need to find the multi-
valued dependencies that hold in the relations that are the result of the
decomposition. We wish it were easier to find these dependencies. How-
ever, there is no simple test analogous to computing the closure of a set
of attributes (as in Section 3.6.3) for functional dependencies. In fact,
even a complete set of rules for reasoning about collections of functional
and multivalued dependencies is quite complex and beyond the scope of
this book. The section on further reading mentions some places where the
subject is treated.

Fortunately, we can often obtain the relevant multivalued dependen-
cies for one of the products of a decomposition by using the transitive rule,
the complementation rule, and the intersection rule [Exercise 3.8.7(b)]. We
recommend that the reader try these in examples and exercises.

3.8.6 Relationships Among Normal Forms

As we have mentioned, 4NF implies BCNF, which in turn implies 3NF. Thus,
for any relation schema, the sets of relation instances for that schema satisfying
the three normal forms are related as in Fig. 3.41. That is, if a set of tuples
satisfies the 4NF condition, then it surely satisfies the other two normal-form
conditions, and if it satisfies the BNCF condition, then it surely is in 3NF.
However, depending on the functional dependencies assumed for the schema,
there could be sets of tuples in 3NF but not BCNF. Similarly, for certain sets
of assumed functional and multivalued dependencies, there will be some sets of
tuples in BCNF but not 4NF.

Another way to compare the normal forms is by the guarantees they make
about the set of relations that result from a decompos1t10n in ormal

BCNF (and therefore 4NF) eliminates the redundan{Qgeio o h&!
that are caused by functional dependencies, while galigfs! t v?
diticnal redundancy that is caused by the presenaJof Jmn 1v1a1 multi
dependencies that are not functional dependen8lEs @@ﬂn 3NF is enough to¢
eliminate this redundancy, but there are exampléJwhere it 1@{@

sition into 3NF can always be chosen so that@@ds functional depen enc1es are

preserved; that is, they are enforced in the decgiiposed @lﬁ@ﬁ@h&&ﬂ hé_

have not discussed the algorithm to do so in t¥ ﬁ%ﬁém
Zre o 8. &

antee preservation of functional dependencies, alad
guarantee preservation of multivalued dependeidwlgs ag"ihough in typical ca.seso

the dependencies are preserved. ,O/,lnt dr W G‘
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Relations

Relations
in 4NF

Figure 3.41: 4NF implies BNCF implies 3NF

Property | 3NF | BCNF | 4NF |

" Eliminates redundancy d due Most | Yes
to functional dependencies
Eliminates redundancy due | No No Yes
to multivalued dependencies _
Preserves functional | Yes Maybe | Maybe
dependencies

Preserves multivalued | Maybe | Maybe | Maybe
dependencies

Figure 3.42: Properties of normal forms and their decompositions

3.8.7 Exercises for Section 3.8

also be in R?

* Exercise 3.8.2: Suppose we have a relation in whickRwe want tee= NG E
each person their name, Social Security number, ancRgi'thdate. Also, for €ach
child of the person, the name, Social Security numbgy and | @@@&Rt ULL
child, and for each automobile the person owns, its®:
To be more precise, this relation has all tuples

O

(n, 8,b,cn,cs, cb, as, am)

,o,. /nt.- dr\"e(
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such that

1. n is the name of the person with Social Security number s.

2. bis n’s birthdate.

3. cn is the name of one of n’s children.

4. csis cn’s Social Security number.

5. cbis cn’s birthdate.

6. as is the serial number of one of n’s automobiles.

7. am is the make of the automobile with serial number as.

For this relation:

a) Tell the functional and muitivalued dependencies we would expect to hold.

b) Suggest a decomposition of the relation into 4NF.
Exercise 3.8.3: For each of the following relation schemas and dependencies

* a) R(A, B,C, D) with multivalued dependencies A -+ B and A - C.
b) R(A,B,C, D) with multivalued dependencies A -+ B and B —+ CD.

c) R(A,B,C,D) with multivalued dependency AB —+ C and functional
dependency B — D.

d) R(A,B,C, D, E) with multivalued dependencies A =+ B and AB =+ C
and functional dependencies A - D and AB — E.

do the following:

1) Find all the 4NF violations.

it) Decompose the relations into a collection of relation 821 ErB I Nl

PLEASE

Exercise 3.8.5: Give informal arguments why}je wou@lﬂ@ P3ERaT b (he

five attributes in Example 3.43 to be functiongilV'gd other four.
RSION I3
! Exercise 3.8.6: Using the definition of mult{ ependency, show why ©

the complementation rule holds.

Hoe e Tom s <
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! Exercise 3.8.7: Show the following rules for multivalued dependencies:

* 3) The union rule. If X, Y, and Z are sets of attributes, X — Y, and
X -+ Z, then X = (Y U Z).

b) The intersection rule. If X, Y, and Z are sets of attributes, X —+» Y,
and X = Z,then X - (Y N 2Z).

¢) The difference rule. If X, Y, and Z are sets of attributes, X —» Y, and
X » Z then X -» (Y — 2).

d) Trivial multivalued dependencies. If Y C X, then X —» Y holds in any
relation.

e) Another source of trivial multivalued dependencies. If X U Y is all the
attributes of relation R, then X -+ Y holds in R.

f) Removing attributes shared by left and right side. If X — Y holds, then
X = (Y - X) holds.

! Exercise 3.8.8: Give counterexample relations to show why the following rules
for multivalued dependencies do not hold.

*a) If A BC,then A -+ B.
b) If A—+ B, then A — B.
¢c) f AB —+ C,then A — C.

! Exercise 3.8.9: The conversion from ODL to relations often introduces mul-
tivalued dependencies. Give some principles for discovering multivalued depen-
dencies from multivalued attributes and relationships when the relation-schema
strategy of Sections 3.2.2 and 3.2.5 are followed.

3.9 An Example Database Schema

Having seen the kinds of problems that can arise when we constructgur reletdton
directly from an ODL or E/R design, and having seen what wegeas doaksn
%]

L o
anomalies that sometimes occur, let us fix on a single relationalKikitabss SWQE‘;?
k — 43 %i? devote S/
to database programming by the user. Our databaseggzila @ws upon the O¢
running example of movies, stars, and studios, and it @®'=3 no ahz@ogﬁgﬁr%
similar to the ones that we developed in the previgit¥sections. L Ay E

it includes one relation — MovieExec — that has 3G a?emﬁgi Tﬁe U LL

purpose of these changes is to give us some opportuniticcudy ¢ @@;@ N s
2ples o apters o
¢

types and different ways of representing information ipfzka
through 8. Figure 3.43 shows the schema.
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Movied
TITLE: string,
YEAR: integer,
length: integer,
inColor: boolean,
studioName: string,
producerC#: integer)

StarsIn(
MOVIETITLE: string,
MOVIEYEAR: integer,
STARNAME: string)

MovieStar(
NAME: string,
address: string,
gender: char,
birthdate: date)

MovieExec(
name: string,
address: string,
CERT#: integer
netWorth: integer)

Studio(
NAME: string,
address: string,
presC#: integer)

o VER
W So

movies

PLEASE
ORDER FULL
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QOur schema has five relations. The attributes of each relation are listed,
along with the intended domain for that attribute. The key attributes for a
relation are shown in capitals in Fig. 3.43, although when we refer to them in
text, they will be lower-case as they have been heretofore. For instance, all
three attributes together form the key for relation StarsIn. Relation Movie
has six attributes; title and year together constitute the key for Movie, as
they have previously. Attribute title is a string, and year is an integer.

The major modifications to the schema compared with what we have seen
so far are:

» There is a notion of a certificate number for movie executives — studio
presidents and movie producers. This certificate is a unique integer that
we imagine is maintained by some external authority, perhaps a registry
of executives or a “union.”

¢ We use certificate numbers as the key for movie executives, although
movie stars do not always have certificates and we shall continue to use
name as the key for stars. That decision is probably unrealistic, since
two stars could have the same name, but we take this road in order to
illustrate some different options.

o We introduced the producer as another property of movies. This infor-
mation is represented by a new attribute, producercCs#, of relation Movie.
This attribute is intended to be the certificate number of the producer.
Producers are expected to be movie executives, as are studicd presidents.
There may also be other executives in the MovieExec relation.

o Attribute £ilmType of Movie has been charnged from an enumerated type
to a boolean-valued attribute called inColor: true if in color and false
if in black and white. The motivation is that not all database languages
support enumerated types. :

o The attribute gender has been added for movie stars. Its type is “char-
acter,” either M for male or F for female. Attribute birthdate, of type
“date” (a special type supported by many commercial database systems
or just a character string if we prefer) has also been added:

¢ All addresses have been made strings, rather than pgh

rags
street and city. The purpose is to make addresse:gu? dgi;gn elatlons S/O

comparable easily and to simplify operations o

We conclude with a brief commentary on the fivegd'
and their derivation from the earlier ODL or E/R desl:ns.

1. Movie is one of the relations in the decomposialin & relajd
Example 3.36, to which we have added attributeg» dadv2erC# representing
the producer of the movie.

[ ——— Y

(o)
&)
Oring.qrin®
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2. StarsInis the other relation in the decomposition of Example 3.36. This
same relation is also needed if we create a relation Star from the ODL
class of the same name and then put that relation into BCNF. That is,
starting with the ODL definition of Fig. 2.5, we would get a relation Star
with attributes name, address, title, and year. The last two represent
the starredIn relationship. We find that {name, title, year} is the key,
but name — address is a functional dependency. Thus, the relation would
have to be decomposed into schemas {name, address} (which has been
expanded into our relation MovieStar) and {name, title, year} (which
is essentially our relation StarsIn). Our relation StarsIn also represents
the relationship Stars-in of the E/R diagram of Fig. 2.8.

3.10 Summary of Chapter 3

+ Relational Model: Relations are tables representing information. Columns
are headed by attributes; each attribute has an associated domain, or
data type. Rows are called tuples, and a tuple has one component for
each attribute of the relation.

4+ Schemas: A relation name, together with the attributes of that rela-
tion, form the relation schema. A collection of relation schemas forms a
database schema. Particular data for a relation or collection of relations
is called an instance of that relation schema or database schema.

¢ Converting Entity Sets to Relations: The relation for an entity set has one
attribute for each attribute of the entity set. An exception is a weak entity
set E, whose relation must also have attributes for the key attributes of
those other entity sets that help identify entities of E.

& Converting Relationships to Relations: The relation for an E/R relation-
ship has attributes corresponding to the key attributes of each entity set
that participates in the relationship.

¢ Converting ODL Classes to Relations: The relatio for 3
C has one attribute for each attnbute of the o

+ Converting ODL Many-Many Relationshin:Ro Relatw@ m&@@ re-
lationships can be stored with either clas™qg esult in an e‘:ﬁclplojslon

tional design can be removed by the pretz:
tively, many-many relationships in ODL ¢

- 4 ot AN 1 T s 1
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4+ Converting Subclasses to Relations: One approach is to partition entities
or objects among the various subclasses and create a relation, with all
necessary attribute, for each subclass. A second approach is to represent
all entities or objects in a master relation with the only the attributes of
the most general class. Entities or objects in subclasses are aiso in special
relations for whatever subclasses they belong to. These relations have
only the key attributes for the general class and the attributes special to
the subclass.

4 Functional Dependencies: A functional dependency is a statement that
two tuples of a relation that agree on some particular set of attributes
must- also agree on some other particular attribute.

4 Keys: A superkey for a relation is a set of attributes that functionally
determine all the attributes of the relation. A key is a superkey such that
no proper subset of the key also functionally determines all the attributes.

4 Reasoning About Functional Dependencies: There are many rules that let
us infer that one functional dependency X — A holds in any, relation
instance that satisfies some other given set of functional dependencies.
The simplest approach to verifying that X — A holds usually is to
compute the closure of X, using the given dependencies to expand X
until it includes A.

4+ Decomposing Relations: We can decompose one relation schema into two
without losing information as long as the attributes in both schemas forms
a superkey for at least one of the decomposed relations.

4 Boyce-Codd Normal Form: A relation is in BCNF if the only nontrivial
functional dependencies say that some superkey functionally determines
one of the other attributes. It is possible to decompose any relation into a
collection of BCNF relations without losing information. A major benefit
of BCNF is that it eliminates fedundancy caused by the existence of
functional dependencies.

from checking certain functional dependencies. A relax _ W%“
: 7 i8 nO & S/

superkey, provided A is a member of some key. 3B {;ﬁt eliminate O

4+ Multivalued Dependencies: A multivalued depe
two sets of attributes in a relation have sets of
possible combinations. A common cause of
designing a relation to represent an ODL class
valued attributes or relationships.
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4 Fourth Normal Form: Multivalued dependencies can also cause redun-
dancy in a relation. 4NF is like BCNF, but also forbids nontrivial mul-
tivalued dependencies (unless they are actually functional dependencies
that are allowed by BCNF). It is possible to decompose a relation into
4NF without losing information.

3.11 References for Chapter 3

The classic paper by Codd on the relational model is [4]. This paper introduces
the idea of functional dependencies, as well as the basic relational concept.
Third normal form was also described there, while Boyce-Codd normal form is
described by Codd in a later paper [5).

Multivalued dependencies and fourth normal form were defined by Fagin in
[7]. However, the idea of multivalued dependencies also appears independently
in [6] and [9].

Armstrong was the first to study rules for inferring functional dependencies
[1]. The rules for functional dependencies that we have covered here (includ-
ing what we call “Armstrong’s axioms”) and rules for inferring multivalued
dependencies as well, come from [2]. The technique for testing a functional
dependency by computing the closure for a set of attributes is from [3].

There are a number of algorithms and/or proofs that algorithms work which
have not been given in this book. These include explanations of why the closure
algorithm for inferring functional dependencies works, how one infers multival-
ued dependencies, how one projects multivalued dependencies onto decomposed
relations, and how one decomposes into 3NF without losing the ability to check
functional dependencies. These and other nmatters concerned with dependencies
are explained in [8].

1. Armstrong, W. W., “Dependency structures of database relationships,”
Proceedings of the 1974 IFIP Congress, pp. 580-583.

2. Beeri, C., R. Fagin, and J. H. Howard, “A complete axiomatization for
functional and multivalued dependencies,” ACM SIGMOD International
Conference on Management of Data, pp. 47-61, 1977

3. Bernstein, P. A., “Synthesizing third normal fosPrelat nd\; ﬁ:?u
tional dependencies,” ACM Trensactions origel ubé@&@
277-298, 1976.
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Chapter 4

Operations in the
Relational Model

In this chapter we begin the study of databases from the point of view of the
user. Often, the principal issue for the user is gquerying the database, that
is, writing programs that answer questions about the current instance of the
database. In this chapter, we shall study the question of database queries from
an abstract point of view, defining the principal query operators.

While ODL uses methods that, in principle, can perform any operation on
data, and the E/R model does not embrace a specific way of manipulating
data, the relational model has a concrete set of “standard” operations on data.
Thus, our study of database operations in the abstract will focus on the rela-
tional model and its operations. These operations can be expressed in either
an algebra, called “relational algebra,” or in a form of logic, called “Datalog.”
We shall learn each of these notations in this chapter.

Later chapters let us see the languages and features that today’s commercial
database systems offer the user. The abstract query operators will appear
primarily as operations in the SQL query language discussed in Chapters 5
through 7. However, they also appear in the OQL language mentioned in
Chapter 8.

4.1 An Algebra of Relational &

To begin our study of operations on relations, wzishal ea.r&aﬂcg& §r§%al
algebra, called relational algebra, that consists of e simple Nitkperverind vaays

to construct new relations from old ones. Ezpressiins in ﬁ%ﬁf%'—

from relations as operands; relations can eithezgdd: represerit heir n

(e.g., R or Movie) or represented explicitly as a 1S %ﬁir tdy’l% R/Se@egn s
1 0

build progressively more complex expressions byg€idolyzag any of the operators
to be described below, either to relations or to simp|3 é&ressiqns of relational ©

“int.driN®
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algebra. A query is an expression of relational algebra. Thus, relational algebra
is our first concrete example of a query language.
The operations of relational algebra fall into four broad classes:

1. The usual set operations — union, intersection, and difference — applied
to relations.

2. Operations that remove parts of a relation: “selection” eliminates some
rows (tuples), and “projection” eliminates some columns.

3. Operations that combine the tuples of two relations, including “Cartesian
product,” which pairs the tuples of two relations in all possible ways, and
various kinds of “join” operations, which selectively pair tuples from two
relations.

4. An operation called “renaming” that does not affect the tuples of a re-
lation, but changes the relation schema, i.e., the names of the attributes
and/or the name of the relation itself.

These operations are not enough to do any possible computation about re-
lations; in fact they are quite limited. However, they capture much of what
we really want to do with databases, and they form a large part of the stan-
dard relational ‘query language SQL, as we shall see in Chapter 5. We shall,
‘however, discuss briefly in Sections 4.6 and 4.7 some of the computational ca-
pabilities that are present in real query languages like SQL and yet are not part
of relational algebra.

4.1.1 Set Operations on Relations

The three most common operations on sets are union, intersection, and differ-
ence. We assume the reader is familiar with these operations, which are defined
as follows on arbitrary sets R and S:

« RU S, the union of R and S, is the set of elements that are in B or S or
both. An element appears only once in the union even if it is present in
both R and S.

elements that are in S but not in K.

‘When we apply these operations to relations, we
on R and $:
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2. Before we compute the set-theoretic union, intersection, or difference of
sets of tuples, the columns of R and S must be ordered so that the order
of attributes is the same for both relations.

Sometimes we would like to take the union, intersection, or difference of rela-
tions that have the same number of attributes but use different names for their
attributes. If so, we may use the renaming operator discussed in Section 4.1.8
to change the schema of one or both relations and give them the same set of
attributes.

name address | gender | birthdate
Carrie Fisher | 123 Maple St., Hollywood | F 9/9/99
Mark Hamill 456 Dak Rd., Brentwood M 8/8/88

Relation R

name | address | gender | birthdate

Carrie Fisher | 123 Maple St., Hollywood F 9/9/99
Harrison Ford | 789 Palm Dr., Beverly Hills | M T/T/77

Relation S

Figure 4.1: Two relations

Example 4.1: Suppose we have the two relations R and S, instances of the
relation MovieStar of Section 3.9. Current instances of R and § are shown in
Fig. 4.1. Then the union RU S is

name | address | gender | birthdate

Carrie Fisher | 123 Maple St., Hollywood
Mark Hamill 456 Qak Rd., Brentwood
Harrison Ford | 789 Palm Dr., Beverly Hills 4

once in the result.
The intersection RN S is

name address
Carrie Fisher | 123 Maple St.,

Now, only the Carrie Fisher tuple appears, beca
The difference R — S is

seY il g 1Mx%§§r!3gﬂm 5
4 (o)

. g
Oring.qrin®
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name | address [ gender | birthdate

Mark Hamill | 456 Oak Rd., Brentwood I M 8/8/88

That is, the Fisher and Hamill tuples appear in R and thus are candidates for
R - S. However, the Fisher tuple also appearsin S and soisnot in R—S. O

4.1.2 Projection

The projection operator is used to produce from a relation R a new relation 1
that has only some of R’s columns. The value of expression TA;, Ag,..., A, (R) 18 '
a relation that has only the columns for attributes A4;, Ay, ..., A, of R. The

schema for the resulting value is the set of attributes {A;, A, ... ,An}, which

we conventionally show in the order listed.

title | year | length | inColor | studioName | producerC#
“Star Wars 1977 [ 124 | true | Fox 12345

Mighty Ducks | 1991 | 104 true Disney 67890

Wayne'’s World | 1992 | 95 true Paramount | 99999

Figure 4.2: The relation Movie

Example 4.2: Consider the relation Movie with the relation schema described
in Section 3.9. An instance of this relation is shown in Fig. 4.2. We can project
this relation onto the first three attributes with the expression

Ttitle year length(MOVie)

The resulting relation is

title | year | length

Star Wars
Mighty Ducks
Wayne’s World

tlon

PLEASE
ORDER FULL

expression MinCotor(Movie). The result is the single-c@fvin

inColor
true

Notice that there is only one tuple in the resulting relat
of Fig. 4.2 have the same value in their component fO. %
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4.1.3 Selection

The selection operator, applied to a relation R, produces a new relation with a
subset of R’s tuples. The tuples in the resulting relation are those that satisfy
some condition C' that involves the attributes of R. We denote this operation
oc(R). The schema for the resulting relation is the same as R’s schema, and
we conventionally show the attributes in the same order as we use for R.

C is a conditional expression of the type that we are familiar with from
conventional programming languages; for example, conditional expressions fol-
low the keyword if in programming languages such as C or Pascal. The only
difference is that the operands in C are either constants or attributes of R. We
apply C to each tuple ¢t of R by substituting, for each attribute 4 appearing in
condition C, the component of t for attribute A. If after substituting for each
attribute of C the condition C is true, then t is one of the tuples that appear
in the resuit of o¢(R); otherwise ¢ is not in the resuit.

Example 4.3: Let the relation Movie be as in Fig. 4.2. Then the value of
€Xpression Giength>100 (Movie) is

title | year | length | inColor | studioName | producerC#
Star Wars 1977 | 124 true Fox 12345
Mighty Ducks | 1991 | 104 true Disney 67890

The first tuple satisfies the condition length > 100 because when we substitute
for length the value 124 found in the component of the first tuple for attribute
length, the condition becomes 124 > 100. The latter condition is true, so we
accept the first tuple. The same argument explains why the second tuple of
Fig. 4.2 is in the result.

The third tuple has a length component 95. Thus, when we substitute for
length we get the condition 95 > 100, which is false. Hence the last tuple of
Fig. 4.2 is not in the result. O

Example 4.4: Suppose we want the set of tuples in the relation

Movie(title, year, length, inColor, studioName, producerC#)

The tuple

title | year | length | inColor | )
Star Wars | 1977 | 124 | true | Fgs

is the only one in the resulting relation. O
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A|B_
1 [2
3 |4
Relation R

!
W]

@kwllm
= =] o
o
- 00 O
=

Relation S
A|RB|{SB|C |D
1 ]2 2 5 6
1 12 4 7 8
112 9 10 | 11
3 (4 2 5 6
3 |4 4 7 8
3|4 9 10 11

Result R x S

Figure 4.3: Two relations and their Cartesian product

4.1.4 Cartesian Product

The Cartesian product (or just product) of two sets R and S is the set of pairs
that can be formed by choosing the first element of the pair to be any element
of R and the second an element of S This product is denoted R _x S Whe

for R and S. However, if R and S should happen to
common, then we need to invent new names for at
identical attributes. To disambiguate an attribute A

from S.

ring.drin®y
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Example 4.5: For conciseness, let us use an abstract example that illustrates
the product operation. Let relations R and S have the schemas and tuples
shown in Fig. 4.3. Then the product R x S consists of the six tuples shown in
that figure. Note how we have paired each of the two tuples of R with each of
the three tuples of S. Since B is an attribute of both schemas, we have used
R.B and $.B in the schema for B x 5. The other attributes are unambiguous,
and their names appear in the resulting schema unchanged. O

4.1.5 Natural Joins

More often than we want to take the product of two relations, we find a need to
join them by pairing only those tuples that match in some way. The simplest
sort of match is the natural join of two relations R and S, denoted R » §, in
which we pair only those tuples from R and S that agree in whatever attributes
are common to the schemas of R and S. More precisely, let A4, 42,..., A, be
the attributes in both the schema of R and the schema of S. Then a tuple r
from R and a tuple s from S are successfully paired if and only if r and s agree
on each of the attributes A4,, As,.. ., An.

If the tuples r and s are successfully paired in the join R v« S, then the
result of the pairing is a tuple, called the joined tuple, with one component for
each of the attributes in the union of the schemas of R and S. The joined tuple
agrees with tuple r in each attribute in the schema of R, and it agrees with s
in each attribute in the schema of S. Since r and s are successfully paired, we
know that r and s agree on attributes that are in the schemas of both R and
S. Thus, it is possible for the joined tuple to agree with both r and s on those
attributes that are in both schemas. The construction of the joined tuple is
suggested by Fig. 4.4.

R
S
- VE
o Q>§O Rg o
joined tuple _JJ PLEASE

ORDER FULL
VERSION &

that we used in Sec-
onto two subsets ef(t

“int.driN®

Figure 4.4: Joining

Note also that this join operation is the s
tion 3.7.6 to recombine relations that had been p
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their attributes. There the motivation was to explain why BCNF decomposi-
tion made sense. In Section 4.1.7 we shall see another use for the natural join:
combining two relations so that we can write a query that relates attributes of
each.

Example 4.6: The natural join of the relations R and S from Fig. 4.3 is
alBlC|D

11256

3 |a ‘ 7 ‘ 8

The only attribute common to R and~S is B. Thus, to pair successfully, tuples

need only to agree in their B components. If so, the resulting tuple has com-

ponents for attributes A (from R), B {from either R or S), C (from §), and D

(from S).

In this example, the first tuple of R successfully pairs with only the first
tuple of S; they share the value 2 on their common attribute B. This pairing
yields the first tuple of the result: (1,2,5,6). The second tuple of R pairs
successfully only with the second tuple of S, and the pairing yields (3,4,7,8).
Note that the third tuple of S does not pair with any tuple of R and thus has

no effect on the result of R ¢ S. A tuple that fails to pair with any tuple of
the other relation in join is sometimes said to be a dangling tuple. D

Example 4.7: The previous example does not illustrate all the possibilities
inherent in the natural join operator. For example, no tuple paired successfully
with more than one tuple, and there was only one attribute in common to the
two relation schemas. In Fig. 4.5 we see two other relations, U and V, that
share two attributes between their schemas, B and C. We also show an instance
in which one tuple joins with several tuples.

For tuples to psir successfully, they must agree in both the B and C com-
ponents. Thus, the first tuple of U pairs successfully with the first two tuples
of V, while the second and third tuples of U pair successfully with the third
tuple of V. The result of these four pairings is shown in Fig. 4.5. O

4.1.6 Theta-Joins

The natural join forces us to pair tuples using one specific consi3'on. C?

way, equating shared attributes, is the most common ba3tgy 1atlons S/

are joined, it is sometimes desirable to pair tuples fropahy g%”mns on some O¢
the

other basis. For that purpose, we have a related notaticyJca éi& n
=¥ shall repre EA&)E

the “theta” refers to an arbitrary condition, whi
LRRNER FULL

rather than 8.
The notation for a theta-join of relations R and Sgstase
R ¢ . The result of this operation is constructed as\alleys:  \[|E RS'ON s
% <

rint.drin® s

1. Take the product of R and S.
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Result U/ e V

Figure 4.5: Natural join of relations

2. Select from the product only those tuples that satisfy the condition C.
As with the product operation, the schema for the result is the union of the
schemas of R and S, with “R.” or “S.” prefixed to attributes if necessary to
indicate from which schema the attribute came.

Example 4.8: Consider the operation U vaacp V, wher

. 4. ALr'S, p --, ea
relation, and see whether the A component from the /8 IQ%E}'Q
D component of the V-tuple. The first tuple of U Q% component q‘sﬂ"/‘
successfully pairs with each of the tuples from V g¥@veves, second and t;lfm'gD

al join, since in theO

“int.driN®

distinguish them. Thus, the theta-join contrasts wiida nex

e e



182 CHAPTER 4. OPERATIONS IN THE RELATIONAL MODEL

A|UB|UC|VB|VC|D
12 3 |2 [3 4
12 3 2 3 5
1|2 3 7 8 10
6 |7 8 7 8 10
9 |7 8 7 8 10

Figure 4.6: Result of U aacp V

latter common attributes are merged into one copy. Of course it makes sense
to do so in the case of the natural join, since tuples don’t pair unless they agree
in their common attributes. In the case of a theta-join, there is no guarantee
that compared attributes will agree in the result, since the comparison operator
might not be =.

Example 4.9: Here is a theta-join on the same relations U and V that has a
more complex condition:

Uvascp anp U.B#£V.B V

That is, we require for successful pairing not only that the A component of the
U-tuple be less than the D component of the V-tuple, but that the two tuples
disagree on their respective B components. The tuple

A|UB|UC|VB|VC|D

1]2 [3 |7 |8 [10

is the only one to satisfy both conditions, so this relation is the result of the
theta-join above. 0O

4.1.7 Combining Operations to Form Queries

If all we could do was to write single operations on oxpg
queries, then relational algebra.would not be as useful ¢ }
lational algebra, like all algebras, allows us to formggasx yiis of arbitrary
complexity by applying operators either to given relatfus or rei@igxﬁ ﬂa’gE
are the result of applying one or more relational opef@iers to relationsT

to subexpressions, using parentheses when necessa ddicate %rou ing of
operands. It is also possible to represent expressions gt e ressid Eéé&l@N s

latter often are easier for us to read, although they@®ig e%:onvenient as a (o)
machine-readable notation. N

L
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Example 4.10: Let us reconsider the decomposed Movie relation of Exam-
ple 3.32. Suppose we want to know “What are the titles and years of movies
made by Fox that are at least 100 minutes long?” One way to compute the
answer to this query is:

1. Select those Movie tuples that have length > 100.
2. Select those Movie tuples that have studioName = *Fox’.
3. Compute the intersection of (1) and (2).

4. Project the relation from (3) onto attributes title and year.

Ttitle year

N

N

Olength>100 O studioName="Fox’

Movie Movie

Figure 4.7; Expression tree for a relational algebra expression

In Fig. 4.7 we see the above steps represented as an expressmn tree The
two selection nodes correspond to steps (1) a.nd (2). The i

represents the same expression. QRDE R L‘l‘
Incidentally, there is often more than one @Etiopal algebra expression t

represents the same computation. For instance, 1€ 2bove WEREEAN] be

written by replacing the intersection by logics]l @'thin a single selectionoo

operation. That is, e < ¢
“Int-drN®
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Equivalent Expressions and Query Optimization

All database systems have a query-answering system, and many of them
are based on a language that is similar in expressive power to relational
algebra. Thus, the query asked by a user may have many equivalent ex-
pressions (expressions that produce the same answer, whenever they are
given the same relations as operands), and some of these may be much
more quickly evaluated. An important job of the query “optimizer” dis-
cussed briefly in Section 1.2.3 is to replace one expression of relational
algebra by an equivalent expression that is more efficiently evaluated.

Tiitle,year (Ulengthz 100 AND studioName='Fox’ (Hovj-e))

is an equivalent form of the query. 0O

Example 4.11: One use of the natural join operation is to recombine relations
that were decomposed to put them into BCNF. Recall the decomposed relations
from Example 3.32:!

Moviel with schema {title, year, length, £ilmType, studioName}
Movie2 with schema {title, year, starName}

Let us write an expression to answer the query “Find the stars of movies that
are at least 100 minutes long.” This query relates the starName attribute of
Moviel with the length attribute of Movie2. We can connect these attributes
by joining the two relations. The natural join successfully pairs only those
tuples that agree on title and year; that is, pairs of tuples that refer to the
same movie. Thus, Moviel ta Movie2 is an expression of relational algebra that
produces the relation we called Movie in Example 3.32. That relation is the
non-BNCF relation whose schema is all six attributes and that containgEeves:

tuples for the same movie when that movie has several stars.

3 S/O

project onto the desired set of attributes: title and yeziy e,expressxon

PLEASE
ORDER FULL

ﬂ'titte,year(alengthzlﬂﬂ(no"ielN Ivi 2))

expresses the desired query in relational algebra.

lRemember that the relation Movie of that example has 2
schema from the relation Movie that we introduced in Section 3%
4.3, and 4.4.
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4.1.8 Renaming

In order to control the names of the attributes used for relations that are con-
structed by one or more applications of the relational algebra operations, it
is often convenient to use an operator that explicitly renames operations. We
shall use the operator pg(a, 4,....4,)(R) to rename a relation R. The resulting
relation has exactly the same tuples as R, but the name of the relation is S.
Moreover, the attributes of the result relation S are named A;, Az,...,4,, in
order from the left. If we only want to change the name of the relation to S
and leave the attributes as they are in R, we can just say ps(R).

Example 4.12: In Example 4.5 we took the product of two relations R and §
from Fig. 4.3 and used the convention that when an attribute appears in both
operands, it is renamed by prefixing the relation name to it. These relations R
and S are repeated in Fig. 4.8.

Suppose, however, that we do not wish to call the two versions of B by
names H.B and S.B; rather we want to continue to use the name B for the
attribute that comes from R, and we want to use X as the name of the attribute
B coming from S. We can rename the attributes of S so the first is called X.
The result of the expression ps(x,c,p)(S) is a relation named S that looks just
like the relation S from Fig. 4.3, but its first column has attribute X instead
of S.

When we take the product of R with this new relation, there is no conflict
of names among the attributes, so no further renaming is done. That is, the
result of the expression R X ps(x,¢,p)(S) is the relation R x § from Fig. 4.3,
except that the five columns are labeled A, B, X, C, and D, from the left. This
relation is shown in Fig. 4.8.

As an alternative, we could take the product without renaming, as we did in
Example 4.5, and then rename the result. The expression prs(4,8,x.c,0)(RXS)
yields the same relation as in Fig. 4.8, with the same set of attributes, but the
relation has a name, RS, which the result relation in Fig. 4.8 doesnot. O

4.1.9 Dependent and Independent Operations

Some of the operations that we have described in Section 4,
in terms of other relational-algebra operations. For exz
be expressed in terms of set difference:

RNS=R~(R-§

That is, if R and S are any two relations with the
of R and S can be computed by first subtractis
T consisting of all those tuples in R but not

£ e AN B MR it T A R 0t % o
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AIB
2

1
314

Relation R

B|C |D

215 |6

a (7 |8

9 {10 | 11

Relation S
A|B|X|C |D
112215 |6
1 |214 |7 I8
1 |1219 (10|11
314|215 |86
34 |4 8
3 (4|9 11011

Result R X pg(x.c.0)(:S)

Figure 4.8: Two relations and their product

RbécS=ac(RxS)

The natural join of R and S can be expressed by starting with the product
R x S. We then apply the selection operator with a condition C' of the form

R.Al = SA[ AND R.A2 = S.AQ AND - -- AND RA,, = SAn

where A4,, Ay,..., A, are all the attributes appearing in the iciitXs 0

and S. Finally, we must project out one copy of each of the &

Let L be the list of attributes in the schema of R follov y@ attrlbutes
PLEASE

G%D

in the schema of S that are not also in the schema, of,
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That is, we take the product U x V. Then we select for equality between each
pair of attributes with the same name — B and C in this example. Finally,
we project onto all the attributes except one of the B’s and one of the C’s; we
have chosen to eliminate the attributes of ¥V whose names also appear in the
schema of U. '

For another example, the theta-join of Example 4.9 can be written

Ca<D AND U.Bzv.8(U x V)

That is, we take the product of the relations U and V and then apply the
condition that appeared in the theta-join. O

The redundancies mentioned in this section are the only “redundancies”
among the operations that we have introduced. The six remaining operations —
union, difference, selection, projection, product, and renaming — form an in-
dependent set, none of which can be written in terms of the other five.

4.1.10 Exercises for Section 4.1

Exercise 4.1.1: In this exercise we introduce one of our running examples
of a relational database schema and some sample data. The database schema
consists of four relations, whose schemas are:

Product (maker, model, type)

PC(model, speed, ram, hd, cd, price;
Laptop(model, speed, ram, hd, screen, price)
Printer{model, color, type, price)

The Product relation gives the manufacturer, model number and type (PC,
laptop, or printer) of various products. We assume for convenience that model
numbers are unique over all manufacturers and product types; that assumption
is not realistic, and a real database would include a code for the manufacturer
as part of the model number. The PC relation gives for each model number that
is a PC the speed (of the processor, in megahertz), the amount of RAM (in

megabytes), the size of the hard disk (in gigabytes), the speeg :

(e.g., 4x), and the price. The Laptop relation is similage
size (in inches) is recorded in place of the CD speed.

t10

outp t (Lo ;’O

if s0), the process type (laser, ink-jet, or dry), apd 5?
Some sample data for the relation Product lshowh i

n
data for the other three relations is shown ing#lz. 4.10. Ngli‘.ﬁaﬁs&.h%

model numbers have been “sanitized,” but theYsfata is o d
sale at the end of 1996. GROERFOLL
Write expressions of relational algebra to ansy r%f folls " mEJ RS Mor S
the data of Figs. 4.9 and 4.10, show the result @, query. However, your
answer should work for arbitrary data, not just theletata#of these figures. Hind: 0
(/] S
‘nt-drV
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maker | model | type

Figure 4.9: Sample data for Predu

A 1001 | pc

A 1002 | pc

A 1003 | pc

B 1004 | pc

B 1006 | pc

B 3002 | printer
B 3004 | printer
C 1005 | pc

C 1007 | pc

D 1008 | pc

D 1009 | pc .
D 1010 | pc

D 2001 | laptop
D 2002 | laptop
D 2003 | laptop
D 3001 | printer
D 3003 | printer
E 2004 | laptop -
E 2008 | laptop
F 2005 | laptop
G 2006 | laptop
G 2007 | laptop
H 3005 | printer
I 3006 | printer

VER
R

PLEASE
ORDER FULL
%& VERSION

3

O

,o,. ’nt. dr\"é
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model | o1 [ramlhdlcdlpnce

1001 [ 133 [16 | 1.6 | 6x | 1595
1002 | 120 16 1.6 Sx 1399
1003 | 166 | 24 2.5 | 6x | 1899
1004 | 166 32 2.5 [ 8x | 1999
1005 | 166 16 2.0 | 8x | 1999
1006 | 200 | 32 3.1 1 8x (2099 '
1007 | 200 32 3.2 | 8x | 2349
1008 | 180 32 2.0 | 8x | 3699
1009 ¢ 200 32 2.5 | 8x | 2599
1010 | 160 16 1.2 | 8x | 1495

(a) Sample data for relation PC

model | speed | ram | hd | screen | price
2001 | 100 |20 |1.10]9.5 | 1999
2002 § 117 12 .76 ) 11.3 2499
2003 117 32 .00 | 10.4 3599
2004 | 133 16 .10 11,2 3499
2005 | 133 16 .00 1 11.3 2599
2006 | 120 8 B1 112.1 1999
2007 | 150 16 .35 | 12.1 4799
2008 | 120 16 .10 ) 12.1 2099

N = A ]

{(b) Sample data for relation Laptop

model | color | type | price
3001 | true | ink-jet | 275
3002 | true | ink-jet | 269
3003 | false | laser
3004 | false j laser
3005 | false | ink-jet
3006 | true | dry

(c) Sample data for relatigi;rinter PLEASE
ORDER FULL

Figure 4.10: Sample data for relatio xefCiEV@RS|ON s
éékb <‘S§D
“Int-driv®
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For the harder expressions, it may be helpful to define one or more intermediate
relations in terms of the given relations (Product, etc.) and then use these
relations in a final expression. You can then substitute for the intermediate
relations in your final expression, to get an expression in terms of the given
relations.

* a) What PC models have a speed of at least 1507

b) Which manufacturers make laptops with a hard disk of at least one giga-
byte?

¢} Find the model number and price of all products (of any type) made by
manufacturer B.

d) Find the model numbers of all color laser printers.
e) Find those manufacturers that sell Laptops, but not PC’s.
*! f) Find those hard-disk sizes that occur in two or more PC’s.

! g) Find those pairs of PC models that have both the same speed and RAM.
A pair should be listed only once; e.g., list (¢, j) but not (j, ).

*11 h) Find those manufacturers of at least two different computers (PC’s or
laptops) with speeds of at least 133.

i) Find the manufacturer(s) of the computer (PC or laptop) with the highest
available speed.

!1 j} Find the manufacturers of PC’s with at least three different speeds.

" k) Find the manufacturers who sell exactly three different models of PC.

Exercise 4.1.2: Draw expression trees for each of your expressions of Exer-
cise 4.1.1.

Exercise 4.1.3: This exercise introduces another running example, concerning
World War II capital ships. It involves the following relations:

Classes(class, type, country, numGuns, bbre, LhyjakiCeme

Ships{name, class, launched) @) \TER
Q‘o‘“ %

Battles(name, date)

Outcomes(ship, battle, result)
Ships are built in “classes” from the same design, anggi¥e class is usEaA“anﬁq%?dE
for the first ship of that class. The relation Classesgsecord RB : ?). E@%t@' )
class, the type (bb for battleship or bc for battlecruigBy), th (.:()s@ﬁlntry that built LL

the ship, the number of main guns, the bore (diamey the MRS I|ON IS
inches) of the main guns, and the displacement (wgFiy tons). Relation (o)

Ships records the name of the ship, the name of its class year in which

“ing.driN

O
< ¢
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the ship was launched. Relation Battles gives the name and date of battles
involving these ships, and relation Qutcomes gives the result (sunk, damaged,
or ok) for each ship in each battle.

Figures 4.11 and 4.12 give some sample data for these four relations.> Note
that, unlike the data for Exercise 4.1.1, there are some “dangling tuples” in this
data, e.g., ships mentioned in Outcomes that are not mentioned in Ships.

Write expressions of relational algebra to answer the following queries. For
the data of Figs. 4.11 and 4.12, show the result of your query. However, your
answer should work for arbitrary data, not just the data of these figures.

a) Give the class names and countries of the classes that carried guns of at
least 16-inch bore. :

b) Find the ships launched prior to 1921.
¢) Find the ships sunk in the battle of the North Atlantic.

d) The treaty of Washington in 1921 prohibited capital ships heavier than
35,000 tons. List the ships that violated the treaty of Washington.

e) List the name, displacement, and number of guns of the ships engaged in
the battle of Guadalcanal.

f) List all the capital ships mentioned in the database. (Remember that all
these ships may not appear in the Ships relation.)

! g) Find the classes that had only one ship as a member of that class.
! h) Find those countries that had both battleships and battlecruisers.

i) Find those ships that “lived to fight another day”; they were damaged in
one battle, but later fought in another.

Exercise 4.1.4: Draw expression trees for each of your expressions of Exer-
cise 4.1.3.

Exercise 4.1.5: What is the difference between the natysg
the theta-join R tac S where the condition C is thkg

PN

: “Honotone if whenevé:
we add a tuple to one of its arguments, the res

Y contains @1 tlﬁrﬁ hat
it contained before adding the tuple, plus pegi€iss more tup eg- i the
operators described in this section are monotonl For e@w% R\pFAWEvL

it is monotone or give an example showing it i&siot.
Follety mg,%go, os

Jgf% Publications, Carroliton

&
Oring.qrin®

2Source: J. N. Westwood, Fighting Ships of World
1975 and R. C. Stern, US Baittleships in Action, Squashied
TX, 1980.

o

*
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class

Bismarck

Iowa

Kongo

North Carolina
Renown
Revenge
Tennessee
Yamato

ship

Germany
UsA
Japan
UsA

bb
bc
bb
bc
bb
tb
bb

USA
Japan

aame

Gt. Britain
Gt. Britain

CHAPTER 4. OPERATIONS IN THE RELATIONAL MODEL

| ¢ type | country | numGuns | bore | displacement

42000
46000
32000
37000
32000
29000
32000
65000

16'
14
16
15
15
14
18

GDK;QO‘!‘DG(DQ

(a) Sample data for relation Classes

date

North Atlantic

Guadalcanal
North Cape
Surigao Strait

| battle

1 5/24-27/41

11/15/42
12/26/43
10/26/44

(b) Sample data for relation Battles

rlf%suk

Bismarck

North Atlantic

aunk

California
Duke of York
Fuso

Hood

King George V
Kirishima
Prince of Wales
Rodney
Scharnhorst
South Dakota
Tennessee
Washifigton
West Virginia
Yamashiro

(c) Sample data for relation Outcg.

Figure 4.11: Data for Exercise 448

Surigao Strait
North Cape

Surigac Strait
North Atlantic
North Atlantic
Guadalcanal

North Atlantic
North Atlantic
North Cape
Guadalcanal
Surigao Strait
Guadalcanal
Surigac Strait

Surigao Strait |

ok
ok
sunk
sunk

PLEASE
ORDER FULL

2 VERSION
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name class launched
California Tennessee 1921
Haruna Kongo 1915
Hiei Kongo 1914
Towa Iowa 1943
Kirishima Kongo 19156
Kongo Kongo 1913
Missouri Iowa 1944
Musashi Yamato 1942
New Jersey Iowa 1943
North Carolina | North Carolina | 1941
Ramillies Revenge 1917
Renown Renown 1916
Repulse Renown 1916
Resolution Revenge 1916
Revenge Revenge 1916
Royal Oak Revenge 1916
Royal Sovereign | Revenge 1916
Tennessee Tennessee 1920
Washington North Carolina | 1941
Wisconsin Towa 1944
Yamato Yamato 1941

PLEASE

ORDER FULL

%4 VERSION

,o,. /nt. dr\"e(
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! Exercise 4.1.7: Suppose relations R and S have n tuples and m tuples, re-
spectively. Give the minimum and maximum numbers of tuples that the results
of the following expressions can have.

*a) RU S.
b) Rea S.
¢) oc(R) x 8, for some condition C.

d} #r(R) — S, for some list of attributes L.

! Exercise 4.1.8: The semijoin of relations R and S, denoted R < §, is the
set of tuples of R that agree with at least one tuple of S on all attributes that
are comtnon to the schemas of R and §. Give three different expressions of
relational algebra that are equivalent to RD< S.

! Exercise 4.1.9: Let R be a relation with schema
(AlvAi’a T :Aﬂs Bths . '1Bm)

and let S be a relation with schema (B;, B,, ..., B,,); that is, the attributes
of S are a subset of the attributes of R. The guotient of R and S, denoted
R + §, is the set of tuples ¢ over attributes 4y, As, ..., A, (i.e., the attributes
of R that are not attributes of S) such that for every tuple s in 5, the tuple ¢s,
consisting of the components of ¢ for A;, As,..., A, and the components of s
for By, By, ...,Bn, is a member of R. Give an expression of relational algebra,
using the operators we have defined previously in this section, that is equivalent
to R+ S.

4.2 A Logic for Relations

There is another approach to expressing queries about relations that is based
on logic rather than algebra. Interestingly, the two approaches (logical and
algebraic) lead to the same class of queries that can be expressed. Theglogice
query language introduced in this section is called Datalog (“datzlafyss
it consists of if-then rules. In one of these rules, we express ti{:gls/a éatgrm

certain combinations of tuples in certain relations we may{inG: h tgrR
tuple is in some other relation, or in the answer to a queg’s Q,

S/O

4.2.1 Predicates and Atoms PLEASE
Relations are represented in Datalog by symbols callecl§s redza@%ﬁedF U LL

icate takes a fixed number of arguments, and a predigte€ollow ﬂg&ﬂpN
guments is called an atom. The syntax of atoms is jysgdli¥s that s
calls in conventional programming languages; for exansisl(3 P@ Tyy-.,Tn) iS 0

-an -atom consisting of the predicate P with arguments z, 885 . '07”/," d ‘\]G(’
-adr\
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In essence, a predicate is the name of a function that returns a boolean
value. If R is a relation with n attributes in some fixed order, then we shall
also use R as the name of a predicate corresponding to this relation. The atom
R(ay,as,...,a,) has value TRUE if (aq, a3, ..., ay) i5 a tuple of R; the atom has
value FALSE otherwise.

Example 4.14: Let R be the relation

AIB
1 ]2
3 14

from Fig. 4.3. Then R(1,2) is true and so is R(3, 4) However, for any other
values z and y, R(z.y) is false. O

A predicate can take variables as well as constants as arguments. If an atom
has variables for more than one of its arguments, then it is a boolean-valued
function that takes values for these variables and returns TRUE or FALSE.

Example 4.15: If R is the predicate from Example 4.14, then R(z,y) is the
function that tells, for any z and y, whether the tuple {z,y) is in relation R.
For the particular instance of R mentioned in Example 4.14, R(zx,y) returns
TRUE when either

lL.z=landy =2 or
2. z=Jdandy=4

and FALSE otherwise. As another example, the atom R(1,z) returns TRUE if
z = 2 and returns FALSE otherwise. 0O

4.2.2 Arithmetic Atoms

Note that arithmetic and relational atoms et a.lue
of any variables and return a boolean value i eﬁect ari isons.

like < or > are like the names of relations thz E&a Fhus,

we can visualize the relation “<” as containiilall th E@ ﬂhi')lﬁr
.0,00.4), { %}r se m

member, however, that database relations arg 'sémte, and usually cha.ng

from time to time. In contrast, arithmetic-compthy relations such as < aﬁ@
both infinite and unchanging.

7Iint-driN®
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4.2.3 Datalog Rules and Queries

Operations similar to those of relational algebra are described in Datalog by
rules, which consist of '

1. A relational atom called the head, followed by
2. The symbol +, which we often read “if,” followed by

3. A body consisting of one or more atoms, called subgoals, which may be
either relational or arithmetic. Subgoals are connected by AND, and any
subgoal may optionally be preceded by the logical operator NOT.

Example 4.16: The Datalog rule
LongMovie(t,y) « Movie(t,y,1l,c,s,p) AND 1 > 100

can be used to compute the “long movies,” those at least 100 minutes long. It
refers to our standard relation Movie defined in Section 3.9, yith schema

ﬁovie(title, year, length, inColor, studioNamé, producerC#)

The head of the rule is the atom LongMovie(t,y). The body bf the rule consists
of two subgoals:

1. The first subgoal has predicate Movie and six arguments, corresponding
to the six attributes of the Movie relation. Each of these arguments has a
different variable: ¢ for the title component, y for the year component,
I for the length component, and so on. We can see this subgoal as saying:
“Let (t,y,4,¢,8,p) be a tuple in the current instance of relation Movie.”
More precisely, Movie(t,y,!,c, 3, p) is true whenever the six variables have
values that are the six components of some one Movie tuple.

2. The second subgoal, ! > 100, is true whenever the length component of a
Movie tuple is at least 100.

The rule as a whole can be thought of as saying: LongMavie{R)BLE LY
whenever we can find a tuple in Movie with:

b) A third component ! (for length) that is at least MU PLEASE
ORDER FULL

c¢) Any values in components 4 through 6.

Notice that this rule is thus equivalent to the “assig
tional algebra:
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Anonymous Variables

Frequently, Datalog rules have some variables that appear only once. The
names used for these variables are thus irrelevant; it is only when a variable
appears more than once that we care about its name so we can see it is the
same variable in its second and subsequent appearances. Thus, we shall
allow the common convention that an underscore, ., as gn argument of an
atom, stands for a variable that appears only there. Multiple occurrences
of . stand for different variables, never the same variable. For instance,
the rule of Example 4.16 could be written

LongMovie(t,y) « Movie(t,y,1,.,.,-.) AND 1 > 100

The three variables ¢, s, and p, that appear only once have each been
replaced by underscores. We cannot replace any of the other variables,
since each appears twice in the rule.

whose right side is a relational-algebra expression. 0O

A query in Datalog is a collection of one or more rules. If there is only one
relation that appears in the rule heads, then the value of this relation is taken
to be the answer to the query. Thus, in Example 4.16, LongMovieis the answer
to the query. If there is more than one relation among the rule heads, then
one of these relations is the answer to the query, while the others assist in the
definition of the answer. We must designate which of relation is the intended
answer to the query, perhaps by giving it a name such as Answer.

4.2.4 Meaning of Datalog Rules

Example 4.16 gave us a hint of the meaning of a Datalog rule. More precisely,
imagine the variables of the rule ranging over all possible valres. dVhenever
these variables all have values that make all the subgog
what the value of the head is for those variables, and Q=¥
to the relation whose predicate is in the head.
For instance, we can imagine the six variableslo7Exé&grtple 4.16 ranging 6fgr
all possible values. The only combinations 61§ u@that can make all th
subgoals true are when the values of (t,y,l,c, 5§/ in that ofiér =Fuh Gfeple of
Movie. Moreover, since the [ 2> 100 subgoal WGt also be true, this tuple must
be one where [, the value of the length companent, iQRRER Estts%i.&g

find such a combination of values, we put th'X{pk>(t, y) i 2d’srelation
LongMovie. ]% ‘W%ﬁﬁ%ﬁi d s

There are, however, restrictions that we mts&sl ac‘@cm the way variables
used in rules, so that the result of a rule is a fighZy @@1}1@ and so that rdles

nt.griN®
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with anithmetic subgoals or with negated subgoals (those with NOT in front of
them) make intuitive sense. This condition, which we call the safety condition,
is:

¢ Every variable that appears anywhere in the rule must appear in some
nonnegated, relational subgoal.

In particular, any variable that appears in the head, in a negated relational sub-
goal, or in any arithmetic subgoal, must also appear in a nonnegated, relational
subgoal.

Example 4.17: Consider the rule
LongMovie(t,y) « Movie(t,y,1,_,-,-) AND 1 > 100

from Example 4.16. The first subgoal is a nonnegated, relational subgoal, and
it contains all the variables that appear anywhere in the rule. In particular, the
two variables t and y that appear in the head also appear in the first subgoal
of the body. Likewise, variable ! appears in an arithmetic subgoal, but it also
appears in the first subgoal. O

Example 4.18: The following rule has three safety violations:
P(x,y) « Q(x,2z) AND NOT R{(w,x,z) AND x<y

1. The variable y appears in the head but not in any nonnegated, relational
subgoal. Notice the fact that y appears in the arithmetic subgoal ¢ < y
does not help to limit the possible values of y to a finite set. As soon as
we find values a, b, and ¢ for w, z, and x respectively that satisfy the first
two subgoals, the infinite number of tuples (a, d) where d > a wind up in
the head’s relation P.

2. Variable w appears in a negated, relational subgoal but not in a non-
negated, relational subgoal.

relational subgoal.

Thus, it is not a safe rule and cannot be used in Datalog.

There is another way to define the meaning of safe rillss. Instead!gfl!f;éséﬁ E
ering all of the possible assignments of values to variabiZTRwe conside v

tuples in the relation corresponding to each nonnegatecs relatm?ﬁl@;EIRI!F ULL

some assignment of tuples for each nonnegated, relaticgfNsukgoal is consistent
in the sense that it assigns the same value to each ocglrrgice of\,‘{m,ON s
then consider the resulting assignment of values to all WilzgaiTzbles of the rule. (o)
Notice that because the rule is safe, every variable is assieglad

©
"ht driv®
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For each consistent assignment, we consider the negated, relational subgoals
and the arithmetic subgoals, to see if the assignment of values to variables makes
them all true. Remember that a negated subgoal is true if its atom is false. If
all the subgoals are true, then we see what tuple the head becomes under this
assignment of values to variables. This tuple is added to the relation whose
predicate is the head.

Example 4.19: Consider the Datalog rule

P(x,y) «+ Q(x,z) AND R(z,y) AND NOT Q(x,y)

Let relation 2 contain the two tuples, (1,2) and (1,3). Let relation R contain
tuples (2,3) and (3,1). There are two nonnegated, relational subgoals, Q{z, z)
and R(z,y), so we must consider all combinations of assignments of tuples
from relations Q and R, respectively, to these subgoals. The table of Fig. 4.13
considers all four combinations.

Tuple for | Tuple for | Consistent | NOT Q(x,y) | Resulting
Q(x,2) R(z,y) | Assignment? True? ~ Head
D] (1,2 (2,3) Yes No —
2) (1,2) (3,1} No; z2=2,3 { Irrelevant —
3) (1,3) (2,3) No; 2 =3,2 | Irrelevant —
4) (1,3) (3,1) Yes Yes P(1,1)

Figure 4.13: All possible assignments of tuples to Q(z, z) and R(z,y)

The second and third options in Fig. 4.13 are not consistent. Each assigns
two different values to the variable z. Thus, we do not consider these tuple-
assignments further.

The first option, where subgoal Q(z, z) is assigned the t'upie (1,2) and sub-

There is only one: NOT Q (x,y). For thlS assignmuant 2;& @0 the v%
g @’ Zof (), this subgoal

false, and no head tuple is produced for the tuplleyassi ﬁm
The final option is (4). Here, the assignnggild is consist are

assigned the values 1, 1, and 3, respectively. Y¥he sul-@R R

on the value NOT Q(1,1). Since (1,1) is not ¢fdhple, of 15 SU go

We thus evaluate the head P{z,y) for this asyifinfgent oME@@'@Nbles s

and find it is P(1,1). Thus the tuple (1,1) is @Rdse4$plation P. Since we haveo

exhausted all tuple-assignments, this is the only fiijele o

' <
7Iint-driN®
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4.2.5 Extensional and Intensional Predicates

It is useful to make the distinction between

o Erxtensional predicates, which are predicates whose relations are stored in
a database, and

o Intensional predicates, whose relations are computed by applying one or
more Datalog rules.

The difference is the same as that between the operands of a relational-algebra
expression, which are “extensional” (i.e., defined by their extension, which is
another name for the “current instance of a relation) and the relations computed
by a relational-algebra expression, either as the final result or as an intermediate
result corresponding to some subexpression; these relations are “intensional”
(i.e., defined by the programmer’s “intent” ). _

When talking of Datalog rules, we shall refer to the relation corresponding
to a predicate as “intensional” or “extensional,” if the predicate is intensional
or extensional, respectively. We shall also use the abbreviation /DB for “inten-
sional database” to refer to either an intensional predicate or its corresponding
relation. Similarly, we use abbreviation EDB for “extensional database” for
extensional predicates or their relation.

Thus, in Example 4.16, Movie is an EDB relation, defined by its extension.
The predicate Movie is likewise an EDB predicate. Relation and predicate
LongMovie are both intensional.

An EDB predicate can never appear in the head of a rule, although it can
appear in the body of a rule. IDB predicates can appear in either the head
or the body of rules, or both. It is also common to construct a single relation
by using several rules with the same predicate in the head. We shall see an
illustration of this idea in Example 4.21, regarding the union of two relations.

By using a series of intensional predicates, we can build progressively more
complicated functions of the EDB relations. The process is similar to the build-
ing of relational-algebra expressions using several operators. We shall see ex-
amples of using several intensional predicates in the following section as well.

4.2.6 Exercises for Section 4.2

should use only safe rules, but you may wish to use seviEsal B2K"predicates
corresponding to subexpressions of complicated relatio{E\g g@a expressions.

Exercise 4.2.2: Write each of the queries of ExercisN!.3 in Datal&!‘fga%,s E
use only safe rules, but you may use several IDB predicztes if \GR4D)ER FULL

!! Exercise 4.2.3: The requirement we gave for safety o %og EEERON s
oG éthe predicates o
1

“requirement is O,

“int.driN®

of the relational subgoals have finite relations. HoweverRj:
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too strong. Give an example of a Datalog rule that violates the condition, yet

whatever finite relations we assign to the relational predicates, the head relation
will be finite.

4.3 From Relational Algebra to Datalog

Each of the relational-algebra operators can be mimicked by one or several
Datalog rules. In this section we shall consider each operator in turn. We

shall then consider how to combine Datalog rules to mimic complex algebraic
expressions.

4.3.1 Intersection

The intersection of two relations is expressed by a rule that has subgoals for
both relations, with the same variables in corresponding arguments.

Example 4.20: Let us use the relations R and S from Fig. 4.1 as an example.
Recall these relations each had a schema with four attributes: name, address,

gender, and birthdate. Thus, their intersection is computed by the Datalog
rule

I(n,a,g,b) « R(n,a,g,b) AND S(n,a,g,b)

Here, I is an IDB predicate, whose relation becomes R N 5 when we apply
this rule. That is, in order for a tuple (n,a,g,b) to make both subgoals true,
that tuple must be in both Rand §. O

4,3.2 Union

The union of two refations is constructed by two rules. Each has an atom
corresponding to one of the relations as its sole subgoal, and the heads of both
rules have the same IDB predicate in the head. The arguments in the heads
are exactly the same as in the subgoal of their rule.

Example 4.21: To take the union of the relation
we use two riles

S0 S bty Bl &2
Qg‘ o

Q
s PLEASE

re P R B Rk
wo MERBIDNEY &

les with U in the head, (o)

fation U, in which c
% Ky

“Int-driN

1. U(n,a,g,b) « R(n,
2. U(n,a,g,b) « 5¢(

Rule (1) says that every tuple in R is a tupl
similarly says that every tuple in S is in U. Thi
that every tuple in RU S isin U. If we write n
then there is no way any other tuples can get into |

[
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Variables Are Local to a Rule

Notice that the names we choose for variables in a rule are arbitrary and
have no connection to the variables used in any other rule. The reason
there is no connection is that each rule is evaluated alone and contributes
tuples to its head’s relation independent of other rules. Thus, for instance,
we could replace the second rule of Example 4.21 by

U(w,x,y,2) « S(w,x,y,2)

while leaving the first rule unchanged, and the two rules would still com-
pute the union of R and S. Note, however, that when substituting one
variable a for another variable b within a rule, we must substitute a for
all occurrences of b within the rule. Moreover, the substituting variable a
that we choose must not be a variable that already appears in the rule.

we can conclude that U is exactly R U 5.3 Recall that, since relations are sets,
a tuple appears only once in relation U, even if it appears in both Rand §. O

4.3.3 Difference

The difference of relations R and S is computed by a single rule with a negated
subgoal. That is, the nonnegated subgpal has predicate R and the negated sub-
goal has predicate S. These subgoals and the head all have the same variables
for corresponding arguments.

Example 4.22: If R and S are the relations from Example 4.20 then the rule
D(n,a,g,b) « R(n,a,g,b) AND NOT S(n,a,g,b)

defines D to be the relation R — §. O

4.3.4 Projection

To compute a projection of a relation R, we use one ruleguifdiPa si @ sM@a,R S
with predicate R. The arguments of this subgoal are &ables, one /O
for each attribute of the relation. The head has an atgipwit guments that

are the variables corresponding to the attributes in th3 rojectionpiﬁi,EmA@E

desired order.
Example 4.23: Suppose we want to project the reletilon ORDER FULL
3In fact, we should assume in each of the examples of this seg¥! n%t theMaEeB&‘%«lqu N o.s

rules for an 1DB predicate besides those that we show explicitly@gi§iieressre other rules, then
we cannot rule out the existence of other tuples in the relation for it {Ffedicate.

*ing.qrN® s
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Movie(title, year, length, inColor, studioName, producerC#)

onto its first three attributes — title, year, and length, as in Example 4.2.
The tule

P(t,y,1) + Movie(t,y,l,c,s,p)

serves, defining a relation called P to be the result of the projection. O

4.3.5 Selection

Selections can be somewhat more difficult to express in Datalog. The sim-
ple case is when the selection condition is the AND of one or more arithmetic
comparisons. In that case, we create a rule with

1. One relational subgoal for the relation upon which we are performing the
selection. This atom has distinct variables for each component, one for
each attribute of the relation.

2. For each comparison in the selection condition, an arithmetic subgoal
that is identical to this comparison. However, while in the selection con-
dition an attribute name was used, in the arithmetic subgoal we use the
corresponding variable, following the correspondence established by the
relational subgoal.

Example 4.24: The selection
Olength>100 AND studioName="Fox’ (Movie}
from Example 4.4 can be written as a Datalog rule
s(t,y,1,c,8,p) « Movie(t,y,1,c,s,p) AND 1 > 100 AND s = ’Fox’

The result is the relation S. Note that { and s are the variables corresponding
to attributes length and studioName in the standard order we have used for
the attributes of Movie. C

Now, let us consider selections that involve the DR ofusi¥iNions. We Carlily
necessarily replace such selections by single Datalge gl @eME@cwn
for the OR of two conditions is equivalent to select] h condition s
rately and then taking the union of the resultsg e DR of n conditions

can be expressed by n rules, each of which defisl: the s ie.ad rgaliizate.
The ith rule performs the selection for the ithgG&he n condki ns':}RbEa

plegl %QyEreﬁaclegj !lTeL
VERSION &

Example 4.25: Let us modify the selection @3
AND by an OR to get the selection:

Tlength>100 OR studioName='Fox B\



204 CHAPTER 4. OPERATIONS IN THE RELATIONAL MODEL

That is, find all those movies that are either long or by Fox. We can write two
rules, one for each of the two conditions:

1. s(t,y,1,c,s,p) « Movie(t,y,1,c,s,p) AND 1 > 100
2. 8(t,y,1,c,s,p) + Movie(t,y,1,c,s,p) AND s = 'Fox’

Rule (1) produces movies at least 100 minutes long, and rule (2) produces
movies by Fox. 0O

Even more complex selection conditions can be formed by several applica-
tions, in any order, of the logical operators AND, OR, and NOT. However, there is
a widely known technique, which we shall not present here, for rearranging any
such logical expression into “conjunctive normal form,” where the expression is
the OR of “conjuncts.” A conjunct, in turn, is the AND of “literals,” and a literal
is either a comparison or a negated comparison.*

' We can represent any literal by a subgoal, perhaps with a NOT in front of it.

If the subgoal is arithmetic, the NOT can be incorporated into the comparison
operator. For example, NOT x > 100 can be written as x < 100. Then, any
conjunct can be represented by a single Datalog rule, with one subgoal for each
comparison. Finally, every conjunctive-normal-form expression can be written
by several Datalog rules, one rule for each conjunct. These rules take the union,
or OR, of the results from each of the conjuncts.

Example 4.26: We gave a simple example of this algorithm in Example 4.25.
A more difficult example can be formed by negating the condition of that ex-
ample. We then have the expression:

ONOT (length>100 OR btudioNumc=’Fox’)(H°"ie)

That is, find all those movies that are neither long nor by Fox.

Here, a NOT is applied to an expression that is itself not a simple comparison.
Thus, we must push the NOT down the expression, using one form of DeMorgan’s
low, which says that the negation of an OR is the AND of the negations. That is,
the selection can be rewritten:

O(NQT (length>100)) AND (NOT (studioName="Fox’)) (HOVie
Now we can take the NOT’s inside the compansons to get thiESy ssmnv E
py O SRS,
' o
~ PLEASE
1 "ORDER FULL
VERSION &

émence, Computer (o)

Olength<100 AND studioName# 'Fox’ » (Mov

This expression can be converted into the Datalog rulé

s(t,y,l,c,s,p) « Movie(t,y,1l,c,s,p) AND 1 <3

0

iSee, e.g., A. V. Aho and J. D. Ullman, Foundations of Gyt
Science Press, New York, 1992,

ring.drin®y
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Example 4.27 : Let us consider a similar example where we have the negation
of an AND in the selection. Now, we use the second form of DeMorgan'’s law,
which says that the negation of an AND is the OR of the negations. We begin
with the algebraic expression

ONOT (fength>100 AND studioNumez’Fox’)(HOVie)

That is, find all those movies that are not both long and by Fox.
We apply DeMorgan’s law to push the NOT below the AND, to get:

O(NOT (length>100)) OR (NOT (studioName="Fox’)){Movie)

Again we take the NOT's inside the comparisons to get:

Tlength<100 OR studioName+# 'Fox’ (“OVie)

Finally, we write two rules, one for each part of the OR. The resulting Datalog
rules are:

1. s(t,y,1,c,s,p) + Movie(t,y,1,c,s,p) AND 1 < 100
2. 8(t,y,1,c,s,p) + Movie(t,y,1,c,s,p) AND &8 # ’Fox’

0

4.3.6 Product

The product of two relations R x S can be expressed by a single Datalog rule.
This rule has two subgoals, one for R and one for S. Each of these subgoals
has distinct variables, one for each attribute of R or S. The IDB predicate in
the head has as arguments all the variables that appear in either subgoal, with
the variables appearing in the R-subgoal listed before those of the S-subgoal.

Example 4.28: Let us consider the two four-attribute relations R and § from
Example 4.20. The rule

P(a,b,c,d,v,x,y,z) « R(a,b,c,d) AND S(v,x,y,2)

We can take the natural join of two relations by ajVatalog rul@lﬂgch
E1Aif we want R o S, then we
must be careful to use the same variable for attrikliites of @E{B Elﬂhﬁr&}]},gL

same name and to use different variables otheR¥te.€¥or inst )
the attribute names themselves as the variables. J¥se &2ad ﬁﬁfﬁm O's

that has each variable appearing once.

. g
Oring.qrin®
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Example 4.29: Consider relations with schemas R(A4, B) and S(B,C, D).
Their natural join may be defined by the rule

J(a,b,c,d) « R(a,b) AND S(b,c,d)

Notice how the variables used in the subgoais correspond in an obvious way to
the attributes of the relations Rand §. O

We can also convert theta-joins to Datalog in a straightforward way. Recall
from Section 4.1.9 how a theta-join can be expressed as a product followed
by a selection. If the selection condition is a conjunct, that is, the AND of
comparisons, then we may simply start with the Datalog rule for the product
and add additional, arithmetic subgoals, one for each of the comparisons.

Example 4.30: Let us consider the relations U(4, B,C) and V(B,C, D) from
Example 4.9, where we applied the theta-join

Usigcp o0 vBzve V
We can construct the Datalog rule

J(a,ub,uc,vb,vc,d) + U(a,ub,uc) AND V{(vb,vc,d) AND
a <d AND ub # vb

to perform the same operation. We have used ub as the variable corresponding
to-attribute .B of U, and similarly used vb, ue, and wve, although any six distinct
variables for the six attributes of the two relations would be fine. The first two
subgoals introduce the two relations, and the second two subgoals enforce the
two comparisons that appear in the condition of the theta-join. O

If the condition of the theta-join is not a conjunction, then we convert it to
conjunctive normal form, as discussed in Section 4.3.5. We then create one rule
for each conjunct. In this rule, we begin with the subgoals for the product and
then add subgoals for each literal in the conjunct. The heads of all the rules are
identical and have one argument for each attribute of the two relations being
theta-joined.

Example 4.31: In this example, we shall make a simple modification to the
algebraic expression of Example 4.30. The AND will be replaced by an £3.
are no negations in this expression, so it is already in conjunctiviRizaeEVE{Gqyx
There are two conjuncts, each with a single literal. The exp¢=5%

@0 VER So
| le@() we obtain the ¢

PLEASE
1. (a ub,uc,vb,ve, (a,ub uc) AND V(viP@vc,d)
2. j(a u: uc, v: vc,g: g(a ub,uc) AND V(g J cé\ @%Q,-RbFULL
subME&%N s
‘I’,O (
“Int.driN®

Ubdgeporupzv.e V

Using the same variable-naming scheme as in Ex%
two rules

Each rule has subgoals for the two relations involved}glu
the two conditions A < D or UB #V.B. O
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4.3.8 Simulating Multi'ple Operations with Datalog

Datalog rules are not only capable of mimicking a single operation of relational
algebra. We can in fact mimic any algebraic expression. The trick is to look
at the expression tree for the relational-algebra expression and create one IDB
predicate for each interior node of the tree. The rule or rules for each IDB
predicate is whatever we need to apply the operator at the corresponding node of
the tree. Those operands of the tree that are extensional (i.e., they are relations
of the database) are represented by the corresponding predicate. Operands
that are themselves interior nodes, are represemted by the corresponding IDB
predicate.

Example 4.32: Consider the algebraic expression

Ttitle,year (olengthzmﬂ (HOVie) M O 4tudioName="Fox’ (Hovj-e))
from Example 4.18, whose expression tree appeared in Fig. 4.7. We repeat
this tree as Fig. 4.14. There are four interior nodes, so we need to create four

IDB predicates. Each of these predicates has a single Datalog rule, and we
summarize all the rules in Fig. 4.15.

Rtitle,year

N

N

Olength>100 O studioN ame="Fox’

Movie

tion Movie, so we can create the IDB predicate:gy é ﬁ!’j
cgtaese se

Eﬁ‘l&i’jﬁl

i ea l%% §
Then rule (3) defines predicate Y to be the igifdisé@tion of W an f using
ion in S€yK 3 1. Finally, rule (4) 0

7Iint-driN®
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1. w(t,y,1,c,8,p) « Movie(t,y,l,c,s,p) AND 1 > 100
2. X(¢,y,1,c,s,p) « Movie(t,y,1,c,s,p) AND s = 'Fox’
3. Y(t,y,1l,c,8,p) « W(t,y,1,c,s,p) AND X(t,y,1,c,s,p)
4. Z(t,y) « Y(t,y,1l,c,s,p)

Figure 4.15: Datalog rules to perform several algebraic operations

defines predicate Z to be the projection of ¥ onto the title and year at-
tributes. We here use the technique for simulating a projection that we learned
in Section 4.3.4. The predicate Z is the “answer” predicate; that is, regardless
of the value of relation Movie, the relation defined by Z is the same as the result
of the algebraic expression with which we began this example.

Note that in this example, we can substitute for the Y subgoal in rule (4)
of Fig. 4.15, replacing it with the body of rule (3). Then, we can substitute for
the W and X subgoals, using the bodies of rules (1) and (2). Since the Movie
subgoal appears in both of these bodies, we can eliminate one copy. As a result,
Z can be defined by the single rule:

Z(t,y) « Movie(t,y,l,c,s,p) AND 1 > 100 AND & = ’Fox’
However, it is not common that a complex expression of relational algebra is
equivalent to a single Datalog rule. D

4.3.9 Exercises for Section 4.3

Exercise 4.3.1: Let R(a,b,c), S(a,b,c), and T{(a,b,c) be three relations.
Write one or more Datalog rules that define the result of each of the following
expressions of relational algebra:

a) RU S.
b) RN S.
c) R—S.
*d) (RU S) ~
te) (R-8) N (R-T).
f}) map(R).
*1g) mas(R) N pu(a) (,:(S)).

Exercise 4.3.2: Let R(z,y, z) be a relation. Writlus
that define oc(R), where C is the followmg conditior®}

PLEASE
ORDER FULL

(5 VERSTN ¢

O

a) z=y.

'o’.'ht dr\‘le‘
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*b) zc<yANDy < 2.
c)z<yORy<z.
d) NOT (z < y OR = > ¥).
*1e) NOT ((z <y ORz > y) ANDy < z}.
'f) NOT ((z <yORz < 2) ANDy < z).

Exercise 4.3.3: Let R(a,b,c), S(b,c,d), and T(d, e) be three relations. Write
single Datalog rules for each of the natural joins:

a) Rva S.
b) SwaT.

1¢) (Ra S)paT. (Note: since the natural join is associative and commuta-
tive, the order of the join of these three relations is irrelevant.}

Exercise 4.3.4: Let R(z,y,2) and S(z,y,2) be two relations. Write one or
more Datalog rules to define each of the theta-joins R < S, where (' is one
of the conditions of Exercise 4.3.2. For each of these conditions, interpret
each arithmetic comparison as comparing an attribute of R on the left with
an attribute of S on the right. For instance, r < y stands for R.x < S.y. '

Exercise 4.3.5: It is also possible to convert Datalog rules into equivalent
relational-algebra expressions. While we have not discussed the method of
doing so in general, it is possible to work out many simple examples. For each
of the Datalog rules below, write an expression of relational algebra that defines
the same relation as the head of the rule.

* a) P(x,y) « ((x,2z) AND R(z,y)

b) P(x,y) + Q(x,z) AND Q(z,y)

¢) P(x,y) + Q(x,z) AND R(z,y) AND x <y

4.4 Recursive Programming

While relational algebra can express many usefu

3 DN er
are some computations that cannot be writte eﬁﬁgﬁﬁﬁgﬁ'

algebra. A common kind of operation on data txk: can %E%q@wla- s
a% i

tional algebra involves an infinite sequence of sGal ut growing expressions ey
of that algebra, which is called a recursion. (&)

rint.drin® s
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Example 4.33: An example of a recursive operation taken from the movie
industry is the matter of sequels. Often, a successful movie is followed by a
sequel; if the sequel does well then the sequel has a sequel, and so on. Thus, a
movie may be ancestral to a long sequence of other movies. Suppose we have a
relation Sequellf (movie, sequel) containing pairs consisting of a movie and
its immediate sequel. Examples of tuples in this relation are:

movie | sequel
Naked Gun Naked Gun 21/2
Naked Gun 21/2 | Naked Gun 331/3

We might also have a more general notion of a follow-on to a movie, which
is a sequel, -a sequel of a sequel, and so on. In the relation above, Naked Gun
831/3 is a follow-on to Naked Gun, but not a sequel in the strict sense we are
using the term “equel”’ here. It saves space if we store only the immediate
sequels in the relation and construct the follow-ons if we need them. In the
above example, we store only one fewer pair, but for the five Rocky movies we
store six fewer pairs, and for the 18 Friday the 13th movies we store 136 fewer
pairs.

However, it is not immediately obvious how we construct the relation of
follow-ons from the relation Sequel0f. We can construct the sequels of sequels
by joining Sequel0f with itself once. An example of such an expression, using
renaming so that the join becomes a natural join, is:

T pirst third (PR( first,second) (58quel0L) b3 Ps(second,third) (Sequellf))

In this expression, Sequel0f is renamed twice, once so its attributes are called
first and second, and again so its attributes are called second and third.
Thus, the natural join asks for tuples (m;,m2) and (m3,m4) in Sequellf such
that me = m3. We then produce the pair (m1,m4). Note that my is the sequel
of the sequel of m;.

Slmllarly, we could join three copies of Sequelﬂf to get the sequels of seql g

then take the union of SequelOf and any finite number
the sequels up to some ﬁxed limit

the infinite sequence of expressions that give the zth equels for %E }N‘@E
that relational algebra’s union allows us only to takeXQl> union of two relatlo
not an infinite number. By applying the union opeg:iror an U LL
times in an algebraic expression, we can take the ur¥odo vgg
relations, but we cannot ever take the union of an infht ;nb s
L (
“int.driN®

in an algebraic expression. [
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4.4.1 The Fixedpoint Operator

Fortunately, we do not have to add to relational algebra a messy convention
for expressing infinite unions of “similar” expressions. There is a common way
to express relations such as FollowOn(x,y) (i.e., movie y is'a follow-on to
movie z in the sense of Example 4.33) that are built by an infinite, yet regular,
process from other relations, such as Sequel0f. We write an equation in which
FollowOn is described in terms of itself and SequelOf and then say that the
value of FollowOn is the smallest relation (least fizedpoint) that satisfies the
equation. We shall use the symbol ¢ to indicate that the least fixedpoint of an
equation is to be taken.

Example 4.34: Here is the least fixedpoint operator applied to an equation
that describes the relation FollowOn({x,y):

qb(FollowOn = PSequelOf(z,y)(Sequellds) U

An intuitive statement of this equation is “Movie y is a follow-on to movie z if
either it is a sequel of z or it is a follow-on to a sequel of z.

To understand the equation, we should first note that the attributes of
Followln are r and y. Relation FollowOn is equated to the union of two
terms. The first term, psequeto f(z,y) (Sequel0f), is a copy of Sequel0f, renamed
so its attributes match those of FollowOn. The second term is a theta-join
Sequellf D<,equei=r FollowOn, which joins all pairs {a, b) from Sequel0f with
pairs (b, c) from FollowOn. The result is tuples (a,b,b,c) whose attributes are
movie, sequel, x, and y, respectively. The second term of the union continues
by projecting onto the first and fourth components, movie and y, and then
renaming the attributes x and y. .

In the fixedpoint equation, FollowCn is thus equated to the union of relation
Sequel0f and the result of this second term, which computes follow-ons of
sequels. That is, FollowOn con31sts of all those pairs (z,y) that either are in

yisa sequel of a sequel of --- of a sequel of z, for sonileyx
term “sequel of.” O

ntQ ¢
However, it may not be clear from the equatieyfef Example 4.34 Ehy t§ ﬁeast
solution for FollowOn is exactly what we thinllef as t ORD @RV&U@;{L
of movies. To understand the meaning of the d%m ?Eiﬁ gi m
understand how the least fixedpoint can be complike wtdegd By all S
discuss problems that come up when the diffSfagee @erator appears in the (o)
equation, but for equations without difference, thel{e ow;.method works, (

nt-driN®
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1. Begin by assuming that the relation R on the left side of the equation is
empty.

2. Repeatedly compute a new value of the relation R by evaluating the right
side using the old value of R.

3. Stop when after one iteration the old and new values are the same.

Example 4.35: Let us show the computation of FollowOn when the relation
Sequel0f consists of the following three tuples:

movie | sequel
Rocky Rocky I1I

Rocky II | Rocky III
Rocky III | Rocky IV

At the first round of computation, FollowOn is assumed empty. Thus, the join
of SequelOf and FollowOn in the fixedpoint equation is empty, and the only
tuples come from the first term of the union, Sequel0f. Thus, after the first
round, the value of Follow0n is identical to the Sequel0f reiation above. The
situation after round 1 is shown in Fig. 4.16.

z lv__

Rocky ﬁBH:y II
Rocky II | Rocky III
Rocky III | Rocky IV

Figure 4.16: Relation FollowOn after round 1

In the second round, we use the relation from Fig. 4.16 as Follow(n and
again compute the right side of the fixedpoint equation. The first term of the
union, Sequel0f, gives us the three tuples that we already have. For the second
term we must join the relation SequelDf which has the three tuples glov

from Sequel0f equals the first component of the one frou | /,
Thus, we can take the tuple (Rocky,Rocky IT) froalSedzeif and pair Q)

it with the tuple (Rocky II,Rocky III) from Follef{t}] toot the new tuple

(Rocky,Rocky III) for FollowOn. Similarly, we can tele the tuplePLE ASE

ORDER FULL
from Sequel0f and tuple (Rocky III,Rocky IV) froid 1;2“101-!0}:,& RSI!@N S

tuple (Rocky II,Rocky IV) for FollowOn. However, ’£au's of tuples — (o]
one from Sequel0Of and the other from the old valueJu\ FeldowOn — join.

et




4.4. RECURSIVE PROGRAMMING IN DATALOG 213

Thus, after the second round, FollowOn has the five tuples shown in Fig. 4.17.
Intuitively, just as Fig. 4.16 contained only those follow-on facts that are based
on a single sequel, Fig. 4.17 contains those follow-on facts based on one or two
sequels.

z l y

Rocky Rocky II
Rocky I1 Rocky Il1I
Rocky III | Rocky IV
Rocky Rocky III
Rocky I1 Rocky IV

Figure 4.17: Relation FollowOn after round 2

In the third round, we use the relation from Fig. 4.17 for FollowOn and
again evaluate the right side of the fixedpoint equation. We get all the tu-
ples we already had, of course, and one more tuple. When we join the tuple
(Rocky,Rocky II) from SequelQf with the tuple (Rocky II,Rocky IV) from
the current value of FollowOn, we get the new tuple (Rocky,Rocky IV). Thus,
after round 3, the value of FollowOn is as shown in Fig. 4.18.

T I ]

Rocky Rocky 1I
Rocky- IT | Rocky III
Rocky III | Rocky IV

Rocky Rocky III
Rocky II Rocky IV
Rocky Rocky IV

Figure 4.18: Relation Follow0n after round 3

Fig. 4.18. O

SE

The relational algebra expressions needed follE:ful fixedpoint equations tend

to be quite complicated. It is often easier to Zipress (R BYE REetish &f

Datalog rules, and this notation will be used&i® re 0%%

we shall see in Section 5.10, the implementatiQd (%hes

a fixedpoint notation that is more algebraic th g@l because that style 1&

more in keeping with the dictions of SQL. 'o/. G‘
nt-driN
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The general idea behind logical fixedpoint equations is to start with one
or more relations whose values are assumed known; these are the extensional
database relations or EDB relations. Other relations are defined by appearing
in the heads of rules, These relations are the intensional database relations, or
IDB relations. The bodies of these rules may contain subgoals whose predicates
are either EDB or IDB relations, as well as arithmetic atoms. If one or more
IDB relations are defined by rules that use the same relations in the bodies,
then the rules effectively define these IDB relations by a fixedpoint equation,
just as in the relational-algebra equation of Example 4.34.

Example 4.36: We can define the IDB relation FollowOn by the following
two Datalog rules:

1. Followin(x,y) « Sequel0f(x,y)
2. FollowOn(x,y) « SequelOf(x,z) AND FollowOn(z,y)

The first rule is the basis; it tells us that every sequel is a follow-on. This rule
corresponds to the first term of the union in the equation of Example 4.34.

The second rule says that every follow-on of a sequel of movie z is also a
follow-on of z. More precisely: if z is a sequel of z, and we have found that y
is a follow-on of z, then y is a follow-on of z. O

The rules of Example 4.36 say exactly the same thing as the fixedpoint
equation of Example 4.35. Thus, the computation of the value of FollowOn for
these rules is identical to the computation in Example 4.35. In general, we can
compute the values of the IDB relations defined by any collection of Datalog
rules without negated subgoals by starting with all IDB relations empty, and
iteratively computing new values for the IDB relations by applying the rules to
the EDB relations and the previous values of the IDB relations, until the IDB
relations no longer change.

Example 4.37: More complex examples of the use of recursion can be found
in a study of paths in a graph. Figure 4.19 shows a graph representing some
Rights of two hypothetical airlines — Untried Airlines (UA), and Arcane Air-
lines (AA) — among the cities San Francisco, Denver, Dallas, Chicag
New York.

The simplest recursive question we can ask is “For gt pairs of - "

is it possible to get from city z to city y by taking ontgor morf?ﬂéﬁﬁ?” hi:u LL
following two rules describe a relation Reaches (x,y) théldcontains exele SL

pairs of cities.

OO

*

1. Reaches(x,y) + Flights(a,x,y,d,r)
2. Reaches(x,y) « Reaches(x,z) AND ReaciUlx

7" int.griN®
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AA 1900-2200
UA 1830-2130

UA 1500-1300
UA 930-1230

1530-1730
AA 1500-1930
AA 900-1430

Figure 4.19: A map of some airline flights

airline | from | to | departs | arrives

UA SF DEN | 930 1230
AA SF DAL | 900 1430
UA DEN | CHI | 1500 1800
UA DEN | DAL | 1400 1700
AA DAL | CHI | 1530 1730
AA DAL | NY | 1500 1930
AA CHI | NY | 1900 2200
UA CHI | NY | 1830 2130

Figure 4.20: Tuples in the relation Flights

The first rule says that Reaches contains those pairs of cities for which there
is a direct flight from the first to the second; the airline a, departure time d,
and arrival time r are arbitrary in this rule. The second rule says that if you

rule would involve three more variables for the ungkls \

troduced in Section 4.4.2. We begin by using Ryl 1) to ge%@%@mm

(DAL CH% (DAL, NY

In the next round, we apply the recursive %] \jwlwalrs
of arcs such that the head of one is the tail gi-h@next. § the
additional pairs (SF, CHI), (DEN, NY), and {SF, n\g) 1‘4‘5'-9 next round combm@

rin. drine’s
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Other Forms of Recursion

In Examples 4.34 and 4.36 we used a right-recursive form for the
recursion, where the use of the recursive relation FollowOn appears after
the EDB relation SequelOf. We could also write similar left-recursive
rules by putting the recursive relation first. These rules are:

1. FollowOn(x,y) « SequelOf(x,y)
2. FollowOn(x,y) « FollowOn(x,z) AND SequelOf(z;y)

Informally, y is a follow-on of z if it is ejther a sequel of z or a sequel of a
follow-on of z.

We could even use the recursive relation twice, as in the nonlinear
recursion:

1. FollowOn(x,y) + SequelOf(x,y)
2. FollowOn(x,y) + FollowOn(x,z) AND FollowOn(z,y)

Informally, y is a follow-on of x if it is either a sequel of z or a follow-on of
a follow-on of z. All three of these forms give the same value for relation
FollowDn: the set of pairs (z,y) such that y is a sequel of a sequel of -
(some number of times) of z.

these two-arc pairs and all the single-arc pairs together to form paths of length
up to four arcs. In this particular diagram, we get no new pairs. The relation
Reaches thus consists of the ten pairs (z, y) such that y is reachable from z in
the diagram of Fig. 4.19. Because of the way we drew the diagram, these pairs
happen to be exactly those (z,y) such that y is to the right of z in Fig 4.19.
a

Example 4.38: A more complicated definition of when two_ﬂights can be
combined into a longer sequence of flights is to require that the second leaves

an IDB predicéte, which we shall call Connect,al(x,y,d,r),
take one or more flights, starting at city z at time d and a

connection.
The rules for Connects are:®

PLEASE
_ ORDER FULL

% .2 VERSION &
2 (o)
%tbng at midnight. O
“int.driN®

1. Connects(x,y,d,r) « Flights(a,x,y,d,r
2. Connects(x,y,d,r) < Connects(x,z,d,t]
Connects(z,y,t2,r) AND

5These rules only work on the assumption that there are no flight:Rap
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In the first round, rule (1) gives us the eight Connects facts shown in Fig. 4.21.
Each corresponds to one of the flights indicated in the diagram of Fig. 4.19;
note that one of the seven arcs of that figure represents two flights at different
times.

z |y |d lr___
SF |['DEN | 930 | 1230
SF | DAL | 900 | 1430
DEN | CHI | 1500 | 1800
DEN | DAL { 1400 | 1700
DAL | CHI | 1530 | 1730
DAL | NY | 1500 | 1930
CHI | NY | 1900 | 2200
CHI | NY | 1830 | 2130

Figure 4.21: Basis tuples for relation Connects

We now try to combine these tuples using Rule (2). For example, the second
wund fifth of these tuples combine to give the tuple (SF, CHI, 900, 1730). However,
the second and sixth tuples do not combine because the arrival time in Dallas
is 1430, and the departure time from Dallas, 1500, is only half an hour later.
Figure 4.22 shows the Connects tuples after the second round. Above the line
are the original tuples from round 1, and the six tuples added on round 2 are
shown below the line. The line is not part of the relation.

T Yy
SF DEN

SF DAL
DEN | CHI
DEN | DAL
DAL | CHI
DAL | NY
CHI | NY
CHI | NY
SF CHI
SF CHI 180G Q

SF | DAL | PLEASE

DEN | NY

DAL | NY ORDER FULL

DAL | NY

o VER
<ZS§‘ éiﬂt>
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In the third round, we must in principle consider all pairs of tuples in
Fig. 4.22 as candidates for the two Connects tuples in the body of rule (2).
However, if both tuples are above the line, then they would have been con-
sidered during round 2 and therefore will not yield a Connects tuple we have
not seen before. The only way to get a new tuple is if at least one of the two
Connects tuple used in the body of rule {2) were added at the previous round;
i.e., they are below the line in Fig. 4.22.

The third round only gives us three new tuples. These are shown at the
bottom of Fig. 4.23. The two lines in this figure separate the eight tuples of
round 1, the six additional tuples of round 2, and the three new tuples from
round 3. There are no new tuples in the fourth round, so our computation is
complete. Thus, the entire relation Connects is Fig. 423. D

z |y |d | r

SF DEN | 930 1230
SF DAL | 900 1430
DEN | CHI | 1500 | 1800
DEN | DAL | 1400 | 1700
DAL | CHI | 1630 | 1730
DAL | NY 1500 | 1930
CHI | NY 1900 | 2200
CHI | NY 1830 | 2130
SF CHI | 900 1730
SF CHI | 930 1800
SF DAL | 930 1700
DEN | NY 1500 | 2200
DAL | NY 1530 | 2130
DAL | NY 1530 | 2200
SF NY 900 2130
SF NY 800 2200
SF NY 930 2200

Figure 4.23: Relation Connects after third roul o V E R S
N 0

Sometimes it is necessary to use negation in rules thaiffalso inf Q33 RdaRaFULL

There is a safe way and an unsafe way to mix recursiorfhty ation‘ !ﬂ%

it is considered appropriate to use negation only in situatfelas Zhere t ¥ N S

does not appear inside the fixedpoint operation. To sec¥8:il3 diference, we shall Oo

consider two examples of recursion and negation, one apprg a%nd.the other G‘ .

“Int-driN

4.4.4 Negation in Recursive Rules




4.4 RECURSIVE PROGRAMMING IN DATALOG 219

paradoxical. We shall see that only “stratified” negation is useful when there
is recursion; the term “stratified” will be defined precisely after the examples.

Example 4.39: Suppose we want to find those pairs of cities (z,y) in the
map of Fig. 4.19 such that UA flies from z to y (perhaps through several other
cities), but AA does not. We can recursively define a predicate UAreaches as we
defined Reaches in Example 4.37, but restricting ourselves only to UA flights,
as follows:

1. UAreaches(x,y) « Flights(UA,x,y,d,x)
2. Ukreaches(x,y) « UAreaches(x,z) AND UAreaches(z,y)

Similarly, we can recursively define the predicate AAreaches to be those pairs
of cities (z,y) such that one can travel from z to y using only AA flights, by:

1. Ahreaches(x,y) « Flights(AA,x,y,d,r)
2. Ahreaches(x,y)} « AAreaches(x,z) AND AAreaches(z,y)

Now, it is a simple matter to compute the UAonly predicate consisting of those
pairs of cities (x,y) such that one can get from z to y on UA flights but not on
AA flights, with the nonrecursive rule:

UAonly(x,y) + UAreaches(x,y) AND NOT AAreaches(x,y)

This rule computes the set difference of UAreaches and AAreaches.

For the data of Fig. 4.19, UAreaches is seen to consist of the following pairs:
(SF, DEN), (SF, DAL), (SF, CHI), (SF, NY), (DEN, DAL), (DEN, CHI), (DEN, NY), and
(CHI, NY). This set is computed by the iterative fixedpoint process outlined
in Section 4.4.2. Similarly, we can compute the value of AAreaches for this
data; it is: (SF, DAL), (SF, CHI), (SF, NY), (DAL, CHI), (DAL, NY), and (CHI, NY).
When we take the difference of these sets of pairs we get: (SF, DEN), (DEN, DAL),
(DEN, CHI), and (DEN, NY). This set of four pairs is the value of predicate UAonly.
a

Example 4.40: Now, let us consider an abstract example where things don’
work as well. Suppose we have a single EDB predicate R i
is unary (one-argument), and it has a single tuple, {0).

predicates, P and @, also unary. They are defined by§iic$s«0 ru

1 p(0) « Rx) avp no'fE >@®0

Informally, the two rules tell us that an elemgr(#r in R is Mﬁﬁ&n Q

but not both. Notice that P and Q are defitfill recurgyplypinpigemersf zpch

When we defined what recursive rules meartg ir& ectldy § Qwe
want the least fixedpoint, that is, the smalles #ons that made the rules
true as algebraic equations. Rule 1 says that asfelasons, P = R - @, anc.)
'o/’/ W<

ht-dr\
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rule 2 says that @ = R — P. Since R contains only the tuple (0), we know that
only (0) can be in either P or Q. But where is (0)? It cannot be in neither,
since then the equations are not satisfied; for instance P = R — Q would imply
that @ = {(0)} — @, which is false.

If we let P = {(0)} while @ = @, then we do get a solution to both equations.
P = R - Q becomes {(0)} = {(0)} — @, which is true, and @ = R — P becomes
# = {(0)} - {(0)}, which is also true.

However, we can also let P = @ and @ = {(0)}. This choice too satisfies
both rules. We thus have two solutions:

a) P={(0)} Q=49
by P=0 Q= {(0)}

Both are minimal, in the sense that if we throw any tuple out of any relation,
the resulting relations no longer satisfy the rules. We cannot, therefore, decide
between the two minimal fixedpoints (a) and (b). Thus, we cannot answer a
simple question such as “Is P(0) true?” O

In Example 4.40, we saw that our idea of defining the meaning of recursive
rules or of fixedpoint equations by finding the minimal fixedpoint no longer
works when recursion and negation are tangled up too intimately. There can
be more than one minimal fixedpoint, and these fixedpoints can contradict
each other. It would be good if some other approach to defining the meaning
of recursive negation would work better, but unfortunately, there is no general
agreement about what such rules or equations should mean.

Thus, it is conventional to restrict ourselves to recursions in which negation
is stratified. For instance, the SQLJ standard for recursion discussed in Sec-
tion 5.10 makes this restriction. As we shall see, when negation is stratified
there is an algorithm to compute one particular minimal fixedpoint (perhaps
out of many such fixedpoints) that matches our intuition about what the rules
mean. We define the property of being stratified as follows.

1. Draw a graph whose nodes correspond to the IDB predicates.
2. Draw an arc from node A to node B if a rule with predicate A in the head

indicate it is a negative arc.

3. Draw an arc from node A to node B if a rule wigh. @@C&‘IGE"RS
has a non-negated subgoal with predlca.te B. AL o’Q}\; have a /O

minus-sign as label.

recursion is not stratified. Otherwise, the graph is stra »1ﬁ W‘%
IDB predicates into strata. The stratum of a predicak %! is the ges{?nufnﬁ FU LL
VERSION &

of negative arcs on a path beginning from A.
If the recursion it stratified, then we may evaluate t{i{lz0iDZ"predicates in the (o)
order of their strata, lowest first. This strategy produce:Rané&df the minimal

<
“int.driN®
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fixedpoints of the rules. More importantly, computing the IDB predicates in
the order implied by their strata appears always to make sense and give us the
“right” fixedpoint. In contrast, as we have seen in Example 4.40, unstratified

recursions may leave us with no “right” fixedpoint at all, even if there are many
to choose from.

Udonly

AAreaches UAreaches

Figure 4.24: Graph constructed from a stratified recursion

Example 4.41: The graph for the predicates of Example 4.39 is shown in
Fig. 4.24. AAreaches and UAreaches are in stratum O, because none of the
paths beginning at their nodes involves a negative arc. UAonly has stratum 1,
because there are paths with one negative arc leading from that node, but no
paths with more than one negative arc. Thus, we must completely evaluate
AAreaches and Ukreaches before we start evaluating Udonly.

Figure 4.25: Graph constructed from an unstratified recursion

Compare the situation when we construct the graph for the IDB predicates

4.4.5 Exercises for Section 4.4

Exercise 4.4.1: If we add or delete arcs to

Q 1
(T:¥diagram oﬁ%.g.%ﬁgmay
change the value of the relation Reaches of Exz

ble 43@]REM1ﬂ @Eﬁ;
of Example 4.38, or the relations UAreaches@lgs Alreaches ofl'Exa.mple 4. téi_
Give the new values of these relations if we: VERSION S
O

* a) Add an arc from CHI to SF labeled AA, 19042187 ¢
'o’.'.ht dr'\‘le(’
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b) Add an arc from NY to DEN labeled UA, 900-1100.
c¢) Add both arcs from (a) and (b).

d) Delete the arc from DEN to DAL.

Exercise 4.4.2: Write Datalog rules (using stratified negation, if negation is
necessary) to describe the following modifications to the notion of “follow-on”
from Example 4.33. You may use EDB relation SequelOf and the IDB relation
Follow0n defined in Example 4.36.

* a) P(x,y) meaning that movie y is a follow-on to movie z, but not a sequel
of 2 (as defined by the EDB relation Sequel0f).

b) Q(x,y) meaning that y is a follow-on of z, but neither a sequel nor a
sequel of a sequel.

! ¢) R(x) meaning that movie z has at least two follow-ons. Note that both
could be sequels, rather than one being a sequel and the other a sequel of
a sequel.

! d) S(x,y), meaning that y is a follow-on of z but y has at most one follow-on.

Exercise 4.4.3: ODL classes and their relationships can be described by a
relation Rel(class, rclass, mult). Here, mult gives the multiplicity of a
relationship, either malti for a multivalued relationship, or single for a single-
valued relationship. The first two attributes are the related classes; the rela-
tionship goes from class to rclass (related class). For example, the relation
Rel representing the three ODL classes of our running movie example from
Fig. 2.6 is shown in Fig. 4.26.

class rclass | mult
Star Movie multi
Movie Star multi

Movie | Studio | single
Studio | Movie | multi

appropriate. Figure 4.27 illustrates this graph for th (Fata of %ﬁ FU LL
1}

negation is necessary, to express the described predica .!( You R?FDN
as an EDB relation. Show the result evaluating your ig nd—by-roun on

the data from Fig. 4.26.

,o,. /nt. dr\"e(
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multi " single

/"“_\ /—‘_\
Star Movie Studio
‘\_/ v

multi multi

Figure 4.27: Representing relationships by a graph

a) Predicate P(class, eclass), meaning that there is a path® in the graph
of classes that goes from class to eclass. The latter class can be thought
of as “embedded” in class, since it is in a sense part of a partof an - - - ob-
ject of the first class.

*! b) Predicates S(class, eclass) and M(class, eclass). The first means
that there is a “single-valued embedding” of eclaas in class, that is, a
path from class to eclass along which every arc is labeled single. The
second, M, means that there is a “multivalued embedding” of eclass in
class, i.e., a path from class to eclass with at least one arc labeled
multi.

c) Predicate Q(class, eclass) that says there is a path from class to
eclass but no singie-valued path. You may use IDB predicates defined
previously in this exercise.

4.5 Constraints on Relations

The relational model provides a means to express common constraints, such
as the referential integrity constraints introduced in Section 2.5. In fact, we
shall see that relational algebra offers us convenient ways to express a wide
variety of other constraints. Even functional dependencies can be expressed
in relational algebra, as we shall see in Example 4.44. Constraints are quite

in relational algebra. V 2
\§0 ERS/O

4.5.1 Relational Algebra as a Co anguage

There are two ways in which we can use exp
express constraints.

ORDER FULL

1. If R is an expression of relational algdng %ﬂ R = @ is a constraint
BT £

uival ﬁ&@aﬁé no s
4 O

tuples in the result of R.”

5We shall not consider empty paths to be “paths” in
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2. If Rand S are expressions of relational algebra, then R C Sis a constraint.
It says “Every tuple in the result of R must also be in the result of 5.”

Of course the result of S may contain additional tuples not produced by
R.

These ways of expressing constraints are actually equivalent in what they
can express, but sometimes one or the other is clearer or more succinct. That
is, the constraint R C S could just as well have been written R— S = 0. To
see why, notice that if every tuple in R is also in S, then surely R — § is empty.
Conversely, if R — S contains no tuples, then every tuple in R must be in S (or
else it would be in R - §).

On the other hand, a constraint of the first form, R = @, could just as
well have been written R C (. Technically, § is not an expression of relational
algebra, but since there are expressions that evaluate to @, such as R — R, there
is no harm in using @ as a relational-algebra expression.

In the following sections, we shall see how to express significant constraints
in one of these two styles. As we shall see in Chapter 6, it is the first style —
equal-to-the-emptyset — that is most commonly used in SQL programming.
However, as shown above, we are free to think in terms of set-containment if
we wish and later convert our constraint to the equal-to-the-emptyset style.

4.5.2 Referential Integrity Constraints

A common kind of constraint, called “referential integrity” in Section 2.5, as-
serts that a value appearing in one context also appears in another, related
context. We saw referential integrity as a matter of relationships “making
sense.” That is, if an object or entity A is related to object or entity B, then
B must really exist. For example, in ODL terms, if a relationship in object A
is represented physically by a pointer, then the pointer must not be null and
must point to a genuine object.

In the relational model, referential integrity constraints look somewhat dif-
ferent. If we have a value v in a tuple of one relation R, then because of our
design intentions we may expect that v w1ll appear m a particular component

Example 4.42: Let us think of our running movie datz
larly the two relations

ORDER FULL
We might reasonably assume that the producer of €% ﬁ\‘rle W?S fi)N
appear in the MovieExec relation. If not, there is soxlzt! s
would at least want a system implementing a relationt) ta@ﬁse to inform us O
that we had a movie with a producer of which the systerda ‘y@#qowledg

<
nt-drN®
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To be more precise, the producerC# component of each Movie tuple must
also appear in the cert# component of some MovieExec tuple. Since executives
are uniquely identified by their certificate numbers, we would thus be assured
that the movie’s producer is found among the movie executives. We can express
this constraint by the set-containment

TproducerCs (Movie) C 7corig(MovieExec)

The value of the expression on the left is the set of all certificate numbers
appearing in producerC# components of Movie tuples. Likewise, the expression
on the right’s value is the set of all certificates in the cert# component of
MovieExec tuples. Our constraint says that every certificate in the former set
must also be in the latter set. '

Incidentally, we could express the same constraint as an equality to the
emptyset:

TproducerCt (Movie) — Teorys(MovieExec) =

]

Example 4.43: We can similarly express a referential integrity constraint
where the “value” involved is represented by more than one attribute. For
instance, we may want to assert that any movie mentioned in the relation

StarsIn(movieTitle, movieYear, starName)
also appears in the relation
Movie(title, year, lemgth, inColor, studicName, producerC#)

Movies are represented in both relations by title-year pairs, because we agreed
that one of these attributes alone was not sufficient to identify a movie. The
constraint

TmovieTitle, movieYear (Starsin) C Ttitle, year('“m'ie)
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name — address
for the relation
MovieStar(name, address, gender, birthdate)

as an algebraic constraint. The idea is that if we construct all pairs of MovieStar
tuples (t1,%2), we must not find a pair that agree in the name component and
disagree in the address component. To construct the pairs, we use a Cartesian
product, and to search for pairs that violate the functional dependency we use
a selection. We then assert the constraint by equating the result to §.

To begin, since we are taking the product of a relation with itself, we need
to rename at least one copy, in order to have names for the attributes of the
product. For succinctness, let us use two new names, MS1 and MS2, to refer to
the NovieStar relation. Then the functional dependency can be expressed by
the algebraic constraint

OMS1.nane=MS2.name AND MS1.addressMS2.address(MS1 x MS2) =0

In the above, HS1 in the product MS1 x MS2 is shorthand for the renaming:

PMs L(name,address,gender.birthdate) (HOViQStu)

and MS2 is a similar renaming of MovieStar. O

Another kind of constraint that we sometimes need is a domain constraint.
Often, a domain constraint simply requires that values for an attribute have
a specific data type, such as integer or character string of length 30. These
constraints cannot be addressed in relational algebra, because types like integer
are not part of this algebra. However, often a domain constraint involves specific
values that we require for an attribute. If the set of acceptable values can be
expressed in the language of selection conditions, then this domain constraint
can be expressed in the algebraic constraint language.

. That is, the set of tuples in MovieStar whose gen
neither 'F’ nor ’M’ is empty. O

lined in Section 2.5. The algebraic constraint langus

express many O
new kinds of constraints. We offer one example here.

©ring.drin®y
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Example 4.46: Suppose we wish to require that one must have a net worth
of at least $10,000,000 to be the president of a movie studio. This constraint
cannot be classified as a domain, single-value, or referential integrity constraint.
Yet we can express it algebraically as follows. First, we need to theta-join the
two relations

MovieExec(name, address, cert#, netWorth)
Studio(name, address, presC#)

using the condition that presC# from Studio and cert# from MovieExec are
equal. That join combines pairs of tuples consisting of a studio and an executive,
such that the executive is the president of the studio. If we select from this
relation those tuples where the net worth is less than ten million, we have a set
that, according to our constraint, must be empty. Thus, we may express the
constraint as:

OnetWorth<10000000{Studio bdpresce—certs MovieExec) =@

An alternative way to express the same constraint is to compare the set
of certificates that represent studio presidents with the set of certificates that
represent executives with a net worth of at least $10,000,000; the former must
be a subset of the latter. The containment

Tpresc#(Studio) C mcoree (Unotuorthzlooooooo(HOVieEmc))

expresses the above idea. 0O

4.5.4 Exercises for Section 4.5

Exercise 4.5.1: Express the following constraints about the relations of Ex-
ercise 4.1.1, reproduced here:

Product (maker, model, type)
PC(model, speed, ram, hd, cd, price)
Laptop(model, speed, ram, hd, screen, price)

Printer(model, color, type, price)

must notBeﬁl. @A@Ethan
ORDER FULL

§ VERIDN o

'o’.'ht dr\‘le‘

You may write your constraints either as containme
pression to the empty set. For the data of Exercis
to your constraints.

*a) A PC with a processor speed less th
$1500.

b) A laptop with a screen size less than
gigabyte hard disk or sell for less than $2{¢

! ¢) No manufacturer of PC’s may also make la
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*11 d) A manufacturer of a PC must also make a laptop with at least as great a
processor speed.

! e) If a laptop has a larger main memory than a PC, then the laptop must
also have a higher price than the PC.

Exercise 4.5.2: Express the following constraints in relational algebra. The
constraints are based on the relations of Exercise 4.1.3:

Classes(class, type, country, numGuns, bore)
Ships (name, class, launched)

Battles(name, date)

Outcomes(ship, battle, result)

You may write your constraints either as containments or by equating an ex-
pression to the empty set. For the data of Exercise 4.1.3, indicate any violations
to your constraints.

a) No class of ships may have guns with larger than 16-inch bore.

b) If a class of ships has more than 9 guns, then their bore must be no larger
than 14 inches.

! ¢) No class may have more than 2 ships.
! d) No country may have both battleships and battlecruisers.

i1 ¢) No ship with more than 9 guns may be in a battle with a ship having
fewer than 9 guns that was sunk.

Exercise 4.5.3: It is possible to express constraints in Datalog as well as
relational algebra. We write a Datalog rule or rules defining one particular IDB
predicate whose value is constrained to be empty. Write each of the following
constraints in Datalog.

* a) The constraint of Example 4.42.

b) The constraint of Example 4.43.
¢) The constraint of Example 4.44. o VE R
Q/® S/O

d) The constraint of Example 4.45.
¢) The constraint of Example 4.46.

PLEASE
! Exercise 4.5.4: Suppose R and S are two relationsYllLet mﬁﬁ
tial integrity constraint that says: whenever R has cf3 pl ‘;n :EU LL
v1,v2,...,Vy in particular attributes A;, A, ..., Ay, theg t beﬁﬂﬁﬁ%mN
that has the same values vy,v;,...,v, in particular a3yl m é B, B;,

O
Show how to express constraint C in relational algebra.
‘nt-driN
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!! Exercise 4.5.5: Let R be a relation, and suppose functional dependency
AjAz--- A, — B is a functional dependency involving the attributes of R.
Write in relational algebra the constraint that says this functional dependency
must hold in R.

4.6 Relational Operations on Bags

While a set of tuples (i.e., a relation) is a simple, natural model of data as
it might appear in a database, commercial database systems are rarely if ever
based purely on sets. In some situations, relations as they appear in database
systems are permitted to have duplicate tuples. Recall that if a “set” is allowed
to have multiple occurrences of a member, then that set is called a bag or
maultiset. In this section, we shall consider relations that are bags rather than
sets; that is, we shall allow the same tuple to appear more than once in a
relation. When we refer to a “set,” we mean a relation without duplicate
tuples; a “bag” means a relation that may (or may not) have duplicate tuples.

Example 4.47: The relation in Fig. 4.28 is a bag of tuples. In it, the tuple
(1,2) appears three times and the tuple (3,4) appears once. If Fig. 4.28 were
a set-valued relation, we would have to eliminate two occurrences of the tuple
(1,2). In a bag-valued relation, we do allow multiple occurrences of the same
tuple, but like sets, the order of tuples does not matter. O

:

= )
NN e ey

Figure 4.28: A bag

4.6.1 Why Bags?

When we think about implementing relations efficie,
that allowing relations to be bags rather than sz up operations on
relations. For example, when we do a projection,

ion
to be a bag lets us work with each tuple m&

as the result, we need to compare the result oifp romc@gﬂ; e;:ﬁ
components from each tuple with the result gl ther project les,

to make sure that we have not seen this projectiwa m ﬂ@fg
accept a bag as the result, then we simply projei&:s ple and add it to the O
result; no comparison with other projected tuples 1:RreCessary.

%&1 see several §c§f®
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AlBIC

i
3
1
1

NN Ny
oo-qoaclq

Figure 4.29: Bag for Example 4.48

Example 4.48: The bag of Fig. 4.28 could be the result of projecting the
relation shown in Fig. 4.29 onto attributes A and B, provided we allow the
result to be a bag and do not eliminate the duplicate occurrences of (1,2). Had
we used the ordinary projection operator of relational algebra, and therefore
eliminated duplicates, the result would be only

Al B
12
3 1 4

Note that the bag result, although larger, can be computed more quickly, since
there is no need to compare each tuple (1, 2) or (3, 4) with previously generated
tuples.

Moreover, if we are projecting a relation in order to take an aggregate (as
discussed in Section 5.5}, such as “Find the average value of A in Fig. 4.29,”
we could not use the set model to think of the projected relation. As a set, the
average value of A is 2, because there are only two values of A — 1 and 3 — in
Fig. 4.29, and their average is 2. However, if we treat the A column in Fig. 4.29
as a bag {1,3,1,1}, we get the correct average of A, which is 1.5, among the
four tuples of Fig. 4.29. O

Another way that allowing bags as results saves time is if we take the union
of two relations. If we compute the union R U S and insist on a set as the
result, then each tuple in S must be checked for membership in B
be in R, then this tuple of S is not added to the union; othergyise
the union. However, if we accept a bag as the result, then wEiks
tuples of R and S into the answer, regardless of whether{us
both relations.

R

a.ppear in

S/O

4.6.2 Umon, Intersection, and Differ<{i{{d= of Bags PLEASE

2 QRRER EULL
%g%WR@F@N I3

When we take the union of two bags, we add the nurgia:
tuple. That is, if R is a bag in which the tuple ¢ appeat:

in which the tuple ¢ appears m times, then in the bz¢@#
n + m times. Note that either n or m (or both) can be (R
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When we intersect two bags R and S, in which tuple ¢ appears n and
m times, respectively, in R N S tuple t appears min(n,m) times. When we
compute R — S, the difference of bags R and S, tuple ¢t appears in R - §
max(0,n — m) times. That is, if ¢ appears in R more times than it appears in
S, then in R — S tuple ¢ appears the number of times it appears in R, minus the
number of times it appears in S. However, if f appears at least as many times
in S as it appears in R, then ¢ does not appear at all in R — S. Intuitively,
occurrences of ¢t in S each “cancel” one occurrence in R.

Example 4.49: Let R be the relation of Fig. 4.28, that is, a bag in which
tuple (1,2) appears three times and (3,4) appears once. Let S be the bag

AlB

i

Then the bag union R U S is the bag in which (1, 2) appears four times (three
times for its occurrences in R and once for its occurrence in S); (3,4) appears
three times, and (5, 6) appears once.

The bag intersection RN S is the bag

AIB
112
3 |4

oW w ki
O W N

with one occurrence each of (1,2) and (3, 4). That is, (1,2) appears three times
in R and once in S, and min(3,1) = 1,50 (1,2) appears once in R 1 S. Similarly,
(3,4) appears min(1,2) = 1 time in RN S. Tuple (5, 6), which appears once in
S but zero times in R appears min(0,1) =0 timesin RN S.

The bag difference R — S is the bag

To see why, notice that (1,2) appears three timesgin R@$once in §, so ‘{xo
R — S it appears max(0,3 — 1) = 2 times. Tuplf ,4@)pears once in R and
twice in S, so in R — § it appears max(0,1 — ¥= 0 timesP N¢=ofaG [iple
appears in R, so there can be no other tuples W@ - S.

As another example, the bag difference S —_Jidis the @BDER FULL

A|B VERSION £
34 4y o
S 'o".ht-dr'\‘le(’
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Bag Operations on Sets

Imagine we have two sets R and S. Every set may be thought of as a
bag; the bag just happens to have at most one occurrence of any tuple.
Suppose we intersect R N S, but we think of R and S as bags and use the
bag intersection rule. Then we get the same result as we would get if we
thought of R and S as sets. That is, thinking of R and S as bags, a tuple
tis in R N S the minimum of the number of times it is in R and S. Since
R and S are sets, t can be in each only 0 or 1 times. Whether we use the
bag or set intersection rules, we find that ¢ can appear at most once in
RN S, and it appears once exactly when it is in both R and S. Similarly,
if we use the bag difference rule to compute R — S or S— R we get exactly
the same result as if we used the set rule.

However, union behaves differently, depending on whether we think
of R and S as sets or bags. If we use the bag rule to compute R U S,
then the result may not be a set, even if R and S are sets. In particular,
if tuple ¢ appears in both R and S, then t appears twice in R U S if we
use the bag rule for union, but if we use the set rule then ¢ appears only
once in R U S. Thus, when taking unions, we must be especially careful
to specify whether we are using the bag or set definition of union.

Tuple (3, 4) appears once because that is the difference in the number of times
it appears in § minus the number of times it appears in R. Tuple (5, 6) appears
once in § — R for the same reason. The resulting bag happens to be a set in
this case. O

4.6.3 Projection of Bags

W alllD A,
each tuple is processed independently during the projectiopg g&@h&ﬁﬁ ,{? S
Fig. 4.29 and we compute the bag-projection 74 g(R), ‘Al g?/ % the bag o /O
Fig. 4.28.

If the elimination of one or more attributes duript; the projep‘zplE:;gagssE
the same tuple to be created from several tuples, thizFduplicate tuples are not

Che thriRieE R, BULL
(1,2,7), and (1,2,8) of the relation R from Fig. 4.2¢Xg"hetave ri e,ﬁt e
tuple (1,2) after projection onto attributes A and B. I ézag re%e;\u [‘%&é;ﬁN o,s

three occurrences of tuple (1, 2), while in the set-projffast n@lis tuple appears O
only once. o) <
(o} .
nt.driN®
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Algebraic Laws for Bags

An algebraic law is an equivalence between two expressions of relational
algebra whose arguments are variables standing for relations. The equiv-
alence asserts that no matter what relations we substitute for these vari-
ables, the two expressions define the same relation. An example of a
well-known law is the commutative law for union: R U S =S5 U R.
This law happens to hold whether we regard relation-variables B and .S
as standing for sets or bags. However, there are a number of other laws
that hold when relational algebra is interpreted in the conventional man-
ner — with relations as sets — but that do not hold when relations are
interpreted as bags. A simple example of such a law is the distributive law
of set difference over union, (R U §)-T=(R—-T) U (§-T). This law
holds for sets but not for bags. To see why it fails for bags, suppose R, S,
and T each have one copy of tuple ¢t. Then the expression on the left has
one ¢, while the expression on the right has none. As sets, neither would
have {. Some exploration of algebraic laws for bags appears in Exercises
4.6.4 and 4.6.5.

4.6.4 Selection on Bags

To apply a selection to a bag, we apply the selection condition to each tuple
independently. As always with bags, we do not eliminate duplicate tuples in
the result.

Example 4.50: If R is the bag

el =
Ml\)n&l\)m
q-qmmq

then the result of the bag-selection oc>6(R) is 0 VE R
@\§ S/O
PLEASE
ORDER FULL

That is, all but the first tuple meets the selection dvg d.%'ﬂon. ﬁ!&éﬁi%&)@b&s O's

which are duplicates in R, are each included in W3

¥+
')

[l | B N
NN
~N ~N®
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4.6.5 Product of Bags

The rule for the Cartesian product of bags is the expected one. Each tuple of
one relation is paired with each tuple of the other, regardless of whether it is a
duplicate or not. As a result, if a tuple r appears in a relation R m times, and
tuple s appears n times in relation S, then in the product R x S, the tuple rs
will appear mn times.

Example 4.51: Let R and S be the bags shown in Fig. 4.30. Then the
product R x S consists of six tuples, as shown in Fig. 4.30(c). Note that the
usual convention regarding attribute names that we developed for set-relations
applies equally well to bags. Thus, the attribute B, which belongs to both
relations R and S, appears twice in the product, each time prefixed:-by one of
the relation names. 0O

- el
> oo

(a) The relation R

B|C

ook N
oo w

(b} The relation S

A|RB|SB|C
1 ]2 3

2

112 2 3

1|2 4 5

1 (2 4 5
o VER

Lz |e s & %
PLEASE

(c) The product R x §
ORDER FULL
Figure 4.30: Computing the product o\f%s VERSION s
2 o

ring.drin®y
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4.6.6 Joins of Bags

Joining bags also presents no surprises. We compare each tuple of one relation
with each tuple of the other, decide whether or not this pair of tuples joins suc-
cessfully, and if so we put the resulting tuple in the answer. When constructing
the answer, we do not eliminate duplicate tuples.

Example 4.52: The natural join R ve S of the relations R and S seen in
Fig. 4.30 is

A|B|C

1 3

1 3
That is, tuple (1,2) of R joins with (2,3) of S. Since there are two copies of
(1,2} in R and one copy of (2, 3) in S, there are two pairs of tuples that join to

give the tuple (1,2,3). No other tuples from R and S join successfully.
As another example on the same relations R and S, the theta-join

i I~

]

Rvapp<csp S

produces the bag

n
bo
b

TS
U'IU"IU'IU'lq

R
2
2
2
2

The computation of the join is as follows. Tuple (1, 2) from R and (4, 5) from §
meet the join condition. Since each appears twice in its relation, the number of
times the joined tuple appears in the result is 2 x 2 or 4. The other possible join
of tuples — (1,2) from R with (2,3) from S — fails to meet the join condition,
so this combination does not appear in the result. O

4.6.7 Datalog Rules Applied to Bags

The techniques for computing selections, projections, 2

be applied to Datalog rules, provided there are no ne:¢} e xona.l subg

Roughly, we take the join of the relations represeg lx?% various subgoa.ls,
eti

. o . oot
the resuit onto the head. At each step, we usggie algonthr?iﬁﬁ%%
bags.

pporo§Pf'5 eRvalu lfj

It is conceptually simpler to generalize the ¢Zdon
Datalog rules that we gave in Section 4.2.4. RecalfhiSiechniiIRE DD
ing at each of the nonnegated, relational subgodiEfa gubstltutmg for it al]
tuples of the relation for the predicate of that subgot\. ¥ zselectlon of tuple%

7Iint-driN®
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for each subgoal gives a consistent value to each variable, and the arithmetic
subgoals all become true,” then we see what the head becomes with this assign-
ment of values to variables. The resulting tuple is put in the head relation.

Since we are now dealing with bags, we do not eliminate duplicates from
the head. Moreover, as we consider all combinations of tuples for the subgoals,
a tuple appearing n times in the relation for a subgoal gets considered n times
as the tuple for that subgoal, in conjunction with all combinations of tuples for
the other subgoals.

Example 4.53 : Consider the rule
H(x,z) + R(x,y) AND S(y,z)

and let R and S be the relations of Fig. 4.30. The only time we get a consistent
assignment of tuples to the subgoals (i.e., an assignment where the value of y
from each subgoal is the same) is when the first subgoal is assigned the tuple
(1,2) from R and the second subgoal is assigned tuple (2, 3) from S. Since (1, 2)
appears twice in R, and (2,3) appears once in S, there will be two assignments
of tuples that give the variable assignments z = 1, y = 2, and z = 3. The tuple
of the head, which is (z, z), is for each of these assignments (1,3). Thus the
tuple (1.3) appears twice in the head relation H, and no other tuple appears
there. That is, the relation

H1 | H?
1 3
1 3

is the head relation defined by this rule, where we have taken the liberty of
naming the attributes of the relation H1 and H2. More generally, had tuple
(1,2) appeared n times in R and tuple (2, 3) appeared m times in S, then tuple
(1,3) would appear nm times in H. 0O

If a relation is defined by several rules, then the result is the bag-union of
whatever tuples are produced by each rule.

Example 4.54 : Consider a relation H defined by the two rules

H(x,y) « S(x,y) AND x>1
H(x,y) « S(x,y) AND y<56

PLEASE

213
E ORDER FULL

éhe'myﬁmgN §

ré g%‘;ﬂ subgoals under ) S)O
“int.driN®

a clearly defined meaning of arbitrary Datalog rules with neg
the bag model.
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The first rule puts each of the three tuples of S into H, since they each have a
first component greater than 1. The second rule puts only the tuple (2,3) into
H, since (4, 5) does not satisfy the condition y < 5. Thus, the resulting relation
H has two copies of the tuple (2,3) and two copies of the tuple (4,5). O

4.6.8 Exercises for Section 4.6

Exercise 4.6.1: Let PC be the relation of Fig. 4.10(a}, and suppose we compute
the projection #,p..q(PC). What is the value of this expression as a set? Asa
bag? What is the average value of tuples in this projection, when treated as a
set? As a bag?

Exercise 4.6.2: Repeat Exercise 4.6.1 for the projection m,4(PC).

Exercise 4.6.3: This exercise refers to the “battleship” relations of Exer-
cise 4.1.3.

a) The expression 7p...(Classes) yields a single-column relation with the
bores of the various classes. For the data of Exercise 4.1.3, what is this
relation as a set? As a bag?

! b) Write an expression of relational algebra to give the bores of the ships
(not the classes). Your expression must make sense for bags; that is, the
number of times a value b appears must be the number of ships that have
bore b.

! Exercise 4.8.4: Certain algebraic laws for relations as sets also hold for re-
lations as bags. Explain why each of the laws below lold for bags as well as
sets.

* a) The associative law for union: (R U S) U T=R U (S U T).
b) The associative law for intersection: (R N S) N T=R N (S n T).

¢) The associative law for natural join: (Rpa S)eaT= R (SaT).

d) The commutative law for union: (R U S} =
e) The commutative law for intersection: (R

f) The commutative law for natural join: (
g) 7{R U S)=ar(R) U n.(S). Here, L igfh arbitrarfit Bt At @ Ftes.

* h) The distributive law of union ever intej:! ction‘O”R@ESRr‘F@L{
(RUS)N(RUT).
%_ VERSION &

i) oc awp p(R) = oc(R) N op(R). Here, e arbltrary conditions
about the tuples of R. S)

,o,. int.griN®

o awnn ma ey s m r
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!! Exercise 4.8.5: The following algebraic laws hold for sets but not for bags.
Explain why they hold for sets and give counterexamples to show that they do
not hold for bags.

*3)) (RNS)-T=RnN (S-T).

b} The distributive law of intersection over union: R N (S uT)=
(RN S)u (RnT).

¢) oc or o(R) = oc(R) U op(R). Here, C and D are arbitrary conditions
about the tuples of R.

4.7 Other Extensions to the Relational Model

There are a number of other concepts and operations that are not a part of the
formal relational model but appear in real query languages. In this section we
mention operations that modify relations, compute “aggregations” such as sums
of columns in a relation, and define “views” or named functions of relations.
Each of them appears in the database language SQL and will be revisited in
Chapter 5. We shall also see some of them in our discussion of the query
language OQL in Chapter 8.

4.7.1 Modifications

Relational algebra or Datalog are “query languages,” in the sense that they each
let us compute a relation or answer that is a function of some given relations.
While queries are important, a database that could not be changed would not
be interesting, Therefore, all real database languages include both the ability
to query the database and the ability to modify the database. At the minimum,
we need commands to

1. Insert tuples into a relation.

2. Delete tuples from a relation.

3. Update existing tuples by changing one or more comp/@naiis

M So
The relational algebra operations work on tuples ind: pendently %E
tuples in the same relation. Often, we wish to confliiite the tuples single

relation to produce some aggregate value, that is, a i3 cbmn@ F.RB}'E QDIEU LL

blended in some way. For instance, in our running v% mwgﬁ%N

want to:
¢ Count the number of different movies mentioned ix

4.7.2 Apggregations

he M/‘yle relation. ‘ h

“ing-driN®
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¢ Produce a table giving the sum of the lengths of the movies produced by
each studio.

o Find the movie executive with the largest net worth.

Thus, real database query languages let us apply aggregation operators, princi-
pally count, sum, average, minimum, and maximum, to columns of a relation.

4.7.3 Views

We can think of an expression of relational algebra as a “program” that com-
putes a relation R and prints or otherwise produces R as a result. However,
there is another interpretation of a relational expression. We can regard it as
a formula defining a relation that is not produced until the formula is applied
to real relations. Such formulas are called views in database terminology. We
shall see that it is common for views to be given names and for these names to
be used as arguments of other relational expressions, as if the views were real
relations.

Datalog rules illustrate the distinction between a query and a view as well.
Recall that we regard predicates or relations defined by Datalog rules as “in-
tensional”; that is, they are definitions of a relation that need not exist in
“extensional” or stored form. A view is equivalent to an intensional predicate.
Just as intensional predicates can be used in bodies of rules, a view can be
used as an argument in an algebraic expression. Likewise, just as a collection
of Datalog rules can be applied to a database consisting of stored relations, a
view can likewise be evaluated when needed.

4.7.4 'Null Values

There are many situations in which we must assign a value for a component of
a tuple, but we cannot tell what that value is. For example, we may know that
Kevin Costner is a movie star, but not know his birthdate. Since all MovieStar
tuples have a birthdate component, what are we to do? The answer is that
we can use a Spema.l value NULL ca.lled the null value, for that coz

it is not a value. In particular, we do not regard two v
to each other when we take a join of two relatiorGa Por ﬁ
stars with NULL as the values of their birthdate cguipor(zs
to have the same birthdays. Q
There are many different interpretations that¥ can be pl® orEnMISEes.

Here are some of the most common.
ORDER FULL
1. Value unknown: that is, “I know there%t su vﬂuyﬁﬁgj@ 1@1
but I don’t know what it is.” An unknowngu\ t.;-gate,

is an example.

are not presum
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2. Value inapplicable: “There is no value that makes sense here.” For ex-
ample, if we had a spouse attribute for the MovieStar relation, then an
unmarried star would of necessity have a null value for that attribute, not
because we don’t know the spouse’s name, but because there is none.

3. Value withheld: “We are not entitled to know the value that belongs
here.” For instance, an unlisted phone number might appear as NULL in
the component for a phone attribute.

4.8 Summary of Chapter 4

4 Relational Algebra: This algebra is an important form of query language
for the relational model. Its principal operators are union, intersection,
difference, -selection, projection, Cartesian product, natural join, theta-
join, and renaming.

4 Datalog: This form of logic is another important type of query language
for the relational model. In Datalog, one writes rules in which a predicate
or relation is defined in terms of a body, consisting of subgoals. The
head and subgoals are each atoms, and an atom consists of an (optionally
negated) predicate applied to some number of arguments. All queries that
can be expressed in relational algebra can also be expressed in Datalog.

4 Recursive Datalog: Datalog rules can also be recursive, allowing a relation
to be defined in terms of itself. The meaning of recursive Datalog rules
is the least fixedpoint, the smallest set of tuples for the defined relations
that makes the heads of the rules exactly equal to what their bodies imply.

4 Stratified Negation: When a recursion involves negation, the least fixed-
" point may not be unique, and in some cases there is no acceptable meaning
to the Datalog rules. Therefore, uses of negation inside a recursion must
be forbidden, leading to a requirement for stratified negation. For rules
of this type, there is one (of perhaps several) least fixedpoints that is the
generally accepted meaning of the rules.

bags, in which the same tuple is allowed to appei™
operations of relational algebra on sets can be egsk

r»,}to bags, but
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4+ Relations in Commercial Systems: In additionS{Jusing

algebra or Datalog. These operations incluG§
update of tuples in relations, aggregations on rel:té
tuples.
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4.9 References for Chapter 4

Relational algebra was another contribution of the fundamental paper [4] on
the relational model. Logical query languages had a less straightforward origin.
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Chapter 5

The Database Language
SQL

The most commonly used relational database systems query and modify the
database through a language called SQL (sometimes pronounced “sequel”).
SQL stands for “Structured Query Language.” An important core of SQL is
equivalent to relational algebra, although there are many important features of
- 8QL that go beyond what is found in relational algebra, for example aggregation
(e.g., sums, counts) and database updates.

There are many different dialects of SQL. First, there are two major stan-
dards: ANSI (American National Standards Institute) SQL and an updated
standard adopted in 1992, called SQL-92 or SQL2. There is also an emerging
standard called SQL3 that extends SQL2 with many new features such as re-
cursion, triggers, and objects. Then, there are versions of SQL produced by the
principal vendors of database management systems. These all include the ca-
pabilities of the original ANSI standard. They also conform to a large extent to
the more recent SQL2, although each has its variations and-extensions beyond
SQL2, including some of the features in the proposed SQL3 standard.

In this and the next two chapters we shall dlSCuSS the use of S ! Lasa query

and ask queries of a database or request database md1 HC -10 v'ﬁuﬁis
' angmg over ¥

and the next two chapters, we shall generally cgntlmgss¥he SQL2 sta.nda.rd
emphasizing features found in almost all commgyri 4 % he
earlier ANSI standard. In some cases, where thgslQL2 standard

a subject adequately, we shall follow the most

Nocent a e
evolving SQL3J standard. WBWWEL

The intent of this chapter and the following T2 %apter‘:ﬁﬁRp@ﬂ.@aNhe
reader with a sense of what SQL is about, md{{g: level of a “tutorial” O
than a “manual.” Thus, we focus on the most copiino bused features onl{

"Int-griN®
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The references mention places where more of the details of the language and
its dialects can be found.

5.1 Simple Queries in SQL

Perhaps the simplest form of query in SQL asks for those tuples of some one
relation that satisfy a condition. Such a query is analogous to a selection in
relational algebra. This simple query, like almost all SQL gueries, uses the three
keywords, SELECT, FROM, and WHERE that characterize SQL.

Movie(title, year, length, inColor, studioName, producerC#)
StarsIn(movieTitle, movieYear, starName)

MovieStar (name, address, éender, birthdate)

MovieExec (name, address, cert#, netWorth)

Studio(name, address, presC#)

Figure 5.1: Example database schema, repeated

Example 5.1: In this and subsequent examples, we shall use the database
schema described in Section 3.9. To review, these relation schemas are the ones
shown in Fig. 5.1. We shall see in Section 5.7 how to express schema information
in SQL, but for the moment, assume that each of the relations and domains
mentioned in Section 3.9 apply to their SQL counterparts.

As our first query, let us ask about the relation

Movie(title, year, length, inColor, studioName, producerC#)
for all movies produced by Disney Studios in 1990. In SQL, we say

SELECT =
FROM Movie
WHERE studioName = ’Disney’ AND year = 1990;

This query exhibits the characteristic select-from-where fosnds)
queries.

O VERg
gﬁe query refers. /

EASE

¢ The WHERE clause is a condition, much like &giection-condition in re-
lational algebra, which tuples must satisfy in o

Here, the condition is that the studioName at@gldatzgof the ggﬁ%

value ’Disney’ and the year attribute of the talsleslas th 5N s
All tuples meeting both stipulations satisfy the ¥0itig)y; other tuples do OO
not.

rint.drin® s

o The FROM clause gives the relation or relations tg zyh
In our example, the query is about the relation\[Jrie
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e The SELECT clause tells which attributes of the tuples matching the con-
dition are produced as part of the answer. The # in this example indicates
that the entire tuple is produced. The result of the query is the relation
consisting of all tuples produced by this process.

One way to interpret this query is to consider each tuple of the relation
mentioned in the FROM clause. The condition in the WHERE clause is applied
to the tuple. More precisely, any attributes mentioned in the WHERE clause are
replaced by the value in the tuple’s component for that attribute. The condition
is then evaluated, and if true, the components appearing in the SELECT clause
are produced as one tuple of the answer. Thus, the result of the query is
the Movie tuples for those movies produced by Disney in 1990, for example,
Pretty Woman.

In detail, when the SQL query processor encounters the Movie tuple

title | year | length | inColor | studioName | producerC#
Pretty Woman | 1990 | 119 | true | Disney | 999

(here, 999 is the imaginary certificate number for the producer of this movie),
the value ’Disney’ is substituted for attribute studioName and value 1990 is
substituted for attribute year in the condition of the WHERE clause, because
these are the values for those attributes in the tuple in question. The WHERE
clause thus becomes

WHERE ’Disney’ = ’Disney’ AND 1990 = 1990

Since this condition is evidently true, the tuple for Pretty Woman passes the
test of the WHERE clause and the tuple becomes part of the result of the query.
0 .

5.1.1 Projection in SQL

We can, if we wish, eliminate some of the components of the chosen tuples;
that is, we can project the relation produced by an SQL query onto some of
its attributes. In place of the * of the SELECT clause, we & 159

attributes of the relation mentioned in the FROM cla
projected onto the attributes listed.’

ple 3.1 to pro?(@ ¢

PLEASE
ORDER FULL
" VERSION

"Thus, the keyword SELECT in SQL actually corresgflilils wwast closely to the projection o
operator of relational algebra, while the selection opera ;
WHERE clause of SQL queries.

Example 5.2 : Suppose we wish to modify the
only the movie title and length. We may write

SELECT title, length
FROM Movie
. WHERE studioName = ’Disney’ AND
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The result is a table with two columns, headed title and length. The tuples
in this table are pairs, each consisting of a movie title and its length, such that
the movie was produced by Disney in 1990. For instance, the relation schema
and one of its tuples looks like:

title _Llengtll_
Pretty Homa.nTl 19

Sometimes, we wish to produce a relation with column headers different
from the attributes of the relation mentioned in the FROM clause. We may
follow the name of the attribute by the keyword AS and an alias, which will be
the name appearing in the result relation. AS is opticnal, and some older SQL
systems always omit it. That is, an alias can immediately follow the attribute
it stands for, without any intervening comma.

Example 5.3: We can modify Example 5.2 to produce a relation with at-
tributes name and duration in place of title and length as follows.

SELECT title AS name, length AS duration
FROM Movie
WHERE studioName = ’Disney’ AND year = 1990;

The result is the same set of tuples as in Example 5.2, but with the columns
headed by attributes name and duration. For example, the result relation
might begin:

name l duration
“Pretty Woman | 119

Another option in the SELECT clause is to use a formula in place of an
attribute.

Then the same name-length pairs would be producedMout the le WE
be calculated in hours and the second column wollliflve headed bb ttnbute

lengthInHours. O E R F U LL
Example 5.5: We can even allow a constant as an itga %he shlfeRSION

It might seem pointless, but one application is to Pk eﬂliseful words into
the output that SQL displays. The following query:

OO
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Case Insensitivity

SQL is case insensitive, meaning that it treats upper- and lower-case let-
ters as the same letter. For example, although we have chosen to write
keywords like FROM in capitals, it is equally proper to write this keyword
as From or from, or even FrOm. Names of attributes, relations, aliases, and
s0 on are similarly case insensitive. Only inside quotes does SQL make
a distinction between upper- and lower-case letters. Thus, *FROM’ and

- sfrom® are different character strings; of course neither is the keyword
FROM.

SELECT title, length*0.016667 AS length, 'hrs.’ AS inHours
FROM Movie
WHERE studioName = ’Disney’ AND year = 1990;

produces tuples such as

title | length inHours
Pretty Woman | 1.98334 | hrs.

We have arranged that the third column is called inHours, which fits with the
column header length in the second column. Every tuple in the answer will
have the constant hrs. in the third column, which thus appears to be the units
attached to the value in the second column. O

5.1.2 Selection in SQL

The selection operator of relational algebra, and much more, is available through
the WHERE clause of SQL. The expressions that may follow WHERE include con-
ditional expressions like those found in common languages such as C or Pascal.

We may build expressions by compa.ring values using the six common com-

those used in Pascal and have the obv1ous meanings z
you're not a big Pascal fan).

The values that may be compared include cong&Vidts \Qtrlbutes B
relation or relations mentioned after FROM. We medgh s«uaﬁ)'ly the usual a.rlth

metic operators, +, *, and s0 on, to numeric vaiil’s betore E? S:Ee

For instance, (year — 1930)  (year — 1930) < Xilks true for L';ﬁ hin

9 of 1930. We may apply the concatenation opeg:tor | |

*£00* || ’bar’ has value 'foobar’. @W%g %“ﬂ“?_ﬁ_
%4 VERSION §&

An example comparison is
O

studioName = ’Disney’

'o’.'ht dr\‘le‘
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in Example 5.1. The attribute studioName of the relation Movie is tested for
equality against the constant ’Disney’. This constant is string-valued; strings
in SQL are denoted by surrounding them with single quotes. Numeric constants,
integers and reals, are also allowed, and SQL uses the common notations for
reals such as -12.34 or 1.23E46.

The result of a comparison is a boolean value: either TRUE or FALSE. boolean
values may be combined by the logical operators AND, OR, and NOT, with their
usual meanings as in Pascal. For instance, we saw in Example 5.1 how two con-
ditions could be combined by AND. The WHERE clause of this example evaluates
to true if and only if both comparisons are satisfied; that is, the studio name is
’Disney’ and the year is 1990. Here are some more examples of queries with
complex WHERE clauses.

Example 5.6: The following query asks for all the movies made after 1970
that are in black-and-white.

SELECT title
FROM Movie
WHERE year > 1970 AND NOT inColor;

In this condition, we again have the AND of two booleans. The first is an ordinary
comparison, but the second is the attribute inColor, negated. This use of an
attribute by itself makes sense, because inColor is of type boolean.

Next, consider the query

SELECT title

FROM Movie

WHERE (year > 1970 OR length < 90)
AND studioName = MGM’;

This query asks for the titles of movies made by MGM Studios that were either
made after 1970 or were less than 90 minutes long. Notice that comparisons
can be grouped using parentheses. The parentheses are needed here because the
precedence of logical operators in SQL is the same as in most other languages:
AND takes precedence over OR, and NOT takes precedence over botke

Q>§0 VERS/

5.1.3 Comparison of Strings (o)
Two strings are equal if they are the same sequence os araf;@rs. SﬁL allows ¢

acters and variable-length lists of characters.? If so,
coercions among string types. For example, a string

L MERSION &

they are actually stored is an implementation-dependent mati(geo ified in any SQL (o)

standard.
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Representing Booleans and Bit Strings

We may represent boolean values in SQL as a special case of bit strings.
A string of bits is represented by B foliowed by a quoted string of 0's and
1's. Thus, B’011’ represents the string of three bits, the first of which
is 0 and the other two of which are 1. Hexadecimal notation may also
be used, where an X is followed by a quoted string of hexadecimal digits
(0 through 9, and a through f, with the latter representing “digits” 10
through 15). For instance, X’7££’ represents a string of twelve bits, a 0
followed by eleven 1’s. Note that each hexadecimal digit represents four
bits, and leading 0’s are not suppressed.

The boolean value TRUE can be represented by a 1 bit, that is, B’ 1.
Similarly, FALSE is represented by B’0’.

as a fixed-length string of length 10, with 7 “pad” characters, or it could be
stored as a variable-length string. We would expect values of both types to be
equal to each other and also equal to the constant string ’foo’.

When we compare strings by one of the “less than” operators, such as < or
>=, we are asking whether one precedes the other in lexicographic order (i.e..
in dictionary order, or alphabetically). That is, if ajas---a, and bibs - - - by,
are two strings, then the first is “less than” the second if either a; < by, or if
a) = by and ay; < bs, or if a; = by, ag = by, and a3 < b3, and so on. We also
say ajaz---ap < biby---by, if n < m and aas -+ -a, = bi1by +- - by; that is, the
first string is a proper prefix of the second. For instance, fodder’ < ’foo’,
because the first two characters of each string are the same, fo, and the third
character of todder precedes the third character of foo. Also, 'bar’ < bargain
because the former is a proper prefix of the latter. As with equality, we may
expect reasonable coercion among different string types.

SQL also provides the capability to compare strings on the basis of a simple
pattern match. An alternative form of comparison expression is

s LIKE p

where s is a string and p is a pattern, that is, a gl
of the two special characters % and .. Ordinary Jeda in p match of
themselves in s. But % in p can match any s e@ 0 or more characte
in s, and . in p matches any one character in s3fThe valuePf] ti¥s £ Esion
is true if and only if string s matches patterr®§:M Similarly, s NOT LIKE p

value true if and only if string s does not match§p atten@)RDER FU LL

Example 5.7: We remember a movie “Star guneifzing,
that the something has four letters. What could®ait: m@le be? We can retneveoo

all such names with the query: ‘£ /./nt g r\\l e(
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Escape Characters in LIKE expressions

What if the pattern we wish to use in a LIKE expression involves the char-
acters % or _? Instead of having a particular character used as the escape
character (e.g., the backslash in most UNIX commands), SQL allows us
to specify any one character we like as the escape character for a single
pattern. We do so by following the pattern by the keyword ESCAPE and
the chosen escape character, in quotes. A character % or _ preceded by
the escape character in the pattern is interpreted literally as that charac-
ter, not as a symbol for any sequence of characters or any one character,
respectively. For example, :

LIKE ’x%%xY’ ESCAPE ’x’

makes x the escape character in the pattern x%%x)%. The sequence x7 is
taken to be a single %. Thus, this pattern matches any string that begins
and ends with 4.

SELECT title
FROM Movie
WHERE title LIKE ’Star !

- —

This query asks if the title attribute of a movie has a value that is nine characters
long, the first five characters being Star and a blank. The last four characters
may be anything, since any sequence of four characters matches the four .
symbols. The result of the query is the set of complete matching titles, such as
Star Wars and Star Trek. O

Example 5.8: Let us search for all movies with a possessive (’s) in their titles.
The desired query is

SELECT title
FROM Movie |
WHERE title LIKE ’Y%’’sY%’

To understand this pattern, we must first observe thg $trophe, being ¢
the character that surrounds strings in SQL cannot algly represent lﬁ-élﬁE
convention taken by SQL is that two consecutive apgGi zophes in a stﬁx%

resent a single apostrophe and do not end the string. ’ ’@Wﬁﬁl FULL

matched by a single apostrophe and an s in the title
The two % characters on either side of the ’s match 3 nngsV]E@?g@&ON
and the answer o

Thus, any title with ’s as a substring will match the@¥eiT
to this query will include films such as Logan’s Run or Ag ’ taurant

<
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5.1.4 Comparing Dates and Times

Implementations of SQL generally support dates and times as special data
types. These values are often representable in a variety of formats such as
5/14/1948 or 14 May 1948. Here we shall describe only the SQL2 standard
notation, which is very specific about format.

A date is represented by the keyword DATE followed by a quoted string of a
special form. For example, DATE ’1948-05-14 follows the required form. The
first four characters are digits representing the year. Then come a hyphen and
two digits representing the month. Note that, as in our example, a one-digit
month is padded with a leading 0. Finally there is another hyphen and two
digits representing the day. As with months, we pad the day with a leading 0
if that is necessary to make a two-digit number.

A time is represented similarly by the keyword TIME and a quoted string,.
This string has two digits for the hour, on the military (24-hour) clock. Then
come a colon, two digits for the minute, another colon, and two digits for the
second. If fractions of a second are desired, we can continue with a decimal point
and as many significant digits as we like. For instance, TINE ’15:00:02.5’
represents the time at which all students will have left a class that ends at
3 PM: two and a half seconds past three o’clock.

We can compare dates or times using the same comparison operators we use
for numbers or strings. That is, < on dates means that the first date is earlier
than the second; < on times means that the first is earlier (within the same
day) than the second.

5.1.5 Ordering the Output

We may ask that the tuples produced by a query be presented in sorted order.
The order may be based on the value of any attribute, with ties broken by the
value of a second attribute, remaining ties broken by a third, and so on. To get
output in sorted order, we add to the select-from-where statement a clause:

ORDER BY <«<1list of attributes>

appending the keyword DESC (for “descending”).
ascending order with the keyword ASC, but that “TLY:

Movie(title, year, length, inColoyf studi@&D E &uEe:-le?!l!%L

To get the movies listed by length, shortest figd#
length, alphabetically, we can say:

ong mov:es q equal
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SELECT =*

FROM Movie

WHERE studioName = ’Disney’ AND year = 1990
ORDER BY length, title;

If there is an order of attributes understood (which there should be, since SQL
relations are declared with a list of attributes, as we shall see in Section 5.7.2),
then we can use the numbers of the attributes instead of the names if we wish.
Thus, the ORDER BY clause above could have been written

DRDER BY 3, 1;
according to the standard order in which we list the attributes of relation Movie.

a

5.1.6 Exercises for Section 5.1
Exercise 5.1.1: If a query has a SELECT clause

SELECT A B

how do we know whether 4 and B are two different attributes or B is an alias
of A?

Exercise 5.1.2: Write the following queries, based on our running movie
database example

Movie(title, year, length, inColor, studioName, producerC#)
StarsIn(movieTitle, movieYear, starName)

MovieStar (name, address, gender, birthdate’
MovieExec(name, address, cert#, netWorth)

Studio(name, address, presC#)

in SQL.

* a) Find the address of MGM studios.
b) Find Sandra Bullock’s birthdate.

* ¢) Find all the stars that appeared either in a movie mg:
with “Love” in the title.

d) Find all executives worth at least $10,000,000.

' é"@i}@ a\x!lgi& S /O
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e) Find all the stars who either are male or live in
a part of their address).

Exercise 5.1.3: Write the following queries in SQL. T4ty
schema of Exercise 4.1.1:

o
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Product (maker, model, type)

PC(model, speed, ram, hd, cd, price)
Laptop(model, speed, ram, hd, screen, price)
Printer(model, color, type, price)

Show the result of your queries using the data from Exercise 4.1.1.

* a) Find the model number, speed, and hard-disk size for all PC’s whose price
is under $1600.

* b) Do the same as {(a), but rename the epeed column mez shertz and the hd
column gigabytes.

¢) Find the manufacturers of printers.

d) Find the model number, memory size, and screen size for laptops costing
more than $2000.

- * g) Find all the tuples in the Printer relation for color printers. Remember
that color is a boolean-valued attribute.

f) Find the model number, speed, and hard-disk size for those PC's that
have either a 6x or 8x CD and a price less than $2000. You may regard
the cd attribute as having a string type.

Exercise 5.1.4: Write the following queries based on the database schema of
Exercise 4.1.3:

Classes(class, type, country, numGuns, bore, displacement)
Ships(name, class, launched)

Battles(name, date)

Qutcomes(ship, battle, result)

and show the result of your query on the data of Exercise 4.1.3.

b) Find the names of all ships launched prior to 19
column shipName.

¢) Find the names of ships sunk in battle and thsy:
they were sunk.

the battle in wh((@
¢

Fr: R heir class. PLEASE
ORDER FULL

o N L%%LQ&\LMS
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d) Find all ships that have the same name

e} Find the names of all ships that begin i

the
! f) Find the names of all ships whose name s \s%
(e.g., King George V).
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5.2 Queries Involving More than One Relation

Much of the power of relational algebra comes from its ability to combine two
or more relations through joins, products, unions, intersections, and differences.
We can use any of these five operations in SQL. The set-theoretic operations —
union, intersection, and difference — appear directly in SQL, as we shall learn
in Section 5.2.5. First, we shall learn how the select-from-where statement of
SQL aliows us to use products and joins.

5.2,.1 Products and Joins in SQL

SQL has a simple way to couple relations in one query: list each relation in the
FROM clause. Then, the SELECT and WHERE clauses can refer to the attributes of
any of the relations in the FROM clause.

Example 5.10: Suppose we want to know the name of the producer of Star
Wars. To answer this question we need the following two relations from our
running example:

Movie(title, year, length, inColor, studioName, producerC#)
MovieExec (name, address, cert#, netWorth)

The producer certificate number is given in the Movie relation, so we can do a
simple query on Movie to get this number. We could then do a second query
on the relation MovieBxec to find the name of the person with that certificate
number.

However, we can phrase both these steps as one query about the pair of
relations Movie and MovieExec as follows:

SELECT name
FROM Movie, MovieExec
WHERE title = ’Star Wars’ AND producerC# = cert#

This query asks us to consider all pairs of tuples, one from Movie and the other
from MovieExec. The conditions on this pair are stated in the WHERE clause:

1. The title attribute of the tuple from Movie must have_val
Wars’.

2. The producerCi# attribute of the Movie tuple must Je
number as the cert# attribute in the MovieExec tuplll¥ Tean
tuples must refer to the same producer.

the name attribute of the tuple from MovieExec as % of tmﬁﬁ ﬁt?u LL
data is what we expect, the only time both conditiozifwill b
tuple from Movie is for Star Wars, and the tuple from 4 Exec‘;ﬁ

Lucas. Then and orly then will the title be correct ang e¢ tlﬁcate num %ers
agree. Thus, George Lucas should be the only value p

, these tvf)? S/O
¢

& /nt. dr\"e(
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5.2.2 Disambiguating Attributes

Sometimes we ask a query involving several relations, and among these relations
are two or more attributes with the same name. If so, we need a way to indicate
which of these attributes is meant by a use of their shared name. SQL solves
this problem by allowing us to place a relation name and a dot in front of an
attribute. Thus R.A refers to the attribute A of relation K.

Example 5.11: The two relations

MovieStar{name, address, gender, birthdate)
MovieExec(name, address, cert#, netWorth)

each have attributes name and address. Suppose we wish to find pairs consist-
ing of a star and an executive with the same address. The following query does
the job.

SELECT MovieStar.name, MovieExec.name
FROM MovieStar, MovieExec
WHERE MovieStar.address = MovieExec.address

In this query, we look for a pair of tuples, one from MovieStar and the other
from MovieExec, such that their address components agree. The WHERE clause
enforces the requirement that the address attributes from each of the two
tuples agree. Then, for each matching pair of tuples, we extract the two name
attributes, first from the MovieStar tuple and then from the other. The result
would be a set of pairs such as

MouvieStar.name | MovieEzec.name

Jane Fonda Ted Turner

The relation, followed by a dot, is permissible, ever§iigjiziations
is no ambiguity. For instance, we are free to writgp#il? q@@f

SELECT MovieExec.name

FROM Movie, MovieExec

WHERE Movie.title = ’Star Wars’
AND Movie.producerC# = Movie

PLEASE
ORDER FULL
L5 VERSION &

Goont. of any subset, of they

Alternatively, we may use relation names and
attributes in this query.
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Tuple Variables and Relation Names

Technically, references to attributes in SELECT and WHERE clauses are al-
ways to a tuple variable. However, if a relation appears only once in the
FROM clause, then we can use the relation name as its own tuple variable.
Thus, we can see a relation name R in the FROM clause as shorthand for
RAS K.

5.2.3 Tuple Variables

Disambiguating attributes by prefixing the relation is successful as long as the
query involves combining several different relations. However, sometimes we
need to ask a query that involves two or more tuples from the same relation.
We may list relation R as many times as we need to in the FROM clause, but
we need a way to refer to each occurrence of R. SQL allows us to define, for
each occurrence of R in the FROM clause, an “alias” which we shall refer to as
a tuple variable. Each use of R in the FROM clause is followed by the (optional)
keyword AS and the name of the tuple variable. '

In the SELECT and WHERE clauses, we can disambiguate attributes of R by
preceding them by the appropriate tuple variable and a dot. Thus, the tuple
variable serves as another name for relation R and can be used in its place when
we wish.

Example 5.12: While Example 5.11 asked for a star and an executive sharing
an address, we might similarly want to know about two stars who share an
address. The query is essentially the same, but now we must think of two tuples
chosen from relation MovieStar, rather than tuples from each of MovieStar and
MovieExec. Using tuple variables as aliases for two uses of MovieStar, we can
write the query as

SELECT Starl.name, Star2.name

FROM MovieStar AS Starl, MovieStar AS Star?2

WHERE Starl.address = Star2.address
AND Starl.name < Star2.name

o VER

We see in the FROM clause the declaration of two tuple A& ia@Staﬂ and S/ O
Star2, each an alias for relation MovieStar. The tuff Sles are used in ¢
the SELECT clause to refer to the name components offithe two tugizy. ElRGE
aliases are also used in the WHERE clause to say that Q{z¥two MovieStar tuples

they represent have the same value in their address gis pone@RDE FULL
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tuples were equal, of course, and then produce each pair of identical star names.3
The second condition also forces us to produce each pair of stars with a com-
mon address only once, in alphabetical order. If we used <> (not-equal) as the
comparison operator, then we would produce pairs of married stars twice, like

‘Starl.neme | StarZnaeme

Alec Baldwin | Kim Basinger
Kim Basinger | Alec Baldwin

5.2.4 Interpreting Multirelation Queries

There are several ways to define the meaning of the select-from-where expres-
sions that we have just covered. All are equivalent, in the sense that they each
give the same answer for each query applied to the same relation instances. We
shall consider each in turn.

Nested Loops

The semantics that we have implicitly used in examples so far is that of tuple
variables. Recall that an alias of a relation name is a tuple variable that ranges
over all tuples of the corresponding relation. A relation name that is not aliased
is also a tuple variable ranging over the relation itself. If there are several tuple
variables, we may imagine nested loops, one for each tuple variable, in which
the variables each range over the tuples of their respective relations. For each
assignment of tuples to the tuple variables, we decide whether the WHERE clause
is true. If so, we produce a tuple consisting of the values of the terms following
SELECT; note that each term is given a value by the current assignment of tuples
to tuple variables. The query-answering algorithm is suggested by Fig. 5.2.

Parallel Assignment

. r
or in parallel all possible assignments of tupleggh{ey a.pproprla.te relau@

to the tuple variables. For each such assignn Ew§e§Eathe

use

contributes a tuple to the answer; that tuple is{o f}E’RR aiﬁ'laneE
“"VERSION &

3The same problem would occur in Example 5.11 gildhd same individual be both a

be unequal.



258 CHAPTER 5. THE DATABASE LANGUAGE SQL

LET the tuple variables in the from clause range over
relations R1, R2,..., Rn; i
FOR each tuple tl in relation R1 DO
FOR each tuple t2 in relation R2 DO

FOR each tuple tn in relation Rn DO
IF the where clause is satisfied whean the values
from t1, t2,..., tn are substituted for all
attribute references THEN
evaluate the attributes of the select clause
according to ti, t2,..., tn and produce the
tuple of values that results.

Figure 5.2: Answering a simple SQL query

Datalog Interpretation and SQL Interpretation

The reader should notice the similarity between the second approach to
interpreting Datalog rules that we described in Section 4.2.4 and the sec-
ond interpretation we gave for SQL select-from-where statements. For
Datalog, we spoke of considering all possible assignments of tuples from
the appropriate relation to relational subgoals of the rule body. In SQL,
we consider all possible assignments of tuples to the tuple variables. In
both cases, arithmetic subgoals (parts of the WHERE clause in SQL) restrict
these assignments of tuples, and the tuples of the result are obtained by
evaluating the head of the rule (SELECT clause in SQL).

Conversion to Relational Algebra

A third approach is to relate the SQL query to relational algebra. };
the tuple variables in the FROM clause and take their Cartesizt

Having created the product, we apply a selectionQierator to it Eylig\% §

attribute reference in the WHERE clause is replaced by@§l: azribut %( he prod-
oo CTC% i Bl@blﬂ@N

attributes for a final projection operation. The attribif::gor ;%e projection op- )

eration are determined as for the selection operation; we /{3 ca%acl} attribute <

“ing-driN®
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An Unintuitive Consequence of SQL semantics

Suppose R, S, and T are unary (one-component) relations, each having
attribute A alone, and we wish to find those elements that are in B and
also in either S or T (or both). That is, we want to compute R N (S U T').
We might expect the following SQL query would do the job.

SELECT R.A
FROM R, 5, T |
WHERE R.A = S.A OR R.A = T.A

However, consider the situation in which T is empty. Since then R.A =
T.A can never be satisfied, we might expect the query to produce exactly
R N §, based on our intuition about how “OR” operates. Yet whichever of
the three equivalent definitions of Section 5.2.4 one prefers, we find that the
result is empty, regardless of how many elements R and S have in common.
If we use the nested-loop semantics of Figure 5.2, then we see that the loop
for tuple variable T iterates 0 times, since there are no tuples in the relation
for the tuple variable to range over. Thus, the if-statement inside the for-
loops never executes, and nothing can be produced. Similarly, if we look
for assignments of tuples to the tuple variables, there is no way to assign
a tuple to T, so no assignments exist. Finally, if we use the Cartesian-
product approach, we start with R x § x T, which is empty because T is
empty.

reference in the SELECT clause by the corresponding attribute of the product.4

Example 5.13: Let us convert the query of Example 5.12 to relational algebra.
First, there are two tuple variables in the FROM clause, both referring to relation
MovieStar. Thus, our expression begins

MovieStar X MovieStar

The resulting relation has eight attributes, the first fouldhecisXayailintiiat-
tributes name, address, gender, and birthdate fro; TSt eére 240
MovieStar, and the second four correspond to t@bw o1
other copy of MovieStar. We could create name:Rior &ieSe attributes witi
dot and the aliasing tuple variable — e.g., St:{§¥gefg:r — but for succinct
ness, let us invent new symbols and call the atjsbutes simLﬁbLfE, A;)s E, Asg.
Thus, A; corresponds to Stari.name, A5 coliggponds to Star2.name, and so

on. ORDER FULL

4Technically, relational algebra does not allow arrdginesf com T G @ CT
clause, while SQL does {as in Example 5.4). However, ti ewﬁmiom&t ator s
of relational algebra should be obvious, and it is only [ of tradition that projectiorb
is defined in the more limited way.

ring.arin®y
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Under this naming strategy for attributes, the selection condition obtained
from the WHERE clause is A; = Ag and A; < As. The projection list is A, As.
Thus,

TA1.As (""==As AND A, <As (PM(41,42,4:,4,) (MOVieStar) x

PN(A,,AG,A,,AS)(HOVieStar)))

renders the entire query in relational algebra. O

5.2.5 Union, Intersection, and Difference of Queries

Sometimes we wish to combine relations using the set operations of relational
algebra: union, intersection, and difference. SQL provides corresponding opera-
tors that apply to the resuits of queries, provided those queries produce relations
with the same set of attributes. The keywords used are UNION, INTERSECT, and
EXCEPT for U, N, and —, respectively. Words like UNION are used between two
queries, and those queries must be parenthesized.

Example 5.14: Suppose we wanted the names and addresses of all female
movie stars who are also movie executives with a net worth over $10,000,000.
Using the following two relations:

MovieStar (name, address, gender, birthdate)
MovieExec (name, address, cert#, netWorth)

we can write the query in Fig. 5.3. Lines (1) through (3) produce the set
of female movie stars in a relation whose schema is the attributes name and
address.

Similarly, lines {5) through (7) produce the set of “rich” executives, thoseé
with net worth over $10,000,000. This query also yields a relation whose schema
has the attributes name and address only. Since the two schemas are the same,
we can intersect them, and we do so with the operator of line (4). O

1) (SELECT name, address

2) FROM MovieStar

3) WHERE gender = ’'F’)

4) INTERSECT

5) (SELECT name, address

6) FROM MovieExec

7) WHERE netWorth > 10000000);

o VER
™ o

PLEASE
ORDER FULL

. /[ERSION
oo §

Figure 5.3: Intersecting female movie stars wit

U g
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Readable SQL Queries

Generally, one writes SQL queries so that each important keyword like
FROX or WHERE starts a new line. This style offers the reader visual clues
to the structure of the query. However, when a query or subquery is short,
we chall sometimes write it out on a single line, as we did in Example 5.15.
That style, keeping a complete query compact, also offers good readability.

Example 5.15: In a similar vein, we could take the difference of two sets of
persons, each selected from a relation. The query

(SELECT name, address FROM MovieStar)
EXCEPT
(SELECT name, address FROM MovieExec);

gives the names and addresses of movie stars who are not also movie executives
regardless of gender or net worth. [

In the two examples above, the attributes of the relations whose intersection
or difference we took were conveniently the same. However, if necessary to get
a common set of attributes, we can rename attributes as in Example 5.3.

Example 5.16: Suppose we wanted all the titles and years of movies that
appeared in either the Movie or StarsIn relation of our running example:

Movie(title, year, length, inColor, studioName, producerC#)
StarsIn(movieTitle, movieYear, starName)
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