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PREFACE

With the maturity and availability of hardware description language (HDL) and synthesis
software, using them to design custom digital hardware has become a mainstream practice.
Because of the resemblance of an HDL code to a traditional program (such as a C program),
some users believe incorrectly that designing hardware in HDL involves simply writing syn-
tactically correct software code, and assume that the synthesis software can automatically
derive the physical hardware. Unfortunately, synthesis software can only perform trans-
formation and local optimization, and cannot convert a poor description into an efficient
implementation. Without an understanding of the hardware architecture, the HDL code
frequently leads to unnecessarily complex hardware, or may not even be synthesizable.

This book provides in-depth coverage on the systematical development and synthesis
of efficient, portable and scalable register-transfer-level (RT-level) digital circuits using the
VHDL hardware description language. RT-level design uses intermediate-sized compo-
nents, such as adders, comparators, multiplexers and registers, to construct a digital system.
It is the level that is most suitable and effective for today’s synthesis software.

RT-level design and VHDL are two somewhat independent subjects. VHDL code is
simply one of the methods to describe a hardware design. The same design can also be
described by a schematic or code in other HDLs. VHDL and synthesis software will not
lead automatically to a better or worse design. However, they can shield designers from
low-level details and allow them to explore and research better architectures.

The emphasis of the book is on hardware rather than language. Instead of treating
synthesis software as a mysterious black box and listing “recipe-like” codes, we explain
the relationship between the VHDL constructs and the underlying hardware structure and
illustrate how to explore the design space and develop codes that can be synthesized into
efficient cell-level implementation. The discussion is independent of technology and can

Xix
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be applied to both ASIC and FPGA devices. The VHDL codes listed in the book largely
follow the IEEE 1076.6 RTL synthesis standard and can be accepted by most synthesis
software. Most codes can be synthesized without modification by the free “demo-version”
synthesis software provided by FPGA vendors.

Scope The book focuses primarily on the design and synthesis of RT-level circuits. A
subset of VHDL is used to describe the design. The book is not intended to be a com-
prehensive ASIC or FPGA book. All other issues, such as device architecture, placement
and routing, simulation and testing, are discussed exclusively from the context of RT-level
design.

Unique features The book is a hardware design text. VHDL and synthesis software are
used as tools to realize the intended design. Several unique features distinguish the book:

e Suggest a coding style that shows a clear relationship between VHDL constructs and
hardware components.

o Use easy-to-understand conceptual diagrams, rather than cell-level netlists, to explain
the realization of VHDL codes.

¢ Emphasize the reuse aspect of the codes throughout the book.

¢ Consider RT-level design as an integral part of the overall development process and
introduce good design practices and guidelines to ensure that an RT-level description
can accommodate future simulation, verification and testing needs.

o Make the design “technology neutral” so that the developed VHDL code can be
applied to both ASIC and FPGA devices.

¢ Follow the IEEE 1076.6 RTL synthesis standard to make the codes independent of
synthesis software.

¢ Provide a set of synthesis guidelines at the end of each chapter.

e Contain a large number of non-trivial, practical examples to illustrate and reinforce
the design concepts, procedures and techniques.

o Include two chapters on realizing sequential algorithms in hardware (known as “reg-
ister transfer methodology™) and on designing control path and data path.

¢ Include two chapters on the scalable and parameterized designs and coding.

¢ Include a chapter on the synchronization and interface between multiple clock do-
mains.

Book organization The book is basically divided into three major parts. The first part,
Chapters 1 to 6, provides a comprehensive overview of VHDL and the synthesis process, and
examines the hardware implementation of basic VHDL language constructs. The second
part, Chapters 7 to 12, covers the core of the RT-level design, including combinational
circuits, “regular” sequential circuits, finite state machine and circuits designed by register
transfer methodology. The third part, Chapters 13 to 16, covers the system issues, including
the hierarchy, parameterized and scalable design, and interface between clock domains.
More detailed descriptions of the chapters follow.

e Chapter 1 presents a “big picture” of digital system design, including an overview on
device technologies, system representation, development flow and software tools.

e Chapter 2 provides an overview on the design, usage and capability of a hardware
description language. A series of simple codes is used to introduce the basic modeling
concepts of VHDL.

o Chapter 3 provides an overview of the basic language constructs of VHDL, including
lexical elements, objects, data types and operators. Because VHDL is a strongly
typed language, the data types and operators are discussed in more detail.
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o Chapter 4 covers the syntax, usage and implementation of concurrent signal assign-
ment statements of VHDL. It shows how to realize these constructs by multiplexing
and priority routing networks.

o Chapter 5 examines the syntax, usage and implementation of sequential statements of
VHDL. It shows the realization of the sequential statements and discusses the caveats
of using these statements.

o Chapter 6 explains the realization of VHDL operators and data types, provides an
in-depth overview on the synthesis process and discusses the timing issue involved
in synthesis.

o Chapter 7 covers the construction and VHDL description of more sophisticated com-
binational circuits. Examples show how to transform conceptual ideas into hardware,
and illustrate resource-sharing and circuit-shaping techniques to reduce circuit size
and increase performance.

o Chapter 8 introduces the synchronous design methodology and the construction and
coding of synchronous sequential circuits. Basic “regular” sequential circuits, such
as counters and shift registers, in which state transitions exhibit a regular pattern, are
examined.

e Chapter 9 explores more sophisticated regular sequential circuits. The design exam-
ples show the implementation of a variety of counters, the use of registers as fast,
temporary storage, and the construction of pipelined combinational circuits.

e Chapter 10 covers finite state machine (FSM), which is a sequential circuit with
“random” transition patterns. The representation, timing and implementation issues
of FSMs are studied with an emphasis on its use as the control circuit for a large,
complex system.

o Chapter 11 introduces the register transfer methodology, which describes system
operation by a sequence of data transfers and manipulations among registers, and
demonstrates the construction of the data path (a regular sequential circuit) and the
control path (an FSM) used in this methodology.

o Chapter 12 uses a variety of design examples to illustrate how the register transfer
methodology can be used in various types of problems and to highlight the design
procedure and relevant issues.

e Chapter 13 features the design hierarchy, in which a system is gradually divided into
smaller parts. Mechanisms and language constructs of VHDL used to specify and
configure a hierarchy are examined.

o Chapter 14 introduces parameterized design, in which the width and functionality of
a circuit are specified by explicit parameters. Simple examples illustrate the mecha-
nisms used to pass and infer parameters and the language constructs used to describe
the replicated structures.

e Chapter 15 provides more sophisticated parameterized design examples. The main
focus is on the derivation of efficient parameterized RT-level modules that can be
used as building blocks of larger systems.

o Chapter 16 covers the effect of a non-ideal clock signal and discusses the synchro-
nization of an asynchronous signal and the interface between two independent clock
domains.

Audience The intended audience for the book is students in advanced digital system
design course and practicing engineers who wish to sharpen their design skills or to learn
the effective use of today’s synthesis software. Readers need to have basic knowledge of
digital systems. The material is normally covered in an introductory digital design course,
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which is a standard part in all electrical engineering and computer engineering curricula.
No prior experience on HDL or synthesis is needed.

Verilog is another popular HDL. Since the book emphasizes hardware and methodology
rather than language constructs, readers with prior Verilog experience can easily follow the
discussion and learn VHDL along the way. Most VHDL codes can easily be translated into
the Verilog language.

Web site Anaccompanying web site (http://academic.csuohio.edu/chu_p/rtl)
provides additional information, including the following materials:

e Errata,

¢ Summary of coding guidelines.

e Code listing.

o Links to demo-version synthesis software.

e Links to some referenced materials.

o Frequently asked questions (FAQ) on RTL synthesis.

o Lecture slides for instructors.

Errata The book is “self-prepared,” which means the author has prepared all materials,
including the illustrations, tables, code listing, indexing and formatting, by himself. As the
errors are always bound to happen, the accompanying web site provides an updated errata
sheet and a place to report errors.

P.P.CHU

Cleveland, Ohio
January 2006
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CHAPTER 1

INTRODUCTION TO DIGITAL SYSTEM
DESIGN

Developing and producing a digital system is a complicated process and involves many
tasks. The design and synthesis of a register transfer level circuit, which is the focus of
this book, is only one of the tasks. In this chapter, we present an overview of device
technologies, system representation, development flow and software tools. This helps us to
better understand the role of the design and synthesis task in the overall development and
production process.

1.1 INTRODUCTION

Digital hardware has experienced drastic expansion and improvement in the past 40 years.
Since its introduction, the number of transistors in a single chip has grown exponentially, and
a silicon chip now routinely contains hundreds of thousands or even hundreds of millions
of transistors. In the past, the major applications of digital hardware were computational
systems. However, as the chip became smaller, faster, cheaper and more capable, many
electronic, control, communication and even mechanical systems have been “digitized”
internally, using digital circuits to store, process and transmit information.

As applications become larger and more complex, the task of designing digital circuits
becomes more difficult. The best way to handle the complexity is to view the circuit at
a more abstract level and utilize software tools to derive the low-level implementation.
This approach shields us from the tedious details and allows us to concentrate and explore
high-level design alternatives. Although software tools can automate certain tasks, they
are capable of performing only limited transformation and optimization. They cannot, and

RTL Hardware Design Using VHDL: Coding for Efficiency, Portability, and Scalability. By Pong P. Chu 1
Copyright © 2006 John Wiley & Sons, Inc.



2 INTRODUCTION TO DIGITAL SYSTEM DESIGN

will not, do the design or convert a poor design to a good one. The ultimate efficiency
still comes from human ingenuity and experience. The goal of this book is to show how
to systematically develop an efficient, portable design description that is both abstract, yet
detailed enough for effective software synthesis.

Developing and producing a digital circuit is a complicated protess, and the design
and synthesis are only two of the tasks. We should be aware of the “big picture” so that
the design and synthesis can be efficiently integrated into the overall development and
production process. The following sections provide an overview of device technologies,
system representation, abstraction, development flow, and the use and limitations of software
tools.

1.2 DEVICE TECHNOLOGIES

If we want to build a custom digital system, there are varieties of device technologies to
choose, from off-the-shelf simple field-programmable components to full-custom devices
that tailor the application down to the transistor level. There is no single best technology,
and we have to consider the trade-offs among various factors, including chip area, speed,
power and cost.

1.2.1 Fabrication of anIC

To better understand the differences between the device technologies, it is helpful to have
a basic idea of the fabrication process of an integrated circuit (IC). An IC is made from
layers of doped silicon, polysilicon, metal and silicon dioxide, built on top of one another,
on a thin silicon wafer. Some of these layers form transistors, and others form planes of
connection wires.

The basic step in IC fabrication is to construct a layer with a customized pattern, a process
known as lithography. The pattern is defined by a mask. Today’s IC device technology
typically consists of 10 to 15 layers, and thus the lithography process has to be repeated 10
to 15 times during the fabrication of an IC, each time with a unique mask.

One important aspect of a device technology is the silicon area used by a circuit. It is
expressed by the length of a smallest transistor that can be fabricated, usually measured in
microns (a millionth of a meter). As the device fabrication process improved, the transistor
size continued to shrink and now approaches a tenth of a micron.

1.2.2 Classification of device technologies

There is an array of device technologies that can be used to construct a custom digital
circuit. One major characteristic of a technology is how the customization is done. In
certain technologies, all the layers of a device are predetermined, and thus the device can
be prefabricated and manufactured as a standard off-the-shelf part. The customization of
a circuit can be performed “in the field,” normally by downloading a connection pattern
to the device’s internal memory or by “burning the internal silicon fuses.” On the other
hand, some device technologies need one or more layers to be customized for a particular
application. The customization involves the creation of tailored masks and fabrication of
the patterned layers. This process is expensive and complex and can only be done in a
fabrication plant (known as a foundry or a fab). Thus, whether a device needed to be
fabricated in a fab is the most important characteristic of a technology. In this book, we use
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the term application-specific IC (ASIC) to represent device technologies that require a fab
to do customization.

With an understanding of the difference between ASIC and non-ASIC, we can divide
the device technologies further into the following types:

Full-custom ASIC

Standard-cell ASIC

Gate array ASIC

Complex field-programmable logic device

Simple field-programmable logic device

Off-the-shelf small- and medium-scaled IC (SSI/MSI) components

Full-custom ASIC In full-custom ASIC technology, all aspects of a digital circuit are
tailored for one particular application. We have complete control of the circuit and can even
craft the layout of a transistor to meet special area or performance needs. The resulting
circuit is fully optimized and has the best possible performance. Unfortunately, designing
a circuit at the transistor level is extremely complex and involved, and is only feasible for
a small circuit. It is not practical to use this approach to design a complete system, which
now may contain tens and even hundreds of millions of transistors. The major application
of full-custom ASIC technology is to design the basic logic components that can be used as
building blocks of a larger system. Another application is to design special-purpose ‘“bit-
slice” typed circuits, such as a 1-bit memory or 1-bit adder. These circuits have a regular
structure and are constructed through a cascade of identical slices. To obtain optimal
performance, full-custom ASIC technology is frequently used to design a single slice. The
slice is then replicated a number of times to form a complete circuit.

The layouts of a full-custom ASIC chip are tailored to a particular application. All layers
are different and a mask is required for every layer. During fabrication, all layers have to
be custom constructed, and nothing can be done in advance.

Standard-cell ASIC In standard-cell ASIC (also simply known as standard-cell) tech-
nology, a circuit is constructed by using a set of predefined logic components, known as
standard cells. These cells are predesigned and their layouts are validated and tested.
Standard-cell ASIC technology allows us to work at the gate level rather than at the tran-
sistor level and thus greatly simplifies the design process. The device manufacturer usually
provides a library of standard cells as the basic building blocks. The library normally con-
sists of basic logic gates, simple combinational components, such as an and-or-inverter,
2-to-1 multiplexer and 1-bit full adder, and basic memory elements, such as a D-type latch
and D-type flip-flop. Some libraries may also contain more sophisticated function blocks,
such as an adder, barrel shifter and random access memory (RAM).

In standard-cell technology, a circuit is made of cells. The types of cells and the intercon-
nection depend on the individual application. Whereas the layout of a cell is predetermined,
the layout of the complete circuit is unique for a particular application and nothing can be
constructed in advance. Thus, fabrication of a standard-cell chip is identical to that of a
full-custom ASIC chip, and all layers have to be custom constructed.

Gate array ASIC In gate array ASIC (also simply known as gate array) technology, a
circuit is built from an array of predefined cells. Unlike standard-cell technology, a gate
array chip consists of only one type of cell, known as a base cell. The base cell is fairly
simple, resembling a logic gate. Base cells are prearranged and placed in fixed positions,
aligned as a one- or two-dimensional array. Since the location and type are predetermined,
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the base cells can be prefabricated. The customization of a circuit is done by specifying the
interconnect between these cells. A gate array vendor also provides a library of predesigned
components, known as macro cells, which are built from base cells. The macro cells have
a predefined interconnect and provide the designer with more sophisticated logic blocks.

Compared to standard-cell technology, the fabrication of a gate array device is much
simpler, due to its fixed array structure. Since the array is common to all applications, the
cell (and transistors) can be fabricated in advance. During construction of a chip, only the
masks of metal layers, which specify the interconnect, are unique for an application and
therefore must be customized. This reduces the number of custom layers from 10 to 15
layers to 3 to 5 layers and simplifies the fabrication process significantly.

Complex field-programmable device We now examine several non-ASIC technolo-
gies. The most versatile non-ASIC technology is the complex field-programmable device.
In this technology, a device consists of an array of generic logic cells and general intercon-
nect structure. Although the logic cells and interconnect structure are prefabricated, both
are programmable. The programmability is obtained by utilizing semiconductor “fuses” or
“switches,” which can be set as open- or short-circuit. The customization is done by config-
uring the device with a specific fuse pattern. This process can be accomplished by a simple,
inexpensive device programmer, normally constructed as an add-on card or an adaptor cable
of a PC. Since the customization is done “in the field” rather than “in a fab,” this technology
is known as field programmable. (In contrast, ASIC technologies are “programmed” via
one or more tailored masks and thus are mask programmable.)

The basic structures of gate array ASICs and complex field-programmable devices are
somewhat similar. However, the interconnect structure of field-programmable devices is
predetermined and thus imposes more constraints on signal routing. To reduce the amount of
connection, more functionality is built into the logic cells of a field-programmable device,
making a logic cell much more complex than a base cell or a standard cell of ASIC.
According to the complexity and structure of logic cells, complex field-programmable
devices can be divided roughly into two broad categories: complex programmable logic
device (CPLD) and field programmable gate array (FPGA).

The logic cell of a CPLD device is more sophisticated, normally consisting of a D-type
flip-flop and a PAL-like unit with configurable product terms. The interconnect structure of
a CPLD device tends to be more centralized, with few groups of concentrated routing lines.
On the other hand, the logic cell of an FPGA device is usually smaller, typically including a
D-type flip-flop and a small look-up table or a set of multiplexers. The interconnect structure
between the cells tends to be distributed and more flexible. Because of its distributive nature,
FPGA is better suited for large, high-capacity complex field-programmable devices,

Simple field-programmable device Simple field-programmable logic devices, as
the name indicates, are programmable devices with simpler internal structure. Historically,
these devices are generically called programmable logic devices (PLDs). We add the word
simple to distinguish them from FPGA and CPLD devices. Simple field-programmable
devices are normally constructed as a two-level array, with an and plane and an or plane.
The interconnect of one or both planes can be programmed to perform a logic function
expressed in sum-of-product format. The devices include programmable read only memory
(PROM), in which the or plane can be programmed; programmable array logic (PAL), in
which the and plane can be programmed; and programmable logic array (PLA), in which
both planes can be programmed.

Unlike FPGA and CPLD devices, simple field-programmable logic devices do not have
a general interconnect structure, and thus their functionality is severely limited. They are
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gradually being phased out. ROM, PAL and PLA are now used as internal components of
an ASIC or CPLD device rather than as an individual chip.

Off-the-shelf SSI/MSI components Before the emergence of field-programmable
devices, the only alternative to ASIC was to utilize the prefabricated off-the-shelf SSI/MSI
components. These components are small parts with fixed, limited functionality, One ex-
ample is the 7400 series transistor transistor logic (TTL) family, which contains more than
100 parts, ranging from simple nand gates to a 4-bit arithmetic unit. A custom system can
be designed by a bottom-up approach, building the circuit gradually from the small existing
parts. A tailored printed circuit board is needed for each application. The major disadvan-
tage of this approach is that the most resources (power, board area and manufacturing cost)
are consumed by the “package” but not by the “silicon,” which performs the actual compu-
tation. Furthermore, none of today’s synthesis software can utilize off-the-shelf SSI/MSI
components, and thus automation is virtually impossible. As the programmable devices
become more capable and less expensive, designing a large custom circuit using SSI/MSI
components is no longer a feasible option and should not be considered.

Summary We have reviewed six device technologies used to implement custom digi-
tal systems. Among them, off-the-shelf SSI/MSI components and simple programmable
devices are gradually being phased out and full-custom ASIC is feasible only for a small,
specialized circuit. Thus, for a large digital system, there are only three viable device
technologies: standard-cell ASIC, gate array ASIC and CPLD/FPGA. In the following
subsection, we examine the trade-offs among these technologies.

1.2.3 Comparison of technologies

Once deciding to develop custom hardware for an application, we need to choose from the
three device technologies. The major criteria for selection are area, speed, power and cost.
The first three involve the technical aspects of a circuit. Cost concerns the expenditure
associated with the design and production of the circuit as well as the potential lost profits.
Each technology has its strengths and weaknesses, and the “best” technology depends on
the needs of a particular application.

Area Chip area (or size) corresponds to the required silicon real estate to implement a
particular application. A smaller chip needs fewer resources, simplifies the testing and
provides better yield. The chip size depends on the architecture of the circuit and the device
technology. The same function can frequently be realized by different architectures, with
different areas and speeds. For example, an addition circuit can be realized by a ripple
adder (simple but slow), a parallel adder (complex but fast) or a carry-look-ahead adder
(somewhere in-between). Once the architecture of a circuit is determined, the area depends
on the device technology. In standard-cell technology, the cells and interconnects are
customized to this particular application and no silicon is wasted in irrelevant functionality.
Thus, the resulting chip is fully optimized and the area is minimal. In gate array technology,
the circuit has to be constructed by predefined, prearranged base cells. Since functionality
and the placement of the base cells are not tailored to a specific application, silicon use is
not optimal. The area of the resulting circuit is normally larger than that of a standard-cell
chip. In FPGA technology, a significant portion of the silicon is dedicated to achieving
programmability, which introduces a large overhead. Furthermore, the functionalities of
logic cells and the interconnect are fixed in advance and it is unlikely that an application
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can be an exact match for the predetermined structure. A certain percentage of the capacity
will be left unutilized. Because of the overhead and relatively low utilization, the area of
the resuiting FPGA chip is much larger than that of an ASIC chip.

Due to the drastic difference between the device fabrication process and the diversity
of applications, it is difficulty to determine the exact silicon areas in three technologies.
However, it is important to recognize that the difference between standard-cell and gate
array technologies is much smaller than that of FPGA and ASIC. In general, a gate array
chip may need 20% to 100% larger silicon area than that of a standard-cell chip, but an
FPGA chip frequently requires two to five times the area of an ASIC chip.

Speed The speed of a digital circuit corresponds to the time required to perform a func-
tion, frequently represented by the worst-case propagation delay between input and output
signals. A faster circuit is always desirable and is essential for computation-intensive ap-
plications. At the architecture level, faster operation can be achieved by using a more
sophisticated design, which requires a larger area. However, if the identical architecture
is used, a chip with a larger area is normally slower, due to its large parasitic capacitance.
Since a standard-cell chip has tailored interconnect and utilizes a minimal amount of silicon
area, it has the smallest propagation delay and best speed. On the other hand, an FPGA chip
has the worst propagation delay. In addition to its large size, the programmable interconnect
has a relatively large resistance and capacitance, which introduces even more delay. As
with chip area, the speed difference between standard-cell and gate array technologies is
much less significant than that between FPGA and ASIC.

Power Power concerns the energy consumed by a part. In certain applications, such as
battery-operated handheld equipment, a low power circuit is of primary importance. At the
architecture level, a system can be redesigned to reduce the use of power. If the identical
architecture is used, a smaller chip, which consists of fewer transistors, usually consumes
less power. Thus, a standard-cell chip consumes the least amount of power and an FPGA
chip uses the most power.

Standard-cell technology is clearly the best choice from a technical perspective. A chip
constructed using standard-cell ASIC is small and fast, and consumes less power. This
should not come as a surprise since the chip is highly optimized and wastes no resources
on unnecessary overhead. The price associated with customization is the complexity. De-
signing and fabricating a standard-cell chip is more involved and time consuming than for
the other two technologies.

Cost The design of a custom digital circuit is seldom a goal in itself. It is an economic
activity, and the cost is an important, if not the deciding, factor. We consider three major
expenses: production cost, development cost, and time-to-market cost.

Production cost is the expense to produce a single unit. It includes two segments: non-
recurring engineering (NRE) cost and part cost. NRE cost (C,,r.) is the expense that occurs
only once (and thus is not recurring) during the production process, regardless of the number
of units sold. Thus, it is on a “per design” basis. Part cost (Cper_part), On the other hand,
is on a “per unit” basis, covering the expense required for each individual unit, such as the
expense of materials, assembly and manufacturing. Note that the NRE cost is shared by all
the units and that the share of each part becomes smaller as the volume increases. The per
unit production cost (Cper_unit) can be expressed as

Cnre

C er_unit = C t + e a4
per-unt PET-PATY " units produced
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Figure 1.1 Comparison of per unit cost.

The NRE cost of a custom ASIC chip includes the creation of the tailored masks, the
development of tests and the fabrication of initial sample chips. The charge is high and
can range from several hundred thousand dollars to several million dollars or more. A
major factor in the NRE cost is the number of custom masks needed. A standard-cell chip
may need 15 or more tailored masks and thus is much more expensive than a gate array
chip, which needs only three to five tailored metal layers. On the contrary, an FPGA-based
design needs only an inexpensive device programmer to do customization. The NRE cost
of creating a mask is negligible and can be considered as zero.

The part cost of an ASIC chip is smaller than that of an FPGA chip since the ASIC chip
requires less silicon real estate and has better yield. By the same token, the part cost of a
standard-cell chip is smaller than that of a gate array chip since the standard-cell chip is
further optimized. If we consider both part cost and NRE cost, the per unit production cost
depends on the volume of units, as shown by the previous equation. The volume versus per
unit cost plots of three technologies is shown in Figure 1.1. As the volume increases, first the
gate array and then the standard-cell technologies, become cost-effective. The intersections
of the curves are the break-even points for the FPGA and gate array technologies, and for
the gate array and standard-cell technologies.

‘The second major expense is the development cost. The process of transforming an idea
to a custom circuit is by no means a simple task. The expense involved in this process is the
development cost. It includes the compensation for engineering time as well as the expense
of the computing facility and software tools. Although the synthesis procedure is somewhat
similar for all device technologies, developing ASIC requires more effort, including physical
design, placement and routing, verification and testing. Since the development process is
more complex for ASIC, the development cost of an ASIC chip is much higher than that
of an FPGA chip. Similarly, due to the high-level optimization, the development cost for a
standard-cell chip is much higher than that for a gate array chip.

The third major expense is the time-to-market cost. It is actually not a cost, but the
lost revenue. In many applications, such as PC peripherals, the life cycle of a product is
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Table 1.1 Comparison of device technologies

FPGA Gate array Standard cell
Tailored masks 0 3t05 15 or more
Area best (smallest)
Speed best (fastest)
Power best (minimal)
NRE cost best (smallest)
Per part cost best (smallest)

Development cost  best (easiest)
Time to market best (shortest)
Per unit cost depends on volume

very short. Eighteen months, the time required to double the chip density, is sometimes
considered as the life cycle of the product. Thus, it is very important to introduce the product
in a timely manner, and a shipping delay can mean a significant loss in sales. The standard-
cell technology requires the most lead time to validate, test and manufacture, ranging from
a few months to a year. The gate array technology requires less lead time, from a few
weeks to a few months. For FPGA technology, customization involves the programming
of a prefabricated chip and can be done in a few minutes.

Summary The major characteristics of the three device technologies are summarized
in Table 1.1. In general, the trade-off is between the optimal use of hardware resources
(in terms of chip area, speed and power) and the ease of design (in terms of NRE cost,
development cost and manufacturing lead time).

The choice of technology is not necessarily mutual exclusive. For example, ASIC and
FPGA developments can be done in parallel to get the benefits of both technologies. The
FPGA devices are used as prototypes and in initial shipments to cut the manufacturing lead
time. When the ASIC devices become available later, they are used for volume production
to reduce cost.

1.3 SYSTEM REPRESENTATION

A large digital system is quite complex. During the development and production process,
each task may require a specific kind of information about the system, ranging from system
specification to physical component layout. The same system is frequently described in
different ways and is examined from different perspectives. We call these perspectives the
representations or views of a system. There are three views:

e Behavioral view
e Structural view
o Physical view

A behavioral view describes the functionality (i.e., “behavior”) of a system. It treats
the system as a black box and ignores its internal implementation. The view focuses on
the relationship between the input and output signals, defining the output response when
a particular set of input values is applied. The description of a behavioral view is seldom
unique. Normally, there are a wide variety of ways to specify the same input—output
characteristics.
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A structural view describes the internal implementation (i.e., structure) of a system.
The description is done by explicitly specifying what components are used and how these
components are connected. It is more or less the schematic or the diagram of a system. In
computer software, we use the term net to represent a set of wires that are connected to the
same node, and use the term netlist, which is a collection of nets, to represent the schematic.

A physical view describes the physical characteristics of the system and adds additional
information to the structural view. It specifies the physical sizes of components, the physical
locations of the components on a board or a silicon wafer, and the physical path of each
connection line. An example of a physical view is the printed circuit board layout of a
system.

Clearly, the physical view of a system provides the most detailed information. It is
the final specification for the system fabrication. On the other hand, the behavioral view
imposes fewest constraints and is the most abstract form of description.

1.4 LEVELS OF ABSTRACTION

As chip density reaches hundreds of millions of transistors, it is impossible for a human
being, or even a computer, to process this amount of data directly. A key method of
managing complexity is to describe a system in several levels of abstraction. An abstraction
is a simplified model of the system, showing only the selected features and ignoring the
associated details. The purpose of an abstraction is to reduce the amount of data to a
manageable level so that only the critical information is presented. A high-level abstraction
is focused and contains only the most vital data. On the other hand, a low-level abstraction
is more detailed and takes account of previously ignored information. Although it is more
complex, the low-level abstraction model is more accurate and is closer to the real circuit.
In the development process, we normally start with a high-level abstraction and concentrate
on the most vital characteristics. As the system is better understood, we then include more
details and develop a lower-level abstraction.
Four levels of abstraction are considered in digital system development:

¢ Transistor level

e Gate level

e Register transfer (RT) level
o Processor level

The division of these levels is based primarily on the size of basic building blocks, which
are the transistors, logic gates, function modules and processors respectively.

The level of abstraction and the view are two independent dimensions of a system, and
each level has its own views. The levels of abstraction and views can be combined in a
Y-chart, which is shown in Figure 1.2. In this chart, each axis represents a view and the
levels of abstraction increase from the center to the outside.

The following subsections discuss the four levels of abstraction. In the discussion, we
examine the five main characteristics at each level of abstraction:

Basic building blocks
Signal representation
Time representation
Behavioral representation
Physical representation
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Figure 1.2 Y-chart.

Basic building blocks are the most commonly used parts at the level. These parts are
the components used in the structure view. Behavioral and physical representations are the
descriptions for the behavioral and physical views.

Signal and timing representations concern how to express a signal’s value and how the
value changes over time. While the physical signal remains the same, the interpretation
of its value and timing is different at each abstraction level. As we expect, more detailed
information will be provided at lower levels.

1.4.1 Transistor-level abstraction

The lowest level of abstraction is the transistor level. At this level, the basic building blocks
are transistors, resistors, capacitors and so on. The behavior description is usually done by
a set of differential equations or even by some type of current-voltage diagram. Analog
system simulation software, such as SPICE, can be used to obtain the desired input—output
characteristics.

At the transistor level, a digital circuit is treated as an analog system, in which signals
are time-varying and can take on any value of a continuous range. For example, the output
response of an inverter is plotted at the top of Figure 1.3.

The physical description of the transistor level comprises the detailed layout of compo-
nents and their interconnections. It essentially defines the masks of various layers and is
the final result of the design process.

1.4.2 Gate-level abstraction

The next level of abstraction is the gate level. Typical building blocks include simple logic
gates, such as and, or, xor and 1-bit 2-to-1 multiplexer, and basic memory elements, such
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Figure 1.3 Timing characteristic of an inverter.

as latch and flip-flop. Instead of using continuous values, we consider only whether a
signal’s voltage is above or below a threshold, which is interpreted as logic 1 or logic O
respectively. Since there are only two values, the input-output behavior is described by
Boolean equations. The abstraction essentially converts a continuous system to a discrete
system and discards the complex differential equations. Note that logic 0 and logic 1 are
only our interpretation, depending on whether a signal’s voltage level exceeds a predefined
threshold, and the real signal is still the same continuous signal.

The timing information is also simplified at this level. A single discrete number, known
as the propagation delay, which is defined as the time interval for a system to obtain a stable
output response, is used to specify the timing of a gate. The plot at the bottom of Figure 1.3
shows a gate-level interpretation of the corresponding transistor-level signal.

The physical description at this level is the placement of the gates (or cells) and the
routing of the interconnection wires.

So far, we use the term area or size to describe the silicon real estate used to construct a
circuit. Alternatively, we can count the number of gates in this circuit (known as gate count)
and make the measurement independent of the underlying device technology. The area of
the two-input nand gate is used as the base unit since it is frequently the simplest physical
logic circuit. Instead of using the physical area, we express the size or the complexity of a
circuit in terms of the number of equivalent nand gates in that particular device technology.

1.4.3 Register-transfer-level (RT-level) abstraction

At the register-transfer (RT) level, the basic building blocks are modules constructed from
simple gates. They include functional units, such as adders and comparators, storage
components, such as registers, and data routing components, such as multiplexers. A
reasonable name for this level would be module-level abstraction. However, the term
register transfer is normally used in digital design and we follow the general convention.
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Register transfer is a somewhat confusing term. It is used in two contexts. Originally, the
term was used to describe a design methodology in which the system operation is specified
by how the data are manipulated and transferred between storage registers. Since the main
components used in the register transfer methodology are the intermediate-size modules,
the term has been borrowed to describe module-level abstraction. As the title indicates,
the coverage and discussion of this book focus on the RT level. We use the term RT level
for module-level abstraction and RT methodology for the specific design methodology. RT
methodology is discussed in Chapters 11 and 12.

The data representation at the RT level becomes more abstract. Signals are frequently
grouped together and interpreted as a special kind of data type, such as an unsigned integer
or system state. The behavioral description at this level uses general expressions to specify
the functional operation and data routing, and uses an extended finite state machine (FSM)
to describe a system designed using RT methodology.

A major feature of the RT-level description is the use of a common clock signal in the
storage components. The clock signal functions as a sampling and synchronizing pulse,
putting data into the storage component at a particular point, normally the rising or falling
edge of the clock signal. In a properly designed system, the clock period is long enough
so that all data signals are stabilized within the clock period. Since the data signals are
sampled only at the clock edge, the difference in propagation delays and glitches have no
impact on the system operation. This allows us to consider timing in terms of number of
clock cycles rather than by keeping track of all the propagation delays.

The physical layout at this level is known as the floor plan. It is helpful for us to find the
slowest path between the storage components and to determine the clock period.

1.4.4 Processor-level abstraction

Processor-level abstraction is the highest level of abstraction. The basic building blocks at
this level, frequently known as intellectual properties (IPs), include processors, memory
modules, bus interfaces and so on. The behavioral description of a system is more like
a program coded in a conventional programming language, including computation steps
and communication processes. The signals are grouped and interpreted as various data
types. Time measurement is expressed in terms of a computation step, which is composed
of a set of operations defined between two successive synchronization points. A collection
of computations may run concurrently in parallel hardware and exchange data through a
predefined communication or bus protocol. The physical layout of a processor-level system
is also known as the floor plan. Of course, the components used in a floor plan are much
larger than those of an RT-level system.

Table 1.2 summarizes the main characteristics at each level. It lists the typical building
blocks, signal representation, time representation, representative behavioral description and
representative physical description.

1.5 DEVELOPMENT TASKS AND EDA SOFTWARE

Developing a custom digital circuit is essentially a refining and validating process. A system
is gradually transformed from an abstracthigh-level description to final mask layouts. Along
with each refinement, the system’s function should be validated to ensure that the final
product works correctly and meets the specification and performance goals. The major
design tasks of developing a digital system are:
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Table 1.2 Characteristics of each abstraction level

Typical Signal Time Behavioral Physical
blocks representation representation description description
Transistor transistor, voltage continuous differential  transistor
resistor function equation layout
Gate and, or, xor, logicOor1l propagation Boolean cell
flip-flop delay equation layout
RT adder, mux, integer, clock tick extended RT-level
register system state FSM floor plan
Processor  processor, abstract event algorithm IP-level
memory data type sequence inC floor plan
e Synthesis
e Physical design
e Verification
o Testing

1.5.1 Synthesis

Synthesis is a refinement process that realizes a description with components from the lower
abstraction level. The original description can be in either a behavioral view or a structural
view, and the resulting description is a structural view (i.e., netlist) in the lower abstraction
level. In the Y-chart, the process either moves the system from behavioral view to structural
view or moves it from a high-level abstraction to a low-level abstraction. Thus, synthesis
either derives a structural implementation from a behavioral description or realizes an upper
level description using finer components. As the synthesis process progresses, more details
are added. The final result is a gate-level structural representation using the primitive cells
from the chosen device technology. To make the process manageable, synthesis is usually
divided into several smaller steps, each performing a specific transformation. The major
steps are:

o High-level synthesis
o RT-level synthesis

o Gate-level synthesis
e Technology mapping

High-level synthesis transforms an algorithm into an RT-level description, which is spec-
ified explicitly in terms of register transfer operations. Due to the complexity of transforma-
tion, it can only be applied to relatively simple algorithms in a narrowly defined application
domain.

RT-level synthesis analyzes an RT-level behavioral description and derives the struc-
tural implementation using RT-level components. It may also perform a limited degree of
optimization to reduce the number of components.

Gate-level synthesis is similar to RT-level synthesis except that gate-level components are
used in structural implementation. After the initial circuit is derived, two-level or multilevel
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optimization is used to minimize the size of the circuit or to meet the timing constraint. In
general, generic components are used in gate-level synthesis, and thus the synthesis process
is independent of device technology.

Each device technology includes a set of predesigned primitive gate-level components,
which can be cells of a standard-cell library or a generic logic cell of an FPGA device. To
implement the gate-level circuit in a particular device technology, the generic components
have to map into the cells of the chosen technology. The transforming process is known as
technology mapping. 1t is the last step in synthesis, and clearly the process is technology
dependent.

The synthesis procedure is discussed in detail in Section 6.4.

1.5.2 Physical design

Physical design includes two major parts. The first part is the refinement process between
the structural and physical views, which derives a layout for a netlist. The second part
involves the analysis and tuning of a circuit’s electrical characteristics. The main tasks in
physical design include floor planning, placement and routing and circuit extraction.

Floor planning derives layouts at the processor and RT levels. It partitions the system
into large function blocks and places these blocks in proper locations to reduce future routing
congestion or to achieve certain timing objectives. Furthermore, floor planning may also
provide a global plan for the power and clock distribution schemes. Placement and routing
derives a layout at the gate level. The layout involves the detailed placement of cells and
the routing of interconnecting wires.

After the placement and routing are complete, the exact length and location of each
interconnect are known, and the associated parasitic capacitance and resistance can be cal-
culated. This process is known as circuit extraction. The extracted data are used to construct
a resistance and capacitance network, which in turn is used to compute the propagation de-
lays.

In addition to the foregoing tasks, the physical design also includes design rule checking,
derivation of the power grid, derivation of the clock distribution network, estimation of
power use and assurance of signal integrity.

1.5.3 Verification

Verification is the process of checking whether a design meets the specification and perfor-
mance goals. It concerns the correctness of the initial design as well as the correctness of
refinement processes during synthesis and physical design. Verification has two aspects:
Junctionality and performance. Functional verification checks whether a system generates
the desired output response. Performance is represented as certain timing constraints. Tim-
ing verification checks whether the response is generated within the given time constraint.
Verification is done in different phases of the design and at different levels of abstraction.

Functional verification The design of a custom system usually begins with a high-level
behavioral description. When it is first created, the primary concern is whether the design
functions according to the specifications. We need to check its operation and compare its
responses to those desired. Once the functionality of the initial design is verified, we can
start the refinement process and gradually convert it to a gate-level structural description.
In general, if the initial design does not depend on the internal propagation delay (i.e., is not
delay-sensitive), the functionality should be maintained through the refinement processes.
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In the ideal situation, the design should be “correct by construction” and require no further
functional verification. In reality, subtle errors may be introduced in a refinement process,
and thus functional verification is still performed after each process to ensure that the new,
refined description works correctly.

Timing verification Timing verification checks whether a system meets its performance
goals, which are normally expressed in terms of maximal propagation delay or minimal
clock frequency. At the processor or RT level, the propagation delay of an input—output path
can be calculated by identifying the components in the path and summating the individual
delays. However, since these components will be further refined and synthesized, the
information is just a rough estimation.

At the gate level, the propagation delay of a path is affected by the delays of the com-
ponents as well as the interconnection wires. The wiring delay depends on the locations
and the lengths of wires. Although they can be estimated during synthesis, the exact values
can be obtained only after the placement and routing process. As the size of a transistor
continues to shrink, the effect of a wiring delay becomes more dominant., This makes tim-
ing verification more difficult since accurate delay information is not available during the
synthesis process.

Timing issues and propagation delay are discussed in more detail in Section 6.5.1.

Methods of verification The most commonly used verification method is simulation,
which is the process of constructing a model of a system, executing the model with input test
patterns in a computer, and examining and analyzing the output responses. The model can
be an actual or a hypothetical circuit that incorporates functionality and timing information.
Simulation is a versatile process that be applied at any level of abstraction, and in behavioral
as well as structural views. Utilizing simulation allows us to examine a system’s operation
in a computer and to detect errors without actually constructing the system.

Simulation essentially provides a sequence of snapshots of system operation, defined by
a set of input stimuli. However, there is no guarantee that the selected stimuli can exercise
every part of the system and verify the correctness of the entire design. Whereas simulation
can do spot checks and detect major design mistakes, it cannot guarantee the absence of
€ITorS.

Another limitation of simulation comes from its computation complexity. Hardware
operation is concurrent and parallel in nature, and it is time consuming to model its operation
in a computer, which performs computational steps sequentially. It becomes a serious
problem when we want to simulate low-level models, which may consist of hundreds of
thousands or even millions of components.

In addition to simulation, several other methods are used for verification, including
timing analysis, formal verification and hardware emulation. Timing analysis focuses only
on the timing aspects of a circuit. It analyzes the structure of a circuit, determines all
possible input—output paths, calculates the propagation delays of these paths and determines
the relevant timing parameters, such as worst-case propagation delay and maximal clock
frequency. Simulation can provide the relevant timing information for the selected test
patterns. However, since these test patterns do not always exercise the critical paths, timing
analysis is needed to verify that the system meets the timing specifications.

Formal verification applies formal mathematical techniques to analyze a circuit and de-
termine its property. A popular method in formal verification is equivalence checking,
which compares two representations of a system and determines whether the two represen-
tations perform the same function. It is frequently applied in synthesis to verify that the
functionality of a synthesized circuit is identical to the original one. Unlike simulation,
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formal verification is based on rigorous mathematical reasoning and can ensure that the
synthesis is completely error-free.

Hardware emulation physically constructs a prototyping circuit that mimics operation
of the system. A common application is to construct an FPGA circuit to emulate a complex
ASIC design. Although the FPGA-based system is normally larger and slower than the
ASIC system, it is much faster than simulation and it can be physically interfaced with
other circuits and studied in detail.

1.5.4 Testing

The meanings of verification and testing are somewhat similar in a dictionary sense. How-
ever, they are two very different tasks in digital system development. Verification is the
process of determining whether a design meets the specification and performance goals. It
concerns the correctness of the initial design as well as the refinement processes. On the
other hand, resting is the process of detecting the physical defects of a die or a package that
occurred during manufacturing. When a device is being tested, we already know that the
design is correct and the purpose of testing is simply to ensure that this particular part was
properly fabricated.

At first glance, testing appears to be easy. All we need to do is simply to apply all
possible input combinations and check the output responses. However, because of the large
number of input combinations, this approach is not feasible. Instead, we have to utilize
special algorithms to obtain a small set of test patterns. This process is known as test pattern
generation.

For a small circuit, we can develop the testing procedure after completing the initial
design and synthesis. However, as a digital circuit becomes larger and more complex, this
approach becomes more difficult. Instead of as an afterthought, we have to consider the
testing procedure in the initial design and frequently need to add auxiliary circuitry, such as
a scan chain or built-in-self-test circuit, to facilitate the future requirements. This is known
as design-for-test.

1.5.5 EDA software and its limitations

Developing a large digital circuit is a complicated process that involves complex algorithms
and a large amount of data. Computer software is used to automate some tasks. This is
known as electronic design automation (EDA). As computers become more powerful, we
may ask if it possible to develop a suite of software and automate the development process
completely. The ideal scenario would be that human designers only need to develop a high-
level behavioral description, and EDA software will perform the synthesis and placement
and routing and derive the optimal circuit implementation automatically. The answer is,
unfortunately, negative. This is due to the theoretical limitations that cannot be overcome
by faster computers or smart software codes.

The synthesis software should be treated as a tool to perform transformation and local
optimization. It cannot alter the original architecture or convert a poor design into a good
one. The efficiency of the final circuit depends mainly on the initial description.

The limitations and effective use of the EAD software are elaborated in Section 6.1.
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1.6 DEVELOPMENT FLOW

Developing a digital circuit is essentially a refining and validating process, gradually trans-
forming an abstract high-level description into a detailed low-level structural description.
While all developments follow the basic refinement—validation process, detailed flows de-
pend on the size of the circuit and the target device technology.

The optimization algorithms used in synthesis software are complex. The needed com-
putation time and memory space increase drastically as the circuit size grows. Thus, size
is a limiting factor in many synthesis software tools. The software is most effective for
an intermediate-sized circuit, which ranges between 2000 and 50,000 gates. For a larger
system, we must first partition the circuit into smaller blocks and then process each block
individually.

Another factor is the target device technology. The fabrication processes of FPGA
and ASIC are very different. Whereas an FPGA chip is an off-the-shelf part that has been
prefabricated and pretested, an ASIC design must go through a lengthy, complex fabrication
process. Many extra steps are needed to ensure the correctness of the final physical circuit.

The following subsections show the typical development flow of three different types
of designs and explain the extra steps needed as the complexity increases. Three types of
designs are:

e Medium-sized design targeting FPGA
o Large design targeting FPGA
o Large design targeting ASIC

1.6.1 Flow of a medium-sized design targeting FPGA

The term medium-sized here means a design that requires no partition and does not need
predesigned IP cores. Itis acircuit with up to about 50,000 gates. Current synthesis software
and placement-and-routing software can effectively process a circuit of this complexity.
This size is not trivial. It corresponds to that of a moderately complex circuit, such as a
simple processor or bus interface. The development flow is depicted in Figure 1.4. It is
shown in three columns, representing a synthesis track, physical design track and verification
track respectively. :

The flow starts with the design file, which is normally an RT-level description of the
circuit. It may be accompanied by a set of constraints that specify the timing requirements.
A separate file, known as a testbench, provides a virtual experiment bench for simulation
and verification. It incorporates the code to generate input stimuli and to monitor the
output responses. Once these files are created, the circuit can be constructed and verified
accordingly. The steps in an ideal flow are detailed below.

1. Develop the design file and testbench.

2. Use the design file as the circuit description, and perform a simulation to verify that
the design functions as desired.

3. Perform a synthesis.

4. Use the output netlist file of the synthesizer as the circuit description, and perform a
simulation and timing analysis to verify the correctness of the synthesis and to check
preliminary timing,

5. Perform placement and routing.



18 INTRODUCTION TO DIGITAL SYSTEM DESIGN

f datafile / process

Synthesis Physical Design : Verification

-/_des'é;li-;l;tion; o 0 M

; Y v
! synthesis e simulation e

'
'
'
¢
'
' h 1
i '
H i
' ¢
' '
' P

/ netlist / / delayﬁly |

— |

; | L8
plarc:lmggt& (5 ] A simulation | @)

/ confi I}J;atioy / delay file /

| L

I
'
'
' ¢ P
H P
)
'

‘ v A v£

device i | simulation/
programming ﬁ ; timing

; analysis

@

Figure 14 Development flow of a medium-sized design targeting FPGA.



DEVELOPMENT FLOW 19

6. Annotate the accurate timing information to the netlist, and perform a simulation and
timing analysis to verify the correctness of the placement and routing and to check
whether the circuit meets the timing constraints.

7. Generate the configuration file and program the device.

8. Verify operation of the physical part.

The flow described above represents an ideal process since it assumes that the initial design
description follows the functional specification and meets the timing constraints. In reality,
the development flow may consist of several iterations to correct the functional errors or
timing problems. We may need to revise the original design file or to fine-tune parameters
in synthesis and placement-and-routing software,

1.6.2 Flow of a large design targeting FPGA

A large, complex digital circuit may contain several hundred thousand or even a few million
gates. Synthesis tools are not able to perform transformation and optimization effectively
in this range. It is necessary to partition the circuit into smaller blocks and to process
the blocks individually. The partition process also allows us to use previously designed
subsystems or commercial IP cores.

To accommodate a larger design, additional processes must be added to the flow of
Figure 1.4. The initial design description tends to be an abstract, high-level behavioral
description of the circuit. In the synthesis track, a partition process is needed to divide the
systems into blocks of adequate size and functionality. The output of the partition process
can be considered as a netlist of large blocks. Some blocks may be already designed and
verified subsystems, either from a previous project design or from a commercial IP vendor.
The other blocks must be designed and synthesized individually as medium-sized circuits,
following the development flow of the previous subsection.

In the verification track, an extra step is needed to verify the correctness of the partition
results and to check the initial timing. Because of the large number of components, the
gate-level netlist becomes very involved, and simulation consumes a significant amount of
time. Formal verification techniques and cycle-based simulation are frequently used as an
alternative to verify the functionality.

In the physical design track, a floor planning process may be needed. It performs initial
placement for the processor-level blocks.

1.6.3 Flow of a large design targeting ASIC

Due to the complexity of ASIC fabrication, the development flow becomes more involved.
The additional requirements are the inclusion of a testing track and the expansion of the
physical design track.

The purpose of testing is to detect defects in the fabrication process. FPGA devices are
tested by vendors before being shipped, and thus we don’t need to worry about physical
defects of the device. On the other hand, the testing is the integral part of the ASIC design
and plays an important role. At the RT level, additional built-in-self-test circuits and special
scanning control circuits are frequently added to aid the final testing. These circuits become
an integral part of the design and have to be synthesized and verified. At the gate level,
scan registers will be strategically inserted around circuit blocks or I/O boundaries. The
scan circuit also needs to be synthesized and verified along with the regular design. Finally,
test vectors have to be generated for combinational circuit blocks, and simulation has to be
performed to ensure that the vectors provide proper fault coverage.
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InFPGA-based flow, the physical design track involves only the floor planning and place-
ment and routing, which is accomplished by configuring the FPGA device’s programmable
interconnect structure. The physical design process of an ASIC device is much more
complicated since it involves development and verification of the masks. After placement
and routing, several additional steps are needed, including design rule checking, physical
verification and circuit extraction.

Due to the high NRE cost of an ASIC-based device, it is important that the circuit
is simulated and checked thoroughly before fabrication. Thus, the verification track of
ASIC-based design flow has to be more comprehensive and more exhaustive.

1.7 OVERVIEW OF THE BOOK

1.7.1 Scope

This book focuses primarily on the design and synthesis of RT-level circuits. A subset of
the VHDL hardware description language is used to describe the design. The book is not
intended to be a comprehensive ASIC or FPGA book. All other issues, such as device
architecture, placement and routing, simulation and testing, are discussed only from the
context of RT-level design.

After completing this book, readers should be able to develop and design efficient RT-
level systems or subsystem blocks. A physical chip for a medium-sized FPGA design
or a large, manually partitioned FPGA design can be obtained with a general synthesis
and placement and routing software package. Additional knowledge and more specialized
software tools are needed to cover the other tasks for an ASIC design.

1.7.2 Goal

The goal of the book is to learn how to systematically develop efficient, portable RT-level
designs that can easily be integrated into a larger system. The goal includes three major
parts:

o Design for efficiency

¢ “Design for large”

o Design for portability

Design for efficiency Availability of HDL and synthesis software relieves us from
many tedious, repetitive implementation details and allows us to explore the design at a more
abstract level. However, algorithms used in synthesis software can only do transformation
and perform local search and optimization. They cannot, and will not, create a good design
description or convert a poor design description to a good one. The quality of the circuit
lies primarily in the initial description.

The book shows the relationship between VHDL constructs and the hardware compo-
nents as well as the effective use of synthesis software tools, and introduces a disciplined
way to develop the initial description that leads to efficient implementation.

“Design for large” We use the term design for large loosely to cover three aspects:
¢ Design of a large module
o Design to be incorporated in a larger system
o Design to facilitate the overall development process
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The main purpose of most digital system books, including this one, is to illustrate basic
concepts and procedures. For clarity, the design examples are normally explained by circuits
with small input size. However, the design and description for a system with a small number
of inputs (e.g., a 2-bit multiplier) and a system with a larger number of inputs (e.g., a 32-bit
multiplier) can be very different. Although small-input-size examples are used in this book,
the design approach and coding style are aimed at a large input size, and thus the design
can easily be expanded to a larger, more practical system.

As the digital system becomes more complex, an RT-level description is likely to be a
part of a larger system. Although a large processor-level system is not the focus of this
book, the coding and development take this into consideration so that the RT-level design
can easily be incorporated into a larger system when needed.

The discussion in Section 1.6 shows that the development of a large digital system
involves many tasks. RT-level design and synthesis are not an isolated part. A poorly con-
structed RT-level circuit makes simulation, verification and testing processes unnecessarily
difficult or even impossible, and sometimes may need to be revised at a later stage of the
development process. While the book focuses on RT-level design and synthesis, it treats this
task as an integral part of the development process and uses methodology that can facilitate
and even simplify other tasks.

Design for portability Portability means that the same design description can be used
in different applications. We can examine design for portability from three perspectives:

e Device independent

¢ Software independent

e Design reuse

Device independent means that the same design description can be synthesized to dif-
ferent device technologies. From time to time, the same design may need to migrate to
a different technology. It can be from one FPGA vendor to another or from FPGA to
ASIC for volume production. The design descriptions of this book carefully avoid any
device-dependent feature so that the code can be used for multiple device technologies.

Software independent means that the design description can be accepted by most synthe-
sis software. Since synthesis is a very complex process, software packages from different
vendors have different capabilities, support different subsets of hardware description lan-
guage and may have different interpretations on some subtle language constructs. We try
to use the minimal common denominator of the synthesis software so that a design descrip-
tion can be accepted by most software tools and its function will be interpreted in a similar
manner.

Design reuse means that the whole or part of the design description can be used again
in a different application or project. We interpret the term reuse in a broad sense, from the
copying of a few lines of code to a complete IP core. While developing an IP core is not
the primary goal, we try to make the code modular and scalable when possible so that the
same code can be reused in different applications with minimal or no revision.

1.8 BIBLIOGRAPHIC NOTES

This book includes a short bibliographic section at the end of each chapter. The purpose of
the section is to provide several of the most relevant references for further exploration. A
complete comprehensive bibliography is provided at the end of the book.
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Developing a large digital system is a complex process. The text, Methodology Manual
for System-on-a-Chip Designs, 3rd edition by M. Keating and P. Bricaud, provides an
overview and guidelines for the process. The text, The Design Warrior’s Guide to FPGAs
by C. M. Maxfield, introduces relevant issues on FPGAs. Two texts, FPGA-Based System
Design and Modern VLSI Design: System-on-Chip Design, 3rd edition, both by W. Wolf,
provide more in-depth reviews of the FPGA and ASIC technologies.

Problems

1.1 An engineer claims the following about the digital format: “In a digital system,
logic O and logic 1 are represented by two voltage levels. Since there is a significant voltage
difference between the two levels, noise will not affect the logic value, and thus digitized
information is immune to noise.” Is the statement correct? Explain.

1.2 Volume of sale (i.e., the number of parts sold) is a factor when determining which
device technology is to be used. Assume that a system can be implemented by FPGA,
gate array or standard-cell technology. The per part cost is $15, $3 and $1 for FPGA, gate
array and standard cell respectively. Gate array and standard-cell technologies also involve
a one-time mask generation cost of $20,000 and $100,000 respectively.
(a) Assume that the number of parts sold is N. Derive the equation of per unit cost
for the three technologies.
(b) Plot the three equations with N as the x-axis.
(c) Determine the range of NV for which FPGA technology has the minimal per unit
cost,
(d) Determine the range of /V for which gate array technology has the minimal per
unit cost.
(e) Determine the range of IV for which standard-cell technology has the minimal
per unit cost.

1.3 What is the view (behavioral, structural or physical) of the following illustration?

se| ——d

1.4 What is abstraction? Why is it important for digital system design?
1.5 What is the difference between testing and verification?

1.6 InFigure 1.4, the synthesized circuit is simulated in steps 4 and 6. Is the simulation
in step 6 necessary? Explain,



CHAPTER 2

OVERVIEW OF HARDWARE
DESCRIPTION LANGUAGES

A digital system can be described at different levels of abstractions and from different points
of view. As the design process progresses, the level and view are changed, either by human
designers or by software tools. It is desirable to have a common framework to exchange
information among the designers and various software tools. Hardware description lan-
guages (HDLs) serve this purpose. In this chapter we provide an overview of the design, use
and capability of HDLs. The basic concept and essential modeling features are introduced
by a series of codes to show the “big picture” of HDLs. The detailed syntax, language
constructs and associated semantics are discussed in subsequent chapters.

2.1 HARDWARE DESCRIPTION LANGUAGES

A digital system can be described at different levels of abstraction and from different points
of view. An HDL should faithfully and accurately model and describe a circuit, whether
already built or under development, from either the structural or behavioral views, at the
desired level of abstraction. Because HDLs are modeled after hardware, their semantics
and use are very different from those of traditional programming languages. The following
subsections discuss the need, use and design of an HDL.

2.1.1 Limitations of traditional programming languages

There are wide varieties of computer programming languages, from Fortran to C to Java.
Unfortunately, they are not adequate to model digital hardware. To understand their limita-
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tions, it is beneficial to examine the development of a language. A programming language
is characterized by its syntax and semantics. The syntax comprises the grammatical rules
used to write a program, and the semantics is the “meaning” associated with language
constructs. When a new computer language is developed, the designers first study the
characteristics of the underlying processes and then develop syntactic constructs and their
associated semantics to model and express these characteristics.

Most traditional general-purpose programming languages, such as C, are modeled after
a sequential process. In this process, operations are performed in sequential order, one
operation at a time. Since an operation frequently depends on the result of an earlier
operation, the order of execution cannot be altered at will. The sequential process model
has two major benefits. At the abstract level, it helps the human thinking process to develop
an algorithm step by step. At the implementation level, the sequential process resembles the
operation of a basic computer model and thus allows efficient translation from an algorithm
to machine instructions.

The characteristics of digital hardware, on the other hand, are very different from those
of the sequential model. A typical digital system is normally built by smaller parts, with
customized wiring that connects the input and output ports of these parts. When a signal
changes, the parts connected to the signal are activated and a set of new operations is initiated
accordingly. These operations are performed concurrently, and each operation will take a
specific amount of time, which represents the propagation delay of a particular part, to
complete. After completion, each part updates the value of the corresponding output port.
If the value is changed, the output signal will in turn activate all the connected parts and
initiate another round of operations. This description shows several unique characteristics
of digital systems, including the connections of parts, concurrent operations, and the concept
of propagation delay and timing. The sequential model used in traditional programming
languages cannot capture the characteristics of digital hardware, and there is a need for
special languages (i.e., HDLs) that are designed to model digital hardware.

2.1.2 Use of an HDL program

To better understand HDL, it is helpful to examine the use of an HDL program. In a
traditional programming language, a program is normally coded to solve a specific problem.
It takes certain input values and generates the output accordingly. The program is first
compiled to machine instructions and then run on a host computer. On the other hand, the
application of an HDL program is very different. The program plays three major roles:

e Formal documentation. A digital system normally starts with a word description.
Unfortunately, since human language is not precise, the description is frequently
incomplete and ambiguous, and the same description may be subject to different in-
terpretations. Because the semantics and syntax of an HDL are defined rigorously,
a system specified in an HDL program is explicit and precise. Thus, an HDL pro-
gram can be used as a formal system specification and documentation among various
designers and users.

o Input to a simulator. As we discussed in Chapter 1, simulation is used to study and
verify the operation of a circuit without constructing the system physically. An HDL
simulator provides a framework to model the concurrent operations in a sequential
host computer, and has specific knowledge of the language’s syntactic constructs
and the associated semantics. An HDL program, combined with test vector gener-
ation and a data collection code, forms a testbench, which becomes the input to the
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HDL simulator. During execution, the simulator interprets HDL code and generates
responses accordingly.

o Input to a synthesizer. The modern development flow is based on the refinement
process, which gradually converts a high-level behavioral description to a low-level
structural description. Some refinement steps can be performed by synthesis software.
The synthesis software takes an HDL program as its input and realizes the circuit
from the components of a given library. The output of the synthesizer is a new HDL
program that represents the structural description of the synthesized circuit.

2.1.3 Design of a modern HDL

The fundamental characteristics of a digital circuit are defined by the concepts of entity,
connectivity, concurrency and timing. Entity is the basic building block, modeling after a
part of a real circuit. It is self-contained and independent, and has no implicit information
about other entities. Connectivity models the connecting wires among the parts. It is the
way that entities interact with one another. Since the connections of a system are seldom
formed as a single thread, many entities may be active at the same time and many operations
are performed in parallel. Concurrency describes this type of behavior. Timing is related
to concurrency. It specifies the initiation and completion of each operation and implicitly
provides a schedule and order of multiple operations.

The goal of an HDL is to describe and model digital systems faithfully and accurately.
To achieve this, the cornerstone of the language should be based on the model of hardware
operation, and its semantics should be able to capture the fundamental characteristics of the
circuits.

As we discussed in Chapter 1, a digital system can be described at four different levels of
abstraction and from three different points of view. Although these descriptions have similar
fundamental characteristics, their detailed representations and models vary significantly.
Ideally, we wish to develop a single HDL to cover all the levels and all the views. However,
this is hardly feasible because the vast differences between abstraction levels and views
will make the language excessively complex. Modern HDLs normally cover descriptions
in structural and behavior views, but not in physical view. They provide constructs to support
modeling at the gate and RT levels, and to a limited degree, at processor and transistor levels.
The highlights of modern HDLs are as follows:

» The language semantics encapsulate the concepts of entity, connectivity, concurrency,
and timing.

o The language can effectively incorporate propagation delay and timing information.

o The language consists of constructs that can explicitly express the structural imple-
mentation (i.e., a block diagram) of a circuit.

o The language incorporates constructs that can describe the behavior of a circuit,
including constructs that resemble the sequential process of traditional languages, to
facilitate abstract behavioral description.

o The language can efficiently describe the operations and structures at the gate and
RT levels.

o The language consists of constructs to support a hierarchical design process.

2.1.4 VHDL

VHDL and Verilog are the two most widely used HDLs. Although the syntax and “appear-
ance” of the two languages are very different, their capabilities and scopes are quite similar.



26 OVERVIEW OF HARDWARE DESCRIPTION LANGUAGES

Both are industrial standards and are supported by most software tools. VHDL is used in
this book since it has better support for parameterized design.

VHDL stands for VHSIC (very high speed integrated circuit) HDL. The development of
VHDL was sponsored initially by the US Department of Defense as a hardware documenta-
tion standard in the early 1980s and then was transferred to the IEEE (Institute of Electrical
and Electronics Engineers). [EEE ratified it as IEEE standard 1076 in 1987, which is re-
ferred to as VHDL-87. Each IEEE standard is reviewed every few years and is revised as
needed. TEEE revised the VHDL standard in 1993, which is referred to as VHDL-93, and
made minor modifications and bug fixes in 2001, which is referred to as VHDL-2001. Since
no new language construct is added in the new version, there is no significant difference
between VHDL-93 and VHDL-2001. A suffix is sometimes added to the IEEE standard to
indicate the year the standard was released. For example, VHDL-87 and VHDL-2001 are
known as IEEE standards 1076-1987 and IEEE 1076-2001 respectively.

After the initial release, various extensions were developed to facilitate various design
and modeling requirements. These extensions are documented in several IEEE standards:

o IEEE standard 1076.1-1999, VHDL Analog and Mixed Signal Extensions (VHDL-
AMS): defines the extension for analog and mixed-signal modeling.

o IEEE standard 1076.2-1996, VHDL Mathematical Packages: defines extra mathe-
matical functions for real and complex numbers.

o IEEE standard 1076.3-1997, Synthesis Packages: defines arithmetic operations over
a collection of bits.

o IEEE standard 1076.4-1995, VHDL Initiative Towards ASIC Libraries (VITAL): de-
fines a mechanism to add detailed timing information to ASIC cells.

e IEEE standard 1076.6-1999, VHDL Register Transfer Level (RTL) Synthesis: defines
a subset that is suitable for synthesis.

o IEEE standard 1164-1993 Multivalue Logic System for VHDL Model Interoperability
(std_logic_1164): defines new data types to model multivalue logic.

o IEEE standard 1029.1-1998, VHDL Waveform and Vector Exchange to Support De-
sign and Test Verification (WAVES): defines how to use VHDL to exchange informa-
tion in a simulation environment.

Standards 1076.3, 1076.6 and 1164 are related to synthesis and are discussed in Chapter 3.

2.2 BASIC VHDL CONCEPT VIA AN EXAMPLE

As its name indicates, HDL describes hardware. Thus, it is essential to read or write
HDL code from hardware’s perspective. A simple example in this section shows the basic
modeling concepts used in HDL and demonstrates the semantic differences between HDLs
and traditional programming languages. The example is coded in VHDL and the language
constructs are mostly self-explanatory. The purpose of the example is to provide a big
picture of HDL and VHDL. The detailed syntax and language constructs are studied in
subsequent chapters.

The example is a circuit that detects even parity. There are one output, even, and three
inputs, a(2), a(1) and a(0), which are grouped as a bus. The output is asserted when
there are even numbers (i.e., 0 or 2) of I's from the inputs. The truth table of this circuit is
shown in Table 2.1. ‘

The VHDL codes for a general description, pure structural description, pure behavioral
description and testbench are discussed in the following subsections.
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Table 2.1 Truth table of an even-parity detector circuit

a(2) a(1) a0 even

O R O—=O=O0
O = OO0 -

a(2) ———e
a(1)
a(0)

i
Juuy | T

even

_— )

Figure 2.1 Two-level and—or implementation of an even-parity detector circuit.

2.2.1 General description

From Boolean algebra, we know that each row of a truth table represents a product term
and the output can be written as the sum-of-products expression

even = a(2)’ - a(1)" - a(0)’ + a(2)’' - a(1) - a(0) + a(2) - a(1)’ - a(0) + a(2) - a(1) - a(0)’

The expression can be realized by a two-level and—or circuit, as shown in Figure 2.1,

The first VHDL description is based on this expression and the code is shown in List-
ing 2.1. In this book, the reserved words are in boldface font, as in library, and comments
are in italic font, as in —— this is a comment.

Listing 2.1 Even-parity detector based on a sum-of-products expression

library ieee;
use ieee.std_logic_1164.all;

— entity declaration
s entity even_detector is
port (
a: in std_logic_vector (2 downto 0);
even: out std_logic
).

H
wend even_detector;
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— architecture body
architecture sop_arch of even_detector is
15 signal pl, p2, p3, p4 : std_logic;
begin
even <= (pl or p2) or (p3 or p4) after 20 ans;
pl <= (not a(2)) and (not a(1)) and (mot a(0)) after 15 ns;
p2 <= (not a(2)) and a(1i) and a(0) after 12 ns;
» p3 <= a(2) and (not a(1)) and a(0) after 12 ns;
pé <= a(2) and a(1l) and (not a(0)) after 12 ns;
end sop_arch ;

The code consists of two major units: entity declaration and architecture body. The
entity declaration is:

entity even_detector is
port(
a: in std_logic_vector (2 downto 0);
even: out std_logic
);
end even_detector;

It specifies the input and output ports of this circuit. There are one output port, even, and
one input port, a, which is a three-element array, representing a(2), a(1) and a(0).

The architecture body specifies the internal operation or organization of a circuit. The
first line of the architecture body shows the name of the body, sop_arch (for sum-of-
products architecture), and the corresponding entity, even_detector:

architecture sop_arch of even_detector is
The next line is the signal declaration:
signal pil, p2, p3, p4: std_logic;

The p1, p2, p3 and p4 signals here can be interpreted as wires that connect the internal
parts. The declaration is visible inside this architecture.
The actual architectural description is encompassed within begin and end sop_arch:

even <= (pl or p2) or (p3 or p4) after 20 ns;

pl <= (not a(2)) and (not a(1)) and (not a(0)) after 15 ns;
P2 <= (mnot a(2)) and a(1l) and a(0) after 12 ns;

p3 <= a(2) and (mnot a(1)) and a(0) after 12 ns;

p4 <= a(2) and a(1) and (not a(0)) after 12 ns;

The fundamental building block inside the architecture body is a concurrent statement. For
example, the first line is a concurrent statement:

even <= (pi or p2) or (p3 or p4) after 20 ns;

A concurrent statement can be thought of as a circuit part. The left-hand-side signal or port
is the output, and all the signals and ports appearing in the right-hand-side expression are the
input signals. The right-hand-side expression can be considered as the operation performed
by this circuit. The result is available after a specific amount of propagation delay, which
is specified by the after clause. This particular concurrent statement can be interpreted
as a circuit with inputs, p1, p2, p3 and p4, and with an output, even. It performs the or
operation among the four inputs, and the operation takes 20 ns. The other four statements
can be interpreted in a similar fashion.



BASIC VHDL CONCEPT VIA AN EXAMPLE 29

a(2) {not a(2)) and p1
a(1) (not a(1)) and
a(0) (not a(0))

(not a(2)) and p2
a(1)and
a(0)

(p10r p2) or
{p3 or p4)

even

a(2) and p3
{not a{1)} and
a(0)

a(2) and pd
a(1) and
(not a(0))

Figure 2.2 Conceptual diagram of sop._arch architecture.

This architecture body consists of five concurrent statements, which can be interpreted
as a collection of five circuit parts. These concurrent statements are linked through common
signals (or nets). When a signal appears on both the right- and left-hand sides, it implies
that there is a wire connecting the two parts. Thus, a larger circuit is constructed implicitly
through these connections. The conceptual diagram described by this code is shown in
Figure 2.2.

Note that since each concurrent statement represents a circuit part and its interconnection,
the order of these concurrent statements does not matter. For example, we can rearrange
the code as

p2 <= (not a(2)) and a(1) and a(0) after 12 ns;

p3 <= a(2) and (not a(1)) and a(0) after 12 ns;

even <= (p1l or p2) or (p3 or p4) after 20 ns;

pl <= (not a(2)) and (mot a(1)) and (not a(0)) after 15 ns;
p4 <= a(2) and a(1) and (not a(0)) after 12 ns;

Unlike sequential execution of statements in traditional programming language, con-
current statements are independent and can be activated in parallel. When a concurrent
statement’s input changes, it is “awakened” and evaluates the expression accordingly. The
result will be available after the specific propagation delay, and the new value will be
assigned to the output signal. The change of output signals, in turn, may activate other
statements and invoke a new round of evaluations.

The incorporation of propagation delay with each concurrent statement is the key ingre-
dient to model the operation of hardware and to ensure the proper interpretation of VHDL
code. Sometimes the after clause is omitted because the delay information is not available,
as in

even <= (pl or p2) or (p3 or p4);
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3(2) — odd
8(1) ——————1 a(2) xor a(1) xor a(0) not odd
a{0) ~——o—}

even

Figure 2,3 Conceptual diagram of the xor_arch architecture body.

In this case, VHDL semantics specifies that there is an implicit §-delay (delta delay) asso-
ciated with the operation. A J-delay is an infinitesimal delay that is greater than zero but
smaller than any physical number. The previous line can be interpreted as

even <= (p1l or p2) or (p3 or p4) after J;

Thus, regardless whether there is an after clause, there is always a propagation delay asso-
ciated with a concurrent statement.

The truth table is just one method to realize the even-parity detector circuit. Analternative
is to use an xor (@) operation. Recall that the xor operation can be used to detect odd parity
since the a @ b expression becomes *1’ only when there is a single ’1’ from the inputs.
Thus, the even-parity detector circuit can be implemented by an xor network followed by
an inverter and the expression can be written as

even = (a(2) ® a(1) @ a(0))’
The architecture body based on this description is shown in Listing 2.2.

Listing 2.2 Even-parity detector based on an xor network

architecture xor_arch of even_detector is
signal odd: std_logic;

begin
even <= not odd;

5 odd <= a(2) xor a(l) xor a(0);

end xor_arch;

Again, the two concurrent statements represent two circuit parts, and the conceptual diagram
is shown in Figure 2.3. Since no explicit after clause is used, both statements take a §-delay
to operate. :

2.2.2 Structural description

In a structural view, a circuit is constructed of smaller parts. The description specifies what
types of parts are used and how these parts are connected. The description is essentially a
schematic, representing a block diagram or circuit diagram. Although we treat a concurrent
statement of the preceding section as a circuit part, it is our interpretation and the code is not
considered as a real structural description. Formal VHDL structural description is done by
using the concept of component. A component can be either an existing or a hypothetical
part. It first has to be declared (make known) and then can be instantiated (actually used)
in the architecture body as needed.

Let us consider the even-parity detector circuit again. Assume that there is a library
with predesigned parts, xor2 and not1, which perform the xor and inverting functions
respectively. The even-parity detector circuit can be realized by the two parts, as shown in
the circuit diagram of Figure 2.4. Based on the schematic, a structural description can be
derived accordingly. The code of the architecture body is shown in Listing 2.3.
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unit 1
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Figure 2.4 Structural diagram of the str.arch architecture.

Listing 2.3 Even-parity detector based on a structural description

architecture str_arch of even_detector is
—— declaration for xor gate
component xor?2
port(
5 i1, i2: in std_logic;
ol: out std_logic
)i
end component;
—— declaration for invertor
10 component notl
port (
i1: in std_logic;
ol: out std_logic
H
15 end component;
signal sigl,sig2: std_logic;

begin
— instantiation of the 1st xor instance
20 unitl: xor2
port map (i1 => a(0), i2 => a(l), ol => sigl);
— instantiation of the 2nd xor instance
unit2: xor2
port map (i1l => a(2), i2 => sigl, ol => sig2);
25 —— instantiation of invertor
unit3: notl
port map (il => sig2, ol => even);
end str_arch;

31

Inside the architecture, the components are declared first. For example, the declaration

for xor2is

component xor?2
port (
i1, i2: in std_logic;
ol: out std_logic
);

end component;
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The information contained inside the declaration is similar to that of entity declaration,
which specifies the input and output ports of a circuit. In addition to component declaration,
there is also a declaration for two internal signals, sigt and sig2.

The architecture body consists of three statements, each representing a component in-
stantiation. The first one is

unitl: xor2
port map (il=>a(0), i2=>a(1), ol=>sigl);

There are three elements in this statement. The first is the label, unit1, which serves
as a unique id for this part. The second is the initiated component, xor2. The last is
port map - - -, which specifies the mapping between the formal signals (the I/0 ports used
in component declaration) and actual signals (the signals used in the architecture body). The
mapping indicates that i1, i2 and o1 are connected to a(0), a(1) and sigl respectively.
The code is essentially the textual description of the circuit diagram in Figure 2.4. The three
component instantiations together describe the complete circuit. The connections between
the components are done implicitly by using the same signal names.

Component instantiation is one type of concurrent statement and can be mixed with other
types of concurrent statements. When an architecture body consists only of component
instantiations, as in this example, it is just a textual description of a schematic. This is
a clumsy way for humans to conceptualize and comprehend this kind of representation.
However, textual description put everything into a single VHDL framework so that the
description can be handled by the same software tools. There is special design entry
software that can convert a schematic to structural VHDL code and vice versa.

Component declaration contains only I/O port information, as in entity declaration. The
components can be treated as empty sockets, which provide no clues about their internal
functions. A component can be an existing, predesigned circuit or a hypothetical system
that is still under construction. An architecture body will be bound with the component at
the time of simulation or synthesis. In this example, the components may already be coded,
compiled and stored in a library earlier. Their VHDL descriptions are shown in Listing 2.4.

Listing 2.4 Predesigned component

— 2—input xor gate
library ieee;
use ieee.std_logic_1164. all;
entity xor2 is
5 port(
i1, i2: in std_logic;
ol: out std_logic
)3
end xor2;
10
architecture beh_arch of xor2 is
begin
ol <= il xor i2;
end beh_arch;
15
— invertor
library ieee;
use ieee.std_logic_1164.all;
entity notl is
) port
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i1: in std_logic;
ol: out std_logic
s
end notl;
» architecture beh_arch of notl is

begin
_ ol <= not ii;
end beh_arch;

Structural description and the use of components help the design in several ways. First,
they facilitate hierarchical design. A complex system can be divided into several smaller
subsystems, each represented by a component and designed individually. The subsystem, if
needed, can be further divided into even smaller modules. Second, they provide a method to
use predesigned circuits. These circuits, including complex IP cores and certain specialized
library cells, can be instantiated in the description and treated as black boxes. Finally,
structural description can be used to represent the result of synthesis: a gate- or cell-level
netlist.

2.2.3 Abstract behavioral description

In a large design, the implementation can be very complex and the construction can be a
time-consuming process. In the beginning, we frequently just want to study system op-
eration rather than focusing on construction of the actual circuit, and prefer an abstract
description. Since human reasoning and algorithms resemble a sequential process, the
sequential semantics of traditional language is more adequate. VHDL provides language
constructs that resemble the sequential semantics, including the use of variable and sequen-
tial execution. These features are considered as exceptions to the regular VHDL semantics,
and they are encapsulated in a special construct, known as a process. This kind of code is
sometimes referred to as behavioral description. However, there is no precise definition for
the term behavioral description. According to VHDL, all codes, except for pure component
instantiation, are considered as behavioral.
The basic skeleton of a process is

process (sensitivity_list)
variable declaration;
begin
sequential statements;
end process;

A process has a sensitivity list, which is composed of a set of signals. When a signal in the
sensitivity list changes, the process is activated. Inside the process, the semantic is similar
to that of a traditional programming language. Variables can be used and execution of the
statements is sequential. The use of process is shown in two examples, both describing

the even-parity detector circuit. The first example is based on the xor network, as in the
" xor_arch architecture. The architecture body is shown in Listing 2.5.

Listing 2.5 Even-parity detector based on a behavioral description

architecture behi_arch of even_detector is
signal odd: std_logic;
begin
— invertor
5 even <= not odd;
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process (a)
variable tmp: std_logic;
begin
a(2) tmp:= 0"
) for i in 2 downto 0 loop odd
tmp := tmp xor a(i);
end loop;
a0) odd <= tmp;
end process;

not odd e @VEN

Figure 2.5 Conceptual diagram of the beh1_arch architecture.

— xor network for odd parity
process (a)
variable tmp: std_logic;
begin
10 tmp := ’07;
for i in 2 downto 0 loop
tmp := tmp xor a(i);
end loop;
odd <= tmp;
15 end process;
end behil_arch;

The xor network is described by a process that utilizes a variable and a for loop statement.
Unlike signal and signal assignment in a concurrent statement, the variable and loop do not
have direct hardware counterparts. We treat a process as one indivisible part whose behavior
is specified by the sequential statements. The graphic interpretation of the beh1 architecture

is shown in Figure 2.5.

The second example uses a single process to describe the desired operation in an algo-
rithm. The algorithm first sums up the number of 1's from input, performs a modulo-2
operation to find the remainder, and then uses an if statement to check the value of the

remainder to generate the final result. The VHDL code is shown in Listing 2.6.

Listing 2.6 Even-parity detector based on another behavioral description

architecture beh2_arch of even_detector is
begin
process (a)

variable sum, r: integer;
s begin

sum := 0;

for i in 2 downto 0 loop

if a(i)=’1’ then

sum := sum +1;
10 end if;
end loop ;
r := sum mod 2;

if (r=0) then
even <= 17;
15 else
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process (a)

variable sum, r: integer;
begin
a(2) ——  sum:=0;
for iin 2 downto 0 loop
a(1) ————t if a(i)="1' then ——— even
SUm ;= sum +1;
a(0) ———— end if;
end foop ;

end process;

Figure 2.6 Conceptual diagram of the beh2_arch architecture.

even <='0’;
end if;
end process;
end beh2_arch;

Since there is only one process, the graphic interpretation has only one part, as in Fig-
ure 2.6. While the code is very straightforward and easy to understand, it provides no clues
about the underlying structure or how to realize the code in hardware.

2.24 Testbench

One major use of a VHDL program is simulation, which is used to study the operation of a
circuit or to verify the correctness of a design. Performing simulation is similar to doing an
experiment with a physical circuit, in which we connect the circuit’s input to a stimulus (e.g.,
a function generator) and observe the output (e.g., by logic analyzer). Simulating a VHDL
description is like doing a virtval experiment, in which the physical circuit is replaced by
the corresponding VHDL description. Furthermore, we can develop VHDL utility routines
to imitate the stimulus generator (which is known as a test vector generator) and to collect
and compare the output responses. The framework is known as a testbench.

A simple VHDL testbench for the previous even detection circuit is shown in Listing 2.7.
The testbench includes a test vector generator that generates a stimulus and a verifier that
verifies the correctness of the output response. The testbench consists of an entity declara-
tion and architecture body. Since the testbench is self-contained, no port is specified in the
entity declaration. There are three concurrent statements in the architecture body, including
one component instantiation and two processes. The component instantiation specifies that
the even.detector is used and its /O pins are connected to the internal test generator
and verifier. The first process is the stimulus generator. It produces all possible test vector
combinations, from "000" to "111". These vectors are generated in sequential order, each
lasting for 200 ns. The second process is the verifier. It takes the input test vector, waits
for 100 ns to let the output settle down, checks the output value with the known value and
reports the results. The two processes are for demonstration purposes only, and we don’t
need to worry about the syntax detail.

Listing 2.7 Simple testbench

library ieee;
use ieee.std_logic_1164.all;
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entity even_detector_testbench is
send even_detector_testbench;

architecture tb_arch of even_detector_testbench
component even_detector

port (
10 a: in std_logic_vector (2 downto 0);
even: out std_logic
)

end component;
signal test_in: std_logic_vector (2 downto 0);
15 signal test_out: std.logic;

begin
— instantiate the circuit under test
uut: even_detector
) port map( a=>test_in, even=>test_out);
— test vector generator
process
begin
test_in <= "000";
2 wait for 200 ns;
test_in <= "Q01";
wait for 200 ns;
test_in <= "010";
wait for 200 ns;
30 test_in <= "011i";
wait for 200 ns;
test_in <= "100";
wait for 200 ns;
test_in <= "101";
35 wait for 200 ns;
test_in <= "110";
wait for 200 ns;
test_in <= "111";
wait for 200 ns;
" end process;
—verifier
process
variable error_status: boolean;
begin
s wait on test_in;
wait for 100 ns;
if ((test_in="000" and test_out = ’1’) or
(test_in="001" and test_out ’0°) or
(test_in="010" and test_out ’0’) or
50 (test_in="011" and test_out = ’1°’) or

(test_in="100" and test_out = ’0’) or
(test_in="101" and test_out = ’1’) or
(test_in="110" and test_out = ’1’) or

(test_in="111" and test_out = ’0°'))
55 then
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Figure 2,7 Conceptual diagram of an even_detector testbench.

error_status := false;
else
error_status := true;
end if;
60 — error reporting

assert not error_status
report "test failed."
severity note;
end process;
s end tb_arch;

The graphic interpretation of this VHDL code is shown in Figure 2.7. Most of today’s
simulation software can keep track of the execution of a VHDL program and display the
relevant information in a tabular or graphic format.

2.2.5 Configuration

The VHDL intentionally separates the entity declaration and architecture body into two
independent design units. We can associate multiple architecture bodies with a single
entity declaration. For example, the even_detector entity of this section has about a half
dozen architecture bodies. At the time of simulation or synthesis, we can choose a specific
architecture body to bind with the entity.

An analogy of the entity and architecture is the socket and IC chip. An entity declaration
can be thought of as a socket of a printed circuit board, which is empty but has fixed input
and output pins. Architecture bodies can be thought of as IC chips with the same outline.
While the input and output pins of these chips are identical, their internal circuitry and
performances may be very different. We can select a chip and insert it into the socket
according to our particular need.

VHDL provides a mechanism, known as configuration, to specify the binding informa-
tion. In the previous example, the even_detector entity has five different architecture
bodies. The component declaration and component instantiation of test_bench does not
specify which body is to be used. The test_bench is like a printed circuit board with an
empty socket, and one of the five possible chips can be inserted into the circuit. A simple
configuration declaration unit is shown in Listing 2.8, in which the sop_arch architecture
is bound with the even_detector entity.
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Listing 2.8 Simple configuration

configuration demo_config of even_detector_testbench is
for tb_arch
for uut: even_detector
use entity work.even_detector(sop_arch);
s end for;
end for;
end demo_config;

In a VHDL program, a configuration unit is not always needed. If there is no configu-
ration unit, the entity is automatically bound with the last compiled architecture body. The
configuration is particularly helpful for the development and verification of large systems.

2.3 VHDL IN DEVELOPMENT FLOW

The examples from the previous sections show the basic language constructs and capabilities
of VHDL. The choice of these constructs is not accidental. They are carefully selected to
facilitate system development. In the following subsections, we discuss the use of VHDL
in the development flow and the difference between coding for modeling and coding for
synthesis.

23.1 Scope of VHDL

The scope and coverage of VHDL in a simplified development flow is illustrated in Fig-
ure 2.8, The design of a complex system normally begins with an abstract high-level
description, which describes the desired behavior of the system, and a testbench, which
includes a set of test vectors to exercise various functions of the system. The description
and testbench allow designers to study the system operation in detail, discover any miscon-
ception or inconsistency, clarify and finalize the specification, and eventually establish the
desired I/0 behavior for future verification. The beh2_arch architecture (in Listing 2.6) of
even_detector and the corresponding test_bench (in Listing 2.7) resemble these kinds
of codes. In a large system, the abstract description is normally not suitable for synthesis.
It either leads to unnecessarily complex circuitry or cannot be synthesized at all.

Once the specification and behavior of a system are completely understood, a synthesis-
oriented code can be developed. This code is normally an RT-level description and provides
a “sketch” of the underlying hardware organization so that synthesis software can derive an
efficient implementation. The xor_arch and beh1_arch architecture bodies in Listings 2.2
and 2.5 resemble this kind of description. A synthesis-oriented description needs to be
verified first. By utilizing the VHDL configuration, we can bind the new architecture
body to the entity and use the same testbench and the previously established test vectors.
After comparing the simulation responses with the known results, we can easily determine
whether the new description meets the specification.

Once verified, the synthesis-oriented description can be synthesized. The result is a
gate-level netlist, represented by a structural VHDL description. The code will be similar
to the str_arch architecture body Listing 2.3. In a large design, the description is normally
too tedious for humans to comprehend. Instead, it is usually plugged into the testbench
via a new configuration unit. The testbench will be simulated to verify the correctness of
synthesis and to study the system timing. The netlist description can then be passed to
placement and routing software for further processing. The placement and routing tool
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will generate the layout or configuration files, which are not in VHDL. However, additional
timing information will be augmented to the previous structural description. The new
description will again be plugged into the testbench for final timing verification.

In summary, VHDL provides a unified environment for the entire development flow. It
not only contains constructs to describe the design at various stages of the design, from the
abstraction behavior to the post placement-and-routing cell-level netlist, but also provides
a framework for simulation and verification.

2.3.2 Coding for synthesis

VHDL is used to model all aspects of digital hardware and to facilitate the entire design
process. Aftera VHDL code is developed, it can be “executed” in a simulator or synthesizer.
The natures of the two executions are quite different.

In simulation, the design is realized only in a virtual environment: the software simulator.
The host computer utilizes its instruction set to mimic operation of the circuit. Since the host
computer normally contains one processing unit, the circuit simulation is done sequentially,
in which all constructs and operators of the VHDL code implicitly shared a single resource in
a time-multiplexing fashion. In synthesis, on the other hand, all constructs and operators of
the VHDL code are mapped to hardware. Let us consider a task that consists of 10 addition
operations. In simulation, the number of addition operators, +, in VHDL code does not
play a significant role since only one addition can be simulated at a time. In synthesis, each
addition operator is mapped to a hardware adder, which is fairly complex, and thus it is
desirable to share the hardware and to reduce the number of addition operators in VHDL
description. Similarly, sophisticated control structures, such as loop or conditional branch,
can be easily simulated in a sequential host but cannot be efficiently mapped to hardware.

For synthesis, only a subset of VHDL can be used. Many modeling language constructs,
such as file operations and assertion statements, are not meaningful for hardware implemen-
tation. The others, such as floating-point number or complicated operators, are too complex
to be synthesized automatically. IEEE defines a subset of VHDL that is suitable for RT-level
synthesis in IEEE standard 1076.6. Even though the scope of the synthesizable subset is
restricted, it still contains a rich collection of language constructs and is very flexible. The
same circuit can be coded in a wide variety of descriptions, ranging from abstract high-
level behavioral-like specification to detailed gate-level structural description. Although
all these descriptions can be synthesized, there is no guarantee that the synthesized circuit
is an efficient implementation. The synthesis software can perform only local search and
local optimization, and the resulting circuit depends heavily on the initial description. An
inadequate description consumes a large amount of CPU time during synthesis, introduces
excessively complex circuitry and even fails to be synthesized.

This book focuses on RT-level design and synthesis, not VHDL. We are using VHDL
as a vehicle to describe our intended hardware implementation. Our emphasis is on coding
for synthesis, which means to develop VHDL code that accurately describes the underlying
hardware structure and to provide adequate information to guide the synthesis software to
generate an efficient implementation.

2.4 BIBLIOGRAPHIC NOTES

HDL is very different from a traditional programming language. The book, Hardware
Description Languages: Concepts and Principles by S. Ghosh, discusses general issues
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in designing HDL. Both VHDL and Verilog are IEEE standards. They are documented
by IEEE Standard VHDL Language Reference Manual and IEEE Standard for Verilog
Hardware Description Language respectively. The other relevant VHDL standards are also
documented in the IEEE publications. The standards themselves are difficult to read. The
text, The Designer’s Guide to VHDL by P. J. Ashenden, provides a detailed and compre-
hensive discussion of VHDL. The texts, Starter’s Guide to Verilog 2001 by M. D. Ciletti,
and Verilog HDL, 2nd edition, by S. Palnitkar, provide good coverage on Verilog.

The verification of a design and the derivation of the testbench are two of the major tasks
in the development flow. The text, Writing Testbenches: Functional Verification of HDL
Models, 2nd edition, by J. Bergeron, discusses this topic in detail.

Problems
2.1 What are the syntax and semantics of a programming language?

2.2 Listthree major differences between an HDL and a traditional programming language,
such as C,

2.3 In atraditional programming language, such as C, we can write the statement a=!a,
and in VHDL, we can write a concurrent statement as a <= not a after 10 ns;.

(a) Draw the circuit diagram for the VHDL statement.

(b) Describe the operation of the circuit in part (a).

(c¢) Discuss the differences between the VHDL and C statements.

2.4 For the even-parity detector circuit, rewrite the expression in product-of-sums format,
Revise the code of the sop_-arch architecture body according to the new expression.

2.5 For the VHDL code shown below, treat each concurrent statement as a circuit part
and draw the conceptual block diagram accordingly.

y <= el and e0;
e0 <= (a0 and b0) or ((mot a0) and (mot b0));
el <= (al and bl) or ((mot al) and (mot bl));

2.6 Acircuit diagram consisting of the xor2 component is shown below. Follow the code
of the str_arch architecture body to derive a structural VHDL description for this circuit.

unit 10
a(0 i '
© xor2 o1 sigh
a(1) i2 { unit 2
i1
unit 11 2 xor2 o odd

a(2) i1 ‘
xor2 ol

a(3) 2 sig?
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2.7 The VHDL structural description of a circuit is shown below. Derive the block
diagram according to the code.

library ieese;
use ieee.std_logic_1164.all;
entity hundred_counter is
port (
clk, reset: in std_logic;
en: in std_logic;
q_ten, gq_one: out std_logic_vector (3 downto 0);
p-ten: out std_logic
);
end hundred_counter;

architecture str_arch of hundred_counter is
component dec_counter
port (
clk, reset: in std_logic;
en: in std_logic;
q: out std_logic_vector (3 downte 0);
pulse: out std_logic
)
end component;
signal p_one, p_ten: std_logic;
begin
one_digit: dec_counter
port map (clk=>clk, reset=>reset, en=>en,
pulse=>p_one, g=>q_one);
ten_digit: dec_counter
port map (clk=>clk, reset=>reset, en=>p_one,
pulse=>p_ten, q=>q_ten);
end str_arch;

2.8 From the description of the VHDL process in Section 2.2.3, discuss the differences
between the VHDL process and the traditional programming languages’ procedure and
function.

2.9 We wantto change the input of the even-parity detector circuit from 3 bits to 4 bits, i.e.,
froma(2 downto 0) toa(3 downto 0). Revise the VHDL codes of the five architecture
bodies to accommodate the change.

2.10 If we want to change the input of the even-parity detector circuit from 3 bits to
10 bits, discuss the amount of code modifications needed in each architecture body.

2,11 Explain why VHDL treats the entity declaration and architecture body as two sep-
arate design units.

2.12 Think of two applications that can use the configuration construct of the VHDL.



CHAPTER 3

BASIC LANGUAGE CONSTRUCTS
OF VHDL

To use a programming language, we first have to learn its syntax and language constructs. In
this chapter, we illustrate the basic skeleton of a VHDL program and provide an overview of
the basic language constructs, including lexical elements, objects, data types and operators.
VHDL is a strongly typed language and imposes rigorous restriction on data types and
operators. We discuss this aspect in more detail.

3.1 INTRODUCTION

VHDL is a complex language. It is designed to describe both the structural and behavioral
views of a digital system at various levels of abstraction. Many of the language constructs
are intended for modeling and for abstract, behavioral description. Only a small portion
of VHDL can be synthesized and realized physically in hardware. The IEEE 1076.6 RTL
synthesis standard tries to define a subset that can be accepted by most synthesis tools. The
focus of this book is synthesis, and thus the discussion is limited primarily to this subset.

VHDL was revised twice by IEEE and there are three versions: VHDL-87, VHDL-93
and VHDL-2001. Since only simple, primitive language constructs can be synthesized,
the revisions do not have a significant impact on synthesis except for some differences in
the syntactical appearances. Since IEEE 1076.6 mainly follows the syntax of VHDL-87,
we use the syntax of VHDL-87 in the book in general and highlight the difference if any
VHDL-93 feature is used.

RTL Hardware Design Using VHDL: Coding for Efficiency, Portability, and Scalability. By Pong P. Chu 43
Copyright © 2006 John Wiley & Sons, Inc.
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This chapter discusses only the basic, most commonly used language constructs in VHDL
and some extensions defined in IEEE standards 1076.3 and 1164. In subsequent chapters,
more specialized features are covered within the context.

3.2 SKELETON OF A BASIC VHDL PROGRAM

3.2.1 Example of a VHDL program

A VHDL program is composed of a collection of design units. A synthesizable VHDL
program needs at least two design units: an entity declaration and an architecture body
associated with the entity. The skeleton of a typical VHDL program can best be explained
by an example. Let us consider the even_detector circuit of Chapter 2. The VHDL code
is shown in Listing 3.1. It uses implicit d-delays in signal assignment statements. Note that
we use the boldface font for the VHDL's reserved words.

Listing 3.1 Even-parity detector

library iees;
use ieee.std_logic_1164. all;
entity even_detector is
port(
s a: in std_logic_vector (2 downto 0);
even: out std_logic
);
end even_detector;

o architecture sop_arch of even_detector is
signal pil, p2, p3, p4 : std_logic;
begin
even <= (pl or p2) or (p3 or p4);
pl <= (not a(0)) and (mot a(1)) and (mot a(2));
15 p2 <= (mot a(0)) and a(l) and a(2);
p3 <= a(0) and (not a(1)) and a(2);
p4 <= a(0) and a(1) and (not a(2));
end sop_arch ;

3.2.2 Entity declaration

The entity declaration describes the external interface, or “outline” of a circuit, including the
name of the circuit and the names and basic characteristics of its input and output ports. In
the example, the entity declaration indicates that the name of the circuit is even_detector
and the circuit has a 3-bit input port, a, and a 1-bit output port, even.

The simplified syntax of an entity declaration is

entity entity_name is
port (
port_names: mode data_type;
port_names: mode data_type;

port_names: mode data_type
)i

end entity_name;
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VHDL's interpretation
of signal flow

b X

s,

Figure 3.1 Demonstration circuit for mode.

Note that there is no semicolon (;) in the last port declaration.

A port declaration is composed of the port_names, mode and data_type terms. The
port.names and data_type terms are self-explanatory. The mode term indicates the
direction of the signal, which can be in, out or inout. The in and out keywords indicate
that the signal flows “into” and “out of” the circuit respectively. They represent the fact that
the corresponding port is an input or an output of the circuit. The inout keyword indicates
that the signal flows in both directions and that the corresponding port is a bidirectional
port. The mode term can also be buffer. It can cause a subtle compatibility problem and is
not used in the book.

In the example, the port declaration shows that there are two ports. The a port is an
input signal and its data type is std_logic_vector(2 downto 0), which represents a
3-bit bus, and the even port is an output port and its data type is std_logic.

Note that a port with the out mode cannot be used as an input signal. For example,
consider the simple circuit shown in Figure 3.1. We may be tempted to use the following
code to describe the circuit:

library ieee;
use ieee.std_logic_1164. all;
entity mode_demo is
port(
a, b: in std_logic;
x, y: out std_logic
)
end mode_demo;
architecture wrong_arch of mode_demo is
begin
x <= a and b;
y <= not x;
end wrong_arch;

Since the x signal is used to obtain the y signal, VHDL considers it as an external signal
that “flows into” the circuit, as shown in Figure 3.1. This violates the out mode and leads
to a syntax error. One way to fix the problem is to change the mode of the x port to the
inout mode. It is a poor solution since the x port is not actually a bidirectional port. A
better alternative is to use an internal signal to represent the intermediate result, as shown
in the revised code:

architecture ok_arch of mode_demo is
signal ab: std_logic;

begin
ab <= a and b;
x <= ab;

y <= not ab;
end ok_arch;
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3.2.3 Architecture body

The architecture body specifies the internal operation or organization of a circuit. In VHDL,
we can develop multiple architecture bodies for the same entity declaration and later choose
one body to bind with the entity for simulation or synthesis. The simplified syntax of an
architecture body is

architecture arch_name of entity_name is
declarations;
begin
concurrent statement;
concurrent statement;
concurrent statement;

end arch_name;

The first line of the architecture body shows the name of the body and the corresponding
entity. An architecture body may include an optional declarative section, which consists
of the declarations of some objects, such as signals and constants, which are used in the
architecture description. The example includes a declaration of internal signals:

signal pl, p2, p3, p4: std_logic;

The main part of the architecture body consists of the concurrent statements that describe
the operation or organization of the circuit. As we discussed in Chapter 2, each concurrent
statement describes an individual part and the architecture can be thought of as a collection
of interconnected circuit parts. There are a variety of concurrent statements, which are
discussed in subsequent chapters.

3.2.4 Design unit and library

Design units are the fundamental building blocks in a VHDL program. When a program
is processed, it is broken into individual design units and each unit is analyzed and stored
independently. There are five kinds of design units:

¢ Entity declaration
¢ Architecture body
o Package declaration
o Package body

e Configuration

We have just studied the entity declaration and architecture body. A package of VHDL
normally contains a collection of commonly used items, such as data types, subprograms
and components, which are needed by many VHDL programs. As the name suggests, a
package declaration consists of the declaration of these items. A package body normally
contains the implementation and code of the subprograms.

In VHDL, multiple architecture bodies can be associated with an entity declaration. A
configuration specifies which architecture body is to be bound with the entity declaration.
The package and configuration are discussed in Chapter 13.

A VHDL library is a place to store the design units. Itis normally mapped into a directory
in the computer’s hard disk storage. The software defines mapping between the symbolic
VHDL library name and the physical directory. By VHDL default, the design units will be
stored in a library named work.
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To facilitate the synthesis, IEEE has developed several VHDL packages, including the
std_logic_1164 package and the numeric_std package, which are defined in IEEE stan-
dards 1164 and 1076.3. These packages are discussed in Sections 3.5.2 and 3.5.4. To use
a predefined package, we must include the library and use statements before the entity
declaration. The first two lines of the example are for this purpose:

library ieee;
use ieee.std_logic_1164. all;

The first line invokes a library named ieee, and the second line makes the std_logic_1164
package visible to the subsequent design unit. We must invoke this library because we want

to use some predefined data types, std_logicand std_logic_vector,of thestd_logic_1164
package.

3.2.5 Processing of VHDL code

A VHDL program is normally processed in three stages:
1. Analysis
2. Elaboration
3. Execution

During the analysis stage, the software checks the syntax and some static semantic errors
of the VHDL code. The analysis is performed on a design unit basis. If there is no error,
the software translates the code of the design unit into an intermediate form and stores it
in the designated library. A VHDL file can contain multiple design units, but a design unit
cannot be split into two or more files.

In a complex design, the system is normally described in a hierarchical manner. The top
level may include subsystems as instantiated components, as in the example in Section 2.2.2.
During the elaboration stage, the software starts from the designated top-level entity dec-
laration and binds its architecture body according to the configuration specification. If
there are instantiated components, the software replaces each instantiated component with
the corresponding architecture body description. The process may repeat recursively until
all instantiated components are replaced. The elaboration process essentially selects and
combines the needed architectural descriptions, and creates a single “flattened” description,

During the execution stage, the analyzed and elaborated description is usually fed to
simulation or synthesis software. The former simulates and “runs” the description in a
computer, and the latter realizes the description by physical circuits.

3.3 LEXICAL ELEMENTS AND PROGRAM FORMAT

3.3.1 Lexical elements

The lexical elements are the basic syntactical units in a VHDL program. They include
comments, identifiers, reserved words, numbers, characters and strings.

Comments A comment starts with two dashes, --, followed by the comment text.
Anything after the -- symbol in the line will be ignored. The comment is for documentation
purposes only and has no effect on the code. For example, we have added comments to the
previous VHDL code:
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architecture ok_arch of mode_demo is

signal ab: std_logic; — ab is the internal signal
begin

ab <= a and b;

X <= ab; — ab connected to the x output

y <= not ab;
end ok_arch;

For clarity, we use italic type for comments.

Identifiers An identifier is the name of an object in VHDL. The basic rules to form an
identifier are:

¢ The identifier can contain only alphabetic letters, decimal digits and underscores.
o The first character must be a letter.

o The last character cannot be an underscore.

e Two successive underscores are not allowed.

For example, the following identifiers are valid:
A10, next_state, NextState, mem_addr_enable

On the other hand, the following identifiers violate one of the rules and will cause a syntax
error during analysis of the program:

sig#3, _X10, 7segment, X10_, hi__there
Since VHDL is not case sensitive, the following identifiers are the same:
nextstate, NextState, NEXTSTATE, nEXTsTATE

Itis good practice to be consistent with the use of case. In this book, we use capital letters for
symbolic constants and use a special suffix, such as _n, to represent a special characteristics
of an identifier. For example, the _n suffix is used to indicate an active-low signal. If we
see a signal with a name like oe_n, we know it is an active-low signal.

It is also a good practice to use descriptive identifier for better readability. For example,
consider the name for a signal that enables the memory address buffer. The mem_addr_en
is good, mae is too short, and memory_address_enable is probably too cumbersome.

Reserved words Some words are reserved in VHDL to form the basic language con-
structs. These reserved words are:

abs access after alias all and architecture array assert
attribute begin block body buffer bus case component
configuration constant disconnect downto else elsif end
entity exit file for function generate generic guarded
if impure in inertial inout is label library linkage
literal loop map mod nand new next nor not null of on
open or others out package port postponed procedure
process pure range record register reject rem report
return rol ror select severity shared signal sla sll
sra srl subtype then to transport type unaffected units
until use variable wait when while with xnor xor
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Numbers, characters and strings A number in VHDL can be integer, such as 0, 1234
and 98E7, or real, such as 0.0, 1.23456 or 9. 87ES6. It can be represented in other number
bases. For example, 45 can be represented as 2#101101# and 16#2D# in base 2 and base 16
respectively. We can also add an underscore to enhance readability. For example, 12_3456
is the same as 123456, and 2#0011_1010_1101# is the same as 2#001110101101#.

A character in VHDL is enclosed in single quotation marks, such as >A’, ’Z’ and ’'3°.
Note that 1 and ’1” are different since the former is a number and the latter is a character.

A string is a sequence of characters enclosed in double quotation marks, such as "Hello"
and "10000111". Again, note that that 2#10110010# and "10110010" are different since
the former is a number and the latter is a string. Unlike the number, we cannot arbitrarily
use an underscore inside a string, The "10110010" and "1011_0010" strings are different.

3.3.2 VHDL program format

VHDL is a case-insensitive free-format language, which means that the letter case does
not matter, and “white space” (space, tab and new-line characters) can be inserted freely
between lexical elements. For example, the VHDL program

library ieee;
use ieee.std_logic_1164. all;
entity even_detector is
port(
a: in std_logic_vector (2 downto 0);
even: out std_logic
)i

end even_detector;

architecture eg_arch of even_detector is
signal p1, p2, p3, p4 : std_logic;
begin
even <= (pl or p2) or (p3 or p4);
pl <= (not a(0)) and (mot a(1)) and (not a(2));
p2 <= (not a(0)) and a(i) and a(2);
p3 <= a(0) and (not a(1)) and a(2);
p4 <= a(0) and a(1) and (mot a(2));
end eg_arch;

is the same as

library ieee; use ieee.std_logic_1164.all;entity
even_detector is port(a: in std_logic_vector (2
downto 0);even: out std_logic);end even_detector;
architecture eg_arch of even_detector is signal pi,
P2, p3, p4: std_logic; begin even <= (pl or p2) or
(p3 or p4); pl <= (not a(0)) and (not a(1)) and
(not a(2)); p2 <= (mot a(0)) and a(1) and a(2);

p3 <= a(0) and (mot a(1)) and a(2); p4 <= a(0) and
a(1) and (not a(2)); end eg_arch;

This extreme example demonstrates the importance of proper formatting. Although the
program format does not affect the content or efficiency of a design, it has a significant
impact on human users. An adequately documented and formatted program makes the
code easier to comprehend and helps us to locate potential design errors. It will save a
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tremendous amount of time for future code revision and maintenance. This is perhaps the
easiest way to enhance the reusability of the code. Section 3.6.2 lists the basic guidelines
for code formatting and documentation.

1t is a good idea to include a short “header” comment in the beginning of the file. The
header should provide general information about the design and the “design environment.”
A representative header of the previous VHDL program is shown below.

sk ok o ok ok o ok ok o ok ok sk ok ok ok sk o ok kb ok ok ok ok KK ok sk ok ok ok ok o ok ok ok ok ok ok K K ok ok R Kk
— Author: p chu
— File: even_.det.vhd

—— Design units:

— entity even_detector

— function: check even # of 1’'s from input
— input: a

— output: even

— architecture sop-arch:

— truth—table —based sum—of—products

—— implementation

—— Library/package:
_ iecee.std_logic_1164: to use std_logic

— Synthesis and verification:
_— Synthesis software :

— Options/script :

— Target technology :

—_— Testbench: even_detector.tb

— Revision history

— Version 1.0:

— Date: 9/2005

- Comments: Original

sk ok ok ok ke oKk ok 3k ok ok K K K K K ok ok ok ok Ok ok ok o s O ok ok ok oK ok o sk ok ok oK K ok ok ok ok ok ok K

The first two parts list the author and file name. The “Design units” part provides a brief
description about the design units in the file. The description includes the input and output
ports and the function of the entity, and the implementation method of the architecture body.
The final “Revision history” part provides general information about the development. The
“Library/package” and “Synthesis and verification” parts describe the design environment.
The idea here is to provide the necessary information for users to reconstruct or duplicate the
implementation. The “Library/package” part lists the packages and libraries that are referred
to in the design file, and explains briefly the use of these packages. It is especially essential
when a nonstandard or custom package is involved. The “Synthesis and verification” part
lists the EDA software and the script or relevant options used in the synthesis, the original
targeting device technology, as well as, if available, the testbench used to verify the design.
Since synthesis software from different manufacturers supports different subsets of the
VHDL and may interpret certain VHDL constructs differently, this information allows
future users to duplicate the original implementation.
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3.4 OBJECTS

An object in VHDL is a named item that holds the value of a specific data type. There are
four kinds of objects: signal, variable, constant and file. A construct known as alias is
somewhat like an object. We do not discuss the file object in this book since it cannot be
synthesized.

Signals The signal is the most common object and we already used it in previous ex-
amples. A signal has to be declared in the architecture body’s declaration section. The
simplified syntax of signal declaration is

signal signal_name, signal_name, ... : data_.type;

For example, the following line declares the a, b and c signals with the std_logic data
type:

signal a, b, c: std_logic;

According to the VHDL definition, we can specify an optional initial value in the signal
declaration. For example, we can assign an initial value of >0’ to the previous signals:

signal a, b, c: std_logic := ’07;

While this is sometimes handy for simulation purposes, it should not be used in synthesis
since not many physical devices can implement the desired effect.
The simplified syntax of signal assignment is

signal _name <= projected_waveform;

We examined the concept of projected_waveform in Section 2.2.1 and discuss it in more
detail in Chapter 4. From the synthesis point of view, a signal represents a wire or “a wire
with memory” (i.e., a register or latch).

The input and output ports of the entity declaration are also considered as signals.

Variables A variable is a concept found in a traditional programming language. It can
be thought of as a “symbolic memory location” where a value can be stored and modified.
‘There is no direct mapping between a variable and a hardware part. A variable can only
be declared and used in a process and is local to that process (the exception is a shared
variable, which is difficult to use and is not discussed). The main application of a variable
is to describe the abstract behavior of a system.
The syntax of variable declaration is similar to that of signal declaration:

variable variable_name, variable_name, ... : data_type

An optional initial value can be assigned to variables as well.
The simplified syntax of variable assignment is

variable_name := value_expression;

Note that no timing information is associated with a variable, and thus only a value, not a
waveform, can be assigned to a variable. Since there is no delay, the assignment is known
as an immediate assignment and the notion : = is used. We examine variables in detail when
the VHDL process is discussed in Chapter 5.
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Constants A constant holds a value that cannot be changed. The syntax of constant
declaration is

constant constant _name: data_type := value_expression;
The value_expression term specifies the value of the constant. A simple example is

constant BUS_WIDTH: integer := 32;
constant BUS_BYTES: integer BUS_WIDTH / 8;

Note that we use capital letters for constants in this book.

Since an identifier name and data type convey more information than does a literal
alone, the proper use of constants can greatly enhance readability of the VHDL code and
make the code more descriptive. Consider the behavioral description of even_detector
in Section 2.2.3:

architecture behi_arch of even_detector is
signal odd: std_logic;

begin
tmp := ’0’;
for i in 2 downto 0 loop
tmp := tmp xor a(i);
end loop;

The code uses a “hard literal,” 2, to specify the upper boundary of the loop’s range. It
becomes much clearer if we replace it with a symbolic constant:

architecture behl_arch of even_detector is
signal odd: std_logic;
constant BUS_WIDTH: integer := 3;

begin

tmp := '0°;

for i in (BUS_WIDTH-1) downto O loop
tmp := tmp xor a(i);

end loop;

Alias Alias is not a data object. It is the alternative name for an existing object. As a
constant, the purpose of an alias is to enhance code clarity and readability. One form of the
signal alias is especially helpful for synthesis. Consider a machine instruction of a processor
that is 16 bits wide and consists of fields with an operation code and three registers. The
instruction is stored in memory as a 16-bit word. After it is read from memory, we can use
an alias to identify the individual field:

signal word: std_logic_vector (15 downto 0);

alias op: std_logic_vector(6 downto 0) is word(15 downto 9);
alias regi: std_logic_vector (2 downto 0) is word(8 downto 6);
alias reg2: std_logic_vector (2 downto 0) is word(5 downto 3);
alias reg3: std_logic_vector (2 downto 0) is word(2 downto 0);

Clearly, a name like regl is more descriptive than word(8 downto 6). Unfortunately,
some synthesis software does not support this language construct. We can achieve this in
a somewhat cumbersome way by declaring four new signals in the architecture body and
assigning them with the proper portions of the word signal,
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3.5 DATA TYPES AND OPERATORS

In VHDL, each object has a data type. A data type is defined by:

¢ A set of values that an object can assume.
o A set of operations that can be performed on objects of this data type.

VHDL is a known as strongly typed language, which means that an object can only
be assigned a value of its type, and only the operations defined with the data type can be
performed on the object. If a value of a different type has to be assigned to an object,
the value must be converted to the proper data type by a type conversion function or type
casting.

The motivation behind a strongly typed language is to catch errors in the early stage. For
example, if a Boolean value is assigned to a signal of integer type or an arithmetic operation
is applied to a signal of character type, the software can detect the error during the analysis
stage. On the downside, the rigid type requirement may introduce many type-conversion
functions and make the code cumbersome and difficult to understand.

To facilitate modeling and simulation, VHDL is rich in data types. Intheory, any data type
with a finite number of values can be mapped into a set of binary representations and thus can
be realized in hardware. However, we refrain from doing this since the mapping introduces
another dimension of uncertainty in synthesis and may lead to compatibility problems in
larger designs. Our focus is on a small set of predefined data types that are relevant to
synthesis. For a signal, we are mainly confined to the std_-logic, std_logic_vector,
signed and unsigned data types. A few user-defined data types will be used for specific
applications and they will be discussed as needed.

The following subsections examine the relevant data types, operators and type conver-
sions in VHDL and two synthesis-related IEEE packages.

3.5.1 Predefined data types in VHDL

Commonly used datatypes There are about a dozen predefined data types in VHDL.
Only the following data types are relevant to synthesis:
¢ integer: VHDL does not define the exact range of the integer type but specifies
that the minimal range is from —(23! — 1) to 23! — 1, which corresponds to 32 bits.
Two related data types (formally known as subtypes) are the natural and positive
data types. The former includes O and the positive numbers and the latter includes
only the positive numbers.
e boolean: defined as (false, true).
e bit: definedas (°07, ’1°).
e bit_vector: defined as a one-dimensional array with elements of the bit data type.
The original intention of the bit data type is to represent the two binary values used in
Boolean algebra and digital logic. However, in a real design, a signal may assume other
values, such as the high impedance of a tri-state buffer’s output or a “fighting” value because
of a conflict (e.g., two outputs are wired together, forming a short circuit). To solve the
problem, a set of more versatile data types, std-logic and std_logic_vector, are intro-
duced in the IEEE std_logic_1164 package. To achieve better compatibility, we should
avoid using the bit and bit_vector data types. The std_logic and std_logic_vector
data types are discussed in Section 3.5.2.
In VHDL, data types similar to the boolean and bit types are known as the enumeration
data types since their values are enumerated in a list.
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Table 3.1 Operators and applicable data types of VHDL-93

Operator  Description Data type Data type Data type
of operand a of operand b  of result

a ** b exponentiation integer integer integer

abs a absolute value integer integer

not a negation boolean, bit, boolean, bit,
bit_vector bit_vector

a*b multiplication integer integer integer

a/b division

amod b modulo

a rem b  remainder

+a identity integer integer

- a negation

a+hb addition integer integer integer

a-b subtraction

&b concatenation 1-D array, 1-D array, 1-D array

element element

a sl b shift-left logical bit_vector integer bit._vector

asrlb shift-right logical

aslab shift-left arithmetic

asrl b shift-right arithmetic

arolb rotate left

arorb rotate right

a=b equal to any same as a boolean

a/=b not equal to

a<hb less than scalar or 1-D array sameasa boolean

a<=b less than or equal to

a>b greater than

a>b greater than or equal to

aand b and boolean, bit, same as a same as a

aorb or bit_vector

a xor b Xor

a nand b nand

a nor b nor

a xnor b  xnor

Operators About 30 operators are defined in VHDL. In a strongly typed language, the
definition of data type includes the operations that can be performed on the object of this
data type. It is important to know which data types can be used with a particular operator.

Descriptions of these operators and the applicable data types are summarized in Ta-
ble 3.1. Only synthesis-related data types are listed. Most operators and data types are
self-explanatory. Relational operators and the concatenation operator (&) can be applied to
arrays and are discussed in Section 3.5.2.

Note that the operators in the table are defined in VHDL-93. The shift operators and
the xnor operator are not defined in VHDL-87 and are not supported by IEEE 1076.6 RTL
synthesis standard either.
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Table 3.2 Precedence of the VHDL operators

Precedence Operators

Highest ** abs not
* / mod rem
+ - (identity and negation)
& + - (addition and subtraction)
sll srl sla sra rol ror
= /=< <= > >=
Lowest and or nand nor xor xnor

During synthesis, operators in the VHDL code will be realized by physical components.
Their hardware complexities vary significantly, and many operators, such as multiplication
and division, cannot be synthesized automatically. This issue is discussed in Chapter 6.

The precedence of the operators is shown in Table 3.2, which is divided into seven
groups. The operators in the same group have the same precedence. The operators in the
upper group have higher precedence over the operators in the lower group. For example,
consider the expression

a+ b >cor a<c<d

The + operator will be evaluated first, and then the > and < operators, and then the or
operator.

If an expression consists of several identical operators, evaluation begins at the leftmost
operator and progresses toward the right (known as left-associative). For example, consider
the expression

a+ b+ c+ d

The a + b expression will be evaluated first, and then c is added, and then d is added.

Parentheses can be used in an expression. They have the highest preference and thus can
alter the order of evaluation. For example, we can use parentheses to make the previous
expression be evaluated from right to left:

a+ (b + (c + 4))

Unlike the logic expression used in Boolean algebra, the and and or operators have the
same precedence in VHDL, and thus we must use parentheses to specify the desired order,
asin

(a and b) or (c and 4d)

It is a good practice to use parentheses to make the code clear and readable, even when
they are not needed. For example, the expression ‘

a+b>corac<id
can be written as
((a + b) > ¢c) or (a < d)

This is more descriptive and reduces the chance for error or misinterpretation.
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Table 3.3 VHDL operators versus conventional Boolean algebra notations

VHDL operator Boolean algebra notation

not !

and
or +
xor 87
+ +

Notation To make an expression compact, we use the conventional symbols /, - and +
of Boolean algebra for not, and and or operations in our discussion. They are expressed
as not, and and or in VHDL code. We also assume that - has precedence over +. For
example, in our discussion, we may write

y=a-b+a b

When coded in VHDL, This expression becomes
y <= (a and b) or ((not a) and (mnot b));

The notations used in our discussion and VHDL code are summarized in Table 3.3. Note
that the 4 notation is used as both or and addition operations in our discussion. Since they
are used in different contexts, it should not introduce confusion.

3.5.2 Data types in the IEEE std_logic_1164 package

To better reflect the electrical property of digital hardware, several new data types were
developed by IEEE to serve as an extension to the bit and bit_vector data types. Theses
data types are defined in the std_logic_1164 package of IEEE standard 1164. In this
subsection, we discuss the new data types, the operations defined over these data types and
the conversion between these data types and the predefined VHDL data types.

std_logic and std_logic_vector data types The twomost useful data types defined in
the std_logic_1164 packageare std_logicand std. logic.vector. Formally speaking,
the std_logic data type is actually a subtype of the std_ulogic data type. Since the
std_ulogic data type is “unresolved,” it has some limitations and will not be used in this
book.

To use the new data types, we must include the necessary library and use statements
before the entity declaration:

library ieee;
use ieee.std_logic_1164. all;

The std.-logic data type consists of nine possible values, which are shown in the
following list:

()U}, )x’, !O)’ )1), ’Z’, )w)' )L), )H’, )_))
These values are interpreted as follows:

e ’0’ and ’1’: stand for “forcing logic 0” and “forcing logic 1,” which mean that the
signal is driven by a circuit with a regular driving current.
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e ’Z’: stands for high impedance, which is usually encountered in a tri-state buffer.

e ’L? and ’H’: stand for “weak logic 0” and “weak logic 1,” which means that the
signal is obtained from wired-logic types of circuits, in which the driving current is
weak.

e ’X’ and ’W’: stand for “unknown” and “weak unknown.” The unknown represents
that a signal reaches an intermediate voltage value that can be interpreted as neither
logic 0 or logic 1. This may happen because of a conflict in output (such as a logic-0
signal and a logic-1 signal being tied together). They are used in simulation for an
erroneous condition.

e ’U’: stands for uninitialized. It is used in simulation to indicate that a signal or
variable has not yet been assigned a value.

e ’-’: stands for don’t-care.

Among these values, only ’0’, 1’ and ’Z’ are used in synthesis. The 'L’ and ’H’
values are seldom used now since current design practice rarely utilizes a wired-logic circuit.
The use of *Z’ and the potential problem of ’- are discussed in Chapter 6.

A VHDL array is defined as a collection of elements with the same data type. Each
element in the array is identified by an index. The std_logic_vector data type is an array
of elements with the std.logic data type. It can be thought of as a group of signals or a
bus in a logic circuit.

The use of std_logic_vector can best be explained by a simple example. Let us
consider an 8-bit signal, a. Its declaration is

signal a: std_logic_vector (7 downto 0);

It indicates that the a signal has 8 bits, which are indexed from 7 down to 0. The most
significant bit (MSB, the leftmost bit) has the index 7, and the least significant bit (LSB,
the rightmost bit) has the index 0. We can access a single bit by using an index, such as
a(7) or a(2), and access a portion of the index by using a range, such as a{7 downto 3)
ora(2 downto 0).

Another form of std_logic_vector is using an ascending range, as in

signal a: std_logic_vector(0 to 7);

Since its MSB is associated with index 0 and may cause some confusion if the array is
interpreted as a binary number, we don’t use this form in the book.

Overloaded operators Recall that the definition of a data type includes a set of values
and a set of operations to be performed on this data type. In VHDL, we can use the same
function or operator name for operands of different data types. There may exist multiple
functions with the same name, each for a different data type. This is known as overloadmg
of a function or operator.

In the std_logic.1164 package, all logical operators, which include not, and, nand,
or, nor, xor and xnor, are overloaded with the std_logic and std_logic_vector data
types. In other words, we can perform the logical operations over the objects with the
std_logic or std_logic_vector data types. The overloaded operators are summarized
in Table 3.4. Note that the arithmetic operators are not overloaded, and thus these operations
cannot be applied.

Type conversion The std-logic-1164 package also defines several type conversion
functions for conversion between the bit and std_logic data types as - well as between the
bit.vector and std.logic_vector data types. The relevant functions are summarized
in Table 3.5.
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Table 3.4 Overloaded operators in the IEEE std_logic_1164 package

Overloaded Data type Data type Data type

operator of operand a of operand b  of result

not a std.logic_vector same as a
std_logic

a and b

aorb

a xor b std_logic_vector sameasa same as a

a nand b std_logic

anorb

a xnor b

Table 3.5 Functions in the IEEE std-logic_1164 package

Function Data type Data type

of operand a of result
to.bit(a) std_logic bit
to_stdulogic(a) bit std_logic
to.bitvector(a) std.logic_vector bit_vector
to_stdlogicvector(a) bit_vector std_logic_vector

Use of the conversion function is shown below. Assume that the s1, s2, s3, b1 and b2
signals are defined as

signal s1, s2, 83: std_logic_vector (7 downto 0);
signal b1, b2: bit_vector (7 downto 0);

The following statements are wrong because of data type mismatch:

sl <= bi; — bit_vector assigned to std_logic_vector
b2 <= s1 and s2; — std_logic.vector assigned to bit_vector
83 <= bl or s82; -— or is undefined between bit_vector

— and std_logic_vector
We can use the conversion functions to correct these problems:

81 <= to_stdlogicvector(bl);
b2 <= to_bitvector{(sl and s2);
83 <= to_stdlogicvector(bi) or s2;

The last statement can also be written as

83 <= to_stdlogicvector(bl or to_bitvector(s2));

3.5.3 Operators over an array data type

Several operations are defined over the one-dimensional array data types in VHDL, includ-
ing the concatenation and relational operators and the array aggregate. In this subsection,
we demonstrate the use of these operators with the std_logic_vector data type. Note that
these operators can be applied in any array data types, and thus no overloading is needed.
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Relational operators for an array In VHDL, the relational operators can be applied to
the one-dimensional array data type. The two operands must have the same element type, but
their lengths may differ. When an operator is applied, the two arrays are compared element
by element. The comparison procedure starts from the leftmost element and continues
until a result can be established. If one array reaches the end before another, that array is
considered to be “smaller” and the two arrays are considered to be not equal. For example,
all following operations return true:

ll011"=ll011"’ ll°11ll>ll010ll’ “011“>"00010", lI0110ll>ll011"

Arrays with unequal lengths can sometimes introduce subtle, unexpected results. For
example, assume that the sigl and sig?2 signals are with an array data type of different
lengths and we accidentally write

if (sigl=sig2) then
else

Because of the different lengths, the comparison expression is always evaluated as false,
and thus the then branch will never be taken. This kind of error is difficult to debug since
the code is syntactically correct. In this book, we always use operands of identical length.

Concatenation operator The concatenation operator, &, is very useful for array ma-
nipulation. We can combine segments of elements and smaller arrays to form a larger array.
For example, we can shift the elements of the array to the right by two positions and append
two 0’s to the front:

y <= "00" & a(7 downto 2);

or append the MSB to the front (known as an arithmetic shift):
y <= a(7) & a(7) & a(7 downto 2);

or rotate the elements to the right by two positions:

y <= a(1 downto 0) & a(7 downto 2);

Array aggregate Array aggregate is not an operator. It is a VHDL language construct
to assign a value to an object of array data type. For the std_logic_vector data type,
the simplest way to express an aggregate is to use a collection of std_logic values inside
double quotation marks. For example, if we want to assign a value of "10100000" to the
a signal, it can be written as

a <= "10100000";

Another way is to list each value of the element in the corresponding position, which is
known as positional association. The previous assignment becomes

a <= ()1>,:o:,)1:,)0)’:0:’101,10;,:0));
‘We can also use the form of index => value to explicitly specify the value for each index,
known as named association. The statement can be written as

a <= (7=>’1’, 6=>’0’, 0=>’0’, 1=>’0’, 5=>’1"7,
4=>'0’, 3=>'07, 2=>70');
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It means that the value associated with index 7 (i.e., a(7)) is ’1?, the value associated
with index 6 is ’0?, and so on. Note that the order of the index => value pairs does not
matter. We can combine the index, as in

a <= (715=>’1", 61413121110=>70");
or use a reserved word, others, to cover all the unused indexes, as in
a <= (7]6=>’1’, others=>’0’);

One frequently encountered array aggregate is all 0's, which is used in the initialization
of a counter or a memory element. For example, if we want to assign "00000000" to the
a signal, we can write

a <= (others=>’0);
It is more compact than

a <= "00000000";

The code remains the same even when the width of the a signal is later revised.

354 Data types in the IEEE numeric_std package

In addition to logical operations, digital hardware frequently involves arithmetic operation
as well. If we examine VHDL and the std_logic-1164 package, the arithmetic operations
are defined only over the integer data type. To perform addition of the a and b signals,
we must use the integer data type, as in

signal a, b, sum: integer;
sum <= a + b;

It is difficult to realize this statement in hardware since the code doesn’t indicate the range
(number of bits) of the a and b signals. Although this does not matter for simulation, it is
important for synthesis since there is a huge difference between the hardware complexity
of an 8-bit adder and that of a 32-bit adder.

A better alternative is to use an array of 0’s and 1’s and interpret it as an unsigned or
signed number. We can define the width of the input and the size of the adder precisely, and
thus have better control over the underlying hardware. The IEEE numeric_std package
was developed for this purpose.

Signed and unsigned data types The IEEE numeric_std package is a part of IEEE
standard 1176.3. Two new data types, signed and unsigned, are defined in the package.
Both data types are an array of elements with the std_logic data type. For the unsigned
data type, the array is interpreted as an unsigned binary number, with the leftmost element
as the MSB of the binary number. For the signed data type, the array is interpreted as a
signed binary number in 2’s-complement format. The leftmost element is the MSB of the
binary number, which represents the sign of the number.

Note that the std_logic_vector, unsigned and signed data types are all defined as an
array of elements with the std_-logic data type. Since VHDL is a strongly typed language,
they are considered as three independent data types. It is reasonable since the three data types
are interpreted differently. For example, consider a 4-bit binary representation "1100". It
represents the number 12 if it is interpreted as an unsigned number and represents the number
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—4 if it is interpreted as a signed number. It may also just represent four independent bits
(e.g., four status signals) if it is interpreted as a collection of bits.

Since the signed and unsigned data types are arrays, their declarations are similar to
that of the std_logic_vector data type, as in

signal x, y: signed(15 downto 0);

To use the signed and unsigned data types, we must include the library statement
before the entity declaration. Furthermore, we must include the std_logic_1164 package
since the std_logic data type is used in the numeric_std package. These statements are

library ieee;
use ieee.std_logic_1164. all;
use ieee.numeric_std. all;

Overloaded operators Since the goal of the numeric_std package is to support the
arithmetic operations, the relevant arithmetic operators, which include abs, *, /, mod,
rem, + and -, are overloaded. These operators can now take two operands, with data
types unsigned and unsigned, unsigned and natural, signed and signed as well as
signed and integer. For example, the following are valid assignment statements:

signal a, b, c, d: unsigned(7 downto 0);

A -
1l

a b + c;
d <=b + 1;
e <= (5 + a+ b) - ¢c;

The overloading definition of addition and subtraction follows the model of a physical adder.
The sum automatically “wraps around” when overflow occurs.

The relational operators, which include =, /=, <, >, <= and >=, are also overloaded.
The overloading serves two purposes. First, it makes the operator take two operands with
data types unsigned and natural as well as signed and integer. Second, for two
operands with the unsigned or signed data types, the overloading overrides the original
left-to-right element-by-element comparison procedure and treats the two arrays as two
binary numbers. For example, consider the expression "011" > "1000", If the data type
of the two operands is std_logic_vector, the expression returns false because the first
element of "011" is smaller than the first element of "1000", If the data type of the two
operands is unsigned, the > operator is overloaded and the two operands are interpreted
as 3 and 8 respectively. The expression returns false again. However, if the data type is
signed, they are interpreted as 3 and —8, and thus the expression returns true.

A summary of the overloaded operators is given in Table 3.6.

Functions The numeric_std package defines several new functions. The new functions
include:

e shift left, shift_right, rotate_left, rotate_right: used for shifting and
rotating operations. Note that these are new functions, not the overloaded VHDL
operators.

e resize: used to convert an array to different sizes.

e std.match: used to compare objects with the ’- value.

e to_unsigned, to-signed, to_integer: used to do type conversion between the
two new data types and the integer data type.
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Table 3.6 Overloaded operators in the IEEE numeric.std package

Overloaded  Description Data type Data type Data type
operator of operand a of operand b of result
abs a absolute value  signed signed
-a negation

a*b

a/b unsigned unsigned, natural unsigned
a mod b arithmetic unsigned, natural unsigned unsigned
a rem b operation signed signed, integer signed
a+hb signed, integer signed signed
a-b

a=b

a/=bd unsigned unsigned, natural boolean
a<b relational unsigned, natural unsigned boolean
a<=b operation signed signed, integer boolean
a>b signed, integer signed boolean
a>b

Table 3.7 Functions in the IEEE numeric_std package

Function Description  Data type of Data type of  Data type of
operand a operand b result
shift left(a,b) shift left unsigned, signed  natural same as a

shift_right(a,b) shift right
rotate left(a,b) rotate left
rotate_right(a,b) rotate right

resize(a,b) resize array unsigned, signed natural same as a
std-match(a,b) compare ’-’ unsigned, signed same as a boolean
std.logic.vector,
std_logic
to-integer(a) data type unsigned, signed integer
to_unsigned(a,b) conversion natural natural unsigned
to.signed(a,b) integer natural signed

The functions are summarized in Table 3.7. The shift functions are similar to the VHDL
shift operators but with different data types. Note that the IEEE 1076.6 RTL synthesis
standard supports the shift functions of the numeric_std package but not the shift operators
of VHDL. The synthesis issues of the shift functions and the use of the std_match function
are discussed in Chapter 6.

Type conversion Conversion between two different data types can be done by a fype
conversion function or type casting. There are three type conversion functions in the
numeric_std package: to_unsigned, to_signed, and to_integer. The to_intger
function takes an object with an unsigned or signed data type and converts it to the
integer data type. The to_unsigned and to_signed functions convert an integer into
an object with the unsigned or signed data type of a specific number of bits. It takes
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Table 3.8 Type conversions of numeric data types

Data type of a To data type Conversion function/type casting
unsigned, signed std-logic_vector std._logic_vector(a)

signed, std_logic_vector unsigned unsigned(a)

unsigned, std-logic_vector signed signed(a)

unsigned, signed integer to-integer(a)

natural unsigned to_unsigned(a, size)
integer signed to_signed(a, size)

two parameters. The first is the integer number to be converted, and the other specifies the
desired number of bits (or size) in the new unsigned or signed data type.

The std_logic_vector, unsigned and signed data types are all defined as an array
with elements of the std_logic data type. They are known as closely related data types in
VHDL. Conversion between these types is done by a procedure known as type casting. To
do type casting, we simply put the original object inside parentheses prefixed by the new
data type. This can best be explained by an example:

signal ul, u2: unsigned (7 downto 0);
signal vi1, v2: std_logic_vector (7 downto 0);

ul <= unsigned(vi)
v2 <= std_logic_vector(u2);

Table 3.8 summarizes all the type conversions in the numeric_std package. Note that
the std_logic.vector data type is not interpreted as a number and thus cannot be directly
converted to an integer and vice versa.

Type conversion between various numeric data types is frequently confusing to new
VHDL users. The following examples of signal assignment statements demonstrate and
clarify the use of these data types and data conversions. Assume that some signals are
declared as follows:

library ieee;
use ieee.std_logic_1164.all;
use ieee.numeric_std. all;

signal s1, s2, s3, s4, 85, s6: std_logic_vector(3 downto 0);
signal ui, u2, u3, u4, u5, u6, u7: unsigned (3 downto 0);
signal sg: signed (3 downto 0);

The following assignments to the signals u3 and u4 are valid since the + operator is
overloaded with the unsigned and natural types:

ud <= u2 + ul; —— ok, both operands unsigned
ud <= u2 + 1; —— ok, operands unsigned and natural

On the other hand, the following two assignments are invalid due to type mismatch:

ub <= sg; —— not ok, type mismatch
ué <= 5; —— not ok, type mismatch

We must use type casting and the conversion function to covert the expressions to the proper

type:
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ub <= unsigned(sg); — ok, type casting
u6 <= to_unsigned(5,4); — ok, conversion function

The arithmetic operators are not overloaded with the mixed data types signed and
unsigned, and thus the following statement is invalid:

u7 <= sg + ul; — not ok, + undefined over the types
We must convert the data type of the operand as follows:
u7 <= unsigned(sg) + ul; — ok, but be careful

We need to be aware of the different interpretations of the signed and unsigned types.
For example, "1111" is —1 for the signed type but is 15 for the unsigned type. This kind
conversion should proceed with care.

Two assignments for signals with std_logic_vector data type are

83 <= u3; —— not ok, type mismatch
s4 <= 5; —— not ok, type mismatch

Both of them are invalid because of type mismatch. We must use type casting and a
conversion function to correct the problem:

83 <= std_logic_vector(u3); — ok, type casting
84 <= std_logic_vector(to_unsigned(5,4)); — ok

Note that two type conversions are needed for the second statement.
Arithmetic operations cannot be applied to the std_logic_vector data type since no
overloading is defined for this type. Thus, the following statements are invalid:

85 <= 82 + s8l; — not ok, + undefined over the types
86 <= 82 + 1; —— not ok, + undefined over the types

To fix the problem, we must convert the operands to the unsigned (or signed) data type,
perform addition, and then convert the result back to the std.logic_vector data type.
The revised code becomes

s6 <= std_logic.vector(unsigned(s2) + unsigned(sl)); — ok
86 <= std_logic_vector(unsigned(s2) + 1); - ok

3.5.5 The std_logic_arith and related packages

For historical reasons, several packages similar to the IEEE numeric_std package are used
in some EDA software and existing VHDL codes. The packages are:

o std_logic.arith

e std_logic_unsigned

e std.logic signed
They are not a part of the IEEE standards, but many software vendors store these packages
in the ieee library. They can be invoked by

library ieee;
use ieee.std_logic_1164. all;
use ieee.std_logic_arith.all;
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Because of the use of the ieee term, these packages sometimes cause confusion. They are
not used them in this book. For reference, we explain briefly the use of these packages in
this subsection.

The purpose of the std_logic_arith package is similar to that of the numeric_std
package. It defines two new data types, unsigned and signed, and overloads the +, - and
* operators with these data types. The package also includes similar shifting, sizing and
type conversion functions although the names of these functions are different.

Instead of defining new data types, the std_logic.unsigned and std.logic_signed
packages define overloaded arithmetic operators for the std_logic_vector data type. In
other words, the std_logic_vector data type is interpreted as unsigned and signed binary
numbers in the std_logic_unsigned and std_logic_signed packages respectively. The
two packages clearly cannot be used at the same time.

With one of the packages, the previous code segments becomes valid and no type con-
version is needed:

library ieee;

use ieee.std_logic_1164.all;

use ieee.std_logic_arith.all;
use ieee.std_logic_unsigned.all;

signal s1, s2, 83, s4, 85, s6: std_logic_vector (3 downto 0);

sb <= 82 + 81; — ok, + overloaded with std_logic_vector
s6 <= 82 + 1; — ok, + overloaded with std_logic_vector

The overloading means that we can treat the std_logic_vector data type as “a col-
lection of bits” as well as an unsigned binary number. This package actually beats the
motivation behind a strongly typed language. The IEEE 1076.6 RTL synthesis standard
states explicitly that the unsigned and signed data types defined in IEEE 1076.3 are the
only array types that can be used to represent unsigned and signed numbers.

3.6 SYNTHESIS GUIDELINES

In this and subsequent chapters, we summarize the good design and coding practices men-
tioned in the chapter and present them as a set of guidelines at the end of the chapter. Since
the book focuses on synthesis, these guidelines are applied only to synthesis, not to gen-
eral modeling or simulation. These suggested guidelines help us to avoid some common
mistakes and to increase the compatibility, portability and efficiency of VHDL codes.

3.6.1 Guidelines for general VHDL

e Use the std_logic_vector and std.logic data types instead of the bit_vector
or bit data types.

e Use the numeric_std package and the unsigned and signed data types for syn-
thesizing arithmetic operations.

e Use only the descending range (i.e., downto) in the array specification of the unsigned,
signed and std_logic_vector data types.

o Use parentheses to clarify the intended order of evaluation.
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¢ Don’t use user-defined data types unless there is a compelling reason.
¢ Don’t use immediate assignment (i.e.,: =) to assign an initial value to a signal.

¢ Use operands with identical lengths for the relational operators.

3.6.2 Guidelines for VHDL formatting

Include an information header for each file.

Be consistent with the use of case.

Use proper spaces, blank lines and indentations to make the code clear.

Add necessary comments.

Use symbolic constant names to replace hard literals in VHDL code.

¢ Use meaningful names for the identifiers.

Use a suffix to indicate a signal’s special property, such as _n for the active-low signal.

Keep the line width within 72 characters so that the code can be displayed and printed
properly by various editors and printers without wrapping.

3.7 BIBLIOGRAPHIC NOTES

VHDL is a complex language. It is formally specified by IEEE standard 1076. The most
recent version, VHDL-2001, is specified by IEEE standard 1076-2001, and VHDL-87 is
specified by IEEE standard 1076-1987. The standard is documented in IEEE Standard
VHDL Language Reference Manual, which sometimes known simply as LRM. Since LRM
gives the formal definition of VHDL, it is difficult to read. The book, The Designer’s Guide
to VHDL, 2nd edition, by P. . Ashenden, provides a detailed and comprehensive discussion
of the VHDL language. It has several chapters on basic VHDL concepts, data types and
alias. The book, VHDL for Logic Synthesis by A. Rushton, has a chapter on numeric_std
package and provides a detailed discussion on functions.

After synthesis software is installed, we can normally find the files that contain the source
codes of IEEE std_logic_1164 and numeric_std packages as well as std_logic_arith,
std_logic_unsigned and std_logic_signed packages. These packages provide de-
tailed information about operator overloading and function definitions.

Although formatting is not real design, good coding style and documentation are es-
sential for a project, especially for a large project that involves many design teams. Many
organizations set and enforce their own coding and documentation standards. An example
is VHDL Modeling Guideline from the European Space Agency.

The text, Reuse Methodology Manual by M. Keating and P. Bricaud, also provides some
rules and guidelines for the use and formatting of VHDL.

Problems

3.1 Write an entity declaration for a memory circuit whose input and output ports are
shown below. Use only the std_logic or std_logic.vector data types.
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addr: 12-bit address input

wr.n: 1-bit write-enable control signal
oe_n: 1-bit output-enable control signal
data: 8-bit bidirectional data bus

3.2 'What is the difference between a variable and a signal?
3.3 What is a strongly typed langnage?
3.4 What is the limitation of using the bit data type to represent a physical signal?

3.5 Assume that a is a 10-bit signal with the std_logic_vector(8 downto 0) data
type. List the 10 bits assigned to the a signal.

(a) a <= (others=>’1’);

(b) a2 <= (11315(719=>"1’, others=>’0’);

(€) a <= (917]2=>17, 6=>70", 0=>’1’, 1]5]8=>’0", 3]4=>’0");

3.6 Assume that a and y are 8-bit signals with the std_logic_vector(7 downto 0)
data type. If the signals are interpreted as unsigned numbers, the following assignment
statement performs a / 8. Explain.

y <= "000" & a(7 downto 3);

3.7 Assume the same a and y signals in Problem 3.6. We want to perform a mod 8 and
assign the result to y. Rewrite the previous signal assignment statement using only the &
operator.

3.8 Assume that the following double-quoted strings are with the std-logic_vector
data type. Determine whether the relational operation is syntactically correct. If yes, what
is the result (i.e., true or false)?

(a) "0110" > "1001"

(b) "0110" > "0001001"

(c) 2#1010# > "1010"

(d) 1010 > "1010"

3.9 Repeat Problem 3.8, but assume that the data type is unsigned.
3.10 Repeat Problem 3.8, but assume that the data type is signed.

3.11 Determine whether the following signal assignment is syntactically correct. If not,
use the proper conversion function and type casting to correct the problem.

library ieee;
use ieee.std_logic_1164. all;
use ieee.numeric_std. all;

signal s1, s2, s3, s4, s5, s6, s7: std_logic_vector (3 downto 0);

signal w1, u2, u3, u4, u5, ub, u7: unsigned(3 downto 0);
signal sg: signed(3 downto 0);

A

uil

= 2#0001#;
u2 <= u3 and u4;
ub <= 81 + 1;
ué <= u3 + u4 + 3;
u7 <= (others=>’1’);
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82 <= s3 + 84 -1;

s5 <= (others=>’1?);
86 <= u3 and u4;

sg <= u3 - 1;

s7 <= not sg;

3.12 Forthe following VHDL segment, correct the type mismatch with proper conversion
function(s).

library ieee;
use jeee.std_logic_1164. all;
use ieee.numeric_std. all;

signal src, dest: std_logic_vector (15 downto 0);
signal amount: std_logic_vector (3 downto 0);

dest <= shift_left(src, amount);

3.13 Forthe following VHDL segment, correct the type mismatch with proper conversion
function(s).

library ieee;
use ieee.std_logic_1164.all;
use ieee.numeric_std. all;

signal src, dest: std_logic_vector (15 downto 0);
signal amount: std_logic_vector (3 downto 0);

dest <= src sll amount;

3.14  For the following VHDL segment, correct the type mismatch with proper conversion
function(s).

library ieee;
use ieee.std_logic_1164.all;

use ieee.std_logic_arith.all;
use ieee.std_logic_unsigned. all;

signal src, dest: std_logic_vector (15 downto 0);
signal amount: std_logic_vector (3 downto 0);

dest <= src sll amount;



CHAPTER 4

CONCURRENT SIGNAL ASSIGNMENT
STATEMENTS OF VHDL

Concurrent signal assignment statements are simple, yet powerful VHDL statements. Since
there is a clear mapping between the language constructs of an assignment statement and
hardware components, we can easily visualize the conceptual diagram of the VHDL de-
scription. This helps us to develop a more efficient design. According to the VHDL
definition, concurrent signal assignment statement has two basic forms: the conditional
signal assignment statement and the selected signal assignment statement. For discussion
purposes, we add an additional one, the simple signal assignment statement, which is a
conditional assignment statement without any condition expression.

4.1 COMBINATIONAL VERSUS SEQUENTIAL CIRCUITS

A digital circuit can be broadly classified as combinational or sequential. A combinational
circuit has no internal memory or state and its output is a function of inputs only. Thus, the
same input values will always produce an identical output value. In a real circuit, the output
may experience a short transient period after an input signal changes. However, the identical
output value will be obtained when the signal is stabilized. In term of implementation, a
combinational circuit is a circuit without memory elements (latches or flip-flops) or a closed
feedback loop. A sequential circuit, on the other hand, has an internal state, and its output
is a function of inputs as well as the internal state.

Although concurrent signal assignment statements can be used to describe sequential
circuits, this is not the preferred method. We limit the discussion to combinational circuits
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in this chapter. We use the VHDL process to specify sequential circuits and study them in
Chapter 8.

4.2 SIMPLE SIGNAL ASSIGNMENT STATEMENT

4.2,1 Syntax and examples

A simple signal assignment statement is a conditional signal assignment statement without
the condition expression and thus is a special case of a conditional signal assignment state-
ment. In VHDL definition, the simplified syntax of the simple signal assignment statement
can be written as

signal_name <= projected_waveform;

The projected_waveform clause consists of two kinds of specifications: the expression
of a new value for the signal and the time when the new value takes place. For example,
consider the statement

y <= a + b + 1 after 10 ns;

which indicates that whenever the a or b signal changes, the expression a+b+1 will be
evaluated, and its result will be assigned to the y signal after 10 ns.

The time aspect of projected_waveform normally corresponds to the internal propa-
gation delay to complete the computation of the expression. However, since the propagation
delay depends on the components, device technology, routing, fabrication process and op-
eration environment, it is impossible to synthesize a circuit with an exact amount of delay.
Therefore, for synthesis, explicit timing information is not specified in VHDL code. The
default 4-delay is used in the projected waveform. The syntax becomes

signal_name <= value_expression;

The value_expression clause can be a constant value, logical operation, arithmetic op-
eration and so on. Following are a few examples:

status <= ’'17;
even <= (p1 and p2) or (p3 and p4);
arith_out <= a + b + ¢ - 1;

Note that the timing aspect is not dropped. It is just specified implicitly as a é-delay. The
previous statements implicitly imply

status <= 1’ after §;
even <= (p1 and p2) or (p3 and p4) after §;
arith_out <= <= a + b + ¢ - 1 after §;

42,2 Conceptual implementation

Deriving the conceptual hardware block diagram for a simple signal assignment statement
is straightforward. The entire statement can be thought of as a circuit block. The output of
the circuit is the signal in the left-hand side of the statement, and the inputs are all the signals
that appear in the right-hand-side value expression. We then map each operator of the value
expression into a smaller circuit block and connect their inputs and outputs accordingly.
The conceptual diagrams of three previous statements are shown in Figure 4.1.



SIMPLE SIGNAL ASSIGNMENT STATEMENT 71

1 status

even
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arith_result

Figure 4.1 Conceptual diagrams of three simple signal assignment statements.

Note that these diagrams are only conceptual sketches. They will be transformed and
simplified during synthesis. The circuit sizes of different VHDL operators vary significantly,
and some of them, like the division operator, cannot be synthesized automatically. We
examine this issue in detail in Chapter 6.

4.2.3 Signal assignment statement with a closed feedback loop

According to VHDL definition, it is syntactically correct for a signal to appear on both sides
of a concurrent signal assignment statement. When an output signal is used as an input in
the value expression, a closed feedback loop is formed. This may lead to the creation of an
internal state or even oscillation. Consider the following VHDL statement:

q <= (q and (not en)) or (d and en);

In this example, the q signal is the output but also appears in the right-hand-side expression.
The q output takes the value of the d signal if the en signal is "1’ and it keeps its previous
value if the en signal is 0’. Note that the output (i.e., ) now depends on input (i.e., en
and d) as well as internal state (the previous value of q), and thus the circuit is no longer a
combinational circuit. If we modify the previous statement by inverting q:

q <= ((not q) and (mnot en)) or (d and en);

the q output oscillates between "0’ and ’1° when the en signal is 0",

When a signal assignment statement contains a closed feedback loop, itbecomes sensitive
to internal propagation delay and may exhibit race or oscillation. This kind of circuit
confuses synthesis software and complicates verification and testing processes. It is a
really bad coding practice and should be avoided completely in VHDL synthesis. The
shortfall of delay-sensitive design and the disciplined derivation of sequential circuits are
discussed in detail in Chapters 8 and 9.
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Table 4.1 Function table of a 4-to-1 multiplexer

Input OQutput

s X
00 a
01 b
10 c
11 d

4.3 CONDITIONAL SIGNAL ASSIGNMENT STATEMENT

4.3.1 Syntax and examples

The simplified syntax of conditional signal assignment statement is shown below. As in
Section 4.2.2, we assume that a timing specification is embedded implicitly in é-delay and
use value_expression to substitute the projected_waveform clause:

signal_name <= value_expr_1 when boolean_expr_1 else
value_expr_2 when boolean_expr_2 else
value_expr_3 when boolean_expr_3 else

value_expr_n;

The boolean_expr_i (i=1, 2, 3,.. ., n) term is a Boolean expression that returns true or
false. These Boolean expressions are evaluated successively in turn until one is found to
be true, and the corresponding value expression is assigned to the output signal. In other
words, the first Boolean expression, boolean_expr_1, is checked first. Ifitis true, the first
value expression, value_expr_1, will be assigned to the output signal. If it is false, the
second Boolean expression, boolean_expr._2, will be checked next. This process continues
until all Boolean expressions are checked. The last value expression, value_expr_n, will
be assigned to the signal if none of the Boolean expressions is true.

In the remaining subsection, we use several simple examples to illustrate the use of
conditional signal assignment statements. The circuits include a multiplexer, a decoder, a
priority encoder and a simple arithmetic logic unit (ALU).

Multiplexer A multiplexer is essentially a virtual switch that routes a selected input
signal to the output. The function table of an 8-bit 4-to-1 multiplexer is show in Table 4.1.
In this circuit, the a, b, ¢ and d signals can be considered as input data, and the s signal
is a 2-bit selection signal that specifies which input data will be routed to the output. The
VHDL code for this circuit is shown in Listing 4.1.

Listing 4.1 4-to-1 multiplexer based on a conditional signal assignment statement

library ieee;
use ieee.std_logic_1164. all;
entity mux4 is
port (
5 a,b,c,d: in std_logic_vector (7 downte 0);
s: in std_logic_vector (1 downto 0);
x: out std_logic_vector (7 downto 0)
);
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end mux4;
10
architecture cond_arch of mux4 is
begin
x <= a when (s="00") else
b when (s="01") else
15 ¢ when (s="10") else
d;
end cond_arch;

The first two lines are used to invoke the IEEE std_logic_1164 package so that the
std_logic data type can be used. The next part is the entity declaration, which specifies
the input and output ports of this circuit. The input ports include a, b, ¢ and d, which
are four 8-bit input data, and s, which is the 2-bit control signal. The output port is the
8-bit x signal. The architecture part uses one conditional signal assignment statement. The
Boolean condition s="00" is evaluated first. If it is true, the first value expression, a, is
assigned to x. If it is false, the next Boolean condition, s="01", will be evaluated. If it is
true, b is assigned to x or the next Boolean expression, s="10", will be evaluated. If all
three Boolean expressions are false, the last value expression, d, is assigned to x.

There is an issue about the use of the std_logic data type. At first glance, it seems
that s is implied to be "11" when the first three Boolean expressions are false, and thus
d is assigned to x. However, there are nine possible values in std_logic data type and,
for the 2-bit s signal, there are 81 (i.e., 9%9) possible combinations, including the expected
"oo", 01", "10" and "11" as well as the metavalue combinations, such as "0Z", "UX",
"0-" and so on. Therefore, d is assigned to x for the "11" condition, as well as other
77 metavalue combinations. However, these 77 combinations can exist only in simulation.
In a real circuit, comparison of metavalues, as in s="0Z", cannot be implemented, and
sometimes is meaningless, as in s="UX", In general, except for the limited use of ’Z’, the
metavalues of the std_logic data type will be ignored by synthesis software, and thus the
final circuit will be synthesized as we originally expected. Some synthesis software also
accepts VHDL code using *X’ for the unused metavalue combinations:

x <= a when (s="00") else
b when (s="01") else
¢ when (s="10") else
d when (s="11") else
Jxl;

The code leads to the same physical implementation.

Binary decoder A binary decoder is an n-to-2™ decoder, which has an n-bit input
and a 2™-bit output. Each bit of the output represents an input combination. Based on the
value of the input, the circuit activates the corresponding output bit. The function table of
a simple 2-to-22 decoder is shown in Table 4.2. The VHDL code for this circuit is shown
in Listing 4.2,

Listing 4.2 2-to-2° binary decoder based on a conditional signal assignment statement

library ieee;
use ieee.std_logic_1164. all;
entity decoder4 is
port(
5 s: in std_logic_vector (1l downto 0);
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Table 4.2 Function table of a 2-to-2? binary decoder

Input Output

] X
00 0001
01 0010
10 0100

11 1000

Table 4.3 Function table of a 4-to-2 priority encoder

Input Output

r code active
== 11 1
01-- 10 1
001- 01 1
0001 00 1
0000 QO 0

x: out std_logic_vector (3 downto 0)
)
end decoder4;

warchitecture cond_arch of decoder4 is
begin
x <= "0001" when (s="00") else
"0010" when (s="01") else
"0100" when (s="10") else
15 "1000";
end cond_arch;

Again, the first two lines are used to invoke the IEEE std_logic.1164 package. The
entity declaration shows the circuit with a 2-bit input, a, and a 4-bit output, x. The architec-
ture body uses one conditional signal assignment statement, which evaluates the Boolean
conditions s="00", s="01" and s="10" one after another. The value expressions are
constants that reflect the desired output patterns.

Priority encoder A priority encoder checks the input requests and generates the code
of the request with highest priority. The function table of a 4-to-2 priority encoder is shown
in Table 4.3. There are four input requests, r(3), r(2), r(1) and r(0). The outputs
include a 2-bit signal, code, which is the binary code of the highest-priority request, and a
1-bit signal, active, which indicates whether there is an active request. The r (3) request
has the highest priority. When it is asserted, the other three requests are ignored and the
code signal becomes "11". If r(3) is not asserted, the second highest request, r(2), is
examined. If it is asserted, the code signal becomes "10". The process repeats until all
the requests are checked. The code signal returns "00" when only r(0) is asserted or no
request is asserted. The active signal can be used to distinguish the two conditions. The
VHDL code for this circuit is shown in Listing 4.3. The requests are grouped together and
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Table 4.4 Function table of a simple ALU

Input Output
ctrl result

0-- src0 + 1

100 srcO + srci
101 src0 - srci
110 srcOandsrcl
111 src0 or srcl

represented by a 4-bit signal, r. Individual bits of the r signal are checked in descending
order, starting with r (3). Since operation of the priority encoder is similar to the definition
of the conditional signal assignment statement, it is a good way to code this type of circuit
(note the simple Boolean expressions in the code). A separate simple signal assignment
statement is used to describe the active output.

Listing 4.3 4-to-2 priority encoder based on a conditional signal assignment statement

library ieee;

use ieee.std_logic_1164.all;

entity prio_encoder42 is
port (

s r: in std_logic_vector (3 downto 0);
code: out std_logic_vector (1 downto 0);
active: out std_logic

);
end prio_encoder4?2;
10
architecture cond_arch of prio_encoder42 is
begin
code <= "11" when (r(3)=’'1’) else
“10" when (r(2)=’1’) else
15 "01" when (r(1)=’1’) else
uoon;
active <= r(3) or r(2) or r(1) or r(0);
end cond_arch;

Simple ALU An ALU performs a set of arithmetic and logical operations. The function
table of a simple ALU is shown in Table 4.4. The inputs include two 8-bit data sources, scrQ
and srci, and a control signal, ctrl, which specifies the function to be performed. The
output is the 8-bit result signal, which is the computed result. There are five functions,
including three arithmetic operations, which are incrementing, addition and subtraction, and
two logical operations, which are bitwise and and or operations. Furthermore, we assume
that the input and output are interpreted as signed integers when an arithmetic function is
selected.

For this circuit, the input data are interpreted as a collection of bits for the logical
operation and as a signed number for the arithmetic operation. To achieve better portability,
we normally use the std_logic_vector data type in the port declaration and then convert
it to the desired data type in architecture body. The VHDL code is shown in Listing 4.4. The
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IEEE numeric_std package and its signed data type are used to facilitate the arithmetic
operation. When an addition, subtraction or incrementing operation is specified, we first
convert the input to the signed data type, perform the operation and then convert the result
back to the std-logic_vector data type. To make the code clear, we introduce three
separate simple signal assignment statements and the sum, diff, and inc signals for the
intermediate results of arithmetic operations.

Listing 4.4 Simple ALU based on a conditional signal assignment statement

library ieee;
use ieee.std_logic_1164. all;
use ieee.numeric_std. all;
entity simple_alu is
5 port(
ctrl: in std_logic_vector (2 downto 0);
src0, srcl: in std_logic_vector (7 downto 0);
result: out std_logic_vector (7 downto 0)
s
wend simple_alu;

architecture cond_arch of simple_alu is
signal sum, diff, inc: std_logic_vector (7 downto 0);
begin
15 inc <= std_logic_vector(signed(src0)+1);
sum <= std_logic_vector(signed(srcO)+signed(srcl));
diff <= std_logic_vector(signed(srcO)-signed(srcl));
result <= inc when ctrl(2)='0’ else
sum when ctrl (1 downto 0)="00" else
20 diff when ctrl (1 downto 0)="01" else
src0 and srcl when ctrl (1 downto 0)="10" else
src0 or srcil;
end cond_arch;

4.3.2 Conceptual implementation

Recall that the syntax of the simplified conditional signal assignment statement is

signal_name <= value_expr_1 when boolean_expr_1 else
value_expr_2 when boolean_expr_2 else
value_expr_3 when boolean_expr_3 else

value_expr._n;

Its semantics specifies that the Boolean expressions are evaluated in descending order until
a condition is true, and then the corresponding value expression is assigned to the output
signal. The key to implementing this construct is to achieve the desired descending order
of evaluations. In a traditional programming language, descending order is implicitly
observed because of the sequential execution of a single, shared CPU. In synthesis, we
must use hardware to achieve this task.

The structure of conditional signal assignment statement implies a priority routing net-
work since the Boolean expressions are evaluated in an orderly manner and the one evaluated
earlier assumes a higher priority. Once the evaluation of a Boolean expression is true, the
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Figure 4.2 Conceptual diagram of an abstract multiplexer.

result of the corresponding value expression is routed to output. Unlike the temporal ex-
ecution of the traditional programming language, the priority routing network is done on
a spatial basis. Furthermore, since we cannot create hardware dynamically, dedicated
hardware is needed for each Boolean expression and each value expression.

In summary, constructing the conditional signal assignment statement requires three
groups of hardware:

o Value expression circuits

¢ Boolean expression circuits

¢ Priority routing network
Value expression circuits realize the value expressions, value_expr_1, - - -, value_expr.n,
and one of the results is routed to the output. Boolean expression circuits realize the Boolean
expressions, boolean_expr.1, - -, boolean_expr.n, and their values are used to control
the priority routing network. The priority routing network is the structure that routes and
controls the desired value to the output signal.

A priority network can be implemented by a sequence of 2-to-1 multiplexers. To better
illustrate the conceptual implementation, we utilize an “abstract multiplexer.” Recall that a
multiplexer is like a switch and uses a selection signal to select an input port and connect it
to the output port. Any signal appearing in that input port will be routed to the output port.
In an abstract multiplexer, the selection and input port designation are specified around the
data type of the selection signal. Each input port is designated to a value of the data type
of the selection signal, and one input port is selected according to the current value of the
selection signal. For example, if the selection signal has a data type of boolean, there will
be two input ports, designated as T (for true) and F (for false) respectively. If the selection
signal has a value of true, the data from the T port will be routed to output. On the other
hand, if the selection signal has a value of false, the data from the F port will be selected.
The block diagram of this multiplexer is shown in Figure 4.2. The number of bits of the
inputs and output may vary, and the symbol, n, is used to designate the width of the buses.
During synthesis, the symbolic values can easily be mapped into binary representations of
a physical multiplexer.

With the 2-to-1 abstract multiplexer, we can start to construct a priority network. Let
us first consider a simple conditional signal assignment statement that has only one when
clause:

sig <= value_expr_1 when boolean_expr_1 else
value_expr_2;

The conceptual realization of this statement is shown in Figure 4.3. The three “clouds”
represent the implementations of value_expr_1, value_expr.2 and boolean_expr_1
respectively. The result of boolean_expr_1 is connected to the selection signal of the
multiplexer. If it is true, the result from value_expr_1 will be routed to the output port
of the multiplexer. Otherwise, the result from value_expr_2 will be routed to the output
port.
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Figure 4.3 Conceptual diagram of a simple conditional signal assignment statement.

When there are more when clauses, we can perform the previous process repetitively
and build the routing network in stages. Consider a statement with three when clauses:

sig <= value_expr_1 when boolean_expr_1 else
value_expr_2 when boolean_expr_2 else
value_expr_3 when boolean_expr_3 else
value_expr_4;

The construction sequence is shown in Figure 4.4. First we construct the first when
clause, which corresponds to the highest-priority condition. Ifthe resultof boolean_expr_1
is true, the result of the corresponding value expression, value_expr_1, is routed to out-
put, as shown in Figure 4.4(a). On the other hand, if the result of boolean_expr_1 is
false, the result from the remaining part of the statement, which is shown as a single
cloud, will be used. This cloud can be constructed using a multiplexer similar to the first
when clause, with its output connected to the F port of the rightmost multiplexer, as shown
in Figure 4.4(b). After repeating this process one more time, we construct the third when
clause and complete the conceptual implementation, as shown in Figure 4.4(c).

The construction process can be applied repeatedly to any number of when clauses.
Since each clause will introduce one extra stage of multiplexer network, the depth of the
network grows as the number of clauses increases. Although the conceptual construction
is straightforward, it is difficult for synthesis software to transform an extremely deep
multiplexer network to an efficient implementation. Thus, we should be aware of the
impact on the number of when clauses. Discussion in Chapter 6 provides more insight on
this issue.

4.3.3 Detailed implementation examples

Obtaining the conceptual diagram is only the first step in synthesis. We must derive the
more detailed implementation for the multiplexers and “clouds” and eventually construct
everything by using cells of the given technology library. Many of these tasks can be done
in synthesis software, which is discussed in Chapter 6. In this section, we manually derive
some simple circuits from VHDL segments to illustrate the basic synthesis process.

Implementation of a 2-to-1 multiplexer An abstract 2-to-1 multiplexer has two sym-
bolic ports, T and F. We can map it directly to a regular 2-to-1 multiplexer. The schematic
of a 1-bit 2-to-1 multiplexer is shown in Figure 4.5(a). The two abstract ports, T and F, are
mapped to the ¢1 and ¢0 ports respectively. In this circuit, the and cells can be interpreted
as “passing gates,” controlled by separate enable signals. When the enable signal is '1°,
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Figure 4.4 Construction of a multi-condition conditional signal assignment statement.
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Figure 4.5 Gate-level implementation of a multiplexer.

the gate is open and the input signal is passed to output. When it is ’0’, the gate is closed
and the output is set to *0’. The two enable signals are sel and sel’ respectively, and thus
one of the inputs will be passed to output. In terms of a logic expression, the output can be
expressed as

o=sel'-i0+ sel -il

For an n-bit 2-to-1 multiplexer, the control signals remain the same, but the gating
structure will be duplicated » times. The schematic of a 3-bit 2-to-1 multiplexer is shown
in Figure 4.5(b).

Example 1 Consider the following VHDL segment:

signal a,b,y: std_logic;

y <= 0’ when a=b else
)1,;

This is a simple conditional signal assignment statement that contains one when clause. The
conceptual diagram is shown in Figure 4.6(a). Let us consider the implementation of a=b,
which is a 1-bit comparison circuit. According to VHDL definition, the input data type is
std_logic, which has nine values, and the output data type is boolean, whose value can
be true or false. During synthesis, we only consider the >0’ and 1’ of the std_logic



CONDITIONAL SIGNAL ASSIGNMENT STATEMENT 81

0
0 T
f F y y
1
<
a— =
b D
b
(a) Conceptual diagram (b) Gate-level diagram

Figure 4.6 Synthesis of example 1.

Table 4.5 Truth table of a 1-bit comparator.

input output
ab a=b

00
01
10
11

_— OO

data type since the other seven values are meaningless for a physical circuit. We also map
the true and false to logic 1 and logic 0 of the physical circuit. Now the operation a=b
can be represented in a traditional truth table, as shown in Table 4.5. The function can be
expressed as @’ - b’ + a - b, or simply (a & b)’, which is an xnor gate. We can now refine the
conceptual diagram into the gate-level implementation, and the new diagram is shown in
Figure 4.6(b). We can derive the logic expression of this circuit. Based on the expression
of the multiplexer, the output can be expressed as

y = sel -0+ sel - il

The sel, i0 and ¢1 are connected to (e b)’, ’1” and "0’ respectively, and thus the expression

becomes
y=sel -i0+sel-il=(adb)” -1+ (ad®b) -0

which can be simplified to
y=a®db

Thus, the final simplified circuit is a single xor gate.

Example 2 Consider the following VHDL segment:

signal r: std_logic_vector (2 downto 1);
signal y: std_logic_vector (i1 downto 0);

y <= "10" when r(2)='1' else
"01" when r(1)=’1’ else
IIOOII;
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Figure 4.7 Synthesis of example 2.
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The conceptual diagram of this segment is shown in Figure 4.7(a). The next step is to derive
gate-level implementation. Since the output has two bits, we have to split the conceptual
diagram into two single-bit diagrams, as in Figure 4.7(b). Note that the implementation of
the Boolean expressions, r(2)="1’ and r(1)="1’, consists simply of the r(2) and r (1)
signals themselves, and no additional logic is needed. After we substitute the multiplexer
with its gate-level implementation, the resulting circuits are shown in Figure 4.7(c). We
can derive the logic expressions for y(0) and y(1) using a procedure similar to that in
example 1. After simplification, these logic expressions become

y(1) =r(2)
y(0) =r(2)' - (1)

Example 3 Consider the following VHDL segment:

signal a,b,c,x,y,r: std_logic;

r <= a when x=y else
b when x>y else
C;

The conceptual diagram of this segment is shown in Figure 4.8(a). By using the procedure
to realize the a=b expression of example 1, we can derive the implementation of the x>y
expression, which is z-y’. The corresponding gate level circuit is shown in Figure 4.8(b). We
can also derive the logic expression for the output and perform simplification to reduce the
circuit size. The logic expression for this circuit is more involved and manually simplifying
this circuit becomes a tedious task. This task is better left for software, which is good for a
mechanical and repetitive procedure.

Example 4 Consider the following VHDL segment:

signal a,b,r: unsigned(7 downto 0);
signal x,y: unsigned (3 downto 0);

r <= a+b when x+y>1 else
a-b-1 when x>y and y!=0 else
a+l;

The initial block diagram of this segment is shown in Figure 4.9(a). While the initial block
diagram is similar to the previous examples, the value expressions and Boolean expressions
are more involved. More complex components, such as an adder and comparator, are
needed for implementation. After we implement the clouds, the block diagram is shown
in Figure 4.9(b). We can continue to refine the circuit by replacing these components with
their gate-level implementations and eventually derive the logic expressions. With these
components, performing gate-level simplification becomes much more difficult and good
coding practice at the RT level can improve the circuit efficiency significantly. These issues
are discussed in Chapter 7.
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4.4 SELECTED SIGNAL ASSIGNMENT STATEMENT

4.4.1 Syntax and examples

The simplified syntax of the selected signal assignment statement is shown below. As in
conditional signal assignment statement, we assume that the timing specification is embed-
ded in §-delay and substitute value_expression for the projected_waveform clause.

with select_expression select
signal_name <= value_expr_1 when choice_1,
value_expr_2 when choice_ .2,
value_expr_3 when choice_3,

value_expr_n when choice_n;

The selected signal assignment statement assigns an expression to a signal according to the
value of select_expression. Itis somewhatlike a case statement in a traditional program-
ming language. The select_expression term is used as the key for selection and it must
result in a value of a discrete type or one-dimensional array. In other words, the evaluated
result of select_expression can have only a finite number of possibilities. For example,
a signal of the bit_vector (1 downto 0) data type can be used as select_expression
since it contains only four possible values: "00", "01", "10" or "11". A choice (i.e,,
choice_i) must be a valid value or a set of valid values of select_expression. The
values of choices have to be mutually exclusive (i.e., no value can be used more than once)
and all inclusive (i.e., all values have to be used). In other words, all possible values of
select_expression must be covered by one and only one choice. The reserved word,
others, can be used in the last choice (i.e., choice_n) to represent all the previously unused
values.

We use the same multiplexer, binary decoder, priority encoder and ALU circuit of Sec-
tion 4.3.1 to illustrate use of the selected signal assignment statement. Since this statement
is a natural match to implement a truth table, an additional example is included for this

purpose.

Multiplexer Let us consider the 8-bit 4-to-1 multiplexer of Section 4.3.1. The VHDL
code for this circuit is shown in Listing 4.5. The entity declaration is identical and thus is
omitted.

Listing 4.5 4-to-1 multiplexer based on a selected signal assignment statement

architecture sel_arch of mux4 is
begin
with s select
x <= a when "00",

5 b when "O01",

¢ when "10",

d when others;
end sel_arch;

We need to be cautious about the metavalues of the std_logic and std_logic_vector
data types. There is an issue about the use of these data types for select_expression,
Recall that there are nine possible values in std_logic data type and there are 81 (i.e., 9+9)
possible combinations for the 2-bit s signal, including the expected "00", "01", "10" and
111" a5 well as 77 other metavalue combinations, such as "ZZ", "UX" and "0-", which are
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not meaningful in synthesis and will be ignored accordingly. In the code, the when others
clause covers the "11" choice as well as the metavalue combinations. We cannot simply
list the last choice as "11":

with s select
x <= a when "00",
b when "01",
¢ when "10",
d when "11";

This causes a syntax error since only 4 of 81 values are covered, and thus the choices are
not all-inclusive. Some synthesis software may accept the following form:

with s select
x <= a when "00",
b when "01",
¢ when "10",
d when "1i1",
’X’>when others; — may also use '—’

The last line will be ignored during synthesis and the same physical circuit will be derived.

Binary decoder The VHDL code for the 2-to-22 binary decoder of Section 4.3.1 is
shown in Listing 4.6. Again, it is necessary to use others as the last choice to cover all
metavalue combinations.

Listing 4.6 2-to-2? binary decoder based on a selected signal assignment statement

architecture sel_arch of decoder4 is
begin
with s select
x <= "0001i" when "00",
s "0010" when "O1",
"0100" when "10",
"1000" when others;
end sel_arch;

Priority encoder The VHDL code for the 4-to-2 priority encoder is shown in Listing 4.7,
Recall that "11" will be assigned to code if r(3) is ’1’, This consists of eight possible
input combinations of the r signal, which are "1000", "1001", "1010", ..., "1111", All
of them are listed in the first choice. Note that the symbol | is used for specifying multiple
values.

Listing 4.7 4-to-2 priority encoder based on a selected signal assignment statement

architecture sel_arch of prio_encoder42 is
begin
with r select
code <= "11" when "1000"1"1001"|"1010"|"1011"|
5 "1100"|"1101"|"1110" | "1111",
"10" when "0100"|"0101"{"0110"|"0111",
"01" when "0010"["0011",
"00" when others;
active <= r(3) or r(2) or r(1) eor r(0);
wend sel_arch;
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Intuitively, we may wish to use the ’~’ (don’t-care) value of the std_logic data type to
make the code compact:

with r select
code <= "ii1" when "1---",
"10" when "01--",
"01" when "001-",
"00" when others;

While this is syntactically correct, the code does not describe the intended circuit. In VHDL,
the ’-’ value is treated just as an ordinary value of std.logic. Since the ’-’ value will
never occur in the physical circuit, the "1---", "01--" and "001-" choices will never be
met and the code is the same as

code <= "Q0";
This, of course, is not the intended priority encoding circuit. We discuss this issue in more
detail in Chapter 6.

A simple ALU The VHDL code of the simple ALU specified in Table 4.4 is shown in
Listing 4.8. Note that all four possible combinations of the ctrl signal, "000", "001",
"010" and "011", are listed in the first choice.

Listing 4.8 Simple ALU based on a selected signal assignment statement

architecture sel_arch of simple_alu is
signal sum, diff, inc: std_logic_vector (7 downto 0);
begin
inc <= std_logic_vector(signed(src0)+1);
s sum <= std_logic_vector(signed(srcO)+signed(srcl));
diff <= std_logic_vector(signed(src0)-signed(srcil));
with ctrl select

result <= inc when "000"|"O0O1"|"O10"|"011",
sum when "100",
10 diff when "101",
src0 and srci when "110",
srcO0 or srcl when others; — "111"

end sel_arch;

Truth Table Implementation A truth table can be used to specify any combinational
function. It is a simple and useful way to describe a small, random combinational circuit.
Because the choices list all the possible combinations, the selected signal assignment state-
ment is a natural match for the truth table description. A simple two-input truth table is
shown in Table 4.6.

The corresponding VHDL code is shown in Listing 4.9. The a and b signals are con-
catenated as tmp, which is then used as the select expression. Each row of the truth table
now becomes a choice in the selected signal assignment statement and the truth table is
implemented accordingly.

Listing 4.9 Truth table based on selected signal assignment statement

library ieee;
use ieee.std_logic_1164. all;
entity truth_table is
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Table 4.6 Truth table of a two-input function

Input Output

ab y
00 0
01 1
10 1
11 1

port(
5 a,b: in std_logic;
y: out std_logic
);
end truth_table;

w architecture a of truth_table is
signal tmp: std_logic_vector (i1 downto 0);
begin
tmp <= a & b;
with tmp select
15 y <= 0’ when "00",
1’ when "01",
1’ when "10",
1’ when others; — "I11"
end a;

4.4.2 Conceptual implementation

Recall that the syntax of the selected signal assignment is

with select_expression select
signal_name <= value_expr_1 when choice_ 1,
value_expr_2 when choice_2,
value_expr_3 when choice_3,

value_expr_n when choice_n;

Conceptually, the selected signal assignment statement can be thought as an abstract multi-
plexing circuit that utilizes a selection signal to route the result of the designated expression
to output. In this multiplexing circuit, each possible value of select_expression has a
designated input port in the multiplexer, and select_expression works as the selection
signal of this multiplexer. Once its value is determined, the result of the designated value
expression is passed to the output port of the multiplexer. In Section 4.3.2, we utilized an ab-
stract 2-to-1 multiplexer with a selection signal of the boolean data type. The multiplexer
can be generalized for other kinds of selection signals. For example, consider a selection
signal with k£ + 1 different possible values, c0, c1, ..., ck. The abstract multiplexer has
k + 1 ports, each corresponding to a value, as shown in Figure 4.10.

It is possible that the input and output have multiple bits and the symbol n is used
to designate the width of the buses. The conceptual implementation of the selected signal
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Figure 4.11 Conceptual diagram of a selected signal assignment statement.

assignment statement involves a single abstract multiplexer and is straightforward. Consider
the following statement:

with select_expression select
sig <= value_expr_0 when c0,
value_expr_1 when ci,
value_expr_n when others;

We assume that select_expression may result in one of five possible values: c0, c1i,
c2, c3 and c4. Note that the last choice, when others, of this statement implicitly covers
¢2, ¢3 and c4. The conceptual realization of this statement is shown in Figure 4.11.

The clouds represent the implementation of the three value expressions, value_expr_0,
value_expr.1 and value_expr.n, and select_expression respectively. The evaluated
results of the value expressions are fed into the designated input ports of the multiplexer.
The result of select_expressionis connected to the selection port of the multiplexer and
its value determines which data will be routed to the output port.

All selected signal assignment statements have a similar conceptual diagram. The main
difference is in the number of values that select_expression can assume, which in turn
determines the size of the multiplexer. Despite the simple conceptual construction, certain
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Figure 4.12 Circuit symbol and gate-level diagram of a 4-to-1 multiplexer.

device technologies may have difficulty supporting an extremely wide multiplexing circuit.
Thus, we should be aware of the number of values in a selection expression.

4.4.3 Detailed implementation examples

As in the implementation of a conditional signal assignment statement, we continue the
refining process and realize the conceptual diagram using gate-level components. Following
examples illustrate the derivation.

k-to-1 multiplexer An abstract multiplexer with & symbolic ports can easily be mapped
to a physical k-to-1 multiplexer with a log, k-bit selection signal. The symbol and gate-
level diagram of a 1-bit 4-to-1 multiplexer are shown in Figure 4.12. We use the binary
representations, "00", "01", "10" and "11", as the names of the ports. The upper and cells
can be thought of as “passing gates,” each controlled by an enable signal. The corresponding
input will be passed to output when the enable signal is *1°. The bottom part is a 2-to-4
binary decoder that generates the enable signal, in which only one bit is activated. In term
of a logic expression, the output can be expressed as

y = (sel(1)-sel(0)’) 50+ (sel(1) - sel(0)) i1+ (sel(1)-sel(0)’) 52+ (sel(1)-sel(0))-43
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For a multiple-bit 4-to-1 multiplexer, the enable signals remain the same, but the gating
structure will be duplicated multiple times.

In VHDL code, the selection signal frequently has a data type of std_logic_vector,
which includes many meaningless combinations. During synthesis, only *0°* and ’1’ of
nine values will be used, as we discussed in Section 4.3.1.

Example 1 Consider the following VHDL segments:

signal s: std_logic_vector (i downto 0);

with s select
x <= (a and b) when "11",
(a or ) when "O1%|"10",
’Q? when others;

This is a simple selected signal assignment statement. The selection expression has a
data type of std_logic_vector(1 downto 0). Again, although there are 81 possible
values, only 00", "01", "10" and "11" are meaningful for synthesis. Thus, only a 4-to-
1 multiplexer is needed. The conceptual diagram and the refined gate-level diagram are
shown in Figure 4.13. The logic expression for this circuit is

z = (5(1)"-5(0)') -0+ (s(1)’ - 5(0)) - (a+b) + (s(1) - 5(0)") - (a +b) + (s(1) - 5(0)) - (a- b)

Example 2 Consider the truth table in Table 4.6 and the corresponding VHDL segment:

tmp <= a & b;
with tmp select
y <= 0’ when "00",
’1°’ when 01",
1’ when "10",
’1’ when others;

The conceptual diagram is shown in Figure 4.14. The logic expression for this circuit is
y=(a -b)- 0+ b)-1+(a-¥)-1+(a-b)-1

The expression can be simplified to a + b, which is the or function specified in the truth
table.

Example 3 Consider the following VHDL segment:

signal a,b,r: unsigned(7 downto 0);
signal s: std_logic_vector (1 downto 0);

with s select
r <= a+l when "11",
a-b-1 when "10",
a+b when others;

This segment contains more sophisticated expressions. After we realized the value expres-
sion clouds, the block diagram is shown in Figure 4.15.
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CONDITIONAL SIGNAL ASSIGNMENT STATEMENT VERSUS SELECTED SIGNAL ASSIGNMENT STATEMENT 93

Figure 4.15 Block diagram of example 3.

4.5 CONDITIONAL SIGNAL ASSIGNMENT STATEMENT VERSUS
SELECTED SIGNAL ASSIGNMENT STATEMENT

4.5.1 Conversion between conditional signal assignment and selected
signal assignment statements

From the synthesis point of view, the conditional signal assignment statement and the
selected signal assignment statement imply two different routing structures. The examples
presented in the previous sections show that we can describe the same circuit using either
a conditional or a selected signal assignment statement. Actually, the conversion between
the two forms of assignment statements is always possible.

Converting a selected signal assignment statement to a conditional signal assignment
statement is straightforward. Consider a general selected signal assignment statement in
which there are eight possible choices: c7, c6, ..., c1, c0.

with sel select
sig <= value_expr_0 when cO,
value_expr_1 when c1(c3|c5,
value_expr_2 when c2{c4,
value_expr_n when others;

We can describe the choices of a when clause as a Boolean expression. For example,
when c2|c4 can be expressed as (sel=c2) or (sel=c4). We can then use these
Boolean expressions and convert the selected signal assignment statement to a new for-
mat:

sig <=
value_expr_0 when (sel=c0) else
value_expr_1 when (sel=c1l) or (sel=c3) or (sel=c5) else
value_expr_2 when (sel=c2) or (sel=c4)else
value_expr_n;

Converting a conditional signal assignment statement to a selected statement needs more
manipulation. Let us consider a general conditional signal assignment statement with three
Boolean expressions:

sig <= value_expr_0 when bool_exp_0 else
value_expr_1 when bool_exp_1 else
value_expr_2 when bool_exp_2 else
value_expr_n;
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We need a 3-bit auxiliary selection signal, sel, in which each bit represents a Boolean ex-
pression. By specifying proper choices, we can preserve the desired priority. The converted
code is

sel(2) <= ’1’ when bool_exp_0 else ’0’;

sel (1) <= ’1’ when bool_exp_1 else ’0°;

sel (0) <= ’1’ when bool_exp_2 else ’07;

with sel select

sig <= value_expr_O when "100"|"101"|"110"|"111",

value_expr_1 when "010"|"011",
value_expr_2 when "001",
value_expr_n when others;

Note that the pattern of the selected signal assignment statement is very similar to a prior-
ity encoder except that the request signals are replaced by the auxiliary selection signals
generated from the Boolean expressions.

4.5.2 Comparison between conditional signal assignment and selected
signal assignment statements

In the selected signal assignment statement, each choice can be considered as a row in a
table. Thus, this statement is a good match for a circuit described by a truth table or a
truth table-like function table, such as the decoder, truth table and multiplexer examples
discussed in Section4.4. On the other hand, it is less effective when certain input conditions
are given preferential treatment. For example, if we examine the priority encoder example of
Section 4.4, eight of the 16 ports of the multiplexer are connected to an identical expression.

The conditional signal assignment statement implicitly enforces the order of the operation
and is a natural match for a circuit that needs to give preferential treatment for certain
conditions or to prioritize the operations. The priority encoder is a good example of this
kind of circuit. The conditional signal assignment statement can also handle complicated
conditions. For example, we can write

pc_next <=
pc_.reg + offset when (state=jump and a=b) else
pc_reg + 1 when (state=skip and flag=’1’) else

A conditional signal assignment statement is less effective to describe a truth table since it
may “overspecify” the circuit and thus add unnecessary constraints. For example, consider
the multiplexer of Section 4.3.1. The original VHDL segment is

x <= a when (s="00") else
b when (s="01") else
¢ when (s="10") else
d;

The code can also be written as

x <= ¢ when (s="10") else
a when (s="00") else
b when (s="01") else
d;

or
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x <= ¢ when (s="10") else
b when (s="01") else
a when (3="00") else
d;

or many other possible variations. These codes give priority to the condition in the first
when clause, although it is not part of the original specification. While this type of code is
not wrong, the extra constraint may introduce additional circuitry and make synthesis and
optimization more difficult.

Ideally, the synthesis software should automatically determine the optimal structure and
derive identical gate-level implementation, regardless of the language constructs used in
VHDL descriptions. In reality, this is possible only for small, trivial designs. For a general
design, we have to be aware of the effect of the statements on the routing and the “layout”
of the final implementation. These aspects are illustrated by examples in Chapter 7.

4.6 SYNTHESIS GUIDELINES

¢ Avoid a closed feedback loop in a concurrent signal assignment statement,

e Think of the conditional signal assignment and selected signal assignment statements
as routing structures rather than sequential control constructs.

e The conditional signal assignment statement infers a priority routing structure, and a
larger number of when clauses leads to a long cascading chain.

o The selected signal assignment statement infers a multiplexing structure, and a large
number of choices leads to a wide multiplexer.

4.7 BIBLIOGRAPHIC NOTES

Since the focus of the book is on synthesis, only synthesis-related aspects of the concurrent
signal assignment statement are discussed. The complete discussion on these constructs
can be found in The Designer’s Guide to VHDL, 2nd edition, by P. J. Ashenden.

The discussion in this chapter illustrates the general schemes to realize concurrent signal
assignment statements in various routing structures. Individual synthesis software may
map certain language constructs to specific hardware architectures. The software vendors
sometimes include a “style guide” in their documentation. It shows the mapping between
hardware architecture and the VHDL language constructs.

Problems

4.1 Addanenable signal, en, to a 2-to-4 decoder. When en is ’1°, the decoder functions
as usual. When en is ’0°, the decoder is disabled and output becomes "0000". Use the
conditional signal assignment statement to derive this circuit. Draw the conceptual diagram.

4.2 Repeat Problem 4.1, but use the selected signal assignment statement instead.

4.3 Consider a 2-by-2 switch. It has two input data ports, x(0) and x(1), and a 2-bit
control signal, ctrl. The input data are routed to output ports y(0) and y(1) according
to the ctrl signal. The function table is specified below.
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Input Output Function
ctrl y1 yo0
00 x1 x0O pass
01 x0 x1 cross
10 x0 x0 broadcast x0
11 x1 x1 broadcast x1

(a) Use concurrent signal assignment statements to derive the circuit.

(b) Draw the conceptual diagram.

(c) Expand it into gate-level circuit and derive the simplified logic expression in

sum-of-products format.

44 Consider a comparator with two 8-bit inputs, a and b. The a and b are with the
std_logic_vector data type and are interpreted as unsigned integers. The comparator
has an output, agtb, which is asserted when a is greater than b. Assume that only a single-
bit comparator is supported by synthesis software. Derive the circuit with concurrent signal

assignment statement(s).

4.5 Repeat Problem 4.4, but assume that a and b are interpreted as signed integers.

4.6 We wish to design a shift-left circuit manually. The inputs include a, which is an
8-bit signal to be shifted, and ctrl, which is a 3-bit signal specifying the amount to be
shifted. Both are with the std_logic_vector data type. The output y is an 8-bit signal
with the std_logic_vector data type. Use concurrent signal assignment statements to

derive the circuit and draw the conceptual diagram.



CHAPTER 5

SEQUENTIAL STATEMENTS OF VHDL

As the name suggests, sequential statements are executed in sequence. The semantics of
these statements is more like that of a traditional programming language. Since they are not
compatible with the general concurrent execution model of VHDL, sequential statements
have to be enclosed inside a construct known as a process. The main purpose of sequential
statements is to describe and model a circuit’s “abstract behavior.” Unlike concurrent
signal assignment statements, there is no clear mapping between sequential statements and
hardware components. Some statements and coding styles are difficult or even impossible to
synthesize. To use processes and sequential statements for synthesis, the VHDL description
has to be coded in a disciplined way so that the code can be faithfully mapped into the
intended hardware configuration.

5.1 VHDL PROCESS

5.1.1 Introduction

A process is a VHDL construct that contains a set of actions to be executed sequentially.
These actions are known as sequential statements. The process itself is a concurrent state-
ment. It can be interpreted as a circuit part enclosed inside a black box whose behavior is
described by the sequential statements. We may or may not be able to construct physical
hardware that exhibits the desired behavior.

Sequential statements include a rich variety of constructs, and they can exist only inside
a process. The execution inside a process is sequential, and thus the order of the state-
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ments is important. Many sequential constructs don’t have clear counterparts in hardware
implementation, and are difficult, if not impossible, to synthesize. We examine the use and
synthesis of the following sequential statements in this chapter:

e wait statement

sequential signal assignment statement
variable assignment statement

if statement

case statement

simple for loop statement

More sophisticated loop statements as well as two other sequential statements, the exit
and next statements, are discussed in Chapter 14. Note that we should not confuse sequential
statements with sequential circuits. Sequential statements are VHDL statements inside a
process, and sequential circuits are circuits with internal states. A process and its internal
sequential statements can be used to describe a combinational or sequential circuit. As in
Chapter 4, our discussion in this chapter is limited to combinational circuits.

The process has two basic forms. The first form has a sensitivity list but no wait statement
inside the process. The second form has one or more wait statements but no sensitivity list.
Because of its clarity, we use mainly the first form in this book. The second form is examined
briefly in Section 5.1.3.

5.1.2 Process with a sensitivity list

The syntax of a process with a sensitivity list is

process (sensitivity_list)
declarations;

begin
sequential statement;
sequential statement;

end process;

The sensitivity_list is alist of signals to which the process responds (i.e., is “sensitive
t0”). The declarations part consists of various declarations that are local to the process.

Whereas the appearance of a VHDL process is like a function or procedure of a traditional
programming language, the behavior of the process is very different. A VHDL process is
not invoked (or called) by another routine. It acts like a circuit part, which is either active
(known as activated) or inactive (known as suspended). A VHDL process is activated when
a signal in the sensitivity list changes its value, like a circuit responding to an input signal.
Once a process is activated, its statements will be executed sequentially until the end of the
process. The process is then suspended until the next change of signal. A simple process
with a single sequential signal assignment is

signal a,b,c,y: std_logic; — in architecture declaration

process (a,b,c)
begin

y <= a and b and c;
end process;
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When any input (i.., a, b or ¢) changes, the process is activated and its statement is executed.
The statement evaluates the expression and assigns the result to the y signal. This process
simply describes a three-input and circuit with a, b and c inputs and y output.

One tricky issue about the process is the incomplete sensitivity list, which is a list with
one or more input signals missing. For example, the b and ¢ signals are omitted from the
sensitivity list of the previous example:

signal a,b,c,y: std_logic;

process (a)
begin

y <= a and b and c;
end process;

When the a signal changes, the process is activated and the circuit acts as expected. On the
other hand, when the b or c signal changes, the process remains suspended and the y signal
keeps its previous value. This implies that the circuit has some sort of memory element
that is triggered at both positive and negative edges of the a signal. When the a signal
changes, the expression is evaluated and the result is stored in the memory element. This
is not the circuit behavior we expected, and it cannot be synthesized by regular hardware
components,

For a combinational circuit, the output is a function of input. This implies that the circuit
responds to any input change. Thus, all input signals of a combinational circuit should
be included in the sensitivity list. A process with incomplete sensitivity can be used to
describe a circuit with internal memory and thus infer a memory element. This is discussed
in Chapter 8.

5.1.3 - Process with a wait statement

A process with wait statements has one or more wait statements but no sensitivity list. The
wait statement has several forms:

wait on signals;
wait until boolean_expression;
wait for time_expression;

Use of the wait statement can best be explained by an example. The code segment of
Section 5.1.2 can be rewritten as

process
begin
y <= a and b and c;
wait on a, b, c;
end process;

Note that there is no sensitivity list. The process starts automatically after the system
initialization. It continues the execution until a wait statement is reached and then becomes
suspended. The statement wait on a, b, c means that the process waits for a change
in the a or b or c signal. When one of them changes value, the process is activated. It
executes to the end of the process, then returns to the beginning of the process and continues
execution. It becomes suspended again when reaching the wait statement. The overall effect
of this process describes a three-input and gate, as in the previous example.

The behavior of the two other types of wait statements is similar except that the process
waits until a special Boolean condition is asserted or waits for a specific amount of time.
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Since multiple wait statements are allowed, a process with wait statements can be used to
model complex timing behavior and sequential events. However, in synthesis, only few
well-defined forms of wait statements can be used, and normally only one wait statement
is allowed in a process. Since a process with a sensitivity list can clearly show the input
signals and make the code clearer and more descriptive, we prefer this form and normally
don’t use the wait statement in this book.

5.2 SEQUENTIAL SIGNAL ASSIGNMENT STATEMENT

The syntax of a sequential signal assignment is identical to that of the simple concurrent
signal assignment of Chapter 4 except that the former is inside a process. It can be written
as

signal_name <= projected_waveform;

The projected_waveform clause consists of a value expression and a time expression,
which is generally used to represent the propagation delay. As in the concurrent signal
assignment statement, the delay specification cannot be synthesized and we always use the
default 4-delay. The syntax becomes

signal_name <= value_expression;

Note that the concurrent conditional and selected signal assignment statements cannot be
used inside the process.

For a signal assignment with J-delay, the behavior of a sequential signal assignment
statement is somewhat different from that of its concurrent counterpart. If a process has
a sensitivity list, the execution of sequential statements is treated as a “single abstract
evaluation,” and the actual value of an expression will not be assigned to a signal until the
end of the process. This is consistent with the black box interpretation of the process; that
is, the entire process is treated as one indivisible circuit part, and the signal is assigned a
value only after the completion of all sequential statements.

Inside a process, a signal can be assigned multiple times. If all assignments are with
d-delays, only the last assignment takes effect. Because the signal is not updated until the
end of the process, it never assumes any “intermediate” value. For example, consider the
following code segment:

a,b,c,d,y: std_logic;

process(a,b,c,d)
begin
y <= a or c;
y <= a and b;
y <= c and d;
end process;

It is the same as

process{(a,b,c,d)
begin

y <= c and d;
end process;

Although this segment is easy to understand, multiple assignments may introduce subtle
mistakes in a more complex code and make synthesis very difficult. Unless there is a
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aﬂ;?

Figure 5.1 Conceptual diagram of multiple concurrent signal assignments.

compelling reason, it is a good idea to avoid assigning a signal multiple times. The only
exception is the assignment of a default value in the if and case statements. This is discussed
in Sections 5.4.3 and 5.5.3.

The result will be very different if the multiple assignments are the concurrent signal as-
signment statements. Assume that the previous three assignment statements are concurrent
signal assignment statements (i.e., not inside a process). The code segment becomes

a,b,c,d,y: std_logic;

—— the statements are not inside a process
y <= a or c;
<= a and b;

¢ and d;

The code is syntactically correct since multiple assignments are allowed for a signal with
the std_logic data type (since it is a “resolved” data type). The corresponding circuit is
shown in Figure 5.1. Although the syntax is fine, the design is incorrect because of the
potential output conflict. The y signal may get a value of *X’ in simulation if any two of
the output values of the three gates are different.

5.3 VARIABLE ASSIGNMENT STATEMENT

The syntax of a variable assignment statement is
variable_name := value_expression;

The immediate assignment notion, : =, is used for the variable assignment. There is no time
dimension (i.e., no propagation delay) and the assignment takes effect immediately. The
behavior of the variable assignment is just like that of a regular variable assignment used
in a traditional programming language. For example, consider the code segment

signal a, b, y: std_logic;

process(a,b)
variable tmp: std_logic;

begin
tmp := '07;
tmp := tmp or a;
tmp := tmp or b;
y <= tmp;

end process;
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tmp0

tmp1
a
tmp2

Figure 5.2 Conceptual implementation of simple variable assignments.

The tmp variable assumes the value immediately in each sequential statement and assigns
its value, which is equal to a + b, to the y signal. Note that the variables are “local” to the
process and have to be declared inside the process.

Although the behavior of a variable is easy to understand, mapping it into hardware is
difficult. For example, to realize the previous process in hardware, we have to rename the
variables tmpQ, tmp1 and tmp2 and change the process to

process(a,b)
variable tmp0O, tmpil, tmp2: std_logic;

begin
tmp0 := '07;
tmpl := tmp0 or a;
tmp2 := tmpl or b;
y <= tmp2;

end process;

For synthesis purposes, we can now interpret the variables as signals or nets. The corre-
sponding diagram is shown in Figure 5.2. Because of the lack of clear hardware mapping,
we should try to use signals in code in general and resort to variables only for the charac-
teristics that cannot be described by signals.

For comparison purposes, let us repeat the previous segment by replacing the variables
with signals:

signal a, b, y, tmp: std_logic;

process(a,b, tmp)
begin
tmp <= ’'0’;
tmp <= tmp or a;
tmp <= tmp or b;
y <= tmp;
end process;

Note that the signals have to be “global” and declared outside the process, and the tmp
signal has to be included in the sensitivity list. This code is the same as

process(a,b,tmp)

begin
tmp <= tmp or b;
y <= tmp;

end process;

This code implies a combinational loop with an or gate, as shown in Figure 5.3.
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Figure 5.3 Conceptual implementation of erroneous signal assignments.

5.4 IF STATEMENT

5.4.1 Syntax and examples

The simplified syntax of an if statement is

if boolean_expr_1i then
sequential _statements;
elsif boolean_expr_2 then
sequential_statements;
elsif boolean_expr_3 then
sequential_statements;
else
sequential_statements;
end if;
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An if statement has one then branch, one or more optional elsif branches and one optional
else branch. The boolean_expr._i termisa Boolean expression thatreturns true or false.
These Boolean expressions are evaluated sequentially. When an expression is evaluated
as true, the statements in the corresponding branch will be executed and the remaining
branches will be skipped. If none of the expressions is true and the else branch exists, the

statements in the else branch will be executed.

We use the same circuit examples as in Chapter 4, which include a multiplexer, a decoder,
a priority encoder and a simple ALU, to illustrate use of an if statement. The if statement
description of an 8-bit 4-to-1 multiplexer is shown in Listing 5.1. Since the multiplexer is
a combinational circuit, all input signals, including a, b, ¢, d and s, are in the sensitivity

list. Note that the signals used in the Boolean expressions are also the input signals.

Listing 5.1 4-to-1 multiplexer based on an if statement

architecture if_arch of mux4

begin
process (a,b,c,d,s)
begin
5 if (s="00") then
x <= aj;
elsif (s="01")then
x <= b;
elsif (s="10")then
10 x <= ¢;
else
x <= d;
end if;

end process;
isend if_arch;
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The if statement versions of binary decoder, priority encoder and simple ALU are shown
in Listings 5.2, 5.3 and 5.4 respectively.

Listing 5.2 2-to-4 decoder based on an if statement

architecture if_arch of decoder4 is
begin
process (s)
begin
5 if (s="00") then
x <= "0001";
elsif (s="01")then

x <= "Q010";
elsif (s="10")then
10 x <= "0100";
else
x <= "1000";
end if;

end process;
send if_arch;

Listing 5.3 4-to-2 priority encoder based on an if statement

architecture if_arch of prio_encoder42 is
begin
process (r)
begin
s if (r(3)=’1°) then
code <= "11";
elsif (r(2)=’1’)then
code <= "10";
elsif (r(1)=’1’)then

10 code <= "Q1";
else
code <= "Q00";
end if;
end process;
s active <= r(3) or r(2) or r(1i) or r(0);

end if_arch;

Listing 5.4 Simple ALU based on an if statement

architecture if_arch of simple_alu is
signal srcOs, srcls: signed(7 downto 0);

begin
srcOs <= signed(src0);
s srcls <= signed(srcl);
process (ctrl ,src0,srcl,srcOs,srclis)
begin

if (ctr1(2)='0’) then
result <= std_logic_vector(srclOs + 1);
10 elsif (ctrl (i downto 0)="00")then
result <= std_logic_vector(srcOs + srcis);
elsif (ctrl(1 downto 0)="01")then
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result <= std_logic_vector(srcOs - srcils);
elsif (ctrl(1 downto 0)="10")then
15 result <= src0 and srcl ;
else
result <= srcO0 or srci;
end if;

end process;
o end if_arch;

5.4.2 Comparison to a conditional signal assignment statement

An if statement is somewhat like a concurrent conditional signal assignment statement. If
the sequential statements inside an if statement consist of only the signal assignment of
a single signal, as in previous examples, the two statements are equivalent. Consider the
following conditional signal assignment statement:

sig <= value_expr_i when boolean_expr_1 else
value_expr_2 when boolean_expr_2 else
value_expr_3 when boolean_expr.3 else

value_expr_n;
It can be written as

process (...)
begin ;
if boolean_expr_1 then
sig <= value_expr_1;
elsif boolean_expr._2 then
sig <= value_expr_2;
elsif boolean_expr_3 then
sig <= value_expr_3;
else
sig <= value_expr.n;
end if;
end process;

Thus, our discussion in Chapter 4 regarding the conditional signal assignment statement
can also be applied to the if statement.

The equivalency, however, is true only for this simple scenario. An if statement is much
more general since a branch of the if statement can be a sequence of sequential statements.
Proper and disciplined use of an if statement can make code more descriptive and sometimes
even more efficient. For example, an if statement is a sequential statement, and thus it can
be nested in a branch of another if statement. Assume that we want to find the maximum
value of three signals, a, b and c. One way to do it is by using nested if statements:

process(a,b,c)
begin
if (a > b) then
if (a > ¢) then
max <= a; — a>b and a>c
else
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max <= ¢; — a>b and c>=a
end if;
else
if (b > c¢) then
max <= b; — b>=a and b>c
else
max <= ¢; — b>=a and c>=b
end if;
end if;

end process;
We have to use three conditional signal assignment statements to achieve the same task:

signal ac_max, bc_max: std_logic;

ac_max <= a when (a > c) else c¢;
bc_max <= b when (b > c) else c;
max <= ac_max when (a > b) else bc_max;

We can also convert code using one conditional signal assignment statement. Since it cannot
be nested, we have to “flatten” the Boolean conditions of the if statements. The following
code follows the pattern of the previous nested Boolean conditions:

max <= a when ((a > b) and (a > c)) else
c when (a > b) else
b when (b > ¢) else
(%

Although the code is shorter, it is not very descriptive and is difficult to understand.
Another situation suitable for the if statement is when many operations are controlled
by the same Boolean conditions. For example, consider the following code segment:

process (a,b)
begin
if (a > b and op="00") then
y <= a = b;
z <= a - 1;
status <= ’0Q?;

else
y <= b - a;
z <= b -1;
status <= ’17;
end if;

end process;

The Boolean conditions and the if-then-else structure is shared by three signals. On the
other hand, we need three conditional signal assignment statements to describe the same
circuit:

y <= a-b when (a > b and op="00") else
b-a;
z <= a-1 when (a > b and op="00") else
b-1;
status <= ’0’ when (a > b and op="00") else
112,
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5.4.3 Incomplete branch and incomplete signal assignment

In Section 5.1.2, we learned that an incomplete sensitivity list, in which one or more input
signals are omitted, may lead to unexpected circuit behavior. This may also happen to the
incomplete branch and incomplete signal assignment. According to VHDL semantics, the
else branch is optional and a signal does not need to be assigned in all branches. Although
syntactically correct, the omissions introduce unwanted memory elements (i.e., latches).

Incomplete branch In VHDL, only the then branch is mandatory and the other branches
can be omitted. For example, the following statement is an attempt to code a comparator
that compares the a and b inputs and asserts the eq output when a and b are equal:

process (a,b)

begin
if (a=b) then
eq <= '17;
end if;

end process;

The code is syntactically correct. When a is equal to b, the eq signal becomes *1’. When
a is not equal to b, there is no else branch and thus no action is taken. VHDL semantics
specifies that the eq signal does not change and keeps its previous value. Thus, the previous
statement is the same as

process (a,b)

begin
if (a=b) then
eq <= 17
else
eq <= eq;
end if;

end process;

This implies a circuit with a closed feedback loop, which constitutes internal states or
memory. Clearly, this description does not meet the intended specification. The correct
code should be

process (a,b)

begin
if (a=b) then
eq <= )1!;
else
eq <= :o:;
end if ;

end process;

For a combinational circuit, the else branch should always be included to avoid the unwanted
memory or latch.

Incomplete signal assignment An if statement has several branches. It is possible
that a signal is assigned only in some, but not all branches. Although syntactically correct,
the incomplete signal assignment infers unwanted memory. For example, the following
statement attempts to describe a comparator with three outputs, gt, 1t and eq, which
indicate the conditions “a is greater than b,” “a is less than b” and “a is equal to b”
respectively:
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process(a,b)

begin
if (a>b) then
gt <= ’17;
elsif (a=b) then
eq <= '1’;
else
1t <= ’17;
end if;

end process;

The VHDL semantics specifies that a signal will keep its previous value if it is not assigned.
When a is greater than b, the first branch is taken and the gt signal becomes '1°. The eq
and 1t signals keep their previous values since they are not assigned. A similar situation
occurs in two other branches since only one output signal is assigned. This implies that
three unwanted memory elements are inferred from the code. The correct code should have
the signals assigned in all branches:

process(a,b)

begin

if (a>b) then
gt <= :1);
eq <= ’0’;
1t <= 07,

elsif (a=b) then
gt <= )0:;
eq <= ’17’;
1t <= ?0°’;

else
gt <= :0:;
eq <= ’0’;
1t <= 17,

end if;

end process;

One way to make the code compact and clear is to assign a default value for each signal in
the beginning of the process:

process (a,b)

begin
gt <= ’0’;
eq <= :0:;
1t <= 207%;
if (a>b) then
gt <= ’1);
elsif (a=b) then
eq <= 17,
else
1t <= ’17%;
end if;

end process;

Recall that, in a process, only the last signal assignment takes effect. If a signal is assigned in
a branch of the if statement, that assignment takes effect. If it is not assigned in any branch,



IF STATEMENT 109

the default assignment takes effect. The output signals are therefore always assigned. We
can treat the assignment of a default value as shorthand for the previous code segment.

For a combinational circuit, an output signal should be assigned in all branches of an if
statement. It is a good practice to assign a default value at the beginning of the process to
cover the unassigned branches.

5.4.4 Conceptual implementation

An if statement evaluates a set of Boolean expressions in sequential order and takes action
when the first Boolean condition is met. To achieve this in hardware, we need a priority
routing network similar to that of a conditional signal assignment statement.

Discussion in Section 5.4.2 shows that a simple one-output-signal if statement is equiv-
alent to a conditional signal assignment statement. We can apply the same procedure as
that described in Section 4.3.2 to derive the conceptual block diagram for the simple if
statement. Consider an if statement with four branches:

if boolean_expr_1 then
sig <= value_expr_1;
elsif boolean_expr_2 then
sig <= value_expr_2;
elsif boolean_expr_3 then
sig <= value_expr_3;
else
sig <= value_expr_4;
end if;

We first derive the circuit for the first branch by constructing the rightmost 2-to-1 multi-
plexing circuit and the boolean_expr_1 and value.expr_1 circuits. We can then repeat
the process and complete the implementation branch by branch. The finished diagram is
identical to Figure 4.4.

An if statement is more flexible and can accommodate more than one statement in each
branch. The following examples illustrate the construction of two more complex forms.
The first form is an if statement with multiple statements in each branch. The following
code shows an if statement with two output signals:

if boolean_expr then
sig_a <= value_expr_a_l;
sig b <= value_expr_b_1
else
sig_a <= value_expr_a_2;
sig_b <= value_expr._b_2;
end if;

Since there are two signals, two separating routing networks are needed. When each routing
network has its own multiplexer, the two networks use the same Boolean expressions to
control the selection signals of the multiplexers. Thus, the boolean_exp circuit is actually
shared. The conceptual diagram is shown in Figure 5.4. We can apply the same idea to
derive a conceptual diagram for an if statement with more output signals.

The second form is a nested if statement; that is, one or more if statements is used inside
the branches of an if statement. The following code shows a two-level nested if statement:

if boolean_expr_1 then
if boolean_expr_2 then
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Figure 5.4 Conceptual implementation of an if statement with multiple signal assignments.

signal_a <= value_expr_1;
else
signal_a <= value_expr_2;
end if;
else
if boolean_expr_3 then
signal_a <= value_expr_3;
else
signal_a <= value_expr_4;
end if;
end if;

The conceptual diagram can be constructed in a hierarchal manner, and the derivation pro-
cess is shown in Figure 5.5. We first derive the routing structure for the outer if statement, as
in Figure 5.5(a), and then realize the two inner if statements inside the then and else branches
of the outer if statement, as in Figure 5.5(b). We can apply this procedure repeatedly if the
code consists of more nested levels.

5.4.5 Cascading single-branched if statements

Because of the sequential semantics, a signal can be assigned multiple times inside a process
and only the last assignment takes effect. We can use this property to construct a priority
circuit using a sequence of single-branched if statements (i.e., if statements with only a
then branch). For example, the previous priority encoder can be rewritten using three if
statements, as shown in Listing 5.5. The code signal is first assigned with "00". Ifthe r (1)
request is asserted, the code signal will be reassigned with "01". This procedure continues
until the end of the process. Clearly, the Boolean conditions in the later if statements
have the higher priority and can override the earlier conditions. Thus, this sequence of if
statements implicitly forms a priority circuit.
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Figure 5.5 Conceptual implementation of a nested if statement.

Listing 5.5 Priority encoder based on cascading if statements

architecture cascade_if_arch of prio_encoder4?2 is
begin
process (r)
begin
5 code <="Q0";
if (r(1)=’1’) then
code <= "01";

end if;

if (r(2)='1*) then
10 code <= "10";

end if;

if (r(3)=’1’) then
code <= "11";
end if;
15 end process;
active <= r(3) or r(2) or r(1) or r(0);
end cascade_if_arch;

We can generalize this idea and replace an if statement with multiple elsif branches with

a sequence of simple cascading single-branched if statements. For example, consider the
following code segment:

if boolean_expr_1 then
sig <= value_expr_1;
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elsif boolean_expr_2 then
sig <= value_expr_2;
elsif boolean_expr_3 then
sig <= value_expr_3;
else
sig <= value_expr_4;
end if;

It can be rewritten as

s8ig <= value_expr_4;

if boolean_expr_3 then
sig <= value_expr_.3;

end if;

if boolean_expr_2 then
sig <= value_expr_2;

end if;

if boolean_expr_1 then
sig <= value_expr._1;

end if;

Although inferring the same priority configuration, VHDL. code in this form is less clear and
more difficult for software to synthesize. We should avoid this style in general. However,
due to its repetitive nature, this form is sometimes useful to describe a replicated structure
of parameterized design. This aspect is discussed in detail in Chapter 14.

5.5 CASE STATEMENT

5.5.1 Syntax and examples

The simplified syntax of a case statement is

case case_expression is
when choice_1 =>
sequential statements;
when choice_2 =>
sequential statements;

when choice_n =>
sequential statements;
end case;

A case statement uses the value of case_expression to select a set of sequential state-
ments. The case_expression term functions just as the select_expression term of the
concurrent selected signal assignment statement. Its data type must be a discrete type or
one-dimensional array. The choice_i term is a value or a set of values that can be assumed
by case_expression. The choices have to be mutually exclusive (i.e., no value can be
used more than once) and all-inclusive (i.e., all values must be ir-luded). The keyword
others can be used in choice_n in the end to cover all unused values.

Again, we use the same multiplexer, binary decoder, priority encoder and ALU circuits
to show the use of the case statement. The VHDL code of the multiplexer is shown in
Listing 5.6. Note that there are 81 (9%9) possible combinations for the 2-bit s signal, in-
cluding the normal "00", "01", "10" and "11" combinations as well as 77 other metavalue
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combinations. This issue was examined in the selected signal assignment statement in Sec-
tion 4.4.1, and the discussion can be applied to the case statement as well. In the code,
we use the when others clause to cover "11" and all unused combinations. The signals
used in case_expression are the inputs to the circuit and thus should be included in the
sensitivity list.

Listing 5.6 4-to-1 multiplexer based on a case statement

architecture case_arch of mux4 is
begin
process(a,b,c,d,s)
begin
5 case s is
when "00" =>
X <= a;
when "01" =>
x <= b;
10 when "10" =>
x <= ¢;
when others =>
x <= d;
end case;
15 end process;
end case_arch;

The VHDL codes for the other three examples are shown in Listings 5.7, 5.8 and 5.9,

Listing 5.7 2-to-4 decoder based on a case statement

architecture case_arch of decoder4 is

begin
process (s)
begin
5 case s is
when "Q00" =>
x <= "0001";
when "0i" =>
x <= "0010";
10 when "10" =>
x <= "0100";
when others =>
x <= "1000";
end case;
15 end process;

end case_arch;

Listing 5.8 4-to-2 priority encoder based on a case statement

architecture case_arch of prio_encoder42 is
begin
process (r)
begin
5 case r is
when "1000"}"1001"|"1010"|"1011"]
|I110°II|Il11°1'lIII1110"|II1111|I =>
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code <= "11";
when "0100"{"0101"|["0110"["0111" =>
10 code <= "10";
when "0010"|"0011" =>
code <= "Q01";
when others =>
code <= "Q0";
15 end case;
end process;
active <= r(3) or r(2) or r(1) or r(0);
end case_arch;

Listing 5.9 Simple ALU based on a case statement

architecture case_arch of simple_alu is
signal srcOs, srcls: signed(7 downto 0);

begin
src0s <= signed(src0);
s srcls <= signed(srcl);
process (ctrl,src0,srcl,srcOs,srcis)
begin

case ctrl is
when "000"|"001"{"010"["011" =>

10 result <= std_logic_vector(srcOs + 1);
when "100" =>
result <= std_logic_vector(srcOs + srcls);
when "101" =>
result <= std_logic_vector(srcOs - srcls);
15 when "110" =>
result <= src0 and srcl;
when others => — 111"

result <= src0 or srci;
end case;
20 end process;
end case_arch ;

5.5.2 Comparison to a selected signal assignment statement

A case statement is somewhat like a concurrent selected signal assignment statement. If
each when branch of a case statement consists only of the assignment of a single signal, the
two statements are equivalent. Consider a selected signal assignment statement:

with sel_exp select
sig <= value_expr.l when choice_1,
value_expr_2 when choice_2,
value_expr_3 when choice_3,

value_expr_n when choice_n;
It can be rewritten as

process (...)
begin
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case sel_exp is
when choice_1 =>
sig <= value_expr_i;
when choice_2 =>
sig <= value_expr_2;
when choice_3 =>
sig <= value_expr_.3;

when choice_n =>
sig <= value_expr_n;
end case;
end process;

Thus, the discussion in Chapter 4 regarding the selected signal assignment statement can
also be applied to a case statement. Again, the equivalence is limited to this simple scenario.
The case statement is much more flexible and general since each when branch can consist
of a sequence of sequential statements. The comparison between the if statement and the
conditional signal assignment statement in Section 5.4.2 can be applied here as well.

5.5.3 Incomplete signal assignment

Unlike an if statement, the choices of a case statement have to be inclusive, and thus no
omitted when clause is allowed. Any “incomplete when clause” will lead to a syntax error
and thus be detected when the VHDL code is analyzed. However, incomplete signal as-
signment can still occur and infer unwanted memory. For example, the following statement
attempts to describe a priority encoder with a 3-bit input request signal, a, and three output
signals, high, middle and low. The a(3) signal has the highest priority. Whenitis ’1°,
the high signal will be asserted. The two other output signals are for two other lower
requests. The code uses a case statement:

process (a)
begin
case a is
When "100" | ||101|| | "110" l "111" =>
high <= ’17;
when "010"|"011" =>
middle <= ’'1’;
when others =>
low <='17;
end case;
end process;

Again, the VHDL semantics specifies that a signal will keep its previous value if it is
unassigned. If the a signal is "111", the first when clause is taken and the high signal is
assigned a ’1°’, Since the middle and low signals are unspecified, they keep their previous
values. A similar situation occurs in other when clauses, and therefore three unwanted
memory elements are inferred. To fix the problem, we must make sure to have the signals
assigned in all when clauses:

process (a)
begin
case a is
when "100"|"101"{"110"|"111" =>
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high <= ’17;
middle <= '0’;
low <= ’0’;
when "010"{"011" =>
high <= ’07;
middle <= ’17;
low <= ’0°;
when others =>
high <= ’0’;
middle <= ’0’;
low <= ’1°’;
end case;
end process;

As in the if statement discussion, we can also use a default assignment to make the code
clearer and more compact:

process (a)
begin
high <= ’0°’;
middle <= ’0?%;
low <= ’Q7;
case a is
when II100|IIII101I|]I|110II|II111II =>
high <= ’17;
when "010"{"011" =>
middle <= ’1°’;
when others =>
low <=’17’;
end case;
end process;

5.5.4 Conceptual implementation

A case statement utilizes the value of case_expression to select a set of sequential state-
ments to execute, Conceptually, it can be thought of as an abstract multiplexing circuit that
utilizes case_expression as the selection signal to route the results of designated expres-
sions to output signals. A case statement with a single output signal can be implemented by
an abstract multiplexer identical to the one used in the selected signal assignment statement
in Section 4.4.2. Consider the following case statement:

case case_exp is
when c0 =>
sig <= value_expr_0;
when c1 =>
sig <= value_expr_1;
when others =>
8ig <= value_expr_n;
end case;

We assume that case_exp may result in one of five possible values: c0, c1, c2, c3 and
c4. The when others clause implicitly covers c2, ¢3 and c4. The conceptual diagram is

identical to Figure 4.11 except that the selection_expression circuit is replaced by the
case_exp circuit.
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Figure 5.6 Conceptual implementation of a case statement with multiple output signals.

The previous scheme can easily be extended for a case statement with multiple output
signals. We simply duplicate the abstract multiplexer for each signal and connect the
case.exp to the selection signals of all multiplexers. For example, the following case
statement has two output signals:

case case_exp is
when c0 =>
sig_a <= value_expr_a_0;
sig_.b <= value_expr_b_0;
when ct =>
sig_a <= value_expr_a_l;
sig_b <= value_expr_b_1;
when others =>
sig_a <= value_expr_a_n;
sig_b <= value_expr_b_n;
end case;

The corresponding conceptual diagram is shown in Figure 5.6. As an if statement, a case
statement is very general. Any valid sequence of sequential statements can be included
inside a when branch. We can derive the conceptual diagram from the outermost level and
iterate through the inner levels, as in the nested if statement example in Section 5.4.4.
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5.6 SIMPLE FOR LOOP STATEMENT

5.6.1 Syntax

VHDL provides a variety of loop constructs, including simple infinite loop, for loop and
while loop, as well as mechanisms to terminate a loop, including the exir statement, which
skips the remaining iterations of the loop, and the next statement, which skips the remaining
part of the current iteration. These constructs are mainly for modeling. Only few, very
restricted forms of loop can be realized by hardware and synthesized automatically. In this
section, we limit the discussion to the simple for loop statement and use it as shorthand for
repetitive statements. A more general application of loops is discussed in Chapter 14.
The simplified syntax of the for loop statement is:

for index in loop_range loop
sequential statements;
end loop;

The for loop repeats the loop body of sequential statements for a fixed number of itera-
tions. The loop_range term specifies a range of values between the left and right bounds.
A loop index, index, is used to keep track of the iteration and takes a successive value
from loop_range in each iteration, starting with the leftmost value. The loop index auto-
matically takes the data type of loop_range’s element and does not need to be declared.
For synthesizable code, 1oop_range must be determined at the time of synthesis (i.e., be
static) and cannot change with the input signal. The loop body is a sequence of sequential
statements. It is very flexible and versatile but can be difficult or impossible to synthesize.
In this chapter, we limit it to sequential signal assignment statements.

5.6.2 Examples

Use of the for loop statement is demonstrated by two examples. The first example is a
4-bit xor circuit and its code is shown in Listing 5.10. The for loop performs bitwise xor
operation on two 4-bit signals. The operation is done one bit at a time. The loop range is
WIDTH-1 downto 0. We use a symbolic constant here to make the code more readable
and to facilitate future modification. The loop index is i. It is local to the loop and does
not need to be declared. The index assumes a value of 3, the leftmost value in the range,
in the first iteration, and then assumes a value of 2 in the second iteration. The iteration
continues until the value of the rightmost value, 0, is used.

Listing 5.10 Bitwise xor operation using a for loop statement

library ieee;
use ieee.std_logic_1164.all;
entity bit_xor is
port (
5 a, b: in std_logic_vector (3 downto 0);
y: out std_logic_vector (3 downto 0)
)3

end bit_xor;

o architecture demo_arch of bit_xor is
constant WIDTH: integer := 4;
begin
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process (a,b)

begin
15 for i in (WIDTH-1) downto O loop
y(i) <= a(i) xor b(i);
end loop;

end process;
end demo_arch;

The code here is just for demonstration purposes. The same operation can actually be
achieved by a single statement:

y <= a Xxor b;

The second example is a reduced-xor circuit, which performs the xor operation over
a group of signals. For example, consider a group of four signals, a3, a2, a; and ag.
The reduced-xor operation of the four signals is ag @ a2 ® a1 & ag. The for-loop VHDL
description of this circuit is shown in Listing 5.11.

Listing 5.11 Reduced-xor operation using a for loop statement

library ieee;
use ieee.std_logic_1164.all;
entity reduced_xor_demo is
port(
5 a: in std_logic_vector (3 downto 0);
y: out std_logic
)

end reduced_xor_demo;

warchitecture demo_arch of reduced_xor_demo is
constant WIDTH: integer := 4;
signal tmp: std_logic_vector (WIDTH-1 downto 0);

begin
process (a,tmp)
15 begin
tnp (0) <= a(0); — boundary bit

for i in 1 to (WIDTH-1) loop
tmp (i) <= a(i) xor tmp(i-1);
end loop;
20 end process;
y <= tmp(WIDTH-1);
end demo_arch;

5.6.3 Conceptual implementation

The basic way to realize a for loop in hardware is to unroll or flatten the loop and convert
it into code that contains no loop constructs. The flattened code can then be constructed
accordingly. This implies that we replicate the hardware described by the loop body for
each iteration. To unroll a loop, the range has to be constant and has to be known at the
time of synthesis. That is why the range has to be static. We cannot, for example, use the
value of an input signal to set the range’s right boundary.

Let us first consider the bitwise xor code. The for loop can be unrolled by manually
substituting index i into the loop body for four iterations. The flattened code becomes
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y(3) <= a(3) xor b(3);
y(2) <= a(2) xor b(2);
y(1) <= a(1l) xor b(1);
y(0) <= a(0) xor b(0);

We can derive the conceptual implantation accordingly. Similarly, the reduced-xor code
can be unrolled and the flattened code is

tmp (0) <= a(0);

tmp (1) <= a(1) xor tmp(0);
top (2) <= a(2) xor tmp(1l);
tmp (3) <= a(3) xor tmp(2);
y <= tmp(3);

Since we limit the loop body to sequential signal assignment statements, the imple-
mentation is straightforward. The for loop can be thought of as shorthand for repetitive
statements. A unique property of the for loop is that we can use the range to control hard-
ware replication. Itis very useful for the development of parameterized design, in which the
“width” of the circuit (e.g., the input width of an adder) can be adjusted to match a specific
need. For example, we can change the value of the WIDTH constant of the reduced-xor
code to accommodate different input widths. The implementation and synthesis of more
versatile loop structure and the parameterized design are examined in Chapters 14 and 15.

5.7 SYNTHESIS OF SEQUENTIAL STATEMENTS

The nature of concurrent and sequential statements is very different. Concurrent statements
are modeled after hardware, and thus there is a clear, direct mapping between a concurrent
statement and a hardware structure. On the other hand, sequential statements are intended to
describe the abstract behavior of a system, and some constructs cannot be easily realized by
hardware. Sequential statements are more flexible and versatile than concurrent statements.
For synthesis, this is a mixed blessing. On the positive side, the flexibility allows us to
specify the desired design in a compact, clear and descriptive manner and to explore more
design alternatives. On the negative side, the flexibility can easily be abused. It may make
us think falsely that we can synthesize hardware directly from sequential descriptions. This
usually leads to unnecessarily complex or unsynthesizable implementation.

Our goal is to develop code for synthesis. When we use sequential statements, we
should think in terms of hardware rather than treating them as a way to describe a sequential
algorithm. This helps us to focus on the underlying hardware complexity and the efficiency
of the design. One good way to check sequential statements is to ask ourselves whether we
can derive the conceptual diagram manually. If we cannot, the description is probably also
too difficult for synthesis software to synthesize.

5.8 SYNTHESIS GUIDELINES

5.8.1 Guidelines for using sequential statements

o Variables should be used with care. A signal is generally preferred. A statement like
n:=n+1 can cause great confusion for synthesis.

o Except for the default value, avoid overriding a signal multiple times in a process.
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Think of the if and case statements as routing structures rather than as sequential
control constructs.

Anif statement infers a priority routing structure, and a larger number of elsif branches
leads to a long cascading chain.

A case statement infers a multiplexing structure, and a large number of choices leads
to a wide multiplexer.

Think of a for loop statement as a mechanism to describe the replicated structure.

Avoid “innovative” use of language constructs. We should be innovative about the
hardware architecture but not about the description of the architecture. Synthesis
software may not be able to interpret the intention of the code.

5.8.2 Guidelines for combinational circuits

5.9

For a combinational circuit, include all input signals in the sensitivity list to avoid
unexpected behavior.

For a combinational circuit, include all branches of an if statement to avoid unwanted
latch.,

For a combinational circuit, an output signal should be assigned in every branch of
the if and case statements to avoid unwanted latch.

For a combinational circuit, it is a good practice to assign a default value to each
signal at the beginning of the process.

BIBLIOGRAPHIC NOTES

The bibliographic information for this chapter is similar to that of Chapter 4.

Problems

5.1

Consider a circuit described by the following code segment:

process (a)
begin

q <= d;

end process;

52

(a) Describe the operation of this circuit.
(b) Does this circuit resemble any real physical component?

Consider the following code segment:

process (a,b)
begin

if a=’1’ then
q <= b;
end if;

end process;
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(a) Describe the operation of this circuit.
(b) Draw the conceptual diagram of this circuit.

5.3 Add an enable signal, en, to the 2-to-4 decoder discussed in Section 5.4.1. When en
is 217, the decoder functions as usual. When en is *0°, the decoder is disabled and the
output becomes "0000". Use an if statement to derive this circuit and draw the conceptual
diagram.

5.4 Repeat Problem 5.3, but use a case statement to derive the circuit.
5.5 Derive the conceptual diagram for the following code segment:

if (a > b and op="00") then
y <= a - b;
z <= a - 1;
status <= '0?’;

else
y <= b - a;
z <= b - 1;
status <= ’1’;
end if;

5.6 Consider the 2-by-2 switch discussed in Problem 4.3. Its inputs are x1, x0 and ctrl,
and its outputs are y1 and y0. The functional table is shown below. Use one if statement
to derive the circuit.

ctrl yl y0
00 x1 x0
01 x0 xi1
10 x0 x0
11 x1 x1

5.7 Repeat Problem 5.6, but use a case statement to derive the circuit.
5.8 Consider the following code segment:

if (a > b) then
y <= a - b;
else
if (a > ¢) then
y <= a = C;
else
y <= a + 1;
end if;
end if;
(a) Draw the conceptual diagram.
(b) Rewrite the code using two concurrent conditional signal assignment statements.

(c) Rewrite the code using one concurrent conditional signal assignment statement.
(d) Rewrite the code using one case statement.
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5.9 Consider the following code segment:

y <= (others=>’0’);
if (a > b) then

y <= a - b;

end if;

if (crtl=’1’) then
y <= ¢;

end if;

(a) Rewrite the code using one if statement.
(b) Draw the conceptual diagram.

5.10  Assume that op is a 2-bit signal with the std_logic_vector data type. Consider
the following code segment:

case op is
when "00" =>
y <= (others => ’0’);
when "01" =>
if (a > 0) then

y <= a - 1;
else

y <= a + 1;
end if;

when others =>
y <= a + b;
end case;

(a) Draw the conceptual diagram.

(b) Rewrite the code using concurrent conditional and selected signal assignment
statements.

5.1 Consider the shift-left circuit discussed in Problem 4.6. The inputs include a, which
is an 8-bit signal to be shifted, and ctrl, which is a 3-bit signal specifying the amount to
be shifted. Both are with the std_logic_vector data type. The output y is an 8-bit signal
with the std_logic_vector data type. Use an if statement to derive the circuit and draw
the conceptual diagram.

5.12 Repeat Problem 5.11, but use a case statement.
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CHAPTER 6

SYNTHESIS OF VHDL CODE

Synthesizing VHDL code is the process of realizing the VHDL description using the prim-
itive logic cells from the target device’s library. In Chapters 4 and 5, we discussed how
to derive a conceptual diagram from VHDL statements. The conceptual diagram can be
considered as the first step in realizing the code. The diagram is refined further during
synthesis. The synthesis process involves complex algorithms and a large amount of data,
and computers are needed to facilitate the process. Although today’s synthesis software
appears to be sophisticated and capable, there are fundamental limitations. Understanding
the capability and limitation of synthesis software will help us better utilize this tool and
derive more efficient designs. This chapter explains the realization of VHDL operators and
data types, provides an in-depth overview on the synthesis process, and discusses the timing
issue involved in synthesis.

6.1 FUNDAMENTAL LIMITATIONS OF EDA SOFTWARE

Developing a large digital circuit is a complicated process and involves many difficult tasks.
We have to deal with complex algorithms and procedures and handle a large amount of data.
Computers are used to facilitate the process. As computers become more powerful, we may
ask if it is possible to develop a suite of software and completely automate the synthesis
process. The ideal scenario is that human designers would only need to develop a high-level
behavioral description and EDA software would perform the synthesis and placement and
routing and automatically derive the optimal circuit implementation. The is unfortunately
not possible. The limitation comes from the theoretical study of computational algorithms.

RTL Hardware Design Using VHDL: Coding for Efficiency, Portability, and Scalability. By Pong P.Chu 125
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Although this book does not cover EDA algorithms, it will be helpful to know the capability
and limitation of EDA software tools so that they can be used effectively.

For the purposes of discussion, we can separate an EDA software tool into a core and a
shell. The core is the algorithms that perform the transformation or optimization, and the
shell wraps the algorithm, including data conversion, memory and file management and
user interface. Although the shell is important, the core algorithms ultimately determine
the quality and efficiency of the software tool. The problems encountered in EDA are not
unique. In fact, they are formulated and transformed into optimization problems in other
fields, especially in the study of graph theory. This section provides a layperson’s overview
of computability and computation complexity, which helps us understand the fundamental
limitation of EDA software.

6.1.1 Computability

Computability concerns whether a problem can be solved by a computer algorithm. If
an algorithm exists, the problem is computable (or decidable). Otherwise, the problem is
uncomputable (or undecidable). An example of an uncomputable problem is the “halting
problem.” Some programs, such as a compiler, take another program as input and check
certain properties (e.g., syntax) of that program. The halting problem asks whether we can
develop a program that takes any program and its input and determines whether computation
of that program will eventually halt (e.g., no infinite loop). It can be proven mathematically
that no such program can be developed, and thus the halting problem is uncomputable.
Informally speaking, any attempt to examine the “meaning” of a program is uncomputable.

Equivalence checking discussed in Section 1.5.3 essentially compares whether two pro-
grams perform the same function, which goes further than the halting problem. Therefore,
equivalence checking is uncomputable; i.e., it is not possible to develop an EDA tool that
determines the equivalence of any two descriptions. However, it is possible to use some
clever techniques to determine the equivalence of some descriptions, which are coded fol-
lowing certain guidelines. Thus, while equivalence checking cannot guarantee to work all
of the time, it can be useful some of the time.

6.1.2 Computation complexity

If a problem is computable, an algorithm can be derived to solve the problem. The compu-
tation complexity concerns the efficiency of an algorithm. The computation complexity can
be further divided into time complexity, which is a measure of the time needed to complete
the computation, and space complexity, which is a measure of hardware resources, such as
memory, needed to complete the computation. Since most statements on time complexity
can be applied to space complexity as well, in the remaining section we focus on time
complexity.

Big-O notation The computation time of an algorithm depends on the size of the input
as well as on the type of processor, programming language, compiler and even personal
coding style. It is difficult to determine the exact time needed to complete execution of an
algorithm. To characterize an algorithm, we normally focus on the impact of input size and
try to filter out the effect of the “interferences” on measurement. Instead of determining the
exact function for computation time, we usually consider only the order of this function.
The order is defined as follows. Given two functions, f(n) and g(n), we say that f(n)
is O(g(n)) (pronounced as f(n) is big-O of g(n) or f(n) is of order g(n)) if two constants,
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Table 6.1 Scaling of some commonly used big-O functions

Input size Big-O function
n n logan mnlog,n n* n° 2"
2 2 us 1 us 2 us 4 us 8 us 4 us
4 4 us 2 us 8us 16 pus 64 us 16 us
8 8 us 3us 24us  64us 512 pus 256 us
16 16 us 4 us 64 us 256 us 4 ms 66 ms
32 32 us Sus 160 us Ims 33ms 71 min
48 48 us SSus 268 us 2ms 111ms 9 years

64 64 us 6us 384 us 4ms 262ms 600,000 years

ng and ¢, can be found to satisfy
f(n) < cg(n) forany n,n > ng

The g(n) function is normally a simple function, such as n, nlog, n, n?, n3 or 2". For
example, all the following functions are O(n?):

e 0.1n?
e n?+5n+9
e 500n2 + 1000000

The purpose of big-O notation is twofold. First, it drops the less important, secondary
terms since the highest-order term becomes the dominant factor as n becomes large. Second,
it concentrates on the rate of change and ignores the constant coefficient in a function. After
removing the constant coefficients and lower-order terms, we eliminate the effect of coding
style, instruction set and hardware speed, and can concentrate on the effectiveness of an
algorithm. Big-O notation is essentially a scaling factor or growth rate, indicating the
resources needed as input size increases.

Commonly encountered orders are O(1), O(log, n), O(n), O(nlog, n), O(n?), O(n3)
and O(2™). O(n) indicates the linear growth rate, in which the required computation
resources increase in proportion to the input size. O(1) means that the required computation
resources are constant and do not depend on input size. O(log, n) indicates the logarithmic
growth rate, which changes rather slowly. For a problem with O(1) or O(log, n), the input
size has very little impact on the resources. O(n?) and O(n®) have faster growth rates and
the required computation resources become more significant as the input size increases.
All of the orders discussed so far are considered as being of polynomial order since they
have the form of O(n*), where k is a constant. On the other hand, O(2") indicates the
exponential growth rate and the computation time increases geometrically. Note that an
increment of 1 in input size doubles the computation time. O(2") grows faster than does
any polynomial order.

An example using these functions is shown in Table 6.1, which lists the required compu-
tation times of algorithms of varying computation complexity. For comparison, we assume
that it takes 2 us for an O(n) algorithm to perform a computation of input size 2. The table
shows the required times as the input size increases from 2 to 64 under different big-O
functions.

One example of O(2") complexity is the exhaustive testing of a combinational cir-
cuit. One way to test a combinational circuit is to apply all possible input combinations
exhaustively and examine their output responses. For a circuit with n inputs, there are
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2™ possible input combinations. If we assume that the testing equipment can check 1 mil-
lion patterns per second, exhaustively testing a 64-bit circuit takes about 600,000 years (i.e.,
WW) to complete. Thus, although simple and straightforward, this method is
not practical in reality.

Intractable and tractable problems Inmost problems, if a polynomial order (O(n*))
algorithm can be found, the exponent k is normally very small (say, 1, 2, or 3). Even though
the growth rate is much worse than the linear rate, we can tolerate applying the algorithm
to problems with nontrivial input sizes. We call these problems tractable. On the other
hand, computation theory has shown that a polynomial-order solution cannot be found or is
“unlikely” to be found for some problems. The only existing solutions are the algorithms
with nonpolynomial order, such as O(2%). We call these problems intractable. As we have
seen in Table 6.1, the computation time for the O(2") algorithm simply grows too fast and
the algorithm is not practical even for a moderate-sized n. Improvement in hardware speed
will not change the situation significantly.

The situation is not completely hopeless for an intractable problem. An intractable
problem usually means that it takes O(2™) computation time to find the optimal answer
for any given input. It is frequently possible to find a polynomial-order algorithm, based
on some smart tactics and heuristics (an educated guess), that permits us to obtain a valid,
suboptimal answer or the optimal solution for some input patterns.

Synthesis as an intractable problem The focus of this book is on describing a de-
sign in textual HDL code and then using synthesis software to realize the circuit. From the
computation complexity point of view, the synthesis consists of several intractable prob-
lems, and thus no polynomial-time algorithm exists. We can treat the synthesis process
as a searching procedure. For a given specification, there are possibly O(2") valid circuit
configurations. Finding the optimal configuration corresponds to a global search, exhaus-
tively checking and comparing all O(2"™) possible configurations. Real synthesis software
must limit the search space. It normally performs the search on a local basis and applies
some smart tactics and heuristics to guide the direction of the search. The starting point of
the search corresponds to the configuration described in our HDL code. Since the search
is local, the initial starting point plays a key role. A good initial description will put the
starting point in a good location, and an efficient configuration can be obtained accordingly.
On the other hand, if the initial description is poor, the good configurations will be far away.
Since synthesis software doesn’t perform a global search, it is unlikely that software can
obtain an efficient configuration.

6.1.3 Limitations of EDA software

Like synthesis, other design tasks contain intractable or even undecidable computation
problems. This is the inherent, theoretical limitation of EDA software and cannot be
overcome by fast hardware, smart software code or human talents. Heuristics and tricks of
software algorithms can sometimes find good solutions for certain types of inputs. There is
no guarantee that the solutions are optimal or that the algorithm will work for all types of
inputs. Therefore, it is impossible to use EDA software to completely automate the design
process. This limitation is real and here to stay. The quality and efficiency of a design still
rely on a human designer’s experience, insight, ingenuity and imagination, which, to some
degree, can be considered as the ultimate heuristics that cannot be coded into software.
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6.2 REALIZATION OF VHDL OPERATORS

When we develop VHDL code for synthesis, language constructs in the code are eventually
mapped to hardware. In the previous chapters, we illustrated the realization (i.e., the
conceptual diagram) of basic concurrent and sequential statements. VHDL operators are
used as building components in these diagrams. In a conventional programming language,
we don’t pay too much attention to the operators since most operations, including integer
arithmetic operations, logical operations and shift operations, take the same amount of
resources: one instruction cycle of the CPU. This is totally different in synthesis. Hardware
complexities and operation speed of VHDL operators vary significantly and are processed
differently during synthesis. To derive an efficient design, we have to be aware of the
implications of VHDL operators on hardware implementation.

Only a subset of VHDL operators can be synthesized automatically. The subset nor-
mally includes the logical operators, relational operators as well as addition and subtraction
operators. Some software may also include more complicated operators, such as shift or
multiplication operators. Software can rarely automatically synthesize division (/), mod,
rem and exponential (**) operators or any operators associated with floating-point data-
type operands. The following subsections provide an overview of the realization of VHDL
operators.

6.2.1 Realization of logical operators

Logical operators can be mapped directly to logic gates, and their synthesis is straightfor-
ward. The and, nand, or and nor operators have similar area and delay characteristics.
The xor and xnor operators are slightly more involved and their implementation requires
more silicon area and experiences a larger propagation delay.

In VHDL, a logical operation can be applied over operands with multiple bits. For ex-
ample, let a and b be 8-bit signals with a data type of std_logic_vector(7 downto 0).
The expression a xor b means that the xor operation is applied to eight individual bits in
parallel. Since each bit of the input operates independently, the area of the circuit grows
linearly with the number of input bits (i.e., on the order of O(n)), and the propagation delay
is a constant (i.e., on the order of O(1)).

6.2.2 Realization of relational operators

There are six relational operators in VHDL: =, /=, <, <=, > and =>. According to their
hardware implementation, these operators can be divided into the equality group, which
includes the = and /= operators, and the greater-less group, which includes the other four
operators.

In the equality group, operators can easily be implemented by a tree-like structure. For
this implementation, the circuit area grows linearly with the number of input bits (i.e.,
O(n)), and the delay grows at a relatively slow O(log, n) rate. In the greater-less group,
the operation exhibits a strong data dependency of input bits. For example, to determine
the “greater than” relationship, we first have to compare the most significant bits of two
operands and, if they are equal, the next lower bits and so on. This leads to larger area and
propagation delay. Because of the circuit complexity, these operators can be implemented
in a variety of ways, each with a different area—delay characteristic. In the minimal-area
implementation, both area and delay grow linearly (i.e., O(n)) with the number of input
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bits. There are several different ways to improve the performance (i.e., reduce the delay),
all at the expense of extra hardware.

6.2.3 Realization of addition operators

The addition operator (+) is the most basic arithmetic operator. Several other operators,
including subtraction (-), negation (- with one operand) and absolute value (abs), can easily
be derived from the addition operator.

The addition operation has an even stronger data dependency of individual bits since the
least significant bit of input may affect the most significant bit of the result. It is normally
the most complex operator that can be synthesized automatically. Since the adder is the
basis of other arithmetic operations, its implementation has been studied extensively and a
wide range of circuits that exhibit different area—delay characteristics has been developed.
The minimal-area circuit, sometimes known as a serial or ripple adder, can easily be im-
plemented by cascading a series of 1-bit full adders. In this implementation, both area and
delay grow linearly (i.e., O(n)).

6.2.4 Synthesis support for other operators

Synthesis support for other more complicated operators is sporadic. It depends on individual
synthesis software, the width of the input operands as well as the targeted device technology.
Some high-end synthesis software can automatically derive multiplication operator (*) and
shift operators (sll, srl, sla, sra, rol and ror of VHDL, and shift_left, shift_right,
rotate. left and rotate.right of the IEEE numeric_std library). Because of the
hardware complexity, we must be extremely careful if these operators are used in a VHDL
code. Synthesis software rarely supports division-related operators (/, mod and rem)
or the exponential operator (**) or any operators associated with floating-point data-type
operands.

Since the emphasis in this book is on portable description, we will not use these operators
in our VHDL codes. Examples in Chapters 8 and 15 show how to design and derive VHDL
code for some of these operators.

6.2.5 Realization of an operator with constant operands

The operands of VHDL operators can sometimes be a constant expression, which does
not depend on the value of any input signal. Such constant operands have a significant
implication in the synthesis process.

Operator with all constant operands If all the operands of an expression are con-
stants, we can evaluate the expression in advance and replace it with a constant value.
However, it is good practice to use constant symbols and constant expressions in VHDL
code. They make the code more descriptive. For example, consider the following code
segment:

constant OFFSET: integer := 8;

signal boundary: unsigned(8 downto 0);
signal overflow: std_logic;

overflow <= ’1’ when boundary > (2*%0QFFSET-1) else
)OJ;
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The operands of operators ** and - are constants, and the 2**0FFSET-1 expression can be
replaced by a constant, 255. Although we can use 255 in VHDL code, it is less clear about
how the value is obtained. In a large, complex VHDL program that involves many constant
values, keeping track of the meaning of all constants becomes difficult. It is advisable to
use constant symbols and constant expressions.

During synthesis, software can easily detect constant expressions and replace them with
constants during preprocessing (in the elaboration phase of VHDL code). Since no physical
hardware will be inferred from constant expressions, we can use them freely in VHDL code.

Operator with partial constant operands Most VHDL operators have two operands.
Sometimes one of the operands is a constant, as in count+1, Instead of using a full-fledged
operator implementation, synthesis software can “propagate” and “embed” the constant
value into the circuit implementation. From a synthesis point of view, a constant operand
actually decreases the number of inputs of the circuit by half and thus can significantly
reduce the circuit complexity. For example, if a and b are two 8-bit signals and op is a
VHDL operator, implementing the a op b expression requires a combination circuit with
16 inputs. On the other hand, if one operand is a constant, say "0001001", implementing
the a op "00010001" expression only requires a combination circuit with eight inputs.

The following three examples further depict the difference between a full-fledged circuit
and the simplified implementation. The first example is of a rotation operator. Assume that
x and y are 8-bit signals and consider the following rotation operation:

y <= rotate_right(x, 3);

Since the shifting amount is a constant of 3, no actual shifting circuit is needed. This
operation can be implemented by properly connecting the input signals to the output signals,
which requires no logic at all. It is the same as

y <= x(2 downto 0) & x(7 downte 3);

The second example is of an equality operator. Let us consider a4-bit equality comparator
with inputs of 2322212 and ysyay1 0. The logic expression of this operation is

(3@ ys) - (@@ 1) - (21 ©1) - (0 ® y0)'
If one operand is a constant, say, ysy2y1ye = 0000, the expression can be simplified to
Ty Th - TY - T

The comparator is reduced to a 4-input nor gate. Thus, there is a significant difference
between a full-fledged comparator and a reduced comparator.

The last example is of an addition operator. A frequently used operation in VHDL is
incrementing: adding 1 to a signal, as in count+1. A minimal-area implementation of the
addition operator is done by cascading 1-bit full adders. On the other hand, a minimal-area
incrementor can be implemented by half adders, whose size is about one half that of full
adders. Thus, the circuit area of an incrementor is only about one half that of a regular
addition operator.

6.2.6 An example implementation

It will be helpful to have a comprehensive table that lists the areas and delays of synthe-
sizable operators. However, because of the complexity of the synthesis process and device
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Table 6.2 Circuit area and delay of some commonly used VHDL operators

Width VHDL operator
nand xor >a >4 = +1, +i4 +, +7 mux

Area (gate count)

8 8 22 25 68 26 27 33 51 118 21

16 16 44 52 102 51 55 73 101 265 42

32 32 8 105 211 102 113 153 203 437 85

64 64 171 212 398 204 227 313 405 755 171
Delay (ns)

8 01 04 40 19 10 24 15 42 32 03

16 01 04 86 37 17 55 33 82 55 03

32 01 04 176 67 18 116 75 162 111 03
64 01 04 357 143 22 240 157 322 229 03

technology, a small variation in VHDL code, synthesis algorithm, or device parameters
will lead to different results. Table 6.2 shows one synthesis result for several representative
operators of different input widths in a 0.55-micron CMOS standard-cell technology. The
subscripts a and d indicates that the circuit is optimized for area and for delay respectively.

The unit of area is a gate count, which is the equivalent number of 2-input nand gates used
to implement the circuit, and the unit of propagation delay is the nanosecond (ns). We need
to be cautious about the data in the table. The data is valid only for a particular version of a
particular software on a particular device technology and should not be overly interpreted
or analyzed. However, this data does show a general trend and provide a rough idea about
the relative complexity of different operators. The information for a 2-to-1 multiplexer,
which is the basic component for routing, is also included in the table for reference.

There are several important observations to be made from the table. First, as we expect,
the area and propagation delay vary significantly among the different operators. For exam-
ple, the area of a 32-bit fast addition operator is more than 10 times larger than that of a
32-bit nand operator, and the propagation delay of the adder is more than 100 times longer
than that of the nand operator.

The second observation is about the trade-off between area and delay. In digital system
design, it is generally not possible to find an optimal implementation, which has both min-
imal area and minimal delay. We normally have to invest more resources (a larger area) for
better performance (less delay). Except for the trivial implementation of logical operators,
other operators have multiple implementations with different area—delay characteristics.
Table 6.2 shows the area and delay characteristics of two implementations, in which one is
optimized for a smaller area and the other is optimized for less delay.

The third observation is about scaling, the impact of increasing the size of the input of
an operator (e.g., from 8 bits to 16 bits to 32 bits). The growth rates of area and delay are
not always linear (i.e., O(n)). In general, the growth rate of delay is on the order of O(1),
O(log, 1) or O(n), while the growth rate of area is between the orders O(n) and O(n?).
Since the commercial synthesis software normally does not reveal its internal algorithms,
the growth rate observation is true only for this particular software and device. Chapter 15
provides an in-depth discussion of the design of some operators.
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Figure 6.1 Tri-state buffer.

6.3 REALIZATION OF VHDL DATA TYPES

6.3.1 Use of the std_logic data type

VHDL supports a rich set of data types. During synthesis, these data types must be mapped
into binary representations so that they can be realized in a physical circuit. The VHDL
standard itself does not define the mapping mechanism, and thus the mapping is left for
synthesis software. To have better control of the final implementation, we limit our use of
data types primarily to the std_logic data type and its derivatives, the std_logic_vector,
signed and unsigned data types. The only exception is the user-defined enumeration data
type, which is used for the description of a finite state machine and is discussed in Chapter 9.

Recall that there are nine possible values in the std_logic data type. Among them, ’0’
and ’ 1’ are interpreted as logic 0 and logic 1 and are used in regular synthesis. ’L’ and *H’
are interpreted as weak 0 and weak 1, as in wired logic. Since modern device technologies
no longer use this kind of circuitry, the two values should not be used. °’U°’, *X’ and
*W’ are meaningful only in modeling and simulation, and they cannot be synthesized.
The two remaining values, *Z’ and ’-’, which represent high impedance and “don’t-
care” respectively, have some impact on synthesis. Their use is discussed in the following
subsections.

6.3.2 Use and realization of the ’Z’ value

The ’Z’ value means high impedance or an open circuit. It is not a value in Boolean
algebra but a special electrical property exhibited in a physical circuit. Only a special kind
of component, known as a tri-state buffer, can have an output of this value. The symbol
and function table of a tri-state buffer are shown in Figure 6.1. When the oe (for “output
enable”) signal is ?1°, the buffer acts as a short circuit and the input is passed to output.
On the other hand, when the oe signal is ’0?, the y output appears to be an open circuit.

VHDL description of a tri-state buffer High impedance cannot be handled by regular
logic and can exist only in the output of a tri-state buffer. The VHDL description of the
tri-state buffer of Figure 6.1 is

y <= a_in when oe=’1’ else
? Z b ;
We cannot use a value of >Z’ as an input or manipulate it as a logic value. For example,
the following statements cannot be realized and are meaningless in synthesis:

f <=2’ and a;
y <= data_a when in_bus='Z’ else
data_b;
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Figure 6.2 Use of ’Z’ as an output value.

Since a tri-state buffer is not an ordinary logic value, it is a good idea to code it in a
separate statement. For example, consider the following VHDL description:

with sel select
y <= ’Z’ when "00",
’1’ when "O1"|"11",
0’ when others;

Although the code is correct, direct transformation to a conceptual diagram, as shown in
Figure 6.2(a), cannot be synthesized. To clarify the intended structure, the code should be
modified as

with sel select
tmp <= ’1°’ when "01"|"11",
’0* when others;
y <= tmp when sel/="00" else
)Z’;

Following the description, we can easily derive the intended block diagram, as shown in
Figure 6.2(b).

The major application of a tri-state buffer is to implement a bidirectional I/O port to save
the pin count and to form a bus.

VHDL description of a bidirectional I/O port As a silicon device packs more cir-
cuitry into a chip, the number of I/O signals increases accordingly. A bidirectional IO pin
can be used as either an input or an output and thus makes more efficient use of an I/O pin.
Most FPGA and memory devices utilize bidirectional /O pins.

The schematic of a simple circuit with bidirectional I/O port, bi, is shown in Figure 6.3.
The dir signal controls the direction of the I/O port. When it is *0’, the port is used as an
input port. The tri-state buffer is in a high-impedance state, and thus the sig_out signal is
blocked. The external signal connected to the bi port is routed to the sig_in signal. When
the dir signal is ’1°, the port is used as an output port and the sig_out signal is connected
to an external circuit. Note that the sig_out signal is implicitly routed back to the sig in
signal when the dir signal is *1°. If this causes a problem, we can add an additional tri-state
buffer to break the return path, as shown in Figure 6.4. Since the control signals of tri-state
buffers are connected to a complementary enable signal, only one tri-state buffer is enabled
at a time,
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The VHDL description for a bidirectional port is straightforward. We first specify the
mode as inout in port declaration and then describe the tri-state buffer accordingly. The
VHDL segment for the single-buffer diagram of Figure 6.3 is

entity bi_demo is
port (
bi: imout std_logic;

begin
sig_out <= output_expression;

some_signal <= expression_with_sig_in;

bi <= sig_out when dir=’1’ else 'Z2’;
sig.in <= bi;

To accommodate the dual-buffer configuration of Figure 6.4, we just need to modify the
last statement to reflect the change:

sig_in <= bi when dir=’'0’ else ’2°’;

Tri-state buffer~based bus Another application of the tri-state buffer is to form a
bus. The diagram of a simple tri-state buffer-based bus (or simply tri-state bus) is shown in
Figure 6.5, in which four sources are connected to the bus. The signal src_select specifies
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which input source is to be placed on the bus. It is connected to a decoding circuit that
generates four non-overlapping control signals, ce(0), oe(1), oe(2) and oe(3). Only
one can be activated at a time, and the input connected to the activated buffer is placed on
the bus. The VHDL code for this circuit is

—— binary decoder
with src_select select
oe <= "0001" when "OO",

"0010" when "01",

"0100* when 10",

"1000" when others; — "I11"
—— tri—state buffers
yO <= i0 when oe(0)="1’ else 'Z’;
y1 <= i1 when oe(1)=’1’ else *Z’;
y2 <= i2 when oe(2)=’1’ else 'Z’;
y3 <= i3 when oe(3)='1’ else 'Z’;
data_bus <= yo0;
data_bus <= yi;
data_bus <= y2;
data_bus <= y3;

Despite its simple appearance, the internal tri-state buses presents a serious problem in
the development flow. Since the theoretical models of most EDA algorithms are based on
Boolean algebra, which is defined according to two logic values, the software tools cannot
handle the high-impedance state. The tri-state bus thus imposes a problem in optimization,
timing analysis, verification and testing. Furthermore, internal tri-state bus is technology
dependent, and thus the design is less portable.
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Table 6.3 Function tables of a 3-to-2 priority encoder

Input Output Input  Output
req code req code
100 10 1-- 10
101 10 01- 01
110 10 001 00
111 10 000 00
010 01

011 0

001 00

000 00

Table 6.4 Don’t-care used as an output value

input output

ab f
00 0
01 1
10 1
11 -

A tri-state bus essentially performs multiplexing. For example, the previous design can
be replaced by a 4-to-1 multiplexer:

with src_select select
data_bus <= i0 when "00",
il when "O1",
i2 when "10",
i3 when others; — "I11"

This scheme is more robust and portable and thus is the preferred choice. The major
application of the tri-state bus is to construct the external back-plan bus of a printed circuit
board. An add-on card can easily be added to or removed from the bus without affecting
subsystems residing on other cards.

6.3.3 Use of the ’-’ value

Don’t-care is not a valid logic value in Boolean algebra but is used to facilitate the design
process. Don’t-care can be used as an input value to make a function table clear and compact.
For example, the original function table of a 3-input priority encoder is shown on the left of
Table 6.3. When req(2) is ’1°, the output should be "10" regardless of the values of other
requests. Instead of using four rows, we can use 1-- to indicate the condition. The revised
table, as on the right of Table 6.3, is more compact and more descriptive.

When used as an output value, don’t-care indicates that the exact value is not important.
This happens when some of the input combinations are not used. During the synthesis
process, we can assign a value that helps to reduce the circuit complexity. A simple example
is shown in Table 6.4, in which the output value for the input pattern “11" is don’t-care. If
don’t-care is assigned to 0’ during synthesis, f becomes a’ - b+ a - b’. On the other hand,
when it is assigned to ’1’, f can be simplified to a + b, which requires much less hardware.
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According to the definition of the std_logic data type, the '~ value is designated
as “don’t-care.” However, VHDL treats ’-’ as an independent symbolic value of the
std.logic data type rather than “0 or 1.” This definition is somewhat different from our
conventional use and may lead to unexpected behaviors and subtle mistakes. The following
paragraphs discuss the use of this value.

Use of '-> as an input value Let us first examine the issues related to using ’=’ as
an input value. Consider the priority function of Table 6.3. We may be tempted to code the
circuit as follows:

y <= "10" when req="1--" else

"01" when req="01-" else

"00" when req="001" else

" 00 n ;
The code is syntactically correct. However, in a physical circuit, an input signal can only
assume a value of 70’ or ’1’ but never ’-’, and thus the req="1--" and req="01-"
expressions will always be false. If the value of the req signal is "111", none of the
Boolean expression is true and "00" will be assigned to y accordingly. To correct the
problem, we have to eliminate the comparison of ’-’ in Boolean expressions:

y <= "10" when req(2)='1’ else
“01" when req(2 downto 1)="01" else
"00" when req(2 downto 0)="001" else
n 00 L) ;
The code is just for demonstration purposes and is not very efficient. Better code for priority
encoding circuit was illustrated in Section 4.3.1.

In the IEEE numeric_std package, there is a function, std_match(), which performs
don’t-care comparisons according to the traditional interpretation. The function compares
two inputs of std_logic_vector data type and interprets * -’ as a don’t-care in a conven-
tional sense. The previous code can be written as

use ieee.numeric_std. all;

y <= "10" when std_match(req,"1i--") else
“01" when std_match(req,"01-") else
"00" when std_match(req,"001") else
Ilooll ;
Our discussion of ’-’ is also applied to the choice expression in a selected signal

assignment statement and case statement. For example, the following code seems to be the
direct implementation of the compact function table of Table 6.3:

with req select
y <= "iQ" When ||1__||’
"01" when ||01_ll,
"00" when "001",
"00" when others;

The code is syntactically correct. Again, since a physical input signal can never assume a
value of ’-, the choices "1--" and "01-" will never occur. If the value of the req signal
is "111", there is no match and "00" will be assigned to y. There is no easy fix in this case.
We must explicitly specify choice expressions in terms of '0’ and ’1°, as in the original left
function table of Table 6.3. The correct VHDL code is
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with req select
y = "10" when n100u|u101u’|l110n||1111u,
"oo" When |1010||||1011",
"00" when others;

Use of ’-’ as an output value Don’t-care can also be used as an output value and
assigned to a signal. For example, the function table of Table 6.3 can easily be translated
to VHDL code:

sel <= a & b;
with sel select
y <= 0’ when "00",
1’ when "01",
1’ when "10",
*~' when others;

The code is syntactically correct. According to the VHDL definition, ’-’,not “Oor 1,” will
be assigned toy if selis "11". Sinceareal -’ does not exist in a physical implementation,
this symbol cannot be synthesized. During synthesis, some software flags an error, and
others treat it as a conventional don’t-care and perform optimization accordingly.

6.4 VHDL SYNTHESIS FLOW

Synthesizing VHDL code is the process of realizing a VHDL description using the primitive
logic cells from the target device’s library. It is a complex process. To make it manageable,
we normally divide VHDL synthesis into steps, including high-level synthesis, RT-level
synthesis, gate-level synthesis (commonly known as logic synthesis) and cell-level synthesis
(commonly known as technology mapping). High-level synthesis transforms an algorithm
into an architecture consisting of a data path and control path. It is substantially different
from the other three steps and is done by specialized software tools. It is reviewed in
Section 12.7.

RT-level synthesis, logic synthesis and technology mapping generate structural netlists
utilizing generic RT-level components, generic gate-level components and device-dependent
cells respectively. The detailed flow is shown in Figure 6.6. Basically, the entire circuit is
transformed and optimized level by level, from an RT-level netlist to a gate-level netlist and
then to a cell-level netlist, as shown in the left column of the flowchart. Some RT-level com-
ponents, such as adder and comparator, can be quite complex. They are normally handled
by a module generator, as shown in the right column of the flowchart. Our current discus-
sion is limited to the synthesis flow of combinational circuits. It can easily be expanded to
include sequential circuits, which are discussed in Chapter 8.

6.4.1 RT-level synthesis

RT-level synthesis transforms a behavioral VHDL description into a circuit constructed by
components from a generic RT-level library. The term generic implies that the components
are common to all technologies and thus the library is not technology dependent. The
components can be classified into three categories: functional units, routing units and
storage units. Functional units are used to implement the logic, relational and arithmetic
operators encountered in VHDL code. Routing units are various multiplexers used to
construct the routing structure of a VHDL description, as discussed in Chapters 4 and 5.
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Storage units are registers and latches, which are used only in sequential circuits and are
discussed in Chapter 8.

RT-level synthesis includes the derivation and optimization of an RT-level netlist. During
the process, VHDL statements are converted into corresponding structural implementation,
somewhat similar to the derivation of conceptual diagrams discussed in Chapters 4 and 5.
Some optimization techniques, such as operator sharing, common code elimination and
constant propagation, can be applied to reduce circuit complexity or to enhance perfor-
mance. Unlike gate- and cell-level synthesis, optimization at the RT level is performed in
an ad hoc way and its scope is very limited. Good design can drastically alter the RT-level
structure and help software to derive a more effective implementation.

6.4.2 Module generator

After the RT-level synthesis, the initial description is converted to a netlist of generic RT-level
components. These components have to be transformed into lower-level implementation
for further processing. Some RT-level components, such as logical operators and multi-
plexers, are simple and can be mapped directly into gate-level implementation. They are
known as random logic since they show less regularity and can be optimized later in logic
synthesis. The other components are quite complex and need special software, known as
a module generator, to derive the gate-level implementation. These components include
adder, subtractor, incrementor, decrementor, comparator and, if supported, shifter and mul-
tiplier as well. They usually show some kind of repetitive structure and sometimes are
known as regular logic. Regular logic is usually designed in advance. A module generator
can produce modules in different levels of detail:

e Gate-level behavioral description.

¢ Presynthesized gate-level netlist.

e Presynthesized cell-level netlist.

A gate-level behavioral description can be thought of as VHDL code that uses only
simple signal assignment and logical operators, which can easily be mapped to a gate-level
netlist. The description is general and independent of underlying device technology. The
description will be flattened and combined with the random logic to form a single gate-level
netlist. The merged netlist will be synthesized together later in logic synthesis. Chapter 15
discusses the generation of some frequently used components.

Because of the regular and repetitive nature of these components, it is possible to further
explore their properties and manually derive and synthesize the netlist at the gate level or
even at the cell level. Manual design can explore this regularity and derive a more efficient
implementation. The resulting circuit is more efficient than a circuit obtained from logic
synthesis. When a presynthesized gate- or cell-level netlist is used, it will not be flattened
and merged with the random logic. The random logic will be independently processed
through logic synthesis and even technology mapping. The netlist of random logic and the
netlists of regular components will be merged after these processes. The right column in
the synthesis flow of Figure 6.6 shows the various possibilities for module generation.

There are two advantages to the non-flattened approach. First, it can utilize predesigned,
highly optimized modules. Second, since these modules are extracted from the original
circuit, the remaining part is smaller and thus is easier to process and optimize. On the
other hand, the non-flattened modules may isolate the random logic and thus reduce the
chance for further optimization. For example, the adder of Figure 6.7 separates the random
logic circuits into two parts and forces them to be processed independently. It may introduce
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more optimization opportunities if we flatten the adder, merge it with the four random logic
circuits, and then process and optimize them together. There is no clear-cut rule as to which
approach is more effective. Some synthesis software allows users to specify the desired
option.

6.4.3 Logic synthesis

Logic synthesis is the process of generating a structural view using an optimal number
of generic primitive gate-level components, such as a not gate, and gate, nand gate, or
gate and nor gate. Again, the term generic means that the components are not tied to a
particular device technology and there is no detailed information about the components’
size or propagation delay. Atthislevel, a circuit can be expressed by a Boolean function, and
these generic components are essentially the operators of Boolean algebra. Logic synthesis
can be divided into two-level synthesis and multilevel synthesis.

The most commonly used two-level form is the sum-of-products form, in which the
first level of logic corresponds to and gates and the second level to or gates. An example
is shown in Figure 6.8(a). Other two-level forms can easily be derived from the sum-of-
products form. Two-level synthesis is to derive an optimal sum-of-products form for a
Boolean function. The goal of optimization is to reduce the number of product terms (i.e.,
the number of and gates) and the number of input literals (i.e., the total fan-ins of and gates).
The well-known Karnaugh map technique is a method to manually obtain the optimal two-
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level implementation for a circuit with up to four or five inputs. A more realistic circuit
may contain dozens or even several hundred inputs and cannot be optimized manually.
Obtaining the optimal two-level circuit is actually an intractable problem and thus is not
practical. However, this process is well understood, and many efficient algorithms to obtain
good, suboptimal circuits have been developed.

Because of the large number of fan-ins for the and and or gates, the two-level sum-
of-products form can only be implemented by using a special ASIC structure, known as
programmable logic array (PLA), and, with some modification, by using programmable
array logic (PAL)-based CPLD devices. However, the two-level form is a formal way of
expressing Boolean functions and is frequently used as a basis for processing and manipulat-
ing logic expressions. Two-level synthesis can reduce the information needed to represent
a function and theoretically can serve as a staring point of multilevel processing.

Multilevel representation, as its name indicates, expresses a Boolean function by using
multiple levels of gates. Its form is far less stringent than that of the two-level form and
provides several degrees of freedom, leading to better efficiency and more flexibility. The
implementation may be exploited by optimizing area, by optimizing delay, or even by
obtaining an optimal area—delay trade-off point. An example of multilevel implementation
of the previous two-level implementation is shown in Figure 6.8(b). It reduces both the
number of gates and the number of fan-ins. Modern device technologies are based on
small cells whose fan-in is limited to a small number. Thus, multilevel synthesis is more
appropriate.

Processing and optimizing a multilevel logic are more difficult. Optimization is normally
based on heuristic methods, which exploit various Boolean or algebraic transformations or
search and replace circuit patterns according to a rule database. Because of the flexibility
of multilevel representation, synthesis results vary significantly, and a minor modification
in initial description may lead to a totally different implementation.

6.4.4 Technology mapping

Logic synthesis generates an optimized netlist that utilizes generic components. Technology
mapping is the process of transforming the netlist using components from the target device’s
library. These components are commonly referred to as cells, and the technology library is
normally provided by a semiconductor vendor who manufactured (as in FPGA technology)
or will manufacture (as in ASIC technology) the device. Whereas a generic component is
defined by its function, a cell is further characterized by a set of physical parameters, such
as area, delay, and input and output capacitance load. In the case of ASIC technology, each
cell is associated with the physical layout or prediffused patterns.

Although technology mapping can be done by simple translation between generic com-
ponents and logic cells, the resulting circuit is not very efficient since the translation does
not exploit the functionalities, areas and delays of the cells. Obtaining optimal mapping is a
very difficult process, which involves intractable problems. Again, heuristic and rule-based
algorithms are used to find suboptimal solutions. The following subsections use two simple
examples to illustrate the technology mapping process of a hypothetical standard-cell ASIC
library and a 5-input look-up table (LUT)-based FPGA.

Standard-cell technology A library from standard-cell technology normally consists
of several dozen to several hundred cells, including combinational, sequential and interface
cells. Combinational cells consist of simple gates, such as and, or, nand, nor, xor etc.,
and sometimes slightly complex circuits, such as 1-bit full adder, 1-bit 2-to-1 multiplexer
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Figure 6.9 Simple hypothetical ASIC cell library.

etc. A simple hypothetical technology library with seven cells is shown in Figure 6.9. The
columns are the name of the cell, its relative area (cost), its symbol and its normal form.
The normal form, which represents a cell using 2-input nand gates and inverters, is used to
facilitate the mapping process.

The cells of a technology library are optimized and tuned for a particular technology.
They are manually designed from scratch at the transistor level rather than being based on
simple logic gates. For example, if the aoi cell is implemented using the simpler nand?2
and not cells, its area is 11, which is about four times the area of the nand?2 cell. However,
if it is implemented directly at the transistor level, its area is 5, which is about twice the area
of the nand?2 cell. This explains why there are many different primitive cells in a typical
standard-cell library. Furthermore, since fine adjustments can be made at the transistor
level, multiple cells of different area—delay trade-offs may exist for the same logic function.

The mapping can best be illustrated by the example shown in Figure 6.10. The initial
mapping in Figure 6.10(a) is a trivial one-to-one gate-to-cell translation and its area is 31.
The better one, in Figure 6.10(b), is optimized and its area is reduced to 17. Although



VHDL SYNTHESIS FLOW 145

(a) Initial mapping

1 &
AT j%—bﬂ_ rend
_:[;— ..... D_[>—|—__D__

nand3

(b) Better mapping

Figure 6.10 Standard-cell technology mapping example.
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Figure 6.11 LUT-based FPGA technology mapping example.

this is a simple example, it demonstrates the importance of good mapping as well as the
complexity of the technology mapping process.

LUT-based FPGA technology Because an FPGA device is prefabricated in advance,
its technology library normally consists of only a single cell. This cell can, however, be
“programmed” or configured to perform different logic functions. The most commonly
used construction is based on a small look-up table (LUT). We can program a LUT by
specifying its contents, as in a truth table description of a logic function. If a LUT can
accommodate 2™ rows (i.e., n inputs), it can be used to realize any combinational function
with n or fewer inputs. A typical FPGA cell consists of a 4-, 5-, or 6-input LUT and a
D-type flip-flop.

An example of technology mapping using 5-input LUT cells is shown in Figure 6.11.
Since a LUT cell concerns only the number of inputs, the netlist does not need to be
converted into normal form. The mapping in Figure 6.11(a) is a trivial one-to-one gate-
to-cell translation, and it requires four LUT cells. The mapping in Figure 6.11(b) is more
efficient and reduces the number to only two LUT cells.

Precaution with FPGA technology From technology mapping’s point of view, one
difference between ASIC and FPGA technologies is the size of the cells. The cell size
of an ASIC device is very small, and thus any minor adjustment will be reflected in the
implementation. For example, the previous standard-cell library has 2-, 3- and 4-input nand
cells. If we can improve our design by eliminating one input of a product term in the logic
expression, we can use a smaller nand cell and reduce the circuit area by a small amount.

On the other hand, the cell size of a FPGA device is relatively large. A S-input LUT-based
cell can implement any 1-, 2-, 3-, 4- or 5-input logic function, regardless of the complexity
of the function. A wide range of functions can be implemented by this cell, and alt of them
are considered to have the same area under the FPGA technology. For example, both the
a-band a @ b @ c ® d @ e expressions can be mapped into a single LUT cell. Although
the internal utilizations of the cells are very different, the two expressions are considered to
have the same area. This may cause an unexpected result when we synthesize a circuit using
FPGA technology. This phenomenon will be further amplified if we take into consideration
the built-in flip-flop within a logic cell. For example, we can construct a 1-bit counter and
its area remains a single cell.
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Figure 6.12 Discontinuity of LUT cell-based implementation.

The FPGA-based implementation may also exhibit a “discontinuity” phenomenon. For
example, let us use a 4-input LUT logic cell to implement an odd-parity circuit, which has
an expression of

a1 DaxPaz®---Ban,

A simple cascading chain implementation and mapping is shown in Figure 6.12(a). The
number of logic cells needed for different input size (i.e., n) is plotted in Figure 6.12(b). It
looks like a staircase and exhibits discontinuities (i.e., a sudden change) at certain points.
For example, if we increase the input size from 6 to 7, there is no change in the number of
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logic cells, and thus the area remains unchanged. But if we change the input size from 7
to 8, the number of logic cells increases from 2 to 3, and thus the area increases 50%.

For a larger, more complex circuit, we can expect that the cell utilization and discontinuity
will average out and the result is more like that of an ASIC device. Nevertheless, occasional
fluctuations and randomness are unavoidable, and targeting an FPGA device still introduces
a new dimension of complication in synthesis. Although the discussion in the remainder
of the book can be applied equally to both ASIC and FPGA devices, we target the design
using ASIC devices for the area and performance data.

6.4.5 Effective use of synthesis software

Despite its fundamental limitation, synthesis software is still a powerful and necessary tool,
which can automate many design tasks and perform certain tedious and repetitive compu-
tations. A good designer should understand the capabilities and limitation of software, and
know what this tool can and cannot do as well as when to compromise.

VHDL description of logical operators In general, synthesis software is very effec-
tive in performing logic synthesis and technology mapping for a small to moderate-sized
circuit whose complexity is around 5000 to 50,000 equivalent gates. Although optimization
involves intractable problems, these problems have been studied thoroughly and many good
heuristics and searching procedures have been developed. Furthermore, although a circuit
is processed at the gate or cell level, even a very simple design consists of hundreds or
thousands of components. It is not practical to manipulate the design manually at this level.

VHDL logical operators can be mapped directly to gate-level components. Their imple-
mentations are simple and straightforward. Since synthesis is very effective at this level,
we need not worry about the sharing and optimization of logical operators in a VHDL
description.

VHDL description of arithmetic and relational operators Optimization at the
RT level involves complex arithmetic and relational operators and routing structure. It
is not well developed and is frequently done on an ad hoc basis. Human intervention
is required, and we have to specify explicitly the desired design in a VHDL description.
Simple modifications on code frequently can improve circuit efficiency significantly.

There is no comprehensive procedure or algorithm to detect sharing and to perform
optimization for arithmetic and relational operators. It frequently depends on the designer’s
insight and knowledge of a circuit. VHDL is a good vehicle to explore design at this level.
Sections 7.2 and 7.3 provide a comprehensive array of examples for this topic.

VHDL description of layout and routing structure Routing structure indicates
how “data” propagate through various parts of the system, from input ports to output ports.
Although a VHDL program cannot explicitly specify the placement of components or the
layout of a design, it implicitly describes the routing structure and, to some degree, the shape
of the implementation. Recall that each VHDL statement can be considered as a circuit part,
and a VHDL program implicitly connects these parts. Although all parts of a combinational
circuit operate concurrently, some outputs of these parts are not valid initially. The valid
value can be thought of as data that propagates from one part to another and eventually
to the circuit output. The data flow forms a routing structure, which, in turn, implicitly
determines the shape or layout of the physical circuit.

Regardless of the shape of the initial VHDL description, the placement and routing
process will eventually implement the circuit on a two-dimensional silicon chip. If the
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Figure 6.13 Routing structures of an odd-parity circuit.

shape of the initial description resembles the shape of the chip, the description can help the
placement and routing process and make the final implementation smaller and faster. Two
routing structures of a simple example of an odd-parity circuit are shown in Figure 6.13.
The one in Figure 6.13(a) is a cascading-chain structure described by the statement

y<=(((((((a xor b) xor c) xor d) xor e) xor f) xor g) xor h);
and the one in Figure 6.13(b) has a tree structure described by the statement
y<=((a xor b) xor (c xor d)) xor ((e xor f) xor (g xor h));

Both structures use the same number of xor gates, but the propagation delay is much smaller
in the tree structure.

Although synthesis software can recognize a few specific patterns and rearrange the
routing structure on a local basis, it cannot make any major global change. Good VHDL
coding can outline the basic “skeleton” of the implementation and provide a framework
for synthesis. It has a greater impact than the local optimization performed by synthesis
software. The coding technique is discussed in detail in Section 7.4 .

6.5 TIMING CONSIDERATIONS

A digital circuit cannot respond instantaneously, and the output is actually a function of
time. The most important time-domain characteristic is the propagation delay, which is
the time required for the circuit to generate a valid, stabilized output value after an input
change. It is one of the major design criteria for a circuit.

Another time-domain phenomenon, known as a hazard, is the possible occurrence of
unwanted fluctuations of an output signal before it is stabilized. Although a hazard is a
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transient response, it may cause circuit malfunction in a poorly conceived design. The
following subsections examine the propagation delay and hazard in more detail and discuss
several timing issues that have an impact on synthesis.

6.5.1 Propagation delay

It takes a digital circuit a certain amount of time to reach a valid stable output response after
an input change. In digital design, we treat this time as the delay required to propagate a
signal from the input port to the output port, and call it propagation delay or simply delay.
A digital system normally has multiple input and output ports, and each input—output path
may exhibit a different delay. We consider the worst-case scenario and use the largest
input-output delay as the system’s propagation delay.

The propagation delay reflects how fast a system can operate and is usually considered
as the performance or the speed of the system. Combined with the circuit size (area), they
are the two most important design criteria of a digital system.

To compute the delay of a system, we first determine the delays of individual components
and identify all possible paths between input and output ports. We then calculate the delay
of each path by summing up the individual component delays of the path and eventually
determine the system delay.

The system delay calculation clearly depends on the information of its underlying com-
ponents. The best estimation can be obtained at the cell level since the netlist is final, and
the accurate physical and electrical characteristics of cells are provided. The least accu-
rate estimation is at the RT level since the components must be further transformed and
optimized.

Propagation delay at the cell level To determine the exact time-domain behavior
of a cell, we have to examine and analyze it at the transistor level, which is modeled
by transistors, resistors and capacitors. The delay is due mainly to parasitic capacitance,
which occurs at two overlapping layers and thus exists everywhere. When a transistor
changes state, these capacitors have to be charged or discharged and thus introduce a delay.
Analyzing a cell at this level is extremely complex and can be done only at a small scale.
The analysis provides basic data for cell-level modeling.

To manage the complexity, timing analysis at the cell level has to rely on a much simpler
model. One commonly used approach is a simplified linear model, in which all parasitic
capacitance is lumped as a single capacitor and only the first-order effect is considered. In
this model, the delay of a cell is expressed as

delay = dintrinsic + T * Cload

The first term in the expression, d,ntrinsic, 1S associated with the internal circuit of the
cell. It models the time required for transistors to change state (i.e., switch on or off). The
second term is associated with the external circuits driven by the cell. The parameter Cj,04q
is the total capacitive load driven by this cell, which includes the input capacitance of cells
connected to the output of current cell and the parasitic capacitance of the interconnect wires.
An example is shown in Figure 6.14. The load is the summation of the input capacitance
of three cells driven by the and gate (Cy1, Cy2 and Cy3) and parasitic capacitances of three
interconnect wires (Cyy1, Cuw2 and Cy3).

The r parameter represents the driver capability of the cell and can loosely be considered
as the output impedance of the cell. When r is small, the cell can allow more current (i.e.,
larger driver capability) and thus can charge or discharge the capacitance load in a shorter
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Figure 6,14 Delay estimation at the cell level.

period, leading to a smaller delay. At the transistor level, we can reduce the delay by using
a larger transistor to increase the driver capability.

Impact of wiring on cell-level delay estimation The accuracy of cell-level delay
estimation depends on several factors. The first factor is the accuracy of the parameters
used in delay calculation. We can obtain fairly accurate values for dintrinsc, 7, and input
capacitance from the manufacturer’s data sheet. After technology mapping, fan-out of each
cell can be obtained from the netlist, and thus the total input capacitance load can easily
be determined. The wire capacitance, on the other hand, depends on the actual length and
location of each wire. Since this information is not available at the synthesis stage, software
sometimes uses a statistical model to provide a rough estimation. Accurate information can
only be extracted after place and routing is performed. This is one reason that the system
has to be simulated and verified again after the placement and routing process.

The second factor is the accuracy of the model. The linear cell-level model is only
an approximation and ignores higher-order effects. In some circumstances, these effects
become more dominant, and more sophisticated models have to be used. For example, a
more complex distributed RC model can be used to obtain better estimation than a simple
lumped circuit. Some models for a wire between points a and b are shown in Figure 6.15(b) -
d).

‘When the transistor geometry is relatively large, the wire capacitance and higher-order
effects do not contribute much to the overall delay and can safely be ignored. Accurate
timing information can be obtained in the synthesis stage. However, as the transistor
becomes smaller and submicron technology becomes available, the wiring delay gradually
becomes the dominant part and the high-order effects have more impact. This makes the
design process harder since we need to do placement and routing to obtain accurate timing
information.

In addition to the inherent errors of approximation, the fabrication process and operation
environment (such as temperature) affect the delay characteristics as well. In general, there
is no way that we can control the exact delay of a cell. A device manufacturer can only
guarantee the boundary of operation, normally in terms of the maximal propagation delay.
While VHDL incorporates the timing aspect in the language, it is primarily for modeling
purposes. For example, we can specify an and gate with a 2-ns delay as:
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f <= b and c after 2 ns;

During synthesis, the timing part will be completely ignored since there is no technology
that can produce a gate with an exact 2-ns delay.

System delay Once cell delays are known, we can calculate the delay of a path by
adding the individual cell delays along the path. A digital system typically has many paths
between input and output ports, and their delays are different. Since the system has to
accommodate the worst-case scenario, the system delay is defined as the longest delay. The
corresponding path is considered as the longest path and is known as the critical path.

A simple method of determining the critical path is to treat the netlist as a graph, extract
all possible paths and then determine the longest path accordingly. An example is shown in
Figure 6.16. Since the topology of the system alone determines the critical path, it is also
known as the topologically critical path.

Using the topologically critical path to determine the system delay may occasionally
overestimate the actual value because of a false path, a path along which no signal transition
can propagate. Anexample of a false path is shown in Figure 6.17. The topologically critical
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path is the route that includes the circuit with 40- and 60-ns delays. However, in realty, the
input signal can propagate through either the top part (when the select signalis ’1’) or the
bottom part (when the select signal is *0’) but never the topologically critical path. Since
no signal actually passes through the false paths, they should be excluded from system delay
calculation. To determine the true critical path is much harder since the analysis involves
not only the topology but also the internal logic operations.

Because of the large number of cells in a system, cell-level timing analysis is always
done by software. This feature is normally integrated into the synthesis software. Most
software uses the topological critical path to determine the system delay. Some software
allows users manually to exclude potential false paths.

Delay estimation at the RT level We can apply the same principle to analyze and
calculate the propagation delay at the RT level. The accuracy of the calculation depends on
the components used in the RT-level diagram. If an RT-level diagram consists primarily of
simple logical operators and is mainly random logic, the circuit is subjected to a significant
amount of transformation and optimization during logic synthesis and technology mapping.
Since the final circuit may not resemble the original RT-level diagram, the RT-level delay
calculation will not faithfully reflect delay in the synthesized circuit.

On the other hand, if an RT-level diagram consists of many complex operators and func-
tion blocks, these components become the dominating part of a delay calculation. Further-
more, since these components are presdesigned and optimized, their delay characteristics
will not change significantly during synthesis. Thus, the delay calculation will be much
more accurate for this type of circuit. Calculating RT-level delay allows us to identify the
critical path and thus better understand the performance of the circuit, and eventually helps
to derive an efficient design and VHDL code with the desired area—delay characteristics.
RT-level delay estimation is shown in many design examples in the subsequent chapters.
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6.5.2 Synthesis with timing constraints

The circuit area and system delay are two major design criteria. In most applications, we
cannot find a design or an implementation that is optimized for both criteria. A faster
circuit normally is more complex and needs more silicon real estate, and a smaller circuit
normally has to sacrifice some performance. For the same application, there frequently
exist multiple implementations that exhibit different area—delay characteristics. A typical
area—delay curve is shown in Figure 6.18, in which each point is a possible implementation.
Of course, the trade-off can be achieved only in a limited range. We cannot reduce the area
or increase the performance indefinitely.

Multilevel logic synthesis is quite flexible, and it is possible to add additional gates to
achieve shorter delay. An example is shown in Figure 6.19. The circuit performs three xor
operations. The diagram in Figure 6.19(a) is the initial design, which is optimized for area.
The critical path is from a(0) or a(1) to y(3), and the system delay is three times the
delay of an xor gate. The diagram in Figure 6.19(b) is the revised circuit. It shortens the
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critical path by adding an extra xor gate, and the system delay is reduced to twice the delay
of an xor gate.

The synthesis procedure discussed in Section 6.4 focuses on minimizing the circuit area.
A combinational system is normally part of a larger system. To meet a certain performance
goal, we sometimes have to add a specific timing constraint for synthesis. As we discussed
earlier, it is impossible to synthesize a circuit with an exact propagation delay. Instead,
the timing constraint is specified in terms of maximal allowable propagation delay. Since
the system delay depends only on the delay of the critical path, it is not wise to blindly
optimize all paths. Synthesis with a timing constraint utilizes an iterative procedure. First,
the minimal-area implementation is obtained from regular synthesis. The implementation
will be analyzed to determine the critical path and the system delay. If the delay exceeds
the constraint, extra gates will be provided to speed up the critical path. The revised
implementation will be analyzed again for the critical path (which is the second longest path
in the original implementation) and checked to see whether the new system delay is within
the constraint. The process may repeat several times until a satisfactory implementation is
found. The iteration process in an area—delay space is shown in Figure 6.20.

The previous iteration procedure is done at the gate or cell level and thus is too tedious
for human designers. However, it is possible to apply the procedure in at the RT level.
A block diagram shows the basic routing structure and the locations of complex RT-level
modules. Since the delays of the complex modules constitute the major portion of the
system delay, we can identify the paths that contain these modules, estimate the rough
delays of these paths, and determine the critical path accordingly. This kind of analysis
helps us to explore various architectural alternatives and eventually to derive a more efficient
design. Our understanding of the system and insight can lead to “global” optimization, and
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it is normally much more effective than gate- or cell-level optimization done by synthesis
software. The impact of an innovative RT-level architectural change on the area—delay
space is shown in Figure 6.20.

6.5.3 Timing hazards

The propagation delay of a system is the time required to generate a valid, steady-state
output value. Timing hazards are the fluctuations occurring during the transient period. In
a digital system, many paths may lead to the same output port. Since each path’s delay is
different, signals may propagate to the output port at different times. Before the output port
produces a steady-state value, it may fluctuate several times. The fluctuations are one or
more short undesired pulses, known as glitches. We say that a circuit has timing hazards
if it can produce glitches. The following subsections discuss the two types of hazards and
how to deal with them.

Static hazards A static hazard is the condition that a circuit’s output produces a glitch
when it should remain at a steady value. It is further divided into static-1 hazard and static-0
hazard. A static-1 hazard occurs when a circuit’s output produces a *0’ glitch. An example
is shown in Figure 6.21. The Karnaugh map of a function and its implementation are shown
in Figure 6.21(a). The corresponding Boolean function is

sh=a-bt +b-c

Assume that a and c are ’1’, and that b changes from ’1° to *0’. Regular analysis, which is
based on Boolean algebra and deals with steady-state value, predicts that the output should
be ’1” all the time. However, if we consider transient behavior, there are two converging
paths with different delays. Assume that the delay of inverter is T,,; and the delay of the
and gate and or gate is T,,,q and the wire delays are 0. The timing diagram and the sequence
of events are shown in Figure 6.21(b). An unwanted "0’ glitch of width T7,,; occurs at the
output because the signal in the bottom path propagates faster than that in the top path.

Similarly, a static-0 hazard is the condition that a circuit’s output produces a 1’ glitch
when Boolean algebra analysis predicts that the output should be a steady *0’.

Dynamic hazards A dynamic hazard is the condition that a circuit’s output produces a
glitch when it changes from ’1’ to ’0’ or 0’ to ’1°. An example of a circuit with a dynamic
hazard is shown in Figure 6.22(a). Assume that a, ¢ and d are ’1” and that b changes from
’1” to ’0’. The timing diagram in Figure 6.22(b) shows that there is a *1’ glitch when the
dh output changes from 0’ to ’1’. The glitch is due to the different propagation delays of
the converging paths.

Dealing with hazards There are some techniques to eliminate hazards caused by a
single input change. For example, we can add a redundant product term to eliminate the
previous static hazard:

sh=a-b'+b-c+a-c

The revised Karnaugh map and circuit are shown in Figure 6.21(c). Although deriving a
hazard-free circuit is possible, this approach is problematic if the design is later processed
by synthesis software. The problems are discussed in detail in the next section.

In a real-world application, the hazard situation will become even more complicated
because of the possibility of multiple input signal transitions. If the inputs of a combinational
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circuit are connected to the outputs of an edge-triggered register, the register’s outputs may
change almost simultaneously at the transition edge of the clock signal. For example, whena
4-bit counter circulates from "1111" to "0000", four input bits change almost simultaneously.
Multiple changes will activate several paths at the same time and frequently lead to glitches
in an output signal. Unless we utilize a specialized counter, which is normally not practical,
it is impossible to eliminate hazards.

Since there is no easy way to eliminate hazards, we have to live with them. In a com-
binational circuit, the most effective way to handle hazards is to ignore the output during
the transient period. Recall that the propagation delay is the time for an input signal to
propagate through the longest path in a system. If there is a glitch, it will occur within this
period of time. After that, the output will always be a valid, steady-state value. As long as
we know when to examine the output, the existence of glitches does not matter. This “wait
until the output is stabilized” idea is one of the motivations behind the synchronous design
methodology, in which a clock signal “samples” input signals at the proper time and stores
the values in a register. The synchronous design methodology is elaborated in Chapter 8.

6.5.4 Delay-sensitive design and its dangers

In a digital system, most theoretical studies and design methodologies are based on steady-
state analysis. Boolean algebra, the theoretical foundation of digital logic, conveys no
time-domain information. When we use Boolean algebra to describe a digital circuit, we
actually implicitly describe its steady-state behavior. Modeling and analyzing the transient
behavior can be very hard, and most of the time we choose not to deal with it directly.
Instead, we determine when the transient period ends and ignore the responses within the
period. This approach is embedded in the concept of system delay, which specifies the time
needed to reach the steady state in the worst-case scenario. Most design methodologies
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and synthesis algorithms, such as time-constrained optimization, are based on system delay
rather than the exact transient behavior.

In a few circumstances, we need to consider the transient behavior to understand a
circuit’s function and operation. We use the term delay-sensitive design to describe this
type of circuit.

One example is the hazard elimination circuit in Figure 6.21. If we examine only the
steady-state behavior, Boolean algebra shows that the a - ¢ term does not serve any useful
purpose and thatthe a - ¥’ + b-c+a-cand a - b’ + b - ¢ expressions are equivalent. The
circuit is meaningful only if the transient behavior is considered.

One old, commonly used delay-sensitive design trick is to use cascading gates to generate
a delay. An example is shown in Figure 6.23. The purpose of this circuit is to generate a
short pulse when the input a switches from ’0’ to ’1°. The inverter introduces a small delay
and causes a monetary 1’ pulse, as shown on the timing diagram. If we use steady-state
analysis, the a-a’ expression can be reduced to '0’, and the circuit becomes a wire connected
to ground. Again, this circuit makes sense only if we consider its transient behavior.

Although a delay-sensitive design can be useful in a few special situations, we should
avoid using VHDL description and synthesis software to construct this kind of circuit.
Transformation and optimization algorithms used in synthesis software are based on the
model of steady-state value and propagation delay, and cannot interpret or process transient-
related information.

Deriving VHDL code for a delay-sensitive circuit is not very difficult. For example, we
can revise the VHDL code from

sh <= (a and (not b)) or (b and c);

to
sh <= (a and (not b)) or (b and c) or (a and c¢);

to describe the hazard-free circuit in Figure 6.21, and can use the statement
pulse <= a and (not a);

to describe the pulse generation circuit in Figure 6.23. However, it is unlikely that the
desired effect can be preserved during the synthesis process. The potential complications
are as follows:
¢ During logic synthesis, the logic expressions will be rearranged and optimized. Re-
dundant product terms, if they exist, will be removed during the optimization process.
It is unlikely that the original expression can be preserved.
o If we assume that the logic expression remains unchanged after logic synthesis, the
netlist may be converted to other cells during technology mapping. Again, the original
logic expression will be altered.
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o If we assume that the original logic expression survives after technology mapping,
wire delays will be changed after the placement and routing process. The change
will alter the delay of the path and may invalidate the previous analysis.

o If we assume that the circuit is synthesized according to the specification, the design
may hinder other steps in the verification and testing process. For example, the
redundant product term used in the logic expression will complicate the test vector
generation or even make the circuit untestable.

In summary, VHDL-based synthesis is not feasible for delay-sensitive design. If this kind
of circuit is really needed, as in an asynchronous sequential circuit, we should construct the
circuit manually using cells from the target device library. We may even need to manually
perform the placement and routing to ensure that wire delay is within a tolerable range.
Since our focus is on RT-level HDL synthesis, we will not discuss this approach in the
remainder of the book.

6.6 SYNTHESIS GUIDELINES

Be aware of the theoretical limitation of synthesis software.

Be aware of the hardware complexity of different VHDL operators.

Isolate tri-state buffers from other logic and code them in a separate segment.

Unless there is a compelling reason, use a multiplexer instead of an internal tri-state
bus.

¢ Avoid using the ’-? value of the std_logic data type as an input value.

¢ In RT-level description, there is no effective way to eliminate glitches from a combi-
national circuit. We should deal with the glitches rather than attempting to derive a
glitch-free combinational circuit.

¢ Do not use delay-sensitive design in RT-level description.

6.7 BIBLIOGRAPHIC NOTES

Synthesis is a complicated process and involves many difficult computation problems. The
texts, Synthesis and Optimization of Digital Circuits by G. De Micheli, and Logic Synthesis
by S. Devadas et al., provide comprehensive coverage of the theoretical foundations and
relevant algorithms.

Because most software vendors do not allow users to publish benchmark information,
there is very little documentation on the “behavior” of synthesis tools. The article, Vi-
sualizing the Behavior of Logic Synthesis Algorithms of SNUG (Synopsys Users Group
Conference) 1998, by H. A. Landman, presents an interesting study of the relationship
between the circuit area and timing constraints,

Problems

6.1 Determine the order (big-O) of the following functions:
(a) 1.5
(b) 2" + 103n?
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(¢) 3n? + 500n + 50
(d) 0.01n3 + 10n?
(e) 2nlogsn + 2n? +20n + 45

6.2 A programmer developed an optimization algorithm with an order of O(n!). Can the
algorithm be applied to a large input size? Explain.

6.3 One way to specify a combinational circuit is to describe its function by a truth table,
in which we list all possible input combinations and their desired output values. Assume
that the circuit has n inputs.

(a) What is the size (number of the rows) of the table?

(b) What is the problem with this approach?

6.4 Assume that a and b are 3-bit inputs (let a be acaiao and b be bab1bg).
(a) Determine the Boolean expression (in terms of ag, a1, ag, b2, by and bp) for the
relational operation a > b.
(b) Assume that bis a constant and that b= "101", Determine the Boolean expression
again.
(¢) Assume that a is a constant and that a = "101". Determine the Boolean expression
again.

6.5 Assume that a and b are 16-bit inputs interpreted as unsigned numbers. Write five
VHDL programs for the following operations. Synthesize the programs using an ASIC
device. Compare their area and propagation delay and discuss the impact of a constant

operand.
ea+hb .
e a + "0000000000000001"
e a + "0000000010000000"
e a + "1000000000000000"
e a + "1010101010101010"

6.6 Repeat Problem 6.5, but use an FPGA device.

6.7 Ina tri-state buffer, there are two special timing parameters, 1%, and T,,,. T, (known
as the turn-on time) is the required time for the output port to transit from Z to a regular,
valid value after the control signal is activated. T,, (known as the furn-off time) is the
required time to force the output port to Z after control signal is deactivated. Manufacturers
normally guarantee that T, > T,.. Explain why this constraint is necessary.

6.8 Repeat the synthesis of the odd-parity circuit of Section 6.4.4 using the software
available to you. Make the range of n between 2 and 20. Choose an FPGA device based on
a 5-input LUT cell as the target technology. Plot the circuit size versus n and the propagation
delay versus n. Discuss the result.

6.9 Repeat Problem 6.8 but choose an ASIC device as the target technology.

6.10 In the past, the design process was sometimes divided into a “front-end” process,
which included the initial RT-level development and synthesis, and a “back-end” process,
which included placement and routing and physical synthesis. The front-end and back-
end processes were normally handled by two independent design teams without much
interaction. Explain why this approach is no longer feasible for design targeting submicron
ASIC technology.



162 SYNTHESIS OF VHDL CODE

6.11 If your software supports synthesis with a timing constraint, obtain the area—delay
trade-off curve for the following VHDL code. You can first synthesize the circuit with no
constraint to obtain the minimal-area implementation and then gradually impose smaller
values on the maximal allowable delay.

library ieee;
use ieee.std_logic_1164. all;
use ieee.numeric_std.all;
entity hamming is
port(
a,b: in std_logic_vector (7 downto 0);
y: out std_logic_vector (3 downto 0)
);

end hamming;

architecture effi_arch of hamming is
signal diff: unsigned (7 downto 0);
signal lev0_0, lev0_2, lev0_4, levO_6: unsigned (1 downto 0);
signal levi_0, levi_4: unsigned(2 downto 0);
signal lev2: unsigned(3 downto 0);
begin
diff <= unsigned(a xor b);

1lev0_0 <= (0’ & dAiff(0)) + (?0’ & diff(1));
lev0_2 <= (’0° & diff(2)) + (’0’ & diff(3));
lev0_4 <= (’0° & diff(4)) + (0’ & diff(5));
lev0_6 <= (’0’ & diff(6)) + (20’ & diff(7));
levi_0 <= (’0’ & lev0_0) + (’0’ & lev0_2);

levi_4 <= ('0’ & lev0_4) + (’0? & lev0_6);
lev2 <= (°0’ & levi_0) + (°0’ & levi_4);
y <= std_logic_vector(lev2);

end effi_arch;

6.12 Use your software to synthesize the VHDL code for the hazard elimination circuit
of Section 6.5.4. Examine the netlist of the synthesized circuit and determine whether it
preserves the redundant product term.

6.13 Use your software to synthesize the VHDL code for the edge detection circuit of
Section 6.5.4. Examine the netlist of the synthesized circuit and determine whether it can
still generate the desired pulse.



CHAPTER 7

COMBINATIONAL CIRCUIT DESIGN:
PRACTICE

After learning the implementation of key VHDL constructs and reviewing the synthesis pro-
cess in Chapters 4, 5 and 6, we are ready to study the construction and VHDL description
of more sophisticated combinational circuits. Examples will show how to transform con-
ceptual ideas into hardware and illustrate resource-sharing and circuit-shaping techniques
to reduce circuit size and increase performance. This chapter follows and demonstrates
the main theme of the book: to research an efficient design and derive the VHDL code
accordingly.

7.1 DERIVATION OF EFFICIENT HDL DESCRIPTION

Although the appearance of VHDL code is very different from a schematic diagram, VHDL
code is just another way to describe a circuit. Synthesis software carries out a series of
refinements and transforms a textual VHDL description to a cell-level netlist. Although
software can perform simplification and local optimization, it does not know the meaning
or intention of the code and cannot exploit alternative designs or change the architectural
of the circuit.

The quality of a design and its description are two independent factors. We can express
the initial design by a schematic diagram or by a textual VHDL program. Similarly, we
can realize and synthesize the design either manually by paper and pencil or automatically
by synthesis software. Using VHDL and synthesis software does not lead automatically
to either a good or a bad design. VHDL description and synthesis software, however, can
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shield tedious implementation details and greatly simplify the realization process. They
allow us to have more time to explore and investigate alternative design ideas.
Derivation of an efficient, synthesizable VHDL description requires two major tasks:

¢ Research to find an efficient design.
e Develop VHDL code that accurately describes the design.

For a problem in digital system development, there is seldom a single unique solution.
A large number of possible designs exist. The resulting implementations differ in size and
performance and their quality may vary significantly. There is no simple, mechanical way
to derive an efficient design. It frequently relies on a designer’s experience, insight and
understanding of the problem.

After we find a design, the next step is to derive VHDL code that describes the design
accurately. Although the VHDL textual code cannot precisely specify the final structural
implementation, it describes the “big picture” that establishes the basic skeleton of the
circuit. For a complex design, it is useful to draw a rough schematic sketch to help in
locating the key components and identifying the critical path.

In addition to faithfully describing the intended design, good VHDL code should be
clear and compact, and can be easily “scaled.” Scalability concerns the amount of code
modification needed when the signal width of a circuit changes. For example, after we
develop a VHDL code for an 8-bit barrel shifter, how much modification is required if the
input is increased to 16 bits, 32 bits or even 64 bits? The development of scalable and
parameterized VHDL code is discussed in detail in Chapters 14 and 15. In this chapter, we
need only be aware of this aspect of VHDL code, and discuss it when appropriate.

7.2 OPERATOR SHARING

When a VHDL program is synthesized, all statements and language constructs of the pro-
gram will be mapped to hardware. One way to reduce the overall size of synthesized
hardware is to identify the resources that can be used by different operations. This is known
as resource sharing. Performing resource sharing normally introduces some overhead and
may penalize performance, and thus is worthwhile only for large, complex constructs. Al-
though the exact size depends on the underlying target technology, data from Table 6.2
provides a good estimation of the relative sizes of commonly synthesizable components.
Ideally, synthesis software should identify the sharing opportunities and perform the op-
timization automatically. Unfortunately, in reality, software’s capability varies and some-
times is rather limited in this respect. We may need to explicitly describe the desired sharing
in VHDL code. This section discusses the operator sharing and the next section illustrates
functionality sharing,

In certain VHDL constructs, operations are mutually exclusive; i.e., only one operation
is active at a particular time. These constructs include the conditional signal assignment
statement (or the equivalent if statement in a process) and the selected signal assignment
statement (or the equivalent case statement in a process). Recall that the basic expression
of a conditional signal assignment statement is

signal_name <= value_expr_1 when boolean_expr_1i else
value_expr_2 when boolean_expr_2 else
value_expr_3 when boolean_expr_3 else

value_expr_n;
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Figure 7.1 Simple operator sharing.

The value expressions value_expr_1, value_expr_2, ..., value_expr_n are mutually
exclusive since only one expression needs to be evaluated and passed to output. Similarly,
recall that the basic expression of a selected signal assignment statement is

with select_expression select
signal_name <= value_expr.l1 when choice_1,
value_expr_2 when choice_2,
value_expr_3 when choice_3,

value_expr_n when choice_n;

Since choices are mutually exclusive, only one expression actually has to be evaluated.
The same argument can be applied to the if statement and the case statement since their
implementations are similar to the conditional and selected signal assignment statements.

If the same operator is used in several different expressions, it can be shared. The
sharing is normally done by routing the proper data to or from this particular operator.
‘We demonstrate the coding technique in the following examples and discuss the degree of
saving and its potential impact on system performance.

7.2.1 Sharing example 1

Consider the following code segment:

r <= a+b when boolean_exp else
atc;

The block diagram of this code is shown in Figure 7.1(a).
There are two adders and one multiplexer. The adder can be shared because only one
addition operation is needed at any time. We can revise the code as follows:

src0 <= b when boolean_exp else
c;

r <= a + s8rc¢l;
The block diagram of the revised code is shown in Figure 7.1(b). Instead of multiplexing
the addition results, it multiplexes the desired source operand to the input of the adder. One
adder can be eliminated in this new implementation.

Now we compare the propagation delays of the two circuits. Let the propagation delays

of the adder, the multiplexer and the boolean_exp circuit be Tpgder, Tmuz aNd Thootean
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respectively. In the first circuit, the adders and boolean_exp operate in parallel, and thus
the overall propagation delay is max{T,4der, Thootean) + Tmuz- In the second circuit, the
propagation delay is Tpootean + Tmuz + Tadder- This reflects the fact that the boolean_exp
operation and addition operations are performed concurrently in the first circuit whereas
they are done in cascade in the second circuit. If the boolean_exp circuit is very simple
and its delay is negligible, there will be no performance penalty on the shared design.

7.2.2 Sharing example 2

Consider the following code segment:

process(a,b,c,d,...)
begin
if boolean_exp_1 then
r <= a+b;
elsif boolean_exp_2 then
r <= a+c;
else
r <= d+1;
end if;

end process;

The block diagram of this code is shown in Figure 7.2(a).

The implementation needs two adders, one incrementor and two multiplexers. The
addition and increment operations can share the same adder because only one branch of the
if statement is executed at a time. Assume that the signals are 8 bits wide. The revised code
becomes

process{(a,b,c,d,...)
begin
if boolean_exp_1 then
srcQ <= a;
srcl <= b;
elsif boolean_exp_2 then
src0 <= a;
srcl <= ¢;
else
srcl <= d;
srcl <= "00000001";
end if;
end process;
r <= src0 + srcil;

The block diagram of the new code is shown in Figure 7.2(b). We use two multiplexers
to route the desired source operands to the inputs of the adder. The new circuit eliminates
one adder and one incrementor but requires two additional multiplexers. To determine
whether the sharing is worthwhile, we examine the circuit size of the adder, incrementor
and multiplexer given in Table 6.2. Since a multiplexer is smaller, especially when compared
with an adder, the sharing indeed leads to a smaller size. It is likely that the multiplexing
circuit can be further simplified during logic synthesis, due to the duplicated input patterns
(the a signal is used twice) and constant input ("00000001"). The saving will become more
significant if a high-performance adder (the one optimized for delay) is used.
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Figure 7.3 Operator sharing based on a multiplexer.

Determining the propagation delays of these circuits is more involved since they depend
on the relative values of the delays of the boolean_exp_1 circuit, the boolean_exp_2
circuit and the multiplexer. However, observation from the previous example still applies.
The two Boolean circuits and three adders operate in parallel in the first circuit whereas
the Boolean circuits and the adder operate in cascade in the second circuit. Thus, the first
circuit should always have a smaller propagation delay.

7.2.3 Sharing example 3

Assume that the sel signal is 2 bits wide. Consider the following code segment:

with sel_exp select
r <= a+b when "00",
a+c when "O01",
d+1 when others;

This example is similar to the previous one but uses the selected signal assignment statement.
The block diagram of this code is shown in Figure 7.3(a).

The circuit needs two adders, one incrementor and one 4-to-1 multiplexer. We can revise
the code to share the adder:

with sel_exp select
srcO0 <= a when "00"|"01",
d when others;
with sel_exp select
srcl <= b when "00",
¢ when "01",
"00000001" when others;
r <= src¢0 + srci;

The block diagram of the new code is shown in Figure 7.3(b). We use two multiplexers
to route the desired source operands to the adder. The new circuit eliminates one adder
and one incrementor but requires an additional 4-to-1 multiplexer. Since an adder and an
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Figure 7.4 Complex operator sharing.

incrementor are more complex than a multiplexer, the revision leads to a significant saving.
Again, the second circuit may suffer a longer propagation delay because of the cascaded
operations, as in example 1.

7.2.4 Sharing example 4

Consider the following code segment:

process(a,b,c,d,...)
begin
if boolean_exp then
X <= a + b;
y <= (others=>’0’);
else
x <= "00000001";
y <= ¢ + d;
end if;
end process;

The block diagram of this code is shown in Figure 7.4(a). The implementation needs two
adders and two multiplexers. The adder can be shared since the executions of two branches
of the if statement are mutually exclusive. The revised code is as follows:
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process(a,b,c,d,sum,...)
begin
if boolean_exp then
src0 <= a;
srcl <= b;

X <= sum;
y <= (others=>’0");
else

srcQ <= ¢;
srcl <= d;
x <= "00000001";
y <= sunm;
end if;
end process;
sum <= s8rcQ + srcl;

The block diagram of this code is shown in Figure 7.4(b). This example illustrates the
worst-case scenario of operator sharing, in which the operator has no common sources or
destinations. We need a multiplexing structure to route one set of signals to the adder’s
input and a demultiplexing structure to route the addition result to one of the two output
signals. The demultiplexing is done using two 2-to-1 multiplexers. Note that the addition
result (the sum signal) is connected to the T port of the upper output multiplexer and the F
port of the lower output multiplexer.

The new circuit eliminates one adder but adds two additional multiplexers. The merit of
sharing in this circuit is less clear, and it depends on the relative sizes of an adder and two
multiplexers. Again, we use the numbers given in Table 6.2 for estimation. If a slow adder
(44, optimized for area) is used, the size of two multiplexers is about the same as that of
one adder. On the other hand, if a faster adder (44, optimized for delay) is used, the saving
is significant.

7.2.5 Summary

Operator sharing is done by providing additional multiplexing circuits to route input and
output signals into or out of the operator. The merit of sharing and the degree of saving
depend on the relative complexity of the multiplexing circuit and the operator. Substantial
savings are possible for complex operators. However, sharing normally forces evaluation
of the Boolean expressions and evaluation of the operators to be performed in cascade and
thus may introduce extra propagation delay.

7.3 FUNCTIONALITY SHARING

In a large, complex digital system, such as a processor, an array of functions is needed.
Some functions may be related and have certain common characteristics. It is possible for
several functions to share a common circuit or to utilize one function to construct another
function. We call this approach functionality sharing. Unlike operator sharing, there is no
systematic way to identify functionality sharing. This kind of sharing is done in an ad hoc,
case-by-case basis and relies on the designer’s insight and intimate understanding of the
system. It is more difficult for synthesis software to identify functionality sharing.



FUNCTIONALITY SHARING 171

a A
8 +
b v 8 |
ctrl  operation 8 0
r
0 a+b L ] 1 8
1 a-b 8
ctrl
(a) Function table (b) Initial block diagram
9y srcd
a L
o + sum(8..1) 2
\ A 8
0 0 ]ein, 9src1
1 1 I
8
b o™
T, M
|
(c) Diagram with sharing

Figure 7.5 Addition-subtraction circuit.

7.3.1 Addition—subtraction circuit

Consider a simple arithmetic circuit that performs either addition or subtraction. A control
signal, ctrl, specifies the desired operation. The function table of this circuit is shown in
Figure 7.5(a).

Our first design follows the function table, and the VHDL code is very straightforward, as
shown in Listing 7.1. Note that the signals are converted to the signed data type internally
to accommodate arithmetic operation.

Listing 7.1 Initial description of an addition—subtraction circuit

library iees;
use ieee.std_logic_1164. all;
use ieee.numeric_std. all;
entity addsub is
5 port(
a,b: in std_logic_vector (7 downto 0);
ctrl: in std_logic;
r: out std_logic.vector(7 downto 0)
);
wend addsub;

architecture direct_arch of addsub is
signal src0, srci, sum: signed(7 downto 0);
begin
15 src0 <= signed(a);
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srcl <= signed(b);
sum <= srcO0 + srcl when ctrl=’0’ else
src0 - srcl;
r <= std_logic_vector(sum);
v end direct_arch;

The conceptual diagram for this code is shown in Figure 7.5(b), which consists of an adder,
a subtractor and a 2-to-1 multiplexer.

Since the adder and subtractor are different operators, we cannot directly apply the earlier
operator-sharing technique. In 2’s-complement representation, recall that the subtraction,
a — b, can be calculated indirectly as a + b + 1, where b is the bitwise inversion of b.
Therefore, it is possible to share the functionality of the adder. After inverting b and putting
a carry-in of 1, we can utilize the same adder to perform subtraction. The VHDL code is
shown in Listing 7.2.

Listing 7.2 More efficient description of an addition-subtraction circuit

architecture shared_arch of addsub is
signal srcO, srci, sum: signed (7 downto 0);

signal cin: signed (0 downto 0); — carry—in bit
begin
s src0 <= signed(a);

srcl <= signed(b) when ctrl=’0’ else
signed(not b);
cin <= "0" when ctrl=’0’ else
myn,
10 sum <= srcO0 + srcil + cin;
r <= std_logic_vector (sum);
end shared_arch;

Note that the expression a + src_b + cin has two addition operators. Since cin
is either "0" or "1", it can be mapped to the carry-in port of a typical adder. In other
words, the + cin operation can be embedded into the a + src_b operation and no sep-
arate incrementor is needed. Most synthesis software should be able to derive the correct
implementation.

Alternatively, we can manually describe the carry-in operation and use only one addition
operator in the VHDL code. The trick is to use an extra bit in the adder to mimic the effect
of carry-in operation. The internal adder is extended to 9 bits, in which the original input
takes 8 MSBs and the extra bit is the LSB. The LSBs of the two operands are connected
to 1 and the carry-in input, ¢;», respectively. For example, if the two original operands are

aragls504a3Q20100 and b7b6b5 b4b3b2 b1 bo
The extended operands will be
arga5a40302a10¢ 1 and b7b6b5b4b3b2b1 boc,,'n

After the addition, the LSB will be discarded and the higher 8 bits will be used as the output.
When c;;, is 1, a carry will be propagated from the LSB to 8 MSBs, effectively adding 1 to
the 8 MSBs of the adder. On the other hand, when ¢;,, is 0, no carry occurs. Since the LSB
of the sum is discarded, there is no impact on the addition of 8 MSBs. The VHDL code of
this design is shown in Listing 7.3.
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Listing 7.3 Manual carry-in description of an addition—subtraction circuit

architecture manual_carry_arch of addsub is
signal src0, srcl, sum: signed(8 downto 0);
signal b_tmp: std_logic_vector (7 downto 0);
signal cin: std_logic; — carry—in bit
s begin
src0 <= signed(a & ’1°);
b_tmp <= b when ctrl=’0’ else
not b;
cin <= 0’ when ctrl='0’ else
10 17,
srcl <= signed(b_tmp & cin);
sum <= s8rc0 + srcil;
r <= std_logic_vector (sum(8 downto 1));
end manual_carry_arch;

The diagram for this design is shown in Figure 7.5(c).

7.3.2 Signed-unsigned dual-mode comparator

In the IEEE numeric_std package, the signed and unsigned data types are defined to
represent an array of bits as signed and unsigned integers respectively. The signed data
type is in 2’s-complement format. An example of 4-bit binary representations and their
signed and unsigned interpretations are shown as a “binary wheel” in Figure 7.6. Note that
the addition and subtraction operations are identical for the two data types. The addition and
subtraction of a positive amount corresponds to a move clockwise and counterclockwise
along the wheel, and thus the same hardware can be used. However, this is not true for
relational operators.

This example considers a greater-than comparator in which the input can be interpreted as
either unsigned or signed. The input data type (or the operation mode of the comparator) is
specified by a control signal, mode. Our first design uses two comparators, one for each data
type, and then uses the mode signal to select the desired result. The VHDL code is shown
in Listing 7.4. Note that by definition of VHDL, the comparison in std_logic_vector
data type (i.e., a > b) and the comparison in unsigned date type (i.e., unsigned(a) >
unsigned (b)) implies the same implementation. For clarity, we use the latter in the VHDL
code,

Listing 7.4 Initial description of a dual-mode comparator

library ieee;
use ieee.std_logic_1164. all;
use ieee.numeric_std. all;
entity comp2mode is
s port(
a,b: in std_logic_vector(7 downto 0);
mode: in std_logic;
agtb: out std_logic
)3

1w end comp2mode;

architecture direct_arch of comp2mode is
signal agtb_signed, agtb_unsigned: std_logic;
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Figure 7.6 Four-bit binary wheel.
begin
15 agtb_signed <= ’1’ when signed(a) > signed(b) else
)O’;
agtb_unsigned <= ’1’ when unsigned(a) > unsigned(b) else
’o);
agtb <= agtb_unsigned when (mode=’0’) else
20 agtb_signed;

end direct_arch ;

To identify a potential sharing opportunity, we must examine the implementation of a
comparator for the signed data type. First, if two inputs have different sign bits, the one
with 0’ is greater than the one with ’1” since a positive number or 0 is always greater than a
negative number. If two inputs have the same sign, we can ignore the sign bit and compare
the remaining bits in a regular fashion (i.e., as the unsigned or std_logic_vector data
type). At first glance, this may not be obvious for two negative numbers. We can verify it
by checking the binary representations of signed numbers in Figure 7.6. For example, the
binary representations of -1, -4 and -7 are "1111" and "1100" and "1001". After discarding
the sign bit, we can see that "111" > "100" > "001", which is consistent with —1 > —4 >
—T7. Based on this observation, we can develop the rules for a dual-mode comparator:

e If a and b have the same sign bit, compare the remaining bits in a regular fashion.
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o If a’s sign bitis ’1’ and b’s sign bit is *0’, a is greater than b when in unsigned
mode and b is greater than a when in signed mode.
o If a’s sign bitis 0’ and b’s sign bit is * 17, reverse the previous result.

The VHDL code for the design is shown in Listing 7.5. The agtb.mag signal is the
comparison result of 7 LSBs of a and b, and the a1_b0 signal is a special status indicating
that the MSBs (signs) of a and b are >1’ and ° 0’ respectively. The last conditional signal
assignment statement translates the previous rules into logic expressions.

Listing 7.5 More efficient description of a dual-mode comparator

architecture shared_arch of comp2mode is
signal al_b0, agtb_mag: std_logic;
begin
al_b0 <= ’1’ when a(7)=’1’ and b(7)=’0’ else
H 07,
agtb_mag <= ’1’ when a(6 downto 0) > b(6 downto 0) else
so:;
agtb <= agtb_mag when (a(7)=b(7)) else
al_b0 when mode=’0’ else
10 not al_bo0;
end shared_arch;

The new design eliminates one comparator and reduces the circuit size of the dual-mode
comparator by one half,

7.3.3 Difference circuit

Assume that we want to implement a circuit that takes two unsigned numbers and calculates
their difference; i.e., performs the function |a - b|. The straightforward design is to
compute botha - band b - a, compare a and b, and then select the proper subtraction
result accordingly. The VHDL code is shown in Listing 7.6. Note that the signals are
converted to the unsigned data type for arithmetic operation.

Listing 7.6 Initial description of a difference circuit

library ieee;
use ieee.std_logic_1164. all;
use ieee.numeric_std. all;
entity diff is
5 port (
a,b: in std_logic_vector (7 downto 0);
result: out std_logic_vector (7 downto 0)
)
end diff;
10
architecture direct_arch of diff is
signal au, bu, ru, diffab, diffba: unsigned (7 downto 0);

begin
au <= unsigned(a);
15 bu <= unsigned(b);

diffab <= au - bu;

diffba <= bu - au;

ru <= diffab when (au >= bu) else
diffba;
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2 result <= std_logic_vector (ru);
end direct_arch;

One observation about the initial design is the implementation of the relational operation
>=, Theresultof a >= b can be indirectly obtained from a ~ b by examining the sign bit
of the subtraction result. If the sign bit is *0’, the result is positive or 0 and thus a >= bis
true. Otherwise, the result is negative and a >= b is false. We consider this scenario
as functionality sharing since the operation a >= b indirectly utilizes the functionality of
a - b. To apply the idea to this example, we must modify the internal representation since
the original inputs a and b are interpreted as unsigned numbers and have no sign bit. We
extend the internal signals by one bit and interpret them as a signed number. The VHDL
code of the revised design is shown in Listing 7.7. Note that since both extended signals,
as and bs, are positive (with 0’ in MSB) and subtraction is performed, we need not worry
about the overflow condition and can use the sign bit of a - b (i.e., diffab(8) in code)
directly.

Listing 7.7 Better description of a difference circuit

architecture shared_arch of diff is
signal as, bs, rs, diffab, diffba: signed(8 downto 0);
begin
as <= signed(’0’%a);
5 bs <= signed(’0’&b);
diffab <= as - bs;
diffba <= bs - as;
rs <= diffab when diffab(8)=’0’ else
diffba;
10 result <= std_logic_vector(rs(7 downto 0));
end shared_arch;

The revised design can be further optimized by replacing the b - a expression with
0 - diffab(orsimply-diffab). Sincethe0 - diffaboperation hasaconstantoperand
(i.e., 0), the circuit size is about half that of a full subtractor. The final code is listed in
Listing 7.8.

Listing 7.8 Most efficient description of a difference circuit

architecture effi_arch of diff is
signal as, bs, rs, diffab, diffba: signed(8 downto 0);
begin
as <= signed(’0’&a);
s bs <= signed(’0°&b);
diffab <= as - bs;
diffba <= 0 - diffab;
rs <= diffab when diffab(8)=’0’ else
diffba;
10 result <= std_logic_vector(rs(7 downto 0));
end effi_arch;bout

An alternative design approach is to use the operator-sharing technique. The code is
shown in Listing 7.9. We first compare the two inputs and route the larger one to src0 and
smaller one to srci, and then perform the subtraction. The design requires one subtractor
and one comparator, and its size is comparable to that of the effi_arch architecture in
Listing 7.8.
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Listing 7.9  Alternative description of a difference circuit

architecture shared3_arch of diff is
signal au, bu, ru, srcO, srcl: unsigned(7 downto 0);
begin
au <= unsigned(a);
5 bu <= unsigned(b);
process (au,bu)
begin
if au >= bu then
src0 <= au;
10 srcl <= bu;
else
src0 <= bu;
srcl <= au;
end if;
15 end process;
ru <= 8rcQ - srcl;
result <= std_logic_vector{ru);
end shared3_arch;

7.3.4 Full comparator

Assume that we need a comparator that has three outputs, indicating the greater-than,
equal-to and less-than conditions respectively. The straightforward design is to use three
relational operators, each for an output condition. The VHDL code for this design is shown
in Listing 7.10. Clearly, three separate relational circuits are needed when it is synthesized.

Listing 7.10 Initial description of a full comparator

library ieee;
use ieee.std_logic_1164.all;
entity comp3 is
port (
s a,b: in std_logic_vector (15 downto 0);
agtb, altb, aegb: out std_logic
)
end comp3 ;

v architecture direct_arch of comp3 is

begin
agtb <= 1’ when a > b else
)OJ;
altb <= ’1’ when a < b else
is 02
aegb <= ’1’ when a = b else
:o»;

end direct_arch;

If we examine the three operations carefully, we can see that the three conditions are
mutually exclusive, and the third one can be derived if the other two are known. Thus, the
functionality of the first two relational circuits can be shared to obtain the third output. The
code of the revised design is shown in Listing 7.11.
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Listing 7.11 Better description of a full comparator

architecture sharel_arch of comp3 is
signal gt, 1lt: std_logic;

begin

gt <= ’1’ when a > b else
5 ’07;

1t <= ’1’ when a < b else

IOJ;
agtbh <= gt;
altb <= 1t;
10 aeqb <= not (gt or 1t);
end sharel_arch;

The third statement means “a is equal to b” if the condition “a is greater than b or a
is less than b” is not true. This simple revision eliminates the comparison circuit for the
equal-to operator.

If we look Table 6.2, the equal-to circuit is smaller and faster than the greater-than circuit
(especially compared with the circuit optimized for delay). This is due to the internal
implementation of these circuits. We can further optimize the circuit by using the equal-to
operator to replace either the greater-than or less-than operator. The code of the final design
is shown in Listing 7.12.

Listing 7.12 Most efficient description of a full comparator

architecture share2_arch of comp3 is
signal eq, 1lt: std_logic;

begin
eq <= '1’ when a = b else
5 ?0);
1t <= 1’ when a < b else
)o’;
aegb <= eq;

altbh <= 1lt;
10 agtb <= not (eq or 1t);
end share2_arch;

Although the observation of mutual exclusiveness of three outputs is trivial for us, it in-
volves the meaning (semantics) of the operators. Most synthesis software is unable to take
advantage of this property and optimize the code segment.

7.3.5 Three-function barrel shifter

A barrel shifter is a circuit that can shift input data by any number of positions. Both
VHDL standard and the IEEE std_logic.1164 package define a set of shifting and rotating
operators. Because of the complexity of the shifting circuit, some synthesis software is
unable to synthesize these operators automatically. Shifting operations can be done in
either the left or right direction and are divided into rotate, logic shift and arithmetic shift.
In this example, we consider an 8-bit shifting circuit that can perform rotate right, logic
shift right or arithmetic shift right, in which lower bits, 0’s or sign bits are shifted into
left positions respectively. In addition to the 8-bit data input, this circuit has a control
signal, 1ar (for logic shift, arithmetic shift and rotate), which specifies the operation to be
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performed, and a control signal, amt (for amount), which specifies the number of positions
to be rotated or shifted.

A straightforward design is to construct a rotate-right circuit, a logic shift-right circuit
and an arithmetic shift-right circuit, and then use a multiplexer to select the desired output.
The VHDL code of this design is shown in Listing 7.13. The individual shifting circuit is
implemented by a selected signal assignment statement.

Listing 7.13 Initial description of a barrel shifter

library ieee;
use jieee.std_logic_1164.all;
entity shift3mode is
port (
5 a: in std_logic_vector (7 downto 0);
lar: in std_logic_vector (i downto 0);
amt: in std_logic_vector (2 downto 0);
y: out std_logic_vector (7 downto 0)
);
wend shift3mode ;

architecture direct_arch of shift3mode is
signal logic_result, arith_result, rot_result:
std_logic_vector (7 downto 0);
s begin
with amt select
rot_result <=

a when "000",
a(0) & a(7 downto 1) when "001",
20 a(l1 downto 0) & a(7 downto 2) when "010",
a(2 downto 0) & a(7 downto 3) whem "O11",
a(3 downto 0) & a(7 downto 4) when "100",
a(4 downto 0) & a(7 downto 5) when "101",
a(5 downto 0) & a(7 downto 6) when "110",
25 a(6 downto 0) & a(7) when others; — 111

with amt select
logic_result <=
a when "000",
"on & a(7 downto 1) when "001",
N "oo" & a(7 downto 2) when "010",
"ooQ" & a(7 downto 3) when "0O11",
"o000" & a(7 downto 4) when "100",
"00000" & a(7 downto 5) when "101",
"000000" & a(7 downto 6) when "110",
35 "0000000" & a(7) when others; — 111
with amt select
arith_result<=

a when "000",

a(7) & a(7 downto 1) when "001",

% a(7)&a(7) & a(7 downto 2) when "010",

a(7)&a(7)&a(7)% a(7 downto 3) when “011",
a(7)&a(7)&a(7)&a(7)&

a(7 downto 4) when "100",

a(7)&a(7)&a(T)&a(7)&ka(?)k&
4s a(7 downto 5) when "101",



180 COMBINATIONAL CIRCUIT DESIGN: PRACTICE

a(M&a(7)&a(T)&a(7)&a(7)ka(7)&

a(7 downto 6) when "110",
a(M&a(7)&a(7)ka(T)&a(7T)&a(7)&a(7)&
a(7) when others;
50 with lar select

y <= logic_result when "00",
arith_result when "01",
rot_result when others;

end direct_arch;

The implementation includes three 8-bit 8-to-1 multiplexers and one 8-bit 3-to-1 multi-
plexer.

If we examine the output of three shifting operations, we can see that their patterns
are very similar and the only difference is the data being shifted into the left part. It is
possible to share the functionality of a shifting circuit. To take advantage of this, we use a
preprocessing circuit to modify the left part of the input data to the desired format and then
pass it to the shifting circuit. The VHDL code based on this idea is given in Listing 7.14.

Listing 7.14 Better description of a barrel shifter

architecture shared_arch of shift3mode is
signal shift_in: std_logic_vector (7 downto 0);

begin
with lar select
5 shift_in <= (others=>°0’) when "00",
(others=>a(7)) when "01",
a when others;
with amt select
y <= a when "000",
10 shift_in (0) , & a(7 downto 1) when "001",
shift_in(1 downto 0) & a(7 downto 2) when "010",
shift_in (2 downto 0) & a(7 downto 3) when "0O11",
shift_in(3 downto 0) & a(7 downto 4) when "100",
shift_in(4 downto 0) & a(7 downto 5) when "101",
15 shift_in(5 downto 0) & a(7 downto 6) when "110",
shift_in(6 downto 0) & a(7) when others;

end shared_arch;

In this code, one 8-bit 3-to-1 multiplexer is used to preprocess the input. Depending on
the lar signal, its output shift.in can be the a input, repetitive 0’s or repetitive sign bits.
The shift_in signal is then passed to the shifting circuit and becomes the left part of the
final output. The improved design consists of one 8-bit 8-to-1 multiplexer and one 8-bit
3-to-1 multiplexer. It has a similar critical path but eliminates two 8-bit 8-to-1 multiplexers.

7.4 LAYOUT-RELATED CIRCUITS

After synthesis, placement and routing will derive the actual physical layout of a digital
circuit on a silicon chip. Although we cannot use VHDL code to specify the exact layout, it
is possible to outline the general “shape” of the circuit. This will help the synthesis process
and the placement and routing process to derive a more efficient circuit. Examples in this
section show how to shape the circuit layout in VHDL code.
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Figure 7.7 Reduced-xor circuit.

7.4.1 Reduced-xor circuit

A reduced-xor function is to apply xor operations over all bits of an input signal. For
example, let a7agasasa3aza;ag be an 8-bit signal. The reduced-xor of this signal is

arPasPasPasPazdazdarDag

Since this function returns ’1’ if there are odd number of 1°s in its input, it can be used to
determine the odd parity of the input signal.

A straightforward design is shown in Figure 7.7(a). This design canbe easily transformed
into a VHDL code, which is shown in Listing 7.15.

Listing 7.15 Initial description of a reduced-xor circuit

library iees;
use ieee.std_logic_1164. all;
entity reduced_xor is
port (
5 a: in std_logic_vector (7 downto 0);
y: out std_logic
Y

end reduced_xor;

w architecture cascadel_arch of reduced_xor is
begin
y <= a(0) xor a(1l) xor a(2) xor a(3) xor
a(4) xor a(5) xor a(6) xor a(7);
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end cascadel_arch;

By VHDL definition, the xor operator is left associative. Thus, the expression
a(0) xor a(1) xor af(2) xor ... xor a(7)

is the same as
(...((a(0) xor a(1)) xor a(2)) xor ...) xor a(7))

We can also use an 8-bit internal signal, p, to represent the intermediate results, as in
Figure 7.7(a). The code for the architecture body is shown in Listing 7.16.

Listing 7.16  Alternative description of a reduced-xor circuit

architecture cascade2_arch of reduced_xor is
signal p: std_logic_vector (7 downto 0);
begin
p(0) <= a(0);
s p(1) <= p(0) xor a(1);
p(2) <= p(1) xor a(2);
p(3) <= p(2) xor a(3);
p(4) <= p(3) xor a(4);
p(5) <= p(4) xor a(5);
10 p(6) <= p(5) xor a(6);
p(7) <= p(6) xor a(7);
y <= p(7);
end cascade2_arch;

Except for the first statement, a clear pattern exists between the inputs and outputs of these
statements. By Boolean algebra, we know that z = 0@ z. We can rewrite the first statement
as

p(0) <= 0’ xor a(0);

to make it match the pattern. Once this is done, we can use a more compact vector form to
replace these statements, as shown in Listing 7.17.

Listing 7.17 Compact description of a reduced-xor circuit

architecture cascade_compact_arch of reduced_xor is
constant WIDTH: integer := 8;
signal p: std_logic_vector (WIDTH-1 downto 0);
begin
s p <= (p(WIDTH-2 downto 0) & ’0’) xor a;
y <= p(WIDTH-1);
end cascade_compact_arch;

Although this design uses a minimal number of xor gates, it suffers a long propagation
delay. The single cascading chain of xor gates becomes the critical path and the correspond-
ing propagation delay is proportional to the number of xor gates in the chain. As the number
of inputs increases, the propagation delay increases proportionally. Thus, the delay has an
order of O(n). Because of the associativity of the xor operator, we can arbitrarily change
the order of operation. The initial design can be rearranged as a tree to reduce the length of
its critical path, as shown in Figure 7.7(b). In VHDL code, we can use parentheses to force
the desired order of operation, and the revised architecture body is shown in Listing 7.18.
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Listing 7.18 Better description of a reduced-xor circuit

architecture tree_arch of reduced_xor is
begin
y <= ((a(7) xor a(6)) xor (a(5) xor a(4))) xor
((a(3) xor a(2)) xor (a(1) xor a(0)));
send tree_arch;

In this new design, the critical path is reduced to three xor gates while the number of
xor gates remains unchanged. Since we achieve better performance without adding extra
hardware resource, it is a better design. In general, when we rearrange a cascade structure
of n elements into a treelike structure, there will be log, n levels in the tree. The critical
path is proportional to the number of levels in the tree and thus has an order of O(log, n).

Since this is a trivial circuit, synthesis software should be able to automatically transform
the cascade design into the tree structure either by exploring the associative property or by
performing time-constraint optimization. It is likely to obtain the same synthesis results
for all codes in this example. However, for a more involved circuit, synthesis software is
unable to do this, and we need to manually specify the order of operation to obtain a more
efficient circuit.

Finally, let us examine the scalability of these codes. Assume that we want to increase the
input to 16 bits. Inthe cascadel_arch, cascade2_archand tree_arch architectures, we
have toaddeightadditional xor a(i) termsoreightadditional p(i+1) <= p(i) xer a(i)
statements respectively. The number of revisions is proportional to the number of inputs
and thus is on the order of O(n). In the cascade_compact_arch architecture, the code
remains the same except that the number in the constant statement has to be changed from 8
to 16. The needed revision is O(1), and this code is highly scalable.

7.4.2 Reduced-xor-vector circuit

A reduced-xor-vector function is to apply xor operations over all possible combinations of
lower bits of an input signal. It can best be explained by an example. Let azasasasazazaiag
be an 8-bit signal. Applying the reduced-xor-vector function to it returns eight values, and
they are defined as

Yo = ao

N =a@ap

Y2 = a2@a1Dag

ys = a3 @a2D a1 @ag

Ya = asPaz®ax®a @ag

Ys = asDagsPazPaxPa; Bag

Y = asDasDasPaz Daxda; ®ag

Y1 = arPag®asDasDaz®azda; Dap

A straightforward design is to follow the definition of this function, which can easily be
transformed into the VHDL code shown in Listing 7.19.
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Listing 7.19 Initial description of a reduced-xor-vector circuit

library isee;
use ieee.std_logic_1164. all;
entity reduced_xor_vector is
port (
5 a: in std_logic_vector (7 downto 0);
y: out std_logic_vector(7 downto 0)
);

end reduced_xor_vector;

v architecture direct_arch of reduced_xor_vector is
begin
y(0) <= a(0);
y(1) <= a(1) xor a(0);
y(2) <= a(2) xor a(1) xor a(0);
15 y(3) <= a(3) xor a(2) xor a(l) xor a(0);
y(4) <= a(4) xor a(3) xor a(2) xor a(1) xor a(0);
y(5) <= a(5) xor a(4) xor a(3) xor a(2) xor a(l) xor a(0);
y(6) <= a(6) xor a(5) xor a(4) xor a(3) xor a(2) xor a(1)
xor a(0);
2 y(7) <= a(7) xor a(6) xor a(5) xor a(4) xor a(3) xor a(2)
xor a(1) xor a(0);
end direct_arch;

In this code, each output is described independently, and no sharing is imposed. If
no optimization is performed during synthesis, the synthesized circuit needs 28 xor gates.
There are lots of common expressions that can be shared to reduce the number of xor gates.

Note that there is a simple relationship between the successive output values:

Yi+l = Ai+1 D Y;

The design based on this observation is shown in Figure 7.8(a), in which only seven xor
gates are needed.

The VHDL code for this design is similar to the cascade2_arch architecture in List-
ing 7.16 except that all intermediate internal values are used as output. We need to modify
the last statement and the VHDL code, as shown in Listing 7.20.

Listing 7.20 Sharing description of a reduced-xor-vector circuit

architecture sharedil_arch of reduced_xor_vector is
signal p: std_logic_vector (7 downto 0);
begin
p(0) <= a(0);
5 p(1) <= p(0) xor a(l);
p(2) <= p(1) xor a(2);
p(8) <= p(2) xor a(3);
p(4) <= p(3) xor a(4);
p(5) <= p(4) xor a(5);
10 p(6) <= p(5) xor a(6);
p(7) <= p(6) xor a(7);
y <= p;
end sharedi_arch;
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Figure 7.8 Reduced-xor-vector circuit.
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Similarly, the compact cascade_compact_arch architecture in Listing 7.17 can be revised,
too, as shown in Listing 7.21.

Listing 7.21 Compact description of reduced-xor-vector circuit

architecture shared_compact_arch of reduced_xor_vector is
constant WIDTH: integer := 8;
signal p: std_logic_vector (WIDTH-1 downto 0);
begin
s p <= (p(WIDTH-2 downto 0) & ’0’) xor a;
y <= pi
end shared_compact_arch;

The critical path of this circuit is the path to obtain the y(7) signal, which has the largest
number of xor gates along the path. Our earlier discussion shows that the propagation
delay is on the order of O(n). To increase the performance, we have to rearrange the
cascading chain to a treelike structure. The simple xor tree of tree_arch architecture of
the previous example is not adequate since it cannot produce all the needed output values.
One straightforward design is to create an independent xor tree for each output value. The
design needs 28 xor gates, and the critical path of the circuit is the critical path of the tree
used to implement y(7), which is the largest tree and has three levels of xor gates. The
VHDL code is similar to the direct_arch architecture except that we use parentheses to
force the order of evaluation, as shown in Listing 7.22.

Listing 7.22 Tree description of a reduced-xor-vector circuit

architecture direct_tree_arch of reduced_xor_vector is
begin
y(0) <= a(0);
y(1) <= a(1) xor a(0);
s y(2) <= a(2) xor a(l) xor a(0);
y(3) <= (a(3) xor a(2)) xor (a(1l) xor a(0));
y(4) <= (a(4) xor a(3)) xor (a(2) xor a(1)) xor a(0);
y(5) <= (a(8) xor a(4)) xor (a(3) xor a(2)) xor
(a(1) xor a(0));
10 y(6) <= ((a(6) xor a(5)) xor (a(4) xor a(3))) xor
((a(2) xor a(1)) xor a(0));
y(7) <= ((a(7) xor a(6)) xor (a(5) xor a(4))) xor
((a(3) xor a(2)) xor (a(1) xor a(0)));
end direct_tree_arch;

A more elegant design is shown in Figure 7.8(b). This design is targeted for performance
and limits the critical path within three levels of xor gates. Within this constraint, it tries
to share as many common expressions as possible. Instead of 28 xor gates, this design
needs only 12 xor gates. We can derive the VHDL code according to the circuit diagram,
as shown in Listing 7.23. .

Listing 7.23 Parallel-prefix description of a reduced-xor-vector circuit

architecture optimal_tree_arch of reduced_xor_vector is
signal p01, p23, p4b5, p67, po012,
p0123, p456, p4567: std_logic;
begin
s p01 <= a(0) xor a(l);
p23 <= a(2) xor a(3);
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p45 <= a(4) xor a(5);
p67 <= a(6) xor a(7);
p012 <= p0i xor a(2);

10 p0123 <= p01 xor p23;
p456 <= p45 xor a(6);
p4567 <= p45 xor p67;
y(0) <= a(0);
y(1) <= pO1;

15 y(2) <= p012;
y(3) <= p0123;
y(4) <= p0123 xor a(4);
y(5) <= p0123 xor p45;
y(6) <= p0123 xor p456;

0 y(7) <= p0123 xor p4567;

end optimal_tree_arch;

Although the same design principle can be used for a circuit with a larger number of
inputs, revising the VHDL code will be very tedious and error-prone. Actually, this design
is not just a lucky observation. It is based on parallel-prefix structure, and the systematic
development of VHDL code for this circuit is discussed in Chapter 15.

There are two important observations for this example. The first is the trade-off between
circuit size and performance. In a digital circuit, we normally have to use more hardware
resources to improve the performance, as in this example. The cascading design needs a
minimal number of xor gates, which is on the order of O(n), but suffers a large propagation
delay, which is also on the order of O(n). The parallel-prefix design, on the other hand,
requires 0.5n log, n xor gates, but its delay is only on the order of O(log, n).

The second observation is about the capability of the synthesis software. Ideally, we
hope the synthesis software can automatically derive the desired implementation regardless
of the initial VHDL description. This is hardly possible, even for the simple function used
in this example.

7.4.3 Tree priority encoder

A priority encoder is a circuit that returns the codes for the highest-priority request. We
have discussed it in Chapters 4 and 5 and used different VHDL constructs to describe this
circuit. The conditional signal assignment and if statements are natural to describe this
function, and they specify the same priority routing network. The shape of the priority
routing network is a single cascading chain, somewhat similar to the layout of cascading
reduced-xor design in the previous example. Since the critical path is formed along this
chain, performance suffers when the number of inputs increases. In the reduced-xor circuit,
we can convert the cascading chain into a tree by rearranging the order of xor operations.
This is also possible for the priority encoder, although the rearrangement is more involved.
This example shows how to create an alternative treelike structure. We use a 16-to-4 priority
encoder to demonstrate the scheme.

The VHDL description for the cascading design is straightforward, as shown in List-
ing 7.24.

Listing 7.24 Cascading description of a priority encoder

library ieee;
use ieee.std_logic_1164.all;
entity prio_encoder is
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port (

5 r: in std_logic_vector (15 downto 0);
code: out std_logic_vector (3 downto 0);
active: out std_logic

)
end prio_encoder;
0
architecture cascade_arch of prio_encoder is
begin
code <= "1111" when r(156)=’1’ else
"1110" when r(14)='1’ else
15 "1101" when r(13)=’1’ else
"1100" when r(12)=’1’ else
"1011" when r(11)=’1’ else
"1010" when r(10)=>1’ else
"1001" when r(9)="1* else
20 "1000" when r(8)="1" else
"0111" when r(7)="1’ else
"0110" when r(6)='1" else
"0101" when r(5)='1" else
"0100" when r(4)="1’ else
5 “0011"* when r(3)=1> else
"0010" when r(2)="1" else
"0001" when r(1)="1" else

"0000";
active <= r(i15) or r(i4) or r(i13) or r(i2) or
30 r(11) or r(10) or r(9) or r(8) or

r(7) or r(6) or r(5) or r(4) or
r(3) or r(2) or r(1) or r(0);
end cascade_arch;

The diagram of the code segment is shown in Figure 7.9, which consists of a chain of
15 2-to-1 multiplexers.

To develop a tree design, we start with smaller priority encoders and then rearrange them
to the desired layout. Design in this example uses a 4-to-2 priority encoder. The function
table and block diagram of a 4-to-2 decoder are shown in Figure 7.10(a). The block diagram
of the 16-to-4 tree priority encoder is shown in Figure 7.10(b).

The basic skeleton consists of a two-level tree. The 16 input requests are divided into four
groups and fed to four 4-to-2 priority encoders in the first level. Each 4-to-2 priority encoder
performs two functions. First, they generate active signals, act1, act2, act3 and act4, to
indicate whether a request occurs in a particular group. Each active signal can be interpreted
as the request signal of that particular group. Second, due to the clever arrangement of input
connection, their output codes, code_g3, code_g2, code_gl and code_g0, form the two
LSBs of the final 4-bit code. For example, if the highest-priority request is r(9), its code
is "1001". The r(9) signal is connected to the second 4-to-2 priority encoder in the first
level and its output , code_g2, is "01", which is the two LSBs of "1001".

There is only one 4-to-2 priority encoder in the second level. Its inputs are the four
“group request” signals from the first level. The output, code_msb, is the code of the group
with the highest-priority request, which forms the two MSBs of the 4-bit code signal. We
also need a 4-to-1 multiplexer in the second level. The code_msb signal is used to select
and route the 2 LSBs from the proper group to final output.
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Figure 7.9 Cascading priority encoder.

Since a 4-to-2 priority encoder is used repeatedly, we use component instantiation in
the code. The 4-to-2 priority encoder is coded as a regular cascading design, as shown in
Listing 7.25.

Listing 7.25  4-to-2 priority encoder

library ieee;
use ieee.std_logic_1164.all;
entity prio42 is

port (

s r4: in std_logic_vector (3 downto 0);
code2: out std_logic_vector (1 downto 0);
act42: out std_logic

);
end prio42;
10
architecture cascade_arch of prio42 is
begin
code2 <= "11" when r4(3)=’1" else
"10" when r4(2)=’'1’ else

15 "01" when r4(1)=’1’ else

uoou;
act42 <= r4(3) or r4(2) or ra(1) or r4(0);
end cascade_arch;

The VHDL code for the tree design is shown in Listing 7.26, which basically follows the
diagram of Figure 7.10(b). The code uses VHDL component instantiation, which is briefly
reviewed in Section 2.2.2 and discussed in Chapter 13.
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Listing 7.26  16-to-4 priority encoder

architecture tree_arch of prio_encoder is
component prio42 is

port (
r4: in std_logic_vector (3 dewnto 0);
5 code2: out std_logic_vector (i downto 0);

act42: out std_logic
);
end component;
signal code_g3, code_g2, code_gl, code_g0, code_msb:
10 std_logic_vector (1 downto 0);
signal tmp: std_logic_vector (3 downto 0);
signal act3, act2, actl, act0: std_logic;
begin
—— four Ist—stage 4—to—2 priority encoders
i5 unit_level_0_0: prio42
port map(r4=>r(3 downto 0), code2=>code_g0,
act42=>act0);
unit_level_O0_1: prio42
port map(r4=>r(7 downto 4), code2=>code_gl,
2 act42=>actl);
unit_level_0_2: prio42
port map(r4=>r(11 downto 8), code2=>code_g2,
act42=>act2);
unit_level_0_3: prio42
2 port map(r4=>r (15 downte 12), code2=>code_g3,
act42=>act3);
— 2nd stage 4—to—2 priority encoder
tmp <= act3 & act2 & actl & actO;
unit_level_2: prio42
30 port map(r4=>tmp, code2=>code (3 downto 2),
act42=>active);
— 2 MSBs of code
code (3 downto 2) <= code_msb;
—— 2 LSBs of code
3 with code_msbd select
code (1 downto 0) <= code_g3 when "11",
code_g2 when "10",
code_gl when "01",
code_g0 when others;
o end tree_arch;

Now let us analyze the critical path of two designs. The critical path of the first cascading
design consists of fifteen 2-to-1 multiplexers. The critical path of the tree design consists of
two 4-to-2 priority encoders plus one 4-to-1 multiplexer. Since the 4-to-2 priority encoder
uses the regular cascading design, it is constructed by three 2-to-1 multiplexers. Thus, the
critical path of the tree design consists of six 2-to-1 multiplexers and one 4-to-1 multiplexer.
It is much shorter than that of the cascading design.

Although software can perform a certain degree of optimization during synthesis, the
optimization tends to be local and a good initial description can make a significant impact on
the final implementation. This is especially true as the number of input requests increases.
We can further refine the design by utilizing a tree of 2-to-1 priority encoders inside the
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4-to-2 priority encoder. The 16-to-4 priority encoder now becomes a tree consisting of four
levels of 2-to-1 priority encoders.

A major drawback of the tree design is the code complexity. Revising the code for differ-
ent input sizes is very involved. An alternative scalable design is discussed in Chapter 185.

7.4.4 Barrel shifter revisited

We discussed the design of a barrel shifter in Section 7.3.5. This design suffers several
problems, and an alternative is developed in this section. We first examine the design of an
8-bit rotate-right circuit and then extend it to the complete three-function circuit.

In Section 7.3.5, the rotating circuit is translated directly from the function table and
coded by a selected signal assignment statement. The code is repeated in Listing 7.27.

Listing 7.27 Single-level rotate-right circuit

library ieee;
use ieee.std_logic_1164. all;
entity rotate_right is
port(
s a: in std_logic_vector (7 downto 0);
amt: in std_logic_vector(2 downto 0);
y: out std_logic_vector(7 downto 0)
)
end rotate_right;
10
architecture direct_arch of rotate_right is
begin
with amt select
y<= a when "000",
15 a(0) & a(7 downto 1) when "001",
a(l downto 0) & a(7 downto 2) when "010",
a(2 downto 0) a(7 downto 3) when "O11",
a(3 downto 0) a(7 downto 4) when "100",
a(4 downto 0) a(7 downto 5) when "101",
0 a(5 downto 0) a(7 downto 6) when "110",
a(6 downto 0) a(7) when others; — 111
end direct_arch;

& R RR

This code implies an 8-bit 8-to-1 multiplexer circuit. In actual implementation the 8-bit
muitiplexer is composed of eight 1-bit 8-to-1 multiplexers, as shown in Figure 7.11.

Although the conceptual diagram seems to be all right, this approach suffers some subtle
problems. First, a wide multiplexer cannot be effectively mapped to certain device tech-
nologies. Second, since an input data bit is routed to all multiplexers, the connection wires
grow on the order of O(n?). The wiring area becomes congested as the number of inputs
grows. Finally, the basic layout of this circuit is a single narrow strip, as in Figure 7.11.
This makes placing and routing more difficult.

An alternative design is to do the rotating in levels, as shown in Figure 7.12(a). In each
level, a bit of the amt signal indicates whether the input is passed directly to the output or
rotated by a fixed amount. Bits O, 1 and 2 of the amt signal control the routing in levels 0,
1 and 2 respectively. The amounts are different in each level, which are the 20, 2! and 22
positions. After passing three levels, the total number of positions rotated is the summation
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of positions rotated in each level, which is amt (2) *22 + amt (1) *2! + amt (0) %20, The
VHDL code of this revised design is shown in Listing 7.28.

Listing 7.28 Multilevel rotate-right circuit

architecture multi_level_arch of rotate_right is
signal leO_out, lel_out, le2_out:
std_logic_vector (7 downto 0);

begin
5 ~— level 0, shift 0 or 1 bit
leO_out <= a(0) & a(7 downto 1) when amt(0)=’1’ else
a;
— level 1, shift 0 or 2 bits
lel_out <=
10 le0_out (1 downto 0) & le0_out (7 downto 2)
when amt (1)=’1’ else
leO_out;
— level 2, shift 0 or 4 bits
le2_out <=
s lel_out (3 downto 0) & lel_out (7 downto 4)
when amt (2)=’1’ else
lel_out;
—— output

y <= le2_out;
o end multi_level_arch;

A more detailed diagram of this design is shown in Figure 7.12(b). Note that rotating a
fixed amount involves only signal routing and requires no physical components.

Comparing the two designs is more subtle, The first design needs eight 8-to-1 multi-
plexers and its critical path is the same as the critical path of an 8-to-1 multiplexer. The
multilevel design needs eight 2-to-1 multiplexers at each level, and thus a total of twenty-
four 2-to-1 multiplexers. Its critical path consists of three levels of 2-to-1 multiplexers.
The implementation of these multiplexers is technology dependent and there is no clear-cut
answer on circuit size and propagation delay. The additional wiring area and delay of the
first design further complicates the comparison. However, when the input becomes large,
the wiring and routing will become more problematic in the first design. The regular inter-
connection pattern of the multilevel design can scale better and thus should be the preferred
choice. The VHDL code of multilevel design is also easier to scale. The amount of revision
is on the order of O(log, n) rather than O(n), as in the first design.

To extend the rotate-right circuit to incorporate the additional logic shift-right and arith-
metic shift-right functions, we can apply the preprocessing idea from Section 7.3.5. Since
there are three levels in the new design, preprocessing has to be performed at each level.
The revised VHDL code is given in Listing 7.29.

Listing 7.29 Multilevel description of a three-function barrel shifter

architecture multi_level_arch of shift3mode is
signal le0O_out, lel_out, le2_out:
std_logic_vector (7 downto 0);
signal le0O_sin: std_logic;

5 signal lel_sin: std_logic_vector(1 downto 0);
signal le2_sin: std_logic_vector (3 downto 0);
begin

—— level 0, shift 0 or 1 bit
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with lar select
10 le0O_sin <= ’0° when "00",
a(7) when "O1",
a(0) when others;
le0O_out <= le0_sin & a(7 downto 1) when amt(0)=’1’ else

a;
is — level 1, shift 0 or 2 bits
with lar select
lel_sin <=
noo" When ||oo||,
(others => leO_out (7)) when "01",
» le0_out (1 downto 0) when others;

lel_out <= lel_sin & leO_out (7 downto 2)
when amt (1)='1’ else

leO_out;
— level 2, shift 0 or 4 bits
5 with lar select
le2_sin <=
"0000" when "00",
(others => lel_out (7)) when "O1",
lel_out (3 downto 0) when others;

) le2_out <= le2_sin & lel_out (7 downto 4)
when amt (2)=°1’ else
lel_out;
— output
y <= le2_out;
s end multi_level_arch ;

The preprocessing utilizes three 3-to-1 multiplexers, whose widths are 1, 2 and 4 bits
respectively, and their overall complexity is similar to the 8-bit 3-to-1 multiplexer used in
Section 7.3.5.

7.5 GENERAL CIRCUITS

The examples of previous sections are focused on specific aspects of design and VHDL
coding. Several general design examples are presented in this section.

7.5.1 Gray code incrementor

The Gray code is a special kind of code in that only a single bit changes between any
two successive code words. It minimizes the number of transitions when a signal switches
between successive words. A 4-bit Gray code and its corresponding binary code are shown
in Table 7.1. A Gray code incrementor is a circuit that generates the next word in Gray code.
The function table of a 4-bit Gray code incrementor is shown in Table 7.2. A straightforward
design is simply to translate this table into a selected signal assignment statement, as in
Listing 7.30.

Listing 7.30 Initial description of a Gray code incrementor

library ieee;
use ieee.std_logic_1164. all;
use ieee.numeric_std. all;
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Table 7.1 4-bit Gray code

Binary code Gray code
b3bab1bo 93929190

0000 0000
0001 0001
0010 0011
0011 0010
0100 0110
0101 0111
0110 0101
0111 0100
1000 1100
1001 1101
1010 1111
1011 1110
1100 1010
1101 1011
1110 1001
1111 1000

Table 7.2 Function table of a 4-bit Gray code incrementor

Gray code Incremented Gray code

0000 0001
0001 0011
0011 0010
0010 0110
0110 0111
o111 0101
0101 0100
0100 1100
1100 1101
1101 1111
1111 1110
1110 1010
1010 1011
1011 1001
1001 1000

1000 0000
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entity g_inc is
5 port(

g: in std_logic_vector (3 downto 0);
gl: out std_logic_vector (3 downto 0)

)
end g.inc ;
10

architecture table_

begin
with g select
gL <= "0001"
15 "0011"
"0010“
"0110"
Il0111ll
"0101"
0 "Q100"
"1100“
|I1101Il
II1111'I
|l1110"
2 *1010"
I11011|l
"1001“
"1000"
Iloooo"
wend table_arch;

arch of g_inc is

when "0000",

when "0001",
when "0011",
when "0010",
when "0110",

when "0111",
when "OQ101",
when "0100",
when "1100",
when "1101",
when "1111",
when "“1110",
when "1010",
when "1011",
when "1001L",
when others; — "1000"

Although the VHDL code is simple, it is not scalable because the needed revision is
on the order of O(2™). Unfortunately, there is no easy algorithm to derive the next Gray
code word directly. Since an algorithm exists for conversion between Gray code and binary
code, one possible approach is to derive it indirectly by using a binary incrementor. This

design includes three stages:

1. Convert 2 Gray code word to the corresponding binary word.

2. Increment the binary word.

3. Convert the result back to the Gray code word.
The binary-to-Gray conversion algorithm is based on the following observation: the ith bit
(i.e., g;) of the Gray code word is 1 if the ith bit and (¢+1)th bit (i.e., b; and b;41) of the
corresponding binary word are different. This observation can be translated into a logic

equation:

gi =b @bt

We can verify this equation by using the 4-bit code of Table 7.1:

g3 =b3®0=>b3
92 = b2 @ b3
g1 =b1 Db

g0 =bo Db
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The equation for Gray-to-binary conversion can be obtained by manipulating the previous
equation:
bi = i ® bip1
We can also expand b;+; on the right-hand side recursively. For example, a 4-bit code can
be expressed as

b3 =g300=g;

by =g20b3 =929 93

by =1 ®@b=g1 D 92D g3
bo=go®b1=g0D g1 D g2 D g3

Once we know the conversion algorithm, we can derive the VHDL code. Note that
the equations for the Gray-to-binary conversion are very similar to the reduced-xor-vector
function discussed in Section 7.4.2. The VHDL code of the new design is shown in List-
ing 7.31. We use the compact vector form, similar to that in the shared_compact_arch
architecture of Listing 7.21, for Gray-to-binary and binary-to-Gray code conversions.

Listing 7.31 Compact description of a Gray code incrementor

architecture compact_arch of g_inc is
constant WIDTH: integer := 4;
signal b, bl: std_logic_vector (WIDTH-1 downto 0);
begin
5 —— Gray to binary
b <= g xor (’0’ & b(WIDTH-1 downto 1));
—— binary increment
bl <= std_logic_vector((unsigned(b)) + 1);
—— binary to Gray
10 gl<= bl xor (’0’ & b1(WIDTH-1 downto 1));
end compact_arch;

The new code is independent of the input size and the revision is on the order of O(1).
Since each part can easily be identified, this design allows us to utilize the alternative
implementation for the adder and Gray-to-binary circuit. If performance is an issue, we
can replace them with faster but larger circuits.

7.5.2 Programmable priority encoder

In a regular priority encoder, the order of priority for each request is fixed. For example,
the order of eight requests, r(7), ..., r(0), is normally (7), r(6),...,r(1) and r (0).
Some applications need to dynamically change the priority of a request to give fair access
to each request. In this subsection, we consider a programmable 8-to-3 priority encoder in
which the priority can be assigned in a wrapped-around fashion. In addition to the eight
regular request signals, the circuit also has a 3-bit control signal, ¢, which specifies the
request that has the highest priority. For example, if ¢ is "011", r(3) has the highest
priority and the order of the requests is r(3), r(2), r(1), r(0), r(7), ..., r(4). A
brute-force design is to utilize eight regular priority encoders and one 8-to-1 multiplexer.
Each priority encoder has a fixed request order, and the multiplexer passes the desired code
to the output. While this design is straightforward, it is not very efficient.
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Figure 7.13 Block diagram of a programmable priority encoder.

A better design is shown in Figure 7.13. This design first uses the c signal to generate
two 8-bit masks, which are used to clear the upper and lower parts of the requests. For
example, if c is "011", the lower mask is "00000111" and the upper mask is "11111000",
the inverse of the lower mask. We apply the two masks to the original requests and obtain
two new masked requests, in which the lower and upper parts are cleared. For example, if a
requestis "11011011", the two masked requests will be "11011000" and "00000011". If the
active signal is asserted in the lower group, it means that there is a request from that group
and its code will be routed to the final output. Otherwise, the code from the upper priority
encoder will be routed to the output. If we continue the previous example, the codes from
the upper and lower priority encoders are "111" and "001", and since there is a request from
the lower group, "001" will be routed to the final output. The VHDL code describing this
design is shown in Listing 7.32.

Listing 7.32 Programmable priority encoder

library ieee;
use ieee.std_logic_1164. all;
entity fair_prio_encoder is
port(
5 r: in std_logic_vector (7 downto 0);
c: in std_logic_vector (2 downto 0);
code: out std_logic_vector (2 downto 0);
active: out std_logic
);

oend fair_prio_encoder;

architecture arch of fair_prio_encoder is
signal mask, lower_r, upper_r:
std_logic_vector (7 downto 0);
is signal lower_code, upper_code:
std_logic_vector (2 downto 0);
signal lower_active: std_logic;
begin
with c select
2 mask <= "00000001" when "QOO",
"00000011" when "0QO01",
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"00000111" when "010",
"00001111" when "O11",
"00011111" when "100",
25 "00111111" when "101",
"01111111" when "110",
"11111111" when others;
lower_r <= r and mask;
upper_r <= r and (not mask);
30 lower_code <= "111" when lower_r(7)=’1’ else
"110" when lower_r(6)=’1’ else
"101" when lower_r(5)=’1’ else
"100" when lower_r(4)=’1’ else
"011" when lower_r(3)=’1’ else

3 "010" when lower_r(2)=’1’ else
"001" when lower_r(1)=’1’ else
“000" ;

upper_code <= "111" when upper_r(7)=’1’ else
"110" when upper_r(6)=’1’ else
® “101" when upper_r(5)=’1’ else
"100" when upper_r(4)='1’ else
"011" when upper_r(3)=’1’ else
"010" when upper_r(2)=’1’ else
“"001" when upper_r(1)=’1* else
45 "000";
lower_active <= lower_r(7) or lower_r(6) or lower_r({(5) or
lower_r(4) or lower_r(3) or lower_r(2) or
lower_r (1) or lower_r(0);
code <= lower_code when lower_active=’1’ else
50 upper_code;
active <= r(7) or r(6) or r(5) or r(4) or
r(3) or r(2) or r(1) or r(0);
end arch;

The VHDL code is much more efficient than the first design.

7.5.3 Signed addition with status

The definition of the VHDL addition operator is very simple. It takes two operands and
returns the summation. In a complex digital system, such as a processor, adders frequently
need additional status signals and carry signals. Status signals show various conditions
of an addition operation, including zero, sign and overflow. Zero status indicates whether
the result is zero, sign status indicates whether the result is a positive or negative number,
and overflow status indicates whether overflow occurs during operation. Carry signals pass
information between successive additions. For example, if we want to construct a 64-bit
adder by using 8-bit adders, we have to utilize the carry signals to convey the relevant carry
information. Carry signals include the carry-in signal, which is an input that comes from
the previous stage, and the carry-out signal, which is an output signal to be passed to the
next stage. We consider the addition of two signed integers in this subsection.

The derivation of status signals is trickier than it first appears because of the overflow
condition. Overflow affects the determination of sign and zero status and thus must be de-
termined first. Our derivation of overflow condition is based on the following observations:
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o If the two operands have different signs, overflow can never occur since the addition
of a positive number and a negative number will always decrease the magnitude.

o If the two operands and the result have the same sign, overflow does not occur since
the result is still within the range.

o If the two operands have the same sign but the result has a different sign, overflow
occurs. The sign change indicates that the result goes beyond the positive or negative
boundary and thus is beyond the range. We can verify this by checking the binary
wheel of Figure 7.6.

Let the sign bits of two operands and summation be s,, s and s, respectively. We can
translate our observation into the following logic expression:

overflow = (8 - 8p - 84) + (8}, + 8} - 55)

Once we know the overflow condition, we can determine the zero condition and the sign.
Because of the potential of overflow, the addition result may not be 0 even if the summation
output is 0. For example, if we add two 4-bit inputs, "1000" and "1000", the summation
output is "0000" because of overflow. Thus, the zero condition should be asserted only if
the summation output is 0 and there is no overflow.

From our observation on overflow, it is clear that the sign bit of the summation output
is not necessarily the sign of a real addition result. In the example above, the sign bit of
summation "0000" is *0’ while the addition result should be negative. Thus, the sign bit of
the addition result is the same as the sign bit of the summation output only if no overflow
occurs. It should be inverted otherwise.

Carry signals can be handled by using two extra bits in the internal signals. One bit will
be appended to the left to incorporate the carry-out signal. The other bit will be appended
to the right to inject the carry-in signal, as explained in Section 7.3.1. The complete VHDL
code is shown in Listing 7.33.

Listing 7.33 Signed addition with status

library ieee;
use ieee.std_logic_1164. all;
use ieee.numeric_std. all;
entity adder_status is
5 port (
a,b: in std_logic_vector (7 downto 0);
cin: in std_logic;
sum: out std_logic_vector (7 downto 0);
cout, zero, overflow, sign: out std_logic
10 )

end adder_status;

architecture arch of adder_status is
signal a_ext, b_ext, sum_ext: signed(9 downto 0);
15 signal ovf: std_logic;
alias sign_a: std_logic is a_ext(8);
alias sign_b: std_logic is b_ext (8);
alias sign_s: std_logic is sum_ext (8);

begin
2 a_ext <= signed(’0’ & a & ’1’);
b_ext <= signed(’0’ & b & cin);

sum_ext <= a_ext + b_ext;
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Figure 7.14 Muitiplication as a summation of a;b; terms.

ovf <= (sign_a and sign_b and (not sign_s)) or
((not sign_a) and (not sign_b) and sign_s);
2 cout <= sum_ext (9);
sign <= sum_ext (8) when ovf='0’ else
not sum_ext (8);
zero <= ’1’ when (sum_ext (8 downto 1)=0 and ovf=’0’) else

)ol;
30 overflow <= ovf;
sum <= std_logic_vector (sum_ext (8 downto 1));

end arch;

7.5.4 Combinational adder-based multiplier

A multiplier is a fairly complicated circuit. The synthesis of the VHDL multiplication
operator depends on the individual software and the underlying target technology, and
cannot always be done automatically. In this example, we study a simple, portable, though
not optimal, combinational adder-based multiplier.

The multiplier is based on the algorithm we learned in elementary school. The multi-
plication of two 4-bit numbers is illustrated in Figure 7.14, which are aligned in a specific
two-dimensional pattern. This algorithm includes three tasks:

1. Multiply the digits of the multiplier (b3, b2, by and by of Figure 7.14) by the multipli-

cand (A of Figure 7.14) one at a time to obtain b3*A, ba*A, by *A and bg*A. Since
b; is a binary digit, it can only be 0 or 1, and thus b;*A can only be 0 or A. The b;*xA
operation becomes bitwise and operation of b; and the digits of A; that is,

b,'*A = (ag-b,-, az-bi, a1'bi, ao-b,-)

2. Shift b;x A to left ¢ positions.

3. Add the shifted b;*A terms to obtain the final product.

The VHDL code of an 8-bit multiplier based on this algorithm is shown in Listing 7.34.
We first construct an 8-bit vector, b;b;b;b;b;b;b;b;, for each b; to facilitate the bitwise and
operation. The vector is used to generate shifted b;*A terms. Note that padding 0’s are
inserted around b;*A to form a 16-bit signal. The shifted b;*A terms are then summated
by seven adders, which are arranged as a tree to increase performance, to obtain the final
result,



204 COMBINATIONAL CIRCUIT DESIGN: PRACTICE

Listing 7.34 Initial description of an adder-based multiplier

library ieee;
use ieee.std_logic_1164. all;
use ieee.numeric_std. all;
entity mult8 is
5 port(
a, b: in std_logic_vector (7 downto 0);
y: out std_logic_vector (15 downto 0)
)
end mult8;
10
architecture combl_arch of mult8 is
constant WIDTH: integer:=8;
signal au, bv0, bvl, bv2, bv3, bvd, bvbE, bv6, bVT:
unsigned (WIDTH-1 downto 0);
1s signal p0,pl,p2,p3,p4,p5,p6,p7,prod:
unsigned (2*WIDTH-1 downto 0);
begin
au <= unsigned(a);
bv0 <= (others=>b(0));
20 bvl <= (others=>b(1));
bv2 <= (others=>b(2));
bv3 <= (others=>b(3));
bv4d <= (others=>b(4));
bvs <= (others=>b(5));
2 bvé <= (others=>b(6));
bv7 <= (others=>b(7));
p0 <="00000000" & (bvO and au);
pl <="0000000" & (bvl and au) & "0";
P2 <="000000" & (bv2 and au) & "00";
30 p3 <="00000" & (bv3 and au) & "000";
p4 <="0000" & (bv4 and au) & "0000";
p5 <="000" & (bvs and au) & "00000";
p6 <="00" & (bv6é and au) & "000000";
pP7 <="0" & (bv7 and au) & "0000000";
3 prod <= ((p0+pl)+(p2+p3))+((pd+p5)+(p6+p7));
y <= std_logic_vector (prod);
end combl_arch;

Adders are the major components of this design. For a circuit with an n-bit multiplicand
and an n-bit multiplier, the product has 2n bits. The shifted b;* A has to be extended to 2n
bits, and thus the design needs n—1 2n-bit adders. The code can easily be expanded for a
larger multiplier, and the needed revision is on the order of O(n).

One way to reduce the size of this circuit is to add shifted b;* A terms in sequence. This
reduces the width of the adder to n+1 bits. Operation of the new design is illustrated in
Figure 7.15.

We first obtain by*A and form the first partial product pp0. To accommodate the carry-
out of future addition, one extra bit is appended to the left of by*A. Note that the LSB
of prod (i.e., prod(0)) is the same as the LSB of pp0 (i.e., pp0(0)), and the pp0(0) bit
has no effect on the remaining addition operations. We need only add the upper bits of the
ppO to by A to form the next partial sum, ppl. Note that prod (1) is same as pp1(0), and
pp1(0) has no effect on the remaining additions. We can repeat the process to obtain other



Figure 7.15 Multiplication as successive summation.
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partial sums in sequence. This design still needs n — 1 adders, but the width of the adders
is decreased from 27 to n + 1, about one half of the original size. The VHDL code of an
8-bit multiplier based on this algorithm is shown in Listing 7.35.

20

Listing 7.35 More efficient description of an adder-based multiplier

architecture comb2_arch of mults

constant WIDTH:

integer:

=8;

is

signal au,bv0,bvl,bv2,bv3,bvd,bv5,bv6,bv7:
unsigned (WIDTH-1 downto 0);
signal pp0,ppl,pp2,pp3,pp4,pp5,pp6,pPp7:
unsigned (WIDTH downto 0);
signal prod: unsigned (2*WIDTH-1 downto 0);

begin

au <= unsigned(a);

bv0o <=

(others=>b(0));

bvl <= (others=>b(1));
bv2 <= (others=>b(2));

bv3d <=
bvd <=
bvs <=
bvé <=
bv7 <=
ppo <=
ppl <= (lloll
pP2 <= ("Qo"
Pp3 <= (uou
PP4 <= ("O"
pps <= (uou
pp6 <= (IIOII
PP7 = ("o"
prod <= pp7

S

&

(others=>b(3));
(others=>b(4));
(others=>b(5));
(others=>b(6));
(others=>b(7));
"0" & (bv0 and au);

pPO(WIDTH
pp1 (WIDTH
pp2 (WIDTH
pp3 (WIDTH
pp4 (WIDTH
pp5 (WIDTH
pp6 (WIDTH

pp6(0) & pp5(0) & ppa(0) & pp3(0) &

downto
downto
downto
downto
downto
downto
downto

1))
1)
1))
1
1))
1))
1

pp2(0) & ppl(0) & pp0(0);

+ 4+ + o+ o+ o+

(uo"
(uou
(uon
(uou
(nou
(lloll
(Iloll

PR

&

(bvi
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Figure 7.16 Block diagram of a population counter.

y <= std_logic_vector(prod);
end comb2_arch;

7.5.5 Hamming distance circuit

A Hamming distance of two words is the number of bit positions in which the two words
differ. For example, the Hamming distance of two 8-bit words "00010011" and "10010010"
is 2 since the bits at position 0 (LSB) and position 7 (MSB) are different. The Hamming
distance is used in some error correction and data compression applications. This example
considers a circuit that calculates the Hamming distance of two 8-bit inputs.

Our design has two basic steps. The first step determines the bits that are different and
marks them as ’1’. The second step counts the number of 1’s in the word, a function known
as a population counter. For example, consider the inputs "00010011" and "10010010",
The first step returns "10000001" since the bits at positions 0 and 7 are different, and the
second step returns 2 since there are two 1’s in the word.

We can implement the first step by using a simple bitwise xor operation. Recall that the
1-bit xor function returns "1’ only if the input is "01" or "10". It can be interpreted that the
function returns ’ 1’ if two inputs are different. Thus, after applying a bitwise xor operation,
we can mark all the bits that are different.

Design of the population counter is more difficult. Our first design is shown in Fig-
ure 7.16. It counts the number of 1’s by stages. In the first level of the circuit, we divide the
8 bits into four pairs and add the 1’s in each pair. Four 2-bit adders are needed to perform
the operation. In the second level, we pair the results and add them again. Two 3-bit adders
are needed. The process is repeated one more time in the third level to obtain the final
result. The VHDL code is shown in Listing 7.36.

Listing 7.36 Initial description of a Hamming distance circuit

library ieee;
use ieee.std_logic_1164. all;
use ieee.numeric_std. all;
entity hamming is
5 port (
a,b: in std_logic_vector(7 downte 0);
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y: out std_logic_vector (3 downto 0)
);
end hamming;
10
architecture effi_arch of hamming is
signal diff: unsigned (7 downto 0);
signal 1ev0_0, lev0_2, lev0_4, lev0_6:
unsigned (1 downto 0);
15 signal levi_0, levi_4: unsigned(2 downto 0);
signal lev2: unsigned(3 downto 0);
begin
diff <= unsigned(a xor b);

lev0_0 <= (’0° & diff(0)) + (’0° & diff(1));
20 lev0_2 <= (’0’ & diff(2)) + (’°0° & diff (3));
lev0_4 <= (’0* & diff(4)) + (0’ & diff(5));
lev0_6 <= (’0’ & diff(6)) + (’0’ & diff(7));
levi_0 <= (’0’ & lev0_0) + (’0’ & lev0_2);

levli_4 <= (’0’ & lev0_4) + (’0’ & lev0_6);
25 lev2 <= (’0° & levl_0) + (’0’ & levl_4);
y <= std_logic_vector(lev2);
end effi_arch;
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Although this population counter design is fairly efficient, the code is somewhat tedious.
An alternative design is to use a clever shifting and masking scheme to rearrange the input
and utilize a fixed-size 8-bit adder at each level. Assume that the 8-bit input to the population

counter is d7dgdsdsdzdsdydy. The algorithm is summarized below.

e Level 0. We first split and rearrange the original input into two words, 0dg0d40d20dg
and 0d70d50d30d;, and then add them by an 8-bit adder. Assume that the result is
eregeseqeseqe eg. Because of the locations of the (s, this adder performs essentially
four 2-bit additions, and e; eg, eze2, e5e4 and ereg are dg + dy, do + ds, d4 + ds and

de + d7 respectively.

e Level 1. We perform splitting and addition operations similar to those at level 0.
However, the input now is split into 00ese400e;ep and 00ezeg00ezez. The result
should be in the form of f7 fg f5fsfafaf1fo. Note that f7 and f3 should be 0. The
adder actually performs two 3-bit additions, and fa f1 fo and fe fs f4 are e1eq + ezea

and eseq + eyeg respectively.

o Level 2, We repeat the same operation except that the input is split into 0000 f3 f2 f1 fo

and 0000 f7 f6 f5f4. The result should be in the form of 0000g39291 9.

The VHDL code based on this design is shown in Listing 7.37. The splitting and rear-
rangement of the input can be done by masking and shifting. For example, the mask inlevel 0
is masko, "01010101". After performing bitwise and operation of d7dgdsdsdsdad;dy and
maskO, we obtain the first input word, 0dg0d40d20d;. We can obtain the second input
word in a similar way after first shifting d;dgdsdsdsdad; dp to the right one position. The
operations are similar at levels 1 and 2 but have different masking patterns and amounts of

shifting.

Listing 7.37 Compact description of a Hamming distance circuit

architecture compact_arch of hamming is
signal diff, lev0, levl, lev2: unsigned(7 downto 0);
constant MASKO: unsigned (7 downto 0) "01010101";
constant MASKi: unsigned(7 downto 0) "00110011";
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5 constant MASK2: unsigned (7 downto 0) := "00001111";

begin
diff <= unsigned(a xor b);
lev0 <= (diff and MASKO) +
10 ((’0’& diff (7 downto 1)) and MASKO);
levl <= (lev0 and MASK1) +
(("00" & lev0(7 downto 2)) and MASK1);
lev2 <= (levl and MASK2) +
(("0000" & levi(7 downto 4)) and MASK2);
15 y <= std_logic_vector(lev2(3 downto 0));
end compact_arch;

This design requires more adder bits than the first version. However, its code is more
compact and the needed revision is on the order of O(log, n).

7.6 SYNTHESIS GUIDELINES

o Operators can be shared in mutually exclusive branches by proper routing of the input
operands and/or result. It is more beneficial for complex operators.

¢ Many operations have certain common functionality, The hardware resource can be
shared by these operations.

e RT-level code can outline the general layout of the circuit. A tree- or rectangle-
shaped description can help the synthesis process and placement and routing process
to derive a more efficient circuit.

7.7 BIBLIOGRAPHIC NOTES

Developing efficient design and VHDL codes requires the insight and in-depth knowledge of
the problem at hand. The digital systems texts, Digital Design Principles and Practices by
J. F. Wakerly and Contemporary Logic Design by R. H. Katz, provide detailed discussion on
the construction of many commonly used parts, such as decoders, encoders, comparators and
adders. Bibliography in Chapter 15 provides more references on the design and algorithms
of multiplier and arithmetic functions.

Problems

7.1 Consider an arithmetic circuit that can perform four operations: a+b, a-b, a+1 and
a-1, where a and b are 16-bit unsigned numbers and the desired operation is specified by
a 2-bit control signal, ctrl.
(a) Design the circuit using two adders, one incrementor and one decrementor. Derive
the VHDL code.
(b) Design the circuit using only one adder. Derive the VHDL code.
(c) Synthesize the two designs with an ASIC device. Compare the areas and perfor-
mances.

(d) Synthesize the two designs with an FPGA device. Compare the areas and perfor-
mances.
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7.2 Design a circuit that converts an 8-bit signed input to 8-bit sign-magnitude output
(where the MSB is the sign bit and the remaining 7 bits are magnitude). Use a minimal
number of relational and arithmetic operators in your design. Draw the top-level diagram
and derive the VHDL code.

7.3  Extend the dual-mode comparator of Section 7.3.2 to include sign-magnitude mode.
Use only one 7-bit comparator in your design. Derive the VHDL code.

7.4 Consider a 16-bit shifting circuit that can perform rotating right or rotating left. Use
selected signal assignment statements similar to that in Section 7.3.5 to implement the
shifting function.

(a) Design the circuit using one rotate-right circuit, one rotate-left circuit and one
2-to-1 multiplexer to select the desired result. Derive the VHDL code.

(b) Design the circuit using one rotate-right circuit with a pre- and post-processing
reversing circuit. The reversing circuit either passes the original input or reverses
the input bit-wise (e.g., if a 4-bit input agazajag is used, the reversed output
becomes agajasasz). Derive the VHDL code.

(¢) Draw block diagrams of the two designs and analyze and compare their size and
performance.

(d) Synthesize the two designs with an ASIC device. Compare the areas and perfor-
mances.

(e) Synthesize the two designs with an FPGA device. Compare the areas and perfor-
mances.

7.5 Consider a reduced-xor-vector function with 16 inputs. Design the circuit using a
parallel-prefix structure similar to that of Figure 7.8(b) and derive the VHDL code.

7.6  We can further refine the tree priority encoder in Section 7.4.3 by using 2-to-1 priority
encoders.
(a) Design a tree-structured 16-to-4 priority encoder using 2-to-1 priority encoders.
The design should have four levels. Draw the block diagram and derive the VHDL
code accordingly.
(b) Synthesize the new design and the two designs in Section 7.4.3 with an ASIC
device. Compare the areas and performances.
(c) Synthesize the new design and the two designs in Section 7.4.3 with an FPGA
device. Compare the areas and performances.

7.7 A leading zero counting circuit counts the number of consecutive 0’s of an input.
Consider a circuit with a 16-bit input.

(a) Design the circuit using one conditional signal assignment statement and derive
the VHDL code.

(b) Derive a smaller 4-bit leading-zero counting circuit first. Design a 16-bit treelike
leading-zero counting circuit using 4-bit counting circuits. Derive the VHDL
code.

(c) Synthesize the two designs with an ASIC device. Compare the areas and perfor-
mances.

(d) Synthesize the two designs with an FPGA device. Compare the areas and perfor-
mances.

7.8 Design a 16-bit rotate-left shifting circuit using the multilevel structure discussed in
Section 7.4.4.
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7.9 Repeat Problem 7.4, but design the shifting circuit using the multilevel structure
discussed in Section 7.4.4. Compare the area and performance with those in Problem 7.4.

7.10 We define the distance from the Gray code word a to the Gray code word b as the
number of transitions from code word a to code word b. For example, consider the 4-bit
Gray code words "0101" and "1111" as ¢ and b. The distance from a to b is 4 since four
transitions are needed (i.e., "0101" = "0100" = "1100" = "1101" = "1111"). Design a
circuit to calculate the distance of two 4-bit Gray code words and derive the VHDL code.

7.11 Although the code is compact, the synthesize result of the compact_arch archi-
tecture of the Gray code incrementor may not be more efficient than the table_arch
architecture.

(a) Synthesize the two designs with an ASIC device. Compare the areas and perfor-
marnces.

(b) Extend the two designs for 8-bit Gray code. The table_arch architecture now
has 28 entries. You may need to write a program (using C, Java etc.) to generate
the VHDL code. Synthesize the two 8-bit designs with an ASIC device. Compare
the areas and performances.

(c) Synthesize the two 8-bit designs with an FPGA device. Compare the areas and
performances.

(d) If you have enough hardware resources, repeat parts (b) and (c) by gradually
increasing the design to 10-, 12-, 14- and 16-bit inputs.

7.12 Design a priority encoder that returns the codes of the highest and second-highest
priority requests. The input is an 8-bit req signal and the outputs are codet, code2,
validl and valid2, which are the 3-bit codes and 1-bit valid signals of the highest and
second-highest priority requests respectively.

7.13 Many instrument panels use binary-coded-decimal (BCD) format, in which 10 dec-
imal digits are coded by using 4 bits. During an addition operation, if the sum of a digit
exceeds 9, 10 will be subtracted from the current digit and a carry is generated for the next
digit. Design a 3-digit BCD adder which has two 12-bit inputs, representing two 3-digit
BCD numbers, and an output, which is a 4-digit (16-bit) BCD number. Draw the top-level
diagram and derive the VHDL code accordingly.

7.14 In an analog amplifier, the output voltage becomes saturated (i.e., reaching the most
positive voltage, +V,., or the most negative voltage, —V,;) when the output exceeds the
maximal range. In some digital signal processing applications, we wish to design an 8-bit
signed saturation adder that mimics the behavior of an analog amplifier; i.e., if the addition
result overflows, the result becomes the most positive or the most negative numbers. Draw
the top-level diagram and derive the VHDL code accordingly.

7.15 The two multipliers in Section 7.5.4 utilize seven 16-bit adders and seven 8-bit
adders respectively.
(a) Determine the critical path for both designs.
(b) In an area-optimized adder, the propagation is proportional to the number of bits
in the adder (i.e., on the order of O(n)). Assume that both designs utilize this
kind of adder. Compare the propagation delays for the two designs.

7.16 Revise the designs in Section 7.5.4 to accommodate inputs in signed integer format.
Derive the VHDL code. (Hint: An 8-bit 2’s-complement number, ayagasasasasaiag, has
a value of —a7*27 + ag*26 + a5%2% + - . - + qgx20)
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7.17 Design an 8-bit combinational divider based on a long-division algorithm, the one
you learned in elementary school. The inputs are 8-bit dividend and divisor in unsigned
format, and the outputs are 8-bit quotient and remainder. Derive the VHDL code. (Hint:
Division can be done by a sequence of “comparing and subtracting” operations. This
operation takes two inputs, ¢ and b, and returns a if ¢ < b and returns a — b otherwise.)

7.18 One way to implement the population counter in Section 7.5.5 is to exhaustively
construct a function table and use a single selected signal assignment statement to implement
the table.
(a) Derive the VHDL code for an 8-bit population counter based on function table
design. You may need to write a program (using C, Java etc.) to generate the
VHDL code.
(b) Synthesize this design and the other two designs in Section 7.5.5 with an ASIC
device. Compare the areas and performances.
(c) Synthesize this design and the other two designs in Section 7.5.5 with an FPGA
device. Compare the areas and performances.
(d) Repeat parts (a) to (c) for 10- and 12-bit inputs.
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CHAPTER 8

SEQUENTIAL CIRCUIT DESIGN:
PRINCIPLE

A sequential circuit is a circuit that has an internal state, or memory. A synchronous
sequential circuit, in which all memory elements are controlled by a global synchronizing
signal, greatly simplifies the design process and is the most important design methodology.
Our focus is on this type of circuit. In this chapter and the next chapter, we examine the
VHDL description of basic memory elements and study the design of sequential circuits
with a “regular structure.” Chapters 10, 11 and 12 discuss the design of sequential circuits
with a “random structure” (finite state machine) and circuits based on register transfer
methodology.

8.1 OVERVIEW OF SEQUENTIAL CIRCUITS

8.1.1 Sequential versus combinational circuits

A combinational circuit, by definition, is a circuit whose output, after the initial transient
period, is a function of current input. It has no internal state and therefore is “memoryless”
about the past events (or past inputs). A sequential circuit, on the other hand, has an internal
state, or memory. Its output is a function of current input as well as the internal state. The
internal state essentially “memorizes” the effect of the past input values. The output thus is
affected by current input value as well as past input values (or the entire sequence of input
values). That is why we call a circuit with internal state a sequential circuit.

RTL Hardware Design Using VHDL: Coding for Efficiency, Portability, and Scalability. By Pong P.Chu 213
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Figure 8.1 D latch and D FF,

8.1.2 Basic memory elements

We can add memory to a circuit in two ways. One way is to add closed feedback loops
in a combinational circuit, in which the memory is implicitly manifested as system states.
Because of potential timing hazards and racing, this approach is very involved and not
suitable for synthesis.

The other way is to use predesigned memory components. All device libraries have cer-
tain memory cells, which are carefully designed and thoroughly analyzed. These elements
can be divided into two broad categories: latch and flip-flop (FF). We review the basic
characteristics of a D-type latch (or just D latch) and D-type FF (or just D FF).

Dlatch The symbol and function table of a D latch are shown in Figure 8.1(a). Note that
we use * to represent the next value, and thus g* means the next value of q. The c and 4
inputs can be considered as a control signal and data input respectively. When c is asserted,
input data, d, is passed directly to output, . When c is deasserted, the output remains the
same as the previous value. Since the operation of the D latch depends on the level of the
control signal, we say that it is level sensitive. A representative timing diagram is shown
in the g-latch output of Figure 8.2. Note that input data is actually stored into the latch at
the falling edge of the control signal.

Since the latch is “transparent” when c is asserted, it may cause racing if a loop exists
in the circuit. For example, the circuit in Figure 8.3 attempts to swap the contents of
two latches. Unfortunately, racing occurs when c is asserted. Because of the potential
complication of timing, we normally do not use latches in synthesis.

D FF The symbol and function table of a positive-edge-triggered D FF are shown in
Figure 8.1(b). D FF has a special control signal known as a clock signal, which is labeled
clkinthe diagram. The D FF is activated only when the clock signal changes from 0’ to’1°,
which is known as the rising edge of the clock. At other times, its output remains the same
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Figure 8.2 Simplified timing diagram of D latch and D FFs.
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Figure 8.3 Data swapping using D latches.

as its previous value. In other words, at the rising edge of the clock, a D FF takes a sample
of input data, stores the value into memory, and passes the value to output. The output,
which reflects the stored value, does not change until the next rising edge. Since operation
of the D FF depends on the edge of the clock signal, we say that it is edge sensitive. A
representative timing diagram is shown in the q_pff output of Figure 8.2. Note that the
clock signal, clk, is functioning as a sampling signal, which takes a sample of the input
data, 4, at the rising edge. The clock signal plays a key role in a sequential circuit and we add
a small triangle, as in the c1k port in Figure 8.1(b), to emphasize use of an edge-triggered
FF.

The operation of a negative-edge-triggered D FF is similar except that sampling is
performed at the falling edge of the clock. Its symbol and function table are shown in
Figure 8.1(c). A representative timing diagram is shown in the q.nff output of Figure 8.2.

The sampling property of FFs has several advantages. First, variations and glitches
between two rising edges have no effect on the content of the memory. Second, there will
be no race condition in a closed feedback loop. If we reconstruct the swapping circuit of
Figure 8.3 by replacing the D latches with the D FFs, the D FFs swap their contents at each
rising edge of the clock and the circuit functions as expected. The disadvantage of the D FF
is its circuit size, which is about twice as large as that of a D latch. Since its benefits far
outweigh the size disadvantage, today’s sequential circuits normally utilize D FFs as the
storage elements.

The timing of a D FF is more involved than that of a combinational component. The
timing diagram is shown in Figure 8.4. There are three main timing parameters:
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o Tyt clock-to-q delay, the propagation delay required for the d input to show up at
the q output after the sampling edge of the clock signal.
® Tyoetup: Setup time, the time interval in which the d signal must be stable before the
clock edge.
® Thoiq: hold time, the time interval in which the d signal must be stable after the clock
edge.
T, corresponds roughly to the propagation delay of a combinational component. Tietup
and Th14, on the other hand, are timing constraints. They specify that the d signal must
be stable in a small window around the sampling edge of the clock. If the d signal changes
within the setup or hold time window, which is known as setup time violation or hold time
violation, the D FF may enter a metastable state, in which the q becomes neither '0’ nor
’1’. The issue of metastability is discussed in Chapter 16.

8.1.3 Synchronous versus asynchronous circuits

The clock signal of FFs plays a key role in sequential circuit design. According to the
arrangement of the clock, we can divide the sequential circuits into the following classes:

o Globally synchronous circuit (or simply synchronous circuit). A globally syn-
chronous circuit uses FFs as memory elements, and all FFs are controlled (i.e., syn-
chronized) by a single global clock signal. Synchronous design is the most important
methodology used to design and develop large, complex digital systems. It not only
facilitates the synthesis but also simplifies the verification, testing, and prototyping
process. Our discussion is focused mainly on this type of circuit.

o Globally asynchronous locally synchronous circuit. Sometimes physical constraints,
such as the distance between components, prevent the distribution of a single clock
signal. In this case, a system may be divided into several smaller subsystems. Since
a subsystem is smaller, it can follow the synchronous design principle. Thus, sub-
systems are synchronous internally. Since each subsystem utilizes its own clock,
operation between the subsystems is asynchronous. We need special interface cir-
cuits between the subsystems to ensure correct operation. Chapter 16 discusses the
design of the interface circuits.

o Globally asynchronous circuit. A globally asynchronous circuit does not use a clock
signal to coordinate the memory operation. The state of a memory element changes
independently. Globally asynchronous circuits can be divided into two categories.
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Figure 8.5 Conceptual diagram of a synchronous sequential circuit.

The first category comprises circuits that consist of FFs but do not use the clock in a
disciplined way. One example is the ripple counter, in which the clock port of an FF
is connected to the output of the previous FF. Utilizing FFs in this way is a poor design
practice. The second category includes the circuits that contain “clockless” memory
components, such as a latch or a combinational circuit with closed feedback loops.
This kind of circuit is sometimes simply referred to as an asynchronous circuit. The
design of asynchronous circuits is very different from that of synchronous circuits and
is not recommended for HDL synthesis. The danger is demonstrated by an example
in Section 8.3.

8.2 SYNCHRONOUS CIRCUITS

8.2.1 Basic model of a synchronous circuit

The basic diagram of a synchronous circuit is shown in Figure 8.5. The memory element,
frequently know as a state register, is a collection of D FFs, synchronized by a common
global clock signal. The output of the register (i.e., the content stored in the register),
the state_reg signal, represents the internal state of the system. The next-state logic is
a combinational circuit that determines the next state of the system. The output logic is
another combinational circuit that generates the external output signal. Note that the output
depends on the external input signal and the current state of the register. The circuit operates
as follows:

o At the rising edge of the clock, the value of the state_next signal (appearing at the
d port) is sampled and propagated to the q port, which becomes the new value of the
state_reg signal. The value is also stored in FFs and remains unchanged for the
rest of the clock period. It represent the current state of the system.

o Based on the value of the state_reg signal and external input, the next-state logic
computes the value of the state_next signal and the output logic computes the value
of external output.

s At the next rising edge of the clock, the new value of the state_next signal is
sampled and the state_reg signal is updated. The process then repeats.

To satisfy the timing constraints of the FFs, the clock period must be large enough to
accommodate the propagation delay of the next-state logic, the clock-to-q delay of the FFs
and the setup time of the FFs. This aspect is discussed in Section 8.6.

There are several advantages of synchronous design. First, it simplifies circuit timing.
Satisfying the timing constraints (i.e., avoiding setup time and hold time violation) is one
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of the most difficult design tasks. When a circuit has hundreds or even thousands of FFs
and each FF is driven by an individual clock, the design and analysis will be overwhelming.
Since in a synchronous circuit all FFs are driven by the identical clock signal, the sampling
of the clock edge occurs simultaneously. We only need to consider the timing constraints
of a single memory component. Second, the synchronous model clearly separates the
combinational circuits and the memory element. We can easily isolate the combinational
part of the system, and design and analyze it as a regular combinational circuit. Third,
the synchronous design can easily accommodate the timing hazards. As we discussed in
Section 6.5.3, the timing hazards are unavoidable in a large synthesized combinational
circuit. In a synchronous circuit, inputs are sampled and stored at the rising edge of the
clock. The glitches do not matter as long as they are settled at the time of sampling.
Instead of considering all the possible timing scenarios, we only need to focus on worst-
case propagation delays of the combinational circuit.

8.2.2 Synchronous circuits and design automation

The synchronous model essentially reduces a complex sequential circuit to a single closed
feedback loop and greatly simplifies the design process. We only need to analyze the timing
of a simple loop. Once it is done, the memory elements can be isolated and separated
from the circuit. The sequential design now becomes a combinational design and we can
apply the previous optimization and synthesizing schemes of combinational circuits to
construct sequential circuits. Because of this, the synchronous model is the most dominant
methodology in today’s design environment. Most EDA tools are based on this model.

The benefit of synchronous methodology is not just limited to synthesis. It can facilitate
the other tasks of the development process. The impact of synchronous methodology is
summarized below.

o Synthesis. Since we can separate the memory elements, the system is reduced to a
combinational circuit. All optimization algorithms and techniques used in combina-
tional circuit synthesis can be applied accordingly.

o Timing analysis. The analysis involves only a single closed feedback loop. It is
straightforward once the propagation delay of the combination circuit is known.
Thus, the timing analysis of the sequential circuit is essentially reduced to the timing
analysis of its combinational part.

o Cycle-based simulation. Cycle-based simulation ignores the exact propagation delay
but simulates the circuit operation from one clock cycle to another clock cycle. Since
we can easily identify the memory elements and their clock, cycle-based simulation
can be used for synchronous design.

e Testing. One key testing technique is to use scan registers to shift in test patterns
and shift out the results. Because the memory elements are isolated, we can easily
replace them with scan registers when needed.

o Design reuse. The main timing constraint of the synchronous design is embedded in
the period of the clock signal (to be discussed in Section 8.6), which depends mainly
on the propagation delay of the combination part. As long as the clock period is large
enough, the same design can be implemented by different device technologies.

e Hardware emulation. Because the same synchronous design can be targeted to dif-
ferent device technologies, it is possible to first construct the design in FPGA tech-
nology, run and verify the circuit at a slower clock rate, and then fabricate it in ASIC
technology.
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8.2.3 Types of synchronous circuits

Based on the “representation and transition patterns” of state, we divide synchronous circuits
into three types. These divisions are informal, just for clarity of coding. The three types of
sequential circuits are:

o Regular sequential circuit. The state representation and state transitions have a sim-
ple, regular pattern, as in a counter and a shift register. Similarly, the next-state logic
can be implemented by regular, structural components, such as an incrementor and
shifter.

o Random sequential circuit. The state transitions are more complicated and there is
no special relation between the states and their binary representations. The next-state
logic must be constructed from scratch (i.e., by random logic). This kind of circuit
is known as a finite state machine (FSM).

o Combined sequential circuit. A combined sequential circuit consists of both a regular
sequential circuit and an FSM. The FSM is used to control operation of the regular
sequential circuit. This kind of circuit is based on the register transfer methodology
and is sometimes known as finifte state machine with data path (FSMD).

We discuss the design and description of regular sequential circuits in this chapter and the
next chapter, and we cover the FSM and FSMD in Chapters 10, 11 and 12.

8.3 DANGER OF SYNTHESIS THAT USES PRIMITIVE GATES

As we discussed earlier, an asynchronous sequential circuit can be constructed from scratch
by adding a feedback loop to the combinational components. Although asynchronous
circuits potentially can run faster and consume less power, designing an asynchronous
circuit is difficult because of the potential races and oscillations. The design procedure
is totally different from the synchronous methodology, and we should avoid using normal
EDA software to synthesize asynchronous circuits. Since this book focuses on RT-level
synthesis, we do not discuss this topic in detail. The following example illustrates the
potential danger of using the normal synthesis procedure to construct an asynchronous
circuit.

Consider the D latch discussed in Section 8.1.2. We can easily translate the truth table
into VHDL code, as shown in Listing 8.1.

Listing 8.1 D latch from scratch

library ieee;
use ieee.std_logic_1164. all;
entity dlatch is
port (
5 c: in std_logic;
d: in std_logic;
q: out std_logic
)3
end dlatch;
10
architecture demo_arch of dlatch is
signal q_latch: std_logic;
begin
process (c,d,q_latch)
15 begin
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Figure 8.6 Synthesizing a D latch from scratch.

if (¢=’1’) then
q.latch <= d;
else
g_latch <= g_latch;
20 end if;
end process;
q <= q_latch;
end demo_arch;

Synthesis software can normally recognize that this code is for a D latch and should infer
a predesigned D-latch cell from the cell library accordingly. For demonstration purposes,
let us try to use simple gates to synthesize it from scratch. We can derive the conceptual
diagram and expand it to a gate-level diagram following the procedure to synthesize a
combinational circuit, as shown in Figure 8.6(a) and (b).

At first glance, the circuit is just like a combinational circuit except that the output is
looped back as an input. However, there is a serious timing problem for this circuit. Let us
assume that all gates have a propagation delay of T" and the wire delays are negligible, and
that c, d and q are ’1” initially. Now consider what happens when ¢ changes from 1’ to ’0’
at time tp. According to the function table, we expect that q should be latched to the value
of d and thus should remain ’1’. Following the circuit diagram, we can derive a detailed
timing diagram, as shown in Figure 8.6(c). The events are summarized below.
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e At tg, c changesto ’0’.

e At (after a delay of T'), dc and cn change.

At t, (after a delay of 2T), qcn changes (due to cn) and q changes (due to dc).

At t3 (after a delay of 3T), q changes (due to qcn) and qen changes (due to ).

Clearly, the output q continues to oscillate at a period of 27" and the circuit is unstable.
Recall that in Section 6.5.4, we discussed delay-sensitive circuit, in which the correctness

of circuit function depends on the delays of various components. Asynchronous circuits

belong to this category and thus are not suitable for synthesis. If we really wish to implement

an asynchronous circuit from scratch, it is better to do it manually using a schematic rather

than relying on synthesis.

8.4 INFERENCE OF BASIC MEMORY ELEMENTS

All device libraries have predesigned memory cells. Internally, these cells are designed as
asynchronous sequential circuits. They are carefully crafted and thoroughly analyzed and
verified. These cells are treated as “leaf units,” and no further synthesis or optimization will
be performed. The previous section has shown the danger of deriving a memory element
from scratch. To avoid this, we must express our intent clearly and precisely in VHDL code
so that these predesigned latches or FFs can be inferred. While we should be innovative
about the design, it is a good idea to follow the standard VHDL description of latch and FF
to avoid any unwanted surprise.

8.4.1 Dlatch

The function table of a D latch was shown in Figure 8.1(a). The corresponding VHDL code
is shown in Listing 8.2. It is the standard description. Synthesis software should infer a
predesigned D latch from the device library.

Listing 8.2 D latch

library ieee;
use ieee.std_logic_1164.all;
entity dlatch is
port(
s c: in std_logic;
d: in std_logic;
q: out std_logic
);
end dlatch;
10
architecture arch of dlatch is
begin
process (c,d)
begin
15 if (c=°1?) then
q <= d;
end if;
end process;
end arch;
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In this code, the value of d is passed to g when ¢ is ’1°. Note that there is no else branch
in the if statement. According to the VHDL definition, q will keep its previous value when
cisnot’l’ (i.e., c is ’0’). This is just what we want for the D latch. Alternatively, we can
explicitly include the else branch to express that q has its previous value when c is '0’, as in
the VHDL code in Listing 8.1. The code is not as compact or clear and is not recommended.

842 DFF

Positive-edge-triggered D FF The function table of a positive-edge-triggered D FF
was shown in Figure 8.1(b). The corresponding VHDL code is shown in Listing 8.3. This
is a standard description and should be recognized by all synthesis software. A predesigned
D FF should be inferred accordingly.

Listing 8.3 DFF

library ieee;
use ieee.std_logic_1164.all;
entity dff is
port(
5 clk: in std_logic;
d: in std_logic;
q: out std_logic
);
end d4ff;
1]
architecture arch of dff is
begin
process (clk)
begin
15 if (clk’event and clk=’1’) then
q <= d;
end if;
end process;
end arch;

The key expression to infer the D FF is the Boolean expression
clk’event and clk=’1’

The ’event term is a VHDL atiribute returning true when there is a change in signal
value (i.e., an event). Thus, when clk’event is true, it means that the value of clk has
changed. When the c1k="1" expression is true, it means that the new value of clkis ’1°.
‘When both expressions are true, it indicates that the c1k signal changes to ’1°, which is
the rising edge of the clk signal.

The if statement states that at the rising of the c1k signal, q gets the value of d. Since
there is no else branch, it means that q keeps its previous value otherwise. Thus, the
VHDL code accurately describes the function of a D FF. Note that the d signal is not in
the sensitivity list. It is reasonable since the output only responds to ¢1k and does nothing
when d changes its value.

We can also add an extra condition clk’last_value=’0’ to the Boolean expression:

clk’event and clk=’1’ and clk’last_value=’0’

to ensure that the transition is from >0’ to 1’ rather than from a metavalue to ’1’. This
may affect simulation but has no impact on synthesis. The above Boolean expression is
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defined as a function, rising_edge(), in the IEEE std_logic.1164 package. We can
rewrite the previous VHDL code as

architecture arch of dff is
begin
process (clk)
begin
if rising_edge(clk) then
q <= d;
end if;
end process;
end arch;

We can also use wait statement inside the process to infer the D FF:

architecture wait_arch of dff is
begin
process
begin
wait until clk’event and clk=’1’;
q <=d ;
end process ;
end wait_arch;

However, since the sensitivity list makes the code easier to understand, we do not use this
format in this book.
Theoretically, a then branch can be added to the code:

if (clk’event and clk=’1’) then
qQ <= d;

else
q <= ;1);

end if;

Although it is syntactically correct, it is meaningless for synthesis purpose.

Negative-edge-triggered DFF A negative-edge-triggered D FF is similar to a positive-
edge-triggered D FF except that the input data is sampled at the falling edge of the clock.
To specify the falling edge, we must revise the Boolean expression of the if statement:

if (clk’event and clk=’0’) then
We can also use the Boolean expression
clk’event and clk=’0’ and clk’last_value=’'1’

to ensure the ’1° to ’ 0’ transition or use the shorthand function, falling_edge (), defined
in the IEEE std_logic-1164 package.

D FF with asynchronous reset A D FF may contain an asynchronous reset signal
that clears the D FF to *0’. The symbol and function table are shown in Figure 8.1(d). Note
that the reset operation does not depend on the level or edge of the clock signal. Actually,
we can consider that it has a higher priority than the clock-controlled operation. The VHDL
code is shown in Listing 8.4.
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Listing 8.4 D FF with asynchronous reset

library iess;
use ieee.std_logic_1164. all;
entity dffr is
port(
5 clk: in std_logic;
reset: in std_logic;
d: in std_logic;
q: out std_logic
b
wend dffr;

architecture arch of dffr is
begin
process (clk,reset)
15 begin
if (reset=’1’) then
q <=:o);
elsif (clk’event and clk='1’) then
q <= d;
0 end if;
end process;
end arch;

Both the reset and c1k signals are in the sensitivity list since either can invoke the process.
When the process is invoked, it first checks the reset signal. Ifitis >1°, the D FF is cleared
to >0°’. Otherwise, the process continues checking the rising-edge condition, as in a regular
D FF. Note that there is no else branch.

Since the reset operation is independent of the clock, it cannot be synthesized from a
regular D FF. A D FF with asynchronous reset is another leaf unit. The synthesis software
recognizes this format and should infer the desired D FF cell from the device library.

Asynchronous reset, as its name implies, is not synchronized by the clock signal and
thus should not be used in normal synchronous operation. The major use of a reset signal is
to clear the memory elements and set the system to an initial state. Once the system enters
the initial state, it starts to operate synchronously and will never use the reset signal again.
In many digital systems, a short reset pulse is generated when the power is turned on.

Some D FFs may also have an asynchronous preset signal that sets the D FF to ’1’. The
VHDL code is shown in Listing 8.5.

Listing 8.5 D FF with asynchronous reset and preset

library ieece;
use ieee.std_logic_1164. all;
entity dffrp is
port(
s clk: in std_logic;
reset, preset: im std_logic;
d: in std_logic;
q: out std_logic
);
wend dffrp;

architecture arch of dffrp is
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begin
process (clk,reset ,preset)
15 begin
if (reset=’1’) then
q <=10"7;
elsif (preset=’'1’) then
q <= :1;;
2 elsif (clk’event and clk=’1’) then
q <= d;
end if;
end process;
end arch;

Since the asynchronous signal is normally used for system initialization, a single preset or
reset signal should be adequate most of the time.
8.4.3 Register

A register is a collection of a D FFs that is driven by the same clock and reset signals. The
VHDL code of an 8-bit register is shown in Listing 8.6.

Listing 8.6 Register

library ieee;
use ieee.std_logic_1164. all;
entity reg8 is
port(
5 clk: in std_logic;
reset: in std_logic;
d: in std_logic_vector (7 downto 0);
q: out std_logic_vector (7 downto 0)
)
wend reg8;

architecture arch of reg8 is
begin
process (clk,reset)
15 begin
if (reset=’1’) then
g <=(others=>’0");
elsif (clk’event and clk=’1’) then
q <= d;
PN end if;
end process;
end arch;

The code is similar to D FF except that the d input and the q output are now 8 bits wide.
We use the symbol of D FF for the register. The size of the register can be derived by
checking the bus width marks of the input and output connections.

8.44 RAM

Random access memory (RAM) can be considered as a collection of latches with special
interface circuits. It is used to provide massive storage. While technically it is possible



226 SEQUENTIAL CIRCUIT DESIGN: PRINCIPLE

to synthesize a RAM from scratch by assembling D-latch cells and control circuits, the
result is bulky and inefficient. Utilizing the device library’s predesigned RAM module,
whose memory cells are crafted and optimized at the transistor level, is a much better
alternative. Although the basic structure of RAMs is similar, their sizes, speeds, interfaces,
and timing characteristics vary widely, and thus it is not possible to derive a portable,
device-independent VHDL code to infer the desired RAM module. We normally need to
use explicit component instantiation statement for this task.

8.5 SIMPLE DESIGN EXAMPLES

The most effective way to derive a sequential circuit is to follow the block diagram in
Figure 8.5. We first identify and separate the memory elements and then derive the next-
state logic and output logic. After separating the memory elements, we are essentially
designing the combinational circuits, and all the schemes we learned earlier can be applied
accordingly. A clear separation between memory elements and combinational circuits is
essential for the synthesis of large, complex design and is helpful for the verification and
testing processes. Our VHDL code description follows this principle and we always use an
isolated VHDL segment to describe the memory elements.

Since identifying and separating the memory elements is the key in deriving a sequential
circuit, we utilize the following coding practice to emphasize the existence of the memory
elements:

o Use an individual VHDL code segment to infer memory elements. The segment

should be the standard description of a D FF or register.

o Use the suffix _reg to represent the output of a D FF or a register.

o Use the suffix _next to indicate the next value (the d input) of a D FF or a register.
We examine a few simple, representative sequential circuits in this section and study more
sophisticated examples in Chapter 9.

This coding practice may make the code appear to be somewhat cumbersome, especially
for a simple circuit. However, its long-term benefits far outweigh the inconvenience. The
alternative coding style, which mixes the memory elements and combinational circuit in
one VHDL segment, is discussed briefly in Section 8.7.

8.5.1 Other types of FFs

There are other types of FFs, such as D FF with an enable signal, JK FF and T FF. They were
popular when a digital system was constructed by SSI components because they may reduce
the number of IC chips on a printed circuit board. Since all these FFs can be synthesized
by a D FF, they are not used today. The following subsections show how to construct them
from a D FF,

D FF with enable Consider a D FF with an additional enable signal. The function table
is shown in Figure 8.7(a). Note that the enable signal, en, has an effect only at the rising
edge of the clock. This means that the signal is synchronized to the clock. At the rising
edge of the clock, the FF samples both en and d. If en is ’0?, which means that the FF is
not enabled, FF keeps its previous value. On the other hand, if en is *1?, the FF is enabled
and functions as a regular D FF. The VHDL code is shown in Listing 8.7.
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Figure 8.7 D FF with an enable signal.

Listing 8.7 D FF with an enable signal

library ieee;
use ieee.std_logic_1164.all;
entity dff_en is

port(

5 clk: in std_logic;
reset: in std_logic;
en: in std_logic;
d: in std_logic;

q: out std_logic

10 )

end dff_en;

architecture two_seg_arch of dff_en is
signal q_reg: std_logic;

15 signal q_next: std_logic;
begin
— D FF
process (clk,reset)
begin
2 if (reset=’1’) then

q-reg <= ’0°’;
elsif (clk’event and clk=’1’) then
q.reg <= q_next;
end if;
2 end process;
—— next—state logic
g_next <= d when en =’1’ else
q.reg;
—— output logic
30 q <= q_reg;
end two_seg_arch;

The VHDL code follows the basic sequential block diagram and is divided into three
segments: a memory element, next-state logic and output logic. The memory element is
a regular D FF. The next-state logic is implemented by a conditional signal assignment
statement. The q-next signal can be either d or the original content of the FF, q.reg,
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Figure 8.8 TFF.

depending on the value of en. At the rising edge of the clock, gnext will be sampled and
stored into the memory element. The output logic is simply a wire that connects the output

of the register to the q port.

The conceptual diagram is shown in Figure 8.7(b). To obtain the diagram, we first
separate and derive the memory element, and then derive the combinational circuit using

the procedure described in Chapter 4.

TFF ATFF has a control signal, t, which specifies whether the FF to invert (i.e., toggle)
its content. The function table of a T FF is shown in Figure 8.8(a). Note that the t signal is
sampled at the rising edge of the clock. The VHDL code is shown in Listing 8.8, and the

conceptual diagram is shown in Figure 8.8(b).

Listing 8.8 TFF

q_reg

library ieee;
use ieee.std_logic_1164.all;
entity tff is
port ('
5 clk: in std_logic;
reset: in std_logic;
t: in std_logic;
q: out std_logic
)3
wend tff;

architecture two_seg_arch of tff is
signal q_reg: std_logic;
signal gq_next: std_logic;

1s begin
— D FF
process (clk,reset)
begin
if (reset='1’) then
20 q_reg <= ’'07;

elsif (clk’event and clk=’1’) then
q_reg <= qg_next;
end if;
end process;
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Figure 8.9 4-bit free-running shift-right register.

25 — next—state logic
q.next <= g_reg when t='0’ else
not(q_reg);
—— output logic
q <= q_reg;
» end two_seg_arch;

8.5.2 Shift register
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A shift register shifts the content of the register left or right 1 bit in each clock cycle. One
major application of a shifter register is to send parallel data through a serial line. In the
transmitting end, a data word is first loaded to register in parallel and is then shifted out 1 bit
at a time. In the receiving end, the data word is shifted in 1 bit at a time and reassembled.

Free-running shift-right register A free-running shift register performs the shifting
operation continuously. It has no other control signals. A 4-bit free-running shift-right
register is shown in Figure 8.9. We can rearrange the FFs and align them vertically, as
in Figure 8.10(a). After grouping the four FFs together and treating them as a single
memory block, we transform the circuit into the basic sequential circuit block diagram in
Figure 8.10(b). The VHDL code can be derived according to the block diagram, as in

Listing 8.9.

Listing 8.9 Free-running shift-right register

library ieee;
use ieee.std_logic_1164.all;
entity shift_right_register is
port(
s clk, reset: im std_logic;
d: in std_logic;
q: out std_logic
)
end shift_right_register;
10
architecture two_seg_arch of shift_right_register is
signal r_reg: std_logic_vector (3 downto 0);
signal r_next: std_logic_vector (3 downto 0);
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begin
15 — register
process (clk,reset)
begin
if (reset=’1’) then
r_reg <= (others=>’0’);
20 elsif (clk’event and clk='1’) then
r.reg <= r_next;
end if;
end process;
—— next—state logic (shift right 1 bit)
25 r_next <= d & r_reg(3 downto 1);
—— output
q <= r_reg(0);
end two_seg_arch;

The VHDL code follows the basic sequential circuit block diagram, and the key is the
code for the next-state logic. The statement

r_next <= d & r_reg(3 downto 1);

indicates that the original register content is shifted to the right 1 bit and a new bit, d, is
inserted to the left. The memory element part of the code is the standard description of a
4-bit register.

Universal shift register A universal shift register can load a parallel data word and
perform shifting in either direction. There are four operations: load, shift right, shift left
and pause. A control signal, ctrl, specifies the desired operation. The VHDL code is
shown in Listing 8.10. Note that the d (0) input and the q(3) output are used as serial-in
and serial-out for the shift-left operation, and the d(3) input and the q(0) output are used
as serial-in and serial-out for the shift-right operation. The block diagram is shown in
Figure 8.11.

Listing 8.10 Universal shift register

library ieee;
use ieee.std_logic_1164.all;
entity shift_register is
port(
s clk, reset: in std_logic;
ctrl: in std_logic_vector (1 downto 0);
d: in std_logic_vector (3 downto 0);
q: out std_logic_vector (3 downto 0)
);

wend shift_register;

architecture two_seg_arch of shift_register is
signal r_reg: std_logic_vector (3 downto 0);
signal r_next: std_logic_vector(3 downto 0);
1s begin
— register
process (clk,reset)
begin
if (reset=’1’) then
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20 r_.reg <= (others=>70’);
elsif (clk’event and clk=’1’) then
r_reg <= r_next;
end if;
end process;
2 —— next—state logic
with ctrl select
r_next <=
r_reg when "00", —pause
r_reg(2 downto 0) & d(0) when "01", —shift left;
» d(3) & r_reg(3 downto 1) when "10", —shift right;
d when others; — load

— output logic
q <= r_reg;
end two_seg_arch;

8.5.3 Arbitrary-sequence counter

A sequential counter circulates a predefined sequence of states. The next-state logic de-
termines the patterns in the sequence. For example, if we need a counter to cycle through
the sequence of "000", "011", "110", "101" and "111", we can construct a combinational
circuit with a function table that specifies the desired patterns, as in Table 8.1.

The VHDL code is shown in Listing 8.11. Again, the code follows the basic block
diagram of Figure 8.5. A conditional signal assignment statement is used to implement the
function table.

Listing 8.11  Arbitrary-sequence counter

library ieee;
use ieee.std_logic.1164.all;
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Table 8.1 Patterns of an arbitrary-sequence counter

Input pattern Next pattern

000 011
011 110
110 101
101 11
111 000

entity arbi_seq_counter4 is
port(
5 clk, reset: im std_logic;
q: out std_logic_vector (2 downto 0)
);

end arbi_seq_counter4;

o architecture two_seg_arch of arbi_seq._counter4 is
signal r_reg: std_logic_vector (2 downto 0);
signal r_next: std_logic_vector (2 downto 0);

begin
—— register
Is process (clk ,reset)
begin '
if (reset='1’) then
r_reg <= (others=>’0");
elsif (clk’event and clk=’1’) then
20 r_reg <= r_next;
end if;
end process;
— next—state logic
r_next <= "011" when r_reg="000" else
2 "110" when r_reg="011" else
"101" when r_reg="110" else
"111" when r_reg="101" else
"000"; — r_reg="111"
— output logic
30 q <= r_reg;
end two_seg_arch;

8.5.4 Binary counter
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A binary counter circulates through a sequence that resembles the unsigned binary number.
For example, a 3-bit binary counter cycles through "000", "001", "010", "011", "100",

"101","110" and "111", and then repeats.

Free-running binary counter An n-bit binary counter has a register with n FFs, and
its output is interpreted as an unsigned integer. A free-running binary counter increments
the content of the register every clock cycle, counting from O to 2" — 1 and then repeating.
In addition to the register output, we assume that there is a status signal, max_pulse, which
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is asserted when the counter is in the all-one state. The VHDL code of a 4-bit binary counter
is shown in Listing 8.12.

Listing 8.12 Free-running binary counter

library ieee;

use ieee.std_logic_1164. all;

use ieee.numeric_std. all;

entity binary_counter4_pulse is

5 port(
clk, reset: in std_logic;
max_pulse: out std_logic;
q: out std_logic_vector (3 downto 0)

);

wend binary_counter4_pulse;

architecture two_seg_arch of binary_counter4_pulse is
signal r_reg: unsigned(3 downto 0);
signal r_next: unsigned (3 downto 0);

is begin
— register
process (clk,reset)
begin
if (reset=’1’) then
2 r_reg <= (others=>’0’);

elsif (clk’event and clk='1’) then
r_reg <= r_next;
end if;
end process;
] — next—state logic (incrementor)
r_next <= r_reg + 1;
—— output logic
q <= std_logic_vector(r_reg);
max_pulse <= ’1’ when r_reg="1111" else
30 )0’;

end two_seg_arch;

The next-state logic consists of an incrementor, which calculates the new value for the
next state of the register. Note that the definition requests the 4-bit binary counter counts
in a wrapped-around fashion; i.e., when the counter reaches the maximal number, "1111",
it should return to "0000" and start over again. It seems that we should replace statement

r_next <= r_reg + 1;
with

r_next <= (r_reg + 1) mod 16;
However, in the IEEE numeric_std package, the definition of + on the unsigned data type
is modeled after a hardware adder, which behaves like wrapping around when the addition
result exceeds the range. Thus, the original statement is fine. While correct, using the mod
operator is redundant. It may confuse some synthesis software since the mod operator

cannot be synthesized. The output logic uses a conditional signal assignment statement to
implement the desired pulse. The conceptual diagram is shown in Figure 8.12.
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Figure 8.12 Conceptual diagram of a free-running binary counter.

Table 8.2 Function table of a featured binary counter

syn.clr load en q* Operation

1 - -~ 00---00 synchronous clear
0 1 - d parallel load

0 0 1 q+1 count

0 0 q pause

max_pulse

Featured binary counter Rather than leaving the counter in the free-running mode,
we can exercise more control. The function table in Table 8.2 shows a binary counter with
additional features. In the counter, we can synchronously clear the counter to 0, load a
specific value, and enable or pause the counting. The VHDL code is shown in Listing 8.13.

Listing 8.13 Featured binary counter

library ieee;
use ieee.std_logic_1164.all;
use ieee.numeric_std. all;
entity binary_counter4_feature is
5 port(
clk, reset: im std_logic;
syn_clr, en, load: in std_logic;
d: in std_logic_vector (3 downto 0);
q: out std_logic_vector(3 downto 0)
10 );

end binary_counter4_feature;

architecture two_seg_arch of binary_counter4_feature
signal r_reg: unsigned (3 downto 0);

15 signal r_next: unsigned(3 downto 0);
begin
—~— register
process (clk,reset)
begin
20 if (reset=’1’) then

r_reg <= (others=>’0?%);

elsif (clk’event and clk=’1’) then
r_reg <= r_next;

end if;

is
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25 end process;
— next—state logic
r_next <= (others=>’0’) when syn_clr=’1’ else
unsigned(d) when load=’1’ else
r_reg + 1 when en ='1’ else
30 r_reg;
— output logic
q <= std_logic_vector(r_reg);
end two_seg_arch;

8.5.5 Decade counter

Instead of utilizing all possible 2™ states of an n-bit binary counter, we sometime only want
the counter to circulate through a subset of the states. We define a mod-m counter as a
binary counter whose states circulate from O to m — 1 and then repeat. Let us consider the
design of a mod-10 counter, also known as a decade counter. The counter counts from 0
to 9 and then repeats. We need at least 4 bits ([log, 10]) to accommodate the 10 possible
states, and the output is 4 bits wide. The VHDL description is shown in Listing 8.14.

Listing 8.14 Decade counter

_ library ieee;
use ieee.std_logic_1164.all;
use ieee.numeric_std. all;
entity mod10_counter is
s port(
clk, reset: im std_logic;
q: out std_logic_vector (3 downto 0)
)
end modi10_counter;
10
architecture two_seg_arch of modi10_counter is
constant TEN: integer := 10;
signal r_reg: unsigned(3 downto 0);
signal r_next: unsigned (3 downto 0);

is begin
— register
process (clk ,reset)
begin
if (reset=’1’) then
» r_reg <= (others=>’0’);
elsif (clk’event and clk=’1’) then
r.reg <= r_next;
end if;
end process;
25 — next—state logic

r_next <= (others=>’0’) when r_reg=(TEN-1) else
r_reg + 1;
— output logic
q <= std_logic_vector(r_reg);
wend two_seg_arch;
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The key to this design is the next-state logic. When the counter reaches 9, as indicated
by the condition r_reg=(TEN-1), the next value will be 0. Otherwise, the next value will
be incremented by 1. The conceptual diagram is shown in Figure 8.13.

We can rewrite the next-state logic as

r_next <= (r_reg + 1) mod 10;

Although the code is compact and clean, it cannot be synthesized due to the complexity of
the mod operator.

8.5.6 Programmable mod-1m counter

We can easily modify the code of the previous decade counter to a mod-m counter for
any m. However, the counter counts a fixed, predefined sequence. In this example, we
design a “programmable” 4-bit mod-m counter, in which the value of m is specified by a
4-bit input signal, m, which is interpreted as an unsigned number. The range of m is from
"0010" to "1111", and thus the counter can be programmed as a mod-2, mod-3, ..., or
mod-15 counter.

The maximal number in the counting sequence of a mod-m counter is m — 1. Thus,
when the counter reaches m — 1, the next state should be 0. Our first design is based on this
observation. The VHDL code is similar to the decade counter except that we need to replace
the r_reg=(TEN-1) condition of the next-state logic withr_reg=(unsigned(m)-1). The
code is shown in Listing 8.15.

Listing 8.15 Initial description of a programmable mod-m counter

library ieee;

use ieee.std_logic_1164.all;

use ieee.numeric_std. all;

entity prog_counter is

5 port(
clk, reset: im std_logic;
m: in std_logic_vector (3 downto 0);
q: out std_logic_vector (3 downto 0)

)

v end prog_counter;

architecture two_seg_clear_arch of prog.counter is



238 SEQUENTIAL CIRCUIT DESIGN: PRINCIPLE

“ —{> clk
reset

.1_]_

clk
reset

(a) Block diagram of initial design

r_reg q

+

clk
reset

(b) Block diagram of more efficient design

Figure 8.14 Block diagrams of a programmable mod-m counter.

signal r_reg: unsigned(3 downto 0);
signal r_next: unsigned(3 downto 0);

1s begin
— register
process (clk,reset)
begin
if (reset=’1’) then
»n r_reg <= (others=>’0’);

elsif (clk’event and clk=’1’) then
r_reg <= r_next;
end if;
end process;
2 — next—state logic
r_next <= (others=>’0’) when r_reg=(unsigned(m)-1) else
r.reg + 1;
—— output logic
q <= std_logic_vector(r_reg);
w end two_seg_clear_arch;

The conceptual diagram of this code is shown in Figure 8.14(a). The next-state logic
consists of an incrementor, a decrementor and a comparator. There is an opportunity for
sharing. Note that the Boolean expression

r_reg=(unsigned(m)-1)
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can also be written as
(r_reg+l)=unsigned(m)

Since the r_req+1 operation is needed for incrementing operation, we can use it in com-
parison and eliminate the decrementor. The revised VHDL code is shown in Listing 8.16.

Listing 8.16 More efficient description of a programmable mod-m counter

architecture two_seg_effi_arch of prog_counter is
signal r_reg: unsigned(3 downto 0);
signal r_next, r_inc: unsigned(3 downto 0);
begin
5 — register
process (clk,reset)
begin
if (reset=’1’) then
r_reg <= (others=>’0");
10 elsif (clk’event and clk=’1’) then
" r.reg <= r_next;
end if;
end process;
—— next—state logic

is r_inc <= r_reg + 1;
r_next <= (others=>’0’) when r_inc=unsigned(m) else
r_inc;

—— output logic
q <= std_logic_vector(r_reg);
nend two_seg_effi_arch;

Note that we employ a separate statement for the shared expression:
r_inc <= r_reg + 1;

and use the r_inc signal for both comparison and incrementing. The diagram of the revised
code is shown in Figure 8.14(b).

8.6 TIMING ANALYSIS OF A SYNCHRONOUS SEQUENTIAL CIRCUIT

The timing of a combinational circuit is characterized primarily by the propagation de-
lay, which is the time interval required to generate a stable output response from an input
change. The timing characteristic of a sequential circuit is different because of the con-
straints imposed by memory elements. The major timing parameter in a sequential circuit
is the maximal clock rate, which embeds the effect of the propagation delay of the combina-
tion circuit, the clock-to-q delay of the register and the setup time constraint of the register.
Other timing issues include the condition to avoid hold time violation and I/O-related timing
parameters.

8.6.1 Synchronized versus unsynchronized input

Satisfying the setup and hold time constraints is the most crucial task in designing a sequen-
tial circuit. One motivation behind synchronous design methodology is to group all FFs
together and control them with the same clock signal. Instead of considering the constraints
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of tens or hundreds of FFs, we can treat them as one memory component and deal with the
timing constraint of a single register.

The conceptual diagram of Figure 8.5 can be considered as a simplified block diagram for
all synchronous sequential circuits. In this diagram, FFs and registers are grouped together
as the state register. The input of this register is the state next signal. It is generated
by next-state logic, which is a combinational logic with two inputs, including the external
input and the output of the state register, state_reg. To study the timing constraint of the
state register, we need to examine the impact of the two inputs of the next-state logic. Our
discussion considers the following effects:

o The effect of the state_reg signal.
o The effect of synchronized external input.
o The effect of unsynchronized external input.

Since the state_reg signal is the output of the state register, it is synchronized by the
same clock. A closed feedback loop is formed in the diagram through this signal. The timing
analysis of a synchronous sequential circuit focuses mainly on this loop and is discussed in
Section 8.6.2 . ’

A synchronized external input means that the generation of the input signal is controlled
by the same clock signal, possibly from a subsystem of the same design. The timing
analysis is somewhat similar to the closed-loop analysis describe above, and is discussed
in Section 8.6.5.

An unsynchronized external input means that the input signal is generated from an
external source or an independent subsystem. Since the system has no information about
the unsynchronized external input, it cannot prevent timing violations. For this kind of
input, we must use an additional synchronization circuit to synchronize the signal with the
system clock. This issue is be discussed in Chapter 16.

8.6.2 Setup time violation and maximal clock rate

In Figure 8.5, the output of the register is processed via next-state logic, whose output
becomes the new input to the register. To analyze the timing, we have to study the operation
of this closed feedback loop and examine the state_reg and state_next signals. The
state_reg signal is the output of the register, and it also serves as the input to the next-state
logic. The state_next signal is the input of the register, and it is also the output of the
next-state logic.

Maximal clock rate The timing diagram in Figure 8.15 shows the responses of the
state_reg and state_next signals during one clock cycle. At time ¢y, the clock changes
from ’0’ to ’1’. We assume that the state_next signal has stabilized and doesn’t change
within the setup and hold time periods. After the clock-to-q delay (i.e., T¢,), the register’s
output, state_reg, becomes available at time ¢, which is to 4+ T, Since state_reg
is the input of the next-state logic, the next-state logic responds accordingly. We define
the propagation delays of the fastest and slowest responses as Tyezt(min) 804 Trezt(maz)
respectively. In the timing diagram, the state_next signal changes at ¢;, which is ¢; +
Text(min)» and becomes stabilized at t3, which is £} + Thezi(maz). Attime ¢5, a new rising
clock edge arrives and the current clock cycle ends. The state_next is sampled at {5 and
the process repeats again. ts is determined by the period (7) of the clock signals, which is
to + 1.

Now let us examine the impact of the setup time constraint. The setup time constraint
indicates that the state_next signal must be stabilized at least Ty, before the next
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Figure 8.15 Timing analysis of a basic sequential circuit.

sampling edge at t5. This point is labeled t4 in the timing diagram. To satisfy the setup
time constraint, the state_next signal must be stabilized before t4. This requirement
translates into the condition

i3 < 14

From the timing diagram, we see that
t3 =10+ ch + Tnezt(maa:)

and
tg =15 — Tsetup =to+ T, — Tsetup

We can rewrite the inequality equation as
to + ch + Tnext(ma,:z:) <to+T.— Tsetup

which is simplified to
ch + Tnezt(mam) + Tsetup < T,

This shows the role of the clock period on a sequential circuit. To avoid setup time violation,
the minimal clock period must be

Tc(min) = ch + Tnezt(maz) + Tsetup

The clock period is the main parameter to characterize the timing and performance of a
sequential circuit. We commonly use the maximal clock rate or frequency, the reciprocal
of the minimal period, to describe the performance of a sequential circuit, as in a 500-MHz
counter or 2-GHz processor.
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Clock rate examples For a given technology, the T,y and Tyetup of @ D FF are obtained
from the data sheet. We can determine the maximal clock rate of a sequential circuit once the
propagation delay of the next-state logic is known. This information can only be determined
after synthesis and placement and routing. However, we can calculate and estimate the rate
of some simple examples.

Assume that we use the technology discussed in Section 6.2.6, and T, and Tty Of its
D FFcell are 1 and 0.5 ns respectively. The delay information of combinational components
can be obtained from Table 6.2. Let us first consider the free-running shift register of
Section 8.5.2. The next-state logic of the shift register only involves the routing of the input
and output signals. If we assume that the wiring delay is negligible, its propagation delay
is 0. The minimal clock period and maximal clock rate become

Tc(min) = ch + Tsetup =1.5ns

1 1
ch + Tsetup 1.5 ns

Clearly, this is the maximal clock rate that can be achieved with this particular technology.

The second example is an 8-bit free-running binary counter, similar to the 4-bit version of
Section 8.5.4. The next-state logic of this circuit is the incrementor, as shown in Figure 8.12.
If we choose the incrementor that is optimized for area, the clock rate for this 8-bit binary
counter is

= 666.7 MHz

fma.z: =

1 1
ch + TS_bit_inc(area) + Tsetup - 1 ns + 2-4 ns + 0.5 ns

fmoz = ~ 256.4 MHz

If we increase the size of the counter, a wider incrementor must be utilized, and the propa-
gation delay of the incrementor is increased accordingly. The clock rate of a 16-bit binary
counter is reduced to

1 1

= & 142.9 MHz
ch + TlS-bz't-mc(area) + Tsetup 1ns+5.5ns+0.5ns

fmaa: =

and the clock rate of a 32-bit counter is reduced to
1 _ 1
Teq + T32_bit_inc(a1'ea) + Tsetup 1ns+ 11.6 ns + 0.5 ns

f mazx = ~ 76.3 MHz

To increase the performance of a binary counter, we must reduce the value of T, +
Texi(maz) + Tsetup. Since Ty, and Tyetyp are determined by the intrinsic characteristics
of FFs, they cannot be altered unless we switch to a different device technology. The only
way to increase performance is to reduce the propagation delay of the incrementor. If we
replace the incrementors that are optimized for delay, the clock rates of the 8-, 16- and
32-bit binary counters are increased to

1 1
az = = =~ 333.3 MH
Fmas ch + TB_bit_inc(delay) + Taetup 1ns+1.5ns+0.5ns z
fmaz = - = - ~ 208.3 MHz
ne ch + TlG_bit_inc(delay) + Tsetup 1ns+3.3ns+0.5ns )
and
1 1
fmaz = ~ 111.1 MHz

ch + T32_bit_znc(delay) + Tsetup " lns +7.5ns + 0.5 ns

respectively.



TIMING ANALYSIS OF A SYNCHRONOUS SEQUENTIAL CIRCUIT 243

8.6.3 Hold time violation

The impact of the hold time constraint is somewhat different from the setup time constraint.
Hold time, T},14, is the time period that the input signal must be stabilized after the sampling
edge. In the timing diagram of Figure 8.15, it means that the state_next must be stable
between tg and ¢, which is £o + T o14. Note that the earliest time that state_next changes
is at time t2. To satisfy the hold time constraint, we must ensure that

th < t2
From the timing diagram, we see that
te=1tg+ ch + Tnea:t(mz'n)

and
th = to + Thota

The inequality becomes
to + Thota < to + ch + Tnext(mz'n)

which is simplified to:
Thoa < ch + Tnezt(min)

Thext(min) depends on the complexity of next-state logic. In some applications, such as
the shift register, the output of one FF is connected to the input of another FF, and the
propagation delay of the next-state logic is the wire delay, which can be close to 0. Thus,
in the worst-case scenario, the inequality becomes

Thold < ch

Note that both parameters are the intrinsic timing parameters of the FF, and the inequality
has nothing to do with the next-state logic. Manufacturers usually guarantee that their
devices satisfy this condition. Thus, we need not worry about the hold time constraint
unless the clock edge cannot arrive at all FFs at the same time. We discuss this issue in
Chapter 16.

8.6.4 Output-related timing considerations

The closed feedback diagram in Figure 8.5 is the core of a sequential system. In addition,
there are also external inputs and outputs. Let us first consider the output part of the circuit.
The output signal of a sequential circuit can be divided into the Moore-typed output (or just
Moore output) and Mealy-typed output (or just Mealy output). For Moore output, the output
signal is a function of system state (i.e., the output of the register) only. On the other hand,
for Mealy output, the output signal is a function of system state and the external input. The
two types of output can coexist, as shown in Figure 8.16. The main timing parameter for
both types of outputs is T,, the time required to obtain a valid output signal after the rising
edge of the clock. The value of T, is the summation of T, and Toypu: (the propagation
delay of the output logic); that is,

Teo = ch + Toutput

For Mealy output, there exists a path in which the input can affect the output directly. The
propagation delay from input to output is simply the combinational propagation delay of
output logic.
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Figure 8.17 Input timing of two synchronous subsystems.

8.6.5 Input-related timing considerations

In a large design, a system may contain several synchronous subsystems. Thus, it is possible
that an input comes from a subsystem that is controlled and synchronized by the same clock.
The block diagram of this situation is shown in Figure 8.17. Note that the two subsystems
are controlled by the same clock and thus are synchronous. At the rising edge of the clock,
the register of subsystem 1 samples a new input value. After Teo(system1), it new output,
which is the input for the next-state logic of subsystem 2, becomes available. At this point
the timing analysis is identical to that in Section 8.6.2. To avoid setup time violation, the
timing of the two circuits must satisfy the following condition:

Tco(systeml) + Tnezt(maw) + Tsetup <T.

Note that T',cxt(maz). the propagation delay of next-state logic, is somewhat different
from the calculation used in Section 8.6.2. The T,ezt(maz) here is the propagation delay
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from the external input to state_next, whereas Trezt(mas) Used in earlier minimal clock
period calculation in Section 8.6.2 is the propagation delay from the internal register out-
put (i.e., state_reg) to state_next. To be more accurate, we should separate the two
constraints. The constraint for the closed loop is

ch + Tnezt(mam of state_reg—to—state_next) + Tsetup < Tcl

and the constraint for the external input is

Tco(systeml) + Tnemt(mam of ext.anput—to—state_next) + Tset'u.p <Te

We usually determine the clock period based on the calculation of T,;. If T, turns out to
be greater than T, we normally redesign the 1/O buffer rather than slowing down the clock
rate of the entire system. For example, we can employ an extra input buffer for the external
input of subsystem 2. Although this approach delays the external input by one clock cycle,
it reduces the Teo(gystemi) 10 Teq in the second constraint.

8.7 ALTERNATIVE ONE-SEGMENT CODING STYLE

So far, all VHDL coding follows the basic block diagram of Figure 8.5 and separates the
memory elements from the rest of the logic. Alternatively, we can describe the memory
elements and the next-state logic in a single process segment. For a simple circuit, this
style appears to be more compact. However, it becomes involved and error-prone for more
complex circuits. In this section, we use some earlier examples to illustrate the one-segment
VHDL description and the problems associated with this style.

8.7.1 Examples of one-segment code

D FF with enable Consider the D FF with an enable signal in Listing 8.7. It can be
rewritten in one-segment style, as in Listing 8.17.

Listing 8.17 One-segment description of a D FF with enable

architecture one_seg_arch of dff_en is

begin
process (clk,reset)
begin

5 if (reset=’1’) then

q <=’07;
elsif (clk’event and clk=’'1’) then
if (en=’1’) then
q <= d;
10 end if;
end if;
end process;
end one_seg_arch;

The code is similar to a regular D FF except that there is an if statement inside the elsif
branch:
if (en=’1’) then
q <= d;
end if;
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The interpretation the code is that at the rising edge of c1k, if en is ’17, q gets the value
of the d input. Note that there is no else branch in the previous statement. It implies that
if enisnot °1’, g will keep its previous value, which should be the value of the register’s
output. Thus, the code correctly describes the function of the en signal. In the actual
implementation, “keep its previous value” is achieved by sampling the FF's output and
again stores the value back to the FF. This point is elaborated in the next example.

T FF Consider the T FF in Listing 8.8. It can be rewritten in one-segment style, as in
Listing 8.18.

Listing 8.18 One-segment description of a T FF

architecture one_seg_arch of tff is
signal g_reg: std_logic;

begin
process (clk, reset)
s begin
if reset=’1’ then
q_reg <= '07;
elsif (clk’event and clk=’1’) then.
if (t=’1?) then
10 g.reg <= not q_reg;
end if;
end if;
end process;
q <= q_reg;

s end one_seg_arch;

We use an internal signal, g_reg, to represent the content and the output of an FF. The
statement

q.reg <= not q_reg;

may appear strange at first glance. So let us examine it in more detail. The g-reg signal
on the right-hand side represents the output value of the FF, and the not g_reg expression

. forms the new value of q-reg. This value has no effect on the FF until the process is activated
and the clk’event and clk=’1’ condition is true, which specified the occurrence of
the rising edge of the clk signal. At this point the value is assigned to q.reg (actually,
stored into the FF named q_reg). Thus, the code correctly describes the desired function.
Note that if this statement is an isolated concurrent signal assignment statement, a closed
combinational feedback loop is formed, in which the output and input of an inverter are tied
together.

As in the previous example, the inner if statement has no else branch, and thus q_reg
will keep its previous value if the t="1’ condition is false. In actual implementation,
“keep its previous value” is achieved by sampling the FF’s output and storing the value back
to the FF. Thus, the more descriptive if statement can be written as

if (t='1°) then
q_reg <= not(q_reg);
else

q.reg <= q_reg;
end if;
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Featured binary counter Consider the featured binary counter in Listing 8.13

. We
can convert it into one-segment code, as in Listing 8.19.

Listing 8.19 One-segment description of a featured binary counter

architecture one_seg_arch of binary_counter4_feature

signal r_reg: unsigned(3 downto 0);
begin

is

— register & next—state logic
5 process (clk,reset)
begin
if (reset=’1’) then
r_reg <= (others=>’0’);
elsif (clk’event and clk=’1’) then
10 if syn_clr=’'1’ then
r_reg <= (others=>’07);
elsif load=’1’ then
r_reg <= unsigned(d);
elsif en =71’ then
15 r_reg <= r_reg + 1;
end if;
end if;
end process;
— output logic
2 q <= std_logic_vector(r_reg);
end one_seg_arch;

The key to this code is the incrementing part, which is done using the statement

r_reg <= r_reg + 1;

The interpretation of r_reg in this statement is similar to that in T FF except that the not
operation is replaced by incrementing.

Free-running binary counter Consider the 4-bit free-running binary counter in List-
ing 8.12. The first attempt to convert it to a single-segment style is shown in Listing 8.20.

Listing 8.20 Incorrect one-segment description of a free-running binary counter

architecture not_work_one_seg_glitch_arch

of binary_counter4_pulse is
signal r_reg: unsigned (3 downto 0);
begin
5 process (clk,reset)
begin
if (reset=’'1’) then
r_reg <= (others=>’07);
elsif (clk’event and clk=’1’) then
10 r_reg <= r_reg + 1;
if r_reg="1111" then
max_pulse <= ’17;
else
max_pulse <= ’07;
Is end if;
end if;
end process;



248 SEQUENTIAL CIRCUIT DESIGN: PRINCIPLE

Exls "
+1

> clk 1

reset 0 d  q}—— max_pulse

~ clk
=111 | reset

ck *
reset

Figure 8,18 Free-running binary counter with an unintended output buffer.

q <= std_logic_vector(r_reg);
end not_work_one_seg_glitch_arch;

The output logic does not function as we expected. Because the statement

if r_reg="1111" then
max_pulse <= ’17;
else
max_pulse <= ’0’;
end if;
isinsidethe clk’event and clk=’1’ branch, a 1-bitregisteris inferred for themax_pulse
signal. The register works as a buffer and delays the output by one clock cycle, and thus the
max_pulse signal will be asserted when r_reg="0000". The block diagram of this code

is shown in Figure 8.18.
To correct the problem, we have to move the output logic outside the process, as in

Listing 8.21.

Listing 8.21 Correct one-segment description of a free-running binary counter

architecture work_one_seg_glitch_arch
of binary.counter4_pulse is

signal r_reg: unsigned(3 downto 0Q);
begin
s process (clk,reset)
begin
if (reset=’1’) then
r_reg <= (others=>’0");
elsif (clk’event and clk=’1’) then
10 r_reg <= r_reg + 1;
end if;
end process;
q <= std_logic_vector(r_reg);
max_pulse <= ’1’ when r_reg="1111" else
15 073

end work_one_seg_glitch_arch;

Programmable counter Consider the programmable mod-m counter in Listing 8.16.
The first attempt to reconstruct the two_seg_effi_arch architecture in one-segment cod-

ing style is shown in Listing 8.22.
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Listing 8.22 Incorrect one-segment description of a programmable counter
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architecture not_work_one_arch of prog_counter is
signal r_reg: unsigned(3 downte 0);
begin
process (clk,reset)
s begin
if reset=’1’ then
r_reg <= (others=>’07);
elsif (clk’event and clk=’1’) then
r_reg <= r_reg+i;

10 if (r_reg=unsigned(m)) then
r_reg<= (others=>’0’);
end if;
end if;
end process;
15 q <= std_logic_vector(r_reg);

end not_work_one_arch;

The code does not work as specified. Recall that a signal will not be updated until the
end of the process. Thus, r_reg is updated to r_reg+1 in the end. When the comparison
r_reg=unsigned(m) is performed, the old value of r_reg is used. Because the correct
r_reg value is late for one clock, the counter counts one extra value. The code actually

specified a mod-(m + 1) counter instead.

To correct the problem, we must move the incrementing operation outside the process
so that it can be performed concurrently with the process. The modified VHDL code is

shown in Listing 8.23.

Listing 8.23 Correct one-segment description of a programmable counter

architecture work_one_arch of prog_counter is
signal r_reg: unsigned(3 downto 0);
signal r_inc: unsigned(3 downto 0);
begin
5 process (clk ,reset)
begin
if reset='1’ then
r_reg <= (others=>’0’);
elsif (clk’event and clk=’1’) then

10 if (r_inc=unsigned(m)) then
r_reg <= (others=>’0’);
else
r_reg <= r_inc;
end if;
15 end if;

end process;

r_inc <= r_reg + 1;

q <= std_logic_vector{(r_reg);
end work_one_arch;




250 SEQUENTIAL CIRCUIT DESIGN: PRINCIPLE

8.7.2 Summary

When we combine the memory elements and next-state logic in the same process, it is
much harder to “visualize” the circuit and to map the VHDL statements into hardware
components. This style may make code more compact for a few simple circuits, as in the
first three examples. However, when a slightly more involved feature is needed, as the
max_pulse output or the incrementor sharing of the last two examples, the one-segment
style makes the code difficult to understand and error-prone. Although we can correct
the problems, the resulting code contains extra statements and is far worse than the codes
in Section 8.5. Furthermore, since the combinational logic and memory elements are
mixed in the same process, it is more difficult to perform optimization and to fine-tune
the combinational circuit. In summary, although the two-segment code may occasionally
appear cumbersome, its benefits far outweigh the inconvenience, and we generally use this
style in this book.

8.8 USE OF VARIABLES IN SEQUENTIAL CIRCUIT DESCRIPTION

We have learned how to infer an FF or a register from a signal. It is done by using the
clk’event and clk=’1’ condition to indicate the rising edge of the clock signal. Any
signal assigned under this condition is required to keep its previous value, and thus an FF
or a register is inferred accordingly.

A variable can also be assigned under the clk’event and clk=’1’ condition, but its
implication is different because a variable is local to the process and its value is not needed
outside the process. If a variable is assigned a value before it is used, it will get a value
every time when the process is invoked and there is no need to keep its previous value.
Thus, no memory element is inferred. On the other hand, if a variable is used before it is
assigned a value, it will use the value from the previous process execution. The variable
has to memorize the value between the process invocations, and thus an FF or a register
will be inferred.

Since using a variable to infer memory is more error-prone, we generally prefer to use
a signal for this task. The major use of variables is to obtain an intermediate value inside
the clk’event and clk=’1’ branch without introducing an unintended register. This
can best be explained by an example. Let us consider a simple circuit that performs an
operation a and b and stores the result into an FF at the rising edge of the clock. We use
three outputs to illustrate the effect of different coding attempts. The VHDL code is shown
in Listing 8.24.

Listing 8.24 Using a variable to infer an FF

library ieee;

use ieee.std_logic_1164.all;

entity varaible_ff_demo is
port(

5 a,b,clk: in std_logic;
q1,q2,93: out std_logic

)

end varaible_ff_demo;

w architecture arch of varaible_ff_demo is
signal tmp_sigl: std_logic;
begin
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— attempt 1
process (clk)
15 begin
if (clk’event and clk=’1’) then
tmp_sigl <= a and b;
ql <= tmp_sigl;
end if;
0 end process;
—— attempt 2
process (clk)
variable tmp_var2: std_logic;

begin
2 if (clk’event and clk=’1’) then
tmp_var2 := a and b;
q2 <= tmp_var2;
end if;
end process;
30 — attempt 3

process (clk)

variable tmp_var3: std_logic;
begin

if (clkx’event and clk=’1’) then

35 q3 <= tmp._var3;
tmp_var3 := a and b;

end if;

end process;
end arch;

In the first attempt, we try to use the tmp_sig1 signal for the temporary result. However,
since the tmp_sigl signal is inside the clk’event and clk=’1’ branch, an unintended
D FF is inferred. The two statements

tmp_sigl <= a and b;
ql <= tmp_sigl;

are interpreted as follows. At the rising edge of the clk signal, the value of a and b will
be sampled and stored into an FF named tmp_sig1, and the old value (not current value of
a and b) from the tmp.sigt signal will be stored into an FF named q1. The diagram is
shown in Figure 8.19(a).

The valueof a and b is delayed by the unintended buffer, and thus this description fails
to meet the specification. Since both statements are signal assignment statements, we will
obtain the same result if we switch the order of the two statements.

The second attempt uses a variable, tmp_var2, for the temporary result and the statements
become

tmp_var2 := a and b;
Q2 <= tmp_var2;

Note that the tmp._var?2 variable is first assigned a value and then used in the next statement,
Thus, no memory element is inferred and the circuit meets the specification. The diagram
is shown in Figure 8.19(b).

The third attempt uses a variable, tmp_var3, for the temporary result. It is similar to the
second process except that the order of the two statements is reversed:

q3 <= tmp.var3;
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Figure 8.19 Register inference with a variable.

tmp_var3 := a and b;

In this code, the tmp_var3 variable is first used before it is assigned a value. According to
the VHDL definition, the value of tmp_var3 from the previous process invocation will be
used. An FF will be inferred to store the previous value. Thus, the circuit described by the
third attempt is the same as that of the first attempt, which contains an unwanted buffer.

We can use a variable to overcome the problem of the one-segment programmable mod-
m counter in Listing 8.22. The revised code is shown in Listing 8.25.

Listing 8.25 Variable description of a programmable counter

architecture variable_arch of prog_counter is
signal r_reg: unsigned(3 downto 0);
begin
process (clk,reset)
s variable g_tmp: unsigned(3 downto 0);
begin
if reset=’1’ then
r_reg <= (others=>’0’);
elsif (clk’event and clk=’1’) then
10 q.tmp := r_reg + 1;
if (q_tmp=unsigned(m)) then
r_reg <= (others=>’0’);
else
r_reg <= q_tmp;
15 end if;
end if;
end process;
q <= std_logic_vector(r_reg);
end variable_arch;

Instead of using the r_reg signal, we create a variable, q.tmp, to store the intermediate
result of the incrementing operation. Unlike the signal assignment, the variable assignment
takes effect immediately, and thus the code functions as intended.
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8.9 SYNTHESIS OF SEQUENTIAL CIRCUITS

In Chapter 6, we examined the synthesis procedure for a combinational circuit. The syn-
thesis of a sequential circuit is identical to this procedure but has two extra steps:

1. Identify and separate the memory elements from the circuit.
2. Select the proper leaf cells from the device library to realize the memory elements.
3. Synthesize the remaining combinational circuit.

If we follow the recommended coding style, the memory elements are specified in individ-
ual VHDL segments and thus can be easily inferred and properly instantiated by synthesis
software. Once this is done, the remaining process is identical to the synthesis of a combi-
national circuit.

While synthesizing a combinational circuit, we can include a timing constraint to specify
the desired maximal propagation delay, and the synthesis software will try to obtain a circuit
to meet this constraint. For a sequential circuit, we can specify the desired maximal clock
rate. In a synchronous design, this constraint can easily be translated into the maximal
propagation delay of the combinational next-state logic, as indicated by the minimal clock
period equation. Thus, all the optimization schemes used in combinational circuits can also
be applied to sequential circuit synthesis.

In summary, when we design and code a sequential circuit in a disciplined way, synthe-
sizing it is just like the synthesis of a combinational circuit. We can apply the analysis and
optimization schemes developed for combinational circuits to sequential circuit design.

8.10 SYNTHESIS GUIDELINES

Strictly follow the synchronous design methodology; i.e., all registers in a system
should be synchronized by a common global clock signal.

Isolate the memory components from the VHDL description and code them in a
separate segment. One-segment coding style is not advisable.

e The memory components should be coded clearly so that a predesigned cell can be
inferred from the device library.

Avoid synthesizing a memory component from scratch.

¢ Asynchronous reset, if used, should be only for system initialization. It should not
be used to clear the registers during regular operation.

e Unless there is a compelling reason, a variable should not be used to infer a memory
component,

8.11 BIBLIOGRAPHIC NOTES

Design and analysis of intermediate-sized synchronous sequential circuits are covered by
standard digital systems texts, such as Digital Design Principles and Practices by J. F. Wak-
erly and Contemporary Logic Design by R. H. Katz. The former also has a section on the
derivation and analysis of asynchronous sequential circuits.
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Problems

8.1 Repeat the timing analysis of Section 8.3 for the circuit shown in Figure 8.6 with the
following assumptions and examine the q output.

o The propagation delay of the inverter is 7" and the propagation delays of and and or
gates are 27

¢ The propagation delay of the inverter is 27" and the propagation delays of and and or
gates are 7',

8.2 The SR latch is defined in the left table below. Some device library does not have an
SR-latch cell. Instead of synthesizing it from scratch using combinational gates, we want
to do this by using a D latch. Derive the VHDL code for this design. The code should
contain a standard VHDL description to infer a D latch and a combinational segment that
maps the s and r signals to the d and ¢ ports of the D latch to achieve the desired function.

i k ck ¢
s r qt - - 0 q
0 0 q - - 1 q
o 1 0 0 o f g
10 1 0 (O S
{ { not 1 0 f 1
allowed 1 1 I q
SR latch JK FF

8.3 A JK FF is defined as in the right table above. Use a D FF and a combinational
circuit to design the circuit. Derive the VHDL code and draw the conceptual diagram for
this circuit.

8.4 If wereplace the D FFs of the free-running shift register of Section 8.5.2 with D latches
and connect the external clock signal to the ¢ ports of all D latches, discuss what will happen
to the circuit.

8.5 Expand the design of the universal shift register of Section 8.5.2 to include rotate-
right and rotate-left operations. To accommodate the revision, the ctrl signal has to be
extended to 3 bits. Derive the VHDL code for this circuit.

8.6 Consider an 8-bit free-running up—down binary counter. It has a control signal, up.
The counter counts up when the up signal is *1° and counts down otherwise. Derive the
VHDL code for this circuit and draw the conceptual top-level diagram.

8.7 Consider a 4-bit counter that counts from 3 ("0011") to 12 ("1100") and then wraps
around. If the counter enters an unused state (such as "0000") because of noise, it will
restart from "0011" at the next rising edge of the clock. Derive the VHDL code for this
circuit and draw the conceptual top-level diagram.

8.8 Redesign the arbitrary counter of Section 8.5.3 using a mod-5 counter and special
output decoding logic. Derive the VHDL code for this design.
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8.9 Design a programmable frequency divider. In addition to clock and reset, it has a
control signal, ¢, which is a 4-bit signal interpreted as an unsigned number. The circuit has
an output signal, pulse, whose frequency is controlled by c. If the clock frequency is f
and the value of c is m, the frequency of the pulse signal will be 5-,1,.— For example, if c is

"0101", the frequency of the pulse signal be -2-§ Derive the VHDL code for this circuit.

8.10 Assume that we have a 1-MHz clock signal. Design a circuit that generates a 1-Hz
output pulse with a 50% duty cycle (i.e., 50% of ’1’ and 50% of ’0’). Derive the VHDL
code for this circuit.

8.11 Consider the block diagram of the decade counter in Figure 8.13. Let T, and Tyetop
of the D FF be 1 and 0.5 ns, and the propagation delays of the incrementor, comparator and
multiplexer be 5, 3 and 0.75 ns respectively. Assume that no further optimization will be
performed during synthesis. Determine the maximal clock rate.

8.12 Consider the two block diagrams of the programmable mod-m counter in Fig-
ure 8.14. Assume that no further optimization will be performed during synthesis. Use
the timing information in Problem 8.11 to determine the maximal clock rates of the two
configurations.
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CHAPTER9

SEQUENTIAL CIRCUIT DESIGN:
PRACTICE

After learning the basic model and coding style, we explore more sophisticated regular
sequential circuits in this chapter. The design examples show the implementation of a
variety of counters, the use of registers as fast, temporary storage, and the construction of
a “pipeline” to increase the throughput of certain combinational circuits.

9.1 POOR DESIGN PRACTICES AND THEIR REMEDIES

Synchronous design is the most important design methodology for developing a large,
complex, reliable digital system. In the past, some poor, non-synchronous design practices
were used. Those techniques failed to follow the synchronous principle and should be
avoided in RT-level design. Before continuing with more examples, we examine those
practices and their remedies. The most common problems are:

¢ Misuse of the asynchronous reset.

» Misuse of the gated clock.

o Misuse of the derived clock.
Some of those practices were used when a system was realized by SSI and MSI devices
and the silicon real estate and printed circuit board were a premium. Designers tended to
cut corners to save a few chips. These legacy practices are no longer applicable in today’s
design environment and should be avoided. The following subsections show how to remedy
these poor non-synchronous design practices.

RTL Hardware Design Using VHDL: Coding for Efficiency, Portability, and Scalability. By Pong P.Chu 2587
Copyright © 2006 John Wiley & Sons, Inc.
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Figure 9.1 Decade counter using asynchronous reset.

In few special situations, such as the interface to an external system and low power
design, the use of multiple clocks and asynchrony may be unavoidable. This kind of design
cannot easily be incorporated into the regular synthesis and testing flow. It should be treated
differently and separated from the regular sequential system development. We discuss the
asynchronous aspect in Chapter 16.

8.1.1 Misuse of asynchronous signals

In a synchronous design, we utilize only asynchronous reset or preset signals of FFs for
system initialization. These signals should not be used in regular operation. A decade
(mod-10) counter based on asynchronous reset is shown in Figure 9.1(a). The idea behind
the design is to clear the counter to "0000" immediately after the counter reaches "1010".
The timing diagram is shown in Figure 9.1(b). If we want, we can write VHDL code for
this design, as in Listing 9.1.

Listing 9.1 Decade counter using an asynchronous reset signal

library ieee;
use ieee.std_logic_1164. all;
use ieee.numeric_std. all;
entity mod10_counter is
5 port(
clk, reset: im std_logic;
q: out std_logic_vector (3 downto 0)
)
end mod10_counter;
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10
architecture poor_async_arch of modi0_counter is
signal r_reg: unsigned (3 downto 0);
signal r_next: unsigned(3 downto 0);
signal async_clr: std_logic;

15 begin
—~— register
process (clk,async_clr)
begin
if (async_clr=’1’) then
) r_reg <= (others=>°0’);

elsif (clk’event and clk=’'1’) then
r_.reg <= r_next;

end if;
end process;
25 —— asynchronous clear
async_clr <= 1’ when (reset=’1’ or r_reg="1010") else

207,
~— next state logic
r_.next <= r_reg + 1;
30 — output logic
q <= std_logic_vector(r_reg);
end poor_async_arch;

There are several problems with this design. First, the transition from state "1001" (9) to
"0000" (0) is noisy, as shown in Figure 9.1(b). In that clock period, the counter first changes
from "1001" (9) to "1010" (10) and then clears to "0000" (0) after the propagation delay of
the comparator and reset. Second, this design is not very reliable. A combinational circuit
is needed to generate the clear signal, and glitches may exist. Since the signal is connected
to the asynchronous reset of the register, the register will be cleared to "0000" whenever
a glitch occurs. Finally, because the asynchronous reset is used in normal operation, we
cannot apply the timing analysis technique of Section 8.6. It is very difficult to determine
the maximal operation clock rate for this design.

The remedy for this design is to load "0000" in a synchronous fashion. We can use a
multiplexer to route "0000" or the incremented result to the input of the register. The code
was discussed in Section 8.5.5 and is listed in Listing 9.2 for comparison. In terms of the
circuit complexity, the synchronous design requires an additional 4-bit 2-to-1 multiplexer.

Listing 9.2 Decade counter using a synchronous clear signal

architecture two_seg_arch of mod10O_counter is
signal r_reg: unsigned (3 downto 0);
signal r_next: unsigned(3 downto 0);

begin
5 — register
process (clk,reset)
begin
if (reset='1’) then
r_reg <= (others=>’0?’);
10 elsif (clk’event and clk=’1’) then
r_reg <= r_next;
end if;

end process;
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Figure 9.2 Disabling FF with a gated clock.

— next—state logic
15 r_next <= (others=>’0’) when r_reg=9 else
r.reg + 1;
— output logic
q <= std_logic_vector(r_reg);
end two_seg_arch;

9.1.2 Misuse of gated clocks

Correct operation of a synchronous circuit relies on an accurate clock signal. Since the
clock signal needs to drive hundreds or even thousands of FFs, it uses a special distribution
network and its treatment is very different from that of a regular signal. We should not
manipulate the clock signal in RT-level design.

One bad RT-level design practice is to use a gated clock to suspend system operation,
as shown in Figure 9.2. The intention of the design is to pause the counter operation by
disabling the clock signal. The design suffers from several problems. First, since the enable
signal, en, changes independent of the clock signal, the output pulse can be very narrow
and cause the counter to malfunction. Second, if the en signal is not glitch-free, the glitches
will be passed through the and cell and be treated as clock edges by the counter. Finally,
since the and cell is included in the clock path, it may interfere with the construction and
analysis of the clock distribution network.

The remedy for this design is to use a synchronous enable signal for the register, as
discussed in Section 8.5.1. We essentially route the register output as a possible input.
If the en signal is low, the same value is sampled and stored back to the register and the
counter appears to be “paused.” The VHDL codes for the original and revised designs are
shown in Listings 9.3 and 9.4. In terms of the circuit complexity, the synchronous design
requires an additional 2-to-1 multiplexer.

Listing 9.3 Binary counter with a gated clock

library ieee;
use ieee.std_logic_1164.all;
use ieee.numeric_std. all;
entity binary_counter is
s port (
clk, reset: im std_logic;
en: in std_logic;
q: out std_logic_vector (3 downto 0)
).

»
o end binary_counter;
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architecture gated_clk_arch of binary_counter is
signal r_reg: unsigned(3 downto 0);
signal r_next: unsigned(3 downto 0);
15 signal gated_clk: std_logic;

begin
— register
process (gated_clk,reset)
begin
20 if (reset=’1’) then
r_reg <= (others=>°0?);
elsif (gated_clk’event and gated_clk=’1’) then
r_reg <= r_next;
end if;
5 end process;

—— gated clock
gated_clk <= clk and en;
— next—state logic
r_next <= r_reg + 1;
30 — output logic
q <= std_logic_vector(r_reg);
end gated_clk_arch;

Listing 9.4 Binary counter with a synchronous enable signal

architecture two_seg_arch of binary_counter is
signal r_reg: unsigned(3 downto 0);
signal r_next: unsigned(3 downto 0);
begin
5 — register
process (clk,reset)
begin
if (reset='1’) then
r_reg <= (others=>’0’);
10 elsif (clk’event and clk=’'1’) then
r_reg <= r_next;
end if;
end process;
— next—state logic
15 r_next <= r_reg + 1 when en=’1’ else
r_reg;
—— output logic
q <= std_logic_vector(r_reg);
end two_seg_arch;

Power consumption is one important design criterion in today’s digital system. A com-
monly used technique is to gate the clock to reduce the unnecessary transistor switching
activities. However, this practice should not be done in RT-level code. The system should
be developed and coded as a normal sequential circuit. After synthesis and verification,
we can apply special power optimization software to replace the enable logic with a gated

clock systematically.
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Figure 9.3 System composed of fast and slow subsystems.

9.1.3 Misuse of derived clocks

A large digital system may consist of subsystems that operate in different paces. For
example, a system may contain a fast processor and a relatively slow I/O subsystem. One
way to accommodate the slow operation is to use a clock divider (i.e., a counter) to derive a
slow clock for the subsystem. The block diagram of this approach is shown in Figure 9.3(a).
There are several problems with this approach. The most serious one is that the system
is no longer synchronous. If the two subsystems interact, as shown by the dotted line in
Figure 9.3(a), the timing analysis becomes very involved. The simple timing model of
Section 8.6 can no longer be applied and we must consider two clocks that have different
frequencies and phases. Another problem is the placement and routing of the multiple
clock signals. Since a clock signal needs a special driver and distribution network, adding
derivative clock signals makes this process more difficult. A better alternative is to add a
synchronous enable signal to the slow subsystem and drive the subsystem with the same
clock signal. Instead of generating a derivative clock signal, the clock divider generates a
low-rate single-clock enable pulse. This scheme is shown in Figure 9.3(b).

Let us consider a simple example. Assume that the system clock is 1 MHz and we want
a timer that counts in minutes and seconds. The first design is shown in Figure 9.4(a). It
first utilizes a mod-1000000 counter to generate a 1-Hz squared wave, which is used as a
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1-Hz clock to drive the second counter. The second counter is 2 mod-60 counter, which in
turn generates a 61—0-Hz signal to drive the clock of the minute counter. The VHDL code is
shown in Listing 9.5. It consists of a mod-1000000 counter and two mod-60 counters. The
output logic of the mod-1000000 counter and one mod-60 counter utilizes comparators to

generate 50% duty-cycle pulses, which are used as the clocks in successive stages.

Listing 9.5 Second and minute counter with derived clocks

library ieee;
use ieee.std_logic_1164.all;
use ieee.numeric_std. all;

entity timer is

s port (
clk

, reset:

in std_logic;

sec,min: out std_logic_vector(5 downto 0)

)
end timer
10

’

architecture multi_clock_arch of timer

signal

signal

signal

15 signal

signal
begin

r_reg: unsigned (19 downto 0);

is

r_next: unsigned (19 downto 0);
s_reg, m_reg: unsigned(5 downto 0);

s_next, m_next: unsigned(5 downte 0);

sclk,

—— register
process (clk,reset)

2 begin

mclk:

std_logic;

if (reset='1’) then
<= (others=>’0’);
elsif (clk’event and clk=’1’) then

r_reg
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To convert the design to a synchronous circuit, we need to make two revisions. First, we
add a synchronous enable signal for the mod-60 counter. The enable signal functions as the
en signal discussed in examples in Section 8.5.1. When it is deasserted, the counter will
pause and remain in the same state. Second, we have to replace the 50% duty cycle clock
pulse with a one-clock-period enable pulse, which can be obtained by decoding a specific
value of the counter. The revised diagram is shown in Figure 9.4(b), and the VHDL code
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r.reg <= r_next;
end if;
end process;
— next—state logic
r_next <= (others=>’0’) when r_reg=999999
r.reg + 1;
— output logic
sclk <= ’'0’ when r_reg < 500000 else
’1);
—— second divider
process (sclk,reset)
begin
if (reset=’1’) then
s_reg <= (others=>’0");
elsif (sclk’event and sclk=’1’) then
s_reg <= s_next;
end if;
end process;
— next—state logic
s_next <= (others=>’0’) when s_reg=59 else
s_reg + 1;
— output logic
mclk <= ’0’ when s_reg < 30 else
;1);
sec <= std_logic_vector(s_reg);
— minute divider
process (mclk ,reset)
begin
if (reset=’1’) then
m_reg <= (others=>’0’);
elsif (mclk’event and mclk=’1’) then
m_reg <= m_next;
end if;
end process;
— next—state logic
m_next <= (others=>’0’) when m_reg=59 else
m_reg + 1;
— output logic
min <= std_logic_vector(m_reg);

end multi_clock_arch;

else

is shown in Listing 9.6.

Listing 9.6 Second and minute counter with enable pulses

architecture single_clock_arch of timer is

signal r_reg: unsigned(19 downto 0);
signal r_next: unsigned (19 downto 0);
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signal s_reg, m_reg: unsigned(5 downto 0);

s signal s_next, m_next: unsigned(5 downto 0);
signal s_en, m_en: std_logic;
begin
—~— register
process (clk,reset)
10 begin

if (reset=’1’) then
r_reg <= (others=>’0’);
s_reg <= (others=>’0?);
m_reg <= (others=>’0’);
15 elsif (clk’event and clk=’1’) then
r_reg <= r_next;
s_reg <= s_next;
m_reg <= m_next;
end if;
2 end process;
—— next—state logic/output logic for mod—1000000 counter
r_next <= (others=>'0’) when r_reg=999999 else
r_reg + 1;
s_en <= ’1’ when r_reg = 500000 else
25 07
—— next state logic/output logic for second divider
s_next <= (others=>’0’) when (s_reg=59 and s_en=’'1’) else

s_reg + 1 when s_en=’1’ else
s_reg;
30 m_en <= ’'1’ when s_reg=30 and s_en=’1’ else
)0!;

— next—state logic for minute divider
m_next <= (others=>’0’) when (m_reg=59 and m_en=’1’) else
m_reg + 1 when m_en=’'1’ else

3 m_reg;
— output logic
sec <= std_logic_vector(s_reg);
min <= std_logic_vector(m_reg);

end single_clock_arch;

9.2 COUNTERS

A counter can be considered as a circuit that circulates its internal state through a set of
patterns. The patterns dictate the complexity of the next-state logic and the performance
of the counter. Some applications require patterns with specific characteristics. We studied
several counters in Sections 8.5. These counters are variations of the binary counter, which
follows the basic binary counting sequence. This section introduces several other types of
commonly used counters.

9.2.1 Gray counter

An n-bit Gray counter also circulates through all 2™ states. Its counting sequence follows
the Gray code sequence, in which only one bit is changed between successive code words.
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The design and VHDL description are similar to those of a binary counter except that we
need to replace the binary incrementor with the Gray code incrementor of Section 7.5.1.
The VHDL code of a 4-bit Gray counter is shown in Listing 9.7.

Listing 9.7 Gray counter

library ieee;
use ieee.std_logic_1164.all;
use ieee.numeric_std. all;
entity gray_counter4 is
s port (
clk, reset: in std_logic;
q: out std_logic_vector (3 downto 0)
)i
end gray_counter4;
10
architecture arch of gray_counter4 is
constant WIDTH: natural := 4;
signal g_reg: unsigned (WIDTH-1 downto 0);
signal g_next, b, bl: unsigned(WIDTH-1 downte 0);
is begin
— register
process (clk,reset)
begin
if (reset=’1’) then
2 g_reg <= (others=>’0’);
elsif (clk’event and clk=’1’) then
g.reg <= g_next;
end if;
end process;
25 — next—state logic
— Gray to binary
b <= g_reg xor (’0’ & b(WIDTH-1 downto 1));
—— binary increment
bl <= b+1;
30 — binary to Gray
g_next <= bl xor (’0’ & b1(WIDTH-1 downto 1));
— output logic
q@ <= std_logic_vector(g_reg);
end arch;

9.2.2 Ring counter

A ring counter is constructed by connecting the serial-out port to the serial-in port of a
shift register. The basic sketch of a 4-bit shift-to-right ring counter and its timing diagram
are shown in Figure 9.5. After the "0001" pattern is loaded, the counter circulates through
"1000", "0100", "0010" and "0001" states, and then repeats.

There are two methods of implementing a ring counter. The first method is to load the
initial pattern during system initialization. Consider a 4-bit ring counter. We can set the
counter to "0001" when the reset signal is asserted. After initialization, the reset signal
is deasserted and the counter enters normal synchronous operation and circulates through
the patterns. The VHDL code of a 4-bit ring counter is shown in Listing 9.8.
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Figure 9.5 Sketch of a 4-bit ring counter.

Listing 9.8 Ring counter using asynchronous initialization

267

library ieese;
use ieee.std_logic_1164. all;
entity ring_counter fis
port (
s clk, reset: in std_.logic;
q: out std_logic_vector (3 downte 0)
);
end ring_counter;

o architecture reset_arch of ring_counter is
constant WIDTH: natural := 4;
signal r_reg: std_logic_vector (WIDTH-1 downto 0);
signal r_next: std_logic_vector (WIDTH-1 downto 0);
begin
1 —— register
process (clk,reset)
begin
if (reset=’1') then
r_reg <= (0=>’1’, others=>’0");
20 elsif (clk’event and clk='1’) then
r_reg <= r_next;
end if;
end process;
— next—state logic
2 r_next <= r_reg(0) & r_reg(WIDTH-1 downto 1);
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— output logic
q <= r_reg;
end reset_arch;

Note that the q_reg is initialized with "0001" by the statement
r_reg <= (0=>'1’, others=>’0’);

The alternative method is to utilize a self-correcting logic to feed the serial-in port with
the correct pattern. The block diagram of a 4-bit self-correcting ring counter is shown
in Figure 9.6. The design is based on the observation that a *1’ can only be shifted into
the shift register if the current three MSBs of the register are "000". If any of the three
MSBs is not ’0’, the self-correcting logic generates a *0’ and shifts it into the register. This
process continues until the three MSBs become "000" and a ’1’ is shifted in afterward.
Note that this scheme works even when the register contains an invalid pattern initially. For
example, if the initial value of the register is "1101", the logic will gradually shift in 0's and
return to the normal circulating sequence. Because of this property, the circuit is known as
self-correcting.

The VHDL code for this design is shown in Listing 9.9. Note that no special input
pattern is needed during system initialization, and the all-zero pattern is used in the code.

Listing 9.9 Ring counter using self-correcting logic

architecture self_correct_arch of ring_counter is
constant WIDTH: natural := 4;
signal r_reg, r_next: std_logic_vector (WIDTH-1 downto 0);
signal s_in: std_logic;

s begin
— register
process (clk,reset)
begin
if (reset=’1’) then
10 r_reg <= (others=>’0’);

elsif (clk’event and clk=’1’) then
r._.reg <= r_next;
end if;
end process;
15 — next—state logic
s_in <= 1’ when r_reg(WIDTH-1 downto 1)="000" else
:o:;
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r_next <= s_in & r_reg(WIDTH-1 downto 1);
— output logic
20 q <= r_reg;
end self_correct_arch;

In a ring counter, an n-bit register can generate only n states, which is much smaller
than the possible 2™ states of a binary counter. Despite its inefficiency, a ring counter offers
several benefits. First, each bit of a ring counter is in the 1-out-of-n format. It requires no
decoding logic and is glitch-free. Second, the output of a ring counter is out of phase, and
the n output bits of an n-bit ring counter form a set of n-phase signals. For example, in the
timing diagram of the 4-bit ring counter, each bit is activated for one-fourth of the period
and only one bit is activated at a particular phase. Finally, the ring counter is extremely
fast. For the reset_arch architecture, the next-state logic consists only of connection
wires. If we assume that the wiring delay is negligible, the maximal clock rate becomes
Tc.,+—;‘mup" which is the fastest clock rate that can be achieved by a sequential circuit for a
given technology.

9.2,.3 LFSR (linear feedback shift register)

The linear feedback shift register (LFSR) is a shift register that utilizes a special feedback
circuit to generate the serial input value. The feedback circuit is essentially the next-state
logic. It performs xor operation on certain bits of the register and forces the register to cycle
through a set of unique states. In a properly designed n-bit LFSR, we can use a few xor
gates to force the register to circulate through 2™ — 1 states. The diagram of a 4-bit LFSR is
shown in Figure 9.7. The two LSB signals of the register are xored to generate a new value,
which is fed back to the serial-in port of the shift register.- Assume that the initial state of
register is "1000". The circuit will circulate through the 15 (i.e., 24 — 1) states as follows:
"1000", "0100", "0010", "1001", "1100", "0110", "1011", "0101", "1010", "1101", "1110",
"1111","0111", "0011", "0001".

Note that the "0000" state is not included and constitutes the only missing state. If the
LFSR enters this state accidentally, it will be stuck in this state.

The construction of LFSRs is based on the theoretical study of finite fields. The term
linear comes from the fact that the general feedback equation of an LFSR is described by
an expression of the and and xor operators, which form a linear system in algebra. The
theoretical study shows some interesting properties of LFSRs:

e An n-bit LFSR can cycle through up to 2™ — 1 states. The all-zero state is excluded
from the sequence.
e A feedback circuit to generate maximal number of states exists for any n.
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Table 9.1 Feedback expression of LFSR

Register size Feedback expression

2 Q19 q

3 D

4 q1 ® q

5 720 qo

6 Q1 ®q

7 q3 D qo

8 UuDPEOR®gp
16 5P d
32 22D 0D Dq
64 UudBDa
128 920D 17D P Do

¢ The sequence generated by the feedback circuit is pseudorandom, which means that
the sequence exhibits a certain statistical property and appears to be random.

The feedback circuit depends on the number of bits of the LFSR and is determined on
an ad hoc basis. Despite its irregular pattern, the feedback expressions are very simple,
involving either one or three xor operators most of the time. Table 9.1 lists the feedback
expressions for register sizes between 2 and 8 as well as several larger values. We assume
that the output of the n-bit shift registeris ¢g,—1, gn—2, - - - , g1, go- Theresult of the feedback
expression is to be connected to the serial-in port of the shift register (i.e., the input of the
(n — Dth FF).

Once we know the feedback expression, the coding of LFSR is straightforward. The
VHDL code for a 4-bit LFSR is shown in Listing 9.10. Note that the LFSR cannot be
initialized with the all-zero pattern. In pseudo number generation, the initial value of the
sequence is known as a seed. We use a constant to define the initial value and load it into
the LFSR during system initialization.

Listing 9.10 LFSR

library ieee;
use ieee.std_logic_1164. all;
entity 1lfsr4 is

port( .
5 c¢lk, reset: in std_logic;
q: out std_logic_vector (3 downto 0)
)
end 1fsr4;

o architecture no_zero_arch of 1lfsr4 is
signal r_reg, r_next: std_logic_vector (3 downto 0);
signal fb: std_logic;
constant SEED: std_logic_vector (3 downto 0):="0001";
begin
i — register
process (clk,reset)
begin
if (reset=’1’) then
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r_reg <= SEED;
) elsif (clk’event and clk=’1’) then
r.reg <= r_next;
end if;
end process;
—— next—state logic
2 fb <= r_reg(1) xor r_reg(0);
r_next <= fb & r_reg(3 downto 1);
— output logic
q <= r_reg;
end no_zero_arch;

The unique properties of LFSR make them useful in a variety of applications. The
first type of application utilizes its pseudorandomness property to scramble and descramble
data, as in testing, encryption and modulation. The second type takes advantages of its
simple combinational feedback circuit. For example, we can use just three xor gates in a
32-bit LFSR to cycle through 232 — 1 states. By comparison, we need a fairly large 32-bit
incrementor to cycle through 232 states in a binary counter. By the component information
of Table 6.2, the gate counts for three xor gates and a 32-bit incrementor are 9 and 113
respectively, and their propagation delays are 0.8 and 11.6 ns respectively. Thus, an LFSR
can replace other counters for applications in which the order of the counting states is not
important. This is a clever design technique. For example, we can use three xor gates to
implement a 128-bit LFSR, and it takes about 102 years for a 100-GHz system to circulate
all the possible 2128 — 1 states.

The all-zero state is excluded in a pure LFSR. It is possible to use an additional circuit
to insert the all-zero state into the counting sequence so that an n-bit LFSR can circulate
through all 2™ states. This scheme is based on the following observation. In any LFSR, a
'1” will be shifted in after the "00- - - 01" state since the all-zero state is not possible. In
other words, the feedback value will be *1’ when the n — 1 MSBs are 0’s and the state
following "00 - - - 01" will always be "10 - - - 00". The revised design will insert the all-zero
state, "00 - - - 00", between the "00--- 01" and "10- - - 00" states. Let the output of an n-bit
shift register be ¢, 1, gn—2, - - - , 1, go and the original feedback signal of the LFSR be f.
The modified feedback value f,., has the expression

fze'ro = fb @ (q;,-l ' q':t-2 ot 'Qé ) ‘11)

This expression can be analyzed as follows:

e The expression ¢},_; * ¢,,_o " - ¢5 - ¢} indicates the condition that the n — 1 MSBs
are 0’s. This condition can only be true when the LFSRisin"00---01" or"00- - - 00"
state.

o If the condition above is false, the value of f,¢ is fp since f, @0 = f3,. This implies
that the circuit will shift in a regular feedback value and follow the original sequence
except for the "00- - - 01" or "00- - - 00" states.

e If the current state of the register is "00 - - - 01", the value of f;, should be '1’ and the
expression fo® (g}, _1qh_2 * - - ¢3-¢;) becomes 1@ 1. Thus, a’0’ will be shifted into
the register at the next rising edge of the clock and the next state will be "00 - - - 00".

o If the current state of the register is "00 - - - 00", the value of f, should be 0’ and the
expression f, ®(ql,_1-¢h—o - - - g5-q7) becomes 0@ 1. Thus, a’1” will be shifted into
the register at the next rising edge of the clock and the next state will be "10- - - 00",

e Once the shift register reaches "10 - - - 00", it returns to the regular LFSR sequence.
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The analysis clearly shows that the modified feedback circuit can insert the all-zero
state between the "00---01" and "10 - - - 00" states. Technically, the and operation of the
revised feedback expression destroys the “linearity,” and thus the circuit is no longer a linear
feedback shift register. The modified design is sometimes known as a Bruijn counter.

Once understanding the form and operation of the modified feedback expression, we can
easily incorporate it into the VHDL code. The revised code is shown in Listing 9.11, We
use the statement

zero <= ’1’ when r_reg(3 downto 1)="000" else
’o);

to obtain the result of the g}, _; - ¢},_5 - - - g5 - ¢] expression. Note that the all-zero state can
be loaded into the register during system initialization.

Listing 9.11 LFSR with the all-zero state

architecture with_zero_arch of 1fsr4 is
signal r_reg, r_next: std_logic_vector (3 dewnto 0);
signal fb, zero, fzero: std_logic;
constant seed: std_logic_vector (3 downto 0):="0000";
s begin
-— register
process (clk,reset)
begin
if (reset=’1’) then
10 r_reg <= seed;
elsif (clk’event and clk=’1’) then
r_reg <= r_next;
end if;
end process;
1s — next—state logic
fb <= r_reg(1l) xor r_reg(0);
zero <= ’1’ when r_reg(3 downto 1)="000" else

’0);
fzero <= zero xor fb;
20 r_next <= fzero & r_reg(3 downto 1);

— output logic
q <= r_reg;
end with_zero_arch;

9.2.4 Decimal counter

A decimal counter circulates the patterns in binary-coded decimal (BCD) format. The BCD
code uses 4 bits to represent a decimal number. For example, the BCD code for the three-
digit decimal number 139 is "0001 0011 1001". The decimal counter follows the decimal
counting sequence and the number following 139 is 140, which is represented as "0001
0100 0000".

One possible way to construct a decimal counter is to design a BCD incrementor for
the next-state logic, just like a regular incrementor in a binary counter. Because of the
cumbersome implementation of the BCD incrementor, this method is not efficient. A better
alternative is to divide the counter into stages of decade counters and use special enable
logic to control the increment of the individual decade counters.
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Figure 9.8 Block diagram of a BCD counter.

Consider a 3-digit (12-bit) decimal counter that counts from 000 to 999 and then repeats.
It can be implemented by cascading three special decade counters, and the sketch is shown
in Figure 9.8. The leftmost decade counter represents the least significant decimal digit.
It is a regular mod-10 counter that counts from O to 9 (i.e., from "0000" to "1001") and
repeats. The middle decade counter is a mod-10 counter with a special enable circuit. It
increments only when the least significant decimal digit reaches 9. The rightmost decade
counter represents the most significant decimal digit, and it increments only when the two
least significant decimal digits are equal to 99. Note that when the counter reaches 999,
it will return to 000 at the next rising edge of the clock. The VHDL codes are shown in
Listings 9.12 and 9.13. The former uses three conditional signal assignment statements and
the latter uses a nested if statement to check whether the counter reaches --9, ~99 or 999.

Listing 9.12 Three-digit decimal counter using conditional concurrent statements

library ieee;
use ieee.std_logic_1164.all;
use ieee.numeric_std. all;
entity decimal_counter is
s port(
clk, reset: in std_logic;
d1, d10, d100: out std_logic_vector (3 downto 0)
);
end decimal_counter;
10
architecture concurrent_arch of decimal_counter is
signal di_reg, d10_reg, d100_reg: unsigned(3 downto 0);
signal di_next, di0O_next, d100_next: unsigned(3 downto 0);
begin
15 — register
process (clk,reset)
begin
if (reset=’1’) then
dli_reg <= (others=>’07);
2 d10_reg <= (others=>'0’);
d100_reg <= (others=>’0’);
elsif (clk’event and clk=’1’) then
di_reg <= dl_next;
di0_reg <= d10_next;
25 d100_reg <= d100_next;
end if;
end process;
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— next—state logic
di_next <= "0000" when di_reg=9 else
) dl_reg + 1;
d10_next <= "0000" when (di_reg=9 and d10_reg=9) else
d10_reg + 1 when di_reg=9 else
d10_reg;
d100_next <=
3 "0000" when (di_reg=9 and d10_reg=9 and d100_reg=9) else
d100_reg + 1 when (di_reg=9 and d10_reg=9) else
d100_reg;
— output
di <= std_logic_vector(di_reg);
@ d10 <= std_logic_vector(d10_reg);
d100 <= std_logic_vector(di100_reg);
end concurrent_arch;

Listing 9.13 Three-digit decimal counter using a nested if statement

architecture if_arch of decimal_counter is
signal dl_reg, d10_reg, d100_reg: unsigned(3 downto 0);
signal di_next, diO_next, d100_next: unsigned (3 downto 0);
begin
5 — vregister
process (clk,reset)
begin
if (reset=’1’) then
di_reg <= (others=>'0’);
10 d10_reg <= (others=>’0");
d100_reg <= (others=>'0’);
elsif (clk’event and clk=’1’) then
dil_reg <= dil_mnext;
d10_reg <= di0_mnext;
15 d100_reg <= d100_next;
end if;
end process;
— next—state logic
process (di_reg,d10_reg,d100_reg)
» begin
d10_next <= d10_reg;
d100_next <= d100_reg;
if di_reg/=9 then
dl_next <= di_reg + 1;
2 else — reach —-9
dl_next <= "0000";
if d10_reg/=9 then
d10_next <= di10_reg + 1;
else — reach —99
30 di0_next <= "0000";
if d100_reg/=9 then
d100_next <= d100_reg + 1;
else — reach 999
d100_next <= "Q0000";
35 end if;
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Figure 9.9 Block diagram of a PWM circuit.

end if;
end if;
end process;
— output
® dl <= std_logic_vector(dl_reg);
d10 <= std_logic_vector(diO_reg);
d100 <= std_logic_vector(d100_reg);
end if_arch;

9.2.5 Pulse width modulation circuit

Instead of using the counting patterns directly, some applications generate output signals
based on the state of the counter. One example is a pulse width modulation (PWM) circuit.
In a square wave, the duty cycle is defined as the percentage of time that the signal is asserted
as ’1’ in a period. For example, the duty cycle of a symmetric square wave is 50% since
the signal is asserted half of the period. A PWM circuit generates an output pulse with an
adjustable duty cycle. It is frequently used to control the on—off time of an external system.

Consider a PWM circuit whose duty cycle can be adjusted in increments of %, i.e., the
duty cycle canbe &, %, %,..., 12, 15, A 4-bit control signal, w, which is interpreted as

an unsigned integer, specifies the desired duty cycle. The duty cycle will be % when w is
"0000", and will be -1"16 otherwise. This circuit can be implemented by a mod-16 counter
with a special output circuit, and the conceptual diagram is shown in Figure 9.9.

The mod-16 counter circulates through 16 patterns. An output circuit compares the
current pattern with the w signal and asserts the output pulse when the counter’s value is
smaller than w. The output pulse’s period is 16 times the clock period, and % of the period
is asserted. The VHDL code is shown in Listing 9.14. Note that an additional Boolean
expression, w="0000", is included to accommodate the special condition. We also add an
output buffer to remove any potential glitch.

Listing 9.14 PWM circuit

library ieee;
use ieee.std_logic_1164.all;
use ieee.numeric_std. all;
entity pwm is
5 port (
clk, reset: in std_logic;
w: in std_logic_vector (3 downto 0);
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pwm_pulse: out std_logic
);
10 end pwm;

architecture two_seg_arch of pwm is
signal r_reg: unsigned (3 downto 0);
signal r_next: unsigned(3 downto 0);
15 signal buf_reg: std_logic;
signal buf_next: std_logic;
begin
— register & output buffer
process (clk,reset)
2 begin
if (reset=’1’) then
r_reg <= (others=>’0’);
buf_reg <= ’0’;
elsif (clk’event and clk=’1’) then

25 r_reg <= r_next;
buf_reg <= buf_next;
end if;

end process;
—— next—state logic
) r_next <= r_reg + 1;
— output logic
buf_next <=
‘1’ when (r_reg<unsigned(w)) or (w="0000") else
’o’;
3 pvm_pulse <= buf_reg;
end two_seg_arch;

9.3 REGISTERS AS TEMPORARY STORAGE

Instead of being dedicated to a specific circuit, such as a counter, registers can also be used
as general-purpose storage or buffer to store data. Since the circuit size of a D FF is several
times larger than that of a RAM cell, using registers as massive storage is not cost-effective.
They are normally used to construct small, fast temporal storage in a large digital system.
This section examines various storage structures, including a register file, register-based
first-in-first-out buffer and register-based look-up table.

9.3.1 Register file

A register file consists of a set of registers. To reduce the amount of wiring and I/O signals,
the register file provides only one write port and few read ports, which are shared by all
registers for data access. Each register is assigned a binary address as an identifier, and an
external system uses the address to specify which register is to be involved in the operation.
The storage and retrieval operations are known as the write and read operations respectively.
A processor normally includes a register file as fast temporary storage.

In this subsection, we illustrate the design and coding of a register file with four 16-
bit registers and three I/O ports, which include one write port and two read ports. The
data signals are labeled w_data, r-data0 and r_datail, and the port addresses are labeled
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Figure 9.10 Block diagram of a register file.

w_addr, r_addr0 and r_addr1. There is also a control signal, wr_en, which is the write
enable signal to indicate whether a write operation can be performed.

The conceptual diagram is shown in Figure 9.10. The design consists of three major
parts: registers with enable signals, a write decoding circuit, and read multiplexing circuits.
There are four 16-bit registers, each register with an individual enable signal, en. The en
signal is synchronous and indicates whether the input data can be stored into the register.
Its function is identical to the FF example in Section 8.5.1.

The write decoding circuit examines the wr_en signal and decodes the write port address.
If the wr_en signal is asserted, the decoding circuit functions as a regular 2-to-22 binary
decoder that asserts one of the four en signals of the corresponding register. The w_data
signal will be sampled and stored into the corresponding register at the rising edge of the
clock.

The read multiplexing circuit consists of two 4-to-1 multiplexers. It utilizes r_addr0
and r_addr1 as the selection signals to route the desired register outputs to the read ports.

Note that the registers are structured as a two-dimensional 4-by-16 array of D FFs and
would best be represented by a two-dimensional data type. There is no predefined two-
dimensional data type in the IEEE std.logic_1164 package, and thus we must create a
user-defined data type. One way to do it is to create a user-defined “array of arrays” data
type. Assume that the number of rows and columns of an array are ROW and COL respectively.
The data type and signal declaration can be written as

type aoa_type is array (ROW-1 downto 0) of
std_logic_vector (COL-1 downto 0);
signal s: aoa_type;

We can use s[i] to access the ith row of the array and use s[i] [j] to access the jth bit
of the ith row of the array.

Once understanding the basic block diagram and data type, we can derive the VHDL code
accordingly. The VHDL code is shown in Listing 9.15. The register and corresponding
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enabling circuit are described by two processes. The decoding circuit is described in
another process. If wr.en is not asserted, en will be "0000" and no register will be updated.
Otherwise, one bit of the en signal will asserted according to the value of the w_addr signal.
The read ports are described as two multiplexers.

Listing 9.15  22-by-16 register file

library ieee;
use ieee.std_logic_1164.all;
entity reg_file is
port(
5 clk, reset: im std_logic;
wr_en: in std_logic;
w_addr: in std_logic_vector (1 downto 0);
w_.data: in std_logic_vector (15 downto 0);
r_addr0, r_addrl: in std_logic_vector (1 downto 0);
10 r_data0, r_datal: out std_logic_vector (15 downto 0)
);
end reg_file;

architecture no_loop_arch of reg_file is
15 constant W: natural:=2; — number of bits in address
constant B: natural:=16; — number of bits in data
type reg_file_type is array (2+xW-1 downto 0) of
std_logic_vector (B~1 downto 0);
signal array_reg: reg_file_type;

2 signal array_next: reg_file_type;
signal en: std_logic_vector (2**W-1 downto 0);
begin
—— register
process (clk,reset)
25 begin

if (reset=’1’) then
array_reg (3) <= (others=>’0’);
array_reg{(2) <= (others=>’0’);
array_reg (1) <= (others=>’0');
2 array_reg(0) <= (others=>’0’);
elsif (clk’event and clk='1’) then
array_reg(3) <= array.next(3);
array_reg(2) <= array.next(2);
array_reg (1) <= array_next(1);
3 array_reg(0) <= array_next(0);
end if;
end process;
—— enable logic for register
process (array_reg,en,w_data)
® begin
array_next (3) <= array_reg(3);
array_next (2) <= array_reg(2);
array_next (1) <= array_reg(1l);
array_next (0) <= array_reg(0);
as if en(3)=’1’ then
array_next (3) <= w_data;
end if;
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if en(2)=’1’ then
array_next (2) <= w_data;
50 end if;
if en(1)=’1" then
array_next (1) <= w_data;

end if;
if en(0)=’1’ then

ss array_next (0) <= w_data;
end if;

end process;
— decoding for write address
process (wr_en,w_addr)
60 begin
if (wr_en=’0’) then
en <= (others=>’0?);

else
case w_addr is
65 when "00" => en <= "0Q0001";
when "01" => en <= "0010";
when "10" => en <= "0100";
when others => en <= "1000";
end case;
70 end if;

end process;
— read multiplexing
with r_addr0 select :
r_data0 <= array_reg(0) when "00",

7 array_.reg (1) when "O1",
array_reg (2) when "10",
array_reg(3) when others;

with r_addrl select
r_datal <= array_reg(0) when "00",

80 array_reg (1) when "01",
array_reg(2) when "10",
array_reg(3) when others;

end no_loop_arch;

Although the description is straightforward, the code is not very compact. The code will
be cumbersome and lengthy for a larger register file. A more effective description and the
proper use of two-dimensional data types are discussed in Chapter 15.

9.3.2 Register-based synchronous FIFO buffer

A first-in-first-out (FIFO) buffer acts as “elastic” storage between two subsystems. The
conceptual diagram is shown in Figure 9.11. One subsystem stores (i.e., writes) data into
the buffer, and the other subsystem retrieves (i.e., reads) data from the buffer and removes
it from the buffer. The order of data retrieval is same as the order of data being stored, and
thus the buffer is known as a first-in-first-out buffer. If two subsystems are synchronous
(i.e., driven by the same clock), we need only one clock for the FIFO buffer and it is known
as a synchronous FIFO buffer.

The most common way to construct a FIFO buffer is to add a simple control circuit to a
generic memory array, such as a register file or RAM. We can arrange the generic memory
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Figure 9.11 Conceptual diagram of a FIFO buffer.

array as a circular queue and use two pointers to mark the beginning and end of the FIFO
buffer. The conceptual sketch is shown in Figure 9.12(c). The first pointer, known as the
write pointer (1abeled wr ptr), points to the first empty slot in front of the buffer. During a
write operation, the data is stored in this designed slot, and the write pointer advances to the
next slot (i.e., incremented by 1). The second pointer, known as the read pointer (labeled
rd ptr), points to the end of the buffer. During a read operation, the data is retrieved and
the read pointer advances one slot, effectively releasing the slot for future write operations.

Figure 9.12 shows a sequence of write and read operations and the corresponding growth
and shrinking of the buffer. Initially, both the read and write pointers point to the 0 address,
as in Figure 9.12(a). Since the buffer is empty, no read operation is allowed at this time.
After a write operation, the write pointer increments and the buffer contains one item in
the 0 address, as in Figure 9.12(b). After a few more write operations, the write pointer
continues to increase and the buffer expands accordingly, as in Figure 9.12(c). A read
operation is performed afterward. The read pointer advances in the same direction, and
the previous slot is released, as in Figure 9.12(d). After several more write operations, the
buffer is full, as in Figure 9.12(f), and no write operation is allowed. Several read operations
are then performed, and the buffer eventually shrinks to 0, as in Figure 9.12(g), (h) and (i).

The block diagram of a register-based FIFO is shown in Figure 9.13. It consists of a
register file and a control circuit, which generates proper read and write pointer values and
status signals. Note that the FIFO buffer doesn’t have any explicit external address signal.
Instead, it utilizes two control signals, wr and re, for write and read operations. At the rising
edge of the clock, if the wr signal is asserted and the buffer is not full, the corresponding
input data will be sampled and stored into the buffer. The output data from the FIFO is
always available. The re signal might better be interpreted as a “remove” signal. If it is
asserted at the rising edge and the buffer is not empty, the FIFO’s read pointer advances one
position and makes the current slot available. After the internal delays of the incrementing
and routing, new output data is available in FIFO’s output port.

During FIFO operation, an overflow occurs when the external system attempts to write
new data when the FIFO is full, and an underflow occurs when the external system attempts
to read (i.e., remove) a slot when the FIFO is empty. To ensure correct operation, a FIFO
buffer must include the full and empty status signals for the two special conditions. In
a properly designed system, the external systems should check the status signals before
attempting to access the FIFO.

The major components of a FIFO control circuit are two counters, whose outputs function
as write and read pointers respectively. During regular operation, the write counter advances
one position when the wr signal is asserted at the rising edge of the clock, and the read
counter advances one position when the re signal is asserted. We normally prefer to add
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Figure 9.12 Circular-queue implementation of a FIFO buffer.
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Figure 9.13 Block diagram of a register-based FIFO buffer.

some safety precautions to ensure that data will not be written into a full buffer or removed
from an empty buffer. Under these conditions, the counters will retain the previous values.

The difficult part of the control circuit is the handling of two special conditions in which
the FIFO buffer is empty or full. When the FIFO buffer is empty, the read pointer is the
same as the write pointer, as shown in Figure 9.12(a) and (i). Unfortunately, this is also
the case when the FIFO buffer is full, as shown in Figure 9.12(f). Thus, we cannot just use
read and write pointers to determine full and empty conditions. There are several schemes
to generate the status signals, and all of them involve additional circuitry and FFs. We
examine two schemes in this subsection.

FIFO control circuit with augmented binary counters The first method is to use
the binary counters for the read and write pointers and increase their sizes by 1 bit. We can
determine the full or empty condition by comparing the MSBs of the two pointers. This
scheme can be best explained and observed by an example. Consider a FIFO with 3-bit
address (i.e., 2% words). Two 4-bit counters will be used for the read and write pointers.
The counters and the status of a sequence of operations are shown in Table 9.2. The three
LSBs of the read and write pointers are used as addresses to access the register file and
wrap around after eight increments. They are equal when the FIFO is empty or full. The
MSBs of the read and write pointers can be used to distinguish the two conditions. The two
bits are the same when the FIFO is empty. After eight write operations, the MSB of the
write pointers flips and becomes the opposite of the MSB of the read pointer. The opposite
values in MSBs indicate that the FIFO is full. After eight read operations, the MSB of the
read pointer flips and becomes identical to the MSB of the write pointer, which indicates
that the FIFO is empty again. A more detailed block diagram of this scheme is shown in
Figure 9.14.

The VHDL code of a 4-word FIFO controller is shown in Listing 9.16. A constant, N,
is used inside the architecture body to indicate the number of address bits. Note that the
w_ptr_reg and r_ptr_reg signals, which are the write and read pointers, are increased to
N + 1 bits.
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Table 9.2 Representative sequence of FIFO operations
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Write pointer Read pointer Operation Status
0000 0000 initialization  empty
0111 0000 after 7 writes
1000 0000 after 1 write  full
1000 0100 after 4 reads
1100 0100 after 4 writes  full
1100 1011 after 7 reads
1100 1100 after 1 read empty
0011 1100 after 7 writes
0100 1100 after 1 write  full
0100 0100 after 8 reads  empty

fmm—————
. k
! I
! I
! [
| I
: [
|
n-bit | n-bit
—> LSBs -—>: w_addr r_addr :4— LSBs
. !
| I
I J
r_ptr_out
Wr———>  (n+)bit w_ptr_out it e g
binary - binary
> counter counter <]
) — L .
< comparing comparing
ful circuit o N circuit empty

clk —»
reset —»

Figure 9.14 Detailed block diagram of an augmented-binary-counter FIFO control circuit.
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Listing 9.16 FIFO control circuit with augmented binary counters

library ieee;
use ieee.std_logic_1164. all;
use ieee.numeric_std. all;
entity fifo_sync_ctrld is
port(
clk, reset: im std_logic;
wr, rd: in std_logic;
full, empty: out std_logic;
w_.addr, r_addr: out std_logic_vector (1 downto 0)
)i
end fifo_sync_ctrlé4;

architecture enlarged_bin_arch of fifo_sync_ctrl4d is
constant N: natural:=2;
signal w_ptr_reg, w_ptr_next: unsigned(N downto 0);
signal r_ptr_reg, r_ptr_next: unsigned(N downto 0);
signal full_flag, empty_flag: std_logic;
begin
— vregister
process (clk,reset)
begin
if (reset=’1’) then
w_ptr_reg <= (others=>’0’);
r_ptr_reg <= (others=>’0");
elsif (clk’event and clk=’1’) then
w_ptr_reg <= w_ptr_next;
r_ptr_reg <= r_ptr_next;
end if;
end process;
—— write pointer next—state logic
v_ptr_next <=
w_ptr_reg + 1 when wr=’1’ and full_flag=’0’ else
w_ptr_reg;
full_flag <=
’1’ when r_ptr_reg(N) /=w_ptr_reg(N) and

r_ptr_reg(N-1 downto O)=w_ptr_reg(N-1 dewnto

else
07
— write port output
w_addr <= std_logic_vector(w_ptr_reg(N-1 downto 0));
full <= full_flag;
— read pointer next—state logic
r_ptr_next <=
r_ptr_reg + 1 when rd=’1’ and empty_flag=’'0’ else
r_ptr_reg;
empty_flag <= ’'1’ when r_ptr_reg=w_ptr_reg else
:0;;
— read port output
r_addr <= std_logic_vector(r_ptr_reg(N-1 downto 0));
empty <= empty_flag;
end enlarged_bin_arch;

0)
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To complete the FIFO buffer, we combine the control circuit and the register file, as shown
in Figure 9.13. This can be done by merging the previous register file VHDL code with
the FIFO controller code. A more systematic approach is to use component instantiation,
which is discussed in Chapter 13.

FIFO control circuit with status FFs An alternative design of a FIFO control circuit is
to keep track the state of the empty and full conditions and to use this information, combined
with the wr and rd signals, to determine the new conditions. This scheme does not require
augmented counters but needs two extra FFs to record the empty and full statuses. During
system initialization, the full status FF is set to 0’ and the empty status FF is set to ’1’.
After initialization, the wr and rd signals are examined at the rising edge of the clock, and
the pointers and the FFs are modified according to the following rules:

¢ wr and rd are "00": Since no operation is specified, pointers and FFs remain in the

previous state.

wr and rd are "11"; Write and read operations are performed simultaneously. Since
the net size of the buffer remains the same, the empty and full conditions will not
change. Both pointers advance one position.

wr and rd are "10": This indicates that only a write operation is performed. We must
first make sure that the buffer is not full. If that is the case, the write pointer advances
one position and the empty status FF should be deasserted. The advancement may
make the buffer full. This condition happens if the next value of the write pointer is
equal to the current value of the read pointer (i.e., the write pointer catches up to the
read pointer). If this condition is true, the full status FF will be set to *1" accordingly.
wr and rd are "01": This indicates that only a read operation is performed. We
must first make sure that the buffer is not empty. If that is the case, the read pointer
advances one position and the full status FF should be deasserted. The advancement
may make the buffer empty. This condition happens if the next value of the read
pointer is equal to the current value of the write pointer (i.€., the read pointer catches
up to the write pointer). If this condition is true, the empty status FF will be set to
’1” accordingly.

The VHDL code for this scheme is shown in Listing 9.17. In this code, we combine the
next-state logic of the pointers and FFs into a single process and use a case statement to
implement the desired operations under various wr and rd combinations.

Listing 9.17 FIFO controller with status FFs

architecture lookahead_bin_arch of fifo_sync_ctrl4 is

constant N: natural:=2;

signal w_ptr_reg, w_ptr_next: unsigned(N-1 downto 0);
signal w_ptr_succ: unsigned(N-1 downto 0);

signal r_ptr_reg, r_ptr_next: unsigned(N-1 downto 0);
signal r_ptr_succ: unsigned(N-1 downto 0);

signal full_reg, empty_reg: std_logic;

signal full_next, empty_next: std_logic;

signal wr_op: std_logic_vector (1 downto 0);

10 begin

—— register
process (clk,reset)
begin
if (reset=’1’) then
w_ptr_reg <= (others=>’0’);
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r_ptr_reg <= (others=>’0’);
elsif (clk’event and clk=’1’) then
w_ptr_reg <= w_ptr_next;
r_ptr_reg <= r_ptr_next;
) end if;
end process;
—— status FF
process (clk,reset)
begin
2 if (reset=’1’) then
full_reg <= ’0’;
empty_reg <= ’17;
elsif (clk’event and clk=’1’) then
full_reg <= full_next;
30 empty_reg <= empty_next;
end if;
end process;
— successive value for the write and read pointers
w.ptr_succ <= w_ptr_reg + 1;
35 r_ptr_succ <= r_ptr_reg + 1;
—— next—state logic
wr_op <= wr & rd;
process (w_ptr_reg ,w_ptr_succ,r_ptr_reg,r_ptr_succ,
wr_op,empty_reg,full_reg)
“© begin
w_ptr_next <= w_ptr_reg;
r_ptr_next <= r_ptr_reg;
full_next <= full_reg;
empty_next <= empty_reg;

5 case wr_op is
when "00" => — no op
when "10" => — write
if (full_reg /= ’1’) then — not full
w_ptr_next <= w_ptr_succ;
50 empty_next <= ’0°’;

if (w_ptr_succ=r_ptr_reg) then
full_next <=17;

end if;
end if;
55 when "01" => — read
if (empty_reg /= ’1°) them — not empty

r_ptr_next <= r_ptr_succ;
full_next <= ’07;
if (r_ptr_succ=w_ptr_reg) then

0 empty_next <='17;
end if;
end if;
when others => — write/read;
w_ptr_next <= w_ptr_succ;
6 r_ptr_next <= r_ptr_succ;
end case;

end process;
— write port output
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w_addr <= std_logic_vector(w_ptr_reg);
7 full <= full_reg;
r_addr <= std_logic_vector(r_ptr_reg);
empty <= empty_reg;
end lookahead_bin_arch;

FIFO control circuit with a non-binary counter For the previous two FIFO control
circuit implementations, the two incrementors used in the binary counters consume the most
hardware resources. If we examine operation of the read and write pointers closely, there is
no need to access the register in binary sequence. Any order of access is fine as long as the
two pointers circulate through the identical sequence. If we can derive a circuit to generate
the status signals, other types of counters can be used for the pointers.

In the first scheme, we enlarge the binary counter and use the extra MSB to determine
the status. This approach is based on the special property of the binary counting sequence
and cannot easily be modified for other types of counters.

In the second scheme, the status signal relies on the successive value of the counter, and
thus this scheme can be applied to any type of counter. Because of its simple next-state
logic, LFSR is the best choice. It replaces the incrementor of a binary counter with a few
xor cells and can significantly improve circuit size and performance, especially for a large
FIFO address space.

Modifying the VHDL code is straightforward. Let us consider a FIFO controller with
a 4-bit address. In the original code, the following two statements generate the successive
values:

w_ptr_succ <= w_ptr_reg + 1;
r_ptr_succ <= r_ptr_reg + 1;

They can be replaced by the next-state logic of a 4-bit LFSR:

w_ptr_succ <=

(w_ptr_reg(1) xor w_ptr_reg(0)) & w_ptr_reg(3 downto 1);
r_ptr_succ <=

(r_ptr_reg(l) xor r_ptr_reg(0)) & r_ptr_reg(3 downto 1);

We must also revise the asynchronous reset portion of the code to initialize the counters for
a non-zero value.

Recall that an n-bit LFSR circulates through only 2™ — 1 states, and thus the size of the
FIFO buffer is reduced by one accordingly. For a large n, the impact of the reduction is
very small. We can also use a Bruijn counter if the entire 2™ address space is required.

9.3.3 Register-based content addressable memory

In a register file, each register in the file is assigned a unique address. When using a register
to store a data item, we associate the item with the address, and access (i.e., read or write)
this item via the address. An alternative way to identify a data item is to associate each
item with a unique “key” and use this key to access the data item. This organization is
known as content addressable memory (CAM). A CAM is used in applications that require
high-speed search, such as cache memory management and network routing.

The operation of a CAM can best be explained by a simple example. Consider a network
router that examines the 16-bit destination field of an incoming packet and routes it to one
of the eight output ports. A 4-word CAM stores information regarding the most frequently
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Figure 9.15 Operation of a conceptual CAM.

routed packets. The conceptual sketch is shown in Figure 9.15(a). The CAM includes four
words, and each word is composed of a key—data pair. The key of the CAM is the 16-bit
destination field, and the data is the 3-bit output port number. Since there are 216 possible
combinations for the key, which is far greater than the 4-word capacity of the CAM, we
may need to remove an old key—data pair to make room for the new incoming pair. A
replacement pointer, labeled rep ptr in the diagram, indicates the location of the word to
be removed.
Let us first examine a sequence of write operations:

1. Write (FFFF;¢, 0102), which means an item with a key of FFFF;¢ and data of 010,.
Since the CAM is empty and no key exists, the item is stored into the CAM, as shown
in Figure 9.15(b). The replacement pointer advances accordingly.

2. Write (OFOF;g, 0112). Since no existing key matches the new input key, the item is
stored into the CAM, as shown in Figure 9.15(c).

3. Write (OFOF;6, 0002). The input key matches an existing key in the CAM. The corre-
sponding data of the key is replaced by the new data 0005, as shown in Figure 9.15(d).

4. Write two new items. The CAM is now full, as shown in Figure 9.15(e). We assume
that the replacement pointer moves in a round-robin fashion and thus returns to the
first location of the table.

5. Write (EEEE, ¢, 1002). Since the CAM is full now, a word must be removed to make
place for the new item. The content of the first location is discarded for the new item,
as shown in Figure 9.15(f).

To perform a read operation, we present the key as the input, and the data associated
with the key will be routed to the output. For example, if the key is EEEE,g, the output
of the CAM becomes 1005. Since there is a chance that the input key does not match any
stored key, a CAM usually contains an additional output signal, hit, to indicate whether
there is a match (i.e., a hit).
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Figure 9.16 Matching circuit of a 4-word CAM.

Similar to SRAM, many technology libraries contain predesigned CAM modules that
are constructed and optimized at the transistor level. Although the density of these modules
is very high, accessing a CAM cell requires more time than is required by an FF. To improve
performance, we sometimes want to use FFs to implement a small, fast synchronous CAM
in the critical part of the system.

The major difference between a register file and a CAM is that the CAM uses a key,
instead of an address, to identify a data item. One way to construct a CAM is to separate
the storage into two register arrays, one for the data and one for the key. In our discussion,
we call them a data file and a key file respectively. The data file is organized as a register
file and uses an address to access its data. The key file contains a matching circuit, which
compares the input key with the content of the key array and generates the corresponding
address of the matched key. The address is then used to access the data stored in the data
file.

The implementation of a CAM is fairly involved and we start with the read operation.
The most unique component is the key file’s matching circuit. The block diagram of the
matching circuit of a 4-entry CAM and the relevant circuits is shown in Figure 9.16. The
output of each register of the key array is compared with the current value of the input key
(i.e., the key_in signal) and a 1-bit matching signal (i.e., the match (i) signal) is generated
accordingly. Since each stored key is unique, at most one can be matched. We use the hit
signal to indicate whether a match occurs (i.e., whether the input key is a “hit” or a “miss”).
If the key_in signal is a hit, one bit of the 4-bit match signal is asserted. A 22-to-2 binary
encoder generates the binary code of the matched location. The code is then used as the
read port address of the data file, and the corresponding data item is routed to the output.
Note that the output is not valid if the hit signal is not asserted.

The function of the key file is somewhat like a “reversed read operation” of a register
file. In a register file, we present the address as an input and obtain the content of the
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Figure 9.17 Block diagram of a 4-word register-based CAM.

corresponding register. On the other hand, we present a key (which is like the content) as
the input to a key file and obtain the address where the key is stored.

The write operation is more complicated because of the possible miss condition. During
a write operation, we present a key—data pair. If the key is a hit, the matching circuit
will generate the write address of the data file, and the input data will be stored into the
corresponding location. If the key is a miss, several tasks must be performed:

o Find an available register in the key array.
o Store the input key into this register.
o Store the data into the corresponding address in the data file.

The block diagram of the complete 4-word CAM is shown in Figure 9.17. The write
operation of the data file is controlled by the external wr_en signal and the address is
specified by the addr_out signal. The addr_out signal has two possible sources, one from
the matching circuit and one from the replacement pointer. The first address is used if the
input key is a hit. The replacement pointer is a circuit that keeps track of the available
register location in the key array. The circuit updates the value when a miss occurs during
the write operation. Its output value is used if the input key leads to a miss.

The writing operation of the key array is controlled by a decoding circuit similar to that
of a register file. A key register can be written only if the wr_en signal is asserted and a
miss occurs. If this is the case, the input key will be loaded into a register in the key array
with the address specified by the replacement pointer.
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The capacity of a register-based CAM is normally small, and the CAM is used to keep
the “most frequently used” key—data pairs, When it is full and a miss occurs, a stored pair
must be discarded to make place for a new pair. The replacement policy determines how
to select the pair, and this policy is implemented by the replacement pointer circuit. One
simple policy is the FIFO policy, which can be implemented by a binary counter. Initially,
the CAM is empty and the counter is zero. The counter increments as the key—data pairs
are stored into the CAM. The CAM is full when the counter reaches its maximal value.
When a new pair comes and a miss occurs, the counter returns to O and wraps around. This
corresponds to overwriting (i.e., discarding) the pair with the oldest key and storing the new
pair in its location, achieving the desired FIFO policy.

A register file normally has one write port and several read ports. In theory, the same
configuration can be achieved in a CAM by presenting several keys in parallel and using
several matching circuits to generate multiple addresses. However, this is not common
because of the complexity of the comparison circuit, and we normally use one input key
signal, as in Figure 9.17. The read operation will be performed if the wr_en signal is not
asserted.

The VHDL code of the data file is similar to the register file discussed in Section 9.3.1.
We can even use a regular register file by connecting the addr_out signal to the w_addr and
r_addrO signals of the register file, as in Figure 9.17. The VHDL code of the key file of a
4-word, 16-bit CAM is shown in Listing 9.18. It follows the block diagram of Figure 9.17.
A 2-bit binary counter is used to implement the FIFO replacement policy.

Listing 9.18 Key file of a 4-word CAM

library ieee;
use ieee.std_logic_1164.all;
use ieee.numeric_std. all;
entity key_file is
5 port(
clk, reset: im std_logic;
wr_en: in std_logic;
key_in: in std_logic_vector (15 downto 0);
hit: out std_.logic;
10 addr_out: out std_logic_vector (1 downto 0)
)
end key_file;

architecture no_loop_arch of key_file is
15 constant WORD: natural:=2;
constant BIT: natural:=16;
type reg_file_type is array (2**WORD-1 downto 0) of
std_logic_vector (BIT-1 downto 0);
signal array_reg: reg_file_type;
2 signal array_next: reg_file_type;
signal en: std_logic_vector (2x*WORD-1 downto O0);
signal match: std_logic_vector (2x*WORD-1 downto 0);
signal rep_reg, rep_next: unsigned (WORD-1 downto 0);
signal addr_match: std_logic_vector (WORD-1 downto 0);
% signal wr_key, hit_flag: std_logic;
begin
— register
process (clk,reset)
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begin
) if (reset=’1’) then
array_reg(3) <= (others=>’0");
array_reg(2) <= (others=>’0’);
array_reg (1) <= (others=>’'0');
array_reg(0) <= (others=>'0’);
3 elsif (clk’event and clk=’1’) then
array_reg(3) <= array_next(3);
array_reg(2) <= array_next(2);
array_reg(1l) <= array_next (1);
array_reg(0) <= array_next(0);
a0 end if;
end process;
— enable logic for register
process (array_reg,en,key_in)
begin
as array_next (3) <= array_reg(3);
array_next (2) <= array_reg(2);
array_next (1) <= array_reg(1i);
array_next (0) <= array_reg(0);
if en(3)=’1’ then
50 array_next (3) <= key_in;
end if;
if en(2)=’1’ then
array_next (2) <= key.in;
end if;
55 if en(1)=’1’ then
array_next (1) <= key_in;
end if;
if en(0)=’1’ then
array_next (0) <= key_in;
) end if;
end process;

— decoding for write address
wr_key <= ’1’ when (wr_en=’1’ and hit_flag=’0’) else
6s 07,
process (vr_key ,rep.reg)
begin
if (wr_key=’0’) then
en <= (others=>’0’);
70 else
case rep_reg is
when "00" => en <= "0001";
when "01" => en <= "0010";
when "10" => en <= "0100";
75 when others => en <= "1000";
end case;
end if;
end process;

® —— replacement pointer
process (clk,reset)
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begin
if (reset=’1’) then
rep_reg <= (others=>'0’);

8 elsif (clk’event and clk='1’) then
rep_reg <= rep_next;
end if;

end process;
rep._next <= rep_reg + 1 when wr_key=’1’ else
% rep_reg;

—— key comparison
process (array_reg ,key_in)
begin
9 match <= (others=>’0’);
if array_reg(3)=key_in then
match(3) <= ’1°;

end if;

if array_reg(2)=key_in then
100 match(2) <= ’17;

end if;

if array_reg{(l)=key_in then
match (1) <= ’1?;
end if;
105 if array_reg(0)=key_in then
match(0) <= 1°’;
end if;
end process;
—— encoding
o with match select
addr_match <=
"00" when "0001",
01" when "0010",
"10" when "0100",

ns "11" when others;
— hit
hit_flag <= 1’ when match /="0000" else ’0’;
——output

hit <= hit_flag;
120 addr_out <= addr_match when (hit_flag=’1’) else
std_logic_vector(rep_reg);
end no_loop_arch;

As in the register file and FIFO buffer, the code will be cumbersome for a larger CAM.
A more systematic approach is discussed in Chapter 15.

9.4 PIPELINED DESIGN

Pipeline is an important technique to increase the performance of a system. The basic idea
is to overlap the processing of several tasks so that more tasks can be completed in the same
amount of time. If a combinational circuit can be divided into stages, we can insert buffers
(i.e., registers) at proper places and convert the circuit into a pipelined design. This section
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introduces the concept of pipeline and shows how to add pipeline to the combinational
multiplier discussed in Chapter 8.

9.4.1 Delay versus throughput

Before we study the pipelined circuit, it will be helpful to first understand the difference
between delay and throughput, two criteria used to examine the performance of a system.
Delay is the time required to complete one task, and throughput is the number of tasks that
can be completed per unit time. The two are related but are not identical.

To illustrate the concept, let us use the bank ATM machine transaction as an example.
Assume that a bank branch originally has only one ATM machine and it takes 3 minutes to
complete a transaction. The delay to complete one transaction is 3 minutes and the maximal
throughput is 20 transactions per hour. If the bank wishes to increase the performance of
its ATM system, there are two options. The first option is to use a newer, faster ATM
machine. For example, the bank can install a machine that takes only 1.5 minutes to
complete a transaction. The second option is to add another machine so that there are two
ATM machines running in parallel. For the first option, the delay becomes 1.5 minutes
and the maximal throughput increases to 40 transactions per hour. For the second option,
the transaction delay experienced by a user is still 3 minutes and thus remains the same.
However, since there are two ATM machines, the system’s maximal throughput is doubled
to 40 transactions per hour. In summary, the first option reduces the delay in an individual
transaction and increases the throughput at the same time, whereas the second option can
only improve the throughput.

Adding pipeline to a combinational circuit is somewhat like the second option and can
only increase a system’s throughput. It will not reduce the delay in an individual task.
Actually, because of the overhead introduced by the registers and non-ideal stage division,
the delay will be worse than in the non-pipelined design.

9.4.2 Overview on pipelined design

Pipelined laundry The pipelining technique can be applied to a task that is processed
in stages. To illustrate the concept, let us consider the process of doing laundry. Assume
that we do a load of laundry in three stages, which are washing, drying and folding, and
that each stage takes 20 minutes. For non-pipelined processing, a new load cannot start
until the previous load is completed. The time line for processing four loads of laundry is
shown in Figure 9.18(a). It takes 240 minutes (i.e., 4x3x20 minutes) to complete the four
loads. In terms of the performance criteria, the delay of processing one load is 60 minutes
and the throughput is 616 load per minute (i.e., four loads in 240 minutes).

If we examine the process carefully, there is room for improvement. After 20 minutes,
the washing stage is done and the washer is idle. We can start a new load at this point
rather than waiting for completion of the entire laundry process. Since each stage takes
the same amount of time, there will be no contention in subsequent stages. The time line
of the pipelined version of four loads is shown in Figure 9.18(b). It takes 120 minutes to
complete the four loads. In terms of performance, the delay in processing one load remains
60 minutes. However, the throughput is increased to 62—0 load per minute (i.e., 4 loads in
120 minutes). If we process k loads, it will take 40+ 20k minutes. The throughput becomes
5750 10ad per minute. If & is large, the throughput approaches - load per minute, which
is three times better than that of the non-pipelined process.
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Figure 9.18 Timing diagrams of pipelined and non-pipelined laundry sequences.

This example shows an ideal pipelined situation, in which a task can be divided into
stages of identical delays. If washing, drying and folding take 15, 25 and 20 minutes
respectively, we must accommodate the stage with the longest delay or a conftict will occur.
For example, when washing is done at the first stage, we have to wait for 10 minutes before
putting a new load into the dryer. Under this scenario, we can only start a new load every 25
minutes at best. The delay to complete one load is increased from 60 minutes to 75 minutes
(i.e., 3%25 minutes) now. The throughput for k loads becomes 5= load per minute and

approaches 513 load per minute when k is large. Note that while the pipelined processing
helps improving the throughput, it actually increases the processing delay for a single load.

Pipelined combinational circuit The same pipeline concept can be applied to com-
binational circuits. We can divide a combinational circuit in stages so that the processing of
different tasks can be overlapped, as in the laundry example. To ensure that the signals in
each stage flow in the correct order and to prevent any potential race, we must add a register
between successive stages, as shown in the four-stage pipelined combinational circuit of
Figure 9.19. An output buffer is also included in the last stage. A register functions as a
“flood gate” that regulates signal flow. It ensures that the signals can be passed to the next
stage only at predetermined points. The clock period of the registers should be large enough
to accommodate the slowest stage. At a faster stage, output will be blocked by the register
even when the processing has been completed earlier. The output data at each stage will be
sampled and stored into registers at the rising edge of the clock. These data will be used
as input for the next stage and remain unchanged in the remaining part of the clock period.
At the end of the clock period, the new output data are ready. They will be sampled and
passed to the next stage (via the register) at the next rising edge of the clock.

The effectiveness of the pipelined circuit is judged by two performance criteria, the
delay and the throughput. Consider the previous four-stage pipelined combinational circuit.
Assume that the original propagation delays of the four stages are T1, Ty, T3 and Ty
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Figure 9.19 Construction of a four-stage pipelined circuit.

respectively. Let T4, be the longest propagation delay among the four stages:
Tnaz = max(Ty, Tz, T3, Ty)

The clock period needs to accommodate the longest delay plus the overhead introduced by
the buffer register in each stage, which includes the setup time (Tgesp) and the clock-to-q
delay (T¢,) of the register. Thus, the minimal clock period, T, is

Te = Traz + Tsetup + ch

In the original non-pipelined combinational circuit, the propagation delay in processing one
data item is
Teomb=T1 + T2+ T3+ T,

For the pipelined design, processing a data requires four clock cycles and the propagation
delay becomes
szpe = 4Tc = 4Tma:z: + 4(Tsetup + ch)

This is clearly worse than the propagation delay of the original circuit.

The second performance criterion is the throughput. Since there is no overlapping
when the data is processed, the maximal throughput of the non-pipelined design is 7;
The throughput of the pipelined design can be derived by calculating the time requlred
to complete k consecutive data items. When the process starts, the pipeline is empty. It
takes 37 to fill the first three stages, and the pipeline does not generate an output in the
interval. After this, the pipeline is full and the circuit can produce one output in each clock
cycle. Thus, it requires 3T, + kT to process k data items. The throughput is 3_7‘3'%@ and
approaches = 77 as k becomes very large.

In an ideal plpehned scenario, the propagation delay of each stage is identical (which
implies that Trq; = “2922), and the register overhead (i.e., Tsetup + T¢q) is comparably
small and can be ignored. Tpipe can be simplified as

szpe = 4T, = 4Trmaz = Teoms

The throughput becomes
1 4

1
Tc = Tmam Tcomb
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This implies that the pipeline imposes no penalty on the delay but increases the throughput
by a factor of 4.

The discussion of four-stage pipelined design can be generalized to an /V-stage pipeline.
In the ideal scenario, the delay to process one data item remains unchanged and the through-
put can be increased N-fold. This suggests that it is desirable to have more stages in the
pipeline. However, when N becomes large, the propagation delay of each stage becomes
smaller. Since Tyerup + Teq of the register remains the same, its impact becomes more
significant and can no longer be ignored. Thus, extremely large IV has less effect and may
even degrade the performance. In reality, it is also difficult, if not impossible, to keep
dividing the original combinational circuit into smaller and smaller stages.

When discussing the throughput of a pipelined system, we have to be aware of the
condition to obtain maximal throughput The assumption is that the external data are fed
into the pipeline at a rate of = 7 so that the pipeline is filled all the time. If the external input
data cannot be issued fast enough there will be slack (a “bubble”) inside the pipeline, and
the throughput will be decreased accordingly. If the external data is issued only sporadically,
the pipelined design will not improve the performance at all.

9.4.3 Adding pipeline to a combinational circuit

Although we can add pipeline to any combinational circuit by inserting registers into the
intermediate stages, the pipelined version may not provide better performance. The previous
analysis shows that the good candidate circuits for effective pipeline design should include
the following characteristics:

There is enough input data to feed the pipelined circuit.
The throughput is a main performance criterion.
The combinational circuit can be divided into stages with similar propagation delays.
The propagation delay of a stage is much larger than the setup time and the clock-to-q
delay of the register.

If a circuit is suitable for the pipelined design, we can convert the original circuit and
derive the VHDL code by the following procedure:

1. Derive the block diagram of the original combinational circuit and arrange the circuit
as a cascading chain.

2. Identify the major components and estimate the relative propagation delays of these
components.

3. Divide the chain into stages of similar propagation delays.

4. Identify the signals that cross the boundary of the chain.

5. Insert registers for these signals in the boundary.

This procedure is illustrated by the examples in the following subsections.

Simple pipelined adder-based muitiplier The adder-based multiplier discussed in
Section 7.5.4 uses multiple adders to sum the bit products in stages and thus is a natural
match for a pipelined design. Our design is based on the scheme used in the combl_arch
architecture of Listing 7.34. To reduce the clutter in the block diagram, we use a 5-bit
multiplier to demonstrate the design process. The design approach can easily be extended
to an 8-bit or larger multiplier.

The two major components are the adder and bit-product generation circuit. To facilitate
the pipeline design process, we can arrange these components in cascade. The rearranged
block diagram is shown in Figure 9.20(a). The circuit to generate the bit product is labeled BP
in the diagram. Since the bit-product generation circuit involves only bitwise and operation
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Figure 9.20 Block diagrams of non-pipelined and four-stage pipelined multipliers.
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and the padding of 0’s, its propagation delay is small. We combine it with the adder to form
a stage. The division of the the circuit is shown in Figure 9.20(a), in which the boundary of
each stage is shown by a dashed line. To help the coding, a signal is given a unique name
in each stage. For example, the a signal is renamed a0, a1, a2 and a3 in the zeroth, first,
second and third stages of the pipeline respectively. Since no addition is needed to generate
the first partial product (i.e., the pp0 signal), the zeroth and first stages can be merged into
a single stage later.

For a signal crossing the stage boundary line, a register is needed between the two stages.
There are two types of registers. The first type of register is used to accommodate the
computation flow and to store the intermediate results, which are the partial products, pp1,
PP2, pp3 and pp4, in the diagram. The second type of register preserves the information
needed for each stage, which are a1, a2, a3, bi, b2 and b3. The function of these registers
is less obvious. In this pipeline, the processing at each stage depends on the partial product
result from the preceding stage, as well as the values of the a and b signals. Note that four
multiplications are performed concurrently in the pipeline, each with its own values for the
a and b signals. As the partial product calculation progresses through the pipeline, these
values must go with the calculation in each stage. The second type of register essentially
carries the original values along the pipeline so that a correct copy of the input data is
available in each stage. The completed pipelined multiplier with proper registers is shown
in Figure 9.20(b).

Following the diagram, we can derive the VHDL code accordingly. The code of the
rearranged combinational multiplier is shown in Listing 9.19. The creation of the new
signal names is only for later use and should have no effect on synthesis.

Listing 9.19 Non-pipelined multiplier in cascading stages

library ieee;
use ieee.std_logic_1164. all;
use ieee.numeric_std. all;
entity multb is
s port(
clk, reset: in std_logic;
a, b: in std_logic_vector (4 downto 0);
y: out std_logic_vector (9 downto 0)
);
wend mults;

architecture comb_arch of mults is
constant WIDTH: integer:=5;
signal a0, al, a2, a3: std_logic_vector (WIDTH-1 downto 0);
15 signal b0, bl, b2, b3: std_logic_vector (WIDTH-1 downto 0);
signal bv0, bvl, bv2, bv3, bvéd:
std_logic_vector (WIDTH-1 downto 0);
signal bp0O, bpl, bp2, bp3, bp4s:
unsigned (2*WIDTH-1 downto 0);
2 signal pp0, ppl, pp2, pp3., pp4:
unsigned (2*WIDTH-1 downto 0);
begin
—— stage 0
bv0 <= (others=>b(0));
2 bp0 <=unsigned ("00000" & (bv0 and a));
pp0 <= bpoO;
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a0 <= a;
b0 <= b;
— stage 1
30 bvl <= (others=>b0(1));
bpl <=unsigned("0000" & (bvl and a0) & "0");
ppl <= pp0 + bpl;

al <= a0;
bl <= bO;
3 —— stage 2

bv2 <= (others=>b1(2));
bp2 <=unsigned("000" & (bv2 and al) & "00");
pp2 <= ppl + bp2;
a2 <= atl;
40 b2 <= bil;
— Sstage 3
bv3 <= (others=>b2(3));
bp3 <=unsigned("00" & (bv3 and a2) & "000");
pp3 <= pp2 + bp3;
a5 a3 <= a2;
b3 <= b2;
— stage 4
bva <= (others=>b3(4));
bp4 <=unsigned("0" & (bv4 and a3) & "0000");
50 pp4 <= pp3 + bp4d;
— output
y <= std_logic_vector (pp4);
end comb_arch;

When converting the circuit into a pipelined version, we first add the specifications for
the registers and then reconnect the input and output of each stage to the registers. Instead
of using the output from the preceding stage, each stage of pipeline circuit obtains its input
from the boundary register. Similarly, the output of each stage is now connected to the input
of the register rather than feeding directly to the next stage. For example, the pp2 signal of
the non-pipelined circuit is generated in the second stage and is then used in the third stage:

—— stage 2
pp2 <= ppl + bpZ;
— stage 3
pp3 <= pp2 + bp3;

In the pipelined design, the signal should be stored in a register, and the code becomes

— register
if (reset ='1’) then
pp2_reg <= (others=>’0’};
elsif (clk’event and clk=’1’) then
Pp2_reg <= pp2_next;
end if;

— stage 2
pp2_next <= ppl_reg + bp2;
— stage 3
pp3_next <= pp2_reg + bp3;

The complete VHDL code of the four-stage pipelined circuit is shown in Listing 9.20.
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Listing 9.20 Four-stage pipelined multiplier
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architecture four_stage_pipe_arch of multb is
constant WIDTH: integer:=5;
signal al_reg, a2_reg, a3_reg:
std_logic_vector (WIDTH-1 downto 0);
5 signal a0, al_next, a2 _next, a3_next:
std_logic_vector (WIDTH-1 downto 0);
signal bl_reg, b2_reg, b3_reg:
std_logic_vector (WIDTH~-1 downto 0);
signal b0, bl_next, b2_next, b3_next:
10 std_logic_vector (WIDTH-1 downto 0);
signal bv0, bvi, bv2, bv3, bvé:
std_logic_vector (WIDTH-1 downto 0);
signal bp0, bpl, bp2, bp3, bp4:
unsigned (2*WIDTH~-1 downto 0);
s signal ppl_reg, pp2_reg, pp3_reg, ppé_reg:
unsigned (2*WIDTH-1 downto 0);
signal pp0, ppl_next, pp2_mext, pp3_next, ppi_next:
unsigned (2*WIDTH-1 downto 0);
begin
20 — pipeline registers (buffers)
process (clk,reset)
begin
if (reset =’1°) then
ppi_reg <= (others=>’0’);

2 pp2_reg <= (others=>’0’);
pp3.reg <= (others=>’0");
pp4_reg <= (others=>’0");
al_reg <= (others=>’0’)};
a2_reg <= (others=>’0’);

N a3_reg <= (others=>’0");
bl_reg <= (others=>’0");
b2_reg <= (others=>’0’);
b3_reg <= (others=>’0’);

elsif (clk’event and clk=’1’) then

3 ppl_reg <= ppl_next;
pp2_reg <= pp2_next;
pp3_reg <= pp3._mext;
ppéd.reg <= pp4_next;
al_reg <= al_next;

% a2_reg <= a2_next;
a3_reg <= a3_next;
bl_reg <= bl_next;
b2_reg <= b2_next;
b3_reg <= b3_next;

4 end if;

end process;

— merged stage 0 & I for pipeline
bv0 <= (others=>b(0));
50 bp0 <=unsigned ("00000" & (bv0 and a));
pp0 <= bp0;
a0 <= a;
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b0 <= b;
55 bvi <= (others=>b0(1));
bpl <=unsigned("0000" & (bvl and a0) & "0");
Ppl_next <= pp0 + bpil;
al_next <= al;
bl_next <= b0;
60 — stage 2
bv2 <= (others=>bl_reg(2));
bp2 <=unsigned("000" & (bv2 and al_reg) & "00");
Pp2_next <= ppl_reg + Dbp2;
a2_next <= al_reg;
65 b2_next <= bl _reg;
— stage 3
bv3 <= (others=>b2_reg(3));
bp3 <=unsigned ("00" & (bv3 and a2_.reg) & "000");
pp3_next <= pp2_reg + bp3;

70 a3_next <= a2_reg;
b3_next <= b2_reg;
— Sstage 4

bv4d <= (others=>b3_reg(4));
bp4 <=unsigned("0" & (bv4 and a3_reg) & "0000");
75 ppé4.next <= pp3_reg + bp4d;
— output
y <= std_logic_vector(ppd._reg);
end four_stage_pipe_arch;

We can adjust the number of stages by adding or removing buffer registers. For example,
we can reduce the number of pipeline stages by removing the registers in the first and third
stages and create a two-stage pipelined multiplier. The revised VHDL code is shown in
Listing 9.21.

Listing 9.21 Two-stage pipelined multiplier

architecture two_stage_pipe_arch of multbs is

constant WIDTH: integer:=5;
signal a2_reg: std_logic_vector (WIDTH-1 downto 0);
signal a0, al, a2_next, a3:

5 std_logic_vector (WIDTH-1 downto 0);
signal b2_reg: std_logic_vector(WIDTH-1 downte 0);
signal b0, bl, b2_next, b3:

std_logic_vector (WIDTH-1 downto 0);

signal bv0, bvi, bv2, bv3, bvd:

0 std_logic_vector (WIDTH-1 downto 0);
signal bp0, bpt, bp2, bp3, bp4:

unsigned (2*WIDTH-1 downto 0);

signal pp2_reg, pp4_reg: unsigned (2*WIDTH-1 downto 0);
signal pp0, ppl, pp2.next, pp3, ppéd_next:

15 unsigned (2*WIDTH-1 downto 0);

begin

—— pipeline registers (buffers)
process (clk,reset)
begin

2 if (reset =’1°) then
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pp2_reg <= (others=>’'0’);
ppé._reg <= (others=>’0’);
a2_reg <= (others=>’0’);
b2_reg <= (others=>’0’);

elsif (clk’event and clk=’1’) then
pPp2.reg <= pp2_next;
pp4_reg <= ppé4_next;
a2_reg <= a2_next;
b2_reg <= b2_next;

end if;

end process;

— stage 0

bv0 <= (others=>b(0));

bp0 <=unsigned ("00000" & (bv0 and a));

pp0 <= bp0;

a0 <= a;

b0 <= b;

— stage 1

bvl <= (others=>b0(1));

bpl <=unsigned("0000" & (bvl and a0) & "0");
ppl <= pp0 + bpl;

al <= a0;

bl <= b0;

—— stage 2 (with buffer)

bv2 <= (others=>b1(2));

bp2 <=unsigned("000" & (bv2 and al) & "00");
pp2_next <= ppl + bp2;

a2_next <= al;

b2_next <= bil;

—— stage 3

bv3d <= (others=>b2_reg(3));

bp3 <=unsigned("00" & (bv3 and a2_reg) & "000");
pp3 <= pp2_reg + bp3;

a3 <= a2_reg;

b3 <= b2_reg;

— stage 4 (with buffer)

bv4 <= (others=>b3(4));

bp4 <=unsigned("0" & (bv4 and a3) & "0000");
pp4_next <= pp3 + bp4;

— output

y <= std_logic_vector (ppé4_reg);

end two_stage_pipe_arch;

303

More efficient pipelined adder-based multiplier 'We canmake some improvements
of the initial pipelined design. First, as discussed in Section 7.5.4, we can use a smaller
(n + 1)-bit adder to replace the 2n-bit adder in an n-bit multiplier. The same technique can
be applied to the pipelined version. Second, we can reduce the size of the partial-product
register. This is based on the observation that the valid LSBs of the partial products grow
incrementally in each stage, from n + 1 bits to 2n bits. There is no need to use a 2n-bit
register to carry the invalid MSBs in every stage. In the previous example, we can use a
5-bit register for the initial partial product (i.e., the pp0 signal), and increase the size by 1 in
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each stage. Finally, we can reduce the size of the registers that hold the b signal. Note that
only the b; bit of b is needed to obtain the bit product at the ith stage. Once the calculation is
done, the b; bit can be discarded. Instead of using n-bit registers to carry b, we can drop one
LSB bit in each stage and reduce the register size decrementally. In the previous example,
we can drop the register bits for by and b in the first stage, the bits for by in the second
stage and so on. The VHDL code of the revised design is shown in Listing 9.22.

Listing 9.22 More efficient four-stage pipelined multiplier

architecture effi_4_stage_pipe_arch of mult5 is
signal al_reg, a2_reg, a3_reg:
std_logic_vector (4 downto 0);
signal a0, al_next, a2_next, a3_next:

5 std_logic_vector (4 downto 0);
sigmal b0: std_logic_vector (4 downto 1);
signal bl_next, bl_reg: std_logic_vector (4 downto 2);
signal b2_next, b2_reg: std_logic_vector (4 downto 3);
signal b3_next, b3_reg: std_logic_vector (4 downto 4);

10 signal bv0, bvl, bv2, bv3, bvd:

std_logic_vector (4 downto 0);
signal bp0, bpl, bp2, bp3, bpd: unsigned (5 downto 0);
signal pp0: unsigned (5 downto 0);
signal ppl_next, ppl_reg: unsigned (6 downto 0);

15 signal pp2_next, pp2_reg: unsigned(7 downto 0);
signal pp3_next, pp3_reg: unsigned (8 downto 0);
signal pp4_next, pp4_reg: unsigned (9 downto 0);

begin
—— pipeline registers (buffers)
2 process (clk,reset)
begin
if (reset =’1’) then
ppi_reg <= (others=>’0’);
pp2_reg <= (others=>’0’);
2 pp3.reg <= (others=>0’);
ppé4_reg <= (others=>’0’);
al_reg <= (others=>'0’);
a2_reg <= (others=>’0’);
a3_reg <= (others=>’0’);

e bl_reg <= (others=>'0’);
b2_reg <= (others=>’0’);
b3_reg <= (others=>'0’);

elsif (clk’event and clk=’1’) then
ppl_reg <= ppl_next;

35 pPp2_reg <= pp2_mnext;
pp3_reg <= pp3_next;
pré4_reg <= ppé4_next;
al_reg <= al_next;
a2_reg <= a2_next;

) a3_reg <= a3_next;
bl_reg <= bl_next;
b2_reg <= b2_next;
b3_reg <= b3_next;

end if;

4 end process;
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— merged stage 0 & 1 for pipeline

bv0 <= (others=>b(0));

bp0 <=unsigned(’0’ & (bv0 and a));

PPO <= bpoO;

a0 <= a;

b0 <= b(4 downto 1);

bvli <= (others=>b0(1));

bpl <=unsigned(’0’ & (bvi and a0));

ppl_next (6 downto 1) <= (’0’ & pp0(5 downto 1)) + bpil;
ppi_next (0) <= pp0(0);

al_next <= al;

bi_next <= b0(4 downto 2);

~— stage 2

bv2 <= (others=>bl_reg(2));

bp2 <=unsigned(’0’ & (bv2 and al_reg));

pp2_next (7 downto 2) <= (’0’ & ppl_reg(6 downto 2)) + bp2;
pp2_next (1 downto 0) <= ppi_reg(l downto 0);

a2_next <= al_reg;

b2_next <= bl_reg(4 downto 3);

—— stage 3

bv3 <= (others=>b2_reg(3));

bp3 <=unsigned(’0’ & (bv3 and a2_reg));

pp3_next (8 downto 3) <= (’0’ & pp2_reg(7 downte 3)) + bp3;
pp3_next (2 downto 0) <= pp2_reg(2 downto 0);

a3_next <= a2_reg;

b3_next (4) <= b2_reg(4);

—— stage 4

bv4d <= (others=>b3_reg(4));

bp4 <=unsigned(’0’ & (bv4 and a3_reg));

pp4_next (9 downto 4) <= (’0’ & pp3_reg(8 downto 4)) + bp4;
pp4_next (3 downto 0) <= pp3_reg(3 downto 0);

— output

y <= std_logic_vector(ppd_reg);

end effi_4_stage_pipe_arch;

Tree-shaped pipelined multiplier Discussion in Section 7.5.4 shows that we can re-
arrange a cascading network to reduce the propagation delay. In an n-bit combinational
multiplier, the critical path consists of n — 1 adders in a cascading network. The critical
path can be reduced to [log, ] adders when a tree-shaped network is used. The same
scheme can be applied to the pipelined multiplier. The 5-bit tree-shaped combinational
circuit is shown in Figure 9.21(a). The five bit products are first evaluated in parallel and
then fed into the tree-shaped network. The pipelined version is shown in Figure 9.21(b). It
is divided into three stages and the required registers are shown as dark bars. Note that one
bit product has to be carried through two stages. The VHDL code is given in Listing 9.23.

Listing 9.23 Tree-shaped three-stage pipelined multiplier

architecture tree_pipe_arch of multb is

constant WIDTH: integer:=5;
signal bv0, bdbvl, bv2, bv3, bvéd:
std_logic_vector (WIDTH-1 downto 0);
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Figure 9.21 Block diagrams of tree-shaped non-pipelined and pipelined multipliers.

signal bp0, bpl, bp2, bp3, bp4:
unsigned (2*WIDTH-1 downto 0);

signal bp4_sl_reg, bp4_s2_reg:
unsigned (2*WIDTH-1 downto 0);

signal bp4_si_next, bp4_s2_next:
unsigned (2«*WIDTH-1 downto 0);

signal ppOl_reg, pp23_reg, pp0123_reg, pp01234_reg:
unsigned (2*WIDTH-1 downto 0);

signal ppOl_next, pp23_next, pp0123_next, pp01234_next:
unsigned (2*WIDTH-1 downto 0);

is begin

— pipeline registers (buffers)

process (clk ,reset)

begin

if (reset =’1?) then

ppOl_reg <= (others=>’0’);
ppr23_reg <= (others=>’0’);
pp0123_reg <= (others=>70’);
pp01234_reg <= (others=>’07);
bpé4_si_reg <= (others=>’0’);
bp4_s2_reg <= (others=>’0’);
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elsif (clk’event and clk=’1’) then
pPp0l_reg <= ppOl_next;
pp23_reg <= pp23_next;
pp0123_reg <= pp0123_next;
30 ' pp01234_reg <= pp01234_next;
bpé4.sl_reg <= bpé4_si_next;
bp4.s2_reg <= bpé4_s2_next;
end if;
end process;
35
— stage 1
—— bit product
bv0 <= (others=>b(0));
bp0 <=unsigned ("00000" & (bv0 and a));
w0 bvl <= (others=>b(1));
bpl <=unsigned("0000" & (bvl and a) & "0");
bv2 <= (others=>b(2));
bp2 <=unsigned("000" & (bv2 and a) & "00");
bv3 <= (others=>b(3));
as bp3 <=unsigned("00" & (bv3 and a) & "000");
bvd <= (others=>b(4));
bp4 <=unsigned("0" & (bv4 and a) & "0000");
— adder
ppOl_next <= bp0 + bpl;
50 PP23_next <= bp2 + bp3;
bp4_sl_next <= bp4;
—— stage 2
pp0123_next <= ppOl_reg + pp23_reg;
bp4_8s2_next <= bp4_sl_reg;
55 —— stage 3
pp01234_next <= pp0123_reg + bp4_s2_reg;
— output
y <= std_logic_vector(pp01234_reg);
end tree_pipe_arch;

In terms of performance, the delay in the tree-shaped multiplier is smaller since it has
only three pipelined stages. The improvement will become more significant for a larger
multiplier. On the other hand, the throughput of the two pipelined designs is similar because
they have a similar clock rate. Both can generate a new multiplication result in each clock
cycle.

Although the division of the adder-based multiplier appears to be reasonable, it is not
optimal. Examining the circuit in “finer granularity” can shed light about the data depen-
dency on the internal structure and lead to a more efficient partition. This issue is discussed
in Section 15.4.2.

9.4.4 Synthesis of pipelined circuits and retiming

The major step of adding pipeline to a combinational circuit is to divide the circuit into
adequate stages. To achieve this goal, we must know the propagation delays of the relevant
components. However, since the components will be transformed, merged and optimized
during synthesis and wiring delays will be introduced during placement and routing, this
information cannot easily be determined at the RT level.
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Figure 9.22 Example of circuit retiming.

Except for a highly regular structure, such as the previous adder-based multiplier ex-
ample, partitioning a circuit into proper stages is difficult. We may need to synthesize
major components and even some subsystems in advance to obtain rough estimations of the
propagation delays, and then use this information to guide the division.

More sophisticated synthesis software can automate this task to some degree. Itis known
as retiming. For example, consider the three-stage pipelined circuit shown in Figure 9.22(a).
The combinational circuits are shown as clouds with their propagation delays. The division
of the original combinational circuit is not optimal and thus creates three uneven stages. In
regular synthesis software, optimization can be done only for a combinational circuit, and
thus the three combinational circuits of Figure 9.22(a) are processed independently. On the
other hand, synthesis software with retiming capability can examine the overall circuit and
move combinational circuits crossing the register boundaries. A rebalanced implementation
is shown in Figure 9.22(b). This tool is especially useful if the combinational circuits are
random and do not have an easily recognizable structure.

9.5 SYNTHESIS GUIDELINES

e Asynchronous reset, if used, should be only for system initialization. It should not
be used to clear the registers during regular operation.

¢ Do not manipulate or gate the clock signal. Most desired operations can be achieved
by using a register with an enable signal.

e LFSR is an effective way to construct a counter. It can be used when the counting
patterns are not important.

e Throughput and delay are two performance criteria. Adding pipeline to a combina-
tional circuit can increase the throughput but not reduce the delay.

o The main task of adding pipeline to a combinational circuit is to divide the circuit
into balanced stages. Software with retiming capability can aid in this task.
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9.6 BIBLIOGRAPHIC NOTES

Although the implementation of an LFSR is simple, it has lots of interesting properties and
a wide range of applications. The text, Built In Test for VLSI: Pseudorandom Techniques by
Paul H. Bardell et al., has an in-depth discussion on the fundamentals and implementation of
LFSRs. The application note of Xilinx, Efficient Shift Registers, LFSR Counters, and Long
Pseudorandom Sequence Generators, includes a table that lists LFSR feedback expressions
from 2 to 160 bits.

A pipeline is a commonly used technique to increase the performance of a processor.
Its design is more involved because of the external data dependency. The text, Computer
Organization and Design: The Hardware/Software Interface, 3rd edition, by David A.
Patterson and John L. Hennessy, provides comprehensive coverage of this topic.

Problems

9.1 Consider the decade counter shown in Figure 9.1. Let Tinc, Tcomp and To, be the
propagation delays of the incrementor, comparator and or cell, and Tyesyp, Toq andT:, be
the setup time, clock-to-q delay and reset-to-q delay of the register. Determine the maximal
clock rate of this counter.

9.2 Consider the following asynchronous counter constructed with T FFs:
ck ————p> > D> >

(a) Draw the waveform for the clock and the output of four FFs.

(b) Describe the operation of this counter.

(c) Design a synchronous counter that performs the same task and derive the VHDL
code accordingly.

9.3  For the 4-bit ring counter discussed in Section 9.2.2, the output of the 4 FFs appears
to be out of phase. Let Tcq(o) and Teq(1) be the clock-to-q delays when the q output of an
FF becomes 0’ and ' 1’ respectively. Note that T;.,(o) and T¢,(1) may not always be equal.
Perform a detailed timing analysis to determine whether a ring counter can produce true
non-overlapping four-phase signals.

9.4 Design a 4-bit self-correction synchronous counter that circulates a single "0’ (i.e.,
circulates the "1110" pattern).

9.5 Revise the design of the 4-bit LFSR in Section 9.2.3 to include the "0000" pattern but
exclude the "1111" pattern.

9.6 Let the propagation delay of an xor cell be 4 ns, the propagation delay of an n-bit
incrementor be 67 ns, and the setup time and clock-to-q delay of the register be 2 and 3 ns
respectively.
(a) Determine the maximal operation rates of a 4-bit LFSR and a binary counter.
(b) Determine the maximal operation rates of an 8-bit LFSR and a binary counter.
(c¢) Determine the maximal operation rates of a 16-bit LFSR and a binary counter.
(d) Determine the maximal operation rates of a 64-bit LFSR and a binary counter.
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9.7 Use the timing data from Problem 9.6. In addition, let the propagation delay of an
invertor, 2-input and cell and 2-input or cell be 2 ns.
(a) Use these cells to implement the additional comparison circuit needed in the 4-bit
Brujin counter in Section 9.2.3.
(b) Determine the maximal operation rates of the 4-bit Brujin counter.
(c) Repeats parts (a) and (b) for an 8-bit Brujin counter.

9.8 An alternative way to design a BCD counter is to use a BCD adder.
(a) Design a 3-digit BCD incrementor that adds 1 to a 3-digit 12-bit BCD operand,
and derive the VHDL code.
(b) Use this circuit to implement a 3-digit BCD counter and derive the VHDL code.
(c) Compare the circuit complexity between this design and the counter discussed in
Section 9.2.4,

9.9 For the PWM circuit in Section 9.2.5, can we replace the binary counter with a Brujin
counter? Explain.

9.10 The PWM circuit can control the duty cycle, but its frequency is fixed. If the original
frequency of the clock signal is f.k, the frequency of the PWM circuit in Section 9.2.5
is 12-5’5 We can extend the PWM circuit to a programmable pulse generator by adding
additional control signal to specify the desired frequency. Let k be a 4-bit signal that is
interpreted as an unsigned divisor. The frequency of the new output pulse will be %ﬁ-&% ifk

is not 0 and will be %& if k is 0. Design this circuit and derive the VHDL code.

9.11 A stack is a buffer in which the data is stored and retrieved in firsz-in-last-out fashion.
In a synchronous stack, it should consist of the following I/O signals:
e w_data and r_data: data to be written (also known as pushed) into and read (also
known as popped) from the stack.
e push and pop: control signals to enable the push or pop operation.
e full and empty: status signals.
e clk and reset: the clock and reset signals.

We can use a register file to construct this circuit, by following the design approach of the
FIFO buffer.

(a) Draw a top-level diagram similar to that in Figure 9.13.

(b) Consider a stack of four words. Derive the VHDL code of the control circuit.

9.12 In the CAM of Section 9.3.3, a binary encoding circuit is included in the key file
circuit to generate the address. This address is then decoded by the decoding circuit in
the register file. We can eliminate both encoding and decoding circuits to make the design
more efficient. Derive the VHDL code for the revised register file and the key file.

9.13 We can add a “mask” input to the CAM so that only a portion of the key will be used
for search. For example, if the key is 16 bits and the mask input is "0000000011111111",
only the eight LSBs of the key will be used for search. If a search finds multiple matches,
the address with the smallest value will be used. Revise the key file of Section 9.3.3 to
include this feature and derive the VHDL code.

9.14 Consider a combinational circuit that requires 128 ns to process input data and

assume that it can always be divided into smaller parts of equal propagation delays. Let T,

and Tiesup of the register be 1 and 3 ns respectively. Determine the throughput and delay
(a) of the original circuit.
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(b) if the circuit is converted into a 2-stage pipeline.
(c) if the circuit is converted into a 4-stage pipeline.
(d) if the circuit is converted into an 8-stage pipeline.
(e) if the circuit is converted into a 16-stage pipeline.
(f) if the circuit is converted into a 32-stage pipeline.

9.15 Convert the reduced-xor circuit in Section 7.4.1 into a four-stage pipelined circuit.
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CHAPTER 10

FINITE STATE MACHINE: PRINCIPLE AND
PRACTICE

A finite state machine (FSM) is a sequential circuit with “random” next-state logic. Unlike
the regular sequential circuit discussed in Chapters 8 and 9, the state transitions and event
sequence of an FSM do not exhibit a simple pattern. Although the basic block diagram of
an FSM is similar to that of a regular sequential circuit, its design procedure is different.
The derivation of an FSM starts with a more abstract model, such as a state diagram or an
algorithm state machine (ASM) chart. Both show the interactions and transitions between
the internal states in graphical formats. In this chapter, we study the representation, timing
and implementation issues of an FSM as well as derivation of the VHDL. code. Our emphasis
is on the application of an FSM as the control circuit for a large, complex system, and
our discussion focuses on the issues related to this aspect. As in previous chapters, our
discussion is limited to the synchronous FSM, in which the state register is controlled by a
single global clock.

10.1 OVERVIEW OF FSMS

As its name indicates, a finite state machine (FSM) is a circuit with internal states. Unlike
the regular sequential circuits discussed in Chapters 8 and 9, state transition of an FSM
is more complicated and the sequence exhibits no simple, regular pattern, as in a counter
or shift register. The next-state logic has to be constructed from scratch and is sometimes
known as “random” logic.

Formally, an FSM is specified by five entities: symbolic states, input signals, output
signals, next-state function and output function. A state specifies a unique internal condition
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Figure 10.1 Block diagram of an FSM.

of a system. As time progresses, the FSM transits from one state to another. The new state
is determined by the next-state function, which is a function of the current state and input
signals. In a synchronous FSM, the transition is controlled by a clock signal and can
occur only at the triggering edge of the clock. As we discussed in Section 8.2, our study
strictly follows the synchronous design methodology, and thus coverage is limited to the
synchronous FSM.

The output function specifies the value of the output signals. If it is a function of the state
only, the output is known as a Moore output. On the other hand, if it is a function of the
state and input signals, the output is known as a Mealy output. An FSM is called a Moore
machine or Mealy machine if it contains only Moore outputs or Mealy outputs respectively.
A complex FSM normally has both types of outputs. The differences and implications of
the two types of outputs are discussed in Section 10.4.

The block diagram of an FSM is shown in Figure 10.1. Itis similar to the block diagram of
a regular sequential circuit. The state register is the memory element that stores the state of
the FSM. It is synchronized by a global clock. The next-state logic implements the next-state
function, whose input is the current state and input signals. The output logic implements
the output function. This diagram includes both Moore output logic, whose input is the
current state, and Mealy output logic, whose input is the current state and input signals.
The main application of an FSM is to realize operations that are performed in a sequence
of steps. A large digital system usually involves complex tasks or algorithms, which can
be expressed as a sequence of actions based on system status and external commands. An
FSM can function as the control circuit (known as the control path) that coordinates and
governs the operations of other units (known as the data path) of the system. Our coverage
of FSM focuses on this aspect. The actual construction of such systems is discussed in the
next two chapters. FSMs can also be used in many simple tasks, such as detecting a unique
pattern from an input data stream or generating a specific sequence of output values.

10.2 FSM REPRESENTATION

The design of an FSM normally starts with an abstract, graphic description, such as a state
diagram or an ASM chart. Both descriptions utilize symbolic state notations, show the
transition among the states and indicate the output values under various conditions. A state
diagram or an ASM chart can capture all the needed information (i.e., state, input, output,
next-state function, and output function) in a single graph.
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mo: Moore output
me: Mealy output

S0
mo <= value

logic expression / me <= value logic expression / me <= value

Figure 10.2 Notation for a state.

10.2.1 State diagram

A state diagram consists of nodes, which are drawn as circles (also known as bubbles),
and one-direction transition arcs. The notation for nodes and arcs is shown in Figure 10.2.
A node represents a unique state of the FSM and it has a unique symbolic name. An arc
represents a transition from one state to another and is labeled with the condition that will
cause the transition. The condition is expressed as a logic expression composed of input
signals. An arc will be taken when the corresponding logic expression is evaluated to be
logic ’1".

The output values are also specified on the state diagram. The Moore output is a function
of state and thus is naturally placed inside the state bubble. On the other hand, the Mealy
output depends on both state and input and thus is placed under the condition expression of
the transition arcs. To reduce the clutter, we list only the output signals that are activated
or asserted. An output signal will assume the default, unasserted value (nor don’t-care) if
it is not listed inside the state bubble or under the logic expression of an arc. We use the
following notation for an asserted output value:

signal_name <= asserted value;

In general, an asserted signal will be logic ’1’ unless specified otherwise.

The state diagram can best be explained by an example. Figure 10.3 shows the state
diagram of a hypothetical memory controller FSM. The controller is between a processor
and a memory chip, interpreting commands from the processor and then generating a control
sequence accordingly. The commands, mem, rw and burst, from the processor constitute
the input signals of the FSM. The mem signal is asserted to high when a memory access is
required. The rw signal indicates the type of memory access, and its value can be either 1’
or ’(’, for memory read and memory write respectively. The burst signal is for a special
mode of a memory read operation. If it is asserted, four consecutive read operations will
be performed. The memory chip has two control signals, oe (for output enable) and we
(for write enable), which need to be asserted during the memory read and memory write
respectively. The two output signals of the FSM, oe and we, are connected to the memory
chip’s control signals. For comparison purpose, we also add an artificial Mealy output
signal, we_me, to the state diagram.

Initially, the FSM is in the id1e state, waiting for the mem command from the processor.
Once mem is asserted, the FSM examines the value of rw and moves to either the read1
state or the write state. These input conditions can be formalized to logic expressions, as
shown in the transition arcs from the idle state:

e mem/': represents that no memory operation is required.
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Figure 10.3 State diagram of a memory controller FSM.
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e mem - rw: represents that a memory read operation is required.
e mem - rw': represents that a memory write operation is required.

The results of these logic expressions are checked at the rising edge of the clock. If the
mem’ expression is true (i.e., mem is '0”), the FSM stays in the idle state. If the mem - rw
expression is true (i.e., both mem and rw are ’1°), the FSM moves to the read1 state. Once
it is there, the oe signal is activated, as indicated in the state bubble. On the other hand, if
the mem - rw’ expression is true (i.e., mem is °1’ and rw is *0’), the FSM moves to the
write state and activates the we signal.

After the FSM reaches the read1 state, the burst signal is examined at the next rising
edge of the clock. If itis ’1°, the FSM will go through read2, read3 and read4 states in
the next three clock cycles and then return to the idle state. Otherwise, the FSM returns
to the idle state. We use the notation “~” to represent the “always true” condition. After
the FSM reaches the write state, it will return to the idle state at the next rising edge of
the clock.

The we_me signal is asserted only when the FSM is in the id1e state and the mem - rw’
expression is true. It will be deactivated when the FSM moves away from the idle state
(i.e., to the write state). It is a Mealy output since its value depends on the state and the
input signals (i.e., mem and rw).

In practice, we usually want to force an FSM into an initial state during system initial-
ization. It is frequently done by an asynchronous reset signal, similar to the asynchronous
reset signal used in a register of a regular sequential circuit. Sometimes a solid dot is
used to indicate this transition, as shown in Figure 10.3. This transition is only for system
initialization and has no effect on normal FSM operation.

10.2.2 ASM chart

An algorithmic state machine (ASM) chart is an alternative method for representing an
FSM. Although an ASM chart contains the same amount of information as a state diagram,
it is more descriptive. We can use an ASM chart to specify the complex sequencing of
events involving commands (input) and actions (output), which is the hallmark of complex
algorithms. An ASM chart representation can easily be transformed to VHDL code. It can
also be extended to describe FSMD (FSM with a data path), which is discussed in the next
two chapters.

An ASM chart is constructed of a network of ASM blocks. An ASM block consists of
one state box and an optional network of decision boxes and conditional output boxes. A
typical ASM block is shown in Figure 10.4. The state box, as its name indicates, represents
a state in an FSM. It is identified by a symbolic state name on the top left corner of the state
box. The action or output listed inside the box describes the desired output signal values
when the FSM enters this state. Since the outputs rely on the state only, they correspond to
the Moore outputs of the FSM. To reduce the clutter, we list only signals that are activated
or asserted. An output signal will assume the default, unasserted value if it is not listed
inside the box. We use the same notation for an asserted output signal:

signal_name <= asserted value;

Again, we assume that an asserted signal will be logic ’1’ unless specified otherwise.

A decision box tests an input condition to determine the exit path of the current ASM
block. It contains a Boolean expression composed of input signals and plays a simi-
lar role to the logic expression in the transition arc of a state diagram. Because of the
flexibility of the Boolean expression, it can describe more complex conditions, such as
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(a > b) and (c /= 1). Depending on the value of the Boolean expression, the FSM
can follow either the frue path or the false path, which are labeled as T or F in the exit paths
of the decision box. If necessary, we can cascade multiple decision boxes inside an ASM
block to describe a complex condition.

A conditional output box also lists asserted output signals. However, it can only be
placed after an exit path of a decision box. It implies that these output signals can be
asserted only if the condition of the previous decision box is met. Since the condition is
composed of a Boolean expression of input signals, these output signals’ values depend
on the current state and input signals, and thus they are Mealy outputs. Again, to reduce
clutter, we place a conditional output box in an ASM block only when the corresponding
output signal is asserted. The output signal assumes the default, unasserted value when
there is no conditional output box.

Since an ASM chart is another way of representing an FSM, an ASM chart can be
converted to a state diagram and vice versa. An ASM block corresponds to a state and its
transition arcs of a state diagram. The key for the conversion is the transformation between
the logic expressions of the transition arcs in a state diagram and the decision boxes in an
ASM chart.

The conversion can best be explained by examining several examples. The first example
is shown in Figure 10.5. It is an FSM with no branching arches. The state diagram and the
ASM chart are almost identical.

The second example is shown in Figure 10.6. The FSM has two transition arcs from the
s0 state and has a Mealy output, y. The logic expressions a and a’ of the transition arches
are translated into a decision box with Boolean expression a = 1. Note that the two states
are transformed into two ASM blocks. The decision and conditional output boxes are not
new states, just actions associated with the ASM block s0.
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Figure 10.5 Example 1 of state diagram and ASM chart conversion.
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Figure 10.6 Example 2 of state diagram and ASM chart conversion.
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Figure 10.7 Example 3 of state diagram and ASM chart conversion.

The third example is shown in Figure 10.7. The transitions from the sO state are more
involved. We can translate the logic expressions a’ and a - &’ directly into two decision
boxes of conditions a = 0 and (a = 1) and (b = 0). However, closer examination
shows that the second decision box is on the false path of the first decision box, which
implies that a is *1°. Thus, we can eliminate the a = 1 condition from the second decision
box and make the decision simpler and more descriptive.

The fourth example is shown in Figure 10.8. The output of the FSM is more complex and
depends on various input conditions. The state diagram needs multiple logic expressions in
the transition arc to express various input conditions. The ASM chart can accommodate the
situation and is more descriptive. Finally, the ASM chart of the previous memory controller
FSM, whose state diagram is shown in Figure 10.3, is shown in Figure 10.9.

Since an ASM chart is used to model an FSM, two rules apply:

1. For a given input combination, there is one unique exit path from the current ASM

block.

2. The exit path of an ASM block must always lead to a state box. The state box can be

the state box of the current ASM block or a state box of another ASM block.

Several common errors are shown in Figure 10.10. The ASM chart of Figure 10.10(a)
violates the first rule. There are two exit paths if a and b are both *1°, and there is no exit
path if a and b are both '0°. The ASM chart of Figure 10.10(b) also violates the first rule
since there is no exit path when the condition of the decision box is false. The ASM chart
of Figure 10.10(c) violates the second rule because the exit path of the bottom ASM block
does not enter the top ASM block via the state box. The second rule essentially states that
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Figure 10.8 Example 4 of state diagram and ASM chart conversion.

the decision boxes and conditional output boxes are associated with a single ASM block
and they cannot be shared by other ASM blocks.

An ASM chart and a state diagram contain the same information. Because of the use
of decision boxes and flowchart-like graphs, an ASM chart can accommodate the complex
conditions involved in state transitions and Mealy outputs, as shown in the third and fourth
examples. On the other hand, an ASM chart may be cumbersome for an FSM with simple,
straightforward state transitions, and a state diagram is preferred. We use mostly state
diagrams in this chapter, but use mainly extended ASM charts while discussing the RT
methodology in Chapters 11 and 12,

10.3 TIMING AND PERFORMANCE OF AN FSM

10.3.1 Operation of a synchronous FSM

While a state diagram or an ASM chart shows all the states and transitions, it does not provide
information about when a transition takes place. In a synchronous FSM, the state transition
is controlled by the rising edge of the system clock. Mealy output and Moore output are
not directly related to the clock but are responding to input or state change. However, since
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a Moore output depends only on the state, its transition is indirectly synchronized by the
clock.

The timing of a synchronous FSM can best be explained by examining the operation of
an ASM block. In an ASM chart, each ASM block represents a state of the FSM. Instead
of moving “continuously” from one block to another block, as in a traditional flowchart,
the transitions between ASM blocks can occur only at the rising edge of the clock. The
operation of an ASM block transition can be interpreted as follows:

1. At the rising edge of the clock, the FSM enters a new state (and thus a new ASM
block).

2. During the clock period, the FSM performs several operations. It activates the Moore
output signals asserted in this state. It evaluates various Boolean expressions of the
decision boxes and activates the Mealy output signals accordingly.

3. At the next rising edge of the clock (which is the end of the current clock period),
the results of Boolean expressions are examined simultaneously, an exit path is de-
termined, and the FSM enters the designated new ASM block.

A state and its transitions in a state diagram are interpreted in the same manner.

10.3.2 Performance of an FSM

When an FSM is synthesized, the physical components introduce propagation delays. Since
the block diagram of an FSM is almost identical to that of a regular sequential circuit, the
timing analysis of an FSM is similar to that of a regular sequential circuit, as discussed in
Section 8.6. The main timing parameters associated with the block diagram of Figure 10.1
are:

® Teqs Tsetups Thota: the clock-to-q delay, setup time and hold time of the state register.
® Thect(mas): the maximal propagation delay of the next-state logic.

® Toutput(mo): the propagation delay of output logic for the Moore output.

® Toutput(me)- the propagation delay of output logic for the Mealy output.

As in a regular sequential circuit, the performance of an FSM is characterized by the
maximal clock rate (or minimal clock period). The minimal clock period is

T, = ch + Tnezt(maw) + Tsetup

and the maximal clock rate is

f 1

- ch + Tnezt(maz) + Tsetup

Since an FSM is frequently used as the controller, the response of the output signal is also
important. A Moore output is characterized by the clock-to-output delay, which is

Tco(mo) = ch + Toutput(ma)

A Mealy output may respond to the change of a state or an input signal. The former is
characterized by the clock-to-output delay, similar to the Moore output:

Tco(me) = ch + Toutput(me)

The latter is just the propagation delay of Mealy output logic, which is Ty sput(me).-
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10.3.3 Representative timing diagram

The timing diagram helps us to better understand the operation of an FSM and generation
of the output signals. It is especially critical when an FSM is used as a control circuit. One
tricky part regarding the FSM timing concerns the rising edge of the clock. In an ideal FSM,
there is no propagation delay, and thus the state and output signal change at the edge. If the
state or output is fed to other synchronous components, which take a sample at the rising
edge, it is difficult to determine what the value is. In reality, this will not happen since there
is always a clock-to-q delay from the state register. To avoid confusion, this delay should
always be included in the timing diagram.

A detailed, representative timing diagram of a state transition is shown in Figure 10.11.
It is based on the FSM shown in Figure 10.6. We assume that the next state of the FSM
(the state_next signal) is 80 initially. At ¢;, the rising edge of the clock, the state register
samples the state.next signal. After T, (at tp), the state register stores the value and
reflects the value in its output, the state_reg signal. This means that the FSM moves to
the s0 state. At t3, the a input changes from ’0’ to *1’. According to the ASM chart, the
condition of the decision box is met and the true branch is taken. In terms of the circuit,
the change of the a signal activates both the next-state logic and the Mealy output logic.
After the delay of T}, (at £4), the state_next signal changes to s1. Similarly, the Mealy
output, y0, changes to '1" after Touiput(me) (at £5). At Lg, the a signal switches back
to ’0’. The state_next and yO signals respond accordingly. Note that the change of the
state_next signal has no effect on the state register (i.e., the state of the FSM). At t7, the
a signal changes to *1° again, and thus the state_next and y0 signals become s1 and "1’
after the delays. At tg, the current period ends and a new rising edge occurs. The state
register samples the state_next signal and stores the s1 value into the register. After T,
(at tg), the register obtains its new value and the FSM moves to the s1 state. The change
in the state_reg signal triggers the next-state logic, Mealy output logic and Moore output
logic. After the T,.: delay (at £1p), the next-state logic generates a new value of s0. We
assume that Ty 1put(mo) AN Toutput(me) are similar. After this delay (at 1), the Mealy
output, y0, is deactivated, and the Moore output, y1, is activated. The y1 signal remains
asserted for the entire clock cycle. At £12, a new clock edge arrives, the state_reg signal
changes to s0 after the T, delay (at ¢13), and the FSM returns to the s0 state. The y1 signal
is deactivated after the Tyytput(mo) delay (at t14).

The timing diagram illustrates the major difference between an ASM chart and a regular
flowchart. In an ASM chart, the state transition (or ASM block transition) occurs only at
the rising edge of the clock signal. Within the clock period, the Boolean condition and the
next state may change but have no effect on the system state. The new state is determined
solely by the values sampled at the rising edge of the clock.

10.4 MOORE MACHINE VERSUS MEALY MACHINE

As we discussed in Section 10.1, an FSM can be classified into a Moore machine or a Mealy
machine. In theoretical computer science, a Moore machine and a Mealy machine are con-
sidered to have similar computation capability (both can recognize “regular expressions™),
although a Mealy machine normally accomplishes the same task with fewer states. When
the FSM is used as a control circuit, the control signals generated by a Moore machine and
a Mealy machine have different timing characteristics. Understanding the subtle timing
difference is critical for the correctness and efficiency of a control circuit. We use a simple
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Figure 10.11 FSM timing diagram.

edge detection circuit to illustrate the difference between a Mealy machine and a Moore
machine,

10.4.1 Edge detection circuit

We assume that a synchronous system is connected to a slowly varying input signal, strobe,
which can be asserted to * 1’ for a long time (much greater than the clock period of the FSM).
An edge detection circuit is used to detect the rising edge of the strobe signal. It generates
a “short” pulse when the strobe signal changes from 0’ to *1°. The width of the output
pulse is about the same or less than a clock period of the FSM. Since the intention is to
show the difference between a Mealy machine and a Moore machine, we are deliberately
vague about the specification of the width and timing of the output pulse.

The basic design idea is to construct an FSM that has a zero state and a one state, which
represent that the input has been 0’ or *1’ for a long period of time respectively. The FSM
has a single input signal, strobe, and a single output signal. The output will be asserted
“momentarily” when the FSM transits from the zero state to the one state.

We first consider a design based on a Moore machine. The state diagram is shown in
Figure 10.12(a). There are three states. In addition to the zero and one states, the FSM
also has an edge state. When strobe becomes 1’ in the zero state, it implies that strobe
changes from ’0’ to ’1’. The FSM moves to the edge state, in which the output signal, p1,
is asserted. In normal operation, strobe should continue to be ’1’ and the FSM moves to
the one state at the next rising edge of the clock and stays there until strobe returns to '0’.
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Figure 10.12 Edge detector state diagrams.

If strobe is really short and changes to "0’ in the edge state, the FSM will return to the
zero state. A representative timing diagram is shown in the top portion of Figure 10.13.

The second design is based on a Mealy machine. The state diagram is shown in Fig-
ure 10.12(b). It consists of only the zero and one states. When strobe changes from >0’
to 1’ in the zero state, the FSM moves to the one state. From the state diagram, it seems
that the output signal, p2, is asserted when the FSM transit from the zero state to the one
state. Actually, p2 is asserted in the zero state whenever strobe is '1’. When the FSM
moves to the one state, p2 will be deasserted. The timing diagram is shown in the middle
portion of Figure 10.13.

For demonstration purposes, we also include a version that combines both types of
outputs. The third design inserts a delay state into the Mealy machine-based design
and prolongs the output pulse for one extra clock cycle. The state diagram is shown in
Figure 10.12(c). In this design, the FSM will assert the output, p3, in the zero state, as in
the second design. However, the FSM moves to the delay state afterward and forces p3
to be asserted for another clock cycle by placing the assertion on both transition edges of
the delay state. Note that since p3 is asserted in the delay state under all transition arcs,
it implies that p3 will be asserted in the delay state regardless of the input condition. The
behavior of the FSM in the delay state is similar to the edge state of the Moore machine—
based design, and we can also move the output assertion, p3<=1, into the bubble of the
delay state. The timing diagram is shown in the bottom portion of Figure 10.13.
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Figure 10.13 Edge detector timing diagram.

10.4.2 Comparison of Moore output and Mealy output

All three edge detector designs can generate a “short” pulse when the input changes from *0’
to ’1’, but there are subtle differences. Understanding the differences is the key to deriving
a correct and efficient FSM and an FSM-based control circuit.

There are three major differences between the Moore machine and Mealy machine-based
designs. First, a Mealy machine normally requires fewer states to perform the same task.
This is due to the fact that its output is a function of states and external inputs, and thus
several possible output values can be specified in one state. For example, in the zero state of
the second design, p2 can be either "0’ or ’1’, depending on the value of strobe. Thus, the
Mealy machine-based design requires only two states whereas the Moore machine-based
design requires three states.

Second, a Mealy machine can generate a faster response. Since a Mealy output is
a function of input, it changes whenever the input meets the designated condition. For
example, in Mealy machine-based design, if the FSM is in the zero state, p2 is asserted
immediately after strobe changes from '0’ to ’1’, as shown in the timing diagram. On the
other hand, a Moore machine reacts indirectly to input changes. The Moore machine-based
design also senses the changes of strobe in the zero state. However, it has to wait until the
next state (i.e., the edge state) to respond. The change causes the FSM to move to the edge
state. At the next rising edge of the clock, the FSM moves to this state and p1 responds
accordingly, as shown in the timing diagram. In a synchronous system, the distinction



VHDL DESCRIPTION OF AN FSM 329

between a Mealy output and a Moore output normally means a delay of one clock cycle.
Recall that the input signal of a synchronous system is sampled only at the rising edge of
the clock. Let us assume that the output of the edge detection circuit is used by another
synchronous system. Consider the first transition edge of strobe in Figure 10.13. The p2
signal can be sampled at t;. However, the p1 signal is not available at that time because
of the clock-to-q delay and output logic delay. Its value can be sampled only by the next
rising edge at t5.

The third difference involves the control of the width and timing of the output signal. Ina
Mealy machine, the width of an output signal is determined by the input signal. The output
signal is activated when the input signal meets the designated condition and is normally
deactivated when the FSM enters a new state. Thus, its width varies with input and can be
very narrow. Also, a Mealy machine is susceptible to glitches in the input signal and passes
these undesired disturbances to the output. This is shown in the p2 signal of Figure 10.13.
On the other hand, the output of a Moore machine is synchronized with the clock edge
and its width is about the same as a clock period. It is not susceptible to glitches from the
input signal. Although the output logic can still introduce glitches, this can be overcome
by clever output buffering schemes, which are discussed in Section 10.7.

As mentioned earlier, our focus on FSM is primarily on its application as a control
circuit. From this perspective, selection between a Mealy machine and a Moore machine
depends on the need of control signals. We can divide control signals into two categories:
edge-sensitive and level-sensitive. An edge-sensitive control signal is used as input for a
sequential circuit synchronized by the same clock. A simple example is the enable signal
of a counter. Since the signal is sampled only at the rising edge of the clock, the width of
the signal and the existence of glitches do not matter as long as it is stable during the setup
and hold times of the clock edge. Both the Mealy and the Moore machines can generate
output signals that meet this requirement. However, a Mealy machine is preferred since it
uses fewer states and responds one clock faster than does a Moore machine. Note that the
p3 signal generated by the modified Mealy machine will be active for two clock edges and
is actually incorrect for an edge-sensitive control signal.

A level-sensitive control signal means that a signal has to be asserted for a certain amount
of time. When asserted, it has to be stable and free of glitches. A good example is the
write enable signal of an SRAM chip. A Moore machine is preferred since it can accurately
control the activation time of its output, and can shield the control signal from input glitches.
Because of the potential glitches, the p3 signal is again not desirable.

10.5 VHDL DESCRIPTION OF AN FSM

The block diagram of an FSM shown in Figure 10.1 is similar to that of the regular se-
quential circuit shown in Figure 8.5. Thus, derivation of VHDL code for an FSM is similar
to derivation for a regular sequential circuit. We first identify and separate the memory
elements and then derive the next-state logic and output logic. There are two differences
in the derivation. The first is that symbolic states are used in an FSM description. To
capture this kind of representation, we utilize VHDL'’s enumeration data type for the state
registers. The second difference is in the derivation of the next-state logic. Instead of using
a regular combinational circuit, such as an incrementor or shifter, we have to construct the
code according to a state diagram or ASM chart,

We use the previous memory controller FSM to show the derivation procedure in the
following subsections.
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Figure 10.14 Block diagram of a memory controller FSM.

10.5.1 Multi-segment coding style

The first method is to derive the VHDL code according to the blocks of a block diagram,
and we call it the multi-segment coding style. The block diagram of the previous memory
controller is shown in Figure 10.14. There are four blocks and we use a VHDL code segment
for each block. The complete VHDL code is shown in Listing 10.1.

Listing 10.1 Multi-segment memory controller FSM

library ieee;
use ieee.std_logic_1164. all;
entity mem_ctrl is
port (
s clk, reset: im std_logic;
mem, rw, burst: im std_logic;
oe, we, we_me: out std_logic
Y
end mem_ctrl ;
{1
architecture mult_seg_arch of mem_ctrl is
type mc_state_type is
(idle, readl, read2, read3, read4, write);
signal state_reg, state_next: mc_state_type;
1s begin
— State register
process (clk,reset)
begin
if (reset=’1’) then
20 state_reg <= idle;
elsif (clk’event and clk=’1’) then
state_reg <= state_next;
end if;
end process;
2 — next—state logic
process (state_reg ,mem,rw,burst)
begin
case state_reg is
when idle =>
32 if mem=’1’ then
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then

state_next <= readl;

else

state_next <= write;

end if;
else
state_next
end if;
when write =>
state_next <=
when readl =>

<= idle;

idle;

if (burst=’1’) then

state_next <= read2;
else
state_next <= idle;
end if;
when read2 =>
state_next <= read3;
when read3 =>
state_next <= read4;
when read4 =>
state_next <= idle;
end case;
end process;
—— Moore output logic
process (state_reg)
begin
we <= ’0?; — default value
oe <= '0’; — default value

case state_reg is
when idle =>
when write =>
we <= 17;
when readl =>

oe <= ’1°;
when read2 =>
oe <= ’17;

when read3 =>
oe <= ’17;
when read4 =>
" oe <= 17;
end case;
end process;
— Mealy output logic

process (state_reg ,mem,rw)

begin

we_me <= ’0’; — default value

case state_reg is
when idle =>

if (mem=’1’) and (rw=’0?) then
we_me <= ’17;

end if;
when write =>

331
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when readi =>
85 when read2 =>
when read3 =>
when readd =>
end case;
end process;
o end mult_seg_arch;

Inside the architecture declaration, we use the VHDL’s enumeration data type. The data
type is declared as

type mc_state_type is (idle,readl,read2,read3,read4,write);
The syntax of the enumeration data type statement is very simple:
type type_name is (list_of_all_possible_values);

It simply enumerates all possible values in a list. In this particular example, we list all the
symbolic state names. The next statement then uses this newly defined type as the data type
for the state register’s input and output:

signal state_reg, state_next: mc_state_type;

The architecture body is divided into four code segments. The first segment is for the
state register. Its code is like that of a regular register except that a user-defined data type
is used for the signal. We use an asynchronous reset signal for initialization. The state
register is cleared to the id1le state when the reset signal is asserted.

The second code segment is for the next-state logic and is the key part of the FSM
description. It is patterned after the ASM chart of Figure 10.9. We use a case statement
with state_reg as the selection expression. The state_reg signal is the output of the state
register and represents the current state of the FSM. Based on its value and input signal, the
next state, denoted by the state_next signal, can be determined. As shown in the previous
segment, the next state will be stored into the state register and becomes the new state at
the rising edge of the clock. The state_next signal can be derived directly from the ASM
block. For a simple ASM block, such as the read?2 block, there is only one exit path and
the state_next signal is very straightforward:

state_next <= idle;

For a block with multiple exit paths, we can use if statements to code the decision boxes.
The Boolean condition inside a decision box can be directly translated to the Boolean
expression of the if statement, and the two exit paths can be expressed as the then branch
and the else branch of the if statement. Thus, we can follow the decision boxes and derive
the VHDL code for the state_next signal accordingly. For example, in the idle block,
the cascade decision boxes can be translated into a nested if statement:

if mem=’1’ then
if rw=’1’ then
state_next <= readl;
else
state_next <= write;
end if;
else
state_next <= idle;
end if;
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Figure 10.15 Block diagram of a two-segment memory controller FSM.

Note that the ASM has three possible exit paths from the id1e block, and thus the state_next
signal has three possible values.

The third code segment is the Moore output logic. Again, we use a case statement with
state_reg as the selection expression. Note that since the Moore output is a function of
state only, no input signal is in the sensitive list. Our code follows the ASM chart. Two
sequential signal assignment statements are used to represent the default output value:

we <= ’0°;
oe <= 0’;

If an output signal is asserted inside a state box, we put a signal assignment statement in
the corresponding choice in the VHDL code to overwrite the default value.

The fourth code segment is the Mealy output logic. Note that some input signal is now in
the sensitive list. Again, following the ASM chart, we use a case statement with state_reg
as the selection expression and use an if statement for the decision box. The Mealy output,
the we_me signal, will be assigned to the designated value according to the input condition.

We intentionally use the case statement to demonstrate the relationship between the
code and the ASM chart. It may become somewhat cumbersome. The segment can also be
written in a more compact but ad hoc way. For example, the Mealy output logic segment
can be rewritten as

we.me <= ’1’ when ((state_reg=idle) and (mem=’'1’) and
(rw=’0’)) else
lo,;

10.5.2 Two-segment coding style

The two-segment coding style divides an FSM into a state register segment and a com-
binational circuit segment, which integrates the next-state logic, Moore output logic and
Mealy output logic. In VHDL code, we need to merge the three segments and move the
state_next, oe, we and we_me signals into a single process. The block diagram is shown
in Figure 10.15. The architecture body of this revised code is shown in Listing 10.2.

Listing 10.2 Two-segment memory controller FSM

architecture two_seg_arch of mem_ctrl is
type mc_state_type is
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(idle, readl, read2, read3, read4,

write);

signal state_reg, state_next: mc_state_type;
s begin

—— State register
process (clk,reset)
begin
if (reset=’1’) then
state_reg <= idle;
elsif (clk’event and clk=’1:) then
state_reg <= state_next;
end if;
end process;
— next—state logic and output logic
process (state_reg ,mem,rw,burst)
begin
oe <= ’07; —— default values
we <= ’'07’;
we_me <= ’0°’;
case state_reg is
when idle =>
if mem=’1’ then
if rw=’1’ then
state_next <= readi;
else
state_next <= write;
we_me <= ’'17;
end if;
else
state_next <= idle;
end if;
when write =>
state_next <= idle;
we <= ’1°’;
when readl =>
if (burst=’1’) then
state_next <= read2;
else
state_next <= idle;
end if;
ce <= ’17;
when read2 =>
state_next <= read3;
oe <= ’17’;
when read3 =>
state_next <= read4;
oe <= '17;
when reads4 =>
state_next <= idle;
oe <= ’1°;
end case;
end process;

end two_seg_arch;
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Figure 10.16 Adding synchronous clear to a state diagram.

10.5.3 Synchronous FSM initialization

An alternative for the asynchronous initialization is to use a synchronous clear signal. To
achieve this goal, we have to add an additional transition arc for every state. The logic
expression of this arc corresponds to the assertion of the synchronous clear signal and is
given preference over other conditions. Assume that the syn_clr signal is added to the
FSM for this purpose and an FSM will be forced to the id1le state when the syn_clr signal
is asserted. The required revision for a state is shown in Figure 10.16.

Although revising a state diagram or an ASM chart introduces a significant amount of
clutter, this can be done easily in VHDL. We just add an extra if statement to check the
syn_clr signal in the next-state logic segment. If the condition syn_clr=’1" is true, the
idle value will be assigned to the state next signal. Otherwise, the FSM takes the else
branch and performs the normal transition. The needed revisions for the memory controller
FSM example are shown below.

entity mem_ctrl is
port (

syn_clr: in std_logic; — new input
architecture mult_seg_arch of mem_ctrl is
begin

—— next—state logic

process (state_reg ,mem,rw,burst,syn_clr)

begin
if (syn_clr='1’) then — synchronous clear
state_next <= idle;
else — original state_next values

case state_reg is
when idle =>
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end case;
end if;
end process;

10.5.4 One-segment coding style and its problem

We may be tempted to make the code more compact and describe the FSM in a single
segment, as shown in Listing 10.3.

Listing 10.3 One-segment memory controller FSM

architecture one_seg_wrong_arch of mem_ctrl is
type mc_state_type is
(idle, readl, read2, read3, readd4, write);
signal state_reg: mc_state_type;

s begin
process (clk,reset)
begin
if (reset=’1’) then
state_reg <= idle;
10 elsif (clk’event and clk=’1’) then

oe <= '0°’; — default values
we <= ’0’;
we_me <= 'Q’;
case state_reg is
15 when idle =>
if mem=’1? then
if rw=’1’ then
state_reg <= readil;

else
20 state_reg <= write;
we_me <= ’1°;
end if;
else
state_reg <= idle;
25 end if;

when write =>
state_reg <= idle;
we <= '17;

when readl =>

30 if (burst=’1’) then
state_reg <= read2;
else
state_reg <= idle;
end if;
35 oe <= ’'17;

when read2 =>
state_reg <= read3;
oe <= ’'17’;
when read3 =>
) state.reg <= read4;
oe <= ’17;
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Figure 10.17 FSM with unwanted output buffers.

when read4 =>
state_reg <= idle;
oe <= ’'17;
4 end case;
end if;
end process;
end one_seg_wrong_arch;

Unfortunately, this code suffers the same problem as that of the similar regular sequen-
tial circuit code discussed in Section 8.7. Recall that a left-hand-side signal within the
clk’event and clk=’1’ branch infers a register. While this is the desired effect for the
state.reg signal, three unwanted registers are inferred for the oe, we and we_me signals,
as shown in Figure 10.17 (for clarity, the connection lines for the clk and reset signals
are not shown). These signals are delayed by one clock cycle and the code does not meet
the specification described by the ASM chart. Although we can fix the problem by using a
separate process for the output logic, the resulting code is less clear. We generally refrain
from this style of coding.

10.5.5 Synthesis and optimization of FSM

After dividing a sequential circuit into a register and a combinational circuit, we can apply
RT-level optimization techniques for the combinational circuit. However, these techniques
are mainly for regular combinational circuits. The next-state logic and output logic of
the FSMs are normally random in nature since the code includes primarily case and if
statements and does not involve complex operators. These circuits are implemented by
gate-level components, and there is very little optimization that we can do when writing
RT-level VHDL code. Utilizing two-segment coding provides some degree of sharing
since the Boolean expressions inside the decision boxes are used by both next-state logic
and output logic.

Theoretically, there is a technique to identify the “equivalent states” of an FSM. We can
merge these states into one state and thus reduce the number of states of the FSM. However,
in a properly designed FSM, the chance of finding a set of equivalent states is very slim,
and this technique is not always applied in the design and synthesis process.
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There is one other unique opportunity to reduce the complexity of the combinational
circuit of the FSM: assigning proper binary representations for the symbolic states. This
issue is discussed in the next section.

The multi- and two-segment coding approach of previous subsections is very general
and we can use the two VHDL listings as templates. The key to developing good VHDL
code for an FSM is the derivation of an efficient and correct state diagram or ASM chart.
Once it is completed, obtaining VHDL code becomes more or less a mechanical procedure.
Some design entry software can accept a graphical state diagram and convert it to VHDL
code automatically.

10.6 STATE ASSIGNMENT

Our discussion of FSM so far utilizes only symbolic states. During synthesis, each symbolic
state has to be mapped to a unique binary representation so that the FSM can be realized by
physical hardware. State assignment is the process of mapping symbolic values to binary
representations.

10.6.1 Overview of state assignment

For a synchronous FSM, the circuit is not delay sensitive and is immune to hazards. Aslong
as the clock period is large enough, the synthesized circuit will function properly for any
state assignment. However, physical implementation of next-state logic and output logic is
different for each assignment. A good assignment can reduce the circuit size and decrease
the propagation delays, which in turn, increases the clock rate of the FSM.

An FSM with n symbolic states requires a state register of at least [log, n] bits to encode
all possible symbolic values. We sometimes utilize more bits for other purposes. There are
several commonly used state assignment schemes:

e Binary (or sequential) assignment: assigns states according to a binary sequence.
This scheme uses a minimal number of bits and needs only a [log, n]-bit register.

o Gray code assignment: assigns states according to a Gray code sequence. This
scheme also uses a minimal number of bits. Because only one bit changes between
the successive code words in the sequence, we may reduce the complexity of next-
state logic if assigning successive code words to neighboring states.

o One-hot assignment: assigns one bit for each state, and thus only a single bit is ’1”
(or “hot”) at a time. For an FSM with n states, this scheme needs an n-bit register.

o Almost one-hot assignment: is similar to the one-hot assignment except that the all-
zero representation ("0 - - - 0") is also included. The all-zero state is frequently used
as the initial state since it can easily be reached by asserting the asynchronous reset
signal of D FFs. This scheme needs an (n — 1)-bit register for n states.

Although one-hot and almost one-hot assignments need more register bits, empirical data
from various studies show that these assignments may reduce the circuit size of next-state
logic and output logic. Table 10.1 illustrates these schemes used for the previous memory
controller FSM.

Obtaining the optimal assignment is very difficult. For example, if we choose the one-hot
scheme for an FSM with n states, there are n! (which is worse than 2™) possible assignments.
It is not practical to obtain the optimal assignment by examining all possible combinations.
However, there exists special software that utilizes heuristic algorithms that can obtain a
good, suboptimal assignment.
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Table 10.1 State assignment example

Binary Gray code One-hot  Almost one-hot
assignment assignment assignment assignment

idle 000 000 000001 00000
readl 001 001 000010 00001
read?2 010 011 000100 00010
read3 011 010 001000 00100
read4 100 110 010000 01000
write 101 111 100000 10000

10.6.2 State assignment in VHDL

In some situations, we may want to specify the state assignment for an FSM manually.
This can be done implicitly or explicitly. In implicit state assignment, we keep the original
enumeration data type but pass the desired assignment by other mechanisms. The VHDL
standard does not define any rule for mapping the values of an enumeration data type to a
set of binary representations. It is performed during synthesis. One way to pass the desired
statement assignment to software is to use a VHDL feature, known as a user attribute, to
set a “directive” to guide operation of the software. A user attribute has no effect on the
semantics of VHDL code and is recognized only by the software that defines it. The IEEE
1076.6 RTL synthesis standard defines an attribute named enum_encoding for encoding
the values of an enumeration data type. This attribute can be used for state assignment. For
example, if we wish to assign the binary representations "0000", "0100", "1000", "1001",
"1010" and "1011" to the idle, write, readl, read2, read3 and read4 states of the
memory controller FSM, we can add the following VHDL segment to the original code:

type mc_state_type is (idle,write,readl,read2,read3,read4);
attribute enum_encoding: string;
attribute enum_encoding of mc_state_type:

type is "0000 0100 1000 1001 1010 1011";

This user attribute is very common and should be accepted by most synthesis software.

Synthesis software normally provides several simple state assignment schemes similar
to the ones discussed in the previous subsection. If we don’t utilize a user attribute, we
can specify the desired scheme as a parameter while invoking the software. If nothing is
specified, the software will perform the state assignment automatically. It normally selects
between binary assignment and one-hot assignment, depending on the characteristics of the
targeting device technology. We can also use specialized FSM optimization software to
obtain a good, suboptimal assignment.

We can explicitly specify the desired state assignment by replacing the symbolic values
with the actual binary representations, and use the std_logic_vector data type for this
purpose. To demonstrate this scheme, we incorporate the previous state assignment into the
memory controller FSM. The revised multi-segment VHDL code is shown in Listing 10.4.

Listing 10.4  Explicit user-defined state assignment

architecture state_assign_arch of mem_ctrl is
constant idle: std_logic_vector(3 downto 0):="0000";
constant write: std_logic_vector (3 downte 0):="0100";
constant readl: std_logic_vector (3 downto 0):="1000";
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constant read2: std_.logic_vector (3 downto 0):="1001";
constant read3: std_logic_vector (3 downto 0):="1010";
constant read4: std_logic._vector (3 downto 0):="1011";
signal state_reg,state_next: std_logic_vector (3 downto

begin

~— State register
process (clk ,reset)
begin
if (reset=’1’) then
state_reg <= idle;
elsif (clk’event and clk=’1’) then
state_reg <= state_next;
end if;
end process;
-~ next—state logic
process (state_reg ,mem,rw,burst)
begin
case state_reg is
when idle =>
if mem=’1’ then
if rw='1’ then
state_next <= readl;

else
state_next <= write;
end if;
else
state_next <= idle;
end if;

when write =>
state_next <= idle;
when readl =>
if (burst=’1’) then
state_next <= read?2;
else
state_next <= idle;
end if;
when read2 =>
state_next <= read3;
when read3 =>
state_next <= read4;
when read4 =>
state_next
when others =>
state_next <= idle;
end case;
end process;
— Moore output logic
process (state_reg)

A
]

idle;

+

begin
we <= ’0’; — default value
oe <= ’0’; — default value

case state_reg is
when idle =>

0);
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when write =>
we <= 17;
) when readl =>
oe <= ’1°’;
when read2 =>
oe <= 17;
when read3 =>
65 oe <= 17;
when read4 =>
oe <= '17;
when others =>
end case;
) end process;
—— Mealy output logic
we_me <= ’1’ when ((state_reg=idle) and (mem=’1’) and
(rw='07)) else
’o’;
s end state_assign_arch;

In this code, we use std_logic_vector(3 downto 0) as the state register’s data type.
Six constants are declared to represent the six symbolic state names. Because of the choice
of the constant names, the appearance of the code is very similar to that of the original
code. However, the name here is just an alias of a binary representation, but the name in
the original code is a value of the enumeration data type. One difference in the next-state
logic code segment is an extra when clause:

when others =>
state_next <= idle;

This revision is necessary since the selection expression of the case statement, state._reg,
now is with the std.logic.vector(3 downto 0) data type, and thus has 9% possible
combinations. The when others clause is used to cover all the unused combinations. This
mean that when the FSM reaches an unused binary representation (e.g., "1111"), it will
return to the idle state in the next clock cycle. We can also use

when others =>
state_next <= "----";

if the software accepts the don’t-care expression. A when others clause is also added for
the Moore output code segment.

The explicit state assignment allows us to have more control over the FSM but makes the
code more difficult to maintain and prevents the use of FSM optimization software. Unless
there is a special need, using an enumeration data type for state representation is preferred.

10.6.3 Handling the unused states

When we map the symbolic states of an FSM to binary representations, there frequently
exist unused binary representations (or states). For example, there are six states in the
memory controller FSM. If the binary assignment is used, a 3-bit (i.e., [log, 6]) register
is needed. Since there are 23 possible combinations from 3 bits, two binary states are not
used in the mapping. If one-hot state assignment is used, there are 58 (i.e., 26 — 6) unused
states.



342 FINITE STATE MACHINE: PRINCIPLE AND PRACTICE

During the normal operation, the FSM will not reach these states; however, it may
accidentally enter an unused state due to noise or an external disturbance. One question is
what we should do if the FSM reaches an unused state.

In certain applications, we can simply ignore the situation. It is because we assume that
the error will never happen, or, if it happens, the system can never recover. In the latter
case, there is nothing we can do with the error.

On the other hand, some applications can resume from a short period of anomaly and
continue to run. In this case we have to design an FSM that can recover from the unused
states. It is known as a fault-tolerant or safe FSM. For an FSM coded with an explicit state
assignment, incorporating this feature is straightforward. We just specify the desired action
in the when others clause of the case statement. For example, the state_assign_arch
architecture in Listing 10.4 is a safe FSM, The code specifies that the FSM returns to the
idle state if it enters an unused state:

when others =>
state_next <= idle;

If desired, we can revise the code to add an error state for special error handling:

when others =>
state_next <= error;

There is no easy way to specify a safe FSM if the enumeration data type is used. Since all
possible values of the enumeration data type are used in the case statement of the next-state
logic, there is no unused state in VHDL code. The unused states emerge only later during
synthesis, and thus they cannot be handled in VHDL code. Some software accepts an
artificially added when others clause for the unused states. However, by VHDL definition,
this clause is redundant and may not be interpreted consistently by different synthesis
software.

10.7 MOORE OUTPUT BUFFERING

We can add a buffer by inserting a register or a D FF to any output signal. The purpose of
an output buffer is to remove glitches and minimize the clock-to-output delay (7,,). The
disadvantage of this approach is that the output signal is delayed by one clock cycle.

Since the output of an FSM is frequently used for control purposes, we sometimes need
a fast, glitch-free signal. We can apply the regular output buffering scheme to a Mealy or
Moore output signal. The buffered signal, of course, is delayed by one clock cycle. For
a Moore output, it is possible to obtain a buffered signal without the delay penalty. The
following subsections discuss how to design an FSM to achieve this goal.

10.7.1 Buffering by clever state assignment

In a typical Moore machine, we need combinational output logic to implement the output
function, as shown in Figure 10.1. Since the Moore output is not a function of input signals,
it is shielded from the glitches of the input signals. However, the state transition and output
logic may still introduce glitches to the output signals. There are two sources of glitches.
The first is the possible simultaneous multiple-bit transitions of the state register, as from
the "111" state to the "000" state. Even the register bits are controlled by the same clock,
the clock-to-q delay of each D FF may be slightly different, and thus a glitch may show up
in the output signal. The second source is the possible hazards inside the output logic.
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Table 10.2 State assignment for the memory controller FSM output buffering

q3q2 9190 43929190

(oe) (we)
idle 00 00 0000
readi 10 00 1000
read2 10 01 1001
read3 10 10 1010
read4 10 11 1011
write 01 00 0100

Recall that the clock-to-output delay (7%,) is the sum of the clock-to-q delay (T4) of
the register and the propagation delay of the output logic. The existence of the output logic
clea