

~ ~~ ~~ ~ ~

RTL HARDWARE DESIGN
USING VHDL
Coding for Efficiency, Portability,
and Scalability

PONG P. CHU
Cleveland State University

A JOHN WlLEY & SONS, INC., PUBLICATION

This Page Intentionally Left Blank

RTL HARDWARE DESIGN
USING VHDL

This Page Intentionally Left Blank

~ ~~ ~~ ~ ~

RTL HARDWARE DESIGN
USING VHDL
Coding for Efficiency, Portability,
and Scalability

PONG P. CHU
Cleveland State University

A JOHN WlLEY & SONS, INC., PUBLICATION

Copyright 0 2006 by John Wiley & Sons, Inc. All rights reserved.

Published by John Wiley & Sons, Inc., Hoboken, New Jersey.
Published simultaneously in Canada.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form
or by any means, electronic, mechanical, photocopying, recording, scanning, or otherwise, except as
permitted under Section 107 or 108 of the 1976 United States Copyright Act, without either the prior
written permission of the Publisher, or authorization through payment of the appropriate per-copy fee to
the Copyright Clearance Center, Inc., 222 Rosewood Drive, Danvers, MA 01923, (978) 750-8400, fax
(978) 750-4470, or on the web at www.copyright.com. Requests to the Publisher for permission should
be addressed to the Permissions Department, John Wiley & Sons, Inc., 1 11 River Street, Hoboken, NJ
07030, (201) 748-601 1, fax (201) 748-6008, or online at http://www.wiley.com/go/pennission.

Limit of LiabilityiDisclaimer of Warranty: While the publisher and author have used their best efforts in
preparing this book, they make no representations or warranties with respect to the accuracy or
completeness of the contents of this book and specifically disclaim any implied warranties of
merchantability or fitness for a particular purpose. No warranty may be created or extended by sales
representatives or written sales materials. The advice and strategies contained herein may not be
suitable for your situation. You should consult with a professional where appropriate. Neither the
publisher nor author shall be liable for any loss of profit or any other commercial damages, including
but not limited to special, incidental, consequential, or other damages.

For general information on OUT other products and services or for technical support, please contact OUT

Customer Care Department within the United States at (800) 762-2974, outside the United States at
(317) 572-3993 or fax (317) 572-4002.

Wiley also publishes its books in a variety of electronic formats. Some content that appears in print may
not be available in electronic format. For information about Wiley products, visit our web site at
www.wiley.com.

Library of Congress Cataloging-in-Publication Data:

Chu, Pong P., 1959-

p. cm.
RTL hardware design using VHDL I by Pong P. Chu.

Includes bibliographical references and index.
“A Wiley-Interscience publication.”
ISBN-13: 978-0-471-72092-8 (alk. paper)
ISBN-10: 0-471-72092-5 (alk. paper)

1. Digital electronics-Data processing. 2. VHDL (Computer hardware description
language). I. Title.

TK7868.D5C46 2006
621.39‘2-4~22

Printed in the United States of America.

2005054234

1 0 9 8 7 6 5 4 3 2 1

To my parents Chia-Chi and Chi-Te, my wife Lee, and my daughter Patricia

This Page Intentionally Left Blank

CONTENTS

Preface

Acknowledgments

1 Introduction to Digital System Design

1.1 Introduction
1.2 Device technologies

1.2.1 Fabrication of an IC
1.2.2 Classification of device technologies
1.2.3 Comparison of technologies

1.3 System representation
1.4 Levels of Abstraction

1.4.1 Transistor-level abstraction
1.4.2 Gate-level abstraction
1.4.3 Register-transfer-level (RT-level) abstraction
1.4.4 Processor-level abstraction
Development tasks and EDA software
1.5.1 Synthesis
1 S .2 Physical design
1 S.3 Verification
1 S.4 Testing
1.5.5

1.5

EDA software and its limitations

xix

xxiii

1

1
2
2
2
5
8
9

10
10
11
12
12
13
14
14
16
16

vil

V\i\ CONTENTS

1.6 Development flow
1.6.1
1.6.2
1.6.3

1.7 Overview of the book
1.7.1 Scope
1.7.2 Goal

1.8 Bibliographic notes
Problems

Flow of a medium-sized design targeting FPGA
Flow of a large design targeting FPGA
Flow of a large design targeting ASIC

2 Overview of Hardware Description Languages

2.1 Hardware description languages
Limitations of traditional programming languages
Use of an HDL program
Design of a modem HDL

2.1.1
2.1.2
2.1.3
2.1.4 VHDL
Basic VHDL concept via an example
2.2.1 General description
2.2.2 Structural description
2.2.3 Abstract behavioral description
2.2.4 Testbench
2.2.5 Configuration

2.3 VHDL in development flow
2.3.1 Scope of VHDL
2.3.2 Coding for synthesis

Problems

2.2

2.4 Bibliographic notes

3 Basic Language Constructs of VHDL

3.1 Introduction
3.2 Skeleton of a basic VHDL program

3.2.1
3.2.2 Entity declaration
3.2.3 Architecture body
3.2.4 Design unit and library
3.2.5 Processing of VHDL code
Lexical elements and program format
3.3,l Lexical elements
3.3.2 VHDL program format

Example of a VHDL program

3.3

3.4 Objects
3.5 Data types and operators

17
17
19
19
20
20
20
21
22

23

23
23
24
25
25
26
27
30
33
35
37
38
38
40
40
41

43

43
44
44
44
46
46
47
47
47
49
51
53

CONTENTS IX

3.5.1
3.5.2
3.5.3
3.5.4
3.5.5

3.6.1 Guidelines for general VHDL
3.6.2 Guidelines for VHDL formatting

Problems

Predefined data types in VHDL
Data types in the IEEE stdlogic-1164 package
Operators over an array data type
Data types in the IEEE numeric-std package
The stdlogic-arith and related packages

3.6 Synthesis guidelines

3.7 Bibliographic notes

53
56
58
60
64
65
65
66
66
66

4 Concurrent Signal Assignment Statements of VHDL 69

4.1 Combinational versus sequential circuits
4.2 Simple signal assignment statement

4.2.1 Syntax and examples
4.2.2 Conceptual implementation
4.2.3

4.3 Conditional signal assignment statement
4.3.1 Syntax and examples
4.3.2 Conceptual implementation
4.3.3 Detailed implementation examples

4.4.1 Syntax and examples
4.4.2 Conceptual implementation
4.4.3 Detailed implementation examples
Conditional signal assignment statement versus selected signal assignment
statement
4.5.1

4.5.2

Signal assignment statement with a closed feedback loop

4.4 Selected signal assignment statement

4.5

Conversion between conditional signal assignment and selected
signal assignment statements
Comparison between conditional signal assignment and selected
signal assignment statements

4.6 Synthesis guidelines
4.7 Bibliographic notes

Problems

5 Sequential Statements of VHDL

5.1.1 Introduction
5.1.2
5.1.3

5.1 VHDL process

Process with a sensitivity list
Process with a wait statement

5.2 Sequential signal assignment statement

69
70
70
70
71
72
72
76
78
85
85
88
90

93

93

94
95
95
95

97

97
97
98
99

100

X CONTENTS

5.3 Variable assignment statement
5.4 If statement

5.4.1 Syntax and examples
5.4.2
5.4.3
5.4.4 Conceptual implementation
5.4.5 Cascading single-branched if statements

5.5.1 Syntax and examples
5.5.2
5.5.3 Incomplete signal assignment
5.5.4 Conceptual implementation

5.6.1 Syntax
5.6.2 Examples
5.6.3 Conceptual implementation

Comparison to a conditional signal assignment statement
Incomplete branch and incomplete signal assignment

5.5 Case statement

Comparison to a selected signal assignment statement

5.6 Simple for loop statement

5.7 Synthesis of sequential statements
5.8 Synthesis guidelines

5.8.1
5.8.2 Guidelines for combinational circuits

Problems

Guidelines for using sequential statements

5.9 Bibliographic notes

6 Synthesis Of VHDL Code

6.1 Fundamental limitations of EDA software
6.1.1 Computability
6.1.2 Computation complexity
6.1.3 Limitations of EDA software

6.2.1 Realization of logical operators
6.2.2 Realization of relational operators
6.2.3 Realization of addition operators
6.2.4
6.2.5
6.2.6 An example implementation
Realization of VHDL data types
6.3.1
6.3.2
6.3.3

6.4.1 RT-level synthesis
6.4.2 Module generator

6.2 Realization of VHDL operators

Synthesis support for other operators
Realization of an operator with constant operands

6.3
Use of the std-logic data type
Use and realization of the ’Z’ value
Use of the ’-’ value

6.4 VHDL synthesis flow

101
103
103
105
1 07
109
110
112
112
114
115
116
118
118
118
119
120
120
120
121
121
121

125

125
126
126
128
129
129
129
130
130
130
131
133
133
133
137
139
139
141

CONTENTS Xi

6.4.3 Logic synthesis
6.4.4 Technology mapping
6.4.5

6.5.1 Propagation delay
6.5.2 Synthesis with timing constraints
6.5.3 Timing hazards
6.5.4

Effective use of synthesis software
6.5 Timing considerations

Delay-sensitive design and its dangers
6.6 Synthesis guidelines
6.7 Bibliographic notes

Problems

7 Combinational Circuit Design: Practice

Derivation of efficient HDL description

7.2.1 Sharing example 1
7.2.2 Sharing example 2
7.2.3 Sharing example 3
7.2.4 Sharing example 4
7.2.5 Summary

7.3.1 Addition-subtraction circuit
7.3.2 Signed-unsigned dual-mode comparator
7.3.3 Difference circuit
7.3.4 Full comparator
7.3.5 Three-function barrel shifter

7.4.1 Reduced-xor circuit
7.4.2 Reduced-xor-vector circuit
7.4.3 Tree priority encoder
7.4.4 Barrel shifter revisited

7.5.1 Gray code incrementor
7.5.2 Programmable priority encoder
7.5.3 Signed addition with status
7.5.4 Combinational adder-based multiplier
7.5.5 Hamming distance circuit

7.1
7.2 Operator sharing

7.3 Functionality sharing

7.4 Layout-related circuits

7.5 General circuits

7.6 Synthesis guidelines
7.7 Bibliographic notes

Problems

142
143
148
149
150
154
156
158
160
160
160

163

163
164
165
166
168
169
170
170
171
173
175
177
178
180
181
183
187
192
196
196
199
20 1
203
206
208
208
208

8 Sequential Circuit Design: Principle 21 3

Xii CONTENTS

8.1

8.2

8.3
8.4

8.5

8.6

8.7

8.8
8.9

Overview of sequential circuits
8.1.1 Sequential versus combinational circuits
8.1.2 Basic memory elements
8.1.3 Synchronous versus asynchronous circuits
Synchronous circuits
8.2.1
8.2.2
8.2.3 m e s of synchronous circuits
Danger of synthesis that uses primitive gates
Inference of basic memory elements
8.4.1 D latch
8.4.2 DFF
8.4.3 Register
8.4.4 RAM
Simple design examples
8.5.1 Other types of FFs
8.5.2 Shift register
8.5.3 Arbitrary-sequence counter
8.5.4 Binary counter
8.5.5 Decade counter
8.5.6 Programmable mod-rn counter
Timing analysis of a synchronous sequential circuit
8.6.1 Synchronized versus unsynchronized input
8.6.2 Setup time violation and maximal clock rate
8.6.3 Hold time violation
8.6.4 Output-related timing considerations
8.6.5 Input-related timing considerations
Alternative one-segment coding style
8.7.1 Examples of one-segment code
8.7.2 Summary
Use of variables in sequential circuit description
Synthesis of sequential circuits

Basic model of a synchronous circuit
Synchronous circuits and design automation

8.10 Synthesis guidelines
8.1 1 Bibliographic notes

Problems

9 Sequential Circuit Design: Practice

9.1 Poor design practices and their remedies
9.1.1 Misuse of asynchronous signals
9.1.2 Misuse of gated clocks
9.1.3 Misuse of derived clocks

9.2 Counters

213
213
214
216
217
217
218
219
219
221
22 1
222
225
225
226
226
229
232
233
236
237
239
239
240
243
243
244
245
245
250
250
253
253
253
254

257

257
258
260
262
265

CONTENTS Xiii

9.3

9.4

9.5
9.6

9.2.1 Gray counter
9.2.2 Ring counter
9.2.3
9.2.4 Decimal counter
9.2.5 Pulse width modulation circuit
Registers as temporary storage
9.3.1 Register file
9.3.2 Register-based synchronous FIFO buffer
9.3.3 Register-based content addressable memory
Pipelined design
9.4.1 Delay versus throughput
9.4.2 Overview on pipelined design
9.4.3
9.4.4
Synthesis guidelines
Bibliographic notes
Problems

LFSR (linear feedback shift register)

Adding pipeline to a combinational circuit
Synthesis of pipelined circuits and retiming

10 Finite State Machine: Principle and Practice

10.1 Overview of FSMs
10.2 FSM representation

10.2.1 State diagram
10.2.2 ASM chart

10.3 Timing and performance of an FSM
10.3.1 Operation of a synchronous FSM
10.3.2 Performance of an FSM
10.3.3 Representative timing diagram

10.4 Moore machine versus Mealy machine
10.4.1 Edge detection circuit
10.4.2 Comparison of Moore output and Mealy output

10.5 VHDL description of an FSM
10.5.1 Multi-segment coding style
10.5.2 Two-segment coding style
10.5.3 Synchronous FSM initialization
10.5.4 One-segment coding style and its problem
10.5.5 Synthesis and optimization of FSM

10.6.1 Overview of state assignment
10.6.2 State assignment in VHDL
10.6.3 Handling the unused states

10.7.1 Buffering by clever state assignment

10.6 State assignment

10.7 Moore output buffering

265
266
269
272
275
276
276
279
287
293
294
294
297
307
308
309
309

31 3

3 13
314
315
317
32 1
321
324
325
325
326
328
329
330
333
335
336
337
338
338
339
341
342
342

XiV CONTENTS

10.7.2 Look-ahead output circuit for Moore output
10.8 FSM design examples

10.8.1 Edge detection circuit
10.8.2 Arbiter
10.8.3 DRAM strobe generation circuit
10.8.4 Manchester encoding circuit
10.8.5 FSM-based binary counter

Problems
10.9 Bibliographic notes

11 Register Transfer Methodology: Principle

1 1.1 Introduction
11.1.1 Algorithm
1 1.1.2 Structural data flow implementation
1 1.1.3 Register transfer methodology

11.2.1 Basic RT operation
11.2.2 Multiple RT operations and data path
11.2.3 FSM as the control path
11.2.4 ASMDchart
1 1.2.5 Basic FSMD block diagram

11.3 FSMD design of a repetitive-addition multiplier
1 1.3.1 Converting an algorithm to an ASMD chart
11.3.2 Construction of the FSMD
11.3.3 Multi-segment VHDL description of an FSMD
11.3.4 Use of a register value in a decision box
11.3.5 Four- and two-segment VHDL descriptions of FSMD
11.3.6 One-segment coding style and its deficiency

11.4 Alternative design of a repetitive-addition multiplier
11.4.1 Resource sharing via FSMD
1 1.4.2 Mealy-controlled RT operations

11.5 Timing and performance analysis of FSMD
1 1.5.1 Maximal clock rate
11.5.2 Performance analysis

1 1.6 Sequential add-and-shift multiplier
1 1.6.1 Initial design
11.6.2 Refined design
1 1.6.3 Comparison of three ASMD designs

1 1.2 Overview of FSMD

11.7 Synthesis of FSMD
1 1.8 Synthesis guidelines
11.9 Bibliographic notes

Problems

344
348
348
353
358
363
367
369
369

373

373
373
374
375
376
376
378
379
379
380
382
382
385
386
3 89
39 1
394
396
396
400
404
404
407
407
408
412
417
417
418
418
418

CONTENTS XV

12 Register Transfer Methodology: Practice

12.1 Introduction
12.2 One-shot pulse generator

12.2.1 FSM implementation
12.2.2 Regular sequential circuit implementation
12.2.3 Implementation using RT methodology
12.2.4 Comparison

12.3.1 Overview of SRAM
12.3.2 Block diagram of an SRAM controller
12.3.3 Control path of an SRAM controller

12.4 GCD circuit
12.5 UART receiver
12.6 Square-root approximation circuit
12.7 High-level synthesis
12.8 Bibliographic notes

12.3 SRAM controller

Problems

13 Hierarchical Design in VHDL

13.1

13.2

13.3
13.4

13.5

13.6

13.7

Introduction
13.1.1 Benefits of hierarchical design
13.1.2 VHDL constructs for hierarchical design
Components
13.2.1 Component declaration
13.2.2 Component instantiation
13.2.3 Caveats in component instantiation
Generics
Configuration
13.4.1 Introduction
13.4.2 Configuration declaration
13.4.3 Configuration specification
13.4.4 Component instantiation and configuration in VHDL 93
Other supporting constructs for a large system
13.5.1 Library
13.5.2 Subprogram
13.5.3 Package
Partition
13.6.1 Physical partition
13.6.2 Logical partition
Synthesis guidelines

13.8 Bibliographic notes

421

42 1
422
422
424
425
427
430
430
434
436
445
455
460
469
470
470

473

473
474
474
475
475
477
480
48 1
485
485
486
488
488
489
489
49 1
492
495
495
496
497
497

XVi CONTENTS

Problems 497

14 Parameterized Design: Principle

14.1 Introduction
14.2 q p e s of parameters

14.2.1 Width parameters
14.2.2 Fearue parameters

14.3 Specifying parameters
14.3.1 Generics
14.3.2 Array attribute
14.3.3 Unconstrained array
14.3.4 Comparison between a generic and an unconstrained array

14.4 Clever use of an array
14.4.1 Description without fixed-size references
14.4.2 Examples

14.5 For generate statement
14.5.1 Syntax
14.5.2 Examples

14.6.1 Syntax
14.6.2 Examples
14.6.3 Comparisons with other feature-selection methods

14.7.1 Introduction
14.7.2 Examples of a simple for loop statement
14.7.3 Examples of a loop body with multiple signal assignment

statements
14.7.4 Examples of a loop body with variables
14.7.5 Comparison of the for generate and for loop statements

14.8.1 Syntax of the exit statement
14.8.2 Examples of the exit statement
14.8.3 Conceptual implementation of the exit statement
14.8.4 Next statement

14.9 Synthesis of iterative structure
14.10 Synthesis guidelines
14.1 1 Bibliographic notes

14.6 Conditional generate statement

14.7 For loop statement

14.8 Exit and next statements

Problems

499

499
500
500
50 1
50 1
501
502
503
506
506
507
509
512
513
513
517
517
518
525
528
528
528

530
533
536
537
537
537
539
540
54 1
542
542
542

15 Parameterized Design: Practice

15.1 Introduction

545

545

CONTENTS XVii

15.2 Data types for two-dimensional signals
15.2.1 Genuine two-dimensional data type
15.2.2 Array-of-arrays data type
15.2.3 Emulated two-dimensional array
15.2.4 Example
15.2.5 Summary

15.3 Commonly used intermediate-sized RT-level components
15.3.1 Reduced-xor circuit
15.3.2 Binary decoder
15.3.3 Multiplexer
15.3.4 Binary encoder
15.3.5 Barrel shifter

15.4 More sophisticated examples
15.4.1 Reduced-xor-vector circuit
15.4.2 Multiplier
15.4.3 Parameterized LFSR
15.4.4 Priority encoder
15.4.5 FIFO buffer

15.5 Synthesis of parameterized modules
15.6 Synthesis guidelines
15.7 Bibliographic notes

Problems

16 Clock and Synchronization: Principle and Practice

16.1 Overview of a clock distribution network
16.1.1 Physical implementation of a clock distribution network
16.1.2 Clock skew and its impact on synchronous design

16.2 Timing analysis with clock skew
16.2.1 Effect on setup time and maximal clock rate
16.2.2 Effect on hold time constraint

16.3 Overview of a multiple-clock system
16.3.1 System with derived clock signals
16.3.2 GALS system

16.4 Metastability and synchronization failure
16.4.1 Nature of metastability
16.4.2 Analysis of MTBF(T!)
16.4.3 Unique characteristics of MTBF(T,)

16.5.1 The danger of no synchronizer
16.5.2 One-FF synchronizer and its deficiency
16.5.3 Wo-FF synchronizer
16.5.4 Three-FF synchronizer

16.5 Basic synchronizer

546
546
548
550
552
554
555
555
558
560
564
566
569
570
572
586
588
59 1
599
599
600
600

603

603
603
605
606
606
609
610
61 1
612
612
613
614
616
617
617
617
619
620

XVi i i CONTENTS

16.5.5 Proper use of a synchronizer
16.6 Single enable signal crossing clock domains

16.6.1 Edge detection scheme
16.6.2 Level-alternation scheme

16.7.1 Four-phase handshaking protocol
16.7.2 Two-phase handshaking protocol

16.8 Data transfer crossing clock domains
16.8.1 Four-phase handshaking protocol data transfer
16.8.2 Two-phase handshaking data transfer
16.8.3 One-phase data transfer

16.9 Data transfer via a memory buffer
16.9.1 FIFO buffer
16.9.2 Shared memory

16.7 Handshaking protocol

16.10 Synthesis of a multiple-clock system
16.1 1 Synthesis guidelines

16.1 1.1 Guidelines for general use of a clock
16.1 1.2 Guidelines for a synchronizer
16.1 1.3 Guidelines for an interface between clock domains

Problems
16.12 Bibliographic notes

62 1
623
623
627
630
630
637
639
641
650
65 1
652
652
660
661
662
662
662
662
663
663

References 665

Topic Index 667

PREFACE

With the maturity and availability of hardware description language (HDL) and synthesis
software, using them to design custom digital hardware has become a mainstream practice.
Because of the resemblance of an HDL code to a traditional program (such as a C program),
some users believe incorrectly that designing hardware in HDL involves simply writing syn-
tactically correct software code, and assume that the synthesis software can automatically
derive the physical hardware. Unfortunately, synthesis software can only perform trans-
formation and local optimization, and cannot convert a poor description into an efficient
implementation. Without an understanding of the hardware architecture, the HDL code
frequently leads to unnecessarily complex hardware, or may not even be synthesizable.

This book provides in-depth coverage on the systematical development and synthesis
of efficient, portable and scalable register-transfer-level (RT-level) digital circuits using the
VHDL hardware description language. RT-level design uses intermediate-sized compo-
nents, such as adders, comparators, multiplexers and registers, to construct a digital system.
It is the level that is most suitable and effective for today’s synthesis software.

RT-level design and VHDL are two somewhat independent subjects. VHDL code is
simply one of the methods to describe a hardware design. The same design can also be
described by a schematic or code in other HDLs. VHDL and synthesis software will not
lead automatically to a better or worse design. However, they can shield designers from
low-level details and allow them to explore and research better architectures.

The emphasis of the book is on hardware rather than language. Instead of treating
synthesis software as a mysterious black box and listing “recipe-like” codes, we explain
the relationship between the VHDL constructs and the underlying hardware structure and
illustrate how to explore the design space and develop codes that can be synthesized into
efficient cell-level implementation. The discussion is independent of technology and can

xix

XX PREFACE

be applied to both ASIC and FPGA devices. The VHDL codes listed in the book largely
follow the IEEE 1076.6 RTL synthesis standard and can be accepted by most synthesis
software. Most codes can be synthesized without modification by the free “demo-version’’
synthesis software provided by FPGA vendors.

Scope The book focuses primarily on the design and synthesis of RT-level circuits. A
subset of VHDL is used to describe the design. The book is not intended to be a com-
prehensive ASIC or FPGA book. All other issues, such as device architecture, placement
and routing, simulation and testing, are discussed exclusively from the context of RT-level
design.

Unique features The book is a hardware design text. VHDL and synthesis software are
used as tools to realize the intended design. Several unique features distinguish the book:

0 Suggest a coding style that shows a clear relationship between VHDL constructs and

0 Use easy-to-understand conceptual diagrams, rather than cell-level netlists, to explain

0 Emphasize the reuse aspect of the codes throughout the book.
0 Consider RT-level design as an integral part of the overall development process and

introduce good design practices and guidelines to ensure that an RT-level description
can accommodate future simulation, verification and testing needs.

0 Make the design “technology neutral” so that the developed VHDL code can be
applied to both ASIC and FPGA devices.

0 Follow the IEEE 1076.6 RTL synthesis standard to make the codes independent of
synthesis software.

0 Provide a set of synthesis guidelines at the end of each chapter.
0 Contain a large number of non-trivial, practical examples to illustrate and reinforce

the design concepts, procedures and techniques.
0 Include two chapters on realizing sequential algorithms in hardware (known as “reg-

ister transfer methodology”) and on designing control path and data path.
0 Include two chapters on the scalable and parameterized designs and coding.
0 Include a chapter on the synchronization and interface between multiple clock do-

Book organization The book is basically divided into three major parts. The first part,
Chapters 1 to 6 , provides a comprehensive overview of VHDL and the synthesis process, and
examines the hardware implementation of basic VHDL language constructs. The second
part, Chapters 7 to 12, covers the core of the RT-level design, including combinational
circuits, “regular” sequential circuits, finite state machine and circuits designed by register
transfer methodology, The third part, Chapters 13 to 16, covers the system issues, including
the hierarchy, parameterized and scalable design, and interface between clock domains.
More detailed descriptions of the chapters follow.

0 Chapter 1 presents a “big picture” of digital system design, including an overview on
device technologies, system representation, development flow and software tools.

0 Chapter 2 provides an overview on the design, usage and capability of a hardware
description language. A series of simple codes is used to introduce the basic modeling
concepts of VHDL.

0 Chapter 3 provides an overview of the basic language constructs of VHDL, including
lexical elements, objects, data types and operators. Because VHDL is a strongly
typed language, the data types and operators are discussed in more detail.

hardware components.

the realization of VHDL codes.

mains.

PREFACE XXi

0 Chapter 4 covers the syntax, usage and implementation of concurrent signal assign-
ment statements of VHDL. It shows how to realize these constructs by multiplexing
and priority routing networks.

0 Chapter 5 examines the syntax, usage and implementation of sequential statements of
VHDL. It shows the realization of the sequential statements and discusses the caveats
of using these statements.

0 Chapter 6 explains the realization of VHDL operators and data types, provides an
in-depth overview on the synthesis process and discusses the timing issue involved
in synthesis.

0 Chapter 7 covers the construction and VHDL description of more sophisticated com-
binational circuits. Examples show how to transform conceptual ideas into hardware,
and illustrate resource-sharing and circuit-shaping techniques to reduce circuit size
and increase performance.

0 Chapter 8 introduces the synchronous design methodology and the construction and
coding of synchronous sequential circuits. Basic “regular” sequential circuits, such
as counters and shift registers, in which state transitions exhibit a regular pattern, are
examined.

0 Chapter 9 explores more sophisticated regular sequential circuits. The design exam-
ples show the implementation of a variety of counters, the use of registers as fast,
temporary storage, and the construction of pipelined combinational circuits.

0 Chapter 10 covers finite state machine (FSM), which is a sequential circuit with
“random” transition patterns. The representation, timing and implementation issues
of FSMs are studied with an emphasis on its use as the control circuit for a large,
complex system.

0 Chapter 11 introduces the register transfer methodology, which describes system
operation by a sequence of data transfers and manipulations among registers, and
demonstrates the construction of the data path (a regular sequential circuit) and the
control path (an FSM) used in this methodology.

0 Chapter 12 uses a variety of design examples to illustrate how the register transfer
methodology can be used in various types of problems and to highlight the design
procedure and relevant issues.

0 Chapter 13 features the design hierarchy, in which a system is gradually divided into
smaller parts. Mechanisms and language constructs of VHDL used to specify and
configure a hierarchy are examined.

0 Chapter 14 introduces parameterized design, in which the width and functionality of
a circuit are specified by explicit parameters. Simple examples illustrate the mecha-
nisms used to pass and infer parameters and the language constructs used to describe
the replicated structures.

0 Chapter 15 provides more sophisticated parameterized design examples. The main
focus is on the derivation of efficient parameterized RT-level modules that can be
used as building blocks of larger systems.

0 Chapter 16 covers the effect of a non-ideal clock signal and discusses the synchro-
nization of an asynchronous signal and the interface between two independent clock
domains.

Audience The intended audience for the book is students in advanced digital system
design course and practicing engineers who wish to sharpen their design skills or to learn
the effective use of today’s synthesis software. Readers need to have basic knowledge of
digital systems. The material is normally covered in an introductory digital design course,

XXii PREFACE

which is a standard part in all electrical engineering and computer engineering curricula.
No prior experience on HDL or synthesis is needed.

Verilog is another popular HDL. Since the book emphasizes hardware and methodology
rather than language constructs, readers with prior Verilog experience can easily follow the
discussion and learn VHDL along the way. Most VHDL codes can easily be translated into
the Verilog language.

Web site Anaccompanying web site (http: //academic. csuohio. edu/chu-p/rtl)
provides additional information, including the following materials:

0 Errata.
0 Summary of coding guidelines.
0 Code listing.
0 Links to demo-version synthesis software.
0 Links to some referenced materials.
0 Frequently asked questions (FAQ) on RTL synthesis.
0 Lecture slides for instructors.

Errata The book is “self-prepared,” which means the author has prepared all materials,
including the illustrations, tables, code listing, indexing and formatting, by himself. As the
errors are always bound to happen, the accompanying web site provides an updated errata
sheet and a place to report errors.

P. P. CHU

Cleveland, Ohio

January 2006

ACKNOWLEDGMENTS

The author would like to express his gratitude to Professor George L. Kramerich for his
encouragement and help during the course of this project. The work was partially supported
by educational material development grant 0126752 from the National Science Foundation
and a Teaching Enhancement grant from Cleveland State University.

P. P. Chu

xxiii

This Page Intentionally Left Blank

CHAPTER 1

INTRODUCTION TO DIGITAL SYSTEM
DESIGN

Developing and producing a digital system is a complicated process and involves many
tasks. The design and synthesis of a register transfer level circuit, which is the focus of
this book, is only one of the tasks. In this chapter, we present an overview of device
technologies, system representation, development flow and software tools. This helps us to
better understand the role of the design and synthesis task in the overall development and
production process.

1.1 INTRODUCTION

Digital hardware has experienced drastic expansion and improvement in the past 40 years.
Since its introduction, the number of transistors in a single chip has grown exponentially, and
a silicon chip now routinely contains hundreds of thousands or even hundreds of millions
of transistors. In the past, the major applications of digital hardware were computational
systems. However, as the chip became smaller, faster, cheaper and more capable, many
electronic, control, communication and even mechanical systems have been "digitized"
internally, using digital circuits to store, process and transmit information.

As applications become larger and more complex, the task of designing digital circuits
becomes more difficult. The best way to handle the complexity is to view the circuit at
a more abstract level and utilize software tools to derive the low-level implementation.
This approach shields us from the tedious details and allows us to concentrate and explore
high-level design alternatives. Although software tools can automate certain tasks, they
are capable of performing only limited transformation and optimization. They cannot, and

RTL Hardware Design Using VHDL: Coding for EfJfciency, Portability, and Scalabili@. By Pong I? Chu 1
Copyright @ 2006 John Wiley & Sons, Inc.

2 INTRODUCTION TO DIGITAL SYSTEM DESIGN

will not, do the design or convert a poor design to a good one. The ultimate efficiency
still comes from human ingenuity and experience. The goal of this book is to show how
to systematically develop an efficient, portable design description that is both abstract, yet
detailed enough for effective software synthesis.

Developing and producing a digital circuit is a complicated process, and the design
and synthesis are only two of the tasks. We should be aware of the “big picture” so that
the design and synthesis can be efficiently integrated into the overall development and
production process. The following sections provide an overview of device technologies,
system representation, abstraction, development flow, and the use and limitations of software
tools.

1.2 DEVICE TECHNOLOGIES

If we want to build a custom digital system, there are varieties of device technologies to
choose, from off-the-shelf simple field-programmable components to full-custom devices
that tailor the application down to the transistor level. There is no single best technology,
and we have to consider the trade-offs among various factors, including chip area, speed,
power and cost.

1.2.1 Fabrication of an IC

To better understand the differences between the device technologies, it is helpful to have
a basic idea of the fabrication process of an integrated circuit (IC). An IC is made from
layers of doped silicon, polysilicon, metal and silicon dioxide, built on top of one another,
on a thin silicon wafer. Some of these layers form transistors, and others form planes of
connection wires.

The basic step in IC fabrication is to construct a layer with a customized pattern, a process
known as lithography. The pattern is defined by a mask. Today’s IC device technology
typically consists of 10 to 15 layers, and thus the lithography process has to be repeated 10
to 15 times during the fabrication of an IC, each time with a unique mask.

One important aspect of a device technology is the silicon area used by a circuit. It is
expressed by the length of a smallest transistor that can be fabricated, usually measured in
microns (a millionth of a meter). As the device fabrication process improved, the transistor
size continued to shrink and now approaches a tenth of a micron.

1.2.2 Classification of device technologies

There is an array of device technologies that can be used to construct a custom digital
circuit. One major characteristic of a technology is how the customization is done. In
certain technologies, all the layers of a device are predetermined, and thus the device can
be prefabricated and manufactured as a standard off-the-shelf part. The customization of
a circuit can be performed “in the field,” normally by downloading a connection pattern
to the device’s internal memory or by “burning the internal silicon fuses.” On the other
hand, some device technologies need one or more layers to be customized for a particular
application. The customization involves the creation of tailored masks and fabrication of
the patterned layers. This process is expensive and complex and can only be done in a
fabrication plant (known as afoundry or afub). Thus, whether a device needed to be
fabricated in a fab is the most important characteristic of a technology. In this book, we use

DEVICE TECHNOLOGIES 3

the term application-speciJic ZC (ASZC) to represent device technologies that require a fab
to do customization.

With an understanding of the difference between ASIC and non-ASK, we can divide
the device technologies further into the following types:

0 Full-custom ASIC
0 Standard-cell ASIC
0 Gate array ASIC
0 Complex field-programmable logic device
0 Simple field-programmable logic device
0 Off-the-shelf small- and medium-scaled IC (SSVMSI) components

Full-custom ASlC Infi l lastom ASZC technology, all aspects of a digital circuit are
tailored for one particular application. We have complete control of the circuit and can even
craft the layout of a transistor to meet special area or performance needs. The resulting
circuit is fully optimized and has the best possible performance. Unfortunately, designing
a circuit at the transistor level is extremely complex and involved, and is only feasible for
a small circuit. It is not practical to use this approach to design a complete system, which
now may contain tens and even hundreds of millions of transistors. The major application
of full-custom ASIC technology is to design the basic logic components that can be used as
building blocks of a larger system. Another application is to design special-purpose “bit-
slice” typed circuits, such as a 1-bit memory or 1-bit adder. These circuits have a regular
structure and are constructed through a cascade of identical slices. To obtain optimal
performance, full-custom ASIC technology is frequently used to design a single slice. The
slice is then replicated a number of times to form a complete circuit.

The layouts of a full-custom ASIC chip are tailored to a particular application. All layers
are different and a mask is required for every layer. During fabrication, all layers have to
be custom constructed, and nothing can be done in advance.

Standard-cell ASlC In standard-cell A S K (also simply known as standard-cell) tech-
nology, a circuit is constructed by using a set of predefined logic components, known as
standard cells. These cells are predesigned and their layouts are validated and tested.
Standard-cell ASIC technology allows us to work at the gate level rather than at the tran-
sistor level and thus greatly simplifies the design process. The device manufacturer usually
provides a library of standard cells as the basic building blocks. The library normally con-
sists of basic logic gates, simple combinational components, such as an and-or-inverter,
2-to-1 multiplexer and 1-bit full adder, and basic memory elements, such as a D-type latch
and D-type flip-flop. Some libraries may also contain more sophisticated function blocks,
such as an adder, barrel shifter and random access memory (RAM).

In standard-cell technology, a circuit is made of cells. The types of cells and the intercon-
nection depend on the individual application. Whereas the layout of a cell is predetermined,
the layout of the complete circuit is unique for a particular application and nothing can be
constructed in advance. Thus, fabrication of a standard-cell chip is identical to that of a
full-custom ASIC chip, and all layers have to be custom constructed.

Gate array ASlC In gate array ASIC (also simply known as gate array) technology, a
circuit is built from an array of predefined cells. Unlike standard-cell technology, a gate
array chip consists of only one type of cell, known as a base cell. The base cell is fairly
simple, resembling a logic gate. Base cells are prearranged and placed in fixed positions,
aligned as a one- or two-dimensional array. Since the location and type are predetermined,

4 INTRODUCTION TO DIGITAL SYSTEM DESIGN

the base cells can be prefabricated. The customization of a circuit is done by specifying the
interconnect between these cells. A gate array vendor also provides a library of predesigned
components, known as macro cells, which are built from base cells. The macro cells have
a predefined interconnect and provide the designer with more sophisticated logic blocks.

Compared to standard-cell technology, the fabrication of a gate array device is much
simpler, due to its fixed array structure. Since the array is common to all applications, the
cell (and transistors) can be fabricated in advance. During construction of a chip, only the
masks of metal layers, which specify the interconnect, are unique for an application and
therefore must be customized. This reduces the number of custom layers from 10 to 15
layers to 3 to 5 layers and simplifies the fabrication process significantly.

Complex field-programmable device We now examine several non-ASIC technolo-
gies. The most versatile non-ASIC technology is the complex field-programmable device.
In this technology, a device consists of an array of generic logic cells and general intercon-
nect structure. Although the logic cells and interconnect structure are prefabricated, both
are programmable. The programmability is obtained by utilizing semiconductor “fuses” or
“switches,” which can be set as open- or short-circuit. The customization is done by config-
uring the device with a specific fuse pattern. This process can be accomplished by a simple,
inexpensive device programmer, normally constructed as an add-on card or an adaptor cable
of a PC. Since the customization is done “in the field” rather than “in a fab,” this technology
is known as field programmable. (In contrast, ASIC technologies are “programmed” via
one or more tailored masks and thus are mask programmable.)

The basic structures of gate array ASKS and complex field-programmable devices are
somewhat similar. However, the interconnect structure of field-programmable devices is
predetermined and thus imposes more constraints on signal routing. To reduce the amount of
connection, more functionality is built into the logic cells of a field-programmable device,
making a logic cell much more complex than a base cell or a standard cell of ASIC.
According to the complexity and structure of logic cells, complex field-programmable
devices can be divided roughly into two broad categories: complex programmable logic
device (CPLD) and field programmable gate array (FPGA).

The logic cell of a CPLD device is more sophisticated, normally consisting of a D-type
flip-flop and a PAL-like unit with configurable product terms. The interconnect structure of
a CPLD device tends to be more centralized, with few groups of concentrated routing lines.
On the other hand, the logic cell of an FPGA device is usually smaller, typically including a
D-type flip-flop and a small look-up table or a set of multiplexers. The interconnect structure
between the cells tends to be distributed and more flexible. Because of its distributive nature,
FPGA is better suited for large, high-capacity complex field-programmable devices,

Simple field-programmable device Simple field-programmable logic devices, as
the name indicates, are programmable devices with simpler internal structure. Historically,
these devices are generically called programmable logic devices (PLDs). We add the word
simple to distinguish them from FPGA and CPLD devices. Simple field-programmable
devices are normally constructed as a two-level array, with an and plane and an or plane.
The interconnect of one or both planes can be programmed to perform a logic function
expressed in sum-of-product format. The devices include programmable read only memory
(PROM), in which the or plane can be programmed; programmable array logic (PAL), in
which the and plane can be programmed; and programmable logic array (PLA), in which
both planes can be programmed.

Unlike FPGA and CPLD devices, simple field-programmable logic devices do not have
a general interconnect structure, and thus their functionality is severely limited. They are

DEVICE TECHNOLOGIES 5

gradually being phased out. ROM, PAL and PLA are now used as internal components of
an ASIC or CPLD device rather than as an individual chip.

Off-the-shelf SSvMsl components Before the emergence of field-programmable
devices, the only alternative to ASIC was to utilize the prefabricated off-the-shelf SSVMSI
components. These components are small parts with fixed, limited functionality. One ex-
ample is the 7400 series transistor transistor logic (“L) family, which contains more than
100 parts, ranging from simple nand gates to a 4-bit arithmetic unit. A custom system can
be designed by a bottom-up approach, building the circuit gradually from the small existing
parts. A tailored printed circuit board is needed for each application. The major disadvan-
tage of this approach is that the most resources (power, board area and manufacturing cost)
are consumed by the “package” but not by the “silicon,” which performs the actual compu-
tation. Furthermore, none of today’s synthesis software can utilize off-the-shelf SSI/MSI
components, and thus automation is virtually impossible. As the programmable devices
become more capable and less expensive, designing a large custom circuit using SSVMSI
components is no longer a feasible option and should not be considered.

Summary We have reviewed six device technologies used to implement custom digi-
tal systems. Among them, off-the-shelf SSUMSI components and simple programmable
devices are gradually being phased out and full-custom ASIC is feasible only for a small,
specialized circuit. Thus, for a large digital system, there are only three viable device
technologies: standard-cell ASIC, gate array ASIC and CPLDEPGA. In the following
subsection, we examine the trade-offs among these technologies.

1.2.3 Comparison of technologies

Once deciding to develop custom hardware for an application, we need to choose from the
three device technologies. The major criteria for selection are area, speed, power and cost.
The first three involve the technical aspects of a circuit. Cost concerns the expenditure
associated with the design and production of the circuit as well as the potential lost profits.
Each technology has its strengths and weaknesses, and the “best” technology depends on
the needs of a particular application.

Area Chip area (or size) corresponds to the required silicon real estate to implement a
particular application. A smaller chip needs fewer resources, simplifies the testing and
provides better yield. The chip size depends on the architecture of the circuit and the device
technology. The same function can frequently be realized by different architectures, with
different areas and speeds. For example, an addition circuit can be realized by a ripple
adder (simple but slow), a parallel adder (complex but fast) or a carry-look-ahead adder
(somewhere in-between). Once the architecture of a circuit is determined, the area depends
on the device technology. In standard-cell technology, the cells and interconnects are
customized to this particular application and no silicon is wasted in irrelevant functionality.
Thus, the resulting chip is fully optimized and the area is minimal. In gate array technology,
the circuit has to be constructed by predefined, prearranged base cells. Since functionality
and the placement of the base cells are not tailored to a specific application, silicon use is
not optimal, The area of the resulting circuit is normally larger than that of a standard-cell
chip. In FPGA technology, a significant portion of the silicon is dedicated to achieving
programmability, which introduces a large overhead. Furthermore, the functionalities of
logic cells and the interconnect are fixed in advance and it is unlikely that an application

6 INTRODUCTION TO DIGITAL SYSTEM DESIGN

can be an exact match for the predetermined structure. A certain percentage of the capacity
will be left unutilized. Because of the overhead and relatively low utilization, the area of
the resulting FPGA chip is much larger than that of an ASIC chip.

Due to the drastic difference between the device fabrication process and the diversity
of applications, it is difficulty to determine the exact silicon areas in three technologies.
However, it is important to recognize that the difference between standard-cell and gate
array technologies is much smaller than that of FPGA and ASIC. In general, a gate array
chip may need 20% to 100% larger silicon area than that of a standard-cell chip, but an
FPGA chip frequently requires two to five times the area of an ASIC chip.

Speed The speed of a digital circuit corresponds to the time required to perform a func-
tion, frequently represented by the worst-case propagation delay between input and output
signals. A faster circuit is always desirable and is essential for computation-intensive ap-
plications. At the architecture level, faster operation can be achieved by using a more
sophisticated design, which requires a larger area. However, if the identical architecture
is used, a chip with a larger area is normally slower, due to its large parasitic capacitance.
Since a standard-cell chip has tailored interconnect and utilizes a minimal amount of silicon
area, it has the smallest propagation delay and best speed. On the other hand, an FPGA chip
has the worst propagation delay. In addition to its large size, the programmable interconnect
has a relatively large resistance and capacitance, which introduces even more delay. As
with chip area, the speed difference between standard-cell and gate array technologies is
much less significant than that between FPGA and ASIC.

Power Power concerns the energy consumed by a part. In certain applications, such as
battery-operated handheld equipment, a low power circuit is of primary importance. At the
architecture level, a system can be redesigned to reduce the use of power. If the identical
architecture is used, a smaller chip, which consists of fewer transistors, usually consumes
less power. Thus, a standard-cell chip consumes the least amount of power and an P G A
chip uses the most power.

Standard-cell technology is clearly the best choice from a technical perspective. A chip
constructed using standard-cell ASIC is small and fast, and consumes less power. This
should not come as a surprise since the chip is highly optimized and wastes no resources
on unnecessary overhead. The price associated with customization is the complexity. De-
signing and fabricating a standard-cell chip is more involved and time consuming than for
the other two technologies.

Cost The design of a custom digital circuit is seldom a goal in itself. It is an economic
activity, and the cost is an important, if not the deciding, factor. We consider three major
expenses: production cost, development cost, and time-to-market cost.

Production cost is the expense to produce a single unit. It includes two segments: non-
recurring engineering (NRE) cost and part cost. NRE cost (Cnre) is the expense that occurs
only once (and thus is not recurring) during the production process, regardless of the number
of units sold. Thus, it is on a “per design” basis. Part cost (Cper-part) , on the other hand,
is on a “per unit” basis, covering the expense required for each individual unit, such as the
expense of materials, assembly and manufacturing. Note that the NREi cost is shared by all
the units and that the share of each part becomes smaller as the volume increases. The per
unit production cost (Cper-unit) can be expressed as

c n r e
Cper-unit = Cper-part +

units produced

DEVICE TECHNOLOGIES 7

unit cost

break-even point for \ /- gatearray

break-even point for
standard cell

\
\
\
\
\

7 FPGA \
\

gate array

standard
---__ --L-
7 cell

number of units

Figure 1.1 Comparison of per unit cost.

The NRE cost of a custom ASIC chip includes the creation of the tailored masks, the
development of tests and the fabrication of initial sample chips. The charge is high and
can range from several hundred thousand dollars to several million dollars or more. A
major factor in the NRE cost is the number of custom masks needed. A standard-cell chip
may need 15 or more tailored masks and thus is much more expensive than a gate array
chip, which needs only three to five tailored metal layers. On the contrary, an PGA-based
design needs only an inexpensive device programmer to do customization. The NRE cost
of creating a mask is negligible and can be considered as zero.

The part cost of an ASIC chip is smaller than that of an P G A chip since the ASIC chip
requires less silicon real estate and has better yield. By the same token, the part cost of a
standard-cell chip is smaller than that of a gate array chip since the standard-cell chip is
further optimized. If we consider both part cost and NRE cost, the per unit production cost
depends on the volume of units, as shown by the previous equation. The volume versus per
unit cost plots of three technologies is shown in Figure 1.1. As the volume increases, first the
gate array and then the standard-cell technologies, become cost-effective. The intersections
of the curves are the break-even points for the FPGA and gate array technologies, and for
the gate array and standard-cell technologies.

The second major expense is the development cost. The process of transforming an idea
to a custom circuit is by no means a simple task. The expense involved in this process is the
development cost. It includes the compensation for engineering time as well as the expense
of the computing facility and software tools. Although the synthesis procedure is somewhat
similar for all device technologies, developing ASIC requires more effort, including physical
design, placement and routing, verification and testing. Since the development process is
more complex for ASIC, the development cost of an ASIC chip is much higher than that
of an P G A chip. Similarly, due to the high-level optimization, the development cost for a
standard-cell chip is much higher than that for a gate array chip.

The third major expense is the time-to-market cost. It is actually not a cost, but the
lost revenue. In many applications, such as PC peripherals, the life cycle of a product is

8 INTRODUCTION TO DIGITAL SYSTEM DESIGN

Table 1.1 Comparison of device technologies

Tailored masks
Area
Speed
Power
NRE cost
Per part cost
Development cost
Time to market
Per unit cost

FPGA Gate array Standard cell

0 3 to 5 15 or more
best (smallest)
best (fastest)
best (minimal)

best (smallest)
best (smallest)

best (easiest)
best (shortest)

depends on volume

very short. Eighteen months, the time required to double the chip density, is sometimes
considered as the life cycle of the product. Thus, it is very important to introduce the product
in a timely manner, and a shipping delay can mean a significant loss in sales. The standard-
cell technology requires the most lead time to validate, test and manufacture, ranging from
a few months to a year, The gate array technology requires less lead time, from a few
weeks to a few months. For FPGA technology, customization involves the programming
of a prefabricated chip and can be done in a few minutes.

Summary The major characteristics of the three device technologies are summarized
in Table 1.1. In general, the trade-off is between the optimal use of hardware resources
(in terms of chip area, speed and power) and the ease of design (in terms of NRE cost,
development cost and manufacturing lead time).

The choice of technology is not necessarily mutual exclusive. For example, ASIC and
FPGA developments can be done in parallel to get the benefits of both technologies. The
FPGA devices are used as prototypes and in initial shipments to cut the manufacturing lead
time. When the ASIC devices become available later, they are used for volume production
to reduce cost.

1.3 SYSTEM REPRESENTATION

A large digital system is quite complex. During the development and production process,
each task may require a specific kind of information about the system, ranging from system
specification to physical component layout. The same system is frequently described in
different ways and is examined from different perspectives. We call these perspectives the
representations or views of a system. There are three views:

0 Behavioral view
0 Structural view
0 Physical view

A behavioral view describes the functionality (i.e., “behavior”) of a system. It treats
the system as a black box and ignores its internal implementation. The view focuses on
the relationship between the input and output signals, defining the output response when
a particular set of input values is applied. The description of a behavioral view is seldom
unique. Normally, there are a wide variety of ways to specify the same input-output
characteristics.

LEVELS OF ABSTRACTION 9

A structural view describes the internal implementation (i.e., structure) of a system.
The description is done by explicitly specifying what components are used and how these
components are connected. It is more or less the schematic or the diagram of a system. In
computer software, we use the term net to represent a set of wires that are connected to the
same node, and use the term netlist, which is a collection of nets, to represent the schematic.

A physical view describes the physical characteristics of the system and adds additional
information to the structural view. It specifies the physical sizes of components, the physical
locations of the components on a board or a silicon wafer, and the physical path of each
connection line. An example of a physical view is the printed circuit board layout of a
system.

Clearly, the physical view of a system provides the most detailed information. It is
the final specification for the system fabrication. On the other hand, the behavioral view
imposes fewest constraints and is the most abstract form of description.

1.4 LEVELS OF ABSTRACTION

As chip density reaches hundreds of millions of transistors, it is impossible for a human
being, or even a computer, to process this amount of data directly. A key method of
managing complexity is to describe a system in several levels of abstraction. An abstraction
is a simplified model of the system, showing only the selected features and ignoring the
associated details. The purpose of an abstraction is to reduce the amount of data to a
manageable level so that only the critical information is presented. A high-level abstraction
is focused and contains only the most vital data. On the other hand, a low-level abstraction
is more detailed and takes account of previously ignored information. Although it is more
complex, the low-level abstraction model is more accurate and is closer to the real circuit.
In the development process, we normally start with a high-level abstraction and concentrate
on the most vital characteristics. As the system is better understood, we then include more
details and develop a lower-level abstraction.

Four levels of abstraction are considered in digital system development:
0 Transistor level
0 Gate level
0 Register transfer (RT) level
0 Processor level

The division of these levels is based primarily on the size of basic building blocks, which
are the transistors, logic gates, function modules and processors respectively.

The level of abstraction and the view are two independent dimensions of a system, and
each level has its own views. The levels of abstraction and views can be combined in a
Y-chart, which is shown in Figure 1.2. In this chart, each axis represents a view and the
levels of abstraction increase from the center to the outside.

The following subsections discuss the four levels of abstraction. In the discussion, we
examine the five main characteristics at each level of abstraction:

0 Basic building blocks
0 Signal representation
0 Time representation
0 Behavioral representation
0 Physical representation

10 INTRODUCTION TO DIGITAL SYSTEM DESIGN

Behavioral view Structure view

register transfer operation

transistor layout

cell layout

module floor plan

IP floor plan

Physical view

Figure 1.2 Y-chart.

Basic building blocks are the most commonly used parts at the level. These parts are
the components used in the structure view. Behavioral and physical representations are the
descriptions for the behavioral and physical views.

Signal and timing representations concern how to express a signal’s value and how the
value changes over time. While the physical signal remains the same, the interpretation
of its value and timing is different at each abstraction level. As we expect, more detailed
information will be provided at lower levels.

1.4.1 Transistor-level abstraction

The lowest level of abstraction is the transistor level. At this level, the basic building blocks
are transistors, resistors, capacitors and so on. The behavior description is usually done by
a set of differential equations or even by some type of current-voltage diagram. Analog
system simulation software, such as SPICE, can be used to obtain the desired input-output
characteristics.

At the transistor level, a digital circuit is treated as an analog system, in which signals
are time-varying and can take on any value of a continuous range. For example, the output
response of an inverter is plotted at the top of Figure 1.3.

The physical description of the transistor level comprises the detailed layout of compo-
nents and their interconnections. It essentially defines the masks of various layers and is
the final result of the design process.

1.4.2 Gate-level abstraction

The next level of abstraction is the gate level. Typical building blocks include simple logic
gates, such as and, or, xor and 1-bit 2-to-1 multiplexer, and basic memory elements, such

LEVELS OF ABSTRACTION 11

Vkl

V&

gate-level
interpretation of Vh I

interpretai::Z: ~ 7

-propagation delay

Figure 1.3 Timing characteristic of an inverter.

as latch and flip-flop. Instead of using continuous values, we consider only whether a
signal’s voltage is above or below a threshold, which is interpreted as logic 1 or logic 0
respectively. Since there are only two values, the input-output behavior is described by
Boolean equations. The abstraction essentially converts a continuous system to a discrete
system and discards the complex differential equations. Note that logic 0 and logic 1 are
only our interpretation, depending on whether a signal’s voltage level exceeds a predefined
threshold, and the real signal is still the same continuous signal.

The timing information is also simplified at this level. A single discrete number, known
as the propagation delay, which is defined as the time interval for a system to obtain a stable
output response, is used to specify the timing of a gate. The plot at the bottom of Figure 1.3
shows a gate-level interpretation of the corresponding transistor-level signal.

The physical description at this level is the placement of the gates (or cells) and the
routing of the interconnection wires.

So far, we use the term area or size to describe the silicon real estate used to construct a
circuit. Alternatively, we can count the number of gates in this circuit (known as gate count)
and make the measurement independent of the underlying device technology. The area of
the two-input nand gate is used as the base unit since it is frequently the simplest physical
logic circuit. Instead of using the physical area, we express the size or the complexity of a
circuit in terms of the number of equivalent nand gates in that particular device technology.

1.4.3 Register-transfer-level (RT-level) abstraction

At the register-transfer (RT) level, the basic building blocks are modules constructed from
simple gates. They include functional units, such as adders and comparators, storage
components, such as registers, and data routing components, such as multiplexers. A
reasonable name for this level would be module-level abstraction. However, the term
register transfer is normally used in digital design and we follow the general convention.

12 INTRODUCTION TO DIGITAL SYSTEM DESIGN

Register transfer is a somewhat confusing term. It is used in two contexts. Originally, the
term was used to describe a design methodology in which the system operation is specified
by how the data are manipulated and transferred between storage registers. Since the main
components used in the register transfer methodology are the intermediate-size modules,
the term has been borrowed to describe module-level abstraction. As the title indicates,
the coverage and discussion of this book focus on the RT level. We use the term RT level
for module-level abstraction and RT methodology for the specific design methodology. RT
methodology is discussed in Chapters 11 and 12.

The data representation at the RT level becomes more abstract. Signals are frequently
grouped together and interpreted as a special kind of data type, such as an unsigned integer
or system state. The behavioral description at this level uses general expressions to specify
the functional operation and data routing, and uses an extended finite state machine (FSM)
to describe a system designed using RT methodology.

A major feature of the RT-level description is the use of a common clock signal in the
storage components. The clock signal functions as a sampling and synchronizing pulse,
putting data into the storage component at a particular point, normally the rising or falling
edge of the clock signal. In a properly designed system, the clock period is long enough
so that all data signals are stabilized within the clock period. Since the data signals are
sampled only at the clock edge, the difference in propagation delays and glitches have no
impact on the system operation. This allows us to consider timing in terms of number of
clock cycles rather than by keeping track of all the propagation delays.

The physical layout at this level is known as the$oorplan. It is helpful for us to find the
slowest path between the storage components and to determine the clock period.

1.4.4 Processor-level abstraction

Processor-level abstraction is the highest level of abstraction. The basic building blocks at
this level, frequently known as intellectual properties (If's), include processors, memory
modules, bus interfaces and so on. The behavioral description of a system is more like
a program coded in a conventional programming language, including computation steps
and communication processes. The signals are grouped and interpreted as various data
types. Time measurement is expressed in terms of a computation step, which is composed
of a set of operations defined between two successive synchronization points. A collection
of computations may run concurrently in parallel hardware and exchange data through a
predefined communication or bus protocol. The physical layout of a processor-level system
is also known as the floor plan. Of course, the components used in a floor plan are much
larger than those of an RT-level system.

Table 1.2 summarizes the main characteristics at each level. It lists the typical building
blocks, signal representation, time representation, representative behavioral description and
representative physical description.

1.5 DEVELOPMENT TASKS AND EDA SOFTWARE

Developing a custom digital circuit is essentially a refining and validating process. A system
is gradually transformed from an abstract high-level description to final mask layouts. Along
with each refinement, the system's function should be validated to ensure that the final
product works correctly and meets the specification and performance goals. The major
design tasks of developing a digital system are:

DEVELOPMENT TASKS AND EDA S O W A R E 13

Table 1.2 Characteristics of each abstraction level

Typical Signal Time Behavioral Physical
blocks representation representation description description

Transistor transistor, voltage continuous differential transistor
resistor function equation layout

Gate and, or, xor, logic 0 or 1 propagation Boolean cell
flip-flop delay equation layout

RT adder, mux, integer, clock tick extended RT-level
register system state FSM floor plan

Processor processor, abstract event algorithm IP-level
memory data type sequence in C floor plan

0 Synthesis
0 Physical design
0 Verification
0 Testing

1.5.1 Synthesis

Synthesis is a refinement process that realizes a description with components from the lower
abstraction level. The original description can be in either a behavioral view or a structural
view, and the resulting description is a structural view (i.e., netlist) in the lower abstraction
level. In the Y-chart, the process either moves the system from behavioral view to structural
view or moves it from a high-level abstraction to a low-level abstraction. Thus, synthesis
either derives a structural implementation from a behavioral description or realizes an upper
level description using finer components. As the synthesis process progresses, more details
are added. The final result is a gate-level structural representation using the primitive cells
from the chosen device technology. To make the process manageable, synthesis is usually
divided into several smaller steps, each performing a specific transformation. The major
steps are:

0 High-level synthesis
0 RT-level synthesis
0 Gate-level synthesis
0 Technology mapping

High-level synthesis transforms an algorithm into an RT-level description, which is spec-
ified explicitly in terms of register transfer operations. Due to the complexity of transforma-
tion, it can only be applied to relatively simple algorithms in a narrowly defined application
domain.

RT-level synthesis analyzes an RT-level behavioral description and derives the struc-
tural implementation using RT-level components. It may also perform a limited degree of
optimization to reduce the number of components.

Gate-level synthesis is similar to RT-level synthesis except that gate-level components are
used in structural implementation. After the initial circuit is derived, two-level or multilevel

14 INTRODUCTION TO DIGITAL SYSTEM DESIGN

optimization is used to minimize the size of the circuit or to meet the timing constraint. In
general, generic components are used in gate-level synthesis, and thus the synthesis process
is independent of device technology.

Each device technology includes a set of predesigned primitive gate-level components,
which can be cells of a standard-cell library or a generic logic cell of an FPGA device. To
implement the gate-level circuit in a particular device technology, the generic components
have to map into the cells of the chosen technology. The transforming process is known as
technology mapping. It is the last step in synthesis, and clearly the process is technology
dependent.

The synthesis procedure is discussed in detail in Section 6.4.

1.5.2 Physical design

Physical design includes two major parts. The first part is the refinement process between
the structural and physical views, which derives a layout for a netlist. The second part
involves the analysis and tuning of a circuit’s electrical characteristics. The main tasks in
physical design include floor planning, placement and routing and circuit extraction.

Floor planning derives layouts at the processor and RT levels. It partitions the system
into large function blocks and places these blocks in proper locations to reduce future routing
congestion or to achieve certain timing objectives. Furthermore, floor planning may also
provide a global plan for the power and clock distribution schemes. Placement and routing
derives a layout at the gate level. The layout involves the detailed placement of cells and
the routing of interconnecting wires.

After the placement and routing are complete, the exact length and location of each
interconnect are known, and the associated parasitic capacitance and resistance can be cal-
culated. This process is known as circuit extraction. The extracted data are used to construct
a resistance and capacitance network, which in turn is used to compute the propagation de-
lays.

In addition to the foregoing tasks, the physical design also includes design rule checking,
derivation of the power grid, derivation of the clock distribution network, estimation of
power use and assurance of signal integrity.

1.5.3 Verification

Verification is the process of checking whether a design meets the specification and perfor-
mance goals. It concerns the correctness of the initial design as well as the correctness of
refinement processes during synthesis and physical design. Verification has two aspects:
functionality and pe$omnce. Functional verification checks whether a system generates
the desired output response. Performance is represented as certain timing constraints. Tim-
ing ven$cation checks whether the response is generated within the given time constraint.
Verification is done in different phases of the design and at different levels of abstraction.

Functional verification The design of a custom system usually begins with a high-level
behavioral description. When it is first created, the primary concern is whether the design
functions according to the specifications. We need to check its operation and compare its
responses to those desired. Once the functionality of the initial design is verified, we can
start the refinement process and gradually convert it to a gate-level structural description.
In general, if the initial design does not depend on the internal propagation delay (i.e., is not
delay-sensitive), the functionality should be maintained through the refinement processes.

DEVELOPMENT TASKS AND EDA SOFMlARE 15

In the ideal situation, the design should be “correct by construction” and require no further
functional verification. In reality, subtle errors may be introduced in a refinement process,
and thus functional verification is still performed after each process to ensure that the new,
refined description works correctly.

Timing verification Timing verification checks whether a system meets its performance
goals, which are normally expressed in terms of maximal propagation delay or minimal
clock frequency. At the processor or RT level, the propagation delay of an input-output path
can be calculated by identifying the components in the path and summating the individual
delays. However, since these components will be further refined and synthesized, the
information is just a rough estimation.

At the gate level, the propagation delay of a path is affected by the delays of the com-
ponents as well as the interconnection wires. The wiring delay depends on the locations
and the lengths of wires. Although they can be estimated during synthesis, the exact values
can be obtained only after the placement and routing process. As the size of a transistor
continues to shrink, the effect of a wiring delay becomes more dominant. This makes tim-
ing verification more difficult since accurate delay information is not available during the
synthesis process.

Methods of verification The most commonly used verification method is simulation,
which is the process of constructing a model of a system, executing the model with input test
patterns in a computer, and examining and analyzing the output responses. The model can
be an actual or a hypothetical circuit that incorporates functionality and timing information.
Simulation is a versatile process that be applied at any level of abstraction, and in behavioral
as well as structural views. Utilizing simulation allows us to examine a system’s operation
in a computer and to detect errors without actually constructing the system.

Simulation essentially provides a sequence of snapshots of system operation, defined by
a set of input stimuli. However, there is no guarantee that the selected stimuli can exercise
every part of the system and verify the correctness of the entire design. Whereas simulation
can do spot checks and detect major design mistakes, it cannot guarantee the absence of
errors.

Another limitation of simulation comes from its computation complexity. Hardware
operation is concurrent and parallel in nature, and it is time consuming to model its operation
in a computer, which performs computational steps sequentially. It becomes a serious
problem when we want to simulate low-level models, which may consist of hundreds of
thousands or even millions of components.

In addition to simulation, several other methods are used for verification, including
timing analysis, formal verification and hardware emulation. liining analysis focuses only
on the timing aspects of a circuit. It analyzes the structure of a circuit, determines all
possible input-output paths, calculates the propagation delays of these paths and determines
the relevant timing parameters, such as worst-case propagation delay and maximal clock
frequency. Simulation can provide the relevant timing information for the selected test
patterns. However, since these test patterns do not always exercise the critical paths, timing
analysis is needed to verify that the system meets the timing specifications.

F o m l verijication applies formal mathematical techniques to analyze a circuit and de-
termine its property. A popular method in formal verification is equivalence checking,
which compares two representations of a system and determines whether the two represen-
tations perform the same function. It is frequently applied in synthesis to verify that the
functionality of a synthesized circuit is identical to the original one. Unlike simulation,

Timing issues and propagation delay are discussed in more detail in Section 6.5.1.

16 INTRODUCTION TO DIGITAL SYSTEM DESIGN

formal verification is based on rigorous mathematical reasoning and can ensure that the
synthesis is completely error-free.

Hardware emulation physically constructs a prototyping circuit that mimics operation
of the system. A common application is to construct an FPGA circuit to emulate a complex
ASIC design. Although the FTGA-based system is normally larger and slower than the
ASIC system, it is much faster than simulation and it can be physically interfaced with
other circuits and studied in detail.

1.5.4 Testing

The meanings of verification and testing are somewhat similar in a dictionary sense. How-
ever, they are two very different tasks in digital system development. Verijication is the
process of determining whether a design meets the specification and performance goals. It
concerns the correctness of the initial design as well as the refinement processes. On the
other hand, testing is the process of detecting the physical defects of a die or a package that
occurred during manufacturing. When a device is being tested, we already know that the
design is correct and the purpose of testing is simply to ensure that this particular part was
properly fabricated.

At first glance, testing appears to be easy. All we need to do is simply to apply all
possible input combinations and check the output responses. However, because of the large
number of input combinations, this approach is not feasible. Instead, we have to utilize
special algorithms to obtain a small set of test patterns. This process is known as testpattern
generation.

For a small circuit, we can develop the testing procedure after completing the initial
design and synthesis. However, as a digital circuit becomes larger and more complex, this
approach becomes more difficult. Instead of as an afterthought, we have to consider the
testing procedure in the initial design and frequently need to add auxiliary circuitry, such as
a scan chain or built-in-self-rest circuit, to facilitate the future requirements. This is known
as design-for-test.

1.5.5 EDA software and its limitations

Developing a large digital circuit is a complicated process that involves complex algorithms
and a large amount of data. Computer software is used to automate some tasks. This is
known as electronic design automation (EDA). As computers become more powerful, we
may ask if it possible to develop a suite of software and automate the development process
completely. The ideal scenario would be that human designers only need to develop a high-
level behavioral description, and EDA software will perform the synthesis and placement
and routing and derive the optimal circuit implementation automatically. The answer is,
unfortunately, negative. This is due to the theoretical limitations that cannot be overcome
by faster computers or smart software codes.

The synthesis software should be treated as a tool to perform transformation and local
optimization. It cannot alter the original architecture or convert a poor design into a good
one. The efficiency of the final circuit depends mainly on the initial description.

The limitations and effective use of the EAD software are elaborated in Section 6.1.

DEVELOPMENT FLOW 17

1.6 DEVELOPMENT FLOW

Developing a digital circuit is essentially a refining and validating process, gradually trans-
forming an abstract high-level description into a detailed low-level structural description.
While all developments follow the basic refinement-validation process, detailed flows de-
pend on the size of the circuit and the target device technology.

The optimization algorithms used in synthesis software are complex. The needed com-
putation time and memory space increase drastically as the circuit size grows. Thus, size
is a limiting factor in many synthesis software tools, The software is most effective for
an intermediate-sized circuit, which ranges between 2000 and 50,000 gates. For a larger
system, we must first partition the circuit into smaller blocks and then process each block
individually.

Another factor is the target device technology. The fabrication processes of P G A
and ASIC are very different. Whereas an P G A chip is an off-the-shelf part that has been
prefabricated and pretested, an ASIC design must go through a lengthy, complex fabrication
process, Many extra steps are needed to ensure the correctness of the final physical circuit.

The following subsections show the typical development flow of three different types
of designs and explain the extra steps needed as the complexity increases. Three types of
designs are:

0 Medium-sized design targeting P G A
0 Large design targeting FPGA
0 Large design targeting ASIC

1.6.1

The term medium-sized here means a design that requires no partition and does not need
predesigned IP cores. It is acircuit with up to about 50,000 gates. Current synthesis software
and placement-and-routing software can effectively process a circuit of this complexity.
This size is not trivial. It corresponds to that of a moderately complex circuit, such as a
simple processor or bus interface. The development flow is depicted in Figure 1.4. It is
shown in three columns, representing a synthesis track, physical design track and verification
track respectively.

The flow starts with the design file, which is normally an RT-level description of the
circuit. It may be accompanied by a set of constraints that specify the timing requirements.
A separate file, known as a testbench, provides a virtual experiment bench for simulation
and verification. It incorporates the code to generate input stimuli and to monitor the
output responses. Once these files are created, the circuit can be constructed and verified
accordingly. The steps in an ideal flow are detailed below.

Flow of a medium-sized design targeting FPGA

1. Develop the design file and testbench.
2. Use the design file as the circuit description, and perform a simulation to verify that

3. Perform a synthesis.
4. Use the output netlist file of the synthesizer as the circuit description, and perform a

simulation and timing analysis to verify the correctness of the synthesis and to check
preliminary timing.

the design functions as desired.

5 . Perform placement and routing.

18 INTRODUCTION TO DIGITAL SYSTEM DESIGN

Synthesis

/ 7 / e description

1 synthesis I @

/-/ /-/ delay file

I I

Physical Design

placement & I routing I e
I

/*/ wnfi uration /-/

device

1

I

Verification

e/-/

7 5 simulation

1

-€--
simulation/

timing
analysis

Figure 1.4 Development flow of a medium-sized design targeting FF'GA.

DEVELOPMENT FLOW 19

6. Annotate the accurate timing information to the netlist, and perform a simulation and
timing analysis to verify the correctness of the placement and routing and to check
whether the circuit meets the timing constraints.

7. Generate the configuration file and program the device.
8. Verify operation of the physical part.

The flow described above represents an ideal process since it assumes that the initial design
description follows the functional specification and meets the timing constraints. In reality,
the development flow may consist of several iterations to correct the functional errors or
timing problems. We may need to revise the original design file or to fine-tune parameters
in synthesis and placement-and-routing software.

1.6.2 Flow of a large design targeting FPGA

A large, complex digital circuit may contain several hundred thousand or even a few million
gates. Synthesis tools are not able to perform transformation and optimization effectively
in this range. It is necessary to partition the circuit into smaller blocks and to process
the blocks individually. The partition process also allows us to use previously designed
subsystems or commercial IP cores.

To accommodate a larger design, additional processes must be added to the flow of
Figure 1.4. The initial design description tends to be an abstract, high-level behavioral
description of the circuit. In the synthesis track, a parfirion process is needed to divide the
systems into blocks of adequate size and functionality. The output of the partition process
can be considered as a netlist of large blocks. Some blocks may be already designed and
verified subsystems, either from a previous project design or from a commercial IP vendor.
The other blocks must be designed and synthesized individually as medium-sized circuits,
following the development flow of the previous subsection.

In the verification track, an extra step is needed to verify the correctness of the partition
results and to check the initial timing. Because of the large number of components, the
gate-level netlist becomes very involved, and simulation consumes a significant amount of
time. Formal verification techniques and cycle-based simulation are frequently used as an
alternative to verify the functionality.

In the physical design track, a floor planning process may be needed. It performs initial
placement for the processor-level blocks.

1.6.3 Flow of a large design targeting ASK

Due to the complexity of ASIC fabrication, the development flow becomes more involved.
The additional requirements are the inclusion of a testing track and the expansion of the
physical design track.

The purpose of testing is to detect defects in the fabrication process. FPGA devices are
tested by vendors before being shipped, and thus we don’t need to worry about physical
defects of the device. On the other hand, the testing is the integral part of the ASIC design
and plays an important role. At the RT level, additional built-in-self-test circuits and special
scanning control circuits are frequently added to aid the final testing. These circuits become
an integral part of the design and have to be synthesized and verified. At the gate level,
scan registers will be strategically inserted around circuit blocks or VO boundaries. The
scan circuit also needs to be synthesized and verified along with the regular design. Finally,
test vectors have to be generated for combinational circuit blocks, and simulation has to be
performed to ensure that the vectors provide proper fault coverage.

20 INTRODUCTION TO DIGITAL SYSTEM DESIGN

In PGA-based flow, the physical design track involves only the floor planning andplace-
ment and routing, which is accomplished by configuring the FPGA device’s programmable
interconnect structure. The physical design process of an ASIC device is much more
complicated since it involves development and verification of the masks. After placement
and routing, several additional steps are needed, including design rule checking, physical
verification and circuit extraction.

Due to the high NRE cost of an ASIC-based device, it is important that the circuit
is simulated and checked thoroughly before fabrication. Thus, the verification track of
ASIC-based design flow has to be more comprehensive and more exhaustive.

1.7 OVERVIEW OF THE BOOK

1.7.1 Scope

This book focuses primarily on the design and synthesis of RT-level circuits. A subset of
the VHDL hardware description language is used to describe the design. The book is not
intended to be a comprehensive ASIC or FPGA book. All other issues, such as device
architecture, placement and routing, simulation and testing, are discussed only from the
context of RT-level design.

After completing this book, readers should be able to develop and design efficient RT-
level systems or subsystem blocks. A physical chip for a medium-sized FPGA design
or a large, manually partitioned FPGA design can be obtained with a general synthesis
and placement and routing software package. Additional knowledge and more specialized
software tools are needed to cover the other tasks for an ASIC design.

1.7.2 Goal

The goal of the book is to learn how to systematically develop efJicient, portable RT-level
designs that can easily be integrated into a larger system. The goal includes three major
parts:

0 Design for efficiency
0 “Design for large”
0 Design for portability

Design for efficiency Availability of HDL and synthesis software relieves us from
many tedious, repetitive implementation details and allows us to explore the design at a more
abstract level. However, algorithms used in synthesis software can only do transformation
and perform local search and optimization. They cannot, and will not, create a good design
description or convert a poor design description to a good one. The quality of the circuit
lies primarily in the initial description.

The book shows the relationship between VHDL constructs and the hardware compo-
nents as well as the effective use of synthesis software tools, and introduces a disciplined
way to develop the initial description that leads to efficient implementation.

“Design for large” We use the term designfor large loosely to cover three aspects:
0 Design of a large module
0 Design to be incorporated in a larger system
0 Design to facilitate the overall development process

BIBLIOGRAPHIC NOTES 21

The main purpose of most digital system books, including this one, is to illustrate basic
concepts and procedures. For clarity, the design examples are normally explained by circuits
with small input size. However, the design and description for a system with a small number
of inputs (e.g., a 2-bit multiplier) and a system with a larger number of inputs (e.g., a 32-bit
multiplier) can be very different. Although small-input-size examples are used in this book,
the design approach and coding style are aimed at a large input size, and thus the design
can easily be expanded to a larger, more practical system.

As the digital system becomes more complex, an RT-level description is likely to be a
part of a larger system. Although a large processor-level system is not the focus of this
book, the coding and development take this into consideration so that the RT-level design
can easily be incorporated into a larger system when needed.

The discussion in Section 1.6 shows that the development of a large digital system
involves many tasks. RT-level design and synthesis are not an isolated part. A poorly con-
structed RT-level circuit makes simulation, verification and testing processes unnecessarily
difficult or even impossible, and sometimes may need to be revised at a later stage of the
development process. While the book focuses on RT-level design and synthesis, it treats this
task as an integral part of the development process and uses methodology that can facilitate
and even simplify other tasks.

Design for portability Portability means that the same design description can be used
in different applications. We can examine design for portability from three perspectives:

0 Device independent
Software independent

0 Designreuse
Device independent means that the same design description can be synthesized to dif-

ferent device technologies. From time to time, the same design may need to migrate to
a different technology. It can be from one FPGA vendor to another or from FPGA to
ASIC for volume production. The design descriptions of this book carefully avoid any
device-dependent feature so that the code can be used for multiple device technologies.

Sofhvare independent means that the design description can be accepted by most synthe-
sis software. Since synthesis is a very complex process, software packages from different
vendors have different capabilities, support different subsets of hardware description lan-
guage and may have different interpretations on some subtle language constructs. We try
to use the minimal common denominator of the synthesis software so that a design descrip-
tion can be accepted by most software tools and its function will be interpreted in a similar
manner.

Design reuse means that the whole or part of the design description can be used again
in a different application or project. We interpret the term reuse in a broad sense, from the
copying of a few lines of code to a complete IP core. While developing an IP core is not
the primary goal, we try to make the code modular and scalable when possible so that the
same code can be reused in different applications with minimal or no revision.

1.8 BIBLIOGRAPHIC NOTES

This book includes a short bibliographic section at the end of each chapter. The purpose of
the section is to provide several of the most relevant references for further exploration. A
complete comprehensive bibliography is provided at the end of the book.

22 INTRODUCTION TO DIGITAL SYSTEM DESIGN

Developing a large digital system is a complex process. The text, Methodology Manual
for System-on-a-Chip Designs, 3rd edition by M. Keating and P. Bricaud, provides an
overview and guidelines for the process. The text, The Design Warrior’s Guide to FPGAs
by C. M. Maxfield, introduces relevant issues on FPGAs. Two texts, FPGA-Bused System
Design and Modem VLSI Design: System-on-Chip Design, 3rd edition, both by W. Wolf,
provide more in-depth reviews of the FPGA and ASIC technologies.

Problems

1.1 An engineer claims the following about the digital format: “In a digital system,
logic 0 and logic 1 are represented by two voltage levels. Since there is a significant voltage
difference between the two levels, noise will not affect the logic value, and thus digitized
information is immune to noise.” Is the statement correct? Explain.

1.2 Volume of sale (i.e., the number of parts sold) is a factor when determining which
device technology is to be used. Assume that a system can be implemented by FPGA,
gate array or standard-cell technology. The per part cost is $15, $3 and $1 for FPGA, gate
array and standard cell respectively. Gate array and standard-cell technologies also involve
a one-time mask generation cost of $20,000 and $100,000 respectively.

Assume that the number of parts sold is N . Derive the equation of per unit cost
for the three technologies.
Plot the three equations with N as the x-axis.
Determine the range of N for which FPGA technology has the minimal per unit
cost.
Determine the range of N for which gate array technology has the minimal per
unit cost.
Determine the range of N for which standard-cell technology has the minimal
per unit cost.

1.3 What is the view (behavioral, structural or physical) of the following illustration?

il

i0 0

1.4

1.5

1.6
in step 6 necessary? Explain.

What is abstraction? Why is it important for digital system design?

What is the difference between testing and verification?

In Figure 1.4, the synthesized circuit is simulated in steps 4 and 6. Is the simulation

CHAPTER 2

OVERVIEW OF HARDWARE
DESCRl PTlON LANGUAGES

A digital system can be described at different levels of abstractions and from different points
of view. As the design process progresses, the level and view are changed, either by human
designers or by software tools, It is desirable to have a common framework to exchange
information among the designers and various software tools, Hardware description lan-
guages (HDLs) serve this purpose. In this chapter we provide an overview of the design, use
and capability of HDLs. The basic concept and essential modeling features are introduced
by a series of codes to show the “big picture” of HDLs. The detailed syntax, language
constructs and associated semantics are discussed in subsequent chapters.

2.1 HARDWARE DESCRIPTION LANGUAGES

A digital system can be described at different levels of abstraction and from different points
of view. An HDL should faithfully and accurately model and describe a circuit, whether
already built or under development, from either the structural or behavioral views, at the
desired level of abstraction. Because HDLs are modeled after hardware, their semantics
and use are very different from those of traditional programming languages. The following
subsections discuss the need, use and design of an HDL.

2.1.1 Limitations of traditional programming languages

There are wide varieties of computer programming languages, from Fortran to C to Java.
Unfortunately, they are not adequate to model digital hardware. To understand their limita-

RTL Hardware Design Using VHDL: Coding for Eflciency, Portability, and Scalability. By Pong P. Chu 23
Copyright @ 2006 John Wiley & Sons, Inc.

24 OVERVIEW OF HARDWARE DESCRIPTION LANGUAGES

tions, it is beneficial to examine the development of a language. A programming language
is characterized by its syntax and semantics. The synrax comprises the grammatical rules
used to write a program, and the semantics is the “meaning” associated with language
constructs. When a new computer language is developed, the designers first study the
characteristics of the underlying processes and then develop syntactic constructs and their
associated semantics to model and express these characteristics.

Most traditional general-purpose programming languages, such as C, are modeled after
a sequential process. In this process, operations are performed in sequential order, one
operation at a time. Since an operation frequently depends on the result of an earlier
operation, the order of execution cannot be altered at will. The sequential process model
has two major benefits. At the abstract level, it helps the human thinking process to develop
an algorithm step by step. At the implementation level, the sequential process resembles the
operation of a basic computer model and thus allows efficient translation from an algorithm
to machine instructions.

The characteristics of digital hardware, on the other hand, are very different from those
of the sequential model. A typical digital system is normally built by smaller parts, with
customized wiring that connects the input and output ports of these parts. When a signal
changes, the parts connected to the signal are activated and a set of new operations is initiated
accordingly. These operations are performed concurrently, and each operation will take a
specific amount of time, which represents the propagation delay of a particular part, to
complete. After completion, each part updates the value of the corresponding output port.
If the value is changed, the output signal will in turn activate all the connected parts and
initiate another round of operations. This description shows several unique characteristics
of digital systems, including the connections of parts, concurrent operations, and the concept
of propagation delay and timing. The sequential model used in traditional programming
languages cannot capture the characteristics of digital hardware, and there is a need for
special languages (i.e., HDLs) that are designed to model digital hardware.

2.1.2 Use of an HDL program

To better understand HDL, it is helpful to examine the use of an HDL program. In a
traditional programming language, a program is normally coded to solve a specific problem.
It takes certain input values and generates the output accordingly. The program is first
compiled to machine instructions and then run on a host computer. On the other hand, the
application of an HDL program is very different. The program plays three major roles:

0 Formal documentation. A digital system normally starts with a word description.
Unfortunately, since human language is not precise, the description is frequently
incomplete and ambiguous, and the same description may be subject to different in-
terpretations. Because the semantics and syntax of an HDL are defined rigorously,
a system specified in an HDL program is explicit and precise. Thus, an HDL pro-
gram can be used as a formal system specification and documentation among various
designers and users.

0 Input to a simulator. As we discussed in Chapter 1, simulation is used to study and
verify the operation of a circuit without constructing the system physically. An HDL
simulator provides a framework to model the concurrent operations in a sequential
host computer, and has specific knowledge of the language’s syntactic constructs
and the associated semantics. An HDL program, combined with test vector gener-
ation and a data collection code, forms a testbench, which becomes the input to the

HARDWARE DESCRIPTION LANGUAGES 25

HDL simulator. During execution, the simulator interprets HDL code and generates
responses accordingly.

0 Input to a synthesizer. The modem development flow is based on the refinement
process, which gradually converts a high-level behavioral description to a low-level
structural description. Some refinement steps can be performed by synthesis software.
The synthesis software takes an HDL program as its input and realizes the circuit
from the components of a given library. The output of the synthesizer is a new HDL
program that represents the structural description of the synthesized circuit.

2.1.3 Design of a modern HDL

The fundamental characteristics of a digital circuit are defined by the concepts of entity,
connectivity, concurrency and timing. Entity is the basic building block, modeling after a
part of a real circuit. It is self-contained and independent, and has no implicit information
about other entities. Connectivity models the connecting wires among the parts. It is the
way that entities interact with one another. Since the connections of a system are seldom
formed as a single thread, many entities may be active at the same time and many operations
are performed in parallel. Concurrency describes this type of behavior. Timing is related
to concurrency. It specifies the initiation and completion of each operation and implicitly
provides a schedule and order of multiple operations.

The goal of an HDL is to describe and model digital systems faithfully and accurately.
To achieve this, the cornerstone of the language should be based on the model of hardware
operation, and its semantics should be able to capture the fundamental characteristics of the
circuits.

As we discussed in Chapter 1, a digital system can be described at four different levels of
abstraction and from three different points of view. Although these descriptions have similar
fundamental characteristics, their detailed representations and models vary significantly.
Ideally, we wish to develop a single HDL to cover all the levels and all the views. However,
this is hardly feasible because the vast differences between abstraction levels and views
will make the language excessively complex. Modem HDLs normally cover descriptions
in structural and behavior views, but not in physical view. They provide constructs to support
modeling at the gate andRT levels, and to a limited degree, at processor and transistor levels.
The highlights of modem HDLs are as follows:

0 The language semantics encapsulate the concepts of entity, connectivity, concurrency,

0 The language can effectively incorporate propagation delay and timing information.
0 The language consists of constructs that can explicitly express the structural imple-

mentation (i.e., a block diagram) of a circuit.
0 The language incorporates constructs that can describe the behavior of a circuit,

including constructs that resemble the sequential process of traditional languages, to
facilitate abstract behavioral description.

0 The language can efficiently describe the operations and structures at the gate and
RT levels.

0 The language consists of constructs to support a hierarchical design process.

and timing.

2.1.4 VHDL

VHDL and Verilog are the two most widely used HDLs. Although the syntax and “appear-
ance” of the two languages are very different, their capabilities and scopes are quite similar.

26 OVERVIEW OF HARDWARE DESCRIPTION LANGUAGES

Both are industrial standards and are supported by most software tools. VHDL is used in
this book since it has better support for parameterized design.

VHDL stands for VHSIC (very high speed integrated circuit) HDL. The development of
VHDL was sponsored initially by the US Department of Defense as a hardware documenta-
tion standard in the early 1980s and then was transferred to the IEEE (Institute of Electrical
and Electronics Engineers). IEEE ratified it as IEEE standard 1076 in 1987, which is re-
ferred to as VHDL-87. Each IEEE standard is reviewed every few years and is revised as
needed, IEEE revised the VHDL standard in 1993, which is referred to as VHDL-93, and
made minor modifications and bug fixes in 2001, which is referred to as VHDL-2001. Since
no new language construct is added in the new version, there is no significant difference
between VHDL-93 and VHDL-2001. A suffix is sometimes added to the IEEE standard to
indicate the year the standard was released. For example, VHDL-87 and VHDL-2001 are
known as IEEE standards 1076-1987 and IEEE 1076-2001 respectively.

After the initial release, various extensions were developed to facilitate various design
and modeling requirements. These extensions are documented in several IEEE standards:

0 IEEE standard 1076.1-1999, VHDL Analog and Mixed Signal Extensions (VHDL-
AMS): defines the extension for analog and mixed-signal modeling.

0 IEEE standard 1076.2-1996, VHDL Mathematical Packages: defines extra mathe-
matical functions for real and complex numbers.

0 IEEE standard 1076.3- 1997, Synthesis Packages: defines arithmetic operations over
a collection of bits.

0 IEEE standard 1076.4-1995, VHDL Initiative Towards A S K Libraries (VITAL): de-
fines a mechanism to add detailed timing information to ASIC cells.

0 IEEE standard 1076.6-1999, VHDL Register Transfer Level (RTL) Synthesis: defines
a subset that is suitable for synthesis.

0 IEEE standard 1 164- 1993 Multivalue Logic System for VHDL Model Znteroperabiliry
(std-logicJl64): defines new data types to model multivalue logic.

0 IEEE standard 1029.1-1998, VHDL Waveform and Vector Exchange to Support De-
sign and Test Verijcation (WAVES): defines how to use VHDL to exchange infonna-
tion in a simulation environment.

Standards 1076.3,1076.6 and 1 164 are related to synthesis and are discussed in Chapter 3.

2.2 BASIC VHDL CONCEPT VIA AN EXAMPLE

As its name indicates, HDL describes hardware. Thus, it is essential to read or write
HDL code from hardware’s perspective. A simple example in this section shows the basic
modeling concepts used in HDL and demonstrates the semantic differences between HDLs
and traditional programming languages. The example is coded in VHDL and the language
constructs are mostly self-explanatory. The purpose of the example is to provide a big
picture of HDL and VHDL. The detailed syntax and language constructs are studied in
subsequent chapters.

The example is a circuit that detects even parity. There are one output, even, and three
inputs, a(2), a(l> and a(O>, which are grouped as a bus. The output is asserted when
there are even numbers (i.e., 0 or 2) of 1’s from the inputs. The truth table of this circuit is
shown in Table 2.1.

The VHDL codes for a general description, pure structural description, pure behavioral
description and testbench are discussed in the following subsections.

BASIC VHDL CONCEPT VIA AN EXAMPLE 27

Table 2.1 Truth table of an even-parity detector circuit

0 0 0
0 0 1
0 1 0
0 1 1
1 0 0
1 0 1
1 1 0
1 1 1

even

Figure 2.1 -0-level and-or implementation of an even-parity detector circuit,

2.2.1 General description

From Boolean algebra, we know that each row of a truth table represents a product term
and the output can be written as the sum-of-products expression

ewen = 4 2) ’ a(1)’ ~ (0) ‘ + 4 2) ’ - a(1) . a(o) + a(2) - a(1)‘ U (O) + 4 2) - a(1) - a@)’

The expression can be realized by a two-level and-or circuit, as shown in Figure 2.1.
The first VHDL description is based on this expression and the code is shown in List-

ing 2.1. In this book, the reserved words are in boldface font, as in library, and comments
are in italic font, as in -- this is a comment.

Listing 2.1 Even-parity detector based on a sum-of-products expression

l i b r a r y i e e e ;
use i e e e . s t d - l o g i c - 1 1 6 4 . a l l ;

- e n t i t y d e c l a r a t i o n
s e n t i t y e v e n - d e t e c t o r i s

port (
a : in s t d - l o g i c - v e c t o r (2 downto 0) ;
even: out s t d - l o g i c

1;
10 end e v e n - d e t e c t o r ;

28 OVERVIEW OF HARDWARE DESCRIPTION LANGUAGES

- a r c h i t e c t u r e body
a r c h i t e c t u r e s o p - a r c h of e v e n - d e t e c t o r i s

begin
IS s i g n a l p l p 2 , p3 p4 : s t d - l o g i c ;

even <= (p i or p2) or (p 3 or p4) a f t e r 20 ns;
p l <= (n o t a (2)) and (n o t a (l) > and (n o t a (O>> a f t e r 15 n s ;
p2 <= (n o t a (2)) and a (l > and a(O> a f t e r 12 ns;

20 p3 <= a (2) and (n o t a (1)) and a(O) a f t e r 12 n s ;
p4 <= a (2) and a (1) and (n o t a (O >) a f t e r 1 2 ns;

end s o p - a r c h ;

The code consists of two major units: entity declaration and architecture body. The
entity declaration is:

e n t i t y e v e n - d e t e c t o r i s
port (

a : in s t d - l o g i c - v e c t o r (2 downto 0) ;
e v e n : out s t d - l o g i c

1;
end e v e n - d e t e c t o r ;

It specifies the input and output ports of this circuit. There are one output port, even, and
one input port, a, which is a three-element array, representing a(2), a(1) and a(0).

The architecture body specifies the internal operation or organization of a circuit. The
first line of the architecture body shows the name of the body, sop-arch (for sum-of-
products architecture), and the corresponding entity, even-detector:

a r c h i t e c t u r e s o p - a r c h of e v e n - d e t e c t o r i s

The next line is the signal declaration:

s i g n a l p l p2 p3 p 4 : s t d - l o g i c ;

The pl, p2, p3 and p4 signals here can be interpreted as wires that connect the internal
parts. The declaration is visible inside this architecture.

The actual architectural description is encompassed within begin and end sop-arch:

even <= (p i o r p2) or (p 3 or p4) a f t e r 20 ns;
p l <= (n o t a (2)) and (n o t a (1)) and (n o t a(0)) a f t e r 15 ns;
p2 <= (n o t a (2)) and a (1) and a(O) a f t e r 12 n s ;
p3 <= a (2) and (n o t a (1)) and a (0) a f t e r 12 ns;
p4 <= a (2) and a (l > and (n o t a (0)) a f t e r 12 ns;

The fundamental building block inside the architecture body is a concurrent statement. For
example, the first line is a concurrent statement:

even <= (p i or p2) or (p 3 or p4) a f t e r 20 ns;

A concurrent statement can be thought of as a circuit part. The left-hand-side signal or port
is the output, and all the signals and ports appearing in the right-hand-side expression are the
input signals. The right-hand-side expression can be considered as the operation performed
by this circuit. The result is available after a specific amount of propagation delay, which
is specified by the after clause. This particular concurrent statement can be interpreted
as a circuit with inputs, pi , p2, p3 and p4, and with an output, even. It performs the or
operation among the four inputs, and the operation takes 20 ns. The other four statements
can be interpreted in a similar fashion.

BASIC VHDL CONCEPT VIA AN EXAMPLE 29

- -
a(1) - - --

(not a(2)) and p l
(not a(1)) and
(nota(0))

0

(c--

even

t- (nota(2))and P2
a(1) and
a(0)

Figure 2.2 Conceptual diagram of sop-arch architecture.

I (pl or p2) or
(P3 or P4)

t- a(2) and
t l (not a(1)) and

'+-- a(0)

P4 - a(2) and
a(1) and
(not a(0))

This architecture body consists of five concurrent statements, which can be interpreted
as a collection of five circuit parts. These concurrent statements are linked through common
signals (or nets). When a signal appears on both the right- and left-hand sides, it implies
that there is a wire connecting the two parts. Thus, a larger circuit is constructed implicitly
through these connections. The conceptual diagram described by this code is shown in
Figure 2.2.

Note that since each concurrent statement represents a circuit part and its interconnection,
the order of these concurrent statements does not matter. For example, we can rearrange
the code as

p2 <= (not a (2)) and a (1) and a(O> a f t e r 12 n s ;
p3 <= a (2) and (not a (l >) and a(O> a f t e r 12 n s ;
even <= (p i or p2) or (p3 or p4) a f t e r 20 ns;
p l <= (not a (2)) and (not a (l) > and (not a (O > > a f t e r 15 n s ;
p4 <= a (2) and a (i > and (not a (0)) a f t e r 12 n s ;

Unlike sequential execution of statements in traditional programming language, con-
current statements are independent and can be activated in parallel. When a concurrent
statement's input changes, it is "awakened" and evaluates the expression accordingly. The
result will be available after the specific propagation delay, and the new value will be
assigned to the output signal.. The change of output signals, in turn, may activate other
statements and invoke a new round of evaluations.

The incorporation of propagation delay with each concurrent statement is the key ingre-
dient to model the operation of hardware and to ensure the proper interpretation of VHDL
code. Sometimes the after clause is omitted because the delay information is not available,
as in

even <= (p i or p2) or (p3 or p 4) ;

30 OVERVIEW OF HARDWARE DESCRIPTION LANGUAGES

a(2) odd
a(1) a(2) xor a(1) xor a(0) not odd
a(0) -

even

Figure 2.3 Conceptual diagram of the xor-arch architecture body.

In this case, VHDL semantics specifies that there is an implicit 6-delay (delta delay) asso-
ciated with the operation. A &delay is an infinitesimal delay that is greater than zero but
smaller than any physical number. The previous line can be interpreted as

even <= (pi or p2) or (p3 or p4) a f t e r 6;

Thus, regardless whether there is an after clause, there is always a propagation delay asso-
ciated with a concurrent statement.

The truth table is just one method to realize the even-parity detector circuit. An alternative
is to use an xor (@) operation. Recall that the xor operation can be used to detect odd parity
since the a @ b expression becomes ’1’ only when there is a single ’1’ from the inputs.
Thus, the even-parity detector circuit can be implemented by an xor network followed by
an inverter and the expression can be written as

even = (4 2) @ a(1) CB ~ (0)) ’

The architecture body based on this description is shown in Listing 2.2.

Listing 2.2 Even-parity detector based on an xor network

s ignal odd : s t d - l o g i c ;

even <= not odd ;

archi tecture x o r - a r c h of e v e n - d e t e c t o r i s

begin

5 odd <= a(2) xor a(1) xor a (0) ;
end x o r - a r c h ;

Again, the two concurrent statements represent two circuit parts, and the conceptual diagram
is shown in Figure 2.3. Since no explicit after clause is used, both statements take a &delay
to operate.

2.2.2 Structural description

In a structural view, a circuit is constructed of smaller parts. The description specifies what
types of parts are used and how these parts are connected. The description is essentially a
schematic, representing a block diagram or circuit diagram. Although we treat a concurrent
statement of the preceding section as a circuit part, it is our interpretation and the code is not
considered as a real structural description. Formal VHDL structural description is done by
using the concept of component. A component can be either an existing or a hypothetical
part. It first has to be declared (make known) and then can be instantiated (actually used)
in the architecture body as needed.

Let us consider the even-parity detector circuit again. Assume that there is a library
with predesigned parts, xor2 and no t l , which perform the xor and inverting functions
respectively. The even-parity detector circuit can be realized by the two parts, as shown in
the circuit diagram of Figure 2.4. Based on the schematic, a structural description can be
derived accordingly. The code of the architecture body is shown in Listing 2.3.

BASIC VHDL CONCEPT VIA AN EXAMPLE 31

unit 1

unit 2 unit 3

xoR 01 i l notl 01
sig2

even

Figure 2.4 Structural diagram of the str-arch architecture.

Listing 2.3 Even-parity detector based on a structural description

a r c h i t e c t u r e s t r - a r c h of e v e n - d e t e c t o r i s
-- d e c l a r a t i o n f o r nor ga te
component xor2

port (
5 i l , i 2 : in s t d - l o g i c ;

01: out s t d - l o g i c
1;

end component;
- d e c l a r a t i o n f o r i n v e r t o r

ID component n o t l
port (

i l : in s t d - l o g i c ;
01: out s t d - l o g i c

) ;
I S end component;

s i g n a l s i g l , s i g 2 : s t d - l o g i c ;

begin
- i n s t a n t i a t i o n of the I s t xor i n s t a n c e

20 u n i t l : xo r2
port map (i l => a(0) i 2 => a(1) 01 => s i g i) ;

- i n s t a n t i a t i o n of the 2nd xor i n s t a n c e
u n i t 2 : x o r 2

port map (i l => a (2) i 2 => s i g l , 01 => s i g 2) ;
25 -- i n s t a n t i a t i o n o f i n v e r t o r

u n i t 3 : n o t l
port map (i l => s i g 2 , 01 => e v e n) ;

end s t r - a r c h ;

Inside the architecture, the components are declared first. For example, the declaration
for xor2 is

component xor2
port (

i l , i 2 : in s t d - l o g i c ;
01: out s t d - l o g i c

) ;
end component;

32 OVERVIEW OF HARDWARE DESCRIPTION LANGUAGES

The information contained inside the declaration is similar to that of entity declaration,
which specifies the input and output ports of a circuit. In addition to component declaration,
there is also a declaration for two internal signals, sigl and sig2.

The architecture body consists of three statements, each representing a component in-
stantiation. The first one is

unitl : xor2
port map (il=>a(O), i2=>a(l), ol=>sigl);

There are three elements in this statement. The first is the label, unitl, which serves
as a unique id for this part. The second is the initiated component, xor2. The last is
port map . . a, which specifies the mapping between the formal signals (the U0 ports used
in component declaration) and actual signals (the signals used in the architecture body). The
mapping indicates that il, i2 and 01 are connected to a(O>, a(l> and sigl respectively.
The code is essentially the textual description of the circuit diagram in Figure 2.4. The three
component instantiations together describe the complete circuit. The connections between
the components are done implicitly by using the same signal names.

Component instantiation is one type of concurrent statement and can be mixed with other
types of concurrent statements. When an architecture body consists only of component
instantiations, as in this example, it is just a textual description of a schematic. This is
a clumsy way for humans to conceptualize and comprehend this kind of representation.
However, textual description put everything into a single VHDL framework so that the
description can be handled by the same software tools. There is special design entry
software that can convert a schematic to structural VHDL code and vice versa.

Component declaration contains only U 0 port information, as in entity declaration. The
components can be treated as empty sockets, which provide no clues about their internal
functions. A component can be an existing, predesigned circuit or a hypothetical system
that is still under construction. An architecture body will be bound with the component at
the time of simulation or synthesis. In this example, the components may already be coded,
compiled and stored in a library earlier. Their VHDL descriptions are shown in Listing 2.4.

Listing 2.4 Redesigned component

-2-input xor g a t e
l i b r a r y ieee ;
use ieee. std-logic-1164. a l l ;
e n t i t y xor2 i s

5 p o r t (
il, i2: in std-logic;
01: out std-logic

1;
end xor2;

a r c h i t e c t u r e beh-arch of xor2 i s
begin

end beh-arch ;

- i n v e r t o r
l i b r a r y ieee;
use ieee. std-logic-1164. a l l ;
e n t i t y not1 i s

10

01 <= il xor i2;

I S

20 p o r t (

BASIC VHDL CONCEPT VIA AN EXAMPLE 33

il: in std-logic;
01: out std-logic

1 ;
end notl ;

begin

end beh-arch;

zs a r c h i t e c t u r e beh-arch of notl i s

01 <= not il;

Structural description and the use of components help the design in several ways. First,
they facilitate hierarchical design. A complex system can be divided into several smaller
subsystems, each represented by a component and designed individually. The subsystem, if
needed, can be further divided into even smaller modules. Second, they provide a method to
use predesigned circuits. These circuits, including complex IP cores and certain specialized
library cells, can be instantiated in the description and treated as black boxes. Finally,
structural description can be used to represent the result of synthesis: a gate- or cell-level
netlist.

2.2.3 Abstract behavioral description

In a large design, the implementation can be very complex and the construction can be a
time-consuming process. In the beginning, we frequently just want to study system op-
eration rather than focusing on construction of the actual circuit, and prefer an abstract
description. Since human reasoning and algorithms resemble a sequential process, the
sequential semantics of traditional language is more adequate. VHDL provides language
constructs that resemble the sequential semantics, including the use of variable and sequen-
tial execution. These features are considered as exceptions to the regular VHDL semantics,
and they are encapsulated in a special construct, known as a process. This kind of code is
sometimes referred to as behaviorul description. However, there is no precise definition for
the term behavioral description. According to VHDL, all codes, except for pure component
instantiation, are considered as behavioral.

process(sensitivity-list)

begin

end p r o c e s s ;

The basic skeleton of a process is

var iab le declaration;

sequential statements;

A process has a sensitivity list, which is composed of a set of signals. When a signal in the
sensitivity list changes, the process is activated. Inside the process, the semantic is similar
to that of a traditional programming language. Variables can be used and execution of the
statements is sequential. The use of process is shown in two examples, both describing '
the even-parity detector circuit. The first example is based on the xor network, as in the
xor-arch architecture. The architecture body is shown in Listing 2.5.

Listing 2.5 Even-parity detector based on a behavioral description

a r c h i t e c t u r e behl-arch of even-detector i s
s i g n a l odd: std-logic ;
begin
- i n v e r t o r

s even <= not odd;

34 OVERVIEW OF HARDWARE DESCRIPTION LANGUAGES

process (a) I variable trnp: std-logic;

a(2) -1 begin tmD := ‘0
for’i in 2 downto o loop

trnp := tmp xor a(i); ‘(1) __I
end loop;
odd <= tmp;

end process;

a(o’ 1
Figure 2.5 Conceptual diagram of the behl-arch architecture.

- x o r n e t w o r k f o r odd p a r i t y
process (a)

begin
v a r i a b l e tmp : s t d - l o g i c ;

10 tmp := I O ’ ;

f o r i in 2 downto 0 loop

end l o o p ;
odd <= tmp;

IS end p r o c e s s ;
end b e h i - a r c h ;

tmp := tmp xor a (i > ;

The xor network is described by a process that utilizes a variable and a for loop statement.
Unlike signal and signal assignment in a concurrent statement, the variable and loop do not
have direct hardware counterparts. We treat a process as one indivisible part whose behavior
is specified by the sequential statements. The graphic interpretation of the behl architecture
is shown in Figure 2.5.

The second example uses a single process to describe the desired operation in an algo-
rithm. The algorithm first sums up the number of 1’s from input, performs a modulo-2
operation to find the remainder, and then uses an if statement to check the value of the
remainder to generate the final result. The VHDL code is shown in Listing 2.6.

Listing 2.6 Even-parity detector based on another behavioral description

a r c h i t e c t u r e beh2-arch of e v e n - d e t e c t o r i s
begin

process (a)
v a r i a b l e sum, r: i n t e g e r ;

sum := 0 ;
f o r i in 2 downto 0 loop

5 begin

i f a (i) = l l l then
sum := sum + i ;

10 end i f ;
end loop ;
r := sum mod 2;
i f (r=O) then

even <= I l l ;

I5 e l s e

BASIC VHDL CONCEPT VIA AN EXAMPLE 35

process (a)

begin
variable sum, r: integer;

sum := 0;
for i in 2 downto 0 loop

sum :=sum +I;
if a(i)='i' then

end if;
end loop ;

end process;
. . .

even

Figure 2.6 Conceptual diagram of the beh2-arch architecture.

even <='O';
end i f ;

end p r o c e s s ;
end beh2-arch ;

Since there is only one process, the graphic interpretation has only one part, as in Fig-
ure 2.6. While the code is very straightforward and easy to understand, it provides no clues
about the underlying structure or how to realize the code in hardware.

2.2.4 Testbench

One major use of a VHDL program is simulation, which is used to study the operation of a
circuit or to verify the correctness of a design. Performing simulation is similar to doing an
experiment with a physical circuit, in which we connect the circuit's input to a stimulus (e.g.,
a function generator) and observe the output (e.g., by logic analyzer). Simulating a VHDL
description is like doing a virtual experiment, in which the physical circuit is replaced by
the corresponding VHDL description. Furthermore, we can develop VHDL utility routines
to imitate the stimulus generator (which is known as a test vector generator) and to collect
and compare the output responses. The framework is known as a testbench.

A simple VHDL testbench for the previous even detection circuit is shown in Listing 2.7.
The testbench includes a test vector generator that generates a stimulus and a verifier that
verifies the correctness of the output response. The testbench consists of an entity declara-
tion and architecture body. Since the testbench is self-contained, no port is specified in the
entity declaration. There are three concurrent statements in the architecture body, including
one component instantiation and two processes. The component instantiation specifies that
the even-detector is used and its VO pins are connected to the internal test generator
and verifier. The first process is the stimulus generator. It produces all possible test vector
combinations, from "000" to "1 11". These vectors are generated in sequential order, each
lasting for 200 ns. The second process is the verifier. It takes the input test vector, waits
for 100 ns to let the output settle down, checks the output value with the known value and
reports the results. The two processes are for demonstration purposes only, and we don't
need to worry about the syntax detail.

Listing 2.7 Simple testbench
_____~

l i b r a r y ieee;
use ieee. std-logic-1164. a l l ;

36 OVERVIEW OF HARDWARE DESCRIPTION LANGUAGES

e n t i t y even-detect or- te s tbench i s
send even-detector-testbench;

a r c h i t e c t u r e tb-arch of even-detector-testbench i s
component even-det ect or

p o r t (
10 a: In std-logic-vector (2 downto 0) ;

even: o u t std-logic
1;

end component ;
s i g n a l test-in: std-logic-vector (2 downto 0) ;

IS s i g n a l test-out : std-logic;

M

35

M

55

begin
- i n s t a n t i a t e t h e c i r c u i t u n d e r t e s t
uut: even-detector

20 p o r t map(a=>test-in, even=>test-out) ;
- t e s t v e c t o r g e n e r a t o r
process
begin

test-in <= l l O O O " ;
7.5 wait fo r 200 ns;

test-in <= "001";
wait f o r 200 ns;
test-in <= "010";
wait f o r 200 ns;
test-in <= "011";
wait f o r 200 ns;
test-in <= "100";
wait f o r 200 ns;
test-in <= "101";
wait f o r 200 ns;
test-in <= "110";
wait f o r 200 ns;
test-in <= tllll";
wait f o r 200 ns;

U) end p r o c e s s ;
- v e r i f i e r
process

begin
v a r i a b l e error-status : boolean;

45 wait on test-in;
wait f o r 100 ns;
i f ((test-in="OOO" and test-out = '1 '1 o r

(test-in="OOl" and test-out = '0') o r
(test_in="010" and test-out = '0') o r
(test-in="Oll" and test-out = '1') o r
(test-in="100" and test-out = '0') o r
(test-in="lOl" and test-out = '1') or
(test-in="llO" and test-out = '1') o r
(test,in="lll" and test-out = '0'))

then

BASIC VHDL CONCEPT VIA AN EXAMPLE 37

6Q

process
begin

test-in <= "000";
wait for 200 ns;
test-in <= "001";
wait for 200 ns;
test-in <= "010";
wait for 200 ns;
test-in <= "01 1";

test-in

T
uut

even-detector

test-out

process

begin
variable. . .

wait on test-in;
wait for 100 ns;
if ((testin="OW and

test-out = '1') or
(testin="001" and
test-out = '0') or

* . .
end process; end process; I'

Figure 2.7 Conceptual diagram of an even-detector testbench.

e r r o r - s t a t u s : = f a l s e ;

e r r o r - s t a t u s : = true ;
e l s e

end i f ;
- e r r o r r e p o r t i n g
a s s e r t not error-s tatus

report " t e s t f a i l e d . 'I

s e v e r i t y note ;
end p r o c e s s ;

6s end tb-arch;

The graphic interpretation of this VHDL code is shown in Figure 2.7. Most of today's
simulation software can keep track of the execution of a VHDL program and display the
relevant information in a tabular or graphic format.

2.2.5 Configuration

The VHDL intentionally separates the entity declaration and architecture body into two
independent design units. We can associate multiple architecture bodies with a single
entity declaration. For example, the even-detector entity of this section has about a half
dozen architecture bodies. At the time of simulation or synthesis, we can choose a specific
architecture body to bind with the entity.

An analogy of the entity and architecture is the socket and IC chip. An entity declaration
can be thought of as a socket of a printed circuit board, which is empty but has fixed input
and output pins. Architecture bodies can be thought of as IC chips with the same outline.
While the input and output pins of these chips are identical, their internal circuitry and
performances may be very different. We can select a chip and insert it into the socket
according to our particular need.

VHDL provides a mechanism, known as conBgurution, to specify the binding informa-
tion. In the previous example, the even-detector entity has five different architecture
bodies. The component declaration and component instantiation of test-bench does not
specify which body is to be used. The test-bench is like a printed circuit board with an
empty socket, and one of the five possible chips can be inserted into the circuit. A simple
configuration declaration unit is shown in Listing 2.8, in which the sop-arch architecture
is bound with the even-detector entity.

38 OVERVIEW OF HARDWARE DESCRIPTION LANGUAGES

Listing 2.8 Simple configuration

c o n f i g u r a t i o n demo-config of even-detector-testbench is
for t b- ar c h

for uut : even-detector
use e n t i t y work. even-detector (sop-arch) ;

5 end f o r ;
end f o r ;

end demo-conf ig ;

In a VHDL program, a configuration unit is not always needed. If there is no configu-
ration unit, the entity is automatically bound with the last compiled architecture body. The
configuration is particularly helpful for the development and verification of large systems.

2.3 VHDL IN DEVELOPMENT FLOW

The examples from the previous sections show the basic language constructs and capabilities
of VHDL. The choice of these constructs is not accidental. They are carefully selected to
facilitate system development. In the following subsections, we discuss the use of VHDL
in the development flow and the difference between coding for modeling and coding for
synthesis.

2.3.1 Scope of VHDL

The scope and coverage of VHDL in a simplified development flow is illustrated in Fig-
ure 2.8. The design of a complex system normally begins with an abstract high-level
description, which describes the desired behavior of the system, and a testbench, which
includes a set of test vectors to exercise various functions of the system. The description
and testbench allow designers to study the system operation in detail, discover any miscon-
ception or inconsistency, clarify and finalize the specification, and eventually establish the
desired I/O behavior for future verification. The beh2-arch architecture (in Listing 2.6) of
even-detector and the corresponding test-bench (in Listing 2.7) resemble these kinds
of codes. In a large system, the abstract description is normally not suitable for synthesis.
It either leads to unnecessarily complex circuitry or cannot be synthesized at all.

Once the specification and behavior of a system are completely understood, a synthesis-
oriented code can be developed. This code is normally an RT-level description and provides
a “sketch” of the underlying hardware organization so that synthesis software can derive an
efficient implementation. The xor-arch and behl-arch architecture bodies in Listings 2.2
and 2.5 resemble this kind of description. A synthesis-oriented description needs to be
verified first. By utilizing the VHDL configuration, we can bind the new architecture
body to the entity and use the same testbench and the previously established test vectors.
After comparing the simulation responses with the known results, we can easily determine
whether the new description meets the specification.

Once verified, the synthesis-oriented description can be synthesized. The result is a
gate-level netlist, represented by a structural VHDL description. The code will be similar
to the s t r -a rch architecture body Listing 2.3. In a large design, the description is normally
too tedious for humans to comprehend. Instead, it is usually plugged into the testbench
via a new configuration unit. The testbench will be simulated to verify the correctness of
synthesis and to study the system timing. The netlist description can then be passed to
placement and routing software for further processing. The placement and routing tool

VHDL IN DEVELOPMENT FLOW 39

FPGA
chip

Figure 2.8 Coverage of VHDL in development flow.

40 OVERVIEW OF HARDWARE DESCRIPTION LANGUAGES

will generate the layout or configuration files, which are not in VHDL. However, additional
timing information will be augmented to the previous structural description. The new
description will again be plugged into the testbench for final timing verification.

In summary, VHDL provides a unified environment for the entire development flow. It
not only contains constructs to describe the design at various stages of the design, from the
abstraction behavior to the post placement-and-routing cell-level netlist, but also provides
a framework for simulation and verification.

2.3.2 Coding for synthesis

VHDL is used to model all aspects of digital hardware and to facilitate the entire design
process. After a VHDL code is developed, it can be “executed” in a simulator or synthesizer.
The natures of the two executions are quite different.

In simulation, the design is realized only in a virtual environment: the software simulator.
The host computer utilizes its instruction set to mimic operation of the circuit. Since the host
computer normally contains one processing unit, the circuit simulation is done sequentially,
in which all constructs and operators of the VHDL code implicitly shared a single resource in
a time-multiplexing fashion. In synthesis, on the other hand, all constructs and operators of
the VHDL code are mapped to hardware. Let us consider a task that consists of 10 addition
operations. In simulation, the number of addition operators, +, in VHDL code does not
play a significant role since only one addition can be simulated at a time. In synthesis, each
addition operator is mapped to a hardware adder, which is fairly complex, and thus it is
desirable to share the hardware and to reduce the number of addition operators in VHDL
description. Similarly, sophisticated control structures, such as loop or conditional branch,
can be easily simulated in a sequential host but cannot be efficiently mapped to hardware.

For synthesis, only a subset of VHDL can be used. Many modeling language constructs,
such as file operations and assertion statements, are not meaningful for hardware implemen-
tation. The others, such as floating-point number or complicated operators, are too complex
to be synthesized automatically. IEEE defines a subset of VHDL that is suitable for RT-level
synthesis in IEEE standard 1076.6. Even though the scope of the synthesizable subset is
restricted, it still contains a rich collection of language constructs and is very flexible. The
same circuit can be coded in a wide variety of descriptions, ranging from abstract high-
level behavioral-like specification to detailed gate-level structural description. Although
all these descriptions can be synthesized, there is no guarantee that the synthesized circuit
is an efficient implementation. The synthesis software can perform only local search and
local optimization, and the resulting circuit depends heavily on the initial description, An
inadequate description consumes a large amount of CPU time during synthesis, introduces
excessively complex circuitry and even fails to be synthesized,

This book focuses on RT-level design and synthesis, not VHDL. We are using VHDL
as a vehicle to describe our intended hardware implementation. Our emphasis is on coding
for synthesis, which means to develop VHDL code that accurately describes the underlying
hardware structure and to provide adequate information to guide the synthesis software to
generate an efficient implementation.

2.4 BIBLIOGRAPHIC NOTES

HDL is very different from a traditional programming language. The book, Hardware
Description Languages: Concepts and Principles by S. Ghosh, discusses general issues

PROBLEMS 41

in designing HDL. Both VHDL and Verilog are IEEE standards. They are documented
by IEEE Standard VHDL Language Reference Manual and IEEE Standard for Verilog
Hardware Description Language respectively. The other relevant VHDL standards are also
documented in the IEEE publications. The standards themselves are difficult to read. The
text, The Designer’s Guide to VHDL by P. J. Ashenden, provides a detailed and compre-
hensive discussion of VHDL. The texts, Starter’s Guide to Verilog 2001 by M. D. Ciletti,
and Verilog HDL, 2nd edition, by S . Palnitkar, provide good coverage on Verilog.

The verification of a design and the derivation of the testbench’are two of the major tasks
in the development flow. The text, Writing Testbenches: Functional Verification of HDL
Models, 2nd edition, by J. Bergeron, discusses this topic in detail.

Problems

2.1

2.2
such as C.

2.3
and in VHDL, we can write a concurrent statement as a <= not a after 10 ns ; .

What are the syntax and semantics of a programming language?

List three major differences between an HDL and a traditional programming language,

In a traditional programming language, such as C, we can write the statement a= ! a,

(a) Draw the circuit diagram for the VHDL statement.
(b) Describe the operation of the circuit in part (a).
(c) Discuss the differences between the VHDL and C statements.

For the even-parity detector circuit, rewrite the expression in product-of-sums format.

For the VHDL code shown below, treat each concurrent statement as a circuit part

2.4
Revise the code of the sop-arch architecture body according to the new expression.

2.5
and draw the conceptual block diagram accordingly.

y <= el and eO;
eO <= (a0 and bO) or ((n o t a01 and (not bO));
a1 <= (a1 and bl) or ((n o t al) and (not bl));

2.6 A circuit diagram consisting of the xor2 component is shown below. Follow the code
of the s t r -a rch architecture body to derive a structural VHDL description for this circuit.

unit 10

unit 2

xoR 01 odd
i2 unit 11

xor2 01
i l 4 2)

a(3) i2 sig2

42 OVERVIEW OF HARDWARE DESCRIPTION LANGUAGES

2.7
diagram according to the code.

The VHDL structural description of a circuit is shown below. Derive the block

l ibrary ieee ;
use ieee. std-logic-1164. a l l ;
e n t i t y hundred- count er i s

port (
clk, reset: in std-logic;
en: in std-logic;
q-ten , q-one : out std-logic-vector (3 downto 0) ;
p-ten : out std-logic

1;
end hundred-counter ;

a r c h i t e c t u r e str-arch of hundred-counter is
component dec-counter

port (
clk, reset: in std-logic;
en: in std-logic;
q: out std-logic-vector (3 downto 0) ;
pulse : out std-logic

1;
end component ;
s i g n a l p-one , p-ten: std-logic;

one-digit: dec-counter
begin

port map (clk=>clk , reset=>reset , en=>en,
pulse=>p-one, q=>q-one) ;

port map (clk=>clk, reset=>reset , en=>p-one,
pulse=>p-ten, q=>q-ten);

ten-digit: dec-counter

end str-arch;

2.8 From the description of the VHDL process in Section 2.2.3, discuss the differences
between the VHDL process and the traditional programming languages’ procedure and
function.

2.9 We want to change the input of the even-parity detector circuit from 3 bits to 4 bits, i.e.,
from a(2 downto 0) to a(3 downto 0). Revise the VHDL codes of the five architecture
bodies to accommodate the change.

2.10 If we want to change the input of the even-parity detector circuit from 3 bits to
10 bits, discuss the amount of code modifications needed in each architecture body.

2.11 Explain why VHDL treats the entity declaration and architecture body as two sep-
arate design units.

2.12 Think of two applications that can use the configuration construct of the VHDL.

CHAPTER 3

BASIC LANGUAGE CONSTRUCTS
OF VHDL

To use a programming language, we first have to learn its syntax and language constructs. In
this chapter, we illustrate the basic skeleton of a VHDL program and provide an overview of
the basic language constructs, including lexical elements, objects, data types and operators.
VHDL is a strongly typed language and imposes rigorous restriction on data types and
operators. We discuss this aspect in more detail.

3.1 INTRODUCTION

VHDL is a complex language. It is designed to describe both the structural and behavioral
views of a digital system at various levels of abstraction. Many of the language constructs
are intended for modeling and for abstract, behavioral description. Only a small portion
of VHDL can be synthesized and realized physically in hardware. The IEEE 1076.6 RTL
synthesis standard tries to define a subset that can be accepted by most synthesis tools. The
focus of this book is synthesis, and thus the discussion is limited primarily to this subset.

VHDL was revised twice by IEEE and there are three versions: VHDL-87, VHDL-93
and VHDL-2001. Since only simple, primitive language constructs can be synthesized,
the revisions do not have a significant impact on synthesis except for some differences in
the syntactical appearances. Since IEEE 1076.6 mainly follows the syntax of VHDL-87,
we use the syntax of VHDL-87 in the book in general and highlight the difference if any
VHDL-93 feature is used.

RTL Hardware Design Using VHDL: Coding for Effiency, Ponabilim and Scalabiliry. By Pong P. Chu
Copyright @ 2006 John Wiley & Sons, Inc.

43

44 BASIC LANGUAGE CONSTRUCTS OF VHDL

This chapter discusses only the basic, most commonly used language constructs in VHDL
and some extensions defined in IEEE standards 1076.3 and 1164. In subsequent chapters,
more specialized features are covered within the context.

3.2 SKELETON OF A BASIC VHDL PROGRAM

3.2.1 Example of a VHDL program

A VHDL program is composed of a collection of design unifs. A synthesizable VHDL
program needs at least two design units: an entity declaration and an architecture body
associated with the entity. The skeleton of a typical VHDL program can best be explained
by an example. Let us consider the even-de tec to r circuit of Chapter 2. The VHDL code
is shown in Listing 3.1. It uses implicit &delays in signal assignment statements. Note that
we use the boldface font for the VHDL‘s reserved words.

Listing 3.1 Even-parity detector

l i b r a r y i e e e ;
use i e e e . s t d - l o g i c - 1 1 6 4 . a l l ;
e n t i t y e v e n - d e t e c t o r i s

port (
5 a : in s t d - l o g i c - v e c t o r (2 downto 0) ;

e v e n : out s t d - l o g i c
1;

end e v e n - d e t e c t o r ;

10 a r c h i t e c t u r e s o p - a r c h of e v e n - d e t e c t o r i s
s i g n a l p l , p 2 , p 3 , p4 : s t d - l o g i c ;

even <= (p i o r p2) o r (p 3 or p 4) ;
p i <= (n o t a (O>) and (n o t a (1)) and (n o t a (2)) ;

I5 p2 <= (n o t a (0)) and a (i) and a (2) ;
p3 <= a (0) and (n o t a (i)) and a (2) ;
p4 <= a (0) and a (1) and (n o t a (2)) ;

begin

end s o p - a r c h ;

3.2.2 Entity declaration

The entity declaration describes the external interface, or “outline” of a circuit, including the
name of the circuit and the names and basic characteristics of its input and output ports. In
the example, the entity declaration indicates that the name of the circuit is even-de tec to r
and the circuit has a 3-bit input port, a, and a 1-bit output port, even.

The simplified syntax of an entity declaration is

e n t i t y e n t i t y - n a m e i s
port (

p o r t - n a m e s : mode d a t a - t y p e ;
por t -names : mode d a t a - t y p e ;

por t -names : mode d a t a - t y p e
. . .

) ;
end e n t i t y - n a m e ;

SKELETON OF A BASIC WDL PROGRAM &

VHDL‘s interpretation
of signal flow

Figure 3.1 Demonstration circuit for mode.

Note that there is no semicolon (;) in the last port declaration.
Aport declaration is composed of the portnames, mode and data-type terms. The

portnames and data-type terms are self-explanatory. The mode term indicates the
direction of the signal, which can be in, out or inout. The in and out keywords indicate
that the signal flows “into” and “out of’ the circuit respectively. They represent the fact that
the corresponding port is an input or an output of the circuit. The inout keyword indicates
that the signal flows in both directions and that the corresponding port is a bidirectional
port. The mode term can also be buffer. It can cause a subtle compatibility problem and is
not used in the book.

In the example, the port declaration shows that there are two ports. The a port is an
input signal and its data type is std-logic-vector(2 downto 01, which represents a
3-bit bus, and the even port is an output port and its data type is std-logic.

Note that a port with the out mode cannot be used as an input signal. For example,
consider the simple circuit shown in Figure 3.1. We may be tempted to use the following
code to describe the circuit:

l ibrary ieee;
use ieee. std-logic-1164. a l l ;
e n t i t y mode-demo i s

port (
a, b: in std-logic;
x , y: out std-logic

) ;
end mode-demo ;
a r c h i t e c t u r e wrong-arch of mode-demo is
begin

x <= a and b;
y <= not x ;

end wrong-arch ;

Since the x signal is used to obtain the y signal, VHDL considers it as an external signal
that “flows into” the circuit, as shown in Figure 3.1. This violates the out mode and leads
to a syntax error. One way to fix the problem is to change the mode of the x port to the
inout mode. It is a poor solution since the x port is not actually a bidirectional port. A
better alternative is to use an internal signal to represent the intermediate result, as shown
in the revised code:

a r c h i t e c t u r e ok-arch of mode-demo i s

begin
s ignal ab : std-logic ;

ab <= a and b;
x <= ab;
y <= not ab;

end ok-arch;

46 BASIC LANGUAGE CONSTRUCTS OF VHDL

3.2.3 Architecture body

The architecture body specifies the internal operation or organization of a circuit. In VHDL,
we can develop multiple architecture bodies for the same entity declaration and later choose
one body to bind with the entity for simulation or synthesis. The simplified syntax of an
architecture body is

a r c h i t e c t u r e arch-name of e n t i t y - n a m e i s

begin
d e c l a r a t i o n s ;

c o n c u r r e n t s t a t e m e n t ;
c o n c u r r e n t s t a t e m e n t ;
c o n c u r r e n t s t a t e m e n t ;
. . .

end arch-name ;

The first line of the architecture body shows the name of the body and the corresponding
entity. An architecture body may include an optional declarative section, which consists
of the declarations of some objects, such as signals and constants, which are used in the
architecture description. The example includes a declaration of internal signals:

s ignal p l , p 2 , p 3 , p4 : s t d - l o g i c ;

The main part of the architecture body consists of the concurrent statements that describe
the operation or organization of the circuit. As we discussed in Chapter 2, each concurrent
statement describes an individual part and the architecture can be thought of as a collection
of interconnected circuit parts. There are a variety of concurrent statements, which are
discussed in subsequent chapters.

3.2.4 Design unit and library

Design units are the fundamental building blocks in a VHDL program. When a program
is processed, it is broken into individual design units and each unit is analyzed and stored
independently. There are five kinds of design units:

0 Entity declaration
0 Architecture body
0 Package declaration
0 Package body
0 Configuration

We have just studied the entity declaration and architecture body. A package of VHDL
normally contains a collection of commonly used items, such as data types, subprograms
and components, which are needed by many VHDL programs. As the name suggests, a
package declaration consists of the declaration of these items. A package body normally
contains the implementation and code of the subprograms.

In VHDL, multiple architecture bodies can be associated with an entity declaration. A
conjiguration specifies which architecture body is to be bound with the entity declaration.
The package and configuration are discussed in Chapter 13.

A VHDL library is a place to store the design units. It is normally mapped into a directory
in the computer’s hard disk storage. The software defines mapping between the symbolic
VHDL library name and the physical directory. By VHDL default, the design units will be
stored in a library named work.

LEXICAL ELEMENTS AND PROGRAM FORMAT 47

To facilitate the synthesis, IEEE has developed several VHDL packages, including the
std-logic-1164 package and the numeric-std package, which are defined in IEEE stan-
dards 1164 and 1076.3. These packages are discussed in Sections 3.5.2 and 3.5.4. To use
a predefined package, we must include the library and use statements before the entity
declaration. The first two lines of the example are for this purpose:

l i b r a r y i eee ;
use i e e e . std-logic-1164. a l l ;

The first line invokes a library named ieee, and the second line makes the std-logic-1164
package visible to the subsequent design unit. We must invoke this library because we want
to use some predefined data types, s td- logic and std-logic-vector, of the std-logic-1164
package.

3.2.5 Processing of VHDL code

A VHDL program is normally processed in three stages:
1. Analysis
2. Elaboration
3. Execution
During the analysis stage, the software checks the syntax and some static semantic errors

of the VHDL code. The analysis is performed on a design unit basis. If there is no error,
the software translates the code of the design unit into an intermediate form and stores it
in the designated library. A VHDL file can contain multiple design units, but a design unit
cannot be split into two or more files.

In a complex design, the system is normally described in a hierarchical manner. The top
level may include subsystems as instantiated components, as in the example in Section 2.2.2.
During the elaboration stage, the software starts from the designated top-level entity dec-
laration and binds its architecture body according to the configuration specification. If
there are instantiated components, the software replaces each instantiated component with
the corresponding architecture body description. The process may repeat recursively until
all instantiated components are replaced. The elaboration process essentially selects and
combines the needed architectural descriptions, and creates a single “flattened” description.

During the execution stage, the analyzed and elaborated description is usually fed to
simulation or synthesis software. The former simulates and “runs” the description in a
computer, and the latter realizes the description by physical circuits.

3.3 LEXICAL ELEMENTS AND PROGRAM FORMAT

3.3.1 Lexical elements

The lexical elements are the basic syntactical units in a VHDL program. They include
comments, identifiers, reserved words, numbers, characters and strings.

Comments A comment starts with two dashes, --, followed by the comment text.
Anything after the -- symbol in the line will be ignored. The comment is for documentation
purposes only and has no effect on the code. For example, we have added comments to the
previous VHDL code:

48 BASIC LANGUAGE CONSTRUCTS OF VHDL

.
- example t o show the c a v e a t of the out mode
.
a r c h i t e c t u r e ok-arch of mode-demo i s

begin
s i g n a l ab: std-logic; - ab i s t h e i n t e r n a l s i g n a l

ab <= a and b;
x <= ab; -- ab c o n n e c t e d t o the x outpu t
y <= not ab;

end ok-arch;

For clarity, we use italic type for comments.

identifiers An identifier is the name of an object in VHDL. The basic rules to form an
identifier are:

0 The identifier can contain only alphabetic letters, decimal digits and underscores.
0 The first character must be a letter.
0 The last character cannot be an underscore.
0 N o successive underscores are not allowed.

For example, the following identifiers are valid:

A10, next-state, NextState, mem-addr-enable

On the other hand, the following identifiers violate one of the rules and will cause a syntax
error during analysis of the program:

sig#3, - X 1 0 , 'Isegment, X10-, hi--there

Since VHDL is not case sensitive, the following identifiers are the same:

nextstate , NextState , NEXTSTATE, nEXTsTATE

It is good practice to be consistent with the use of case. In this book, we use capital letters for
symbolic constants and use a special suffix, such as n, to represent a special characteristics
of an identifier. For example, the n suffix is used to indicate an active-low signal. If we
see a signal with a name like o e n , we know it is an active-low signal.

It is also a good practice to use descriptive identifier for better readability. For example,
consider the name for a signal that enables the memory address buffer. The mem-addr-en
is good, mae is too short, and memory-address-enable is probably too cumbersome.

Reserved words Some words are reserved in VHDL to form the basic language con-
structs. These reserved words are:

abs access a f t e r a l i a s a l l and a r c h i t e c t u r e a r r ay a s s e r t
a t t r i b u t e begin block body buf fe r bus case component
conf igu ra t ion cons t an t d i sconnec t downto e l se e l s i f end
e n t i t y e x i t f i l e fo r func t ion gene ra t e gene r i c guarded
i f impure in i n e r t i a l inout i s l a b e l l i b r a r y l i nkage
l i t e r a l loop map mod nand new next nor not nu l l of on
open or o t h e r s out package por t postponed procedure
process pure range record r e g i s t e r r e j e c t rem r e p o r t
r e t u r n r o l ro r s e l e c t s e v e r i t y shared s i g n a l s l a s l l
s r a s r l subtype then to t r a n s p o r t type unaf fec ted u n i t s
u n t i l use va r i ab le wait when while with xnor xor

LEXICAL ELEMENTS AND PROGRAM FORMAT 49

Numbers, characters and strings A number in VHDL can be integer, such as 0,1234
and 98E7, or real, such as 0 . 0 , l . 23456 or 9.87E6. It can be represented in other number
bases. For example, 45 can be represented as 2#101101# and 16#2D# in base 2 and base 16
respectively. We can also add an underscore to enhance readability. For example, 123456
is the same as 123456, and 2#0011~1010-1101# is the same as 2#001110101101#.

A character in VHDL is enclosed in single quotation marks, such as A J , Z ' and ' 3 ' .
Note that 1 and 1 are different since the former is a number and the latter is a character.

A string is a sequence of characters enclosed in double quotation marks, such as "Hello"
and "10000111". Again, note that that 2#10110010# and "10110010" are different since
the former is a number and the latter is a string. Unlike the number, we cannot arbitrarily
useanunderscore inside astring. The ~~101100101~ and "1011~0010" strings are different.

3.3.2 VHDL program format

VHDL is a case-insensitive free-format language, which means that the letter case does
not matter, and "white space" (space, tab and new-line characters) can be inserted freely
between lexical elements. For example, the VHDL program

l ibrary i e e e ;
use i e e e . s t d - l o g i c - 1 1 6 4 . a l l ;
e n t i t y e v e n - d e t e c t o r i s

port (
a : in s t d - l o g i c - v e c t o r (2 downto 0) ;
even : out s t d - l o g i c

) ;
end e v e n - d e t e c t o r ;

a r c h i t e c t u r e eg-a rch of e v e n - d e t e c t o r i s
s i g n a l p l , p 2 , p3 , p4 : s t d - l o g i c ;

begin
even <= (p l o r p2) or (p3 o r p 4) ;
p l <= (n o t a (0)) and (n o t a (1)) and (not a (2)) ;
p2 <= (n o t a (0)) and a (l > and a (2) ;
p3 <= a (0) and (not a (1)) and a (2) ;
p4 <= a (0) and a (l) and (n o t a (2)) ;

end eg-a rch ;

is the same as

l ibrary i e e e ; use i e e e . s t d - l o g i c - 1 1 6 4 . a l l ; e n t i t y
e v e n - d e t e c t o r i s port (a : in s t d - l o g i c - v e c t o r (2
downto 0) ; even : out s t d - l o g i c) ; end e v e n - d e t e c t o r ;
a r c h i t e c t u r e eg-arch of e v e n - d e t e c t o r i s s i g n a l p l ,
p 2 , p3 , p4: s t d - l o g i c ; begin even <= (p l o r p2) or
(p3 or p 4) ; p i <= (n o t a (0)) and (n o t a (l)) and
(not a (2)) ; p2 <= (n o t a(O)> and a (l) and a (2) ;
p3 <= a (0) and (not a (1)) and a (2) ; p4 <= a (0) and
a(1) and (not a (2)) ; end e g - a r c h ;

This extreme example demonstrates the importance of proper formatting. Although the
program format does not affect the content or efficiency of a design, it has a significant
impact on human users. An adequately documented and formatted program makes the
code easier to comprehend and helps us to locate potential design errors. It will save a

50 BASIC IANGUAGE CONSTRUCTS OF VHDL

tremendous amount of time for future code revision and maintenance. This is perhaps the
easiest way to enhance the reusability of the code. Section 3.6.2 lists the basic guidelines
for code formatting and documentation.

It is a good idea to include a short “header” comment in the beginning of the file. The
header should provide general information about the design and the “design environment.”
A representative header of the previous VHDL program is shown below.

.

-- Author : p chu

- Fi le : e v e n - d e t . vhd

--

--

--

Design u n i t s :
e n t i t y e v e n - d e t e c t o r

f u n c t i o n : check even # of 1 ’ s f r o m i n p u t
i n p u t : a
o u t p u t : even

t r u t h - t a b l e -based sum-of-products
imp1 emen t a t ion

a r c h i t e c t u r e s o p - a r c h :

-

- L i b r a r y / p a c k a g e :
- i e e e . s t d - l o g i c - l l 6 4 : t o use s t d - l o g i c

-- S y n t h e s i s and v e r i f i c a t i o n :
-- S y n t h e s i s s o f t w a r e : . . .
-- O p t i o n s / s c r i p t : . . .
- Targe t t e c h n o l o g y : . . .
- T e s t b e n c h : e v e n - d e t e c t o r - t b

-

- R e v i s i o n h i s t o r y
-- Vers ion 1 . 0 :
-- Date : 9 / 2 0 0 5
-- Comments : O r i g i n a l

The first two parts list the author and file name. The “Design units” part provides a brief
description about the design units in the file. The description includes the input and output
ports and the function of the entity, and the implementation method of the architecture body.
The final “Revision history” part provides general information about the development. The
“Library/package” and “Synthesis and verification” parts describe the design environment.
The idea here is to provide the necessary information for users to reconstruct or duplicate the
implementation. The “Library/package” part lists the packages and libraries that are referred
to in the design file, and explains briefly the use of these packages. It is especially essential
when a nonstandard or custom package is involved. The “Synthesis and verification” part
lists the EDA software and the script or relevant options used in the synthesis, the original
targeting device technology, as well as, if available, the testbench used to verify the design.
Since synthesis software from different manufacturers supports different subsets of the
VHDL and may interpret certain VHDL constructs differently, this information allows
future users to duplicate the original implementation.

OBJECTS 51

3.4 OBJECTS

An object in VHDL is a named item that holds the value of a specific data type. There are
four kinds of objects: signal, variable, constant and file. A construct known as alias is
somewhat like an object. We do not discuss the file object in this book since it cannot be
synthesized.

Signals The signal is the most common object and we already used it in previous ex-
amples. A signal has to be declared in the architecture body’s declaration section. The
simplified syntax of signal declaration is

s ignal signal-name , signal-name , . . . : data-type ;

For example, the following line declares the a, b and c signals with the std-logic data
type:

s i g n a l a, b, c: std-logic;

According to the VHDL definition, we can specify an optional initial value in the signal
declaration. For example, we can assign an initial value of ’ 0 ’ to the previous signals:

s i g n a l a, b, c: std-logic := ’0’;

While this is sometimes handy for simulation purposes, it should not be used in synthesis
since not many physical devices can implement the desired effect.

The simplified syntax of signal assignment is

signal-name <= projected-waveform;

We examined the concept of pro j ected-wavef o m in Section 2.2.1 and discuss it in more
detail in Chapter 4. From the synthesis point of view, a signal represents a wire or “a wire
with memory” (i.e., a register or latch).

The input and output ports of the entity declaration are also considered as signals.

Variables A variable is a concept found in a traditional programming language. It can
be thought of as a “symbolic memory location” where a value can be stored and modified.
There is no direct mapping between a variable and a hardware part. A variable can only
be declared and used in a process and is local to that process (the exception is a shared
variable, which is difficult to use and is not discussed). The main application of a variable
is to describe the abstract behavior of a system.

The syntax of variable declaration is similar to that of signal declaration:

variable variable-name, variable-name , . . . : data-type

An optional initial value can be assigned to variables as well.
The simplified syntax of variable assignment is

variable-name := value-expression;

Note that no timing information is associated with a variable, and thus only a value, not a
waveform, can be assigned to a variable. Since there is no delay, the assignment is known
as an immediate assignment and the notion : = is used. We examine variables in detail when
the VHDL process is discussed in Chapter 5.

52 BASIC LANGUAGE CONSTRUCTS OF VHDL

Constants A constant holds a value that cannot be changed. The syntax of constant
declaration is

cons tant c o n s t a n t - n a m e : d a t a - t y p e := v a l u e - e x p r e s s i o n ;

The value-expression term specifies the value of the constant. A simple example is

cons tant BUS-WIDTH: i n t e g e r := 32 ;
constant BUS-BYTES: i n t e g e r := BUS-WIDTH / 8;

Note that we use capital letters for constants in this book.
Since an identifier name and data type convey more information than does a literal

alone, the proper use of constants can greatly enhance readability of the VHDL code and
make the code more descriptive. Consider the behavioral description of even-detector
in Section 2.2.3:

a r c h i t e c t u r e b e h l - a r c h of e v e n - d e t e c t o r i s

begin
s i g n a l odd : s t d - l o g i c ;

. . .
tmp := > O 1 ;
f o r i in 2 downto 0 loop

end l o o p ;
tmp := tmp xor a (i) ;

. . .
The code uses a “hard literal,” 2, to specify the upper boundary of the loop’s range. It
becomes much clearer if we replace it with a symbolic constant:

a r c h i t e c t u r e b e h l - a r c h of e v e n - d e t e c t o r i s
s i g n a l odd : s t d - l o g i c ;
cons tant BUS-WIDTH: i n t e g e r : = 3;

begin

tmp := > O 1 ;
f o r i in (BUS-WIDTH-1) downto 0 loop

end l o o p ;
tmp := tmp xor a (i) ;

. . .

AIias Alias is not a data object. It is the alternative name for an existing object. As a
constant, the purpose of an alias is to enhance code clarity and readability. One form of the
signal alias is especially helpful for synthesis. Consider a machine instruction of a processor
that is 16 bits wide and consists of fields with an operation code and three registers. The
instruction is stored in memory as a 16-bit word. After it is read from memory, we can use
an alias to identify the individual field:

s i g n a l word: s t d - l o g i c - v e c t o r (15 downto 0) ;
a l i a s op: s t d - l o g i c - v e c t o r (6 downto 0) is w o r d (l 5 downto 9) ;
a l i a s r e g l : s t d - l o g i c - v e c t o r (2 downto 0) is word(8 downto 6) ;
a l i a s r e g 2 : s t d - l o g i c - v e c t o r (2 downto 0) i s word(5 downto 3) ;
a l i a s r e g 3 : s t d - l o g i c - v e c t o r (2 downto 0) i s word(2 downto 0);

Clearly, a name like r eg l is more descriptive than word(8 downto 6). Unfortunately,
some synthesis software does not support this language construct. We can achieve this in
a somewhat cumbersome way by declaring four new signals in the architecture body and
assigning them with the proper portions of the word signal.

DATA TYPES AND OPERATORS 53

3.5 DATA TYPES AND OPERATORS

In VHDL, each object has a data type. A data type is defined by:
0 A set of values that an object can assume.
0 A set of operations that can be performed on objects of this data type.

VHDL is a known as strongly typed language, which means that an object can only
be assigned a value of its type, and only the operations defined with the data type can be
performed on the object. If a value of a different type has to be assigned to an object,
the value must be converted to the proper data type by a type conversion function or type
casting.

The motivation behind a strongly typed language is to catch errors in the early stage. For
example, if a Boolean value is assigned to a signal of integer type or an arithmetic operation
is applied to a signal of character type, the software can detect the error during the analysis
stage. On the downside, the rigid type requirement may introduce many type-conversion
functions and make the code cumbersome and difficult to understand.

To facilitate modeling and simulation, VHDL is rich in data types. In theory, any data type
with a finite number of values can be mapped into a set of binary representations and thus can
be realized in hardware. However, we refrain from doing this since the mapping introduces
another dimension of uncertainty in synthesis and may lead to compatibility problems in
larger designs. Our focus is on a small set of predefined data types that are relevant to
synthesis. For a signal, we are mainly confined to the std-logic, std-logic-vector,
signed and unsigned data types. A few user-defined data types will be used for specific
applications and they will be discussed as needed.

The following subsections examine the relevant data types, operators and type conver-
sions in VHDL and two synthesis-related E E E packages.

3.5.1 Predefined data types in VHDL

Commonly used data types
Only the following data types are relevant to synthesis:

There are about a dozen predefined data types in VHDL.

0 integer : VHDL does not define the exact range of the in t ege r type but specifies
that the minimal range is from -(231 - 1) to 231 - 1, which corresponds to 32 bits.
Two related data types (formally known as subtypes) are the n a t u r a l and p o s i t i v e
data types. The former includes 0 and the positive numbers and the latter includes
only the positive numbers.

0 boolean: defined as (false, t rue) .
0 b i t : definedas (’O’, ’1’).
0 bit-vector: defined as a one-dimensional array with elements of the b i t data type.

The original intention of the b i t data type is to represent the two binary values used in
Boolean algebra and digital logic. However, in a real design, a signal may assume other
values, such as the high impedance of a tri-state buffer’s output or a “fighting” value because
of a conflict (e.g., two outputs are wired together, forming a short circuit). To solve the
problem, a set of more versatile data types, s td- logic and std-logic-vector, are intro-
duced in the IEEE std-logic-1164 package. To achieve better compatibility, we should
avoid using the b i t and bi t -vector data types. The s td- logic and std-logic-vector
data types are discussed in Section 3.5.2.

In VHDL, data types similar to the boolean and b i t types are known as the enumeration
data types since their values are enumerated in a list.

54 BASIC LANGUAGE CONSTRUCTS OF VHDL

Table 3.1 Operators and applicable data types of VHDL-93

Operator Description Data type Datatype Datatype
of operand a of operand b of result

a ** b exponentiation integer integer integer
abs a absolute value integer integer
not a negation boolean, b i t , boolean, b i t ,

bit-vector bit-vector

a * b multiplication integer integer integer
a / b division
a mod b modulo
a rem b remainder

+ a identity integer integer
- a negation

a + b addition integer integer integer
a - b subtraction
a & b concatenation l-D array, l-D array, 1-D array

element element

a sll b shift-left logical bit-vector integer b i t -ve c t or
a srl b shift-right logical
a sla b shift-left arithmetic
a srl b shift-right arithmetic
a rol b rotate left
a ror b rotate right

a = b equal to
a /= b notequalto
a < b less than
a <= b
a > b greater than
a >= b greaterthanorequal to

less than or equal to

any same as a boolean

scalar or l-D array same as a boolean

a and b and
a or b or
a xor b xor
a nand b nand
a nor b nor
a xnor b xnor

boolean, b i t , same as a same as a
b i t -vect or

Operators About 30 operators are defined in VHDL. In a strongly typed language, the
definition of data type includes the operations that can be performed on the object of this
data type. It is important to know which data types can be used with a particular operator.

Descriptions of these operators and the applicable data types are summarized in Ta-
ble 3.1. Only synthesis-related data types are listed. Most operators and data types are
self-explanatory. Relational operators and the concatenation operator (&) can be applied to
arrays and are discussed in Section 3.5.2.

Note that the operators in the table are defined in VHDL-93. The shift operators and
the xnor operator are not defined in VHDL-87 and are not supported by IEEE 1076.6 RTL
synthesis standard either.

DATA TYPES AND OPERATORS 55

Table 3.2 Precedence of the VHDL operators

Precedence Operators

Highest ** abs not
* / mod rem
+ - (identity and negation)
& + - (addition and subtraction)
sll srl sla sra rol ror
= /= < <I > >=
and or nand nor xor xnor Lowest

During synthesis, operators in the VHDL code will be realized by physical components.
Their hardware complexities vary significantly, and many operators, such as multiplication
and division, cannot be synthesized automatically. This issue is discussed in Chapter 6.

The precedence of the operators is shown in Table 3.2, which is divided into seven
groups. The operators in the same group have the same precedence. The operators in the
upper group have higher precedence over the operators in the lower group. For example,
consider the expression

a + b > c or a < d

The + operator will be evaluated first, and then the > and < operators, and then the or
operator.

If an expression consists of several identical operators, evaluation begins at the leftmost
operator and progresses toward the right (known as left-associative). For example, consider
the expression

a + b + c + d

The a + b expression will be evaluated first, and then c is added, and then d is added.
Parentheses can be used in an expression. They have the highest preference and thus can

alter the order of evaluation. For example, we can use parentheses to make the previous
expression be evaluated from right to left:

a + (b + (c + d))

Unlike the logic expression used in Boolean algebra, the and and or operators have the
same precedence in VHDL, and thus we must use parentheses to specify the desired order,
as in

(a and b) or (c and d)

It is a good practice to use parentheses to make the code clear and readable, even when
they are not needed. For example, the expression

a + b > c or a c d

can be written as

((a + b) > c) or (a < d)

This is more descriptive and reduces the chance for error or misinterpretation.

56 BASIC LANGUAGE CONSTRUCTS OF VHDL

Table 3.3 VHDL operators versus conventional Boolean algebra notations

VHDL operator Boolean algebra notation

not
and
or
xor
+

I

+
@
+

Notation To make an expression compact, we use the conventional symbols I , and +
of Boolean algebra for not, and and OT operations in our discussion. They are expressed
as not, and and or in VHDL code. We also assume that - has precedence over +. For
example, in our discussion, we may write

y = a . b + a’ * b’

When coded in VHDL, This expression becomes

y <= (a and b) or ((not a) and (not b));

The notations used in our discussion and VHDL code are summarized in Table 3.3. Note
that the + notation is used as both or and addition operations in our discussion. Since they
are used in different contexts, it should not introduce confusion.

3.5.2 Data types in the IEEE std-logic-1164 package

To better reflect the electrical property of digital hardware, several new data types were
developed by IEEE to serve as an extension to the b i t and bi t -vector data types. Theses
data types are defined in the std-logic-1164 package of IEEE standard 1164. In this
subsection, we discuss the new data types, the operations defined over these data types and
the conversion between these data types and the predefined VHDL data types.

std-logic andstd-/ogic_vectordafa types The two most useful data types defined in
the st d-logi c-1164 package are st d-logi c and st d-1 ogic -ve c t or . Formally speaking,
the s td- logic data type is actually a subtype of the s td-ulogic data type. Since the
std-ulogic data type is “unresolved,” it has some limitations and will not be used in this
book.

To use the new data types, we must include the necessary library and use statements
before the entity declaration:

l i b r a r y i e e e ;
use i e e e . s t d - l o g i c - 1 1 6 4 . all ;

The s td- logic data type consists of nine possible values, which are shown in the
following list:

(’U’, ’X’, ’O’, ’ l ’ , ’Z’, ’W’, ’L’, ’H’, ’ - ’)

These values are interpreted as follows:
0 ’ 0 ’ and ’ 1 ’ : stand for “forcing logic 0” and “forcing logic 1 ,” which mean that the

signal is driven by a circuit with a regular driving current.

DATA TYPES AND OPERATORS 57

a ’ Z ’ : stands for high impedance, which is usually encountered in a tri-state buffer.
a ’L’ and IH’: stand for “weak logic 0” and “weak logic 1,” which means that the

signal is obtained from wired-logic types of circuits, in which the driving current is
weak.

a ’ X ’ and ! W’ : stand for “unknown” and “weak unknown.” The unknown represents
that a signal reaches an intermediate voltage value that can be interpreted as neither
logic 0 or logic 1. This may happen because of a conflict in output (such as a logic-0
signal and a logic-1 signal being tied together). They are used in simulation for an
erroneous condition.
’U’ : stands for uninitialized. It is used in simulation to indicate that a signal or
variable has not yet been assigned a value.

a ’ - ’ : stands for don’t-care.
Among these values, only 0 ’ , ’ I and ’ Z are used in synthesis. The ’ L and ’H

values are seldom used now since current design practice rarely utilizes a wired-logic circuit.
The use of Z ’ and the potential problem of - are discussed in Chapter 6.

A VHDL array is defined as a collection of elements with the same data type. Each
element in the array is identified by an index. The std-logic-vector data type is an array
of elements with the s td- logic data type. It can be thought of as a group of signals or a
bus in a logic circuit.

The use of std-logic-vector can best be explained by a simple example. Let us
consider an 8-bit signal, a. Its declaration is

s i g n a l a: std-logic-vector (7 downto 0) ;

It indicates that the a signal has 8 bits, which are indexed from 7 down to 0. The most
significant bit (MSB, the leftmost bit) has the index 7, and the least significant bit (LSB,
the rightmost bit) has the index 0. We can access a single bit by using an index, such as
a(7) or a(2), and access a portion of the index by using a range, such as a(7 downto 3)
or a(2 downto 0).

Another form of std-logic-vector is using an ascending range, as in

s i g n a l a: std-logic-vector (0 to 7) ;

Since its MSB is associated with index 0 and may cause some confusion if the array is
interpreted as a binary number, we don’t use this form in the book.

Overloaded Operators Recall that the definition of a data type includes a set of values
and a set of operations to be performed on this data type. In VHDL, we can use the same
function or operator name for operands of different data types. There may exist multiple
functions with the same name, each for a different data type. This is known as overloading
of a function or operator.

In the std-logic-I 164 package, all logical operators, which include not, and, nand,
or, nor, xor and xnor, are overloaded with the s td- logic and std-logic-vector data
types. In other words, we can perform the logical operations over the objects with the
s td- logic or std-logic-vector data types, The overloaded operators are summarized
in Table 3.4. Note that the arithmetic operators are not overloaded, and thus these operations
cannot be applied.

Type conversjon The std-logic-1164 package also defines several type conversion
functions for conversion between the b i t and s td- logic data types aswell as between the
bi t -vector and std-logic-vector data types. The relevant functions are summarized
in Table 3.5.

58 BASIC LANGUAGE CONSTRUCTS OF VHDL

Table 3.4 Overloaded operators in the IEEE stdlogic-1164 package

Overloaded Data type Data type Data type
operator of operand a of operand b of result

not a std-logic-vector
s td- logic

same as a

a and b
a or b
a xor b std-logic-vector same as a same as a
a nand b s td- logic
a nor b
a xnor b

Table 3.5 Functions in the IEEE std-logic-1164 package

Function Data type Data type
of operand a of result

to-bi t (a> std- logic b i t
to-stdulogic (a> b i t s td- logi c
to-bi tvector(a> std-logic-vector bi t -vector
to-s tdlogicvector (a> bi t -vector std-logic-vector

Use of the conversion function is shown below. Assume that the sl, s2, s3, bl and b2
signals are defined as

s i g n a l sl , 92, s3: std-logic-vector (7 downto 0) ;
s i g n a l bl , b2 : bit-vector (7 downto 0) ;

The following statements are wrong because of data type mismatch:

sl <= bl; - b i t - v e c t o r a s s i g n e d t o s t d - l o g i c - v e c t o r
b2 <= sl and s 2 ; -- s t d - l o g i c - v e c t o r a s s i g n e d to b i t - v e c t o r
93 <= bl or 92; - or i s undef ined be tween b i t - v e c t o r

- and s t d - 1 o g i c - v e c t o r

We can use the conversion functions to correct these problems:

sl <= to-stdlogicvector(b1);
b2 <= to-bitvector(s1 and s2);
s3 <= to-stdlogicvector(b1) or s2;

The last statement can also be written as

s3 <= to-stdlogicvector(b1 or to-bitvector(s2));

3.5.3 Operators over an array data type

Several operations are defined over the one-dimensional array data types in VHDL, includ-
ing the concatenation and relational operators and the array aggregate. In this subsection,
we demonstrate the use of these operators with the std-logic-vector data type. Note that
these operators can be applied in any array data types, and thus no overloading is needed.

DATA TYPES AND OPERATORS 59

Relathal Operators! for an array In VHDL, the relational operators can be applied to
the one-dimensional array data type. The two operands must have the same element type, but
their lengths may differ. When an operator is applied, the two arrays are compared element
by element. The comparison procedure starts from the leftmost element and continues
until a result can be established. If one array reaches the end before another, that array is
considered to be “smaller” and the two arrays are considered to be not equal. For example,
all following operations return true:

0 11 11 = 0 11 I 0 1 1 > I’ 0 10 11 , (1 0 11 > 11 000 10 I 0 11 0 11 > 11 0 11 11

Arrays with unequal lengths can sometimes introduce subtle, unexpected results. For
example, assume that the s i g l and sig2 signals are with an array data type of different
lengths and we accidentally write

if (sigl =sig2) then

e l s e
. . .

. . .
Because of the different lengths, the comparison expression is always evaluated as false,
and thus the then branch will never be taken. This kind of error is difficult to debug since
the code is syntactically correct. In this book, we always use operands of identical length.

Concatenation operator The concatenation operator, &, is very useful for array ma-
nipulation. We can combine segments of elements and smaller arrays to form a larger array.
For example, we can shift the elements of the array to the right by two positions and append
two 0’s to the front:

y <= ”00” & a(7 downto 2);

or append the MSB to the front (known as an arithmetic shift):

y <= a(7) & a(7) & a(7 downto 2);

or rotate the elements to the right by two positions:

y <= a(1 downto 0) & a(7 downto 2);

Array aggregate Array aggregate is not an operator. It is a VHDL language construct
to assign a value to an object of array data type. For the std-logic-vector data type,
the simplest way to express an aggregate is to use a collection of std-logic values inside
double quotation marks. For example, if we want to assign a value of “10100000” to the
a signal, it can be written as

a <= lllOIOOOOO1l;

Another way is to list each value of the element in the corresponding position, which is
known as positional association. The previous assignment becomes

a <= (’I>, ’ O J , ’l’,’OJ 1’0’1’0’, ’O’,’O’);

We can also use the form of index => value to explicitly specify the value for each index,
known as named association. The statement can be written as

a <= (7=>’1J, 6=>’0’, O= > ’ O ’ , l=>’O’, 5=>’1’,
4 = > ’ 0 ’ , 3=>’0’, 2=>’0’);

60 BASIC LANGUAGE CONSTRUCTS OF VHDL

It means that the value associated with index 7 (i.e., a(7)) is l’, the value associated
with index 6 is ’ 0 ’, and so on. Note that the order of the index => value pairs does not
matter. We can combine the index, as in

a <= (7)5=>’IJ, 6)4~3121110=>’0’);

or use a reserved word, others, to cover all the unused indexes, as in

a <= (715=>’1’, others=>’OJ);

One frequently encountered array aggregate is all O’s, which is used in the initialization
of a counter or a memory element. For example, if we want to assign “00000000“ to the
a signal, we can write

a <= (o t h e r s = > ’ O ’) ;

It is more compact than

a <= “00000000’~;

The code remains the same even when the width of the a signal is later revised.

3.5.4 Data types in the IEEE numeric-std package

In addition to logical operations, digital hardware frequently involves arithmetic operation
as well, If we examine VHDL and the std-logic-1164 package, the arithmetic operations
are defined only over the integer data type. To perform addition of the a and b signals,
we must use the integer data type, as in

s i g n a l a, b, sum: integer;

sum <= a + b;
. . .

It is difficult to realize this statement in hardware since the code doesn’t indicate the range
(number of bits) of the a and b signals. Although this does not matter for simulation, it is
important for synthesis since there is a huge difference between the hardware complexity
of an 8-bit adder and that of a 32-bit adder.

A better alternative is to use an array of 0’s and 1’s and interpret it as an unsigned or
signed number. We can define the width of the input and the size of the adder precisely, and
thus have better control over the underlying hardware. The IEEE numeric-std package
was developed for this purpose.

Signedand unsigneddafa types The IEEE numeric-std package is apart of IEEE
standard 1176.3. Two new data types, signed and unsigned, are defined in the package.
Both data types are an array of elements with the std-logic data type. For the unsigned
data type, the array is interpreted as an unsigned binary number, with the leftmost element
as the MSB of the binary number. For the signed data type, the array is interpreted as a
signed binary number in 2’s-complement format. The leftmost element is the MSB of the
binary number, which represents the sign of the number.

Notethatthe stdlogic-vector,unsignedand signeddatatypesarealldefinedas an
array of elements with the std-logic data type. Since VHDL is a strongly typed language,
they are considered as three independent data types. It is reasonable since the three data types
are interpreted differently. For example, consider a 4-bit binary representation llOOtl. It
represents the number 12 if it is interpreted as an unsigned number and represents the number

DATA TYPES AND OPERATORS 61

-4 if it is interpreted as a signed number. It may also just represent four independent bits
(e.g., four status signals) if it is interpreted as a collection of bits.

Since the signed and unsigned data types are arrays, their declarations are similar to
that of the std-logic-vector data type, as in

s i g n a l x , y: signed(l5 downto 0);

To use the signed and unsigned data types, we must include the library statement
before the entity declaration. Furthermore, we must include the std-logic-1164 package
since the std-logic data type is used in the numeric-std package. These statements are

l i b r a r y ieee ;
use ieee. std-logic-1164. a l l ;
use ieee . numeric-std. a l l ;

Overloaded Operators Since the goal of the numeric-std package is to support the
arithmetic operations, the relevant arithmetic operators, which include abs, *, /, mod,
rem, + and -, are overloaded. These operators can now take two operands, with data
types unsigned and unsigned, unsigned and natural, signed and signed as well as
signed and integer. For example, the following are valid assignment statements:

s i g n a l a , b , c , d: unsigned(7 downto 0);

a <= b + c;
d <= b + 1;
e <= (5 + a + b) - c;

. . .

The overloading definition of addition and subtraction follows the model of a physical adder.
The sum automatically "wraps around" when overflow occurs.

The relational operators, which include =, /=, <, >, <= and >=, are also overloaded.
The overloading serves two purposes. First, it makes the operator take two operands with
data types unsigned and natural as well as signed and integer. Second, for two
operands with the unsigned or signed data types, the overloading ovemdes the original
left-to-right element-by-element comparison procedure and treats the two arrays as two
binary numbers. For example, consider the expression "011" > "1000". If the data type
of the two operands is std-logic-vector, the expression returns f a l s e because the first
element of "011" is smaller than the first element of "1000". If the data type of the two
operands is unsigned, the > operator is overloaded and the two operands are interpreted
as 3 and 8 respectively. The expression returns f a l s e again. However, if the data type is
signed, they are interpreted as 3 and -8, and thus the expression returns true.

A summary of the overloaded operators is given in Table 3.6.

Functions The numeric-stdpackage defines several new functions. The new functions
include:

0 sh i f t - l e f t , s h i f t l i g h t , rotate-left , r o t a t ex igh t : used for shifting and
rotating operations. Note that these are new functions, not the overloaded VHDL
operators.

0 resize: used to convert an array to different sizes.
0 stdmatch: used to compare objects with the '-' value.
0 to-unsigned, to-signed, to-integer: used to do type conversion between the

two new data types and the integer data type.

62 BASIC LANGUAGE CONSTRUCTS OF VHDL

Table 3.6 Overloaded operators in the IEEE numeric-std package

Overloaded Description Data type Data type Data type
operator of operand a of operand b of result

abs a absolute value signed
- a negation

signed

a * b
a / b unsigned unsigned, natural unsigned
a mod b arithmetic unsigned, natural unsigned unsigned
a rem b operation signed signed, integer signed
a + b signed, integer signed signed
a - b

a = b
a /= b unsigned unsigned, natural boolean
a < b relational unsigned, natural unsigned boolean
a <= b operation signed signed, integer boolean
a > b signed, integer signed boolean
a >= b

Table 3.7 Functions in the IEEE numeric-std package

Function Description Data type of Data type of Data type of

sh i f t - l e f t (a ,b) shift left unsigned, signed natural same as a
s h i f t i i g h t (a , b) shift right
rotate- lef t (a ,b) rotate left
r o t a t e i i g h t (a , b) rotate right

operand a operand b result

resize(a,b) resize array unsigned, signed natural same as a
std-mat ch (a, b) compare ’- unsigned, signed same as a boolean

stdlogic-vector,
std-logic

to-integer (a)
t 0-uns imed (a

data type unsigned, signed integer
w - ., b) conversion natural natural unsigned

to-signed(a, b) integer natural signed

The functions are summarized in Table 3.7. The shift functions are similar to the VHDL
shift operators but with different data types, Note that the IEEE 1076.6 RTL synthesis
standard supports the shift functions of the numeric-std package but not the shift operators
of VHDL. The synthesis issues of the shift functions and the use of the stdlnatch function
are discussed in Chapter 6.

Type conversion Conversion between two different data types can be done by a type
conversion function or type casting. There are three type conversion functions in the
numeric-std package: to-unsigned, to-signed, and to-integer. The to-intger
function takes an object with an unsigned or signed data type and converts it to the
integer data type. The to-unsigned and to-signed functions convert an integer into
an object with the unsigned or signed data type of a specific number of bits. It takes

DATA TYPES AND OPERATORS 63

Table 3.8 Q p e conversions of numeric data types

Data type of a To data type Conversion functionltype casting

unsigned, signed std-logic-vector std-logic-vector(a)
signed, std-logic-vector unsigned unsigned (a)
unsigned, std-logic-vector signed signed (a)
unsigned, signed integer to-integer (a)
natural unsigned to-unsigned(a, size)
integer signed to-signed(a, size)

two parameters. The first is the integer number to be converted, and the other specifies the
desired number of bits (or size) in the new unsigned or signed data type.

The std-logic-vector, unsigned and signed data types are all defined as an array
with elements of the s td- logic data type. They are known as closely related data types in
VHDL. Conversion between these types is done by a procedure known as type casfing. To
do type casting, we simply put the original object inside parentheses prefixed by the new
data type. This can best be explained by an example:

s i g n a l ul, u2: unsigned(7 downto 0) ;
s i g n a l vl , v2 : std-logic-vector (7 downto 0) ;

ul <= unsigned(v1)
v2 <= std-logic-vector (u2) ;

. . .

Table 3.8 summarizes all the type conversions in the numeric-std package. Note that
the std-logic-vector data type is not interpreted as a number and thus cannot be directly
converted to an integer and vice versa.

q p e conversion between various numeric data types is frequently confusing to new
VHDL users. The following examples of signal assignment statements demonstrate and
clarify the use of these data types and data conversions. Assume that some signals are
declared as follows:

l i b r a r y ieee ;
use ieee. std-logic-1164. a l l ;
use ieee . numeric-std. a l l ;

s i g n a l sl, 92, s3, s4, s5, s6: std-logic-vector(3 downto 0);
s i g n a l ul, u2, u3, u4, u5, u6, u7: unsigned(3 downto 0);
s i g n a l sg: signed(3 downto 0) ;

. . .

The following assignments to the signals u3 and u4 are valid since the + operator is
overloaded with the unsigned and na tu ra l types:

u3 <= u2 + ul; -- o k , b o t h o p e r a n d s u n s i g n e d
u4 <= u2 + 1; - o k , o p e r a n d s u n s i g n e d and n a t u r a l

On the other hand, the following two assignments are invalid due to type mismatch:

u5 <= sg; -- not o k , t y p e mismatch
u6 <= 5; -- n o t o k , t y p e mismatch

We must use type casting and the conversion function to covert the expressions to the proper
type:

64 BASIC LANGUAGE CONSTRUCTS OF VHDL

u5 <= unsigned(sg1; - o k , t y p e c a s t i n g
u6 <= to-unsigned (5,4) ; - ok , c o n v e r s i o n f u n c t i o n

The arithmetic operators are not overloaded with the mixed data types signed and
unsigned, and thus the following statement is invalid:

u7 <= sg + ul; - n o t o k , + u n d e f i n e d o v e r t h e t y p e s

We must convert the data type of the operand as follows:

u7 <= unsigned(sg1 + ul; - o k , b u t b e c a r e f u l

We need to be aware of the different interpretations of the signed and unsigned types.
For example, "1111" is -1 for the signed type but is 15 for the unsigned type. This kind
conversion should proceed with care.

Two assignments for signals with std-logic-vector data type are

s3 <= u3; - n o t o k , t y p e m i s m a t c h
s4 <= 5; - n o t o k , t y p e m i s m a t c h

Both of them are invalid because of type mismatch. We must use type casting and a
conversion function to correct the problem:

s3 <= std-logic-vector(u3); -- o k , t y p e c a s t i n g
s4 <= std_logic_vector(to_unsigned(5,4)); - ok

Note that two type conversions are needed for the second statement.

overloading is defined for this type. Thus, the following statements are invalid:
Arithmetic operations cannot be applied to the std-logic-vector data type since no

85 <= s2 + sl; -- n o t o k , + u n d e f i n e d o v e r t h e t y p e s
s6 <= s2 + 1; -- n o t o k , + u n d e f i n e d o v e r t h e t y p e s

To fix the problem, we must convert the operands to the unsigned (or signed) data type,
perform addition, and then convert the result back to the std-logic-vector data type.
The revised code becomes

s5 <= std-logic-vector(unsigned(s2) + unsigned(s1)); - ok
s6 <= std-logic-vector(unsigned(s2) + 1); - ok

3.5.5 The std-logicsrith and related packages

For historical reasons, several packages similar to the IEEE numeric-std package are used
in some EDA software and existing VHDL codes. The packages are:

std-logic-arith
std-logic-unsigned
std-logicsigned

They are not a part of the IEEE standards, but many software vendors store these packages
in the ieee library. They can be invoked by

l i b r a r y ieee ;
use ieee. std-logic-1164. a l l ;
use ieee. std-logic-arith. a l l ;
. . .

SYNTHESIS GUIDELINES 65

Because of the use of the ieee term, these packages sometimes cause confusion, They are
not used them in this book. For reference, we explain briefly the use of these packages in
this subsection.

The purpose of the std-logic-arith package is similar to that of the numeric-std
package. It defines two new data types, unsigned and signed, and overloads the +, - and
* operators with these data types. The package also includes similar shifting, sizing and
type conversion functions although the names of these functions are different.

Instead of defining new data types, the std-logic-unsigned and std-logicsigned
packages define overloaded arithmetic operators for the std-logic-vector data type. In
other words, the std-logic-vector data type is interpreted as unsigned and signed binary
numbers in the std-logic-unsigned and std-logic-signed packages respectively. The
two packages clearly cannot be used at the same time.

With one of the packages, the previous code segments becomes valid and no type con-
version is needed:

l i b r a r y ieee;
use ieee. std-logic-1164. a l l ;
use ieee. std-logic-arith. a l l ;
use ieee. std-logic-unsigned. a l l ;

s i g n a l sl, s2, s3, s4, s5, s6: std-logic-vector(3 downto 0);

s5 <= s2 + sl; - o k , + o v e r l o a d e d w i t h s t d - l o g i c - v e c t o r
s6 <= s2 + 1; - o k , + o v e r l o a d e d w i t h s t d - l o g i c - v e c t o r

. . .

The overloading means that we can treat the std-logic-vector data type as “a col-
lection of bits” as well as an unsigned binary number. This package actually beats the
motivation behind a strongly typed language. The IEEE 1076.6 RTL synthesis standard
states explicitly that the unsigned and signed data types defined in IEEE 1076.3 are the
only array types that can be used to represent unsigned and signed numbers.

3.6 SYNTHESIS GUIDELINES

In this and subsequent chapters, we summarize the good design and coding practices men-
tioned in the chapter and present them as a set of guidelines at the end of the chapter. Since
the book focuses on synthesis, these guidelines are applied only to synthesis, not to gen-
eral modeling or simulation, These suggested guidelines help us to avoid some common
mistakes and to increase the compatibility, portability and efficiency of VHDL codes.

3.6.1 Guidelines for general VHDL

0 Use the std-logic-vector and std-logic data types instead of the bit-vector

0 Use the numeric-std package and the unsigned and signed data types for syn-

0 Use only the descendingrange (i.e., downto) in the array specification of theunsigned,

0 Use parentheses to clarify the intended order of evaluation.

or b i t data types.

thesizing arithmetic operations.

signed and std-logic-vector data types.

66 BASIC LANGUAGE CONSTRUCTS OF VHDL

0 Don’t use user-defined data types unless there is a compelling reason.

0 Don’t use immediate assignment (i.e., : =) to assign an initial value to a signal.

0 Use operands with identical lengths for the relational operators.

3.6.2 Guidelines for VHDL formatting

0 Include an information header for each file.

0 Be consistent with the use of case.

0 Use proper spaces, blank lines and indentations to make the code clear.

0 Add necessary comments.

0 Use symbolic constant names to replace hard literals in VHDL code.

0 Use meaningful names for the identifiers.

0 Use a suffix to indicate a signal’s special property, such as n for the active-low signal.

0 Keep the line width within 72 characters so that the code can be displayed and printed
properly by various editors and printers without wrapping.

3.7 BIBLIOGRAPHIC NOTES

VHDL is a complex language. It is formally specified by IEEE standard 1076. The most
recent version, VHDL-2001, is specified by IEEE standard 1076-2001, and VHDL-87 is
specified by IEEE standard 1076-1987. The standard is documented in ZEEE Standard
VHDL Language Reference Manual, which sometimes known simply as LRM. Since LRM
gives the formal definition of VHDL, it is difficult to read. The book, The Designer’s Guide
to VHDL, 2nd edition, by P. J. Ashenden, provides a detailed and comprehensive discussion
of the VHDL language. It has several chapters on basic VHDL concepts, data types and
alias. The book, VHDL for Logic Synthesis by A. Rushton, has a chapter on numeric-std
package and provides a detailed discussion on functions.

After synthesis software is installed, we can normally find the files that contain the source
codesof IEEE std-logic-1164 andnumeric-stdpackages as wellas s td- logic-ar i th ,
std-logic-unsigned and std-logic-signed packages. These packages provide de-
tailed information about operator overloading and function definitions.

Although formatting is not real design, good coding style and documentation are es-
sential for a project, especially for a large project that involves many design teams. Many
organizations set and enforce their own coding and documentation standards. An example
is VHDL Modeling Guideline from the European Space Agency.

The text, Reuse Methodology Manual by M. Keating and P. Bricaud, also provides some
rules and guidelines for the use and formatting of VHDL.

Problems

3.1
shown below. Use only the s td- logic or std-logic-vector data types.

Write an entity declaration for a memory circuit whose input and output ports are

PROBLEMS 67

0 addr: 1Zbit address input
0 wra: 1-bit write-enable control signal
0 oen: l-bit output-enable control signal
0 data: %bit bidirectional data bus

3.2

3.3

3.4

3.5
type. List the 10 bits assigned to the a signal.

What is the difference between a variable and a signal?

What is a strongly typed language?

What is the limitation of using the bit data type to represent a physical signal?

Assume that a is a 10-bit signal with the std-logic-vector(9 downto 0) data

(a) a <= (others=>’l’) ;
(b) a <= (1131517/9=>’1’, others=>’O’);
(c) a <= (91712=>’1’, 6=>’0’, O = > ’ l ’ , 11518=>’0’, 314=>’0’);

3.6 Assume that a and y are &bit signals with the std-logic-vector (7 downto 0)
data type. If the signals are interpreted as unsigned numbers, the following assignment
statement performs a / 8. Explain.

y <= “000” & a(7 downto 3);

3.7 Assume the same a and y signals in Problem 3.6. We want to perform a mod 8 and
assign the result to y. Rewrite the previous signal assignment statement using only the &
operator.

3.8 Assume that the following double-quoted strings are with the std-logic-vector
data type. Determine whether the relational operation is syntactically correct. If yes, what
is the result (i.e., true or false)?

(a) l t O 1 l O 1 l > “1001”
(b) i iol loi i > iiooolOolii
(c) 2#1010# > “1010”
(d) 1010 > i l l O I O 1 l

3.9 Repeat Problem 3.8, but assume that the data type is unsigned.

3.10 Repeat Problem 3.8, but assume that the data type is signed.

3.11 Determine whether the following signal assignment is syntactically correct. If not,
use the proper conversion function and type casting to correct the problem.

l i b r a r y ieee ;
use ieee, std-logic-1164. a l l ;
use ieee . numeric-std. a l l ;

s i g n a l sl, s2, s3, 94, s5, s6, s7: std-logic-vector(3 downto 0);
s i g n a l ul, u2, u3, u4, u5, u6, u7: unsigned(3 downto 0);
s i g n a l sg: signed(3 downto 0) ;

U1 <= 2#0001#;
u2 (= u3 and u4;
U5 <= sl + 1;
u6 <= u3 -+ u4 + 3;
u7 <= (others=>’l’>;

. . .

. . .

68 BASIC LANGUAGE CONSTRUCTS OF VHDL

s2 <= s3 + s4 -1;
s5 <= (others=>’l’);
s6 <= u3 and u4;

s7 <= not sg;
sg <= U3 - 1;

3.12
function(s).

For the following VHDL segment, correct the type mismatch with proper conversion

l i b r a r y ieee ;
use ieee. std-logic-1164. a l l ;
use ieee. numeric-std. a l l ;

s i g n a l src, dest : std-logic-vector (15 downto 0) ;
s i g n a l amount : std-logic-vector (3 downto 0) ;

dest <= shift-left (src , amount);
. . .

3.13
function(s).

For the following VHDL segment, correct the type mismatch with proper conversion

l i b r a r y ieee ;
use ieee. std-logic-1164. a l l ;
use ieee. numeric-std. a l l ;

. . .
s i g n a l src, dest : std-logic-vector (15 downto 0) ;
s i g n a l amount : std-logic-vector (3 downto 0) ;

dest <= src s l l amount;
* . .

3.14
function(s) .

For the following VHDL segment, correct the type mismatch with proper conversion

l i b r a r y ieee ;
use ieee. std-logic-1164. a l l ;
use ieee. std-logic-arith. a l l ;
use ieee.std-logic-unsigned.al1;

s i g n a l src, dest : std-logic-vector (15 downto 0) ;
s i g n a l amount: std-logic-vector (3 downto 0) ;

dest <= src s l l amount ;

* . .

. . .

CHAPTER 4

CONCURRENT SIGNAL ASSIGNMENT
STATEMENTS OF VHDL

Concurrent signal assignment statements are simple, yet powerful VHDL statements. Since
there is a clear mapping between the language constructs of an assignment statement and
hardware components, we can easily visualize the conceptual diagram of the VHDL de-
scription. This helps us to develop a more efficient design. According to the VHDL
definition, concurrent signal assignment statement has two basic forms: the conditional
signal assignment statement and the selected signal assignment statement. For discussion
purposes, we add an additional one, the simple signal assignment stutement, which is a
conditional assignment statement without any condition expression.

4.1 COMBINATIONAL VERSUS SEQUENTIAL CIRCUITS

A digital circuit can be broadly classified as combinational or sequential. A combinational
circuit has no internal memory or state and its output is ufinction of inputs only. Thus, the
same input values will always produce an identical output value. In a real circuit, the output
may experience a short transient period after an input signal changes. However, the identical
output value will be obtained when the signal is stabilized. In term of implementation, a
combinational circuit is a circuit without memory elements (latches or flip-flops) or a closed
feedback loop. A sequential circuit, on the other hand, has an internal state, and its output
is afunction of inputs as well as the internal state.

Although concurrent signal assignment statements can be used to describe sequential
circuits, this is not the preferred method. We limit the discussion to combinational circuits

RTL Hardware Design Using VHDL: Coding for Eflciency, Portability, and Scalability. By Pong P. Chu
Copyright @ 2006 John Wiley & Sons, Inc.

69

70 CONCURRENT SIGNAL ASSIGNMENT STATEMENTS OF VHDL

in this chapter. We use the VHDL process to specify sequential circuits and study them in
Chapter 8.

4.2 SIMPLE SIGNAL ASSIGNMENT STATEMENT

4.2.1 Syntax and examples

A simple signal assignment statement is a conditional signal assignment statement without
the condition expression and thus is a special case of a conditional signal assignment state-
ment. In VHDL definition, the simplified syntax of the simple signal assignment statement
can be written as

signal-name <= projected-waveform;

The proj ected-wavef orm clause consists of two kinds of specifications: the expression
of a new value for the signal and the time when the new value takes place. For example,
consider the statement

y <= a + b + 1 a f t e r 10 ns;

which indicates that whenever the a or b signal changes, the expression a+b+l will be
evaluated, and its result will be assigned to the y signal after 10 ns.

The time aspect of projected-waveform normally corresponds to the internal propa-
gation delay to complete the computation of the expression. However, since the propagation
delay depends on the components, device technology, routing, fabrication process and op-
eration environment, it is impossible to synthesize a circuit with an exact amount of delay.
Therefore, for synthesis, explicit timing information is not specified in VHDL code. The
default &delay is used in the projected waveform. The syntax becomes

signal-name <= value-expression;

The value-expression clause can be a constant value, logical operation, arithmetic op-
eration and so on. Following are a few examples:

status <= '1';
even <= (pl and p2) or (p3 and p4);
arith-out <= a + b + c - 1;

Note that the timing aspect is not dropped. It is just specified implicitly as a &delay. The
previous statements implicitly imply

status <= '1' a f t e r 6;
even <= (pl and p2) or (p3 and p4) a f t e r 6;
arith-out <= <= a + b + c - 1 a f t e r 6 ;

4.2.2 Conceptual implementation

Deriving the conceptual hardware block diagram for a simple signal assignment statement
is straightfomard. The entire statement can be thought of as a circuit block. The output of
the circuit is the signal in the left-hand side of the statement, and the inputs are all the signals
that appear in the right-hand-side value expression. We then map each operator of the value
expression into a smaller circuit block and connect their inputs and outputs accordingly.
The conceptual diagrams of three previous statements are shown in Figure 4.1.

SIMPLE SIGNAL ASSIGNMENT STATEMENT 71

P3
P4

b

even

arith-result

Figure 4.1 Conceptual diagrams of three simple signal assignment statements.

Note that these diagrams are only conceptual sketches. They will be transformed and
simplified during synthesis. The circuit sizes of different VHDL operators vary significantly,
and some of them, like the division operator, cannot be synthesized automatically. We
examine this issue in detail in Chapter 6.

4.2.3 Signal assignment statement with a closed feedback loop

According to VHDL definition, it is syntactically correct for a signal to appear on both sides
of a concurrent signal assignment statement. when an output signal is used as an input in
the value expression, a closed feedback loop is formed. This may lead to the creation of an
internal state or even oscillation. Consider the following VHDL statement:

q <= (q and (n o t en)) or (d and en);

In this example, the q signal is the output but also appears in the right-hand-side expression.
The q output takes the value of the d signal if the en signal is ’ 1’ and it keeps its previous
value if the en signal is ’0’. Note that the output (i.e., q) now depends on input (i.e., en
and d) as well as internal state (the previous value of q), and thus the circuit is no longer a
combinational circuit. If we modify the previous statement by inverting q:

q <= ((n o t q) and (n o t en)) or (d and en);

the q output oscillates between ’0’ and ’1’ when the en signal is ’0’.
When a signal assignment statement contains a closed feedback loop, it becomes sensitive

to internal propagation delay and may exhibit race or oscillation. This kind of circuit
confuses synthesis software and complicates verification and testing processes. It is a
really bad coding practice and should be avoided completely in VHDL synthesis. The
shortfall of delay-sensitive design and the disciplined derivation of sequential circuits are
discussed in detail in Chapters 8 and 9.

72 CONCURRENT SIGNAL ASSIGNMENT STATEMENTS OF VHDL

Table 4.1 Function table of a 4-to-1 multiplexer

Input Output

00 a
01 b
10 C

1 1 d

S X

4.3 CONDITIONAL SIGNAL ASSIGNMENT STATEMENT

4.3.1 Syntax and examples

The simplified syntax of conditional signal assignment statement is shown below. As in
Section 4.2.2, we assume that a timing specification is embedded implicitly in &delay and
use value-expression to substitute the pro j ected-wavef orm clause:

signal-name <= value-expr-1 when boolean-expr-1 e l s e
value - expr - 2 when boo 1 e an- expr - 2 e I s e
value-expr-3 when boolean-expr-3 e l s e

value-expr-n;

The boolean-expr-i (i= 1,2,3, . . ., n) term is a Boolean expression that returns true or
false. These Boolean expressions are evaluated successively in turn until one is found to
be true, and the corresponding value expression is assigned to the output signal. In other
words, the first Boolean expression, boolean-expr-1, is checked first. If it is true, the first
value expression, value-expr-I, will be assigned to the output signal. If it is false, the
second Boolean expression, boolean-expr-2, will be checked next. This process continues
until all Boolean expressions are checked. The last value expression, value-exprn, will
be assigned to the signal if none of the Boolean expressions is true.

In the remaining subsection, we use several simple examples to illustrate the use of
conditional signal assignment statements. The circuits include a multiplexer, a decoder, a
priority encoder and a simple arithmetic logic unit (ALU).

Multlplexer A multiplexer is essentially a virtual switch that routes a selected input
signal to the output. The function table of an 8-bit 4-to- 1 multiplexer is show in Table 4.1.
In this circuit, the a, b, c and d signals can be considered as input data, and the s signal
is a 2-bit selection signal that specifies which input data will be routed to the output. The
VHDL code for this circuit is shown in Listing 4.1.

Listing 4.1 4-to-1 multiplexer based on a conditional signal assignment statement

l i b r a r y ieee ;
use ieee. std-logic-1164. a l l ;
e n t i t y mux4 i s

port (
5 a,b,c,d: in std-logic-vector(7 downto 0);

s: in std-logic-vector (1 downto 0) ;
x: out std-logic-vector (7 downto 0)

) ;

CONDITIONAL SIGNAL ASSIGNMENT STATEMENT 73

end mux4;

a r c h i t e c t u r e cond-arch of mux4 i s
begin

10

x <= a when (S = ~ ~ O O ~ ~) e l s e
b when (s="Ol") e l s e

I5 c when (S = ~ ~ ~ O ~ ~) e l s e
d;

end cond-arch ;

The first two lines are used to invoke the IEEE std-logic-1164 package so that the
s t d l o g i c data type can be used. The next part is the entity declaration, which specifies
the input and output ports of this circuit. The input ports include a, b, c and d, which
are four 8-bit input data, and s, which is the 2-bit control signal. The output port is the
8-bit x signal. The architecture part uses one conditional signal assignment statement. The
Boolean condition s="OO" is evaluated first. If it is t rue , the first value expression, a, is
assigned to x. If it is false, the next Boolean condition, s="Ol", will be evaluated. If it is
t rue , b is assigned to x or the next Boolean expression, s="lO", will be evaluated. If all
three Boolean expressions are false, the last value expression, d, is assigned to x.

There is an issue about the use of the s td- logic data type. At first glance, it seems
that s is implied to be "11" when the first three Boolean expressions are false, and thus
d is assigned to x. However, there are nine possible values in s t d l o g i c data type and,
for the 2-bit s signal, there are 81 (i.e., 9*9) possible combinations, including the expected
"OO", "Ol", "10" and "11" as well as the metavalue combinations, such as IrOZ", YJX",
II 0- 11 and so on. Therefore, d is assigned to x for the "11" condition, as well as other
77 metavalue combinations. However, these 77 combinations can exist only in simulation.
In a real circuit, comparison of metavalues, as in s="OZ", cannot be implemented, and
sometimes is meaningless, as in s="UX". In general, except for the limited use of 'Z' , the
metavalues of the s td- logic data type will be ignored by synthesis software, and thus the
final circuit will be synthesized as we originally expected. Some synthesis software also
accepts VHDL code using ' X ' for the unused metavalue combinations:

x <= a when (s = I I O O I I) e l s e
b when (S = ~ ~ O I ~ ~) e l s e
c when (s = I l l O l l) e l s e
d when (s = I ~ I I ~ ~) e l s e
1 x 2 ;

The code leads to the same physical implementation.

Binary decoder A binary decoder is an ~1- to-2~ decoder, which has an n-bit input
and a 2n-bit output. Each bit of the output represents an input combination. Based on the
value of the input, the circuit activates the corresponding output bit. The function table of
a simple 2-t0-2~ decoder is shown in Table 4.2. The VHDL code for this circuit is shown
in Listing 4.2.

Listing 4.2 2-to-2' binary decoder based on a conditional signal assignment statement

l i b r a r y ieee ;
use ieee. std-logic-1164. a l l ;
e n t i t y decoder4 i s

port (
5 s: in std-logic-vector (1 downto 0) ;

74 CONCURRENT SIGNAL ASSIGNMENT STATEMENTS OF VHDL

Table 4.2 Function table of a 2-to-2' binary decoder

Input Output

0 0 0001
0 1 0010
1 0 0100
1 1 1000

8 X

Table 4.3 Function table of a 4-to-2 priority encoder

Input Output
r code active

11 1 1 ---
01- - 10 1
0 0 1 - 01 1
0 0 0 1 00 1
0 0 0 0 00 0

x : out std-logic-vector (3 downto 0)
) ;

end decoder4 ;

10 a r c h i t e c t u r e cond-arch of decoder4 is
begin

x <= t ' O O O 1 t l when (s="OOt l> e l s e
l t O O I O t l when (s = " 0 l B t) e l s e
t t O I O O 1 l when (s = ' ~ ~ O ~ ~) e l s e

I S "1000" ;
end cond-arch ;

Again, the first two lines are used to invoke the IEEE std-logic-1164 package. The
entity declaration shows the circuit with a 2-bit input, a, and a 4-bit output, x. The architec-
ture body uses one conditional signal assignment statement, which evaluates the Boolean
conditions s="OO", s="OI~~ and s="l0l1 one after another. The value expressions are
constants that reflect the desired output patterns.

Priority encoder A priority encoder checks the input requests and generates the code
of the request with highest priority. The function table of a 4-to-2 priority encoder is shown
in Table 4.3. There are four input requests, r(3), r(2), r(1) and r(0). The outputs
include a 2-bit signal, code, which is the binary code of the highest-priority request, and a
1-bit signal, active, which indicates whether there is an active request. The r (3) request
has the highest priority. When it is asserted, the other three requests are ignored and the
code signal becomes "11". If r(3) is not asserted, the second highest request, r(2), is
examined. If it is asserted, the code signal becomes "10". The process repeats until all
the requests are checked. The code signal returns 'loo" when only r(0) is asserted or no
request is asserted. The active signal can be used to distinguish the two conditions. The
VHDL code for this circuit is shown in Listing 4.3. The requests are grouped together and

CONDITIONAL SIGNAL ASSIGNMENT STATEMENT 75

Table 4.4 Function table of a simple ALU

Input output
c t r l r e su l t

O - - srcO -+ 1
1 0 0 srcO + s r c l
1 0 1 srcO - s r c l
1 1 0 srcO and s r c l
1 1 1 srcOor s r c l

represented by a 4-bit signal, r. Individual bits of the r signal are checked in descending
order, starting with r (3). Since operation of the priority encoder is similar to the definition
of the conditional signal assignment statement, it is a good way to code this type of circuit
(note the simple Boolean expressions in the code). A separate simple signal assignment
statement is used to describe the act ive output.

Listing 4.3 4-to-2 priority encoder based on a conditional signal assignment statement

l i b r a r y ieee ;
use ieee, std-logic-1164. a l l ;
e n t i t y prio-encoder42 is

port (
5 r : in std-logic-vector (3 downto 0) ;

code: out std-logic-vector (1 downto 0) ;
active : out std-logic

1;
end prio-encoder42;

a r c h i t e c t u r e cond-arch of prio-encoder42 i s
begin

10

code <= It11I1 when (r(3)=’1’) e l s e
allO1l when (r(2)=’1’) e l s e

I5 1101” when (r(l)=’l’) e l s e
11 00 I1 . ,

active <= r(3) or r(2) or r(1) or r(0);
end cond-arch ;

Simple ALU An ALU performs a set of arithmetic and logical operations. The function
table of a simple ALU is shown in Table 4.4. The inputs include two %bit data sources, scrO
and s r c l , and a control signal, c t r l , which specifies the function to be performed. The
output is the 8-bit r e s u l t signal, which is the computed result. There are five functions,
including three arithmetic operations, which are incrementing, addition and subtraction, and
two logical operations, which are bitwise and and or operations. Furthermore, we assume
that the input and output are interpreted as signed integers when an arithmetic function is
selected.

For this circuit, the input data are interpreted as a collection of bits for the logical
operation and as a signed number for the arithmetic operation. To achieve better portability,
we normally use the std-logic-vector data type in the port declaration and then convert
it to the desired data type in architecture body. The VHDL code is shown in Listing 4.4. The

76 CONCURRENT SIGNAL ASSIGNMENT STATEMENTS OF VHDL

IEEE numeric-std package and its signed data type are used to facilitate the arithmetic
operation. When an addition, subtraction or incrementing operation is specified, we first
convert the input to the signed data type, perform the operation and then convert the result
back to the std-logic-vector data type. To make the code clear, we introduce three
separate simple signal assignment statements and the sum, dif f , and inc signals for the
intermediate results of arithmetic operations.

Listing 4.4 Simple ALU based on a conditional signal assignment statement

l ibrary ieee ;
use ieee, std-logic-1164. a l l ;
use ieee. numeric-std. a l l ;
e n t i t y simple-alu i s

5 p o r t (
ctrl: in std-logic-vector (2 downto 0) ;
srcO , srcl : in std-logic-vector (7 downto 0);
result : out std-logic-vector (7 downto 0)

1;
10 end simple-alu;

a r c h i t e c t u r e cond-arch of simple-alu i s

begin
s i g n a l sum, diff , inc : std-logic-vector (7 downto 0) ;

IS inc <= std-logic-vector (signed(srcO)+l) ;
sum <= std-logic-vector(signed(srcO)+signed(srcl));
diff <= std-logic-vector (signed(srcO)-signed(srcl)) ;
result <= inc when ctrl(2)='0' e l s e

sum when ctrl(1 downto O) = B @ O O B l e l s e
20 diff when ctrl(1 downto O)='@OIB1 e l s e

srcO and srcl when ctrl(1 downto 0)="lO1' e l s e
srcO or srcl;

end cond-arch ;

4.3.2 Conceptual implementation

Recall that the syntax of the simplified conditional signal assignment statement is

signal-name <= value-expr-1 when boolean-expr-1 e l s e
value-expr-2 when boolean-expr-2 e l s e
value -expr - 3 when boo le an- expr - 3 e 1 s e

value-expr-n;
. . .

Its semantics specifies that the Boolean expressions are evaluated in descending order until
a condition is t rue, and then the corresponding value expression is assigned to the output
signal. The key to implementing this construct is to achieve the desired descending order
of evaluations. In a traditional programming language, descending order is implicitly
observed because of the sequential execution of a single, shared CPU. In synthesis, we
must use hardware to achieve this task.

The structure of conditional signal assignment statement implies a priority routing net-
work since the Boolean expressions are evaluated in an orderly manner and the one evaluated
earlier assumes a higher priority. Once the evaluation of a Boolean expression is t rue , the

CONDITIONAL SIGNAL ASSIGNMENT STATEMENT 77

set

Figure 4.2 Conceptual diagram of an abstract multiplexer.

result of the corresponding value expression is routed to output. Unlike the temporal ex-
ecution of the traditional programming language, the priority routing network is done on
a spatial basis. Furthermore, since we cannot create hardware dynamically, dedicated
hardware is needed for each Boolean expression and each value expression.

In summary, constructing the conditional signal assignment statement requires three
groups of hardware:

0 Value expression circuits
0 Boolean expression circuits
a Priority routing network

Value expression circuits realize the value expressions, value-expr-1, - . ., value-exprn,
and one of the results is routed to the output. Boolean expression circuits realize the Boolean
expressions, boolean-expr-1, - ., boolean-exprs, and their values are used to control
the priority routing network. The priority routing network is the structure that routes and
controls the desired value to the output signal.

A priority network can be implemented by a sequence of 2-to-I multiplexers. To better
illustrate the conceptual implementation, we utilize an “abstract multiplexer.” Recall that a
multiplexer is like a switch and uses a selection signal to select an input port and connect it
to the output port. Any signal appearing in that input port will be routed to the output port.
In an abstract multiplexer, the selection and input port designation are specified around the
data type of the selection signal. Each input port is designated to a value of the data type
of the selection signal, and one input port is selected according to the current value of the
selection signal. For example, if the selection signal has a data type of boolean, there will
be two input ports, designated as T (for true) and F (for f alse) respectively. If the selection
signal has a value of true, the data from the T port will be routed to output. On the other
hand, if the selection signal has a value off alse, the data from the F port will be selected.
The block diagram of this multiplexer is shown in Figure 4.2. The number of bits of the
inputs and output may vary, and the symbol, n, is used to designate the width of the buses.
During synthesis, the symbolic values can easily be mapped into binary representations of
a physical multiplexer.

With the 2-to-1 abstract multiplexer, we can start to construct a priority network. Let
us first consider a simple conditional signal assignment statement that has only one when
clause:

sig <= value-expr-1 when boolean-expr-1 e l s e
value-expr-2;

The conceptual realization of this statement is shown in Figure 4.3. The three “clouds”
represent the implementations of value-expr-1, value-expr-2 and boolean-expr-I
respectively. The result of boolean-expr-1 is connected to the selection signal of the
multiplexer. If it is true, the result from value-expr-1 will be routed to the output port
of the multiplexer. Otherwise, the result from value-expr-2 will be routed to the output
port.

78 CONCURRENT SIGNAL ASSIGNMENT STATEMENTS OF VHDL

sig

Figure 4.3 Conceptual diagram of a simple conditional signal assignment statement.

When there are more when clauses, we can perform the previous process repetitively
and build the routing network in stages. Consider a statement with three when clauses:

sig <= value-expr-1 when boolean-expr-1 e l s e
value-expr-2 when boolean-expr-2 e l s e
value-expr-3 when boolean-expr-3 e l s e
value-expr-4 ;

The construction sequence is shown in Figure 4.4. First we construct the first when
clause, which corresponds to the highest-priority condition. If the result of boolean-expr-1
is true, the result of the corresponding value expression, value-expr-1, is routed to out-
put, as shown in Figure 4.4(a). On the other hand, if the result of boolean-expr-1 is
f a l se , the result from the remaining part of the statement, which is shown as a single
cloud, will be used. This cloud can be constructed using a multiplexer similar to the first
when clause, with its output connected to the F port of the rightmost multiplexer, as shown
in Figure 4.4(b). After repeating this process one more time, we construct the third when
clause and complete the conceptual implementation, as shown in Figure 4.4(c).

The construction process can be applied repeatedly to any number of when clauses.
Since each clause will introduce one extra stage of multiplexer network, the depth of the
network grows as the number of clauses increases. Although the conceptual construction
is straightforward, it is difficult for synthesis software to transform an extremely deep
multiplexer network to an efficient implementation. Thus, we should be aware of the
impact on the number of when clauses. Discussion in Chapter 6 provides more insight on
this issue.

4.3.3 Detailed implementation examples

Obtaining the conceptual diagram is only the first step in synthesis. We must derive the
more detailed implementation for the multiplexers and “clouds” and eventually construct
everything by using cells of the given technology library. Many of these tasks can be done
in synthesis software, which is discussed in Chapter 6. In this section, we manually derive
some simple circuits from VHDL segments to illustrate the basic synthesis process.

lmplementatlon of a2-to-7 multiplexer An abstract 2-to-1 multiplexer has two sym-
bolic ports, T and F. We can map it directly to a regular 2-to-1 multiplexer. The schematic
of a 1-bit 2-to-1 multiplexer is shown in Figure 4 3 a) . The two abstract ports, T and F, are
mapped to the i l and i0 ports respectively. In this circuit, the and cells can be interpreted
as “passing gates,” controlled by separate enable signals. When the enable signal is ’ l’,

CONDITIONAL SIGNAL ASSIGNMENT STATEMENT 79

sig

(a) First when clause

remaining part

sig

/

@) Second when clause

sig

4

(c) Third when clause

sig

Figure 4.4 Construction of a multi-condition conditional signal assignment statement.

80 CONCURRENT SIGNAL ASSIGNMENT STATEMENTS OF VHDL

il(2)

iO(2)

sel % F = - O (a) 1-bit 2-to-1 multiplexer

(b) 3-bit 2-to-1 multiplexer

Figure 4.5 Gate-level implementation of a multiplexer.

the gate is open and the input signal is passed to output. When it is ’O’, the gate is closed
and the output is set to ’0’. The two enable signals are sel and sel’ respectively, and thus
one of the inputs will be passed to output. In terms of a logic expression, the output can be
expressed as

o = sel’ - i0 + sel - il
For an n-bit 2-to-1 multiplexer, the control signals remain the same, but the gating

structure will be duplicated n times. The schematic of a 3-bit 2-to-1 multiplexer is shown
in Figure 4.5(b).

Example 7 Consider the following VHDL segment:

. . .
s i g n a l a,b,y: s t d - l o g i c ;

y <= ’0’ when a=b e l s e
. . .

’1’;
. . .

This is a simple conditional signal assignment statement that contains one when clause. The
conceptual diagram is shown in Figure 4.6(a). Let us consider the implementation of a=b,
which is a 1-bit comparison circuit. According to VHDL definition, the input data type is
std-logic, which has nine values, and the output data type is boolean, whose value can
be true or fa l se . During synthesis, we only consider the ’0’ and ’ 1 ’ of the std-logic

CONDITIONAL SIGNAL ASSIGNMENT STATEMENT 81

b

(a) Conceptual diagram (b) Gate-level diagram

Figure 4.6 Synthesis of example 1.

Table 4.5 Truth table of a 1-bit comparator.

input output
a b a=b

00 1
0 1 0
10 0
1 1 1

data type since the other seven values are meaningless for a physical circuit. We also map
the t rue and fa lse to logic 1 and logic 0 of the physical circuit. Now the operation a=b
can be represented in a traditional truth table, as shown in Table 4.5. The function can be
expressed as a’ - b’ + a 9 b, or simply (a @ b)’, which is an xnor gate. We can now refine the
conceptual diagram into the gate-level implementation, and the new diagram is shown in
Figure 4.6(b). We can derive the logic expression of this circuit. Based on the expression
of the multiplexer, the output can be expressed as

y = s e t . i0 + sel . il

The sel, i0 and il are connected to (aeb)’ , ’1’ and ’0’ respectively, and thus the expression
becomes

which can be simplified to

Thus, the final simplified circuit is a single xor gate.

y = sel‘ . io + sel . il = (a b)” . 1 + (a @ b)’ a 0

y = a @ b

Example 2 Consider the following VHDL segment:

. . .
s i g n a l r: std-logic-vector (2 downto 1) ;
s i g n a l y : std-logic-vector (1 downto 0) ;

y c= 881010 when r(2)= ’1 e l s e
110111 when r (l) = J I J e l s e
I1 00 11 .

. . .

. . .

82 CONCURRENT SIGNAL ASSIGNMENT STATEMENTS OF VHDL

Y

(a) "Bus" conceptual diagram

1

c

(b) Bit-by-bit conceptual diagram

1 n

0 'W
-

(c) Gate-level diagram

Figure 4.7 Synthesis of example 2.

CONDITIONAL SIGNAL ASSIGNMENT STATEMENT 83

The conceptual diagram of this segment is shown in Figure 4.7(a). The next step is to derive
gate-level implementation. Since the output has two bits, we have to split the conceptual
diagram into two single-bit diagrams, as in Figure 4.7(b). Note that the implementation of
theBooleanexpressions, r (2) = J l ’ andr(l)=’lJ,consistssimplyofther(2) andr(1)
signals themselves, and no additional logic is needed. After we substitute the multiplexer
with its gate-level implementation, the resulting circuits are shown in Figure 4.7(c). We
can derive the logic expressions for y(0) and y(1) using a procedure similar to that in
example 1. After simplification, these logic expressions become

Example 3 Consider the following VHDL segment:

* . .
s i g n a l a,b,c,x,y,r: std-logic;

r <= a when x=y e l s e
b when x > y e l s e
c ;

. . .

. . .
The conceptual diagram of this segment is shown in Figure 4.8(a). By using the procedure
to realize the a=b expression of example 1, we can derive the implementation of the x>y
expression, which is 2.y’. The corresponding gate level circuit is shown in Figure 4.8(b). We
can also derive the logic expression for the output and perform simplification to reduce the
circuit size. The logic expression for this circuit is more involved and manually simplifying
this circuit becomes a tedious task. This task is better left for software, which is good for a
mechanical and repetitive procedure.

Example 4 Consider the following VHDL segment:

. . .
s i g n a l a,b,r: unsigned(7 downto 0);
s i g n a l x,y: unsigned(3 downto 0);

r <= a+b when x+y>l e l s e
. . .

a-b-1 when x>y and y!=O e l s e
a+l;

The initial block diagram of this segment is shown in Figure 4.9(a). While the initial block
diagram is similar to the previous examples, the value expressions and Boolean expressions
are more involved. More complex components, such as an adder and comparator, are
needed for implementation. After we implement the clouds, the block diagram is shown
in Figure 4.9(b). We can continue to refine the circuit by replacing these components with
their gate-level implementations and eventually derive the logic expressions. With these
components, performing gate-level simplification becomes much more difficult and good
coding practice at the RT level can improve the circuit efficiency significantly. These issues
are discussed in Chapter 7.

84 CONCURRENT SIGNAL ASSIGNMENT STATEMENTS OF VHDL

r
a

(a) Conceptual diagram

(b) Gate-level diagram

Figure 4.8

r

* xty>l

(a) Initial diagram

Synthesis of example 3.

a
b

I

(b) Detailed conceptual diagram

Figure 4.9 Refinement of example 4.

SELECTED SIGNAL ASSIGNMENT STATEMENT 85

4.4 SELECTED SIGNAL ASSIGNMENT STATEMENT

4.4.1 Syntax and examples

The simplified syntax of the selected signal assignment statement is shown below. As in
conditional signal assignment statement, we assume that the timing specification is embed-
ded in &delay and substitute value-expression for the projected-wavef orm clause.

with select-expression s e l e c t
signal-name <= value-expr-1 when choice-1 ,

value-expr-2 when choice-2,
value-expr-3 when choice-3,

value-expr-n when choice-n ;
. . .

The selected signal assignment statement assigns an expression to a signal according to the
valueof select-expression, It is somewhat like acase statement in atraditionalprogram-
ming language. The select-expression term is used as the key for selection and it must
result in a value of a discrete type or one-dimensional array. In other words, the evaluated
result of select-expression can have only a finite number of possibilities. For example,
a signal of the b i t -vec tor (1 downto 0) data type can be used as select-expression
since it contains only four possible values: 1100", "01" , "10" or "11". A choice (i.e.,
choice-i) must be a valid value or a set of valid values of select-expression. The
values of choices have to be mutually exclusive (i.e., no value can be used more than once)
and all inclusive (i.e., all values have to be used). In other words, all possible values of
select-expression must be covered by one and only one choice. The reserved word,
others, can be used in the last choice (i.e., choicen) to represent all the previously unused
values.

We use the same multiplexer, binary decoder, priority encoder and ALU circuit of Sec-
tion 4.3.1 to illustrate use of the selected signal assignment statement. Since this statement
is a natural match to implement a truth table, an additional example is included for this
purpose.

Multiplexer Let us consider the 8-bit 4-to-1 multiplexer of Section 4.3.1. The VHDL
code for this circuit is shown in Listing 4.5. The entity declaration is identical and thus is
omitted.

Listing 4.5 4-to-1 multiplexer based on a selected signal assignment statement

a r c h i t e c t u r e sal-arch of mux4 i s
begin

with s s e l e c t
x <= a when 1 1 0 0 " ,

5 b when a O 1 " ,
c when "lO",
d when o t h e r s ;

end sel-arch ;

We need to be cautious about the metavalues of the s td- logic and std-logic-vector
data types. There is an issue about the use of these data types for select-expression.
Recall that there are nine possible values in s td- logic data type and there are 8 1 (i.e., 9*9)
possible combinations for the 2-bit s signal, including the expected 1100", " O l " , "10" and
'iilt as well as 77 othermetavalue combinations, such as "ZZ", "UX" and "0- I t , which are

86 CONCURRENT SIGNAL ASSIGNMENT STATEMENTS OF VHDL

not meaningful in synthesis and will be ignored accordingly. In the code, the when others
clause covers the II 11 choice as well as the metavalue combinations. We cannot simply
list the last choice as 111111:

with s s e l e c t
x <= a when 1100" ,

b when lvO1ll,
c when 10" ,
d when II11";

This causes a syntax error since only 4 of 81 values are covered, and thus the choices are
not all-inclusive. Some synthesis software may accept the following form:

with s s e l e c t
x <= a when "00" ,

b when "Ol",
c when tllO1l,
d when "11 ,

'X'when o t h e r s ; -- may a l s o u s e I - '

The last line will be ignored during synthesis and the same physical circuit will be derived.

B h r y decoder The VHDL code for the 2-t0-2~ binary decoder of Section 4.3.1 is
shown in Listing 4.6. Again, it is necessary to use others as the last choice to cover all
metavalue combinations.

Listing 4.6 2-to-2' binary decoder based on a selected signal assignment statement

archi tecture sel-arch of decoder4 i s
begin

with s s e l e c t
x <= l'OOO1lt when 1 1 0 0 1 8 ,

5 110010" when 1101",
I'O100" when 1110",
"1000" when others ;

end sel-arch;

Priorityencoder The VHDL code for the4-to-2 priority encoder is shown in Listing 4.7.
Recall that I t 11 I' will be assigned to code if r (3) is 1 ' . This consists of eight possible
input combinations of the r signal, which are "lOOO", "lOOl", "1010", . . . , "1111". All
of them are listed in the first choice. Note that the symbol I is used for specifying multiple
values.

Listing 4.7 4-to-2 priority encoder based on a selected signal assignment statement

archi tecture sal-arch of prio-encoder42 is
begin

with r s e l e c t
code <= tlllt' when 1 ~ 1 0 0 0 ~ ~ ~ ~ 1 1 0 0 1 ~ 1 ~ " 1 0 1 0 ~ ~ 1 1 ~ 1 0 1 1 ~ ~ 1

5 1) 1100" I 11 1101 I) I 11 10 I It 11 11 ,
111081 when "0100" I"0101" 1"011018 1"011111,
llOllu when toOOIO1l I "0O1lt1,
110011 when others;

active <= r(3) or r(2) or r(1) or r(0);
10 end sel-arch ;

SELECTED SIGNAL ASSIGNMENT STATEMENT 87

Intuitively, we may wish to use the ' - I (don't-care) value of the std-logic data type to
make the code compact:

with r s e l e c t
code <= "1111 when sl---tl,

ll1oll when llo1--ll
"01" when 1oO01-8t
s o o f * when o t h e r s ;

While this is syntactically correct, the code does not describe the intended circuit. In VHDL,
the I - ' value is treated just as an ordinary value of std-logic. Since the '-' value will
never occur in the physical circuit, the 111---11, "Ol--" and "001-" choices will never be
met and the code is the same as

code <= "00";

This, of course, is not the intended priority encoding circuit. We discuss this issue in more
detail in Chapter 6.

A slmple ALU The VHDL code of the simple ALU specified in Table 4.4 is shown in
Listing 4.8. Note that all four possible combinations of the c t r l signal, "OOO", "OOl",
"010" and "Oll", are listed in the first choice.

Listing 4.8 Simple ALU based on a selected signal assignment statement

a r c h i t e c t u r e sel-arch of simple-alu i s

begin
s i g n a l sum, diff , inc: std-logic-vector (7 downto 0) ;

inc <= std-logic-vector (signed(srcO)+l) ;

diff <= std-logic-vector(signed(srcO)-signed(srcl));
with ctrl s e l e c t

s sum <= std-logic-vector(signed(srcO)+signed(srcl));

result <= inc when ~ 8 0 0 0 ~ 1 I lfOOltl I"010" I"O11"
s um when l0O8l

10 diff when "101"
srcO and srcl when "llO",
srcO or srcl when o t h e r s ; - " I 11 "

end sal-arch ;

Truth Table lmplemenfation A truth table can be used to specify any combinational
function. It is a simple and useful way to describe a small, random combinational circuit.
Because the choices list all the possible combinations, the selected signal assignment state-
ment is a natural match for the truth table description. A simple two-input truth table is
shown in Table 4.6.

The corresponding VHDL code is shown in Listing 4.9. The a and b signals are con-
catenated as tmp, which is then used as the select expression. Each row of the truth table
now becomes a choice in the selected signal assignment statement and the truth table is
implemented accordingly.

Listing 4.9 T ~ t h table based on selected signal assignment statement

l i b r a r y ieee ;
use ieee. std-logic-1164. a l l ;
e n t i t y truth-table i s

88 CONCURRENT SIGNAL ASSIGNMENT STATEMENTS OF VHDL

Table 4.6 Truth table of a two-input function

Input Output
a b Y

0 0 0
0 1 1
1 0 1
11 1

port (
5 a,b: in std-logic;

y : out std-logic
1;

end truth-table ;

10 a r c h i t e c t u r e a of truth-table i s
s i g n a l tmp: std-logic-vector (1 downto 0) ;

tmp <= a & b;
with tmp s e l e c t

begin

IS y <= '0' when "OO",
'1' when "0lt1,
'1' when ltlO*l,
'1' when o t h e r s ; -- " 1 1 "

end a;

4.4.2 Conceptual implementation

Recall that the syntax of the selected signal assignment is

with select-expression s e l e c t
signal-name <= value-expr-1 when choice-I ,

value-expr-2 when choice-2 ,
value-expr-3 when choice-3 ,

value-expr-n when choice-n;
. . .

Conceptually, the selected signal assignment statement can be thought as an abstract multi-
plexing circuit that utilizes a selection signal to route the result of the designated expression
to output. In this multiplexing circuit, each possible value of select-expression has a
designated input port in the multiplexer, and select-expression works as the selection
signal of this multiplexer. Once its value is determined, the result of the designated value
expression is passed to the output port of the multiplexer. In Section 4.3.2, we utilized an ab-
stract 2-to-1 multiplexer with a selection signal of the boolean data type. The multiplexer
can be generalized for other kinds of selection signals. For example, consider a selection
signal with k + 1 different possible values, CO, cl, . . ., ck. The abstract multiplexer has
k + 1 ports, each corresponding to a value, as shown in Figure 4.10.

It is possible that the input and output have multiple bits and the symbol n is used
to designate the width of the buses. The conceptual implementation of the selected signal

SELECTED SIGNAL ASSIGNMENT STATEMENT 89

sel

Figure 4.10 Abstract (k + 1)-to-1 multiplexer.

4- c3

c2

c l 1
- sig

Figure 4.11 Conceptual diagram of a selected signal assignment statement.

assignment statement involves a single abstract multiplexer and is straightforward. Consider
the following statement:

with select-expression s e l e c t
sig <= value-expr-0 when C O ,

value-expr-1 when cl,
value-expr-n when o thers ;

We assume that select-expression may result in one of five possible values: CO, c l ,
c2, c3 and c4. Note that the last choice, when others, of this statement implicitly covers
c2, c3 and c4. The conceptual realization of this statement is shown in Figure 4.1 1.

The clouds represent the implementation of the three value expressions, value-expr-0,
value-expr-1 and value-exprn, and select-expression respectively. The evaluated
results of the value expressions are fed into the designated input ports of the multiplexer.
The result of select-expression is connected to the selection port of the multiplexer and
its value determines which data will be routed to the output port.

All selected signal assignment statements have a similar conceptual diagram. The main
difference is in the number of values that select-expression can assume, which in turn
determines the size of the multiplexer. Despite the simple conceptual construction, certain

90 CONCURRENT SIGNAL ASSIGNMENT STATEMENTS OF VHDL

i2
Y

(a) Circuit symbol

i3

i2

il

i0

Y

sel(1)

sel(0)

U

(b) Gate-level diagram

Figure 4.12 Circuit symbol and gate-level diagram of a 4-to-1 multiplexer.

device technologies may have difficulty supporting an extremely wide multiplexing circuit.
Thus, we should be aware of the number of values in a selection expression.

4.4.3 Detailed implementation examples

As in the implementation of a conditional signal assignment statement, we continue the
refining process and realize the conceptual diagram using gate-level components. Following
examples illustrate the derivation.

k-to-7 murtiplexer An abstract multiplexer with k symbolic ports can easily be mapped
to a physical k-to-1 multiplexer with a log, k-bit selection signal. The symbol and gate-
level diagram of a 1-bit 4-to-1 multiplexer are shown in Figure 4.12. We use the binary
representations, "00", "Ol", "10" and "1 l", as the names of the ports. The upper and cells
can be thought of as "passing gates," each controlled by an enable signal. The corresponding
input will be passed to output when the enable signal is '1'. The bottom part is a 2-to-4
binary decoder that generates the enable signal, in which only one bit is activated. In term
of a logic expression, the output can be expressed as

y = (seZ(l)'.seZ(O)') .iO+ (sel(l)'.seZ(O)) .il+ (sel(1) .sel(O)') .i2 + (seZ(1) .seZ(O)) .i3

SELECTED SIGNAL ASSIGNMENT STATEMENT 91

For a multiple-bit 4-to-1 multiplexer, the enable signals remain the same, but the gating
structure will be duplicated multiple times.

In VHDL code, the selection signal frequently has a data type of std-logic-vector,
which includes many meaningless combinations. During synthesis, only 0 ' and ' 1 of
nine values will be used, as we discussed in Section 4.3.1.

Example 7 Consider the following VHDL segments:

. . .
s i g n a l s: std-logic-vector (1 downto 0) ;

. . .
with s s e l e c t

x <= (a and b) when l l l l f l ,
(a or b) when I t O 1 " l " l O " ,
'0 J when o t h e r s ;

. . .
This is a simple selected signal assignment statement. The selection expression has a
data type of std-logic-vector (I downto 0). Again, although there are 81 possible
values, only 1100", "Ol", 1110" and "11" are meaningful for synthesis. Thus, only a 4-to-
1 multiplexer is needed. The conceptual diagram and the refined gate-level diagram are
shown in Figure 4.13. The logic expression for this circuit is

z = (s(1)' * s(0)') * 0 + (s(1)' * s(0)) * (a + b) + (s(1) * s(0)'). (a + b) + (s(1) - s(0)) * (a - b)

Example 2 Consider the truth table in Table 4.6 and the corresponding VHDL segment:

tmp <= a & b;
with tmp s e l e c t

y <= '0' when f l O O " ,
' 1 ' when 1 1 0 1 " ,
'1 8 when 1110",
' 1 ' when o t h e r s ;

The conceptual diagram is shown in Figure 4.14. The logic expression for this circuit is

y = (a' - b') * 0 + (a' * b) - 1 + (a - b') - 1 + (a * b) * 1

The expression can be simplified to a + b, which is the or function specified in the truth
table.

Example 3 Consider the following VHDL segment:

. . .
s i g n a l a,b,r: unsigned(7 downto 0);
s i g n a l s: std-logic-vector (1 downto 0) ;

. . .
with s s e l e c t

r <= a+l when "11" ,
a-b-1 when "lO",
a+b when o thers ;

. . .
This segment contains more sophisticated expressions. After we realized the value expres-
sion clouds, the block diagram is shown in Figure 4.15.

92 CONCURRENT SIGNAL ASSIGNMENT STATEMENTS OF VHDL

S J

(a) Conceptual diagram

(b) Gate-level diagram

Figure 4.13 Synthesis of example 1 .

a & b

X

Figure 4.14 Conceptual diagram of truth table-based description.

CONDITIONAL SIGNAL ASSIGNMENT STATEMENT VERSUS SELECTED SIGNAL ASSIGNMENT STATEMENT 93

.
a

r b

Figure 4.15 Block diagram of example 3.

4.5 CONDITIONAL SIGNAL ASSIGNMENT STATEMENT VERSUS
SELECTED SIGNAL ASSIGNMENT STATEMENT

4.5.1 Conversion between conditional signal assignment and selected
signal assignment statements

From the synthesis point of view, the conditional signal assignment statement and the
selected signal assignment statement imply two different routing structures. The examples
presented in the previous sections show that we can describe the same circuit using either
a conditional or a selected signal assignment statement. Actually, the conversion between
the two forms of assignment statements is always possible.

Converting a selected signal assignment statement to a conditional signal assignment
statement is straightforward. Consider a general selected signal assignment statement in
which there are eight possible choices: c7, c6, . . ., cl, CO.

with sal s e l e c t
s i g <= value-expr-0 when CO,

value-expr-1 when cl I c3 I c5,
value-expr-2 when c2 I c 4 ,
value-expr-n when others ;

We can describe the choices of a when clause as a Boolean expression. For example,
when c2 1 c4 can be expressed as (sel=c2) or (sel=c4). We can then use these
Boolean expressions and convert the selected signal assignment statement to a new for-
mat:

s i g <=
value-expr-0 when (sel=cO) e l s e
value-expr-1 when (sel=cl) or (sel=c3) or (sel=c5) e l s e
value-expr-2 when (sel=c2) or (sel=c4) e l s e
value-expr-n ;

Converting a conditional signal assignment statement to a selected statement needs more
manipulation. Let us consider a general conditional signal assignment statement with three
Boolean expressions:

sig <= value-expr-0 when bool-exp-0 e l s e
value-expr-1 when bool-exp-1 e l s e
value-expr-2 when bool-exp-2 e l s e
value-expr-n;

94 CONCURRENT SIGNAL ASSIGNMENT STATEMENTS OF VHDL

We need a 3-bit auxiliary selection signal, sel, in which each bit represents a Boolean ex-
pression. By specifying proper choices, we can preserve the desired priority. The converted
code is

sel(2) <= '1' when booi-exp-0 e l s e '0';
sel(1) <= '1' when bool-exp-1 e l s e '0';
s e l (0) <= '1' when bool-exp-2 e l s e '0';
with sel s e l e c t

sig <= value-expr-0 when 1110011 I"101" I"110" I"111",
value-expr-1 when "010" I "OilgT,
value-expr-2 when "OOl",
value-expr-n when others ;

Note that the pattern of the selected signal assignment statement is very similar to a prior-
ity encoder except that the request signals are replaced by the auxiliary selection signals
generated from the Boolean expressions.

4.5.2 Comparison between conditional signal assignment and selected
signal assignment statements

In the selected signal assignment statement, each choice can be considered as a row in a
table. Thus, this statement is a good match for a circuit described by a truth table or a
truth table-like function table, such as the decoder, truth table and multiplexer examples
discussed in Section 4.4. On the other hand, it is less effective when certain input conditions
are given preferential treatment. For example, if we examine the priority encoder example of
Section 4.4, eight of the 16 ports of the multiplexer are connected to an identical expression.

The conditional signal assignment statement implicitly enforces the order of the operation
and is a natural match for a circuit that needs to give preferential treatment for certain
conditions or to prioritize the operations. The priority encoder is a good example of this
kind of circuit. The conditional signal assignment statement can also handle complicated
conditions. For example, we can write

pc-next <=
pc-reg + offset when (state=jump and a=b) e l s e
pc-reg + 1 when (state=skip and flag='l') e l s e

. . .
A conditional signal assignment statement is less effective to describe a truth table since it

may "overspecify" the circuit and thus add unnecessary constraints. For example, consider
the multiplexer of Section 4.3.1. The original VHDL segment is

x <= a when (s="OOlu) e l s e
b when (s="Ol") e l s e
c when (s = ~ ~ ~ O ~ ~ > e l s e
d ;

The code can also be written as

x <= c when (~ = ~ ~ l O l l) e l s e
a when (S = ~ ~ O O ~ ~) e l s e
b when (s = ~ ~ O ~ ~ ~) e l s e
d ;

or

SYNTHESIS GUIDELINES 95

x <= c when (s="lO") e l s e
b when (s=I1Olt1) e l s e
a when (s = ~ ' O O ") e l s e
d ;

or many other possible variations. These codes give priority to the condition in the first
when clause, although it is not part of the original specification. While this type of code is
not wrong, the extra constraint may introduce additional circuitry and make synthesis and
optimization more difficult.

Ideally, the synthesis software should automatically determine the optimal structure and
derive identical gate-level implementation, regardless of the language constructs used in
VHDL descriptions. In reality, this is possible only for small, trivial designs. For a general
design, we have to be aware of the effect of the statements on the routing and the "layout"
of the final implementation. These aspects are illustrated by examples in Chapter 7.

4.6 SYNTHESIS GUIDELINES

0 Avoid a closed feedback loop in a concurrent signal assignment statement.

0 Think of the conditional signal assignment and selected signal assignment statements
as routing structures rather than sequential control constructs.

larger number of when clauses leads to a long cascading chain.
0 The conditional signal assignment statement infers a priority routing structure, and a

0 The selected signal assignment statement infers a multiplexing structure, and a large
number of choices leads to a wide multiplexer.

4.7 BIBLIOGRAPHIC NOTES

Since the focus of the book is on synthesis, only synthesis-related aspects of the concurrent
signal assignment statement are discussed. The complete discussion on these constructs
can be found in The Designer's Guide to VHDL, 2nd edition, by P. J. Ashenden.

The discussion in this chapter illustrates the general schemes to realize concurrent signal
assignment statements in various routing structures. Individual synthesis software may
map certain language constructs to specific hardware architectures. The software vendors
sometimes include a "style guide" in their documentation. It shows the mapping between
hardware architecture and the VHDL language constructs.

Problems

4.1 Add an enable signal, en, to a 2-to-4 decoder. When en is ' 1 ' , the decoder functions
as usual. When en is 'O', the decoder is disabled and output becomes "0000". Use the
conditional signal assignment statement to derive this circuit. Draw the conceptual diagram.

4.2 Repeat Problem 4.1, but use the selected signal assignment statement instead.

4.3 Consider a 2-by-2 switch. It has two input data ports, x(0) and x (l) , and a 2-bit
control signal, ctrl. The input data are routed to output ports y (0) and y (I according
to the ctrl signal. The function table is specified below.

96 CONCURRENT SIGNAL ASSIGNMENT STATEMENTS OF VHDL

Input Output Function
c t r l yl y0

00 xi x0 pass
01 x0 xi cross
10 x0 x0 broadcast x0
11 xi xi broadcast xi

(a) Use concurrent signal assignment statements to derive the circuit.
(b) Draw the conceptual diagram.
(c) Expand it into gate-level circuit and derive the simplified logic expression in

sum-of-products format.

4.4 Consider a comparator with two %bit inputs, a and b. The a and b are with the
std-logic-vector data type and are interpreted as unsigned integers. The comparator
has an output, agtb, which is asserted when a is greater than b. Assume that only a shgle-
bit comparator is supported by synthesis software. Derive the circuit with concurrent signal
assignment statement@).

4.5 Repeat Problem 4.4, but assume that a and b are interpreted as signed integers.

4.6 We wish to design a shift-left circuit manually. The inputs include a, which is an
8-bit signal to be shifted, and c t r l , which is a 3-bit signal specifying the amount to be
shifted. Both are with the std-logic-vector data type. The output y is an 8-bit signal
with the std-logic-vector data type. Use concurrent signal assignment statements to
derive the circuit and draw the conceptual diagram.

CHAPTER 5

SEQUENTIAL STATEMENTS OF VHDL

As the name suggests, sequential statements are executed in sequence. The semantics of
these statements is more like that of a traditional programming language. Since they are not
compatible with the general concurrent execution model of VHDL, sequential statements
have to be enclosed inside a construct known as a process. The main purpose of sequential
statements is to describe and model a circuit’s “abstract behavior.” Unlike concurrent
signal assignment statements, there is no clear mapping between sequential statements and
hardware components. Some statements and coding styles are difficult or even impossible to
synthesize. To use processes and sequential statements for synthesis, the VHDL description
has to be coded in a disciplined way so that the code can be faithfully mapped into the
intended hardware configuration.

5.1 VHDL PROCESS

5.1.1 Introduction

A process is a VHDL construct that contains a set of actions to be executed sequentially.
These actions are known as sequential statements. The process itself is a concurrent state-
ment. It can be interpreted as a circuit part enclosed inside a black box whose behavior is
described by the sequential statements. We may or may not be able to construct physical
hardware that exhibits the desired behavior.

Sequential statements include a rich variety of constructs, and they can exist only inside
a process. The execution inside a process is sequential, and thus the order of the state-

RTL Hardware Design Using VHDL: Coding for Efjiciency, Portability, and Scalabifity. By Pong P. Chu 97
Copyright @ 2006 John Wiley & Sons, Inc.

98 SEQUENTIAL STATEMENTS OF VHDL

ments is important. Many sequential constructs don’t have clear counterparts in hardware
implementation, and are difficult, if not impossible, to synthesize. We examine the use and
synthesis of the following sequential statements in this chapter:

wait statement
sequential signal assignment statement
variable assignment statement
ifstatement
case statement
simple for loop statement

More sophisticated loop statements as well as two other sequential statements, the exit
and next statements, are discussed in Chapter 14. Note that we should not confuse sequential
statements with sequential circuits. Sequential statements are VHDL statements inside a
process, and sequential circuits are circuits with internal states. A process and its internal
sequential statements can be used to describe a combinational or sequential circuit. As in
Chapter 4, our discussion in this chapter is limited to combinational circuits.

The process has two basic forms. The first form has a sensitiviry list but no wait statement
inside the process. The second form has one or more wait statements but no sensitivity list.
Because of its clarity, we use mainly the first form in this book. The second form is examined
briefly in Section 5.1.3.

5.1.2 Process with a sensitivity list

The syntax of a process with a sensitivity list is

process(sensitivity-list)

begin
d e c l a r a t i o n s ;

s e q u e n t i a l s t a t e m e n t ;
s e q u e n t i a l s t a t e m e n t ;

. . .
end p r o c e s s ;

The sensitivity-list is a list of signals to which the process responds (i.e., is “sensitive
to”). The declarations part consists of various declarations that are local to the process.

Whereas the appearance of a VHDL process is like a function or procedure of a traditional
programming language, the behavior of the process is very different. A VHDL process is
not invoked (or called) by another routine. It acts like a circuit part, which is either active
(known as activated) or inactive (known as suspended). A VHDL process is activated when
a signal in the sensitivity list changes its value, like a circuit responding to an input signal.
Once a process is activated, its statements will be executed sequentially until the end of the
process. The process is then suspended until the next change of signal. A simple process
with a single sequential signal assignment is

s i g n a l a , b , c , y : s t d - l o g i c ; - i n a r c h i t e c t u r e d e c l a r a t i o n

process (a , b , c >
begin

end p r o c e s s ;

. . .

y <= a and b and c ;

VHDL PROCESS 99

When any input (i.e., a, b or c) changes, the process is activated and its statement is executed.
The statement evaluates the expression and assigns the result to the y signal. This process
simply describes a three-input and circuit with a, b and c inputs and y output.

One tricky issue about the process is the incomplete sensitivity list, which is a list with
one or more input signals missing. For example, the b and c signals are omitted from the
sensitivity list of the previous example:

s i g n a l a,b,c,y: std-logic;

process (a>
begin

end p r o c e s s ;

. . .

y <= a and b and c;

When the a signal changes, the process is activated and the circuit acts as expected. On the
other hand, when the b or c signal changes, the process remains suspended and the y signal
keeps its previous value. This implies that the circuit has some sort of memory element
that is triggered at both positive and negative edges of the a signal. When the a signal
changes, the expression is evaluated and the result is stored in the memory element. This
is not the circuit behavior we expected, and it cannot be synthesized by regular hardware
components.

For a combinational circuit, the output is a function of input. This implies that the circuit
responds to any input change. Thus, all input signals of a combinational circuit should
be included in the sensitivity list. A process with incomplete sensitivity can be used to
describe a circuit with internal memory and thus infer a memory element. This is discussed
in Chapter 8.

5.1.3 Process with a wait statement

A process with wait statements has one or more wait statements but no sensitivity list. The
wait statement has several forms:

wait on signals ;
wait u n t i l boolean-expression;
wait for time-expression ;

Use of the wait statement can best be explained by an example. The code segment of
Section 5.1.2 can be rewritten as

process
begin

y <= a and b and c;
wait on a, b , c ;

Note that there is no sensitivity list. The process starts automatically after the system
initialization. It continues the execution until a wait statement is reached and then becomes
suspended. The statement wait on a, b , c means that the process waits for a change
in the a or b or c signal. When one of them changes value, the process is activated. It
executes to the end of the process, then returns to the beginning of the process and continues
execution. It becomes suspended again when reaching the wait statement. The overall effect
of this process describes a three-input and gate, as in the previous example.

The behavior of the two other types of wait statements is similar except that the process
waits until a special Boolean condition is asserted or waits for a specific amount of time.

end p r o c e s s ;

100 SEQUENTIAL STATEMENTS OF VHDL

Since multiple wait statements are allowed, a process with wait statements can be used to
model complex timing behavior and sequential events. However, in synthesis, only few
well-defined forms of wait statements can be used, and normally only one wait statement
is allowed in a process. Since a process with a sensitivity list can clearly show the input
signals and make the code clearer and more descriptive, we prefer this form and normally
don’t use the wait statement in this book.

5.2 SEQUENTIAL SIGNAL ASSIGNMENT STATEMENT

The syntax of a sequential signal assignment is identical to that of the simple concurrent
signal assignment of Chapter 4 except that the former is inside a process. It can be written
as

signal-name <= projected-waveform;

The pro j ected-wavef orm clause consists of a value expression and a time expression,
which is generally used to represent the propagation delay. As in the concurrent signal
assignment statement, the delay specification cannot be synthesized and we always use the
default &delay. The syntax becomes

signal-name <= value-expression;

Note that the concurrent conditional and selected signal assignment statements cannot be
used inside the process.

For a signal assignment with 6-delay, the behavior of a sequential signal assignment
statement is somewhat different from that of its concurrent counterpart. If a process has
a sensitivity list, the execution of sequential statements is treated as a “single abstract
evaluation,” and the actual value of an expression will not be assigned to a signal until the
end of the process. This is consistent with the black box interpretation of the process; that
is, the entire process is treated as one indivisible circuit part, and the signal is assigned a
value only after the completion of all sequential statements.

Inside a process, a signal can be assigned multiple times. If all assignments are with
&delays, only the last assignment takes effect. Because the signal is not updated until the
end of the process, it never assumes any “intermediate” value. For example, consider the
following code segment:

a,b,c,d,y: std-logic;

process (a, b, c , d)
begin

. . .

y <= a or c;
y <= a and b;
y <= c and d;

end process;

It is the same as

process(a,b,c,d)
begin

y <= c and d;
end process;

Although this segment is easy to understand, multiple assignments may introduce subtle
mistakes in a more complex code and make synthesis very difficult. Unless there is a

VARIABLE ASSIGNMENT STATEMENT 101

Figure 5.1 Conceptual diagram of multiple concurrent signal assignments.

compelling reason, it is a good idea to avoid assigning a signal multiple times. The only
exception is the assignment of a default value in the if and case statements. This is discussed
in Sections 5.4.3 and 5.5.3.

The result will be very different if the multiple assignments are the concurrent signal as-
signment statements. Assume that the previous three assignment statements are concurrent
signal assignment statements (i.e., not inside a process). The code segment becomes

a,b,c,d,y: std-logic;

- the s t a t e m e n t s are not i n s i d e a p r o c e s s
y <= a or c;
y <= a and b;
y <= c and d;

. . .

The code is syntactically correct since multiple assignments are allowed for a signal with
the std-logic data type (since it is a "resolved" data type). The corresponding circuit is
shown in Figure 5.1. Although the syntax is fine, the design is incorrect because of the
potential output conflict. The y signal may get a value of ' X ' in simulation if any two of
the output values of the three gates are different.

5.3 VARIABLE ASSIGNMENT STATEMENT

The syntax of a variable assignment statement is

variable-name := value-expression;

The immediate assignment notion, : =, is used for the variable assignment. There is no time
dimension (i.e., no propagation delay) and the assignment takes effect immediately. The
behavior of the variable assignment is just like that of a regular variable assignment used
in a traditional programming language. For example, consider the code segment

s i g n a l a, b, y: std-logic;

process (a, b)

begin

. . .

variable tmp : std-logic ;

tmp := '0';
tmp := tmp or a;
tmp := trnp or b;
y <= tmp;

end process;

102 SEQUENTIAL STATEMENTS OF VHDL

‘0 a =
b Y

Figure 5.2 Conceptual implementation of simple variable assignments.

The tmp variable assumes the value immediately in each sequential statement and assigns
its value, which is equal to a + b, to the y signal. Note that the variables are “local” to the
process and have to be declared inside the process.

Although the behavior of a variable is easy to understand, mapping it into hardware is
difficult. For example, to realize the previous process in hardware, we have to rename the
variables tmp0, tmpl and tmp2 and change the process to

v a r i a b l e tmpO , tmpl , tmp2: std-logic;
process (a, b)

begin
tmpO := I O J ;
tmpl : = tmpO or a;
tmp2 := tmpl or b ;
y <= tmp2;

end p r o c e s s ;

For synthesis purposes, we can now interpret the variables as signals or nets. The corre-
sponding diagram is shown in Figure 5.2. Because of the lack of clear hardware mapping,
we should try to use signals in code in general and resort to variables only for the charac-
teristics that cannot be described by signals.

For comparison purposes, let us repeat the previous segment by replacing the variables
with signals:

s i g n a l a , b , y , tmp: std-logic;

process (a, b, tmp)
begin

tmp <=] O > ;
tmp <= tmp or a;
tmp <= tmp or b;
y <= tmp;

end p r o c e s s ;

. . .

Note that the signals have to be “global” and declared outside the process, and the tmp
signal has to be included in the sensitivity list. This code is the same as

process (a , b, tmp)
begin

tmp <= tmp or b;
y <= tmp;

end p r o c e s s ;

This code implies a combinational loop with an or gate, as shown in Figure 5.3.

IF STATEMENT 103

Figure 5.3 Conceptual implementation of erroneous signal assignments.

5.4 IF STATEMENT

5.4.1 Syntax and examples

The simplified syntax of an if statement is

i f boolean-expr-1 then
sequential-statements;

e l s i f boolean-expr-2 then
sequential-statements ;

e l s i f boolean-expr-3 then
sequential-statements;

. . .
e l s e

end i f ;
sequential-statements;

An if statement has one then brunch, one or more optional elsifbranches and one optional
else branch. The boolean-expr-i term is aBooleanexpression that returns true or false.
These Boolean expressions are evaluated sequentially. When an expression is evaluated
as true, the statements in the corresponding branch will be executed and the remaining
branches will be skipped. If none of the expressions is t rue and the else branch exists, the
statements in the else branch will be executed.

We use the same circuit examples as in Chapter 4, which include a multiplexer, a decoder,
a priority encoder and a simple ALU, to illustrate use of an if statement. The if statement
description of an 8-bit 4-to-1 multiplexer is shown in Listing 5.1. Since the multiplexer is
a combinational circuit, all input signals, including a, b, c, d and s, are in the sensitivity
list. Note that the signals used in the Boolean expressions are also the input signals.

Listing 5.1 440-1 multiplexer based on an if statement
a r c h i t e c t u r e if-arch of mux4 i s
begin

process (a ,b ,c , d , s)
begin

S i f (S = ~ I O O ~ ~) then
x <= a;

x <= b;

x <= c;

x <= d;

e 1 s i f (s = If 0 1) then

e I s i f (s = II 10 1 then

e l s e

end i f ;
end p r o c e s s ;

IS end if -arch;

10

104 SEQUENTIAL STATEMENTS OF VHDL

The if statement versions of binary decoder, priority encoder and simple ALU are shown
in Listings 5.2,5.3 and 5.4 respectively.

Listing 5.2 240-4 decoder based on an if statement

a r c h i t e c t u r e if-arch of decoder4 i s
begin

process (8)

begin
5 i f (s=llOOll) then

x <= "0001" ;
e 1s i f (s="Ol") then

x <= " 0 0 1 0 " ;
e I s i f (s = 10 then

10 x <= "0100";
e l s e

x <= " 1 0 0 0 " ;
end i f ;

end p r o c e s s ;
I5 end if-arch;

Listing 5.3 4-to-2 priority encoder based on an if statement

a r c h i t e c t u r e if-arch of prio-encoder42 i s
begin

process (r)
begin

5 i f (r(3)='1') then
code <= nll";

code <= "10";

10 code <= s O 1 " ;

e l s i f (r (2) = ' l J) t h e n

e l s i f (r(1)='1') then

e l s e

end i f ;
end p r o c e s s ;

code <= "00";

IS active <= r(3) o r r(2) or r(1) o r r(0);
end if-arch;

Listing 5.4 Simple ALU based on an if statement

a r c h i t e c t u r e if-arch of simple-alu i s

begin
s i g n a l srcOs, srcls: signed(7 downto 0);

srcOs <= signed(src0);
5 srcls <= signed(src1);

process (ctrl , srco , srcl , srcOs , srcls)
begin

if (ctrl(2)= '0 ') then
result <= std-logic-vector (srcOs + 1) ;

result <= std-logic-vector (srcOs + srcls) ;
10 e l s i f (ctrl(1 downto O > = l ' O O l l > then

e l s i f (ctrl(1 downto O) = " O l t l) then

IF STATEMENT 105

result <= std-logic-vector(src0s - srcls);
e l s i f (ctrl(1 downto 0>=111011) then

e l s e

end i f ;
end p r o c e s s ;

20 end if-arch;

I5 result <= srcO and srcl ;

result <= srcO or srcl;

5.4.2 Comparison to a conditional signal assignment statement

An if statement is somewhat like a concurrent conditional signal assignment statement. If
the sequential statements inside an if statement consist of only the signal assignment of
a single signal, as in previous examples, the two statements are equivalent. Consider the
following conditional signal assignment statement:

sig <= value-expr-1 when boolean-expr-1 e l s e
value-expr-2 when boolean-expr-2 e l s e
value-expr-3 when boolean-expr-3 e l s e

value-expr-n;
. . .

It can be written as

process (. . .)
begin

i f boolean-expr-1 then
sig <= value-expr-1 ;

e l s i f boolean-expr-2 then
s i g <= value-expr-2;

e l s i f boolean-expr-3 then
sig <= value-expr-3 ;

. . .
e l s e

end i f ;
end p r o c e s s ;

sig <= value-expr-n;

Thus, OUT discussion in Chapter 4 regarding the conditional signal assignment statement
can also be applied to the if statement.

The equivalency, however, is true only for this simple scenario. An if statement is much
more general since a branch of the if statement can be a sequence of sequential statements.
Proper and disciplined use of an if statement can make code more descriptive and sometimes
even more efficient. For example, an if statement is a sequential statement, and thus it can
be nested in a branch of another if statement. Assume that we want to find the maximum
value of .bee signals, a, b and c. One way to do it is by using nested if statements:

process (a, b, c >
begin

i f (a > b) then
i f (a > c) then

e l s e
max <= a; -- a>b and a>c

106 SEQUENTIAL STATEMENTS OF VHDL

max <= c ; - a>b and c>=a
end i f ;

i f (b > c) then

e l s e

end i f ;

e l s e

max <= b ; - b>=a and b>c

max <= c ; - b>=a and c>=b

end i f ;
end p r o c e s s ;

We have to use three conditional signal assignment statements to achieve the same task:

s i g n a l ac-max , bc-max : s t d - l o g i c ;

ac-max <= a when (a > c) e l s e c ;
bc-max <= b when (b > c) e l s e c ;
max <= ac-max when (a > b) e l s e bc-max;

. . .

We can also convert code using one conditional signal assignment statement. Since it cannot
be nested, we have to "flatten" the Boolean conditions of the if statements. The following
code follows the pattern of the previous nested Boolean conditions:

max <= a when ((a > b) and (a > c)) e l s e
c when (a > b) e l s e
b when (b > c) e l s e
c ;

Although the code is shorter, it is not very descriptive and is difficult to understand.

by the same Boolean conditions. For example, consider the following code segment:
Another situation suitable for the if statement is when many operations are controlled

process (a , b)
begin

i f (a > b and op="OO") then
y <= a - b ;
z <= a - 1;
s t a t u s <= JO';

y <= b - a ;

s t a t u s <= J l ' ;

e l s e

z <= b - 1;

end i f ;
end p r o c e s s ;

The Boolean conditions and the if-then-else structure is shared by three signals. On the
other hand, we need three conditional signal assignment statements to describe the same
circuit:

y <= a-b when (a > b and op=ltOO") e l s e

z <= a-1 when (a > b and 0 p = ~ ~ 0 0 ~ ~) e l s e

s t a t u s <= '0' when (a > b and 0 p = ~ ~ O 0 ~ @) e l s e

b-a ;

b-1;

J l ' ;

IF STATEMENT 107

5.4.3 Incomplete branch and Incomplete slgnal assignment

In Section 5.1.2, we learned that an incomplete sensitivity list, in which one or more input
signals are omitted, may lead to unexpected circuit behavior. This may also happen to the
incomplete branch and incomplete signal assignment. According to VHDL semantics, the
else branch is optional and a signal does not need to be assigned in all branches. Although
syntactically correct, the omissions introduce unwanted memory elements (i.e., latches).

/ncomp/efe branch In VHDL, only the then branch is mandatory and the other branches
can be omitted. For example, the following statement is an attempt to code a comparator
that compares the a and b inputs and asserts the eq output when a and b are equal:

process (a, b)
begin

i f (a=b) then
e q <= I l ’ ;

end i f ;
end p r o c e s s ;

The code is syntactically correct. When a is equal to b, the eq signal becomes 1 J . When
a is not equal to b, there is no else branch and thus no action is taken. VHDL semantics
specifies that the eq signal does not change and keeps its previous value. Thus, the previous
statement is the same as

process (a, b)
begin

i f (a=b) then
e q <= I l l ;

e l s e
e q <= eq;

end i f ;
end p r o c e s s ;

This implies a circuit with a closed feedback loop, which constitutes internal states or
memory. Clearly, this description does not meet the intended specification. The correct
code should be

process (a, b)
begin

i f (a-b) then
e q <= I l l ;

e l s e
e q <= I O J ;

end i f ;
end p r o c e s s ;

Fora combinational circuit, the else branch should always be included to avoid the unwanted
memory or latch.

lncomplete signs/ assignment An if statement has several branches. It is possible
that a signal is assigned only in some, but not all branches. Although syntactically correct,
the incomplete signal assignment infers unwanted memory. For example, the following
statement attempts to describe a comparator with three outputs, gt. It and eq, which
indicate the conditions “a is greater than b,” ‘‘a is less than b” and “a is equal to b”
respectively:

108 SEQUENTIAL STATEMENTS OF VHDL

process (a, b)
begin

i f (a>b) then
gt <= '1';

e l s i f (a=b) then

e l s e

end i f ;
end p r o c e s s ;

eq <= '1';

It <= '1';

The VHDL semantics specifies that a signal will keep its previous value if it is not assigned.
When a is greater than b, the first branch is taken and the g t signal becomes '1'. The eq
and It signals keep their previous values since they are not assigned. A similar situation
occurs in two other branches since only one output signal ?s assigned. This implies that
three unwanted memory elements are inferred from the code. The correct code should have
the signals assigned in all branches:

process (a, b)
begin

i f (a>b) then
gt <= '1';
eq <= '0';
It <= '0';

e l s i f (a=b) then
gt <= '0';
eq <= ' I 2 ;
It <= '0';

gt <= '0';

It <= '1';

e l s e

eq <= '0';

end i f ;
end p r o c e s s ;

One way to make the code compact and clear is to assign a default value for each signal in
the beginning of the process:

process (a, b)
begin

gt <= '0';
eq <= '0';
It <= '0';
i f (a>b) then

e l s i f (a=b) then
eq <= '1';

e l s e

end i f ;
end p r o c e s s ;

gt <= '1';

It <= '1';

Recall that, in a process, only the last signal assignment takes effect. If a signal is assigned in
a branch of the if statement, that assignment takes effect. If it is not assigned in any branch,

IF STATEMENT 109

the default assignment takes effect. The output signals are therefore always assigned. We
can treat the assignment of a default value as shorthand for the previous code segment.

For a combinational circuit, an output signal should be assigned in all branches of an if
statement. It is a good practice to assign a default value at the beginning of the process to
cover the unassigned branches.

5.4.4 Conceptual implementation

An if statement evaluates a set of Boolean expressions in sequential order and takes action
when the first Boolean condition is met. To achieve this in hardware, we need a priority
routing network similar to that of a conditional signal assignment statement.

Discussion in Section 5.4.2 shows that a simple one-output-signal if statement is equiv-
alent to a conditional signal assignment statement. We can apply the same procedure as
that described in Section 4.3.2 to derive the conceptual block diagram for the simple if
statement. Consider an if statement with four branches:

i f boolean-expr-1 then
sig <= value-expr-1 ;

e l s i f boolean-expr-2 then
sig <= value-expr-2 ;

e l s i f boolean-expr-3 then
sig <= value-expr-3 ;

e l s e
sig <= value-expr-4 ;

end i f ;

We first derive the circuit for the first branch by constructing the rightmost 2-to-1 multi-
plexing circuit and the boolean-expr-I and value-expr-I circuits. We can then repeat
the process and complete the implementation branch by branch. The finished diagram is
identical to Figure 4.4.

An if statement is more flexible and can accommodate more than one statement in each
branch. The following examples illustrate the construction of two more complex forms.
The first form is an if statement with multiple statements in each branch. The following
code shows an if statement with two output signals:

sig-a <= value-expr-a-1;
sig-b <= value-expr-b-1

sig-a <= value-expr-a-2;
sig-b <= value-expr-b-2 ;

i f boolean-expr then

e l s e

end i f ;

Since there are two signals, two separating routing networks are needed. When each routing
network has its own multiplexer, the two networks use the same Boolean expressions to
control the selection signals of the multiplexers. Thus, the boolean-exp circuit is actually
shared. The conceptual diagram is shown in Figure 5.4. We can apply the same idea to
derive a conceptual diagram for an if statement with more output signals.

The second form is a nested if statement; that is, one or more if statements is used inside
the branches of an if statement, The following code shows a two-level nested if statement:

i f boolean-expr-1 then
i f boolean-expr-2 then

11 0 SEQUENTIAL STATEMENTS OF VHDL

sig-b

a-' boolean-

Figure 5.4 Conceptual implementation of an if statement with multiple signal assignments.

signal-a <= value-expr-I ;

signal-a <= value-expr-2;
e l s e

end i f ;

i f boolean-expr-3 then

e l s e

end i f ;

e l s e

signal-a <= value-expr-3;

signal-a <= value-expr-4;

end i f ;

The conceptual diagram can be constructed in a hierarchal manner, and the derivation pro-
cess is shown in Figure 5.5. We first derive the routing structure for the outer if statement, as
in Figure 5.5(a), and then realize the two inner if statements inside the then and else branches
of the outer if statement, as in Figure 5.5(b). We can apply this procedure repeatedly if the
code consists of more nested levels.

5.4.5 Cascading single-branched if statements

Because of the sequential semantics, a signal can be assigned multiple times inside a process
and only the last assignment takes effect. We can use this property to construct a priority
circuit using a sequence of single-branched if statements (i.e., if statements with only a
then branch). For example, the previous priority encoder can be rewritten using three if
statements, as shown in Listing 5.5. The code signal is first assigned with "00". If the r (1)
request is asserted, the code signal will be reassigned with "01". This procedure continues
until the end of the process. Clearly, the Boolean conditions in the later if statements
have the higher priority and can override the earlier conditions. Thus, this sequence of if
statements implicitly forms a priority circuit.

IF STATEMENT 11 1

(a) Outer if statement

sig

L

(b) Two inner if statements

Figure 5.5 Conceptual implementation of a nested if statement.

Listing 5.5 Priority encoder based on cascading if statements

a r c h i t e c t u r e cascade - i f - a rch of prio-encoder42 is
begin

process (r)
begin

5 code < = " O O " ;
i f (r (l) = l l l) then

code <= " 0 1 " ;
end i f ;
i f (r (2) = 1 1 1) then

end i f ;
i f (r (3) =] 1 ') then

code <= l ' l l l l ;
end i f ;

10 code <= " 1 0 " ;

IS end p r o c e s s ;
a c t i v e <= r (3) or r (2) or r(1) or r (0) ;

end cascade - i f - a rch ;

We can generalize this idea and replace an if statement with multiple elsif branches with
a sequence of simple cascading single-branched if statements. For example, consider the
following code segment:

i f boolean-expr-1 then
sig <= value-expr-1;

11 2 SEQUENTIAL STATEMENTS OF VHDL

e l s i f boolean-expr-2 then
sig <= value-expr-2 ;

e l s i f boolean-expr-3 then
sig <= value-expr-3;

e l s e
sig <= value-expr-4;

end i f ;

It can be rewritten as

sig <= value-expr-4 ;
i f boolean-expr-3 then

end i f ;
i f boolean-expr-2 then

end i f ;
i f boolean-expr-1 then

end i f ;

sig <= value-expr-3;

sig <= value-expr-2 ;

sig <= value-expr-1;

Although inferring the same priority configuration, VHDL code in this form is less clear and
more difficult for software to synthesize. We should avoid this style in general. However,
due to its repetitive nature, this form is sometimes useful to describe a replicated structure
of parameterized design. This aspect is discussed in detail in Chapter 14.

5.5 CASE STATEMENT

5.5.1 Syntax and examples

The simplified syntax of a case statement is

case case-expression i s
when choice-1 =>

when choice-2 =>
sequential statements;

sequential statements ;
. . .
when choice-n =>

sequential statements;
end c a s e ;

A case statement uses the value of case-expression to select a set of sequential state-
ments. The case-expression term functions just as the select-expression term of the
concurrent selected signal assignment statement. Its data type must be a discrete type or
one-dimensional array. The choice-i term is a value or a set of values that can be assumed
by case-expression. The choices have to be mutually exclusive (i.e., no value can be
used more than once) and all-inclusive (i.e., all values must be kluded). The keyword
others can be used in choice-n in the end to cover all unused values.

Again, we use the same multiplexer, binary decoder, priority encoder and ALU circuits
to show the use of the case statement. The VHDL code of the multiplexer is shown in
Listing 5.6. Note that there are 81 (9*9) possible combinations for the 2-bit s signal, in-
cluding the normal "OO", "01" , It 10" and 11 I t combinations as well as 77 other metavalue

CASE STATEMENT 11 3

combinations. This issue was examined in the selected signal assignment statement in Sec-
tion 4.4.1, and the discussion can be applied to the case statement as well. In the code,
we use the when others clause to cover "11" and all unused combinations. The signals
used in case-expression are the inputs to the circuit and thus should be included in the
sensitivity list.

Listing 5.6 440-1 multiplexer based on a case statement

a r c h i t e c t u r e case-arch of mux4 i s
begin

p r o C e S s (a , b , c , d , s)
begin

5 case s is
when "00" =>

x <= a ;
when l B O l u t =>

x <= b ;
when 11101* =>

x <= c ;
when o the r s =>

x <= d ;
end case ;

I5 end p rocess ;
end case-arch ;

The VHDL codes for the other three examples are shown in Listings 5.7,5.8 and 5.9.

I0

Listing 5.7 2-to-4 decoder based on a case statement

a r c h i t e c t u r e case-arch of decoder4 is
begin

process (8)

begin
5 case s i s

when t l O O " =>

when *01" =>

when e l O f v =>

when o the r s =>

x <= "0001";

x <= "0010~~;

x <= "0100";

x <= "1000" ;
end case ;

IS end p rocess ;
end case-arch ;

10

Listing 5.8 4-to-2 priority encoder based on a case statement

a r c h i t e c t u r e case-arch of pr io-encoder42 i s
begin

process (r)
begin

5 case r i s
when 1000 I 100 1 I@ I 1010 I I* 101 1 IQ I

~ ~ l l o o ~ ~ I " l l o l ~ ~ I " l l l o ~ ~ 1 " 1 1 1 1 " =>

11 4 SEQUENTIAL STATEMENTS OF VHDL

10

IS

code <= "11";

code <= "10";

code <= llO1ll;

code <= "00";

when l g O I O O t l I lsOIO1ll I"0110" I"O111" =>

when 11001018 I"OO11" =>

when o t h e r s =>

end c a s e ;
end p r o c e s s ;
active <= r(3) or r(2) or r(1) or r(0);

end case-arch ;

10

Listing 5.9 Simple ALU based on a case statement

a r c h i t e c t u r e case-arch of simple-alu is

begin
s i g n a l srcOs , srcls: signed(7 downto 0);

srcOs <= signed(src0) ;
s srcls <= signed(src1);

process (ctrl , srco , srcl , srcos , srcls)
begin

case ctrl i s
when 1100011 I llOO1ol I"010" I 11011" =>

result <= std-logic-vector (srcOs + 1) ;
when 1110011 =>

result <= std-logic-vector(src0s + srcls);
when II 101 =>

result <= std-logic-vector(src0s - srcls);
when llllOul =>

result <= srcO and srcl;
when o t h e r s = > - " 1 I I 'I

result <= srcO or srcl;
end c a s e ;

20 end p r o c e s s ;
end case-arch ;

5.5.2 Comparison to a selected signal assignment statement

A case statement is somewhat like a concurrent selected signal assignment statement. If
each when branch of a case statement consists only of the assignment of a single signal, the
two statements are equivalent. Consider a selected signal assignment statement:

with sel-exp s e l e c t
sig <= value-expr-1 when choice-1,

value-expr-2 when choice-:! I

value-expr-3 when choice-3,
. . .
value-expr-n when choice-n ;

It can be rewritten as

process (. . . I
begin

CASE STATEMENT 1 15

case sel-exp is
when choice-1 =>

when choice-:! =>

when choice-3 =>

sig <= value-expr-1 ;

sig <= value-expr-2;

sig <= value-expr-3 ;
. . .
when choice-n =>

sig <= value-expr-n ;
end c a s e ;

end process;

Thus, the discussion in Chapter 4 regarding the selected signal assignment statement can
also be applied to a case statement. Again, the equivalence is limited to this simple scenario.
The case statement is much more flexible and general since each when branch can consist
of a sequence of sequential statements. The comparison between the if statement and the
conditional signal assignment statement in Section 5.4.2 can be applied here as well.

5.5.3 Incomplete signal assignment

Unlike an if statement, the choices of a case statement have to be inclusive, and thus no
omitted when clause is allowed. Any "incomplete when clause" will lead to a syntax error
and thus be detected when the VHDL code is analyzed. However, incomplete signal as-
signment can still occur and infer unwanted memory. For example, the following statement
attempts to describe a priority encoder with a 3-bit input request signal, a, and three output
signals, high, middle and low. The a(3) signal has the highest priority. When it is ' 1 ' ,
the high signal will be asserted. The two other output signals are for two other lower
requests. The code uses a case statement:

process (a>
begin

case a i s
when ~ ' l O O ~ ~ I " l O l " l " l l O " l " 1 1 1 " =>

high <= '1';
when 1101011 I 1101111 =>

middle <= '1';
when others =>

low < = ' l ' ;
end c a s e ;

end process;

Again, the VHDL semantics specifies that a signal will keep its previous value if it is
unassigned. If the a signal is I' 1 I1 I t , the first when clause is taken and the high signal is
assigned a 1 ', Since the middle and low signals are unspecified, they keep their previous
values. A similar situation occurs in other when clauses, and therefore three unwanted
memory elements are inferred. To fix the problem, we must make sure to have the signals
assigned in all when clauses:

process (a>
begin

case a i s
when 10 0 1 10 1 I II 1 10 I 'I 1 1 1 I1 = >

11 6 SEQUENTIAL STATEMENTS OF VHDL

high <= '1 ;
middle <= 'OJ;
low <= JO';

when IrO1O" I"011" =>
high <= J O J ;
middle <= '1';
low <= '0';

when o t h e r s =>
high <= 'OJ;
middle <= '0';
low <= Jl';

end c a s e ;
end p r o c e s s ;

As in the if statement discussion, we can also use a default assignment to make the code
clearer and more compact:

process (a)
begin

high <= JO';
middle <= '0'
low <= '0';
case a i s

when 100"
high <=

when II 0 10 II
middle

when o t h e r s =>
low <='l';

end c a s e ;
end p r o c e s s ;

5.5.4 Conceptual implementation

A case statement utilizes the value of case-expression to select a set of sequential state-
ments to execute. Conceptually, it can be thought of as an abstract multiplexing circuit that
utilizes case-expression as the selection signal to route the results of designated expres-
sions to output signals. A case statement with a single output signal can be implemented by
an abstract multiplexer identical to the one used in the selected signal assignment statement
in Section 4.4.2. Consider the following case statement:

case case-exp i s
when CO =>

when c l =>

when o thers =>

sig <= value-expr-0 ;

sig <= value-expr-1 ;

sig <= value-expr-n ;
end c a s e ;

We assume that case-exp may result in one of five possible values: CO, c l , c2, c3 and
c4. The when others clause implicitly covers c2, c3 and c4. The conceptual diagram is
identical to Figure 4.1 1 except that the selection-expression circuit is replaced by the
case-exp circuit.

CASE STATEMENT 1 17

4- c3

I
- c2 siaa

cl

siab

1 -

I
(- c3

c2
cl

-

I

- -

Figure 5.6 Conceptual implementation of a case statement with multiple output signals.

The previous scheme can easily be extended for a case statement with multiple output
signals. We simply duplicate the abstract multiplexer for each signal and connect the
case-exp to the selection signals of all multiplexers. For example, the following case
statement has two output signals:

case case-exp i s
when CO =>

sig-a <= value-expr-a-0;
sig-b <= value-expr-b-0;

sig-a <= value-expr-a-1;
sig-b <= value-expr-b-1;

sig-a <= value-expr-a-n;
sig-b <= value-expr-b-n;

when cl =>

when others =>

end c a s e ;

The corresponding conceptual diagram is shown in Figure 5.6. As an if statement, a case
statement is very general. Any valid sequence of sequential statements can be included
inside a when branch, We can derive the conceptual diagram from the outermost level and
iterate through the inner levels, as in the nested if statement example in Section 5.4.4.

11 8 SEQUENTIAL STATEMENTS OF VHDL

5.6 SIMPLE FOR LOOP STATEMENT

5.6.1 Syntax

VHDL provides a variety of loop constructs, including simple infinite loop, for loop and
while loop, as well as mechanisms to terminate a loop, including the exir statement, which
skips the remaining iterations of the loop, and the next statement, which skips the remaining
part of the current iteration. These constructs are mainly for modeling. Only few, very
restricted forms of loop can be realized by hardware and synthesized automatically. In this
section, we limit the discussion to the simple for loop statement and use it as shorthand for
repetitive statements. A more general application of loops is discussed in Chapter 14.

The simplified syntax of the for loop statement is:

f o r index in loop-range loop

end l o o p ;
sequential statements;

The for loop repeats the loop body of sequential statements for a fixed number of itera-
tions. The looprange term specifies a range of values between the left and right bounds.
A loop index, index, is used to keep track of the iteration and takes a successive value
from looprange in each iteration, starting with the leftmost value. The loop index auto-
matically takes the data type of loopiange’s element and does not need to be declared.
For synthesizable code, looprange must be determined at the time of synthesis (i.e., be
sruric) and cannot change with the input signal. The loop body is a sequence of sequential
statements. It is very flexible and versatile but can be difficult or impossible to synthesize.
In this chapter, we limit it to sequential signal assignment statements.

5.6.2 Examples

Use of the for loop statement is demonstrated by two examples. The first example is a
4-bit xor circuit and its code is shown in Listing 5.10. The for loop performs bitwise xor
operation on two 4-bit signals. The operation is done one bit at a time. The loop range is
WIDTH-1 downto 0. We use a symbolic constant here to make the code more readable
and to facilitate future modification. The loop index is i. It is local to the loop and does
not need to be declared. The index assumes a value of 3, the leftmost value in the range,
in the first iteration, and then assumes a value of 2 in the second iteration. The iteration
continues until the value of the rightmost value, 0, is used.

Listing 5.10 Bitwise xor operation using a for loop Statement

l i b r a r y ieee;
use ieee. std-logic-1164. a l l ;
e n t i t y bit-xor i s

port (
5 a, b: in std-logic-vector(3 downto 0);

y : out s t d ~ l o g i c ~ v e c t o r (3 downto 0)
1;

end bit-xor ;

10 a r c h i t e c t u r e demo-arch of bit-xor i s
cons tant WIDTH: integer : = 4;

begin

SIMPLE FOR LOOP STATEMENT 11 9

process (a, b)
begin

15 for i in (WIDTH-I) downto 0 loop
y(i) <= a(i) xor b(i);

end l o o p ;
end p r o c e s s ;

end demo-arch ;

The code here is just for demonstration purposes. The same operation can actually be

y C= a xor b;

The second example is a reduced-xor circuit, which performs the xor operation over
a group of signals. For example, consider a group of four signals, as, a2, a1 and ao.
The reduced-xor operation of the four signals is a3 @ a2 @ a1 @ ao. The for-loop VHDL
description of this circuit is shown in Listing 5.11.

achieved by a single statement:

Listing 5.11 Reduced-xor operation using a for loop statement

l i b r a r y ieee ;
use ieee. atd-logic-1164. a l l ;
e n t i t y reduced-xor-demo i s

port (
5 a: in s t d ~ l o g i c ~ v e c t o r (3 downto 0) ;

y: out std-logic
1;

end reduced-xor-demo;

10 a r c h i t e c t u r e demo-arch of reduced-xor-demo is
cons tant WIDTH: integer := 4;
s i g n a l tmp: std-logic-vector (WIDTH-1 downto 0) ;

process (a, tmp)
begin

I5 begin
tmp(0) <= a(0); - boundary b i t
for i in 1 t o (WIDTH-1) loop

tmp(i) <= a(i) xor tmp(i-1);
end l o o p ;

20 end p r o c e s s ;

end demo-arch;
y <= tmp(W1DTH-1);

5.6.3 Conceptual implementation

The basic way to realize a for loop in hardware is to unroll orflatten the loop and convert
it into code that contains no loop constructs. The flattened code can then be constructed
accordingly. This implies that we replicate the hardware described by the loop body for
each iteration. To unroll a loop, the range has to be constant and has to be known at the
time of synthesis. That is why the range has to be static. We cannot, for example, use the
value of an input signal to set the range’s right boundary.

Let us first consider the bitwise xor code. The for loop can be unrolled by manually
substituting index i into the loop body for four iterations. The flattened code becomes

120 SEQUENTIAL STATEMENTS OF VHDL

y (3) <= a (3) xor b (3) ;
y (2) <= a (2) xor b (2) ;
y (1) <= a (1) xor b (1) ;
y (0) <= a(O> xor b (0) ;

We can derive the conceptual implantation accordingly. Similarly, the reduced-xor code
can be unrolled and the flattened code is

tmp(0) <= a (0) ;
tmp(1) <= a (1) xor t m p (0) ;
tmp(2) <= a (2) xor t m p (1) ;
tmp(3) <= a (3) xor t m p (2) ;
y <= t m p (3) ;

Since we limit the loop body to sequential signal assignment statements, the imple-
mentation is straightforward. The for loop can be thought of as shorthand for repetitive
statements. A unique property of the for loop is that we can use the range to control hard-
ware replication. It is very useful for the development of parameterized design, in which the
“width” of the circuit (e.g., the input width of an adder) can be adjusted to match a specific
need. For example, we can change the value of the WIDTH constant of the reduced-xor
code to accommodate different input widths. The implementation and synthesis of more
versatile loop structure and the parameterized design are examined in Chapters 14 and 15.

5.7 SYNTHESIS OF SEQUENTIAL STATEMENTS

The nature of concurrent and sequential statements is very different. Concurrent statements
are modeled after hardware, and thus there is a clear, direct mapping between a concurrent
statement and a hardware structure. On the other hand, sequential statements are intended to
describe the abstract behavior of a system, and some constructs cannot be easily realized by
hardware. Sequential statements are more flexible and versatile than concurrent statements.
For synthesis, this is a mixed blessing. On the positive side, the flexibility allows us to
specify the desired design in a compact, clear and descriptive manner and to explore more
design alternatives. On the negative side, the flexibility can easily be abused. It may make
us think falsely that we can synthesize hardware directly from sequential descriptions. This
usually leads to unnecessarily complex or unsynthesizable implementation.

Our goal is to develop code for synthesis. When we use sequential statements, we
should think in terms of hardware rather than treating them as a way to describe a sequential
algorithm. This helps us to focus on the underlying hardware complexity and the efficiency
of the design. One good way to check sequential statements is to ask ourselves whether we
can derive the conceptual diagram manually. If we cannot, the description is probably also
too difficult for synthesis software to synthesize.

5.8 SYNTHESIS GUIDELINES

5.8.1 Guidelines for using sequential statements

0 Variables should be used with care. A signal is generally preferred. A statement like

0 Except for the default value, avoid ovemdmg a signal multiple times in a process.

n : =n+i can cause great confusion for synthesis.

BIBLIOGRAPHIC NOTES 121

0 Think of the if and case statements as routing structures rather than as sequential
control constructs.

0 An if statement infers a priority routing structure, and a larger number of elsif branches
leads to a long cascading chain.

0 A case statement infers a multiplexing structure, and a large number of choices leads
to a wide multiplexer.

0 Think of a for loop statement as a mechanism to describe the replicated structure.

0 Avoid “innovative” use of language constructs. We should be innovative about the
hardware architecture but not about the description of the architecture. Synthesis
software may not be able to interpret the intention of the code.

5.8.2 Guidelines for combinational circuits

0 For a combinational circuit, include all input signals in the sensitivity list to avoid
unexpected behavior.

latch.
0 For a combinational circuit, include all branches of an if statement to avoid unwanted

0 For a combinational circuit, an output signal should be assigned in every branch of
the if and case statements to avoid unwanted latch.

0 For a combinational circuit, it is a good practice to assign a default value to each
signal at the beginniig of the process.

5.9 BIBLIOGRAPHIC NOTES

The bibliographic information for this chapter is similar to that of Chapter 4.

Problems

5.1 Consider a circuit described by the following code segment:

process (a)
begin

end p r o c e s s ;
q <= d ;

(a) Describe the operation of this circuit.
(b) Does this circuit resemble any real physical component?

Consider the following code segment: 5.2

process (a , b)
begin

i f a=’1’ then
q <= b ;

end i f ;
end p r o c e s s ;

122 SEQUENTIAL STATEMENTS OF VHDL

(a) Describe the operation of this circuit.
(b) Draw the conceptual diagram of this circuit.

5.3 Add an enable signal, en, to the 2-to-4 decoder discussed in Section 5.4.1. When en
is ' 1 ' , the decoder functions as usual. When en is ' 0 ' , the decoder is disabled and the
output becomes "0000". Use an if statement to derive this circuit and draw the conceptual
diagram.

5.4

5.5

Repeat Problem 5.3, but use a case statement to derive the circuit.

Derive the conceptual diagram for the following code segment:

i f (a > b and op="OO") then
y <= a - b;
z <= a - 1;
s t a t u s <= '0';

y <= b - a ;
z <= b - I;
s t a t u s <= '1';

e l s e

end i f ;

5.6 Consider the 2-by-2 switch discussed in Problem 4.3. Its inputs are xi, x0 and ctrl,
and its outputs are yl and y0. The functional table is shown below. Use one if statement
to derive the circuit.

ctrl Yl YO
00 xi xo
0 1 xo xl
1 0 xo xo
1 1 xi xi

5.7

5.8

Repeat Problem 5.6, but use a case statement to derive the circuit.

Consider the following code segment:

i f (a > b) then

e l s e
y <= a - b ;

i f (a > c) then

e l s e

end i f ;

y <= a - c ;

y <= a + 1;

end i f ;

(a) Draw the conceptual diagram.
(b) Rewrite the code using two concurrent conditional signal assignment statements.
(c) Rewrite the code using one concurrent conditional signal assignment statement.
(d) Rewrite the code using one case statement.

PROBLEMS 123

5.9 Consider the following code segment:

y <= (o t h e r s = > ’ O ’) ;
i f (a > b) then

end i f ;
i f (crtl=’l’) then

end i f ;

y <= a - b;

y <= c;

(a) Rewrite the code using one if statement.
(b) Draw the conceptual diagram.

5.10
the following code segment:

Assume that op is a 2-bit signal with the std-logic-vector data type. Consider

case op i s
when llOO1t =>

when II 01 ‘I =>
y <= (o t h e r s => ’0’);

i f (a > 0) then
y <= a - 1;

e l s e
y <= a + 1;

end i f ;
when o thers =>

y <= a + b;
end c a s e ;

(a) Draw the conceptual diagram.
(b) Rewrite the code using concurrent conditional and selected signal assignment

5.11 Consider the shift-left circuit discussed in Problem 4.6. The inputs include a, which
is an 8-bit signal to be shifted, and c t r l , which is a 3-bit signal specifying the amount to
be shifted. Both are with the std-logic-vector data type. The output y is an 8-bit signal
with the std-logic-vector data type. Use an if statement to derive the circuit and draw
the conceptual diagram.

5.12

statements.

Repeat Problem 5.1 1, but use a case statement.

This Page Intentionally Left Blank

CHAPTER 6

SYNTHESIS OF VHDL CODE

Synthesizing VHDL code is the process of realizing the VHDL description using the prim-
itive logic cells from the target device’s library. In Chapters 4 and 5, we discussed how
to derive a conceptual diagram from VHDL statements. The conceptual diagram can be
considered as the first step in realizing the code. The diagram is refined further during
synthesis. The synthesis process involves complex algorithms and a large amount of data,
and computers are needed to facilitate the process. Although today’s synthesis software
appears to be sophisticated and capable, there are fundamental limitations. Understanding
the capability and limitation of synthesis software will help us better utilize this tool and
derive more efficient designs. This chapter explains the realization of VHDL operators and
data types, provides an in-depth overview on the synthesis process, and discusses the timing
issue involved in synthesis.

6.1 FUNDAMENTAL LIMITATIONS OF EDA SOFTWARE

Developing a large digital circuit is a complicated process and involves many difficult tasks.
We have to deal with complex algorithms and procedures and handle a large amount of data.
Computers are used to facilitate the process. As computers become more powerful, we may
ask if it is possible to develop a suite of software and completely automate the synthesis
process. The ideal scenario is that human designers would only need to develop a high-level
behavioral description and EDA software would perform the synthesis and placement and
routing and automatically derive the optimal circuit implementation. The is unfortunately
not possible. The limitation comes from the theoretical study of computational algorithms.

RTL Hardware Design Using VHDL: Coding for Eficiency, Portability, andScalabiliv. By Pong P. Chu 125
Copyright @ 2006 John Wiley & Sons, Inc.

126 SYNTHESIS OF VHDL CODE

Although this book does not cover EDA algorithms, it will be helpful to know the capability
and limitation of EDA software tools so that they can be used effectively.

For the purposes of discussion, we can separate an EDA software tool into a core and a
shell. The core is the algorithms that perform the transformation or optimization, and the
shell wraps the algorithm, including data conversion, memory and file management and
user interface. Although the shell is important, the core algorithms ultimately determine
the quality and efficiency of the software tool. The problems encountered in EDA are not
unique. In fact, they are formulated and transformed into optimization problems in other
fields, especially in the study of graph theory. This section provides a layperson’s overview
of computability and computation complexity, which helps us understand the fundamental
limitation of EDA software.

6.1.1 Computability

Computability concerns whether a problem can be solved by a computer algorithm. If
an algorithm exists, the problem is computable (or deciduble). Otherwise, the problem is
uncomputable (or undecidable). An example of an uncomputable problem is the “halting
problem.” Some programs, such as a compiler, take another program as input and check
certain properties (e.g., syntax) of that program. The halting problem asks whether we can
develop a program that takes any program and its input and determines whether computation
of that program will eventually halt (e.g., no infinite loop). It can be proven mathematically
that no such program can be developed, and thus the halting problem is uncomputable.
Informally speaking, any attempt to examine the “meaning” of a program is uncomputable.

Equivalence checking discussed in Section 1.5.3 essentially compares whether two pro-
grams perform the same function, which goes further than the halting problem. Therefore,
equivalence checking is uncomputable; i.e., it is not possible to develop an EDA tool that
determines the equivalence of any two descriptions. However, it is possible to use some
clever techniques to determine the equivalence of some descriptions, which are coded fol-
lowing certain guidelines. Thus, while equivalence checking cannot guarantee to work all
of the time, it can be useful some of the time.

6.1.2 Computation complexity

If a problem is computable, an algorithm can be derived to solve the problem. The compu-
tation complexity concerns the efficiency of an algorithm. The computation complexity can
be further divided into time complexity, which is a measure of the time needed to complete
the computation, and space complexity, which is a measure of hardware resources, such as
memory, needed to complete the computation. Since most statements on time complexity
can be applied to space complexity as well, in the remaining section we focus on time
complexity.

Sig-0 notation The computation time of an algorithm depends on the size of the input
as well as on the type of processor, programming language, compiler and even personal
coding style. It is difficult to determine the exact time needed to complete execution of an
algorithm. To characterize an algorithm, we normally focus on the impact of input size and
try to filter out the effect of the “interferences” on measurement. Instead of determining the
exact function for computation time, we usually consider only the order of this function.

The order is defined as follows. Given two functions, f(n) and g(n), we say that f(n)
is O(g(n)) (pronounced as f (n) is big-0 of g(n) or f(n) is of orderg(n)) if two constants,

FUNDAMENTAL LIMITATIONS OF EDA SOFTWARE 127

Table 6.1 Scaling of some commonly used big-0 functions

Input size Big-0 function
n n log2n nlog,n n2 n4 2n

2 2 p s l p s 2 p s 4 p s 8 p s 4 PS
4 4ps 2 p s 8 p s 16ps 64ps 16 ps
8 8 p s 3 p s 24ps 64ps 512ps 256 ps
16 16ps 4 p s 64ps 256ps 4ms 66 ms
32 32ps 5ps 160ps l m s 33ms 71 min
48 48ps 5 . 5 ~ ~ 268ps 2ms l l l m s 9 years
64 64ps 6 p s 384ps 4ms 262ms 600,000years

no and c, can be found to satisfy

f(n) < cg(n) for any n, n > no

The g(n) function is normally a simple function, such as n, nlog, n, n2, n3 or 2n. For
example, all the following functions are O(n2):

0 0.1n2
0 n 2 + 5 n + 9
0 500n2 + 1000000

The purpose of big-0 notation is twofold. First, it drops the less important, secondary
terms since the highest-order term becomes the dominant factor as n becomes large. Second,
it concentrates on the rate of change and ignores the constant coefficient in a function. After
removing the constant coefficients and lower-order terms, we eliminate the effect of coding
style, instruction set and hardware speed, and can concentrate on the effectiveness of an
algorithm. Big-0 notation is essentially a scaling factor or growth rate, indicating the
resources needed as input size increases.

Commonly encountered orders are 0(1), O(log, n), O(n), O(nlog2 n), O(n2), O(n3)
and 0 (2 n) . O(n) indicates the linear growth rate, in which the required computation
resources increase in proportion to the input size. O(1) means that the required computation
resources are constant and do not depend on input size. O(log, n) indicates the logarithmic
growth rate, which changes rather slowly. For a problem with 0(1) or O(log, n) , the input
size has very little impact on the resources. O(n2) and O(n3) have faster growth rates and
the required computation resources become more significant as the input size increases.
All of the orders discussed so far are considered as being of polynomial order since they
have the form of O(n')), where Ic is a constant. On the other hand, 0(2n) indicates the
exponential growth rate and the computation time increases geometrically. Note that an
increment of 1 in input size doubles the computation time. 0 (2 n) grows faster than does
any polynomial order.

An example using these functions is shown in Table 6.1, which lists the required compu-
tation times of algorithms of varying computation complexity. For comparison, we assume
that it takes 2 ps for an O(n) algorithm to perform a computation of input size 2. The table
shows the required times as the input size increases from 2 to 64 under different big-0
functions.

One example of 0(2n) complexity is the exhaustive testing of a combinational cir-
cuit. One way to test a combinational circuit is to apply all possible input combinations
exhaustively and examine their output responses. For a circuit with n inputs, there are

128 SYNTHESIS OF VHDL CODE

2" possible input combinations. If we assume that the testing equipment can check 1 mil-
lion patterns per second, exhaustively testing a 64-bit circuit takes about 600,000 years (i.e.,
1os,60*60*24+365) 264 to complete. Thus, although simple and straightforward, this method is
not practical in reality.

lntractable and tractable problems In most problems, if a polynomial order (O(n'))
algorithm can be found, the exponent k is normally very small (say, 1,2, or 3). Even though
the growth rate is much worse than the linear rate, we can tolerate applying the algorithm
to problems with nontrivial input sizes. We call these problems tractable. On the other
hand, computation theory has shown that a polynomial-order solution cannot be found or is
"unlikely" to be found for some problems. The only existing solutions are the algorithms
with nonpolynomial order, such as O(2"). We call these problems intractable. As we have
seen in Table 6.1, the computation time for the O(2") algorithm simply grows too fast and
the algorithm is not practical even for a moderate-sized n. Improvement in hardware speed
will not change the situation significantly.

The situation is not completely hopeless for an intractable problem. An intractable
problem usually means that it takes O(2") computation time to find the optimal answer
for any given input. It is frequently possible to find a polynomial-order algorithm, based
on some smart tactics and heuristics (an educated guess), that permits us to obtain a valid,
suboptimal answer or the optimal solution for some input patterns.

Synthesis as an intractable problem The focus of this book is on describing a de-
sign in textual HDL code and then using synthesis software to realize the circuit. From the
computation complexity point of view, the synthesis consists of several intractable prob-
lems, and thus no polynomial-time algorithm exists. We can treat the synthesis process
as a searching procedure. For a given specification, there are possibly O(2") valid circuit
configurations. Finding the optimal configuration corresponds to a global search, exhaus-
tively checking and comparing all O(2") possible configurations. Real synthesis software
must limit the search space. It normally performs the search on a local basis and applies
some smart tactics and heuristics to guide the direction of the search. The starting point of
the search corresponds to the configuration described in our HDL code. Since the search
is local, the initial starting point plays a key role. A good initial description will put the
starting point in a good location, and an efficient configuration can be obtained accordingly.
On the other hand, if the initial description is poor, the good configurations will be far away.
Since synthesis software doesn't perform a global search, it is unlikely that software can
obtain an efficient configuration.

6.1.3 Limitations of EDA software

Like synthesis, other design tasks contain intractable or even undecidable computation
problems. This is the inherent, theoretical limitation of EDA software and cannot be
overcome by fast hardware, smart software code or human talents. Heuristics and tricks of
software algorithms can sometimes find good solutions for certain types of inputs. There is
no guarantee that the solutions are optimal or that the algorithm will work for all types of
inputs. Therefore, it is impossible to use EDA software to completely automate the design
process. This limitation is real and here to stay. The quality and efficiency of a design still
rely on a human designer's experience, insight, ingenuity and imagination, which, to some
degree, can be considered as the ultimate heuristics that cannot be coded into software.

REALIZATION OF VHDL OPERATORS 129

6.2 REALIZATION OF VHDL OPERATORS

When we develop VHDL code for synthesis, language constructs in the code are eventually
mapped to hardware. In the previous chapters, we illustrated the realization (i.e., the
conceptual diagram) of basic concurrent and sequential statements. VHDL operators are
used as building components in these diagrams. In a conventional programming language,
we don’t pay too much attention to the operators since most operations, including integer
arithmetic operations, logical operations and shift operations, take the same amount of
resources: one instruction cycle of the CPU. This is totally different in synthesis. Hardware
complexities and operation speed of VHDL operators vary significantly and are processed
differently during synthesis. To derive an efficient design, we have to be aware of the
implications of VHDL operators on hardware implementation.

Only a subset of VHDL operators can be synthesized automatically. The subset nor-
mally includes the logical operators, relational operators as well as addition and subtraction
operators. Some software may also include more complicated operators, such as shift or
multiplication operators. Software can rarely automatically synthesize division (/I, mod,
rem and exponential (**) operators or any operators associated with floating-point data-
type operands. The following subsections provide an overview of the realization of VHDL
operators.

6.2.1 Realization of logical operators

Logical operators can be mapped directly to logic gates, and their synthesis is straightfor-
ward. The and, nand, or and nor operators have similar area and delay characteristics.
The xor and xnor operators are slightly more involved and their implementation requires
more silicon area and experiences a larger propagation delay.

In VHDL, a logical operation can be applied over operands with multiple bits. For ex-
ample, let a and b be 8-bit signals with a data type of std,logic-vector(7 downto 0).
The expression a xor b means that the xor operation is applied to eight individual bits in
parallel. Since each bit of the input operates independently, the area of the circuit grows
linearly with the number of input bits (i.e., on the order of O(n)), and the propagation delay
is a constant (i.e., on the order of O(1)).

6.2.2 Realization of relational operators

There are six relational operators in VHDL: =, /=, <, <=, > and =>. According to their
hardware implementation, these operators can be divided into the equality group, which
includes the = and /= operators, and the greater-less group, which includes the other four
operators.

In the equality group, operators can easily be implemented by a tree-like structure. For
this implementation, the circuit area grows linearly with the number of input bits (i.e.,
O(n)), and the delay grows at a relatively slow O(log, n) rate. In the greater-less group,
the operation exhibits a strong data dependency of input bits. For example, to determine
the “greater than” relationship, we first have to compare the most significant bits of two
operands and, if they are equal, the next lower bits and so on. This leads to larger area and
propagation delay. Because of the circuit complexity, these operators can be implemented
in a variety of ways, each with a different area-delay characteristic. In the minimal-area
implementation, both area and delay grow linearly (i.e., O(n)) with the number of input

130 SYNTHESIS OF VHDL CODE

bits. There are several different ways to improve the performance (i.e., reduce the delay),
all at the expense of extra hardware.

6.2.3 Realization of addition operators

The addition operator (+) is the most basic arithmetic operator. Several other operators,
including subtraction (-), negation (- with one operand) and absolute value (abs), can easily
be derived from the addition operator.

The addition operation has an even stronger data dependency of individual bits since the
least significant bit of input may affect the most significant bit of the result. It is normally
the most complex operator that can be synthesized automatically. Since the adder is the
basis of other arithmetic operations, its implementation has been studied extensively and a
wide range of circuits that exhibit different area-delay characteristics has been developed.
The minimal-area circuit, sometimes known as a serial or ripple adder, can easily be im-
plemented by cascading a series of 1-bit full adders. In this implementation, both area and
delay grow linearly (i.e., O(n)).

6.2.4 Synthesis support for other operators

Synthesis support for other more complicated operators is sporadic. It depends on individual
synthesis software, the width of the input operands as well as the targeted device technology.
Some high-end synthesis software can automatically derive multiplication operator (*) and
shift operators (sll, srl, sla, sra, rol and ror of VHDL, and sh i f t - le f t , s h i f t r i g h t ,
rotate-left and r o t a t e r i g h t of the IEEE numericstd library). Because of the
hardware complexity, we must be extremely careful if these operators are used in a VHDL
code. Synthesis software rarely supports division-related operators (/, mod and rem)
or the exponential operator (**) or any operators associated with floating-point data-type
operands.

Since the emphasis in this book is on portable description, we will not use these operators
in our VHDL codes. Examples in Chapters 8 and 15 show how to design and derive VHDL
code for some of these operators.

6.2.5 Realization of an operator with constant operands

The operands of VHDL operators can sometimes be a constant expression, which does
not depend on the value of any input signal. Such constant operands have a significant
implication in the synthesis process.

Operator with a// constant operands If all the operands of an expression are con-
stants, we can evaluate the expression in advance and replace it with a constant value.
However, it is good practice to use constant symbols and constant expressions in VHDL
code. They make the code more descriptive. For example, consider the following code
segment:

cons tant OFFSET: integer := 8;
s ignal boundary : unsigned (8 downto 0) ;
s i g n a l overflow: std-logic ;

overflow <= '1' when boundary > (P**OFFSET-l) e l s e
. . .

'0';

REALIZATION OF VHDL OPERATORS 131

The operands of operators ** and - are constants, and the 2**OFFSET-I expression can be
replaced by a constant, 255. Although we can use 255 in VHDL code, it is less clear about
how the value is obtained. In a large, complex VHDL program that involves many constant
values, keeping track of the meaning of all constants becomes difficult. It is advisable to
use constant symbols and constant expressions.

During synthesis, software can easily detect constant expressions and replace them with
constants during preprocessing (in the elaboration phase of VHDL code). Since no physical
hardware will be inferred from constant expressions, we can use them freely in VHDL code.

Operator with partial constant operands Most VHDL operators have two operands.
Sometimes one of the operands is a constant, as in count+l, Instead of using a full-fledged
operator implementation, synthesis software can “propagate” and “embed” the constant
value into the circuit implementation. From a synthesis point of view, a constant operand
actually decreases the number of inputs of the circuit by half and thus can significantly
reduce the circuit complexity. For example, if a and b are two 8-bit signals and op is a
VHDL operator, implementing the a op b expression requires a combination circuit with
16 inputs. On the other hand, if one operand is a constant, say “0001001”, implementing
the a op “00010001” expression only requires a combination circuit with eight inputs.

The following three examples further depict the difference between a full-fledged circuit
and the simplified implementation. The first example is of a rotation operator. Assume that
x and y are 8-bit signals and consider the following rotation operation:

y <= r o t a t e - r i g h t (x , 3) ;

Since the shifting amount is a constant of 3, no actual shifting circuit is needed. This
operation can be implemented by properly connecting the input signals to the output signals,
which requires no logic at all. It is the same as

y <= x (2 downto 0) & x (7 downto 3) ;

The second example is of an equality operator. Let us consider a 4-bit equality comparator
with inputs of ~ 3 2 2 ~ 1 ~ 0 and ~ 3 ~ 2 ~ 1 ~ 0 . The logic expression of this operation is

(z 3 @ 93)’ * (.2 @ 92)’ * bl@ Yd’ * (20 a3 YO)’

If one operand is a constant, say, y3y2ylyo = 0000, the expression can be simplified to

The comparator is reduced to a 4-input nor gate. Thus, there is a significant difference
between a full-fledged comparator and a reduced comparator.

The last example is of an addition operator. A frequently used operation in VHDL is
incrementing: adding 1 to a signal, as in count+l. A minimal-area implementation of the
addition operator is done by cascading 1-bit full adders. On the other hand, a minimal-area
incrementor can be implemented by half adders, whose size is about one half that of full
adders. Thus, the circuit area of an incrementor is only about one half that of a regular
addition operator.

6.2.6 An example implementation

It will be helpful to have a comprehensive table that lists the areas and delays of synthe-
sizable operators. However, because of the complexity of the synthesis process and device

132 SYNTHESIS OF VHDL CODE

Table 6.2 Circuit area and delay of some commonly used VHDL operators

Width VHDL operator

8 8 22 25 68 26 27 33 51 118 21
16 16 44 52 102 51 55 73 101 265 42
32 32 85 105 211 102 113 153 203 437 85
64 64 171 212 398 204 227 313 405 755 171

Delay (ns)

8 0.1 0.4 4.0 1.9 1.0 2.4 1.5 4.2 3.2 0.3
16 0.1 0.4 8.6 3.7 1.7 5.5 3.3 8.2 5.5 0.3
32 0.1 0.4 17.6 6.7 1.8 11.6 7.5 16.2 11.1 0.3
64 0.1 0.4 35.7 14.3 2.2 24.0 15.7 32.2 22.9 0.3

technology, a small variation in VHDL code, synthesis algorithm, or device parameters
will lead to different results. Table 6.2 shows one synthesis result for several representative
operators of different input widths in a 0.55-micron CMOS standard-cell technology. The
subscripts a and d indicates that the circuit is optimized for area and for delay respectively.

The unit of area is a gate count, which is the equivalent number of 2-input nand gates used
to implement the circuit, and the unit of propagation delay is the nanosecond (ns). We need
to be cautious about the data in the table. The data is valid only for a particular version of a
particular software on a particular device technology and should not be overly interpreted
or analyzed. However, this data does show a general trend and provide a rough idea about
the relative complexity of different operators. The information for a 2-to-1 multiplexer,
which is the basic component for routing, is also included in the table for reference.

There are several important observations to be made from the table. First, as we expect,
the area and propagation delay vary significantly among the different operators. For exam-
ple, the area of a 32-bit fast addition operator is more than 10 times larger than that of a
32-bit nand operator, and the propagation delay of the adder is more than 100 times longer
than that of the nand operator.

The second observation is about the trade-off between area and delay. In digital system
design, it is generally not possible to find an optimal implementation, which has both min-
imal area and minimal delay. We normally have to invest more resources (a larger area) for
better performance (less delay). Except for the trivial implementation of logical operators,
other operators have multiple implementations with different area-delay characteristics.
Table 6.2 shows the area and delay characteristics of two implementations, in which one is
optimized for a smaller area and the other is optimized for less delay.

The third observation is about scaling, the impact of increasing the size of the input of
an operator (e.g., from 8 bits to 16 bits to 32 bits). The growth rates of area and delay are
not always linear (i.e., O(n)). In general, the growth rate of delay is on the order of O(1),
O(log, n) or O(n), while the growth rate of area is between the orders O(n) and O(n2).
Since the commercial synthesis software normally does not reveal its internal algorithms,
the growth rate observation is true only for this particular software and device. Chapter 15
provides an in-depth discussion of the design of some operators.

REALIZATION OF VHDL DATA TYPES 133

oe Y

0 Z

1 a-in

Figure 6.1 Tri-state buffer.

6.3 REALIZATION OF VHDL DATA TYPES

6.3.1 Use of the std-logic data type

VHDL supports a rich set of data types. During synthesis, these data types must be mapped
into binary representations so that they can be realized in a physical circuit. The VHDL
standard itself does not define the mapping mechanism, and thus the mapping is left for
synthesis software. To have better control of the final implementation, we limit our use of
data types primarily to the s td- logic data type and its derivatives, the std-logic-vector,
signed and unsigned data types. The only exception is the user-defined enumeration data
type, which is used for the description of a finite state machine and is discussed in Chapter 9.

Recall that there are nine possible values in the s td- logic data type. Among them, ’ 0 ’
and ’ 1 ’ are interpreted as logic 0 and logic 1 and are used in regular synthesis. ’ L ’ and ’ H ’
are interpreted as weak 0 and weak 1, as in wired logic. Since modem device technologies
no longer use this kind of circuitry, the two values should not be used. ’U’, ’X’ and
’W’ are meaningful only in modeling and simulation, and they cannot be synthesized.
The two remaining values, ’ 2 ’ and ’ - ’ , which represent high impedance and “don’t-
care” respectively, have some impact on synthesis. Their use is discussed in the following
subsections.

6.3.2 Use and realization of the ’ Z value

The ’2” value means high impedance or an open circuit. It is not a value in Boolean
algebra but a special electrical property exhibited in a physical circuit. Only a special kind
of component, known as a tri-state buffer, can have an output of this value. The symbol
and function table of a tri-state buffer are shown in Figure 6.1. When the oe (for “output
enable”) signal is ’ 1 ’ , the buffer acts as a short circuit and the input is passed to output.
On the other hand, when the oe signal is 0 ’ , the y output appears to be an open circuit.

VHDL description of a frl-state buffer High impedance cannot be handled by regular
logic and can exist only in the output of a tri-state buffer. The VHDL description of the
tri-state buffer of Figure 6.1 is

y <= a - i n when oe=’l’ e l s e
’ 2 ’ ;

We cannot use a value of 2 ’ as an input or manipulate it as a logic value. For example,
the following statements cannot be realized and are meaningless in synthesis:

f <= ’ Z ’ and a ;
y <= d a t a - a when i n -bus=’Z’ e l s e

d a t a - b ;

134 SYNTHESIS OF VHDL CODE

qp 0 1

Y

sel

00

(a) Conhing diagram (b) Better diagram

Figure 6.2 Use of Z ' as an output value.

Since a hi-state buffer is not an ordinary logic value, it is a good idea to code it in a
separate statement. For example, consider the following VHDL description:

with sel s e l e c t
y <= 'Z' when 110011,

' 1 ' when I ' O 1 I 11" ,
'0' when o t h e r s ;

Although the code is correct, direct transformation to a conceptual diagram, as shown in
Figure 6.2(a), cannot be synthesized. To clarify the intended structure, the code should be
modified as

with s e l s e l e c t
tmp <= '1' when 1101"1111111,

'0' when o t h e r s ;
y <= tmp when sel/="OO1a e l s e

'2';

Following the description, we can easily derive the intended block diagram, as shown in
Figure 6.2(b).

The major application of a hi-state buffer is to implement a bidirectional VO port to save
the pin count and to form a bus.

VHDL description of a bidirectional i/O port As a silicon device packs more cir-
cuitry into a chip, the number of VO signals increases accordingly. A bidirectional VO pin
can be used as either an input or an output and thus makes more efficient use of an VO pin.
Most P G A and memory devices utilize bidirectional U0 pins.

The schematic of a simple circuit with bidirectional VO port, b i , is shown in Figure 6.3.
The d i r signal controls the direction of the VO port. When it is 'O', the port is used as an
input port. The hi-state buffer is in a high-impedance state, and thus the sig-out signal is
blocked. The external signal connected to the b i port is routed to the sig-in signal. When
the d i r signal is 'l', the port is used as an output port and the sig-out signal is connected
to an external circuit. Note that the sig-out signal is implicitly routed back to the sig-in
signal when the d i r signal is ' 1'. If this causes a problem, we can add an additional hi-state
buffer to break the return path, as shown in Figure 6.4. Since the control signals of hi-state
buffers are connected to a complementary enable signal, only one tri-state buffer is enabled
at a time.

REALIZATION OF VHDL DATA TYPES 135

-
~ -

sig-out rL
----*

dir -1

e, - bi

V

h I

sig-in

Figure 6.3 Single-buffer bidirectional U0 port.

Figure 6.4 Dual-buffer bidirectional I/O port.

The VHDL description for a bidirectional port is straightforward. We first specify the
mode as inout in port declaration and then describe the hi-state buffer accordingly. The
VHDL segment for the single-buffer diagram of Figure 6.3 is

e n t i t y bi-demo i s
port (

bi : inout std-logic ;
. . .

begin
sig-out <= output-expression;

some-signal <= expression-with-sig-in;

bi <= sig-out when dir=’l’ e l s e ’Z’;
sig-in <= bi;

. . .

. . .

. . .
To accommodate the dual-buffer configuration of Figure 6.4, we just need to modify the
last statement to reflect the change:

sig-in <= bi when dir=’O’ e l s e 8 Z ’ ;

Tri-state buffer-based bus Another application of the tri-state buffer is to form a
bus. The diagram of a simple hi-state buffer-based bus (or simply hi-state bus) is shown in
Figure 6.5, in which four sources are connected to the bus. The signal srcselect specifies

136 SYNTHESIS OF VHDL CODE

data-bus

Figure 6.5 Tri-state bus.

which input source is to be placed on the bus. It is connected to a decoding circuit that
generates four non-overlapping control signals, oe (01, oe (1) , oe (2) and oe (3). Only
one can be activated at a time, and the input connected to the activated buffer is placed on
the bus. The VHDL code for this circuit is

-- b i n a r y d e c o d e r
with s r c - s e l e c t s e l e c t

oe <= l t O O O 1 ” when 1100“ ,
“0010” when
1 1 0 1 0 0 ~ ~ when lllOtl,
~110008~ when o t h e r s ; - “ I I ‘I

- t r i - s t a t e b u f f e r s
y0 <= i 0 when oe(O)=’l’ e l s e ’Z’;
y l <= i l when o e (l) = ’ l ’ e l s e ’Z’;
y2 <= i 2 when o e (2) = ’ 1 ’ e l s e ’Z’;
y 3 <= i 3 when o e (3) = ’ 1 ’ e l s e ’Z’;
d a t a - b u s <= y 0 ;
d a t a - b u s <= y l ;
d a t a - b u s <= y 2 ;
d a t a - b u s <= y 3 ;

Despite its simple appearance, the internal tri-state buses presents a serious problem in
the development flow. Since the theoretical models of most EDA algorithms are based on
Boolean algebra, which is defined according to two logic values, the software tools cannot
handle the high-impedance state. The tri-state bus thus imposes a problem in optimization,
timing analysis, verification and testing. Furthermore, internal tri-state bus is technology
dependent, and thus the design is less portable.

REALIZATION OF VHDL DATA TYPES 137

Table 6.3 Function tables of a 3-to-2 priority encoder
Inpu't Output Input Output
req code req code
1 0 0 10 1 -- 10
1 0 1 10 0 1 - 01
1 1 0 10 0 0 1 00
1 1 1 10 0 0 0 00
0 1 0 01
0 1 1 01
0 0 1 00
0 0 0 00

Table 6.4 Don't-care used as an output value

input output
a b f
0 0 0
0 1 1
1 0 1
1 1 -

A tri-state bus essentially performs multiplexing. For example, the previous design can
be replaced by a 4-to-1 multiplexer:

with src-select s e l e c t
data-bus <= i0 when "OO",

i l when "Ol",
i 2 when "IO",
i3 when o t h e r s ; - " 1 1 'I

This scheme is more robust and portable and thus is the preferred choice. The major
application of the tri-state bus is to construct the external back-plan bus of a printed circuit
board. An add-on card can easily be added to or removed from the bus without affecting
subsystems residing on other cards.

6.3.3 Use of the - ' value

Don't-care is not a valid logic value in Boolean algebra but is used to facilitate the design
process. Don't-care can be used as an input value to make a function table clear and compact.
For example, the original function table of a 3-input priority encoder is shown on the left of
Table 6.3. When req(2) is 'l', the output should be "10" regardless of the values of other
requests. Instead of using four rows, we can use 1-- to indicate the condition. The revised
table, as on the right of Table 6.3, is more compact and more descriptive.

When used as an output value, don't-care indicates that the exact value is not important.
This happens when some of the input combinations are not used. During the synthesis
process, we can assign a value that helps to reduce the circuit complexity. A simple example
is shown in Table 6.4, in which the output value for the input pattern "1 1" is don't-care. If
don't-care is assigned to '0' during synthesis, f becomes a' b + a b'. On the other hand,
when it is assigned to ' 1'' f can be simplified to a + b, which requires much less hardware.

138 SYNTHESIS OF VHDL CODE

According to the definition of the std-logic data type, the '-' value is designated
as "don't-care." However, VHDL treats '-' as an independent symbolic value of the
std-logic data type rather than "0 or 1." This definition is somewhat different from our
conventional use and may lead to unexpected behaviors and subtle mistakes. The following
paragraphs discuss the use of this value.

Use of ' - ' as an input value Let us first examine the issues related to using - as
an input value. Consider the priority function of Table 6.3. We may be tempted to code the
circuit as follows:

y <= "10" when req="l--" e l s e
a O 1 l l when req="01-" e l s e
"00" when req="001" e l s e
00 ;

The code is syntactically correct. However, in a physical circuit, an input signal can only
assume a value of '0' or '1' but never '-', and thus the req=lll--" and req="Ol-"
expressions will always be false. If the value of the req signal is "Ill", none of the
Boolean expression is true and aOO" will be assigned to y accordingly. To correct the
problem, we have to eliminate the comparison of ' - ' in Boolean expressions:

y <= "10" when req(2)='1' e l s e
"01" when req(2 downto l)=tlOlll e l s e
"00" when req(2 downto O>=ll0Olt1 e l s e
00 ;

The code is just for demonstration purposes and is not very efficient. Better code for priority
encoding circuit was illustrated in Section 4.3.1.

In the IEEE numeric-std package, there is a function, std-matcho, which performs
don't-care comparisons according to the traditional interpretation. The function compares
two inputs of std-logic-vector data type and interprets '- ' as a don't-care in a conven-
tional sense. The previous code can be written as

9 . .

use ieee . numeric-std. a l l ;

y <= l l l O t l when std-match(req,"l--" 1 e l s e
"01" when std-match(req, l a O l - I 1) e l s e
110011 when std-match(req,"OOl") e l s e
I1 0 0 I1 .

. . .

I

Our discussion of '-' is also applied to the choice expression in a selected signal
assignment statement and case statement. For example, the following code seems to be the
direct implementation of the compact function table of Table 6.3:

with req s e l e c t
y <= t1101~ when I I 1 - - 1 1

" O 1 l t when l t O 1 - l t ,
a O O t l when l s O O 1 l l ,
l f O O 1 a when o t h e r s ;

The code is syntactically correct. Again, since a physical input signal can never assume a
value of '-', the choices 111--" and "01-" will never occur. If the value of the req signal
is 1 I I I t , there is no match and 'I 00" will be assigned to y. There is no easy fix in this case.
We must explicitly specify choice expressions in terms of '0' and ' l', as in the original left
function table of Table 6.3. The correct VHDL code is

VHDL SYNTHESIS FLOW 139

Use of - ’ as an output value Don’t-care can also be used as an output value and
assigned to a signal. For example, the function table of Table 6.3 can easily be translated
to VHDL code:

sel <= a & b;
with sel s e l e c t

y <= ’0’ when t s O O 1 l ,
’1’ when 1 1 0 1 1 1 ,
’1’ when l l l O t l ,
’ - ’ when others;

The code is syntactically correct. According to the VHDL definition, ’ - ’ , not “0 or 1 ,” will
be assigned to y if sel is I’ I1 I(. Since a real ’ - ’ does not exist in a physical implementation,
this symbol cannot be synthesized. During synthesis, some software flags an error, and
others treat it as a conventional don’t-care and perform optimization accordingly.

6.4 VHDL SYNTHESIS FLOW

Synthesizing VHDL code is the process of realizing a VHDL description using the primitive
logic cells from the target device’s library. It is a complex process. To make it manageable,
we normally divide VHDL synthesis into steps, including high-level synthesis, RT-level
synthesis, gate-level synthesis (commonly known as logic synthesis) and cell-level synthesis
(commonly known as technology mapping). High-level synthesis transforms an algorithm
into an architecture consisting of a data path and control path. It is substantially different
from the other three steps and is done by specialized software tools. It is reviewed in
Section 12.7.

RT-level synthesis, logic synthesis and technology mapping generate structural netlists
utilizing generic RT-level components, generic gate-level components and device-dependent
cells respectively. The detailed flow is shown in Figure 6.6. Basically, the entire circuit is
transformed and optimized level by level, from an RT-level netlist to a gate-level netlist and
then to a cell-level netlist, as shown in the left column of the flowchart. Some RT-level com-
ponents, such as adder and comparator, can be quite complex. They are normally handled
by a module generator, as shown in the right column of the flowchart. Our current discus-
sion is limited to the synthesis flow of combinational circuits. It can easily be expanded to
include sequential circuits, which are discussed in Chapter 8.

6.4.1 RT-level synthesis

RT-level synthesis transforms a behavioral VHDL description into a circuit constructed by
components from a generic RT-level library. The term generic implies that the components
are common to all technologies and thus the library is not technology dependent. The
components can be classified into three categories: functional units, routing units and
storage units. Functional units are used to implement the logic, relational and arithmetic
operators encountered in VHDL code. Routing units are various multiplexers used to
construct the routing structure of a VHDL description, as discussed in Chapters 4 and 5 .

140 SYNTHESIS OF VHDL CODE

module generator

RT-level
code

4

4

RT-level synthesis and
optimization

RT-level
netlist

4

......................................

I 3

cell- level
netlist

Figure 6.6 Synthesis flow.

VHDL SYNTHESIS FLOW 141

Storage units are registers and latches, which are used only in sequential circuits and are
discussed in Chapter 8.

RT-level synthesis includes the derivation and optimization of an RT-level netlist. During
the process, VHDL statements are converted into corresponding structural implementation,
somewhat similar to the derivation of conceptual diagrams discussed in Chapters 4 and 5 .
Some optimization techniques, such as operator sharing, common code elimination and
constant propagation, can be applied to reduce circuit complexity or to enhance perfor-
mance. Unlike gate- and cell-level synthesis, optimization at the RT level is performed in
an ad hoc way and its scope is very limited. Good design can drastically alter the RT-level
structure and help software to derive a more effective implementation.

6.4.2 Module generator

After the RT-level synthesis, the initial description is converted to a netlist of generic RT-level
components. These components have to be transformed into lower-level implementation
for further processing. Some RT-level components, such as logical operators and multi-
plexers, are simple and can be mapped directly into gate-level implementation. They are
known as random logic since they show less regularity and can be optimized later in logic
synthesis. The other components are quite complex and need special software, known as
a module generator, to derive the gate-level implementation. These components include
adder, subtractor, incrementor, decrementor, comparator and, if supported, shifter and mul-
tiplier as well. They usually show some kind of repetitive structure and sometimes are
known as regular logic. Regular logic is usually designed in advance. A module generator
can produce modules in different levels of detail:

0 Gate-level behavioral description.
0 Resynthesized gate-level netlist.
0 Resynthesized cell-level netlist.

A gate-level behavioral description can be thought of as VHDL code that uses only
simple signal assignment and logical operators, which can easily be mapped to a gate-level
netlist. The description is general and independent of underlying device technology. The
description will be flattened and combined with the random logic to form a single gate-level
netlist. The merged netlist will be synthesized together later in logic synthesis. Chapter 15
discusses the generation of some frequently used components.

Because of the regular and repetitive nature of these components, it is possible to further
explore their properties and manually derive and synthesize the netlist at the gate level or
even at the cell level. Manual design can explore this regularity and derive a more efficient
implementation. The resulting circuit is more efficient than a circuit obtained from logic
synthesis. When a presynthesized gate- or cell-level netlist is used, it will not be flattened
and merged with the random logic. The random logic will be independently processed
through logic synthesis and even technology mapping. The netlist of random logic and the
netlists of regular components will be merged after these processes. The right column in
the synthesis flow of Figure 6.6 shows the various possibilities for module generation.

There are two advantages to the non-flattened approach. First, it can utilize predesigned,
highly optimized modules. Second, since these modules are extracted from the original
circuit, the remaining part is smaller and thus is easier to process and optimize. On the
other hand, the non-flattened modules may isolate the random logic and thus reduce the
chance for further optimization. For example, the adder of Figure 6.7 separates the random
logic circuits into two parts and forces them to be processed independently. It may introduce

142 SYNTHESIS OFVHDL CODE

Figure 6.7 Random logic with a regular component.

a b c d e

(1

I C -

a

1
Y

b c d e

(a) Two-level implementation (b) Multilevel implementation

Figure 6.8 Two-level versus multilevel implementation.

more optimization opportunities if we flatten the adder, merge it with the four random logic
circuits, and then process and optimize them together. There is no clear-cut rule as to which
approach is more effective. Some synthesis software allows users to specify the desired
option.

6.4.3 Logic synthesis

Logic synthesis is the process of generating a structural view using an optimal number
of generic primitive gate-level components, such as a not gate, and gate, nand gate, or
gate and nor gate. Again, the term generic means that the components are not tied to a
particular device technology and there is no detailed information about the components’
size or propagation delay. At this level, a circuit can be expressed by a Boolean function, and
these generic components are essentially the operators of Boolean algebra. Logic synthesis
can be divided into two-level synthesis and multilevel synthesis.

The most commonly used two-level form is the sum-of-products form, in which the
first level of logic corresponds to and gates and the second level to or gates. An example
is shown in Figure 6.8(a). Other two-level forms can easily be derived from the sum-of-
products form. lbo-level synthesis is to derive an optimal sum-of-products form for a
Boolean function. The goal of optimization is to reduce the number of product terms (i.e..
the number of and gates) and the number of input literals (i.e., the total fan-ins of and gates).
The well-known Karnaugh map technique is a method to manually obtain the optimal two-

VHDL SYNTHESIS FLOW 143

level implementation for a circuit with up to four or five inputs. A more realistic circuit
may contain dozens or even several hundred inputs and cannot be optimized manually.
Obtaining the optimal two-level circuit is actually an intractable problem and thus is not
practical. However, this process is well understood, and many efficient algorithms to obtain
good, suboptimal circuits have been developed.

Because of the large number of fan-ins for the and and or gates, the two-level sum-
of-products form can only be implemented by using a special ASIC structure, known as
programmable logic array (PLA), and, with some modification, by using programmable
array logic (PAL)-based CPLD devices. However, the two-level form is a formal way of
expressing Boolean functions and is frequently used as a basis for processing and manipulat-
ing logic expressions. Two-level synthesis can reduce the information needed to represent
a function and theoretically can serve as a staring point of multilevel processing.

Multilevel representation, as its name indicates, expresses a Boolean function by using
multiple levels of gates. Its form is far less stringent than that of the two-level form and
provides several degrees of freedom, leading to better efficiency and more flexibility. The
implementation may be exploited by optimizing area, by optimizing delay, or even by
obtaining an optimal area-delay trade-off point. An example of multilevel implementation
of the previous two-level implementation is shown in Figure 6.8(b). It reduces both the
number of gates and the number of fan-ins. Modem device technologies are based on
small cells whose fan-in is limited to a small number. Thus, multilevel synthesis is more
appropriate.

Processing and optimizing a multilevel logic are more difficult. Optimization is normally
based on heuristic methods, which exploit various Boolean or algebraic transformations or
search and replace circuit patterns according to a rule database. Because of the flexibility
of multilevel representation, synthesis results vary significantly, and a minor modification
in initial description may lead to a totally different implementation.

6.4.4 Technology mapping

Logic synthesis generates an optimized netlist that utilizes generic components. Technology
mapping is the process of transforming the netlist using components from the target device’s
library. These components are commonly referred to as cells, and the technology library is
normally provided by a semiconductor vendor who manufactured (as in FPGA technology)
or will manufacture (as in ASIC technology) the device. Whereas a generic component is
defined by its function, a cell is further characterized by a set of physical parameters, such
as area, delay, and input and output capacitance load. In the case of ASIC technology, each
cell is associated with the physical layout or prediffused patterns.

Although technology mapping can be done by simple translation between generic com-
ponents and logic cells, the resulting circuit is not very efficient since the translation does
not exploit the functionalities, areas and delays of the cells. Obtaining optimal mapping is a
very difficult process, which involves intractable problems. Again, heuristic and rule-based
algorithms are used to find suboptimal solutions. The following subsections use two simple
examples to illustrate the technology mapping process of a hypothetical standard-cell ASIC
library and a 5-input look-up table (LUT)-based FPGA.

Standard-cell technology A library from standard-cell technology normally consists
of several dozen to several hundred cells, including combinational, sequential and interface
cells. Combinational cells consist of simple gates, such as and, or, nand, nor, xor etc.,
and sometimes slightly complex circuits, such as 1-bit full adder, 1-bit 2-to-1 multiplexer

144 SYNTHESIS OF VHDL CODE

cell name
(cost) symbol nand-not representation

not (2)

nand2 (3)

nand3 (4)

nand4 (5)

aoi (4)

xor (4)

n

-D-

D-

Figure 6.9 Simple hypothetical ASIC cell library.

etc. A simple hypothetical technology library with seven cells is shown in Figure 6.9. The
columns are the name of the cell, its relative area (cost), its symbol and its normal form.
The n o w 1 fom, which represents a cell using 2-input nand gates and inverters, is used to
facilitate the mapping process.

The cells of a technology library are optimized and tuned for a particular technology.
They are manually designed from scratch at the transistor level rather than being based on
simple logic gates. For example, if the aoi cell is implemented using the simpler nand2
and not cells, its area is 11, which is about four times the area of the nand2 cell. However,
if it is implemented directly at the transistor level, its area is 5 , which is about twice the area
of the nand2 cell. This explains why there are many different primitive cells in a typical
standard-cell library. Furthermore, since fine adjustments can be made at the transistor
level, multiple cells of different area-delay trade-offs may exist for the same logic function.

The mapping can best be illustrated by the example shown in Figure 6.10. The initial
mapping in Figure 6.10(a) is a trivial one-to-one gate-to-cell translation and its area is 31.
The better one, in Figure 6.10(b), is optimized and its area is reduced to 17. Although

VHDL SYNTHESIS FLOW 145

-; c i I....’ . I

...............
I

...............

(a) Initial mapping

...................

nand3

.......................................
I nand3

(b) Better mapping

Figure 6.10 Standard-cell technology mapping example.

146 SYNTHESIS OF VHDL CODE

h--L) I
I

: .. ;

(a) Initial mapping

Y

: ...

(b) Better mapping

Figure 6.11 LUT-based FPGA technology mapping example.

this is a simple example, it demonstrates the importance of good mapping as well as the
complexity of the technology mapping process.

LUT-based FPGA technology Because an FPGA device is prefabricated in advance,
its technology library normally consists of only a single cell. This cell can, however, be
"programmed" or configured to perform different logic functions. The most commonly
used construction is based on a small look-up table (LUT). We can program a LUT by
specifying its contents, as in a truth table description of a logic function. If a LUT can
accommodate 2n rows (i.e., n inputs), it can be used to realize any combinational function
with n or fewer inputs. A typical FPGA cell consists of a 4-, 5-, or 6-input LUT and a
D-type flip-flop.

An example of technology mapping using 5-input LUT cells is shown in Figure 6.11.
Since a LUT cell concerns only the number of inputs, the netlist does not need to be
converted into normal form. The mapping in Figure 6.1 l(a) is a trivial one-to-one gate-
to-cell translation, and it requires four LUT cells. The mapping in Figure 6.1 l(b) is more
efficient and reduces the number to only two LUT cells.

Precaution with FPGA technology From technology mapping's point of view, one
difference between ASIC and FPGA technologies is the size of the cells. The cell size
of an ASIC device is very small, and thus any minor adjustment will be reflected in the
implementation. For example, the previous standard-cell library has 2-, 3- and 4-input nand
cells. If we can improve our design by eliminating one input of a product term in the logic
expression, we can use a smaller nand cell and reduce the circuit area by a small amount.

On the other hand, the cell size of a FPGA device is relatively large. A 5-input LUT-based
cell can implement any 1-, 2-, 3-, 4- or 5-input logic function, regardless of the complexity
of the function. A wide range of functions can be implemented by this cell, and all of them
are considered to have the same area under the FPGA technology. For example, both the
a . b and a @ b @ c @ d @ e expressions can be mapped into a single LUT cell. Although
the internal utilizations of the cells are very different, the two expressions are considered to
have the same area. This may cause an unexpected result when we synthesize a circuit using
FPGA technology. This phenomenon will be further amplified if we take into consideration
the built-in flip-flop within a logic cell. For example, we can construct a 1-bit counter and
its area remains a single cell.

VHDL SYNTHESIS FLOW 147

4-input LUT

: ~_..
0

0

0

(a) 4-input LUT mapping of an odd-parity circuit

logic cells

I

4 --

3 --

2 --

1 --

I I I I I I
I I n

2 4 6 8 10 12

(b) Plot of number of logic cells versus input size

Figure 6.12 Discontinuity of LUT cell-based implementation.

The PGA-based implementation may also exhibit a “discontinuity” phenomenon. For
example, let us use a 4-input LUT logic cell to implement an odd-parity circuit, which has
an expression of

A simple cascading chain implementation and mapping is shown in Figure 6.12(a). The
number of logic cells needed for different input size (i.e., n) is plotted in Figure 6.12(b). It
looks like a staircase and exhibits discontinuities (i.e., a sudden change) at certain points.
For example, if we increase the input size from 6 to 7, there is no change in the number of

a1 @ a2 @ a3 @ * * @a,

148 SYNTHESIS OF VHDL CODE

logic cells, and thus the area remains unchanged. But if we change the input size from 7
to 8, the number of logic cells increases from 2 to 3, and thus the area increases 50%.

For a larger, more complex circuit, we can expect that the cell utilization and discontinuity
will average out and the result is more like that of an ASIC device. Nevertheless, occasional
fluctuations and randomness are unavoidable, and targeting an FPGA device still introduces
a new dimension of complication in synthesis. Although the discussion in the remainder
of the book can be applied equally to both ASIC and FPGA devices, we target the design
using ASIC devices for the area and performance data.

6.4.5 Effective use of synthesis software

Despite its fundamental limitation, synthesis software is still a powerful and necessary tool,
which can automate many design tasks and perform certain tedious and repetitive compu-
tations. A good designer should understand the capabilities and limitation of software, and
know what this tool can and cannot do as well as when to compromise.

VHDL description of logical operators In general, synthesis software is very effec-
tive in performing logic synthesis and technology mapping for a small to moderate-sized
circuit whose complexity is around 5000 to 50,000 equivalent gates. Although optimization
involves intractable problems, these problems have been studied thoroughly and many good
heuristics and searching procedures have been developed. Furthermore, although a circuit
is processed at the gate or cell level, even a very simple design consists of hundreds or
thousands of components. It is not practical to manipulate the design manually at this level.

VHDL logical operators can be mapped directly to gate-level components. Their imple-
mentations are simple and straightforward. Since synthesis is very effective at this level,
we need not worry about the sharing and optimization of logical operators in a VHDL
description.

VHDL description of arithmetic and relational operators Optimization at the
RT level involves complex arithmetic and relational operators and routing structure. It
is not well developed and is frequently done on an ad hoc basis. Human intervention
is required, and we have to specify explicitly the desired design in a VHDL description.
Simple modifications on code frequently can improve circuit efficiency significantly.

There is no comprehensive procedure or algorithm to detect sharing and to perform
optimization for arithmetic and relational operators. It frequently depends on the designer’s
insight and knowledge of a circuit. VHDL is a good vehicle to explore design at this level.
Sections 7.2 and 7.3 provide a comprehensive array of examples for this topic.

VHDL description of layout and routing structure Routing structure indicates
how “data” propagate through various parts of the system, from input ports to output ports.
Although a VHDL program cannot explicitly specify the placement of components or the
layout of a design, it implicitly describes the routing structure and, to some degree, the shape
of the implementation. Recall that each VHDL statement can be considered as a circuit part,
and a VHDL program implicitly connects these parts. Although all parts of a combinational
circuit operate concurrently, some outputs of these parts are not valid initially. The valid
value can be thought of as data that propagates from one part to another and eventually
to the circuit output. The data flow forms a routing structure, which, in turn, implicitly
determines the shape or layout of the physical circuit.

Regardless of the shape of the initial VHDL description, the placement and routing
process will eventually implement the circuit on a two-dimensional silicon chip. If the

TIMING CONSIDERATIONS 149

a
b

C

d

e

f

9

h Y

(a) Cascading-chain structure

Y

(b) Tree structure

Figure 6.13 Routing structures of an odd-parity circuit.

shape of the initial description resembles the shape of the chip, the description can help the
placement and routing process and make the final implementation smaller and faster. Two
routing structures of a simple example of an odd-parity circuit are shown in Figure 6.13.
The one in Figure 6.13(a) is a cascading-chain structure described by the statement

y<=(((((((a xor b) xor c) xor d) xor e) xor f) xor g) xor h);

and the one in Figure 6.13(b) has a tree structure described by the statement

y<=((a xor b) x o r (c xor d)) xor ((e xor f) xor (g xor h));

Both structures use the same number of xor gates, but the propagation delay is much smaller
in the tree structure.

Although synthesis software can recognize a few specific patterns and rearrange the
routing structure on a local basis, it cannot make any major global change. Good VHDL
coding can outline the basic “skeleton” of the implementation and provide a framework
for synthesis. It has a greater impact than the local optimization performed by synthesis
software. The coding technique is discussed in detail in Section 7.4 .

6.5 TIMING CONSIDERATIONS

A digital circuit cannot respond instantaneously, and the output is actually a function of
time. The most important time-domain characteristic is the propagation delay, which is
the time required for the circuit to generate a valid, stabilized output value after an input
change. It is one of the major design criteria for a circuit.

Another time-domain phenomenon, known as a hazard, is the possible occurrence of
unwanted fluctuations of an output signal before it is stabilized. Although a hazard is a

150 SYNTHESIS OF VHDL CODE

transient response, it may cause circuit malfunction in a poorly conceived design. The
following subsections examine the propagation delay and hazard in more detail and discuss
several timing issues that have an impact on synthesis.

6.5.1 Propagation delay

It takes a digital circuit a certain amount of time to reach a valid stable output response after
an input change. In digital design, we treat this time as the delay required to propagate a
signal from the input port to the output port, and call it propagation delay or simply delay.
A digital system normally has multiple input and output ports, and each input-output path
may exhibit a different delay. We consider the worst-case scenario and use the largest
input-output delay as the system’s propagation delay.

The propagation delay reflects how fast a system can operate and is usually considered
as the performance or the speed of the system. Combined with the circuit size (area), they
are the two most important design criteria of a digital system.

To compute the delay of a system, we first determine the delays of individual components
and identify all possible paths between input and output ports. We then calculate the delay
of each path by summing up the individual component delays of the path and eventually
determine the system delay.

The system delay calculation clearly depends on the information of its underlying com-
ponents. The best estimation can be obtained at the cell level since the netlist is final, and
the accurate physical and electrical characteristics of cells are provided. The least accu-
rate estimation is at the RT level since the components must be further transformed and
optimized.

Propagation delay at the cell level To determine the exact time-domain behavior
of a cell, we have to examine and analyze it at the transistor level, which is modeled
by transistors, resistors and capacitors. The delay is due mainly to parasitic capacitance,
which occurs at two overlapping layers and thus exists everywhere. When a transistor
changes state, these capacitors have to be charged or discharged and thus introduce a delay.
Analyzing a cell at this level is extremely complex and can be done only at a small scale.
The analysis provides basic data for cell-level modeling.

To manage the complexity, timing analysis at the cell level has to rely on a much simpler
model. One commonly used approach is a simplified linear model, in which all parasitic
capacitance is lumped as a single capacitor and only the first-order effect is considered. In
this model, the delay of a cell is expressed as

delay = dintrinsic + r * Cload
The first term in the expression, dzntrznsic, is associated with the internal circuit of the
cell. It models the time required for transistors to change state (i.e., switch on or off). The
second term is associated with the external circuits driven by the cell. The parameter Cload

is the total capacitive load driven by this cell, which includes the input capacitance of cells
connected to the output of current cell and the parasitic capacitance of the interconnect wires.
An example is shown in Figure 6.14. The load is the summation of the input capacitance
of three cells driven by the and gate (Cgl, Cg2 and Cg3) and parasitic capacitances of three
interconnect wires (Cul, C,,,Z and Cu3).

The r parameter represents the driver capability of the cell and can loosely be considered
as the output impedance of the cell. When r is small, the cell can allow more current (i.e.,
larger driver capability) and thus can charge or discharge the capacitance load in a shorter

TIMING CONSIDERATIONS 151

Figure 6.14 Delay estimation at the cell level.

period, leading to a smaller delay. At the transistor level, we can reduce the delay by using
a larger transistor to increase the driver capability.

Impact of wiring on cell-level delay estimation The accuracy of cell-level delay
estimation depends on several factors. The first factor is the accuracy of the parameters
used in delay calculation. We can obtain fairly accurate values for dint,.inszc, T , and input
capacitance from the manufacturer’s data sheet. After technology mapping, fan-out of each
cell can be obtained from the netlist, and thus the total input capacitance load can easily
be determined. The wire capacitance, on the other hand, depends on the actual length and
location of each wire. Since this information is not available at the synthesis stage, software
sometimes uses a statistical model to provide a rough estimation. Accurate information can
only be extracted after place and routing is performed. This is one reason that the system
has to be simulated and verified again after the placement and routing process.

The second factor is the accuracy of the model. The linear cell-level model is only
an approximation and ignores higher-order effects. In some circumstances, these effects
become more dominant, and more sophisticated models have to be used. For example, a
more complex distributed RC model can be used to obtain better estimation than a simple
lumped circuit. Some models for a wire between points a and b are shown in Figure 6.15(b) -

When the transistor geometry is relatively large, the wire capacitance and higher-order
effects do not contribute much to the overall delay and can safely be ignored. Accurate
timing information can be obtained in the synthesis stage. However, as the transistor
becomes smaller and submicron technology becomes available, the wiring delay gradually
becomes the dominant part and the high-order effects have more impact. This makes the
design process harder since we need to do placement and routing to obtain accurate timing
information.

In addition to the inherent errors of approximation, the fabrication process and operation
environment (such as temperature) affect the delay characteristics as well. In general, there
is no way that we can control the exact delay of a cell. A device manufacturer can only
guarantee the boundary of operation, normally in terms of the maximal propagation delay.
While VHDL incorporates the timing aspect in the language, it is primarily for modeling
purposes. For example, we can specify an and gate with a 2-ns delay as:

(4.

152 SYNTHESIS OF VHDL CODE

1 T T T
(c) n model (a) Lumped RC model (b) T model

(d) Distributed RC model

Figure 6.15 Wiring models.

- o - o critical path

Figure 6.16 Topological critical path.

f <= b and c a f t e r 2 n s ;

During synthesis, the timing part will be completely ignored since there is no technology
that can produce a gate with an exact 2 4 s delay.

System delay Once cell delays are known, we can calculate the delay of a path by
adding the individual cell delays along the path. A digital system typically has many paths
between input and output ports, and their delays are different. Since the system has to
accommodate the worst-case scenario, the system delay is defined as the longest delay. The
corresponding path is considered as the longest path and is known as the critical path.

A simple method of determining the critical path is to treat the netlist as a graph, extract
all possible paths and then determine the longest path accordingly. An example is shown in
Figure 6.16. Since the topology of the system alone determines the critical path, it is also
known as the topologically critical path.

Using the topologically critical path to determine the system delay may occasionally
overestimate the actual value because of a false path, a path along which no signal transition
can propagate. An example of a false path is shown in Figure 6.17. The topologically critical

TIMING CONSIDERATIONS 153

input output

Figure 6.17 False path.

path is the route that includes the circuit with 40- and 60-ns delays. However, in realty, the
input signal can propagate through either the top part (when the select signal is '1') or the
bottom part (when the select signal is '0') but never the topologically critical path. Since
no signal actually passes through the false paths, they should be excluded from system delay
calculation. To determine the true critical path is much harder since the analysis involves
not only the topology but also the internal logic operations.

Because of the large number of cells in a system, cell-level timing analysis is always
done by software. This feature is normally integrated into the synthesis software. Most
software uses the topological critical path to determine the system delay. Some software
allows users manually to exclude potential false paths.

Delay estimation at the RT level We can apply the same principle to analyze and
calculate the propagation delay at the RT level. The accuracy of the calculation depends on
the components used in the RT-level diagram. If an RT-level diagram consists primarily of
simple logical operators and is mainly random logic, the circuit is subjected to a significant
amount of transformation and optimization during logic synthesis and technology mapping.
Since the final circuit may not resemble the original RT-level diagram, the RT-level delay
calculation will not faithfully reflect delay in the synthesized circuit.

On the other hand, if an RT-level diagram consists of many complex operators and func-
tion blocks, these components become the dominating part of a delay calculation. Further-
more, since these components are presdesigned and optimized, their delay characteristics
will not change significantly during synthesis. Thus, the delay calculation will be much
more accurate for this type of circuit. Calculating RT-level delay allows us to identify the
critical path and thus better understand the performance of the circuit, and eventually helps
to derive an efficient design and VHDL code with the desired area-delay characteristics.
RT-level delay estimation is shown in many design examples in the subsequent chapters.

154 SYNTHESIS OF VHDL CODE

ideal implementation
(with minimal area and delay)

minimal-delay
implementation

-

Figure 6.18 Area-delay trade-off curve.

minirnal- area
implementation
minirnal- area

ideal implementation
(with minimal area and delay)

minimal-delay
implementation

-

Figure 6.18 Area-delay trade-off curve.

(a) Optimized for area @) Optimized for delay

Figure 6.19 Delay constraint implementation.

6.5.2 Synthesis with timing constraints

The circuit area and system delay are two major design criteria. In most applications, we
cannot find a design or an implementation that is optimized for both criteria. A faster
circuit normally is more complex and needs more silicon real estate, and a smaller circuit
normally has to sacrifice some performance. For the same application, there frequently
exist multiple implementations that exhibit different area-delay characteristics. A typical
area-delay curve is shown in Figure 6.18, in which each point is a possible implementation.
Of course, the trade-off can be achieved only in a limited range. We cannot reduce the area
or increase the performance indefinitely.

Multilevel logic synthesis is quite flexible, and it is possible to add additional gates to
achieve shorter delay. An example is shown in Figure 6.19. The circuit performs three xor
operations. The diagram in Figure 6.19(a) is the initial design, which is optimized for area.
The critical path is from a(0) or a(1) to ~ (3) . and the system delay is three times the
delay of an xor gate. The diagram in Figure 6.19(b) is the revised circuit. It shortens the

TIMING CONSIDERATIONS 155 ,- better RT- level design

7 original design

RT-level improvement

-
@i-+h3sis iterations I

area

Figure 6.20 Synthesis iterations and the impact of RT-level change.

critical path by adding an extra xor gate, and the system delay is reduced to twice the delay
of an xor gate.

The synthesis procedure discussed in Section 6.4 focuses on minimizing the circuit area.
A combinational system is normally part of a larger system. To meet a certain performance
goal, we sometimes have to add a specific timing constraint for synthesis. As we discussed
earlier, it is impossible to synthesize a circuit with an exact propagation delay. Instead,
the timing constraint is specified in terms of maximal allowable propagation delay. Since
the system delay depends only on the delay of the critical path, it is not wise to blindly
optimize all paths. Synthesis with a timing constraint utilizes an iterative procedure. First,
the minimal-area implementation is obtained from regular synthesis. The implementation
will be analyzed to determine the critical path and the system delay. If the delay exceeds
the constraint, extra gates will be provided to speed up the critical path. The revised
implementation will be analyzed again for the critical path (which is the second longest path
in the original implementation) and checked to see whether the new system delay is within
the constraint. The process may repeat several times until a satisfactory implementation is
found. The iteration process in an area-delay space is shown in Figure 6.20.

The previous iteration procedure is done at the gate or cell level and thus is too tedious
for human designers. However, it is possible to apply the procedure in at the RT level.
A block diagram shows the basic routing structure and the locations of complex RT-level
modules. Since the delays of the complex modules constitute the major portion of the
system delay, we can identify the paths that contain these modules, estimate the rough
delays of these paths, and determine the critical path accordingly. This kind of analysis
helps us to explore various architectural alternatives and eventually to derive a more efficient
design. Our understanding of the system and insight can lead to “global” optimization, and

156 SYNTHESIS OF VHDL CODE

it is normally much more effective than gate- or cell-level optimization done by synthesis
software. The impact of an innovative RT-level architectural change on the area-delay
space is shown in Figure 6.20.

6.5.3 Timing hazards

The propagation delay of a system is the time required to generate a valid, steady-state
output value. Timing hazards are the fluctuations occurring during the transient period. In
a digital system, many paths may lead to the same output port. Since each path’s delay is
different, signals may propagate to the output port at different times. Before the output port
produces a steady-state value, it may fluctuate several times. The fluctuations are one or
more short undesired pulses, known as glitches. We say that a circuit has timing hazards
if it can produce glitches. The following subsections discuss the two types of hazards and
how to deal with them.

Static hazards A static hazard is the condition that a circuit’s output produces a glitch
when it should remain at a steady value. It is further divided into static-1 hazard and static-0
hazard. A static-1 hazard occurs when a circuit’s output produces a ’0’ glitch. An example
is shown in Figure 6.21. The Karnaugh map of a function and its implementation are shown
in Figure 6.21(a). The corresponding Boolean function is

Assume that a and c are ’1’’ and that b changes from ’1’ to ’0’. Regular analysis, which is
based on Boolean algebra and deals with steady-state value, predicts that the output should
be ’1’ all the time. However, if we consider transient behavior, there are two converging
paths with different delays. Assume that the delay of inverter is Tnot and the delay of the
and gate and or gate is Tand and the wire delays are 0. The timing diagram and the sequence
of events are shown in Figure 6.21(b). An unwanted ’0’ glitch of width Tnot occurs at the
output because the signal in the bottom path propagates faster than that in the top path.

Similarly, a static-0 hazard is the condition that a circuit’s output produces a ’ 1 ’ glitch
when Boolean algebra analysis predicts that the output should be a steady ’0’.

Dynamic hazards A dynamic hazard is the condition that a circuit’s output produces a
glitch when it changes from ’ 1’ to ’0’ or ’0’ to ’ 1’. An example of a circuit with a dynamic
hazard is shown in Figure 6.22(a). Assume that a, c and d are ’1’ and that b changes from
’1’ to ’0’. The timing diagram in Figure 6.22(b) shows that there is a ’1’ glitch when the
dh output changes from ’0’ to ’1’. The glitch is due to the different propagation delays of
the converging paths.

Dealing with hazards There are some techniques to eliminate hazards caused by a
single input change. For example, we can add a redundant product term to eliminate the
previous static hazard:

The revised Karnaugh map and circuit are shown in Figure 6.21(c). Although deriving a
hazard-free circuit is possible, this approach is problematic if the design is later processed
by synthesis software. The problems are discussed in detail in the next section.

In a real-world application, the hazard situation will become even more complicated
because of the possibility of multiple input signal transitions. If the inputs of a combinational

sh = a b’ + b * c + a * c

TIMING CONSIDERATIONS 157

(a) Kamaugh map and schematic

b

b-not ;
bc

a-b-not

sh

(b) Timing diagram

sh

(c) Revised Kamaugh map and schematic to eliminate hazards

Figure 6.21 Static hazards example.

158 SYNTHESIS OF VHDL CODE

a-b-not a

b (1
b-not

C bc dh

d

(a) Schematic

d-b-not

dh Y-----
(b) Timing diagram

Figure 6.22 Dynamic hazards example.

circuit are connected to the outputs of an edge-triggered register, the register’s outputs may
change almost simultaneously at the transition edge of the clock signal. For example, when a
4-bit counter circulates from “1 1 1 1” to “OOOO”, four input bits change almost simultaneously.
Multiple changes will activate several paths at the same time and frequently lead to glitches
in an output signal. Unless we utilize a specialized counter, which is normally not practical,
it is impossible to eliminate hazards.

Since there is no easy way to eliminate hazards, we have to live with them. In a com-
binational circuit, the most effective way to handle hazards is to ignore the output during
the transient period. Recall that the propagation delay is the time for an input signal to
propagate through the longest path in a system. If there is a glitch, it will occur within this
period of time. After that, the output will always be a valid, steady-state value. As long as
we know when to examine the output, the existence of glitches does not matter. This “wait
until the output is stabilized” idea is one of the motivations behind the synchronous design
methodology, in which a clock signal “samples” input signals at the proper time and stores
the values in a register. The synchronous design methodology is elaborated in Chapter 8.

6.5.4 Delay-sensitive design and its dangers

In a digital system, most theoretical studies and design methodologies are based on steady-
state analysis. Boolean algebra, the theoretical foundation of digital logic, conveys no
time-domain information. When we use Boolean algebra to describe a digital circuit, we
actually implicitly describe its steady-state behavior. Modeling and analyzing the transient
behavior can be very hard, and most of the time we choose not to deal with it directly.
Instead, we determine when the transient period ends and ignore the responses within the
period. This approach is embedded in the concept of system delay, which specifies the time
needed to reach the steady state in the worst-case scenario. Most design methodologies

TIMING CONSIDERATIONS 159

pulse

a

a-not

pulse

Figure 6.23 Delay-sensitive edge detection circuit.

and synthesis algorithms, such as time-constrained optimization, are based on system delay
rather than the exact transient behavior.

In a few circumstances, we need to consider the transient behavior to understand a
circuit’s function and operation. We use the term delay-sensitive design to describe this
type of circuit.

One example is the hazard elimination circuit in Figure 6.21. If we examine only the
steady-state behavior, Boolean algebra shows that the a c term does not serve any useful
purpose and that the a - b‘ + b . c + a . c and a b‘ + b c expressions are equivalent. The
circuit is meaningful only if the transient behavior is considered.

One old, commonly used delay-sensitive design trick is to use cascading gates to generate
a delay. An example is shown in Figure 6.23. The purpose of this circuit is to generate a
short pulse when the input a switches from ’0’ to ’ 1’. The inverter introduces a small delay
and causes a monetary ’1’ pulse, as shown on the timing diagram. If we use steady-state
analysis, the a.a’ expression can be reduced to ’0’, and the circuit becomes a wire connected
to ground. Again, this circuit makes sense only if we consider its transient behavior.

Although a delay-sensitive design can be useful in a few special situations, we should
avoid using VHDL description and synthesis software to construct this kind of circuit.
Transformation and optimization algorithms used in synthesis software are based on the
model of steady-state value and propagation delay, and cannot interpret or process transient-
related information.

Deriving VHDL code for a delay-sensitive circuit is not very difficult. For example, we
can revise the VHDL code from

sh <= (a and (n o t b)) or (b and c) ;

to

sh <= (a and (n o t b)) or (b and c) or (a and c) ;

to describe the hazard-free circuit in Figure 6.21, and can use the statement

p u l s e <= a and (n o t a > ;

to describe the pulse generation circuit in Figure 6.23. However, it is unlikely that the
desired effect can be preserved during the synthesis process. The potential complications
are as follows:

0 During logic synthesis, the logic expressions will be rearranged and optimized. Re-
dundant product terms, if they exist, will be removed during the optimization process.
It is unlikely that the original expression can be preserved.

0 If we assume that the logic expression remains unchanged after logic synthesis, the
netlist may be converted to other cells during technology mapping. Again, the original
logic expression will be altered.

160 SYNTHESIS OF VHDLCODE

0 If we assume that the original logic expression survives after technology mapping,
wire delays will be changed after the placement and routing process. The change
will alter the delay of the path and may invalidate the previous analysis.

0 If we assume that the circuit is synthesized according to the specification, the design
may hinder other steps in the verification and testing process. For example, the
redundant product term used in the logic expression will complicate the test vector
generation or even make the circuit untestable.

In summary, VHDL-based synthesis is not feasible for delay-sensitive design. If this kind
of circuit is really needed, as in an asynchronous sequential circuit, we should construct the
circuit manually using cells from the target device library. We may even need to manually
perform the placement and routing to ensure that wire delay is within a tolerable range.
Since our focus is on RT-level HDL synthesis, we will not discuss this approach in the
remainder of the book.

6.6 SYNTHESIS GUIDELINES

0 Be aware of the theoretical limitation of synthesis software.

0 Be aware of the hardware complexity of different VHDL operators.

0 Isolate tri-state buffers from other logic and code them in a separate segment.

0 Unless there is a compelling reason, use a multiplexer instead of an internal tri-state

0 Avoid using the ’ - ’ value of the std-logic data type as an input value.

0 In RT-level description, there is no effective way to eliminate glitches from a combi-
national circuit. We should deal with the glitches rather than attempting to derive a
glitch-free combinational circuit.

bus.

0 Do not use delay-sensitive design in RT-level description.

6.7 BIBLIOGRAPHIC NOTES

Synthesis is a complicated process and involves many difficult computation problems. The
texts, Synthesis and Optimization of Digital Circuits by G. De Micheli, and Logic Synthesis
by S . Devadas et al., provide comprehensive coverage of the theoretical foundations and
relevant algorithms.

Because most software vendors do not allow users to publish benchmark information,
there is very little documentation on the “behavior” of synthesis tools. The article, W-
sualizing the Behavior of Logic Synthesis Algorithms of SNUG (Synopsys Users Group
Conference) 1998, by H. A. Landman, presents an interesting study of the relationship
between the circuit area and timing constraints.

Problems

6.1 Determine the order (big-0) of the following functions:
(a) 1.5
(b) 2n + 103n2

PROBLEMS 161

(c) 3n2 + 500n + 50
(a) 0.01n3 + 10n2
(e) 272 log, n + 2n2 + 20n + 45

6.2 A programmer developed an optimization algorithm with an order of O(n!). Can the
algorithm be applied to a large input size? Explain.

6.3 One way to specify a combinational circuit is to describe its function by a truth table,
in which we list all possible input combinations and their desired output values. Assume
that the circuit has n inputs.

(a) What is the size (number of the rows) of the table?
(b) What is the problem with this approach?

Assume that a and b are 3-bit inputs (let a be azalao and b be bzblbo).
(a) Determine the Boolean expression (in terms of a2, al , Q, b2, bl and bo) for the

(b) Assume that b is a constant and that b = "101". Determine the Boolean expression

(c) Assume that a is a constant and that a = "101". Determine the Boolean expression

6.5 Assume that a and b are 16-bit inputs interpreted as unsigned numbers. Write five
VHDL programs for the following operations. Synthesize the programs using an ASIC
device. Compare their area and propagation delay and discuss the impact of a constant
operand.

6.4

relational operation a > b.

again.

again.

o a + b
0 a + "0000000000000001"
0 a + ~~0000000010000000~~
0 a + "1000000000000000"
0 a + "1010101010101010"

6.6 Repeat Problem 6.5, but use an FPGA device.

6.7 In a hi-state buffer, there are two special timing parameters, T,, and Toz. T,, (known
as the turn-on time) is the required time for the output port to transit from Z to a regular,
valid value after the control signal is activated. To, (known as the turn-of time) is the
required time to force the output port to Z after control signal is deactivated. Manufacturers
normally guarantee that T,, > To,. Explain why this constraint is necessary.

6.8 Repeat the synthesis of the odd-parity circuit of Section 6.4.4 using the software
available to you. Make the range of n between 2 and 20. Choose an P G A device based on
a 5-input LUT cell as the target technology. Plot the circuit size versus n and the propagation
delay versus n. Discuss the result.

6.9

6.10 In the past, the design process was sometimes divided into a "front-end" process,
which included the initial RT-level development and synthesis, and a "back-end" process,
which included placement and routing and physical synthesis. The front-end and back-
end processes were normally handled by two independent design teams without much
interaction. Explain why this approach is no longer feasible for design targeting submicron
ASIC technology.

Repeat Problem 6.8 but choose an ASIC device as the target technology.

162 SYNTHESIS OF VHDL CODE

6.11 If your software supports synthesis with a timing constraint, obtain the area-delay
trade-off curve for the following VHDL code. You can first synthesize the circuit with no
constraint to obtain the minimal-area implementation and then gradually impose smaller
values on the maximal allowable delay.

l ibrary i e e e ;
use i e e e . s t d - l o g i c - 1 1 6 4 . a l l ;
use i e e e . n u m e r i c - s t d . a l l ;
e n t i t y hamming i s

port (
a , b : in s t d - l o g i c - v e c t o r (7 downto 0) ;
y : out s t d - l o g i c - v e c t o r (3 downto 0)

1;
end hamming ;

a r c h i t e c t u r e e f f i - a r c h of hamming i s
s i g n a l d i f f : uns igned (7 downto 0) ;
s i g n a l levO-0, lev0-2 , l e v 0 - 4 , l ev0 -6 : uns igned (1 downto 0) ;
s i g n a l l e v l - 0 , l e v l - 4 : uns igned (2 downto 0) ;
s i g n a l l e v 2 : uns igned (3 downto 0) ;

d i f f <= u n s i g n e d (a xor b);
levO-0 <= ('OJ & d i f f (0)) + ('0' & d i f f (1)) ;
lev0-2 <= ('0' & d i f f (2)) + ('0' & d i f f (3)) ;
lev0-4 <= (J O ' & d i f f (4)) + ('0' & d i f f (5)) ;
lev0-6 <= ('0' & d i f f (6)) + (' O J & d i f f (7)) ;
l e v l - 0 <= ('0' & l e v o - 0) + ('0' & l e v 0 - 2) ;
l e v l - 4 <= ('0' & l ev0 -4) + ('0' & l e v 0 - 6) ;
l e v 2 <= ('0' & l e v l - 0) t (J O J & l e v l - 4) ;
y <= s t d - l o g i c - v e c t o r (l e v 2) ;

begin

end e f f i - a r c h ;

6.12 Use your software to synthesize the VHDL code for the hazard elimination circuit
of Section 6.5.4. Examine the netlist of the synthesized circuit and determine whether it
preserves the redundant product term.

6.13 Use your software to synthesize the VHDL code for the edge detection circuit of
Section 6.5.4. Examine the netlist of the synthesized circuit and determine whether it can
still generate the desired pulse.

CHAPTER 7

COMBINATIONAL CIRCUIT DESIGN:
PRACTICE

After learning the implementation of key VHDL constructs and reviewing the synthesis pro-
cess in Chapters 4,5 and 6, we are ready to study the construction and VHDL description
of more sophisticated combinational circuits. Examples will show how to transform con-
ceptual ideas into hardware and illustrate resource-sharing and circuit-shaping techniques
to reduce circuit size and increase performance. This chapter follows and demonstrates
the main theme of the book: to research an efficient design and derive the VHDL code
accordingly.

7.1 DERIVATION OF EFFICIENT HDL DESCRIPTION

Although the appearance of VHDL code is very different from a schematic diagram, VHDL
code is just another way to describe a circuit. Synthesis software carries out a series of
refinements and transforms a textual VHDL description to a cell-level netlist. Although
software can perform simplification and local optimization, it does not know the meaning
or intention of the code and cannot exploit alternative designs or change the architectural
of the circuit.

The quality of a design and its description are two independent factors. We can express
the initial design by a schematic diagram or by a textual VHDL program. Similarly, we
can realize and synthesize the design either manually by paper and pencil or automatically
by synthesis software. Using VHDL and synthesis software does not lead automatically
to either a good or a bad design. VHDL description and synthesis software, however, can

RTL Hardware Design Using VHDL: Coding for EJJiciency, Portabilio, and Scalability. By Pong P. Chu
Copyright @ 2006 John Wiley & Sons, Inc.

163

164 COMBINATIONAL CIRCUIT DESIGN: PRACTICE

shield tedious implementation details and greatly simplify the realization process. They
allow us to have more time to explore and investigate alternative design ideas.

Derivation of an efficient, synthesizable VHDL description requires two major tasks:
0 Research to find an efficient design.
0 Develop VHDL code that accurately describes the design.

For a problem in digital system development, there is seldom a single unique solution.
A large number of possible designs exist. The resulting implementations differ in size and
performance and their quality may vary significantly. There is no simple, mechanical way
to derive an efficient design. It frequently relies on a designer’s experience, insight and
understanding of the problem.

After we find a design, the next step is to derive VHDL code that describes the design
accurately. Although the VHDL textual code cannot precisely specify the final structural
implementation, it describes the “big picture” that establishes the basic skeleton of the
circuit. For a complex design, it is useful to draw a rough schematic sketch to help in
locating the key components and identifying the critical path.

In addition to faithfully describing the intended design, good VHDL code should be
clear and compact, and can be easily “scaled.” Scalability concerns the amount of code
modification needed when the signal width of a circuit changes. For example, after we
develop a VHDL code for an 8-bit barrel shifter, how much modification is required if the
input is increased to 16 bits, 32 bits or even 64 bits? The development of scalable and
parameterized VHDL code is discussed in detail in Chapters 14 and 15. In this chapter, we
need only be aware of this aspect of VHDL code, and discuss it when appropriate.

7.2 OPERATOR SHARING

When a VHDL program is synthesized, all statements and language constructs of the pro-
gram will be mapped to hardware. One way to reduce the overall size of synthesized
hardware is to identify the resources that can be used by different operations. This is known
as resource sharing. Performing resource sharing normally introduces some overhead and
may penalize performance, and thus is worthwhile only for large, complex constructs. Al-
though the exact size depends on the underlying target technology, data from Table 6.2
provides a good estimation of the relative sizes of commonly synthesizable components.
Ideally, synthesis software should identify the sharing opportunities and perform the op-
timization automatically. Unfortunately, in reality, software’s capability varies and some-
times is rather limited in this respect. We may need to explicitly describe the desired sharing
in VHDL code. This section discusses the operator sharing and the next section illustrates
functionality sharing.

In certain VHDL constructs, operations are mutually exclusive; i.e., only one operation
is active at a particular time. These constructs include the conditional signal assignment
statement (or the equivalent if statement in a process) and the selected signal assignment
statement (or the equivalent case statement in a process). Recall that the basic expression
of a conditional signal assignment statement is

signal-name <= value-expr-1 when boolean-expr-1 e l s e
value-expr-2 when boolean-expr-2 e l s e
value -expr-3 when boo lean-expr -3 e 1 s e

value-expr-n;
. . .

OPERATOR SHARING 165

:Wr C

inputs

(a) Original diagram

a
r

other
inputs

(b) Diagram with sharing

Figure 7.1 Simple operator sharing.

The value expressions value-expr-1, value-expr-2, . . . , value-expr-n are mutually
exclusive since only one expression needs to be evaluated and passed to output. Similarly,
recall that the basic expression of a selected signal assignment statement is

signal-name <= value-expr-1 when choice-1 ,
value-expr-2 when choice-:!,
value-expr-3 when choice-3,

value-expr-n when choice-n ;

with select-expression s e l e c t

* . .

Since choices are mutually exclusive, only one expression actually has to be evaluated.
The same argument can be applied to the if statement and the case statement since their
implementations are similar to the conditional and selected signal assignment statements.

If the same operator is used in several different expressions, it can be shared. The
sharing is normally done by routing the proper data to or from this particular operator.
We demonstrate the coding technique in the following examples and discuss the degree of
saving and its potential impact on system performance.

7.2.1 Sharing example 1

Consider the following code segment:

r <= a+b when boolean-exp e l s e
a+c ;

The block diagram of this code is shown in Figure 7.i(a).

addition operation is needed at any time. We can revise the code as follows:
There are two adders and one multiplexer. The adder can be shared because only one

srcO <= b when boolean-exp e l s e

r <= a + srcO;
c ;

The block diagram of the revised code is shown in Figure 7.l(b). Instead of multiplexing
the addition results, it multiplexes the desired source operand to the input of the adder. One
adder can be eliminated in this new implementation.

Now we compare the propagation delays of the two circuits. Let the propagation delays
of the adder, the multiplexer and the boolean-exp circuit be Tadderr T,,, and Tboolean

166 COMBINATIONAL CIRCUIT DESIGN: PRACTICE

respectively. In the first circuit, the adders and boolean-exp operate in parallel, and thus
the overall propagation delay is m a (T a d d e , , T b o o l e a n) + TmUx. In the second circuit, the
propagation delay is Tboolean +Tm,x +Tadder . This reflects the fact that the boolean-exp
operation and addition operations are performed concurrently in the first circuit whereas
they are done in cascade in the second circuit. If the boolean-exp circuit is very simple
and its delay is negligible, there will be no performance penalty on the shared design.

7.2.2 Sharing example 2

Consider the following code segment:

process (a, b ,c ,d, . . . I
begin

i f boolean-exp-1 then

e l s i f boolean-exp-2 then

e l s e

end i f ;'
end p r o c e s s ;

r <= a+b;

r <= a+c;

r <= d + l ;

The block diagram of this code is shown in Figure 7.2(a).
The implementation needs two adders, one incrementor and two multiplexers. The

addition and increment operations can share the same adder because only one branch of the
if statement is executed at a time. Assume that the signals are 8 bits wide. The revised code
becomes

process (a, b,c , d , . . .)
begin

i f boolean-exp-1 then
srcO <= a;
srcl <= b;

srcO <= a;
srcl <= c;

srcO <= d ;
srcl <= "00000001";

e 1 s i f boolean-exp-2 then

e l s e

end i f ;
end p r o c e s s ;
r <= srcO + srcl;

The block diagram of the new code is shown in Figure 7.2(b). We use two multiplexers
to route the desired source operands to the inputs of the adder. The new circuit eliminates
one adder and one incrementor but requires two additional multiplexers. To determine
whether the sharing is worthwhile, we examine the circuit size of the adder, incrementor
and multiplexer given in Table 6.2. Since a multiplexer is smaller, especially when compared
with an adder, the sharing indeed leads to a smaller size. It is likely that the multiplexing
circuit can be further simplified during logic synthesis, due to the duplicated input patterns
(the a signal is used twice) and constant input ("OOOOOOOl"). The saving will become more
significant if a high-performance adder (the one optimized for delay) is used.

OPERATOR SHARING 167

a

b

-
T

r
-

C

d
1

I U

other 0 boolean- I
inputs exp-2

other
inputs

(a) Original diagram

a
I F ti

b*H 1 C
f

other
inputs

(b) Diagram with sharing

Figure 7.2 Operator sharing based on a priority network.

168 COMBINATIONAL CIRCUIT DESIGN: PRACTICE

t - r

a

b

C

d

1

other
inputs

(a) Original diagram (b) Diagram with sharing

Figure 7.3 Operator sharing based on a multiplexer.

Determining the propagation delays of these circuits is more involved since they depend
on the relative values of the delays of the boolean-exp-1 circuit, the boolean-exp-2
circuit and the multiplexer. However, observation from the previous example still applies.
The two Boolean circuits and three adders operate in parallel in the first circuit whereas
the Boolean circuits and the adder operate in cascade in the second circuit. Thus, the first
circuit should always have a smaller propagation delay.

7.2.3 Sharing example 3

Assume that the sel signal is 2 bits wide. Consider the following code segment:

with sel-exp s e l e c t
r <= a+b when " O O f l ,

a + c when "01",
d + l when o t h e r s ;

This example is similar to the previous one but uses the selected signal assignment statement.
The block diagram of this code is shown in Figure 7.3(a).

The circuit needs two adders, one incrementor and one 4-to-1 multiplexer. We can revise
the code to share the adder:

with sel-exp s e l e c t
srcO <= a when "00"1"01",

d when o t h e r s ;
with sel-exp s e l e c t

s r c l <= b when 1100",
c when "Ol",
"00000001~~ when o t h e r s ;

r <= srcO + srcl;

The block diagram of the new code is shown in Figure 7.3(b). We use two multiplexers
to route the desired source operands to the adder. The new circuit eliminates one adder
and one incrementor but requires an additional 4-to-1 multiplexer. Since an adder and an

OPERATOR SHARING 169

a
C

b
d

other
inputs

other
inputs

(a) Original diagram

(b) Diagram with sharing

Figure 7.4 Complex operator sharing.

incrementor are more complex than a multiplexer, the revision leads to a significant saving.
Again, the second circuit may suffer a longer propagation delay because of the cascaded
operations, as in example 1.

7.2.4 Sharing example 4

Consider the following code segment:

p r o c e s s (a , b , c , d , . . . I
begin

i f boolean-exp then
x <= a + b ;
y <= (o t h e r s = > ' O J) ;

x <= "00000001";
y <= c + d;

e l s e

end i f :
end p r o c e s s ;

The block diagram of this code is shown in Figure 7.4(a). The implementation needs two
adders and two multiplexers. The adder can be shared since the executions of two branches
of the if statement are mutually exclusive. The revised code is as follows:

170 COMBINATIONAL CIRCUIT DESIGN: PRACTICE

process (a,b, c , c l , sum,. . .)
begin

i f boolean-exp then
srcO <= a;
s r c l <= b;
x <= sum;
y <= (o t h e r s = > ’ O ’) ;

srcO <= c ;
s r c l <= d ;
x <= ”00000001”;
y <= sum;

e l s e

end i f ;
end p r o c e s s ;
sum <= srcO + s r c i ;

The block diagram of this code is shown in Figure 7.4(b). This example illustrates the
worst-case scenario of operator sharing, in which the operator has no common sources or
destinations. We need a multiplexing structure to route one set of signals to the adder’s
input and a demultiplexing structure to route the addition result to one of the two output
signals. The demultiplexing is done using two 2-to-1 multiplexers. Note that the addition
result (the sum signal) is connected to the T port of the upper output multiplexer and the F
port of the lower output multiplexer.

The new circuit eliminates one adder but adds two additional multiplexers. The merit of
sharing in this circuit is less clear, and it depends on the relative sizes of an adder and two
multiplexers. Again, we use the numbers given in Table 6.2 for estimation. If a slow adder
(+a, optimized for area) is used, the size of two multiplexers is about the same as that of
one adder. On the other hand, if a faster adder (+d, optimized for delay) is used, the saving
is significant.

7.2.5 Summary

Operator sharing is done by providing additional multiplexing circuits to route input and
output signals into or out of the operator. The merit of sharing and the degree of saving
depend on the relative complexity of the multiplexing circuit and the operator. Substantial
savings are possible for complex operators. However, sharing normally forces evaluation
of the Boolean expressions and evaluation of the operators to be performed in cascade and
thus may introduce extra propagation delay.

7.3 FUNCTIONALITY SHARING

In a large, complex digital system, such as a processor, an array of functions is needed.
Some functions may be related and have certain common characteristics. It is possible for
several functions to share a common circuit or to utilize one function to construct another
function. We call this approach&ncfionulity sharing. Unlike operator sharing, there is no
systematic way to identify functionality sharing. This kind of sharing is done in an ad hoc,
case-by-case basis and relies on the designer’s insight and intimate understanding of the
system. It is more difficult for synthesis software to identify functionality sharing.

FUNCTIONALITY SHARING 171

ctrl operation

0 a + b

1 a-b

(a) Function table (b) Initial block diagram

0 D:.'i:"T-l-+f
1

(c) Diagram with sharing

Figure 7.5 Addition-subtraction circuit.

7.3.1 Addition-subtraction circuit

Consider a simple arithmetic circuit that performs either addition or subtraction. A control
signal, c t r l , specifies the desired operation. The function table of this circuit is shown in
Figure 7.5(a).

Our first design follows the function table, and the VHDL code is very straightforward, as
shown in Listing 7.1. Note that the signals are converted to the signed data type internally
to accommodate arithmetic operation.

Listing 7.1 Initial description of an addition-subtraction circuit

l i b r a r y ieee ;
use ieee. std-logic-1164. a l l ;
use ieee . numeric-std. a l l ;
e n t i t y addsub i s

5 p o r t (
a, b : in std-logic-vector (7 downto 0) ;
ctrl: in std-logic;
r : out s t d ~ l o g i c ~ v e c t o r (7 downto 0)

1;
10 end addsub;

a r c h i t e c t u r e direct-arch of addsub i s

begin
s i g n a l srcO, srcl , sum: signed(7 downto 0) ;

IS srcO <= signedca);

172 COMBINATIONAL CIRCUIT DESIGN: PRACTICE

srcl <= signed(b);
sum <= srcO + srcl when ctrl=’O’ e l s e

srcO - srcl;
r <= std-logic-vector(sum);

20 end direct-arch;

The conceptual diagram for this code is shown in Figure 7.5(b), which consists of an adder,
a subtractor and a 2-to-1 multiplexer.

Since the adder and subtractor are different operators, we cannot directly apply the earlier
operator-sharing technique. In 2’ s-complement representation, recall that the subtraction,
a - b, can be calculated indirectly as a + b + 1, where 6 is the bitwise inversion of b.
Therefore, it is possible to share the functionality of the adder. After inverting band putting
a carry-in of 1, we can utilize the same adder to perform subtraction. The VHDL code is
shown in Listing 7.2.

Listing 7.2 More efficient description of an addition-subtraction circuit
~~~ __ 

a r c h i t e c t u r e  shared-arch of addsub is 
s i g n a l  srcO, srcl , sum: signed(7 downto 0) ; 
s i g n a l  cin: signed(0 downto 0); -- c a r r y - i n  b i t  

begin 
s srcO <= signed(a1; 

srcl <= signed(b) when ctrl=’O’ e l s e  
signed ( n o t  b) ; 

cin <= t t O t l  when ctrl=’O’ e l s e  
I, 1 I 1  . , 

10 sum <= srcO + srcl + cin; 
r <= std-logic-vector(sum); 

end shared-arch ; 

Note that the expression a + src-b + c i n  has two addition operators. Since c i n  
is either “0” or “l”, it can be mapped to the carry-in port of a typical adder. In other 
words, the + c i n  operation can be embedded into the a + src-b operation and no sep- 
arate incrementor is needed. Most synthesis software should be able to derive the correct 
implementation. 

Alternatively, we can manually describe the carry-in operation and use only one addition 
operator in the VHDL code. The trick is to use an extra bit in the adder to mimic the effect 
of carry-in operation. The internal adder is extended to 9 bits, in which the original input 
takes 8 MSBs and the extra bit is the LSB. The LSBs of the two operands are connected 
to 1 and the carry-in input, tin, respectively. For example, if the two original operands are 

a7 a5 a4 a3 a2 a 1 a0 and b7 b6 b5 b4 b j  b2 bl bo 

The extended operands will be 

After the addition, the LSB will be discarded and the higher 8 bits will be used as the output. 
When cin is 1, a carry will be propagated from the LSB to 8 MSBs, effectively adding 1 to 
the 8 MSBs of the adder. On the other hand, when Q, is 0, no carry occurs. Since the LSB 
of the sum is discarded, there is no impact on the addition of 8 MSBs. The VHDL code of 
this design is shown in Listing 7.3. 



FUNCTIONALITY SHARING 173 

Listing 7.3 Manual cany-in description of an addition-subtraction circuit 

a r c h i t e c t u r e  manual-carry-arch of addsub i s  
s i g n a l  srcO, srcl, sum: signed(8 downto 0); 
s i g n a l  b-tmp: std-logic-vector ( 7  downto 0) ; 
s i g n a l  cin: std-logic; - c a r r y - i n  b i t  

srcO <= signed(a & ’1’); 
b-tmp <= b when ctrl=>O’ e l s e  

not b; 
cin <= ’0’ when ctrl=’O’ e l s e  

srcl <= signed(b-tmp k cin); 
sum <= srcO + srcl; 
r <= std-logic-vector (sum ( 8  downto 1)) ; 

end manual-carry-arch ; 

s begin 

10 ’1’; 

The diagram for this design is shown in Figure 7.5(c). 

7.3.2 Signed-unsigned dual-mode comparator 

In the IEEE numeric-std package, the signed and unsigned data types are defined to 
represent an array of bits as signed and unsigned integers respectively. The signed data 
type is in 2’s-complement format. An example of 4-bit binary representations and their 
signed and unsigned interpretations are shown as a “binary wheel” in Figure 7.6. Note that 
the addition and subtraction operations are identical for the two data types. The addition and 
subtraction of a positive amount corresponds to a move clockwise and counterclockwise 
along the wheel, and thus the same hardware can be used. However, this is not true for 
relational operators. 

This example considers a greater-than comparator in which the input can be interpreted as 
either unsigned or signed. The input data type (or the operation mode of the comparator) is 
specified by a control signal, mode. Our first design uses two comparators, one for each data 
type, and then uses the mode signal to select the desired result. The VHDL code is shown 
in Listing 7.4. Note that by definition of VHDL, the comparison in std-logic-vector 
data type (i.e., a > b) and the comparison in unsigned date type (i.e., unsigned(a1 > 
unsigned (b)) implies the same implementation. For clarity, we use the latter in the VHDL 
code. 

Listing 7.4 Initial description of a dual-mode comparator 

l i b r a r y  ieee ; 
use ieee. std-logic-1164. a l l  ; 
use ieee . numeric-std. a l l  ; 
e n t i t y  comp2mode i s  

s p o r t (  
a,b: in  std-logic-vector (7 downto 0); 
mode: in  std-logic; 
agtb: out  std-logic 

1; 
10 end comp2mode ; 

a r c h i t e c t u r e  direct-arch of complmode i s  
s i g n a l  agtb-signed , agtb-unsigned : std-logic ; 



174 COMBINATIONAL CIRCUIT DESIGN: PRACTICE 

Threshold of overflow 
for unsigned format 

subtract a 
+2 positive amount -2 

001 1 

0101 

-3 
+I3 

1101 

1011 

add a 
positive amount 

-5 0110 

1001 
1000 

+9 +7 +6 -6 

+7 +a -7 

Threshold of ovefflow 
for signed format 

Figure 7.6 Four-bit binary wheel. 

begin 
IS agtb-signed <= '1' when signed(a) > signed(b) e l s e  

'0'; 
agtb-unsigned <= '1' when unsigned(a) > unsigned(b1 e l s e  

agtb <= agtb-unsigned when (mode='O') e l s e  
'0'; 

20 agtb-signed; 
end direct-arch ; 

To identify a potential sharing opportunity, we must examine the implementation of a 
comparator for the signed data type. First, if two inputs have different sign bits, the one 
with '0' is greater than the one with ' 1 ' since a positive number or 0 is always greater than a 
negative number. If two inputs have the same sign, we can ignore the sign bit and compare 
the remaining bits in a regular fashion (i.e., as the unsigned or std-logic-vector data 
type). At first glance, this may not be obvious for two negative numbers. We can verify it 
by checking the binary representations of signed numbers in Figure 7.6. For example, the 
binary representations of -1, -4 and -7 are "1 11 1" and "1 100" and "1001". After discarding 
the sign bit, we can see that "1 11" > "100" > "OOl", which is consistent with -1 > -4 > 
-7. Based on this observation, we can develop the rules for a dual-mode comparator: 

0 If a and b have the same sign bit, compare the remaining bits in a regular fashion. 



FUNCTIONALITY SHARING 175 

If a’s sign bit is ’ 1’ and b’s sign bit is ’O’, a is greater than b when in unsigned 

If a’s sign bit is ’ 0 ’ and b’s sign bit is ’ 1 ’ , reverse the previous result. 
The VHDL code for the design is shown in Listing 7.5. The agtbnag signal is the 

comparison result of 7 LSBs of a and b, and the aLbO signal is a special status indicating 
that the MSBs (signs) of a and b are ’ 1 ’ and ’ 0 ’ respectively. The last conditional signal 
assignment statement translates the previous rules into logic expressions. 

mode and b is greater than a when in signed mode. 

Listing 7.5 More efficient descriution of a dual-mode comuarator 

a r c h i t e c t u r e  s h a r e d - a r c h  of comp2mode i s  
s i g n a l  al-bO , agtb-mag : s t d - l o g i c  ; 
begin 

al-bO <= ’1’ when a ( 7 ) = ’ 1 ’  and b ( 7 ) = ’ 0 ’  e l s e  

agtb-mag <= ’1’ when a ( 6  downto 0) > b ( 6  downto 0) e l s e  

a g t b  <= agtb-mag when ( a ( 7 ) = b ( 7 ) )  e l s e  

5 ’0’. I 

’0’; 

al-bO when mode=’O’ e l s e  
10 not al-bO ; 

end s h a r e d - a r c h  ; 

The new design eliminates one comparator and reduces the circuit size of the dual-mode 
comparator by one half. 

7.3.3 Difference circuit 

Assume that we want to implement a circuit that takes two unsigned numbers and calculates 
their difference; i.e., performs the function la - bl. The straightforward design is to 
compute both a - b and b - a, compare a and b, and then select the proper subtraction 
result accordingly. The VHDL code is shown in Listing 7.6. Note that the signals are 
converted to the unsigned data type for arithmetic operation. 

Listing 7.6 Initial description of a difference circuit 

l i b r a r y  i e e e  ; 
use i e e e ,  s t d - l o g i c - 1 1 6 4 .  a l l  ; 
use i e e e  . n u m e r i c - s t d .  a l l  ; 
e n t i t y  d i f f  i s  

5 p o r t (  
a ,  b : in  s t d - l o g i c - v e c t o r  (7  downto 0) ; 
r e s u l t  : out  s t d - l o g i c - v e c t o r  (7  downto 0) 

1; 
end d i f f  ; 

a r c h i t e c t u r e  d i r e c t - a r c h  of d i f f  i s  

begin 

10 

s i g n a l  a u ,  b u ,  r u ,  d i f f a b ,  d i f f b a :  u n s i g n e d ( 7  downto 0); 

au <= u n s i g n e d ( a 1 ;  
I5 bu <= u n s i g n e d ( b 1 ;  

d i f f a b  <= au - b u ;  
d i f f b a  <= bu - a u ;  
r u  <= d i f f a b  when ( a u  >= bu)  e l s e  

d i f  f b a ;  



176 COMBINATIONAL CIRCUIT DESIGN: PRACTICE 

20 result <= std-logic-vector (ru) ; 
end direct-arch ; 

One observation about the initial design is the implementation of the relational operation 
>=. The result of a >= b can be indirectly obtained from a - b by examining the sign bit 
of the subtraction result. If the sign bit is ’O’, the result is positive or 0 and thus a >= b is 
true. Otherwise, the result is negative and a >= b is f a l se .  We consider this scenario 
as functionality sharing since the operation a >= b indirectly utilizes the functionality of 
a - b. To apply the idea to this example, we must modify the internal representation since 
the original inputs a and b are interpreted as unsigned numbers and have no sign bit. We 
extend the internal signals by one bit and interpret them as a signed number. The VHDL 
code of the revised design is shown in Listing 7.7. Note that since both extended signals, 
as and bs, are positive (with ’0’ in MSB) and subtraction is performed, we need not worry 
about the overflow condition and can use the sign bit of a - b (i.e., dif f ab (8) in code) 
directly. 

Listing 7.7 Better description of a difference circuit 

a r c h i t e c t u r e  shared-arch of  diff i s  

begin 
s i g n a l  as, bs, rs, diffab, diffba: signed(8 downto 0); 

as <= signed ( ’0 ’&a) ; 
s bs <= signed ( ’0  ’&b) ; 

diffab <= as - bs; 
diffba <= bs - as; 
rs <= diffab when diffab(8)=’0’ e l s e  

dif fba; 

end shared-arch ; 
10 result <= std-logic-vector (rs (7 downto 0)) ; 

The revised design can be further optimized by replacing the b - a expression with 
0 - dif f ab (or simply -dif f ab). Since the 0 - dif f ab operation has a constant operand 
(i.e., 0), the circuit size is about half that of a full subtractor. The final code is listed in 
Listing 7.8. 

Listing 7.8 Most efficient description of a difference circuit 

a r c h i t e c t u r e  effi-arch of diff i s  

begin 
s i g n a l  as, bs, rs, diffab, diffba: signed(8 downto 0); 

as <= signed( ’O’&a); 
5 bs <= signed(’0’kb); 

diffab <= as - bs; 
diffba <= 0 - diffab; 
rs <= diffab when diffab(8)=’0’ e l s e  

dif f ba ; 
10 result <= std-logic-vector (rs (7 downto 0)) ; 

end ef f i-arch ; bout 

An alternative design approach is to use the operator-sharing technique. The code is 
shown in Listing 7.9. We first compare the two inputs and route the larger one to srcO and 
smaller one to srcl, and then perform the subtraction. The design requires one subtractor 
and one comparator, and its size is comparable to that of the ef f i-arch architecture in 
Listing 7.8. 



FUNCTIONALITY SHARING 177 

Listing 7.9 Alternative description of a difference circuit 

a r c h i t e c t u r e  s h a r e d 3 - a r c h  of d i f f  i s  

begin 
s i g n a l  a u ,  b u ,  r u ,  8 x 0 ,  s r c l :  u n s i g n e d ( 7  downto 0); 

s 

10 

I5 

au  <= u n s i g n e d ( a 1 ;  
bu <= u n s i g n e d ( b 1 ;  
process  ( a u ,  bu)  
begin 

i f  au  >= bu then 
srcO <= a u ;  
s r c l  <= bu ;  

srcO <= b u ;  
s r c l  <= a u ;  

e l s e  

end i f  ; 
end p r o c e s s ;  
ru <= srcO - s r c l ;  
r e s u l t  <= s t d - l o g i c - v e c t o r ( r u ) ;  

end s h a r e d 3 - a r c h  ; 

7.3.4 Full comparator 

Assume that we need a comparator that has three outputs, indicating the greater-than, 
equal-to and less-than conditions respectively. The straightforward design is to use three 
relational operators, each for an output condition. The VHDL code for this design is shown 
in Listing 7.10. Clearly, three separate relational circuits are needed when it is synthesized. 

Listing 7.10 Initial description of a full comparator 

l i b r a r y  i e e e  ; 
use i e e e .  s t d - l o g i c - 1 1 6 4 .  a l l  ; 
e n t i t y  comp3 i s  

port  ( 
5 a , b :  in  s t d - l o g i c - v e c t o r  (15 downto 0); 

a g t b ,  a l t b ,  aeqb :  out s t d - l o g i c  
) ;  

end comp3 ; 

10 a r c h i t e c t u r e  d i r e c t - a r c h  of comp3 i s  
begin 

a g t b  <= '1' when a > b e l s e  

a l t b  <= '1 '  when a < b e l s e  

aeqb <= '1' when a = b e l s e  

'0'; 

IS  '0'; 

'0'; 
end d i r e c t - a r c h ;  

If we examine the three operations carefully, we can see that the three conditions are 
mutually exclusive, and the third one can be derived if the other two are known. Thus, the 
functionality of the first two relational circuits can be shared to obtain the third output. The 
code of the revised design is shown in Listing 7.1 1. 



178 COMBINATIONAL CIRCUIT DESIGN: PRACTICE 

Listing 7.11 Better description of a full comparator 

s i g n a l  gt, It: std-logic; 

gt <= ’1’ when a > b e l s e  

It <= ’1’ when a < b e l s e  

agtb <= gt; 
altb <= It; 

end sharel-arch ; 

a r c h i t e c t u r e  sharel-arch of comp3 i s  

begin 

5 J O ’ ;  

J O ’ ;  

10 aeqb <= not  (gt or It); 

The third statement means “a is equal to b” if the condition “a is greater than b or a 
is less than b” is not true. This simple revision eliminates the comparison circuit for the 
equal-to operator. 

If we look Table 6.2, the equal-to circuit is smaller and faster than the greater-than circuit 
(especially compared with the circuit optimized for delay). This is due to the internal 
implementation of these circuits. We can further optimize the circuit by using the equal-to 
operator to replace either the greater-than or less-than operator. The code of the final design 
is shown in Listing 7.12. 

Listing 7.12 Most efficient description of a full comparator 

a r c h i t e c t u r e  share2-arch of comp3 i s  

begin 
s i g n a l  eq, It: std-logic; 

eq <= ’1’ when a = b e l s e  

It <= ’1’ when a < b e l s e  

aeqb <= eq; 
altb <= It; 

end share2-arch ; 

5 J O J ;  

’ O J ;  

10 agtb <= not (eq or It); 

Although the observation of mutual exclusiveness of three outputs is trivial for us, it in- 
volves the meaning (semantics) of the operators. Most synthesis software is unable to take 
advantage of this property and optimize the code segment. 

7.3.5 Three-function barrel shifter 

A barrel shifter is a circuit that can shift input data by any number of positions. Both 
VHDL standard and the IEEE std-logic-I 164 package define a set of shifting and rotating 
operators. Because of the complexity of the shifting circuit, some synthesis software is 
unable to synthesize these operators automatically. Shifting operations can be done in 
either the left or right direction and are divided into rotate, logic shift and arithmetic shift. 
In this example, we consider an 8-bit shifting circuit that can perform rotate right, logic 
shift right or arithmetic shift right, in which lower bits, 0’s or sign bits are shifted into 
left positions respectively. In addition to the 8-bit data input, this circuit has a control 
signal, l a r  (for logic shift, arithmetic shift and rotate), which specifies the operation to be 



FUNCTIONALITY SHARING 179 

performed, and a control signal, amt (for amount), which specifies the number of positions 
to be rotated or shifted. 

A straightforward design is to construct a rotate-right circuit, a logic shift-right circuit 
and an arithmetic shift-right circuit, and then use a multiplexer to select the desired output. 
The VHDL code of this design is shown in Listing 7.13. The individual shifting circuit is 
implemented by a selected signal assignment statement. 

Listing 7.13 Initial description of a barrel shifter 

l i b r a r y  i e e e  ; 
use ieee. s t d - l o g i c - 1 1 6 4 .  a l l  ; 
e n t i t y  s h i f t 3 m o d e  i s  

p o r t  ( 
5 a :  in  s t d - l o g i c - v e c t o r  (7  downto 0) ; 

l a r  : i n  s t d - l o g i c - v e c t o r  (1 downto 0) ; 
amt : i n  s t d - l o g i c - v e c t o r  (2  downto 0) ; 
y :  ou t  s t d - l o g i c - v e c t o r  ( 7  downto 0) 

1; 
~ o e n d  s h i f t 3 m o d e  ; 

20 

40 

45 

a r c h i t e c t u r e  d i r e c t - a r c h  of s h i f t 3 m o d e  i s  

s t d - l o g i c - v e c t o r  ( 7  downto 0) ; 
s i g n a l  l o g i c - r e s u l t  , a r i t h - r e s u l t  , r o t - r e s u l t  : 

I5 begin 
with amt s e l e c t  

r o t - r e s u l t  <= 
a when I1 000 , 
a ( 0 )  & a ( 7  downto 1 )  when l l O O l t l ,  
a ( 1  downto 0) & a ( 7  downto 2 )  when " O l O " ,  
a ( 2  downto 0) & a ( 7  downto 3) when 1 ~ 0 1 1 8 1 ,  
a ( 3  downto 0) & a ( 7  downto 4 )  when "100" , 
a ( 4  downto 0) & a ( 7  downto 5 )  when " l O 1 l t ,  
a ( 5  downto 0) & a ( 7  downto 6 )  when " 1 1 0 " ,  

25 a ( 6  downto 0) & a ( 7 )  when o t h e r s ;  - 111 
with amt s e l e c t  

l o g i c - r e s u l t  <= 
a when "000" , 
I1 0 I1 & a ( 7  downto 1) when l l O O 1 l f ,  

M I1 0 0 I1 & a ( 7  downto 2 )  when 11010",  
It 000 & a ( 7  downto 3) when "01118 ,  
~1000011  & a ( 7  downto 4 )  when " l O O " ,  
110000011 & a ( 7  downto 5 )  when 181011t ,  
l t O O O O O O 1 l  & a ( 7  downto 6 )  when 11110",  

35 110000000~1 & a ( 7 )  when o t h e r s ;  - 111 
with amt s e l e c t  

a r i t h - r e s u l t  <= 
a when 000 II , 
a ( 7 )  & a ( 7  downto 1) when 00 1 , 
a ( 7 ) & a ( 7 )  & a ( 7  downto 2)  when l t O I O " ,  
a ( 7 ) & a ( 7 ) & a ( 7 ) &  a ( 7  downto 3) when 11011" ,  
a ( 7 ) & a  ( 7 ) & a ( 7 ) & a ( 7 ) &  

a ( 7 ) & a  ( 7 ) & a  ( i ' ) & a ( 7 ) & a ( 7 ) &  
a ( 7  downto 4 )  when 

a ( 7  downto 5 )  when Is 101 , 



180 COMBINATIONAL CIRCUIT DESIGN: PRACTICE 

a ( 7 ) & a ( 7 ) & a ( 7 ) & a  ( 7 ) & a  ( 7 ) & a ( 7 ) &  

a ( 7 ) & a ( 7 ) & a ( 7 ) & a  ( 7 > & a  ( 7 > & a ( 7 > & a ( 7 ) &  
a ( 7  downto 6)  when " 1 1 0 " ,  

a (7)  when o t h e r s ;  
B with l a r  s e l e c t  

y <= l o g i c - r e s u l t  when 1100",  
a r i t h - r e s u l t  when l f O 1 l l ,  
r o t - r e s u l t  when o thers  ; 

end d i r e c t - a r c h ;  

The implementation includes three 8-bit 8-to-1 multiplexers and one 8-bit 3-to-1 multi- 
plexer. 

If we examine the output of three shifting operations, we can see that their patterns 
are very similar and the only difference is the data being shifted into the left part. It is 
possible to share the functionality of a shifting circuit. To take advantage of this, we use a 
preprocessing circuit to modify the left part of the input data to the desired format and then 
pass it to the shifting circuit. The VHDL code based on this idea is given in Listing 7.14. 

Listing 7.14 Better description of a barrel shifter 

a r c h i t e c t u r e  s h a r e d - a r c h  of sh i f t3mode i s  

begin 
s i g n a l  s h i f t - i n :  s t d - l o g i c - v e c t o r  ( 7  downto 0) ; 

with l a r  s e l e c t  
5 s h i f t - i n  <= ( o t h e r s = > ' O ' )  when 1100" ,  

( o t h e r s = > a ( 7 ) )  when " 0 l s 1 ,  
a when o t h e r s ;  

with amt s e l e c t  
y <= a when "000" , 

10 s h i f t - i n ( 0 )  & a ( 7  downto 1 )  when " O O l " ,  
s h i f t - i n ( 1  downto 0) & a ( 7  downto 2) when "OlO", 
s h i f t - i n ( 2  downto 0) & a ( 7  downto 3) when "Oil", 
s h i f t - i n ( 3  downto 0) & a ( 7  downto 4 )  when t l l O O 1 l ,  
s h i f t - i n ( 4  downto 0) & a ( 7  downto 5)  when " 1 0 1 " ,  

s h i f t - i n ( 6  downto 0) & a ( 7 )  when o t h e r s ;  
I5 s h i f t - i n ( 5  downto 0) & a ( 7  downto 6)  when " 1 1 0 " ,  

end s h a r e d - a r c h ;  
~~ ~ 

In this code, one 8-bit 3-to-1 multiplexer is used to preprocess the input. Depending on 
the l a r  signal, its output sh i f  t - i n  can be the a input, repetitive 0's or repetitive sign bits. 
The sh i f  t - i n  signal is then passed to the shifting circuit and becomes the left part of the 
final output. The improved design consists of one 8-bit 8-to-1 multiplexer and one 8-bit 
3-to-1 multiplexer. It has a similar critical path but eliminates two 8-bit 8-to-1 multiplexers. 

7.4 LAYOUT-RELATED CIRCUITS 

After synthesis, placement and routing will derive the actual physical layout of a digital 
circuit on a silicon chip. Although we cannot use VHDL code to specify the exact layout, it 
is possible to outline the general "shape" of the circuit. This will help the synthesis process 
and the placement and routing process to derive a more efficient circuit. Examples in this 
section show how to shape the circuit layout in VHDL code. 



LAYOUT-RELATED CIRCUITS 181 

(a) Cascading design 

(b) Tree design 

Figure 7.7 Reduced-xor circuit. 

7.4.1 Reduced-xor circuit 

A reduced-xor function is to apply xor operations over all bits of an input signal. For 
example, let a7aga5a4a3azalaO be an 8-bit signal. The reduced-xor of this signal is 

Since this function returns ’1’ if there are odd number of 1’s in its input, it can be used to 
determine the odd parity of the input signal. 

A straightforward design is shown in Figure 7.7(a). This design can be easily transformed 
into a VHDL code, which is shown in Listing 7.15. 

Listing 7.15 Initial description of a reduced-xor circuit 

l i b r a r y  ieee; 
use  ieee. std-logic-1164. a l l  ; 
e n t i t y  reduced-xor i s  

port ( 
5 a: in  std-logic-vector (7 downto 0) ; 

y: out std-logic 
) ;  

end reduced-xor ; 

10 a r c h i t e c t u r e  cascadel-arch of reduced-xor i s  
begin 

y <= a(0) xor a(1) xor a(2) xor a(3) xor 
a(4) xor a(5) xor a(6) xor a(7) ;  



182 COMBINATIONAL CIRCUIT DESIGN: PRACTICE 

end cascadel-arch; 

By VHDL definition, the xor operator is left associative. Thus, the expression 

a(O) xor a(1) xor a(2) xor . . .  xor a(7) 

is the same as 

(...((a(O) xor a(l)) xor a(2)) xor . . . I  xor a(7)) 

We can also use an 8-bit internal signal, p, to represent the intermediate results, as in 
Figure 7,7(a). The code for the architecture body is shown in Listing 7.16. 

Listing 7.16 Alternative description of a reduced-xor circuit 

a r c h i t e c t u r e  cascade2-arch of reduced-xor i s  
s i g n a l  p: std-logic-vector (7 downto 0) ; 

begin 
p(0) <= a(0); 

5 p(l) <= p(0) xor a(1); 
p(2) <= p(1) xor a(2); 
p(3) <= p(2) xor a(3); 
p(4) <= p(3) xor a(4); 
p(5) <= p(4) xor a(5); 

10 p(6) <= p(5) xor a(6); 
p(7) <= p(6) xor a(7); 
y <= p(7); 

end cascade2-arch; 

Except for the first statement, a clear pattern exists between the inputs and outputs of these 
statements. By Boolean algebra, we know that z = O@z. We can rewrite the first statement 
as 

p(0) <= '0' xor a(0); 

to make it match the pattern. Once this is done, we can use a more compact vector form to 
replace these statements, as shown in Listing 7.17. 

Listing 7.17 Compact description of a reduced-xor circuit 

a r c h i t e c t u r e  cascade-compact-arch of reduced-xor i s  
cons tant  WIDTH: integer := 8; 
s i g n a l  p: std-logic-vector (WIDTH-1 downto 0) ; 

begin 
5 p <= (p(W1DTH-2 downto 0) & '0') xor a; 

y <= p(W1DTH-1); 
end cascade-compact-arch; 

Although this design uses a minimal number of xor gates, it suffers a long propagation 
delay. The single cascading chain of xor gates becomes the critical path and the correspond- 
ing propagation delay is proportional to the number of xor gates in the chain. As the number 
of inputs increases, the propagation delay increases proportionally. Thus, the delay has an 
order of O(n).  Because of the associativity of the xor operator, we can arbitrarily change 
the order of operation. The initial design can be rearranged as a tree to reduce the length of 
its critical path, as shown in Figure 7.7(b). In VHDL code, we can use parentheses to force 
the desired order of operation, and the revised architecture body is shown in Listing 7.18. 



LAYOUT-RELATED CIRCUITS 183 

Listing 7.18 Better description of a reduced-xor circuit 

a r c h i t e c t u r e  t r e e - a r c h  of reduced-xor i s  
begin 

y <= ( ( a ( 7 )  x o r  a ( 6 ) )  xor  ( a ( 5 )  xor  a ( 4 ) ) )  xor  
( ( a ( 3 )  x o r  a ( 2 ) )  xor ( a ( 1 )  xor  a ( O > > > ;  

5 end t r e e - a r c h  ; 

In this new design, the critical path is reduced to three xor gates while the number of 
xor gates remains unchanged. Since we achieve better performance without adding extra 
hardware resource, it is a better design. In general, when we rearrange a cascade structure 
of n elements into a treelike structure, there will be log, n levels in the tree. The critical 
path is proportional to the number of levels in the tree and thus has an order of 0(10g2 n). 

Since this is a trivial circuit, synthesis software should be able to automatically transform 
the cascade design into the tree structure either by exploring the associative property or by 
performing time-constraint optimization. It is likely to obtain the same synthesis results 
for all codes in this example. However, for a more involved circuit, synthesis software is 
unable to do this, and we need to manually specify the order of operation to obtain a more 
efficient circuit. 

Finally, let us examine the scalability of these codes. Assume that we want to increase the 
input to 16 bits. Inthe cascadel-arch, cascade2-archandtree-archarchitectures, we 
have to add eight additional xor a ( i) terms or eight additional p ( i+l 1 <= p ( i 1 xor a ( i 1 
statements respectively. The number of revisions is proportional to the number of inputs 
and thus is on the order of O(n).  In the cascade-compact-arch architecture, the code 
remains the same except that the number in the constant statement has to be changed from 8 
to 16. The needed revision is 0(1), and this code is highly scalable. 

7.4.2 Reduced-xor-vector circuit 

A reduced-xor-vector function is to apply xor operations over all possible combinations of 
lower bits of an input signal. It can best be explained by anexample. Let 
be an %bit signal. Applying the reduced-xor-vector function to it returns eight values, and 
they are defined as 

A straightforward design is to follow the definition of this function, which can easily be 
transformed into the VHDL code shown in Listing 7.19. 



184 COMBINATIONAL CIRCUIT DESIGN: PRACTICE 

Listing 7.19 Initial description of a reduced-xor-vector circuit 

l i b r a r y  i e e e ;  
use i e e e .  s t d - l o g i c - 1 1 6 4 .  a l l  ; 
e n t i t y  r e d u c e d - x o r - v e c t o r  i s  

port ( 
5 a :  in  s t d - l o g i c - v e c t o r  ( 7  downto 0) ; 

y :  out s t d - l o g i c - v e c t o r  ( 7  downto 0) 
1; 

end r e d u c e d - x o r - v e c t o r ;  

10 a r c h i t e c t u r e  d i r e c t - a r c h  of r e d u c e d - x o r - v e c t o r  i s  
begin 

y ( 0 )  <= a ( 0 ) ;  
y ( 1 )  <= a (1 )  xor a ( 0 ) ;  
y ( 2 )  <= a ( 2 )  xor a ( 1 )  xor a ( 0 ) ;  

y ( 4 )  <= a ( 4 )  xor a(3) xor a ( 2 )  xor a ( 1 )  xor a ( 0 ) ;  
y ( 5 )  <= a ( 5 )  xor a ( 4 )  xor a(3)  xor a ( 2 )  xor a(1)  xor a ( 0 ) ;  
y ( 6 )  <= a ( 6 )  xor a ( 5 )  xor a ( 4 )  xor a ( 3 )  xor a ( 2 )  xor a ( l >  

20 y ( 7 )  <= a ( 7 )  xor a ( 6 )  xor a ( 5 )  xor a ( 4 )  xor a(3)  xor a ( 2 )  

IS y ( 3 )  <= a (3 )  xor a ( 2 )  xor a(1)  xor a ( 0 ) ;  

xor a ( 0 ) ;  

xor a (1 )  xor a ( O > ;  
end d i r e c t - a r c h  ; 

In this code, each output is described independently, and no sharing is imposed. If 
no optimization is performed during synthesis, the synthesized circuit needs 28 xor gates. 
There are lots of common expressions that can be shared to reduce the number of xor gates. 

Note that there is a simple relationship between the successive output values: 

Yi+l = ai+1 @ Yi 

The design based on this observation is shown in Figure 7.8(a), in which only seven xor 
gates are needed. 

The VHDL code for this design is similar to the cascade2,arch architecture in List- 
ing 7.16 except that all intermediate internal values are used as output. We need to modify 
the last statement and the VHDL code, as shown in Listing 7.20. 

Listing 7.20 Sharing description of a reduced-xor-vector circuit 

a r c h i t e c t u r e  s h a r e d l - a r c h  of r e d u c e d - x o r - v e c t o r  i s  

begin 
s i g n a l  p :  s t d - l o g i c - v e c t o r  ( 7  downto 0) ; 

p ( 0 )  <= a ( 0 ) ;  
5 p ( 1 )  <= p ( 0 )  xor a ( 1 ) ;  

p ( 2 )  <= p ( 1 )  xor a ( 2 ) ;  
p ( 3 )  <= p ( 2 )  xor a ( 3 ) ;  
p ( 4 )  <= p ( 3 )  xor a ( 4 ) ;  
p ( 5 )  <= p ( 4 )  xor a ( 5 ) ;  

10 p ( 6 )  <= p ( 5 )  xor a ( 6 ) ;  
p ( 7 )  <= p ( 6 )  xor a ( 7 ) ;  
Y <= p ;  

end s h a r e d l - a r c h ;  



LAYOUTRELATED CIRCUITS 185 

(a) Cascading design 

a(o) T y(o) 

(b) Parallel-prefix design 

Figure 7.8 Reduced-xor-vector circuit. 



186 COMBINATIONAL CIRCUIT DESIGN: PRACTICE 

Similarly, thecompact cascade-compact-archarchitecture inListing7.17 can berevised, 
too, as shown in Listing 7.21. 

Listing 7.21 Compact description of reduced-xor-vector circuit 

a r c h i t e c t u r e  sha red -compac t - a rch  of r e d u c e d - x o r - v e c t o r  i s  
cons tant  W I D T H :  i n t e g e r  := 8 ;  
s i g n a l  p :  s t d - l o g i c - v e c t o r  (WIDTH-1 downto 0) ; 

begin 
s p <= (p(W1DTH-2 downto 0) & , 0 1 )  xor a ;  

y <= p ;  
end sha red -compac t - a rch ;  

The critical path of this circuit is the path to obtain the y (7) signal, which has the largest 
number of xor gates along the path. Our earlier discussion shows that the propagation 
delay is on the order of O(n). To increase the performance, we have to rearrange the 
cascading chain to a treelike structure. The simple xor tree of tree-arch architecture of 
the previous example is not adequate since it cannot produce all the needed output values. 
One straightforward design is to create an independent xor tree for each output value. The 
design needs 28 xor gates, and the critical path of the circuit is the critical path of the tree 
used to implement y(7), which is the largest tree and has three levels of xor gates. The 
VHDL code is similar to the direct-arch architecture except that we use parentheses to 
force the order of evaluation, as shown in Listing 7.22. 

Listing 7.22 Tree description of a reduced-xor-vector circuit 

a r c h i t e c t u r e  d i r e c t - t r e e - a r c h  of r e d u c e d - x o r - v e c t o r  i s  
begin 

y ( 0 )  <= a ( 0 ) ;  
y ( 1 )  <= a ( 1 )  xor a ( 0 ) ;  

y ( 3 )  <= ( a ( 3 )  xor a ( 2 ) )  xor ( a ( 1 )  xor a ( 0 ) ) ;  
y ( 4 )  <= ( a ( 4 )  xor a ( 3 ) )  xor ( a ( 2 )  xor a ( l > >  xor a ( O > ;  
y ( 5 )  <= ( a ( 5 )  xor a ( 4 ) )  xor ( a ( 3 )  xor a ( 2 ) )  xor 

5 y ( 2 )  <= a ( 2 )  xor a(1)  xor a ( 0 ) ;  

( a ( l >  xor a ( 0 ) ) ;  

( ( a ( 2 )  xor a ( l > )  xor a ( 0 ) ) ;  

( ( a ( 3 )  xor a ( 2 ) )  xor ( a ( l >  xor a ( 0 ) ) ) ;  

10 y ( 6 )  <= ( ( a ( 6 )  xor a ( 5 ) )  xor ( a ( 4 )  xor a ( 3 ) ) )  xor 

y ( 7 )  <= ( ( a ( 7 )  xor a ( 6 ) )  xor ( a ( 5 )  xor a ( 4 ) ) )  xor 

end d i r e c t - t r e e - a r c h ;  

A more elegant design is shown in Figure 7.8(b). This design is targeted for performance 
and limits the critical path within three levels of xor gates. Within this constraint, it tries 
to share as many common expressions as possible. Instead of 28 xor gates, this design 
needs only 12 xor gates. We can derive the VHDL code according to the circuit diagram, 
as shown in Listing 7.23. 

Listing 7.23 Parallel-prefix description of a reduced-xor-vector circuit 

a r c h i t e c t u r e  o p t i m a l - t r e e - a r c h  of r e d u c e d - x o r - v e c t o r  i s  
s i g n a l  pO1, p23,  p45 ,  p67,  p012, 

p0123, p456,  p4567: s t d - l o g i c ;  
begin 

5 pO1 <= a ( 0 )  xor a ( 1 ) ;  
p23 <= a ( 2 )  xor a ( 3 ) ;  



LAYOUT-RELATED CIRCUITS 187 

p45 <= a(4) xor a(5); 
p67 <= a(6) xor a(7); 
pO12 <= pO1 xor a(2); 

10 p0123 <= pO1 xor p23; 
p456 <= p45 xor a(6) ; 
p4567 <= p45 xor p67; 
y(0) <= a(0); 
y(1) <= po1; 

I5 y(2) <= p012; 
y(3) <= p0123; 
y(4) <= p0123 xor a(4); 
y(5) <= p0123 xor p45; 
y(6) <= p0123 xor p456; 

20 y(7) <= p0123 xor p4567; 
end optimal-tree-arch; 

Although the same design principle can be used for a circuit with a larger number of 
inputs, revising the VHDL code will be very tedious and error-prone. Actually, this design 
is not just a lucky observation. It is based on parallel-prejix structure, and the systematic 
development of VHDL code for this circuit is discussed in Chapter 15. 

There are two important observations for this example. The first is the trade-off between 
circuit size and performance. In a digital circuit, we normally have to use more hardware 
resources to improve the performance, as in this example. The cascading design needs a 
minimal number of xor gates, which is on the order of O(n), but suffers a large propagation 
delay, which is also on the order of O(n). The parallel-prefix design, on the other hand, 
requires 0.5nlog2 n xor gates, but its delay is only on the order of 0(10g2 n). 

The second observation is about the capability of the synthesis software. Ideally, we 
hope the synthesis software can automatically derive the desired implementation regardless 
of the initial VHDL description. This is hardly possible, even for the simple function used 
in this example. 

7.4.3 Tree priority encoder 

A priority encoder is a circuit that returns the codes for the highest-priority request. We 
have discussed it in Chapters 4 and 5 and used different VHDL constructs to describe this 
circuit. The conditional signal assignment and if statements are natural to describe this 
function, and they specify the same priority routing network. The shape of the priority 
routing network is a single cascading chain, somewhat similar to the layout of cascading 
reduced-xor design in the previous example. Since the critical path is formed along this 
chain, performance suffers when the number of inputs increases. In the reduced-xor circuit, 
we can convert the cascading chain into a tree by rearranging the order of xor operations. 
This is also possible for the priority encoder, although the rearrangement is more involved. 
This example shows how to create an alternative treelike structure. We use a 16-to-4 priority 
encoder to demonstrate the scheme. 

The VHDL description for the cascading design is straightforward, as shown in List- 
ing 7.24. 

Listing 7.24 Cascading description of a priority encoder 

l i b r a r y  ieee; 
use  ieee. std-logic-1164. a l l  ; 
e n t i t y  prio-encoder i s  



188 COMBINATIONAL CIRCUIT DESIGN: PRACTICE 

port ( 
5 r: in  std-logic-vector (15 downto 0) ; 

code : out s t d ~ l o g i c ~ v e c t o r  (3 downto 0) ; 
active : out std-logic 

1; 
end prio-encoder ; 

a r c h i t e c t u r e  cascade-arch of prio-encoder i s  
begin 

10 

code <= t1111118 when r(15)=’1’ e l s e  
ltlllOfo when r (14)= 1 ’ e l s e  

IS tlllO1sl when r(l3)=’lJ e l s e  
1t1100t8 when r(12)=’1’ e l s e  
tulO1ltf when r(ll)=’l e l s e  
8110101t when r(lO)=’l’ e l s e  
t l l o o l t t  when r ( 9 ) = ’ 1 ’  e l s e  
t t l O O o t l  when r (8)= 1 ’ e l s e  
1f0111t8 when r(7)=’1’ e l s e  
“0110” when r(6)=’12 e l s e  
tfOIO1tt when r (515 1 ’ e l s e  
l ~ O I O O ~ t  when r(4)=’1’ e l s e  

U t ~ O O 1 l l ~  when r (3)= 1 ’ e l s e  
8tO010tt when r (2)= 1 ’ e l s e  
1qooo1t8 when r (I)= 1 e l s e  
“0000” ; 

active <= r(15) or r(14) or r(13) or r(12) or 
M r(l1) or r(10) or r(9) or r(8) or 

r(7) or r(6) or r(5) or r(4) or 
r(3) or r(2) or r(1) or r(0); 

end cascade-arch ; 

20 

The diagram of the code segment is shown in Figure 7.9, which consists of a chain of 
15 2-to-1 multiplexers. 

To develop a tree design, we start with smaller priority encoders and then rearrange them 
to the desired layout. Design in this example uses a 4-to-2 priority encoder. The function 
table and block diagram of a 440-2 decoder are shown in Figure 7.10(a). The block diagram 
of the 16-to-4 tree priority encoder is shown in Figure 7.10(b). 

The basic skeleton consists of a two-level tree. The 16 input requests are divided into four 
groups and fed to four 4-to-2 priority encoders in the first level. Each 4-to-2 priority encoder 
performs two functions. First, they generate active signals, ac t l ,  act2, act3 and act4, to 
indicate whether a request occurs in a particular group. Each active signal can be interpreted 
as the request signal of that particular group. Second, due to the clever arrangement of input 
connection, their output codes, codeg3, code-g2, codegl and codego, form the two 
LSBs of the final 4-bit code. For example, if the highest-priority request is r (91, its code 
is “1001”. The r (9) signal is connected to the second 4-to-2 priority encoder in the first 
level and its output, code42, is “Ol”, which is the two LSBs of “1001”. 

There is only one 4-to-2 priority encoder in the second level. Its inputs are the four 
“group request” signals from the first level. The output, code-msb, is the code of the group 
with the highest-priority request, which forms the two MSBs of the 4-bit code signal. We 
also need a 4-to-1 multiplexer in the second level. The code-msb signal is used to select 
and route the 2 LSBs from the proper group to final output. 



LAYOUT-RELATED CIRCUITS 189 

"0010" 

"0000" "0001" qy a . .  

r(i5j 

Figure 7.9 Cascading priority encoder. 

Since a 4-to-2 priority encoder is used repeatedly, we use component instantiation in 
the code. The 4-to-2 priority encoder is coded as a regular cascading design, as shown in 
Listing 7.25. 

Listing 7.25 4-to-2 priority encoder 

l i b r a r y  ieee ; 
use ieee. std-logic-1164. a l l  ; 
e n t i t y  prio42 is  

port ( 
5 r4 : in  std-logic-vector (3 downto 0) ; 

code2 : out std-logic-vector (1 downto 0) ; 
act42 : out std-logic 

1; 
end prio42; 

a r c h i t e c t u r e  cascade-arch of prio42 i s  
begin 

code2 <= I11l1l when r4(3)='lJ e l s e  
111011 when r4(2)='lJ e l s e  

I5 l t O l l '  when r4(1)=J1J e l s e  
I1 00 I1 . 

end cascade-arch ; 

10 

J 

act42 <= r4(3) or r4(2) or r4(1) or r4(0); 

The VHDL code for the tree design is shown in Listing 7.26, which basically follows the 
diagram of Figure 7.10(b). The code uses VHDL component instantiation, which is briefly 
reviewed in Section 2.2.2 and discussed in Chapter 13. 



190 COMBINATIONAL CIRCUIT DESIGN: PRACTICE 

r4 code2 act42 

I--- 11 1 

0%- 10 I 
act42 001- 01 1 

0001 00 1 

0000 00 0 

(a) 4-to-2 priority encoder 

(b) 16-to-4 priority encoder using 4-to-2 priority encoders 

code(l..O) 
code(3..2) 

active 

Figure 7.10 Tree priority encoder. 



LAYOUT-RELATED CIRCUITS 191 

Listing 7.26 16-to-4 priority encoder 

a r c h i t e c t u r e  t r e e - a r c h  of p r i o - e n c o d e r  i s  
component p r i o 4 2  i s  

p o r t  ( 
r 4  : i n  s t d - l o g i c - v e c t o r  (3 downto 0) ; 

a c t 4 2  : o u t  s t d - l o g i c  
5 code2:  o u t  s t d - l o g i c - v e c t o r  (1 downto 0) ; 

1; 
end component;  
s i g n a l  code-g3, code-g2,  code-gl , code-g0 , code-msb : 

s i g n a l  tmp : s t d - l o g i c - v e c t o r  (3 downto 0) ; 
s i g n a l  a c t 3 ,  a c t 2 ,  a c t l  , a c t 0  : s t d - l o g i c ;  

10 s t d - l o g i c - v e c t o r  (1 downto 0) ; 

begin - 

-- four I s t - s t a g e  4 - t o  - 2  p r i o r i t y  e n c o d e r s  
u n i t - l e v e l - 0 - 0 :  p r i o 4 2  

p o r t  m a p ( r 4 = > r  (3 downto 0) , code2=>code-gOI 
a c t 4 2 = > a c t O )  ; 

u n i t - l e v e l - 0 - 1 :  p r i o 4 2  
p o r t  m a p ( r 4 = > r ( 7  downto 4 1 ,  c o d e 2 = > c o d e _ g l ,  

a c t 4 2 = > a c t l )  ; 
u n i t - l e v e l - 0 - 2 :  p r i o 4 2  

p o r t  m a p ( r 4 = > r ( l l  downto 8 1 ,  code2=>code-g2,  
a c t 4 2 = > a c t 2 )  ; 

u n i t - l e v e l - 0 - 3 :  p r i o 4 2  
p o r t  m a p ( r 4 = > r  (15 downto 12)  , code2=>code-g3,  

a c t 4 2 = > a c t 3 )  ; 
-- 2nd s t a g e  4 - t o - 2  p r i o r i t y  encoder  
tmp <= a c t 3  R a c t 2  R a c t l  R a c t 0 ;  
u n i t - l e v e l - 2  : p r i o 4 2  

p o r t  map( r4=>tmpI  code2=>code ( 3  downto 21 ,  
a c t 4 2 = > a c t i v e )  ; 

-- 2 MSBs of code 
code (3  downto 2) <= code-msb; 
- 2 LSBs of code 
with code-msb s e l e c t  

c o d e ( 1  downto 0) <= code-g3 when I ' l l 1 ' ,  
code-g2 when 1 1 1 0 " ,  
code-gl  when ' I O l " ,  

code-g0 when o t h e r s  ; 
40 end t r e e - a r c h ;  

Now let us analyze the critical path of two designs. The critical path of the first cascading 
design consists of fifteen 2-to-1 multiplexers. The critical path of the tree design consists of 
two 4-to-2 priority encoders plus one 4-to-1 multiplexer. Since the 4-to-2 priority encoder 
uses the regular cascading design, it is constructed by three 2-to-1 multiplexers. Thus, the 
critical path of the tree design consists of six 2-to-1 multiplexers and one 4-to-1 multiplexer. 
It is much shorter than that of the cascading design. 

Although software can perform a certain degree of optimization during synthesis, the 
optimization tends to be local and a good initial description can make a significant impact on 
the final implementation. This is especially true as the number of input requests increases. 
We can further refine the design by utilizing a tree of 2-to-1 priority encoders inside the 



192 COMBINATIONAL CIRCUIT DESIGN: PRACTICE 

4-to-2 priority encoder. The 16-to-4 priority encoder now becomes a tree consisting of four 
levels of 2-to-1 priority encoders. 

A major drawback of the tree design is the code complexity. Revising the code for differ- 
ent input sizes is very involved. An alternative scalable design is discussed in Chapter 15. 

7.4.4 Barrel shifter revisited 

We discussed the design of a barrel shifter in Section 7.3.5. This design suffers several 
problems, and an alternative is developed in this section. We first examine the design of an 
8-bit rotate-right circuit and then extend it to the complete three-function circuit. 

In Section 7.3.5, the rotating circuit is translated directly from the function table and 
coded by a selected signal assignment statement. The code is repeated in Listing 7.27. 

Listing 7.27 Single-level rotate-right circuit 

l i b r a r y  ieee; 
use ieee. std-logic-1164. a l l  ; 
e n t i t y  rotate-right i s  

port ( 
5 a: in  std-logic-vector (7 downto 0) ; 

amt : in  std-logic-vector (2 downto 0) ; 
y: out std-logic-vector (7 downto 0) 

1; 
end rotate-right ; 

a r c h i t e c t u r e  direct-arch of rotate-right i s  
begin 

10 

with amt s e l e c t  
y < =  a when t l O O O t l ,  

a(l downto 0) & a(7 downto 2) when " O I O t l ,  
a(2 downto 0) & a(7 downto 3) when t t O 1 l " ,  
a(3 downto 0) & a(7 downto 4) when t l l O O " ,  
a(4 downto 0) & a(7 downto 5) when "10ltt, 

m a(5 downto 0) & a(7 downto 6) when ltllOBt, 
a(6 downto 0) & a(7) when o t h e r s ;  - 1 1 1  

I5 a(0) & a(7 downto 1) when t B O O 1 t B ,  

end direct-arch; 

This code implies an 8-bit 8-to-1 multiplexer circuit. In actual implementation the 8-bit 
multiplexer is composed of eight 1-bit 8-to-1 multiplexers, as shown in Figure 7.1 1. 

Although the conceptual diagram seems to be all right, this approach suffers some subtle 
problems. First, a wide multiplexer cannot be effectively mapped to certain device tech- 
nologies. Second, since an input data bit is routed to all multiplexers, the connection wires 
grow on the order of O(n2) .  The wiring area becomes congested as the number of inputs 
grows. Finally, the basic layout of this circuit is a single narrow strip, as in Figure 7.1 1. 
This makes placing and routing more difficult. 

An alternative design is to do the rotating in levels, as shown in Figure 7.12(a). In each 
level, a bit of the amt signal indicates whether the input is passed directly to the output or 
rotated by a fixed amount. Bits 0, 1 and 2 of the amt signal control the routing in levels 0, 
1 and 2 respectively. The amounts are different in each level, which are the 2O, 2l and 22 
positions. After passing three levels, the total number of positions rotated is the summation 



LAYOUT-RELATED CIRCUITS 193 

a(7j 

amt 

Figure 7.11 Barrel shifter using a single level of 8-to-1 multiplexers. 



194 COMBINATIONAL CIRCUIT DESIGN: PRACTICE 

rotate 
right 
1 bit 

rotate rotate 

1 

(a) Block diagram 

amt(') amt(2) v 
(b) Detailed diagram 

Y 

Figure 7.12 Barrel shifter using three levels of 2-to-1 multiplexers. 



LAYOUT-RELATED CIRCUITS 195 

of positions rotated in each level, which is amt (2) *22 + amt (1) *2’ + amt (0) *2O. The 
VHDL code of this revised design is shown in Listing 7.28. 

Listing 7.28 Multilevel rotate-right circuit 

a r c h i t e c t u r e  multi-level-arch of rotate-right i s  
s i g n a l  leo-out , lel-out , lea-out: 

std-logic-vector (7 downto 0) ; 
begin 

5 -- l e v e l  0 ,  s h i f t  0 o r  I b i t  
leo-out <= a(0) & a(7 downto 1) when amt(O)=’l’ e l s e  

-- l e v e l  1 ,  s h i f t  0 or  2 b i t s  
lel-out <= 

a; 

I0 leo-out (1 downto 0) & le0-out (7 downto 2) 
when amt (l)=’l ’ e l s e  

le0-out ; 
-- l e v e l  2 ,  s h i f t  0 o r  4 b i t s  
le2-out <= 

IS  lel-out(3 downto 0) & lel-out(7 downto 4) 
when amt(2)=’1’ e l s e  

lel-out ; 
__ o u t p u t  
y <= le2-out; 

20 end multi-level-arch; 

A more detailed diagram of this design is shown in Figure 7.12(b). Note that rotating a 
fixed amount involves only signal routing and requires no physical components. 

Comparing the two designs is more subtle. The first design needs eight 8-to-1 multi- 
plexers and its critical path is the same as the critical path of an 840-1 multiplexer. The 
multilevel design needs eight 2-to-1 multiplexers at each level, and thus a total of twenty- 
four 2-to-1 multiplexers. Its critical path consists of three levels of 2-to-1 multiplexers. 
The implementation of these multiplexers is technology dependent and there is no clear-cut 
answer on circuit size and propagation delay. The additional wiring area and delay of the 
first design further complicates the comparison. However, when the input becomes large, 
the wiring and routing will become more problematic in the first design. The regular inter- 
connection pattern of the multilevel design can scale better and thus should be the preferred 
choice. The VHDL code of multilevel design is also easier to scale. The amount of revision 
is on the order of O(log, n) rather than O(n),  as in the first design. 

To extend the rotate-right circuit to incorporate the additional logic shift-right and arith- 
metic shift-right functions, we can apply the preprocessing idea from Section 7.3.5. Since 
there are three levels in the new design, preprocessing has to be performed at each level. 
The revised VHDL code is given in Listing 7.29. 

Listing 7.29 Multilevel description of a three-function barrel shifter 

a r c h i t e c t u r e  multi-level-arch of shift3mode i s  
s i g n a l  leO-out , lel-out , le2-out: 

s i g n a l  leO-sin : std-logic ; 
5 s i g n a l  lel-sin: std-logic-vector (1 downto 0) ; 

s i g n a l  le2-sin : std-logic-vector (3 downto 0) ; 

-- l e v e l  0 ,  s h i f t  0 o r  I b i t  

std-logic-vector (7 downto 0) ; 

begin 



COMBINATIONAL CIRCUIT DESIGN: PRACTICE 196 

10 

IS  

20 

25 

30 

with lar s e l e c t  
leo-sin <= ’0’ when t l O O t t ,  

a(7) when tlO1lt, 
a(0) when o t h e r s ;  

leo-out <= leo-sin & a(7 downto 1) when an 

- l e v e l  1 ,  s h i f t  0 or 2 b i t s  
with lar s e l e c t  

181-sin <= 
when 00 I1 , I 1  00 I t  

( o t h e r s  => leo-out (7)) when tlO1lt, 
le0-out (1 downto 0) when others  ; 

when amt (1)= 1 e l s e  

a;  

lel-out <= lel-sin & leO-out(7 downto 2) 

leO-out; 
- l e v e l  2 ,  s h i f t  0 or 4 b i t s  
with lar s e l e c t  

le2-sin <= 
0000 when It 00 It , 

( o t h e r s  => lel-out (7)) when ItOltt, 
lel-out ( 3  downto 0) when others ; 

when amt(2)=’1’ e l s e  
le2-out <= lea-sin & lel-out(7 downto 4) 

lel-out ; 
I o u t p u t  
y <= le2-out; 

(0)=’1’ e l  ! 

35 end multi-level-arch ; 

The preprocessing utilizes three 3-to-1 multiplexers, whose widths are 1, 2 and 4 bits 
respectively, and their overall complexity is similar to the 8-bit 3-to-1 multiplexer used in 
Section 7.3.5. 

7.5 GENERAL CIRCUITS 

The examples of previous sections are focused on specific aspects of design and VHDL 
coding. Several general design examples are presented in this section. 

7.5.1 Gray code incrementor 

The Gray code is a special kind of code in that only a single bit changes between any 
two successive code words. It minimizes the number of transitions when a signal switches 
between successive words. A 4-bit Gray code and its corresponding binary code are shown 
in Table 7.1. A Gray code incrementor is a circuit that generates the next word in Gray code. 
The function table of a 4-bit Gray code incrementor is shown in Table 7.2. A straightforward 
design is simply to translate this table into a selected signal assignment statement, as in 
Listing 7.30. 

Listing 7.30 Initial description of a Gray code incrementor 

l ibrary  ieee; 
use ieee. std-logic-1164. a l l  ; 
use ieee . numeric-std. a l l  ; 



GENERAL CIRCUITS 197 

Table 7.1 4-bit Gray code 

Binary code Gray code 
b3b2blbO g3g2glgO 

OOOO 0000 
0001 0001 
0010 001 1 
001 1 0010 
0100 01 10 
0101 0111 
01 10 0101 
0111 0100 
1000 1100 
1001 1101 
1010 1111 
1011 1110 
1100 1010 
1101 101 1 
1110 1001 
1111 1000 

Table 7.2 Function table of a 4-bit Gray code incrementor 

Gray code Incremented Gray code 

OOOO 
000 1 
001 1 
0010 
01 10 
0111 
0101 
0100 
1100 
1101 
1111 
1110 
1010 
1011 
1001 
1000 

0001 
001 1 
0010 
01 10 
0111 
0101 
0100 
1100 
1101 
1111 
1110 
1010 
1011 
1001 
1000 
OOOO 



198 COMBINATIONAL CIRCUIT DESIGN PRACTICE 

e n t i t y  g-inc i s  
s p o r t (  

g: in std-logic-vector (3 downto 0) ; 
gl : out std-logic-vector ( 3  downto 0) 

1; 
end g-inc ; 

a r c h i t e c t u r e  table-arch of g-inc is 
begin 

10 

with g s e l e c t  
gl <= 11000111 when "OOOO", 

"0010" when "0011" , 
"0110" when "0010" 
llO1llfu when "OllO", 
*801011f when "Olll", 
t l O I O O 1 ~  when "OIOI", 
llllOO1f when "0100" , 
qlllO1lf when "1100" 
It 11 11 when 1101 , 
gllllO1l when ~ ~ 1 1 1 1 "  

2s "1010" when '~lllO~', 
tflO1lll when lqlOIO" 
100 1 when 10 1 1 , 

~ ~ l O O O t ~  when "1001", 
l l o O O O f l  when o t h e r s ;  - "1 000" 

I5 ttOO1lte when "OOOl", 

mend table-arch; 

7.0 

~ 

Although the VHDL code is simple, it is not scalable because the needed revision is 
on the order of 0(2n). Unfortunately, there is no easy algorithm to derive the next Gray 
code word directly. Since an algorithm exists for conversion between Gray code and binary 
code, one possible approach is to derive it indirectly by using a binary incrementor. This 
design includes three stages: 

1. Convert a Gray code word to the corresponding binary word. 
2. Increment the binary word. 
3. Convert the result back to the Gray code word. 

The binary-to-Gray conversion algorithm is based on the following observation: the ith bit 
(i.e., 9%) of the Gray code word is '1' if the ith bit and (i+l)th bit (i.e., bi and b,+l )  of the 
corresponding binary word are different. This observation can be translated into a logic 
equation: 

We can verify this equation by using the 4-bit code of Table 7.1 : 

gi = b, 63 bi+l 



GENERAL CIRCUITS 199 

The equation for Gray-to-binary conversion can be obtained by manipulating the previous 
equation: 

We can also expand bi+l on the right-hand side recursively. For example, a 4-bit code can 
be expressed as 

bi = gi @ bZ+l 

b3 = g3 @ 0 = g3 
b2 = 92 @ b3 = g2 @ g3 
bl = 91 a3 b2 = g1 @ g2 @ g3 
bo = go a3 bl = go @ g1 g2 @ g3 

Once we h o w  the conversion algorithm, we can derive the VHDL code. Note that 
the equations for the Gray-to-binary conversion are very similar to the reduced-xor-vector 
function discussed in Section 7.4.2. The VHDL code of the new design is shown in List- 
ing 7.31. We use the compact vector form, similar to that in the shared-compact-arch 
architecture of Listing 7.21, for Gray-to-binary and binary-to-Gray code conversions. 

Listing 7.31 Compact description of a Gray code incrementor 

a r c h i t e c t u r e  compact-arch of g-inc i s  
cons tant  WIDTH: integer := 4; 
s i g n a l  b, bl: std-logic-vector(W1DTH-1 downto 0) ; 

begin  
s -- Gray to  b i n a r y  

b <= g xor ('0' & b(W1DTH-1 downto 1)); 
- b i n a r y  i n c r e m e n t  
bl <= std-logic-vector((unsigned(b)) + 1); 
- b i n a r y  t o  Gray 

10 gl<= bl xor ('0' & bl(W1DTH-1 downto 1)); 
end compact-arch ; 

The new code is independent of the input size and the revision is on the order of O( 1). 
Since each part can easily be identified, this design allows us to utilize the alternative 
implementation for the adder and Gray-to-binary circuit. If performance is an issue, we 
can replace them with faster but larger circuits. 

7.5.2 Programmable priority encoder 

In a regular priority encoder, the order of priority for each request is fixed. For example, 
the order of eight requests, r (71, . . . , r (01, is normally r (71, r (61, . . . , r (1) and r (0). 
Some applications need to dynamically change the priority of a request to give fair access 
to each request. In this subsection, we consider a programmable 8-to-3 priority encoder in 
which the priority can be assigned in a wrapped-around fashion. In addition to the eight 
regular request signals, the circuit also has a 3-bit control signal, c, which specifies the 
request that has the highest priority, For example, if c is " O l l " ,  r(3) has the highest 
priority and the order of the requests is r (3 ) ,  r (2 ) ,  r ( l ) ,  r(O), r (7 ) ,  . . . , r (4) .  A 
brute-force design is to utilize eight regular priority encoders and one 8-to- 1 multiplexer. 
Each priority encoder has a fixed request order, and the multiplexer passes the desired code 
to the output. While this design is straightforward, it is not very efficient. 



200 COMBINATIONAL CIRCUIT DESIGN: PRACTICE 

. I 

I U 

r8/ I lower-active 

- 
3 

t Y  

I / / , active 
8 1 

Figure 7.13 Block diagram of a programmable priority encoder. 

A better design is shown in Figure 7.13. This design first uses the c signal to generate 
two &bit masks, which are used to clear the upper and lower parts of the requests. For 
example, if c is "01 l", the lower mask is "000001 11" and the upper mask is "1 11 1 lOOO", 
the inverse of the lower mask. We apply the two masks to the original requests and obtain 
two new masked requests, in which the lower and upper parts are cleared. For example, if a 
request is "1 101 101 l", the two masked requests will be "1 101 1000" and "OOOOOO11". If the 
active signal is asserted in the lower group, it means that there is a request from that group 
and its code will be routed to the final output. Otherwise, the code from the upper priority 
encoder will be routed to the output. If we continue the previous example, the codes from 
the upper and lower priority encoders are " 11 1" and "OOl", and since there is a request from 
the lower group, "001" will be routed to the final output. The VHDL code describing this 
design is shown in Listing 7.32. 

Listing 7.32 Programmable priority encoder 

l i b r a r y  ieee ; 
use ieee. std-logic-1164. a l l  ; 
e n t i t y  fair-prio-encoder i s  

port ( 
5 r : in  std-logic-vector (7 downto 0) ; 

c : in  std-logic-vector ( 2  downto 0) ; 
code: out  std-logic-vector (2 downto 0) ; 
active : out std-logic 

> ;  
10 end f air-prio-encoder ; 

a r c h i t e c t u r e  arch of fair-prio-encoder i s  

std-logic-vector (7 downto 0) ; 

std-logic-vector (2  downto 0) ; 

s i g n a l  mask , lower-r , upper-r: 

IS s i g n a l  lower-code , upper-code : 

s i g n a l  lower-active : std-logic ; 

with c s e l e c t  
begin 

m mask <= ~ ~ 0 0 0 0 0 0 0 1 ~ '  when "000" , 
8fOOOOO011t~ when 8qO011u,  



GENERAL CIRCUITS 201 

~ ~ 0 0 0 0 0 1 1 1 1 ~  when llOIOaf, 
I1 00001 11 1 It when "01 1 
It 0001 11 11 It when It 1 0 0 ~ ~  , 
110011111111 when 1u10118, 
"01111111" when "110" 
~ ~ 1 1 1 1 1 1 1 1 1 1  when o t h e r s ;  

lower-r <= r and mask; 
upper-r <= r and ( n o t  mask); 
lower-code <= "111" when lower-r (7)= '1 ' e l s e  

"110" when lower-r (6)= 1 ' e l s e  
tllO1lf when lower-r(5)='12 e l s e  

when lower-r (4)='1' e l s e  
"011" when lower-r (3)= ' 1 e l s e  
"010" when lower-r (2 )=  1 e l s e  
1100111 when lower-r (1)= '1 e l s e  

upper-code <= "111" when upper-r (711 '1' e l s e  
lullO1l when upper-r(6)='1' e l s e  
"101" when upper-r(5)='1' e l s e  
"100" when upper-r(4)='1 e l s e  
"011" when upper-r (3);. '1 e l s e  
llOIOtl when upper-r (2 )=  '1 e l s e  
001 It when upper-r ( 1) = 1 ' e l s e  
000 ; 

000 ; 

lower-active <= lower-r (7) or lower-r (6) or lower-r (5) or 
lower-r (4) or lower-r (3) or lower-r (2)  or 
lower-r (1) or lower-r (0) ; 

code <= lower-code when lower-active='l , e l s e  

active <= r(7) or r(6) or r(5) or r(4) or 
upper-code; 

r(3) or r(2) or r(1) or r(0); 
end arch ; 

The VHDL code is much more efficient than the first design. 

7.5.3 Signed addition with status 

The definition of the VHDL addition operator is very simple. It takes two operands and 
returns the summation. In a complex digital system, such as a processor, adders frequently 
need additional status signals and carry signals. Status signals show various conditions 
of an addition operation, including zero, sign and overflow. Zero status indicates whether 
the result is zero, sign status indicates whether the result is a positive or negative number, 
and overflow status indicates whether overflow occurs during operation. Carry signals pass 
information between successive additions. For example, if we want to construct a 64-bit 
adder by using 8-bit adders, we have to utilize the carry signals to convey the relevant carry 
information. Carry signals include the carry-in signal, which is an input that comes from 
the previous stage, and the carry-out signal, which is an output signal to be passed to the 
next stage. We consider the addition of two signed integers in this subsection. 

The derivation of status signals is trickier than it first appears because of the overflow 
condition. Overflow affects the determination of sign and zero status and thus must be de- 
termined first. Our derivation of overflow condition is based on the following observations: 



202 COMBINATIONAL CIRCUIT DESIGN: PRACTICE 

0 If the two operands have different signs, overflow can never occur since the addition 
of a positive number and a negative number will always decrease the magnitude. 

0 If the two operands and the result have the same sign, overflow does not occur since 
the result is still within the range. 

0 If the two operands have the same sign but the result has a different sign, overflow 
occurs. The sign change indicates that the result goes beyond the positive or negative 
boundary and thus is beyond the range. We can verify this by checking the binary 
wheel of Figure 7.6. 

Let the sign bits of two operands and summation be Sar Sb and sa respectively. We can 
translate our observation into the following logic expression: 

overflow = ( s a  * sb * 51,) + (s; * S; . s,) 

Once we know the overflow condition, we can determine the zero condition and the sign. 
Because of the potential of overflow, the addition result may not be 0 even if the summation 
output is 0. For example, if we add two 4-bit inputs, "1000" and "lOOO", the summation 
output is "0000" because of overflow. Thus, the zero condition should be asserted only if 
the summation output is 0 and there is no overflow. 

From our observation on overflow, it is clear that the sign bit of the summation output 
is not necessarily the sign of a real addition result. In the example above, the sign bit of 
summation "0000" is '0' while the addition result should be negative. Thus, the sign bit of 
the addition result is the same as the sign bit of the summation output only if no overflow 
occurs. It should be inverted otherwise. 

Carry signals can be handled by using two extra bits in the internal signals. One bit will 
be appended to the left to incorporate the carry-out signal. The other bit will be appended 
to the right to inject the carry-in signal, as explained in Section 7.3.1. The complete VHDL 
code is shown in Listing 7.33. 

Listing 7.33 Signed addition with status 

l ibrary  ieee ; 
use ieee. std-logic-1164. a l l  ; 
use ieee. numeric-std. a l l  ; 
e n t i t y  adder-status i s  

5 port(  
a,b: in std-logic-vector (7 downto 0) ; 
cin: in std-logic; 
sum: out std-logic-vector (7 downto 0) ; 
cout , zero, overflow, sign: out std-logic 

10 ) ; 
end adder-status; 

archi tecture  arch of adder-status i s  
s i g n a l  a-ext , b-ext , sum-ext : signed (9 downto 0) ; 

a l i a s  sign-a: std-logic i s  a-ext (8) ; 
a l i a s  sign-b: std-logic i s  b-ext (8) ; 
a l i a s  sign-s : std-logic i s  sum-ext (8) ; 

IS s ignal  ovf: std-logic; 

begin 
20 a-ext <= signed('0' 8 a & '1'); 

b-ext <= signed('0' & b & cin); 
sum-ext <= a-ext + b-ext; 



GENERAL CIRCUITS 203 

Y7 Ys Y5 94 Y3 ~2 y1 YO product 

Figure 7.14 Multiplication as a summation of aibj terms. 

ovf <= (sign-a and sign-b and ( n o t  sign-s)) or 
( ( n o t  sign-a) and ( n o t  sign-b) and sign-8); 

U c o u t  <= s u m - e x t ( 9 ) ;  
sign <= sum-ext (8) when ovf=’O’ e l s e  

z e r o  <= ’1’ when ( s u m - e x t ( 8  downto l > = O  and ovf=’O’) e l s e  
not sum-ext  (8) ; 

’0’; 
M overflow <= ovf ; 

sum <= s t d - l o g i c - v e c t o r ( s u m _ e x t  (8 downto 1)) ; 
end arch; 

7.5.4 Combinational adder-based multiplier 

A multiplier is a fairly complicated circuit. The synthesis of the VHDL multiplication 
operator depends on the individual software and the underlying target technology, and 
cannot always be done automatically. In this example, we study a simple, portable, though 
not optimal, combinational adder-based multiplier. 

The multiplier is based on the algorithm we learned in elementary school. The multi- 
plication of two 4-bit numbers is illustrated in Figure 7.14, which are aligned in a specific 
two-dimensional pattern. This algorithm includes three tasks: 

1. Multiply the digits of the multiplier (b3, bz, bl and bo of Figure 7.14) by the multipli- 
cand ( A  of Figure 7.14) one at a time to obtain bpA,  bz*A, bl*A and bo*A. Since 
bi is a binary digit, it can only be 0 or 1, and thus bi*A can only be 0 or A. The bi*A 
operation becomes bitwise and operation of bi and the digits of A; that is, 

bi*A = (a3*bi, az*bi, al*bi, ao*bi) 

2. Shift bi*A to left i positions. 
3. Add the shifted bi*A terms to obtain the final product. 
The VHDL code of an 8-bit multiplier based on this algorithm is shown in Listing 7.34. 

We first construct an 8-bit vector, bibibibibibibibi, for each bi to facilitate the bitwise and 
operation. The vector is used to generate shifted bi*A terms. Note that padding 0’s are 
inserted around bi*A to form a 16-bit signal. The shifted bi*A terms are then summated 
by seven adders, which are arranged as a tree to increase performance, to obtain the final 
result. 



204 COMBINATIONAL CIRCUIT DESIGN: PRACTICE 

Listing 7.34 Initial description of an adder-based multiplier 

l i b r a r y  i e e e  ; 
use  i e e e .  s t d - l o g i c - 1 1 6 4 .  a l l  ; 
use  i e e e .  n u m e r i c - s t d .  a l l  ; 
e n t i t y  m u l t 8  is 

5 p o r t (  
a ,  b :  i n  s t d - l o g i c - v e c t o r ( 7  downto 0); 
y :  o u t  s t d - l o g i c - v e c t o r  (15 downto 0) 

1; 
end m u l t 8 ;  

a r c h i t e c t u r e  combl-arch  of m u l t 8  i s  
10 

c o n s t a n t  W I D T H  : i n t e g e r  : =8;  
s i g n a l  a u ,  bvO, b v l ,  b v 2 ,  b v 3 ,  b v 4 ,  b v 5 ,  b v 6 ,  bv7:  

s i g n a l  p0 , p l  , p2  , p 3  , p4  , p5  ,p6  , p 7 ,  p r o d :  
unsigned(W1DTH-1 downto 0); 

unsigned(2*WIDTH-l downto 0) ; 
IS 

begin  
a u  <= u n s i g n e d ( a 1 ;  
bvO <= ( o t h e r s = > b  (0) 1 ; 
b v l  <= ( o t h e r s = > b  (1) 1 ; 
bv2 <= ( o t h e r s = > b  ( 2 )  1 ; 
bv3 <= ( o t h e r s = > b  (3) 1 ; 
bv4 <= ( o t h e r s = > b ( 4 ) ) ;  
bv5 <= ( o t h e r s = > b  (5) 1 ; 
bv6 <= ( o t h e r s = > b  ( 6 ) )  ; 
bv7 <= ( o t h e r s = > b ( 7 ) ) ;  
PO < = ~ ~ 0 0 0 0 0 0 0 0 ~ 1  & (bvO and a u ) ;  
p l  < = l l O O O O O O O t ~  & ( b v l  and  au) & l l O " ;  
p2 ~ = ~ ~ O O O O O O ~ ~  & (bv2  and  a u )  & "00"; 
p3 < = 1 1 0 0 0 0 0 ~ ~  & (bv3  and  a u )  & "000"; 
p4 < = ~ 8 0 0 0 0 ~ 1  & (bv4  and  a u )  & " O 0 O O 1 ' ;  
p5 < = f l O O O "  & (bv5  and  a u )  & "00000" ;  
p6 <=*10011 & (bv6  and  au) & "000000"; 
p7 <=11018 & (bv7  and a u )  & "0000000" ;  
p r o d  <= ((pO+pl>+(p2+p3))+((p4+p5)+(~6+~7)); 
y <= s t d - l o g i c - v e c t o r ( p r o d ) ;  

end  combl -a rch ;  

Adders are the major components of this design. For a circuit with an n-bit multiplicand 
and an n-bit multiplier, the product has 2n bits. The shifted bi*A has to be extended to 2n 
bits, and thus the design needs n - 1 2n-bit adders. The code can easily be expanded for a 
larger multiplier, and the needed revision is on the order of O(n).  

One way to reduce the size of this circuit is to add shifted bi*A terms in sequence. This 
reduces the width of the adder to n + 1 bits. Operation of the new design is illustrated in 
Figure 7.15. 

We first obtain bo*A and form the first partial product pp0. To accommodate the carry- 
out of future addition, one extra bit is appended to the left of bo*A. Note that the LSB 
of prod (i.e., prod(0)) is the same as the LSB of pp0 (i.e., ppO(O)), and the ppO(0) bit 
has no effect on the remaining addition operations. We need only add the upper bits of the 
pp0 to bl*A to form the next partial sum, ppl. Note that prod(1) is same as ppl(O), and 
ppI(0) has no effect on the remaining additions. We can repeat the process to obtain other 



GENERAL CIRCUITS 205 

X 
a3 a2 a1 a0 multiplicand 
b3 bz bl bo multiplier 

partial product pp2 

partial product pp3 

Figure 7.15 Multiplication as successive summation. 

partial sums in sequence. This design still needs n - 1 adders, but the width of the adders 
is decreased from 2 n  to n + 1, about one half of the original size. The VHDL code of an 
8-bit multiplier based on this algorithm is shown in Listing 7.35. 

Listing 735 More efficient description of an adder-based multiplier 

a r c h i t e c t u r e  comb2-arch of mult8 i s  
c o n s t a n t  WIDTH:  i n t e g e r  :=8; 
s i g n a l  a u ,  bvO, bv l  , bv2,  bv3 ,  bv4 ,  bv5 ,  bv6 ,  bv7: 

unsigned(W1DTH-1 downto 0) ; 

u n s i g n e d  (WIDTH downto 0) ; 
5 s i g n a l  pp0 ,pp1  ,pp2 ,pp3  ,pp4  , P P ~  , P P ~  , P P ~ :  

s i g n a l  p r o d :  u n s i g n e d  (2*WIDTH-l downto 0) ; 
begin  

au  <= u n s i g n e d ( a ) ;  
bvO <= ( o t h e r s = > b  (0) ; 
b v l  <= ( o t h e r s = > b ( l ) ) ;  
bv2 <= ( o t h e r s = > b  ( 2 ) )  ; 
bv3 <= ( o t h e r s = > b  (3) 1 ; 
bv4 <= ( o t h e r s = > b ( 4 ) )  ; 
bv5 <= ( o t h e r s = > b ( 5 ) ) ;  
bv6 <= ( o t h e r s = > b ( 6 )  1 ; 
bv7 <= ( o t h e r s = > b ( 7 ) ) ;  
pp0 <= 1'0" & (bvO and  a u ) ;  
p p l  <= ("Oil & ppO(W1DTH downto 1) )  + ( " O ' l  & ( b v l  and  a u ) ) ;  
pp2 <= ( " O t t  & ppl(W1DTH downto 1))  + ( I 1 O t t  & (bv2  and  a u ) ) ;  
pp3 <= & pp2(WIDTH downto 1 ) )  + ( I t O t '  & (bv3  and  a u ) ) ;  
pp4 <= (91011 & pp3(WIDTH downto 1) )  + ("0" & (bv4  and  a u ) ) ;  
pp5 <= (1u081 & pp4(WIDTH downto 1))  + (110t8 & (bv5  and  a u ) ) ;  
pp6 <= ( t a O l l  & pp5(WIDTH downto 1 ) )  + ( I t O "  & (bv6  and  a u ) ) ;  
pp7 <= & ppG(W1DTH downto 1))  + ( ' lo l l  & (bv7  and  a u ) ) ;  
p rod  <= pp7 & p p 6 ( 0 )  & p p 5 ( 0 )  k pp4(0 )  & pp3(0 )  & 

pp2(0 )  & p p l ( 0 )  k ppO(0) ;  



206 COMBINATIONAL CIRCUIT DESIGN: PRACTICE 

3-bit 

diff(0) 

diff(1) 

diff(2) 

diff(3) 

levl-0 

- 4 - l  
lev2 4-bit 

adder 
diff(4) 2-bit lefl-4 
diff(5) adder 

dii(6) 2-bit 
diff(7) 

U 

Figure 7.16 Block diagram of a population counter. 

<= s t d - l o g i c - v e c t o r  ( p r o d )  ; 
end comb2-arch ; 

7.5.5 Hamming distance circuit 

A Hamming distance of two words is the number of bit positions in which the two words 
differ. For example, the Hamming distance of two 8-bit words "0001001 1" and "10010010" 
is 2 since the bits at position 0 (LSB) and position 7 (MSB) are different. The Hamming 
distance is used in some error correction and data compression applications. This example 
considers a circuit that calculates the Hamming distance of two 8-bit inputs. 

Our design has two basic steps. The first step determines the bits that are different and 
marks them as '1'. The second step counts the number of 1's in the word, a function known 
as a population counter. For example, consider the inputs "0001001 1" and "10010010". 
The first step returns "10000001" since the bits at positions 0 and 7 are different, and the 
second step returns 2 since there are two 1's in the word. 

We can implement the first step by using a simple bitwise xor operation. Recall that the 
1-bit xor function returns '1' only if the input is "01" or "10". It can be interpreted that the 
function returns ' 1 ' if two inputs are different. Thus, after applying a bitwise xor operation, 
we can mark all the bits that are different. 

Design of the population counter is more difficult. Our first design is shown in Fig- 
ure 7.16. It counts the number of 1's by stages. In the first level of the circuit, we divide the 
8 bits into four pairs and add the 1's in each pair. Four 2-bit adders are needed to perform 
the operation. In the second level, we pair the results and add them again. Two 3-bit adders 
are needed. The process is repeated one more time in the third level to obtain the final 
result. The VHDL code is shown in Listing 7.36. 

Listing 736 Initial description of a Hamming distance circuit 

l i b r a r y  ieee ; 
use i e e e .  s t d - l o g i c - 1 1 6 4 .  a l l  ; 
use ieee. n u m e r i c - s t d .  a l l  ; 
e n t i t y  hamming i s  

s p o r t (  
a ,  b :  i n  s t d - l o g i c - v e c t o r  (7 downto 0 )  ; 



GENERAL CIRCUITS 207 

y : out  s t d - l o g i c - v e c t o r  (3 downto 0) 
1; 

end hamming ; 

a r c h i t e c t u r e  e f f i - a r c h  of hamming i s  
10 

s i g n a l  d i f f  : u n s i g n e d  (7  downto 0) ; 
s i g n a l  l evO-0 ,  l e v 0 - 2 ,  l e v 0 - 4 ,  l e v 0 - 6  : 

u n s i g n e d  (1 downto 0) ; 
I5 s i g n a l  l e v l - 0  l e v l - 4 :  u n s i g n e d ( 2  downto 0); 

s i g n a l  l e v 2  : u n s i g n e d  (3  downto 0) ; 

d i f f  <= u n s i g n e d ( a  xor b); 
levO-0 <= ( ' O j  & d i f f ( 0 ) )  + ( j 0 8  & d i f f ( 1 ) ) ;  

20 l ev0 -2  <= ( j O J  & d i f f ( 2 ) )  + ( j O j  & d i f f ( 3 ) ) ;  
l ev0 -4  <= ( ' O j  & d i f f ( 4 ) )  + ( ' O j  & d i f f ( 5 ) ) ;  
l ev0 -6  <= ('0' & d i f f ( 6 ) )  + ( j O j  & d i f f ( 7 ) ) ;  
l e v i - 0  <= ( j O J  & l e v o - 0 )  + ( J 0 2  & l e v 0 - 2 ) ;  
l e v l - 4  <= ( ' O j  & l e v 0 - 4 )  + ('0) & l e v 0 - 6 ) ;  

y <= s t d - l o g i c - v e c t o r  ( l e v 2 )  ; 

begin 

25 1ev2  <= ( j O j  & l e v l - 0 )  + ( l O 8  8 l e v l - 4 ) ;  

end e f  f i - a r c h  ; 

Although this population counter design is fairly efficient, the code is somewhat tedious. 
An alternative design is to use a clever shifting and masking scheme to rearrange the input 
and utilize a fixed-size 8-bit adder at each level. Assume that the 8-bit input to the population 
counter is d7ded5d4d3d2dldO. The algorithm is summarized below. 

0 Level 0. We first split and rearrange the original input into two words, Od60d40d2OdO 
and Od70d50d30d1, and then add them by an 8-bit adder. Assume that the result is 
e7e6e5e4e3ezeleo. Because of the locations of the O's, this adder performs essentially 
four 2-bit additions, and eleo, e3e2,e5e4 and e7e6 are do + d l ,  d2 + d3, dq + d5 and 
d6 + d7 respectively. 

0 Level I. We perform splitting and addition operations similar to those at level 0. 
However, the input now is split into OOese400eleo and OOe7e600e3ez. The result 
should be in the form of f7f6f5f4f3f2fifo.  Note that f 7  and f 3  should be 0. The 
adder actually performs two 3-bit additions, and f ~ f i f o  and f 6 f 5 f 4  are eleo + 8362 

and e5e4 + e7e6 respectively. 
0 Level 2. We repeat the same operation except that the input is split into OOOOf3f2 f1  fo 

and 0 0 0 0 f 7 f 6 f 5 f 4 .  The result should be in the form of OOOOg3gzglgo. 

The VHDL code based on this design is shown in Listing 7.37. The splitting and rear- 
rangement of the input can be done by masking and shifting. For example, the mask in level 0 
is mask0, "01010101". After performing bitwise and operation of d7d6dSd4d3dzdldO and 
mask0, we obtain the first input word, Od60d40dzOdo. We can obtain the second input 
word in a similar way after first shifting d7ded5d4d3d2dldO to the right one position. The 
operations are similar at levels 1 and 2 but have different masking patterns and amounts of 
shifting. 

Listing 7.37 Compact description of a Hamming distance circuit 

a r c h i t e c t u r e  compact -a rch  of hamming i s  
s i g n a l  d i f f  , levO l e v l  , l e v 2 :  u n s i g n e d ( 7  downto 0); 
cons tant  M A S X O  : uns igned  ( 7  downto 0) : = "01010101" ; 
cons tant  M A S X l :  u n s i g n e d ( 7  downto 0) : =  "00110011";  



208 COMBINATIONAL CIRCUIT DESIGN: PRACTICE 

s cons tant  MASK2: unsigned(7 downto 0) := t t O O O O 1 l l l t t ;  

begin 
diff <= unsigned(a xor b); 
levO <= (diff and MASKO) + 

levl <= (levO and MASK11 + 

lev2 <= (levl and MASK21 + 

10 ( ( ' O ' &  diff(7 downto 1)) and MASKO); 

( ( I t O O t t  & levO(7 downto 2 ) )  and MASK1); 

( ( t ~ O O O O ~ t  & levl(7 downto 4)) and MASKS); 
IS y <= std-logic-vector (lev2 (3 downto 0)) ; 

end compact-arch; 

This design requires more adder bits than the first version. However, its code is more 
compact and the needed revision is on the order of O(log, n). 

7.6 SYNTHESIS GUIDELINES 

0 Operators can be shared in mutually exclusive branches by proper routing of the input 

0 Many operations have certain common functionality. The hardware resource can be 

operands andor result. It is more beneficial for complex operators. 

shared by these operations. 

0 RT-level code can outline the general layout of the circuit. A tree- or rectangle- 
shaped description can help the synthesis process and placement and routing process 
to derive a more efficient circuit. 

7.7 BIBLIOGRAPHIC NOTES 

Developing efficient design and VHDL codes requires the insight and in-depth knowledge of 
the problem at hand. The digital systems texts, Digital Design Principles and Practices by 
J. E Wakerly and Contemporary Logic Design by R. H. Katz, provide detailed discussion on 
the construction of many commonly used parts, such as decoders, encoders, comparators and 
adders. Bibliography in Chapter 15 provides more references on the design and algorithms 
of multiplier and arithmetic functions. 

Problems 

7.1 Consider an arithmetic circuit that can perform four operations: a+b, a-b, a+l and 
a-1, where a and b are 16-bit unsigned numbers and the desired operation is specified by 
a 2-bit control signal, ctrl. 

(a) Design the circuit using two adders, one incrementor and one decrementor. Derive 

(b) Design the circuit using only one adder. Derive the VHDL code. 
(c) Synthesize the two designs with an ASIC device. Compare the areas and perfor- 

(d) Synthesize the two designs with an FPGA device. Compare the areas and perfor- 

the VHDL code. 

mances. 

mances. 



PROBLEMS 209 

7.2 Design a circuit that converts an 8-bit signed input to 8-bit sign-magnitude output 
(where the MSB is the sign bit and the remaining 7 bits are magnitude). Use a minimal 
number of relational and arithmetic operators in your design. Draw the top-level diagram 
and derive the VHDL code. 

7.3 Extend the dual-mode comparator of Section 7.3.2 to include sign-magnitude mode. 
Use only one 7-bit comparator in your design. Derive the VHDL code. 

7.4 Consider a 16-bit shifting circuit that can perform rotating right or rotating left. Use 
selected signal assignment statements similar to that in Section 7.3.5 to implement the 
shifting function. 

(a) Design the circuit using one rotate-right circuit, one rotate-left circuit and one 
2-to-1 multiplexer to select the desired result. Derive the VHDL code. 

(b) Design the circuit using one rotate-right circuit with a pre- and post-processing 
reversing circuit. The reversing circuit either passes the original input or reverses 
the input bit-wise (e.g., if a 4-bit input ~ ~ 3 ~ 2 a 1 ~ 0  is used, the reversed output 
becomes aoala2a3). Derive the VHDL code. 

(c) Draw block diagrams of the two designs and analyze and compare their size and 
performance. 

(d) Synthesize the two designs with an ASIC device. Compare the areas and perfor- 
mances. 

(e) Synthesize the two designs with an FPGA device. Compare the areas and perfor- 
mances. 

Consider a reduced-xor-vector function with 16 inputs. Design the circuit using a 

We can further refine the tree priority encoder in Section 7.4.3 by using 2-to-1 priority 

(a) Design a tree-structured 16-to-4 priority encoder using 2-to-1 priority encoders. 
The design should have four levels. Draw the block diagram and derive the VHDL 
code accordingly. 

(b) Synthesize the new design and the two designs in Section 7.4.3 with an ASIC 
device. Compare the areas and performances. 

(c) Synthesize the new design and the two designs in Section 7.4.3 with an FPGA 
device. Compare the areas and performances. 

7.7 A leading zero counting circuit counts the number of consecutive 0’s of an input. 
Consider a circuit with a 16-bit input. 

(a) Design the circuit using one conditional signal assignment statement and derive 
the VHDL code. 

(b) Derive a smaller 4-bit leading-zero counting circuit first. Design a 16-bit treelike 
leading-zero counting circuit using 4-bit counting circuits. Derive the VHDL 
code. 

(c) Synthesize the two designs with an ASIC device. Compare the areas and perfor- 
mances. 

(d) Synthesize the two designs with an FPGA device. Compare the areas and perfor- 
mances. 

Design a 16-bit rotate-left shifting circuit using the multilevel structure discussed in 

7.5 
parallel-prefix structure similar to that of Figure 7.8(b) and derive the VHDL code. 

7.6 
encoders. 

7.8 
Section 7.4.4. 



21 0 COMBINATIONAL CIRCUIT DESIGN: PRACTICE 

7.9 Repeat Problem 7.4, but design the shifting circuit using the multilevel structure 
discussed in Section 7.4.4. Compare the area and performance with those in Problem 7.4. 

7.10 We define the distance from the Gray code word a to the Gray code word b as the 
number of transitions from code word a to code word b. For example, consider the 4-bit 
Gray code words "0101" and "1 11 1" as a and b. The distance from a to b is 4 since four 
transitions are needed (i.e., "0101" + "0100" =+ "1100" =+ "1101" =+ l'llll'l). Design a 
circuit to calculate the distance of two 4-bit Gray code words and derive the VHDL code. 

7.11 Although the code is compact, the synthesize result of the compact-arch archi- 
tecture of the Gray code incrementor may not be more efficient than the table-arch 
architecture. 

(a) Synthesize the two designs with an ASIC device. Compare the areas and perfor- 
mances. 

(b) Extend the two designs for 8-bit Gray code. The table-arch architecture now 
has 28 entries. You may need to write a program (using C, Java etc.) to generate 
the VHDL code. Synthesize the two 8-bit designs with an ASIC device. Compare 
the areas and performances. 

(c) Synthesize the two 8-bit designs with an FPGA device. Compare the areas and 
performances. 

(d) If you have enough hardware resources, repeat parts (b) and (c) by gradually 
increasing the design to 10-, 12-, 14- and 16-bit inputs. 

7.12 Design a priority encoder that returns the codes of the highest and second-highest 
priority requests. The input is an 8-bit req signal and the outputs are codel, code2, 
valid1 and valid2, which are the 3-bit codes and 1-bit valid signals of the highest and 
second-highest priority requests respectively. 

7.13 Many instrument panels use binary-coded-decimal (BCD) format, in which 10 dec- 
imal digits are coded by using 4 bits. During an addition operation, if the sum of a digit 
exceeds 9, 10 will be subtracted from the current digit and a carry is generated for the next 
digit. Design a 3-digit BCD adder which has two 12-bit inputs, representing two 3-digit 
BCD numbers, and an output, which is a 4-digit (16-bit) BCD number. Draw the top-level 
diagram and derive the VHDL code accordingly. 

7.14 In an analog amplifier, the output voltage becomes saturated (i.e., reaching the most 
positive voltage, +Vcc, or the most negative voltage, -Vcc) when the output exceeds the 
maximal range. In some digital signal processing applications, we wish to design an 8-bit 
signed saturation adder that mimics the behavior of an analog amplifier; i.e., if the addition 
result overflows, the result becomes the most positive or the most negative numbers. Draw 
the top-level diagram and derive the VHDL code accordingly. 

7.15 The two multipliers in Section 7.5.4 utilize seven 16-bit adders and seven 8-bit 
adders respectively. 

(a) Determine the critical path for both designs. 
(b) In an area-optimized adder, the propagation is proportional to the number of bits 

in the adder (Le., on the order of O(n)).  Assume that both designs utilize this 
kind of adder. Compare the propagation delays for the two designs. 

7.16 Revise the designs in Section 7.5.4 to accommodate inputs in signed integer format. 
Derive the VHDL code. (Hint: An 8-bit 2's-complement number, a7agasa4a3a2ala0, has 
a value of -a7*27 + a6*P + a5*25 + . . + ao*20.) 



PROBLEMS 211 

7.17 Design an 8-bit combinational divider based on a long-division algorithm, the one 
you learned in elementary school. The inputs are %bit dividend and divisor in unsigned 
format, and the outputs are 8-bit quotient and remainder. Derive the VHDL code. (Hint: 
Division can be done by a sequence of “comparing and subtracting” operations. This 
operation takes two inputs, a and b, and returns a if a < b and returns a - b otherwise.) 

7.18 One way to implement the population counter in Section 7.5.5 is to exhaustively 
construct a function table and use a single selected signal assignment statement to implement 
the table. 

(a) Derive the VHDL code for an 8-bit population counter based on function table 
design. You may need to write a program (using C, Java etc.) to generate the 
VHDL code. 

(b) Synthesize this design and the other two designs in Section 7.5.5 with an ASIC 
device. Compare the areas and performances. 

(c) Synthesize this design and the other two designs in Section 7.5.5 with an FPGA 
device. Compare the areas and performances. 

(a) Repeat parts (a) to (c) for 10- and 1Zbit inputs. 



This Page Intentionally Left Blank



CHAPTER 8 

SEQUENTIAL CIRCUIT DESIGN: 
PRINCIPLE 

A sequential circuit is a circuit that has an internal state, or memory. A synchronous 
sequential circuit, in which all memory elements are controlled by a global synchronizing 
signal, greatly simplifies the design process and is the most important design methodology. 
Our focus is on this type of circuit. In this chapter and the next chapter, we examine the 
VHDL description of basic memory elements and study the design of sequential circuits 
with a “regular structure.” Chapters 10, 11 and 12 discuss the design of sequential circuits 
with a “random structure” (finite state machine) and circuits based on register transfer 
methodology. 

8.1 OVERVIEW OF SEQUENTIAL CIRCUITS 

8.1.1 Sequential versus combinational circuits 

A combinational circuit, by definition, is a circuit whose output, after the initial transient 
period, is a function of current input. It has no internal state and therefore is “memoryless” 
about the past events (or past inputs). A sequential circuit, on the other hand, has an internal 
state, or memory. Its output is a function of current input as well as the internal state. The 
internal state essentially “memorizes” the effect of the past input values. The output thus is 
affected by current input value as well as past input values (or the entire sequence of input 
values). That is why we call a circuit with internal state a sequential circuit. 

RTL Hardware Design Using VHDL: Coding for Eflciency, Portability. and Scahbility. By Pong P. Chu 
Copyright @ 2006 John Wiley & Sons, Inc. 

21 3 



21 4 SEQUENTIAL CIRCUIT DESIGN: PRINCIPLE 

(a) D latch @) positive-edge-triggered D FF 

reset clk q* 

1 - 0  
clk qt 

q 

q reset O l q  
t d  O f d  

(c) negative-edge-triggered D FF (d) D FF with asynchronous reset 

Figure 8.1 D latch and D FE. 

8.1.2 Basic memory elements 

We can add memory to a circuit in two ways. One way is to add closed feedback loops 
in a combinational circuit, in which the.memory is implicitly manifested as system states. 
Because of potential timing hazards and racing, this approach is very involved and not 
suitable for synthesis. 

The other way is to use predesigned memory components. All device libraries have cer- 
tain memory cells, which are carefully designed and thoroughly analyzed. These elements 
can be divided into two broad categories: latch andfiip-flop (FF). We review the basic 
characteristics of a D-type latch (or just D latch) and D-type FF (or just D FF). 

D latch The symbol and function table of a D latch are shown in Figure 8.l(a). Note that 
we use * to represent the next value, and thus q* means the next value of q. The c and d 
inputs can be considered as a control signal and data input respectively. When c is asserted, 
input data, d, is passed directly to output, q. When c is deasserted, the output remains the 
same as the previous value. Since the operation of the D latch depends on the level of the 
control signal, we say that it is level sensitive. A representative timing diagram is shown 
in the q-latch output of Figure 8.2. Note that input data is actually stored into the latch at 
the falling edge of the control signal. 

Since the latch is “transparent” when c is asserted, it may cause racing if a loop exists 
in the circuit. For example, the circuit in Figure 8.3 attempts to swap the contents of 
two latches. Unfortunately, racing occurs when c is asserted. Because of the potential 
complication of timing, we normally do not use latches in synthesis. 

D FF The symbol and function table of a positive-edge-triggered D FF are shown in 
Figure 8.l(b). D FF has a special control signal known as a clock signal, which is labeled 
clk in the diagram. The D FF is activated only when the clock signal changes from ’0’ to ’ l’, 
which is known as the rising edge of the clock. At other times, its output remains the same 



OVERVIEW OF SEQUENTIAL CIRCUITS 215 

d 

clk 7 

‘-d 

t c +  

~d 9- 

C 

9- 

clk 

Figure 8.2 Simplified timing diagram of D latch and D FFs. 

- - d  

-> clk 

Figure 8.3 Data swapping using D latches. 

q- 

as its previous value. In other words, at the rising edge of the clock, a D FF takes a sample 
of input data, stores the value into memory, and passes the value to output. The output, 
which reflects the stored value, does not change until the next rising edge. Since operation 
of the D FF depends on the edge of the clock signal, we say that it is edge sensitive. A 
representative timing diagram is shown in the q-pf f output of Figure 8.2. Note that the 
clock signal, clk, is functioning as a sampling signal, which takes a sample of the input 
data, d, at the rising edge. The clock signal plays a key role in a sequential circuit and we add 
a small triangle, as in the c l k  port in Figure 8.l(b), to emphasize use of an edge-triggered 
FF. 

The operation of a negative-edge-triggered D FF is similar except that sampling is 
performed at the falling edge of the clock. Its symbol and function table are shown in 
Figure 8.l(c). A representative timing diagram is shown in the qnf  f output of Figure 8.2. 

The sampling property of FFs has several advantages. First, variations and glitches 
between two rising edges have no effect on the content of the memory. Second, there will 
be no race condition in a closed feedback loop. If we reconstruct the swapping circuit of 
Figure 8.3 by replacing the D latches with the D FFs, the D FFs swap their contents at each 
rising edge of the clock and the circuit functions as expected. The disadvantage of the D FF 
is its circuit size, which is about twice as large as that of a D latch. Since its benefits far 
outweigh the size disadvantage, today’s sequential circuits normally utilize D FFs as the 
storage elements. 

The timing of a D FF is more involved than that of a combinational component. The 
timing diagram is shown in Figure 8.4. There are three main timing parameters: 



21 6 SEQUENTIAL CIRCUIT DESIGN: PRINCIPLE 

d 

clk I I 
J l  

9 I 
+t 

Figure 8.4 Detailed timing diagram of a D FE. 

I \ 

0 Tcq: clock-to-q delay, the propagation delay required for the d input to show up at 

0 Tsetup: setup time, the time interval in which the d signal must be stable before the 

0 Thold: hold time, the time interval in which the d signal must be stable afer the clock 

Tcq corresponds roughly to the propagation delay of a combinational component. Tsetup 
and Thold, on the other hand, are timing constraints. They specify that the d signal must 
be stable in a small window around the sampling edge of the clock. If the d signal changes 
within the setup or hold time window, which is known as setup time violation or hold time 
violation, the D FF may enter a metasfable state, in which the q becomes neither ’0’ nor 
’ 1’. The issue of metastability is discussed in Chapter 16. 

the q output after the sampling edge of the clock signal. 

clock edge. 

edge. 

8.1.3 Synchronous versus asynchronous circuits 

The clock signal of FFs plays a key role in sequential circuit design. According to the 
arrangement of the clock, we can divide the sequential circuits into the following classes: 

0 Globally synchronous circuit (or simply synchronous circuit). A globally syn- 
chronous circuit uses FFs as memory elements, and all FFs are controlled (i.e., syn- 
chronized) by a single global clock signal. Synchronous design is the most important 
methodology used to design and develop large, complex digital systems. It not only 
facilitates the synthesis but also simplifies the verification, testing, and prototyping 
process. Our discussion is focused mainly on this type of circuit. 

0 Globally asynchronous locally synchronous circuit. Sometimes physical constraints, 
such as the distance between components, prevent the distribution of a single clock 
signal. In this case, a system may be divided into several smaller subsystems. Since 
a subsystem is smaller, it can follow the synchronous design principle. Thus, sub- 
systems are synchronous internally. Since each subsystem utilizes its own clock, 
operation between the subsystems is asynchronous. We need special interface cir- 
cuits between the subsystems to ensure correct operation. Chapter 16 discusses the 
design of the interface circuits. 

0 Globally asynchronous circuit. A globally asynchronous circuit does not use a clock 
signal to coordinate the memory operation. The state of a memory element changes 
independently. Globally asynchronous circuits can be divided into two categories, 



SYNCHRONOUS CIRCUITS 21 7 

output output 
logic 1 1 -  - 

Figure 8.5 Conceptual diagram of a synchronous sequential circuit. 

The first category comprises circuits that consist of FFs but do not use the clock in a 
disciplined way. One example is the ripple counter, in which the clock port of an FF 
is connected to the output of the previous FE. Utilizing FFs in this way is a poor design 
practice. The second category includes the circuits that contain “clockless” memory 
components, such as a latch or a combinational circuit with closed feedback loops. 
This kind of circuit is sometimes simply referred to as an asynchronous circuit. The 
design of asynchronous circuits is very different from that of synchronous circuits and 
is not recommended for HDL synthesis. The danger is demonstrated by an example 
in Section 8.3. 

8.2 SYNCHRONOUS CIRCUITS 

8.2.1 Basic model of a synchronous circuit 

The basic diagram of a synchronous circuit is shown in Figure 8.5. The memory element, 
frequently know as a stute register, is a collection of D FFs, synchronized by a common 
global clock signal. The output of the register (i.e., the content stored in the register), 
the s tatereg  signal, represents the internal state of the system. The next-stute logic is 
a combinational circuit that determines the next state of the system. The output logic is 
another combinational circuit that generates the external output signal. Note that the output 
depends on the external input signal and the current state of the register. The circuit operates 
as follows: 

0 At the rising edge of the clock, the value of the statenext signal (appearing at the 
d port) is sampled and propagated to the q port, which becomes the new value of the 
s tatereg  signal. The value is also stored in FFs and remains unchanged for the 
rest of the clock period. It represent the current sfate of the system. 

0 Based on the value of the statereg signal and external input, the next-state logic 
computes the value of the statenext signal and the output logic computes the value 
of external output. 

0 At the next rising edge of the clock, the new value of the statenext signal is 
sampled and the statereg signal is updated. The process then repeats. 

To satisfy the timing constraints of the FFs, the clock period must be large enough to 
accommodate the propagation delay of the next-state logic, the clock-to-q delay of the FFs 
and the setup time of the FFs. This aspect is discussed in Section 8.6. 

There are several advantages of synchronous design. First, it simplifies circuit timing. 
Satisfying the timing constraints (i.e., avoiding setup time and hold time violation) is one 



21 8 SEQUENTIAL CIRCUIT DESIGN: PRINCIPLE 

of the most difficult design tasks. When a circuit has hundreds or even thousands of FFs 
and each FF is driven by an individual clock, the design and analysis will be overwhelming. 
Since in a synchronous circuit all FFs are driven by the identical clock signal, the sampling 
of the clock edge occurs simultaneously. We only need to consider the timing constraints 
of a single memory component. Second, the synchronous model clearly separates the 
combinational circuits and the memory element. We can easily isolate the combinational 
part of the system, and design and analyze it as a regular combinational circuit. Third, 
the synchronous design can easily accommodate the timing hazards. As we discussed in 
Section 6.5.3, the timing hazards are unavoidable in a large synthesized combinational 
circuit. In a synchronous circuit, inputs are sampled and stored at the rising edge of the 
clock. The glitches do not matter as long as they are settled at the time of sampling. 
Instead of considering all the possible timing scenarios, we only need to focus on worst- 
case propagation delays of the combinational circuit. 

8.2.2 Synchronous circuits and design automation 

The synchronous model essentially reduces a complex sequential circuit to a single closed 
feedback loop and greatly simplifies the design process. We only need to analyze the timing 
of a simple loop. Once it is done, the memory elements can be isolated and separated 
from the circuit. The sequential design now becomes a combinational design and we can 
apply the previous optimization and synthesizing schemes of combinational circuits to 
construct sequential circuits. Because of this, the synchronous model is the most dominant 
methodology in today's design environment. Most EDA tools are based on this model. 

The benefit of synchronous methodology is not just limited to synthesis. It can facilitate 
the other tasks of the development process. The impact of synchronous methodology is 
summarized below. 

0 Synthesis. Since we can separate the memory elements, the system is reduced to a 
combinational circuit. All optimization algorithms and techniques used in combina- 
tional circuit synthesis can be applied accordingly. 

0 Eming analysis. The analysis involves only a single closed feedback loop. It is 
straightforward once the propagation delay of the combination circuit is known. 
Thus, the timing analysis of the sequential circuit is essentially reduced to the timing 
analysis of its combinational part. 

0 Cycle-based simulation. Cycle-based simulation ignores the exact propagation delay 
but simulates the circuit operation from one clock cycle to another clock cycle. Since 
we can easily identify the memory elements and their clock, cycle-based simulation 
can be used for synchronous design. 

0 Testing. One key testing technique is to use scan registers to shift in test patterns 
and shift out the results. Because the memory elements are isolated, we can easily 
replace them with scan registers when needed. 

0 Design reuse. The main timing constraint of the synchronous design is embedded in 
the period of the clock signal (to be discussed in Section 8.6). which depends mainly 
on the propagation delay of the combination part. As long as the clock period is large 
enough, the same design can be implemented by different device technologies. 

0 Hardware emulation. Because the same synchronous design can be targeted to dif- 
ferent device technologies, it is possible to first construct the design in FPGA tech- 
nology, run and verify the circuit at a slower clock rate, and then fabricate it in ASIC 
technology. 



DANGER OF SYNTHESIS THAT USES PRIMITIVE GATES 219 

8.2.3 Types of synchronous circuits 

Based on the “representation and transition patterns” of state, we divide synchronous circuits 
into three types. These divisions are informal, just for clarity of coding. The three types of 
sequential circuits are: 

0 Regular sequential circuit, The state representation and state transitions have a sim- 
ple, regular pattern, as in a counter and a shift register. Similarly, the next-state logic 
can be implemented by regular, structural components, such as an incrementor and 
shifter. 

0 Random sequential circuit. The state transitions are more complicated and there is 
no special relation between the states and their binary representations. The next-state 
logic must be constructed from scratch (i.e., by random logic). This kind of circuit 
is known as afinite stare machine (FSM).  

0 Combined sequential circuit. A combined sequential circuit consists of both a regular 
sequential circuit and an FSM. The FSM is used to control operation of the regular 
sequential circuit. This kind of circuit is based on the register transfer methodology 
and is sometimes known as finite state machine with data path (FSMD). 

We discuss the design and description of regular sequential circuits in this chapter and the 
next chapter, and we cover the FSM and FSMD in Chapters 10, 11 and 12. 

8.3 DANGER OF SYNTHESIS THAT USES PRIMITIVE GATES 

As we discussed earlier, an asynchronous sequential circuit can be constructed from scratch 
by adding a feedback loop to the combinational components. Although asynchronous 
circuits potentially can run faster and consume less power, designing an asynchronous 
circuit is difficult because of the potential races and oscillations. The design procedure 
is totally different from the synchronous methodology, and we should avoid using normal 
EDA software to synthesize asynchronous circuits. Since this book focuses on RT-level 
synthesis, we do not discuss this topic in detail. The following example illustrates the 
potential danger of using the normal synthesis procedure to construct an asynchronous 
circuit. 

Consider the D latch discussed in Section 8.1.2. We can easily translate the truth table 
into VHDL code, as shown in Listing 8.1. 

Listing 8.1 D latch from scratch 

l i b r a r y  ieee; 
use ieee. std-logic-1164. a l l  ; 
e n t i t y  dlatch is  

port ( 
5 c: in  std-logic; 

d: in  std-logic; 
q: out std-logic 

1 ;  
end dlatch ; 

a r c h i t e c t u r e  demo-arch of dlatch i s  

begin 

I0 

s i g n a l  q-latch : std-logic ; 

process  (c,d,q-latch) 
IS begin 



220 SEQUENTIAL CIRCUIT DESIGN: PRINCIPLE 

d 
C 

9 

C- 

(a) Conceptual diagram (b) Gate-level diagram 

(c) Timing diagram 

Figure 8.6 Synthesizing a D latch from scratch. 

i f  ( c = ’ l ’ )  then 

e l s e  
q - l a t c h  <= d ;  

q - l a t c h  <= q - l a t c h ;  
20 end i f  ; 

end p r o c e s s ;  
q <= q - l a t c h ;  

end demo-arch;  

Synthesis software can normally recognize that this code is for a D latch and should infer 
a predesigned D-latch cell from the cell library accordingly. For demonstration purposes, 
let us try to use simple gates to synthesize it from scratch. We can derive the conceptual 
diagram and expand it to a gate-level diagram following the procedure to synthesize a 
combinational circuit, as shown in Figure 8.6(a) and (b). 

At first glance, the circuit is just like a combinational circuit except that the output is 
looped back as an input. However, there is a serious timing problem for this circuit. Let us 
assume that all gates have a propagation delay of T and the wire delays are negligible, and 
that c, d and q are ’ 1 ’ initially. Now consider what happens when c changes from ’ 1 ’ to ’0’ 
at time to. According to the function table, we expect that q should be latched to the value 
of d and thus should remain ’1’. Following the circuit diagram, we can derive a detailed 
timing diagram, as shown in Figure 8.6(c). The events are summarized below. 



INFERENCE OF BASIC MEMORY ELEMENTS 221 

0 At to,  c changes to ’0’. 
0 At tl (after a delay of T) ,  dc and cn change. 
a At t 2  (after a delay of 227,  qcn changes (due to cn) and q changes (due to dc). 
0 At t 3  (after a delay of 3T), q changes (due to qcn) and qcn changes (due to q). 

Clearly, the output q continues to oscillate at a period of 2T and the circuit is unstable. 
Recall that in Section 6.5.4, we discussed delay-sensitive circuit, in which the correctness 

of circuit function depends on the delays of various components. Asynchronous circuits 
belong to this category and thus are not suitable for synthesis. If we really wish to implement 
an asynchronous circuit from scratch, it is better to do it manually using a schematic rather 
than relying on synthesis. 

8.4 INFERENCE OF BASIC MEMORY ELEMENTS 

All device libraries have predesigned memory cells. Internally, these cells are designed as 
asynchronous sequential circuits. They are carefully crafted and thoroughly analyzed and 
verified. These cells are treated as “leaf units,” and no further synthesis or optimization will 
be performed. The previous section has shown the danger of deriving a memory element 
from scratch. To avoid this, we must express our intent clearly and precisely in VHDL code 
so that these predesigned latches or FFs can be inferred. While we should be innovative 
about the design, it is a good idea to follow the standard VHDL description of latch and FF 
to avoid any unwanted surprise. 

8.4.1 D latch 

The function table of a D latch was shown in Figure 8.l(a). The corresponding VHDL code 
is shown in Listing 8.2. It is the standard description. Synthesis software should infer a 
predesigned D latch from the device library. 

Listiner 8.2 D latch 

l i b r a r y  i e e e  ; 
use ieee. s t d - l o g i c - 1 1 6 4 .  a l l  ; 
e n t i t y  d l a t c h  i s  

port ( 
5 c :  in s t d - l o g i c ;  

d :  in s t d - l o g i c ;  
q :  out s t d - l o g i c  

1; 
end d l a t c h ;  

a r c h i t e c t u r e  a r c h  of  d l a t c h  i s  
begin 

10 

process  ( c  , d )  
begin 

I5 i f  ( c = ’ l ’ )  then 

end i f  ; 
end p r o c e s s ;  

q (= d ;  

end a r c h ;  



222 SEQUENTIAL CIRCUIT DESIGN: PRINCIPLE 

In this code, the value of d is passed to q when c is ’ 1 ’ . Note that there is no else branch 
in the if statement. According to the VHDL definition, q will keep its previous value when 
c is not ’1’ (i.e., c is ’0’). This is just what we want for the D latch. Alternatively, we can 
explicitly include the else branch to express that q has its previous value when c is ’O’, as in 
the VHDL code in Listing 8.1. The code is not as compact or clear and is not recommended. 

8.4.2 D FF 

Positiwe-edge-triggered D FF The function table of a positive-edge-triggered D FF 
was shown in Figure 8.l(b). The corresponding VHDL code is shown in Listing 8.3. This 
is a standard description and should be recognized by all synthesis software. A predesigned 
D FF should be inferred accordingly. 

Listing8.3 D FF 
l ibrary  ieee; 
use ieee. std-logic-1164. a l l  ; 
e n t i t y  d f f  i s  

port ( 
5 clk: in std-logic; 

d: in std-logic; 
q: out std-logic 

) ;  
end d f f  ; 

a r c h i t e c t u r e  arch of  dff i s  
begin 

10 

process  (clk) 
begin 

I5 i f  (clk’event and clk=’l’) then 
q <= d; 

end i f ;  
end p r o c e s s ;  

end arch; 

The key expression to infer the D FF is the Boolean expression 

clk event and clk= 1 ’ 
The ’event term is a VHDL attribute returning t rue  when there is a change in signal 
value (i.e., an evenf). Thus, when clk event is true,  it means that the value of clk has 
changed. When the clk= ’ 1 expression is true,  it means that the new value of c lk  is ’ 1 ’ . 
When both expressions are true,  it indicates that the clk signal changes to 1 ’, which is 
the rising edge of the clk signal. 

The if statement states that at the rising of the clk signal, q gets the value of d. Since 
there is no else branch, it means that q keeps its previous value otherwise. Thus, the 
VHDL code accurately describes the function of a D FE. Note that the d signal is not in 
the sensitivity list. It is reasonable since the output only responds to c lk  and does nothing 
when d changes its value. 

We can also add an extra condition clk ’ last-value-’ 0 ’ to the Boolean expression: 

clk ‘event and clk=’l and clk’last_value=’O’ 

to ensure that the transition is from ’ 0 ’ to ’ I rather than from a metavalue to ’ 1 ’ . This 
may affect simulation but has no impact on synthesis. The above Boolean expression is 



INFERENCE OF BASIC MEMORY ELEMENTS 223 

defined as a function, rising-edge0, in the IEEE std-logic-1164 package. We can 
rewrite the previous VHDL code as 

a r c h i t e c t u r e  arch of  dff i s  
begin 

process  (clk) 
begin 

i f  rising-edge (clk) then 

end i f  ; 
end p r o c e s s ;  

q <= d; 

end arch; 

We can also use wait statement inside the process to infer the D FF: 

a r c h i t e c t u r e  wait-arch of  dff is  
begin 

process  
begin 

wait u n t i l  clk event and clk= 1 ’ ; 
q < = d ;  

end process  ; 
end wait-arch; 

However, since the sensitivity list makes the code easier to understand, we do not use this 
format in this book. 

Theoretically, a then branch can be added to the code: 

i f  (clk event and clk= ’ 1 then 

e l s e  

end i f  ; 

q <= d; 

q <= J l J ;  

Although it is syntactically correct, it is meaningless for synthesis purpose. 

~ e g ~ f ~ v e ~ ~ g e - f r ~ g g e r e ~  D FF Anegative-edge-triggered D FF is similar to a positive- 
edge-triggered D FF except that the input data is sampled at the falling edge of the clock. 
To specify the falling edge, we must revise the Boolean expression of the if statement: 

i f  (clk’event and clk=’OJ) then 

We can also use the Boolean expression 

clk event and clk- ’0’ and clk last-value= 1 

to ensure the ’ I ’ to ’ 0 ’ transition or use the shorthand function, f alling-edge (1, defined 
in the IEEE std-logic-1164 package. 

D FF with asynchronous reset A D FF may contain an asynchronous reset signal 
that clears the D FF to ’0’. The symbol and function table are shown in Figure 8.l(d). Note 
that the reset operation does not depend on the level or edge of the clock signal. Actually, 
we can consider that it has a higher priority than the clock-controlled operation. The VHDL 
code is shown in Listing 8.4. 



224 SEQUENTIAL CIRCUIT DESIGN: PRINCIPLE 

Listing 8.4 D FF with asynchronous reset 

l i b r a r y  ieee; 
use ieee. std-logic-1164. a l l  ; 
e n t i t y  dffr i s  

port ( 
5 clk: in  std-logic; 

reset : in  std-logic ; 
d: in  std-logic; 
q: out std-logic 

1; 
10 end dffr; 

a r c h i t e c t u r e  arch of  dffr i s  
begin 

process  (clk, reset) 
I S  begin 

i f  (reset=’l’> then 

e l s i f  (clk’event and clk=’l’) then 
q < = ’ O ’ ;  

q <= d; 
20 end i f  ; 

end p r o c e s s ;  
end arch; 

Both the reset and c lk  signals are in the sensitivity list since either can invoke the process. 
When the process is invoked, it first checks the reset signal. If it is ’ 1 J ,  the D FF is cleared 
to 0 ’ . Otherwise, the process continues checking the rising-edge condition, as in a regular 
D FF. Note that there is no else branch. 

Since the reset operation is independent of the clock, it cannot be synthesized from a 
regular D FF. A D FF with asynchronous reset is another leaf unit. The synthesis software 
recognizes this format and should infer the desired D FF cell from the device library. 

Asynchronous reset, as its name implies, is not synchronized by the clock signal and 
thus should not be used in normal synchronous operation. The major use of a reset signal is 
to clear the memory elements and set the system to an initial state. Once the system enters 
the initial state, it starts to operate synchronously and will never use the reset signal again. 
In many digital systems, a short reset pulse is generated when the power is turned on. 

Some D FFs may also have an asynchronous preset signal that sets the D FF to ’ 1’. The 
VHDL code is shown in Listing 8.5. 

Listing 8.5 D FF with asynchronous reset and preset 

l i b r a r y  ieee ; 
use ieee. std-logic-1164. a l l  ; 
e n t i t y  dffrp i s  

por t  ( 
5 clk: in  std-logic; 

reset, preset : in  std-logic ; 
d: in  std-logic; 
q: out std-logic 

) ;  
10 end dffrp; 

a r c h i t e c t u r e  arch of  dffrp is 



INFERENCE OF BASIC MEMORY ELEMENTS 225 

begin 
process (clk reset preset) 

i f  (resetn’l’) then 

e l s i f  (preset- ’1 J ,  then 

IS begin 

q < = ’ O ’ ;  

q <= ’1’; 
20 e 1 s i  f (clk event and clk= ’ 1 ’ 1 then 

q <= d; 
end i f  ; 

end p r o c e s s ;  
end arch; 

Since the asynchronous signal is normally used for system initialization, a single preset or 
reset signal should be adequate most of the time. 

8.4.3 Register 

A register is a collection of a D FFs that is driven by the same clock and reset signals. The 
VHDL code of an 8-bit register is shown in Listing 8.6. 

Listing 8.6 Register 

l ibrary  ieee ; 
use ieee. std-logic-1164. a l l  ; 
e n t i t y  reg8 i s  

port ( 
5 clk: in std-logic; 

reset : in std-logic ; 
d: in std-logic-vector (7  downto 0) ; 
q :  out std-logic-vector ( 7  downto 0) 

1; 
10 end reg8; 

archi tecture  arch of reg8 is 
begin 

process (clk reset) 
IS begin 

i f  (resetn’l’) then 

e 1 s i f (clk ’ event and clk= ’ 1 ’ ) then 
q < = ( o t h e r s = >  ’0,); 

q <= d; 
20 end i f ;  

end p r o c e s s ;  
end arch; 

The code is similar to D FF except that the d input and the q output are now 8 bits wide. 
We use the symbol of D FF for the register. The size of the register can be derived by 
checking the bus width marks of the input and output connections. 

8.4.4 RAM 

Random access memory (RAM) can be considered as a collection of latches with special 
interface circuits. It is used to provide massive storage. While technically it is possible 



226 SEQUENTIAL CIRCUIT DESIGN: PRINCIPLE 

to synthesize a RAM from scratch by assembling D-latch cells and control circuits, the 
result is bulky and inefficient. Utilizing the device library’s predesigned RAM module, 
whose memory cells are crafted and optimized at the transistor level, is a much better 
alternative. Although the basic structure of RAMS is similar, their sizes, speeds, interfaces, 
and timing characteristics vary widely, and thus it is not possible to derive a portable, 
device-independent VHDL code to infer the desired RAM module. We normally need to 
use explicit component instantiation statement for this task. 

8.5 SIMPLE DESIGN EXAMPLES 

The most effective way to derive a sequential circuit is to follow the block diagram in 
Figure 8.5. We first identify and separate the memory elements and then derive the next- 
state logic and output logic. After separating the memory elements, we are essentially 
designing the combinational circuits, and all the schemes we learned earlier can be applied 
accordingly. A clear separation between memory elements and combinational circuits is 
essential for the synthesis of large, complex design and is helpful for the verification and 
testing processes. Our VHDL code description follows this principle and we always use an 
isolated VHDL segment to describe the memory elements. 

Since identifying and separating the memory elements is the key in deriving a sequential 
circuit, we utilize the following coding practice to emphasize the existence of the memory 
elements: 

0 Use an individual VHDL code segment to infer memory elements. The segment 

0 Use the suffix l e g  to represent the output of a D FF or a register. 
0 Use the suffix next to indicate the next value (the d input) of a D FF or a register. 

should be the standard description of a D FF or register. 

We examine a few simple, representative sequential circuits in this section and study more 
sophisticated examples in Chapter 9. 

This coding practice may make the code appear to be somewhat cumbersome, especially 
for a simple circuit. However, its long-term benefits far outweigh the inconvenience. The 
alternative coding style, which mixes the memory elements and combinational circuit in 
one VHDL segment, is discussed briefly in Section 8.7. 

8.5.1 Other types of FFs 

There are other types of FFs, such as D FF with an enable signal, JK FF and T FF. They were 
popular when a digital system was constructed by SSI components because they may reduce 
the number of IC chips on a printed circuit board. Since all these FFs can be synthesized 
by a D FF, they are not used today. The following subsections show how to construct them 
from a D FE. 

D FF with enable Consider a D FF with an additional enable signal. The function table 
is shown in Figure 8.7(a). Note that the enable signal, en, has an effect only at the rising 
edge of the clock. This means that the signal is synchronized to the clock. At the rising 
edge of the clock, the FF samples both en and d. If en is 0 ), which means that the FF is 
not enabled, FF keeps its previous value. On the other hand, if en is 1 ’, the FF is enabled 
and functions as a regular D FF. The VHDL code is shown in Listing 8.7. 



SIMPLE DESIGN EXAMPLES 227 

reset clk en qt 

reset 

(a) Function table (b) Conceptual diagram 

Figure 8.7 D FF with an enable signal. 

Listing 8.7 D FF with an enable signal 

l i b r a r y  ieee; 
use ieee. std-logic-1164. a l l  ; 
e n t i t y  dff-en i s  

port ( 
S clk: i n  std-logic; 

reset : i n  std-logic ; 
en: i n  std-logic; 
d: in  Btd-logic; 
q: out std-logic 

10 1 ; 
end dff-en; 

a r c h i t e c t u r e  two-seg-arch of dff-en i s  
s i g n a l  q-rag : std-logic ; 

IS s i g n a l  q-next : std-logic ; 
begin 
- D FF 
process  (clk, reset 
begin 

20 i f  (reset=’lJ) then 
q-rag <= J O J ;  

q-reg <= q-next; 
e l s i f  (clk’event and c1k=’lJ) then 

end i f  ; 
zs end p r o c e s s ;  

-- n e x t - s t a t e  l o g i c  
q-next <= d when en =’ l ’  e l s e  

-- o u t p u t  l o g i c  
q-reg; 

30 q <= q-reg; 
end two-seg-arch; 

The VHDL code follows the basic sequential block diagram and is divided into three 
segments: a memory element, next-state logic and output logic. The memory element is 
a regular D FE. The next-state logic is implemented by a conditional signal assignment 
statement. The qnext signal can be either d or the original content of the FE, qxeg, 



228 SEQUENTIAL CIRCUIT DESIGN PRINCIPLE 

reset clk t q’ 

t 

clk 
reset 

reset A 

(a) Function table (b) Conceptual diagram 

Figure8.8 TFF. 

depending on the value of en. At the rising edge of the clock, qnext will be sampled and 
stored into the memory element. The output logic is simply a wire that connects the output 
of the register to the q port. 

The conceptual diagram is shown in Figure 8.7(b). To obtain the diagram, we first 
separate and derive the memory element, and then derive the combinational circuit using 
the procedure described in Chapter 4. 

T FF A T FF has a control signal, t, which specifies whether the FF to invert (i.e., roggle) 
its content. The function table of a T FF is shown in Figure 8.8(a). Note that the t signal is 
sampled at the rising edge of the clock. The VHDL code is shown in Listing 8.8, and the 
conceptual diagram is shown in Figure 8.8(b). 

Listing 8.8 T FF 
l i b r a r y  ieee; 
use ieee. std-logic-1164. a l l  ; 
e n t i t y  tff i s  

port ( 
J clk: in std-logic; 

reset : in std-logic ; 
t: in  std-logic; 
q: out std-logic 

1; 
10 end tff ; 

a r c h i t e c t u r e  two-seg-arch of tff i s  
s i g n a l  q-reg : std-logic ; 
s i g n a l  q-next : std-logic; 

I5 begin 
- D FF 
process  (clk, reset 1 
begin 

i f  (reset=’i’) then 

e l s i f  (clk’event and clk=’l’> then 

end i f  ; 
end p r o c e s s ;  

20 q-reg <= ’0’; 

q-reg C= q-next; 



SIMPLE DESIGN EXAMPLES 229 

Figure 8.9 4-bit free-running shift-right register. 

-- n e x t - s t a t e  l o g i c  
q-next <= q-reg when t=’O’ e l s e  

not (q-reg) ; 
-- o u t p u t  l o g i c  
q <= q-reg; 

30 end two-seg-arch; 

8.5.2 Shift register 

A shift register shifts the content of the register left or right 1 bit in each clock cycle. One 
major application of a shifter register is to send parallel data through a serial line. In the 
transmitting end, a data word is first loaded to register in parallel and is then shifted out 1 bit 
at a time. In the receiving end, the data word is shifted in 1 bit at a time and reassembled. 

Free-running shiff-right register A free-running shift register performs the shifting 
operation continuously. It has no other control signals, A 4-bit free-running shift-right 
register is shown in Figure 8.9. We can rearrange the FFs and align them vertically, as 
in Figure 8.10(a). After grouping the four FFs together and treating them as a single 
memory block, we transform the circuit into the basic sequential circuit block diagram in 
Figure 8.10(b). The VHDL code can be derived according to the block diagram, as in 
Listing 8.9. 

Listing 8.9 Free-running shift-right register 

l i b r a r y  ieee ; 
use ieee. std-logic-1164. a l l  ; 
e n t i t y  shift-right-register i s  

port ( 
5 clk, reset: in  std-logic; 

d: in std-logic; 
q: out std-logic 

1; 
end shift-right-register; 

a r c h i t e c t u r e  two-seg-arch of shift-right-register i s  
10 

s i g n a l  r-reg : std-logic-vector ( 3  downto 0) ; 
s i g n a l  r-next : std-logic-vector ( 3  downto 0) ; 



230 SEQUENTIAL CIRCUIT DESIGN: PRINCIPLE 

(a) Vertical form 

I 
I 

I -  ’ 9  4 logic I 
r-next r-reg , output 

4 
d I ->Clk 

I 
~ 

1 reset 

clk 
reset 

(b) “Basic sequential circuit” form 

Figure 8.10 Shift register diagram in different forms. 



SIMPLE DESIGN EXAMPLES 231 

begin 
I5 - r e g i s t e r  

process  (clk , reset) 
begin 

i f  (reset= 1’) then 
r-reg <= ( o t h e r s = > ’ O ’ ) ;  

r-reg <= r-next; 
20 e 1 s i f (clk ’ event and clk= ’ 1 ’ ) then 

end i f ;  
end p r o c e s s ;  
-- n e x t - s t a t e  l o g i c  ( s h i f t  r i g h t  I b i t )  

-- o u t p u t  
q <= r-reg(0); 

end two-seg-arch; 

2s r-next <= d & r-reg(3 downto 1); 

The VHDL code follows the basic sequential circuit block diagram, and the key is the 
code for the next-state logic. The statement 

r-next <= d & r-reg(3 downto 1) ; 

indicates that the original register content is shifted to the right 1 bit and a new bit, d, is 
inserted to the left. The memory element part of the code is the standard description of a 
4-bit register. 

Universal shift register A universal shift register can load a parallel data word and 
perform shifting in either direction. There are four operations: load, shift right, shift left 
and pause. A control signal, ctrl, specifies the desired operation. The VHDL code is 
shown in Listing 8.10. Note that the d(0) input and the q(3) output are used as serial-in 
and serial-out for the shift-left operation, and the d(3) input and the q(0) output are used 
as serial-in and serial-out for the shift-right operation. The block diagram is shown in 
Figure 8.1 1. 

Listing 8.10 Universal shift register 

l ibrary  ieee; 
use ieee. std-logic-1164. a l l  ; 
e n t i t y  shift-register i s  

port ( 
5 clk, reset: in std-logic; 

ctrl : in std-logic-vector (1 downto 0) ; 
d: in std-logic-vector (3 downto 0) ; 
q :  out std-logic-vector (3 downto 0) 

) ;  
10 end shift-register; 

a r c h i t e c t u r e  two-seg-arch of shift-register i s  
s ignal  r-reg: std-logic-vector (3 downto 0) ; 
s ignal  r-next : std-logic-vector (3 downto 0) ; 

- r e g i s t e r  
process  (clk ,reset) 
begin 

I5 begin 

i f  (reset=’l’) then 



232 SEQUENTIAL CIRCUIT DESIGN: PRINCIPLE 

ctrl clk , 2 

reset 

T 
reset I 

Figure 8.11 4-bit universal register. 

r - r e g  <= ( o t h e r s = > ' O ' ) ;  

r - r e g  <= r - n e x t ;  
e l s i f  ( c l k ' e v e n t  and c l k = ' l ' )  then 

end i f  ; 
end p r o c e s s ;  
-- n e x t - s t a t e  l o g i c  
with c t r l  s e l e c t  

r - n e x t  <= 
r - r e g  when "00". -pause 
r - r e g ( 2  downto 0) & d ( 0 )  when r l O 1 "  , - s h i f t  l e f t ;  
d ( 3 )  & r-reg(3  downto 1) when t l l O 1 o  , - s h i f t  r i g h r ;  
d when o t h e r s ;  - load  

- o u t p u t  l o g i c  
q <= r - r e g ;  

end two-seg -a rch ;  

8.5.3 Arbitrary-sequence counter 

A sequential counter circulates a predefined sequence of states. The next-state logic de- 
termines the patterns in the sequence. For example, if we need a counter to cycle through 
the sequence of "000", "011". "IIO", "101" and "ill", we can construct a combinational 
circuit with a function table that specifies the desired patterns, as in Table 8.1, 

The VHDL code is shown in Listing 8.11. Again, the code follows the basic block 
diagram of Figure 8.5. A conditional signal assignment statement is used to implement the 
function table. 

Listing 8.11 Arbitrary-sequence counter 

l i b r a r y  i e e e ;  
use  i e e e .  s t d - l o g i c - 1 1 6 4 .  a l l  ; 



SIMPLE DESIGN EXAMPLES 233 

Table 8.1 Patterns of an arbitrary-sequence counter 

Input pattern Next pattern 

000 01 1 
01 1 110 
110 101 
101 111 
111 000 

e n t i t y  arbi-seq-counter4 i s  
port ( 

5 clk, reset: in std-logic; 
q :  out std-logic-vector ( 2  downto 0) 

) ;  
end arbi-seq-counter4; 

10 a r c h i t e c t u r e  two-seg-arch of arbi-seq-counter4 i s  
s i g n a l  r-reg: std-logic-vector ( 2  downto 0) ; 
s i g n a l  r-next : std-logic-vector (2 downto 0) ; 

begin 
-- r e g i s t e r  
process  (clk, reset I 
begin 

i f  (reset='l') then 

e l s i f  (clk'event and clk='l') then 

end i f  ; 
end p r o c e s s ;  
- n e x t - s t a t e  l o g i c  
r-next <= "011" when r-reg="OOO1l e l s e  

110 II when r-reg= I' 0 1 1 e 1 s e 
l B I O 1 "  when r-reg="llO" e l s e  
1 1 1 when r - r e g = 10 1 If e 1 s e 
"000"; - r _ r e g = " 1 1 1 "  

r-reg <= ( o t h e r s = > ' O ' ) ;  

r-reg <= r-next; 

- o u t p u t  l o g i c  
q <= r-reg; 

end two-seg-arch ; 

8.5.4 Binary counter 

A binary counter circulates through a sequence that resembles the unsigned binary number. 
For example, a 3-bit binary counter cycles through "OOO", "OOl", "OlO", "01 l", "lOO", 
"101", "1 10" and "1 1 l", and then repeats. 

Free-running binary counter An n-bit binary counter has a register with n FFs, and 
its output is interpreted as an unsigned integer. A free-running binary counter increments 
the content of the register every clock cycle, counting from 0 to 2n - 1 and then repeating. 
In addition to the register output, we assume that there is a status signal, max-pulse, which 



234 SEQUENTIAL CIRCUIT DESIGN: PRINCIPLE 

is asserted when the counter is in the all-one state. The VHDL code of a 4-bit binary counter 
is shown in Listing 8.12. 

Listing 8.12 Free-running binary counter 

l i b r a r y  ieee ; 
use ieee. std-logic-1164. a l l  ; 
use ieee. numeric-std. a l l  ; 
e n t i t y  binary-counter4,pulse i s  

clk, reset: in  std-logic; 
max-pulse: out std-logic; 
q: out std-logic-vector ( 3  downto 0) 

5 p o r t (  

1; 
10 end binary-counter4-pulse ; 

a r c h i t e c t u r e  two-seg-arch of binary-counter4-pulse i s  
s i g n a l  r-reg : unsigned (3 downto 0) ; 
s i g n a l  r-next : unsigned (3 downto 0) ; 

- r e g i s t e r  
process  (clk, reset 1 
begin 

IS begin 

i f  (reset='l') then 
20 r-reg <= ( o t h e r s = > ' O ' ) ;  

e l s i f  (clk'event and clk='l') then 

end i f  ; 
end p r o c e s s ;  

r-next <= r-reg + 1 ;  
- o u t p u t  l o g i c  
q <= std-logic-vector(r-reg); 
max-pulse <= '1' when r-reg="llll" e l s e  

r-reg <= r-next; 

25 - n e x t - s t a t e  l o g i c  ( i n c r e m e n t o r )  

M '0'; 
end two-seg-arch ; 

~ 

The next-state logic consists of an incrementor, which calculates the new value for the 
next state of the register. Note that the definition requests the 4-bit binary counter counts 
in a wrapped-around fashion; i.e., when the counter reaches the maximal number, "1 11 l", 
it should rehun to "0000" and start over again. It seems that we should replace statement 

r-next <= r-rag + 1 ;  

with 

r-next <= (r-reg + 1) mod 16; 

However, in the IEEE numeric-std package, the definition of + on the unsigned data type 
is modeled after a hardware adder, which behaves like wrapping around when the addition 
result exceeds the range. Thus, the original statement is fine. While correct, using the mod 
operator is redundant. It may confuse some synthesis software since the mod operator 
cannot be synthesized. The output logic uses a conditional signal assignment statement to 
implement the desired pulse. The conceptual diagram is shown in Figure 8.12. 



SIMPLE DESIGN EXAMPLES 235 

clk 

reset 

+l 1 p 
=Ill1  

Figure 8.12 Conceptual diagram of a free-running binary counter. 

Table 8.2 Function table of a featured binary counter 

syn-clr load en q* Operation 

1 - - 00 + . - 00 synchronous clear 
0 1 -  d parallel load 
0 0 1 q+l count 
0 0 0  9 pause 

(I 

maxgulse 

Featured binary counter Rather than leaving the counter in the free-running mode, 
we can exercise more control. The function table in Table 8.2 shows a binary counter with 
additional features. In the counter, we can synchronously clear the counter to 0, load a 
specific value, and enable or pause the counting. The VHDL code is shown in Listing 8.13. 

Listing 8.13 Featured binary counter 

l i b r a r y  ieee ; 
use ieee. std-logic-1164. a l l  ; 
use ieee. numeric-std. a l l  ; 
e n t i t y  binary-counter4-f eature i s  

s p o r t (  
clk, reset: in  std-logic; 
syn-clr , en, load: in  std-logic; 
d: in  std-logic-vector (3 downto 0) ; 
q :  out std-logic-vector (3 downto 0) 

10 1 ; 
end binary-counter4-feature; 

a r c h i t e c t u r e  two-seg-arch of binary-counter4-feature i s  
s i g n a l  r-reg : unsigned (3 downto 0) ; 

I5 s i g n a l  r-next: unsigned(3 downto 0); 
begin 

-- r e g i s t e r  
process  (clk , reset I 
begin 

20 i f  (reset=’l’) then 
r-reg <= ( o t h e r s = > ’ O ’ ) ;  

r-reg <= r-next; 
e l s i f  (clk’event and clk=’l’) then 

end i f ;  



236 SEQUENVAL CIRCUIT DESIGN: PRINCIPLE 

E end p r o c e s s ;  
-- n e x t - s t a t e  l o g i c  
r-next <= ( o t h e r s = > ’ O ’ )  when syn-clr=’l’ e l s e  

unsigned(d) when load=’l’ e l s e  
r-reg + 1 when en =’I’ e l s e  

M r-reg ; 
- o u t p u t  l o g i c  
q <= std-logic-vector(r-reg); 

end two-sag-arch; 

8.5.5 Decade counter 

Instead of utilizing all possible 2” states of an n-bit binary counter, we sometime only want 
the counter to circulate through a subset of the states. We define a mod-m counter as a 
binary counter whose states circulate from 0 to m - 1 and then repeat. Let us consider the 
design of a mod-10 counter, also known as a decade counfer. The counter counts from 0 
to 9 and then repeats. We need at least 4 bits ([log, 101) to accommodate the 10 possible 
states, and the output is 4 bits wide. The VHDL description is shown in Listing 8.14. 

Listing 8.14 Decade counter 

l i b r a r y  ieee ; 
use ieee-std-logic-ll64.all; 
use ieee. numeric-std. a l l  ; 
e n t i t y  modl0-counter is  

s p o r t (  
clk, reset: in  std-logic; 
q: out std-logic-vector ( 3  downto 0) 

1; 
end modl0-counter ; 

a r c h i t e c t u r e  two-seg-arch of modl0-counter i s  
10 

cons tant  TEN: integer : =  10; 
s i g n a l  r-reg : unsigned (3 downto 0) ; 
s i g n a l  r-next : unsigned ( 3  downto 0) ; 

- r e g i s t e r  
process  (clk ,reset 
begin 

IS begin 

i f  (reset=’l’) then 
20 r-reg <= ( o t h e r s = > ’ O ’ ) ;  

e l s i f  (clk’event and clk=’l’) then 

end i f  ; 
end p r o c e s s ;  

r-next <= ( o t h e r s = > ’ O ’ )  when r-reg=(TEN-1) e l s e  
r-reg + 1; 

- o u t p u t  l o g i c  
q <= std-logic-vector(r-reg); 

r-reg <= r-next; 

E - n e x t - s t a t e  l o g i c  

M end two-seg-arch; 



SIMPLE DESIGN EXAMPLES 237 

dk I I 
reset 9 

Figure 8.13 Conceptual diagram of a decade counter. 

The key to this design is the next-state logic. When the counter reaches 9, as indicated 
by the condition rieg=(TEN-l), the next value will be 0. Otherwise, the next value will 
be incremented by 1. The conceptual diagram is shown in Figure 8.13. 

We can rewrite the next-state logic as 

r-next <= (r-reg + 1) mod 10; 

Although the code is compact and clean, it cannot be synthesized due to the complexity of 
the mod operator. 

8.5.6 Programmable mod-rn counter 

We can easily modify the code of the previous decade counter to a mod-m counter for 
any m. However, the counter counts a fixed, predefined sequence. In this example, we 
design a "programmable" 4-bit mod-m counter, in which the value of m is specified by a 
4-bit input signal, m, which is interpreted as an unsigned number. The range of m is from 
"0010 to "llll", and thus the counter can be programmed as a mod-2, mod-3, . . . , or 
mod- 15 counter. 

The maximal number in the counting sequence of a mod-m counter is m - 1. Thus, 
when the counter reaches m - 1, the next state should be 0. Our first design is based on this 
observation. The VHDL code is similar to the decade counter except that we need to replace 
the r-reg=(TEN-I) conditionofthenext-statelogic withr-reg=(unsigned(m)-I). The 
code is shown in Listing 8.15. 

Listing 8.15 Initial description of a programmable mod-rn counter 

l i b r a r y  ieee ; 
use ieee. std-logic-1164. a l l  ; 
use ieee . numeric-std. a l l  ; 
e n t i t y  prog-counter i s  

J p o r t (  
clk, reset: in  std-logic; 
m: in  std-logic-vector ( 3  downto 0) ; 
q :  out std-logic-vector (3  downto 0 )  

1; 
10 end prog-counter ; 



238 SEQUENTIAL CIRCUIT DESIGN: PRINCIPLE 

rn 

clk 
reset 

m 

clk 
reset 

(a) Block diagram of initial design 

- 9 r-reg 
9 -  

reset 

(b) Block diagram of more efficient design 

Figure 8.14 Block diagrams of a programmable mod-m counter. 

U) 

s i g n a l  r-reg : unsigned (3 downto 0) ; 
s i g n a l  r-next : unsigned ( 3  downto 0) ; 

- r e g i s t e r  
process  (clk, reset) 
begin 

15 begin 

i f  (reset=’l’) then 

e l s i f  (clk’event and clk=’lJ> then 

end i f ;  
end p r o c e s s ;  

r-next <= ( o t h e r s = >  ’0 ’1 when r-reg=(unsigned(m)-l) e l s e  
r-reg + 1; 

- o u t p u t  logic 
q <= std-logic-vector(r-reg); 

mend two-seg-clear-arch; 

r-reg <= ( o t h e r s = >  ’0 ’) ; 

r-rag <= r-next; 

25 - n e x t - s t a t e  logic 

The conceptual diagram of this code is shown in Figure 8.14(a). The next-state logic 
consists of an incrementor, a decrementor and a comparator. There is an opportunity for 
sharing. Note that the Boolean expression 

r-reg=(unsigned(m) -1) 



TIMING ANALYSIS OF A SYNCHRONOUS SEQUENTIAL CIRCUIT 239 

can also be written as 

(r-reg+l)=unsigned (m) 

Since the r,req+l operation is needed for incrementing operation, we can use it in com- 
parison and eliminate the decrementor. The revised VHDL code is shown in Listing 8.16. 

Listing 8.16 More efficient description of a programmable mod-rn counter 

archi tecture  two-seg-effi-arch of prog-counter i s  
s ignal  r-reg : unsigned (3  downto 0) ; 
s ignal  r-next , r-inc : unsigned(3 downto 0) ; 

begin 
5 -  r e g i s t e r  

process (clk, reset) 
begin 

i f  (reset=’l’) then 
r-reg <= ( o t h e r s = > ’ O ’ ) ;  

r-rag <= r-next; 
10 e l s i f  (clk’event and clk=’l’) then 

end i f  ; 
end process;  
-- n e x t - s t a t e  l o g i c  

IS r-inc <= r-reg + 1; 
r-next <= ( o t h e r s = > ’ O ’ )  when r-inc=unsigned(m) e l s e  

-- o u t p u t  l o g i c  
q <= std-logic-vector(r-reg); 

20 end two-seg-eff i-arch; 

r-inc ; 

Note that we employ a separate statement for the shared expression: 

r-inc <= r-reg + 1; 

and use the r-inc signal for both comparison and incrementing. The diagram of the revised 
code is shown in Figure 8.14(b). 

8.6 TIMING ANALYSIS OF A SYNCHRONOUS SEQUENTIAL CIRCUIT 

The timing of a combinational circuit is characterized primarily by the propagation de- 
lay, which is the time interval required to generate a stable output response from an input 
change. The timing characteristic of a sequential circuit is different because of the con- 
straints imposed by memory elements. The major timing parameter in a sequential circuit 
is the maximal clock rate, which embeds the effect of the propagation delay of the combina- 
tion circuit, the clock-to-q delay of the register and the setup time constraint of the register. 
Other timing issues include the condition to avoid hold time violation and VO-related timing 
parameters. 

8.6.1 Synchronized versus unsynchronlred input 

Satisfying the setup and hold time constraints is the most crucial task in designing a sequen- 
tial circuit. One motivation behind synchronous design methodology is to group all FFs 
together and control them with the same clock signal. Instead of considering the constraints 



240 SEQUENTIAL CIRCUIT DESIGN: PRINCIPLE 

of tens or hundreds of FFs, we can treat them as one memory component and deal with the 
timing constraint of a single register. 

The conceptual diagram of Figure 8.5 can be considered as a simplified block diagram for 
all synchronous sequential circuits. In this diagram, FFs and registers are grouped together 
as the state register. The input of this register is the statenext signal. It is generated 
by next-state logic, which is a combinational logic with two inputs, including the external 
input and the output of the state register, s tate ieg .  To study the timing constraint of the 
state register, we need to examine the impact of the two inputs of the next-state logic. Our 
discussion considers the following effects: 

0 The effect of the s ta te i eg  signal. 
0 The effect of synchronized external input. 
0 The effect of unsynchronized external input. 

Since the statereg signal is the output of the state register, it is synchronized by the 
same clock. A closed feedback loop is formed in the diagram through this signal. The timing 
analysis of a synchronous sequential circuit focuses mainly on this loop and is discussed in 
Section 8.6.2 . 

A synchronized external input means that the generation of the input signal is controlled 
by the same clock signal, possibly from a subsystem of the same design. The timing 
analysis is somewhat similar to the closed-loop analysis describe above, and is discussed 
in Section 8.6.5. 

An unsynchronized external input means that the input signal is generated from an 
external source or an independent subsystem. Since the system has no information about 
the unsynchronized external input, it cannot prevent timing violations. For this kind of 
input, we must use an additional synchronization circuit to synchronize the signal with the 
system clock. This issue is be discussed in Chapter 16. 

8.6.2 Setup time violation and maximal clock rate 

In Figure 8.5, the output of the register is processed via next-state logic, whose output 
becomes the new input to the register. To analyze the timing, we have to study the operation 
of this closed feedback loop and examine the s ta te i eg  and statenext signals. The 
s tate ieg  signal is the output of the register, and it also serves as the input to the next-state 
logic. The statenext signal is the input of the register, and it is also the output of the 
next-state logic. 

Maximal clock rate The timing diagram in Figure 8.15 shows the responses of the 
statereg and statenext signals during one clock cycle. At time to ,  the clock changes 
from ’0’ to ’1’. We assume that the statenext signal has stabilized and doesn’t change 
within the setup and hold time periods. After the clock-to-q delay (i.e., Tcp), the register’s 
output, stateieg,  becomes available at time tl ,  which is t o  + Tcq. Since s ta te i eg  
is the input of the next-state logic, the next-state logic responds accordingly. We define 
the propagation delays of the fastest and slowest responses as Tnezt(min) and Tnezt(maz) 
respectively. In the timing diagram, the statenext signal changes at t z .  which is tl + 
Tnezt(min), and becomes stabilized at t 3 ,  which is tl + Tnezt(maz). At time t 5 ,  a new rising 
clock edge arrives and the current clock cycle ends. The statenext is sampled at t 5  and 
the process repeats again. t 5  is determined by the period (T,) of the clock signals, which is 
t o  + Tc. 

Now let us examine the impact of the setup time constraint. The setup time constraint 
indicates that the statenext signal must be stabilized at least Tsetvp before the next 



TIMING ANALYSIS OF A SYNCHRONOUS SEQUENTIAL CIRCUIT 241 

Figure 8.15 Timing analysis of a basic sequential circuit. 

sampling edge at t 5 .  This point is labeled t 4  in the timing diagram. To satisfy the setup 
time constraint, the s ta tenext  signal must be stabilized before t 4 .  This requirement 
translates into the condition 

t 3  t 4  

From the timing diagram, we see that 

t 3  = t o  + Tcq + Tnezt(maz) 
and 

We can rewrite the inequality equation as 

t 4  = t 5  - Tsetup = t o  + Tc - Tsetup 

t o  + Tcq + Tnezt(maz) < t o  + Tc - Tsetup 

which is simplified to 

This shows the role of the clock period on a sequential circuit. To avoid setup time violation, 
the minimal clock period must be 

Tcq + Tnezt(maz) + Tsetup < Tc 

Tc(min) = Tcq + Tnezt(rnaz) + Tsetup 
The clock period is the main parameter to characterize the timing and performance of a 
sequential circuit. We commonly use the maximal clock rate or frequency, the reciprocal 
of the minimal period, to describe the performance of a sequential circuit, as in a 500-MHz 
counter or 2-GHz processor. 



242 SEQUENTIAL CIRCUIT DESIGN: PRINCIPLE 

Clock rate examples For a given technology, the Tcq and Tsetup of a D FF are obtained 
from the data sheet. We can determine the maximal clock rate of a sequential circuit once the 
propagation delay of the next-state logic is known. This information can only be determined 
after synthesis and placement and routing. However, we can calculate and estimate the rate 
of some simple examples. 

Assume that we use the technology discussed in Section 6.2.6, and Tcq and Tsetup of its 
D FF cell are 1 and 0.5 ns respectively. The delay information of combinational components 
can be obtained from Table 6.2. Let us first consider the free-running shift register of 
Section 8.5.2. The next-state logic of the shift register only involves the routing of the input 
and output signals. If we assume that the wiring delay is negligible, its propagation delay 
is 0. The minimal clock period and maximal clock rate become 

-- - x666.7MHz 1 
fmax = 

Tcq + Tsetup 1.5 ns 
Clearly, this is the maximal clock rate that can be achieved with this particular technology. 

The second example is an 8-bit free-running binary counter, similar to the 4-bit version of 
Section 8.5.4. The next-state logic of this circuit is the incrementor, as shown in Figure 8.12. 
If we choose the incrementor that is optimized for area, the clock rate for this %bit binary 
counter is 

x 256.4 MHz 
1 - - 1 

fmax = 
Tcq + TS-bit-inc(area) + Tsetup 1 ns + 2.4 ns 0.5 ns 

If we increase the size of the counter, a wider incrementor must be utilized, and the propa- 
gation delay of the incrementor is increased accordingly. The clock rate of a 16-bit binary 
counter is reduced to 

1 
x 142.9 MHz - - 1 

fmax = 
Tcq + TlG-biLznc(area) Tsetup 1 ns + 5.5 ns + 0.5 ns 

and the clock rate of a 32-bit counter is reduced to 

To increase the performance of a binary counter, we must reduce the value of Tcq + 
Tnezt(max) + Tsetup. Since Tcq and Tsetup are determined by the intrinsic characteristics 
of FFs, they cannot be altered unless we switch to a different device technology. The only 
way to increase performance is to reduce the propagation delay of the incrementor. If we 
replace the incrementors that are optimized for delay, the clock rates of the 8-, 16- and 
32-bit binary counters are increased to 

x 333.3 MHz 
1 - - 1 

fmax = 
Tcq -k TS-biLinc(delay) + Tsetup 1 ns 1.5 ns $. 0.5 ns 

1 
1 nS + 3.3 nS + 0.5 ns 

- - 1 

Tcq -k T16-bit-inc(delay) + Tsetup 
1 

Tcq 4- T32-bit-znc(delay) + Tsetup 

fmax = 

and 
1 

1 ns + 7.5 ns + 0.5 ns 
- - fmaz = 

respectively. 

M 208.3 MHz 

x 111.1 MHz 



TIMING ANALYSIS OF A SYNCHRONOUS SEQUENTIAL CIRCUIT 243 

8.6.3 Hold time violation 

The impact of the hold time constraint is somewhat different from the setup time constraint. 
Hold time, Thold, is the time period that the input signal must be stabilized after the sampling 
edge. In the timing diagram of Figure 8.15, it means that the statenext  must be stable 
between t o  and t h ,  which is t o  +Thold. Note that the earliest time that statenext  changes 
is at time t 2 .  To satisfy the hold time constraint, we must ensure that 

th < t2 
From the timing diagram, we see that 

t 2  = t o  + Tcq + Tnert(min) 
and 

The inequality becomes 
t h  = t o  + Thold 

to -k Thold < t o  + Tcq + Tnezt(mzn) 
which is simplified to: 

Tnezt(min) depends on the complexity of next-state logic. In some applications, such as 
the shift register, the output of one FF is connected to the input of another FF, and the 
propagation delay of the next-state logic is the wire delay, which can be close to 0. Thus, 
in the worst-case scenario, the inequality becomes 

Thold < Tcq + Tnezt(min) 

Thold < Tcq 
Note that both parameters are the intrinsic timing parameters of the FF, and the inequality 
has nothing to do with the next-state logic. Manufacturers usually guarantee that their 
devices satisfy this condition. Thus, we need not worry about the hold time constraint 
unless the clock edge cannot arrive at all FFs at the same time. We discuss this issue in 
Chapter 16. 

8.6.4 Output-related timing considerations 

The closed feedback diagram in Figure 8.5 is the core of a sequential system. In addition, 
there are also external inputs and outputs. Let us first consider the output part of the circuit. 
The output signal of a sequential circuit can be divided into the Moore-typed output (or just 
Moore output) and Mealy-typed output (or just Mealy output). For Moore output, the output 
signal is a function of system state (i.e., the output of the register) only. On the other hand, 
for Mealy output, the output signal is a function of system state and the external input. The 
two types of output can coexist, as shown in Figure 8.16. The main timing parameter for 
both types of outputs is Tco, the time required to obtain a valid output signal after the rising 
edge of the clock. The value of Tco is the summation of Tcq and TWtpt (the propagation 
delay of the output logic); that is, 

Tco = Tcq + Toutput 
For Mealy output, there exists a path in which the input can affect the output directly. The 
propagation delay from input to output is simply the combinational propagation delay of 
output logic. 



244 SEQUENTIAL CIRCUIT DESIGN: PRINCIPLE 

next-state 
logic external 

input 

clk 

2 

MOOm 

external 
input 

clk 

Figure 8.16 Output circuits of a sequential circuit. 

Mealy 
output 

Moore 
output 

I 

subsystem 2 

Figure 8.17 Input timing of two synchronous subsystems. 

8.6.5 Input-related timing considerations 

In a large design, a system may contain several synchronous subsystems. Thus, it is possible 
that 'an input comes from a subsystem that is controlled and synchronized by the same clock. 
The block diagram of this situation is shown in Figure 8.17. Note that the two subsystems 
are controlled by the same clock and thus are synchronous. At the rising edge of the clock, 
the register of subsystem 1 samples a new input value. After Tco(systeml), its new output, 
which is the input for the next-state logic of subsystem 2, becomes available. At this point 
the timing analysis is identical to that in Section 8.6.2. To avoid setup time violation, the 
timing of the two circuits must satisfy the following condition: 

Tco(syatern1) + Tnezt(maz) f Tsetup Tc 

Note that Tnezt(maz), the propagation delay of next-state logic, is somewhat different 
from the calculation used in Section 8.6.2. The Tnezt(rnaz) here is the propagation delay 



ALTERNATIVE ONE-SEGMENT CODING STYLE 245 

from the external input to statenext, whereas Tnez t (maz)  used in earlier minimal clock 
period calculation in Section 8.6.2 is the propagation delay from the internal register out- 
put (i.e., statereg) to statenext. To be more accurate, we should separate the two 
constraints. The constraint for the closed loop is 

Tcq + Tnezt(max of statereg-to-state-next) + Tsetup < ”‘1 

and the constraint for the external input is 

Tco(system1) + Tnezt(max of ext-input-to-state-nezt) + Tsetzlp < Tc2 

We usually determine the clock period based on the calculation of Tcl. If Tc2 turns out to 
be greater than T c l ,  we normally redesign the I/O buffer rather than slowing down the clock 
rate of the entire system. For example, we can employ an extra input buffer for the external 
input of subsystem 2. Although this approach delays the external input by one clock cycle, 
it reduces the Tco(systeml) to T,, in the second constraint. 

8.7 ALTERNATIVE ONE-SEGMENT CODING STYLE 

So far, all VHDL coding follows the basic block diagram of Figure 8.5 and separates the 
memory elements from the rest of the logic. Alternatively, we can describe the memory 
elements and the next-state logic in a single process segment. For a simple circuit, this 
style appears to be more compact. However, it becomes involved and error-prone for more 
complex circuits. In this section, we use some earlier examples to illustrate the one-segment 
VHDL description and the problems associated with this style. 

8.7.1 Examples of one-segment code 

D FF with enable Consider the D FF with an enable signal in Listing 8.7. It can be 
rewritten in one-segment style, as in Listing 8.17. 

Listing 8.17 One-segment description of a D FF with enable 

a r c h i t e c t u r e  one-seg-arch of dff-en is 
begin 

process  (clk ,reset) 
begin 

5 i f  (reset=’l’) then 
q < = ’ O ’ ;  

i f  (en=’l’) then 
e l s i f  (clk’event and clk=’l’) then 

q <= d; 
10 end i f  ; 

end i f  ; 
end p r o c e s s ;  

end one-seg-arch ; 

The code is similar to a regular D FF except that there is an if statement inside the elsif 
branch: 

i f  (en=’I’) then 

end i f  ; 
q <= d; 



246 SEQUENTIAL CIRCUIT DESIGN: PRINCIPLE 

The interpretation the code is that at the rising edge of clk, if en is ’ 1 ’ , q gets the value 
of the d input. Note that there is no else branch in the previous statement. It implies that 
if en is not ’ 1 ’ , q will keep its previous value, which should be the value of the register’s 
output. Thus, the code correctly describes the function of the en signal. In the actual 
implementation, “keep its previous value” is achieved by sampling the FF’s output and 
again stores the value back to the FF. This point is elaborated in the next example. 

T FF Consider the T FF in Listing 8.8. It can be rewritten in one-segment style, as in 
Listing 8.18. 

Listing 8.18 One-segment description of a T FF 
a r c h i t e c t u r e  one-sag-arch of  tff i s  

begin 
s i g n a l  q-reg : std-logic ; 

process  (clk , reset 
5 begin 

i f  reset=’l then 
q-reg <= ’0’; 

e l s i f  (clk’event and clk=’lJ) t h e n .  
i f  (t=’l’) then 

end i f ;  
10 q-reg <= not  q-reg; 

end i f  ; 
end p r o c e s s ;  
q <= q-reg; 

IS end one-seg-arch ; 

We use an internal signal, q r e g ,  to represent the content and the output of an FF. The 
statement 

q-reg <= not q-reg; 

may appear strange at first glance. So let us examine it in more detail. The q r e g  signal 
on the right-hand side represents the output value of the FF, and the not q-reg expression 
forms the new value of q reg .  This value has no effect on the FFuntil the process is activated 
and the clk’event and clk=’l’  condition is true,  which specified the occurrence of 
the rising edge of the clk signal. At this point the value is assigned to q r e g  (actually, 
stored into the FF named qreg).  Thus, the code correctly describes the desired function. 
Note that if this statement is an isolated concurrent signal assignment statement, a closed 
combinational feedback loop is formed, in which the output and input of an inverter are tied 
together . 

As in the previous example, the inner if statement has no else branch, and thus q r e g  
will keep its previous value if the t=’ I condition is fa lse .  In actual implementation, 
“keep its previous value” is achieved by sampling the FF’s output and storing the value back 
to the FE. Thus, the more descriptive if statement can be written as 

i f  (t=’lJ) then 

e l s e  

end i f  ; 

q-reg <= not  (q-reg) ; 

q-reg <= q-reg; 



ALTERNATIVE ONE-SEGMENT CODING STYLE 247 

Featured binary counter Consider the featured binary counter in Listing 8.13. We 
can convert it into one-segment code, as in Listing 8.19. 

Listing 8.19 One-segment description of a featured binary counter 

a r c h i t e c t u r e  one-seg-arch of binary-counter4-f eature i s  

begin 
s i g n a l  r-reg : unsigned ( 3  downto 0) ; 

-- r e g i s t e r  & n e x t - s t a t e  logic 

begin 
s process  (clk , reset) 

i f  (reset=’l’) then 

10 

I S  

r-reg <= ( o t h e r s = > ’ O ’ ) ;  

i f  syn-clr- 1 ’ then 

e l s i f  load=’l’ then 

e l s i f  en = ’ l ’  then 

end i f  ; 

e l s i f  (clk’event and clk=’lJ) then 

r-reg <= ( o t h e r s = > ’ O ’ ) ;  

r-reg <= unsigned (d) ; 

r-reg <= r-reg + 1; 

end i f  ; 
end p r o c e s s ;  
- o u t p u t  l o g i c  
q <= std-logic-vector(r-reg); 

end one-seg-arch; 

The key to this code is the incrementing part, which is done using the statement 

r-reg <= r-reg + 1; 

The interpretation of rreg in this statement is similar to that in T FF except that the not 
operation is replaced by incrementing. 

Free-running binary counter Consider the 4-bit free-running binary counter in List- 
ing 8.12. The first attempt to convert it to a single-segment style is shown in Listing 8.20. 

10 

IS  

Listing 8.20 Incorrect one-segment description of a free-running binary counter 

a r c h i t e c t u r e  not-work-one-seg-glitch-arch 

s i g n a l  r-reg : unsigned (3 downto 0) ; 
of binary-counter4-pulse i s  

begin 
s process  (clk reset) 

begin 
i f  (reset=’l’) then 

e l s i f  (clk’event and clk=’lJ) then 
r-reg <= ( o t h e r s = > ’ O ’ ) ;  

r-reg <= r-reg + 1; 
i f  r-reg=llilll” then 

max-pulse <= ’1’; 
e l s e  

max-pulse <= ’ O J ;  
end i f ;  

end i f ;  
end p r o c e s s ;  



248 SEQUENTIAL CIRCUIT DESIGN: PRINCIPLE 

d q-- 
> clk 

reset 

reset 

9 

rnax-pulse 

Figure 8.18 Free-running binary counter with an unintended output buffer. 

q <= std-logic-vector(r-reg); 
end not-work-one-seg-glitch-arch; 

The output logic does not function as we expected. Because the statement 

i f  r-reg=" 11 11 It then 
max-pulse <= '1'; 

e l s e  
max-pulse <= '0'; 

end i f  ; 

isinsidethe clk'event and c lk= ' l '  branch, a 1-bitregisterisinferredforthemax-pulse 
signal. The register works as a buffer and delays the output by one clock cycle, and thus the 
max-pulse signal will be asserted when rieg="0000". The block diagram of this code 
is shown in Figure 8.18. 

To correct the problem, we have to move the output logic outside the process, as in 
Listing 8.21. 

Listing 8.21 Correct one-segment description of a free-running binary counter 
a r c h i t e c t u r e  work-one-seg-glitch-arch 

of binary-counter4-pulse i s  
s i g n a l  r-reg : unsigned (3 downto 0) ; 

process  (clk , reset) 
begin 

begin 

i f  (reset= ' 1 ' then 

e l s i f  (clk'event and clk='l') then 

end i f  ; 
end p r o c e s s ;  
q <= std-logic-vector(r-reg); 
max-pulse <= '1' when r-reg="llll" e l s e  

r-reg <= ( o t h e r s = > ' O ' ) ;  

10 r-reg <= r-reg + 1; 

I S  '0'; 
end work-one-seg-glitch-arch; 

Programmable counter Consider the programmable mod-m counter in Listing 8.16. 
The first attempt to reconstruct the two-seg-ef f L a r c h  architecture in one-segment cod- 
ing style is shown in Listing 8.22. 



ALTERNATIVE ONE-SEGMENT CODING STYLE 249 

Listing 8.22 Incorrect one-segment description of a programmable counter 

a r c h i t e c t u r e  not-work-one-arch of prog-counter is  

begin 
s i g n a l  r-reg : unsigned ( 3  downto 0) ; 

process  (clk, reset 
s begin 

i f  reset-’1’ t hen  
r-reg <= ( o t h e r s = > ’ O ’ ) ;  

e l s i f  (clk’event and clk=’l’) then 
r-reg <= r-reg+l; 
i f  (r-reg=unsigned(m)) then 

r-reg<= ( o t h e r s = > ’ o ’ ) ;  
end i f ;  

end i f  ; 
end p r o c e s s ;  

1 5  q <= std-logic-vector (r-reg) ; 
end not-work-one-arch; 

10 

The code does not work as specified. Recall that a signal will not be updated until the 
end of the process. Thus, r r e g  is updated to r_reg+l in the end. When the comparison 
r-reg=unsigned(m) is performed, the old value of r i e g  is used. Because the correct 
r r e g  value is late for one clock, the counter counts one extra value. The code actually 
specified a mod-(m + 1) counter instead. 

To correct the problem, we must move the incrementing operation outside the process 
so that it can be performed concurrently with the process. The modified VHDL code is 
shown in Listing 8.23. 

Listing 8.23 Correct one-segment description of a programmable counter 

a r c h i t e c t u r e  work-one-arch of prog-counter i s  
s i g n a l  r-reg : unsigned (3 downto 0) ; 
s i g n a l  r-inc : unsigned (3 downto 0) ; 

begin 
5 p r o c e s s  (clk ,reset 

begin 
i f  reset=’l’ t hen  

e l s i f  (clk’event and clk=’l’) t hen  

r-reg <= ( o t h e r s = > ’ O ’ ) ;  

r-reg <= r-inc; 

r-reg <= ( o t h e r s = > ’ O ’ ) ;  

10 i f  (r-inc=unsigned (m)) then 

e l s e  

end i f  ; 
IS end i f  ; 

end p r o c e s s ;  
r-inc <= r-reg + 1; 
q <= std-logic-vector(r-reg); 

end work-one-arch ; 



250 SEQUENTIAL CIRCUIT DESIGN: PRINCIPLE 

8.7.2 Summary 

When we combine the memory elements and next-state logic in the same process, it is 
much harder to “visualize” the circuit and to map the VHDL statements into hardware 
components. This style may make code more compact for a few simple circuits, as in the 
first three examples. However, when a slightly more involved feature is needed, as the 
max-pulse output or the incrementor sharing of the last two examples, the one-segment 
style makes the code difficult to understand and error-prone. Although we can correct 
the problems, the resulting code contains extra statements and is far worse than the codes 
in Section 8.5. Furthermore, since the combinational logic and memory elements are 
mixed in the same process, it is more difficult to perform optimization and to fine-tune 
the combinational circuit. In summary, although the two-segment code may occasionally 
appear cumbersome, its benefits far outweigh the inconvenience, and we generally use this 
style in this book. 

8.8 USE OF VARIABLES IN SEQUENTIAL CIRCUIT DESCRIPTION 

We have learned how to infer an FF or a register from a signal. It is done by using the 
clk ’ event and clk= ’ 1 ’ condition to indicate the rising edge of the clock signal. Any 
signal assigned under this condition is required to keep its previous value, and thus an FF 
or a register is inferred accordingly. 

A variable can also be assigned under the clk’ event and clk=’ 1 ’ condition, but its 
implication is different because a variable is local to the process and its value is not needed 
outside the process. If a variable is assigned a value before it is used, it will get a value 
every time when the process is invoked and there is no need to keep its previous value. 
Thus, no memory element is inferred. On the other hand, if a variable is used before it is 
assigned a value, it will use the value from the previous process execution. The variable 
has to memorize the value between the process invocations, and thus an FF or a register 
will be inferred. 

Since using a variable to infer memory is more error-prone, we generally prefer to use 
a signal for this task. The major use of variables is to obtain an intermediate value inside 
the clk’event and clk=’l’ branch without introducing an unintended register. This 
can best be explained by an example. Let us consider a simple circuit that performs an 
operation a and b and stores the result into an FF at the rising edge of the clock. We use 
three outputs to illustrate the effect of different coding attempts. The VHDL code is shown 
in Listing 8.24. 

Listing 8.24 Using a variable to infer an FF 
l i b r a r y  ieee ; 
use ieee. std-logic-1164. a l l  ; 
e n t i t y  varaible-ff-demo i s  

port  ( 
5 a,b,clk: in  std-logic; 

ql  , q2, q3 : out std-logic 
1; 

end varaible-ff-demo; 

10 a r c h i t e c t u r e  arch of varaible-ff-demo is 
s i g n a l  tmp-sigl : std-logic ; 

begin 



USE OF VARIABLES IN SEQUENTIAL CIRCUIT DESCRIPTION 251 

IS 

20 

25 

30 

35 

-- a t t e m p t  I 
process  (clk) 
begin 

i f  (clk’event and clk=’l’) then 
tmp-sigl <= a and b; 
ql <= tmp-sigl; 

end i f  ; 
end process;  
- a t t e m p t  2 
process (clk) 

begin 
var iable  tmp-var2 : std-logic ; 

i f  (clk’event and clk=’l’) then 
tmp-var2 := a and b; 
q2 <= tmp-var2; 

end i f ;  
end p r o c e s s ;  
- a t t e m p t  3 
process  (clk) 

begin 
var iable  tmp-var3 : std-logic ; 

if (clk’event and clk=’l’) then 
q3 <= tmp-var3; 
tmp-var3 := a and b; 

end i f  ; 
end p r o c e s s ;  

end arch; 

In the first attempt, we try to use the tmp-sigl signal for the temporary result. However, 
since the tmp-sigl signal is inside the clk’event and clk-’ 1 ’ branch, an unintended 
D FF is inferred. The two statements 

tmp-sigl <= a and b; 
ql <= tmp-sigl; 

are interpreted as follows. At the rising edge of the clk signal, the value of a and b will 
be sampled and stored into an FF named tmp-sigl, and the old value (not current value of 
a and b) from the tmp-sigl signal will be stored into an FF named ql. The diagram is 
shown in Figure 8.19(a). 

The value of a and b is delayed by the unintended buffer, and thus this description fails 
to meet the specification. Since both statements are signal assignment statements, we will 
obtain the same result if we switch the order of the two statements. 

The second attempt uses a variable, tmp-var2, for the temporary result and the statements 
become 

tmp-var2 := a and b; 
q2 <= tmp-var2; 

Note that the tmp-var2 variable is first assigned a value and then used in the next statement. 
Thus, no memory element is inferred and the circuit meets the specification. The diagram 
is shown in Figure 8.19(b). 

The third attempt uses a variable, tmp-var3, for the temporary result. It is similar to the 
second process except that the order of the two statements is reversed: 

q3 <= tmp-var3; 



252 SEQUENTIAL CIRCUIT DESIGN: PRINCIPLE 

clk 

(a) Block diagram of first attempt (b) Block diagram of second attempt 

Figure 8.19 Register inference with a variable. 

tmp-var3 := a and b; 

In this code, the tmp-var3 variable is first used before it is assigned a value. According to 
the VHDL definition, the value of tmp-var3 from the previous process invocation will be 
used. An FF will be inferred to store the previous value. Thus, the circuit described by the 
third attempt is the same as that of the first attempt, which contains an unwanted buffer. 

We can use a variable to overcome the problem of the one-segment programmable mod- 
m counter in Listing 8.22. The revised code is shown in Listing 8.25. 

Listing 8.25 Variable description of a programmable counter 

a r c  h i t  e c  t u r e  variable-arch of prog- count er i s  

begin 
s i g n a l  r-reg : unsigned (3 downto 0) ; 

process  (clk, reset) 

begin 
5 v a r i a b l e  q-tmp : unsigned (3 downto 0) ; 

i f  reset=’l’ then 

e 1 s i f ( clk ’ event and clk= ’ 1 ’ ) then 

i f  (q-tmp=unsigned(m)) then 

e l s e  

r-reg <= ( o t h e r s = > ’ O ’ ) ;  

10 q-tmp : =  r-reg + 1; 

r-reg <= ( o t h e r s = > ’ O ’ ) ;  

r-reg <= q-tmp; 
IS end i f  ; 

end i f  ; 
end p r o c e s s ;  

q <= std-logic-vector(r-reg); 
end variable-arch; 

Instead of using the r i e g  signal, we create a variable, q-tmp, to store the intermediate 
result of the incrementing operation. Unlike the signal assignment, the variable assignment 
takes effect immediately, and thus the code functions as intended. 



SYNTHESIS OF SEQUENTIAL CIRCUITS 253 

8.9 SYNTHESIS OF SEQUENTIAL CIRCUITS 

In Chapter 6, we examined the synthesis procedure for a combinational circuit. The syn- 
thesis of a sequential circuit is identical to this procedure but has two extra steps: 

1. Identify and separate the memory elements from the circuit. 
2. Select the proper leaf cells from the device library to realize the memory elements. 
3. Synthesize the remaining combinational circuit. 

If we follow the recommended coding style, the memory elements are specified in individ- 
ual VHDL segments and thus can be easily inferred and properly instantiated by synthesis 
software. Once this is done, the remaining process is identical to the synthesis of a combi- 
national circuit. 

While synthesizing a combinational circuit, we can include a timing constraint to specify 
the desired maximal propagation delay, and the synthesis software will try to obtain a circuit 
to meet this constraint. For a sequential circuit, we can specify the desired maximal clock 
rate. In a synchronous design, this constraint can easily be translated into the maximal 
propagation delay of the combinational next-state logic, as indicated by the minimal clock 
period equation. Thus, all the optimization schemes used in combinational circuits can also 
be applied to sequential circuit synthesis. 

In summary, when we design and code a sequential circuit in a disciplined way, synthe- 
sizing it is just like the synthesis of a combinational circuit. We can apply the analysis and 
optimization schemes developed for combinational circuits to sequential circuit design. 

8.10 SYNTHESIS GUIDELINES 

0 Strictly follow the synchronous design methodology; i.e., all registers in a system 

0 Isolate the memory components from the VHDL description and code them in a 

should be synchronized by a common global clock signal. 

separate segment. One-segment coding style is not advisable. 

0 The memory components should be coded clearly so that a predesigned cell can be 
inferred from the device library. 

0 Avoid synthesizing a memory component from scratch. 

0 Asynchronous reset, if used, should be only for system initialization. It should not 
be used to clear the registers during regular operation. 

0 Unless there is a compelling reason, a variable should not be used to infer a memory 
component. 

8.1 1 BIBLIOGRAPHIC NOTES 

Design and analysis of intermediate-sized synchronous sequential circuits are covered by 
standard digital systems texts, such as Digital Design Principles and Practices by J. F. Wak- 
erly and Contemporary Logic Design by R. H. Katz. The former also has a section on the 
derivation and analysis of asynchronous sequential circuits. 



254 SEQUENTIAL CIRCUIT DESIGN: PRINCIPLE 

Problems 

8.1 
following assumptions and examine the q output. 

Repeat the timing analysis of Section 8.3 for the circuit shown in Figure 8.6 with the 

0 The propagation delay of the inverter is T and the propagation delays of and and or 
gates are 2T. 

0 The propagation delay of the inverter is 2T and the propagation delays of and and or 
gates are T. 

8.2 The SR latch is defined in the left table below. Some device library does not have an 
SR-latch cell. Instead of synthesizing it from scratch using combinational gates, we want 
to do this by using a D latch. Derive the VHDL code for this design. The code should 
contain a standard VHDL description to infer a D latch and a combinational segment that 
maps the s and r signals to the d and c ports of the D latch to achieve the desired function. 

i k clk q* 

S r q* o q  

o o q  1 q  
0 1 0  0 0 I q  
1 0 1  0 1 4 0  

not 1 0 l l  
1 1 I q' 

allowed 

SR latch JK FF 

8.3 A JK FF is defined as in the right table above. Use a D FF and a combinational 
circuit to design the circuit. Derive the VHDL code and draw the conceptual diagram for 
this circuit. 

8.4 If we replace the D FFs of the free-running shift register of Section 8.5.2 with D latches 
and connect the external clock signal to the c ports of all D latches, discuss what will happen 
to the circuit. 

8.5 Expand the design of the universal shift register of Section 8.5.2 to include rotate- 
right and rotate-left operations. To accommodate the revision, the ctrl signal has to be 
extended to 3 bits. Derive the VHDL code for this circuit. 

8.6 Consider an 8-bit free-running up-down binary counter. It has a control signal, up. 
The counter counts up when the up signal is ' 1 and counts down otherwise. Derive the 
VHDL code for this circuit and draw the conceptual top-level diagram. 

8.7 Consider a 4-bit counter that counts from 3 ("001 1") to 12 ("1 100") and then wraps 
around. If the counter enters an unused state (such as "0000") because of noise, it will 
restart from "001 1" at the next rising edge of the clock. Derive the VHDL code for this 
circuit and draw the conceptual top-level diagram. 

8.8 Redesign the arbitrary counter of Section 8.5.3 using a mod-5 counter and special 
output decoding logic. Derive the VHDL code for this design. 



PROBLEMS 255 

8.9 Design a programmable frequency divider. In addition to clock and reset, it has a 
control signal, c , which is a 4-bit signal interpreted as an unsigned number. The circuit has 
an output signal, pulse ,  whose frequency is controlled by c. If the clock frequency is f 
and the value of c is m, the frequency of the pulse  signal will be 6. For example, if c is 
"OlOl", the frequency of the pulse  signal be f. Derive the VHDL code for this circuit. 

8.10 Assume that we have a 1-MHz clock signal. Design a circuit that generates a 1-Hz 
output pulse with a 50% duty cycle (i.e., 50% of '1' and 50% of '0'). Derive the VHDL 
code for this circuit. 

8.11 Consider the block diagram of the decade counter in Figure 8.13. Let T,, and TsetzLp 
of the D FF be 1 and 0.5 ns, and the propagation delays of the incrementor, comparator and 
multiplexer be 5, 3 and 0.75 ns respectively. Assume that no further optimization will be 
performed during synthesis. Determine the maximal clock rate. 

8.12 Consider the two block diagrams of the programmable mod-m counter in Fig- 
ure 8.14. Assume that no further optimization will be performed during synthesis. Use 
the timing information in Problem 8.1 1 to determine the maximal clock rates of the two 
configurations. 



This Page Intentionally Left Blank



CHAPTER 9 

SEQUENTIAL CIRCUIT DESIGN: 
PRACTICE 

After learning the basic model and coding style, we explore more sophisticated regular 
sequential circuits in this chapter. The design examples show the implementation of a 
variety of counters, the use of registers as fast, temporary storage, and the construction of 
a “pipeline” to increase the throughput of certain combinational circuits. 

9.1 POOR DESIGN PRACTICES AND THEIR REMEDIES 

Synchronous design is the most important design methodology for developing a large, 
complex, reliable digital system. In the past, some poor, non-synchronous design practices 
were used. Those techniques failed to follow the synchronous principle and should be 
avoided in RT-level design. Before continuing with more examples, we examine those 
practices and their remedies. The most common problems are: 

0 Misuse of the asynchronous reset. 
0 Misuse of the gated clock. 
0 Misuse of the derived clock. 

Some of those practices were used when a system was realized by SSI and MSI devices 
and the silicon real estate and printed circuit board were a premium. Designers tended to 
cut corners to save a few chips. These legacy practices are no longer applicable in today’s 
design environment and should be avoided. The following subsections show how to remedy 
these poor non-synchronous design practices. 

RTL Hardware Design Using VHDL: Coding for EfFciency, Portability. and Scalabiliv. By Pong P. Chu 
Copyright @ 2006 John Wiley & Sons, Inc. 

257 



258 SEQUENTIAL CIRCUIT DESIGN: PRACTICE 

(C +' 
' r-next 

r > 
reset - =10 

clk 
reset 

(a) Block diagram 

async-clr n 

(b) Timing diagram 

Figure 9.1 Decade counter using asynchronous reset. 

In few special situations, such as the interface to an external system and low power 
design, the use of multiple clocks and asynchrony may be unavoidable. This kind of design 
cannot easily be incorporated into the regular synthesis and testing flow. It should be treated 
differently and separated from the regular sequential system development. We discuss the 
asynchronous aspect in Chapter 16. 

9.1.1 Misuse of asynchronous signals 

In a synchronous design, we utilize only asynchronous reset or preset signals of FFs for 
system initialization. These signals should not be used in regular operation. A decade 
(mod-10) counter based on asynchronous reset is shown in Figure 9.l(a). The idea behind 
the design is to clear the counter to "0000" immediately after the counter reaches "1010. 
The timing diagram is shown in Figure 9.l(b). If we want, we can write VHDL code for 
this design, as in Listing 9.1. 

Listing 9.1 Decade counter using an asynchronous reset signal 

l i b r a r y  i e e e  ; 
use  ieee.std-logic-1164.all; 
use i e e e  . n u m e r i c - s t d .  a l l  ; 
e n t i t y  modl0 -coun te r  i s  

s p o r t (  
c l k ,  r e s e t :  in  s t d - l o g i c ;  
q: out s t d - l o g i c - v e c t o r  ( 3  downto 0) 

1; 
end modl0-counter  ; 



POOR DESIGN PRACTICES AND THEIR REMEDIES 259 

10 

a r c h i t e c t u r e  poor-async-arch of  mod 10- count er i s  
s i g n a l  r-reg : unsigned ( 3  downto 0) ; 
s i g n a l  r-next : unsigned ( 3  downto 0) ; 
s i g n a l  async-clr : std-logic; 

- r e g i s t e r  
process  (clk, async-clr) 
begin 

IS begin 

i f  (async-clr='l') then 

e l s i f  (clk'event and clk='lJ) then 

end i f ;  
end p r o c e s s ;  

async-clr <= '1' when (reset='lJ or r-reg="1010") e l s e  

- n e x t  s t a t e  l o g i c  
r-next <= r-reg + 1 ;  

q <= std-logic-vector (r-reg) ; 

20 r-reg <= ( o t h e r s = > ' O ' ) ;  

r-reg <= r-next; 

z -- a s y n c h r o n o u s  c l e a r  

'0'; 

M - o u t p u t  l o g i c  

end poor-async-arch ; 
~~~~ 

There are several problems with this design. First, the transition from state "1001" (9) to
"0000" (0) is noisy, as shown in Figure 9.l(b). In that clock period, the counter first changes
from "1001" (9) to "1010" (10) and then clears to "0000" (0) after the propagation delay of
the comparator and reset. Second, this design is not very reliable. A combinational circuit
is needed to generate the clear signal, and glitches may exist. Since the signal is connected
to the asynchronous reset of the register,*the register will be cleared to "0000" whenever
a glitch occurs. Finally, because the asynchronous reset is used in normal operation, we
cannot apply the timing analysis technique of Section 8.6. It is very difficult to determine
the maximal operation clock rate for this design.

The remedy for this design is to load "0000" in a synchronous fashion. We can use a
multiplexer to route "OOOO" or the incremented result to the input of the register. The code
was discussed in Section 8.5.5 and is listed in Listing 9.2 for comparison. In terms of the
circuit complexity, the synchronous design requires an additional 4-bit 2-to- 1 multiplexer.

Listing 9.2 Decade counter using a synchronous clear signal

a r c h i t e c t u r e two-seg-arch of modl0-counter i s
s i g n a l r-reg : unsigned (3 downto 0) ;
s i g n a l r-next : unsigned (3 downto 0) ;

begin
5 - r e g i s t e r

process (clk , reset
begin

i f (reset='l') then

e l s i f (clk'event and clk='lJ) then

end i f ;
end p r o c e s s ;

r-reg <= (o t h e r s = > ' O ') ;

r-reg <= r-next;
10

260 SEQUENTIAL CIRCUIT DESIGN: PRACTICE

Figure 9.2 Disabling FF with a gated clock.

- n e x t - s t a t e logic
15 r-next <= (o t h e r s = > ’ O ’) when r_reg=9 e l s e

r-reg + 1;

q <= std-logic-vector(r-reg);
- output l o g i c

end two-seg-arch ;

9.1.2 Mlsuse of gated clocks

Correct operation of a synchronous circuit relies on an accurate clock signal. Since the
clock signal needs to drive hundreds or even thousands of FFs, it uses a special distribution
network and its treatment is very different from that of a regular signal. We should not
manipulate the clock signal in RT-level design.

One bad RT-level design practice is to use a gated clock to suspend system operation,
as shown in Figure 9.2. The intention of the design is to pause the counter operation by
disabling the clock signal. The design suffers from several problems. First, since the enable
signal, en, changes independent of the clock signal, the output pulse can be very narrow
and cause the counter to malfunction. Second, if the en signal is not glitch-free, the glitches
will be passed through the and cell and be treated as clock edges by the counter. Finally,
since the and cell is included in the clock path, it may interfere with the construction and
analysis of the clock distribution network.

The remedy for this design is to use a synchronous enable signal for the register, as
discussed in Section 8.5.1. We essentially route the register output as a possible input.
If the en signal is low, the same value is sampled and stored back to the register and the
counter appears to be “paused.” The VHDL codes for the original and revised designs are
shown in Listings 9.3 and 9.4. In terms of the circuit complexity, the synchronous design
requires an additional 2-to- 1 multiplexer.

Listing 9.3 Binary counter with a gat4 clock

l i b r a r y ieee;
use ieee. std-logic-1164. a l l ;
use ieee. numeric-std. a l l ;
e n t i t y binary-counter i s

5 p o r t (
clk, reset: i n std-logic;
en: in std-logic;
q : out std-logic-vector (3 downto 0)

1;
io end binary-counter ;

POOR DESIGN PRACTICES AND THEIR REMEDIES 261

a r c h i t e c t u r e gated-clk-arch of binary-counter i s
s i g n a l r-reg: unsigned (3 downto 0) ;
s i g n a l r-next : unsigned (3 downto 0) ;

std-logic ; IS s i g n a l gated-clk:
begin

-- r e g i s t e r
process (gated-clk
begin

20 i f (reset=’l’)
r-reg <= (0

reset)

then
h e r s = > ’0 ’1 ;

e l s i f (gated-clk’event and gated-clk=’l’) then

end i f ;

-- g a t e d c l o c k
gated-clk <= clk and en;
- n e x t - s t a t e l o g i c
r-next <= r-reg + 1;

q <= std-logic-vector(r-reg);

r-reg <= r-next;

zs end p r o c e s s ;

M - o u t p u t l o g i c

end gated-clk-arch;

Listing 9.4 Binary counter with a synchronous enable signal

a r c h i t e c t u r e two-seg-arch of binary-counter i s
s i g n a l r-reg : unsigned (3 downto 0) ;
s i g n a l r-next : unsigned (3 downto 0) ;

begin
5 -- r e g i s t e r

process (clk ,reset)
begin

i f (reset=’l’) then
r-reg <= (o t h e r s = > ’0 ’ ;

r-reg <= r-next;
10 e l s i f (clk’event and clk=’l’) then

end i f ;
end p r o c e s s ;
-- n e x t - s t a t e l o g i c

I5 r-next <= r-reg + 1 when en=’l’ e l s e
r-reg ;

-- o u t p u t l o g i c
q <= std-logic-vector(r-reg);

end two-seg-arch;
~

Power consumption is one important design criterion in today’s digital system. A com-
monly used technique is to gate the clock to reduce the unnecessary transistor switching
activities. However, this practice should not be done in RT-level code. The system should
be developed and coded as a normal sequential circuit. After synthesis and verification,
we can apply special power optimization software to replace the enable logic with a gated
clock systematically.

262 SEQUENTIAL CIRCUIT DESIGN: PRACTICE

'--,

......

clock
clk divider

fast
subsystem

>

I ,

enablegulse

I clock
clk -> divider

en

subsystem i
slow 1

>

t-1 i

:...
subsystem

(b) System with a single synchronous clock

Figure 9 3 System composed of fast and slow subsystems.

9.1.3 Misuse of derived clocks

A large digital system may consist of subsystems that operate in different paces. For
example, a system may contain a fast processor and a relatively slow U0 subsystem. One
way to accommodate the slow operation is to use a clock divider (i.e., a counter) to derive a
slow clock for the subsystem. The block diagram of this approach is shown in Figure 9.3(a).
There are several problems with this approach. The most serious one is that the system
is no longer synchronous. If the two subsystems interact, as shown by the dotted line in
Figure 9.3(a), the timing analysis becomes very involved. The simple timing model of
Section 8.6 can no longer be applied and we must consider two clocks .that have different
frequencies and phases. Another problem is the placement and routing of the multiple
clock signals. Since a clock signal needs a special driver and distribution network, adding
derivative clock signals makes this process more difficult. A better alternative is to add a
synchronous enable signal to the slow subsystem and drive the subsystem with the same
clock signal. Instead of generating a derivative clock signal, the clock divider generates a
low-rate single-clock enable pulse. This scheme is shown in Figure 9.3(b).

Let us consider a simple example. Assume that the system clock is 1 MHz and we want
a timer that counts in minutes and seconds. The first design is shown in Figure 9.4(a). It
first utilizes a mod-1000000 counter to generate a 1-Hz squared wave, which is used as a

POOR DESIGN PRACTICES AND THEIR REMEDIES 263

mod-IM
counter

clk - -

clk

en
renmod40 s-en mod40

counter counter - -

mod40
counter

(a) Design with a derived clock

i

(b) Design with a single synchronous clock

Figure 9.4 Second and minute counter.

l-Hz clock to drive the second counter. The second counter is a mod-60 counter, which in
turn generates a &-HZ signal to drive the clock of the minute counter. The VHDL code is
shown in Listing 9.5. It consists of a mod-1000000 counter and two mod-60 counters. The
output logic of the mod-1000000 counter and one mod-60 counter utilizes comparators to
generate 50% duty-cycle pulses, which are used as the clocks in successive stages.

Listine: 9.5 Second and minute counter with derived clocks

l i b r a r y ieee;
use ieee. std-logic-1164. a l l ;
use ieee. numeric-std. a l l ;
e n t i t y timer i s

s p o r t (
clk, reset: in std-logic;
sec ,min: out std-logic-vector (5 downto 0)

) ;
end timer ;

a r c h i t e c t u r e multi-clock-arch of timer i s
s i g n a l r-reg : unsigned (19 downto 0) ;
s i g n a l r-next : unsigned (19 downto 0) ;
s i g n a l 8-reg , m-reg : unsigned (5 downto 0) ;

s i g n a l sclk , mclk: std-logic ;

- r e g i s t e r
process (clk, reset)

10

IS s i g n a l s-next , m-next: unsigned(5 downto 0);

begin

20 begin
i f (reset=’l’) then

e l s i f (clk’event and clk=’l’) then
r-reg <= (o t h e r s = > ’ O ’) ;

264

2.5

M

35

40

45

w

5s

60

SEQUENTIAL CIRCUIT DESIGN: PRACTICE

r-reg <= r-next;
end i f ;

end p r o c e s s ;
- n e x t - s t a t e l o g i c
r-next <= (o t h e r s = > ’0 J , when r_reg=999999 e l s e

- o u t p u t l o g i c
sclk <= ’0’ when r-reg < 500000 e l s e

- s e c o n d d i v i d e r
process (sclk ,reset)
begin

r-reg + 1;

J1 J . I

i f (reset = 1 J, then

e l s i f (sclk’event and s c l k = J I J) then

end i f ;
end p r o c e s s ;
- n e x t - s t a t e l o g i c
s-next <= (o t h e r s = > ’0 J , when s_reg=59 e l s e

- o u t p u t l o g i c
mclk <= ’0’ when s-reg < 30 e l s e

sec <= std-logic-vector(s-reg);
- m i n u t e d i v i d e r
process (mclk , reset)
begin

s-reg <= (o t h e r s = > ’0 J , ;

s-reg <= s-next;

s-reg + 1;

J l J ;

i f (reset=Jl’) then

e l s i f (mclk’event and m c l k = J I J) then

end i f ;
end process;
- n e x t - s t a t e l o g i c
m-next <= (o t h e r s = > ’0 J , when m_reg=59 e l s e

m-reg + 1;
- o u t p u t l o g i c
min <= std-logic-vector (m-reg) ;

m-reg <= (o t h e r s = > ’ O ’) ;

m-reg <= m-next;

end multi-clock-arch ;

To convert the design to a synchronous circuit, we need to make two revisions. First, we
add a synchronous enable signal for the mod-60 counter. The enable signal functions as the
en signal discussed in examples in Section 8.5.1. When it is deasserted, the counter will
pause and remain in the same state. Second, we have to replace the 50% duty cycle clock
pulse with a one-clock-period enable pulse, which can be obtained by decoding a specific
value of the counter. The revised diagram is shown in Figure 9.4(b), and the VHDL code
is shown in Listing 9.6.

Listing 9.6 Second and minute counter with enable pulses

a r c h i t e c t u r e single-clock-arch of timer i s
s ignal r-reg: unsigned(l9 downto 0);
s i g n a l r-next : unsigned (19 downto 0) ;

COUNTERS 265

s i g n a l s-reg , m-reg : unsigned (5 downto 0) ;

s i g n a l 8-831, m-en: std-logic ;
5 s i g n a l s-next , m-next : unsigned(5 downto 0) ;

begin

10

I5

-- r e g i s t e r
process (clk , reset)
begin

i f (reset= 1 J, then
r-reg <= (o t h e r s = > J O J) ;
s-reg <= (o t h e r s = > ’ O ’) ;
m-reg <= (o t h e r s = > ’ O J) ;

r-reg <= r-next;
s-reg <= s-next;
m-reg <= m-next;

e l s i f (clk’event and c l k = J I J) then

end i f ;
end p r o c e s s ;
-- n e x t - s t a t e l o g i c / o u t p u t l o g i c for mod-1000000 c o u n t e r
r-next <= (o t h e r s = > ’0 J , when r_reg=999999 e l s e

s-en <= ’1’ when r-reg = 500000 e l s e

-- n e x t s t a t e l o g i c / o u t p u t l o g i c for s e c o n d d i v i d e r
s-next <= (o t h e r s = > J O J) when (s-reg=59 and s-en=JIJ) e l s e

r-reg + 1;

J O J ;

s-reg + 1 when ~ - e n = ~ 1 e l s e
s-reg ;

m-en <= ’1’ when s_reg=30 and s-en=JIJ e l s e

- n e x t - s t a t e l o g i c for m i n u t e d i v i d e r
m-next <= (o t h e r s = > ’0 J , when (m_reg=59 and m-en= 1 J , e l s e

J O J ;

m-reg + 1 when m-en= ‘1 e l s e
m-reg ;

- o u t p u t l o g i c
sec <= std-logic-vector (s-reg) ;
min <= std-logic-vector (m-reg) ;

end single-clock-arch;

9.2 COUNTERS

A counter can be considered as a circuit that circulates its internal state through a set of
patterns. The patterns dictate the complexity of the next-state logic and the performance
of the counter. Some applications require patterns with specific characteristics. We studied
several counters in Sections 8.5. These counters are variations of the binary counter, which
follows the basic binary counting sequence. This section introduces several other types of
commonly used counters.

9.2.1 Gray counter

An n-bit Gray counter also circulates through all 2n states. Its counting sequence follows
the Gray code sequence, in which only one bit is changed between successive code words.

266 SEQUENTIAL CIRCUIT DESIGN: PRACTICE

The design and VHDL description are similar to those of a binary counter except that we
need to replace the binary incrementor with the Gray code incrementor of Section 7.5.1.
The VHDL code of a 4-bit Gray counter is shown in Listing 9.7.

Listing 9.7 Gray counter

l i b r a r y ieee ;
use ieee.std-logic-ll64.all;
use ieee , numeric-std. a l l ;
e n t i t y gray-counter4 i s

J p o r t (
clk, reset: in std-logic;
q: out std-logic-vector (3 downto 0)

1;
end gray-counter4;

a r c h i t e c t u r e arch of gray-counter4 i s
10

cons tant WIDTH: natural := 4;
s i g n a l g-reg: unsigned(W1DTH-1 downto 0) ;
s i g n a l g-next , b, bl: unsigned(W1DTH-1 downto 0);

IS begin

20

- r e g i s t e r
process (clk , reset)
begin

i f (reset='l') then

e l s i f (clk'event and clk='l') then
g-reg <= (o t h e r s = > '0 ') ;

g-reg <= g-next;
end i f ;

end p r o c e s s ;

- Gray to b i n a r y
b <= g-reg xor ('0' & b(W1DTH-1 downto 1));
-- b i n a r y increment
bl <= b+l;

g-next <= bl xor ('0' & bl(W1DTH-1 downto 1));
- o u t p u t l o g i c
q <= std-logic-vector(g-reg);

25 - n e n t - s t a t e l o g i c

M - b i n a r y to Gray

end arch;

9.2.2 Ring counter

A ring counter is constructed by connecting the serial-out port to the serial-in port of a
shift register. The basic sketch of a 4-bit shift-to-right ring counter and its timing diagram
are shown in Figure 9.5. After the "0001" pattern is loaded, the counter circulates through
"lOOO", "0100", "0010" and "0001" states, and then repeats.

There are two methods of implementing a ring counter. The first method is to load the
initial pattern during system initialization. Consider a 4-bit ring counter. We can set the
counter to "0001" when the reset signal is asserted. After initialization, the reset signal
is deasserted and the counter enters normal synchronous operation and circulates through
the patterns. The VHDL code of a 4-bit ring counter is shown in Listing 9.8.

COUNTERS 267

clk

(b) Timing diagram

Figure 9.5 Sketch of a 4-bit ring counter.

Listing 9.8 Ring counter using asynchronous initialization

l i b r a r y ieee ;
use ieee. std-logic-1164. a l l ;
e n t i t y ring-counter is

port (
3 clk, reset: in std-logic;

q : out std-logic-vector (3 downto 0)

1;
end ring-counter ;

10 a r c h i t e c t u r e reset-arch of ring-counter i s
cons tant WIDTH: natural := 4;
s i g n a l r-reg : std-logic-vector (WIDTH-1 downto 0) ;
s i g n a l r-next : std-logic-vector (WIDTH-1 downto 0) ;

begin
IS -- r e g i s t e r

process (clk reset)
begin

i f (reset=’l’) then
r-reg <= (O = > ’1 others=>’O ’1;

10 e l s i f (clk’event and clk=’i’) then
r-reg <= r-next;

end i f ;
end p r o c e s s ;
- n e x t - s t a t e l o g i c

25 r-next <= r-reg(0) & r-reg(W1DTH-1 downto 1);

268 SEQUENTIAL CIRCUIT DESIGN: PRACTICE

Figure 9.6 Block diagram of a self-correcting ring counter.

- outpu t l o g i c
q <= r-reg;

end reset-arch ;

Note that the qxeg is initialized with "0001" by the statement

r-reg <= (0=>'1', o t h e r s = > ' O ') ;

The alternative method is to utilize a self-correcting logic to feed the serial-in port with
the correct pattern. The block diagram of a 4-bit self-correcting ring counter is shown
in Figure 9.6. The design is based on the observation that a '1' can only be shifted into
the shift register if the current three MSBs of the register are "000". If any of the three
MSBs is not 'O ' , the self-correcting logic generates a '0' and shifts it into the register. This
process continues until the three MSBs become "000" and a '1' is shifted in afterward.
Note that this scheme works even when the register contains an invalid pattern initially. For
example, if the initial value of the register is "1 101", the logic will gradually shift in 0's and
return to the normal circulating sequence. Because of this property, the circuit is known as
selj-correcting .

The VHDL code for this design is shown in Listing 9.9. Note that no special input
pattern is needed during system initialization, and the all-zero pattern is used in the code.

Listing 9.9 Ring counter using self-correcting logic

a r c h i t e c t u r e self -correct-arch of ring-counter i s
cons tant WIDTH: natural : = 4;
s i g n a l r-reg , r-next : std-logic-vector (WIDTH-1 downto 0) ;
s i g n a l s-in : std-logic ;

- r e g i s t e r
process (clk , reset)
begin

5 begin

i f (resetn'l') then

e l s i f (clk'event and clk=Jl') then

end i f ;
end p r o c e s s ;

s-in <= '1' when r-reg(W1DTH-1 downto l)=llOOOll e l s e

I0 r-reg <= (o t h e r s = > J O ') ;

r-reg <= r-next;

IS - n e x t - s t a t e l o g i c

'0';

COUNTERS 269

Figure 9.7 Block diagram of a 4-bit LFSR.

r-next <= s-in & r-reg(W1DTH-1 downto 1);
-- o u t p u t l o g i c

end self-correct-arch;
20 q <= r-reg;

In a ring counter, an n-bit register can generate only n states, which is much smaller
than the possible 2n states of a binary counter. Despite its inefficiency, a ring counter offers
several benefits. First, each bit of a ring counter is in the 1-out-of-n format. It requires no
decoding logic and is glitch-free. Second, the output of a ring counter is out of phase, and
the n output bits of an n-bit ring counter form a set of n-phase signals. For example, in the
timing diagram of the 4-bit ring counter, each bit is activated for one-fourth of the period
and only one bit is activated at a particular phase. Finally, the ring counter is extremely
fast. For the reset-arch architecture, the next-state logic consists only of connection
wires. If we assume that the wiring delay is negligible, the maximal clock rate becomes

which is the fastest clock rate that can be achieved by a sequential circuit for a
given technology.
Tcq+Tae tup

9.2.3 LFSR (linear feedback shift register)

The linearfeedback shift register (LFSR) is a shift register that utilizes a special feedback
circuit to generate the serial input value. The feedback circuit is essentially the next-state
logic. It performs xor operation on certain bits of the register and forces the register to cycle
through a set of unique states. In a properly designed n-bit LFSR, we can use a few xor
gates to force the register to circulate through 2n - 1 states. The diagram of a 4-bit LFSR is
shown in Figure 9.7. The two LSB signals of the register are xored to generate a new value,
which is fed back to the serial-in port of the shift register. Assume that the initial state of
register is "1000". The circuit will circulate through the 15 (i.e., 24 - 1) states as follows:
"1000", "OlOO", "OOlO", " lOOl" , t'llOO", "OllO", "loll", "OlOl", "1010", "1101", "1110",
"1 11 l", "01 1 l", "001 I", "0001".

Note that the "0000" state is not included and constitutes the only missing state. If the
LFSR enters this state accidentally, it will be stuck in this state.

The construction of LFSRs is based on the theoretical study of finite fields. The term
linear comes from the fact that the general feedback equation of an LFSR is described by
an expression of the and and xor operators, which form a linear system in algebra. The
theoretical study shows some interesting properties of LFSRs:

0 An n-bit LFSR can cycle through up to 2n - 1 states. The all-zero state is excluded

0 A feedback circuit to generate maximal number of states exists for any n.
from the sequence.

270 SEQUENTIAL CIRCUIT DESIGN: PRACTICE

Table 9.1 Feedback expression of LFSR

Register size Feedback expression

2
3
4
5
6
7
8
16
32
64
128

41 03 40
41 03 40

41 @ qo
42 @ 40
41 03 40

43 03 40

44 03 q3 03 42 CI3 qo
45 @ 44 @ 43 @ 40

422 @ 42 @ 41 03 40

44 @ 43 @ 41 03 40

429 @ 417 @ 42 @ Qo

0 The sequence generated by the feedback circuit is pseudorandom, which means that
the sequence exhibits a certain statistical property and appears to be random.

The feedback circuit depends on the number of bits of the LFSR and is determined on
an ad hoc basis. Despite its irregular pattern, the feedback expressions are very simple,
involving either one or three xor operators most of the time. Table 9.1 lists the feedback
expressions for register sizes between 2 and 8 as well as several larger values. We assume
that the output of the n-bit shift register is qn- qn-2 , . . . , 41, 40. The result of the feedback
expression is to be connected to the serial-in port of the shift register (Le., the input of the
(n - 1)th FF).

Once we know the feedback expression, the coding of LFSR is straightforward. The
VHDL code for a 4-bit LFSR is shown in Listing 9.10. Note that the LFSR cannot be
initialized with the all-zero pattern. In pseudo number generation, the initial value of the
sequence is known as a seed. We use a constant to define the initial value and load it into
the LFSR during system initialization.

Listing 9.10 LFSR
l ibrary ieee ;
use ieee. std-logic-1164. a l l ;
e n t i t y lfsr4 i s

port (
5 clk, reset: in std-logic;

q : out std-logic-vector (3 downto 0)
1;

end lfsr4;

10 a r c h i t e c t u r e no-zero-arch of lfsr4 is
s i g n a l r-rag, r-next : std-logic-vector (3 downto 0) ;
s i g n a l fb : std-logic ;
cons tant SEED: std-logic-vector (3 downto 0) :="0001";

begin
IS - r e g i s t e r

process (clk , reset 1
begin

i f (reset=212> then

COUNTERS 271

20

r - r eg <= SEED;

r - r eg <= r-next;
e l s i f (clk'event and c l k = ' l ') then

end i f ;
end p r o c e s s ;
- n e x t - s t a t e l o g i c

r-next <= f b & r - r e g (3 downto 1) ;
-- o u t p u t logic
q <= r - r e g ;

end no-zero-arch ;

25 fb <= r - r e g (1) xor r - r e g (0) ;

The unique properties of LFSR make them useful in a variety of applications. The
first type of application utilizes its pseudorandomness property to scramble and descramble
data, as in testing, encryption and modulation. The second type takes advantages of its
simple combinational feedback circuit. For example, we can use just three xor gates in a
32-bit LFSR to cycle through 232 - 1 states. By comparison, we need a fairly large 32-bit
incrementor to cycle through 232 states in a binary counter. By the component information
of Table 6.2, the gate counts for three xor gates and a 32-bit incrementor are 9 and 113
respectively, and their propagation delays are 0.8 and 1 1.6 ns respectively. Thus, an LFSR
can replace other counters for applications in which the order of the counting states is not
important. This is a clever design technique. For example, we can use three xor gates to
implement a 128-bit LFSR, and it takes about 10l2 years for a 100-GHz system to circulate
all the possible 212* - 1 states.

The all-zero state is excluded in a pure LFSR. It is possible to use an additional circuit
to insert the all-zero state into the counting sequence so that an n-bit LFSR can circulate
through all 2n states. This scheme is based on the following observation. In any LFSR, a
' 1' will be shifted in after the "00. - a 0 1 " state since the all-zero state is not possible. In
other words, the feedback value will be '1' when the n - 1 MSBs are 0's and the state
following "00 - . .01" will always be "10. - .OO". The revised design will insert the all-zero
state, "00 - - - 00", between the "00. 9 01" and "10 - - 00" states. Let the output of an n-bit
shift register be qn-l, qn-2,. . . , q1, qo and the original feedback signal of the LFSR be fa.
The modified feedback value fZeT0 has the expression

This expression can be analyzed as follows:
0 The expression qk-l - qk-2 - .q$. qi indicates the condition that the n - 1 MSBs

are 0's. This condition can only be true when the LFSR is in "00 - - 1 01" or "00 . a00"
state.

0 If the condition above is false, the value of fzero is fb since fb @ 0 = fb. This implies
that the circuit will shift in a regular feedback value and follow the original sequence
except for the "00. - e 0 1 " or "00 - - 00" states.

0 If the current state of the register is "00 - . Ol", the value of fb should be ' 1 ' and the
expression fb @ (q;-l .qL-2 . - q$.q {) becomes 1 €B 1. Thus, a '0' will be shifted into
the register at the next rising edge of the clock and the next state will be "00 e00".

0 If the current state of the register is "00 . - 00", the value of fb should be '0' and the
expression fb@(qk-l'qk-2 - . -qh .q i) becomesOtB1. Thus, a ' l ' willbeshiftedinto
the register at the next rising edge of the clock and the next state will be "10. a 0 0 " .

0 Once the shift register reaches "10 . - .OO", it returns to the regular LFSR sequence.

272 SEQUENTIAL CIRCUIT DESIGN: PRACTICE

The analysis clearly shows that the modified feedback circuit can insert the all-zero
state between the "00 . sol" and "10 + e00" states. Technically, the and operation of the
revised feedback expression destroys the "linearity," and thus the circuit is no longer a linear
feedback shift register. The modified design is sometimes known as a Bruzjn counter.

Once understanding the form and operation of the modified feedback expression, we can
easily incorporate it into the VHDL code. The revised code is shown in Listing 9.1 1. We
use the statement

zero <= '1' when r-reg(3 downto 1)='100011 e l s e
'0';

to obtain the result of the qkd1 qk-2 . qk . qi expression. Note that the all-zero state can
be loaded into the register during system initialization.

Listing 9.11 LFSR with the all-zero state

a r c h i t e c t u r e with-zero-arch of l f s r 4 i s
s i g n a l r-reg , r-next : std-logic-vector (3 downto 0) ;
s i g n a l f b , zero, f z e r o : std-logic;
cons tant seed: std-logic-vector (3 downto 0) :="OOOO" ;

- r e g i s t e r
process (clk ,reset)
begin

5 begin

i f (resetx'l') then

e l s i f (clk'event and clk='l') then

end i f ;
end p r o c e s s ;

f b <= r-reg(l) xor r-reg(0);
z e r o <= $1' when r-reg(3 downto 1)=1100011 e l s e

'0'.

f z e r o <= z e r o xor f b ;

- o u t p u t l o g i c
q <= r-rag;

10 r-reg <= seed;

r-reg <= r-next;

IS - n e n t - s t a t e l o g i c

,

20 r-next <= f z e r o & r-reg(3 downto 1);

end with-zero-arch;

9.2.4 Decimal counter

A decimal counter circulates the patterns in binary-coded decimal (BCD) format. The BCD
code uses 4 bits to represent a decimal number. For example, the BCD code for the three-
digit decimal number 139 is "0001 001 1 1001". The decimal counter follows the decimal
counting sequence and the number following 139 is 140, which is represented as "0001
0100 0000".

One possible way to construct a decimal counter is to design a BCD incrementor for
the next-state logic, just like a regular incrementor in a binary counter. Because of the
cumbersome implementation of the BCD incrementor, this method is not efficient. A better
alternative is to divide the counter into stages of decade counters and use special enable
logic to control the increment of the individual decade counters.

COUNTERS 273

I
mod-I0
counter

mod-10

Figure 9.8 Block diagram of a BCD counter.

d l 00-reg

Consider a 3-digit (12-bit) decimal counter that counts from 000 to 999 and then repeats.
It can be implemented by cascading three special decade counters, and the sketch is shown
in Figure 9.8. The leftmost decade counter represents the least significant decimal digit.
It is a regular mod-10 counter that counts from 0 to 9 (i.e., from "oo00" to "1001") and
repeats. The middle decade counter is a mod-10 counter with a special enable circuit. It
increments only when the least significant decimal digit reaches 9. The rightmost decade
counter represents the most significant decimal digit, and it increments only when the two
least significant decimal digits are equal to 99. Note that when the counter reaches 999,
it will return to 000 at the next rising edge of the clock. The VHDL codes are shown in
Listings 9.12 and 9.13. The former uses three conditional signal assignment statements and
the latter uses a nested if statement to check whether the counter reaches --9, -99 or 999.

Listing 9.12 Three-digit decimal counter using conditional concurrent statements

l i b r a r y ieee;
use ieee.std-logic-ll64.all;
use ieee. numeric-std. a l l ;
e n t i t y decimal-counter i s

s p o r t (
clk, reset: in std-logic;
dl, d10, d100: out std-logic-vector(3 downto 0)

1;
end decimal-counter ;

a r c h i t e c t u r e concurrent-arch of decimal-counter i s
I0

s i g n a l dl-reg , dlO-reg , d100-reg : unsigned(3 downto 0) ;
s i g n a l dl-next , dl0-next , d100-next : unsigned (3 downto 0) ;

begin
IS - r e g i s t e r

process (clk, reset 1
begin

i f (reset='l') then

20 dlO-reg <= (o t h e r s = > ' O ') ;
dl-reg <= (o t h e r s = > ' O ') ;

d100-reg <= (o t h e r s = > ' O '1;

dl-reg <= dl-next;
dlO-reg <= dl0-next ;

e l s i f (clk'event and clk='l') then

7.5 dl00-reg <= d100-next ;
end i f ;

end p r o c e s s ;

SEQUENTIAL CIRCUIT DESIGN: PRACTICE 274

30

35

40

- n e x t - s t a t e l o g i c
dl-next <= l tOOOO1l when dl_reg=9 e l s e

dlo-next <= l s O O O O t q when (dl_reg=9 and dlO-reg=g) e l s e
dlO-reg + 1 when dl_reg=9 e l s e
dl0-reg ;

dl-reg + 1;

d100-next <=
i iOOOOi t when (dl_reg=9 and dlO_reg=9 and d100qreg=9) e l s e
d100-reg + 1 when (dl-reg=g and dlO_reg=9) e l s e
d100,reg ;

- o u t p u t
dl <= std-logic-vector(dl-reg);
d10 <= std-logic,vector(dlO-reg);
dlOO <= s t d - l o g i c - v e c t o r (d l O O , r a g) ;

end concurrent-arch;

10

2s

30

35

Listing 9.13 Three-digit decimal counter using a nested if statement

a r c h i t e c t u r e if-arch of decimal-counter i s
s i g n a l dl-reg , dlo-reg, d100-reg : unsigned (3 downto 0) ;
s i g n a l dl-next , dlo-next , dl00-next : unsigned (3 downto 0) ;

begin
5 - r e g i s t e r

process (clk , reset)
begin

i f (reset=’1’) then
dl-reg <= (o t h e r s = > ’ O ’) ;
dlO-reg <= (o t h e r s = > ’ O ’) ;
d100-reg <= (o t h e r s = > ’ O ’ > ;

dl-reg <= dl-next;
dlO-reg <= dlo-next ;

e 1 s i f (clk ’ event and clk= ’ 1 ’ then

I5 d100,reg <= dl00-next ;
end i f ;

end p r o c e s s ;
- n e x t - s t a t e l o g i c
process (dl-rag , dlo-reg, d100-reg)

20 begin
dl0-next <= dlo-reg;
d100-next <= dl00-reg;
i f dl-rag/=g then

e l s e -- reach - -9
dl-next <= dl-reg + 1;

dl-next <= “0000”;
i f dlO_reg/=9 then

e l s e -- reach -99
dlo-next <= dlO-reg + 1;

dlo-next <= “0000”;
i f d100_reg/=9 then

e l s e - reach 9 9 9

end i f ;

d100-next <= d100-reg + 1;

dl00-next <= “0000“;

COUNTERS 275

Figure 9.9 Block diagram of a PWM circuit.

end i f ;
end i f ;

end p r o c e s s ;
__ o u t p u t

40 dl <= std-logic-vector(dl-reg);
d10 <= std-logic-vector(dl0-reg);
dlOO <= std-logic-vector(dl0O-reg);

end if-arch;

9.2.5 Pulse width modulation circuit

Instead of using the counting patterns directly, some applications generate output signals
based on the state of the counter. One example is a pulse width modulation (PWM) circuit.
In a square wave, the duty cycle is defined as the percentage of time that the signal is asserted
as '1' in a period. For example, the duty cycle of a symmetric square wave is 50% since
the signal is asserted half of the period. A PWM circuit generates an output pulse with an
adjustable duty cycle. It is frequently used to control the on-off time of an external system.

Consider a P W M circuit whose duty cycle can be adjusted in increments of &, i.e., the
duty cycle can be &, &, &, . . . , E, g. A 4-bit control signal, w, which is interpreted as
an unsigned integer, specifies the desired duty cycle. The duty cycle will be $ when w is
"OOOO", and will be $ otherwise. This circuit can be implemented by a mod-16 counter
with a special output circuit, and the conceptual diagram is shown in Figure 9.9.

The mod-16 counter circulates through 16 patterns. An output circuit compares the
current pattern with the w signal and asserts the output pulse when the counter's value is
smaller than w. The output pulse's period is 16 times the clock period, and 5 of the period
is asserted. The VHDL code is shown in Listing 9.14. Note that an additional Boolean
expression, w="OOOO", is included to accommodate the special condition. We also add an
output buffer to remove any potential glitch.

Listing 9.14 PWM circuit

l i b r a r y ieee;
use ieee. std-logic-1164. a l l ;
use ieee . numeric-std. a l l ;
e n t i t y pwm i s

5 p o r t (
clk, reset: in std-logic;
U: in std-logic-vector (3 downto 0) ;

276 SEQUENTIAL CIRCUIT DESIGN: PRACTICE

pwm-pulse: out std-logic
1;

10 end pwm;

a r c h i t e c t u r e two-sag-arch of pwm i s
s i g n a l r-reg : unsigned (3 downto 0) ;
s i g n a l r-next : unsigned (3 downto 0) ;

s i g n a l buf -next : std-logic ;
15 s i g n a l buf -reg : std-logic ;

begin
- r e g i s t e r & o u t p u t b u f f e r
process (clk, reset)
begin

i f (reset=’l’) then
r-reg <= (o t h e r s = > ’ O ’) ;
buf-reg <= ’0’;

r-rag <= r-next;
buf -reg <= buf -next ;

e l s i f (clk’event and clk=’l’) then

end i f ;
end p r o c e s s ;
- n e x t - s t a t e l o g i c
r-next <= r-reg + 1;
- o u t p u t l o g i c
buf-next <=

’1 when (r-reg<unsigned(w)) or (~ = ~ ‘ 0 0 0 0 ~ ’) e l s e
’0’;

pwm-pulse <= buf -reg ;
end two-seg-arch;

9.3 REGISTERS AS TEMPORARY STORAGE

Instead of being dedicated to a specific circuit, such as a counter, registers can also be used
as general-purpose storage or buffer to store data. Since the circuit size of a D FF is several
times larger than that of a RAM cell, using registers as massive storage is not cost-effective.
They are normally used to construct small, fast temporal storage in a large digital system.
This section examines various storage structures, including a register file, register-based
first-in-first-out buffer and register-based look-up table.

9.3.1 Register file

A register file consists of a set of registers. To reduce the amount of wiring and U 0 signals,
the register file provides only one write port and few read ports, which are shared by all
registers for data access. Each register is assigned a binary address as an identifier, and an
external system uses the address to specify which register is to be involved in the operation.
The storage and retrieval operations are known as the write and read operations respectively.
A processor normally includes a register file as fast temporary storage.

In this subsection, we illustrate the design and coding of a register file with four 16-
bit registers and three U 0 ports, which include one write port and two read ports. The
data signals are labeled w-data, r-data0 and r-datal, and the port addresses are labeled

REGISTERS AS TEMPORARY STORAGE 277

w-addr

wr-en

clk -
reset -

r-add@

r-data0

r-data1

Figure 9.10 Block diagram of a register file.

w-addr, r-addr0 and r-addrl. There is also a control signal, wr-en, which is the write
enable signal to indicate whether a write operation can be performed.

The conceptual diagram is shown in Figure 9.10, The design consists of three major
parts: registers with enable signals, a write decoding circuit, and read multiplexing circuits.
There are four 16-bit registers, each register with an individual enable signal, en. The en
signal is synchronous and indicates whether the input data can be stored into the register.
Its function is identical to the FF example in Section 8.5.1.

The write decoding circuit examines the wr-en signal and decodes the write port address.
If the wr-en signal is asserted, the decoding circuit functions as a regular 240-2~ binary
decoder that asserts one of the four en signals of the corresponding register. The w-data
signal will be sampled and stored into the corresponding register at the rising edge of the
clock.

The read multiplexing circuit consists of two 4-to-1 multiplexers. It utilizes r-addr0
and r-addrl as the selection signals to route the desired register outputs to the read ports.

Note that the registers are structwed as a two-dimensional 4-by-16 array of D FFs and
would best be represented by a two-dimensional data type. There is no predefined two-
dimensional data type in the IEEE std-logic-1164 package, and thus we must create a
user-defined data type. One way to do it is to create a user-defined “array of arrays” data
type. Assume that the number of rows and columns of an array are ROW and COL respectively.
The data type and signal declaration can be written as

type a o a - t y p e i s array (R O W - 1 downto 0) of
s t d - l o g i c - v e c t o r (C O L - 1 downto 0) ;

s i g n a l s: a o a - t y p e ;

We can use s [i] to access the ith row of the array and use s Eil Ejl to access the jth bit
of the ith row of the array.

Once understanding the basic block diagram and data type, we can derive the VHDL code
accordingly. The VHDL code is shown in Listing 9.15. The register and corresponding

278 SEQUENTIAL CIRCUIT DESIGN: PRACTICE

enabling circuit are described by two processes. The decoding circuit is described in
another process. If wr-en is not asserted, en will be “0000” and no register will be updated.
Otherwise, one bit of the en signal will asserted according to the value of the w-addr signal.
The read ports are described as two multiplexers.

Listing 9.15 22-by-16 register file

l i b r a r y ieee;
use ieee. std-logic-1164. a l l ;
e n t i t y reg-file i s

p o r t (
5 clk, reset: i n std-logic;

wr-an : i n std-logic ;
w-addr : i n std-logic-vector (1 downto 0) ;
w-data: i n std-logic-vector (15 downto 0) ;
r-addr0, r-addrl : i n std-logic-vector (1 downto 0) ;

10 r-data0, r-data1 : o u t std-logic-vector (15 downto 0)
) ;

end reg-f ile ;

a r c h i t e c t u r e no-loop-arch of reg-f ile i s
IS c o n s t a n t W: natural:=2; - number of b i t s in a d d r e s s

c o n s t a n t B : natural:=16; - number of b i t s in d a t a
type reg-file-type i s a r r a y (2**w-1 downto 0) of

s i g n a l array-reg : reg-f ile-type ;

s i g n a l en: std-logic-vector (2**W-1 downto 0) ;

- r e g i s t e r
p r o c e s s (clk, reset

std-logic-vector (B-I downto 0) ;

20 s i g n a l array-next : reg-f ile-type ;

begin

B begin
if (reset=’l’) t h e n

array-reg(3) <= (o t h e r s = > ’ O , > ;
array-reg(2) <= (o t h e r s = > ’ O ’) ;
array-reg(1) <= (o t h e r s = > ’ O ’) ;
array-reg (0) <= (o t h e r s = > ’0 ’) ;

e l s i f (clk’event and clk=’l’) t hen
array-reg (3) <= array-next (3) ;

30

35

45

array-reg (2) <= array-next (2)
array-reg (1) <= array-next (1)
array-reg (0) <= array-next (0)

end i f ;
end p r o c e s s ;
-- enab le l o g i c f o r r e g i s t e r
p r o c e s s (array-reg , en, w-data)

40 begin
array-next (3) <= array-rag (3) ;
array-next (2) <= array-reg (2) ;
array-next (1) <= array-reg(1) ;
array-next (0) <= array-reg (0) ;
i f en(3)=’1’ t hen

array-next (3) <= w-data;
end i f ;

REGISTERS AS TEMPORARY STORAGE 279

65

i f e n (2) = ' 1 ' then

end i f ;
i f e n (l) = ' l ' then

end i f ;
i f en (O)= 1 ' then

end i f ;
end p r o c e s s ;
- decoding f o r w r i t e address
process (wr-en, w-addr)
begin

a r r a y - n e x t (2) <= w-data;

a r r a y - n e x t (1) <= w-data;

a r r a y - n e x t (0) <= w-data;

i f (wr-en='O') then

e l s e
en <= (o t h e r s = > ' O ') ;

case w-addr i s
when f lOO1t => en <= " O O O 1 l t ;
when 1101" => en <= "0010";
when t l l O " => en <= "0100";
when o t h e r s => en <= ' * 1 0 O O f 1 ;

end c a s e ;
end i f ;

end p r o c e s s ;
- read mul t ip lex ing
with r - a d d r 0 s e l e c t

r - d a t a 0 <= a r r a y - r e g (0) when a O O " ,
a r r a y - r e g (1) when 1101" ,
a r r a y - r e g (2) when e108t
a r r a y - r e g (3) when o t h e r s ;

with r - a d d r l s e l e c t
r - d a t a 1 <= a r r a y - r e g (0) when "00" ,

a r r a y - r e g (1) when "01",
a r r a y - r e g (2) when "10",
a r r a y - r e g (3) when o t h e r s ;

end no- loop-a rch ;

Although the description is straightforward, the code is not very compact. The code will
be cumbersome and lengthy for a larger register file. A more effective description and the
proper use of two-dimensional data types are discussed in Chapter 15.

9.3.2 Register-based synchronous FIFO buffer

A first-in-first-out (FIFO) buffer acts as "elastic" storage between two subsystems. The
conceptual diagram is shown in Figure 9.1 1. One subsystem stores (i.e., writes) data into
the buffer, and the other subsystem retrieves (i.e., reads) data from the buffer and removes
it from the buffer. The order of data retrieval is same as the order of data being stored, and
thus the buffer is known as afirsr-in-first-our bufer. If two subsystems are synchronous
(i.e., driven by the same clock), we need only one clock for the FIFO buffer and it is known
as a synchronous FIFO buffer.

The most common way to construct a FIFO buffer is to add a simple control circuit to a
generic memory array, such as a register file or RAM. We can arrange the generic memory

280 SEQUENTIAL CIRCUIT DESIGN: PRACTICE

FlFO buffer

L datawritten
into FlFO

L data read
from FlFO

Figure 9.11 Conceptual diagram of a FIFO buffer.

array as a circular queue and use two pointers to mark the beginning and end of the FIFO
buffer. The conceptual sketch is shown in Figure 9.12(c). The first pointer, known as the
write pointer (labeled wr ptr), points to the first empty slot in front of the buffer. During a
write operation, the data is stored in this designed slot, and the write pointer advances to the
next slot (i.e., incremented by 1). The second pointer, known as the readpointer (labeled
rd ptr), points to the end of the buffer. During a read operation, the data is retrieved and
the read pointer advances one slot, effectively releasing the slot for future write operations.

Figure 9.12 shows a sequence of write and read operations and the corresponding growth
and shrinking of the buffer. Initially, both the read and write pointers point to the 0 address,
as in Figure 9.12(a). Since the buffer is empty, no read operation is allowed at this time.
After a write operation, the write pointer increments and the buffer contains one item in
the 0 address, as in Figure 9.12(b). After a few more write operations, the write pointer
continues to increase and the buffer expands accordingly, as in Figure 9.12(c). A read
operation is performed afterward. The read pointer advances in the same direction, and
the previous slot is released, as in Figure 9.12(d). After several more write operations, the
buffer is full, as in Figure 9.12(f), and no write operation is allowed. Several read operations
are then performed, and the buffer eventually shrinks to 0, as in Figure 9.12(g), (h) and (i).

The block diagram of a register-based FIFO is shown in Figure 9.13. It consists of a
register file and a control circuit, which generates proper read and write pointer values and
status signals. Note that the FIFO buffer doesn’t have any explicit external address signal.
Instead, it utilizes two control signals, wr and re, for write and read operations. At the rising
edge of the clock, if the wr signal is asserted and the buffer is not full, the corresponding
input data will be sampled and stored into the buffer. The output data from the FIFO is
always available. The re signal might better be interpreted as a “remove” signal. If it is
asserted at the rising edge and the buffer is not empty, the FIFO’s read pointer advances one
position and makes the current slot available. After the internal delays of the incrementing
and routing, new output data is available in FIFO’s output port.

During FIFO operation, an overflow occurs when the external system attempts to write
new data when the FIFO is full, and an underflow occurs when the external system attempts
to read (i.e., remove) a slot when the FIFO is empty. To ensure correct operation, a FIFO
buffer must include the f u l l and empty status signals for the two special conditions. In
a properly designed system, the external systems should check the status signals before
attempting to access the FIFO.

The major components of a FIFO control circuit are two counters, whose outputs function
as write and read pointers respectively. During regular operation, the write counter advances
one position when the wr signal is asserted at the rising edge of the clock, and the read
counter advances one position when the re signal is asserted. We normally prefer to add

REGISTERS AS TEMPORARY STORAGE 281

rd ptr
wr ptr

(a). initial (empty) (b). after a write (c). 3 more writes

(d). after a read (e). 4 more writes (0. 1 more write (full)

wr ptr

(g). 2 reads (h). 5 more reads (i). 1 more read (empty)

Figure 9.12 Circular-queue implementation of a FIFO buffer.

282 SEQUENTIAL CIRCUIT DESIGN: PRACTICE

fifo data in b fifo data out

wr

full

clk 4
reset 4 U controller

Figure 9.13 Block diagram of a register-based FIFO buffer.

some safety precautions to ensure that data will not be written into a full buffer or removed
from an empty buffer. Under these conditions, the counters will retain the previous values.

The difficult part of the control circuit is the handling of two special conditions in which
the FIFO buffer is empty or full. When the FIFO buffer is empty, the read pointer is the
same as the write pointer, as shown in Figure 9.12(a) and (i). Unfortunately, this is also
the case when the FIFO buffer is full, as shown in Figure 9.12(f). Thus, we cannot just use
read and write pointers to determine full and empty conditions. There are several schemes
to generate the status signals, and all of them involve additional circuitry and FFs. We
examine two schemes in this subsection.

F/FO control circuit with augmented binary counters The first method is to use
the binary counters for the read and write pointers and increase their sizes by 1 bit. We can
determine the full or empty condition by comparing the MSBs of the two pointers. This
scheme can be best explained and observed by an example. Consider a FIFO with 3-bit
address (i.e., 23 words). Two 4-bit counters will be used for the read and write pointers.
The counters and the status of a sequence of operations are shown in Table 9.2. The three
LSBs of the read and write pointers are used as addresses to access the register file and
wrap around after eight increments. They are equal when the FIFO is empty or full. The
MSBs of the read and write pointers can be used to distinguish the two conditions. The two
bits are the same when the FIFO is empty. After eight write operations, the MSB of the
write pointers flips and becomes the opposite of the MSB of the read pointer. The opposite
values in MSBs indicate that the FIFO is full. After eight read operations, the MSB of the
read pointer flips and becomes identical to the MSB of the write pointer, which indicates
that the FWO is empty again. A more detailed block diagram of this scheme is shown in
Figure 9.14.

The VHDL code of a 4-word FIFO controller is shown in Listing 9.16. A constant, N,
is used inside the architecture body to indicate the number of address bits. Note that the
w-ptr-reg and r - p t r i e g signals, which are the write and read pointers, are increased to
N + 1 bits.

REGISTERS AS TEMPORARY STORAGE 283

+ n-bit
LSBs

Table 9.2 Representative sequence of FIFO operations

I 1 -
I I

I I

n-bit
LSBs 4 w-addr r-addr

I
+

Write pointer Read pointer Operation Status

I _ _ _ _ _ _ _ _ J

rjb-out -
wr * (n+l)-bit wgtr-out

binary
> counter

0 000
0 111
1OOO
1000
1100
1100
1100
0011
0 100
0 100

rd (n+l)-bit
binary

counter <

0 000
0 000
OOOO
0 100
0 100
1011
1100
1100
1100
0 100

comparing
circuit 4

full 4

initialization empty
after 7 writes
after 1 write full
after 4 reads
after 4 writes full
after 7 reads
after 1 read empty
after 7 writes
after 1 write full
after 8 reads empty

+ empty
--* comparing

b circuit

Figure 9.14 Detailed block diagram of an augmented-binary-counter FIFO control circuit.

284 SEQUENTIAL CIRCUIT DESIGN: PRACTICE

Listing 9.16 FWO control circuit with augmented binary counters

l i b r a r y ieee ;
use ieee. std-logic-1164. a l l ;
use ieee. numeric-std. a l l ;
e n t i t y fifo-sync-ctrl4 is

5 p o r t (
clk, reset: i n std-logic;
wr, rd: in std-logic;
full, empty : out std-logic ;
w-addr , r-addr : out std-logic-vector (1 downto 0)

10 1 ;
end f if o-sync-ctrl4 ;

a r c h i t e c t u r e enlarged-bin-arch of fifo-sync-ctrl4 is
c o n s t a n t N: natural : = 2 ;

15 s i g n a l w-ptr-reg , w-ptr-next : unsigned(# downto 0) ;
s i g n a l r-ptr-reg , r-ptr-next : unsigned(N downto 0) ;
s i g n a l full-f lag , empty-f lag : std-logic ;

- r e g i s t e r
begin

M process (clk , reset)

25

begin
i f (reset=’1’> then

w-ptr-reg <= (o t h e r s = > ’0’);
r-ptr-reg <= (o t h e r s = > ’ O ’) ;

w-ptr-reg <= w-ptr-next ;
r-ptr-reg <= r-ptr-next ;

e l s i f (clk’event and clk=’l’) then

end i f ;
end p r o c e s s ;

w-ptr-next <=
w-ptr-reg + 1 when wr=’lJ and full-flag-’O’ e l s e
w-ptr-reg ;

3 0 - w r i t e p o i n t e r n e x t - s t a t e l o g i c

full-flag <=
35 ’1’ when r-ptr-reg(N) /=w-ptr-reg(N) and

r-ptr-reg (N-1 downto O)=w,ptr_reg(N-l downto 0)
e l s e

’0’;
- w r i t e p o r t o u t p u t

full <= full-flag;
- r e a d p o i n t e r n e x t - s t a t e l o g i c
r-ptr-next <=

45 r-ptr-reg;

40 w-addr <= std-logic-vector (w-ptr-reg(N-1 downto 0)) ;

r-ptr-reg + 1 when rd=’l’ and empty-flag=’O’ e l s e

empty-f lag <= ’ 1 ’ when r-ptr-reg=w-ptr-reg e l s e

- r e a d p o r t o u t p u t
r-addr <= std-logic-vector (r-ptr-reg (N-1 downto 0)) ;

’0’;

so empty <= empty-flag;
end enlarged-bin-arch;

REGISTERS AS TEMPORARY STORAGE 285

To complete the FIFO buffer, we combine the control circuit and the register file, as shown
in Figure 9.13. This can be done by merging the previous register file VHDL code with
the FIFO controller code. A more systematic approach is to use component instantiation,
which is discussed in Chapter 13.

F/FO confro/circuif with status FFS An alternative design of a FIFO control circuit is
to keep track the state of the empty and full conditions and to use this information, combined
with the wr and rd signals, to determine the new conditions. This scheme does not require
augmented counters but needs two extra FFs to record the empty and full statuses. During
system initialization, the full status FF is set to '0' and the empty status FF is set to '1'.
After initialization, the wr and rd signals are examined at the rising edge of the clock, and
the pointers and the FFs are modified according to the following rules:

0 wr and rd are "00": Since no operation is specified, pointers and FFs remain in the
previous state.

0 wr and r d are "1 1": Write and read operations are performed simultaneously. Since
the net size of the buffer remains the same, the empty and full conditions will not
change. Both pointers advance one position.

0 wr and r d are "10": This indicates that only a write operation is performed. We must
first make sure that the buffer is not full. If that is the case, the write pointer advances
one position and the empty status FF should be deasserted. The advancement may
make the buffer full. This condition happens if the next value of the write pointer is
equal to the current value of the read pointer (i.e., the write pointer catches up to the
read pointer). If this condition is true, the full status FF will be set to ' 1 ' accordingly.

0 wr and r d are "01": This indicates that only a read operation is performed. We
must first make sure that the buffer is not empty. If that is the case, the read pointer
advances one position and the full status FF should be deasserted. The advancement
may make the buffer empty. This condition happens if the next value of the read
pointer is equal to the current value of the write pointer (i.e., the read pointer catches
up to the write pointer). If this condition is true, the empty status FF will be set to
' 1 ' accordingly.

The VHDL code for this scheme is shown in Listing 9.17. In this code, we combine the
next-state logic of the pointers and FFs into a single process and use a case statement to
implement the desired operations under various wr and rd combinations.

Listing 9.17 FIFO controller with status FFs
a r c h i t e c t u r e lookahead-bin-arch of fifo-sync-ctrl4 i s

cons tant N: natural : = 2 ;
s i g n a l w-ptr-reg , w-ptr-next : unsigned(#-1 downto 0) ;
s i g n a l w-ptr-succ : unsigned(#-1 downto 0) ;

J s i g n a l r-ptr-reg , r-ptr-next : unsigned(N-1 downto 0) ;
s i g n a l r-ptr-succ : unsigned(#-1 downto 0) ;
s i g n a l full-reg , empty-reg: std-logic;
s i g n a l full-next , empty-next : std-logic ;
s i g n a l wr-op: std-logic-vector (1 downto 0) ;

- r e g i s t e r
process (clk , reset 1
begin

10 begin

i f (reset='l') then
IS w-ptr-reg <= (o t h e r s = > '0 ' 1 ;

286 SEQUENTIAL CIRCUIT DESIGN: PRACTICE

45

50

55

60

65

r-ptr-reg <= (o t h e r s = > '0 ;

w-ptr-reg <= w-ptr-next ;
r-ptr-reg <= r-ptr-next ;

e l s i f (clk'event and c l k = J I J) then

20 end i f ;
end p r o c e s s ;
- s t a t u s FF
process (clk, reset
begin

2.5 i f (reset='lJ) then
full-reg <= ' O J ;
empty-reg <= '1 ;

full-reg <= full-next ;
e l s i f (clk'event and clk='lJ) then

30 empty-reg <= empty-next ;
end i f ;

end p r o c e s s ;
- s u c c e s s i v e v a l u e f o r the w r i t e and read p o i n t e r s
w-ptr-succ <= w-ptr-reg + 1;

35 r-ptr-succ <= r-ptr-reg + 1;
- n e x t - s t a t e l o g i c
wr-op <= wr k rd;
p r o c e s s (w ~ p t r ~ r e g J w ~ p t r ~ s u c c , r ~ p t r ~ r e g J r ~ p t r ~ s u c c ,

wr-op ,empty_reg , fu l l_rag)
40 begin

w-ptr-next <= w-ptr-reg;
r-ptr-next <= r-ptr-reg ;
full-next <= full-reg;
empty-next '<= empty-reg ;
case wr-op i s

when "00" => - no op
when "10" => - w r i t e

i f (full-reg /= ' l J) then - not f u l l
w-ptr-next <= w-ptr-succ;
empty-next <= J O J ;
i f (w-ptr-succ=r-ptr-reg) then

end i f ;
full-next <= '1 ' ;

end i f ;

i f (empty-reg /= J1') then - not empty
when "01" => -- read

r-ptr-next <= r-ptr-succ ;
full-next <= JO';
i f (r-ptr-succ=w-ptr-reg) then

end i f ;
empty-next < = J I J ;

end i f ;

w-ptr-next <= w-ptr-succ;
r-ptr-next <= r-ptr-succ;

when o thers => - w r i t e / r e a d ;

end c a s e ;
end p r o c e s s ;
- w r i t e p o r t o u t p u t

REGISTERS AS TEMPORARY STORAGE 287

w-addr <= std-logic-vector(w-ptr-reg);

r-addr <= std-logic-vector(r_ptr-reg);
empty <= empty-reg;

70 full <= full-reg;

end lookahead-bin-arch;

F/FO control circuit with a non-binary counter For the previous two FIFO control
circuit implementations, the two incrementors used in the binary counters consume the most
hardware resources. If we examine operation of the read and write pointers closely, there is
no need to access the register in binary sequence. Any order of access is fine as long as the
two pointers circulate through the identical sequence. If we can derive a circuit to generate
the status signals, other types of counters can be used for the pointers.

In the first scheme, we enlarge the binary counter and use the extra MSB to determine
the status. This approach is based on the special property of the binary counting sequence
and cannot easily be modified for other types of counters.

In the second scheme, the status signal relies on the successive value of the counter, and
thus this scheme can be applied to any type of counter. Because of its simple next-state
logic, LFSR is the best choice. It replaces the incrementor of a binary counter with a few
xor cells and can significantly improve circuit size and performance, especially for a large
FIFO address space.

Modifying the VHDL code is straightforward. Let us consider a FIFO controller with
a 4-bit address. In the original code, the following two statements generate the successive
values:

w-ptr-succ <= w-ptr-reg + 1 ;
r-ptr-succ <= r-ptr-reg + 1 ;

They can be replaced by the next-state logic of a 4-bit LFSR:

w-ptr-succ <=

r-ptr-succ <=
(w-ptr-reg (1) xor w-ptr-reg (0)) & w-ptr-reg (3 downto 1) ;

(r-ptr-rag (1) xor r-ptr-reg (0)) & r-ptr-reg (3 downto 1) ;

We must also revise the asynchronous reset portion of the code to initialize the counters for
a non-zero value.

Recall that an n-bit LFSR circulates through only 2n - 1 states, and thus the size of the
FIFO buffer is reduced by one accordingly. For a large n, the impact of the reduction is
very small. We can also use a Bmijn counter if the entire 2n address space is required.

9.3.3 Register-based content addressable memory

In a register file, each register in the file is assigned a unique address. When using a register
to store a data item, we associate the item with the address, and access (i.e., read or write)
this item via the address. An alternative way to identify a data item is to associate each
item with a unique “key” and use this key to access the data item. This organization is
known as content addressable memory (CAM). A CAM is used in applications that require
high-speed search, such as cache memory management and network routing.

The operation of a CAM can best be explained by a simple example. Consider a network
router that examines the 16-bit destination field of an incoming packet and routes it to one
of the eight output ports. A 4-word CAM stores information regarding the most frequently

288 SEQUENTIAL CIRCUIT DESIGN: PRACTICE

I I
rep ptr

1 I I

OFOF

I I I

repptr

OFOF

rep ptr

OFOF rep ptr OFOF

5555 000

ABAB

Figure 9.15 Operation of a conceptual CAM.

routed packets. The conceptual sketch is shown in Figure 9.15(a). The CAM includes four
words, and each word is composed of a key-data pair. The key of the CAM is the 16-bit
destination field, and the data is the 3-bit output port number. Since there are 216 possible
combinations for the key, which is far greater than the 4-word capacity of the CAM, we
may need to remove an old key-data pair to make room for the new incoming pair. A
replacement pointer, labeled rep ptr in the diagram, indicates the location of the word to
be removed.

Let us first examine a sequence of write operations:
1. Write (m16 ,0102) , which means an item with a key of FFFF16 and data of 0102.

Since the CAM is empty and no key exists, the item is stored into the CAM, as shown
in Figure 9.15(b). The replacement pointer advances accordingly.

2. Write (OFOF16, 0112). Since no existing key matches the new input key, the item is
stored into the CAM, as shown in Figure 9.15(c).

3. Write (OFOF16, 0002). The input key matches an existing key in the CAM. The corre-
sponding data of the key is replaced by the new data 0002, as shown in Figure 9.15(d).

4. Write two new items. The CAM is now full, as shown in Figure 9.15(e). We assume
that the replacement pointer moves in a round-robin fashion and thus returns to the
first location of the table.

5. Write (EEEE16,1002). Since the CAM is full now, a word must be removed to make
place for the new item. The content of the first location is discarded for the new item,
as shown in Figure 9.15(f).

To perform a read operation, we present the key as the input, and the data associated
with the key will be routed to the output. For example, if the key is EEEE16, the output
of the CAM becomes 1002. Since there is a chance that the input key does not match any
stored key, a CAM usually contains an additional output signal, h i t , to indicate whether
there is a match (i.e., a hit).

REGISTERS AS TEMPORARY STORAGE 289

match(3) D l
- match(2) E+- - encoder

match(1)

tctl match(0)

data
output

-

hit

I

matching unit

Figure 9.16 Matching circuit of a 4-word CAM.

Similar to SRAM, many technology libraries contain predesigned CAM modules that
are constructed and optimized at the transistor level. Although the density of these modules
is very high, accessing a CAM cell requires more time than is required by an FE To improve
performance, we sometimes want to use FFs to implement a small, fast synchronous CAM
in the critical part of the system.

The major difference between a register file and a CAM is that the CAM uses a key,
instead of an address, to identify a data item. One way to construct a CAM is to separate
the storage into two register arrays, one for the data and one for the key. In our discussion,
we call them a data file and a key file respectively. The data file is organized as a register
file and uses an address to access its data. The key file contains a matching circuit, which
compares the input key with the content of the key array and generates the corresponding
address of the matched key. The address is then used to access the data stored in the data
file.

The implementation of a CAM is fairly involved and we start with the read operation.
The most unique component is the key file’s matching circuit. The block diagram of the
matching circuit of a 4-entry CAM and the relevant circuits is shown in Figure 9.16. The
output of each register of the key array is compared with the current value of the input key
(i.e., the key-in signal) and a 1-bit matching signal (i.e., the match(i) signal) is generated
accordingly. Since each stored key is unique, at most one can be matched. We use the h i t
signal to indicate whether a match occurs (Le., whether the input key is a “hit” or a “miss”).
If the key-in signal is a hit, one bit of the 4-bit match signal is asserted. A 22-t0-2 binary
encoder generates the binary code of the matched location. The code is then used as the
read port address of the data file, and the corresponding data item is routed to the output.
Note that the output is not valid if the h i t signal is not asserted.

The function of the key file is somewhat like a “reversed read operation” of a register
file. In a register file, we present the address as an input and obtain the content of the

290 SEQUENTIAL CIRCUIT DESIGN: PRACTICE

data
input I

wr-en -
key-in -

reset - dk -

addr
w-addr

?--.----.----.-..---------

data file

data
output

Figure 9.17 Block diagram of a 4-word register-based CAM.

corresponding register. On the other hand, we present a key (which is like the content) as
the input to a key file and obtain the address where the key is stored.

The write operation is more complicated because of the possible miss condition. During
a write operation, we present a key-data pair. If the key is a hit, the matching circuit
will generate the Write address of the data file, and the input data will be stored into the
corresponding location. If the key is a miss, several tasks must be performed:

0 Find an available register in the key array.
0 Store the input key into this register.
0 Store the data into the corresponding address in the data file.

The block diagram of the complete 4-word CAM is shown in Figure 9.17. The write
operation of the data file is controlled by the external wr-en signal and the address is
specified by the addr-out signal. The addr-out signal has two possible sources, one from
the matching circuit and one from the replacement pointer. The first address is used if the
input key is a hit. The replucemenf pointer is a circuit that keeps track of the available
register location in the key array. The circuit updates the value when a miss occurs during
the write operation. Its output value is used if the input key leads to a miss.

The writing operation of the key array is controlled by a decoding circuit similar to that
of a register file. A key register can be written only if the wr-en signal is asserted and a
miss occurs. If this is the case, the input key will be loaded into a register in the key array
with the address specified by the replacement pointer.

REGISTERS AS TEMPORARY STORAGE 291

The capacity of a register-based CAM is normally small, and the CAM is used to keep
the “most frequently used” key-data pairs. When it is full and a miss occurs, a stored pair
must be discarded to make place for a new pair. The replacement policy determines how
to select the pair, and this policy is implemented by the replacement pointer circuit. One
simple policy is the FIFO policy, which can be implemented by a binary counter. Initially,
the CAM is empty and the counter is zero. The counter increments as the key-data pairs
are stored into the CAM. The CAM is full when the counter reaches its maximal value.
When a new pair comes and a miss occurs, the counter returns to 0 and wraps around. This
corresponds to overwriting (i.e., discarding) the pair with the oldest key and storing the new
pair in its location, achieving the desired FIFO policy.

A register file normally has one write port and several read ports. In theory, the same
configuration can be achieved in a CAM by presenting several keys in parallel and using
several matching circuits to generate multiple addresses. However, this is not common
because of the complexity of the comparison circuit, and we normally use one input key
signal, as in Figure 9.17. The read operation will be performed if the wr-en signal is not
asserted.

The VHDL code of the data file is similar to the register file discussed in Section 9.3.1.
We can even use a regular register file by connecting the addr-out signal to the w-addr and
r-addr0 signals of the register file, as in Figure 9.17. The VHDL code of the key file of a
4-word, 16-bit CAM is shown in Listing 9.18. It follows the block diagram of Figure 9.17.
A 2-bit binary counter is used to implement the FIFO replacement policy.

Listing 9.18 Key file of a 4-word CAM

l i b r a r y ieee ;
use ieee. std-logic-1164. a l l ;
use ieee . numeric-std. a l l ;
e n t i t y key-file i s

s p o r t (
clk, reset: in std-logic;
wr-en: in std-logic ;
key-in: in std-logic-vector (15 downto 0) ;
hit: out std-logic;

10 addr-out : out std-logic-vector (1 downto 0)
1;

end key-f ile ;

a r c h i t e c t u r e no-loop-arch of key-f ile i s
I5 cons tant WORD: natural:=2;

cons tant B I T : natural:=16;
type reg-file-type i s array (2**WORD-1 downto 0) of

s i g n a l array-reg : reg-f ile-type ;

s i g n a l en: std-logic-vector (2**WORD-1 downto 0) ;
s i g n a l match: std-logic-vector (2**WORD-1 downto 0) ;
s i g n a l rep-reg , rep-next : unsigned(W0RD-1 downto 0) ;
s i g n a l addr-match: std-logic-vector (WORD-1 downto 0) ;

std-logic-vector (B I T - 1 downto 0) ;

20 s i g n a l array-next : reg-f ile-type ;

zs s i g n a l wr-key , hit-f lag : std-logic ;
begin
- r e g i s t e r
process (clk ,reset)

292 SEQUENTIAL CIRCUIT DESIGN: PRACTICE

31

40

45

M

55

a r r a y - r e g (0) <= (o t h e r s = > ’0 ’1 ;
e l s i f (c l k ’ e v e n t and c l k = ’ l ’) then

a r r a y - r e g (3) <= a r r a y - n e x t (3) ;
a r r a y - r e g (2) <= a r r a y - n e x t (2) ;
a r r a y - r e g (1) a r r a y - n e x t (1) ;
a r r a y - r e g (0) <= a r r a y - n e x t (0) ;

end i f ;
end p r o c e s s ;
- e n a b l e l o g i c for r e g i s t e r
process (a r r a y - r e g , en, k e y - i n)
begin

a r r a y - n e x t (3) <= a r r a y - r e g (3) ;
a r r a y - n e x t (2) <= a r r a y - r e g (2) ;
a r r a y - n e x t (1) <= a r r a y - r e g (1) ;
a r r a y - n e x t (0) <= a r r a y - r e g (0) ;
i f e n (3) = ’ 1 ’ then

a r r a y - n e x t (3) <= k e y - i n ;
end i f ;
i f e n (2) = ’ 1 ’ then

end i f ;
i f e n (l) = ’ l ’ then

end i f ;
i f en(O)=’l’ then

a r r a y - n e x t (2) <= k e y - i n ;

a r r a y - n e x t (1) <= k e y - i n ;

a r r a y - n e x t (0) <= key- in ;
60 end i f ;

end p r o c e s s ;

- d e c o d i n g for w r i t e a d d r e s s
wr-key <= ’1’ when (w r - e n = ’ l ’ and h i t - f l a g = ’ O ’) e l s e

process (wr-key , r e p - r e g)
begin

i f (wr-key= ’0 ’1 then

65 ’01;

en <= (o t h e r s = > ’ O ’) ;

case r e p - r e g i s
m e l s e

when 1100” => en <= “ O O O l f 1
when “ 0 1 ” => en <= “0010’1
when 1110” => en <= “01OOf1

75 when o t h e r s => en <= “ 1 0 0 0 ” ;
end c a s e ;

end i f ;
end p r o c e s s ;

80 - r e p l a c e m e n t p o i n t e r
process (c l k , r e s e t)

PIPELINED DESIGN 293

begin
i f (r e s e t = ' i '1 then

r e p - r e g <= (o t h e r s = > ' o ') ;
85 e l s i f (c l k ' e v e n t and c l k = J I J) then

r e p - r e g <= r ep -nex t ;
end i f ;

end p r o c e s s ;
r e p - n e x t <= r e p - r e g + 1 when w r - k e y = ' l J e l s e

90 r e p - r e g ;

- k e y c o m p a r i s o n
process(array-reg,key-in)
begin

95 match <= (o t h e r s = > ' O ') ;
i f a r r a y - r e g (3) = k e y _ i n then

end i f ;
i f a r r a y - r e g (2) = k e y _ i n then

end i f ;
i f a r r a y - r e g (l) = k e y - i n then

end i f ;

match(3) <= ' 1 ' ;

100 match(2) <= ' 1 ' ;

ma tch (1) <= ' 1 ' ;

105 i f a r r a y - r e g (O)=key-in then
match(0) <= ' 1 ' ;

end i f ;
end p r o c e s s ;
-- e n c o d i n g

110 with match s e l e c t
addr-match <=

1100" when l f O O O 1 l q
"01" when t ~ o 0 1 0 8 ~
1t10t8 when "010011

I I J r l l l l when o t h e r s ;
- h i t
h i t - f l a g <= '1' when match / = " O O O O " e l s e '0';
- 0 u t p U t
h i t <= h i t - f l a g ;

IZO addr -ou t <= addr-match when (h i t - f l a g i ' l '1 e l s e
std-logic-vector(rep-reg);

end no- loop-a rch ;

As in the register file and FIFO buffer, the code will be cumbersome for a larger CAM.
A more systematic approach is discussed in Chapter 15.

9.4 PIPELINED DESIGN

Pipeline is an important technique to increase the performance of a system. The basic idea
is to overlap the processing of several tasks so that more tasks can be completed in the same
amount of time. If a combinational circuit can be divided into stages, we can insert buffers
(i.e., registers) at proper places and convert the circuit into a pipelined design. This section

294 SEQUENTIAL CIRCUIT DESIGN: PRACTICE

introduces the concept of pipeline and shows how to add pipeline to the combinational
multiplier discussed in Chapter 8.

9.4.1 Delay versus throughput

Before we study the pipelined circuit, it will be helpful to first understand the difference
between delay and throughput, two criteria used to examine the performance of a system.
Delay is the time required to complete one task, and throughput is the number of tasks that
can be completed per unit time. The two are related but are not identical.

To illustrate the concept, let us use the bank ATM machine transaction as an example.
Assume that a bank branch originally has only one ATM machine and it takes 3 minutes to
complete a transaction. The delay to complete one transaction is 3 minutes and the maximal
throughput is 20 transactions per hour. If the bank wishes to increase the performance of
its ATM system, there are two options. The first option is to use a newer, faster ATM
machine. For example, the bank can install a machine that takes only 1.5 minutes to
complete a transaction. The second option is to add another machine so that there are two
ATM machines running in parallel. For the first option, the delay becomes 1.5 minutes
and the maximal throughput increases to 40 transactions per hour. For the second option,
the transaction delay experienced by a user is still 3 minutes and thus remains the same.
However, since there are two ATM machines, the system’s maximal throughput is doubled
to 40 transactions per hour. In summary, the first option reduces the delay in an individual
transaction and increases the throughput at the same time, whereas the second option can
only improve the throughput.

Adding pipeline to a combinational circuit is somewhat like the second option and can
only increase a system’s throughput. It will not reduce the delay in an individual task.
Actually, because of the overhead introduced by the registers and non-ideal stage division,
the delay will be worse than in the non-pipelined design.

9.4.2 Overview on pipelined design

Pipelined laundry The pipelining technique can be applied to a task that is processed
in stages. To illustrate the concept, let us consider the process of doing laundry. Assume
that we do a load of laundry in three stages, which are washing, drying and folding, and
that each stage takes 20 minutes. For non-pipelined processing, a new load cannot start
until the previous load is completed. The time line for processing four loads of laundry is
shown in Figure 9.18(a). It takes 240 minutes (i.e., 4*3*20 minutes) to complete the four
loads. In terms of the performance criteria, the delay of processing one load is 60 minutes
and the throughput is & load per minute (i.e., four loads in 240 minutes).

If we examine the process carefully, there is room for improvement. After 20 minutes,
the washing stage is done and the washer is idle. We can start a new load at this point
rather than waiting for completion of the entire laundry process. Since each stage takes
the same amount of time, there will be no contention in subsequent stages. The time line
of the pipelined version of four loads is shown in Figure 9.18(b). It takes 120 minutes to
complete the four loads. In terms of performance, the delay in processing one load remains
60 minutes. However, the throughput is increased to 8 load per minute (i.e., 4 loads in
120 minutes). If we process k loads, it will take 40 + 20k minutes. The throughput becomes
40&,20k load per minute. If k is large. the throughput approaches & load per minute, which
is three times better than that of the non-pipelined process.

PIPELINED DESIGN 295

0 60 I20 180 240
L I 1 1 1 I I I I I I I I > time

1st load m l
2nd load

3rd load

4th load (wash1 dry I fold I
(a) Non-pipelined sequence

0 60 I20 I80 240
1 1 I I I I I I I I I I > time

1st load -1
2nd load lwashl dry I fold I
3rd load -1
4th load lwashl dry I fold I

(b) Pipelined sequence

Figure 9.18 Timing diagrams of pipelined and non-pipelined laundry sequences.

This example shows an ideal pipelined situation, in which a task can be divided into
stages of identical delays. If washing, drying and folding take 15, 25 and 20 minutes
respectively, we must accommodate the stage with the longest delay or a conflict will occur.
For example, when washing is done at the first stage, we have to wait for 10 minutes before
putting a new load into the dryer. Under this scenario, we can only start a new load every 25
minutes at best. The delay to complete one load is increased from 60 minutes to 75 minutes
(i.e., 3*25 minutes) now. The throughput for k loads becomes - load per minute and
approaches & load per minute when k is large. Note that while the pipelined processing
helps improving the throughput, it actually increases the processing delay for a single load.

Pipelined com6inafional circuit The same pipeline concept can be applied to com-
binational circuits. We can divide a combinational circuit in stages so that the processing of
different tasks can be overlapped, as in the laundry example. To ensure that the signals in
each stage flow in the correct order and to prevent any potential race, we must add a register
between successive stages, as shown in the four-stage pipelined combinational circuit of
Figure 9.19. An output buffer is also included in the last stage. A register functions as a
“flood gate” that regulates signal flow. It ensures that the signals can be passed to the next
stage only at predetermined points. The clock period of the registers should be large enough
to accommodate the slowest stage. At a faster stage, output will be blocked by the register
even when the processing has been completed earlier. The output data at each stage will be
sampled and stored into registers at the rising edge of the clock. These data will be used
as input for the next stage and remain unchanged in the remaining part of the clock period.
At the end of the clock period, the new output data are ready. They will be sampled and
passed to the next stage (via the register) at the next rising edge of the clock.

The effectiveness of the pipelined circuit is judged by two performance criteria, the
delay and the throughput. Consider the previous four-stage pipelined combinational circuit.
Assume that the original propagation delays of the four stages are TI , Tz, T3 and T4

296 SEQUENTIAL CIRCUIT DESIGN: PRACTICE

stage
#2

input output

-
- output

stage stage
> #3) # 4 >

(a) Original combinational circuit

input +qf-p
(b) Pipelined circuit

Figure 9.19 Construction of a four-stage pipelined circuit.

respectively. Let Tmax be the longest propagation delay among the four stages:

Tmax = ~ = (T I , T Z , T3r 7'4)

The clock period needs to accommodate the longest delay plus the overhead introduced by
the buffer register in each stage, which includes the setup time (Tsetup) and the clock-to-q
delay (Tcq) of the register. Thus, the minimal clock period, T,, is

Tc = Tmax + Tsetup + Tcq

In the original non-pipelined combinational circuit, the propagation delay in processing one
data item is

Tcomb = T1 + TZ + T3 + T4

For the pipelined design, processing a data requires four clock cycles and the propagation
delay becomes

This is clearly worse than the propagation delay of the original circuit.
The second performance criterion is the throughput. Since there is no overlapping

when the data is processed, the maximal throughput of the non-pipelined design is &.
The throughput of the pipelined design can be derived by calculating the time requlred
to complete k consecutive data items. When the process starts, the pipeline is empty. It
takes 3Tc to fill the first three stages, and the pipeline does not generate an output in the
interval. After this, the pipeline is full and the circuit can produce one output in each clock
cycle. Thus, it requires 3Tc + kT, to process k data items. The throughput is - and
approaches & as k becomes very large.

In an ideal pipelined scenario, the propagation delay of each stage is identical (which
implies that Tma, = w), and the register overhead (i.e., Tsetup + Tcq) is comparably
small and can be ignored. Tpipe can be simplified as

Tpzpe = 4Tc = 4Tmax + 4(Tsetup + Tcq)

Tpzpe = 4Tc 4Tmax = Tcomb

The throughput becomes
1 4 =-=- 1

Tc Tmax Tcomb
-

PIPELINED DESIGN 297

This implies that the pipeline imposes no penalty on the delay but increases the throughput
by a factor of 4.

The discussion of four-stage pipelined design can be generalized to an N-stage pipeline.
In the ideal scenario, the delay to process one data item remains unchanged and the through-
put can be increased N-fold. This suggests that it is desirable to have more stages in the
pipeline. However, when N becomes large, the propagation delay of each stage becomes
smaller. Since Tsetup + T,, of the register remains the same, its impact becomes more
significant and can no longer be ignored. Thus, extremely large N has less effect and may
even degrade the performance. In reality, it is also difficult, if not impossible, to keep
dividing the original combinational circuit into smaller and smaller stages.

When discussing the throughput of a pipelined system, we have to be aware of the
condition to obtain maximal throughput. The assumption is that the external data are fed
into the pipeline at a rate of & so that the pipeline is filled all the time. If the external input
data cannot be issued fast enough, there will be slack (a “bubble”) inside the pipeline, and
the throughput will be decreased accordingly. If the external data is issued only sporadically,
the pipelined design will not improve the performance at all.

9.4.3 Adding pipeline to a combinational circuit

Although we can add pipeline to any combinational circuit by inserting registers into the
intermediate stages, the pipelined version may not provide better performance. The previous
analysis shows that the good candidate circuits for effective pipeline design should include
the following characteristics:

0 There is enough input data to feed the pipelined circuit.
0 The throughput is a main performance criterion.
0 The combinational circuit can be divided into stages with similar propagation delays.
0 The propagation delay of a stage is much larger than the setup time and the clock-to-q

If a circuit is suitable for the pipelined design, we can convert the original circuit and

1. Derive the block diagram of the original combinational circuit and arrange the circuit

2. Identify the major components and estimate the relative propagation delays of these

3. Divide the chain into stages of similar propagation delays.
4. Identify the signals that cross the boundary of the chain.
5. Insert registers for these signals in the boundary.

delay of the register.

derive the VHDL code by the following procedure:

as a cascading chain.

components.

This procedure is illustrated by the examples in the following subsections.

Simple pipelined addef-based mulflplier The adder-based multiplier discussed in
Section 7.5.4 uses multiple adders to sum the bit products in stages and thus is a natural
match for a pipelined design. Our design is based on the scheme used in the combl-arch
architecture of Listing 7.34. To reduce the clutter in the block diagram, we use a %bit
multiplier to demonstrate the design process. The design approach can easily be extended
to an 8-bit or larger multiplier.

The two major components are the adder and bit-product generation circuit. To facilitate
the pipeline design process, we can arrange these components in cascade. The rearranged
block diagram is shownin Figure 9.20(a). The circuit to generate the bit product is labeled BP
in the diagram. Since the bit-product generation circuit involves only bitwise and operation

298 SEQUENTIAL CIRCUIT DESIGN: PRACTICE

a b a b

-

a0
._I..

a1
1 1 - 1 1

kF PP3

a2
,111.

-

a3
1 1 - m .

Y

(a). Non-pipelined design

PI

Y

@). Pipelined design

Figure 9.20 Block diagrams of non-pipelined and four-stage pipelined multipliers.

PIPELINED DESIGN 299

and the padding of O's, its propagation delay is small. We combine it with the adder to form
a stage. The division of the the circuit is shown in Figure 9.20(a), in which the boundary of
each stage is shown by a dashed line. To help the coding, a signal is given a unique name
in each stage. For example, the a signal is renamed aO, al, a2 and a3 in the zeroth, first,
second and third stages of the pipeline respectively. Since no addition is needed to generate
the first partial product (i.e., the pp0 signal), the zeroth and first stages can be merged into
a single stage later.

For a signal crossing the stage boundary line, a register is needed between the two stages.
There are two types of registers. The first type of register is used to accommodate the
computation flow and to store the intermediate results, which are the partial products, ppl,
pp2, pp3 and pp4, in the diagram. The second type of register preserves the information
needed for each stage, which are al, a2, a3, bl, b2 and b3. The function of these registers
is less obvious. In this pipeline, the processing at each stage depends on the partial product
result from the preceding stage, as well as the values of the a and b signals. Note that four
multiplications are performed concurrently in the pipeline, each with its own values for the
a and b signals. As the partial product calculation progresses through the pipeline, these
values must go with the calculation in each stage. The second type of register essentially
carries the original values along the pipeline so that a correct copy of the input data is
available in each stage. The completed pipelined multiplier with proper registers is shown
in Figure 9.20(b).

Following the diagram, we can derive the VHDL code accordingly. The code of the
rearranged combinational multiplier is shown in Listing 9.19. The creation of the new
signal names is only for later use and should have no effect on synthesis.

Listing 9.19 Non-pipelined multiplier in cascading stages

l ibrary ieee;
use ieee. std-logic-1164. a l l ;
use ieee . numeric-std. a l l ;
e n t i t y mult5 i s

5 p o r t (
clk, reset: in std-logic;
a, b: in std-logic-vector(4 downto 0) ;
y : out std-logic-vector (9 downto 0)

1;
10 end mult5 ;

a r c h i t e c t u r e comb-arch of mult5 i s
constant WIDTH: integer :=5;
s i g n a l a0 , a1 , a2 , a3: std-logic-vector (WIDTH-1 downto 0) ;

IS s ignal bO , bl , b2 , b3: std-logic-vector (WIDTH-1 downto 0) ;
s ignal bvO , bvl , bv2 , bv3 , bv4 :

s i g n a l bpO, bpl , bp2, bp3, bp4:

20 s i g n a l pp0, ppl , pp2, pp3, P P ~ :

std-logic-vector (WIDTH-1 downto 0) ;

unsigned (2+WIDTH-l downto 0) ;

unsigned(P*WIDTH-l downto 0) ;
begin

-- s t a g e 0
bvO <= (others=>b (0) 1 ;

pp0 <= bpO;
25 bpO <=unsigned (f ' O O O O O f ' & (bvO and a)) ;

300

M

35

40

45

50

SEQUENTIAL CIRCUIT DESIGN: PRACTICE

a0 <= a ;
bO <= b ;
- s t a g e 1
bv l <= (o t h e r s = > b O (l)) ;
bp l <=unsigned("OOOO" & (b v l and a01 & "0");
ppl <= pp0 + b p l ;
a1 <= aO;
b l <= bO;
- s t a g e 2
bv2 <= (o t h e r s = > b l (2) 1 ;
bp2 < = u n s i g n e d (" 0 0 0 " & (bv2 and a l) & " O O ' l) ;
pp2 <= p p l + bp2;
a2 <= a l ;
b2 <= b l ;
- s t a g e 3
bv3 <= (o t h e r s = > b 2 (3) 1 ;
bp3 <=unsigned("OO" & (bv3 and a 2) & " O O O ' l) ;
pp3 <= pp2 + bp3;
a3 <= a 2 ;
b3 <= b2 ;
- s t a g e 4
bv4 <= (o t h e r s = > b 3 (4) 1 ;
bp4 <=unsigned("O1' & (bv4 and a 3) & "0000");
pp4 <= pp3 + bp4;
-- o u t p u t
y <= s t d - l o g i c - v e c t o r (p p 4) ;

end comb-arch ;

When converting the circuit into a pipelined version, we first add the specifications for
the registers and then reconnect the input and output of each stage to the registers. Instead
of using the output from the preceding stage, each stage of pipeline circuit obtains its input
from the boundary register. Similarly, the output of each stage is now connected to the input
of the register rather than feeding directly to the next stage. For example, the pp2 signal of
the non-pipelined circuit is generated in the second stage and is then used in the third stage:

- s t a g e 2
pp2 <= p p l + bp2;
- s t a g e 3
pp3 <= pp2 + bp3;

In the pipelined design, the signal should be stored in a register, and the code becomes

- r e g i s t e r
i f (r e s e t ='1') t hen

e l s i f (c l k ' e v e n t and c l k = ' l ') t hen

end i f ;

- s t a g e 2
pp2-next <= p p l - r e g + bp2;
-- s t a g e 3
pp3-next <= pp2-reg + bp3;

pp2-reg <= (o t h e r s = > ' O ') ;

pp2-reg <= pp2-next ;

. . .

The complete VHDL code of the four-stage pipelined circuit is shown in Listing 9.20.

PIPELINED DESIGN 301

Listing 9.20 Four-stage pipelined multiplier

a r c h i t e c t u r e four-stage-pipe-arch of mult5 i s
constant WIDTH: integer :=5;
s i g n a l al-reg , a2_reg, a3-reg :

s i g n a l aO, al-next , aa-next, a3-next :

s i g n a l bl-reg , b2_reg, b3-reg :

s i g n a l bO, bl-next , b2-next , b3-next :

s i g n a l bvO, bvl , bv2, bv3, bv4:

s i g n a l bpO, bpl, bp2, bp3, bp4:

s i g n a l ppl-reg , pp2-regS pp3-reg, pp4-reg :

s i g n a l pp0, ppl-next , pp2-next , pp3-next , pp4-next :

std-logic-vector (WIDTH -1 downto 0) ;

std-logic-vector (WIDTH-1 downto 0) ;

std-logic-vector (WIDTH-1 downto 0) ;

std-logic-vector (WIDTH-1 downto 0) ;

std-logic-vector (WIDTH-1 downto 0) ;

unsigned (2*WIDTH-l downto 0) ;

unsigned(2*WIDTH-l downto 0) ;

unsigned(2*WIDTH-l downto 0) ;

25

30

begin
20 -- p i p e l i n e r e g i s t e r s (b u f f e r s)

process (clk , reset)
begin

i f (reset =’1’) then
ppl-reg <= (o t h e r s = > ’ O ’) ;
pp2-reg <= (o t h e r s = > ’ O ’) ;
pp3-reg <= (o t h e r s = > ’ O ’ > ;
pp4-reg <= (o t h e r s = > ’0’) ;
al-reg <= (o t h e r s = > ’0 ’> ;
a2-reg <= (o t h e r s = > ’ O ’) ;
a3-reg <= (o t h e r s = > ’ O ’) ;
bl-reg <= (o t h e r s = > ’0’);
b2-reg <= (o t h e r s = > ’ O ’) ;
b3-reg <= (o t h e r s = > ’ O ’) ;

ppl-reg <= ppl-next ;
pp2-reg <= pp2-next ;
pp3-reg <= pp3-next ;
pp4-reg <= pp4-next ;
al-reg <= al-next;
a2-reg <= a2-next;
a3-reg <= a3-next;
bl-reg <= bl-next;
b2-reg <= b2-next;
b3-reg <= b3-next;

e l s i f (clk’event and clk=’lJ) then

end i f ;
end p r o c e s s ;

- merged s t a g e 0 & I f o r p i p e l i n e
bvO <= (o t h e r s = > b (0) 1 ;

M bpO <=unsigned(“00000“ & (bvO and a));
pp0 <= bpO;
a0 <= a;

SEQUENTIAL CIRCUIT DESIGN: PRACTICE 302

55

60

65

70

75

bO <= b;

bvl <= (others=>bO (1) I ;
bpl <=unsigned("0000" & (bvl and a01 & " O ' l) ;
ppl-next <= pp0 + bpl;
al-next <= aO;
bl-next <= bO;
- s t a g e 2
bv2 <= (others=>bl-reg (2) 1 ;
bp2 <=unsigned("000" & (bv2 and al-reg) & " O O l ') ;
pp2-next <= ppl-reg + bp2;
a2-next <= al-reg;
b2-next <= bl-reg;
- s t a g e 3
bv3 <= (others=>b2_reg (3)) ;
bp3 <=unsigned("OO" & (bv3 and a2-reg) & "000");
pp3-next <= pp2-reg + bp3;
a3-next <= a2-reg;
b3-next <= b2-reg;
- s t a g e 4
bv4 <= (others=>b3_reg (4) ;
bp4 <=unsigned("O" & (bv4 and a3-reg) & " O O O O I I) ;
pp4-next <= pp3-reg + bp4;
- o u t p u t
y <= std-logic-vector(pp4-reg);

_-

end f our-stage-pipe-arch;

We can adjust the number of stages by adding or removing buffer registers. For example,
we can reduce the number of pipeline stages by removing the registers in the first and third
stages and create a two-stage pipelined multiplier. The revised VHDL code is shown in
Listing 9.21.

Listing 9.21 Wo-stage pipelined multiplier

architecture two-stage-pipe-arch of mult5 is
constant WIDTH: integer:=5;
signal a2-reg : std-logic-vector (WIDTH-1 downto 0) ;
signal aO, al, aa-next, a3:

signal b2-reg : std-logic-vector (WIDTH-1 downto 0) ;
signal bO, bl , b2_next, b3:

signal bvO , bvl , bv2, bv3, bv4 :

signal bpO, bpl, bp2, bp3, bp4:

signal pp2_reg, pp4-reg: unsigned(2*WIDTH-l downto 0) ;
signal pp0, ppl , pp2-nextI pp3, pp4-next :

5 std-logic-vector (WIDTH-1 downto 0) ;

std-logic-vector (WIDTH-1 downto 0) ;

10 std-logic-vector (WIDTH-1 downto 0) ;

unsigned (2*WIDTH-l downto 0) ;

IS unsigned(2*WIDTH-l downto 0) ;
begin

-- p i p e l i n e r e g i s t e r s (b u f f e r s)
process (clk, reset 1
begin

20 i f (reset ='I>) then

PIPELINED DESIGN 303

25

30

35

40

45

50

55

M)

pp2-reg <= (o t h e r s = > ' O ') ;
pp4-reg <= (o t h e r s = > ' O ') ;
a2 - reg <= (o t h e r s = > ' O ') ;
b2-reg <= (o t h e r s = > ' O ') ;

pp2-reg <= pp2-next ;
pp4-reg <= pp4-next ;
a2- reg <= a 2 - n e x t ;
b2-rag <= b2-nex t ;

e l s i f (c l k ' e v e n t and c l k = ' l ') t hen

end i f ;
end p r o c e s s ;

-- s t a g e 0
bvo <= (o t h e r s = > b (O)) ;
bpO < = u n s i g n e d (" 0 0 0 0 0 " & (bvO and a)) ;
pp0 <= bpO;
a0 <= a ;
bO <= b ;
- s t a g e I
bv l <= (o t h e r s = > b O (1) ;
bp l < = u n s i g n e d (" 0 0 0 0 " & (b v l and a01 & "0");
pp l <= pp0 + b p l ;
a 1 <= aO;
b l <= bO;
- s t a g e 2 (with b u f f e r)
bv2 <= (o t h e r s = > b l (2)) ;
bp2 < = u n s i g n e d (" 0 0 0 " & (bv2 and a l l & "00");
pp2-next <= pp l + bp2;
a2-next <= a l ;
b2-next <= b l ;
- s t a g e 3
bv3 <= (o t h e r s = > b 2 _ r e g (3) ;
bp3 <=unsigned("OO" & (bv3 and a 2 - r e g) & "000");
pp3 <= pp2-reg + bp3;
a 3 <= a 2 - r e g ;
b3 <= b2- reg ;
-- s t a g e 4 (w i t h b u f f e r)
bv4 <= (o t h e r s = > b 3 (4) 1 ;
bp4 <=uns igned("O" & (bv4 and a3) & " O O O O l l) ;
pp4-next <= pp3 + bp4;
-- outpu t
y <= s t d - l o g i c - v e c t o r (pp4- reg) ;

end two -st age -p ipe -ar c h ;

More efficient pipelined adder-based multiplier We can make some improvements
of the initial pipelined design. First, as discussed in Section 7.5.4, we can use a smaller
(n + 1)-bit adder to replace the 2n-bit adder in an n-bit multiplier. The same technique can
be applied to the pipelined version. Second, we can reduce the size of the partial-product
register. This is based on the observation that the valid LSBs of the partial products grow
incrementally in each stage, from n + 1 bits to 2n bits. There is no need to use a 2n-bit
register to carry the invalid MSBs in every stage. In the previous example, we can use a
5-bit register for the initial partial product (i.e., the pp0 signal), and increase the size by 1 in

304 SEQUENTIAL CIRCUIT DESIGN: PRACTICE

each stage, Finally, we can reduce the size of the registers that hold the b signal. Note that
only the bi bit of b is needed to obtain the bit product at the ith stage. Once the calculation is
done, the bi bit can be discarded. Instead of using n-bit registers to carry b, we can drop one
LSB bit in each stage and reduce the register size decrementally. In the previous example,
we can drop the register bits for bo and bl in the first stage, the bits for bz in the second
stage and so on. The VHDL code of the revised design is shown in Listing 9.22.

Listing 9.22 More efficient four-stage pipelined multiplier

a r c h i t e c t u r e ef f i-4-stage-pipe-arch of mult5 is
s i g n a l al-reg , a2-reg a3-reg :

s i g n a l aO, al-next , a2-next a3-next :

s i g n a l bO: std-logic-vector (4 downto 1) ;
s i g n a l bl-next bl-reg: std-logic-vector (4 downto 2) ;
s i g n a l b2-next b2-reg : std-logic-vector (4 downto 3) ;
s i g n a l b3-next b3-reg: std-logic-vector (4 downto 4) ;

std-logic-vector (4 downto 0) ;

5 std-logic-vector (4 downto 0) ;

10 s i g n a l bvO, bvl, bv2 bv3, bv4:
std-logic-vector (4 downto 0) ;

s i g n a l bpO , bpl bp2 bp3 bp4: unsigned (5 downto 0) ;
s i g n a l pp0: unsigned(5 downto 0);
s i g n a l ppl-next ppl-reg : unsigned (6 downto 0) ;

15 s i g n a l pp2-next pp2-reg: unsigned (7 downto 0) ;
s i g n a l pp3-next pp3-reg : unsigned (8 downto 0) ;
s i g n a l pp4-next pp4,reg : unsigned (9 downto 0) ;

begin

U)

45

- p i p e l i n e r e g i s t e r s (b u f f e r s)
process (clk , reset 1
begin

i f (reset =’1’) then
ppl-reg <= (o t h e r s = > ’ O ’) ;
pp2-reg <= (o t h e r s = > ’ O ’ > ;
pp3-reg <= (o t h e r s = > ’ O ’) ;
pp4-reg <= (o t h e r s = > ’ O ’) ;
al-reg <= (o t h e r s = > ’ O ’) ;
a2-reg <= (o t h e r s = > J O ’) ;
a3-reg <= (o t h e r s - > ’ O J) ;
bl-reg <= (o t h e r s = > J O ’) ;
b2-reg <= (others=> ’0 J, ;
b3-reg <= (o t h e r s = > ’ O J) ;

ppl-reg <= ppl-next ;
pp2-reg <= pp2-next ;
pp3-reg <= pp3-next ;
pp4-reg <= pp4-next ;
al-reg <= al-next;
a2-reg <= a2-next;
a3-reg <= a3-next;
bl-reg <= bl-next;
b2-reg <= b2-next;
b3-reg <= b3-next;

e l s i f (clk’event and clk=’l’) then

end i f ;
end p r o c e s s ;

PIPELINED DESIGN 305

M

55

60

65

70

7s

80

- merged s t a g e 0 C? 1 for p i p e l i n e
bvO <= (o t h e r s = > b (0) ;
bpO <=uns igned(’O’ & (bvO and a)) ;
pp0 <= bpO;
a0 <= a ;
bO <= b (4 downto 1) ;

bv l <= (o t h e r s = > b O (l)) ;
bp l <=uns igned (’0 & (b v l and aO)) ;
pp l -nex t (6 downto 1) <= (’0’ & ppO(5 downto 1)) + b p l ;
pp i -nex t (0) <= pp0 (0) ;
a l - n e x t <= aO;
b l -nex t <= bO(4 downto 2) ;
- s t a g e 2
bv2 <= (o t h e r s = > b l - r e g (2)) ;
bp2 < = u n s i g n e d (’0’ & (bv2 and a l - r e g)) ;
pp l -nex t (7 downto 2) <= (’0’ & p p l - r e g (6 downto 2)) + bp2;
p p 2 _ n e x t (i downto 0) <= p p l , r e g (l downto 0);
a2-next <= a l - r a g ;
b2-next <= b l - r e g (4 downto 3) ;
-- s t a g e 3
bv3 <= (o t h e r s = > b 2 _ r e g (3)) ;
bp3 < = u n s i g n e d (’ O ’ & (bv3 and a 2 - r e g)) ;
pp3-next (8 downto 3) <= (’0’ & p p 2 _ r e g (7 downto 3)) + bp3;
pp3-next (2 downto 0) <= p p 2 _ r e g (2 downto 0) ;
a3-next <= a 2 - r e g ;
b3-next (4) <= b2-reg (4) ;
- s t a g e 4
bv4 <= (o t h e r s = > b 3 _ r e g (4)) ;
bp4 <-uns igned(’O’ & (bv4 and a 3 - r e g)) ;
pp4,next (9 downto 4) <= (’0 & pp3,reg(8 downto 4)) + bp4;
pp4-next (3 downto 0) <= p p 3 _ r e g (3 downto 0) ;
- o u t p u t
y <= s t d - l o g i c - v e c t o r (p p 4 - r e g) ;

-

end e f f i - 4 - s t a g e - p i p e - a r c h ;

Tree-shaped pipelined multiplier Discussion in Section 7.5.4 shows that we can re-
arrange a cascading network to reduce the propagation delay. In an n-bit combinational
multiplier, the critical path consists of n - 1 adders in a cascading network. The critical
path can be reduced to flog, nl adders when a tree-shaped network is used. The same
scheme can be applied to the pipelined multiplier. The 5-bit tree-shaped combinational
circuit is shown in Figure 9.21(a). The five bit products are first evaluated in parallel and
then fed into the tree-shaped network. The pipelined version is shown in Figure 9.21(b). It
is divided into three stages and the required registers are shown as dark bars. Note that one
bit product has to be carried through two stages. The VHDL code is given in Listing 9.23.

Listing 9.23 Tree-shaped three-stage pipelined multiplier

a r c h i t e c t u r e t r e e - p i p e - a r c h of mul t5 is
c o n s t a n t W I D T H : i n t e g e r :=5 ;
s i g n a l bvO, b v l , bv2 , bv3, bv4:

s t d - l o g i c - v e c t o r (W I D T H - 1 downto 0) ;

306 SEQUENTIAL CIRCUIT DESIGN: PRACTICE

a b

7 Y

(a). Non-pipelined design

1 + 1

‘f
Y

(b). Pipelined design

Figure 9.21 Block diagrams of tree-shaped non-pipelined and pipelined multipliers.

5 s i g n a l bpO, bpl, bp2, bp3, bp4:
unsigned (2*WIDTH -1 downto 0) ;

s i g n a l bp4-sl-reg , bp4_s2_reg :
unsigned(P*WIDTH-l downto 0) ;

s i g n a 1 bp4-s 1 -next , bp4-s2_next :
10 unsigned(P*WIDTH-l downto 0) ;

s i g n a l ppol-reg , pp23-reg I pp0123_reg, pp01234-reg:
unsigned(2*WIDTH-l downto 0) ;

s i g n a l pp0l-next , pp23-next ppOl23-next’ pp01234-next :
unsigned (2*WIDTH-1 downto 0) ;

IS begin
- p i p e l i n e r e g i s t e r s (b u f f e r s)
process (clk, reset 1
begin

i f (reset = ’ 1 ’) then
20 ppol-reg <= (o t h e r s = > ’ O ’) ;

pp23-reg <= (o t h e r s = > ’ O ’) ;
pp0123-reg <= (o t h e r s = > ’ O ’) ;
pp01234-reg <= (o t h e r s = > ’ O ’) ;
bp4-sl-reg <= (o t h e r s = > ’ O ’) ;
bp4-s2_reg <= (o t h e r s = > ’ O ’) ;

PIPELINED DESIGN 307

M

35

40

45

50

5s

elsif (clk'event and clk='lJ) then
pp0l-reg <= pp0l-next ;
pp23-reg <= pp23-next;
pp0123-reg <= pp0123-next;
pp01234-reg <= pp01234-next;
bp4-sl-reg <= bp4-sl-next;
bp4_s2_reg <= bp4-s2_next;

end if ;
end process;

- s t a g e I
-- b i t p r o d u c t
bvO <= (others=>b (0) 1 ;
bpO <=unsigned("00000" & (bvO and a)) ;
bvl <= (others=>b(l));
bpl <=unsigned("0000" & (bvl and a) &
bv2 <= (others=>b (2)) ;
bp2 <=unsigned("000" & (bv2 and a) & "00");
bv3 <= (others=>b (3) 1 ;
bp3 <=unsigned("OO" & (bv3 and a) & "000");
bv4 <= (others=>b(4));
bp4 <=unsigned("O" & (bv4 and a) & "0000");
-- a d d e r
pp0l-next <= bpO + bpl;
pp23-next <= bp2 + bp3;
bp4-sl-next <= bp4;
-- s t a g e 2
pp0123-next <= pp0l-reg + pp23-reg;
bp4-s2_next <= bp4-sl-reg;
-- s t a g e 3
pp01234-next <= pp0123-reg + bp4-s2_reg;
- o u t p u t
y <= std-logic-vector(ppO1234-reg);

end tree -p ipe - ar ch ;

In terms of performance, the delay in the tree-shaped multiplier is smaller since it has
only three pipelined stages. The improvement will become more significant for a larger
multiplier. On the other hand, the throughput of the two pipelined designs is similar because
they have a similar clock rate. Both can generate a new multiplication result in each clock
cycle.

Although the division of the adder-based multiplier appears to be reasonable, it is not
optimal. Examining the circuit in "finer granularity" can shed light about the data depen-
dency on the internal structure and lead to a more efficient partition. This issue is discussed
in Section 15.4.2.

9.4.4 Synthesis of pipelined circuits and retiming

The major step of adding pipeline to a combinational circuit is to divide the circuit into
adequate stages. To achieve this goal, we must know the propagation delays of the relevant
components. However, since the components will be transformed, merged and optimized
during synthesis and wiring delays will be introduced during placement and routing, this
information cannot easily be determined at the RT level.

308 SEQUENTIAL CIRCUIT DESIGN: PRACTICE

-
d q d q d

> > > - -
9 1

(b) Rebalanced circuit

Figure 9.22 Example of circuit retiming.

Except for a highly regular structure, such as the previous adder-based multiplier ex-
ample, partitioning a circuit into proper stages is difficult. We may need to synthesize
major components and even some subsystems in advance to obtain rough estimations of the
propagation delays, and then use this information to guide the division.

More sophisticated synthesis software can automate this task to some degree. It is known
as retiming. For example, consider the three-stage pipelined circuit shown in Figure 9.22(a).
The combinational circuits are shown as clouds with their propagation delays. The division
of the original combinational circuit is not optimal and thus creates three uneven stages. In
regular synthesis software, optimization can be done only for a combinational circuit, and
thus the three combinational circuits of Figure 9.22(a) are processed independently. On the
other hand, synthesis software with retiming capability can examine the overall circuit and
move combinational circuits crossing the register boundaries. A rebalanced implementation
is shown in Figure 9.22(b). This tool is especially useful if the combinational circuits are
random and do not have an easily recognizable structure.

9.5 SYNTHESIS GUIDELINES

0 Asynchronous reset, if used, should be only for system initialization. It should not
be used to clear the registers during regular operation.

0 Do not manipulate or gate the clock signal. Most desired operations can be achieved
by using a register with an enable signal.

0 LFSR is an effective way to construct a counter. It can be used when the counting
patterns are not important.

0 Throughput and delay are two performance criteria. Adding pipeline to a combina-

0 The main task of adding pipeline to a combinational circuit is to divide the circuit

tional circuit can increase the throughput but not reduce the delay.

into balanced stages. Software with retiming capability can aid in this task.

EIELIOGRAPHIC NOTES 309

9.6 BIBLIOGRAPHIC NOTES

Although the implementation of an LFSR is simple, it has lots of interesting properties and
a wide range of applications. The text, Built In Test for VLSI: Pseudorandom Techniques by
Paul H. Bardell et al., has an in-depth discussion on the fundamentals and implementation of
LFSRs. The application note of Xilinx, Eficient Shifr Registers, LFSR Counters, and Long
Pseudorandom Sequence Generators, includes a table that lists LFSR feedback expressions
from 2 to 160 bits.

A pipeline is a commonly used technique to increase the performance of a processor.
Its design is more involved because of the external data dependency. The text, Computer
Organization and Design: The Hardware/Sofhyare Interj%ace, 3rd edition, by David A.
Patterson and John L. Hennessy, provides comprehensive coverage of this topic.

Problems

9.1 Consider the decade counter shown in Figure 9.1. Let Tint, Tcomp and To, be the
propagation delays of the incrementor, comparator and or cell, and Tsetup, Tcq andT,? be
the setup time, clock-to-q delay and reset-to-q delay of the register. Determine the maximal
clock rate of this counter.

9.2 Consider the following asynchronous counter constructed with T FFs:

1 - t q Y
clk >

(a) Draw the waveform for the clock and the output of four FFs.
(b) Describe the operation of this counter.
(c) Design a synchronous counter that performs the same task and derive the VHDL

9.3 For the 4-bit ring counter discussed in Section 9.2.2, the output of the 4 FFs appears
to be out of phase. Let Tcq(o) and Tcq(l) be the clock-to-q delays when the q output of an
FF becomes '0' and '1' respectively. Note that Tcq(o) and Tcq(l) may not always be equal.
Perform a detailed timing analysis to determine whether a ring counter can produce true
non-overlapping four-phase signals.

9.4 Design a 4-bit self-correction synchronous counter that circulates a single '0' (i.e.,
circulates the "1 110" pattern).

9.5 Revise the design of the 4-bit LFSR in Section 9.2.3 to include the "oo00" pattern but
exclude the "1 1 11" pattern.

9.6 Let the propagation delay of an xor cell be 4 ns, the propagation delay of an n-bit
incrementor be 6n ns, and the setup time and clock-to-q delay of the register be 2 and 3 ns
respectively.

code accordingly.

(a) Determine the maximal operation rates of a 4-bit LFSR and a binary counter.
(b) Determine the maximal operation rates of an 8-bit LFSR and a binary counter.
(c) Determine the maximal operation rates of a 16-bit LFSR and a binary counter.
(d) Determine the maximal operation rates of a 64-bit LFSR and a binary counter.

31 0 SEQUENTIAL CIRCUIT DESIGN: PRACTICE

9.7
invertor, 2-input and cell and 2-input or cell be 2 ns.

Brujin counter in Section 9.2.3.

Use the timing data from Problem 9.6. In addition, let the propagation delay of an

(a) Use these cells to implement the additional comparison circuit needed in the 4-bit

(b) Determine the maximal operation rates of the 4-bit Brujin counter.
(c) Repeats parts (a) and (b) for an 8-bit Brujin counter.

An alternative way to design a BCD counter is to use a BCD adder.
(a) Design a 3-digit BCD incrementor that adds 1 to a 3-digit 12-bit BCD operand,

(b) Use this circuit to implement a 3-digit BCD counter and derive the VHDL code.
(c) Compare the circuit complexity between this design and the counter discussed in

9.9 For the PWM circuit in Section 9.2.5, can we replace the binary counter with a Brujin
counter? Explain.

9.10 The P W M circuit can control the duty cycle, but its frequency is fixed. If the original
fre uency of the clock signal is fclk, the frequency of the PWM circuit in Section 9.2.5
is ?$&. We can extend the PWM circuit to a programmable pulse generator by adding
additional control signal to specify the desired frequency. Let k be a 4-bit signal that is
interpreted as an unsigned divisor. The frequency of the new output pulse will be & if k
is not 0 and will be

9.11 A stuck is a buffer in which the data is stored and retrieved injht-in-lust-out fashion.
In a synchronous stack, it should consist of the following U0 signals:

w-data and r-data: data to be written (also known as pushed) into and read (also

push and pop: control signals to enable the push or pop operation.
full and empty: status signals.

0 clk and reset: the clock and reset signals.

9.8

and derive the VHDL code.

Section 9.2.4.

if Ic is 0. Design this circuit and derive the VHDL code.

known as popped) from the stack.

We can use a register file to construct this circuit. by following the design approach of the
FIFO buffer.

(a) Draw a top-level diagram similar to that in Figure 9.13.
(b) Consider a stack of four words. Derive the VHDL code of the control circuit.

9.12 In the CAM of Section 9.3.3, a binary encoding circuit is included in the key file
circuit to generate the address. This address is then decoded by the decoding circuit in
the register file. We can eliminate both encoding and decoding circuits to make the design
more efficient. Derive the VHDL code for the revised register file and the key file.

9.13 We can add a “mask” input to the CAM so that only a portion of the key will be used
for search. For example, if the key is 16 bits and the mask input is “000000001 11 11 11 l“,
only the eight LSBs of the key will be used for search. If a search finds multiple matches,
the address with the smallest value will be used. Revise the key file of Section 9.3.3 to
include this feature and derive the VHDL code.

9.14 Consider a combinational circuit that requires 128 ns to process input data and
assume that it can always be divided into smaller parts of equal propagation delays. Let Tcp
and Tsetvp of the register be 1 and 3 ns respectively. Determine the throughput and delay

(a) of the original circuit.

PROBLEMS 311

(b) if the circuit is converted into a 2-stage pipeline.
(c) if the circuit is converted into a 4-stage pipeline.
(a) if the circuit is converted into an 8-stage pipeline.
(e) if the circuit is converted into a 16-stage pipeline.
(f) if the circuit is converted into a 32-stage pipeline.

9.15 Convert the reduced-xor circuit in Section 7.4.1 into a four-stage pipelined circuit.

This Page Intentionally Left Blank

CHAPTER 10

FINITE STATE MACHINE: PRINCIPLE AND
P RACTl C E

A finite state machine (FSM) is a sequential circuit with “random” next-state logic. Unlike
the regular sequential circuit discussed in Chapters 8 and 9, the state transitions and event
sequence of an FSM do not exhibit a simple pattern. Although the basic block diagram of
an FSM is similar to that of a regular sequential circuit, its design procedure is different.
The derivation of an FSM starts with a more abstract model, such as a state diagram or an
algorithm state machine (ASM) chart. Both show the interactions and transitions between
the internal states in graphical formats. In this chapter, we study the representation, timing
and implementation issues of an FSM as well as derivation of the VHDL code. Our emphasis
is on the application of an FSM as the control circuit for a large, complex system, and
our discussion focuses on the issues related to this aspect. As in previous chapters, our
discussion is limited to the synchronous FSM, in which the state register is controlled by a
single global clock.

10.1 OVERVIEW OF FSMS

As its name indicates, afinite mace machine (FSM) is a circuit with internal states. Unlike
the regular sequential circuits discussed in Chapters 8 and 9, state transition of an FSM
is more complicated and the sequence exhibits no simple, regular pattern, as in a counter
or shift register. The next-state logic has to be constructed from scratch and is sometimes
known as ‘hndorn” logic.

Formally, an FSM is specified by five entities: symbolic states, input signals, output
signals, next-state function and output function. A state specifies a unique internal condition

RTL Haniware Design Using VHDL: Coding for Eflciency, Portabilify, and Scalability. By Pong P. Chu
Copyright @ 2006 John Wiley & Sons, Inc.

31 3

314 FINITE STATE MACHINE PRINCIPLE AND PRACTICE

input

clk

Mealy
output

Moore
output

Figure 10.1 Block diagram of an FSM.

of a system. As time progresses, the FSM transits from one state to another. The new state
is determined by the next-state function, which is a function of the current state and input
signals. In a synchronous FSM, the transition is controlled by a clock signal and can
occur only at the triggering edge of the clock. As we discussed in Section 8.2, our study
strictly follows the synchronous design methodology, and thus coverage is limited to the
synchronous FSM.

The output function specifies the value of the output signals. If it is afunction ofthe state
only, the output is known as a Moore output. On the other hand, if it is afunction ofthe
state and input signals, the output is known as a Mealy output. An FSM is called a Moore
machine or Mealy machine if it contains only Moore outputs or Mealy outputs respectively.
A complex FSM normally has both types of outputs. The differences and implications of
the two types of outputs are discussed in Section 10.4.

The block diagram of an FSM is shown in Figure 10.1, It is similar to the block diagram of
a regular sequential circuit. The state register is the memory element that stores the state of
the FSM. It is synchronized by a global clock. The next-state logic implements the next-state
function, whose input is the current state and input signals. The output logic implements
the output function. This diagram includes both Moore output logic, whose input is the
current state, and Mealy output logic, whose input is the current state and input signals.
The main application of an FSM is to realize operations that are performed in a sequence
of steps. A large digital system usually involves complex tasks or algorithms, which can
be expressed as a sequence of actions based on system status and external commands. An
FSM can function as the control circuit (known as the control path) that coordinates and
governs the operations of other units (known as the data path) of the system. Our coverage
of FSM focuses on this aspect. The actual construction of such systems is discussed in the
next two chapters. FSMs can also be used in many simple tasks, such as detecting a unique
pattern from an input data stream or generating a specific sequence of output values.

10.2 FSM REPRESENTATION

The design of an FSM normally starts with an abstract, graphic description, such as a state
diagram or an ASM chart. Both descriptions utilize symbolic state notations, show the
transition among the states and indicate the output values under various conditions. A state
diagram or an ASM chart can capture all the needed information (i.e., state, input, output,
next-state function, and output function) in a single graph.

FSM REPRESENTATION 31 5

mo: Moore output
me: Mealy output

logic expression I me <= value logic expression I me <= value / \
Figure 10.2 Notation for a state.

10.2.1 State diagram

A state diagram consists of nodes, which are drawn as circles (also known as bubbles),
and one-direction transition arcs. The notation for nodes and arcs is shown in Figure 10.2.
A node represents a unique state of the FSM and it has a unique symbolic name. An urc
represents a transition from one state to another and is labeled with the condition that will
cause the transition. The condition is expressed as a logic expression composed of input
signals. An arc will be taken when the corresponding logic expression is evaluated to be
logic ’ 1 ’ .

The output values are also specified on the state diagram. The Moore output is a function
of state and thus is naturally placed inside the state bubble. On the other hand, the Mealy
output depends on both state and input and thus is placed under the condition expression of
the transition arcs. To reduce the clutter, we list only the output signals that are activated
or asserted. An output signal will assume the default, unasserted value (not don’t-care) if
it is not listed inside the state bubble or under the logic expression of an arc. We use the
following notation for an asserted output value:

signal-name <= asserted va lue ;

In general, an asserted signal will be logic ’1’ unless specified otherwise.
The state diagram can best be explained by an example. Figure 10.3 shows the state

diagram of a hypothetical memory controller FSM. The controller is between a processor
and a memory chip, interpreting commands from the processor and then generating a control
sequence accordingly. The commands, mem, rw and burst, from the processor constitute
the input signals of the FSM. The mem signal is asserted to high when a memory access is
required. The TW signal indicates the type of memory access, and its value can be either ’ 1 ’
or ’0’, for memory read and memory write respectively. The burst signal is for a special
mode of a memory read operation. If it is asserted, four consecutive read operations will
be performed. The memory chip has two control signals, oe (for output enable) and we
(for write enable), which need to be asserted during the memory read and memory write
respectively. The two output signals of the FSM, oe and we, are connected to the memory
chip’s control signals. For comparison purpose, we also add an artificial Mealy output
signal, we-me, to the state diagram.

Initially, the FSM is in the idle state, waiting for the mem command from the processor.
Once mem is asserted, the FSM examines the value of rw and moves to either the read1
state or the write state. These input conditions can be formalized to logic expressions, as
shown in the transition arcs from the idle state:

0 mem’: represents that no memory operation is required.

316 FINITE STATE MACHINE PRINCIPLE AND PRACTICE

- I

Figure 10.3 State diagram of a memory controller FSM.

FSM REPRESENTATION 317

mem - rw: represents that a memory read operation is required.
0 mem - rw’: represents that a memory write operation is required.

The results of these logic expressions are checked at the rising edge of the clock. If the
mem’ expression is true (i.e., mem is ’O’), the FSM stays in the idle state. If the memerw
expression is true (i.e., both mem and rw are ’ l’), the FSM moves to the readl state. Once
it is there, the oe signal is activated, as indicated in the state bubble. On the other hand, if
the mem + TW’ expression is true (i.e., mem is ’1’ and rw is ’0’), the FSM moves to the
write state and activates the we signal.

After the FSM reaches the readl state, the burst signal is examined at the next rising
edge of the clock. If it is ’l’, the FSM will go through read2, read3 and read4 states in
the next three clock cycles and then return to the idle state. Otherwise, the FSM returns
to the idle state. We use the notation “-” to represent the “always true” condition. After
the FSM reaches the write state, it will return to the idle state at the next rising edge of
the clock.

The we-me signal is asserted only when the FSM is in the idle state and the mem rw‘
expression is true. It will be deactivated when the FSM moves away from the idle state
(i.e., to the write state). It is a Mealy output since its value depends on the state and the
input signals (i.e., mem and rw).

In practice, we usually want to force an FSM into an initial state during system initial-
ization. It is frequently done by an asynchronous reset signal, similar to the asynchronous
reset signal used in a register of a regular sequential circuit. Sometimes a solid dot is
used to indicate this transition, as shown in Figure 10.3. This transition is only for system
initialization and has no effect on normal FSM operation.

10.2.2 ASM chart

An algorithmic sfufe machine (ASM) chart is an alternative method for representing an
FSM. Although an ASM chart contains the same amount of information as a state diagram,
it is more descriptive. We can use an ASM chart to specify the complex sequencing of
events involving commands (input) and actions (output), which is the hallmark of complex
algorithms. An ASM chart representation can easily be transformed to VHDL code. It can
also be extended to describe FSMD (FSM with a data path), which is discussed in the next
two chapters.

An ASM chart is constructed of a network of ASM blocks. An ASM block consists of
one state box and an optional network of decision boxes and conditional output boxes. A
typical ASM block is shown in Figure 10.4. The sfufe box, as its name indicates, represents
a state in an FSM. It is identified by a symbolic state name on the top left corner of the state
box. The action or output listed inside the box describes the desired output signal values
when the FSM enters this state. Since the outputs rely on the state only, they correspond to
the Moore outputs of the FSM. To reduce the clutter, we list only signals that are activated
or asserted. An output signal will assume the default, unasserted value if it is not listed
inside the box. We use the same notation for an asserted output signal:

signal-name <= asserted value;

Again, we assume that an asserted signal will be logic ’ 1 ’ unless specified otherwise.
A decision box tests an input condition to determine the exit path of the current ASM

block. It contains a Boolean expression composed of input signals and plays a simi-
lar role to the logic expression in the transition arc of a state diagram. Because of the
flexibility of the Boolean expression, it can describe more complex conditions, such as

318 FINITE STATE MACHINE PRINCIPLE AND PRACTICE

I /- stateentry

: state box state

output

decision box

conditional
output box

' exit to other ASM ' exit to other ASM
block block

Figure 10.4 ASM block.

(a > b) and (c /= 1). Depending on the value of the Boolean expression, the FSM
can follow either the true path or thefalse path, which are labeled as T or F in the exit paths
of the decision box. If necessary, we can cascade multiple decision boxes inside an ASM
block to describe a complex condition.

A conditional output box also lists asserted output signals. However, it can only be
placed after an exit path of a decision box. It implies that these output signals can be
asserted only if the condition of the previous decision box is met. Since the condition is
composed of a Boolean expression of input signals, these output signals' values depend
on the current state and input signals, and thus they are Mealy outputs. Again, to reduce
clutter, we place a conditional output box in an ASM block only when the corresponding
output signal is asserted. The output signal assumes the default, unasserted value when
there is no conditional output box.

Since an ASM chart is another way of representing an FSM, an ASM chart can be
converted to a state diagram and vice versa. An ASM block corresponds to a state and its
transition arcs of a state diagram. The key for the conversion is the transformation between
the logic expressions of the transition arcs in a state diagram and the decision boxes in an
ASM chart.

The conversion can best be explained by examining several examples. The first example
is shown in Figure 10.5. It is an FSM with no branching arches. The state diagram and the
ASM chart are almost identical.

The second example is shown in Figure 10.6. The FSM has two transition arcs from the
SO state and has a Mealy output, y. The logic expressions a and a' of the transition arches
are translated into a decision box with Boolean expression a = 1. Note that the two states
are transformed into two ASM blocks. The decision and conditional output boxes are not
new states, just actions associated with the ASM block SO.

FSM REPRESENTATION 31 9

- I

(a) (b)

Figure 10.5 Example 1 of state diagram and ASM chart conversion.

Figure 10.6 Example 2 of state diagram and ASM chart conversion.

320 FINITE STATE MACHINE PRINCIPLE AND PRACTICE

Figure 10.7 Example 3 of state diagram and ASM chart conversion.

The third example is shown in Figure 10.7. The transitions from the SO state are more
involved. We can translate the logic expressions a’ and a - b’ directly into two decision
boxes of conditions a = 0 and (a = 1) and (b = 0). However, closer examination
shows that the second decision box is on the false path of the first decision box, which
implies that a is ’ 1 ’ . Thus, we can eliminate the a = 1 condition from the second decision
box and make the decision simpler and more descriptive.

The fourth example is shown in Figure 10.8. The output of the FSM is more complex and
depends on various input conditions. The state diagram needs multiple logic expressions in
the transition arc to express various input conditions. The ASM chart can accommodate the
situation and is more descriptive. Finally, the ASM chart of the previous memory controller
FSM, whose state diagram is shown in Figure 10.3, is shown in Figure 10.9.

Since an ASM chart is used to model an FSM, two rules apply:
1. For a given input combination, there is one unique exit path from the current ASM

block.
2. The exit path of an ASM block must always lead to a state box. The state box can be

the state box of the current ASM block or a state box of another ASM block.
Several common errors are shown in Figure 10.10. The ASM chart of Figure 10.10(a)

violates the first rule. There are two exit paths if a and b are both ’ l’, and there is no exit
path if a and b are both ’0’. The ASM chart of Figure 10.10(b) also violates the first rule
since there is no exit path when the condition of the decision box is false. The ASM chart
of Figure lO.lO(c) violates the second rule because the exit path of the bottom ASM block
does not enter the top ASM block via the state box. The second rule essentially states that

TIMING AND PERFORMANCE OF AN FSM 321

a W l yW=l , y2<=l;
a*b I yl<=l;

(4 (b)

Figure 10.8 Example 4 of state diagram and ASM chart conversion.

the decision boxes and conditional output boxes are associated with a single ASM block
and they cannot be shared by other ASM blocks.

An ASM chart and a state diagram contain the same information. Because of the use
of decision boxes and flowchart-like graphs, an ASM chart can accommodate the complex
conditions involved in state transitions and Mealy outputs, as shown in the third and fourth
examples. On the other hand, an ASM chart may be cumbersome for an FSM with simple,
straightforward state transitions, and a state diagram is preferred. We use mostly state
diagrams in this chapter, but use mainly extended ASM charts while discussing the RT
methodology in Chapters 11 and 12.

10.3 TIMING AND PERFORMANCE OF AN FSM

10.3.1 Operation of a synchronous FSM

While a state diagram or an ASM chart shows all the states and transitions, it does not provide
information about when a transition takes place. In a synchronous FSM, the state transition
is controlled by the rising edge of the system clock. Mealy output and Moore output are
not directly related to the clock but are responding to input or state change. However, since

322 FINITE STATE MACHINE: PRINCIPLE AND PRACTICE

L. ..
,_._____l_.____̂ ._._____.._

,

L

..... -

'..

/ _ _ _ _ _ _ _ _ _ _ _ _ _ _

I read1

!

....................................

T

, ...

,. ...

..........

1

.!

T

I'

we <= 1

Figure 10.9 ASM chart of a memory controller FSM.

TIMING AND PERFORMANCE OF AN FSM 323

I
!

!

I----

Figure 10.10 Common errors in ASM chart construction.

324 FINITE STATE MACHINE PRINCIPLE AN0 PRACTICE

a Moore output depends only on the state, its transition is indirectly synchronized by the
clock.

The timing of a synchronous FSM can best be explained by examining the operation of
an ASM block. In an ASM chart, each ASM block represents a state of the FSM. Instead
of moving “continuously” from one block to another block, as in a traditional flowchart,
the transitions between ASM blocks can occur only at the rising edge of the clock. The
operation of an ASM block transition can be interpreted as follows:

1. At the rising edge of the clock, the FSM enters a new state (and thus a new ASM
block).

2. During the clock period, the FSM performs several operations. It activates the Moore
output signals asserted in this state. It evaluates various Boolean expressions of the
decision boxes and activates the Mealy output signals accordingly.

3. At the next rising edge of the clock (which is the end of the current clock period),
the results of Boolean expressions are examined simultaneously, an exit path is de-
termined, and the FSM enters the designated new ASM block.

A state and its transitions in a state diagram are interpreted in the same manner.

10.3.2 Performance of an FSM

When an FSM is synthesized, the physical components introduce propagation delays. Since
the block diagram of an FSM is almost identical to that of a regular sequential circuit, the
timing analysis of an FSM is similar to that of a regular sequential circuit, as discussed in
Section 8.6. The main timing parameters associated with the block diagram of Figure 10.1
are:

0 Tcq, Tsetup, Thold: the clock-to-q delay, setup time and hold time of the state register.
0 Tnezt(maz): the maximal propagation delay of the next-state logic.
0 Toutput(mo): the propagation delay of output logic for the Moore output.
0 Tovtput(me): the propagation delay of output logic for the Mealy output.

As in a regular sequential circuit, the performance of an FSM is characterized by the
maximal clock rate (or minimal clock period). The minimal clock period is

Tc = Tcq + Tnezt(max) + Tsetvp

and the maximal clock rate is

1
Tcq + Tnezt(rnaz) + Tsetup

f =

Since an FSM is frequently used as the controller, the response of the output signal is also
important. A Moore output is characterized by the clock-to-output delay, which is

Tco(m0) = Tcq + Toutput(m0)

A Mealy output may respond to the change of a state or an input signal. The former is
characterized by the clock-to-output delay, similar to the Moore output:

Tco(me) = Tcq + Toutput(me)

The latter is just the propagation delay of Mealy output logic, which is Tovtput(me).

MOORE MACHINE VERSUS MEALY MACHINE 325

10.3.3 Representative timing diagram

The timing diagram helps us to better understand the operation of an FSM and generation
of the output signals. It is especially critical when an FSM is used as a control circuit. One
tricky part regarding the FSM timing concerns the rising edge of the clock. In an ideal FSM,
there is no propagation delay, and thus the state and output signal change at the edge. If the
state or output is fed to other synchronous components, which take a sample at the rising
edge, it is difficult to determine what the value is. In reality, this will not happen since there
is always a clock-to-q delay from the state register. To avoid confusion, this delay should
always be included in the timing diagram.

A detailed, representative timing diagram of a state transition is shown in Figure 10.1 1.
It is based on the FSM shown in Figure 10.6. We assume that the next state of the FSM
(the statenext signal) is SO initially. At t l , the rising edge of the clock, the state register
samples the statenext signal. After Tcq (at t z) , the state register stores the value and
reflects the value in its output, the s t a t e i eg signal. This means that the FSM moves to
the SO state. At t 3 , the a input changes from ’0’ to ’1’. According to the ASM chart, the
condition of the decision box is met and the true branch is taken. In terms of the circuit,
the change of the a signal activates both the next-state logic and the Mealy output logic.
After the delay of Tnezt (at t 4) , the statenext signal changes to sl. Similarly, the Mealy
output, y0, changes to ’1’ after Toutput(me) (at t s) . At t 6 , the a signal switches back
to ’0’. The statenext and y0 signals respond accordingly. Note that the change of the
statenext signal has no effect on the state register (i.e., the state of the FSM). At t7, the
a signal changes to ’1’ again, and thus the statenext and y0 signals become sl and ’1’
after the delays. At t 8 , the current period ends and a new rising edge occurs. The state
register samples the statenext signal and stores the sl value into the register. After T,,
(at t g) , the register obtains its new value and the FSM moves to the sl state. The change
in the s ta te reg signal triggers the next-state logic, Mealy output logic and Moore output
logic. After the Tnezt delay (at t l o) , the next-state logic generates a new value of SO. We
assume that Toutput(mo) and Toutput(me) are similar. After this delay (at t l l) , the Mealy
output, y0, is deactivated, and the Moore output, y l , is activated. The yl signal remains
asserted for the entire clock cycle. At t12* a new clock edge arrives, the s t a t e i e g signal
changes to SO after the Tcq delay (at t 1 3) , and the FSM returns to the SO state. The yl signal
is deactivated after the Toutput(mo) delay (at t14) .

The timing diagram illustrates the major difference between an ASM chart and a regular
flowchart. In an ASM chart, the state transition (or ASM block transition) occurs only at
the rising edge of the clock signal. Within the clock period, the Boolean condition and the
next state may change but have no effect on the system state. The new state is determined
solely by the values sampled at the rising edge of the clock.

10.4 MOORE MACHINE VERSUS MEALY MACHINE

As we discussed in Section 10.1, an FSM can be classified into a Moore machine or a Mealy
machine. In theoretical computer science, a Moore machine and a Mealy machine are con-
sidered to have similar computation capability (both can recognize “regular expressions”),
although a Mealy machine normally accomplishes the same task with fewer states. When
the FSM is used as a control circuit, the control signals generated by a Moore machine and
a Mealy machine have different timing characteristics. Understanding the subtle timing
difference is critical for the correctness and efficiency of a control circuit. We use a simple

326 FINITE STATE MACHINE PRINCIPLE AND PRACTICE

Figure 10.11 FSM timing diagram.

edge detection circuit to illustrate the difference between a Mealy machine and a Moore
machine.

10.4.1 Edge detection circuit

We assume that a synchronous system is connected to a slowly varying input signal, strobe,
which can be asserted to ’ 1 ’ for a long time (much greater than the clock period of the FSM).
An edge detection circuit is used to detect the rising edge of the strobe signal. It generates
a “short” pulse when the strobe signal changes from ’0’ to ’1’. The width of the output
pulse is about the same or less than a clock period of the FSM. Since the intention is to
show the difference between a Mealy machine and a Moore machine, we are deliberately
vague about the specification of the width and timing of the output pulse.

The basic design idea is to construct an FSM that has a zero state and a one state, which
represent that the input has been ’0’ or ’1’ for a long period of time respectively. The FSM
has a single input signal, strobe, and a single output signal. The output will be asserted
“momentarily” when the FSM transits from the zero state to the one state.

We first consider a design based on a Moore machine. The state diagram is shown in
Figure 10.12(a). There are three states. In addition to the zero and one states, the FSM
also has an edge state. When strobe becomes ’1’ in the zero state, it implies that strobe
changes from ’0’ to ’1’. The FSM moves to the edge state, in which the output signal, pl ,
is asserted. In normal operation, strobe should continue to be ’1’ and the FSM moves to
the one state at the next rising edge of the clock and stays there until strobe returns to ’0’.

MOORE MACHINE VERSUS MEALY MACHINE 327

strobe I

Figure 10.12 Edge detector state diagrams.

If strobe is really short and changes to '0' in the edge state, the FSM will return to the
zero state. A representative timing diagram is shown in the top portion of Figure 10.13.

The second design is based on a Mealy machine. The state diagram is shown in Fig-
ure 10.12(b). It consists of only the zero and one states. When strobe changes from '0'
to '1' in the zero state, the FSM moves to the one state. From the state diagram, it seems
that the output signal, p2, is asserted when the FSM transit from the zero state to the one
state. Actually, p2 is asserted in the zero state whenever strobe is '1'. When the FSM
moves to the one state, p2 will be deasserted. The timing diagram is shown in the middle
portion of Figure 10.13.

For demonstration purposes, we also include a version that combines both types of
outputs. The third design inserts a delay state into the Mealy machine-based design
and prolongs the output pulse for one extra clock cycle. The state diagram is shown in
Figure 10.12(c). In this design, the FSM will assert the output, p3, in the zero state, as in
the second design. However, the FSM moves to the delay state afterward and forces p3
to be asserted for another clock cycle by placing the assertion on both transition edges of
the delay state. Note that since p3 is asserted in the delay state under all transition arcs,
it implies that p3 will be asserted in the delay state regardless of the input condition. The
behavior of the FSM in the delay state is similar to the edge state of the Moore machine-
based design, and we can also move the output assertion, p3<-1, into the bubble of the
delay state. The timing diagram is shown in the bottom portion of Figure 10.13.

328

clk

strobe

state
(rnoore)

Pi

state
(mealy)

P2

state
(rnealy2)

P3

10.4.2

FINITE STATE MACHINE PRINCIPLE AND PRACTICE

tl t

zero edge I one zero

zero ~ one zero

1 ’ I
zero delay I one zero

Figure 10.13 Edge detector timing diagram.

Comparison of Moore output and Mealy output

All three edge detector designs can generate a “short” pulse when the input changes from ’0’
to ’1’, but there are subtle differences. Understanding the differences is the key to deriving
a correct and efficient FSM and an FSM-based control circuit.

There are three major differences between the Moore machine and Mealy machine-based
designs. First, a Mealy machine normally requires fewer states to perform the same task.
This is due to the fact that its output is a function of states and external inputs, and thus
several possible output values can be specified in one state. For example, in the zero state of
the second design, p2 can be either ’0’ or ‘l’ , depending on the value of strobe. Thus, the
Mealy machine-based design requires only two states whereas the Moore machine-based
design requires three states.

Second, a Mealy machine can generate a faster response. Since a Mealy output is
a function of input, it changes whenever the input meets the designated condition. For
example, in Mealy machine-based design, if the FSM is in the zero state, p2 is asserted
immediately after strobe changes from ’0’ to ’ l’, as shown in the timing diagram. On the
other hand, a Moore machine reacts indirectly to input changes. The Moore machine-based
design also senses the changes of strobe in the zero state. However, it has to wait until the
next state (i.e., the edge state) to respond. The change causes the FSM to move to the edge
state. At the next rising edge of the clock, the FSM moves to this state and pl responds
accordingly, as shown in the timing diagram. In a synchronous system, the distinction

VHDL DESCRIPTION OF AN FSM 329

between a Mealy output and a Moore output normally means a delay of one clock cycle.
Recall that the input signal of a synchronous system is sampled only at the rising edge of
the clock. Let us assume that the output of the edge detection circuit is used by another
synchronous system. Consider the first transition edge of strobe in Figure 10.13. The p2
signal can be sampled at tl . However, the p l signal is not available at that time because
of the clock-to-q delay and output logic delay. Its value can be sampled only by the next
rising edge at t z .

The third difference involves the control of the width and timing of the output signal. In a
Mealy machine, the width of an output signal is determined by the input signal. The output
signal is activated when the input signal meets the designated condition and is normally
deactivated when the FSM enters a new state. Thus, its width varies with input and can be
very narrow. Also, a Mealy machine is susceptible to glitches in the input signal and passes
these undesired disturbances to the output. This is shown in the p2 signal of Figure 10.13.
On the other hand, the output of a Moore machine is synchronized with the clock edge
and its width is about the same as a clock period. It is not susceptible to glitches from the
input signal. Although the output logic can still introduce glitches, this can be overcome
by clever output buffering schemes, which are discussed in Section 10.7.

As mentioned earlier, our focus on FSM is primarily on its application as a control
circuit. From this perspective, selection between a Mealy machine and a Moore machine
depends on the need of control signals. We can divide control signals into two categories:
edge-sensitive and level-sensitive. An edge-sensitive control signal is used as input for a
sequential circuit synchronized by the same clock. A simple example is the enable signal
of a counter. Since the signal is sampled only at the rising edge of the clock, the width of
the signal and the existence of glitches do not matter as long as it is stable during the setup
and hold times of the clock edge. Both the Mealy and the Moore machines can generate
output signals that meet this requirement. However, a Mealy machine is preferred since it
uses fewer states and responds one clock faster than does a Moore machine. Note that the
p3 signal generated by the modified Mealy machine will be active for two clock edges and
is actually incorrect for an edge-sensitive control signal.

A level-sensitive control signal means that a signal has to be asserted for a certain amount
of time. When asserted, it has to be stable and free of glitches. A good example is the
write enable signal of an SRAM chip. A Moore machine is preferred since it can accurately
control the activation time of its output, and can shield the control signal from input glitches.
Because of the potential glitches, the p3 signal is again not desirable.

10.5 VHDL DESCRIPTION OF AN FSM

The block diagram of an FSM shown in Figure 10.1 is similar to that of the regular se-
quential circuit shown in Figure 8.5. Thus, derivation of VHDL code for an FSM is similar
to derivation for a regular sequential circuit. We first identify and separate the memory
elements and then derive the next-state logic and output logic. There are two differences
in the derivation. The first is that symbolic states are used in an FSM description. To
capture this kind of representation, we utilize VHDL's enumeration data type for the state
registers. The second difference is in the derivation of the next-state logic. Instead of using
a regular combinational circuit, such as an incrementor or shifter, we have to construct the
code according to a state diagram or ASM chart.

We use the previous memory controller FSM to show the derivation procedure in the
following subsections.

330 FINITE STATE MACHINE: PRINCIPLE AND PRACTICE

-

mem

burst
m

Mealy
output
logic

clk
resset

- d
i -

we.

next- ‘ state-:eg ”

state
A

we

08

- state-next ->

Figure 10.14 Block diagram of a memory controller FSM.

Moore

10.5.1 Multi-segment coding style

The first method is to derive the VHDL code according to the blocks of a block diagram,
and we call it the multi-segment coding style. The block diagram of the previous memory
controller is shown in Figure 10.14. There are four blocks and we use a VHDL code segment
for each block. The complete VHDL code is shown in Listing 10.1.

Listing 10.1 Multi-segment memory controller FSM

-

l i b r a r y i e e e ;
use i e e e . s t d - l o g i c - 1 1 6 4 . a l l ;
e n t i t y mem-ctrl i s

port (
S c l k , r e s e t : in s t d - l o g i c ;

m e m , r w , b u r s t : in s t d - l o g i c ;
o e , we, we-me: out s t d - l o g i c

1;
end mem-ctrl ;

a r c h i t e c t u r e m u l t - s e g - a r c h of mem-ctrl is
10

type m c - s t a t e - t y p e i s

s i g n a l s t a t e - r e g , s t a t e - n e x t : m c - s t a t e - t y p e ;

- s t a t e r e g i s t e r
process (c l k , r e s e t)
begin

(i d l e , r e a d 1 , r e a d 2 , r e a d 3 , r e a d 4 , w r i t e) ;

IS begin

i f (r e s e t = ’ l ’) then

e l s i f (c l k ’ e v e n t and c l k = ’ l ’) then

end i f ;
end p r o c e s s ;

p r o c e s s (s t a t e - r e g , m e m , r w , b u r s t)
begin

20 s t a t e - r e g <= i d l e ;

s t a t e - r a g <= s t a t e - n e x t ;

B - n e x t - s t a t e logic

case s t a t e - r e g i s
when i d l e =>

i f m e m = ’ l ’ then

output
logic

VHDL DESCRIPTION OF AN FSM 331

35

40

45

50

60

65

70

80

i f r w = ’ l J then

e l s e

end i f ;

s t a t e - n e x t <= i d l e ;

s t a t e - n e x t <= r e a d l ;

s t a t e - n e x t <= w r i t e ;

e l s e

end i f ;
when w r i t e =>

s t a t e - n e x t <= i d l e ;
when r e a d l =>

i f (b u r s t = ’ l J) then

e l s e

end i f ;
when read2 =>

s t a t e - n e x t <= read3 ;
when read3 =>

s t a t e - n e x t <= read4;
when read4 =>

s t a t e - n e x t <= i d l e ;

s t a t e - n e x t <= read2 ;

s t a t e - n e x t <= i d l e ;

end c a s e ;
end p r o c e s s ;

process (s t a t e - r e g)
begin

5s -- Moore o u t p u t l o g i c

we <= j 0 J ; - d e f a u l t v a l u e
oe <= J O J ; - d e f a u l t v a l u e
case s t a t e - r e g i s

when i d l e =>
when w r i t e =>

we <= 11’;
when r e a d l =>

oe <= J I J ;
when read2 =>

oe <= I l l ;
when read3 =>

oe <= J l J ;
when read4 =>

I oe <= J l J ;
end c a s e ;

end p r o c e s s ;
- M e a l y o u t p u t logic

15 process (s t a t e - r e g ,mem r w)
begin

we-me <= J O J ; - d e f a u l t v a l u e
case s t a t e - r e g i s

when i d l e =>
i f (mem=’lJ) and (rw=]OJ) then

end i f ;
when w r i t e =>

we-me <= J I J ;

332 FINITE STATE MACHINE: PRINCIPLE AND PRACTICE

when r e a d l =>
8s when read2 =>

when read3 =>
when read4 =>

end c a s e ;
end p r o c e s s ;

w end mult-seg-arch ;

Inside the architecture declaration, we use the VHDL‘s enumeration data type. The data
type is declared as

type mc-s ta te - type i s (i d l e , r ead1 , r ead2 , r ead3 , r ead4 , w r i t e) ;

The syntax of the enumeration data type statement is very simple:

type type-name i s (l i s t - o f - a l l - p o s s i b l e - v a l u e s) ;

It simply enumerates all possible values in a list. In this particular example, we list all the
symbolic state names. The next statement then uses this newly defined type as the data type
for the state register’s input and output:

s i g n a l s t a t e - r e g , s t a t e - n e x t : mc-s t a t e - type ;

The architecture body is divided into four code segments. The first segment is for the
state register. Its code is like that of a regular register except that a user-defined data type
is used for the signal. We use an asynchronous r e s e t signal for initialization. The state
register is cleared to the i d l e state when the r e s e t signal is asserted.

The second code segment is for the next-state logic and is the key part of the FSM
description. It is patterned after the ASM chart of Figure 10.9. We use a case statement
with s t a t e r e g as the selectionexpression. The s t a t e r e g signal is the output of the state
register and represents the current state of the FSM. Based on its value and input signal, the
next state, denoted by the s t a t e n e x t signal, can be determined. As shown in the previous
segment, the next state will be stored into the state register and becomes the new state at
the rising edge of the clock. The s t a t e n e x t signal can be derived directly from the ASM
block. For a simple ASM block, such as the read2 block, there is only one exit path and
the s t a t e n e x t signal is very straightforward:

s t a t e - n e x t <= i d l e ;

For a block with multiple exit paths, we can use if statements to code the decision boxes.
The Boolean condition inside a decision box can be directly translated to the Boolean
expression of the if statement, and the two exit paths can be expressed as the then branch
and the else branch of the if statement. Thus, we can follow the decision boxes and derive
the VHDL code for the s t a t e n e x t signal accordingly. For example, in the i d l e block,
the cascade decision boxes can be translated into a nested if statement:

i f mem=’1’ then
i f r w = ’ l ’ then

e l s e

end i f ;

s t a t e - n e x t <= i d l e ;

s t a t e - n e x t <= r e a d l ;

s t a t e - n e x t <= w r i t e ;

e l s e

end i f ;

VHDL DESCRIPTION OF AN FSM 333

mem next-state/
output

we-me
we
oe

Figure 10.15 Block diagram of a two-segment memory controller FSM.

rw

burst

NotethattheASM hasthreepossibleexitpathsfromthe i d l e block, andthusthe s t a t e n e x t
signal has three possible values.

The third code segment is the Moore output logic, Again, we use a case statement with
s t a t e i e g as the selection expression. Note that since the Moore output is a function of
state only, no input signal is in the sensitive list. Our code follows the ASM chart. Two
sequential signal assignment statements are used to represent the default output value:

we <= J O ’ ;
oe <= ’ O J ;

If an output signal is asserted inside a state box, we put a signal assignment statement in
the corresponding choice in the VHDL code to overwrite the default value.

The fourth code segment is the Mealy output logic. Note that some input signal is now in
the sensitive list. Again, following the ASM chart, we use a case statement with s t a t e i e g
as the selection expression and use an if statement for the decision box. The Mealy output,
the wesle signal, will be assigned to the designated value according to the input condition.

We intentionally use the case statement to demonstrate the relationship between the
code and the ASM chart. It may become somewhat cumbersome. The segment can also be
written in a more compact but ad hoc way. For example, the Mealy output logic segment
can be rewritten as

we-me <= ’1’ when ((s t a t e - r e g = i d l e) and (mern=’lJ) and
(r w = ’ O ’)) e l s e

J O ’ ;

state-reg logic]d 9-

state-next ->

10.5.2 Two-segment coding style

The two-segment coding style divides an FSM into a state register segment and a com-
binational circuit segment, which integrates the next-state logic, Moore output logic and
Mealy output logic. In VHDL code, we need to merge the three segments and move the
s t a t enex t , oe, we and wesle signals into a single process. The block diagram is shown
in Figure 10.15. The architecture body of this revised code is shown in Listing 10.2.

Listing 10.2 Two-segment memory controller FSM
a r c h i t e c t u r e two-seg-arch of mem-ctrl i s

type mc-s ta te - type i s

334 FINITE STATE MACHINE: PRINCIPLE AND PRACTICE

(i d l e , r e a d l r e a d 2 , read3, r e a d 4 w r i t e) ;
s i g n a l s t a t e - r e g , s t a t e - n e x t : m c - s t a t e - t y p e ;

- s t a t e r e g i s t e r
process (c l k , r e s e t
begin

5 begin

i f (r e s e t = ’ l ’) then

e l s i f (c l k ’ e v e n t and c l k = ’ l ’) then

end i f ;
end process;

10 s t a t e - r e g <= i d l e ;

s t a t e - r e g <= s t a t e - n e x t ;

IS - n e x t - s t a t e l o g i c and o u t p u t l o g i c

20

25

M

35

U)

45

M

process (s t a t e - r e g ,mem r w b u r s t
begin

oe <= ’01; -- d e f a u l t v a l u e s
we <= ’0’;
we-me <= ’0’;
case s t a t e - r e g i s

when i d l e =>
i f m e m = ’ l ’ then

i f r w = ’ 1 ’ then

e l s e
s t a t e - n e x t <= r e a d l

s t a t e - n e x t <= write
we-me <= ’ 1 ’ ;

end i f ;

s t a t e - n e x t <= i d l e ;
e l s e

end i f ;
when w r i t e =>

s t a t e - n e x t <= i d l e ;
we <= ’1’;

when r e a d 1 =>
i f (b u r s t s ’ l ’) then

e l s e

end i f ;
oe <= ’1’;

when r e a d 2 =>
s t a t e - n e x t <= r e a d 3 ;
oe <= ’ 1 ’ ;

when r e a d 3 =>
s t a t e - n e x t <= r e a d 4 ;
00 <= 11’;

when r e a d 4 =>
s t a t e - n e x t <= i d l e ;
oe <= ’ 1 ’ ;

s t a t e - n e x t <= r e a d 2 ;

s t a t e - n e x t <= i d l e ;

end c a s e ;
end process;

end two-seg -a rch ;

VHDL DESCRIPTION OF AN FSM 335

syn-clr

to state si to state sj to state si to state sj

(a) Original state (b) Revised state with synchronous clear

Figure 10.16 Adding synchronous clear to a state diagram.

10.5.3 Synchronous FSM initialization

An alternative for the asynchronous initialization is to use a synchronous clear signal. To
achieve this goal, we have to add an additional transition arc for every state. The logic
expression of this arc corresponds to the assertion of the synchronous clear signal and is
given preference over other conditions. Assume that the syn-clr signal is added to the
FSM for this purpose and an FSM will be forced to the i d l e state when the syn-clr signal
is asserted. The required revision for a state is shown in Figure 10.16.

Although revising a state diagram or an ASM chart introduces a significant amount of
clutter, this can be done easily in VHDL. We just add an extra if statement to check the
syn-clr signal in the next-state logic segment. If the condition syn-clr=’ 1 ’ is t rue, the
i d l e value will be assigned to the s t a t e n e x t signal. Otherwise, the FSM takes the else
branch and performs the normal transition. The needed revisions for the memory controller
FSM example are shown below.

e n t i t y mem-ctrl i s
port (

s y n - c l r : in s t d - l o g i c ; - new i n p u t
. . .

a r c h i t e c t u r e m u l t - s e g - a r c h of mem-ctrl i s

begin
. . .

. . .
-- n e x t - s t a t e l o g i c
process (s t a t e - r e g ,men , r w , b u r s t , s y n - c l r)
begin

i f (s y n - c l r = ’ l ’) then - s y n c h r o n o u s c l e a r

e l s e -- o r i g i n a l s t a t e - n e x t v a l u e s
s t a t e - n e x t <= i d l e ;

case s t a t e - r e g i s
when i d l e =>

. . .

336 FINITE STATE MACHINE PRINCIPLE AND PRACTICE

end c a s e ;
end i f ;

end p r o c e s s ;
* . .

10.5.4 One-segment coding style and its problem

We may be tempted to make the code more compact and describe the FSM in a single
segment, as shown in Listing 10.3.

10

I5

20

25

M

Listing 10.3 One-segment memory controller FSM
a r c h i t e c t u r e one-seg-wrong-arch of mem-ctrl i s

type mc-s ta te - type i s

s i g n a l s t a t e - r e g : mc-state- type ;

process (c l k , r e s e t)
begin

(i d l e r e a d l r e a d 2 , r ead3 , r ead4 , w r i t e) ;

5 begin

i f (r e s e t m ’ l ’) then
s t a t e - r e g <= i d l e ;

e l s i f (c l k ’ e v e n t and c l K = ’ l J) then
oe <= ’0’; - d e f a u l t v a l u e s
we <= ’0’;
we-me <= ’0’;
case s t a t e - r e g i s

when i d l e =>
i f mem=’1’ then

i f r w = ’ l ’ then

e l s e
s t a t e - r e g <= r e a d l ;

s t a t e - r a g <= w r i t e ;
we-me <= ’1’;

end i f ;

s t a t e - r e g <= i d l e ;
e l s e

end i f ;
when w r i t e =>

s t a t e - r a g <= i d l e ;
we <= ’ 1 ’ ;

when r e a d l =>
i f (b u r s t P ’ 1 ’) then

e l s e
s t a t e - r e g <= read2;

s t a t e - r e g <= i d l e ;

35

end i f ;
oe <= ’ 1 ’ ;

when read2 =>
s t a t e - r e g <= read3
oe <= ’ 1 ’ ;

when read3 =>
s t a t e - r e g <= read4
oe <= ’1’;

VHDL DESCRIPTION OF AN FSM 337

mem

Iw

burst

I

I
I

I

output

state-next

r d 9-
>

Ld 9-
-

. next-state/
output
logic 9-

>

> - d 9- state-next >
clk -

resset -
Figure 10.17 FSM with unwanted output buffers.

when r e a d 4 =>
s t a t e - r e g <= i d l e ;
oe <= ’1’;

45 end c a s e ;
end i f ;

end process;
end one-sag-wrong-arch;

we-me

we

oe

Unfortunately, this code suffers the same problem as that of the similar regular sequen-
tial circuit code discussed in Section 8.7. Recall that a left-hand-side signal within the
clk’event and clk=’ 1 ’ branch infers a register. While this is the desired effect for the
stateieg signal, three unwanted registers are inferred for the oe, we and wene signals,
as shown in Figure 10.17 (for clarity, the connection lines for the clk and reset signals
are not shown). These signals are delayed by one clock cycle and the code does not meet
the specification described by the ASM chart. Although we can fix the problem by using a
separate process for the output logic, the resulting code is less clear. We generally refrain
from this style of coding.

10.5.5 Synthesis and optimization of FSM

After dividing a sequential circuit into a register and a combinational circuit, we can apply
RT-level optimization techniques for the combinational circuit. However, these techniques
are mainly for regular combinational circuits. The next-state logic and output logic of
the FSMs are normally random in nature since the code includes primarily case and if
statements and does not involve complex operators. These circuits are implemented by
gate-level components, and there is very little optimization that we can do when writing
RT-level VHDL code. Utilizing two-segment coding provides some degree of sharing
since the Boolean expressions inside the decision boxes are used by both next-state logic
and output logic.

Theoretically, there is a technique to identify the “equivalent states” of an FSM. We can
merge these states into one state and thus reduce the number of states of the FSM. However,
in a properly designed FSM, the chance of finding a set of equivalent states is very slim,
and this technique is not always applied in the design and synthesis process.

338 FINITE STATE MACHINE: PRINCIPLE AND PRACTICE

There is one other unique opportunity to reduce the complexity of the combinational
circuit of the FSM: assigning proper binary representations for the symbolic states. This
issue is discussed in the next section.

The multi- and two-segment coding approach of previous subsections is very general
and we can use the two VHDL listings as templates. The key to developing good VHDL
code for an FSM is the derivation of an efficient and correct state diagram or ASM chart.
Once it is completed, obtaining VHDL code becomes more or less a mechanical procedure.
Some design entry software can accept a graphical state diagram and convert it to VHDL
code automatically.

10.6 STATE ASSIGNMENT

Our discussion of FSM so far utilizes only symbolic states. During synthesis, each symbolic
state has to be mapped to a unique binary representation so that the FSM can be realized by
physical hardware. State assignment is the process of mapping symbolic values to binary
representations.

10.6.1 Overview of state assignment

For a synchronous FSM, the circuit is not delay sensitive and is immune to hazards. As long
as the clock period is large enough, the synthesized circuit will function properly for any
state assignment. However, physical implementation of next-state logic and output logic is
different for each assignment. A good assignment can reduce the circuit size and decrease
the propagation delays, which in turn, increases the clock rate of the FSM.

An FSM with n symbolic states requires a state register of at least [log, n] bits to encode
all possible symbolic values. We sometimes utilize more bits for other purposes. There are
several commonly used state assignment schemes:

0 Binary (or sequential) assignment: assigns states according to a binary sequence.
This scheme uses a minimal number of bits and needs only a [log, nl -bit register.

0 Gray code assignment: assigns states according to a Gray code sequence. This
scheme also uses a minimal number of bits. Because only one bit changes between
the successive code words in the sequence, we may reduce the complexity of next-
state logic if assigning successive code words to neighboring states.

0 One-hot assignment: assigns one bit for each state, and thus only a single bit is ’1’
(or “hot”) at a time. For an FSM with n states, this scheme needs an n-bit register.

0 Almost one-hot assignment: is similar to the one-hot assignment except that the all-
zero representation (“0 . - . 0”) is also included. The all-zero state is frequently used
as the initial state since it can easily be reached by asserting the asynchronous reset
signal of D FFs. This scheme needs an (n - 1)-bit register for n states.

Although one-hot and almost one-hot assignments need more register bits, empirical data
from various studies show that these assignments may reduce the circuit size of next-state
logic and output logic. Table 10.1 illustrates these schemes used for the previous memory
controller FSM.

Obtaining the optimal assignment is very difficult. For example, if we choose the one-hot
scheme for an FSM with n states, there are n! (which is worse than 2n) possible assignments.
It is not practical to obtain the optimal assignment by examining all possible combinations,
However, there exists special software that utilizes heuristic algorithms that can obtain a
good, suboptimal assignment.

STATE ASSIGNMENT 339

Table 10.1 State assignment example

Binary Gray code One-hot Almost one-hot
assignment assignment assignment assignment

idle 000 000 000001 00000
readl 001 00 1 000010 00001
read2 010 01 1 000100 00010
read3 01 1 010 001000 00100
read4 100 110 010000 01000
write 101 111 100000 10000

10.6.2 State assignment in VHDL

In some situations, we may want to specify the state assignment for an FSM manually.
This can be done implicitly or explicitly. In implicit state assignment, we keep the original
enumeration data type but pass the desired assignment by other mechanisms. The VHDL
standard does not define any rule for mapping the values of an enumeration data type to a
set of binary representations. It is performed during synthesis. One way to pass the desired
statement assignment to software is to use a VHDL feature, known as a user attribute, to
set a "directive" to guide operation of the software. A user attribute has no effect on the
semantics of VHDL code and is recognized only by the software that defines it. The IEEE
1076.6 RTL synthesis standard defines an attribute named enum-encoding for encoding
the values of an enumeration data type. This attribute can be used for state assignment. For
example, if we wish to assign the binary representations "OOOO", "Oloo", "lOOO", " lOOl" ,
"1010" and "1011" to the idle, write, readl, read2, read3 and read4 states of the
memory controller FSM, we can add the following VHDL segment to the original code:

type mc-state-type i s (idle, write, readl , read2 , read3, read41 ;
a t t r i b u t e enum-encoding: string;
a t t r i b u t e enum-encoding of mc-state-type :

type i s "0000 0100 1000 1001 1010 1011";

This user attribute is very common and should be accepted by most synthesis software.
Synthesis software normally provides several simple state assignment schemes similar

to the ones discussed in the previous subsection. If we don't utilize a user attribute, we
can specify the desired scheme as a parameter while invoking the software. If nothing is
specified, the software will perform the state assignment automatically. It normally selects
between binary assignment and one-hot assignment, depending on the characteristics of the
targeting device technology. We can also use specialized FSM optimization software to
obtain a good, suboptimal assignment.

We can explicitly specify the desired state assignment by replacing the symbolic values
with the actual binary representations, and use the std-logic-vector data type for this
purpose. To demonstrate this scheme, we incorporate the previous state assignment into the
memory controller FSM. The revised multi-segment VHDL code is shown in Listing 10.4.

Listing 10.4 Explicit user-defined state assignment

a r c h i t e c t u r e stat e-as s ign-arch of mem-ctrl i s
cons tant idle : std-logic-vector (3 downto 0) :="OOOO";
cons tant write: std-logic-vector (3 downto 0) :="OlOO";
cons tant readl: std-logic-vector (3 downto 0) :="1000" ;

340 FINITE STATE MACHINE: PRINCIPLE AND PRACTICE

I5

3a

35

40

45

55

5 c o n s t a n t r e a d 2 : s t d - l o g i c - v e c t o r (3 downto 0) : = “ 1 0 0 1 ” ;
c o n s t a n t r e a d 3 : s t d - l o g i c - v e c t o r (3 downto 0) : = “ 1 0 1 0 “ ;
c o n s t a n t r e a d 4 : s t d - l o g i c - v e c t o r (3 downto 0) : = “ 1 0 1 1 ” ;
s i g n a l s t a t e - r e g , s t a t e - n e x t : s t d - l o g i c - v e c t o r (3 downto 0) ;

begin
10 - s t a t e r e g i s t e r

process (c l k r e s e t
begin

i f (r e s e t = ’ l ’) then

e l s i f (c l k ’ e v e n t and c l k = ’ l J) then

end i f ;
end p r o c e s s ;
- n e x t - s t a t e l o g i c
process (s t a t e - r e g ,mem , r w , b u r s t)
begin

s t a t e - r e g <= i d l e ;

s t a t e - r e g <= s t a t e - n e x t ;

M

case s t a t e - r e g i s
when i d l e =>

i f m e m = ’ l ’ then
i f r w = ’ l ’ then

e l s e

end i f ;

s t a t e - n e x t <= i d l e ;

s t a t e - n e x t <= r e a d l ;

s t a t e - n e x t <= w r i t e ;

e l s e

end i f ;
when w r i t e =>

s t a t e - n e x t <= i d l e ;
when r e a d l =>

i f (b u r s t = ’ I ’) then

e l s e

end i f ;
when read2 =>

s t a t e - n e x t <= r e a d 3 ;
when r e a d 3 =>

s t a t e - n e x t <= r e a d 4 ;
when read4 =>

s t a t e - n e x t <= i d l e ;
when o t h e r s =>

s t a t e - n e x t <= i d l e ;

s t a t e - n e x t <= r e a d 2 ;

s t a t e - n e x t <= i d l e ;

end c a s e ;
50 end p r o c e s s ;

- Moore o u t p u t l o g i c
process (s t a t e - r e g)
begin

we <= ’0’; - d e f a u l t v a l u e
oe <= ’0’; -- d e f a u l t v a l u e
case s t a t e - r e g i s

when i d l e =>

STATE ASSIGNMENT 341

60

when w r i t e =>
we <= ’ 1 ’ ;

when read1 =>
oe <= ’ 1 ’ ;

when read2 =>
oe <= a 1 8 ;

when read3 =>
65 oe <= ’ 1 ’ ;

when read4 =>
oe <= ’ 1 ’ ;

when others =>
end c a s e ;

70 end process;
-- Mealy o u t p u t l og ic
we-me <= ’1’ when ((s t a t e - r e g = i d l e) and (rnem=’l’) and

(r w = ’ O ’)) e l s e
’0’;

75 end s t a t e - a s s i g n - a r c h ;

In this code, we use std-logic-vector(3 downto 0) as the state register’s data type.
Six constants are declared to represent the six symbolic state names. Because of the choice
of the constant names, the appearance of the code is very similar to that of the original
code. However, the name here is just an alias of a binary representation, but the name in
the original code is a value of the enumeration data type. One difference in the next-state
logic code segment is an extra when clause:

s t a t e -nex t <= i d l e ;
when others =>

This revision is necessary since the selection expression of the case statement, s t a t e r e g ,
now is with the std-logic-vector(3 downto 0) data type, and thus has g4 possible
combinations. The when others clause is used to cover all the unused combinations. This
mean that when the FSM reaches an unused binary representation (e.g., “1 11 l”), it will
return to the i d l e state in the next clock cycle. We can also use

when others =>
s t a t e -nex t <= l l----If;

if the software accepts the don’t-care expression. A when others clause is also added for
the Moore output code segment.

The explicit state assignment allows us to have more control over the FSM but makes the
code more difficult to maintain and prevents the use of FSM optimization software. Unless
there is a special need, using an enumeration data type for state representation is preferred.

10.6.3 Handling the unused states

When we map the symbolic states of an FSM to binary representations, there frequently
exist unused binary representations (or states). For example, there are six states in the
memory controller FSM. If the binary assignment is used, a 3-bit (i.e., [log, 61) register
is needed. Since there are 23 possible combinations from 3 bits, two binary states are not
used in the mapping. If one-hot state assignment is used, there are 58 (i.e., 26 - 6) unused
states.

342 FINITE STATE MACHINE: PRINCIPLE AND PRACTICE

During the normal operation, the FSM will not reach these states; however, it may
accidentally enter an unused state due to noise or an external disturbance. One question is
what we should do if the FSM reaches an unused state.

In certain applications, we can simply ignore the situation. It is because we assume that
the error will never happen, or, if it happens, the system can never recover. In the latter
case, there is nothing we can do with the error.

On the other hand, some applications can resume from a short period of anomaly and
continue to run. In this case we have to design an FSM that can recover from the unused
states. It is known as afault-tolerant or safe FSM. For an FSM coded with an explicit state
assignment, incorporating this feature is straightforward. We just specify the desired action
in the when others clause of the case statement. For example, the state-assign-arch
architecture in Listing 10.4 is a safe FSM. The code specifies that the FSM returns to the
idle state if it enters an unused state:

when others =>
s t a t e - n e x t <= i d l e ;

If desired, we can revise the code to add an error state for special error handling:

when others =>
s t a t e - n e x t <= e r r o r ;

There is no easy way to specify a safe FSM if the enumeration data type is used. Since all
possible values of the enumeration data type are used in the case statement of the next-state
logic, there is no unused state in VHDL code. The unused states emerge only later during
synthesis, and thus they cannot be handled in VHDL code. Some software accepts an
artificially added when others clause for the unused states. However, by VHDL definition,
this clause is redundant and may not be interpreted consistently by different synthesis
software.

10.7 MOORE OUTPUT BUFFERING

We can add a buffer by inserting a register or a D FF to any output signal. The purpose of
an output buffer is to remove glitches and minimize the clock-to-output delay (Tc0). The
disadvantage of this approach is that the output signal is delayed by one clock cycle.

Since the output of an FSM is frequently used for control purposes, we sometimes need
a fast, glitch-free signal. We can apply the regular output buffering scheme to a Mealy or
Moore output signal. The buffered signal, of course, is delayed by one clock cycle. For
a Moore output, it is possible to obtain a buffered signal without the delay penalty. The
following subsections discuss how to design an FSM to achieve this goal.

10.7.1 Buffering by clever state assignment

In a typical Moore machine, we need combinational output logic to implement the output
function, as shown in Figure 10.1. Since the Moore output is not a function of input signals,
it is shielded from the glitches of the input signals. However, the state transition and output
logic may still introduce glitches to the output signals. There are two sources of glitches.
The first is the possible simultaneous multiple-bit transitions of the state register, as from
the "1 11" state to the "000" state. Even the register bits are controlled by the same clock,
the clock-to-q delay of each D FF may be slightly different, and thus a glitch may show up
in the output signal. The second source is the possible hazards inside the output logic.

MOORE OUTPUT BUFFERING 343

Table 10.2 State assignment for the memory controller FSM output buffering

4342 qlq0 (?Sq2qlqO
(oe) (we)

id l e 00 00 0000
readl 10 00 1000
read2 10 01 I001
read3 10 10 1010
read4 10 11 loll
write 01 00 0100

Recall that the clock-to-output delay (Tco) is the sum of the clock-to-q delay (Tcq) of
the register and the propagation delay of the output logic. The existence of the output logic
clearly increases the clock-to-output delay.

One way to reduce the effect of the output logic is to eliminate it completely by clever
state assignment. In this approach, we first allocate a register bit to each Moore output signal
and specify its value according to the output function. Again, let us consider the memory
controller FSM. We can assign two register bits according to the output values of the oe
and we signals, as shown in the first column of Table 10.2. Since some states may have the
same output patterns, such as the readl, read2, read3 and read4 states of the memory
controller, we need to add additional register bits to ensure that each state is mapped to a
unique binary representation. In this example, we need at least two extra bits to distinguish
the four read states, as shown in the second column of Table 10.2. We then can complete the
state assignment by filling the necessary values for the id le and write states, as shown in
the third column of Table 10.2. In this state assignment, the value of oe is identical to the
value of statexeg(31, and the value of we is identical to the value of s t a t e i e g (2) .
In other words, the output function can be realized by connecting the output signals to the
two register bits, and the output logic is reduced to wires. This implementation removes
the sources of glitches and reduces T,, to Tcq.

This design requires manual state assignment and access to individual register bits.
Only the explicit state assignment can satisfy the requirement. The state-assign-arch
architecture in Listing 10.4 actually uses the state assignment from Table 10.2. We can
replace the Moore output logic code segment by connecting the output signals directly to
the register’s output:

- Moore o u t p u t l o g i c
oe <= s t a t e - r e g (3) ;
we <= s t a t e - r e g (2) ;

Because the state register is also used as an output buffer, this approach potentially uses
fewer register bits for certain output patterns. The disadvantage of this method is the manual
manipulation of the state assignment. It becomes tedious as the number of states or output
signals grows larger. Furthermore, the assignment has to be modified whenever the number
of output signals is changed, the number of states is changed, or the output function is
modified. This makes the code error-prone and difficult to maintain.

344 FINITE STATE MACHINE PRINCIPLE AND PRACTICE

d

input logic >
state

output-i state-reg
delayed

J- q- output
output
logic

q+’

clk -
(a) Moore output with a regular output buffer

state-reg output-next

clk -
(b) Moore output with a look-ahead output buffer

Figure 10.18 Block diagrams of output buffering schemes.

10.7.2 Look-ahead output circuit for Moore output

A more systematic approach to Moore output buffering is to use a look-ahead output circuit.
The basic idea is to buffer the next output value to cancel the one-clock delay introduced by
the output buffer. In most systems, we don’t know a signal’s next or future value. However,
in an FSM, the next value of the state register is generated by next-state logic and is always
available.

This scheme can best be explained by examiningthe basic FSM block diagram. The block
diagram of an FSM with a regular output buffering structure is shown in Figure 10.18(a).
The output signals, of course, are delayed by one clock cycle. To cancel the effect of the
delay, we can feed the output buffer with the next output value. After being delayed by one
clock cycle, the next output value becomes the current output value, which is the desired
output. Obtaining the next output is very straightforward. Recall that the current output is
a function of the current state, which is the output of the state register, labeled s tatereg
in the diagram. The next output should be a function of the next state, which is the output
of next-state logic, labeled statenext in the diagram. To obtain the next output, we need
only disconnect the input of the output logic from the s t a t e i e g signal and reconnect it
to the statenext signal, as shown in Figure 10.18(b).

Once understanding the block diagrams of Figure 10.18, we can develop the VHDL
code accordingly. Again, we use the memory controller FSM as an example. The weme
output will be ignored since it is irrelevant to the Moore output buffering. Note that the
state register and next-state logic are the same as in the original block diagram, and only
the Moore output logic part is modified. For comparison purposes, we show the VHDL
codes for both diagrams. The codes are based on the mutli-seg-arch architecture of
Section 10.5.1. The code of the memory controller FSM with a regular output buffer is
shown in Listing 10.5.

M W R E OUTPUT BUFFERING 345

10

20

35

40

45

50

Listing 10.5 FSM with a regular output buffer

a r c h i t e c t u r e p l a i n - b u f f e r - a r c h of mem-ctrl is
type m c - s t a t e - t y p e i s

s i g n a l s t a t e - r e g , s t a t e - n e x t : m c - s t a t e - t y p e ;
(i d l e r e a d l , r ead2 r e a d 3 , r e a d 4 , w r i t e) ;

5 S i g n a l o e - i , we-i , oe -buf - r eg , we-buf-reg: s t d - l o g i c ;
begin
- s t a t e r e g i s t e r
p r o c e s s (c l k r e s e t)
begin

i f (r e s e t = ’ l ’) t hen

e l s i f (c l k ’ e v e n t and c l k = ’ l ’) t hen

end i f ;

s t a t e - r e g <= i d l e ;

s t a t e - r e g <= s t a t e - n e x t ;

I 5 end p r o c e s s ;
- o u t p u t b u f f e r
p r o c e s s (c l k , r e se t)
begin

i f (r e s e t = ’ l ’) t hen
oe -buf - r eg <= J O J ;
we-buf-reg <= J O 1 ;

oe-buf - r eg <= o e - i ;
we-buf-reg <= we-i ;

e l s i f (c l k ’ e v e n t and c l k = ’ l ’) t hen

25 end i f ;
end p r o c e s s ;

p r o c e s s (s t a t e - r e g ,mem, rw,bur s t)
begin

-- n e x t - s t a t e l o g i c

30 c a s e s t a t e - r e g i s
when i d l e =>

i f m e m = 1 then
i f r w = ’ l ’ then

e l s e

end i f ;

s t a t e - n e x t <= i d l e ;

s t a t e - n e x t <= r e a d l ;

s t a t e - n e x t <= w r i t e ;

e l s e

end i f ;
when wr i te =>

s t a t e - n e x t <= i d l e ;
when r e a d l =>

i f (b u r s t = ’ l then

e l s e

end i f ;
when r e a d 2 =>

s t a t e - n e x t <= r e a d 3 ;
when r e a d 3 =>

s t a t e - n e x t <= r ead4 ;

s t a t e - n e x t <= r e a d 2 ;

s t a t e - n e x t <= i d l e ;

346 FINITE STATE MACHINE PRINCIPLE AND PRACTICE

65

m

when read4 =>
state-next <= idle;

55 end c a s e ;
end p r o c e s s ;
- Moore o u t p u t l o g i c
process (state-reg)
begin

w we-i <= ‘0’; -- d e f a u l t v a l u e
oe-i <= ’0’; - d e f a u l t v a l u e
case state-reg i s

when idle =>
when write =>

when readl =>

when read2 =>

when read3 =>

when read4 =>

we-i <= ’ 1 ’ ;

oe-i <= ’ 1 ’ ;

oe-i <= ’ 1 ’ ;

oe-i <= ’ 1 ’ ;

oe-i <= ’ 1 ’ ;
end c a s e ;

75 end p r o c e s s ;
- o u t p u t
we <= we-buf-reg;
oe <= oe-buf-reg;

end plain-buffer-arch;

In this code, we rename the original output signals of the output logic with a post-fix “A”
(for intermediate output signals). These signals are then connected to the output buffers.

To obtain the VHDL code for the look-ahead output buffer, we change the input of the
output logic. This can be done by substituting the s t a t e r e g signal with the s t a t e n e x t
signal in the case statement and the sensitivity list of the process. To make the code more
descriptive, we use the post-fix “next” for the next output signals. The modified code is
shown in Listing 10.6.

Listing 10.6 FSM with a look-ahead output buffer

a r c h i t e c t u r e look-ahead-buf f er-arch of mem-ctrl i s
type mc-state-type i s

s i g n a l state-reg , state-next : mc-state-type;
(idle, readl , read2, read3, read4, write) ;

5 s i g n a l oe-next , we-next , oe-buf -reg, we-buf-reg : std-logic ;
begin
- s t a t e r e g i s t e r
process (clk , reset)
begin

10 i f (reset=’l’) then
state-reg <= idle;

state-reg <= state-next ;
e l s i f (clk’event and clk=’l’) then

end i f ;
I5 end p r o c e s s ;

- o u t p u t b u f f e r

MOORE OUTPUT BUFFERING 347

process (c l k , r e s e t)
begin

i f (r e s e t = ’ l ’) then
20 oe-buf - r eg <= ’0’;

we-buf-reg <= ’0’;

oe-buf -reg <= oe-next ;
we-buf -reg <= we-next ;

e l s i f (c l k ’ e v e n t and c l k = ’ l ’) then

25 end i f ;
end process;
- n e x t - s t a t e l o g i c
process (s t a t e - r e g ,mem , r w , b u r s t)
begin

M case s t a t e - r e g i s
when i d l e =>

i f m e m = ’ l then
i f r w = ? l ’ then

s t a t e - n e x t <= r e a d l ;
35

45

so

e l s e

end i f ;

s t a t e - n e x t <= i d l e ;

s t a t e - n e x t <= w r i t e ;

e l s e

end i f ;
when w r i t e =>

when r e a d l =>
s t a t e - n e x t <= i d l e ;

i f (b u r s t = ’ l J) then

e l s e

end i f ;
when r e a d 2 =>

s t a t e - n e x t <= r e a d 3 ;
when r e a d 3 =>

s t a t e - n e x t <= r e a d 4 ;
when r e a d 4 =>

s t a t e - n e x t <= r e a d 2 ;

s t a t e - n e x t <= i d l e ;

s t a t e - n e x t <= i d l e ;
5s end c a s e ;

end process;
- look-ahead o u t p u t l o g i c
process (s t a t e - n e x t)
begin

M) we-next <= ’0’; - d e f a u l t va lue
oe-nex t <= ’0’; - d e f a u l t va lue
case s t a t e - n e x t i s

when i d l e =>

65

when w r i t e =>

when r ead l =>

when r e a d 2 =>

we-next <= > l ’ ;

oe-next <= ’ 1 ’ ;

oe-next <= ’1’;

348 FINITE STATE MACHINE: PRINCIPLE AND PRACTICE

70 when read3 =>

when read4 =>
oe-next <= ’1’;

oe-next <= ’1 ’ ;
end c a s e ;

n end p r o c e s s ;
- o u t p u t
we <= we-buf-reg;
oe <= oe-buf-reg;

end look-ahead-buffer-arch;

The look-ahead buffer is a very effective scheme for buffering Moore output. It provides
a glitch-free output signal and reduces T,, to Tcq. Furthermore, this scheme has no effect
on the next-state logic or state assignment and needs only minimal modification over the
original code.

10.8 FSM DESIGN EXAMPLES

Our focus on the FSM is to use it as the control circuit in large systems. Such systems
involve a data path that is composed of regular sequential circuits, and are discussed in
Chapters 11 and 12. This section shows several simple stand-alone FSM applications.

10.8.1 Edge detection circuit

The VHDL code for the Moore machine-based edge detection design of Section 10.4.1 is
shown in Listing 10.7. The code is based on the state diagram of Figure 10.12(a) and is
done in multi-segment style.

Listing 10.7 Edge detector with regular Moore output

20

l i b r a r y ieee;
use ieee. std-logic-1164. a l l ;
e n t i t y edge-detector1 i s

port (
clk, reset: in std-logic;
strobe : in std-logic ;
pl: out std-logic

1;
end edge-detectorl;

a r c h i t e c t u r e moore-arch of edge-detector1 i s
type state-type i s (zero, edge, one);
s i g n a l state-reg , state-next : state-type ;

_- s t a t e r e g i s t e r
process (clk , reset
begin

begin

i f (reset=’l’> then

e l s i f (clk’event and clk=’l’) then

end i f ;

state-reg <= zero;

state-reg <= state-next;

FSM DESIGN EXAMPLES 349

Table 10.3 State assignment for edge detector output buffering

State s t a t e i eg (1) statereg(0)

zero 0 0

one 0 1

(Pi)

edge 1 0

30

35

40

end p r o c e s s ;
-- n e x t - s t a t e l o g i c

begin
o process (s t a t e - r e g , s t r o b e)

case s t a t e - r e g i s
when z e r o = >

i f s t r o b e = '1' then

e l s e

end i f ;
when edge =>

i f s t r o b e = '1 ' then

e l s e

end i f ;

i f s t r o b e = '1' then

e l s e

s t a t e - n e x t <= e d g e ;

s t a t e - n e x t <= z e r o ;

s t a t e - n e x t <= one ;

s t a t e - n e x t <= z e r o ;

when one =>

s t a t e - n e x t <= one ;

s t a t e - n e x t <= z e r o ;
45 end i f ;

end c a s e ;
end p r o c e s s ;
-- Moore ou tpu t l o g i c
p l <= '1' when s t a t e - r e g = e d g e

50 '0';
end moore-arch ;

e l s e

Assume that we want the output signal to be glitch-free. We can do it by using the
clever state assignment or look-ahead output buffer scheme. One possible state assignment
is shown in Table 10.3, and the VHDL code is shown in Listing 10.8.

Listing 10.8 Edge detector with clever state assignment

a r c h i t e c t u r e c l e v e r - a s s i g n - b u f - a r c h of e d g e - d e t e c t o r 1 is
constant z e r o : s t d - l o g i c - v e c t o r (1 downto 0) := 110011 ;
constant edge : s t d - l o g i c - v e c t o r (1 downto 0) := l l l O 1 l ;
constant one: s t d - l o g i c - v e c t o r (1 downto 0) := " O l * l ;

5 s igna l s t a t e - r e g , s t a t e - n e x t : s t d - l o g i c - v e c t o r (1 downto 0) ;
begin

-- s t a t e r e g i s t e r
process (c l k , r e s e t

350

10

IS

20

U

30

35

40

FINITE STATE MACHINE: PRINCIPLE AND PRACTICE

begin
i f (r e s e t r ’ l ’) t hen

e l s i f (c l k ’ e v e n t and c l k = ’ l ’) t hen

end i f ;
end p r o c e s s ;
- n e x t - s t a t e l o g i c
p r o c e s s (s t a t e - r e g s t r o b e)
begin

s t a t e - r e g <= z e r o ;

s t a t e - r e g <= s t a t e - n e x t ;

case s t a t e - r a g i s
when z e r o = >

i f s t r o b e = ’1’ then

e l s e

end i f ;
when edge =>

i f s t r o b e = ’1’ then

e l s e

end i f ;
when o t h e r s =>

i f s t r o b e = ’1) then

e l s e

end i f ;

s t a t e - n e x t <= e d g e ;

s t a t e - n e x t <= z e r o ;

s t a t e - n e x t <= o n e ;

s t a t e - n e x t <= z e r o ;

s t a t e - n e x t <= o n e ;

s t a t e - n e x t <= z e r o ;

end c a s e ;
end p r o c e s s ;
- Moore o u t p u t l o g i c
p i <= s t a t e - r e g (1) ;

end c l e v e r - a s s i g n - b u f - a r c h ;

The VHDL code for the look-ahead output circuit scheme is given in Listing 10.9.

Listing 10.9 Edge detector with a look-ahead output buffer

a r c h i t e c t u r e look-ahead-a rch of e d g e - d e t e c t o r 1 i s
type s t a t e - t y p e is (z e r o , e d g e , o n e) ;
s i g n a l s t a t e - r e g , s t a t e - n e x t : s t a t e - t y p e ;
s i g n a l p l - r e g , p l - n e x t : s t d - l o g i c ;

- s t a t e r e g i s t e r
p r o c e s s (c l k , r e s e t)
begin

5 begin

i f (r e s e t = ’ i ’) then

e l s i f (c l k l e v e n t and c l k = ’ l ’) t hen

end i f ;
end p r o c e s s ;

IS -- o u t p u t b u f f e r

10 s t a t e - r e g <= z e r o ;

s t a t e - r e g <= s t a t e - n e x t ;

FSM DESIGN EXAMPLES 351

20

30

35

40

45

process (c l k , rese t 1
begin

i f (r e s e t = ’ l ’) then
p l - r e g <= ’0’;

e l s i f (c l k ’ e v e n t and c l k = ’ l ’) then
p l - r e g <= p l - n e x t ;

end i f ;
end p r o c e s s ;
-- n e x t - s t a t e l o g i c

begin
zs process (s t a t e - r e g , s t r o b e)

case s t a t e - r e g i s
when z e r o = >

i f s t r o b e = ’ 1 ’ then

e l s e

end i f ;
when edge =>

i f s t r o b e = ’ 1 ’ then

e l s e

end i f ;

i f s t r o b e = ’ 1 ’ then

e l s e

end i f ;

s t a t e - n e x t <= e d g e ;

s t a t e - n e x t <= z e r o ;

s t a t e - n e x t <= one;

s t a t e - n e x t <= z e r o ;

when one =>

s t a t e - n e x t <= one;

s t a t e - n e x t <= z e r o ;

end c a s e ;
end p r o c e s s ;
-- look-ahead o u t p u t l o g i c
p i - n e x t <= ’1 ’ when s t a t e - n e x t = e d g e e l s e

-- o u t p u t
p l <= p l - r e g ;

end l o o k - a h e a d - a r c h ;

so ’0’;

Note that in this particular example the clever statement assignment scheme can be
implemented by using 2 bits (i.e., two D FFs) but the look-ahead output circuit scheme
needs at least three D FFs (2 bits for the state register and 1 bit for the output buffer).

The VHDL code for the Mealy output-based design is shown in Listing 10.10. The code
is based on the state diagram of Figure l0.12(b).

Listing 10.10 Edge detector with Mealy output

l i b r a r y i e e e ;
use i e e e . s t d - l o g i c - 1 1 6 4 . a l l ;
e n t i t y e d g e - d e t e c t o r 2 i s

port (
5 c l k , r e s e t : in s t d - l o g i c ;

s t r o b e : in s t d - l o g i c ;
p 2 : out s t d - l o g i c

352 FINITE STATE MACHINE: PRINCIPLE AND PRACTICE

1;
end e d g e - d e t e c t o r 2 ;

a r c h i t e c t u r e mealy -a rch of e d g e - d e t e c t o r 2 i s
type s t a t e - t y p e i s (z e r o , o n e) ;
s i g n a l s t a t e - r e g , s t a t e - n e x t : s t a t e - t y p e ;

I0

begin
IS -- s t a t e r e g i s t e r

process (c l k , r e s e t)
begin

i f (r e s e t = 1 then
s t a t e - r e g <= z e r o ;

s t a t e - r e g <= s t a t e - n e x t ;
20 e l s i f (c l k ’ e v e n t and c l k = ’ l J) then

end i f ;
end p r o c e s s ;
- n e x t - s t a t e l o g i c

begin
U process (s t a t e - r e g , s t r o b e)

case s t a t e - r e g i s
when z e r o = >

i f s t r o b e = ’1’ then
M s t a t e - n e x t <= o n e ;

s t a t e - n e x t <= z e r o ;
e l s e

end i f ;
when one =>

35 i f s t r o b e = ‘1 then
s t a t e - n e x t <= one ;

s t a t e - n e x t <= z e r o ;
e l s e

end i f ;
U) end c a s e ;

end p r o c e s s ;
- M e a l y o u t p u t l o g i c
p2 <= ’1’ when (s t a t e - r e g = z e r o) and (s t r o b e = ’ l J) e l s e

’0’;
45 end mealy-arch ;

An alternative to deriving an edge detector is to treat it as a regular sequential circuit
and design it in an ad hoc manner. One possible implementation is shown in Figure 10.19.
The D FF in this circuit delays the s t robe signal for one clock cycle and its output is
the “previous value” of the s t robe signal. The output of the and cell is asserted when
the previous value of the s t robe signal is ’0’ and the current value of the s t robe signal
is ’1’, which implies a positive transition edge of the s t robe signal. The output signal is
like a Mealy output since its value depends on the register’s state and input signal. The
VHDL code is shown in Listing 10.11. The entity declaration is identical to the Mealy
machine-based edge detector in Listing 10.10.

Listing 10.11 Edge detector using direct implementation

a r c h i t e c t u r e d i r e c t - a r c h of e d g e - d e t e c t o r 2 i s

begin
s i g n a l d e l a y - r e g : s t d - l o g i c ;

FSM DESIGN EXAMPLES 353

strobe
clk

Figure 10.19 Direct implementation of an edge detector.

- d e l a y r e g i s t e r

begin
s process (c l k r e s e t)

i f (r e s e t = ’1 ’1 then

e l s i f (c l k ’ e v e n t and c l k = ’ l J) then

end i f ;
end p r o c e s s ;
-- decod ing l o g i c
p2 <= (n o t d e l a y - r e g) and s t r o b e ;

d e l a y - r e g <= J O J ;

10 d e l a y - r e g <= s t r o b e ;

is end d i r e c t - a r c h ;

Although the code is compact for this particular case, this ad hoc approach can only be
applied to simple designs. For example, if the requirement specifies a glitch-free Moore
output, it is very difficult to derive the circuit this way. Actually, we can easily verify that
this ad hoc design is actually Mealy machine-based design with binary state assignment
(i.e., 0 to the z e r o state and 1 to the one state).

10.8.2 Arbiter

In a large system, some resources are shared by many subsystems. For example, several
processors may share the same block of memory, and many peripheral devices may be
connected to the same bus. An arbiter is a circuit that resolves any conflict and coordinates
the access to the shared resource. This example considers an arbiter with two subsystems,
as shown in Figure 10.20. The subsystems communicate with the arbiter by a pair of request
and grant signals, which are labeled as r (1) and g(1) for subsystem 1, and as r (0) and
g(0) for subsystem 0. When a subsystem needs the resources, it activates the request signal.
The arbiter monitors use of the resources and the requests, and grants access to a subsystem
by activating the corresponding grant signal. Once its grant signal is activated, a subsystem
has permission to access the resources. After the task has been completed, the subsystem
releases the resources and deactivates the request signal. Since an arbiter’s decision is based
partially on the events that occurred earlier (i.e., previous request and grant status), it needs
internal states to record what happened in the past. An FSM can meet this requirement.

One critical issue in designing an arbiter is the handling of simultaneous requests. Our
first design gives priority to subsystem 1. The state diagram of the FSM is shown in
Figure 10.21(a). It consists of three states, waitr, grantl and granto. The waitr state
indicates that the resources is available and the arbiter is waiting for a request. The grant 1
and grant0 states indicate that the resource is granted to subsystem 1 and subsystem 0
respectively. Initially, the arbiter is in the waitr state. If the r(1) input (the request
from subsystem 1) is activated at the rising edge of the clock, it grants the resources to
subsystem 1 by moving to the grantl state. The g (1) signal is asserted in this state to

354 FINITE STATE MACHINE PRINCIPLE AND PRACTICE

arbiter

> -
go

clk

-

- r l

subsystem I

shared
lo resources -

subsystem0 -

Figure 10.20 Block diagram of an arbiter.

t? waitr

Figure 10.21 State diagrams of a fixed-priority two-request arbiter.

inform subsystem 1 of the availability of the resources. After subsystem 1 completes its
usage, it signals the release of the resources by deactivating the r (1) signal. The arbiter
returns to the waitr state accordingly.

In the waitr state, if r (1) is not activated and r (0) is activated at the rising edge, the
arbiter grants the resources to subsystem 0 by moving to the grant0 state and activates the
g(0) signal. Subsystem 0 can then have the resources until it releases them. The VHDL
code for this design is shown in Listing 10.12.

Listing 10.12 Arbiter with fixed priority

l i b r a r y ieee;
use ieee. std-logic-1164. a l l ;
use ieee . numeric-std. a l l ;
ent i ty arbiter2 i s

FSM DESIGN EXAMPLES 355

5 p o r t (
c l k : in s t d - l o g i c ;
r e s e t : in s t d - l o g i c ;
r : i n s t d - l o g i c - v e c t o r (1 downto 0) ;
g : ou t s t d - l o g i c - v e c t o r (1 downto 0)

10 1 ;
end a r b i t e r 2 ;

a r c h i t e c t u r e f i x e d - p r i o - a r c h of a r b i t e r 2 i s
type m c - s t a t e - t y p e i s (wai t r g r a n t l g r a n t o) ;

IS s i g n a l s t a t e - r e g , s t a t e - n e x t : m c - s t a t e - t y p e ;
begin
- s t a t e r e g i s t e r
process (c l k r e s e t)
begin

20 i f (r e s e t = ’ i ’) then
s t a t e - r e g <= waitr ;

s t a t e - r e g <= s t a t e - n e x t ;
e 1 s i f (c l k ’ e v e n t and c l k - ’ 1) then

end i f ;
1s end p r o c e s s ;

- n e x t - s t a t e and o u t p u t logic
process (s t a t e - r e g , r)

30

3s

so

begin
g <= ~ ~ 0 0 ” . - d e f a u l t v a l u e s
case s t a t e - r e g is

when wa i t r =>
i f r (l) = J 1 ’ then

e l s i f r (0) = ’ 1 then

e l s e

end i f ;
when g r a n t l =>

i f (r (l) = ’ l ’) then

e l s e

end i f ;

when g r a n t 0 =>

s t a t e - n e x t <= g r a n t l ;

s t a t e - n e x t <= g r a n t o ;

s t a t e - n e x t <= waitr ;

s t a t e - n e x t <= g r a n t l ;

s t a t e - n e x t <= wai t r ;

g (l) <= ’ 1 ’ ;

i f (r (0) = ’ l J) then

e l s e

end i f ;

s t a t e - n e x t <= g r a n t 0 ;

s t a t e - n e x t <= waitr ;

g (0) <= ’1’;
end c a s e ;

end p r o c e s s ;
ssend f i x e d - p r i o - a r c h ;

356 FINITE STATE MACHINE PRINCIPLE AND PRACTICE

If the subsystems are synchronized by the same clock, we can make g (1) and g (0)
be Mealy output. The revised state diagram is shown in Figure 10.21(b). This allows the
subsystems to obtain the resources one clock cycle earlier. In VHDL code, we modify the
code under the waitr segment of the case statement to reflect the change. The revised
portion becomes

when wai t r =>
i f r(1)=’1’ then

s t a t e - n e x t <= g r a n t l ;
g(1) <= ’ 1 ’ ; - n e w l y a d d e d l i n e

s t a t e - n e x t <= g r a n t o ;
g (0) <= ’1’ ; - n e w l y a d d e d l i n e

s t a t e - n e x t <= w a i t r ;

e l s i f r (0) = ’ 1 then

e l s e

end i f ;

The resource allocation of the previous design gives priority to subsystem 1. The pref-
erential treatment may cause a problem if subsystem 1 requests the resources continuously.
We can revise the state diagram to enforce a fairer arbitration policy. The new policy keeps
track of which subsystem had the resources last time and gives preference to the other
subsystem if the two request signals are activated simultaneously. The new design has to
distinguish two kinds of wait conditions. The first condition is that the resources were
last used by subsystem 1 so preference should be given to subsystem 0. The other condi-
tion is the reverse of the first. To accommodate the two conditions, we split the original
waitr state into the waitrl and waitrO states, in which subsystem 1 and subsystem 0
will be given preferential treatment respectively. The revised state diagram is shown in
Figure 10.22. Note that FSM moves from the grant0 state to the waitrl state after sub-
system 0 deactivates the request signal, and moves from the grantl state to the waitrO
state after subsystem 1 deactivates the request signal. The revised VHDL code is shown in
Listing 10.13.

Listing 10.13 Arbiter with alternating priority

a r c h i t e c t u r e r o t a t e d - p r i o - a r c h of a r b i t e r 2 i s
type m c - s t a t e - t y p e i s (w a i t r l , waitro , g r a n t l , g r a n t o) ;
s i g n a l s t a t e - r e g , s t a t e - n e x t : m c - s t a t e - t y p e ;

begin
s - s t a t e r e g i s t e r

process (c l k , r e s e t)
begin

i f (r e s e t = , l ’) then
s t a t e - r e g <= w a i t r l ;

10 e l s i f (c l k ’ e v e n t and c l k = ’ l ’) then
s t a t e - r e g <= s t a t e - n e x t ;

end i f ;
end p r o c e s s ;
- n e x t - s t a t e and o u t p u t l o g i c

begin
IS process (s t a t e - r e g , r)

g <= “00” ; - d e f a u l t v a l u e s
case s t a t e - r e g i s

when w a i t r l =>
20 i f r (l) = ’ l ’ then

FSM DESIGN EXAMPLES 357

7.5

3s

40

Figure 10.22 State diagram of a fair two-request arbiter.

s t a t e - n e x t <= g r a n t l ;

s t a t e - n e x t <= g r a n t 0 ;

s t a t e - n e x t <= waitr l ;

e l s i f r (O) = ’ l ’ then

e l s e

end i f ;
when w a i t r O =>

i f r (O) = ’ i ’ then

e l s i f r (i) = J 1 ’ then

e l s e

end i f ;
when g r a n t l =>

i f (r (l) = ’ l then

e l s e

end i f ;

when g r a n t 0 =>

s t a t e - n e x t <= g r a n t 0 ;

s t a t e - n e x t <= g r a n t l ;

s t a t e - n e x t <= w a i t r 0 ;

s t a t e - n e x t <= g r a n t l

s t a t e - n e x t <= waitrO

g (1) <= 1 1 ’ ;

i f (r (0) = J I J) then

4s

s t a t e - n e x t <= g r a n t o ;

s t a t e - n e x t <= w a i t r l ;
e l s e

end i f ;
g(0) <= J I J ;

end c a s e ;
SO end p r o c e s s ;

358 FINITE STATE MACHINE: PRINCIPLE AND PRACTICE

Figure 10.23 Partial state diagram of a four-request arbiter.

end rotated-prio-arch;

We can apply the same idea and expand the arbiter to handle more than two requests.
The partial state diagram of an arbiter with four requests is shown in Figure 10.23. It assigns
priority in round-robin fashion (i.e., subsystem 3, subsystem 2, subsystem 1, subsystem 0,
then wrapping around), and the subsystem that obtains the resources will be assigned to the
lowest priority next.

10.8.3 DRAM strobe generation circuit

Because of the large number of memory cells, the address signals of a dynamic RAM
(DRAM) device are split into two parts, known as row and column. They are sent to the
DRAM’S address line in a time-multiplexed manner. Two control signals, rasn (row
address strobe) and casn (column address strobe), are strobe signals used to store the
address into the DRAM’S internal latches. The post-fix “a” indicates active-low output,
the convention used in most memory chips. The simplified timing diagram of a DRAM
read cycle is shown in Figure 10.24(a). It is characterized by the following parameters:

0 T,,,: ras access time, the time required to obtain output data after rasn is asserted

0 Tcaa: cas access time, the time required to obtain output data after casn is asserted

0 Tpr : precharge time, the time to recharge the DRAM cell to restore the original value

0 TTc: read cycle, the minimum elapsed time between two read operations.
The operation of a conventional DRAM device is asynchronous and the device does not

have a clock signal. The strobe signals have to be asserted in proper sequence and last
long enough to provide the necessary time for decoding, multiplexing and memory cell
recharging.

A memory controller is the interface between a DRAM device and a synchronous system.
One function of the memory controller is to generate proper strobe signals. This example
shows how to use an FSM to accomplish this task. A real memory controller should also

(i.e., rasn goes to ’0’).

(i.e., casn goes to ’0’).

(since the cell’s content is destroyed by the read operation).

FSM DESIGN EXAMPLES 359

address

ras-n

cas-n

data

state

ras-n

cas-n

(a) Simplified timing of a DRAM read cycle

idle j r I c : P

(b) State of the strobe signals

(c) State diagram of slow strobe generation

Figure 10.24 Read strobe generation FSM.

360 FINITE STATE MACHINE: PRINCIPLE AND PRACTICE

contain register and buffer to store address and data and should have extra control signals to
coordinate the address bus and data bus operation. A complete memory controller example
is discussed in Section 12.3.

Suppose that a DRAM has a read cycle of 120 ns, and TTas, T,,, and TpT are 85,
20 and 35 ns respectively. We want to design an FSM that generates the strobe signals,
r a s n and casn, after the input command signal mem is asserted. The timing diagram of
Figure 10.24(a) shows that the rasn and c a s n signals have to be asserted and deasserted
following a specific sequence:

0 The r a s n signal is asserted first for at least 65 ns. The output pattern of the FSM is

0 The c a s n signal is then asserted first for at least 20 ns. The output pattern of the

0 The rasn and c a s n signals are de-asserted first for at least 35 ns. The output pattern

Our first design uses a state for a pattern in the sequence and divides a read cycle into
three states, namely the r , c and p states, as shown in Figure 10.24(b). The state diagram is
shown in Figure 10.24(c). An extra id le state is added to accommodate the no-operation
condition. We use a Moore machine since it has better control over the width of the intervals
and can be modified to generate glitch-free output. In this design, each pattern lasts for one
clock cycle. To satisfy the timing requirement for the three intervals, the clock period has
to be at least 65 ns, and it takes 195 ns (i.e., 3*65 ns) to complete a read operation. The
VHDL code is shown in Listing 10.14.

"01 " in this interval.

FSM is "00" in this interval.

of the FSM is "1 1" in this interval.

Listing 10.14 Slow DRAM read strobe generation FSM with regular output

l i b r a r y i e e e ;
use i e e e . s t d - l o g i c - 1 1 6 4 . a l l ;
e n t i t y dram-s t robe i s

port (
5 c l k , r e s e t : in s t d - l o g i c ;

mem: in s t d - l o g i c ;
cas-n r a s - n : out s t d - l o g i c

1;
end d r a m - s t r o b e ;

a r c h i t e c t u r e f sm-slow-clk-arch of d r a m - s t r o b e i s
type f s m - s t a t e - t y p e i s (i d l e , r c , p) ;
s i g n a l s t a t e - r a g , s t a t e - n e x t : f s m - s t a t e - t y p e ;

10

begin
15 - s t a t e r e g i s t e r

process (c l k r e s e t)
begin

i f (r e s e t = 1 ') then
s t a t e - r e g <= i d l e ;

s t a t e - r e g <= s t a t e - n e x t ;
m e l s i f (c l k ' e v e n t and c l k = ' l '> then

end i f ;
end p r o c e s s ;
- n e x r - s t a t e l o g i c

begin
21, process (s t a t e - r e g , m e m)

case s t a t e - r e g i s

FSM DESIGN EXAMPLES 361

30

35

50

55

when i d l e =>
i f m e m = ’ 1 ’ then

e l s e

end i f ;

s t a t e - n e x t < = c ;

s t a t e - n e x t < = p ;

s t a t e - n e x t < = i d l e ;

s t a t e - n e x t <= r ;

s t a t e - n e x t <= i d l e ;

when r =>

when c =>

when p =>

end c a s e ;
end p r o c e s s ;
-- o u t p u t l o g i c
process (s t a t e - r e g)
begin

r a s - n <= ’1’;
cas,n <= ’ 1 ’ ;
case s t a t e - r e g i s

when i d l e =>
when r =>

when c =>
r a s - n <= ’0’;

r a s - n <= ’0’;
cas-n <= ’0’;

when p =>
end c a s e ;

end p r o c e s s ;
end f sm-s low-c lk -a rch ;

~~ ~

Since the strobe signals are level-sensitive, we have to ensure that these signals are
glitch-free. We can revise the previous code to add the look-ahead output buffer, as shown
in Listing 10.15.

10

I5

Listing 10.15 Slow DRAM read strobe generation FSM with a look-ahead output buffer

a r c h i t e c t u r e f sm-slow-clk-buf - a r c h of d r a m - s t r o b e i s
type f s m - s t a t e - t y p e i s (i d l e , r , c , p > ;
s i g n a l s t a t e - r e g , s t a t e - n e x t : f s m - s t a t e - t y p e ;
s i g n a l r a s - n - r e g , cas -n - reg : s t d - l o g i c ;

s s i g n a l r a s -n -nex t , cas -n -nex t : s t d - l o g i c ;
begin

-- s t a t e r e g i s t e r and o u t p u t b u f f e r
process (c l k , r e se t)
begin

i f (r e s e t = ’ l ’ > then
s t a t e - r e g <= i d l e ;
r a s - n - r a g <= ’1’;
cas -n - reg <= ’1’;

s t a t e - r e g <= s t a t e - n e x t ;
r a s -n - rag <= r a s - n - n e x t ;
ca s -n - reg <= cas-n-next ;

e l s i f (c l k ’ e v e n t and c l k = ’ l ’) then

FINITE STATE MACHINE PRINCIPLE AND PRACTICE 362

20

end i f ;
end process;
- n e x t - s t a t e
process (s t a t e - r e g , m e m >
begin

case s t a t e - r e g i s
when i d l e =>

i f m e m = ’ 1 ’ then

e l s e

end i f ;

s t a t e - n e x t < = c ;

s t a t e - n e x t <=p;

s t a t e - n e x t < = i d l e ;

s t a t e - n e x t <= r ;

s t a t e - n e x t <= i d l e ;

when r =>

when c =>

when p =>

end c a s e ;
end process;
- look-ahead o u t p u t l o g i c
process (s t a t e - n e x t)
begin

r a s - n - n e x t <= ’1’;
cas -n -nex t <= ’1’;
case s t a t e - n e x t i s

when i d l e =>
when r =>

when c =>
r a s -n -nex t <= ’0’;

r a s - n - n e x t <= ’0’ ;
cas-n-next <= ’0’;

when p =>
end c a s e ;

end process;
- o u t p u t
r a s - n <= r a s - n - r e g ;
ca s -n <= c a s - n - r e g ;

end f sm-s low-c lk -buf -a rch ;

To improve the performance of the memory operation, we can use a smaller clock period
to accommodate the differences between the three intervals. For example, we can use a
clock with a period of 20 ns and use multiple states for each output pattern. The three output
patterns need 4 (i.e.. [gl) states, 1 (i.e., [%I) state and 2 (i.e., [%I) states respectively.
The revised state diagram is shown in Figure 10.25, in which the original r state is split into
ri, r2, r3 and r4 states, and the original p state is split into pl and p2 states. It now takes
seven states, which amounts to 140 ns (i.e., 7*20 ns), to complete a read operation. We can
further improve the performance by using a 5-ns clock signal (assuming that the next-state
logic and register are fast enough to support it). The three output patterns need 13, 4 and
7 states respectively, and a read operation can be done in 120 ns, the fastest operation speed
of this DRAM chip. While still simple, the state diagram becomes tedious to draw. RT
methodology (to be discussed in Chapters 11 and 12) can combine counters with FSM and

FSM DESIGN EXAMPLES 363

Figure 10.25 State diagram of fast read strobe generation.

O j i ' O / O 1 1 1

I

Figure 10.26 Sample waveform of Manchester encoding.

provide a better alternative to implement this type of circuit. In a more realistic scenario, the
strobe generation circuit should be part of a large system, and it cannot use an independent
clock. The design has to accommodate the clock rate of the main system and adjust the
number of states in each pattern accordingly.

10.8.4 Manchester encoding circuit

Manchester code is a coding scheme used to represent a bit in a data stream. A '0' value
of a bit is represented as a 0-to-1 transition, in which the lead half is '0' and the remaining
half is '1'. Similarly, a '1' value of a bit is represented as a 1-to-0 transition, in which the
lead half is '1' and the remaining half is '0'. A sample data stream in Manchester code is
shown in Figure 10.26. The Manchester code is frequently used in a serial communication
line. Since there is a transition in each bit, the receiving system can use the transitions to
recover the clock information.

The Manchester encoder transforms a regular data stream into a Manchester-coded data
stream. Because an encoded bit includes a sequence of "01" or "lO", two clock cycles are
needed. Thus, the maximal data rate is only half of the clock rate. There are two input
signals. The d signal is the input data stream, and the v signal indicates whether the d

364 FINITE STATE MACHINE PRINCIPLE AND PRACTICE

V‘ V‘

Figure 10.27 State diagram of a Manchester encoder.

signal is valid (i.e., whether there is data to transmit). The d signal should be converted to
Manchester code if the v signal is asserted. The output remains ’0’ otherwise. The state
diagram is shown in Figure 10.27. While v is asserted, the FSM starts the encoding process.
If d is ’O’, it travels through the sOa and sob states. If d is ’1’, the FSM travels through
the sia and s lb states. Once the FSM reaches the slb or sob state, it checks the v signal.
If the v signal is still asserted, the FSM skips the id le state and continuously encodes the
next input data, The Moore output is used because we have to generate two equal intervals
for each bit. The VHDL code is shown in Listing 10.16.

Listing 10.16 Manchester encoder with regular output

l i b r a r y ieee ;
use ieee. std-logic-1164. a l l ;
e n t i t y manchester-encoder i s

port (
5 c l k , reset: in std-logic;

v,d: in std-logic;
y: out std-logic

1;
end manchester-encoder;

a r c h i t e c t u r e moore-arch of manchester-encoder i s
type state-type i s (idle, sOa, sob, sla, slb);
s i g n a l state-reg , state-next : state-type;

I0

begin
IS - s t a t e r e g i s t e r

process (clk , reset)
begin

i f (reset=’l’) then
state-reg <= idle;

FSM DESIGN EXAMPLES 365

20

30

3s

e l s i f (c l k ‘ e v e n t and c l k = ’ l ’) t hen

end i f ;
end p r o c e s s ;
- n e x t - s t a t e l og ic

begin

s t a t e - r e g <= s t a t e - n e x t ;

zs p r o c e s s (s t a t e - r e g , v , d)

ca se s t a t e - r e g i s
when i d l e = >

i f v= ’0’ t hen

e l s e
s t a t e - n e x t <= i d l e ;

i f d= ’0’ t hen

e l s e
s t a t e - n e x t <= sOa;

s t a t e - n e x t <= s l a ;

40

45

so

ss

M)

end i f ;
end i f ;

s t a t e - n e x t <= s o b ;

s t a t e - n e x t <= s l b ;

i f v= ‘0’ t hen

e l s e

when sOa =>

when s l a =>

when sob =>

s t a t e - n e x t <= i d l e ;

i f d = ’0’ t hen

e l s e

end i f ;

s t a t e - n e x t <= sOa

s t a t e - n e x t <= s l a

end i f ;

i f v= ’0’ t hen

e l s e

when s l b =>

s t a t e - n e x t <= i d l e ;

i f d= ’0’ t hen

e l s e

end i f ;

s t a t e - n e x t <= sOa

s t a t e - n e x t <= s l a

end i f ;
end c a s e ;

end p r o c e s s ;
- M o o r e o u t p u t l o g i c

SS y <= ’1’ when s t a t e - r e g - s l a o r s t a t e - r e g = s O b e l s e
’0’;

end moore-arch ;

Because the transition edge of the Manchester code is frequently used by the receiver
to recover the clock signal, we should make the output data stream glitch-free. This can
be achieved by using the look-ahead output buffer. The revised VHDL code is shown in
Listing 10.17.

366 FINITE STATE MACHINE PRINCIPLE AND PRACTICE

Listing 10.17 Manchester encoder with a look-ahead output buffer

a r c h i t e c t u r e ou t -buf -arch of manchester-encoder i s
t y p e s t a t e - t y p e i s (i d l e , 801, s o b , s l a , s l b) ;
s i g n a l s t a t e - r e g , s t a t e - n e x t : s t a t e - t y p e ;
s i g n a l y-next , y-buf - r e g : s t d - l o g i c ;

J begin

10

IS

20

zs

M

IS

U)

4s

M

- s t a t e r e g i s t e r and o u t p u t b u f f e r
p r o c e s s (c l k , r e s e t)
begin

i f (r e s e t = ’ l J) t h e n
s t a t e - r e g <= i d l e ;
y-buf-reg <= ‘0’;

e l s i f (c l k ’ e v e n t and c 1 k = ’ l J) t hen
s t a t e - r e g <= s t a t e - n e x t ;
y-buf-reg <= y-next ;

end i f ;
end p r o c e s s ;
- n e x t - s t a t e l og ic
p r o c e s s (s t a t e - r e g , v , d)
begin

c a s e s t a t e - r e g is
when i d l e = >

if v=’O’ t h e n

e l s e
s t a t e - n e x t <= i d l e ;

i f d= ’0’ t h e n

e l s e

end i f ;

s t a t e - n e x t <= sOa;

s t a t e - n e x t <= s l a ;

end i f ;

s t a t e - n e x t <= sob;

s t a t e - n e x t <= s l b ;

i f v=’O’ t h e n

e l s e

when sOa =>

when s l a =>

when sob =>

s t a t e - n e x t <= i d l e ;

i f d=’O’ t h e n

e l s e

end i f ;

s t a t e - n e x t <= sOa;

s t a t e - n e x t <= s l a ;

end i f ;

i f v= ’0’ t h e n

e l s e

when s l b =>

s t a t e - n e x t <= i d l e ;

i f d = ’0’ t h e n

e l s e
s t a t e - n e x t <= sOa;

s t a t e - n e x t <= s l a ;

FSM DESIGN EXAMPLES 367

...
q<=oooo q<=OOOl q<=OOlO q c = l l l l

Figure 10.28 State diagram of a free-running mod- 16 counter.

end i f ;
end i f ;

55 end c a s e ;
end p r o c e s s ;
-- look-ahead o u t p u t logic
y-next <= ’1’ when s t a t e - n e x t - s l a or s t a t e - n e x t = s O b e l s e

’0’;
6 0 - o u t p u t

y <= y - b u f - r e g ;
end out-buf - a r c h ;

10.8.5 FSM-based binary counter

As discussed in Section 8.2.3, our classification of regular sequential circuits and FSMs
(random sequential circuits) is for “design practicality.” In theory, all sequential circuits
with finite memory can be modeled by FSMs and derived accordingly. This example
demonstrates the derivation of an FSM-based binary counter. Let us first consider a free-
running 4-bit counter, similar to the one in Section 8.5.4. A 4-bit counter has to traverse 16
(z4) distinctive states, and thus the FSM should have 16 states. The state diagram is shown
in Figure 10.28. Note the regular pattern of transitions.

The FSM can be modified to add more features to this counter and gradually transform
it to the featured binary counter of Section 8.5.4. To avoid clutter in the diagram, we use a
single generic si state (the ith state of the counter) to illustrate the required modifications.
The process is shown in Figure 10.29. We first add the synchronous clear signal, syn-clr,
which clears the counter to 0, as in Figure 10.29(b). In the FSM, it corresponds to forcing
the FSM to return to the initial state, SO. Note that the logic expressions give priority to
the synchronous clear operation. The next step is to add the load operation. This actually
involves five input bits, which include the l-bit control signal, load, and the 4-bit data
signal, d. The d signal is the value to be loaded into the counter and it is composed of four
individual bits, d3, d2, d l and do. The load operation changes the content of the register
according to the value of d. In terms of FSM operation, 16 transitions are needed to express
the possible 16 next states. The revised diagram is shown in Figure 10.29(c). Finally, we
can add the enable signal, en, which can suspend the counting. In terms of FSM operation,
it corresponds to staying in the same state. The final diagram is shown in Figure 10.29(d).
Note that the logic expressions of the transition arches set the priority of the control signals
in the order syn-clr, load and en. Although this design process is theoretically doable,
it is very tedious. The diagram will become extremely involved for a larger, say, a 16- or
32-bit, counter. This example shows the distinction between a regular sequential circuit and
a random sequential circuit. In Section 12.2, we present a more comprehensive comparison

368 FINITE STATE MACHINE: PRINCIPLE AND PRACTICE

syn-clr' + to state (itl)
syn-dr

to state 0 4

@)

to state 0 4

d4' * d3'* d2' *d l '

to state 0 to state 15

(4

to state (itl)

syn-clt 9 load' 0 en'

syn-clr' load' en
to state 0 4 b to state (itl)

d4' d3'*d2' * dl'

to state 0 to state 15

(4

Figure 10.29 State diagram development of a featured mod-16 counter.

BIBLIOGRAPHIC NOTES 369

between regular sequential circuits, random sequential circuits and combined sequential
circuits, which consist of both regular and random sequential circuits.

10.9 BIBLIOGRAPHIC NOTES

FSM is a standard topic in an introductory digital systems course. Typical digital systems
texts, such as Digital Design Principles and Practices by J. F. Wakerly and Contemporary
Logic Design by R. H. Katz, provide comprehensive coverage of the derivation of state
diagrams and ASM charts as well as a procedure to realize them manually in hardware.
They also show the techniques for state reduction. On the other hand, obtaining optimal
state assignment for an FSM is a much more difficult problem. For example, it takes two
theoretical texts, Synthesis of Finite State Machines: Logic Optimization by T. Villa et al.
and Synthesis of Finite State Machines: Functional Optimization by T. Kam, to discuss the
optimization algorithms.

Problems

10.1 For the "burst" read operation, the memory controller FSM of Section 10.2.1 im-
plicitly specifies that the main system has to activate the rw and mem signals in the first
clock cycle and then activate the burst signal in the next clock cycle. We wish to simplify
the timing requirement for the main system so that it only needs to issue the command in
the first clock cycle (i.e., activates the burst signal at the same time as the rw and mem
signals).

(a) Revise the state diagram to achieve this goal.
(b) Convert the state diagram to an ASM chart.
(c) Derive VHDL code according to the ASM chart.

10.2 The memory controller FSM of Section 10.2.1 has to return to the idle state for each
memory operation. To achieve better performance, revise the design so that the controller
can support "back-to-back" operations; i.e., the FSM can initiate a new memory operation
after completing the current operation without first returning to the idle state.

(a) Derive the revised state diagram.
(b) Convert the state diagram to an ASM chart.
(c) Derive VHDL code according to the ASM chart.

10.3 Revise the edge detection circuit of Section 10.4.1 to detect both 0-to-1 and 1-to-0
transitions; i.e., the circuit will generate a short pulse whenever the strobe signal changes
state. Use a Moore machine with a minimal number of states to realize this circuit.

(a) Derive the state diagram.
(b) Convert the state diagram to an ASM chart.
(c) Derive VHDL code according to the ASM chart.

10.4 Repeat Problem 10.3, but use a Mealy machine to realize the circuit. The Mealy
machine needs only two states.

10.5 In digital communication, a special synchronization pattern, known as a preamble,
is used to indicate the beginning of a packet. For example, the Ethernet I1 preamble in-
cludes eight repeating octets of "10101010". We wish to design an FSM that generates
the "10101010" pattern. The circuit has an input signal, start, and an output, data-out.
When s t a r t is 'l ', the "10101010" will be generated in the next eight clock cycles.

370 FINITE STATE MACHINE: PRINCIPLE AND PRACTICE

(a) Derive the state diagram.
(b) Convert the state diagram to an ASM chart.
(c) Derive VHDL code according to the ASM chart.
(d) Use a clever state assignment to obtain glitch-free output signal. Derive the revised

(e) Use a look-ahead output buffer for the output signal. Derive the revised VHDL

10.6 Now we wish to design an FSM to detect the "10101010" pattern in the receiving
end. The circuit has an input signal, data-in, and an output signal, match. The match
signal will be asserted as '1' for one clock period when the input pattern "10101010" is
detected.

VHDL code.

code

(a) Derive the state diagram.
(b) Convert the state diagram to an ASM chart.
(c) Derive VHDL code according to the ASM chart.

10.7 Can we apply look-ahead output buffer for Mealy output? Explain.

10.8 The first arbiter of Section 10.8.2 has to return to the waitr state before it can grant
the resources to another request. Revise the design so that the arbiter can move from one
grant state to another grant state when there is an active request.

(a) Derive the state diagram.
(b) Convert the state diagram to an ASM chart.
(c) Derive VHDL code according to the ASM chart.

10.9 Consider the fair arbiter of Section 10.8.2. Its design is based on the assumption that
a subsystem will release the resources voluntarily. An alternative is to use a timeout signal
to prevent a subsystem from exhausting the resource. When the timeout signal is asserted,
the arbiter will return to a wait state regardless of whether the corresponding request signal
is still active.

(a) Derive the revised state diagram.
(b) Convert the state diagram to an ASM chart.
(c) Derive VHDL code according to the ASM chart.

10.10 Redesign the DRAM strobe generation circuit of Section 10.8.3 for a system with a
different clock period. Derive the state diagram and determine the required time to complete
a read cycle for the following clock periods:

(a) A clock period of 10 ns.
(b) A clock period of 40 ns.
(c) A clock period of 200 ns.

10.11 A Manchester decoder transforms a Manchester-coded data stream back to a regular
binary data stream. There are two output signals. The da ta signal is the recovered data
bit, which can be '0' or '1'. The va l id signal indicates whether a transition occurs. The
va l id signal is used to distinguish whether the '0' of the d a t a signal is due to the O-to-1
transition or inactivity of the data stream.

(a) Derive the state diagram.
(b) Convert the state diagram to an ASM chart.
(c) Derive VHDL code according to the ASM chart.

PROBLEMS 371

10.12 Non-return to-zero invert-to ones (NRZI) code is another code used in serial trans-
mission. The output of an NRZI encoder is ’0’ if the current input value is different from
the previous value and is ’ 1 ’ otherwise. Design an NRZI encoder using an FSM and derive
the VHDL code accordingly.

10.13 Repeat Problem 10.12, but design an NRZI decoder, which converts a NRZI-coded
stream back to a regular binary stream.

10.14 Derive the VHDL code for the FSM-based free-running mod-16 counter of Sec-
tion 10.8.5.

(a) Synthesize the code using an ASIC technology. Compare the area and perfor-

(b) Synthesize the code using an FPGA technology. Compare the area and perfor-
mance (in term of maximal clock rate) of the code in Section 10.8.5.

mance of the code in Section 10.8.5.

10.15 Repeat Problem 10.14 for the featured mod-16 counter of Section 10.8.5.

This Page Intentionally Left Blank

CHAPTER 11

REGISTER TRANSFER METHODOLOGY:
PRlNCl PLE

To accomplish a complex task, we frequently describe the process by an algorithm, which
is a sequence of steps or actions. Algorithms are generally implemented by programs
written in a traditional programming language (Le., by software) and executed in a general-
purpose computer. However, to obtain better performance and efficiency, it is sometimes
beneficial or even necessary to realize an algorithm in custom hardware. The register
transfer methodology (RT methodology) is a design methodology that describes system
operation by a sequence of data transfers and manipulations among the registers. This
methodology can support the variables and sequential execution of an algorithm and provide
a systematic way to convert an algorithm into hardware.

11.1 INTRODUCTION

11.1.1 Algorithm

An algorithm is a detailed sequence of actions or steps to accomplish a task or to solve
a problem. Since the semantics of traditional programming languages is also based on
sequential execution, an algorithm can easily be converted into a program using the con-
structs of these languages. The program is then compiled into the machine instructions and
executed in a general-purpose computer. Let us consider a simple task that sums the four
elements of an array, divides the sum by 8 and rounds the result to the closest integer. The
pseudocode of one possible algorithm is

RTL Hardware Design Using VHDL: Coding for Eficiency, Portabiliiy. and Scalabiliiy, By Pong P. Chu
Copyright @ 2006 John Wiley & Sons, Inc.

373

374 REGISTER TRANSFER METHODOLOGY: PRINCIPLE

size = 4
sum = 0;
for i in (0 t o size-1) do {

q = sum / 8;
r = sum rem 8;
if (r > 3) {

outp = 4;

sum = sum + a(i);)

q = q + 1;)

The algorithm first adds individual elements and stores the result in a variable called
sum. It then uses the division (/) and remainder (rem) operations to find the quotient and
remainder. If the remainder is greater than 3, an extra 1 is added to quotient for rounding.
The example demonstrates two basic characteristics of an algorithm:

0 Use of variables. A variable in an algorithm or pseudocode can be interpreted as a
“memory location with a symbolic address” (i.e., the name of the variable). It is used
to store an intermediate computation result. For example, in the second statement,
0 is stored into the memory location with a symbolic address of sum. Inside the for
loop, a (i> is added with the current content of sum, and then summation is stored
back into the same memory location. In the fourth statement, the content of sum is
divided by 8, and the result is stored into a memory location with a symbolic address

0 Sequential execution. The execution of an algorithm is performed sequentially and
the order of the steps is important. For example, the summation of the elements must
be obtained before the division operation can be performed. Note that the order of
execution may rely on certain conditions, as in the for loop and if statements.

In VHDL, the variables and sequential execution are treated as a special case and encap-
sulated inside a process. Although a description with variables can be synthesized in some
cases, the variables are mapped to signals and are not interpreted or realized as “memory
locations with symbolic addresses.”

of q.

11.1.2 Structural data flow implementation

To achieve better performance and efficiency, we frequently want to implement an algorithm
in custom hardware. The variable and sequential semantics of algorithm are very different
from the concurrent model of hardware. What we have learned so far is to transform
“sequential execution” into “structural data flow” by mapping an algorithm into a system
of cascading hardware blocks, in which each block represents a statement in the algorithm.
For example, we can unroll the loop of the previous algorithm and convert the variables
into internal connection signals. Assume that sum is an 8-bit signal. The corresponding
VHDL code becomes

sum <= 0;
sum0 <= a(0);
suml <= sum0 + a(1);
sum2 <= suml + a(2);
sum3 <= sum2 + a(3);
q <= t B O O O B f & sum3(8 downto 3);
r <= “00000“ & sum3(2 downto 0);
outp <= q + 1 when (r > 3) e l s e

4;

INTRODUCTION 375

outp

Figure 11.1 Structural data flow implementation.

Note that the sum / 8 and sum rem 8 operations are implemented by concatenation
(i.e., a) operations. The corresponding block diagram is shown in Figure 1 1.1.

Although the circuit can carry out the task, the operation of the hardware is very different
from the sequential semantics of the original algorithm. In this construction, the circuit is
a pure combinational logic, and the adders and dividers (concatenation operators) execute
in parallel. The implementation does not use any concept of variable, and the sequential
execution is implicitly embedded in the interconnection of components and the flow of
data. To some degree, the synthesis essentially utilizes extra hardware to accelerate the
operation. instead of using a single arithmetic unit of a computer to perform these operations
sequentially, the custom hardware utilizes multiple adders and division circuits to calculate
the result in parallel.

The structural data flow implementation is not general and can be applied only for
simple, trivial algorithms. The following two variations of the previous algorithm illustrate
the limitation of this approach. First, let us consider an array with 10 elements. In the
pseudocode, this can be done by replacing 4 with 10 in the first statement. This increases
the number of loop iterations. We can unroll the loop and derive the structural data flow
implementation, which needs nine adders. if the number of elements of the array continues
to grow, the number of adders increases accordingly. Clearly, this approach needs excessive
hardware resource and is not practical for a larger array. Second, let us assume that the size
of the array is not fixed but is specified by an additional input, n. To accomplish this in the
algorithm, we only need to substitute n into the first statement and make it size = n. This
will be very difficult for structural data flow implementation. Since the hardware cannot
expand or shrink dynamically, we have to construct a circuit that can calculate the results
for all possible values of n and then use a multiplexer to route the desired value to output.
The resulting hardware will be extremely complicated, and this approach is not practical in
reality.

11.1.3 Register transfer methodology

The previous example shows the limitation and inflexibility of Structural data flow imple-
mentation. To realize an algorithm in hardware, we need hardware constructs that resem-
ble the variable and sequential execution model. The register transfer methodology (RT
methodology) is aimed for this purpose. The key characteristics of this methodology are:

0 Use registers to store the intermediate data and to imitate the variables used in an

0 Use a custom data path to realize all the required register operations.
0 Use a custom control path to specify the order of the register operations.

algorithm.

376 REGISTER TRANSFER METHODOLOGY: PRINCIPLE

We have utilized registers for regular sequential circuits and FSMs in previous chapters.
They are usually dedicated to a specific circuit, as in a counter or an FSM. In the RT
methodology, the registers are used as general storage that keeps the intermediate computed
values, just as the variables of an algorithm. For example, consider a typical statement in
pseudocode:

a = a + b

We can use two registers, a-reg and breg, to imitate the a and b variables. When this
statement is executed, the content of the areg and breg registers will be added, and the
result will be stored back into the areg register at the next rising edge of the clock.

When an algorithm is realized in RT methodology, the necessary data manipulation and
data routing are performed by dedicated hardware. For example, an adder is required for
the previous statement. The data manipulation circuit, routing network and the registers
together are known as the data path.

Since an algorithm is described as a sequence of actions, we need a circuit to control
when and what RT operations should take place. The circuit is known as the control path.
A control path can be realized by an FSM, which can use states to enforce the order of the
desired steps and use the decision boxes to imitate the branches and iterations (loops) in an
algorithm.

We call this implementation methodology register transfer methodology since an algo-
rithm is transformed into a sequence of actions that specifies how the data is manipulated
and transferred among registers. A typical RT implementation includes a data path and a
control path. We can use an extended FSM to describe the overall system operation. It is
known as FSM with a data path (FSMD).

As we mentioned in Section 1.4.3, use of the term register transfer is somewhat abused.
It sometimes is used rather vaguely to represent a level of abstraction (i.e., the RT level)
between the gate and processor levels. In this book, we use the term RT methodology for
this specific design methodology and the term RT level for module-level abstraction.

11.2 OVERVIEW OF FSMD

An FSMD is the key to realizing the RT methodology. This section provides an overview
of FSMD, including RT operation, data path, control path and extended ASM chart. The
subsequent sections use examples to illustrate the detailed derivation and construction of
an FSMD.

11.2.1 Basic RT operation

A basic action in RT methodology is a register transfer operation. We use the following
notation for an RT operation:

rdest + f(rsrc1, rsrc2, * * - I rsrcn)

In this notation, the register on the left-hand side (i.e., rdest) is the destination register. The
registers on the right-hand side (i.e., rsrcl, rsrcz and rsrcn) are the source registers and they
represent the outputs (i.e., the contents) of these registers. The f(.) function is the operation
to be performed. It is an expression composed of source registers and sometimes external
inputs. The overall notation means that the new value of rdest is calculated according to
f(rsrc1, rsrc2, . . . rsrcn), and the result will be stored into rdest at the next rising edge of

OVERVIEW OF FSMD 377

the clock. Note that the t notation is not defined in VHDL. It is only used in this book to
denote the register transfer operation.

There is no specific restriction on the f(.) function. It can be any expression as long as
it can be realized by a combinational circuit. A few representative RT operations are shown
below.

0 r c 1: A constant 1 is stored into the r register.
0 r t r: The content of the r register is stored back into itself. The content, of course,

0 r t r << 3: The content of the r register is shifted left three positions and then

0 r O t ri: The content of the rl register is stored (or transferred) into the r O register.
0 n t n - 1: The content of the n register is decremented by 1 and the result is stored

back into itself.
0 y t a & b @ c @ d: The contents of the a, b, c and d registers are xored and the

result is stored into the y register.
0 s t a2 + b2: The summation of a squared and b squared is stored into the s register.

We can write this expression only if the predesigned combinational multiplier module
is available.

The major difference between a variable of an algorithm and a register is that a system

remains unchanged.

stored back into itself.

clock is embedded implicitly in an RT operation. Consider the register operation

Its detailed actions are las follows:
1. At the rising edge of the clock, new data from the source registers is available after

the clock-to-q delay of the source registers.
2. The data is computed by a combinational circuit that realizes the f(.) function. We

assume that the clock period is long enough to accommodate the propagation delay
of the combinational circuit and the setup time of the rdest register. The result is
routed to the input of the rdest register.

3. At the next rising edge of the clock, the result will be sampled and stored into the
rdest register.

In our discussion of sequential circuits, we use the suffixes r e g and next for the current
output and next input of a register. A more accurate description of an RT operation can
be expressed using these suffixes. For example, consider the rl t rl + r2 operation. It
actually means

0 rlnext <= r lreg + r2xeg;
0 r l reg <= rlnext at the rising edge of the clock;

Note that the <= notation is used for regular signal assignment.
Realizing an RT operation is straightforward. We basically construct the f (a) function

using combinational components and then connect its output to the input of the destination
register. Again, consider the rl t rl + r2 operation. It involves an addition in f(.). Its
block diagram is shown in Figure 11.2(a) and the corresponding timing diagrams is shown
in Figure 11.2(b). Note that the rl register will not be updated until the next rising edge of
the clock.

378 REGISTER TRANSFER METHODOLOGY: PRINCIPLE

clk I I
, I

rl-next d 9- Q-wl ' 2 + 1 -
c

rl-next

rl-reg I 3 x 5 d 9

clk

(a) Block diagram

control signals

+$ IT&
(b) Timing diagram

Figure 11.2 Single RT operation.

I U
clk

Figure 11.3 Block diagram of a set of RT operations with the same destination register.

11.2.2 Multiple RT operations and data path

An algorithm consists of many steps, and a destination register is not loaded with the same
data in these steps. For example, the rl register may be set to 1 in the initialization step,
added with the content of r2 in a summation step, incremented in the two counting steps,
and kept unchanged in the final step. Thus, four RT operations use rl as the destination
register:

0 rl t 1;
0 r l t r l + r 2 ;
0 rl t r l+ 1;
0 rl t rl;

Because of the multiple possibilities, a multiplexing circuit is needed to route the desired
value to the input of the r l register. The block diagram is shown in Figure 11.3. We can
choose the desired RT operation by setting the proper selection signal in the multiplexing
circuit.

A design with RT methodology normally involves many registers. We can repeat this
procedure for every register. The resulting circuit constitutes the basic, unoptimized data
path, which can perform every needed RT operation of an algorithm.

OVERVIEW OF FSMD 379

so

state SO X s l s2

r l t rl + 12 yi
2 1 y Q '1'

rl-next 3 x 5

3 5

(a) (b) (c) Timing diagram

Figure 11.4 RT operation in a segment of an ASMD chart.

11.2.3 FSM as the control path

While a data path realizes all required RT operations in an algorithm, we need a mechanism
to specify when and which RT operations should be performed. A control path is used to
enforce the order of RT operations and to selectively perform certain RT operations based
on the external commands or internal status. A control path can be realized by a custom
FSM. An FSM is a natural match for this task for several reasons:

0 The state transition of an FSM is performed on a clock-by-clock basis. Since an RT
operation is also updated on a clock-by-clock basis, an RT operation can be specified
in a state of the FSM.

0 An FSM can enforce a specific sequence of actions.
0 Upon an examination of input conditions, an FSM can branch to different paths and

thus can alter the sequence of actions. This can be used to implement various branch
constructs, such as the if and loop statements, in an algorithm.

11.2.4 ASMD chart

Since an RT operation is performed in a state of the FSM, we can extend the FSM to
FSMD to indicate the desired RT operation in each state. The state representation and state
transition of an FSMD are similar to those of an FSM. However, RT operations, in addition
to output signals, are specified in states or transition arcs, We use an extended ASM chart,
in which an RT operation can be specified either inside a state box or in a conditional output
box, to describe the operation of an FSMD. It is known as an ASM with a data path chart
(ASMD chart).

The construction and operation of an ASMD chart can best be explained by an example.
A segment of an ASMD is shown in Figure 11.4(a), An RT operation, rl t rl + r2,
is specified in the sl state. For comparison purposes, we also include a regular activated
output, y, in the sl state. When the FSMD enters the sl state, the rl + r2 expression
is calculated and its result becomes the next value of rl. At the next rising edge of the
clock, the FSMD transits from sl to s2 and rl is updated with the new value. Note that
the rl register is not updated inside the state box but during the transition between the sl
and 92 states. The new value of rl is available only when the FSMD reaches the s2 state.

380 REGISTER TRANSFER METHODOLOGY: PRINCIPLE

A clumsy, but more accurate, notation is shown in Figure 11.4(b), in which the r l n e x t
signal is calculated in the sl state, independent of the clock edge, and the r l r e g signal
is updated at the transition. Note that the regular signal assignment notation, <=, is used in
the diagram.

The timing diagram is shown in Figure 11.4(c). When the FSMD enters the sl state,
the computation of rl + r 2 starts but the output of rl remains unchanged. Note that the
regular output, y, is activated after the clock-to-q delay in the sl state. At the next rising
edge of the clock, the FSMD moves to the s2 state and the new value is sampled and stored
into rl. After the clock-to-q delay, the new value is propagated to the output of rl. Note
that the y signal is deactivated in the s2 state.

The rl register samples and stores the input data at every rising edge of the clock. Thus,
rl is updated in the SO and s2 states as well, even when no operation is needed. Since the
system is synchronous, a register cannot be disabled or suspended. Instead, it just keeps its
old value by sampling its own output; i.e., performing the r l t rl operation. To reduce
the clutter, we don’t include this operation in an ASMD chart. If a destination register r is
not associated with an RT operation in a state, we assume that it performs the default r c r
operation.

Although the appearances of an ASMD chart and a regular flowchart are somewhat
similar, their operations are different. The operation of an FSMD is operated on a clock-by-
clock basis. The register in an ASMD chart is not updated until the exit of the current state,
and thus an RT operation exhibits some sort of delayed-store behavior. The most error-
prone part of deriving an ASMD chart is this delayed-store operation. To obtain a correct
and efficient ASMD chart, we need to have a clear understanding of the timing of an RT
operation and know when a register is updated. Section 1 1.3.4 provides a comprehensive
discussion of this issue.

11.2.5 Basic FSMD block diagram

The conceptual block diagram of an FSMD is shown in Figure 11.5. It is divided into a
data path and a control path. The data path can perform all the required RT operations and
is composed of three major parts:

0 Data registers. The registers store the intermediate computation results.
0 Functional units. The functional units perform the functions specified by RT opera-

tions. ?Lpical functional units include an adder, subtractor, incrementor, decrementor
and shifter.

0 Routing circuir. The circuit routes the source registers’ outputs to the proper func-
tional units and routes the calculated results from the functional units to proper des-
tination registers. It is normally constructed by customized multiplexers.

A data path normally includes the following input and output signals:
0 data input: the external input data, which is to be processed by the FSMD.
0 data output: the processed results of the FSMD.
0 control s ignal : input signal used to specify which RT operations should be per-

formed. It is generated by the control path.
0 i n t e r n a l s ta tus : output signal indicating certainconditions of the data path, such

as whether a specific register is 0. This signal is used by the control path to determine
the future course of action.

OVERVIEW OF FSMD 381

- - - d q

data
input

- functionalunits routing
network

data path
.

routing data
network > registers

-
data
output

external
status

command

..

control path

Figure 11.5 Basic block diagram of an FSMD.

The control path is an FSM. As a regular FSM, it contains a state register, next-state
logic and output logic. A control path normally includes the following input and output
signals:

0 command: the external command signal to the FSMD, such as the start of the opera-
tion. It is an input to the FSM.

0 internal status: signal from the data path, which is also an input to the FSM.
The FSM uses it and the external command to determine the next state.

0 control signal: output of the FSM used to control data path operation.
0 external status: output of the FSM used to indicate the status of the FSMD

In addition to these signals, the registers of the data path and control path are connected to
the same clock signal and to an optional asynchronous reset signal.

Note that the data path resembles a regular sequential circuit, and the control path is an
FSM and thus is a random sequential circuit. Therefore, an FSMD can be considered a
combined sequential circuit, as discussed in Section 8.2.3. Although the FSMD consists of
two types of sequential circuits, both circuits are synchronized by the same clock, and thus
the FSMD still follows the same synchronous design methodology.

operation, such as whether the system is busy.

382 REGISTER TRANSFER METHODOLOGY: PRINCIPLE

11.3 FSMD DESIGN OF A REPETITIVE-ADDITION MULTIPLIER

The derivation of an ASMD chart and the construction of an FSMD can best be explained
by closely examining several examples. This section illustrates how to convert a simple
repetitive-addition multiplication algorithm into an ASMD chart and realize it in hardware.
Various alternatives are discussed in subsequent sections.

11.3.1 Converting an algorithm to an ASMD chart

We learned to implement a combinational multiplier in Section 7.5.4. The design utilized
multiple adders and is somewhat like the data-flow implementation of Section 1 1,1.2. An
alternative is to use one adder to perform the additions sequentially. Assume that the two
operands of the multiplication are a-in and b-in. One simple sequential algorithm is to add
a-in repetitively for b-in times. For example, 7*5 can be computed as 7 + 7 + 7 + 7 + 7.
While this method is not efficient, it is simple and we can concentrate on the derivation of
the ASMD chart and hardware.

Consider a multiplier with input a-in and b-in, and with output r-out. All three signals
are in unsigned integer format. The repetitive-addition algorithm can be formalized in the
following pseudocode:

r = 0 ;)

a = a - i n ;
n = b - i n ;
r = 0 ;
while (n != 0) C

r = r + a ;
n = n - 1;)

i f (a - in=O or b-in=O) then C

e l s e

3
r - o u t = r ;

Note that the ASMD chart does not have a loop construct. Its decision box uses a Boolean
condition to choose one of two possible exit paths and thus is somewhat like a combined if
and goto statement. To make it closer to an ASMD chart, we convert the while loop using
an if statement and two goto statements. The revised pseudocode becomes

i f (a - in=O or b_ in=O) then {

e l s e {
r = 0 ;)

a = a - i n ;
n = b - i n ;
r = 0 ;

op : r = r + a ;
n - n - 1 ;
i f (n = 0) then{

e l s e {
g o t o s t o p ;)

g o t o o p ;)
3

s t o p : r - o u t = r ;

FSMD DESIGN OF A REPETITIVE-ADDITION MULTIPLIER 383

To realize this algorithm in hardware, we must first define its input and output signals.

0 a-in and b-in: input operands. They are %bit signals with the std-logic-vector

0 start: command. Themultiplier starts operation when the start signal is activated.
0 clk: systemclock.
0 reset: asynchronous reset signal for system initialization.

0 r-out: the product. It is a 16-bit signal with the std-logic-vector data type and
interpreted as an unsigned integer.

0 ready: external status signal. It is asserted when the multiplication circuit is idle
and ready to accept new inputs. It can also be interpreted that the previous operation
has been completed and the result is ready.

Note that the start and ready signals are added to accommodate sequential operation.
We can imagine that the sequential multiplier is part of a large system. When the main
system wants to do a multiplication operation, it first checks the ready signal and then
places the two operands on the two data inputs and asserts the start signal. When the
start signal is activated, the sequential multiplier takes the two data inputs and begins
computation. It activates the ready signal to inform the main system once the computation
has been completed.

The ASMD chart is shown in Figure 11 -6. It closely follows the pseudo algorithm. It
uses n, a and r data registers to imitate the three variables, uses decision boxes to implement
the two if statements, and uses RT operations to realize regular sequential statements.

Unlike the pseudocode, in which one statement is executed at a time, the ASMD chart
allows some degree of parallelism. When the RT operations are scheduled in the same
state, it means that they are performed in the same clock cycle and thus are done in parallel.
For example, both r t r + a and n t n - 1 operations are scheduled in the op state.
This implies that there are an adder and a decrementor in the physical circuit and that two
calculations can be performed simultaneously. In general, we can schedule RT operations
in the same state (i.e., the same clock cycle) as long as there is no data dependency, and
enough hardware resources are available.

There are four states in the ASMD chart. The i d l e state indicates that the circuit is
currently idle. The ready signal is asserted accordingly. If the start signal is asserted,
the FSMD checks whether one of the inputs is zero and branches to the ab0 or load state.
In the ab0 state, r is assigned to 0 and the FSMD returns to the i d l e state. Although
not required, we assume that a and n are loaded with a-in and b-in. In the load state,
r is initialized to 0, and a and n are loaded with the external input values. The FSMD
then enters the loop and iterates through the op (for “operation”) state b-in times. In each
iteration, it adds the content of a to r and decrements n by 1. The n register is used to keep
track of the number of operations. The loop stops when it reaches 0 and the FSMD returns
to the i d l e state. We intentionally use a vague Boolean expression, count-0-1, inside the
decision box. This is elaborated in Section 11 -3.4. As in an ASM chart, we use a dashed
box to represent an ASMD block and to emphasize that all operations inside the block are
done in parallel at the same clock cycle.

The input signals are:

data type and interpreted as unsigned integers.

The output signals are:

384 REGISTER TRANSFER METHODOLOGY PRINCIPLE

8 ready C= I

! T

Figure 11.6 ASMD chart of a repetitive-addition multiplier.

FSMD DESIGN OF A REPETITIVE-ADDITION MULTIPLIER 385

11.3.2 Construction of the FSMD

Once the ASMD chart is constructed, more detailed information is available. We can refine
the basic sketch of Figure 1 1.5 and derive a more detailed conceptual block diagram. We
first divide the system into a control path and a data path.

The construction of the control path is the same as with the FSM. Recall that the signals
inside the decision box constitute the input of the FSM. In the ASMD chart, the Boolean
expressions use four signals: start, a-is-0, b-is-0 and count-0. The start signal is
the external command, and the other three are internal status signals from the data path.
They are asserted when the corresponding conditions are met. The output of the control
path includes the external ready status signal and the control signals that specify the RT
operations of the data path. In this example, we use the output of the state register as the
control signal. The block diagram is shown at the bottom of Figure 11.8.

At first glance, construction of the data path seems to be more involved. However, it
can be derived systematically by following simple guidelines. The basic data path can be
constructed as follows:

1. List all possible RT operations in the ASh4D chart.
2. Group RT operations according to their destination registers.
3. For each group, derive the circuit following the process of Section 11.2.2:

(a) Construct the destination register.
(b) Construct the combinational circuits involved in each RT operation.
(c) Add multiplexing and routing circuits if the destination register is associated

with multiple RT operations.
4. Add the necessary circuits to generate the status signals.
The RT operations of the repetitive-addition multiplication ASMD are grouped as fol-

0 RT operations with the r register:
lows:

- r t r (in the id le state)
- r t 0 (in the load and ab0 states)
- r t r + a (in the op state)

0 RT operations with the n register:
- n t n (in the id le state)
- n t b-in (in the load and ab0 states)
- n t n - 1 (in the op state)

0 RT operations with the a register:
- a t a (in the id le and op states)
- a t a-in (in the load and ab0 states)

Note that we must include the default RT operations for the three registers.
Let us consider the circuit associated with the r register. The conceptual diagram is shown

in Figure 11.7. It has three possible sources for the input: 0, r and r + a. The routing of
the next value is done by an abstract multiplexer, as the one discussed in Section 4.3.2. It
uses the output of the state register as the select signal, and its input ports are labeled with
the four possible symbolic values. The connection indicates that r r e g is routed to r n e x t
if the s ta tereg signal is idle, 0 is routed to rmext if the s t a t e i e g signal is ab0 or
load, and r i e g + a i e g is routed to rnext if the s t a t e i e g signal is op.

We can repeat the process for two other registers and use three comparators to implement
the three status signals. The complete data path, combined with the control path, is shown

386 REGISTER TRANSFER METHODOLOGY PRINCIPLE

I U 14 +

state-reg

Figure 11.7 Data path associated with the r register.

in Figure 11.8. The clock and reset signals are connected to all registers. To reduce
clutter, they are not shown on the diagram. The four major parts of the data path, functional
units, routing circuit, data registers and status circuit, are grouped as shaded blocks.

Since this is a simple design, Figure 11.8 is somewhat unnecessarily complicated. For
example, the multiplexing circuit for the anext signal can be replaced by a register with
an enable signal. The purpose of the diagram is to illustrate the derivation process. This
process is very general and thus can be applied to any properly designed ASMD chart.
Since the block diagram will eventually be described by VHDL code and synthesized, the
multiplexing circuit will be optimized during logic synthesis.

11.3.3 Multi-segment VHDL description of an FSMD

After understanding the construction of an FSMD, we can derive the VHDL program
accordingly. Our first VHDL description follows the detailed block diagram of Figure 1 1.8.
The diagram is divided into seven blocks, which include the state register, next-state logic
and output logic of the control path, and the data registers, functional units, routing network
and status circuit of the data path. We use a VHDL segment for each block, and the code
is shown in Listing 1 1.1.

Listing 11.1 Multi-segment description of a repetitive-addition multiplier

l i b r a r y ieee ;
use ieee . std-logic-1164, a l l ;
use ieee. numeric-std. a l l ;
e n t i t y seq-mult i s

5 p o r t (
clk, reset: in std-logic;
start : in std-logic ;
a-in, b-in: in std-logic-vector (7 downto 0) ;
ready : out std-logic ;

10 r: out std-logic-vector (15 downto 0)
1;

end seq-mult ;

a r c h i t e c t u r e mult-seg-arch of seq-mult is

FSMD DESIGN OF A REPETITIVE-ADDITION MULTIPLIER 387

r-out

Figure 11.8 Complete block diagram of a repetitive-addition multiplier.

388 REGISTER TRANSFER METHODOLOGY: PRINCIPLE

30

40

45

50

5s

65

I5 c o n s t a n t W I D T H : i n t e g e r : = 8 ;
t ype s t a t e - t y p e i s (i d l e , abO, l o a d , o p) ;
s i g n a l s t a t e - r e g , s t a t e - n e x t : s t a t e - t y p e ;
s i g n a l a - i s - 0 , b - i s - 0 , c o u n t - 0 : s t d - l o g i c ;
s i g n a l a - r eg , a - n e x t : unsigned(W1DTH-1 downto 0) ;

20 s i g n a l n-reg , n-nex t : unsigned(W1DTH-1 downto 0) ;
s i g n a l r - r e g , r - n e x t : unsigned(2*WIDTH-l downto 0) ;
s i g n a l adde r -ou t : uns igned (2*WIDTH-1 downto 0) ;
s i g n a l sub -ou t : unsigned(W1DTH-1 downto 0) ;

begin
2s - c o n t r o l p a t h : s t a t e r e g i s t e r

p r o c e s s (c l k , r e s e t 1
begin

i f r e s e t = ’ l t h e n
s t a t e - r e g <= i d l e ;

s t a t e - r e g <= s t a t e - n e x t ;
e l s i f (c l k ’ e v e n t and c l k = ’ l ’) t h e n

end i f ;
end p r o c e s s ;
- c o n t r o l p a t h : n e x t - s t a t e / o u t p u t l o g i c

begin
35 p r o c e s s (s t a t e - r e g , s t a r t a - i s - 0 , b - i s -0 coun t -0)

c a s e s t a t e - r a g i s
when i d l e =>

i f s t a r t = ’ 1 ’ then
i f (a- is-O=’l’ or b - i s - O = ’ l ’) t h e n

e l s e

end i f ;

s t a t e - n e x t <= i d l e ;

s t a t e - n e x t <= abO;

s t a t e - n e x t <= l o a d ;

e l s e

end i f ;

s t a t e - n e x t <= i d l e ;

s t a t e - n e x t <= op ;

i f coun t -O=’ l ’ t hen

e l s e

end i f ;

when abO =>

when l o a d =>

when op =>

s t a t e - n e x t <= i d l e ;

s t a t e - n e x t <= op ;

end c a s e ;
end p r o c e s s ;

r eady <= ’ 1 ’ when s t a t e - r e g = i d l e e l s e ’0’;
-- d a t a p a t h : d a t a r e g i s t e r
p r o c e s s (c l k , r e s e t)
begin

m - c o n t r o l p a t h : o u t p u t l o g i c

i f r e s e t = ’ l ’ t h e n
a - r e g <= (o t h e r s = > ’ O ’) ;
n - r eg <= (o t h e r s = > ’ O ’) ;

FSMD DESIGN OF A REPETITIVE-ADDITION MULTIPLIER 389

85

w

r-reg <= (o t h e r s = > ' O ') ;

a-reg <= a-next;
n-reg <= n-next;
r-reg <= r-next;

e l s i f (clk'event and clk='l') then

end i f ;
end p r o c e s s ;
-- d a t a p a t h : r o u t i n g m u l t i p l e x e r
process (state-reg , a-reg ,n-reg, r-reg ,

begin
a-in , b-in , adder-out , sub-out

case state-reg i s
when idle =>

a-next <= a-reg;
n-next <= n-reg;
r-next <= r-reg;

a-next <= unsigned(a-in);
n-next <= unsigned(b-in) ;
r-next <= (o t h e r s = > '0 ') ;

a-next <= unsignedca-in) ;
n-next <= unsigned (b-in) ;
r-next <= (o t h e r s = > '0 '1;

when abO =>

when load =>

when op =>
. a-next <= a-reg;

n-next <= sub-out;
r-next <= adder-out ;

end c a s e ;
end p r o c e s s ;
-- d a t a p a t h : f u n c t i o n a l u n i t s
adder-out <= ("00000000" & a-reg) + r-reg;
sub-out <= n-reg - 1;
- d a t a p a t h : s t a t u s
a-is-0 <= '1 when a~in="00000000" e l s e '0' ;
b-is-0 <= '1' when b~in=~~OOOOOOOO1~ e l s e '0';
count-0 <= '1 when n~next="00000000" e l s e '0';
- d a t a p a t h : o u t p u t
r <= std-logic-vector(r-reg);

end mult-seg-arch ;

11.3.4 Use of a register value in a decision box

The key to realizing RT methodology is to derive an efficient and correct ASMD description
of an algorithm. Once this is accomplished, the VHDL derivation is more or less a mechan-
ical procedure. The most subtle part of the ASMD derivation is using a register in Boolean
expressions of the decision boxes. We intentionally avoided this issue in the ASMD of
Figure 11.6 and used the somewhat vague a-is-0, b-is-0 and count-0 status signals in-
side the decision boxes. A more descriptive way is to express the Boolean conditions with
registers or input signals.

390 REGISTER TRANSFER METHODOLOGY: PRINCIPLE

Figure. 11.9 Register used in a decision box.

In the second decision box, the a-is-0-1 o r b-is-O=l expression can easily be trans-
lated into a-in=O o r b-in=O. In the third decision box, the condition for the count-O=l
expression is more subtle. The n register is used as a counter to keep track of the number
of iterations. The iteration stops when n reaches 0. In pseudocode, it is expressed as

n = n - 1 ;
i f (n = 0) then{

e l s e C
g o t o s t o p ;)

goto o p ;)

Since the execution is sequential, the n variable is updated in the n = n - 1 statement,
and then the new value is used in the n = 0 expression of the if statement.

In the corresponding ASMD chart, the n t n - 1 operation and the decision box are in
the same ASMD block. Since n is updated when the FSMD exits the block, the old value
of n is used in decision box. If we write the condition as n = 0 inside the decision box, as
in Figure 11.9(a), one extra iteration is introduced and thus the result is not correct.

One way to fix the problem is to use the condition of the previous iteration, n = 1, to
terminate the loop, as in Figure 1 1.9(b). This approach may not work for other algorithms
when the condition of the previous iteration cannot be determined in advance. The dis-
crepancy between the pseudocode and the ASMD chart also makes the ASMD chart less
intuitive.

One clumsy way to solve the problem is to insert an artificial wait state so that the
content of n can be updated before it is used in a decision box. This approach is shown in
Figure 1 1.9(c). While this makes the ASMD looks like the original algorithm, the wait state
introduces one extra clock cycle in the iteration and thus severely degrades the performance.

A better way is to use the next value of the n register in the Boolean expression of the
decision box. Since the next value is calculated during the op state, it is available at the end

FSMD DESIGN OF A REPETITIVE-ADDITION MULTIPLIER 391

of the clock cycle and can be used in the decision box. Note that the previous VHDL code
actually uses this value to generate the count-0 status signal:

count-0 <= ’1’ when n-next=O e l s e ’0’;

To express this idea in the ASMD chart, we have to split the RT operation r t f(.) into
two parts:

0 r n e x t <= f(.)
0 r t r n e x t ;

The first part means that the next value of the r register is calculated and updated within
the current clock cycle. We use the signal assignment notation, <=, to emphasize that the
assignment is independent of the clock. The second part indicates that the r n e x t signal
is then assigned to r at the exit of the current state, as a regular RT operation. We can
use this notation to replace the count-0=0 expression of the ASMD chart, as shown in
Figure 1 1.9(d). This approach is the preferred method since it does not use the condition
of the previous iteration, maintains consistency with the original sequential algorithm and
introduces no performance penalty.

11.3.5 Four- and two-segment VHDL descriptions of FSMD

The previous multi-segment description follows the detailed FSMD block diagram. For a
simple design, some blocks are very straightforward, and partitioning the VHDL code into
so many code segments is overkill. We can merge some blocks to make the code more
compact.

For the FSMD block diagram in Figure 11.5, we can merge the combinational circuits
of the data path and control path respectively, and divide the code into four segments: the
data path registers, data path combinational circuit, control path register and control path
combinational circuit. The detailed VHDL code is shown in Listing 1 1.2. Some duplicated
segments are omitted. Note that we eliminate the a-is-0, b-is-0 and count-0 status
signals, and use the a-in, b-in and n n e x t signals directly in the Boolean conditions of
the control path.

Listing 11.2 Four-segment description of a repetitive-addition multiplier

- d e c l a r a t i o n s same a s m u l t - s e g - a r c h , o m i t t e d
a r c h i t e c t u r e f o u r - s e g - a r c h of seq-mult i s

. . .
begin

5 -- c o n t r o l p a t h : s t a t e r e g i s t e r
- same a s m u l t - s e g - a r c h , o m i t t e d

- c o n t r o l p a t h : c o m b i n a t i o n a l l o g i c
process (s t a r t , s t a t e - r e g , a - i n , b - i n , n - n e x t)

. . .

10 begin
r e a d y < = ’ O ’ ;
case s t a t e - r e g i s

when i d l e =>
i f s t a r t = ’ l ’ then

i f (a ~ i n = ~ ~ 0 0 0 0 0 0 0 0 ” or b ~ i n = ~ ~ 0 0 0 0 0 0 0 0 ”) then

e l s e
s t a t e - n e x t <= abO;

s t a t e - n e x t <= l o a d ;

IS

392 REGISTER TRANSFER METHODOLOGY PRINCIPLE

25

end i f ;
20 e l s e

state-next <= idle;
end i f ;
ready <='1';

state-next <= idle;

state-next <= op;

i f (n-n ext = I' 0 0 0 0 0 0 0 0 I'
state-next <= idle;

e l s e
state-next <= op;

end i f ;

when abO =>

when load =>

when op =>
then

end c a s e ;
35 end process;

- d a t a p a t h : d a t a r e g i s t e r
- same a s m u l t - s e g - a r c h , o m i t t e d

- d a t a p a t h : c o m b i n a t i o n a l c i r c u i t
process (state-reg ,a-reg ,n-reg ,r-reg ,a-in, b-in)

. . .
40

45

50

55

begin
- d e f a u l t v a l u e
a-next <= a-reg
n-next <= n-reg
r-next <= r-reg
case state-reg

when idle =>
when abO =>

a-next <=
n-next <=
r-next <=

when load =>
a-next <=
n-next <=
r-next <=

n-next <=
r-next <=

when op =>

end c a s e ;
60 end process;

. . .
end f our-seg-arch ;

S

unsigned(a-in)
unsigned (b-in)
(o t h e r s = > ' O ') ;

unsigned(a-in)
unsigned(b-in)
(o t h e r s = > ' O ') ;

Since the data registers and the state register are synchronized by the same clock signal,
we can merge them into a single code segment. Similarly, since the descriptions of both
combinational circuits are based on the state of the FSM, we can merge them into one
segment. The resulting code consists of only two segments, one for the registers and one
for the combinational circuits. The VHDL code is shown in Listing 11.3.

FSMD DESIGN OF A REPETITIVE-ADDITION MULTIPLIER 393

Listing 11.3 ’ho-segment description of a repetitive-addition multiplier

10

I5

25

30

35

U)

45

50

a r c h i t e c t u r e two-seg-arch of seq-mult i s
- d e c l a r a t i o n s same as m u l t - s e g - a r c h , o m i t t e d
. . .

begin
5 - s t a t e and d a t a r e g i s t e r s

process (c l k rese t
begin

i f r e s e t - ’ 1 then
s t a t e - r e g <= i d l e ;
a - r e g <= (o t h e r s = > ’ O ’) ;
n- reg <= (o t h e r s = > ’0 ’1 ;
r - r e g <= (o t h e r s = > ’0 ’1 ;

s ta te - reg <= s t a t e - n e x t ;
a - r eg <= a - n e x t ;
n - r eg <= n - n e x t ;
r - r e g <= r - n e x t ;

e l s i f (c l k ’ e v e n t and c l k = ’ l J) then

end i f ;
end p r o c e s s ;

process (s t a r t , s t a t e - r e g a - r e g , n - r eg r - r e g , a - i n b - in

begin

20 - combina t iona l c i r c u i t

n-next)

- d e f a u l t va lue
a-next <= a - r e g ;
n-next <= n - r e g ;
r - n e x t <= r - r e g ;
r e a d y < = ’ O ’ ;
case s t a t e - r e g i s

when i d l e =>
i f s t a r t = ’ 1 ’ then

i f (a ~ i n = ~ ~ 0 0 0 0 0 0 0 0 ~ ~ or b ~ i n = ~ ’ 0 0 0 0 0 0 0 0 ”) then

e l s e

end i f ;

s t a t e - n e x t <= abO;

s t a t e - n e x t <= l o a d ;

e l s e

end i f ;
r e a d y <=’l’;

a -nex t <= u n s i g n e d (a - i n) ;
n-nex t <= u n s i g n e d (b - i n) ;
r - n e x t <= (o t h e r s = > ’ O ’) ;
s t a t e - n e x t <= i d l e ;

a -nex t <= u n s i g n e d (a - i n) ;
n-next <= u n s i g n e d (b - i n) ;
r - n e x t <= (o t h e r s = > ’ O ’) ;
s t a t e - n e x t <= o p ;

n -nex t <= n- reg - 1;

s t a t e - n e x t <= i d l e ;

when abO =>

when l o a d =>

when op =>

394 REGISTER TRANSFER METHODOLOGY PRINCIPLE

55

r -next <= (“00000000‘~ & a - r e g) + r - r e g ;
i f (n-next = 00000000 I’ then

e l s e

end i f ;

s t a t e - n e x t <= i d l e ;

s t a t e - n e x t <= op;

end c a s e ;
M end p r o c e s s ;

r <= std-logic-vector(r-reg);
end two-seg-arch ;

The combinational segment basically follows the ASMD chart. It uses a case statement
to list the states of the ASMD chart and specifies the actions needed in each state, which
include the RT operations to be performed in the data path, the next state of the control path
and the external status signal of the control path.

In the beginning of the process, we use the default signal assignment statements:

a-next <= a - r e g ;
n-next <= n-reg;
r-next <= r - r e g ;
ready < = ’ O ’ ;

These imply that registers will keep their previous values and the output signal will be
unasserted if they are not assigned in a branch of the case statement. Use of the default
signal assignment statements is consistent with our notation of the ASMD chart, in which
only the non-default RT operations and asserted output signals are listed inside a state box.
Following the two-segment coding style, we can derive the VHDL code directly from an
ASMD chart and quickly realize it in hardware.

The four- and two-segment coding styles are just some possible ways to merge the
blocks of an FSMD. Since an FSMD is a sequential circuit, it is a good practice to separate
the registers from the combinational circuit. Other than that, we can combine or isolate
combinational blocks as needed and exercise different degrees of control over the underlying
hardware configuration. In an FSMD design, the functional units of the data path are
normally the most complex components and are the dominant factor in circuit size and
system performance. We should pay more attention to these parts and may need to separate
them from the remaining code to achieve the desired area or performance constraints. The
other portion of the combinational circuit can be treated as “random logic” and will be
optimized during logic synthesis.

11.3.6 One-segment coding style and its deficiency

In VHDL, it is possible to combine the registers and combinational circuit into a single
segment. This style may introduce some subtle mistakes, as discussed in Section 8.7. We
can use this style to code FSMD as well and it allows us to translate an ASMD chart directly
into one-segment VHDL code. Although this approach seems to be quick and compact at
first glance, it may again introduce many subtle problems and is not recommended. The
following example illustrates some of the problems. The one-segment VHDL code of the
repetitive-addition multiplier is shown in Listing 1 1.4.

FSMD DESIGN OF A REPETITIVE-ADDITION MULTIPLIER 395

2s

M

35

Listing 11.4 One-segment description of a repetitive-addition multiplier

a r c h i t e c t u r e one-seg-arch of seq-mult is
c o n s t a n t WIDTH: integer:=8;
type state-type i s (idle, abO, load, op);
s i g n a l state-reg : state-type ;

5 s i g n a l a-reg, n-reg: unsigned(W1DTH-1 downto 0);
s i g n a l r-reg : unsigned (2*WIDTH-1 downto 0) ;

process (clk, reset)
begin

v a r i a b l e n-next : unsigned(W1DTH-1 downto 0) ;

i f reset=’l then
10 begin

state-reg <= idle;
a-reg <= (o t h e r s = > ’ O ’) ;
n-reg <= (o t h e r s = > ’ O ’) ;
r-reg <= (o t h e r s = > ’0 ’1 ;

case state-reg is
when idle =>

e l s i f (clk’event and clk=’l’) then

i f start=’l’ then
if (a~in=”00000000” or b ~ i n = ” 0 0 0 0 0 0 0 0 ~ ~) then

e l se

end i f ;

state-reg <= abO;

state-reg <= load;

end i f ;

a-reg <= unsigned(a-in) ;
n-reg <= unsigned(b-in) ;
r-reg <= (o t h e r s = > ’ O ’) ;
state-reg <= idle;

a-reg <= unsigned(a-in) ;
n-reg <= unsigned(b-in);
r-reg <= (o t h e r s = > ’ O ’) ;
state-reg <= op;

n-next := n-rag - 1;
n-reg <= n-next;
r-reg <= (~~00000000~~ & a-reg) + r-reg;

when abO =>

when load =>

when op =>

40 i f (n~next=”00000000’~) then
state-reg <= idle;

end i f ;
end c a s e ;

end i f ;
45 end p r o c e s s ;

ready <=’I when (state-reg=idle) e l s e ’0’;
r <= std-logic-vector(r-reg);

end one-seg-arch ;

There are several subtle problems in the code. First, since a register is inferred for
any signal within the clk’event and clk=’ I ’ branch, the next value of a data register
cannot be referred by a signal. To overcome this, we must define nnext as a variable for

396 REGISTER TRANSFER METHODOLOGY: PRINCIPLE

immediate assignment. Note that the variable here is used to achieve the effect of immediate
assignment and has nothing to do with the variables used in the pseudocode. Second, to
avoid the unnecessary output buffer, the ready output signal has to be moved outside the
process and be coded as a separate segment. The problems encountered in the one-segment
coding style usually require more attention and offset the original hope for quick and clear
coding. We avoid this coding style in this book.

11.4 ALTERNATIVE DESIGN OF A REPETITIVE-ADDITION MULTIPLIER

After studying the basic FSMD construction and VHDL coding of the repetitive-addition
algorithm, we examine two variations in this section. The variations introduce the concept
of sharing and Mealy-controlled RT operation.

11.4.1 Resource sharing via FSMD

We discussed combinational resource sharing in Section 7.2. It can be applied only to
few restricted scenarios. Since an FSMD provides a mechanism to schedule RT operations,
sharing can be achieved in a time-multiplexed fashion; i.e., we can assign the same functional
unit in different states (i.e., different clock cycles) and use it repeatedly. For example, if
an algorithm needs to perform three additions, instead of using three adders to perform
the three additions at the same time, we can use one adder and schedule the additions in
three states. The FSMD allows us to have another dimension of flexibility to obtain a good
trade-off between the circuit size and performance.

When we convert an algorithm into an FSMD, the functional units of the data path
are usually the most complex components. Since many RT operations perform the same
or similar functions, some functional units can be shared as long as these operations are
scheduled in different states. In the previous repetitive-addition multiplier implementation,
the function units include a 16-bit adder and an %bit decrementor. In the original ASMD
of Figure 11.6, both addition and decrementing RT operations are scheduled in the op state,
and thus no sharing is possible. If we wish to reduce the circuit size, one possibility is to
split the operations and schedule them into two states. This idea is shown in the revised
ASMD chart in Figure 11.10, in which the original op state is split into the opl and op2
states. Note that an iteration now travels through two states and thus requires two clock
cycles. Since the main calculation of the algorithm is done through the iterations, it takes
almost twice the number of clock cycles to complete the same task.

The block diagram of the revised data path is shown in Figure 1 1.1 1. Note that there is
only one adder. Two 2-to-1 multiplexers route the desired inputs to the adder. The inputs
can be either a i e g and r i e g , or n r e g and "11.-.11", which is -1 in 2's-complement
format. The former will be routed to the adder only if the current state of the control path
is opl. Since there are already multiplexing circuits for the registers' inputs, no special
routing circuit is needed for the output of the adder. Note that the output of the adder,
add-out, is routed to the opl port of the r r e g register's input multiplexer and to the op2
port of the n r e g register's input multiplexer.

As we discussed in Chapter 6, synthesis software is weak in performing RT-level opti-
mization. If we use the two-segment coding style, the software may not be able to detect
the intended sharing in the data path. To ensure the proper hardware construction, we can
explicitly specify the desired functional unit sharing in VHDL code. The revised VHDL
code is shown in Listing 1 1.5. It basically uses the two-segment coding style but isolates

ALTERNATIVE DESIGN OF A REPETITIVE-ADDITION MULTIPLIER 397

T

a-in=O or IT I+- b_in=O

n t b-in
a t a-in

_ _ _ _ _ _ _ _ _ _

1 ; I.'T, a t a-in

T

Figure 11.10 ASMD chart with sharing.

398 REGISTER TRANSFER METHODOLOGY: PRINCIPLE

Figure 11.11 Conceptual block diagram of a sharing data path.

ALTERNATIVE DESIGN OF A REPETITIVE-ADDITION MULTIPLIER 399

the functional unit from the remaining code. Note that the n register is only 8 bits wide and
some adjustments are made in code to accommodate the 16-bit adder.

I5

10

M

IS

40

Listing 11.5 Sharing on a repetitive-addition multiplier

a r c h i t e c t u r e sharing-arch of seq-mult i s
constant WIDTH: integer :=8;
type state-type i s (idle, abO, load, opl, 0 ~ 2) ;
s i g n a l state-reg , state-next : state-type ;

s s i g n a l a-reg , a-next : unsigned(W1DTH-1 downto 0) ;
s ignal n-reg, n-next : unsigned(W1DTH-1 downto 0) ;
s i g n a l r-reg , r-next : unsigned(P*WIDTH-l downto 0) ;
s i g n a l adder-srcl , adder-src2 : unsigned (2*WIDTH-I downto 0) ;
s i g n a l adder-out : unsigned (2*WIDTH-1 downto 0) ;

- s t a t e and d a t a r e g i s t e r s
process (clk ,reset)
begin

10 begin

i f reset=’l’ then
state-reg <= idle;
a-reg <= (o t h e r s = > ’ O ’) ;
n-reg <= (o t h e r s = > ’ O ’) ;
r-reg <= (o t h e r s = > ’ O ’) ;

state-reg <= state-next ;
a-reg <= a-next;
n-reg <= n-next;
r-reg <= r-next;

e l s i f (clk’event and clk=’l’) then

end i f ;
25 end process;

- n e x t - s t a t e l o g i c / o u p u t l o g i c and da ta p a t h r o u t i n g
process (start, state-reg, a-reg ,n-reg ,r-reg ,a-in, b-in,

begin
adder-out , n-next 1

- d e f a u t va lue
a-next <= a-reg;
n-next <= n-reg;
r-next <= r-reg;
ready < = ’ O ’ ;
case state-reg i s

when idle =>
i f startt’l’ then

i f (a-in=”00000000’ or b ~ i n = ~ ~ O O O O O O O O ’ ’ ~ then

e l s e

end i f ;

state-next <= abO;

state-next <= load;

e l s e

end i f ;
ready <=’l’;

a-next <= unsigned(a-in);
n-next <= unsigned(b-in) ;

state-next <= idle;

when abO =>

400 REGISTER TRANSFER METHODOLOGY: PRINCIPLE

55

60

b.5

7s

50 r-next <= (o t h e r s = > ’ O ’) ;
state-next <= idle;

a-next <= unsigned(a-in);
n-next <= unsigned(b-in) ;
r-next <= (o t h e r s = > ’ O ’) ;
state-next <= opl;

r-next <= adder-out ;
state-next <= op2;

n-next <= adder-out (WIDTH-1 downto 0) ;
i f (n ~ n e x t = ” 0 0 0 0 0 0 0 0 ~ ~) then

e l s e

end i f ;

when load =>

when opl =>

when op2 =>

state-next <= idle;

state-next <= opl;

end c a s e ;
end p r o c e s s ;
- d a t a p a t h i n p u t r o u t i n g and f u n c t i o n a l u n i t s

begin
70 process (state-reg , r-reg a-reg n-reg)

i f (state-reg=opl) then
adder-srcl <= r-reg;
adder-src2 <= ~~00000000‘~ & a-reg;

adder-srcl <= “00000000~’ & n-rag;
adder-src2 <= (o t h e r s = > 1’) ;

e l s e -- for op2 s t a t e

end i f ;
end p r o c e s s ;

- o u t p u t
r <= std-logic-vector(r-reg);

80 adder-out <= adder-srcl + adder-src2;

end sharing-arch;

Because the 8-bit decrementor is a relatively simple functional unit, the new design will
not reduce the circuit size significantly, and the sharing is probably overkill for this particular
example. Clearly, the sharing will become more predominant if complex functional units,
such as combinational multipliers, are involved.

11.4.2 Mealy-controlled RT operations

In Section 10.4, we discussed the difference between a Mealy output and a Moore output.
A Mealy output is preferred for an edge-sensitive control signal because it responds faster
and requires fewer states in an FSM. Since the control path and data path are synchronized
by the same clock signal, the control signals connected to the data path are edge-sensitive,
and thus the Mealy output can be used. In terms of the FSMD, this means that we can
specify RT operations in a conditional output box of an ASMD chart.

A representative ASMD block with a conditional output box is shown in Figure 1 1.12(a).
The conditional output box indicates that the r 2 t r3 + r4 operation will be performed
if the a > b condition is true. If the condition is false, r2 remains unchanged, which

ALTERNATIVE DESIGN OF A REPETITIVE-ADDITION MULTIPLIER 401

rl-reg - +I
- rl-next

0

0

r3-reg -

- r2-next

state-reg

(a) ASMD block (b) Conceptual block diagram

Figure 11.12 ASMD block with a conditional output box.

means that the r2 t r2 operation will be performed. For comparison purposes, a Moore
output-controlled operation, r l t rl + I, is included in the state box.

If this is a regular flowchart, the condition a > b is first evaluated and, if the condition is
met, the r2 t r3 + r4 operation will be performed accordingly. However, in an ASMD
chart, all operations inside an ASMD block are evaluated in parallel. When the FSMD is in
the SO state, evaluations of a > b, r3 + r4 and r l + 1 are performed at the same time.
At the end of the clock cycle, the FSMD checks the result of a > b and stores the value of
r2 or the result of r3 + r4 to r2 accordingly.

When an RT operation is specified inside a state box, as in r l t r l + I, there is only
one possible next value (i.e., r l + 1) in the SO state. On the other hand, when a conditional
output box exists, there are several possible next values (i.e., r2 or r3 + r4). This implies
that an additional multiplexing circuit is needed. The corresponding conceptual block
diagram is shown in Figure 1 l.l2(b). An additional 2-to-1 multiplexer is added to handle
the conditional output box. The result of the a > b operation is used as a selection signal
and routes the desired next value to the SO port of the abstract multiplexer.

We can apply this idea to the repetitive-addition multiplier. The original ASMD chart in
Figure 11.6 is actually somewhat awkward. In the id le state, the start, a-in and b-in
signals are used in the decision box, and thus they have to be available at the exit of the id l e
state. If the start signal is asserted, a-in and b-in will be loaded into the a and n registers
in the load or ab0 state. Because of the delayed store, the actual sampling of the a-in and
b-in signals occurs when the FSMD exits the load or ab0 state, and thus the a-in and
b-in signals must be available at this clock edge again. For an external system that uses
the multiplication circuit, this means that it has to place the two operands on a-in and b-in
ports for two consecutive clocks. To release the external system from this artificial timing
constraint, a better design should be able to sample the start, a-in and b-in signals at
the same time and at only one clock edge.

402 REGISTER TRANSFER METHODOLOGY: PRINCIPLE

a t a-in

n c n-next

i
I

Figure 11.13 ASMD chart with Mealy-controlled RT operations.

This design can be achieved by using Mealy-controlled RT operations. The revised
ASMD chart is shown in Figure 11.13. It merges the ab0 and load states into the idle
state and moves the corresponding RT operations into a conditional output box. In addition
to relaxing the timing constraint on the external system, the revised design reduces the
number of states from four to two and improves the overall performance. The VHDL code
is shown in Listing 11.6. It uses the two-segment coding style. Note that some next-value
statements, such as a-next <= unsigned(a-in), are within the then branch of the if
statement, which corresponds to the conditional output box of the ASMD chart.

Listing 11.6 Mealy-controlled RT operations for a repetitive-addition multiplier

cons tant WIDTH : integer : =8;
type state-type i s (idle, op);
s i g n a l state-reg , state-next : state-type;

5 s i g n a l a-reg , a-next : unsigned(W1DTH-1 downto 0) ;
s i g n a l n-reg, n-next: unsigned(W1DTH-1 downto 0) ;
s i g n a l r-reg , r-next : unsigned(P*WIDTH-1 downto 0) ;

a r c h i t e c t u r e mealy-arch of seq-mult is

begin

ALTERNATIVE DESIGN OF A REPETITIVE-ADDITION MULTIPLIER 403

IS

20

M

3s

40

4s

- s t a t e and da ta r e g i s t e r s
process (c l k , r e s e t 1
begin

10

i f r e s e t = ’ 1 then
s t a t e - r a g <= i d l e ;
a - r e g <= (others => ’0 J , ;
n- reg <= (o t h e r s = > ’ O ’) ;
r - r e g <= (o t h e r s = > ’ O ’) ;

s t a t e - r e g <= s t a t e - n e x t ;
a - r a g <= a - n e x t ;
n - r eg <= n - n e x t ;
r - r e g <= r - n e x t ;

e l s i f (c l k ’ e v e n t and c l k = ’ l ’) then

end i f ;
end p r o c e s s ;
-- corn b in a t ion a1 c i r c u i t
process (s t a r t , s t a t e - r a g , a-reg , n - r e g , r - r e g , a - i n , b - i n ,

begin

U

n-next)

a -nex t <= a - r a g ;
n-next <= n- reg ;
r - n e x t <= r - r e g ;
r e a d y (3’0’;
case s t a t e - r e g i s

when i d l e =>
i f s t a r t = ’ l ’ then

a-next <= u n s i g n e d (a - i n) ;
n-next <= u n s i g n e d (b - i n) ;
r - n e x t <= (o t h e r s = > ’0 ’1;
i f a~in=~lOOOOOOOO~~ or b~in=~lOOOOOOOO~~ then

s t a t e - n e x t <= i d l e ;
e l s e

s t a t e - n e x t <= op;
end i f ;

s t a t e - n e x t <= i d l e ;
e l s e

end i f ;
r e a d y <=’1’;

when op =>
n-next <= n-reg - 1;
r - n e x t <= (~~00000000~~ & a - r e g) + r - r e g ;
i f (n -nex t=”00000000”) then

e l s e

end i f ;

s t a t e - n e x t <= i d l e ;

s t a t e - n e x t <= o p ;

ss end c a s e ;
end p r o c e s s ;
r <= s t d - l o g i c - v e c t o r (r - r e g) ;

end mealy-arch ;

404 REGISTER TRANSFER METHODOLOGY PRINCIPLE

11.5 TIMING AND PERFORMANCE ANALYSIS OF FSMD

An FSMD is a synchronous circuit and thus is subject to similar setup and hold time
constraints. The setup time constraint, in turn, imposes the maximal clock rate. Unlike a
regular sequential circuit, an algorithm described by an FSMD requires a sequence of RT
operations to complete. Thus, in addition to the clock rate, the total computation time of
an FSMD depends on the number of clock cycles needed to complete the computation as
well. The following subsections discuss these issues.

11.5.1 Maximal clock rate

We analyzed timing of a regular sequential circuit and an FSM in Chapters 8 and 10. Both
analyses are based on the basic block diagram shown in Figure 8.5. The basic diagram of
an FSMD, shown in Figure 11.5, is somewhat different. It has two separate but interactive
feedback loops, one for the control path and one for the data path. In theory, we can merge
the two feedback loops, convert the FSMD block diagram into the standard diagram, and
then analyze it as an ordinary sequential circuit. Because of the interaction between the two
loops, it will be difficult to manually analyze the merged combinational circuit. We must
rely on a software tool to do the timing analysis and determine the maximal clock rate.

Although the manual analysis cannot determine the exact maximal clock rate, it is pos-
sible to determine the boundaries of the rate. This analysis provides more insights into the
FSMD operation and helps us to derive a more efficient design. The basic FSDM block
diagram of Figure 11.5 has two feedback loops. The data path loop is based on the data
register, and the control path loop is based on the state register. The two loops are not
independent but interact via the control signals and status signals. For example, a function
unit in the data path cannot operate until the control signals set the selection signal of the
input multiplexer, and the next-state logic in the control path cannot proceed until the status
signals are available. The exact maximal clock rate depends on where the control signals
are needed and where the status signals are generated. This depends on the individual
implementation and cannot be generalized. Our analysis considers the best- and worst-case
scenarios and thus determines the boundaries of the maximal clock rate.

The control path is the bottom part of Figure 11.5. Its timing parameters are the same
as those of an FSM. They are defined as follows:

Tcq(state): clock-to-q delay of the state register.
0 Tsetup(state) : setup time of the state register.
0 Tnert: maximal propagation delay of the next-state logic of the control path FSM.
0 Toutput: maximal propagation delay of the output-state logic of the control path FSM.

The conceptual diagram of the data path is shown at the top of Figure 1 1.5. The relevant

0 Tcg(data): clock-to-q delay of the data register.
0 Tsetup(data) : setup time of the data register.
0 Tfunc: maximal propagation delay of the functional units.
0 Troute: maximal propagation delay of the routing multiplexing circuit.
0 Tdp: maximal propagation delay of the combinational circuit of the data path, which

As before, we use T, for the the clock period. In a normal design, Tfunc is likely to be
the largest and the most dominant of all timing parameters. We use this assumption in the
analysis.

timing parameters are:

is the sum of Tfunc and 2Troute.

TIMING AND PERFORMANCE ANALYSIS OF FSMD 405

- routing
network

d (
routing data
network > registei

functional unit -

(a) Conceptual data path diagram

I

+ time
data I

control signals
needed

status signals /’ 1
available

control signals
available

control
path

1
t + time

I-T+
TWP (m)

(b) Time lines

Toq (-

Figure 11.14 Time lines for the best-case scenario.

We first consider the best-case scenario. In this scenario, the control signals are required
at a late stage of data path operation, and the status signals are generated in an early stage
of data path operation, as shown in the conceptual data path diagram in Figure 1 l.l4(a).
The time lines of the data- and control-path operations are shown in Figure 1 l.l4(b). They
start with the rising edge of the clock signal. Since the data path uses control signals in
the late stage, the operation of the output logic overlaps with the operation of data path and
thus contributes no extra delay for the data path loop. Similarly, since the status signal is
available at an early stage, the operation of the next-state logic of the control path and the
computation of data path are done in parallel. When the data path computation is complete,
the next-state value is also ready in the control path. The time lines show that the minimal
clock period of the FSMD is the same as the clock period of the data path, which is

Tc = Tcq(data) -k T d p -k Tsetup(data)

406 REGISTER TRANSFER METHODOLOGY: PRINCIPLE

3
functional unit - routing

network
1-f register

control
signal

Tcs (data)

I

status
signal

(a) Conceptual data path diagram

Tww (dab1

I

data

status signals
control signals available

needed

control signals
available

control

+ time

b time

(b) Time lines

Figure 11.15 Time lines for the worst-case scenario.

The worst-case scenario reverses the conditions of the best-case scenario. In this sce-
nario, control signals are required at the beginning of data path operation, and the status
signals are generated at the end of data path operation. The conceptual diagram of the data
path and the time lines are shown in Figure 11.15. The data path must wait for the FSM
to generate the output signals, and the control path must wait for status signals to generate
the next-state value. Except for the register, there is no overlapped operation between the
control path and the data path. The minimal clock period can be found by following the
time lines, and it includes the propagation delays of all combinational components:

T, = %,(state) + Toutput + T d p f Tnezt + Tsetup(state)

Assume that the state register and data register have similar timing characteristics, and
clock-to-q delay and setup time are T,, and TsetzLp respectively. From the two extreme

SEQUENTIAL ADD-AND-SHIFT MULTIPLIER 407

scenarios, we can establish the boundaries of the minimal clock period:

Tcq + Tdp + Tsetup I Tc I Tcq + Toutput + Tdp + Tnext + Tsetup

Consequently, the maximal clock rate is bound by

For a design with a wide, complex data path, Tdp will be much larger than Tnext and
Toutput, and thus variation in the minimal clock period is relatively small. For a circuit
with a complex control path, we may need to minimize Tnezt and Toutput to obtain better
performance. For this kind of design, we can isolate the control path FSM in VHDL code,
as in the multi- or four-segment coding styles, and apply special FSM optimization software
to obtain a more efficient FSM implementation.

11 5 2 Performance analysis

In an FSMD, computation is performed in a sequence of steps, and it usually takes many
clock cycles to complete a task. Thus, the total required time becomes

where K is the number of clock cycles and Tc is the clock period. K is determined by
the algorithm, the width of the input and the value of the input. The determination of K is
an ad hoc process and can sometimes be very difficult. For certain algorithms, K and T,
may work against each other. For example, we can merge more computation steps into a
single state. This will reduce the number of states (and thus the clock cycles) but increase
the clock period due to the larger data path propagation delay (Tdp). On the other hand, we
can sometimes divide an operation into several smaller steps and schedule them in multiple
clock cycles. This will decrease Tdp and the clock period, but requires more clock cycles
to complete the same computation.

Consider the original ASMD design in Figure 11.6. The width of input operands is 8
bits, The K of this algorithm is not a constant but depends on the value of the b-in input.
In the best case, b-in is 0, and the FSMD goes through the id l e and ab0 states. The
computation takes two clock cycles (i.e., K = 2). In the worst case, b-in is 255 (i.e., 28-1)
and a-in is not 0, the FSMD goes through the id le and load states once and loops the op
state 255 times. K becomes 257. We can generalize this for n-bit input operands. In the
worst case, the FSMD goes through the id le and load states once and loops the op state
2n - 1 times. Thus, it takes 2n+l clock cycles to complete the computation. We can apply
the same analysis for the sharing ASMD design in Figure 11.10, in which the op state is
split into two states. It requires two clock cycles for each loop iteration. For n-bit input
operands, the worst-case K becomes 2 + 2(2n - l), which is 2n+1. Whereas the data path
size is smaller in this design, the required computation time is nearly doubled.

11.6 SEQUENTIAL ADD-AND-SHIFT MULTIPLIER

Although simple, the previous repetitive-addition algorithm is not practical since the re-
quired computation time is on the order of O(2n). This section introduces a more efficient
sequential multiplication algorithm. The algorithm is based on the add-and-shift method

408 REGISTER TRANSFER METHODOLOGY: PRINCIPLE

Figure 11.16 Multiplication as a summation of a& terms.

discussed in Section 7.5.4. The multiplication of two 4-bit numbers is illustrated in Fig-
ure 1 1.16. It includes three tasks:

1. Multiply the digits of the multiplier (b3, b2, bl and bo) by the multiplicand (A) one
at a time to obtain b3*A, bz*A, bl*A and bo*A. The bi*A operation is bitwise and
operation of bi and the digits of A; that is,

bi*A = (as-bi , az*bi, al-bi , ~ o * b i)

2. Shift bi*A to left i positions.
3. Add the shifted bi*A terms to obtain the final product.

11.6.1 Initial design

The add-and-shift method can easily be converted into a sequential algorithm. We can
process one digit of the multiplier (i.e., bi) at a time and iterate through all digits of the
multiplier (B). In each iteration, we calculate bi*A, shift it to the left i positions, and then
add it to the partial product. Since bi is a binary digit, it can be either 0 or 1. Instead of
computing bi*A, we use an if statement to check the value of bi and add the shifted A to the
partial product when bi is 1. Assume that the inputs are a-in and b-in. The pseudocode is

n = 0;
p = 0;
while (n!=8) C

if (b-in(n)=l) t h e n i

n = n + i ;
p = p + (a-in << n);)

1
r-out = p ;

In hardware, it is expensive to do indexing (i.e., b-in (n)) and general shifting (i.e., a-in
<< n). To overcome the problem, we can “intelligently” shift a-in and b-in one position
in each iteration. The pseudocode of this algorithm is

a = a-in;
b = b-in;
n = a;
p = 0 ;
while (n!=O> i

SEQUENTIAL ADD-AND-SHIFT MULTIPLIER 409

i f (b (0) = 1) then{
p = p + a;)

a = a < < 1;
b = b > > 1 ;
n = n - l ;

1
r - o u t = p ;

Four variables are used in the algorithm. The p variable is used to store the partial product,
and the n variable is used to keep track of the number of iteration. Note that the counting
direction of then is reversed from the previous pseudocode to accommodate future hardware
implementation. The a variable is used to store the shifted multiplicand (A), which is shifted
left one position in each iteration. The b variable is used for the multiplier (B). It is shifted
right one position in each iteration, and thus bi of B becomes LSB (i.e., b(0)) of b in the
ith iteration.

To facilitate development of an ASMD chart, we can convert the while loop into if and
goto statements:

a = a - i n ;
b = b - i n ;
n = 8 ;
p = 0;

op: i f b (O) = l then C

a = a << 1;
b = b > > 1;
n = n - 1
i f (n ! = O) then{

r - o u t = p ;

p = p + a;)

goto 0 p ; I

This pseudocode can easily be converted to an ASMD chart, as shown in Figure 11.17.
The FSMD has three states. In the id l e state, the FSMD checks the start signal. If it
is asserted, the FSMD loads the initial values to registers and moves to either the add or
s h i f t state. If the corresponding bit of the multiplier is 'l' , the FSMD moves to the add
state, in which the shifted multiplicand (A) is added to the partial product. Otherwise, the
FSMD moves to the s h i f t state, in which the multiplicand (A) is shifted left one position,
the multiplier (B) is shifted right one position, and the counter is decremented by 1. The
add-and-shift process continues to iterate until the counter reaches 0.

While the chart basically follows the pseudocode, there are two differences. First, since
the two shift operations and the counter decrementing operation are independent, they are
scheduled in the same state and performed in parallel. Second, due to the delayed store
of RT operations, we use the next values of the registers in decision boxes. Note that
b n e x t (0) and nnex t are used in the decision boxes of the s h i f t state, and b-in(0) is
used in the decision box of the i d l e state.

After developing a correct, comprehensive ASMD chart, we can derive the VHDL de-
scription accordingly. The VHDL code is shown in Listing l l .7. Note that the two shifting
operations are done by the concatenation operations (&).

41 0 REGISTER TRANSFER METHODOLOGY: PRINCIPLE

a t a-in

n t 8

- (7) b c b-in

1 4
I

b-next <= b >> 1
b t b-next
n-next <= n-1
n t n-next

Figure 11.17 ASMD chart of the initial add-and-shift multiplier.

SEQUENTIAL ADD-AND-SHIFT MULTIPLIER 41 1

Listing 11.7 Initial description of an add-and-shift sequential multiplier

a r c h i t ec t u r e s h i f t - add-raw-arch of seq -mul t i s
c o n s t a n t W I D T H : i n t e g e r : = 8 ;
c o n s t a n t C-WIDTH: i n t e g e r : = 4 ; - w i d t h of the c o u n t e r
c o n s t a n t C - I N I T : unsigned(C-WIDTH-1 downto 0) : = “ 1 0 0 0 ” ;

s i g n a l s t a t e - r e g , s t a t e - n e x t : s t a t e - t y p e ;
s i g n a l b-reg , b-next : unsigned(W1DTH-1 downto 0);
s i g n a l a - r e g , a -nex t : unsigned(2*WIDTH-l downto 0) ;
s i g n a l n - r a g , n-next : unsigned(C-WIDTH-1 downto 0) ;

10 s i g n a l p-reg , p-next : uns igned (2*WIDTH-l downto 0) ;

s type s t a t e - t y p e i s (i d l e , a d d , s h i f t) ;

begin
- s t a t e and d a t a r e g i s t e r s
process (c l k , r e s e t)
begin

IS i f r e s e t = 1 ’ then
s t a t e - r e g <= i d l e ;
b - r eg <= (o t h e r s = > ’0 ’1;

20

zs

a - r e g <= (o t h e r s = > ’ O ’) ;
n - r ag <= (o t h e r s = > ’ O ’) ;
p - r e g <= (o t h e r s = > ’ O ’) ;

s t a t e - r e g <= s t a t e - n e x t ;
b- reg <= b - n e x t ;
a - r e g <= a - n e x t ;
n - r eg <= n - n e x t ;
p - r eg <= p - n e x t ;

e l s i f (c l k ’ e v e n t and c l k = ’ l then

end i f ;
end p r o c e s s ;
- c o m b i n a t i o n a l c i r c u i t

M process (s t a r t , s t a t e - r e g , b-reg , a - r e g n - r e g , p-reg

begin
b - in , a - i n , n -nex t , a - n e x t)

b-next <= b - r e g ;

3s

40

45

50

a-next <= a - r e g ;
n-next <= n - r e g ;
p-next <= p - r e g ;
r e a d y < = ’ O ’ ;
case s t a t e - r e g is

when i d l e =>
i f s t a r t = 1 ’ then

b-next <= u n s i g n e d (b - i n) ;
a-next <= “00000000~~ & u n s i g n e d (a - i n) ;
n-next <= C-INIT;
p-next <= (o t h e r s = > ’ O ’) ;
i f b - i n (O) = ’ l then

s t a t e - n e x t <= add ;
e l s e

s t a t e - n e x t <= s h i f t ;
end i f ;

s t a t e - n e x t <= i d l e ;
e l s e

end i f ;

41 2 REGISTER TRANSFER METHODOLOGY PRINCIPLE

55

r e a d y < = J l ’ ;

p-next <= p- rag + a - r e g ;
s t a t e - n e x t <= s h i f t ;

n -nex t <= n- reg - 1;
b -nex t <= ’0’ Sz b - r e g (W I D T H - 1 downto 1) ;
a -nex t <= a-reg(P*WIDTH-2 downto 0) & ’ O J ;
i f (n - n e x t /= 110000’1) then

i f a -nex t (O) = 1 ’ then
s t a t e - n e x t <= a d d ;

e l s e
s t a t e - n e x t <= s h i f t ;

end i f ;

s t a t e - n e x t <= i d l e ;

when add =>

when s h i f t =>

e l s e

end i f ;
70 end c a s e ;

end p r o c e s s ;
r <= std-logic-vector(p-reg);

end s h i f t - a d d - r a w - a r c h ;

Recall that the functional units used in the data path are normally the most critical
components in an FSMD, and understating their basic organization can help us to develop
a more efficient design. The sketch of the data path is shown in Figure 1 l.l8(a). To reduce
the clutter, only functional units and major data flow are shown. Note that since the amount
is fixed in two shift operations, the shifters require no real logic.

In the new algorithm, the number of iterations in the loop is equal to the width of the input
operand. An iteration goes through the add and s h i f t states if the corresponding multiplier
bit is ’1’ and goes through only the s h i f t state otherwise. For n-bit input operands, the
computation requires 2n + 1 clock cycles in the worst case (i.e., b-in is “1 - . 1”) and n + 1
clock cycles in the best case (i.e., b-in is “0 * * a 0”). It is far superior to the 2n + 1 clock
cycles of the repetitive-addition algorithm.

11.6.2 Refined design

Our initial implementation of the add-and-shift multiplier closely follows the sequential
pseudocode, which is presumed to be executed in a general-purpose processor. However,
hardware implementation provides more flexibility and gives us an opportunity to further
streamline the design. There are several possible improvements. We can first improve the
efficiency of the ASMD chart. The main computation is done by iterating the add-and-shift
loop, and each iteration may go through up to two states. If we examine the add and s h i f t
states closely, the RT operations in these states are independent. It is possible to merge the
two states and utilize a conditional output box for the p t p + a operation in the new state.
The revised ASMD chart will require only one clock cycle for each iteration.

We can also improve the efficiency of the data path. Note that when a is added to
the partial products, only the eight leftmost bits of the partial product are involved in the
operation and the remaining trailing bits are kept unchanged. Instead of using a 16-bit
adder, we can reduce the width of the adder to 9 bits (an %bit operand plus a 1-bit carry).
This requires to selectively route a portion of the partial product to the adder. The “selective
routing” involves complex multiplexing circuits and is not desirable. A better alternative

SEQUENTIAL ADD-AND-SHIFT MULTIPLIER 41 3

t

shifter el

+ +
shifter

16

7 8

shifter a
16 a +

b(O)

(a) Initial design

16

shifter a
(b) “Shifting p register” design

(c) Final design

I

+

Q
Figure 11.18 Sketches of the data path of add-and-shift multipliers.

41 4 REGISTER TRANSFER METHODOLOGY: PRINCIPLE

is to shift the partial product to the right one position in each iteration, and thus the eight
current leftmost bits are always connected to the input of the adder. This approach also
eliminates the need of shifting multiplier (A) and reduces the width of the a register by half.
The sketch of the revised data path is shown in Figure 1 l.lS(b).

The circuit adds the upper half (the left half) of the p register and the a register and
then combines the output of the adder with the original lower half (the right half) of the p
register to form the new partial product. The p register is then shifted right one bit. Since
we wish to merge the addition and shifting operations in the same state, there is no register
between the adder and shifter and thus the two operations are performed in the same clock
cycle. Because shifting right one bit involves only wiring, merging the two operations will
not affect the critical path or increase the clock period.

Another minor improvement is to utilize the right unused portion of the p register. Note
that initially only the left half of the p register contains the valid data. The valid portion
expands to the right one position in each iteration when the shift-right operation is performed.
On the other hand, the b register has eight valid bits initially. In each iteration, it shifts to
the right one position and discards the LSB. Since the expansion of the left part of the p
register matches the shrinkage of the b register, we can utilize the unused right part of the
p register to function as the b register and eliminate the original b register. The sketch of
the final data path is shown in Figure 1 l.lS(c).

The refined and improved ASMD chart is shown in Figure 1 1.19. We use the notations pu
and p l as the aliases for the upper half (left half) and lower half (right half) of the p register.
Since the addition and shifting operations are performed in the same state, we must use
the addition results for the following shift operation. To achieve the desired effect, we use
the regular assignment notation (<=) instead of the RT notation (t) in the two conditional
output boxes (i.e., punext <= pu and punext <= pu + a). The result (i.e., punext)
is then used in a regular RT shift operation (i.e., p t p n e x t >> 1). The VHDL code can
be derived following the ASMD chart and is shown in Listing 11.8.

Listing 11.8 Refined description of an add-and-shift sequential multiplier

archi tecture shift-add-better-arch of seq-mult i s
constant WIDTH : integer : =8;
constant C-WIDTH: integer:=4; - wid th of the counter
constant C-INIT: unsigned(C-WIDTH-1 downto 0) :=t'lOOO't;

s i g n a l state-reg , state-next : state-type;
s ignal a-reg , a-next : unsigned(W1DTH-1 downto 0) ;
s ignal n-reg , n-next : unsigned(C-WIDTH-1 downto 0) ;
s ignal p-reg , p-next : unsigned (2*WIDTH downto 0) ;

10 - a l i a s f o r the upper and lower p a r t s of p - r e g
a l i a s pu-next : unsigned(W1DTH downto 0) i s

a l i a s pu-rag: unsigned(W1DTH downto 0) is

s type state-type i s (idle, add-shft);

p-next (2*WIDTH downto WIDTH) ;

p-reg (2*WIDTH downto WIDTH) ;

p-reg (WIDTH -1 downto 0) ;
IS a l i a s pl-reg: unsigned(W1DTH-1 downto 0) i s

begin
- s t a t e and da ta r e g i s t e r s
process (clk ,reset)

20 begin
i f reset='l' then

state-reg <= idle;

SEQUENTIAL ADD-AND-SHIFT MULTIPLIER 41 5

ready <=1

n t next

p t p-next >> 1 0
Figure 11.19 ASMD chart of the refined add-and-shift multiplier.

41 6 REGISTER TRANSFER METHODOLOGY: PRINCIPLE

U

30

40

45

M

60

6.5

a - r e g <= (o t h e r s = > '0 '1;
n- rag <= (o t h e r s = > ' O ') ;
p- reg <= (o t h e r s = > ' O ') ;

s ta te - reg <= s t a t e - n e x t ;
a - r e g <= a - n e x t ;
n - r a g <= n - n e x t ;
p - r e g <= p - n e x t ;

e l s i f (c l k ' e v e n t and c l k = ' l ') then

end i f ;
end p r o c e s s ;
- c o m b i n a t i o n a l c i r c u i t
process (s t a r t s t a t e - r e g a - r eg , n - r e g ' p - r e g ,

begin
3s a - i n , b- in n-next , p - n e x t)

a - n e x t <= a - r e g ;
n-next <= n - r e g ;
p-next <= p - r e g ;
r e a d y <='OJ;
case s t a t e - r e g i s

when i d l e =>
i f s t a r t = ' l then

p-next <= "000000000" & u n s i g n e d (b - i n) ;
a -nex t <= u n s i g n e d (a - i n) ;
n-next <= C-INIT;
s t a t e - n e x t <= add-shf t ;

s t a t e - n e x t <= i d l e ;
e l s e

end i f ;
r e a d y < = ' l J ;

n-next <= n- reg - 1;
- add i f m u l t i p l i e r b i t i s ' 1 '
i f (p - r e g (O) = ' l ' 1 then

e l s e

end i f ;
- - s h i f t
p-next <= '0' & pu-next &

i f (n -nex t /= " O 0 O O 1 ' > then
s t a t e - n e x t <= a d d - s h f t ;

e l s e
s t a t e - n e x t <= i d l e ;

end i f ;

when a d d - s h f t =>

pu-next <= pu-reg + ('0' & a - r e g l ;

pu-next <= p u - r e g ;

pl-reg(W1DTH-1 downto 1);

end c a s e ;
end process;

70 r <= s t d - l o g i c - v e c t o r (p-reg(P*WIDTH-l downto 0));
end s h i f t - a d d - b e t t e r - a r c h ;

SYNTHESIS OF FSMD 41 7

Table 11.1 Comparison of performance and circuit complexity of three multipliers

Design method # Clock cycles Size of functional units # Register bits

Repetitive-addition 2 to 2n + 1 2n-bit adder, 4n
n-bit decrementor

~ ~~~

Add-and-shift n + l t o 2n-bit adder, 5n + [log,(n + 1)1
(initial) 2 n + 1 [log, (n + 1)1 -bit dec

Add-and-shift n + l n-bit adder, 3n + [log,(n + 1)1 + 1
(refined) [log,(n + 1)l-bit dec

11.6.3 Comparison of three ASMD designs

We have examined several designs of a sequential multiplier. Table 11.1 summarizes the
key characteristics of these designs, including the Mealy-based repetitive-addition design
of Section 11.4.2 and two add-and-shift designs in this section. We assume that the width
of the input operands is n bits. The table lists the range of the number of clock cycles to
complete the multiplication, the size of the functional units in the data path, and the total
number of bits in the data registers. Note that in add-and-shift designs, the counter counts
from n to 0 for n-bit operands. There are n + 1 patterns in the counting sequence, and thus
the width of the counter is [log2(n + 1)1 bits.

The table shows that the hardware complexity of the repetitive-addition multiplier and
the initial add-and-shift multiplier are comparable but that the latter significantly improves
performance by reducing the worst-case clock cycles from about 2n to 2n. The refined
add-and-shift design reduces the hardware complexity roughly by half and decreases the
worst-case clock cycles from about 2n to n. The adder is the dominant part in the design
and contributes most to the propagation delay of the data path. Because of the smaller adder,
we can expect the refined add-and-shift design to have a smaller clock period as well.

After we become familiar with the process of converting an ASMD chart to VHDL code,
it becomes more or less a mechanical procedure. The key is to find an efficient algorithm
and researching an effective data path to support the RT operations in the algorithm. We
then can derive the ASMD chart and VHDL code accordingly. As the sequential multiplier
examples show, the effectiveness of a design ultimately relies on our understanding of the
problem and hardware. No synthesis software can convert the repetitive-addition algorithm
into an add-and-shift algorithm or convert the initial add-and-shift design to the refined
design.

11.7 SYNTHESIS OF FSMD

The design methodology and VHDL coding style discussed in this chapter impose no new
synthesis requirement. From the software’s point of view, an FSMD code is just a code
with both regular sequential circuits and an FSM and thus can be synthesized accordingly.
We can separate the control path and data path in VHDL code if we want to use special
FSM optimization software for the control path synthesis.

The synthesis of an algorithm can also be performed in a more abstract level, known
as high-level synthesis or behavioral synthesis. The synthesis starts with abstract VHDL
descriptions that are coded in pure sequential statements, similar to those used in the al-

41 8 REGISTER TRANSFER METHODOLOGY: PRINCIPLE

gorithm’s pseudocode. The behavioral synthesis software converts the initial description
into RT operations and automatically derives a control path and a data path. This kind of
synthesis is limited to certain specialized applications. We discuss this in an example in
Chapter 12.

11.8 SYNTHESIS GUIDELINES

An FSMD is a synchronous circuit with a regular sequential circuit (the data path) and an
FSM (the control path). We should follow the guidelines from Chapters 8,9 and 10. Few
additional guidelines are related primarily to RT operations and construction of the data
path:

0 As any sequential circuit, the registers of the FSMD should be separated from the
combinational circuits.

0 Be aware that an RT operation exhibits a delayed-store behavior. Use of a register in
a decision box should be carefully examined.

0 The variables used in Boolean expressions of a pseudo algorithm normally correspond
to the next values of the registers used in an ASMD.

0 The function units are normally the most dominant components in a FSMD design.
To exercise more control, we may need to isolate them from the rest of the code.

0 Separate the control path from the code if the FSM optimization is needed later.

11.9 BIBLIOGRAPHIC NOTES

FSMD and ASMD chart provide a powerful methodology to realize sequential algorithms
in hardware. The text, Principles of Digital Design by D. D. Gajski, has a comprehensive
chapter on the representation and synthesis of FSMD. The text, Verilog Digital Computer
Design by M. G. Amold, applies RT methodology for computer design. As its name shows,
Verilog is used for the text.

Problems

11.1 The ASMD chart in Figure 11.6 uses the n register to keep track of the number of
iterations. It is initialized with b-in and counts down to 0. Alternatively, it can be initialized
with 0 and counts up to b-in. From the implementation point of view, which method is
better? Explain.

11.2 The ASMD chart in Figure 11.6 must return to the idle state after completion even
when the main system is ready with a new set of inputs. An alternative is to allow the circuit
to perform back-to-back operation in which the FSMD jumps to the ab0 or load state if
the start signal is asserted while the current operation is completed.

(a) Modify the ASMD chart to reflect the change.
(b) Derive the VHDL code.

11.3
b_in=O expression of the idle state with the n=O o r b=O expression? Explain.

In the ASMD chart of Figure 11.13, what happens if we replace the a_in=O o r

PROBLEMS 419

11.4 In Listing 11.4, what happens to the algorithm if naext is declared as a signal?

11.5 Repetitive-subtraction division is an algorithm to implement division operation. Let
y and d be the dividend and divisor respectively. This algorithm obtains the quotient (q)
and the remainder (r) by subtracting d from y repeatedly until the remaining of y is smaller
than d. Assume that all signals are 8 bits wide and interpreted as unsigned integers.

(a) Derive a pseudo algorithm.
(b) Convert the pseudo algorithm into an ASMD chart.
(c) Derive a detailed conceptual diagram.
(d) Derive the VHDL code according to the blocks of the conceptual diagram (i.e.,

(e) Derive the VHDL code in two-segment style.
(f) Is this an efficient algorithm? Explain.

in multi-segment style).

11.6 A leading-zero counting circuit counts the number of consecutive 0's from an input
signal. We want to design a sequential version of this circuit. The design should check one
bit of the input at a time and increment accordingly. The counting stops when the first '1'
is encountered.

(a) Derive a pseudo algorithm.
(b) Convert the pseudo algorithm into an ASMD chart.
(c) Derive the VHDL code in two-segment style.
(d) Assume that the input is 16 bits wide. Synthesize both combinational and se-

quential versions in an ASIC technology. Compare the size and performance.

11.7 The Fibonacci function is defined as
i f n = 0

fib(n) = 1 i f n = 1 (" fib(n - 1) + fib(n - 2) if n > 1

We want to implement this function in hardware. Assume that n is a 6-bit input and
interpreted as an unsigned integer. Note that f ib(63) is 6557470319842.

(a) Derive an ASMD chart.
(b) Derive the VHDL code.

11.8 In the ASMD chart of Figure 11.13, we can express the condition in the bottom
decision box as nnext=O or n=l. From the timing's point of view, which one can help to
get a higher clock rate? Explain.

11.9 Synthesize the combinational multiplier in Section 7.5.4 and the sequential multi-
plier described by the ASMD chart of Figure 1 1.19 using an ASIC technology.

(a) Assume that the input operands are 8 bits wide. Compare the size and performance

(b) Repeat part (a), but assume that the input operands are 16 bits wide.
of the two circuits.

11.10 For the sequential multiplier described by the ASMD chart of Figure 11.19, eight
iterations of add-and-shift operation are needed. We can improve the design further by
reducing the number of iterations to seven.

(a) Derive an ASMD chart.
(b) Derive the VHDL code.
(c) Assume that the width of the input operands is n. Calculate the relevant parameters

of Table 1 1.1 for this improved design.

420 REGISTER TRANSFER METHODOLOGY PRINCIPLE

11.11 In the sequential add-and-shift multiplier, we can use a combinational circuit to
process 2 bits at a time. Instead of adding 0 or shifted A to the partial product, we can
add 0, shifted A, shifted ZA, or shifted 3A to the partial product.

(a) Derive the revised ASMD chart for this circuit.
(b) Derive the VHDL code.
(c) Synthesize the design with an ASIC technology. Compare the size and perfor-

mance of this design and the original design.

CHAPTER 12

REGISTER TRANSFER METHODOLOGY:
P R ACT I C E

RT methodology is a powerful and versatile design technique. It can be applied to a
wide variety of applications. In this chapter, we use several examples to illustrate how
this methodology can be used in different types of problems and to highlight the design
procedure and relevant issues.

12.1 INTRODUCTION

As discussed in Chapter 1 1, RT methodology can be thought of as a design technique that
realizes an algorithm in hardware. The algorithm can be a complex process or just a simple
sequential execution, and thus RT methodology is very flexible and versatile. We study five
examples in this chapter, including a one-shot pulse generator, SRAM controller, universal
asynchronous receiver and transmitter (UART), greatest common divisor (GCD) circuit,
and square-root approximation circuit. The one-shot pulse generator is used to compare
and contrast the differences among the regular sequential circuit, FSM and RT methodology.
The SRAM controller illustrates the process of generating level-sensitive control signals to
meet the timing requirement of a clockless device. The GCD circuit is another example
of realizing a sequential algorithm in hardware. It shows how the hardware can be used to
accelerate the performance. The UART receiver is a typical control-oriented application,
which involves complex control structure and decision conditions. The square-root circuit,
on the other hand, is a typical data-oriented application, which involves mainly arithmetic
operations over data.

RTL Hardware Design Using VHDL: Coding for Eficiency, Portabiliy, and Scalabiliy. By Pong P. Chu
Copyright @ 2006 John Wiley & Sons, Inc.

421

422 REGISTER TRANSFER METHODOLOGY: PRACTICE

Figure 12.1 State diagram of a one-shot pulse generator.

12.2 ONE-SHOT PULSE GENERATOR

In Section 8.2.3, we divided sequential circuits into three categories based on the charac-
teristics of the next-state logic:

0 Regular sequential circuit. The next-state logic is regular.
0 FSM. The next-state logic is random.
0 RT methodology. The next-state logic consists of a regular part and a random part.

The RT methodology is the most flexible and capable scheme since it can accommodate
both types of next-state logic.

The division is created to assist the circuit design and code development. There are
no formal definitions of regular and random, and some applications can be designed as
either type. In this section, we use a one-shot pulse generator as an example to illustrate
the differences among the three types of circuits and to demonstrate the advantages and
flexibility of the RT methodology.

A one-shot pulse generator is a circuit that generates a single fixed-width pulse upon
activation of a trigger signal. We assume that the width of the pulse is five clock cycles.
The detailed specifications are listed below.

0 There are two input signals, go and stop, and one output signal, pulse.
0 The go signal is the trigger signal that is usually asserted for only one clock cycle.

During normal operation, assertion of the go signal activates the pulse signal for
five clock cycles.

0 If the go signal is asserted again during this interval, it will be ignored.
0 If the stop signal is asserted during this interval, the pulse signal will be cut short

Although the circuit is simple, it includes a regular part, which counts five clock cycles,
and a random part, which keeps track of whether the circuit is idle or currently generating
the pulse. Because of the simplicity, this circuit can be implemented as a pure regular
sequential circuit, a pure FSM or a design using RT methodology.

and return to '0'.

12.2.1 FSM implementation

We first examine the FSM implementation. The state diagram is shown in Figure 12.1. The
diagram consists of an idle state and five delay states, which activate the pulse signal for

ONE-SHOT PULSE GENERATOR 423

five clock cycles. The five delay states essentially function as a regular sequential circuit
that counts for five clock cycles. The identical transition patterns of these five states hints
at the “regularity” of this part of the operation. The corresponding VHDL code is shown
inListing 12.1.

Listing 12.1 FSM implementation of a one-shot pulse generator

l i b r a r y i e e e ;
use i e e e . s t d - l o g i c - 1 1 6 4 . a l l ;
use i e e e . n u m e r i c - s t d . a l l ;
e n t i t y p u l s e - 5 c l k i s

5 p o r t (
c l k , r e s e t : i n s t d - l o g i c ;
g o , s t o p : i n s t d - l o g i c ;
p u l s e : ou t s t d - l o g i c

1;
10 end p u l s e - 5 c l k ;

M

35

40

45

a r c h i t e c t u r e f sm-arch of p u l s e - 5 c l k i s
t ype f s m - s t a t e - t y p e i s

(i d l e , d e l a y l , d e l a y 2 , d e l a y 3 , d e l a y 4 , d e l a y 5 1 ;
IS s i g n a l s t a t e - r e g , s t a t e - n e x t : f s m - s t a t e - t y p e ;

begin
-- s t a t e r e g i s t e r
p r o c e s s (c l k , r e s e t)
begin

20 i f (r e s e t = ’ l ’) t hen
s t a t e - r e g <= i d l e ;

s t a t e - r e g <= s t a t e - n e x t ;
e l s i f (c l k ’ e v e n t and c l k = ’ l ’) t hen

end i f ;
25 end p r o c e s s ;

-- n e x t - s t a t e l o g i c & o u t p u t logic
p r o c e s s (s t a t e - r e g , g o , s t o p)
begin

p u l s e <= ’0’;
c a s e s t a t e - r e g is

when i d l e =>
i f g o = ’ l ’ t h e n

e l s e

end i f ;

i f s t o p = ’ l ’ t hen

e l s e

end i f ;
p u l s e <= ’ 1 ’ ;

when d e l a y 2 =>
i f s t o p = ’ l ’ t hen

e l s e

s t a t e - n e x t <= d e l a y l ;

s t a t e - n e x t <= i d l e ;

when d e l a y l =>

s t a t e - n e x t < = i d l e ;

s t a t e - n e x t < = d e l a y 2 ;

s t a t e - n e x t < = i d l e ;

424 REGISTER TRANSFER METHODOLOGY: PRACTICE

50

65

s t a t e - n e x t < = d e l a y 3 ;
end i f ;
p u l s e <= J l ’ ;

when d e l a y 3 =>
i f s t o p = 1 ’ then

e l s e

end i f ;
p u l s e <= ’ l J ;

when d e l a y 4 =>
i f s t o p = 1 ’ then

e l s e

end i f ;
p u l s e <= J l ’ ;

when d e l a y 5 =>
s t a t e - n e x t < = i d l e ;
p u l s e <= ’ l J ;

s t a t e - n e x t < = i d l e ;

s t a t e - n e x t < = d e l a y 4 ;

s t a t e - n e x t < = i d l e ;

s t a t e - n e x t < = d e l a y 5 ;

end c a s e ;
end p r o c e s s ;

70 end f sm-arch;

12.2.2 Regular sequential circuit implementation

We can also implement the pulse generator as a regular sequential circuit. It can be con-
sidered a mod-5 counter with a special control circuit to enable or disable the counting. To
accommodate the generation of a single pulse, an additional FF is needed to flag whether
the counter is active or idle. The VHDL code is shown in Listing 12.2.

Listing 12.2 Regular sequential circuit implementation of a one-shot pulse generator

a r c h i t e c t u r e r e g u l a r - s e q - a r c h of p u l s e - 5 c l k is
cons tant P-WIDTH : n a t u r a l : = 5 ;
s i g n a l c - r e g , c-next : u n s i g n e d (3 downto 0) ;
s i g n a l f l a g - r e g , f l a g - n e x t : s t d - l o g i c ;

5 begin
- r e g i s t e r
process (c l k , r e s e t)
begin

i f (r e s e t = ’ l ’) then
c - r e g <= (o t h e r s = > ’ O J) ;
f l a g - r a g <= J O ’ ;

c - reg <= c - n e x t ;
f l a g - r e g <= f l a g - n e x t ;

e l s i f (c l k ’ e v e n t and c l k = ’ l J) then

end i f ;
end p r o c e s s ;
- n e x t - s t a t e logic
process (c - r e g , f l a g - r e g , g o , s t o p)
begin

c -nex t <= c - r e g ;

ONE-SHOT PULSE GENERATOR 425

flag-next <= flag-reg;
i f (flag-reg=’O’) and (go=’l‘) then

flag-next <= ’1 ’ ;
c-next <= (others=>’O’);

25 e l s i f (flag-reg=’l’) and
((c-reg=P-WIDTH-l) or (stop=’l’)) then

flag-next <= ’0,;
e l s i f (flag,reg= ’ 1 ’) then

c-next <= c-reg + 1;
M end i f ;

end process;
- o u t p u t l o g i c
pulse <= ’1’ when flag-reg=’l’ e l s e ‘0’;

end regular-seq-arch;

There are two registers. The c-reg register is used for the counter, and the f lag-reg
register indicates whether the counter is active. The critical part of the description is the if
statement of the next-state logic. The first condition, (f lag,reg= ’ 0 ’) and (go= ’ 1 1,
indicates that the counter is currently idle and the go signal is asserted. Under this condition,
the flag is asserted and the counter enters the active counting state at the next rising edge
of the clock. The second condition indicates that the counter reaches 5 or the stop signal
is asserted and the counting should stop. The last condition indicates that the counter is in
the active state and should keep on counting.

In this code, the f l ag ieg register functions as some sort of state register to keep track
of the current condition of the circuit. The state transitions are implicitly embedded in the
if statement of the next-state logic.

12.2.3 Implementation using RT methodology

The RT methodology can separate the regular and random logic, and the ASMD chart is
shown in Figure 12.2. WO states in the chart indicate whether the counter is active, and
the arcs show the transitions under various conditions. The RT operation in the delay state
specifies the desired increment of the counter. Following the ASMD chart, we can easily
derive the VHDL code, as shown in Listing 12.3.

Listing 12.3 FSMD implementation of a one-shot pulse generator

a r c h i t e c t u r e f smd-arch of pulse-5clk i s
constant P-WIDTH: natural := 5;
type fsmd-state-type i s (idle , delay) ;
s i g n a l state-reg , state-next : f smd-state-type ;
s ignal c-reg, c-next: unsigned(3 downto 0);

- s t a t e and d a t a r e g i s t e r s
process (clk , reset)
begin

10 i f (reset=’l’) then

begin

state-reg <= idle;
c-reg <= (o t h e r s = > ’ O ’) ;

state-rag <= state-next ;
e l s i f (clk’event and clk=’l’) then

IS c-reg <= c-next;
end i f ;

426 REGISTER TRANSFER METHODOLOGY: PRACTICE

l-

Figure 12.2 ASMD chart of a one-shot pulse generator.

ONE-SHOT PULSE GENERATOR 427

2s

end p r o c e s s ;
- n e x t - s t a t e l o g i c & d a t a p a t h f u n c t i o n a l u n i t s / r o u t i n g
process (state-reg ,go, stop, c-reg)

20 begin
pulse <= I O 1 ;
c-next <= c-reg;
c a s e state-reg i s

when idle =>
i f go=’ll then

state-next <= delay;
e l s e

state-next <= idle;
end i f ;
c-next <= (o t h e r s = > ’ O ’) ;

when delay =>
i f stop=’I then

e l s e
state-next <=idle ;

i f (c-reg=P-WIDTH-l) then

e l s e
state-next <=idle ;

state-next <=delay;
c-next <= c-reg + 1;

end i f ;
end i f ;
pulse <= I l l ;

end c a s e ;
end p r o c e s s ;

4s end f smd-arch ;

12.2.4 Comparison

The pulse generator example shows that we can use an FSM to emulate a regular sequential
circuit, and vice versa. However, the emulation is cumbersome and convolved, and is
only possible for a small design. On the other hand, the RT methodology can capture the
essence of both regular and random logic, and the description is simple, flexible, clear and
informative. That is why it is such a powerful methodology.
To further illustrate the capability of the RT methodology, let us consider an expanded

programmable one-shot pulse generator. In this circuit, the width of the pulse can be
programmed between 1 and 7. The “programming” is done as follows:

0 The go and stop signals are asserted at the same time to indicate the beginning of

0 The desired value is shifted in via the go signal in the next three clock cycles.
With the RT methodology, we can easily incorporate the extension into the ASMD chart,

the program mode.

as shown in Figure 12.3. The corresponding VHDL code is shown in Listing 12.4.

Listing 12.4 Programmable one-shot pulse generator

a r c h i t e c t u r e prog-arch of pulse-5clk i s
type fsmd-state-type i s (idle, delay, shl, sh2, sh3);
s i g n a l state-reg , state-next : f smd-state-type ;
s i g n a l c-reg , c-next : unsigned (2 downto 0) ;

428 REGISTER TRANSFER METHODOLOGY PRACTICE

l- I

-.(<-+-->
F

Figure 12.3 ASMD chart of a programmable one-shot pulse generator.

ONE-SHOT PULSE GENERATOR 429

5 s i g n a l w-rag, w-next :

-- s t a t e and da ta r e g
process (c l k , r e s e t)
begin

begin
unsigned (2 downto 0) ;

s t e r s

I5

25

30

35

U)

45

50

55

10 i f (r e s e t = ’ l ’ > then
s t a t e - r e g <= i d l e ;
c - r e g <= (o t h e r s = > ’ O ’) ;
w-reg <= “ 1 0 1 “ ; - d e f a u l t 5 - c y c l e d e l a y

s t a t e - r e g <= s t a t e - n e x t ;
c - reg <= c - n e x t ;
w-reg <= w-next ;

e l s i f (c l k ’ e v e n t and c l k = ’ l J) then

end i f ;
end p r o c e s s ;

process (s t a t e - r e g , g o , s t o p , c-reg , w-reg)
begin

20 -- n e x t - s t a t e l o g i c & da ta p a t h f u n c t i o n a l u n i t s / r o u t i n g

p u l s e <= ’0’;
c-next <= c - r e g ;
w-next <= w-reg;
case s t a t e - r e g is

when i d l e =>
i f g o = ’ l J then

i f s t o p = 1 then

e l s e

end i f ;
e l s e

s t a t e - n e x t <= i d l e ;
end i f ;
c -nex t <= (o thers=>’O ’1;

when d e l a y =>
i f s t o p = ’ 1 then

e l s e

s t a t e - n e x t <= s h l ;

s t a t e - n e x t <= d e l a y ;

s t a t e - n e x t < = i d l e ;

i f (c-reg=w-reg -1) then
s t a t e - n e x t < = i d l e ;

e l s e
c-next <= c - reg + 1;
s t a t , e - n e x t < = d e l a y ;

end i f ;
end i f ;
p u l s e <= ’1’;

w-next <= go & w-reg(2 downto 1) ;
s t a t e - n e x t <= s h 2 ;

w-next <= go & w-reg(2 downto 1) ;
s t a t e - n e x t <= s h 3 ; .

w-next <= go & w-reg(2 downto 1);

when s h l =>

when sh2 =>

when s h 3 =>

430 REGISTER TRANSFER METHOOOLOGY: PRACTICE

state-next <= idle;
end c a s e ;

M end p r o c e s s ;
end p r o g - a r c h ;

While we can implement the extended pulse generator as a pure FSM circuit or a pure
regular sequential circuit in theory, the emulation becomes very involved and error-prone.
It will require lots of effort to derive the code.

12.3 SRAM CONTROLLER

Random access memory (RAM) provides massive storage for digital systems. It is con-
structed as a two-dimensional array of memory cells. A cell is designed and optimized at
the transistor level to achieve maximal efficiency. Since the silicon real estate is the primary
concern, a memory cell is kept as simple as possible. Its control is level sensitive and uses
no clock signal. To incorporate a RAM device into a synchronous digital system, we need
a special circuit, known as a memory controller, to act as an interface to the synchronous
system. Design of the memory controller illustrates control of a clockless subsystem.

12.3.1 Overview of SRAM

RAM is organized as a two-dimensional array of memory cells with special decoding and
multiplexing circuits. The block diagram of a typical 220-by-1 static RAM (SRAM) is
shown in Figure 12.4(a). It contains a 210-by-210 cell array, two 10-to-21° decoders and
an VO control circuit. The VO of the SRAM includes a 20-bit address signal, ad, a 1-bit
bidirectional data signal, d, and three control signals, ce, we and oe. The ad signal is split
and connected to two decoders, which, in turn, enable the cell of the specified location.
The three control signals are used to control SRAM operation. The chip select signal, cs,
specifies whether to enable the SRAM. The output enable signal, oe, and the write enable
signal, we, choose between write and read modes and control the direction of data flow.
The function table is shown in Figure 12.4(b). Note that these signals are active low.

Because of the lack of a clock signal, SRAM timing is quite involved. A set of minimum
and maximum timing constraints has to be satisfied to ensure proper operation. We first
examine the timing of a read operation. There are two methods to read data. In the first
method, both the oe and cs signals are already activated (i.e., ’0’) and the address signal
is used to access the desired data. It is known as an uddress-controlled read cycle and the
timing diagram is shown in Figure 12.5(a). In the second method, the address signal is
already stable and the cs signal already activated, and the oe signal is used to initiate the
read operation. It is known as an oe-controlled read cycle, and the timing diagram is shown
in Figure 12.5(b). Note the activities of the tri-state data bus when the oe signal is activated
and deactivated.

The relevant timing parameters associated with a read cycle are:
Taa: address access time, the required time to obtain stable output data after an
address change. It is somewhat like the propagation delay of the read operation and
is used to characterize the speed of an SRAM, as in “50-11s SRAM.”
Toh: output hold from address change time, the time that the output data remains
valid after the address changes. This should not be confused with the hold time of
an edge-triggered FF, which is a constraint for the d input.

SRAM CONTROLLER 431

dew- memory 1
der cell array

I

I I ad I I column decoder I I
x) 10 U

rl I

we + z d
(a) Block diagram

ce we oe Operation Datapind

0 0 - write data in
0 1 0 read data out

1 - - nooperation Z

0 1 1 nooperation Z

(b) Function table

Figure 12.4 Block diagram and functional table of a 220-by-1 SRAM.

432 REGISTER TRANSFER METHODOLOGY: PRACTICE

cs=O, we=l , oe=O

ad

dout

(a) Address-controlled read cycle

cs=O, we=l

ad x x
oe

dout

(b) oe-controlled read cycle

Figure 12.5 Timing diagrams of an SRAM read cycle.

SRAM CONTROLLER 433

CS=O

Figure 12.6 Timing diagram of an SRAM write cycle.

0 Tolz: output enable to output in low-impedance time, the time for the hi-state buffer
to leave from the high-impedance state after oe is activated. Note that even when the
output is no longer in the high-impedance state, the data is still invalid.

0 To,: output enable to output valid time, the time required to obtain valid data after
oe is activated.

0 Tohz: output to Z time, the time for the hi-state buffer to enter the high-impedance
state.

0 TrC: read cycle time, the minimal elapsed time between two read operations. It is
about the same as T,, for SRAM.

The write cycle is more complex. The timing diagram of a write cycle is shown in
Figure 12.6. The key to understanding the write cycle timing is the assertion of the we
signal, which latches the input data into the designated memory cell and plays a key role in
the write operation. There are three major constraints:

0 To latch data into the designated memory cell, the we signal must be activated (i.e.,
being '0') for a certain amount of time. This is specified by Twp.

0 The address needs to be stable for the entire write operation. Actually, it must be
stable before we is activated and remain stable for a small amount of time after we is
deactivated. The two time intervals are specified by TaS and Tab.

0 The input data must be stable in a small window when it is latched. The latch operation
occurs at the edge when we transits from '0' to '1'. The input data has to be stable
before and after the edge for a small amount of time. The two time intervals are
specified by Tds and Tdh. This constraint is somewhat like the constraint imposed
on the d signal of a D FF at the rising edge of the clock.

These timing parameters are formally defined as follows:
0 Twp: write pulse width, the minimal time that the we signal must be activated.
0 Tas: address setup time, the minimal time that the address must be stable before we

0 Tab: address hold time, the minimal time that the address must be stable after we is
is activated.

deactivated.

434 REGISTER TRANSFER METHODOLOGY: PRACTICE

- addr

datam2s

data-s2m main
system

mem ,
rlw

Table 12.1 Timing parameters of two SRAMs

Parameter 120-11s SRAM 20-11s SRAM

SRAM
controller

Figure 12.7 Role of an SRAM controller.

0 Tds: data setup time, the minimal time that data must be stable before the latching

a Tdh: data hold time, the minimal time that data must be stable after the latching edge.
0 T,,,,.: write cycle time, the minimal elapsed time between two write operations.

While there has been little change in the basic SRAM architecture over the years, its
capacity and speed have improved significantly. The address access time (Taa) can range
from a few nanoseconds to several hundred nanoseconds. The typical timing parameters of
an older, slow 120-ns SRAM and a more recent 20-ns SRAM are shown in Table 12.1.

edge (the edge in which we moves from '0' to '1').

12.3.2 Block diagram of an SRAM controller

The purpose of a memory controller is to interface the clockless memory and a synchronous
system. The role of an SRAM controller is shown in Figure 12.7. It takes command from
the main system and generates proper signals to store data into or retrieve data from the
SRAM. The main system is a synchronous system. There are two command signals, mem
and rw, and one status signal, ready. The main system activates the mem signal when a

SRAM CONTROLLER 435

addr
- - d 4 ad

en
>

- data-rn2s - d
din -

v - b c,
d q
en
>

we
oe

ready

t-
data-s2rn

Figure 12.8 Block diagram of an SRAM controller.

dout
t- q d

<
en -

-

memory operation is required and uses rw to specify the type of operation (’0’ for write and
’ 1’ for read). The SRAM controller uses the ready signal to indicate whether it is ready for
the operation. The addr signal is the address used to indicate the location of the memory.
The datarm2s and dataX2m signals are the data transferred from the main system to the
SRAM and from the SRAM to the main system respectively.

The main system treats the memory operation as a synchronous operation. For a write
operation, it activates mem, makes rw ’O’, and places the address on addr and data on
d a t a ~ 2 s for one clock cycle. At the rising edge of the clock, this information will be
sampled by the SRAM controller, which, in turn, initiates an SRAM write cycle and gener-
ates proper control signals. It may take several clock cycles to complete an operation. For
a read operation, the main system activates mem, makes rw ’l’, and places the address on
addr for one clock cycle. Again, this information will be sampled by the SRAM controller
at the rising edge of the clock, and an SRAM read cycle is initiated. After a predetermined
number of clock cycles, the SRAM controller will put the data on data-s2m and make the
data available to the main system.

Note that the main system and memory controller are controlled by the same clock.
From the main system’s point of view, the memory operation is completely synchronous.
The combined memory controller and SRAM function somewhat like the register file of
Section 9.3.1. However, whereas accessing a location in a register file can be done in one
clock cycle, it takes many clock cycles to complete an SRAM read or write operation.

The block diagram of the SRAM controller is shown in Figure 12.8. The data path
contains three registers, Raddr , RmzS and Rs2m, which are used to store the address, the
data from the main system to the SRAM, and the data from the SRAM to the main system

rnern -
wr -

-
tii-en control

path

>
~

436 REGISTER TRANSFER METHODOLOGY: PRACTICE

respectively. Since the data input of the SRAM is bidirectional, a tri-state buffer is used to
avoid conflict. The output from the register Rmzs will be placed in the data line, d, when
the tri-state buffer is enabled.

The control path coordinates the overall SRAM access and generates the control signals,
which include the we and oe signals of the SRAM and the enable signals of tri-state buffer
and registers in the data path. There are several requirements for these control signals. First,
the signals must be activated in the order specified in the read and write cycles. Second,
the signals must meet various timing constraints of the SRAM. Finally, the signals need to
ensure that there is no conflict (i.e., fighting) on the bidirectional data line.

12.3.3 Control path of an SRAM controller

We design the control path in two steps:
0 Derive a sketch of an FSM according to the activities in read and write cycles.
0 Refine the FSM with the actual SRAM timing parameters and clock period.

In the first step, we derive a sketch of an FSM that can activate and deactivate various
signals in the desired order. This can be done by dividing the read or write cycles into
multiple parts according to the activities of the signals and assigning a state for each part.
For example, the write cycle can be divided into five parts, as shown in Figure 12.9(a).

A segment of an FSM can be constructed accordingly, as shown in Figure 12.10(a). We
assume that the address and data are stored into the registers before the FSM moves to the
sl state. The data can be placed on the bidirectional line by activating the t r i -en signal.
The task of the FSM is essentially to generate two output signals, we and tri-en, in the
following order: "lO", "00", "Ol", "11" and "10".

Closer examination of the SRAM's timing specifications can help us to simplify the
FSM. For example, Twp is normally much larger than Tds in most SRAMs, and there is no
harm in placing data on the din line earlier. Thus, we can merge the 92 and s3 states into
a single state. Also, since there in no constraint specified between the order of deactivation
of address and data, we can merge the s4 and s5 states. The revised division and FSM
segment are shown in Figures 12.9(b) and 12.10(b) respectively.

There are two issues with the initial sketch. First, the length of a state in the FSM corre-
sponds to the period of the clock signal. The period must be large enough to accommodate
the most strenuous timing parameter. Since Twp is much larger than other parameters, the
time allocated to T,, and Tdh in the ssl and ss3 states are unnecessarily inflated. Second,
in a practical design, the memory controller is usually a part of a larger system, and the
clock rate is determined by the main system. The memory controller cannot have a separate
clock and must work with the system clock.

In the second step, we refine the FSM according to the system clock period and SRAM
timing parameters. The SRAM's access time and the main system's clock rate are the two
key factors in the final design of the control path. The following examples illustrate the
design and relevant issues for a slow SRAM and a fast SRAM.

Control path for a slow SRAM The term slow here means that the SRAM's address
access time (Taa) is relatively large to the main system's clock period. For example, if we
assume that the main system's clock period is 25 ns (i.e.. the clock rate is 40 MHz), the
120-11s SRAM shown in Table 12.1 will be considered as a slow SRAM to this system since
it takes about five clock cycles to complete a memory operation.

Because of the slow SRAM speed, it takes five (i.e., [$$!I) clock cycles to cover Taa
and three (i.e., [El) cycles to cover Twp We need to use multiple states in the FSM to

SRAM CONTROLLER 437

state

ad

we

din

tr-en

state

ad

we

din

tri-en

s l s2 s3 s4 , s5

! + - - - - - T A
p - T , Y

I

I j

! Tw-J a > I

!

I I x
I I

I i
1

I"T
,

Tdh

T
(a) Five-state division

j ssl ; ss2 : ss3 j

-Tdh

@) Three-state division

Figure 12.9 Divisions of a write cycle.

438 REGISTER TRANSFER METHODOLOGY: PRACTICE

Figure 12.10 FSM segments for a write cycle.

SRAM CONTROLLER 439

state

ad

oe

we

dout

din

tri-en

Figure 12.11 Division of read and write cycles of a slow SRAM.

accommodate the timing requirement. Figure 12.11 shows the division in the write and
read cycles. An extra clock cycle, which represents the idle state, is inserted between the
two operations. A read or write operation takes six clock cycles (i.e., 150 ns) to complete.
The periods include one for the idle state and five for a read or write cycle. We can do a
quick check on the SRAM timing parameters:

0 Taa: 120 ns < 125 ns (5*25 ns)
0 Twp: 70 ns < 75 ns (3*25 ns)
0 Tas: 20 ns < 25 ns
0 Tab: 5 nS C 25 nS
0 Tds: 35 ns < 75 ns (3*25 ns)
0 Tdh: 5 nS < 25 nS

It is clear that all timing parameters are satisfied and there is a margin of at least 5 ns.
The quick check is based on an ideal FSMD. To obtain more detailed timing information,

we also need to consider the various propagation delays introduced by the data path and
control path of the memory controller. For example, the oe signal is disabled in the end of
the r5 state and the data on the d line is sampled and stored when the FSM moves from
the r5 state to the idle state. We must perform a detailed timing analysis to ensure that
there is no setup or hold time violation for the Rszm register. The detailed timing diagram
is shown in Figure 12.12. The read operation progresses as follows. At tl , the FSM moves
to the rl state. After the TctTl delay (at t 2) , the oe signal is activated and the SRAM starts
the read operation. After T,, (at t3). the data is available. At t 4 , the FSM moves from
the r5 state to the idle state, and the memory controller samples and stores the data into
the Rszm register. After the Tctrl delay (at ts), the oe signal is deactivated. The data line
(dout) of the SRAM returns to the high-impedance state after the To, delay (at t6) .

440 REGISTER TRANSFER METHODOLOGY PRACTICE

tl 13 b t k t a

clk

state

ad

oe

dout

Figure 12.12 Detailed timing diagram of the read cycle.

To avoid the setup time violation, the data has to be stable before Tsetup of the rising
edge of the clock; that is,

We can use the look-ahead output buffer to minimize Tctrl and reduce it to the clock-to-q
delay (Tcq) of the FE. With a 25-11s clock and 120-ns SRAM, the inequality becomes

Tsetup c 5Tc - Tctrl - Taa

Tsetup + Tcq < 5 ns

This condition can be met by most of today’s device technology.

of the clock:

Since Tctrl is Tcq, this condition can be easily satisfied.
Other timing requirements, such as the data bus conflict, the exact timing on the SRAM’s

Tds and Tdh requirement, can be analyzed in a similar way. Because of the relatively large
safety margin of this design, the initial checking should still be valid.

Following the division and signal activation, we can derive the ASMD chart accordingly,
as shown in Figure 12.13. The VHDL code of the complete memory controller is shown
in Listing 12.5. It includes both the data path and control path. Note that we use the look-
ahead output buffer scheme for the we, oe and tri-en signals to ensure that the signals are
glitch-free and to minimize the clock-to-output delay.

Listing 12.5 Memory controller of a slow SRAM

To avoid the hold time violation, the data has to be stable after Thold of the rising edge

Thold < Tctd + To,

l ibrary i e e e ;
use i e e e . s t d - l o g i c - 1 1 6 4 . a l l ;
e n t i t y sram-ctrl i s

SRAM CONTROLLER 441

Default: 08 <= 1; we <= 1; trim <= 0; ready <= 0

ready <=l

j ,w4 4 , j

Figure 12.13 ASMD chart for a slow SRAM controller.

442 REGISTER TRANSFER METHODOLOGY PRACTICE

port (
5 clk, reset: in std-logic;

mem: in std-logic;
rw: in std-logic;
addr: in std-logic-vector (19 downto 0) ;
data-m2s : i n std-logic ;
we, oe: out std-logic;
ready: out std-logic;
data-s2m : out std-logic ;
d: inout std-logic;
ad: out std-logic-vector (19 downto 0)

10

15) ;
end sram-ctrl ;

a r c h i t e c t u r e arch of sram-ctrl
type state-type i s

20 (idle, rl, r2, r3, r4, r5
s i g n a l state-reg , state-next

35

40

45

55

S

wl, w2, w3, w4, w5);
state-type;

s i g n a l data_m2s_reg, dataem2s-next : std-logic ;
s i g n a l data-s2m_reg, data-s2mqnext : std-logic ;
s i g n a l addr-reg , addr-next : std-logic-vector (19 downto 0) ;

LS s i g n a l tri-en-buf , we-buf , oe-buf: std-logic;
s i g n a l tri-en-reg , we-reg , oe-reg : std-logic ;

- s t a t e & d a t a r e g i s t e r s
process (clk , reset)

begin

30 begin
i f (reset=’l’) then

state-reg <= idle;
addr-reg <= (o t h e r s = > ’ O ’) ;
data-m2s_reg <= ’0 ’ ;
data-s2m_reg <= ’0 ;
tri-en-reg <= ’0 ’ ;
we-reg <= ’1’;
oe-reg <=’l’;

state-rag <= state-next;
addr-rag <= addr-next ;
data-m2s_reg <= data-m2s_next ;
data-s2m_reg <= data-s2m_next ;
tri-an-reg <= tri-en-buf;
we-reg <= we-buf;
oe-reg <= oe-buf;

e l s i f (clk’event and clk=’l’) then

end i f ;
end p r o c e s s ;
- n e x t - s t a t e l o g i c & d a t a p a t h f u n c t i o n a l u n i t s / r o u t i n g
process (state-reg ,mem ,rw ,d,addr ,data-m2s ,

begin

50

data-m2s-reg,data-s2m_reg,addr_reg)

addr-next <= addr-reg;
data-m2s_next <= data_m2s_reg;
data-s2m_next <= data-s2m_reg;
ready <= ’0’;

SRAM CONTROLLER 443

60

65

70

15

SO

85

90

case s t a t e - r e g i s
when i d l e =>

i f mem=’O’ then

e l s e
s t a t e - n e x t <= i d l e ;

i f r w = ’ O ’ then - w r i t e
s t a t e - n e x t <= w l ;
add r -nex t <= a d d r ;
data-rn2s-next <= d a t a

s t a t e - n e x t <= r l ;
addr -nex t <= a d d r ;

e l s e -- read

end i f ;
end i f ;
r e a d y <= ’1’;

when wi =>
s t a t e - n e x t <= w2

when w2 =>
s t a t e - n e x t <= w 3

when w 3 =>
s t a t e - n e x t <= w4;

when w4 =>
s t a t e - n e x t <= w5;

when w5 =>
s t a t e - n e x t <= i d l e ;

when r l =>
s t a t e - n e x t <= r 2

when r 2 =>
s t a t e - n e x t <= r3

when r3 =>
s t a t e - n e x t <= r 4

when 14 =>
s t a t e - n e x t <= r 5

when r 5 =>

.m2s ;

IW

105

s t a t e - n e x t <= i d l e ;
da t a - s2m_nex t <= d ;

end c a s e ;
end p r o c e s s ;

process (s t a t e - n e x t 1
begin

95 - look-ahead o u t p u t l o g i c

t r i - e n - b u f <=’O’;
oe-buf <= ’ 1 ’ ;
we-buf <= ’1 ’ ;
c a s e s t a t e - n e x t i s

when i d l e =>
when w l =>
when w2 =>

we-buf <= ’0’;
t r i - e n - b u f <= ’ 1 ’ ;

we-buf <= ’0’;
t r i - e n - b u f <= ’1’;

when w 3 =>

REGISTER TRANSFER METHODOLOGY: PRACTICE 444

I10

I IS

when w4 =>
we-buf <= '0';
tri-en-buf <= '1';

tri-en-buf <= '1';

oe-buf <= '0';

oe-buf <= '0';

oe-buf <= '0';

oe-buf <= '0';

oe-buf <= '0';

when w5 =>

when rl =>

when r2 =>

when r3 =>

when r4 =>

when r5 =>

end c a s e ;
end process;
-- o u t p u t
we <= we-reg;
oe <= oe-reg;
ad <= addr-reg;
d <= data-m2s_reg when tri-en-reg ='l' e l s e 'Z';
data-s2m <= data_s2m_reg;

end arch;

Control path for a fast SRAM The major problem with the previous memory system
is its speed. Since it takes six clock cycles to read or write a data item from the SRAM, it can
be used only if the main system accesses the memory sporadically. One way to improve the
memory performance is to use a faster SRAM. For example, we can use the 20-11s SRAM
of Table 12.1, whose address access time (Taa) is smaller than the 25-ns clock period of the
main system. Figure 12.14 shows the timing of one possible design, in which a read cycle
and a write cycle are done in one clock cycle. We can again check the division against the
SRAM timing parameters:

Taa: 20 ns c 25 ns
Tw,: 12nsc25ns

0 Tag: 0 ns 5 0 ns
0 Tab: O n s I O n s
Tds: 12nsc25ns
Tdh: Ons 5 Ons

Although all constraints are satisfied, the timing is very tight. The timing of Tag, Tah and
Tdh just meet the specification and there is no safety margin. The propagation delays of the
control path and data path may cause timing violations. We may need to manually fine-tune
the propagation delays of various signals to ensure correct operation.

In this design, a read or write operation requires two clock cycles because the FSM must
return to the id le state after each operation. Since performance is the goal of a fast SRAM
controller, it is desirable to perform back-to-back memory operations without returning to
the idle state. This requires an ad hoc circuit to generate a we pulse whose activation time
is only a fraction of a clock period and more manual fine-tuning on propagation delays to
avoid data bus fighting.

GCD CIRCUIT 445

state

ad

oe

we

dout

din

tri-en

Figure 12.14 Division of read and write cycles of a fast SRAM.

In summary, while it is possible to perform single-clock back-to-back memory opera-
tions, the design imposes very strict and tricky timing requirements on the control signals.
These requirements are delay-sensitive and cannot be expressed or implemented by a regular
FSM. This kind of circuit is not suitable for RT-level synthesis. To implement the controller,
we need to manually derive the schematic using cells from the device library and even to
manually do the placement and routing. Many device manufacturers have recognized the
design difficulty and incorporated the memory controller into a memory chip. This kind
of device is known as synchronous memory. Since the main system only needs to issue
commands, place address and data, or retrieve data at rising edges of the clock, this type of
device greatly simplifies the memory interface to a synchronous system.

12.4 GCD CIRCUIT

The gcd(a, b) function returns the greatest common divisor (GCD) of two positive integers,
a and b. For example, gcd(1 , l O) is 1 and gcd(12,9) is 3. The gcd function can be obtained
by using subtraction, which is based on the equation

i f a = b
gcd(a - b, b) if a > b (" gcd(a, b - a) if a < b

gcd(a, b) =

Assume that a-in and b-in are positive nonzero integers and their GCD is r. The equation
can easily be converted into the following pseudocode:

a = a-in;
b = b-in;
w h i l e (a /= b) c

if (a > b) then
a = a - b ;

446 REGISTER TRANSFER METHODOLOGY: PRACTICE

e l s e

end i f
b = b - a ;

3
r = a ;

To make the pseudocode more compatible with the ASMD chart, we convert the while loop
into a goto statement and use a swap operation to reduce the number of required subtractions.
The revised pseudocode becomes

a = a-in;
b = b-in;

swap: i f (a = b) then
goto stop;

i f (a < b) then - swap a and b
e l s e

a = b; - assume the two o p e r a t i o n s
b = a; - can be done in p a r a l l e l

end i f ;
a = a - b ;
goto swap;

end i f ;
stop: r = a;

The code first moves the larger value into a and then performs a single subtraction of
a - b. This code can easily be converted into an ASMD chart, as shown in Figure 12.15.
As the sequential multiplier circuit of Chapter 11, the start and ready signals are added
to interface external systems. The corresponding VHDL code is shown in Listing 12.6.

Listing 12.6 Initial implementation of a GCD circuit

l i b r a r y ieee ;
use ieee. std-logic-1164. a l l ;
use ieee . numeric-std. a l l ;
e n t i t y gcd i s

5 p o r t (
clk, reset: in std-logic;
start : in std-logic ;
a-in , b-in: in std-logic-vector (7 downto 0) ;
ready : out std-logic ;

10 r : out std-logic-vector (7 downto 0)
1;

end gcd ;

a r c h i t e c t u r e slow-arch of gcd i s
I5 type state-type i s (idle, swap, sub);

s i g n a l state-reg a state-next : state-type;
s i g n a l a-rag , a-next , b-rag a b-next : unsigned (7 downto 0) ;

- s t a t e & d a t a r e g i s t e r s

begin

begin

U) process (clk reset)

i f reset= 1 then
state-reg <= idle;
a-reg <= (o t h e r s = > , O 1 > ;

GCD CIRCUIT 447

F <+,
T

Figure 12.15 ASMD chart of the initial GCD circuit.

448

2.3

30

U

40

4s

50

60

REGISTER TRANSFER METHODOLOGY: PRACTICE

b- rag <= (o t h e r s = > ’ O ’) ;

s t a t e - r e g <= s t a t e - n e x t ;
a - r e g <= a - n e x t ;
b - r eg <= b - n e x t ;

e l s i f (c l k ’ e v e n t and c l k = ’ l ’) then

end i f ;
end p r o c e s s ;
- n e x t - s t a t e logic & d a t a p a t h f u n c t i o n a l u n i t s / r o u t i n g
process (s t a t e - r e g a - r e g , b- reg s t a r t a - i n , b - i n)
begin

a - n e x t <= a - r e g ;
b-next <= b - r e g ;
case s t a t e - r e g i s

when i d l e =>
i f s t a r t = ’ l ’ then

a - n e x t <= u n s i g n e d (a - i n) ;
b -nex t <= u n s i g n e d (b - i n) ;
s t a t e - n e x t <= swap;

s t a t e - n e x t <= i d l e ;
e l s e

end i f ;
when swap =>

i f (a - r e g = b - r e g) then

e l s e
s t a t e - n e x t <= i d l e ;

i f (a - r e g < b - r e g) then
a -nex t <= b - r e g ;
b-next <= a - r e g ;

end i f ;
s t a t e - n e x t <= s u b ;

end i f ;

a -nex t <= a - r e g - b - r e g ;
s t a t e - n e x t <= swap;

when sub =>

end c a s e ;
end p r o c e s s ;
- o u t p u t
r e a d y <= ’1’ when s t a t e - r e g = i d l e e l s e ’0’;
r <= std-logic-vector(a-reg);

end s l o w - a r c h ;

As discussed in Section 11.5, one factor in the performance of an FSMD is the number
of clock cycles required to complete the computation. In this design, the input values are
subtracted successively until the axeg-bxeg condition is reached. The number of clock
cycles required to complete computation of this GCD circuit depends on the input values.
It requires more time if only a small value is subtracted each time. The calculation of
gcd(1, 28 - 1) represents the worst-case scenario. The loop has to be repeated 28 - 1 times
until the two values are equal. For a circuit with an N-bit input, the computation time is on
the order of 0(2N), and thus this is not an effective design.

One way to improve the design is to take advantage of the binary number system. For
a binary number, we can tell whether it is odd or even by checking the LSB. Based on the

GCD CIRCUIT 449

LSBs of two inputs, several simplification rules can be applied in the derivation of the GCD
function:

0 If both a and b are even, gcd(a, b) = 2 gcd(4 , ;) .
0 If a is odd and b is even, gcd(a, b) = gcd(a, 4) .
0 If a is even and b is odd, gcd(a, b) = gcd(4 , b) .

Since the divided-by-2 operation corresponds to shifting right one position, it can be im-
plemented easily in hardware. The previous equation can be extended:

gcd(a, b) =

a i f a = b
2gcd(;, 4) if a # b anda, beven
gcd(a, 4) if a # b and a odd, b even
gcd(4,b) ifa#bandaeven,bodd
gcd(a - b, b) if a > b and a, b odd
gcd(a, b - a) if a < b and a, b odd

To incorporate the new rules into the algorithm, the main issue is how to handle com-
putation of 2 gcd(5,;). One way is ignoring the factor 2 in initial iterations and using an
additional register, n, to keep track of the number of occurrences in which both operands
are even. The final GCD value can be restored by multiplying the initial result by 2n, which
corresponds to shifting the initial result left n positions.

The expanded ASMD chart is shown in Figure 12-16. It has several modifications. In the
swap state, the LSBs of the a and b registers are checked. The register is shifted right one
position (i.e., divided by 2) if it is even. Furthermore, the n register is incremented if both
are even. If the a and b registers are odd, they are compared and, if necessary, swapped,
and the FSM moves to the sub state. An extra state, labeled res (for “restore”), is added
to restore the final GCD value. The initial result in a is shifted left repeatedly until the n
counter reaches 0. The corresponding VHDL code is shown in Listing 12.7.

Listing 12.7 More efficient implementation of a GCD circuit

a r c h i t e c t u r e f a s t - a r c h of gcd i s
type s t a t e - t y p e i s (i d l e , swap, s u b , r e s) ;
s i g n a l s t a t e - r e g , s t a t e - n e x t : s t a t e - t y p e ;
s i g n a l a-reg , a -nex t b-reg , b-next : u n s i g n e d (7 downto 0) ;

5 s i g n a l n-reg n - n e x t : u n s i g n e d (2 downto 0);
begin

-- s t a t e & d a t a r e g i s t e r s
process (c l k , r e s e t)
begin

i f r e s e t = ’ 1 then
s t a t e - r e g <= i d l e ;
a - r eg <= (o t h e r s = > , O ’ > ;
b- reg <= (o t h e r s = > ’ O ’) ;
n-reg <= (o t h e r s = > ’ O ’) ;

s t a t e - r e g <= s t a t e - n e x t ;
a - r a g <= a - n e x t ;

e l s i f (c l k ’ e v e n t and c l k = ’ l ’) then

b- reg <= b - n e x t ;
n-reg <= n - n e x t ;

20 end i f ;
end p r o c e s s ;
-- n e x t - s t a t e l o g i c & da ta p a t h f u n c t i o n a l u n i t s / r o u t i n g

450 REGISTER TRANSFER MNODOLOGY: PRACTICE

F

rT*->

“i)
e--

I

Figure 12.16 ASMD chart of the revised GCD circuit.

GCD CIRCUIT 451

30

35

40

45

so

55

60

€5

70

I5

process (s t a t e - r e g , a - r e g , b-reg , n - r e g , s t a r t , a - i n , b-in , n - n e x t)
begin

25 a-next <= a - r e g ;
b-next <= b - r e g ;
n-next <= n - r e g ;
case s t a t e - r e g i s

when i d l e =>
i f s t a r t = ’ l ’ then

a-next <= u n s i g n e d (a - i n) ;
b-next <= u n s i g n e d (b - i n) ;
n-next <= (o t h e r s = > ’ O ’) ;
s t a t e - n e x t <= swap;

s t a t e - n e x t <= i d l e ;
e l s e

end i f ;
when swap =>

i f (a - r e g - b - r e g) then
i f (n-reg=O) then

e l s e

end i f ;

i f (a - r eg (O)=’O’) then - a - r e g e v e n

s t a t e - n e x t <= i d l e ;

s t a t e - n e x t <= r e s ;

e l s e

a-next <= ’0’ & a - r e g (7 downto 1);
i f (b - r eg (O)=’O’) then - b o t h e v e n

b-next <= ’0’ & b - r e g (7 downto 1);
n-next <= n- reg + 1;

end i f ;
s t a t e - n e x t C= swap;

i f (b - r eg (O)=’O’) then - b-reg e v e n
b-next <= ’0’ & b - r e g (7 downto 1) ;
s t a t e - n e x t <= swap;

i f (a - r e g < b- reg) then

e l s e -- a - r e g odd

e l s e - both a - r e g and 6 - r e g odd

a-next <= b - r e g ;
b-next <= a - r e g ;

end i f ;
s t a t e - n e x t <= s u b ;

end i f ;
end i f ;

end i f ;

a-next <= a - r e g - b - r e g ;
s t a t e - n e x t <= swap;

a-next <= a - r e g (6 downto 0) & ’0’;
n-next <= n-reg - 1;
i f (n-next=O) then

e l s e

when sub =>

when res =>

s t a t e - n e x t <= i d l e ;

s t a t e - n e x t <= res;

452 REGISTER TRANSFER METHODOLOGY: PRACTICE

end i f ;
end c a s e ;

end p r o c e s s ;
-0 U t p u t

80 r eady <= ’1’ when s t a t e - r e g = i d - e e l s e
r <= s t d - l o g i c - v e c t o r (a - r e g) ;

end f a s t - a r c h ;

Now let us consider the number of clock cycles needed to complete one computation.
Assume that the width of the input operand is N bits. The algorithm gradually reduces the
values in the a r e g and breg until they are equal. In the worst case, there are 2N bits to be
processed initially. If a value is even, the LSB is shifted out and thus the number of bits is
reduced by 1. If both values are odd, a subtraction is performed and the difference is even,
and the number of bits can be reduced by 1 in the next iteration. In the most pessimistic
scenario, the 2N bits can be processed in 2 * 2N iterations, and the required computation
time is on the order of O(N) , which is much better than the O(2 N) of the original algorithm.

Because of the flexibility of hardware implementation, it is possible to invest extra
hardware resources to improve the performance. For example, instead of handling the
data bit by bit in the swap and res states, we can use more sophisticated combinational
circuits to process the data in parallel. In the swap state, the circuit checks and shifts out
the trailing 0’s of a and b. In the res state, a shift-left barrel shifter restores the final result
in a single step. The revised VHDL code is shown in Listing 12.8.

Listing 12.8 Performance-oriented implementation of a GCD circuit

a r c h i t e c t u r e f a s t e s t - a r c h of gcd i s
type s t a t e - t y p e i s (i d l e , swap, s u b , r e s) ;
s i g n a l s t a t e - r e g , s t a t e - n e x t : s t a t e - t y p e ;
s i g n a l a - r e g , a-next , b-reg , b-next : u n s i g n e d (7 downto 0) ;

s s i g n a l n- reg n - n e x t , a - z e r o , b - z e r o : u n s i g n e d (2 downto 0) ;
begin
- s t a t e & d a t a . r e g i s t e r s
process (c l k , rese t
begin

i f r e s e t = ’ l ’ then
s t a t e - r e g <= i d l e ;
a - r e g <= (o t h e r s - > ’ O J) ;
b- reg <= (o t h e r s = > ’0 I);
n - r e g <= (o t h e r s = > ’0 ’) ;

s t a t e - r e g <= s t a t e - n e x t ;
a - r a g <= a - n e x t ;
b - r e g <= b - n e x t ;
n - r e g <= n - n e x t ;

e l s i f (c l k ’ e v e n t and c l k = ’ l ’) then

end i f ;
end p r o c e s s ;
-- n e x t - s t a t e l o g i c & d a t a p a t h f u n c t i o n a l u n i t s / r o u t i n g
process (s t a t e - r e g , a-reg , b-reg , n - r e g , s t a r t ,

begin
a - i n , b - i n , a - z e r o , b - z e r o)

a -nex t <= a - r e g ;
b-next <= b - r e g ;
n-next <= n - r e g ;

GCD CIRCUIT 453

a-zero <= (o t h e r s = > ’ O ’ > ;
b-zero <= (o t h e r s = > ’ O ’) ;
c a s e s t a t e - r e g is

when i d l e =>
i f s t a r t = ’ l ’ then

a-next <= u n s i g n e d (a - i n) ;
b-next <= uns igned(b , in) ;
n-next <= (o t h e r s = > ’ O ’) ;
s t a t e - n e x t <= swap;

s t a t e - n e x t <= i d l e ;
e l s e

end i f ;
when swap =>

i f (a - r eg ib - reg) t h e n
i f (n-reg=O) t h e n

e l s e

end i f ;

i f (a - r eg (O)=’ i and b - r eg (O)=’ l ’) t hen - swap

s t a t e - n e x t <= i d l e ;

s t a t e - n e x t <= r e s ;

e l s e

i f (a - reg < b-reg) t h e n
a-next <= b-reg ;
b-next <= a - reg ;

end i f ;
s t a t e - n e x t <= sub ;

- s h i f t out O S o f a - r e g
i f (a - reg (O) = ’ 1 ’) t h e n

a-zero < = l t O O O ” ;
e l s i f (a - r e g (l > = ’ l ’ > t h e n

a-zero < = “ 0 0 1 ” ;
e 1s i f (a - reg (2) = ’ 1 ’ 1 t h e n

a-zero < = l l O l O l l ;
e l s i f (a - r eg (3) = ’ 1 ’) t h e n

a-zero < = “ 0 1 1 ” ;
e l s i f (a - reg (41.: 1 ’ 1 t h e n

a-zero <=I1 100” ;
e l s i f (a _ r e g (5) = ’ 1 ’) then

a-zero < = I 9 101 I) ;
e l s i f (a _ r e g (6) = ’ 1 ’) then

a-zero <=“110” ;

e l s e

a-next <= “0” k a - reg (7 downto 1) ;

a-next <= * ‘ O O ” & a - reg (7 downto 2) ;

a-next <= t8000” & a - reg (7 downto 3) ;

a-next <= ”0000” & a - reg (7 downto 4);

a-next <= ~~00000” & a - reg (7 downto 5) ;

a-next <= ~ ~ 0 0 0 0 0 0 ~ ~ & a - r e g (7 downto 6) ;

e l s e - a - r e g (7) = ’ 1 ’
a-next <= ~~0000000” & a - r e g (7) ;

a-zero <=“111”;
end i f ;
- s h i f t out 0 s of b - r e g

40

60

65

70

454 REGISTER TRANSFER METHODOLOGY PRACTICE

I10

I15

120

125

Iu)

i f (b _ r e g (O) = ' l ' 1 then
b - z e r o <="OOO" ;

e l s i f (b - r e g (l) = ' l ' 1 then

a - z e r o <="001" ;
e l s i f (b - r e g (2) = ' l J > then

b -ze ro < = " 0 1 0 " ;
e l s i f (b - r e g (3) = ' I J) then

b -ze ro <="011";
e l s i f (b - r e g (4) = ' l J) then

b -ze ro <="100";
e l s i f (b - r e g (5) = ' l J) then

b -ze ro <="lOl";
e l s i f (b _ r e g (6) = ' l J) then

b -ze ro <=I1 110" ;

b-nex t <= II0lt & b - r e g (7 downto 1);

b-nex t <= " O O 1 q & b - r e g (7 downto 2) ;

b-next <= " O O 0 8 t & b - r e g (7 downto 3) ;

b-next <= "0000" & b - r e g (7 downto 4) ;

b-next <= "00000" & b - r e g (7 downto 5);

b-next <= "000000" & b - r e g (7 downto 6) ;

e l s e - b - r e g (7) = ' I '
b-next <= "0000000" & b - r e g (7) ;

b -ze ro <="111";
end i f ;
-- f i n d common number of O S
i f (a - z e r o > b - z e r o) then

e l s e

end i f ;
s t a t e - n e x t <= swap;

n-next <= n- reg + b - z e r o ;

n-next <= n- reg + a - z e r o ;

end i f ;
end i f ;

a -nex t <= a - r e g - b - r e g ;
s t a t e - n e x t <= swap;

case n - r eg i s

when sub =>

when r e s =>

when l t O O O " =>
a-next <= a - r e g ;

when "001" => a -nex t <=
a - r e g (6 downto 0) & '0 ;

when 11010" =>
a -nex t <= a - r e g (5 downto 0) & a O o t f ;

when t l O 1 l " =>
a -nex t <= a - r e g (4 downto 0) & l l O O O 1 t ;

when "100" => a -nex t <=
a - r e g (3 downto 0) & "0000";

when It 101 =>
a -nex t <= a - r e g (2 downto 0) & ~ ~ 0 0 0 0 0 ~ ~ ;

when l v l l O " =>
a -nex t <= a - r e g (1 downto 0) & ~ ~ 0 0 0 0 0 0 ~ ~ ;

when o t h e r s =>

UART RECEIVER 455

Figure 12.17 Transmission of a byte.

135 a-next <= a - reg (0) & "0000000~~;
end c a s e ;
s t a t e - n e x t <= i d l e ;

end c a s e ;
end process;

ready <= '1' when s t a t e - r e g = i d l e e l s e '0';
r <= std-logic-vector(a-reg);

140 -- o u t p u t

end f a s t e s t - a r c h ;

12.5 UART RECEIVER

Universal asynchronous receiver and transmitter (UART) is a scheme that sends bytes of
data through a serial line. The transmission of a single byte is shown in Figure 12.17. The
serial line is in the ' 1' state when it is idle. The transmission is started with a start bit, which
is 'O', followed by eight data bits and ended with a stop bit, which is ' 1'. It is also possible
to insert an optional parity bit in the end of the data bits to perform error detection. Before
the transmission starts, the transmitter and receiver must agree on a set of parameters in
advance, which include the baud rate (i.e., number of bits per second), the number of data
bits, and use of the parity bit.

The UART transmitter is essentially a shift register that shifts out data bits at a specific
rate. Construction of a UART receiver is more involved since no clock information is
conveyed through the serial line. The receiver can retrieve the data bits only by using the
predetermined parameters. It uses an oversampling scheme to ensure that the data bits
are retrieved at the correct point. This scheme utilizes a high-frequency sampling signal
to estimate the middle point of a data bit and then retrieve data bits at these points. For
example, assume that the sampling rate is 16 times the baud rate (i.e., there are 16 sampling
pulses for each bit). The incoming stream can be recovered as follows:

1.

2.

3.

4.
5 .

When the incoming line becomes '0' (i.e., the beginning of the start bit), initiate the
sampling pulse counter.
When the counter reaches 7, clear it to 0 and restart. At this point, the incoming
signal reaches about a half of the start bit (i.e., the middle point of the start bit).
When the counter reaches 15, clear it to 0 and restart. At this point, the incoming
signal progresses for one bit and reaches the middle of the first data bit. The data in
the serial line should be retrieved and shifted into a register.
Repeat Step 3 seven times to retrieve the remaining seven data bits.
Repeat Step 3 one more time but without shifting. The incoming signal should reach
the middle of the stop bit at this point, and its value should be '1'.

The idea behind this scheme is to use oversampling to overcome the uncertainty of the
initiation of the start bit. Even when we don't know the exact onset point of the start bit, it

456 REGISTER TRANSFER METHODOLOGY PRACTICE

can be off by at most &. The subsequent data bit retrievals are off by at most & from the
middle point as well.

With understanding of the oversampling procedure, we can derive the ASMD chart
accordingly. One issue is the creation of sampling pulses. The easiest way is to treat the
UART as a separate subsystem that utilizes a clock signal whose frequency is just 16 times
that of the baud rate. This approach violates the synchronous design principle and should be
avoided. A better alternative is to use a single-clock enable pulse that is synchronized with
the system clock, as discussed in Section 9.1.3. Assume that the system clock is 1 MHz
and the baud rate is 1200 baud. The frequency of the sampling enable pulse should be
16 * 1200, which can be obtained by a mod-52 counter (note that ’ ; ~ ~ ~ ~ ~ = 52). It can
easily be coded in VHDL:

process (clk , reset
begin

i f reset=’l’ then

e l s i f (clk’event and clk=’l’) then

end i f ;
end process;
- n e x t - - s t a t e / o u t p u t l o g i c
clkl6-next <= (o t h e r s = > ’ O ’) when clkl6_reg=51 e l s e

s-pulse <= ’1’ when clkl6_reg=O e l s e ’0’;

clkl6-reg <= (o t h e r s = > ’ O ’) ;

clkl6-reg <= clkl6,next ;

clkl6-reg + 1 ;

The ASMD chart of a simplified UART receiver is shown in Figure 12.18. The chart
follows the previous steps and includes three major states, s t a r t , data and stop, which
represent the processing of the start bit, data bits and stop bit respectively. The s-pulse
signal is the enable pulse whose frequency is 16 times that of the baud rate. Note that
the FSMD stays in the same state unless the s-pulse signal is activated. There are two
counters, represented by the s and n registers. The s register keeps track of the number
of sampling pulses and counts to 7 in the start state and to 15 in the data and stop
states. The n register keeps track of the number of data bits received in the data state. The
retrieved bits are shifted into and reassembled in the b register. The corresponding VHDL
code is shown in Listing 12.9. We assume that the system clock is 1 MHz and the baud rate
is 1200 baud.

Listing 12.9 Simplified UART receiver

l ibrary ieee ;
use ieee. std-logic-1164. a l l ;
use ieee. numeric-std. a l l ;
e n t i t y uart-receiver i s

s port(
clk, reset: in std-logic;
rx: in std-logic;
ready: out std-logic;
pout : out std-logic-vector (7 downto 0)

10 1 ;
end uart-receiver ;

archi tecture arch of uart-receiver i s
type state-type i s (idle, start, data, stop);

UART RECEIVER 457

I I

,-<->
I T

c + z j j n c n+l

T

Figure 12.18 ASMD chart of a UART receiver.

458 REGISTER TRANSFER METHODOLOGY: PRACTICE

I5 s i g n a l state-rag , state-next : state-type;
s i g n a l clkl6-next , clkl6-reg : unsigned (5 downto 0) ;
s i g n a l s-reg , s-next : unsigned (3 downto 0) ;
s i g n a l n-reg , n-next : unsigned (2 downto 0) ;
s i g n a l b-reg , b-next : std-logic-vector (7 downto 0) ;

c o n s t a n t DVSR: integer := 52;
M s i g n a l s-pulse: std-logic;

begin

40

45

w

65

- f r e e - r u n n i n g mod-52 c o u n t e r , i n d e p e n d e n t of FSMD
process (clk , reset 1
begin

i f resetm’l’ then

e 1 s i f (clk ’ event and clk= ’ 1 ’) then

end i f ;
end p r o c e s s ;
- n e x t - s t a t e / o u t p u t l o g i c
clkl6-next <= (o t h e r s = > ’0 ’1 when clkl6-reg=(DVSR-l) e l s e

s-pulse <= ’1’ when clk16_reg=O e l s e ’0’;

clkl6-reg <= (o t h e r s = > ’ O ’) ;

clkl6-reg <= clkl6-next ;

clkl6-reg + 1 ;

- FSMD s t a t e & d a t a r e g i s t e r s
p r o c e s s (clk, reset 1
begin

i f reset=’l then
state-reg <= idle;
s-reg <= (o t h e r s = > ’ O J) ;
n-reg <= (o t h e r s = > ’ O ’) ;
b-reg <= (o t h e r s = > ’ O J) ;

state-reg <= state-next ;
s-reg <= s-next;
n-reg <= n-next;
b-reg <= b-next;

e l s i f (clk’event and clk=’l’) then

end i f ;
end p r o c e s s ;
- n e x t - s t a t e l o g i c & d a t a p a t h f u n c t i o n a l u n i t s / r o u t i n g
process (state-reg ,s-reg ,n-reg, b-reg, s-pulse ,rx)
begin

s-next <= s-reg;
n-next <= n-reg;
b-next <= b-reg;
ready < = ’ O ’ ;
case state-reg i s

when idle =>
i f rx=’O’ then

e l s e

end i f ;
ready <=’1’;

when start =>

state-next <= start;

state-next <= idle;

UART RECEIVER 459

85

90

i f (s - p u l s e = , O J > then
s t a t e - n e x t <= s t a r t ;

e l s e
i f s _ r e g = 7 then

s t a t e - n e x t <= d a t a ;
s - n e x t <= (o t h e r s = > J O J) ;

s t a t e - n e x t <= s t a r t ;
s - n e x t <= s - r e g + 1;

e l s e

end i f ;
end i f ;

when data =>
i f (s - p u l s e = , O J) then

e l s e
s t a t e - n e x t <= d a t a ;

i f s _ r e g = l 5 then
s - n e x t <= (o t h e r s = > J O J) ;
b-nex t <= r x & b - r e g (7 downto 1);
i f n _ r e g = 7 then

s t a t e - n e x t <= s t o p ;
n-next <= (o t h e r s = > ’0 1 ;

s t a t e - n e x t <= d a t a ;
n-next <= n- reg + 1;

e l s e

end i f ;

s t a t e - n e x t <= d a t a ;
s - n e x t <= s-rag + 1;

e l s e

end i f ;
end i f ;

when s t o p =>
i f (s - p u l s e = ’0,) then

e l s e
s t a t e - n e x t <= s t o p ;

i f s - r eg -15 then
s t a t e - n e x t <= i d l e ;
s - n e x t <= (o t h e r s = > ’ O ’) ;

s t a t e - n e x t <= s t o p ;
s - n e x t <= s - r e g + 1;

e l s e

end i f ;
end i f ;

110 end c a s e ;
end process;
pou t <= b - r e g ;

end a r c h ;

Several extensions are possible for this UART receiver, including adding a parity bit
to detect the transmission error, checking the stop bit for the framing error, and making
the baud rate adjustable. The main problem with the UART scheme is its performance.
Because of the oversampling, the baud rate can be only a small fraction of the system clock
rate, and thus this scheme can be used only for a low data rate.

460 REGISTER TRANSFER METHODOLOGY: PRACTICE

12.6 SQUARE-ROOT APPROXIMATION CIRCUIT

The previous UART example is a typical control-oriented application, which is character-
ized by the dominance of the sophisticated decision conditions and branching structures
in the algorithm. The opposite type is a data-oriented application, which involves mainly
data manipulation and arithmetic operations. It is also known as a computation-intensive
application.

Although a data-oriented application can be implemented by a combinational circuit in
theory, the approach uses a large number of functional units and thus requires a significant
amount of hardware resources. RT methodology allows us to share functional units in a
time-multiplexed fashion, and we can schedule the operations sequentially to achieve the
desired trade-off between performance and circuit complexity. A square-root approximation
circuit in this section illustrates the design procedure and relevant issues of data-oriented
applications.

The square-root approximation circuit uses simple adder-type components to obtain the
approximate value of d m , where a and b are signed integers. The approximation is
obtained by the following formula:

d m x max(((2 - 0.1252) + 0.5y),z)

where z = rnax(la1, lbl) and y = min()al, lbl)

Note that the 0.1252 and 0 . 5 ~ operations correspond to shift 2 right three positions and
shift y right one position, and that no actual multiplication circuit is needed. The equation
can be coded in a traditional programming language. Let the two input operands be a-in
and b-in and the output be r. One possible pseudocode is

a = a-in;
b = b-in;
tl = abs(a);
t2 = abs(b);
x = max(t1, t2);
y = min(t1, t2);
t3 = x*O.125;
t4 = y*o.5;
t5 = x - t3;
t6 = t 4 + t5;
t7 = max(t6, x)
r = t7;

To help VHDL conversion, we intentionally avoid reuse of the same variable name on the
left-hand side of the statements. Because of the lack of control structure, the pseudocode
can be translated to synthesizable VHDL code directly. The corresponding code is shown
in Listing 12.10.

Listing 12.10 Square-root approximation circuit using direct dataflow description

l i b r a r y ieee;
use ieee. std-logic-1164. all ;
use ieee. numeric-std. all ;
e n t i t y sqrt i s

s p o r t (
a-in, b-in: in std-logic-vector (7 downto 0) ;
r: out std-logic-vector (8 downto 0)

SQUARE-ROOT APPROXIMATION CIRCUIT 461

1;
end sqrt;

a r c h i t e c t u r e comb-arch of sqrt is
constant WIDTH: natural : = 8 ;
s i g n a l a, b, x, y: signed(W1DTH downto 0);
s i g n a l tl, t2, t3, t4, t5, t6, t7: signed(W1DTH downto 0);

a <= signed(a-in(W1DTH-1) & a-in); - s i g n e d e x t e n s i o n
b <= signed(b-in(W1DTH-1) & b-in);
tl <= a when a > 0 e l s e

0 - a;
20 t2 <= b when b > 0 e l s e

0 - b;

10

IS begin

x <= tl when tl - t2 > 0 e l s e

y <= t2 when tl - t2 > 0 e l s e

t3 <= l t O O O t t & x(W1DTH downto 3);
t4 <= t t O t t & y(WIDTH downto 1);
t5 <= x - t3;
t6 <= t 4 + t5;

x;

t2 ;

25 tl;

M t 7 <= t6 when t6 - x > 0 e l s e

r <= std-logic-vector (t7) ;
end comb-arch ;

Note that the code consists only of concurrent statements, and thus their order does not
matter. The original sequential execution is embedded in the interconnection of components
and the flow of data. The VHDL code consists of seven arithmetic components, including
one adder and six subtractors. Since the addition and subtractions are not mutually exclusive,
sharing is not possible.

For a data-oriented application, it will be helpful to examine the dependency and move-
ment of the data. This information can be visualized by a dutuflow graph, in which an op-
eration is represented by a node (a circle), and its input and output variables are represented
by the incoming and outgoing arcs. The dataflow graph of the square-root approximation
algorithm is shown in Figure 12.19.

The graph shows that the algorithm has only a limited degree of parallelism since at most
only two operations can be executed concurrently. The seven arithmetic components of the
previous VHDL code cannot significantly increase the performance, and most hardware
resources are wasted. Thus, while the code is simple, it is not very efficient. RTmethodology
is a better alternative.

To transform a dataflow chart to an ASMD chart, we need to specify when and how
operations in the dataflow graph are executed. The transformation include two major tasks:
scheduling and binding. Scheduling specifies when a function (i.e., a circle) can start
execution, and binding specifies which functional unit is assigned to perform the execution.
One important design constraint is the number of functional units allowed to be used in a
design. We can allocate a minimal number of functional units to reduce the circuit size,
allocate a maximal number of units to exploit full potential parallelism, or find a specific
number to achieve the desired trade-off between performance and circuit size. Obtaining

462 REGISTER TRANSFER METHODOLOGY PRACTICE

a b

r

Figure 12.19 Dataflow graph.

SQUARE-ROOT APPROXIMATION CIRCUIT 463

a b

.(
r

Figure 12.20 Schedules with two functional units.

an optimal schedule involves sophisticated algorithms and is a difficult task. Specialized
EDA software tools are needed for a complex dataflow graph.

The dataflow graph of the square-root approximation algorithm involves a variety of
operations. The *.125 and * .5 operations can be implemented by fixed-amount shifting
circuits, which require no physical logic and thus should not be considered in the scheduling
process. The other operations can be constructed by adders with some “glue” and routing
logic. Thus, we can assume that the adderhubtractor is the only functional unit type required
for the algorithm. Because at most two operations can be executed in parallel, the ASMD
design can only utilize up to two functional units.

One possible schedule is shown inFigure 12.20(a). Note that the *. 125 and *.5 operations
are removed from the graph. The parentheses associated with the variables will be explained
later. The dataflow graph is divided into five time intervals, which are later mapped into
five states of an ASMD chart, It utilizes two units. One possible binding is to assign the
two operations in the left column to one unit and the five operations in the right column
to another unit. An alternative schedule and binding is shown in Figure 12.20(b), which
requires the same amount of time to complete the computation. A schedule that uses only

464 REGISTER TRANSFER METHODOLOGY: PRACTICE

a b

Figure 12.21 Schedule with one functional unit.

one functional unit is shown in Figure 12.21. It needs two extra time intervals to complete
the operation.

Once the scheduling and binding are done, the dataflow graph can be transformed into
an ASMD chart. Since each time interval represents a state in the chart, a register is needed
when a signal is passed through the state boundary. The corresponding ASMD chart of
Figure 12.20(a) is shown in Figure 12.22(a). The variables in the graph are mapped into
the registers of the ASMD chart. There are two operations in the sl and s2 states and one
operation in the s3, s4 and s5 states. The start and ready signals and an additional idle
state are included to interface the circuit with an external system.

Additional optimization schemes can be applied to reduce the number of registers and
to simplify the routing structure. For example, instead of creating a new register for each

SQUARE-ROOT APPROXIMATION CIRCUIT 465

y c- min(tl,t2)
x + max(t1,Q)

Figure 12.22 ASMD charts of a square-root approximation circuit.

466 REGISTER TRANSFER METHODOLOGY: PRACTICE

variable, we can reuse an existing register if its value is no longer needed. This corre-
sponds to properly renaming the variables in the dataflow graph. Close examination of
Figure 12.20(a) shows that we can use three variables to cover the entire operation. The
relationship between the new registers and the original registers is:

0 Use r 1 to replace a, t 1 and y.
0 Use r2 to replace b, t 2 and x.
0 Use r3 to replace t5, t 6 and t7.

The replacement variables are shown in parentheses in Figure 12.20(a). The revised ASMD
chart is shown in Figure 12.22(b). The number of the registers is reduced from seven to
three.

The VHDL code can be derived according to the ASMD chart and is shown in List-
ing 12.11. To ensure proper sharing, the two functional units are isolated from the other
description and coded as two separated segments. The first unit uses a single subtractor to
perform the m a x and abs functions. The second unit uses a single adder to perform the abs
and m a x functions as well as addition and subtraction. For clarity, we use the + operator for
the carry-in signal. The synthesis software should be able to map it to the carry-in port of
the adder rather than inferring another adder.

Listing 12.11 Square-root approximation circuit using RT methodology
l i b r a r y ieee;
use ieee. std-logic-1164. a l l ;
use ieee. numeric-std. a l l ;
e n t i t y sqrt i s

5 p o r t (
clk, reset: in std-logic;
start : in std-logic;
a-in, b-in: in std-logic-vector (7 downto 0) ;
ready : out std-logic ;

10 r : out std-logic-vector (8 downto 0)
) ;

end sqrt;

a r c h i t e c t u r e seq-arch of sqrt i s
IS c o n s t a n t WIDTH: integer :=8;

type state-type i s (idle, 51, s2, 93, s4, s5);
s i g n a l state-reg , state-next : state-type;
s i g n a l rl-reg , r2_reg, r3-reg : signed (WIDTH downto 0) ;
s i g n a l rl-next , r2-next , r3-next : signed(W1DTH downto 0) ;

20 s i g n a l sub-op0, sub-opl, diff , aul-out:
signed (WIDTH downto 0) ;

signed (WIDTH downto 0) ;
s i g n a l add-op0, add-opl , sum, au2-out:

s i g n a l add-carry : integer ;

- s t a t e & d a t a r e g i s t e r s
process (clk ,reset)
begin

25 begin

if reset= 1 ’ then
30 state-reg <= idle;

rl-reg <= (o t h e r s = > ’ O ’) ;
r2-reg <= (o t h e r s = > ’ O ’1;

SQUARE-ROOT APPROXIMATION CIRCUIT 467

35

4s

ss

60

6S

70

7s

r 3 - r e g <= (o t h e r s = > ’0 ;

s t a t e - r e g <= s t a t e - n e x t ;
r l - r e g <= r l - n e x t ;
r 2 - r e g <= r2 ,nex t ;
r 3 - r e g <= r 3 - n e x t ;

e l s i f (c l k ’ e v e n t and c l k = ’ l ’) then

end i f ;
U) end process;

-- n e x t - s t a t e l o g i c and d a t a p a t h r o u t i n g
process (s t a r t , s t a t e - r e g , r l - r e g , r 2 _ r e g , r 3 _ r e g ,

begin
a - i n , b-in , au l -ou t , au2-out)

r l - n e x t <= r l - r e g ;
r 2 - n e x t <= r 2 - r e g ;
r3 -nex t <= r 3 - r e g ;
r e a d y <=’O’;
case s t a t e - r e g i s

when i d l e =>
i f s t a r t = ’ 1 ’ then

r l - n e x t <= signed(a-in(W1DTH-1) k a - i n) ;
r2 -nex t <= signed(b-in(W1DTH-1) k b - i n) ;
s t a t e - n e x t <= sl;

s t a t e - n e x t <= i d l e ;
e l s e

end i f ;
r e a d y <=’ l ’ ;

when s l =>
r i - n e x t <= a u l - o u t ; - t l = J a l
r2 -nex t <= au2-out ; - t 2 =lbl
s t a t e - n e x t <= 8 2 ;

r l - n e x t <= a u l - o u t ; - y = m i n (t l , t 2)
r2 -nex t <= au2-out ; - x=max(t l , t 2)
s t a t e - n e x t <= s3;

r3 -nex t <= au2-out ; - t S = x - O . I 2 5 x
s t a t e - n e x t <= s4;

r3 -nex t <= au2-out ; - t 6 = 0 . 5 y + t 5
s t a t e - n e x t <= s5;

r3 -nex t <= au2-out ; - t7=man(t 6 , x)
s t a t e - n e x t <= i d l e ;

when s 2 =>

when s3 =>

when s4 =>

when s5 =>

end c a s e ;
end process;
-- a r i t h m e t i c u n i t I
- s u b t r a c t o r

- i n p u t r o u t i n g
process (s t a t e - r e g , r l - r e g , r 2 - r e g)
begin

80 d i f f <= sub-op0 - s u b - o p l ;

case s t a t e - r e g i s
when sl => - 0 - a

468 REGISTER TRANSFER METHODOLOGY: PRACTICE

90

IM

I35

sub-op0 <= (o t h e r s = > ' O ,) ;
sub-opl <= rl-reg; - a

when others => - s 2 : t 2 - t l
sub-op0 <= r2-reg; - t 2
sub-opl <= rl-reg; - t l

end c a s e ;
end p r o c e s s ;
- o u t p u t r o u t i n g
process (state-reg , rl-reg , r2_reg, diff

9s begin
case state-reg i s

when sl => - - -a1
i f diff (WIDTH)='O' then - (0-a)>O

e l s e

end i f ;

i f diff (WIDTH)='O' then - (t 2 - t l) > O

e l s e

end i f ;

aul-out <= diff ; - - a

aul-out <= rl-reg; - a

when others => - s 2 : m i n (a , b)

aul-out <= rl-rag; -- t l

aul-out <= r2-reg; - t 2

end c a s e ;
110 end p r o c e s s ;

- a r i t h m e t i c u n i t 2
- a d d e r
sum <= add-op0 + add-opl + add-carry;
-- i n p u t r o u t i n g
process (state-reg , ri-reg , r2-regI r3-reg)
begin

115

case state-reg i s
when sl => - 0 - b

add-op0 <= (o t h e r s = > ' O ') ; -0
add-opl <= not r2-reg; - n o t b
add-carry <= 1;

add-op0 <= rl-reg; - t l
add-opl <= not r2-reg; - -not t 2
add-carry <= 1;

when s3 => - -- x - 0 . 1 2 5 ~
add-op0 <= r2-reg; -x
add-opl <= not (" O O O t t & rZ-reg(WIDTH downto 3)) ;
add-carry <= 1;

when s4 => -- O . S * y + t 5
add-op0 <= " O t ' & rl-reg(W1DTH downto 1) ;
add-opl <= r3-reg;
add-carry <= 0;

when others => - t 6 - x
add-op0 <= r3-reg; - t l
add-opl <= not r2-reg; - n o t x
add-carry <= 1;

when 132 => - t l - t 2

end c a s e ;

HIGH-LEVEL SYNTHESIS 469

end process;
140 -- o u t p u t r o u t i n g

process (s t a t e - r e g , r l - r a g , r 2 _ r e g , r 3 - r e g I sum)
begin

case s t a t e - r e g i s
when sl => - 1 bl

145 i f sum(WIDTH)=’O’ then -- (0 - b) > O

I50

IS5

160

au2-out <= sum; -- - b

au2-out <= r2 - r eg ; - b
e l s e

end i f ;
when s2 =>

i f sum (WIDTH) = ’0 ’ then

e l s e

end i f ;
when 831 94 => - +,-

au2-out <= sum;
when others => - s5

i f sum (WIDTH) = 0 ’ then

e l s e

end i f ;

au2-out <= r l - r e g ;

au2-out <= r2 - r eg ;

au2-out <= r3 - r eg ;

au2-out <= r2 - r eg ;

end c a s e ;
165 end process;

- o u t p u t
r <= s t d - l o g i c - v e c t o r (r3 - r eg) ;

end seq-arch ;

12.7 HIGH-LEVEL SYNTHESIS

The square-root approximation circuit of Section 12.6 shows that deriving the optimal RT
design for data-oriented applications is by no means a simple task. The procedure is complex
and involves many sophisticated algorithms. Derivation of this type of circuit belongs to a
specific class of design, known as high-level synthesis or as somewhat misleading behaviorul
synthesis.

The synthesis starts with a set of constraints and an abstract VHDL description similar to
the algorithm’s pseudocode. The high-level synthesis software converts the initial descrip-
tion into an FSMD and automatically derives code for the control path and data path. In
other words, the high-level synthesis software basically transforms from code in the form
of Listing 12.10 to code in the form of Listing 12.11. The main task of the synthesis is
to find an optimal schedule and binding to minimize the required hardware resources, to
maximize performance or to obtain the best trade-off within a given constraint.

High-level synthesis is best for data-oriented, computation-intensive applications, such
as those encountered in signal processing. It requires a separate software package, and its
output is fed to regular synthesis software.

470 REGISTER TRANSFER METHODOLOGY: PRACTICE

12.8 BIBLIOGRAPHIC NOTES

High-level synthesis covers primarily algorithms to perform the binding and scheduling
of hardware resources, with emphasis on functional units. The treatment is normally very
theoretical. The texts, Synthesis and Optimization of Digital Circuits by G. De Micheli,
and High-Level Synthesis: Introduction to Chip and System Design by D. D. Gajski et al.,
provide good coverage on this topic. The square-root approximation circuit is adopted from
the text, Principles of Digital Design by D. D. Gajski, which uses the circuit to demonstrate
the procedures and various optimization algorithms of high-level synthesis.

Problems

12.1 In the ASMD chart of the programmable one-shot pulse generator of Section 12.2,
shifting the desired values requires three states. This operation can be done by using a
single state and a counter.

(a) Revise the ASMD chart to accommodate the change.
(b) Derive the VHDL code of the revised chart.

12.2
regular sequential circuit. Derive the VHDL code.

12.3

Redesign the programmable one-shot pulse generator of Section 12.2 as a pure

Redesign the programmable one-shot pulse generator of Section 12.2 as a pure FSM.
(a) Derive the state diagram.
(b) Derive the VHDL code.

12.4 For the memory controller in Section 12.3, assume that the period of the system
clock is 50 ns. Redesign the circuit for the 120-11s SRAM. The design should use a minimal
number of states in the FSMD.

(a) Derive the revised ASMD chart.
(b) Derive the VHDL code.
(c) Determine the required time to perform a read operation.

12.5 Repeat the Problem 12.4 with a system clock of 15 ns.

12.6 The memory controller of Listing 12.5 must return to the idle state after each
operation. We can improve performance by skipping this state when back-to-back memory
operations are issued.

(a) Derive the revised ASMD chart.
(b) Derive the VHDL code.
(c) When a read operation follows immediately after a write operation, the direction

of data flow in the bidirectional d line changes. Do a detailed timing analysis to
examine whether a conflict can occur. We can assume that the timing parameters
of the tri-state buffer in the data path are similar to those of the SRAM.

(d) Repeat part (c) for a write operation immediately following a read operation.

12.7 The FIFO buffer of Section 9.3.2 uses a register file as temporary storage. Revise
the design to use an SRAM device for storage. Assume that the 120-11s SRAM is used and
the system clock is 25 ns. We wish to design a FIFO controller for this system. Since it
takes several clock cycles to complete a memory operation, the controller should have an
additional status signal, ready, to indicate whether the SRAM is currently in operation.

(a) Derive the ASMD chart for the FIFO controller.

PROBLEMS 471

(b) Derive the VHDL code.

12.8

12.9
integers. For each architecture:

Repeat Problem 12.7 for a stack controller.

Consider the GCD circuit in Section 12.4. Assume that inputs are N-bit unsigned

(a) Determine the input pattern that leads to the maximal number of clock cycles.
(b) Calculate the exact number of clock cycles for the pattern.

12.10
with the comparison and merge the sub state into the swap state.

For the f ast-arch architecture of the GCD circuit, we can combine the subtraction

(a) Derive the revised ASMD chart.
(b) Derive the VHDL code.
(c) Assume that the clock period is doubled because of the merge. Discuss whether

the merge actually increases the performance (i.e., completes the computation in
less time).

(d) Repeat part (c), but assume that the clock period is increased by only 50%.

12.11 In the f astest-arch architecture of the GCD circuit, up to two shifting operations
are performed in the swap state and one is performed in the res state. Since a barrel shifter
is a complex circuit, we want the three operations to share one unit.

(a) Derive the VHDL code of a barrel shifter that can perform both shift-right and
shift-left operations.

(b) Derive the revised ASMD chart.
(c) Derive the VHDL code.

(a) Derive the ASMD chart.
(b) Derive the VHDL code.

12.12 Design a transmitter for the UART discussed in Section 12.5.

12.13 Expand the UART receiver of Section 12.5 to make the baud rate adjustable. As-
sume that there is an additional 2-bit control signal, baud-sel, which specifies the desired
baud rate, which can be 1200,2400,4800 or 9600 baud.

12.14 Revise the UART of Section 12.5 to include an even-parity bit. The length of the
data is now 7 bits, and the eighth bit is the parity bit. The parity bit is asserted when there is
an odd number of 1's in data bits (and thus makes the 8 received bits always have an even
number of 1's). Design a transmitter and a receiver for the modified UART.

(a) Derive the ASMD chart for the transmitter.
(b) Derive the VHDL code for the transmitter.
(c) Derive the ASMD chart for the receiver. The receiver should include an extra

(d) Derive the VHDL code for the receiver.
output signal to indicate the occurrence of a parity error.

12.15 Expand the UART receiver of Section 12.5 to accommodate different parity schemes.
Assume that there is an extra 2-bit control signal, pairty-sel, which selects the desired
parity scheme, which can be odd parity, even parity or no parity.

12.16 Consider a UART that can communicate at four baud rates: 1200, 2400, 4800
and 9600 baud. Assume that the actual baud rate is unknown but the transmitter always
sends a "11111111" data byte at the beginning of the session. Design a circuit that can
automatically determine the baud rate and derive the VHDL code.

472 REGISTER TRANSFER METHODOLOGY PRACTICE

12.17 Consider the schedule in Figure 12.20(b).
(a) Map the variables into a minimum number of registers.
0) Derive the ASMD chart for the schedule. Recall that two arithmetic units are used

(c) Derive the VHDL code.

12.18 Repeat Problem 12.17 for the schedule in Figure 12.21. Note that only one arith-
metic unit is used in this schedule.

12.19 Multiplication can be implemented by performing additions of shifted bit-products,
as discussed in Section 7.5.4. Let p7 , p6 , . . . , p1, po be the shifted bit-products of an &bit
multiplier. The final product can be expressed as

in this schedule.

(a) Derive the dataflow graph for the expression. Arrange the additions as a tree to

(b) Assume that only one adder is provided. Derive a schedule.
(c) Derive the ASMD chart for the schedule. Use a minimal number of registers in

(d) Derive the VHDL code.
(e) Discuss the difference between this design and the sequential multiplier discussed

Repeat parts (b), (c) and (d) of Problem 12.19, but use two adders to accelerate the

Repeat parts (b), (c) and (d) of Problem 12.19, but use three adders to accelerate

exploit parallelism.

the chart.

in Section 1 1.6.

12.20
operation.

12.21
the operation.

CHAPTER 13

HIERARCHICAL DESIGN IN VHDL

As the size of a digital system increases, its complexity grows accordingly. One method of
managing the complexity is to describe the system in a hierarchical structure, in which the
system is gradually divided into smaller parts. With a hierarchy, we only need to focus on a
small, manageable part at a time. One of the goals of VHDL is to facilitate the development
and modeling of large digital systems. It consists of versatile mechanisms and language
constructs to specify and configure a design hierarchy and to organize design information
and files. This chapter provides an overview of constructs relevant to the RT-level design
and synthesis.

13.1 INTRODUCTION

Hierarchical design is a methodology that divides a system recursively into small mod-
ules and then constructs each module independently. The term recursively means that the
division process can be applied repeatedly and the modules can be further decomposed.
For example, consider the sequential multiplier of Section 11.3.3. One possible design
hierarchy is shown in Figure 13.1. The system is first divided into a control path and a
data path. The control path is then divided into the next-state logic and the state register,
and the data path is divided into a routing circuit, functional units and a data register. The
functional units are then further decomposed into an adder and a decrementor. If needed,
we can continue the process and further refine the leaf modules. The sequential multiplier
can also be part of a larger system. For example, it can be a module of an arithmetic unit,
which in turn, can be a module of a processor.

RTL Hardware Design Using VHDL: Coding for Eficiency, Portability, and Scalobilify By Pong P. Chu
Copyright 0 2006 John Wiley & Sons, Inc.

473

474 HIERARCHICAL DESIGN IN VHDL

sequential

control /4"1
register network

adder decrementor

Figure 13.1 Hierarchical description of a sequential multiplier.

13.1.1 Benefits of hierarchical design

There are two major benefits of using the hierarchy: complexity management and design
reuse. As the size of transistor continues to decrease, more functionality can be included in
a device and the digital system grows larger and more complex. Managing the complexity
becomes a key challenge in today's design. Hierarchical design methodology allows us
to apply the divide-and-conquer strategy and break a system into smaller modules. This
approach helps us to manage a large design in several ways:

0 Instead of looking at the entire system, we can focus on a manageable portion of the
system, and analyze, design and verify each module in isolation.

0 Once the hierarchy and modules are specified, a large system can be constructed in
stages by a designer or concurrently by a team of designers.

0 The synthesis software may require a significant amount of memory space and com-
putation time to synthesize a large system. Breaking the system into smaller modules
and synthesizing them independently can make the process more effective.

Hierarchical design methodology also helps to facilitate design reuse:
0 Some predesigned modules or third-party cores (i.e., IPs) may exist and can be used

in the system. Therefore, we don't need to construct every system from scratch.
0 Many systems contain some common or similar functionalities. After we design and

verify a module in a system, the same module can be used in future design.
0 Some design may contain certain device-dependent components, such as an SRAM

module. To achieve portability, we can isolate these components in the top level of
the hierarchy and substitute them according to the target technology.

13.1.2 VHDL constructs for hierarchical design

One objective of VHDL is to facilitate the modeling and developments of complex digital
systems. Many language constructs are designed for this purpose. These include the
following:

0 Component
0 Generic

COMPONENTS 475

0 Configuration
0 Library

Package
Subprogram

The component, generic and conjguration constructs provide flexible and versatile mecha-
nism to describe a hierarchical design. These constructs are discussed in Sections 13.2,13.3
and 13.4. The library, package, and subprogram help the management of complicated code
and are briefly reviewed in Section 13.5. To take full advantage of the hierarchical design
methodology, we have to develop general and flexible modules. This issue is discussed in
Chapters 14 and 15.

13.2 COMPONENTS

Hierarchical design methodology basically divides a system into smaller modules and then
constructs the modules accordingly. Although not stated explicitly, our previous derivations
generally followed this approach. We usually started with a top-level diagram with several
major parts and then derived the VHDL code according to the diagram, with a VHDL
segment for each part. The VHDL component construct provides a formal and explicit way
to describe a hierarchical design.

We examined the VHDL component construct briefly in Section 2.2.2. It is the mech-
anism used to describe a digital system in a structural view. Recall that a structural view
is essentially a block diagram, in which we specify the types of parts used and the in-
terconnections among these parts. While the component construct is supported in both
VHDL 87 and VHDL 93, the syntax of VHDL 93 is much simpler. However, since the
IEEE RTL synthesis standard is based on VHDL 87, it follows the old syntax. To obtain
maximal portability, our discussion mainly follows the IEEE RTL synthesis standard (i.e.,
VHDL 87). In Section 13.4.4, we briefly examine the newer version.

In VHDL 87, using a component involves two steps. The first step is component dec-
laration, in which a component is “make known” to an architecture. The second step is
component instantiation, in which an instance of the component is created and its external
VO interface is specified.

13.2.1 Component declaration

Component declaration provides information about the external interface of a component,
which includes the input and output ports and relevant parameters. The information is
similar to that provided in an entity declaration. The simplified syntax of component
declaration is as follows:

component component -name
gener ic (

generic-declaration;
generic-declaration;

> ;
port (

port-declaration;
port-declaration;
. . .

) ;

476 HIERARCHICAL DESIGN IN VHDL

end component;

The generic portion is optional and consists of relevant parameters to be passed into
the component. It is discussed in the next section. The port portion consists of port
declarations, which are similar to those in an entity declaration. Note that the is keyword
i s in the entity declaration but not in the component declaration (the is keyword is allowed
in VHDL 93). As in entity declaration, no information about internal implementation is
specified in component declaration.

Assume that we have already designed a decade (i.e., mod-10) counter and that its entity
declaration is

e n t i t y dec-counter i s
port (

clk, reset: in std-logic;
en: in std-logic;
q : out std-logic-vector (3 downto 0) ;
pulse: out std-logic

1;
end dec-counter ;

If we want to use it as a component in other designs, the easiest way is to declare a component
that has the same name and ports:

component dec-counter
port (

clk, reset: in std-logic;
en: in std-logic;
q : out std-logic-vector (3 downto 0) ;
pulse: out std-logic

1;
end component;

Note that the same information is used in the entity declaration and the corresponding
component declaration. Graphically, a component can be thought of as a circuit part with
properly named input and output ports. The conceptual diagram of the dec-counter
component is shown in Figure 13.2(a).

During the elaboration process, the component eventually has to be bound with an
architecture body. The complete VHDL code of the decade counter is shown in Listing 13.1.
The en input functions as an enable signal. The pulse output is a status signal and is asserted
when the counter reaches 9 and is ready to warp around.

Listing 13.1 Decade counter

l i b r a r y ieee;
use ieee. std-logic-1164. a l l ;
use ieee . numeric-std. a l l ;
e n t i t y dec-counter i s

5 p o r t (
clk, reset: in std-logic;
en: in std-logic;
q : out std-logic-vector (3 downto 0) ;
pulse : out std-logic

10 1 ;
end dec-counter ;

COMPONENTS 477

a r c h i t e c t u r e up-arch o f dec-counter i s
s i g n a l r-reg : unsigned (3 downto 0) ;

15 s i g n a l r-next: unsigned(3 downto 0);
cons tant TEN: integer:= 10;

-- r e g i s t e r
process (clk, reset I

begin

20 begin
i f (reset=’l’) then

e l s i f (clk’event and c l k = J i J) then
r-reg <= (o t h e r s = > J O J) ;

r-reg <= r-next;
25 end i f ;

end p r o c e s s ;
-- n e x t - s t a t e l o g i c
process (en, r-reg)
begin

30 r-next <= r-reg;
i f (en=’i ’> then

i f r-reg=(TEN-l) then

e l s e

end i f ;

r-next <= (o t h e r s = > ’ O J) ;

r-next <= r-reg + 1;

end i f ;
end p r o c e s s ;
- o u t p u t logic

pulse <= ’1’ when r-reg=(TEN-1). e l s e
40 q <= std-logic-vector (r-reg) ;

’ O J ;
end up-arch;

35

In a VHDL code, a component declaration is included in the declaration part of an
architecture body, as shown in Listing 13.2. If it is used in multiple architecture bodies, the
declaration may be placed in a package. Use of packages is discussed in Section 13.5.3.

13.2.2 Component instantiation

Once a component is declared, its instance can be created inside the architecture body. The
simplified syntax of component instantiation is

instance-label: component-name
g e n e r i c map(

generic-association;
generic-association;
. . .

1
port map(

port-association;
port-association;
. . .

1;

478 HIERARCHICAL DESIGN IN VHDL

en q
pulse -o P-one pulse

q en

-> clk -> clk

reset reset

one-digit ten-digit

r q m e

- p-ten pulse

reset
- I

en

- clk
reset

qJen

pi00

Figure 13.2 Block diagram of a two-digit decimal counter.

In the first line, componentname specifies the component to be used, and instance-label
assigns the instance with a unique label for identification. The generic map portion assigns
the actual values to the generics. This portion, which is optional, is discussed in Section 13.3.
Note that there is no semicolon after the generic map portion. The port map portion
specifies the connections (i.e., “association”) between the component’s ports (known as
fomlsignals) and theexternal signals (known as actualsignals). The port-association
term has the general format

port-name => signal-name

This is known as the named msociation.
The use of component instantiation can best be explained by an example. Assume that

we want to implement a two-digit decimal counter, which counts up in BCD format (i.e.,
from 00 to 99) and wraps around. One possible implementation is to cascade two decade
counters. The diagram is shown in Figure 13.2(b). The left decade counter represents the
digit in the one’s place. Its pulse port is connected to an external wire, which is labeled
as the p-one signal, which in turn is connected to the en port of the right decade counter,
which represents the digit in the ten’s place. If the two-digit decimal counter is enabled,
the left decade counter asserts p-one signal every 10 clock cycles and wraps around. The
right decade counter is controlled by the p-one signal and thus counts only once for every
10 clock cycles. The pi00 output is a pulse to indicate that the two-digit decimal counter
reaches 99 and is ready to wrap around.

To describe this diagram in VHDL, we need to create two instances of the dec-counter
component and specify the relevant U0 connections. The main task in component instan-
tiation is to specify the mapping between the formal signals and the actual signals. This is
a tedious and error-prone task. The best way to do it is to draw a properly labeled block
diagram and then derive the VHDL code following the connections of the diagram. The
diagram should contain necessary information, which includes the component names, in-
stance labels, and properly labeled ports and connection signals. The block diagram in
Figure 13.2(b) is created for this purpose. In our convention, the information from the com-
ponent declaration, which includes the component name and port names (i.e., the formal
signals), is placed inside the block. The external signal names (Le., actual signals) and
instance names, on the other hand, are placed outside the block. Note that a formal signal
name and an actual signal name can be the same.

COMPONENTS 479

Following the diagram, we can derive the code segments for the two instances:

one-digit: dec-counter
port map (clk=>clk , reset=>reset , en=>en,

pulse=>p-one , q=>q-one) ;

port map (clk=>clk, reset=>reset , en=>p-one ,
pulse=>p-ten, q=>q-ten) ;

ten-digit: dec-counter

The port mapping used here is known as the named association because both the name of
the formal signal and the name of the actual signal are listed in each port association. The
order of the port associations does not matter. For example, the first instance can also be
written as

one-digit: dec-counter
port map (pulse=>p-one , reset=>reset , en=>en,

q=>q-one, clk=>clk) ;

The complete VHDL code is shown in Listing 13.2.

Listing 13.2 'ho-digit decimal counter using decade counters

l i b r a r y ieee ;
use ieee. std-logic-1164. a l l ;
e n t i t y hundred-counter i s

port (
5 clk, reset: in std-logic;

en: in std-logic;
q-ten , q-one : out std-logic-vector (3 downto 0) ;
p100: out std-logic

1;
10 end hundred-counter ;

a r c h i t e c t u r e vhdl-87-arch of hundred- counter i s
component dec-count er

port (
IS clk, reset: in std-logic;

en: in std-logic;
q: out std-logic-vector (3 downto 0) ;
pulse : out std-logic

1;
20 end component;

s i g n a l p-one , p-ten : std-logic ;

one-digit : dec-counter
begin

port map (clk=>clk , reset=>reset , en=>en ,
2s pulse=>p-one , q=>q-one) ;

ten-digit: dec-counter
port map (clk=>clk , reset=>reset , en=>p-one,

pulse=>p-ten , q=>q-ten) ;
pi00 <= p-one and p-ten;

U) end vhdl-87-arch ;

In VHDL, component instantiation is just another concurrent statement and thus can be
mixed with other statements. For example, a simple signal assignment statement is used to
derive the pl00 signal.

480 HIERARCHICAL DESIGN IN VHDL

pulse

-> clk

reset

one-digit ten-digit

1- cone

p-one -> clk

I reset

'1 ' # e n q - J r %ten
en pulse q

reset

Figure 13.3 Block diagram of a free-running two-digit decimal counter.

13.2.3 Caveats in component instantiation

As long as we derive a proper block diagram, the use of components is straightforward.
There are two caveats about component instantiation. One is the use of position association
in port mapping, and the other is the handling of unused ports.

So far, we have used the named association method for port mapping. Alternatively, we
can omit the formal signal names and place the actual names according to the positions of
the formal signals. This is known as positional association. For example, the component
declaration of dec-counter shows that the order of the ports is

clk, reset , en, q. pulse

In the previous vhdl-87-arch architecture, we can put the actual signals in this order in
component instantiation. The VHDL code becomes

one-digit: dec-counter

ten-digit: dec-counter
port map (clk, reset, en, q-one , p-one);

port map (clk , reset, p-one, q-ten , p-ten);

At first glance this method may seem to be more compact, but it can cause problems in the
long run, especially for a component with many VO ports. For example, we may revise the
port declaration of dec-counter later and switch the order of the clk and r e s e t signals:

. . .
port (

reset, clk: in std-logic;
. . .

The modification has no effect for the dec-counter code in Listing 13.1 but introduces
a serious problem for code that instantiates dec-counter with positional association. To
make the code more reliable, it is good practice to use named association in port and generic
mapping.

When we instantiate a component, some ports may not be needed to connect to actual
signals. For example, assume that we wish to design a free-running two-digit decimal
counter, in which the en and pl00 signals are removed. The modified block diagram is
shown in Figure 13.3, in which the en signal of the one-digit instance is tied to logic 'l',
and the pulse signal of the ten-digit instance is left unconnected. To describe the
mapping of en, we can simply use a constant expression to replace the actual signal and
the association becomes en=> ' 1 '. Some synthesis software may not accept the constant

GENERICS 481

expression. To overcome this, we can create a signal, assign it with the desired constant
and then use it as the actual signal in port mapping.

To specify the unused port, we can associate the port with the open keyword and the
association becomes pulse=>open. Good synthesis software should know that the port
is not used, backtrack the corresponding circuit and remove the unneeded circuit from
implementation. The open keyword can also be associated with an input port, and the
association means that the initial value in port declaration will be used for the port. Since
it is not good practice to assign an initial value to a signal or port in synthesis, this should
be avoided.

The VHDL code for the free-running two-digit decimal counter is shown in Listing 13.3.

Listing 13.3 Free-running two-digit decimal counter

l i b r a r y ieee;
use ieee. std-logic-1164. a l l ;
e n t i t y f ree-run-hundred-c ounter i s

port (
5 clk, reset: in std-logic;

q-ten , q-one : out std-logic-vector (3 downto 0)
1;

end free-run-hundred-counter;

10 a r c h i t e c t u r e vhdl-87-arch of free-run-hundred-counter i s
component dec-counter

port (
clk, reset: i n std-logic;
en: in std-logic;

pulse : out std-logic
I5 q: out std-logic-vector (3 downto 0) ;

) ;
end component;
s i g n a l p-one: std-logic;

one-digit : dec-counter
20 begin

port map (clk=>clk, reset=>reset , en=>’l’,
pulse=>p-one, q=>q-one) ;

ten-digit: dec-counter
2.5 port map (clk=>clk , reset=>reset , en=>p-one,

pulse=>open , q=>q-ten);
end vhdl-87-arch;

In named association, a formal port can be omitted in the list and VHDL assumes that it
is mapped to open by default. To make the code reliable, it is good practice to list all ports
in port map and explicitly associate the unused output ports with open.

13.3 GENERICS

The generic construct of VHDL is a mechanism to pass information into an entity and a
component. Generics are like parameters. They are first declared in entity and component
declaration and later assigned a value during component instantiation.

The use of generics starts with the entity declaration by adding a generic declaration
section. The simplified syntax is

482 HIERARCHICAL DESIGN IN VHDL

e n t i t y entity-name is
g e n e r i c (

generic-names : data-type ;
generic-names : data-type ;
. . .

1;
port (

port-names : mode data-type;

1;
end entity-name;

Once a generic is declared, it can be used in subsequent port declarations and associated
architecture bodies. For example, consider the free-running binary counter of Section 8.5.4,
which has a fixed width of 4 bits. We can modify it to a more versatile parameterized free-
running binary counter by defining a WIDTH generic to specify the desired width (i.e.,
number of bits). The modified entity declaration becomes

e n t i t y para-binary-count er i s
g e n e r i c (WIDTH : natural) ;
port (

clk, reset: in std-logic;
q: out std-logic-vector (WIDTH-1 downto 0)

1;
end para-binary-counter;

Note that the range of the q output is not fixed, but is expressed in terms of the WIDTH
generic, as in std-lgic-vector(W1DTH-1 downto 0).

After the declaration, the generic can be used in the associated architecture bodies. A
generic cannot be modified inside the architecture body and thus functions like a constant.
It is sometimes referred to as a generic constant. As a constant, we use uppercase letters
for the generics in the book.

The corresponding architecture body of the binary counter is

a r c h i t e c t u r e arch of para-binary-counter i s

begin
s i g n a l r-reg , r-next : unsigned(W1DTH-I downto 0) ;

p r o c e s s (clk , reset)
begin

i f (reset=’l’> then

e l s i f (clk’event and clk=’lJ) then

end i f ;
end p r o c e s s ;
r-next <= r-reg + 1;
q <= std-logic-vector (r-reg) ;

r-reg <= (o t h e r s = > ’ O ’ > ;

r-reg <= r-next;

end arch;

Again, note that the WIDTH generic is used to specify the range of internal signals.
To use the parameterized free-running binary counter in a hierarchical design, a similar

component declaration should be included in the architecture declaration. The generic can
then be assigned a value in the generic mapping section when a component instance is
instantiated. An example code is shown in Listing 13.4. The code creates a 4-bit counter
and a 12-bit counter.

GENERICS 483

Listing 13.4 Example of the use of generics

l i b r a r y ieee ;
use ieee. std-logic-1164. a l l ;
e n t i t y generic-demo i s

p o r t (
5 clk, reset: i n std-logic;

q-4 : out std-logic-vector (3 downto 0) ;
q-12: out std-logic-vector (11 downto 0)

1;
end generic-demo;

a r c h i t e c t u r e vhdl-87-arch of generic-demo i s
10

15

component para-binary-counter
g e n e r i c (WIDTH: natural) ;
p o r t (

clk, reset: i n std-logic;
q: out std-logic-vector (WIDTH-1 downto 0)

) ;
end component;

begin
20 four-bit: para-binary-counter

g e n e r i c map (WIDTH=>4)
p o r t map (clk=>clk, reset=>reset, q=>q-4) ;

twe-bit: para-binary-counter
g e n e r i c map (WIDTH=>12)

25 p o r t map (clk=>clk, reset=>reset , q=>q-l2);
end vhdl-87-arch ;

In the second example, we consider the design of a parameterized mod-n counter, in
which n can be specified as a parameter. The counter counts from 0 to n - 1 and then
wraps around. To count to n patterns, the counter needs at least [log, n1 bits. Our first
design uses two generics, the N generic for n and the WIDTH generic for the number of bits
in the counter. The VHDL code is shown in Listing 13.5. It is patterned after the decade
counter of Listing 13.1 and includes an en control signal and a pulse output signal, which
is asserted when the counter reaches n - 1.

Listing 13.5 Parameterized mod-n counter

l i b r a r y ieee;
use ieee. std-logic-1164. a l l ;
use ieee . numeric-std. a l l ;
e n t i t y mod-n-counter i s

N: natural;
WIDTH : natural

s g e n e r i c (

1;
p o r t (

10 clk, reset: in std-logic;
en: i n std-logic;
q: out std-logic-vector (WIDTH-1 downto 0) ;
pulse : out std-logic

1;
IS end mod-n-counter ;

484 HIERARCHICAL DESIGN IN VHDL

25

35

40

a r c h i t e c t u r e arch of mod-n-counter is
s i g n a l r-reg: unsigned(W1DTH-1 downto 0) ;
s i g n a l r-next : unsigned(W1DTH-1 downto 0) ;

- r e g i s t e r
process (clk , reset
begin

20 begin

i f (reset=JIJ> then

e l s i f (clk’event and clk=JIJ) then

end i f ;
end p r o c e s s ;

p rocess (en, r-reg)
begin

r-reg <= (o t h e r s = > ’ O J) ;

r-reg <= r-next;

W) - n e x t - s t a t e l o g i c

r-next <= r-reg;
if (en=’lJ) then

i f r-reg=(N-1) then

e l s e

end i f ;

r-next <= (o t h e r s = > ’ O ’) ;

r-next <= r-reg + 1;

end i f ;
end p r o c e s s ;
- outpu t l o g i c
q <= std-logic-vector(r-reg);
pulse <= ’1’ when r-reg=(N-l) e l s e

45 J O J ;
end arch;

Note that WIDTH is not an independent parameter. It can be derived from N and thus is
not actually required. Section 13.5 shows how to achieve this.

We can redesign the two-digit decimal counter of Section 13.2.2 by replacing the two
decade counters with two parameterized mod-n counters. To do this, we simply assign 10
to N and 4 to WIDTH in component instantiation and thus customize the mod-n counter as a
mod-10 counter. The corresponding VHDL code is shown in Listing 13.6.

5

10

Listing 13.6 lko-digit decimal counter using parameterized mod-n counters

a r c h i t e c t u r e generic-arch of hundred-counter i s
component mod-n-counter

N: natural;
WIDTH : natural

g e n e r i c (

1;
p o r t (

clk, reset: in std-logic;
en: in std-logic;
q: out std-logic-vector (WIDTH-1 downto 0) ;
pulse : out std-logic

1;
end component ;

CONFIGURATION 485

s i g n a l p-one , p - t e n : s t d - l o g i c ;

o n e - d i g i t : mod-n-counter
IS begin

g e n e r i c map (N = > 1 0 , W I D T H = > 4)
port map (c l k = > c l k , r e s e t = > r e s e t , e n = > e n ,

p u l s e = > p - o n e , q=>q-one) ;
20 t e n - d i g i t : mod-n-counter

g e n e r i c map (N = > 1 0 , W I D T H = > 4)
port map (c l k = > c l k , r e s e t = > r e s e t , en=>p-one ,

p u l s e = > p - t e n , q = > q - t e n) ;
p i 0 0 <= p-one and p - t e n ;

U end g e n e r i c - a r c h ;

The two examples show the potential of combining the generics and component. Instead
of creating an array of counters with different widths, we can use a single parameterized
module and customize it to the desired width, This makes the module more flexible and
more versatile, and greatly enhances its chance to be reused. The next two chapters provide
comprehensive coverage of the design of parameterized modules.

Another major application of generics is to pass delay information in modeling and
simulation. For example, we can define the Tpd generic for the propagation delay. It can
then be used in a statement like

y <= a + b a f t e r Tpd ns;

This allows us to pass delay information into the model when it becomes available.

13.4 CONFIGURATION

13.4.1 Introduction

When a component is declared and instantiated, as the example in Listing 13.2, only basic
generic and port information is provided. Configuration of VHDL is the process of binding
a component with a design entity and architecture. The process includes two parts:

1. Bind a component with a design entity.
2. Bind the design entity with an architecture body.
The configuration of VHDL is very flexible, and thus its detailed syntax and use are quite

complex. However, most features are not needed in RT-level design and synthesis. The IEEE
RTL synthesis standard supports only the second part of the process, the binding of entity
and architecture. We discuss only default binding, and top-level entity and architectural
body binding in the book.

Explicit configuration is not always required for a component. For example, the codes
in previous sections use no configuration constructs. In this case, the component is bound
by the default binding, which is processed as follows:

0 The component is bound to an entity with the identical name.
0 Component ports are bound to entity ports of the same names.
0 The most recently analyzed architecture body is bound to the entity declaration.

In RT-level design, the hierarchy is normally simple, and only one architecture body
exists. The default binding should be satisfactory most of the time, and no explicit config-
uration statement is needed.

486 HIERARCHICAL DESIGN IN VHDL

test vector unit monitoring 8
under test

Figure 13.4 Block diagram of a testbench.

In synthesis, multiple architectures may be needed for several reasons. First, there
is frequently a trade-off between area and performance in a digital circuit. A complex
circuit, such as a multiplier, may have several implementations, each with a unique area-
delay characteristics. Each implementation represents an architecture body. Second, we
sometimes need to adjust certain circuit characteristics to fit a specific application. For
example, we may need to force a counter to circulate different patterns. One way to
accomplish this is to use a separate architecture body for each pattern.

In modeling and simulation, having multiple architectures is more common. For ex-
ample, we discussed the concept of testbench in Section 2.2.4. The diagram of a basic
testbench is shown in Figure 13.4. A complex design is normally first specified in an ab-
stract behavioral description, converted to an RT-level description, and then synthesized to
a cell-level structural description. Each description represents an architecture body. As
the design progresses, a more detailed architecture body becomes available. We can use
configuration to bind the new description for verification,

There are two ways to specify the configuration. It can be described in an independent
design unit, which is known as configuration declaration, or included in the declaration
section of the architecture body, which is known as confguration specijcation. The two
methods are discussed in the following subsections. The IEEE RTL standard supports only
the configuration declaration method.

13.4.2 Configuration declaration

In the configuration declaration method, we create a new kind of design unit, known as
configuration, to specify the binding of a component. A configuration unit is an independent
design unit in VI-IDL, just like an entity declaration and an architecture body. It is analyzed
and stored independently when the VHDL code is processed. The simplified syntax of a
configuration unit is

c o n f i g u r a t i o n conf-name of entity-name i s

for instance-label : component-name

end f o r ;
f o r instance-label : component-name

end f o r ;

for arc hiec tur e-name

use e n t i t y lib-name . bound-entity-name (bound-arch-name) ;

use e n t i t y lib-name . bound-entity-name (bound-arch-name) ;
. . .

end f o r ;
end ;

The conf n a m e term is the unique identifier for this configuration unit. The entityname
and architecturename terms identify the entity and the architecture for which the con-
figuration is intended. The instance-label term specifies a specific component instance,

CONFIGURATION 487

and the following “use . . .” clause indicates the entity and architecture to be bound to the
instance. The libname term is the name of the library in which the entity and architecture
reside. The library is discussed in Section 13.5. In the place of instance-label, we can
use the all keyword to represent all instances of this particular component, or use others in
the end to represent all the unbound instances of the component.

To demonstrate the use of configuration, we create a second architecture, down-arch,
for the dec-counter entity of Section 13.2.1. The VHDL code is shown in Listing 13.7.
It counts down from 9 to 0 and then wraps around. The pulse output’is asserted when
the counter reaches 0 and is ready to wrap around. If we use this architecture in the
vhdl-87-arch architecture of the two-digit decimal counter of Section 13.2.2, the two-
digit counter counts down from 99 to 00 and then wraps around.

Listing 13.7 Decade counter with a count-down sequence
a r c h i t e c t u r e down-arch of dec-counter i s

s i g n a l r-reg : unsigned (3 downto 0) ;
s i g n a l r-next : unsigned (3 downto 0) ;
cons tant TEN: integer := 10;

- r e g i s t e r
process (clk , reset 1
begin

5 begin

i f (reset=’l’) then

e 1 s i f (clk ’ event and clk= ’ 1 ’ 1 then

end i f ;
end p r o c e s s ;

process (en, r-reg)
begin

10 r-reg <= (o t h e r s = > ’ O ’) ;

r-reg <= r-next;

15 -- n e x t - s t a t e l o g i c

r-next <= r-reg;
i f (en=’l’> then

20 i f r-reg=O then
r-next <= to-unsigned(TEN-l,4);

r-next <= r-reg - 1;
e l s e

end i f ;
25 end i f ;

end p r o c e s s ;
-- o u t p u t l o g i c
q <= std-logic-vector(r-reg);
pulse <= ’1’ when r-reg=O e l s e

30 ’ 0 ’ ;
end down-arch ;

Depending on the requirement of the direction of a two-digit decimal counter, we can
create a configuration unit to specify the desired binding. The VHDL in Listing 13.8 binds
the two instances with the down-arch architecture.

488 HIERARCHICAL DESIGN I N VHDL

Listing 13.8 Configuration for a two-digit decimal counter

c o n f i g u r a t i o n count-down-conf ig of hundred-counter i s
for vhdl-87-arch

f o r one-digit : dec-counter
use e n t i t y work. dec-counter (down-arch) ;

5 end f o r ;
for ten-digit : dec-counter

end f o r ;
use e n t i t y work. dec-counter (down-arch) ;

end f o r ;
10 end;

Note that the work library is the default library used in VHDL. It represents the current
working library.

13.4.3 Configuration specification

The configuration declaration is general and flexible. However, for a simple design, creating
a new design unit for this purpose is somewhat cumbersome. An alternative is to specify
the relevant configuration in the declaration section of the architecture body. This is known
as a conjiguration specification. The simplified syntax is

for instance-label: component-name

for instance-label : component-name
use e n t i t y l ib-name.bound-entity-name(bound_arch_name);

use e n t i t y lib-name.bound-entity-name(bound-arch-name);

For example, the configuration declaration in Listing 13.8 can also be specified by a
configuration specification. We simply revise the vhdl-87-arch by adding the relevant
configuration information to the declaration section:

. . .

a r c h i t e c t u r e vhdl-87-config-arch of hundred-counter i s
component dec-counter

port (
clk, reset: in std-logic;
en: in std-logic;
q : out std-logic-vector (3 downto 0) ;
pulse : out std-logic

1;
end component;
for one-digit : dec-counter

for ten-digit : dec-counter

s i g n a l p-one , p-ten : std-logic ;

use e n t i t y work. dec-counter (down-arch)

use e n t i t y work. dec-counter (down-arch)

begin
. . .

13.4.4 Component instantiation and configuration in VHDL 93

Components and configuration are flexible in VHDL, but its syntax is involved and te-
dious. Since RT-level design uses relatively simple component instantiation and bind-

OTHER SUPPORTING CONSTRUCTS FOR A URGE SYSTEM 489

ing, the syntactic constructs becomes cumbersome. For example, consider the previous
vhdl-87-conf ig-arch architecture. We need a relatively lengthy declaration to use and
bind the two component instances in design. VHDL 93 provides a much simpler mech-
anism. It allows a component to be bound directly to an entity and an architecture in
component instantiation. The simplified syntax is

instance-label :
e n t i t y lib-name . bound-ent ity-name (bound-arch-name)

g e n e r i c map (. . . >
port map (. . .> ;

The entity lib-name . bound-entity-name (bound-arch-name) clause specifies the
associated entity and architecture, and no component declaration or any additional config-
uration construct is needed. The (bound-archname) term is optional. If it is omitted, the
most recently analyzed architecture will be bound to the entity.

Consider the two-digit decimal counter of Section 13.2.2. With this mechanism, a more
compact code can be derived, as shown in Listing 13.9.

Listing 13.9 Ro-digit decimal counter with direct entity binding

a r c h i t e c t u r e vhd1-93- arch of hundred- count er i s

begin
s i g n a l p-one , p-ten : std-logic ;

one-digit : e n t i t y work. dec-counter (up-arch)
5 port map (clk=>clk reset=>reset , en=>en ,

pulse=>p-one, q=>q-one) ;

port map (clk=>clk, reset=>reset en=>p-one,
pulse=>p-ten, q=>q-ten) ;

ten-digit : e n t i t y work. dec-counter (up-arch)

10 pi00 <= p-one and p-ten;
end vhdl-93-arch ;

Since this kind of instantiation is valid only in VHDL 93, it is not supported by the
IEEE RTL synthesis standard, However, some software does accept this type of component
instantiation.

13.5 OTHER SUPPORTING CONSTRUCTS FOR A LARGE SYSTEM

13.5.1 Library

As we discussed in Section 3.2.5, a VHDL program is analyzed and stored as individual
design units, which include entity declaration, architecture body, configuration declaration,
and so on. A VHDL library is the virtual repository that stores the analyzed design units.
VHDL does not define the physical location of a library. Most software maps a library
to a physical directory in a hard disk. By default, the current design units are stored in
a working library named work. For example, the work library is used in the previous
component instantiation:

. . .
one-digit : e n t i t y work. dec-counter (up-arch)
. . .

For a complex design, there may exist a large number of design units. It is desirable to
organize these units and store them in separate places. Also, we may have a collection of

490 HIERARCHICAL DESIGN IN VHDL

commonly used design units that are shared by many different designs. It is more effective to
save these units in a common library rather than duplicating them in every design directory.

To access the content of alibrary, we must first make it known by using a library statement.
The syntax is

l i b r a r y lib-name , lib-name , . . . , lib-name ;

For example, assume that we create a library named c-lib and save the previous
dec-counter entity and relevant architectures in the library. The count-down-conf ig
configuration discussed in Section 13.4.2 must be revised accordingly:

l i b r a r y c-lib; - make c - l i b v i s i b l e
c o n f i g u r a t i o n clib-conf ig of hundred-counter is

for vhdl-87-arch
f o r one-digit : dec-counter

end f o r ;
f o r ten-digit : dec-counter

end f o r ;

use e n t i t y c-lib. dec-counter (down-arch); - c - l i b

use e n t i t y c-lib. dec-counter (down-arch) ; - c - l i b

end f o r ;
end ;

If a design unit is accessed frequently, we can make it visible by adding a use clause.
Note that the work library of the original code is replaced with c-lib.

The syntax is

use lib-name . unit-name ;

The unit can then be accessed directly without referring to the library. The all keyword can
be used in place of unitname to make all units of the library visible. For example, the
previous code can be revised as:

l i b r a r y c-lab;
use c-lib. dec-counter; - make d e c - c o u n t e r v i s i b l e
c o n f i g u r a t i o n clib-conf ig of hundred-counter i s

for vhdl-87-arch
f o r one-digit : dec-counter

end f o r ;
f o r ten-digit : dec-counter

end f o r ;

use e n t i t y dec-counter(down-arch) ; -- l i b dropped

use e n t i t y dec-counter(down-arch) ;

end f o r ;
end ;

Notethatthe1ibrarynameisdroppedfiomthe"use entity dec-counter(down,arch) ;"
statement.

The work library is declared implicitly by VHDL definition, and thus there is no need
for the "library work; " statement.

OTHER SUPPORTING CONSTRUCTS FOR A LARGE SYSTEM 491

13.5.2 Subprogram

Subprograms in VHDL include functions and procedures. Their bodies are made of se-
quential statements, and their behaviors are similar to those in traditional programming
languages. Unlike entity and architecture, procedures and functions are not design units
and thus cannot be processed independently. For example, we cannot isolate a function from
the code and synthesize it separately. Therefore, while the functions and procedures are
basic building blocks of software hierarchy, they are not adequate to describe the hardware
hierarchy.

VHDL functions are more versatile and useful than procedures, and thus our discussion
focuses mainly on functions. In synthesis, functions should not be used to specify the
design hierarchy, but should be treated as a shorthand for simple, repeatedly used opera-
tions. Functions are also needed to perform certain house-keeping tasks, such as data type
conversion or operator overloading in IEEE packages.

A VHDL function takes several parameters and returns a single value. It must first be
declared in the declaration section and then can be called later. A function can be thought
of as an extension of the expression and can be “called” wherever an expression is used.
The simplified syntax of a function is

f u n c t i o n func-name (parameter-list) return data-type i s

begin
declarations;

sequential statement;
sequential statement;

return (expression) ;
. . .

end ;

The following examples illustrate the construction of a function. The first example is a
function that performs a majority function. It returns ’1’ if two or more input parameters,
a, b and c, are ’1’. The function can be treated as a shorthand for the a b + a c + b . c
expression.

f u n c t i o n maj(a, b , c: std-logic) return std-logic i s

begin
v a r i a b l e result : std-logic ;

result := (a and b) or (a and c) or (b and c) ;
return result;

end maj ;

illustrates its use:
The ma j function must be declared and then can be invoked. The following code segment

a r c h i t e c t u r e arch of . . .
- d e c l a r a t i o n
f u n c t i o n maj(a, b , c: std-logic) return std-logic i s

begin
v a r i a b l e result : std-logic ;

result := (a and b) or (a and c) or (b and c) ;
return result;

end maj ;
s i g n a l il, i2, i3, i4, x, y: std-logic;

begin
. . .

492 HIERARCHICAL DESIGN IN VHDL

x <= maj (i1 , i 2 , i 3) or i 4 ;
y <= il when m a j (i 2 , i 3 , i 4) = ’ 1 ’ e l s e
. . .

Note that the entire function definition is included in the declaration section of the archi-
tecture body. This may become cumbersome. An alternative is to declare the function in a
package, which is discussed in the next subsection.

The second example is a function that performs data type conversion. It converts the
s t d - l o g i c data type to the boolean data type.

f u n c t i o n t o - b o o l e a n (a : s t d - l o g i c) return b o o l e a n i s

begin
v a r i a b l e r e s u l t : b o o l e a n ;

i f a = ’ l ’ then

e l s e

end i f ;
return r e s u l t ;

r e s u l t := t r u e ;

r e s u l t : = f a l s e ;

end t o - b o o l e a n ;

If this function is declared, we can use to-boolean(a) to replace the a=’ 1 ’ expression.

calculating the width of data signals.
The last example is a function that performs [log, nl, which is frequently needed in

f u n c t i o n l o g 2 c (n : i n t e g e r) return i n t e g e r i s

begin
v a r i a b l e m , p : i n t e g e r ;

m := 0 ;
p := 1;
while p < n l oop

m := m + 1;
p := p * 2 ;

end l o o p ;
return m;

end l o g 2 c ;

13.5.3 Package

As a system becomes complex, more information is included in the declaration section. The
declaration section of an architecture body may consist of the declarations of constants, data
types, components, functions and so on. When a system is divided into several smaller sub-
systems, some declarations must be duplicated in many different design units. The VHDL
package construct is a method of organizing declarations. We can gather the commonly
used declarations in a design, group them together and store them in a package. A design
unit just needs to include a use clause to access these declarations.

A VHDL package is divided into package declaration andpackage body. The declaration
items are placed in a package declaration. If an item is a subprogram, only the declaration
of the subprogram is included. The body (i.e., the implementation) of the subprogram is
placed in the associated package body. The package body is optional and is needed only
when subprograms exist.

OTHER SUPPORTING CONSTRUCTS FOR A LARGE SYSTEM 493

Package declaration and package body are design units of VHDL. They are analyzed
independently and stored in a library. To make a declaration item visible, a use clause is
needed. Its syntax is

use lib-name.package-name.item_name;

Most of the time, we use the all keyword in place of itemname to make all items of the
named package visible.

Many extensions to VHDL are done by defining additional packages, such as the EEE
std-logic-1164 and numeric-std packages. Almost all of our VHDL codes include the
statement

use ieee. std-logic-1164. a l l ;

It makes all of the declaration items of the predefined std-logic-1164 package visible,
and thus we can use the std-logic and stdlogic-vector data types in VHDL code.

We can also define our own package. The syntax of a package declaration is very simple:

package package-name i s
declaration item;
declaration item;
. . .

end package-name ;

If the declaration items include subprograms, an associated package body is needed. Its
syntax is

package body package-name i s
subprogram ;
subprogram;

end package-name ;
. . .

An example of package declaration is shown in the first part of Listing 13.10. It consists
of the definition of the std-logic-2d data type, which is a two-dimensional array with
element of std-logic data type, and the declaration of the log2c function. Note that the
package also invokes the EEE stdlogic-1164 package so that the std-logic data type
can be used. The corresponding package body is shown in the second part of Listing 13.10,
which is the implementation of the log2c function.

Listing 13.10 Example of a package

- package d e c l a r a t i o n
l i b r a r y ieee ;
use ieee. std-logic-1164. a l l ;
package util-pkg i s

5 type atd-logic-2d i s
array (integer range < > , integer range <>) of std-logic ;

f u n c t i o n log2c (n : integer) return integer;
end util-pkg ;

10 --package body
package body util-pkg i s

f u n c t i o n log2c (n : integer) return integer is

begin
v a r i a b l e m, p: integer;

494 HIERARCHICAL DESIGN IN VHOL

I5 m := 0;
p : = 1;
while p < n loop

m := m + 1;
p : = p * 2;

20 end l o o p ;
r e t u r n m ;

end log2c;
end util-pkg ;

For the parameterized mod-n counter of Section 13.3, one drawback is that we must use a
redundant WIDTH generic to specify the width of the output signal. To overcome the problem,
we need a previously defined function to calculate WIDTH from N. The log2c function of
the util-pkg package can be used for this purpose. We can invoke this package before the
entity declaration. Assume that the package is saved in the same working directory. The
improved code is shown in Listing 13.1 1.

Listing 13.11 Improved parameterized mod-n counter

l i b r a r y ieee;
use ieee. std-logic-1164. a l l ;
use ieee. numeric-std. a l l ;
use work. util-pkg . a l l ;

g e n e r i c (N: natural) ;
p o r t (

5 e n t i t y better-mod-n-counter i s

clk, reset: i n std-logic;
en: in std-logic;

pulse : out std-logic
10 q: out std-logic-vector (log2c (NI -1 downto 0) ;

1;
end better-mod-n-counter;

25

35

I5 a r c h i t e c t u r e arch of better-mod-n-counter i s
c o n s t a n t WIDTH : natural : = log2c (N) ;
s i g n a l r-reg : unsigned(W1DTH -1 downto 0) ;
s i g n a l r-next : unsigned(W1DTH-1 downto 0) ;

begin
2 0 - r e g i s t e r

process (clk, reset I
begin

if (reset=’l’) then

e l s i f (clk’event and clk=’l’) then

end i f ;
end p r o c e s s ;
- n e x t - s t a t e l o g i c

30 process (en, r-reg)
begin

r-reg <= (o t h e r s = > ’ O ’) ;

r-rag <= r-next;

r-next <= r-reg;
i f (en=’1’) then

i f r-reg=(N-l) then
r-next <= (o t h e r s = > ’0 ’1 ;

PARTITION 495

e l s e

end i f ;
r-next <= r-reg + 1 ;

end i f ;
40 end p r o c e s s ;

-- o u t p u t l o g i c
q <= std-logic-vector(r-reg);
pulse <= '1' when r-reg=(N-l) e l s e

'0';
45 end arch;

We add the statement

use work. util-pkg. a l l ;

to make the log% function visible. The function can then be used in the range specifica-
tion for the q output, as in std-logic-vector (log2c (N) -1 downto 01, as well as the
calculation of the internal WIDTH constant.

13.6 PARTITION

VHDL provides powerful mechanisms and versatile language constructs to support hier-
archical design methodology and to manage the design of large systems. To apply these
features, we must first determine the design hierarchy and divide the system into smaller
parts. The process is sometimes known as design partition.

For synthesis, the design partition can be viewed from two perspectives: physical parti-
tion and logical partition. Physical partition is the division of the physical implementation.
It specifies how the circuit is divided during synthesis. Logical partition is imposed by
human designers. The goal is to make the design, development and verification of a system
manageable. The two kinds of partitions are correlated but not necessarily identical.

13.6.1 Physical partition

A digital system can be described by a hierarchy of an arbitrary number of levels. The
circuit parts becomes simpler as we traverse down the hierarchy. In VHDL code, the circuit
parts are described as component instances. When the code is processed, the components
are replaced by the actual architecture bodies level by level, and the hierarchy is gradually
converted to a flattened description. One way to perform synthesis is to collapse the entire
hierarchy into a one big, flattened circuit and then to synthesize the circuit accordingly.
More sophisticated software provides mechanisms to selectively flatten the hierarchy and
preserve some high-level components. The software will synthesize and optimize these
components separately and then merge the resulting netlists (i.e., the cell level descriptions)
to form the final circuit.

An important issue is the size of the preserved components. Since synthesis involves
many sophisticated algorithms, the required computation time and memory space are nor-
mally much worse than the linear order, O(n), where n is the size of the circuit. This implies
that synthesizing a large circuit will take much more computation time and memory space
than that required by several smaller circuits. For example, assume that an algorithm is on
the order of 0(n3). If it requires 1 second to synthesize a 1000-gate circuit, it will take
125 seconds (i.e., 53 seconds) to synthesize a 5000-gate circuit and 35 hours (i.e., 503 sec-
onds) to synthesize a 50,000-gate circuit. However, if we break the 50,000-gate circuit into

496 HIERARCHICAL DESIGN IN VHDL

ten 5000-gate circuits, it requires only about 21 minutes (i.e., 10 * 53 seconds) to synthesize
the ten small parts.

On the otherhand, when we preserve acomponent, it implicitly forms a “synthesis bound-
ary,” and optimization can only be performed within the boundary. This prevents synthesis
software from exploring optimization opportunities that exist between components. Thus,
small component size hinders the optimization process and leads to less efficient overall
implementation. Many software tools suggest that the maximal gate count for synthesis is
between 5000 and 50,000 gates.

13.6.2 Logical partition

The logical partition is determined by human designers. A good partition simplifies and
streamlines the development and verification process, and makes the code reliable and
portable. To facilitate the synthesis, a “logical circuit part” in the hierarchy should be
within the range of the maximal gate count recommended by the synthesis software. On the
other hand, since synthesis software can flatten and collapse a part of the hierarchy, smaller
“logical parts” can be used in the design hierarchy.

In addition to synthesis concerns, partition should also be used to help develop reliable
design, and portable and reusable code. We should pay particular attention to the circuits
that may hinder portability or introduce problems in development flow. It is a good idea to
separate these circuits from ordinary logic and instantiate them as components in a design
hierarchy. Two types of circuits of concern are:

0 Device-dependent circuits
0 Non-Boolean circuits

Device-dependent circuits Device-dependent circuits are those not synthesized by
generic logic gates. They are predesigned or even prefabricated for a specific device tech-
nology. For example, most device technology has various types of prefabricated memory
modules. These circuits are inferred by component instantiation and require no synthesis.
Once a device-dependent circuit is used, the VHDL code becomes device dependent. To
maintain portability, one way is to isolate these circuits in the top-level hierarchy and in-
stantiate them as individual components. If the VHDL code is used later for a different
device technology, we need only substitute these components with equivalent circuits of
the new technology and keep the remaining code intact.

Non-Boolean circuits Digital system design is primarily based on a mathematical
model of Boolean algebra and its derivations. The algorithms in analysis, synthesis, verifi-
cation and testing are developed within this framework. If a circuit does not follow the basic
mathematical model, we call it a non-Boolean circuit. Some examples are listed below.

0 Tri-state bufler. It has a third possible value, high impedance, in its output. The high
impedance cannot be optimized or propagated as regular logic values.

0 Delay-sensitive circuit. It uses logic gates to introduce a specific amount of propa-
gation delay. The function of the circuit relies on the delay characteristics, not on
Boolean algebra manipulation.

0 Clock distribution circuit. It distributes the clock signal to the connected FFs. The
circuit functions as a current amplifier and performs no logic operation.

0 Synchronization circuit. It uses FFs to resolve the metastable condition, not for
regular storage. This is discussed in Chapter 16.

SYNTHESIS GUIDELINES 497

These circuits should be isolated in the hierarchy so that later they can be processed
independently.

13.7 SYNTHESIS GUIDELINES

0 Use components, not subprograms, to specify the design hierarchy.

0 Use the s td- logic and std-logic-vector data types in the ports of components
to maintain portability.

0 Use named association, not positional association, in port mapping and generic map-
Ping.

0 List all ports of a component in port mapping and use open for unused output ports.

0 For synthesis, partition the system into 5000- to 50,000-gate modules. Collapse and

0 Separate device-dependent parts from ordinary logic and instantiate them as compo-

flatten low-level hierarchy if the components are too small.

nents in a hierarchy.

0 Separate non-Boolean circuits from ordinary logic and instantiate them as compo-
nents in a hierarchy.

13.8 BIBLIOGRAPHIC NOTES

This chapter provides a detailed discussion of VHDL components and gives a brief review
of many other language constructs. The review is aimed primarily at synthesis of the RT-
level system. Comprehensive coverage and the syntax of these constructs can be found in
VHDL texts, such as The Designer’s Guide to VHDL, 2nd edition, by P. J. Ashenden.

Problems

13.1
Use the dec-counter of Section 13.2.1 as a component to design this circuit.

Consider a three-digit decimal counter that counts from 000 to 999 and wraps around.

(a) Derive the block diagram and properly label the formal and actual signals.
(b) Follow the block diagram to derive the VHDL code.
(c) Use a configuration specification for configuration.
(d) Same as part (c), but use a configuration declaration for configuration.

13.2
of Section 13.3.

Redesign the three-digit decimal counter of Problem 13.1 using the mod-n counter

(a) Derive the block diagram and properly label the formal and actual signals.
(b) Follow the block diagram to derive the VHDL code.

13.3 We want to design a timer that counts from 00 to 59 seconds and then wraps around.
Assume that the system clock is 1 MHz. Use the mod-n counter of Section 13.3 as a
component to design this circuit.

(a) Derive the block diagram and properly label the formal and actual signals.
(b) Follow the block diagram to derive the VHDL code.

498 HIERARCHICAL DESIGN IN VHDL

13.4
code for the counter. Use generics, M and N, for m and n of the counter.

13.5
two comparison circuits.

Consider a counter that counts from m to n and then wraps around. Derive VHDL

Divide the FIFO control circuit in Figure 9.14 into a hierarchy of two counters and

(a) Derive VHDL entities and architectures for the counter and comparison circuits.
(b) Follow the diagram in Figure 9.14 to derive the VHDL code.

13.6 Some synthesis software does not accept the ** operator. Derive a VHDL function,
power2, that implements the function f(n) = 2n.

13.7 Derive a function that converts the boolean data type into the s td- logic data
type. The t r u e and f a l s e values of the boolean type are converted to ’ I and ’0’ of
the s td- logic data type respectively.

CHAPTER 14

PARAMETERIZED DESIGN: PRINCIPLE

Design reuse is one of the major goals in developing VHDL code. Ideally, we want to design
some common modules that can be shared by many applications. Since every application
is different, it is desirable that a module can be customized to some degree to meet the
specific need of an application. Customization is normally specified by explicit or implicit
parameters, and we call this purumeferized design. The most important parameter is the
“width” of the module, which describes the number of bits of the data signal, as in a 24-
bit adder. VHDL provides several mechanisms to pass and infer parameters and includes
several language constructs to describe the replicated structure. In this chapter, we examine
these basic mechanisms and constructs and use simple examples to illustrate their use.
More detailed and comprehensive parameterized designs and case studies are discussed in
Chapter 15.

14.1 INTRODUCTION

As the size of digital systems continues to grow, designing every system from scratch re-
quires a tremendous amount of time and effort. One way to increase productivity and
efficiency is design reuse. Many applications use parts of common functionalities. We can
design and verify these parts once, store them in a library and then reuse them in other appli-
cations. As we discussed in Chapter 13, VHDL provides a versatile and powerful framework
to facilitate the hierarchical design methodology and to accommodate predesigned com-
ponents. Thus, once the commonly used parts are developed, design reuse can readily be
incorporated into the VHDL environment.

RTL Hardware Design Using VHDL: Coding for Eficiency, Ponability, and Scalability. By Pong P. Chu
Copyright @ 2006 John Wiley & Sons, Inc.

499

500 PARAMETERIZED DESIGN: PRINCIPLE

While circuits share some parts of common functionalities, the exact specification of the
part differs. For example, many applications need a binary counter. The basic construction
of counters is similar, but the numbers of bits and the direction of the counting sequence
depend on the need of a specific application. The chance that a fixed-size counter, say, an
1 1 -bit up counter, will be reused is very small. On the other hand, if we develop a counter
module that can be customized with different numbers of bits and counting directions, it
can be utilized by many applications. The customization is normally done by describing
certain circuit aspects with external parameters, and thus we call this parameterized design.

VHDL supports parameterized design in several ways. First, it provides mechanisms
to pass parameters into an entity and to extract information from objects inside the en-
tity. Second, most operators of VHDL and overloaded operators of the std-1164 and
numeric-std packages are defined over unconstrained arrays, which are “implicitly pa-
rameterized.” Finally, VHDL has two language constructs,for generate and for loop, that
can be used to describe replicated structures. The desired circuit width can be obtained by
properly specifying the index range of these constructs.

14.2 TYPES OF PARAMETERS

In a parameterized design, we can broadly divide the parameters into width parameters and
feature parameters. They are discussed in the following subsections.

14.2.1 Width parameters

For design-reuse purposes, we can classify a system’s input and output signals into data
signals and non-data signals. The clearest example is an FSMD system. The external signals
that flow into and out of the data path are the data signals, and the clock and reset signals
as well as the command and status signals are the non-data signals. For example, consider
the sequential multiplier of Section 11.3.3. The a-in, b-in and r are the data signals and
the clk, reset, start and ready are the non-data signals. Some combinational circuits,
such as a multiplier or a barrel shifter, contain only data signals.

The widths of data signals normally can be modified to meet different requirements
whereas the non-data signals need little or no revision. Again, consider the sequential
binary multiplier. We can modify the design to process 16-, 24- or 32-bit operands. The
width of the data signals (i.e., a-in, b-in and r) as well as the internal signals and registers
will change accordingly. On the other hand, the non-data signals (i.e., c lk , reset, start
and ready) remain the same.

The width parameters of a parameterized design specify the sizes (i.e., number of bits) of
the relevant data signals. A system may need one or more parameters to describe the sizes
of input and output signals as well as the sizes of internal signals and registers. For example,
the sequential binary multiplier requires one independent width parameter to specify the
size of the operands (and the size of the product can be derived accordingly). The FIFO
buffer requires two independent width parameters, one for the number of bits in a word and
one for the number of words in a buffer.

The main goal of parameterized design is to describe the desired design in terms of
the width parameters so that the same VHDL description can be used for applications with
different size requirements. Since the sizes of the data signals can be increased or decreased,
we also call this scalable design.

SPECIFYING PARAMETERS 501

14.2.2 Feature parameters

In addition to width, we can use parameters to specify the structure or organization of a
design. We call thesefeature Parameters. The feature parameters are defined on an ad hoc
basis. We normally use feature parameters to include or exclude certain functionalities (i.e.,
features) from the implementation or to select one particular version of the implementation.

A feature parameter is generally used to specify small variations within a design. For
example, we can specify whether to include an output buffer for the output signal of an
FSM, or whether to use a synchronous or asynchronous reset signal for a counter.

In theory, we can also use the feature parameters to select totally different implemen-
tations. For example, a counter may have several possible implementations, and we can
use a parameter to choose binary counter-based implementation, Gray counter-based im-
plementation, or LFSR-based implementation. To accommodate this, the corresponding
VHDL code almost has the description of three independent designs. It may be better to
code the three implementations in three separate architecture bodies and use a configuration
to instantiate the desired implementation.

There is no definite rule about the use of the feature parameters and the configuration.
When a feature parameter leads to significant modification or addition of the non-feature
code, it is probably time to use separate architecture bodies and configurations. An example
is given in Section 14.6.3.

14.3 SPECIFYING PARAMETERS

A parameterized design needs a mechanism to specify the parameters. There are several
ways to do this in VHDL, including generics, array attribute and unconstrained array.
Generics behave somewhat like parameters passing between the main program and a routine
in a traditional programming language. Array attribute and unconstrained array derive the
needed parameter values indirectly from a signal or port declaration.

14.3.1 Generics

We discussed generics in Section 13.3. They can be thought of as symbolic constants that
are passed into the entity declaration. When the entity is used later as a component, the
generics are assigned values during component instantiation.

Although a generic can assume any data type, only the integer data type is allowed
in the IEEE 1076.6 RTL synthesis standard. While the integer data type is used mainly
with a width parameter, we can also utilize it as a flag to specify the desired feature. For
example, we can use the values of 0 and 1 to specify whether a buffer is needed for an output
signal. Since the width parameter cannot be negative, we sometimes use the natural data
type, which is a subtype of integer, for a generic.

In this chapter, we use the reduced-xor circuit to illustrate various concepts. The reduced-
xor circuit applies xor operation over the elements of an array. For example, assume that the
input signal is a 3 ~ 2 a 1 ~ 0 . The reduced-xor circuit performs the a3 @a2 @ a1 @ a0 operation.
In Section 5.6.2, this circuit was implemented by using a for loop statement. Since the
original code was written with reuse in mind, it can easily be converted to parameterized
design.

To utilize a generic, we need to replace the constant declaration in the original code
with a generic declaration in the entity declaration. The parameterized code is shown in
Listing 14.1.

502 PARAMETERIZED DESIGN: PRINCIPLE

Listing 14.1 Parameterized reduced-xor circuit using a generic

l i b r a r y ieee;
use ieee. std-logic-1164. a l l ;
e n t i t y reduced-xor i s

gener ic (WIDTH: natural) ; - g e n e r i c d e c l a r a t i o n
s p o r t (

a: in std-logic-vector (WIDTH-1 downto 0) ;
y : out std-logic

1;
end reduced-xor ;

a r c h i t e c t u r e loop-linear-arch of reduced-xor i s

begin

10

s i g n a l tmp: std-logic-vector (WIDTH-1 downto 0) ;

process (a,tmp)
IS begin

tmp(0) <= a(0); - boundary b i t
for i in 1 to (WIDTH-1) l oop

tmp(i) <= a(i) xor tmp(i-1);
end l o o p ;

20 end p r o c e s s ;
y <= tmp(W1DTH-1);

end loop-linear-arch;

14.3.2 Array attribute

A VHDL attribute provides information about a named item, such as a data type or a signal.
We have used the ’event attribute, as in clk’event, to express the changing edge of the
clk signal, There is a set of attributes associated with an object of an array data type. Let
s be a signal with an array data type. The following attributes provide some information
about the array:

0 s ’ left, s’right: the left and right bounds of the index range of s.
0 s’low, s ’high: the lower and upper bounds of the index range of s.
0 s ’length: the length of the index range of s.
0 s ’range: the index range of s.
0 s ’reverserange: the reversed index range of s.

Recall that the std-logic-vector, unsigned and signed data types are defined as
array types. The attributes can be applied to the signals defined with these data types. For
example, consider the following signals:

s i g n a l sl : std-logic-vector (31 downto 0) ;
s i g n a l s2 : std-logic-vector (8 t o 15) ;

The attributes of sl are
0 sl’left = 31; sl’right = 0;
0 sl’low = 0; sl’high= 31;
0 sl ’length = 32;
0 sl’range=31 downto 0
0 sl’reverseiange = 0 to 31

The attributes of s2 are

SPECIFYING PARAMETERS 503

0 s2’left = 8; s2’right = 15;
0 s2’low = 8; s2’high = 15;
0 s2’length = 8;
0 s2’range=8 to 15
0 s2’reverserange = 15 downto 8

These attributes provide information about the width and boundary of a signal. This
information can be used as parameters in VHDL code. For example, we can rewrite the
reduced-xor code in Listing 14.1 using the ’length attribute, as shown in Listing 14.2.
The a’length returns the size of the a signal and plays the role of the previous WIDTH
generic.

Listing 14.2 Parameterized reduced-xor circuit using an attribute

a r c h i t e c t u r e attr-arch of reduced-xor i s

begin
s i g n a l tmp: std-logic-vector (a’length-1 downto 0) ;

process (a, tmp)
J begin

tmp(0) <= a(O>;
f o r i in 1 to (a’length-1) loop

tmp(i) <= a(i) xor tmp(i-1);
end l o o p ;

10 end p r o c e s s ;

end attr-arch;
y <= tmp(a’1ength-1);

The range of the for loop can also be expressed in other attributes:
0 for i in a’low+l to a’high loop
a for i in a’right+l to a’left loop

The last signal assignment statement of the code accesses the leftmost bit of the tmp
signal. We can use the ’left attribute to obtain the left bound of the signal and rewrite the
statement as

y <= tmp(tmp’1eft);

Since the WIDTH generic is included in the entity declaration, the relevant boundaries
can be expressed clearly and concisely by the WIDTH generic, as in Listing 14.1. Use
of the attributes is somewhat redundant and even cumbersome in this example. The real
application of the array attributes is with the unconstrained array, which is discussed in the
next subsection.

14.3.3 Unconstrained array

The std-logic-vector, unsigned and signed data types are the three main array types
used in this book. They are defined as an unconstrained array internally. For example, in
the std-logic-1164 package, the std-logic-vector data type is defined as follows:

type std-logic-vector i s array (natural range < > I
of std-logic;

It indicates that the data type of the index value must be natural, but it does not specify
the exact bounds. If an object is declared with an unconstrained array data type, we must
specify its index range (i.e., a constraint) when the data type is used, as 15 downto 0 in

504 PARAMETERIZED DESIGN: PRINCIPLE

signal x : std-logic-vector (15 downto 0) ;

The port declaration is considered a special case. The unconstrained array can be declared
without specifying the range. For example, we can describe a register with no explicit range,
as shown in Listing 14.3.

Listing 14.3 Unconstrained D FF
library ieee ;
use ieee. std-logic-1164. all ;
entity unconstrain-dff i s

port (
5 clk : std-logic ;

d: in std-logic-vector ;
q: out std-logic-vector

1;
end unconstrain-df f ;

architecture arch of unconstrain-df f is
begin

10

process (clk)
begin

IS if (clk’event and clk=’l’) then
q (= d;

end if;
end process;

end arch;
~~~ 

Note that the data type for the d and q ports is std-logic-vector and no range is 
specified. The actual range of the std-logic-vector data type is inferred when an instance 
of unconstrain-dff is instantiated. The ranges of the actual signals become the ranges 
of the d and q signals. For example, the df f 16 instance is instantiated as a 16-bit register 
in the code segment shown below. 

. . .  
signal din, qout : std-logic-vector (15 downto 0) ; 
signal clk : std-logic ; 

dffl6: unconstrain-dff 
. . .  

port map(clk=>clk , d=>din , q=>qout) ; 
. . .  

In this mechanism, we can think that the width parameter is embedded in the actual signal 
and passed to the entity declaration when the corresponding component is instantiated. 

Since no range is specified for d and q, the boundaries of the two signals will not be 
checked in the analysis stage. The following code segment is syntactically correct: 

. . .  
signal din: std-logic-vector (15 downto 0) ; 
signal qout : std-logic-vector (7 downto 0) ; 

dff-error: unconstrain-dff 
. . .  

port map(clk=>clk , d=>din , q=>qout) ; 
. . .  



SPECIFYING PARAMETERS 505 

The error can only be detected during the elaboration or execution stage of the code. To make 
the design more robust, we may need to add error-checking code in the unconstrain-df f 
description to ensure. that d and q have the same range when the component is instantiated. 

The previous reduced-xor circuit can also be described without using an explicit range 
in the a signal. The VHDL code is shown in Listing 14.4. The description is basically 
patterned after the code in Listing 14.1. In the new code, the generic declaration is removed 
and the range of the a signal is omitted. The width parameter is inferred from the ’ length 
attribute of the a signal and then declared as a constant in the declaration of the architecture 
body. 

Listing 14.4 Parameterized reduced-xor circuit using an unconstrained array 

l i b r a r y  ieee; 
use ieee. std-logic-1164. a l l  ; 
e n t i t y  unconstrain-reduced-xor i s  

port  ( 
S a: in  std-logic-vector ; 

y: out  std-logic 

end unconstrain-reduced-xor; 
1; 

ID a r c h i t e c t u r e  arch of unconstrain-reduced-xor i s  
cons tant  WIDTH : natural:= a’length; 
s i g n a l  tmp: std-logic-vector (WIDTH-1 downto 0) ; 

process  (a tmp) 
begin 

IS begin 
tmp(0) <= a(0) ; 
for i in  1 t o  (WIDTH-1) loop 

end l o o p ;  
20 end p r o c e s s ;  

tmp(i) <= a(i) xor tmp(i-1); 

y <= tmp(W1DTH-1); 
end arch; 

The code appears to be correct at first glance. For example, if we map the a signal to an 
actual signal with the data type of std,logic-vector(7 downto 0) during component 
instantiation, the code functions as expected. However, since the range of the a signal is 
inferred from the actual signal, it is same as the actual signal. For an 8-bit actual signal, the 
following range specification formats are possible: 

0 std,logic,vector(7 downto 0) 
0 std-logic-vector(0 to 7) 
0 std-logic,vector(l5 downto 8) 
0 std-logic-vector (8 to 15) 

The code does not work properly for the last two formats. 
One way to fix the problem is to assign the a signal to an internal signal of known format 

and use that signal in the code. This scheme is shown in Listing 14.5. We first assign a 
into an internal aa signal, whose range is specified as WIDTH-1 downto 0, and use it in 
the remaining architecture body. 



506 PARAMETERIZED DESIGN: PRINCIPLE 

Listing 14.5 Improved parameterized reduced-xor circuit using an unconstrained array 

a r c h i t e c t u r e  b e t t e r - a r c h  of unconstrain-reduced-xor i s  
constant  WIDTH : natura l  : = a )  l e n g t h  ; 
s i g n a l  tmp: s t d - l o g i c - v e c t o r  (WIDTH-1 downto 0) ; 
s i g n a l  a a :  s t d - l o g i c - v e c t o r  (WIDTH-1 downto 0) ; 

aa <= a ;  
process  ( a a ,  tmp) 
begin 

J begin 

tmp(0) <= a a ( 0 ) ;  
10 for  i in 1 to (WIDTH-1) loop 

t m p ( i )  <= a a ( i )  xor t m p ( i - 1 ) ;  
end loop;  

end p r o c e s s ;  
y <= tmp(W1DTH-1); 

IS end b e t t e r - a r c h ;  

14.3.4 Comparison between a generic and an unconstrained array 

A generic and an unconstrained array are two mechanisms to convey width parameter infor- 
mation. The unconstrained array mechanism uses attributes to infer the relevant information 
from the actual signals. Since the width parameter is derived automatically, this mecha- 
nism is more general and flexible than the generic mechanism. However, the flexibility also 
introduces more opportunities for errors, as shown in the examples in Section 14.3.3. 

To develop robust and reliable code for an unconstrained array, we must consider the 
different formats of range specifications and the potential width mismatch between vari- 
ous signals. These require comprehensive error-checking code to cover possible erroneous 
conditions. This code may become very involved and unnecessarily complicate the devel- 
oping and coding process and even overshadow the real design issues. Unless a module is 
extremely general and widely used, the generic mechanism is satisfactory. We prefer to use 
the generic mechanism in this book. When the mechanism is more rigid, it clearly specifies 
the range, direction and width of each signal and avoids many subtle erroneous conditions. 
This allows us to focus on development of real hardware rather than on error checking. 

14.4 CLEVER USE OF AN ARRAY 

The logical, relational and arithmetic operators of VHDL and the overloaded operators of 
the stdlogic-1164 and numeric-std packages are defined over unconstrained arrays 
and thus can be applied to arrays of any size. We can think that they are “implicitly 
parameterized.” For example, consider the following code segment: 

r <= a - b when a > b e l s e  
a + b ;  

Since the +, - and > operators can accommodate any array sizes, the code is implicitly 
parameterized. 

In a more sophisticated code, an element or a slice of array may be referred and a 
signal may be assigned or compared with a constant vector value. One key to developing 
parameterized design is to refrain from fixed-size references. Instead, the references should 
be expressed in terms of attributes or width parameters. We actually have followed this 



CLEVER USE OF AN ARRAY 507 

practice from the beginning of the book. One early coding guideline is to use symbolic 
constants instead of hard literals. In a properly coded program, we can convert a regular 
design into a parameterized design by replacing symbolic constants with expressions derived 
from attributes and generics. The following subsections discuss techniques to achieve this 
goal and present several examples to illustrate use of these techniques. Lots of regular code 
can be modified and converted to parameterized descriptions by cleverly using the array 
data type. 

14.4.1 Description without fixed-site references 

As in input and output ports, we can classify the internal signals as data and non-data signals. 
Data signals normally have an array data type, such as std-logic-vector, unsigned or 
signed. To achieve parameterized design, we should try to use the width parameters or 
attributes to describe operations that involve data signals. Following are some techniques 
to avoid a fixed-size description. 

Using named association for aggregates A signal or variable is frequently as- 
signed with a fixed value, as in the initiation of a sequential system. For example, the 
following is the initialization statement of an 8-bit counter: 

q-reg <= ~ ~ O O O O O O O O ~ l ;  

This statement must be revised every time when the width of the counter is modified. A 
better alternative is to use named association: 

q-reg <= ( o t h e r s  =>  ’0’); 

This statement will remain the same regardless of the width of the counter. Other frequently 
used constant aggregates include all 1’s (i.e., 11 . . .ll“): 

q-reg <= ( o t h e r s  => ’1’); 

and a single 1 in the LSB (i.e., “00. . . 01 If): 
q-reg <= ( 0 = > ’ 1 ’ ,  o t h e r s  => ’0’); 

The aggregate has to be assigned to an object of known size and cannot be used in 
an expression. For example, the following code segment attempts to check whether a is 
all-zero and is invalid 

s i g n a l  a :  std-logic-vector ( W I D T H - 1  downto 0) 

x <= ’1’ when ( a = ( o t h e r s = > ’ O ’ ) )  e l s e  . . .  
. . .  

One way to correct the problem is to use the ’ range attribute to provide the size information: 

x <= ’1’ when ( a = ( a ’ r a n g e = > ’ O ’ ) )  e l s e  . . .  
Another somewhat cumbersome, but more descriptive way is to define a constant for the 
all-zero conditions: 

cons tant  ZERO std-logic-vector ( W I D T H - 1  downto 0) 
: = ( o t h e r s = > ’ O ’ ) ;  

s i g n a l  a :  std-logic-vector ( W I D T H - 1  downto 0) 

x <= ’1’ when (a=ZERO)) e l s e  . . .  
. . .  



508 PARAMETERIZED DESIGN: PRINCIPLE 

Using an integer and conversion function in an expression If an object is with 
the unsigned or signed data types, we can express a constant in integer format since the 
relational and arithmetic operators are overloaded with the integer or natural data type. 
For example, assume that the a signal is with the unsigned data type. Instead of using a 
constant in the unsigned data type, as in 

x <= ‘ 1 ’  when (a=110000011018) e l s e  . . .  
we can express the constant in the natural data type, as in 

x <= ’1’ when (a=6) e l s e  . . . 
The constant 6 will be converted to the proper number of bits, and thus no revision is needed 
when the width of the a signal changes. 

If a constant is assigned to an object, we can convert the integer to the designated data 
type by the width parameter. For example, assume that the x signal is with the unsigned 
data type of WIDTH bits. A constant, say 6, can be assigned to x as 

x <= to-unsigned (6, WIDTH) ; 

When the integer 6 is converted to the unsigned type, the number of bits is automatically 
adjusted with the WIDTH parameter. 

We can do this for an object with the std-logic-vector data type with additional type 
casting. For example, if we assume that the x signal is with the std-logic-vector data 
type, the statement becomes 

x <= std-logic-vector(to-unsigned(6,WIDTH)); 

Similarly, the previous a=ZERO expression can also be written as follows without using 
the constant declaration 

a=std-logic-vector (to-unsigned(0, WIDTH)) 

Of course, the numeric-std package has to be invoked to use the unsigned data type. 

Using the width parameter to refer to a slice or element in an array Some 
VHDL code must make reference to a single element or a slice of an array. The reference is 
frequently the MSB or the LSB and is sometimes dependent on the width of the array. For 
example, assume that src is with the signed(7 downto 0) data type and we use alias to 
refer to the sign of the src signal: 

a l i a s  sign: std-logic := src(7); 

Instead of a hard literal, we can use an attribute to refer to the MSB bit: 

a l i a s  sign : std-logic : = src (src ’ left) ; 
If the data type of src is already parameterized as signed(W1DTH-1 downto 01, we can 
code the statement as 

a l i a s  sign: std-logic := src(W1DTH-1); 

Similarly, instead of expressing rotating right 1 bit as 

dest <= s r c ( 0 )  & src(7 downto 1); 

we can write 

dest <= src (src ’ right) & src (src ’ left downto src right+l) ; 



CLEVER USE OF AN ARRAY 509 

This statement can work only if the size of src is larger than 2 and its range is in 
descending (i.e., downto) order. If the data type of src is already parameterized as 
signed(W1DTH-1 downto 01, the rotation operation can be coded in a more descriptive 
fashion with the WIDTH parameter: 

d e s t  <= s r c ( 0 )  & src(W1DTH-1 downto 1); 

14.4.2 Examples 

Reduced-xor circuit Several codes were developed for the fixed-size reduced-xor cir- 
cuit in Section 7.4.1. In Listing 7.17, we used an auxiliary internal signal to represent the 
intermediate results and described the circuit in a compact, array format. The code can 
easily be converted to a parameterized design by replacing the constant with a generic. The 
entiv declaration is the same as the one shown in Listing 14.1, and the architecture body is 
shown in Listing 14.6. 

Listing 14.6 Parameterized reduced-xor circuit using a clever array representation 

a r c h i t e c t u r e  a r r a y - a r c h  of r educed-xor  i s  

begin 
s i g n a l  tmp: s t d - l o g i c - v e c t o r  ( W I D T H - 1  downto 0) ; 

tmp <= (tmp(W1DTH-2 downto 0) & ’0’) xor  a ;  
s y <= tmp(W1DTH-1); 

end a r r a y - a r c h  ; 

Reduced-and circuit The reduced-and circuit applies and operation to the elements of 
an array. For example, if the input signal is ~3a2~1a0, the reduced-and circuit generates 
the result of a3 - a2 - a1 . a,-,. 

While the reduced-and circuit can be implemented using methods similar to those of 
the reduced-xor circuit, we use a different approach in this example. The design is based 
on the observation that the reduced-and circuit returns ’1’ only when all the inputs are ’1’. 
The code is shown in Listing 14.7, The key is the Boolean condition a= (a’ range=> ’ 1 ’ 1. 
We use the ’range attribute to obtain the range of the a signal and then construct an 
aggregate (a’ range=> ’ 1 ’ 1, in which all elements are assigned to 1 (i.e., I’ 1. . .,‘I). The 
a= (a’range=> 1 ) expression returns true only when the a signal consists of only 1’s. 

Listing 14.7 Parameterized reduced-and circuit using a clever array representation 

l ibrary  i e e e ;  
use i e e e  . s t d - l o g i c - 1 1 6 4 .  a l l  ; 
e n t i t y  reduced-and i s  

gener ic  ( W I D T H :  n a t u r a l ) ;  
s p o r t (  

a :  in s t d - l o g i c - v e c t o r  ( W I D T H - 1  downto 0) ; 
y :  out s t d - l o g i c  

1; 
end r educed-and ;  

a r c h i t e c t u r e  a r r a y - a r c h  of reduced-and i s  
begin 

y <= ’1’ when a = ( a ’ r a n g e = > ’ l ’ )  e l s e  

10 

’0’; 
IS end a r r a y - a r c h  ; 



51 0 PARAMETERIZED DESIGN: PRINCIPLE 

Serial-to-parallel Converter A serial-to-parallel converter accepts input data serially 
and stores the data in a shift register. Since the output of the register can be accessed 
simultaneously, the serial data is converted into parallel format. A parameterized design is 
shown in Listing 14.8. 

Listing 14.8 Parameterized serial-to-parallel converter using a clever array representation 

l i b r a r y  ieee; 
use ieee. std-logic-1164. a i l  ; 
e n t i t y  s2p-converter i s  

gener ic  (WIDTH: natural) ; 

clk: in  std-logic; 
si: in  std-logic; 
q: out std-logic-vector (WIDTH-1 downto 0) 

s p o r t (  

1; 
10 end s2p-converter; 

a r c h i t e c t u r e  array-arch of  s2p-converter i s  

begin 
s i g n a l  q-reg , q-next : std-logic-vector (WIDTH-1 downto 0) ; 

IS process  (clk) 
begin 

i f  (clk’event and clk=’l’) then 

end i f ;  
q-reg <= q-next; 

20 end p r o c e s s ;  
q-next <= si & q-reg(W1DTH-1 downto 1); 
q <= q-rag; 

end array-arch ; 

Adder with status circuit In Section 7.5.3, we discussed a general adder circuit that 
contains a carry-in signal and various status output signals. To process these extra signals, 
the adder is expanded by 2 bits internally. We can convert this circuit into a pararneterized 
design, as shown in Listing 14.9. Note that the WIDTH generic is used to access the various 
elements of the array. 

Listing 14.9 Parameterized adder with status circuit 

l i b r a r y  ieee ; 
use ieee. std-logic-1164. a l l  ; 
use ieee. numeric-std. a l l  ; 
e n t i t y  para-adder-st atus i s  

s gener ic  (WIDTH: natural) ; 
port ( 

a, b: in  std-logic-vector (WIDTH-1 downto 0) ; 
cin: in  std-logic; 
sum: out std-logic-vector (WIDTH-1 downto 0) ; 

10 cout , zero, overflow, sign: out std-logic 
) ;  

end para-adder-status ; 

a r c h i t e c t u r e  arch of  para-adder-status i s  
IS s i g n a l  a-ext , b-ext , sum-ext : signed(WIDTH+l downto 0) ; 



CLEVER USE OF AN ARRAY 51 1 

s i g n a l  ovf: std-logic; 
a l i a s  sign-a : std-logic i s  a-ext (WIDTH) ; 
a l i a s  sign-b: std-logic i s  b-ext (WIDTH) ; 
a l i a s  sign-s : std-logic i s  sum-ext (WIDTH) ; 

a-ext <= signed(’0’ & a & ’ 1 ’ ) ;  
b-ext <= signed(’0’ & b & cin); 
sum-ext <= a-ext + b-ext; 
ovf <= (sign-a and sign-b and ( n o t  sign-s)) or 

25 ( ( n o t  sign-a) and ( n o t  sign-b) and sign-s); 
cout <= sum-ext (WIDTH+l) ; 
sign <= sign-s when ovf=’O’ e l s e  

zero <= ’1’ when (sum-ext (WIDTH downto 1)=0 

20 begin 

not  sign-s ; 

30 and ovf=’O’) e l s e  
’0’. 

J 

overflow <= ovf; 
sum <= std-logic-vector (sum-ext (WIDTH downto 1) 1 ; 

end arch; 

Ring counter We studied two possible implementations of an 8-bit ring counter in 
Section 9.2.2. The first implementation uses the reset  signal to initialize the counter 
to l’OOOOOOOO1ll. The parameterized version is shown in the reset-arch architecture 
of Listing 14.10. The second implementation is a self-correcting design. In the original 
code, a 1 ’ is inserted into the serial input when all 7 MSBs are 0’s. For the parameter- 
ized version, the WIDTH-1 MSBs need to be checked. The VHDL,code is shown in the 
self -correct-arch architecture of Listing 14.10. We create the r h i g h  alias to represent 
the WIDTH-1 MSBs and use the r h i g h =  (rhigh’range=> ’0 ’ 1 expression to check the 
all-zero condition. 

Listing 14.10 Parameterized ring counter 

l i b r a r y  ieee; 
use ieee. std-logic-1164. a l l  ; 
e n t i t y  para-ring-counter i s  

gener ic  (WIDTH: natural) ; 
5 p o r t (  

clk, reset: in  std-logic; 
q: out std-logic-vector (WIDTH-1 downto 0) 

1; 
end para-ring-counter; 

- a r c h i t e c t u r e  u s i n g  a s y n c h r o n o u s  i n  i t i a  1 i z a  t i o  n 
a r c h i t e c t u r e  reset-arch of para-ring-counter i s  

10 

s i g n a l  r-rag : std-logic-vector (WIDTH-1 downto 0) ; 
s i g n a l  r-next : std-logic-vector (WIDTH-1 downto 0) ; 

- r e g i s t e r  
process  (clk reset 
begin 

IS begin 

i f  (reset=’l’) then 

e l s i f  (clk’event and clk=’l’) then 
20 r-reg <= ( O = > ’ l ’ , o t h e r s = > ’ O ’ ) ;  



51 2 PARAMETERIZED DESIGN: PRINCIPLE 

r-reg <= r-next; 
end i f ;  

end p r o c e s s ;  
z - n e x t - s t a t e  l o g i c  

r-next <=r-reg (0) & r-reg (WIDTH-1 downto 1) ; 
-- outpu t  l o g i c  
q <= r-reg; 

end reset-arch; 

- a r c h i t e c t u r e  using self - c o r r e c t i n g  c i r c u i t  
a r c h i t e c t u r e  self-correct-arch of para-ring-counter i s  

s i g n a l  r-reg : std-logic-vector (WIDTH-1 downto 0) ; 
s i g n a l  r-next : std-logic-vector (WIDTH-1 downto 0) ; 

a l i a s  r-high: std-logic-vector (WIDTH-2 downto 0) i s  

30 

35 s i g n a l  s-in: std-logic; 

r-reg(W1DTH-1 downto 1) ; 
begin 
- r e g i s t e r  

40 process  (clk , reset) 
begin 

i f  (reseto’l’) then 

e l s i f  (clk’event and clk=’l’) then 

end i f  ; 

r-reg <= ( o t h e r s = > ’ O ’ ) ;  

r-reg <= r-next; 45 

end p r o c e s s ;  
- n e x t - s t a t e  l o g i c  
s-in <= ‘1’ when r_high=(r-high’range=>’O’) e l s e  

r-next <= s-in & r-reg(W1DTH-1 downto 1); 
-- outpu t  l o g i c  
q <= r-reg; 

end self-correct-arch; 

50 ’0’; 

14.5 FOR GENERATE STATEMENT 

The generate statements are concurrent statements with embedded internal concurrent state- 
ments, which can be interpreted as a circuit part. There are two types of generate statements. 
The first type is thefor generate statement, which is used to create a circuit by replicating 
the hardware part. The second type is the conditional or ifgenerate statement, which is 
used to specify whether or not to create an optional hardware part. The generate statements 
are especially useful for the parameterized design. This section discusses the for generate 
statement and the next section covers the conditional generate statement. 

Many digital circuits can be implemented as a repetitive composition of basic building 
blocks. They frequently exhibit a regular structure, such as a one-dimensional cascading 
chain, a tree-shaped connection or a two-dimensional mesh. Since we can easily expand 
the structure by increasing the number of iterations, these circuits are natural for the param- 
eterized design. The for generate statement is used to describe this kind of circuit. 



FOR GENERATE STATEMENT 51 3 

14.5.1 Syntax 

The simplified syntax of the for generate statement is 

gen-label : 
for loop-index in loop-range generate 

end generate ; 
concurrent statements ; 

The for generate statement is somewhat similar to the basic for loop statement discussed 
in Chapter 4. The for generate statement repeats the loop body of concurrent statements for 
a fixed number of iterations. The looprange  term specifies a range of values between the 
left and right bounds. The range has to be static, which means that it has to be determined 
by the time of execution (synthesis). It is normally specified by the width parameters. The 
loop-index term is used to keep track of the iteration and takes a successive value from 
loopiange  in each iteration, starting from the leftmost value. The index automatically 
takes the data type of loopiange's element and does not need to be declared. The 
gen-label term is mandatory. It is the label used to identify to this particular generate 
statement. 

The loop body contains a collection of concurrent statements, which may include other 
generate statements. The concurrent statements describe a sruge of the iterative circuit. A 
stage description is composed of two main ingredients. One is the description of the basic 
building block and the other is the input-output connection pattern between the blocks. 
The connection pattern is normally specified by a collection of internal signals, which are 
represented as a one- or two-dimensional array with loop-index in their index expression. 

The key to designing an iterative circuit is to identify the basic block and connection 
pattern of a stage. To determine the connection pattern and to describe the relationship 
between the input and output signals of successive stages, we can first draw a small-scale 
circuit diagram, label a few specific connection signals and then derive the general relation- 
ship. 

14.5.2 Examples 

Binary decoder A binary 7 ~ t o - 2 ~  decoder is a circuit that asserts one of the 2n possible 
output signals. The codes of a 2-t0-2~ decoder are shown in Chapters 4 and 5 .  While these 
codes are simple, none can be modified for parameterized design. 

One way to view the binary decoder is to treat each bit of the decoded output as the result 
of a constant comparator. The decoded bit is asserted when the value of the input signal 
matches the hardwired constant value. The block diagram of a 2-t0-2~ decoder is shown in 
Figure 14.1. 

Note that since one input of the comparator is a constant (i.e., hardwired), it can be 
simplified during synthesis. This diagram can easily be replicated with a different input 
width. In the ith stage, code(i) is asserted when the binary value of the a input is equal 
to i. This can be translated into the VHDL statement: 

code (i) <= '1 when a=std-logic-vector (unsigned(i1) e l s e  
'0'; 

The parameterized VHDL code using the for generate statement is shown in Listing 14.1 1. 



514 PARAMETERIZED DESIGN: PRINCIPLE 

Figure 14.1 Block diagram of a 2-to-4 decoder. 

Listing 14.11 Parameterized binary decoder using a for generate statement 

l i b r a r y  ieee; 
use ieee. std-logic-1164. a l l  ; 
use ieee . numeric-std. a l l  ; 
e n t i t y  bin-decoder i s  

5 gener ic  ( W I D T H :  natural) ; 
port ( 

a: in  std-logic-vector ( W I D T H - 1  downto 
code : out std-logic-vector ( P * * W I D T H - l  

) ;  
io end bin-decoder ; 

0) ; 
downto 0) 

a r c h i t e c t u r e  gen-arch of  bin-decoder is 
begin 

comp-gen : 
I5 f or  i in  0 to  ( 2 * * W I D T H - l )  generate  

code (i) <= '1 when i=to-integer (unsigned(a1) e l s e  
'0'; 

end generate  ; 
end gen-arch ; 

Note that we have to include the numeric-std package to use the unsigned data type. 

Reduced-xor circuit As discussed in Section 7.4.1, the reduced-xor circuit can be 
implemented as a cascading chain or a tree. The block diagram of an %bit cascading-chain 
implementation is shown again in Figure 14.2. The diagram exhibits a regular, iterative 
pattern and thus is a good match for the for generate statement description. The building 
block is the xor gate. We divide the chain into stages and number the stages from left 
to right, starting at the 0th stage. The internal signals connect the output of the current 
stage to the input of the next stage. These signals are arranged as an array and the tmp (i) 
signal represents the output of the (i-1)th stage and the input to the ith stage, as shown in 
Figure 14.2. From the diagram, we can see that there is a clear relationship among the two 
input signals and the output signal of an xor gate. For the ith stage, the three signals can be 
expressed as 

tmp(i+i) <= tmp(i) xor a(i+l); 



FOR GENERATE STATEMENT 515 

Figure 14.2 Block diagram of a reduced-xor circuit. 

Note that the statement shows the basic building block (i.e., xor gate) and the interconnection 
between blocks. 

Base on the equation, we can derive the VHDL code using a for generate statement. 
The code is shown in Listing 14.12. The loop body iterates WIDTH-1 times and thus infers 
WIDTH-1 xor gates. 

Listing 14.12 Parameterized reduced-xor circuit using a for generate statement 

s i g n a l  tmp: std-logic-vector (WIDTH-1 downto 0) ; 

tmp(0) <= a(0); 

for i in  1 to (WIDTH-1) generate 

end generate ; 
y <= tmp(W1DTH-I); 

10 end gen-linear-arch ; 

a r c h i t e c t u r e  gen-linear-arch of reduced-xor is 

begin 

5 xor-gen: 

tmp(i) <= a(i) xor tmp(i-I); 

In an iterative structure, the boundary stages interface to the external input and output 
signals, and sometimes their connections are different from the regular blocks. Note that 
we use two special statements to handle the boundary signals of the leftmost and rightmost 
stages. 

The code here and the array-based code in Listing 14.6 actually specify the same circuit 
structure. While the former describes the design stage by stage, the latter lumps the signals 
together in a single array. 

Serial-to-parallel converter We discussed a simple serial-to-parallel converter in Sec- 
tion 14.4.2. It is composed of a series of cascading D FFs, and the conceptual diagram of a 
4-bit implementation is shown in Figure 14.3. Each stage consists of a D FF and next-state 
logic, which is a wire that connects the output of the previous D FF to the input of the 
current D FF. 

The first VHDL description is shown in Listing 14.13. To accommodate the naming 
convention, we extend the q i e g  signal by one extra bit and assign the external si signal 
to qreg(W1DTH). Since qreg(W1DTH) is not assigned inside the for generate statement, 
only WIDTH-1 D FFs will be inferred. The loop body consists of two concurrent statements. 
One is the process for the D FF and the other is the next-state logic. Even the next-state 



51 6 PARAMETERIZED DESIGN: PRINCIPLE 

Figure 14.3 Block diagram of a serial-to-parallel converter. 

logic is very simple; we still follow synchronous design practice and separate it from the 
memory element. 

Listing 14.13 Parameterized serial-to-parallel converter using a for generate statement 

a r c h i t e c t u r e  gen-proc-arch of s2p-converter i s  
s i g n a l  q-next : std-logic-vector (WIDTH-1 downto 0) ; 
s i g n a l  q-rag : std-logic-vector (WIDTH downto 0) ; 

q-reg(WIDTH) <= si; 
df f -gen : 
for  i in (WIDTH-1) downto 0 generate 

begin 

- D FF 
process  (clk) 
begin 

i f  (clk’event and clk=’l’> then 

end i f  ; 
end p r o c e s s ;  
- n e x t - s t a t e  l o g i c  
q-next (i) <= q-reg(i+l); 

q-reg(i) <= q-next(i); 

end generate ; 
-- 0 U t p  U t 
q <= q-reg(W1DTH-1 downto 0); 

20 end gen-proc-arch ; 

Alternatively, we can also define the D FF as an entity and use it through component 
instantiation. The VHDL codes for the D FF and the alternative description are shown in 
Listing 14.14. The code is essentially the structural description of the block diagram in 
Figure 14.3. 

Listing 14.14 Alternative serial-to-parallel converter using a for generate statement 

l ibrary  ieee ; 
use ieea. std-logic-1164. a l l  ; 
e n t i t y  dff i s  

- D FF 

p o r t (  
clk: in std-logic; 



CONDITIONAL GENERATE STATEMENT 51 7 

d: in  std-logic; 
q: out  std-logic 

1; 
10 end dff ; 

a r c h i t e c t u r e  arch of dff i s  
begin 

process  (clk) 
IS begin 

i f  (clk’event and clk=’l’) then 

end i f  ; 
end p rocess ;  

q <= d; 

M end arch; 

- a r c  h i t e c t u r e  u s i n g  component  i n  s t a  n t i a t i o n 
a r c  h i t  e c t u r e  gen- c omp- ar c h of s2p- convert er i s 

s i g n a l  q-reg : std-logic-vector (WIDTH downto 
U component dff 

por t  ( 
clk: in std-logic; 
d: in  std-logic; 
q: out  std-logic 

M 1; 

begin 
end component ; 

q-reg(WIDTH) <= si; 
df f ,gen : 

35 fo r  i in (WIDTH-I) downto 0 genera te  
df f -array : df f 

0) ; 

por t  map (clk=>clk, d=>q-reg(i+l), q=>q-reg(i)); 
end gene ra t e  ; 
q <= q-reg(W1DTH-1 downto 0); 

40 end gen-comp-arch; 

14.6 CONDITIONAL GENERATE STATEMENT 

14.6.1 Syntax 

The conditional generate statement is used to specify an optional circuit that can be included 
or excluded in the final implementation. It can be used to realize the feature parameters of 
a parameterized design. The simplified syntax of the conditional generate statement is 

gen-label : 
i f  boolean-exp genera te  

end genera te  ; 
concurrent statements ; 

The boolean-exp is an expression that returns a value with the boolean data type. If it is 
true, the internal concurrent statements are invoked, which means that the circuit described 
by the concurrent statements will be included in the implementation. If the expression is 
false, no concurrent statement is invoked, and thus the corresponding circuit is excluded 



518 PARAMETERIZED DESIGN: PRINCIPLE 

from the implementation. Note that there is no else branch. If we want to include one 
of the two possible circuits in an implementation, we must use two separate if generate 
statements. The gen-label term is the label and is mandatory. 

For synthesis purposes, the boolean-exp expression must be static so that synthesis 
software knows whether the corresponding concurrent statements should be included in the 
physical implementation. The expression is normally described in terms of generics. 

14.6.2 Examples 

Reduced-xor circuit revisited One common use of the conditional generate statement 
is to describe the “irregular” stages in a for generate statement. Consider the VHDL code 
for the reduced-xor circuit in Listing 14.12. The first and last stages are different from 
others because they interface with the external input and output signals, which use different 
name conventions. ’ISvo statements are used to rename the signals: 

tmp(0)  <= a ( 0 ) ;  
y <= tmp(W1DTH-1); 

To eliminate these statements, we can use conditional generate statements inside the for 
generate statement. Each Boolean expression of a conditional generate statement repre- 
sents a specific condition and specifies what kind of circuit should be generated for the 
corresponding stages. In this design, there are three kinds of stages: the leftmost stage, 
regular middle stages and the rightmost stage. The if generate statement can check the stage 
number and then generate a circuit that matches the naming convention accordingly. The 
VHDL code is shown in Listing 14.15. 

Listing 14.15 Parameterized reduced-xor circuit with a conditional generate statement 

a r c h i t e c t u r e  g e n - i f - a r c h  of r educed-xor  i s  

begin 
s i g n a l  tmp: s t d - l o g i c - v e c t o r  (WIDTH-:! downto 1) ; 

xor-gen : 
for  i in 1 to  ( W I D T H - 1 )  generate 
- l e f t m o s t  s t a g e  
l e f t - g e n :  i f  i= l  generate 

end generate ; 
- m i d d l e  s t a g e s  
midd le -gen :  i f  (1 < i)  and ( i  < ( W I D T H - 1 ) )  generate 

end generate ; 
I r i g h t m o s t  s t a g e  
r i g h t - g e n :  i f  i = ( W I D T H - l )  generate 

end generate ; 

t m p ( i )  <= a ( i )  xor a ( 0 ) ;  

t m p ( i )  <= a ( i )  xor t m p ( i - 1 ) ;  

y <= a ( i )  xor t m p ( i - 1 ) ;  

end generate ; 
end g e n - i f  - a r c h  ; 

Up-or-down free-running binary counter An up-or-down binary counter is a counter 
that can be instantiated in a specific mode. Note that the “or” here means that only one mode 
of operation, either counting up or counting down but not both, can be implemented in the 
final circuit. We use the UP generic as the feature parameter to specify the desired mode. 



CONDITIONAL GENERATE STATEMENT 51 9 

M 
reset I 

(a) Up-or-down counter 

mode 

clk 
reset 

@) Up-and-down counter 

Figure 14.4 Block diagrams of up-or-down and up-and-down counters. 

The counter counts up if UP is 1 and counts down otherwise. Since there are two possible 
features, the boolean data type will be more appropriate for the Up generic. However, 
since the IEEE RTL synthesis standard and some software accept only the integer data 
type and its subtypes, the natural type is used. 

The conceptual block diagram of this counter is shown in Figure 14.4(a). We use dashed 
blocks to indicate the optional features of a cbcuit, such as the incrementor and decrementor 
in the diagram. In this particular example, only one of the dashed blocks will be used in 
synthesis, and thus there is no output confliction for the r n e x t  signal. The VHDL code is 
shown in Listing 14.16. 

Listing 14.16 Up-or-down free-running binary counter 

l i b r a r y  ieee; 
use ieee. std-logic-1164. a l l  ; 
use ieee, numeric-std. a l l  ; 
e n t i t y  up-or-down-counter i s  

WIDTH : natural ; 
UP: natural 

5 g e n e r i c (  

) ;  
port ( 



520 PAFIAMETERIZED DESIGN: PRINCIPLE 

10 clk, reset: in  std-logic; 
q :  out std-logic-vector (WIDTH-1 downto 0) 

1; 
end up-or-down-counter; 

IS a r c h i t e c t u r e  arch of  up-or-down-counter i s  
s i g n a l  r-rag: unsigned(W1DTH-1 downto 0) ; 
s i g n a l  r-next : unsigned(W1DTH-1 downto 0) ; 

- r e g i s t e r  

begin 

begin 

20 process  (clk , reset) 

i f  (reset=’l’) then 

e l s i f  (clk’event and clk=’l’) then 

end i f  ; 
end p r o c e s s ;  
- n e x t - s t a t e  l o g i c  
inc-gen: - i n c r e m e n t o r  

r-reg <= ( o t h e r s = > ’ O ’ ) ;  

25 r-reg <= r-next; 

30 i f  UP-1 generate 
r-next <= r-reg + 1; 

end generate ; 
dec-gen : - d e c r e m e n t o r  
i f  UP/=l generate 

35 r-next <= r-reg - 1; 
end generate ; 
- o u t p u t  l o g i c  
q <= std-logic-vector(r-reg); 

end arch; 

The two next-state logics are described by the two separated if generate statements. Note 
that the Boolean expressions of the two statements are complementary, and thus only one 
circuit will be generated. 

For comparison purposes, let us examine a dual-mode binary counter that counts in both 
up and down directions. The mode is specified by an additional mode input signal. This 
implementation includes an incrementor and a decrementor, and uses a multiplexer to select 
the desired result, as shown in Figure 14.4(b). The corresponding VHDL code is listed in 
Listing 14.17. 

Listing 14.17 Up-and-down free-running binary counter 

l i b r a r y  ieee ; 
use ieee. std-logic-1164. a l l  ; 
use ieee . numeric-std. a l l  ; 
e n t i t y  up-and-down-count er i s  

5 gener ic  (WIDTH: natural) ; 
port ( 

clk, reset: in  std-logic; 
mode: i n  std-logic; 
q: out std-logic-vector (WIDTH-1 downto 0 )  

10 1 ; 
end up-and-down-counter; 



CONDITIONAL GENERATE STATEMENT 521 

p-next - 

reset -4 .......................................................... i 

..................... =O + pulse 
+I d 9 =  

r-next r-req . , ............ 

Figure 14.5 Block diagram of a counter with an optional output buffer. 

- 

a r c h i t e c t u r e  arch of up-and-down-counter i s  

IS s i g n a l  r-next : unsigned(W1DTH-1 downto 0) ; 
s i g n a l  r-reg: unsigned(W1DTH-1 downto 0); 

begin  
- r e g i s t e r  
process  (clk , reset 
begin  

20 i f  (reset=’l’) then 
r-reg <= ( o t h e r s = >  ’ 0  ; 

r-rag <= r-next; 
e l s i f  (clk’event and c1k=’lJ) then 

end i f  ; 
2s end p r o c e s s ;  

-- n e x t - s t a t e  l o g i c  
r-next <= r-reg + 1 when mode=’lJ e l s e  

- o u t p u t  l o g i c  
r-reg - 1; 

30 q <= std-logic-vector (r-reg) ; 
end arch; 

i.-i d qi ... 1 
: P-w ............. p, : 

..* . ..........., 

Counter with an optional output buffer An output buffer can remove glitches from 
the signal. Since the buffer is only needed for certain applications, it will be convenient 
to include the buffer as an optional part of the circuit. This can be achieved by using a 
feature parameter and conditional generate statements. Consider a binary counter that has 
a pulse output signal that is activated when the counter reaches 0. We can use the BUFF 
generic to indicate whether a buffer should be inserted. The conceptual diagram is shown 
in Figure 14.5 and the VHDL code is shown in Listing 14.18. 

Listing 14.18 Counter with an optional output buffer 

l i b r a r y  ieee ; 
use  ieee. std-logic-1164, a l l  ; 
use ieee . numeric-std. a l l  ; 
e n t i t y  op-buf-counter i s  

5 g e n e r i c (  
WIDTH : natural ; 
BUFF : natural 

) ;  
port ( 



522 PARAMETERIZED DESIGN: PRINCIPLE 

10 clk, reset: in  std-logic; 
pulse : out std-logic 

1; 
end op-buf -counter ; 

15 a r c h i t e c t u r e  arch of op-buf-counter i s  
s i g n a l  r-reg: unsigned(W1DTH-1 downto 0); 
s i g n a l  r-next : unsigned(W1DTH-1 downto 0) ; 
s i g n a l  p-next , p-reg : std-logic ; 

begin 
-- r e g i s t e r  
process  (clk ,reset) 
begin 

i f  (reset=’l’) then 

e l s i f  (clk’event and clk=’l’) then 

end i f  ; 
end p r o c e s s ;  
- n e x t - s t a t e  l o g i c  
r-next <= r-reg + 1; 
- outpu t  l o g i c  
p-next <= ’1’ when r-reg=O e l s e  ’0’; 
buf-gen: - w i t h  b u f f e r  
i f  BUFF-1 generate  

process  (clk , reset) 
begin 

r-reg <= ( o t h e r s = > ’ O ’ > ;  

r-reg <= r-next; 

i f  (reset=’l’) then 
p-reg <= ’0’; 

e l s i f  (clk’event and clk=’l’) then 
p-reg <= p-next; 

end i f  ; 
end p r o c e s s ;  
pulse <= p-reg; 

end generate  ; 
no-buf-gen: - w i t h o u t  b u f f e r  
i f  BUFF /= 1 generate  

pulse <= p-next; 
end generate  ; 

end arch; 

FSM with a selectable clear signal In a sequential circuit, we usually include a 
clear signal to perform system initialization. The clear signal can be either synchronous 
or asynchronous, and the choice sometimes depends on the target device technology. To 
make the code portable, it is beneficial to include a generic to specify the type of clear 
signal to be synthesized. Implementing the asynchronous clear is straightforward. We just 
replace the state register by a register with an asynchronous reset signal. Implementing the 
synchronous clear needs to revise the next-state logic of the sequential circuit. To minimize 
the modification, we can wrap the original next-state logic with a 2-to-1 multiplexer. The 
conceptual diagram is shown in Figure 14.6. The initial state value (assume that it is idle) 
will be routed to the register if the synchronous clear signal is asserted. 



CONDITIONAL GENERATE STATEMENT 523 

! state-next r.-...i d q !-----j 

9 
i r-req 

i 7  : i  
i.....! d q t ’  

?.. 

i reset i 
C ........ ........ 

........... L ........................................ > clear 

Figure 14.6 Block diagram of FSM with a selectable clear signal. 

We use the memory controller FSM of Chapter 10 to demonstrate the design. To accom- 
modate the “clear” feature, we must selectively generate circuits in two places, as shown in 
Figure 14.6. One is the register, which can be a register with or without the asynchronous re- 
set signal. The other is the optional multiplexer to route the idle value to the statenext 
signal. We introduce the SYNC generic to specify the desired type of clear and use two 
if generate statements to create the corresponding circuits. The VHDL code is shown in 
Listing 14.19. 

Listing 14.19 Memory controller FSM with a selectable clear signal 

l i b r a r y  i e e e  ; 
use i e e e .  s t d - l o g i c - 1 1 6 4 .  a l l  ; 
e n t i t y  clr-mem-fsm i s  

gener ic  ( S Y N C :  i n t e g e r )  ; 
J p o r t (  

c l k ,  c l e a r :  i n  s t d - l o g i c ;  
mem, r w ,  b u r s t :  in  s t d - l o g i c ;  
o e ,  we: out s t d - l o g i c  

1; 
~ o e n d  clr-mem-fsm ; 

a r c h i t e c t u r e  m u l t - s e g - a r c h  of clr-mem-f s m  i s  
type m c - s t a t e - t y p e  i s  

( i d l e  , read1 , r e a d 2 ,  read3 , r ead4  , wri t e )  ; 
IS s i g n a l  s t a t e - r e g  , s t a t e - i  , s t a t e - n e x t  : m c - s t a t e - t y p e  ; 

begin 
- s t a t e  r e g i s t e r  
r e s e t - f  f - g e n  : - r e g i s t e r  w i th  asynchronous  c l e a r  
i f  SYNC/=l generate  

process  ( c l k  , c l e a r )  
begin 

i f  ( c l e a r = ’ l ’ )  then 

e 1 s i f ( c l k  ’ e v e n t  and c l k =  ’ 1 ’ ) then 

end i f ;  

s t a t e - r e g  <= i d l e ;  

s t a t e - r e g  <= s t a t e - n e x t  ; 



524 PARAMETERIZED DESIGN: PRINCIPLE 

35 

45 

55 

M) 

65 

end p r o c e s s ;  
end g e n e r a t e  ; 
n o - r e s e t - f f - g e n :  - r e g i s t e r  w i t h o u t  asynchronous  c l e a r  

M i f  SYNC=l g e n e r a t e  
p r o c e s s  ( c l k )  
begin 

i f  ( c l k ’ e v e n t  and c l k = ’ l ’ )  t hen  

end i f  ; 
end p r o c e s s ;  

end g e n e r a t e  ; 
- n e x t - s t a t e  l o g i c  
p r o c e s s ( s t a t e - r e g  ,mem, rw,bur s t )  

s t a t e - r e g  <= s t a t e - n e x t ;  

40 begin 
case  s t a t e - r e g  i s  

when i d l e  => 
i f  m e m = ’ l ’  t hen  

i f  r w = ’ l ’  t hen  

e l s e  

end i f  ; 

s t a t e - i  <= i d l e ;  

s t a t e - i  <= r e a d l ;  

s t a t e - i  <= w r i t e ;  

e l s e  

end i f ;  
when w r i t e  =>  

s t a t e - i  <= i d l e ;  
when r e a d l  =>  

i f  ( b u r s t = ’ l ’ )  t hen  

e l s e  

end i f ;  
when r ead2  => 

s t a t e - i  <= r e a d 3 ;  
when r e a d 3  => 

s t a t e - i  <= r e a d 4 ;  
when r ead4  => 

s t a t e - i  <= i d l e ;  

s t a t e - i  <= r e a d 2 ;  

s t a t e - i  <= i d l e ;  

end c a s e ;  
end p r o c e s s ;  
no - sync -c l r -gen :  -- w i t h o u t  mun 
i f  S Y N C / = I  g e n e r a t e  

70 s t a t e - n e x t  <= s t a t e - i ;  
end g e n e r a t e  ; 
sync -c l r -gen  : -- wi th  mux 
i f  S Y N C = l  g e n e r a t e  

s t a t e - n e x t  <= i d l e  when c l e a r = ’ l ’  e l s e  
15 s t a t e - i ;  

end g e n e r a t e  ; 
- Moore ou tpu t  l o g i c  
p r o c e s s  ( s t a t e - r e g )  
begin 



CONDITIONAL GENERATE STATEMENT 525 

80 we <= ’0’; 
oe <= ’0’; 
case  s t a t e - r e g  is  

when i d l e  => 
when write => 

85 we <= ’ 1 ’ ;  
when read1 => 

oe <= ’ 1 ’ ;  
when read2 => 

oe <= ’lJ; 
90 when read3 => 

oe <= > l ’ ;  
when read4 => 

oe <= ’ 1 ’ ;  
end c a s e ;  

95 end p r o c e s s ;  
end mu1 t - s e g - a r  ch  ; 

14.6.3 Comparisons with other feature-selection methods 

In addition to the conditional generate statement, there are two other methods to create a 
circuit with a selectable feature. One is to create a full-featured circuit and then connect 
some input control signals to constant values to permanently enable the desired feature. 
The other is to use the configuration construct. Their uses and differences are discussed in 
the following subsections. 

Comparison to a full-featured circuit The full-featured scheme can be explained 
best by an example. Consider the up-and-down counter from Listing 14.17. The counter 
has an external control signal, mode, which specifies the direction of the counting. The code 
implies that the next-state logic consists of an incrementor, a decrementor and a multiplexer, 
as shown in Figure 14.4(b). Although there is no feature parameter in this design, we can 
imitate the UP generic of the up-or-down counter by connecting the mode signal to a constant 
value. 

For example, assume that we need a 16-bit up counter in a design. To use the parame- 
terized up-or-down counter, we can use the following component instantiation to create the 
instance: 

count lbup:  up-or-down-counter 
gener ic  map(WIDTH=>l6, UP=>1)  ; 
port ( c l k = > c l k ,  r e s e t = > r e s e t ,  q = > q ) ;  

To create the same counter instance using an the up-and-down counter, we can map the 
mode signal to ’ 1 ’. The component instantiation becomes 

count l6up:  up-and-down-counter 
gener ic  map(W1DTH = > 1 6 )  ; 
p o r t ( c l k = > c l k ,  r e s e t = > r e s e t ,  m o d e = > ’ l ’ ,  q = > q ) ;  

Since the mode signal is tied to ’1’, the counter always counts up, just as in the previous 
up-or-down counter instance. 

Although the two instances have the same functionality, they are two different circuits. 
The up-or-down counter instance creates a circuit with only the needed features. The up- 



526 PARAMETERIZED DESIGN: PRINCIPLE 

and-down counter instance creates a circuit that consists of all features and uses an external 
control signal to selectively enable a portion of the circuit. 

This difference will also be reflected in the processing of the VHDL program. Recall 
that the processing is divided into analysis, elaboration and execution (synthesis) stages. 
The conditional generate statement is processed in the elaboration stage and the unneeded 
circuit is removed. The synthesis software only needs to synthesize the selected portion. On 
the other hand, while the code from the full-featured scheme is processed, the entire VHDL 
code will be passed to the synthesis stage. It is the synthesis software’s responsibility to 
propagate the constant signal through the circuits and eliminate the unused portion through 
logic optimization. This will increase the processing time. For a complex description, the 
software may not be able to eliminate all the unneeded logic in the final implementation. 

In general, use of the feature parameters and conditional generate statements is better 
than the full-featured approach because it clearly identifies the optional part, and the unused 
portion of the circuit is removed before synthesis. 

Comparison to configuration The selected hardware creation can also be achieved 
by configuration. We can construct multiple architecture bodies, each containing a specific 
feature. Instead of using the feature generic, we can select the desired feature by configuring 
the entity with a proper architecture body. 

For example, for the previous up-or-down free-running counter, we can eliminate the UP 
generic and construct one architecture body with a counting-up sequence and another with 
a counting-down sequence. The VHDL code is shown in Listing 14.20. 

Listing 14.20 Up-or-down counter with two architecture bodies 

l i b r a r y  ieee; 
use i e e e .  std-logic-1164. a l l  ; 
use  ieee . numeric-std. a l l  ; 
e n t i t y  updown-counter i s  

s g e n e r i c  (WIDTH: natural) ; 
port  ( 

clk, reset: i n  std-logic; 
q: out  std-logic-vector (WIDTH-1 downto 0 )  

1; 
10 end updown-counter; 

- a r c h i t e c t u r e  f o r  t h e  count-up  s e q u e n c e  
a r c h i t e c t u r e  up-arch of  updown-counter i s  

s i g n a l  r-reg: unsigned(W1DTH-1 downto 0) ; 
IJ s i g n a l  r-next : unsigned(W1DTH-1 downto 0) ; 

begin 
- r e g i s t e r  
process  (clk ,reset) 
begin 

20 i f  (reset=’l ’1 then 
r-reg <= ( o t h e r s = >  ’0’); 

r-reg <= r-next; 
e l s i f  (clk’event and clk=’l then 

end i f  ; 
end p r o c e s s ;  
- n e x t - s t a t e  l o g i c  
r-next <= r-reg + 1; 
- o u t p u t  l o g i c  



CONDITIONAL GENERATE STATEMENT 527 

q <= std-logic-vector(r-reg); 
M end up-arch; 

- a r c h i t e c t u r e  for the  count-down sequence  
a r c h i t e c t u r e  down-arch of updown-counter i s  

3s s i g n a l  r-next  : unsigned(W1DTH-1 downto 0); 
s i g n a l  r-reg : unsigned (WIDTH-1 downto 0) ; 

begin 
- r e g i s t e r  
process  ( c l k  , r e s e t  
begin 

40 i f  ( r e s e t = ’ l  then 
r-reg <= ( o t h e r s = > ’ O ’ ) ;  

r - reg  <= r - n e x t ;  
e l s i f  ( c l k ’ e v e n t  and c l k = ’ l ’ )  then 

end i f ;  
U end p r o c e s s ;  

- n e x t - s t a t e  l o g i c  
r-next  <= r -reg  - 1; 
-- o u t p u t  l o g i c  
q <= std-logic-vector(r-reg); 

so end down-arch; 

We can create a configuration declaration unit or add the configuration specification to 
bind the architecture body with the desired feature. This can also be done via the component 
instantiation in VHDL 93. For example, we can create a 16-bit up counter as follows: 

countl6up: work.updown-counter(up-arch) 
gener ic  map(W1DTH =>16) ; 
port ( c l k = > c l k ,  r e s e t = > r e s e t  , q=>q) ; 

Conversely, we can merge the logic from several architecture bodies into a single body 
and use a feature generic and conditional generate statements to select the desired portion. 
This essentially replaces the configuration with a feature parameter. 

There is no rule about when to use a feature parameter and when to use a configuration 
construct. In general, code with a feature parameter is more difficult to develop and com- 
prehend because we are essentially describing several different versions of the circuit in the 
same code. The code of the two architecture bodies of the previous example is clearer and 
more descriptive than the code with the U p  generic. On the other hand, if we use a separate 
architecture body for each distinctive feature, the number of architecture bodies will grow 
exponentially and becomes difficult to manage. For example, if we want a binary counter 
to count up or down, to be equipped with either synchronous or asynchronous clear, and to 
include a buffered and unbuffered output pulse, we must create eight architecture bodies to 
cover all possible combinations. 

In general, when a feature parameter leads to significant modification or addition of the 
no-feature code and starts to make the code incomprehensible, it is probably a good idea to 
use separate architecture bodies and the configuration construct. 



528 PARAMETERIZED DESIGN: PRINCIPLE 

14.7 FOR LOOP STATEMENT 

14.7.1 Introduction 

The for loop statement is a sequential statement and is the only sequential loop construct 
that can be synthesized. The simplified syntax of the for loop statement is 

for index in loop-range loop 
sequential statements; 

end loop;  

The syntax and operation of the for loop statement are similar to those of the generate 
loop statement except that the loop body is composed of sequential statements. As in the 
generate loop statement, the loopiange  must be static. 

The for loop statement is more general and flexible because of the sequential statements. 
In addition to the statements discussed in Chapter 5 ,  the sequential statements also include 
the exit statement, which skips the remaining iterations of the loop, and the next statement, 
which skips the remaining part of the current iteration. The exit and next statements are 
discussed in the next section. 

The basic way to synthesize a for loop statement is to unroll or flatten the loop. Unrolling 
a loop means to replace the loop structure by explicitly listing all iterations. Since the range 
is static, the number of iterations is fixed. Once a for loop statement is unrolled, the 
code is converted to a sequence of regular sequential statements, which can be synthesized 
accordingly. To derive an effective design, we need to know the implication of various 
language constructs on the underlying hardware. The examples in the next subsection show 
the implementation issues of the for loop statement. 

14.7.2 Examples of a simple for loop statement 

Binary decoder The structure of the binary decoder is discussed in Section 14.5.2. We 
can use the diagram in Figure 14.1 as a reference and derive a for loop statement to describe 
the basic building block and interconnection pattern. The code is very similar to the for 
generate version in Listing 14.1 1 and is shown in Listing 14.21. Note that the conditional 
signal assignment statement in Listing 14.1 1 is replaced by the if statement. 

Listing 14.21 Parameterized binary decoder using a for loop statement 

a r c h i t e c t u r e  loop-arch of bin-decoder is  
begin 

process  (a) 
begin 

5 for  i in 0 to  (2**WIDTH-I) loop 
i f  i=to-integer (unsigned(a1) then 

e l s e  
code(i) <= '1'; 

code(i) <= '0'; 
10 end i f ;  

end l o o p ;  
end p r o c e s s ;  

end loop-arch ; 



FOR LOOP STATEMENT 529 

Reduced-xor circuit In Section 14.3.1, the reduced-xor circuit is described using a for 
loop statement in Listing 14.1. The code is patterned after the version that uses the for 
generate statement in Listing 14.12. 

Serial-to-parallel conwerter The serial-to-parallel converter discussed in Section 14.5.2 
can also be described using a for loop statement. The first version is shown in Listing 14.22. 
It is patterned after the code using the for generate statement in Listing 14.13. 

Listing 14.22 Parameterized serial-to-parallel converter using a for loop statement 

a r c h i t e c t u r e  loopi-arch of s2p-converter i s  
s i g n a l  q-next : std-logic-vector (WIDTH-1 downto 0) ; 
s i g n a l  q-reg : std-logic-vector (WIDTH downto 0) ; 

begin 
s q-reg(W1DTH) <= si; 

process  (clk I q-reg) 
begin 

for  i in  WIDTH-1 downto 0 loop 
-- D FF 

I0 i f  (clk event and clk= ’ 1 ’ then 
q-reg(i) <= q-next (i) ; 

end i f ;  
- n e x t - s t a t e  l o g i c  
q-next (i) <= q-reg(i+l); 

IS end l o o p ;  
end p r o c e s s ;  
q <= q-reg(W1DTH-1 downto 0); 

end loopl-arch ; 
~~ 

Since the for loop statement is a sequential statement, it must be enclosed withii a 
process. The loop body, which contains both the D FF and next-state logic, is enclosed 
within the same process accordingly. Note that the both clk and qreg signals are listed 
in the sensitivity list. An alternative is to split the register and the next-state logic and 
describe the structure in two separate for loop statements. The revised code is shown in 
Listing 14.23. 

Listing 14.23 Parameterized serial-to-parallel converter using separate for loop statements 

a r c h i t e c t u r e  loop2-arch of  s2p-converter is 

begin 
s i g n a l  q-reg I q-next : std-logic-vector (WIDTH-1 downto 0) ; 

-- r e g i s t e r s  
5 process  (clk) 

begin 
for  i in  WIDTH-1 downto 0 loop 

i f  (clk’event and clk=’l’) then 
q-reg(i) <= q-next(i); 

10 end i f ;  
end l o o p ;  

end p r o c e s s ;  
- n e x t - s t a t e  l o g i c  
process  (si I q-reg) 

IS begin 
q-next(W1DTH-1) <= si; 



530 PARAMETERIZED DESIGN: PRINCIPLE 

f o r  i in  WIDTH-2 downto 0 loop  
q-next (i) <= q-reg(i+l); 

end l o o p ;  

q <= q-reg; 
20 end p r o c e s s ;  

end loop2-arch ; 

In Section 14.5.2, the code in Listing 14.14 uses component and instantiation to describe 
the structure of the serial-to-parallel converter. Since the component instantiation statement 
is a concurrent statement, this approach cannot be duplicated for the for loop statement. 

14.7.3 Examples of a loop body with multiple signal assignment 
statements 

Only sequential signal assignment statements can be used inside the loop body of a for loop 
statement. Recall that a signal can be assigned multiple times inside a process and only the 
last assignment takes effect. We can use this property to develop more abstract description. 
Two examples are shown below. 

Prjorjty encoder Recall that a priority encoder is a circuit that returns the binary code of 
the highest-priority request. In the parameterized version, we assume that therequest signals 
are arranged as an array of r(W1DTH-1 downto 01, and priority is given in descending 
order (i.e., the r (WIDTH-1) signal has the highest priority). In addition to the binary code, 
the bcode signal, the output includes the valid signal, which is asserted when at least one 
request signal is activated. One possible VHDL code of a parameterized priority encoder 
is shown in Listing 14.24. 

Listing 14.24 Parameterized priority encoder using a for loop statement 

l i b r a r y  ieee ; 
use ieee. std-logic-1164. a l l  ; 
use  ieee , numeric-std. a l l  ; 
use work. util-pkg. a l l  ; 

5 e n t i t y  prio-encoder i s  
gener ic  (WIDTH : natural) ; 
port ( 

r: in std-logic-vector (WIDTH-1 downto 0) ; 
bcode: out std-logic-vector (log2c (WIDTH) -1 downto 0) ; 

10 valid : out std-logic 
) ;  

end prio-encoder; 

a r c h i t e c t u r e  loop-linear-arch of prio-encoder i s  
I5 cons tant  B: natural := log2c(WIDTH); 

s i g n a l  tmp: std-logic-vector (WIDTH-1 downto 0) ; 

- b i n a r y  code 
process  (2) 

begin 

20 begin 
bcode <= ( o t h e r s = > ’ O ’ ) ;  
for  i in  0 t o  (WIDTH-1) loop 

i f  r(i)= ’1’ then 
bcode <= std-logic-vector(to-unsigned(i,B)); 



FOR LOOP STATEMENT 531 

7.5 end i f  ; 
end l o o p ;  

end p r o c e s s ;  
-- r e d u c e d - o r  c i r c u i t  
process  ( r  , tmp) 

XI begin 
tmp(0 )  <= r ( 0 ) ;  
for  i in  1 to  (WIDTH-1) loop 

end l o o p ;  
35 end p r o c e s s ;  

t m p ( i )  <= r ( i )  o r  t m p ( i - 1 ) ;  

v a l i d  <= tmp(W1DTH-1) ; 
end l o o p - l i n e a r - a r c h ;  

For an input with n request signals, the number of bits of the binary code is [log, n1. To 
express the range of the bcode signal, we can use the log2c function derived in Chapter 12. 
We assume that it is stored in the util-pkg package and include the use statement to make 
it visible. 

The major part of the program is the first for loop statement, which iterates from the 
lowest index to the highest index. When the corresponding request is asserted, its binary 
code will be assigned to the bcode signal. Recall that the last signal assignment takes 
effect in a process. The bcode signal is assigned with the binary code of the highest index, 
which represents the highest-priority request. If none of the request is asserted, the bcode 
assumes the default assignment of all 0's. 

Unlike the previous binary decoder and reduced-xor examples, in which the program 
codes are derived from the actual circuit structures, this program is based on an abstract, 
behavioral description of a priority encoding circuit. We drive the circuit structure from the 
VHDL code, but not the other way around. 

To derive the conceptual implementation, we first need to unroll the loop. Assume that 
WIDTH is 4. The flattened code becomes 

bcode <= "00" 
i f  r ( O ) =  '1 then 

bcode <= "00"; 
end i f  ; 
i f  r ( l ) =  '1 '  then 

bcode <= ' ' 01" ;  
end i f  ; 
i f  r ( 2 ) =  '1 then 

bcode <= l l l O t t ;  
end i f  ; 
i f  r ( 3 ) =  '1' then 

bcode <= ''11"; 
end i f  ; 

The code performs a sequence of assignments to the same signal. As discussed in 
Section 5.4.1, this kind of code is equivalent to an if statement with multiple elsif branches, 
which implies a priority routing network. The conceptual diagram of the flattened code can 
be derived using the procedure in Section 5.4.1 and is shown in Figure 14.7. It is basically 
a cascading chain of 2-to-1 multiplexers. 



532 PAFIAMETERIZED DESIGN: PRINCIPLE 

Figure 14.7 Block diagram of a priority encoder. 

The valid signal is obtained by performing an or operation on all request signals. It is 
essentially a reduced-or circuit, and its implementation is similar to that of the reduced-xor 
circuit. 

Multiplexer A multiplexer routes the designated input signal to the output port. In the 
parameterized version, we assume that the input signals are arranged as an array, from 
a(W1DTH-1) to a(O), and the selection signal of the multiplexer uses the index of the array 
to specify the designated signal. One possible VHDL code is shown in Listing 14.25. 

Listing 14.25 Parameterized multiplexer using a for loop statement 

l i b r a r y  ieee; 
use  ieee. std-logic-1164. a l l  ; 
use  ieee. numeric-std. a l l  ; 
use  work. util-pkg. a l l  ; 

5 e n t i t y  muxi i s  
g e n e r i c  (WIDTH: natural); 
port  ( 

a: in  std-logic-vector (WIDTH-1 downto 0) ; 
sel : in  std-logic-vector (logZc(W1DTH) -1 downto 0) ; 

10 y: out std-logic 
1; 

end muxl; 

a r c h i t e c t u r e  loop-linear-arch of  muxl is  
IS begin  

process  (a, sell 
begin 

y <='O'; 
for  i in  0 to  (WIDTH-1) l oop  

20 i f  i= to-integer(unsigned(se1)) then 
y <= a(i); 

end i f ;  



FOR LOOP STATEMENT 533 

end l o o p ;  
end p r o c e s s ;  

end loop-linear-arch; 

The code is based on an abstract behavioral description. It infers a cascading priority 
routing networks, similar to that of the previous priority encoder. Although the code is 
simple and clear, it leads to bulky and inefficient hardware implementation. A better 
alternative is shown in Chapter 15. 

14.7.4 Examples of a loop body with variables 

Variables can be used in sequential statements and thus can be used in the body of a for loop 
statement. Since a variable assignment takes effect immediately, it is useful when an object 
inside the loop needs to be updated in each iteration. Two examples are shown below. 

Reduced-xor circuit with variables The reduced-xor circuit can be described using 
a variable. The VHDL code is in Listing 14.26. 

Listing 14.26 Parameterized reduced-xor circuit using a variable 

a r c h i t e c t u r e  loop-linear-var-arch of reduced-xor i s  
begin 

process  (a) 
v a r i a b l e  tmp: std-logic; 

tmp : =  a(0); 
€or i in  1 t o  ( W I D T H - 1 )  loop 

end l o o p ;  
10 y C= tmp; 

end p r o c e s s ;  

5 begin 

tmp : =  a(i) xor tmp; 

end loop-linear-var-arch; 

The code is more like a program in a traditional programming language. Although it is 
more abstract and descriptive, deriving the conceptual implementation for this code requires 
more effort. The key is to convert the variables into constructs that can be mapped into a 
hardware entity. We first unroll the loop and then rename the variable to avoid self-reference. 

Assume that WIDTH is 4. The flattened code is 

tmp := a(O>; 
tmp := a(i) xor tmp; 
tmp : =  a(2) xor tmp; 
tmp := a(3) xor tmp; 
y C= tmp; 

To avoid self-reference, the variable is given a new name in each statement and the new 
names are propagated through subsequent statements: 

tmpo := a(0); 
tmpl := a(1) xor tmp0; 
tmp2 :=  a(2) xor tmpl; 
tmpd := a(3) xor, tmp2; 
y <= tmp3; 



534 PAMMETERIZED DESIGN: PRINCIPLE 

We can now interpret that each variable is a connection wire and derive the conceptual 
diagram accordingly. 

For comparison purposes, we also unroll the code of Listing 14.1, which uses signals in 
the body of the for loop statement. The code becomes 

tmp(0) <= a(0); 
tmp(1) <= a(1) xor tmp(0); 
tmp(2) <= a(2) xor tmp(1); 
tmp(3) <= a(3) xor tmp (2) ; 
y <= tmp3; 

Note that the appearances of the two flattened codes are very similar. The tmp variable can 
be thought of as shorthand to replace an array of signals, which are needed to express the 
intermediate values. 

Population counter The population counter counts thenumber of 1’s from the elements 
of an array input signal. A fixed-size circuit was discussed in Section 7.5.5. One way to 
derive the parameterized version is to use a for loop statement and a variable to keep track 
of the occurrences of 1’s. The abstract VHDL code is shown in Listing 14.27. 

Listing 14.27 Parameterized population counter 

l i b r a r y  ieee ; 
use  ieee. std-logic-1164. a l l  ; 
use  ieee. numeric-std. a l l  ; 
use work. util-pkg . a l l  ; 

5 e n t i t y  popu-count i s  
g e n e r i c  (WIDTH : natural) ; 
port  ( 

a: in  std-logic-vector (WIDTH-1 downto 0) ; 
count : out std-logic-vector (log2c (WIDTH) -1 downto 0) 

10 ) ; 
end popu-count ; 

a r c h i t e c t u r e  loop-linear-arch of popu-count i s  
begin 

I5 process  (a) 

begin 
v a r i a b l e  sum: unsigned(log2c (WIDTH) -1 downto 0) ; 

sum : =  ( o t h e r s = > ’ O ’ ) ;  
f o r  i in  0 to (WIDTH-1) loop 

20 i f  a(i)= ’1’ then 

end i f  ; 
sum := sum + 1; 

end l o o p ;  
count <= std-logic-vector(sum); 

zs end p r o c e s s ;  
end loop-linear-arch; 

Deriving the conceptual implementation of this code involves more work. Assume that 
WIDTH is 3. The loop can be unrolled into three iterations: 

sum :=  0; 
i f  a(O)= ’1’ then 

sum : =  sum + 1; 



FOR LOOP STATEMENT 535 

end i f  ; 
i f  a ( l ) =  '1 '  then 

end i f  ; 
i f  a ( 2 ) =  ' 1 '  then 

end i f ;  
count <= sum; 

sum := sum + 1; 

sum : =  sum + 1 ;  

Unlike the previous reduced-xor example, the following simple renaming will not work 
properly: 

sumO : =  0 ;  
i f  a ( O > =  ' 1 '  then 

end i f  ; 
i f  a ( l ) =  ' 1 '  then 

end i f  ; 
i f  a ( 2 ) =  '1' then 

end i f  ; 
count <= sum3; 

suml := sumO + 1; 

sum2 := suml + 1; 

sum3 :=  sum2 + 1 ;  

To correctly rename the signals, we must include the else branch, which implies that the 
sum variable remains unchanged. The revised, unrolled code is 

sum := 0 ;  
-- 1 s t  s t a g e  
i f  a(O>= '1 '  then 

e l s e  

end i f ;  
- 2 n d  s t a g e  
i f  a ( l > =  '1 '  then 

e l s e  

end i f  ; 
- 3 r d  s t a g e  
i f  a ( 2 ) =  ' 1 '  then 

e l s e  

end i f  ; 
count <= sum; 

sum := sum +' 1 ;  

sum := sum; 

sum := sum + 1; 

sum := sum; 

sum :=  sum + 1 ;  

sum := sum ; 

We can easily rename the variables now and the code segment becomes 

sumO :=  0 ;  
- 1 s t  s t a g e  
i f  a ( O > =  '1' then 

e l s e  
suml := sumO + 1; 

suml : =  sumO; 



536 PARAMETERIZED DESIGN: PRINCIPLE 

Figure 14.8 Block diagram of population counter. 

end i f  ; 
-- 2 n d  s t a g e  
i f  a(l)= '1' then 

e l s e  

end i f  ; 
-- 3 r d  s t a g e  
i f  a(2)= '1' then 

e l s e  

end i f  ; 
count <= sum3; 

The basic building block of each stage is now clear. The corresponding diagram of the 
flattened and renamed code is shown in Figure 14.8. Note that the diagram also exhibits a 
cascading-chain structure. 

sum2 :=  suml + 1; 

sum2 := suml; 

sum3 :=  sum2 + 1 ;  

sum3 :=  sum2; 

14.7.5 Comparison of the for generate and for loop statements 

Both the for generate and for loop statements are used to describe replicated structures. The 
major difference is the type of statements in their loop bodies. The for generate statement 
can only use concurrent statements, and the for loop statement can only use sequential 
statements. 

Because there is a clear mapping between concurrent statements and hardware parts, the 
circuit involved in a stage can be easily visualized. When a for generate statement is used, 
we frequently start a design with a conceptual diagram of a few stages. The diagram is used 
to identify the basic building block and connection pattern, and then the code of the loop 
body is derived accordingly. We sometimes create an entity for the basic building block 
and then describe the replicated structure by instantiating the component instances. 
On the other hand, because of the sequential semantics and the existence of variables, 

the body of the for loop statement can be more general and versatile. While this allows us to 
develop more abstract code, it may also lead to an unnecessarily complex implementation 
or even an unsynthesizable description. The synthesis issue is discussed in Section 14.9. 



EXIT AND NEXT STATEMENTS 537 

14.8 EXIT AND NEXT STATEMENTS 

The exit and next statements are sequential statements used inside a for loop statement to 
alter the regular iterations of the loop. The exit statement stops execution of a for loop 
statement and exits the loop immediately. The remaining iterations will be skipped. The 
next statement stops execution of the current iteration and jumps to the beginning of the 
next iteration. The remaining statements of the iteration will be skipped. While the two 
statements can sometimes be useful for modeling, they are difficult to synthesize. Many 
synthesis software packages do not support these two statements. The following subsections 
discuss the use and conceptual implementation of the two statements and the alternative 
coding style. 

14.8.1 Syntax of the exit statement 

The syntax of the exit statement is 

e x i t  when boolean-expr ; 

The boolean-expr term is a Boolean expression indicating the exiting condition. When it 
is evaluated as t rue ,  the exit takes effect and the execution skips the remaining iterations 
of the loop. 

Note that the when boolean-expr portion is optional. It is not needed if the exit 
statement is associated with a condition of an if statement, as in the following code segment: 

i f  (boolean-expr then 
. . .  
e x i t  ; 

e l s e  
. . .  

14.8.2 Examples of the exit statement 

reduced-and circuit The reduced-and circuit was discussed in Section 14.4.2. We use 
a different approach in this example. One property of the and operation is that 2 0 = 0. 
Thus, the reduced-and operation can return ’0’ as soon as the first ’0’ element of the input 
array is found. The VHDL code in Listing 14.28 is based on this observation. The code uses 
a for loop statement to check the values of the array’s elements and uses the exit statement 
to terminate the loop after the first ’0’ element is found. 

Listing 14.28 Parameterized reduced-and circuit using an exit statement 

a r c h i t e c t u r e  exit-arch of  reduced-and i s  
begin 

process  (a> 
v a r i a b l e  tmp : std-logic ; 

5 begin  
tmp := ’1’; - d e f a u l t  o u t p u t  
f o r  i in  0 t o  (WIDTH-1)  loop 

i f  a ( i ) = ’ O ’  then 
tmp := ’0’; 

10 e x i t ;  
end i f  ; 



538 PARAMETERIZED DESIGN: PRINCIPLE 

end l o o p ;  
y <= tmp; 

end p r o c e s s ;  
IS end exit-arch ; 

If this code is developed as a routine in a traditional programming language, it is an 
effective approach since the execution does not need to go through all iterations of the loop 
and can cut one half of the execution time in average. However, in synthesis, we cannot 
dynamically create the circuit according to the input pattern. Instead, the synthesized circuit 
must accommodate all possible input combinations. Using the exit statement actually 
introduces additional hardware overhead and complicates the synthesis process. This is 
discussed in more detail in the next subsection. 

Leading-zero counting circuit The leading-zero counting circuit is a combinational 
circuit that counts the number of leading 0’s in front of an input signal. One possible 
implementation is to use a for loop statement to keep track of the number of consecutive 0’s 
and use an exit statement to terminate the loop when the first ’ 1 ’ is encountered. The VHDL 
code is shown in Listing 14.29. 

Listing 14.29 Parameterized leading-zero counting circuit using an exit statement 

l i b r a r y  ieee ; 
use ieee. std-logic-1164. a l l  ; 
use ieee. numeric-std. a l l  ; 
use work. util-pkg . a l l  ; 

5 e n t i t y  leadingo-count i s  
gener ic  (WIDTH : natural) ; 
port ( 

a: in  std-logic-vector (WIDTH-1 downto 0); 
zeros: out std-logic-vector(log2c(WIDTH)-l downto 0) 

10 1 ; 
end leadingo-count ; 

a r c h i t e c t u r e  exit-arch of  leadingo-count is  
begin 

IS process  (a1 

begin 
v a r i a b l e  sum: unsigned(log2c (WIDTH) -1 downto 0) ; 

sum := ( o t h e r s = > ’ O ’ ) ;  - i n i t i a l  v a l u e  
for  i in  WIDTH-1 downto 0 loop 

20 i f  a(i)=>l’ then 
e x i t ;  

sum : =  sum + 1; 
e l s e  

end i f  ; 
25 end l o o p ;  

end p r o c e s s ;  
zeros <= std-logic-vector(sum); 

end exit-arch; 

This code infers multiple adders and is not an efficient design. It is only for demonstration 
of the use of the exit statement. 



EXIT AND NEXT STATEMENTS 539 

14.8.3 Conceptual Implementation of the exit statement 

Since the hardware cannot expand or shrink dynamically to accommodate the input pattern, 
the exit statement cannot be implemented directly in hardware. However, we can emulate 
the effect of the exit statement using a special circuit to bypass some iterations. 

The “bypassing” can best be explained by an example. Consider the VHDL code of 
the leading-zero counting circuit in Listing 14.29. The exit statement specifies that the 
remaining iterations of the loop should be skipped if the condition a( i )  =’ 1 ’ is met. We 
can achieve the same effect using an array of flags, which indicate whether the execution 
of the corresponding stages should be bypassed. The revised VHDL code is shown in 
Listing 14.30. 

IS  

20 

Listing 14.30 Parameterized leading-zero counting circuit using a bypass flag 

s i g n a l  bypass : std-logic-vector (WIDTH downto 0) ; 

process  (a, bypass) 

begin 

a r c h i t e c t u r e  bypass-arch of leadingo- count i s 

begin 

5 v a r i a b l e  sum : unsigned (log2c (WIDTH) -1 downto 0) ; 

- i n i t i a l  va lue  
sum : =  ( o t h e r s = > ’ O ’ ) ;  
bypass(W1DTH) <= ’0’; 

f o r  i in  WIDTH-1 downto 0 loop 
10 -- b y p a s s  f l a g s  

i f  a(i)=’l’ then 

e l s e  

end i f  ; 

bypass(i) <= ’1’; 

bypass(i) <= bypass(i+l); 

end l o o p ;  
- c o u n t i n g  1 I s  

f o r  i in  WIDTH-1 downto 0 loop 
i f  bypass(i)=’O’ then 

i f  a(i)= ’0 then 
sum :=  sum + 1; 

end i f ;  
end i f ;  

25 end l o o p ;  

end p r o c e s s ;  
zeros <= std-logic-vector(sum); 

end bypass-arch ; 

The flags are implementedby the bypass signal. The leftrnost element, bypass (WIDTH), 
is set to ’0’. An element of the bypass signal is set to ’1’ when the condition a ( i )  =’ 1 ’ 
is met, and the condition will be propagated to the subsequent elements. For example, if 
bypass(3) issetto’l’,bypass(2), bypass(1) andbypass(0) willbesetto’l’as well. 

The bypass signal is then used to control the increment operation of each stage. In the ith 
stage, the increment operation is performed only if the corresponding bypass (i) is not set 
(i.e., is ’0’). Once an element of the bypass signal is set to ’ 1 ’, all the subsequent increment 
operations will be skipped and the values of the sum variable will remain unchanged in the 
remaining iterations. This essentially achieves the effect of the exit statement without 
actually using it inside the for loop statement. 



540 PARAMETERIZED DESIGN: PRINCIPLE 

0 
zeros 

Figure 14.9 Block diagram of a leading-zero counting circuit. 

Note that when the bypass(i) signal is '0', the a ( i>  must be '0'. Thus, checking the 
a ( i 1 = 0 condition is not needed in the second for loop statement, and it can be simplified 
to 

f o r  i in  WIDTH-1 downto 0 loop 
i f  bypass (i)= '0' then 

sum := sum + 1 ;  
end i f  ; 

end loop;  

Since there is no exit statement in the revised code, we can derive the conceptual diagram 
byunrollingthe twoforloops. Assumethat WIDTHis 3. Thediagramis showninFigure 14.9. 
The upper loop can be simplified to a chain of or gates, as shown at the bottom of the diagram. 
The bottom loop is similar to the population counter of Figure 14.8, as shown at the top of 
the diagram. The bypass( i )  signal specifies whether to skip the incrementing operation 
by routing either the original or the incremented input to the next stage. Note that once 
a bypass value is set to '1' in a stage, the '1' will be propagated through the descending 
stages, and thus all subsequent incrementing operations are skipped. 

The example shows that the use of the exit statement actually introduces additional 
"bypass overhead" to the original circuit. This overhead makes synthesis more difficult and 
may increase the size of the final implementation. Some synthesis software packages may 
not be able to handle a for loop with the exit statement. 

14.8.4 Next statement 

The syntax of the next statement is 

next  when boo 1 e an- expr ; 

When the boolean-exp term is evaluated as t rue ,  the next statement takes effect and 
the execution skips the remaining statements of the iteration. Like the exit statement, 
the when boolean-expr portion is not needed if the next statement is used with an if 
statement. 

The VHDL code of the population counter of Section 14.7.4 can be revised by using the 
next statement, as shown in Listing 14.31. When a( i> is '0', the next statement skips the 
remaining statements of the loop (i.e., the sum : = sum + I statement). 



SYNTHESIS OF ITERATIVE STRUCTURE 541 

Listing 14.31 Parameterized population counter using a next statement 

a r c  h i t  e c  t u r e  next -arch of  popu- count i s  
begin 

process  (a) 
v a r i a b l e  sum: unsigned(log2c(WIDTH)-l downto 0); 

sum :=  ( o t h e r s = > ’ O ’ > ;  
f o r  i in  0 to  (WIDTH-1) loop 

5 begin 

next  when a(i)=’O’; 
sum :=  sum + 1; 

10 end l o o p ;  

end p r o c e s s ;  
count <= std-logic-vector(sum); 

end next-arch; 

The next statement is somewhat similar to the “opposite” of an if statement with only 
a then branch. The former skips some statements when the corresponding condition is 
met, while the latter executes some statements when the corresponding condition is met. 
Based on this observation, we can convert the next statement to a modified if statement. 
For example, consider the following VHDL segment: 

f o r  . . .  loop 
sequential statement 1 ;  
next  when boolean-exp ; 
sequential statement 2; 

end l o o p ;  

It can be rewritten as 

f o r  . . .  loop 
sequential statement 1; 
i f  ( n o t  boolean-exp) then 

end i f  
end l o o p ;  

sequential statement 2; 

The if statement is preferred because it is more descriptive and modular. The revised 
code also shows that the implementation of the next statement should be similar to that of 
an if statement without an else branch, as in Listing 14.27. 

14.9 SYNTHESIS OF ITERATIVE STRUCTURE 

VHDL provides a variety of mechanisms to describe the iterative structure. From the 
synthesis’s point of view, the key is to identify the circuit involved in a stage. Once it is 
done, the circuit can be replicated to a specific number set by the width parameters. The 
synthesis software can process the flattened description as a regular circuit. 

When deriving code with for generate statements, we normally first draw a sketch dia- 
gram of the hardware and then derive the VHDL description accordingly. This is partially 
due to the semantics of the concurrent statements, which prevents us from thinking in terms 
of sequential programming constructs. Ideally, we should apply the same approach when 
using for loop statements. Unfortunately, since sequential statements are more abstract and 
closer to the statements of traditional programming languages, it is easy to use for loop 



542 PARAMETERIZED DESIGN: PRINCIPLE 

statements to write abstract, sequential codes. This frequently leads to bulky, unnecessarily 
complex implementation. Thus, when a for loop statement is used, we should be conscious 
of the implications on the underlying hardware. 

The for loop and for generate statements provide an easy mechanism to describe the 
iterative structure. Unfortunately, the simple description does not always lead to efficient 
implementation. The examples of this chapter utilize a single-level for generate or for 
loop statement, which translates into a one-dimensional structure. Except for special cases, 
such as the binary decoder, the one-dimensional structure leads to a cascading-chain type 
of circuit. This kind of topology is difficult to handle during placement and routing and 
may introduce a large propagation delay, especially when the chain is very long. A more 
effective two-dimensional tree- or mesh-shaped structure is more desirable. This issue is 
discussed in the Chapter 15. 

14.10 SYNTHESIS GUIDELINES 

0 Use a generic to specify the width parameter. 

0 If an unconstrained array is used forparameterized design, take the range and direction 
of the array into consideration. 

0 Use the if generate statement for small feature variation. 

0 The for loop statement should be considered as a construct to describe a circuit with 

0 A single-level for generate or for loop statement normally leads to a one-dimensional 

a replicated structure. 

cascading-chain structure. 

14.1 1 BIBLIOGRAPHIC NOTES 

While many texts cover the VHDL generate and loop constructs, few literatures provide 
in-depth discussions of parameterized design. One place to find good examples is in the 
package body of the IEEE numerid-std package. The source file can normally be found 
in the directory where the IEEE library resides. The functions and overloaded operators of 
the package are defined over the unsigned and signed data types with no explicit range 
specification, and the needed parameters are derived from attributes. Because the codes 
include comprehensive error-checking, they are quite complex. Another source is the VHDL 
code of “Library of Parameterized Modules” (LPM). It is an early, not-so-successful attempt 
to develop parameterized device-independent VHDL modules. The VHDL package should 
still be available via internet search. 

Problems 

14.1 Consider a 1-bit incrementor cell that adds 1 to the input operand. It has two 1-bit 
input signals, a and cin,  which represent the input operand and carry-in respectively, and 
two 1-bit output signals, s and cout, which represent the sum and carry-out respectively. 

(a) Derive the function table for this circuit. 
(b) Derive the VHDL code for this circuit using only simple signal assignment state- 

ments and logical operators. 



PROBLEMS 543 

(c) Derive the block diagram of a 4-bit incrementor using four incrementor cells. 

14.2 Follow the block diagram of Problem 14.l(c) to design a parameterized incrementor 
in which the width of the input operand is specified by a generic. Derive the VHDL code 
using the for generate statement. Use a simple signal assignment statement in the loop 
body, and no VHDL arithmetic operator is allowed. 

14.3 Repeat Problem 14.2. but create the l-bit incrementor cell as a component and use 
component instantiation in the loop body. 

14.4 Repeat Problem 14.2, but use conditional generate statements for the boundary cells. 

14.5 Repeat Problem 14.2, but use the for loop statement. 

14.6 Repeat Problem 14.2, but apply the clever-use-of-array techniques discussed in 
Section 14.4. No for generate or for loop statement is allowed. 

14.7 Repeat Problem 14.2, but use no generic. Declare the data type of the input port as 
std-logic-vector with no explicit range specification. Make sure that the code can work 
with different formats of specification when the component is instantiated. 

14.8 Follow the technique of the reduced-and circuit of Listing 14.4.2, and derive a 
parameterized VHDL code for the reduced-or circuit. 

14.9 For the memory controller FSM circuit in Section 10.7.2, the output signal can be 
unbuffered or buffered. The buffered output uses the look-ahead output buffer scheme. 
Derive a VHDL code that includes both schemes and use the BUF generic as a feature 
parameter to specify which buffer scheme to use. 

14.10 Consider the priority encoder code of Listing 14.24. Rewrite the code using a for 
generate statement. 

14.11 Consider the population counter code of Listing 14.27. Rewrite the code using a 
for generate statement. 

14.12 Consider the reduced-and code of Listing 14.28. Follow the conceptual imple- 
mentation procedure discussed in Section 14.8.3 to replace the exit statement with flag 
signals. 

(a) Derive the VHDL code. 
(b) Draw the conceptual diagram. 
(c) Prove that the conceptual diagram actually performs the reduced-and operation. 



This Page Intentionally Left Blank



CHAPTER 15 

PARAM ETER IZE D DES I G N : PRACTICE 

After learning the basic language constructs for the parameterized design, we study more 
sophisticated circuit examples in this chapter. In addition to parameterization, the emphasis 
is on the efficiency and performance of the circuits. The main focus is on the derivation 
of efficient parameterized RT-level modules that can be used as building blocks of larger 
systems. 

15.1 INTRODUCTION 

Parameterization is not directly related to the efficiency of a digital circuit. However, it 
frequently leads to inefficient design for several reasons. First, a parameterized description 
relies on a small set of language constructs, mainly the for generate and for loop statements. 
We have less freedom to describe the intended circuit structure. Second, because the for 
loop statement is similar to the loop constructs found in the traditional programming lan- 
guages, we tend to develop behavioral descriptions and become less aware of the underlying 
hardware organization. 

We constructed several parameterized modules in Chapter 14. Because of the regular, 
repetitive nature of these circuits, they are described by a for loop or for generate statement. 
While the code is simple and easy to understand, a single for loop or for generate statement 
generally describes a one-dimensional cascading structure. This kind of structure introduces 
a long propagation delay and thus penalizes the performance. Since synthesis software can 
only perform certain local transformation, it is not able to restructure and optimize the 

RTL Hardware Design Using VHDL: Coding for Eficiency, Portabili& and Scalubility. By Pong P. Chu 
Copyright @ 2006 John Wiley & Sons, Inc. 

545 



546 PARAMETERIZED DESIGN: PRACTICE 

entire chain. This is particularly problematic for parameterized description since we may 
instantiate a module with a large parameter. 

To derive efficient parameterized modules, we must pay particular attention to the topol- 
ogy of the underlying structure, as discussed in Section 7.4. The description should help 
the synthesis process to derive a more effective implementation. In this chapter, we discuss 
the data types used to describe scalable two-dimensional structure, illustrate the design and 
description of various RT-level components, and study several more difficult application 
examples. 

15.2 DATA TYPES FOR TWO-DIMENSIONAL SIGNALS 

One-dimensional arrays, which include std-logic-vector of the std-logic-1164 pack- 
age, and unsigned and signed of the numeric-std package, are the primary data types 
used in our codes. They are natural matches to represent a multiple-bit signal. To enhance 
portability and improve readability, we prefer to use these predefined data types and avoid 
the multidimensional array in general. In a parameterized design, a circuit may exhibit 
a scalable two-dimensional structure and require two-dimensional data types to represent 
the internal signals or I/O ports. While the data types of VHDL are flexible and versatile, 
no two-dimensional array data type is defined in the std-logic-1164 or numeric-std 
package. Thus, we must create a user-defined data type for two-dimensional signals. 

Because of the lack of a common synthesis standard, software support varies and multi- 
dimensional array data types are not accepted by all software tools. This section discusses 
use of genuine VHDL two-dimensional data types, and two work-mounds, which are the 
array-ofarrays and emulated two-dimensional array data types. We can choose the scheme 
that is supported by the software in hand. 

15.2.1 Genuine two-dimensional data type 

The array data type in VHDL is defined as a collection of elements of the same data types. 
Its definition is very general. The simplified syntax is 

type data-type-name i s  array (range-1, range-:!, . . . )  
of element-data-type; 

The range terms inside the parentheses specify the boundaries of the array, and the number 
of range terms corresponds to the dimensions of the array. The data type is known as a 
Constrained array if the ranges are fixed and is knovbn as an unconstrained array otherwise. 

Constrained array The definition and use of a user-defined two-dimensional data type 
can best be explained by an example. Consider a 4-by-6 SRAM (i.e., an SRAM that contains 
four words and each word is 6 bits wide). The structure of the SRAM is a natural match 
for a two-dimensional data type: 

cons tant  ROW natural :=4;  
c o n s t a n t  COL natural : =6 ; 
type  sram-4-by-6-type is 

array ( R O W - 1  downto 0 ,  COL-1 downto 0) of std-logic; 

This is a constrained array since its ranges are fixed. 
We can assign a two-dimensional constant to a signal with this data type. As in a one- 

dimensional array, both positional and named association can be used for the aggregate. 
Some examples are 



DATA TYPES FOR TWO-DIMENSIONAL SIGNALS 547 

s i g n a l  tl , t2 , t3 : sram-4-by-6-type ; 

- p o s i t i o n a l  a s s o c i a t i o n  
tl <= (~'000000", 

"010101" , 
11 00 0 1 1 1 
1'11111111); 

I "IOIO10" t o  a l l  rows 
t2 <= (others=>"101010"); 
- a l l  0's 
t3 <= (others=>(others=>'O')); 

. . .  

, 

We can use the two indexes, in the form of (i, j), to access a particular element of the 
array, as in the following examples: 

s i g n a l  t4 : sram-4-by-6-type ; 
s i g n a l  e l l  e2, 03: std-logic; 

t4(0,0) <= '1'; 
t4(1,2) <= el and 02; 

. . .  

03 <= t4(3,5); 

In an SRAM, we frequently want to access a word, which corresponds to a row in the two- 
dimensional data type. Unfortunately, there is no build-in VHDL mechanism to specify 
a particular dimension. The work-around is to use a for loop or for generate statement to 
iterate through the individual elements. An example of using the for loop statement is 

s i g n a l  t5 : sram-4-by-6-type ; 
s i g n a l  vl : std-logic-vector (COL-1 downto 0) ; 

process  ( .  . . I  
begin 

. . .  

for i in  COL-1 downto 0 loop 

end l o o p ;  
vl(i) <= t5(1,i); 

. . .  

Unconstfained array An unconstrained array does not specify the boundary of the 
range when the data type is defined. This information is provided later when the data type 
is used. An unconstrained two-dimensional array of element type of std-logic can be 
defined as 

type std-logic-2d i s  
array (natural range <> ,  natural range <>) of std-logic; 

This is more effective since it can accommodate two-dimensional arrays of various sizes. 
For example, assume that three different sizes are used in a design. If the constrained array 
is used, we need three data types: 

type  array-4-by-6-type i s  

type array-16-by-32-type is  

type array-8-by-2-type i s  

array ( 3  downto 0 ,  5 downto 0) of std-logic; 

array (15 downto 0 ,  31 downto 0) of std-logic; 

array (7 downto 0 ,  1 downto 0) of std-logic; 



548 PARAMETERIZED DESIGN: PRACTICE 

s i g n a l  sl  : a r ray -4 -by-b - type  ; 
s i g n a l  s 2 ,  s3: a r ray -16-by-32- type ;  
s i g n a l  s 4 ,  s 5 :  a r r a y - 8 - b y - 2 - t y p e ;  

On the other hand, the code will be much simpler if an unconstrained array is used: 

type s t d - l o g i c - 2 d  is  

s i g n a l  s l :  s t d _ l o g i c _ 2 d ( 3  downto 0 ,  5 downto 0); 
s i g n a l  s 2 ,  93: s t d - l o g i c - 2 ( 1 5  downto 0 ,  31 downto 0); 
s i g n a l  s 4 ,  s 5 :  s t d - l o g i c - 2 ( 7  downto 0 ,  1 downto 0); 

array ( n a t u r a l  range < > ,  n a t u r a l  range <>) of s t d - l o g i c ;  

If we include the std-logic-2d data type in a package, this data type can be used 
in VHDL code after the package is invoked. In fact, the s td- logic-vector ,  unsigned 
and s igned  data types are defined as an unconstrained one-dimensional array. The utility 
package discussed in Section 13.5.3 actually follows this practice and includes the two- 
dimensional data type in the package declaration. The definition of the std-logic-2d data 
type is very general, and its dimension can be specified as generic parameters in the port 
declaration of an entity and in the signal declaration of an architecture body. A simple 
example is 

use work. u t i l - p k g  . a l l  ; 
e n t i t y  . . . 

. . .  

g e n e r i c  ( 
R O W :  n a t u r a l  ; 
C O L :  n a t u r a l  

1; 
port  ( 

p i ,  p2:  in  
s t d - l o g i c - 2 d  (ROW -1 downto 0 ,  COL-1  downto 0) ; 

. . .  
1; 

s i g n a l  s i g l  , s i g 2 :  
a r c h i t e c t u r e  . . 

std-logic-2d(ROW-l downto 0 ,  C O L - i  downto 0) 

While this is an elegant scheme, the s t d - l o g i c 2 d  data type may not be accepted by 
some synthesis software because of the lack of support for multidimensional arrays. 

15.2.2 Array-of-arrays data type 

The array in VHDL is very flexible, and the data type of the element of an array can also 
be an array. Thus, a two-dimensional structure can be defined as a one-dimensional array 
whose element’s data type is also a one-dimensional array. We call this an array-of-arruys 
data type. For example, we can replace the previous sram-4-by-6-type data type with an 
array-of-arrays data type: 

c o n s t a n t  ROW n a t u r a l  :=4; 
c o n s t a n t  COL n a t u r a l  : =6 ; 
type  sram-aoa-46-type i s  array ( R O W - 1  downto 0) of 

s t d - l o g i c - v e c t o r  ( C O L - 1  downto 0) ; 

This data type is a one-dimensional array with four elements whose data type is a six-element 
one-dimensional array (Le., s td- logic-vector  (5 downto 0)). 



DATA TYPES FOR TWO-DIMENSIONAL SIGNALS 549 

The structures of sramA-by-6-type and sram-aoa-46-type are very similar. In fact, 
the constant assignment for the two data types are identical: 

s i g n a l  tl , t2, t3 : sram-aoa-46-type ; 

- p o s i t i o n a l  a s s o c i a t i o n  
tl <= (~~000000"' 

' 1  0 10 10 1 It ' 
000 11 1 , 

"111111"); 
- " I O I O I O "  to  a l l  rows 
t2 <= (others=>"lO1O1O1t)  ; 
- a l l  0's 
t3 <= ( o t h e r s = > ( o t h e r s = >  '0 ' ; 

We can also access a single bit in an array-of-arrays data type. Instead of (i , j ), the 

9 . .  

index is in the form of (i> (j ) . The example in Section 15.2.1 becomes 

s i g n a l  t 4  : sram-aoa-46-type ; 
s i g n a l  e l ,  e2 e3: std-logic; 
. . .  
t4 (0) (0) <= ' 1  '; 
t4(1)(2) <= e l  and e2; 
e3 <= t4(3)(5); 

Since a row of an array-of-arrays data type is an element of a one-dimensional array, to 
access a row is much easier. For example, to retrieve a word from the previous SRAM, we 
can just use the first index: 

s i g n a l  t5 : sram-aoa-46-type ; 
s i g n a l  vl : std-logic-vector (COL-1 downto 0) ; 

vl <= t5(1); 
. . .  

Thus, for this particular application, an array-of-arrays data type is more natural than a 
genuine two-dimensional data type. 

The major limitation of the array-of-arrays data type is that the data type of its element 
must be a constrained array. At best, we can only define a data type as 

type  std-logic-aoa-N i s  
array (natural range <>) of std-logic-vector (N-1 downto 0) ; 

In other words, only the first dimension (i.e., the number of rows) can be left unconstrained. 
If an array-of-arrays data type is defined and used inside the architecture body, it is still 

possible to pass the two-dimensional parameters via generics. A simple example is 

. . .  
e n t i t y  . . . 

gener ic  ( 
RDW: natural ; 
COL: natural 

1; 
. . .  
a r c h i t e c t u r e  . . . 

type aoa-RC-type i s  



550 PARAMETERIZED DESIGN: PRACTICE 

Figure 15.1 Emulation of a two-dimensional 4-by-3 array with a one-dimensional array. 

array (ROW-1 downto 0) of s t d - l o g i c - v e c t o r  (COL-1 downto 0 )  ; 
s i g n a l  s i g l  , s i g 2  : aoa-RC-type ; 
. . .  

However, if an array-of-arrays data type is used for a port declaration, only the first dimen- 
sion can be parameterized. Since the size of the second dimension must be fixed in port 
declaration, the array-of-arrays data type is not as flexible as the std-logic-2d data type. 
This is the most severe constraint of using an array-of-arrays data type in a parameterized 
design. 

Because an array-of-arrays data type is a one-dimensional array, more synthesis software 
accepts this form. 

15.2.3 Emulated two-dimensional array 

Emulated two-dimensional array is a scheme that imitates a two-dimensional structure 
using a one-dimensional array. In this scheme, we introduce no new data type but cleverly 
interpret a one-dimensional array as a two-dimensional structure. For example, consider a 
4-by-3 two-dimensional array. We can enumerate the four rows in a single list, as shown 
in Figure 15.1. The relationship between the one-dimensional index, n, and the two- 
dimensional indexes, i and j, is characterized by a simple equation: 

Since the regular one-dimensional array data type is used to describe a two-dimensional 
structure, we call it an emulated two-dimensional array. 

Let us consider the 4-by-6 S U M  example again. Although no new data type is needed, 
it will be handy to define a function to calculate the indexes. The code is 

constant ROW n a t u r a l  : = 4 ;  
constant COL n a t u r a l  : = 6 ;  
-- d a t a  t y p e  i s  s t d - l o g i c - v e c t o r  (ROW*COL-I downto  0); 
function i x  (r , c : n a t u r a l )  return n a t u r a l  i s  
begin 

end i x ;  
return (r*COL + c ) ;  

To access a single bit in the emulated array, we can invoke the i x  function to calculate the 
corresponding position in the one-dimensional array. We can replace the index ( i  , j ) used 
in a genuine two-dimensional array with the indexing function, ix (i , j ) . The indexing 
example in Section 15.2.1 becomes 

s i g n a l  t 4 :  s t d - l o g i c - v e c t o r  (ROW*COL-l  downto 0) ; 
s i g n a l  e l ,  82, e 3 :  s t d - l o g i c ;  
. . .  



DATA TYPES FOR TWO-DIMENSIONAL SIGNALS 551 

t4(ix(0,0)) <= , I J ;  
t4(ix(1,2)) <= el and e2; 
e3 <= t4(ix(3,5)); 

A row in the SRAM corresponds to a slice in the one-dimensional array. We can access 
the entire row after determining the upper and lower boundaries of the row. For the ith row, 
theindexoftheupperboundaryis ix(i,COL-1) andthelowerboundaryis ix(i,O), and 
thus we can use the range ix ( i , COL- 1) downto ix ( i , 0) to access the row. The example 
in Section 15.2.1 retrieves the first word of the SRAM. It can be modified as follows 

s i g n a l  t5: std-logic-vector (ROW*COL-1 downto 0) ; 
s i g n a l  v l :  std-logic-vector (COL-1 downto 0) ; 

vl <= t5(ix(lJCOL-1) downto ix(1,O)); 
. . .  

. . .  
Assigning a constant to the emulated array is just assigning a constant to a regular one- 

dimensional array. We can use the concatenation operator to make the code clearer and 
consistent with other schemes. The constant expression in Section 15.2.1 can be modified 
as follows: 

s i g n a l  tl , t2 , t3: std-logic-vector (ROW*COL-l downto 0) ; 

tl <= "000000" & 
"010101" & 
It 000 1 1 1 It & 
11 11 11 It ; 

- "IOIOIO" t o  a l l  rows 
t2 <= "101010" & "101010" & "101010" & "101010"; 
- a l l  0's 
t 3  <= ( o f h e r s = > ' O J ) ;  

Because the emulated array uses a predefined one-dimensional array data type, the pa- 
rameters for two dimensions can be passed via generics for the port declaration and signal 
declaration. An example is shown below. 

. . .  

. . .  
e n t i t y  . . . 

g e n e r i c  ( 
ROW : natural ; 
COL: natural 

1; 
port  ( 

pl , p2: in  std-logic-vector (ROW*COL-l downto 0) ; 
. . . I ;  

a r c h i t e c t u r e  . . . 
f u n c t i o n  ix(r ,c: natural) return natural i s  
begin 

end ix; 
s i g n a l  sigl , sig2: in  std-logic-vector (ROW*COL-1 downto 0) ; 

return (r*COL + c ) ;  

. . .  
The emulated array involves numerous calculations to map a two-dimensional index into 

a one-dimensional index. However, these calculations are static and thus can be determined 
when the VHDL code is elaborated. No physical circuit will be inferred for this purpose. 



552 PARAMETERIZED DESIGN: PRACTICE 

15.2.4 Example 

In Chapter 14, we presented a parameterized multiplexer in Listing 14.25. In this design, 
the number of input ports is specified by a generic but the number of bits per port is fixed 
(i.e., 1 bit). A more general description should add an additional parameter to specify the 
number of bits of a port as well. Let the number of input ports be P and the number of bits 
per port be B. The a input signal now represents a two-dimensional P*B-bit signal. The 
following codes illustrate how to use the three two-dimensional data types to implement 
the new multiplexer. 

lmplemenfafion with a genuine two-dimensional array The first description uses 
the genuine two-dimensional std-logic2d data type. The VHDL code is shown in List- 
ing 15.1. The util-pkg package is needed for the std-logic2d data type and the log2c 
function. 

Listing 15.1 Parameterized two-dimensional multiplexer using a genuine array 

l i b r a r y  ieee; 
use ieee. std-logic-1164. a l l  ; 
use ieee. numeric-std. a l l  ; 
use work. util-pkg . a l l  ; 

5 e n t i t y  mux2d i s  
gener ic  ( 

P: natural; - number of i n p u t  p o r t s  
B :  natural - number of b i t s  p e r  p o r t  

1; 
10 p o r t (  

a: in  std-logic-2d(P-l downto 0, B - 1  downto 0); 
sal : in  std-logic-vector (log2c (PI -1 downto 0) ; 
y: out std-logic-vector ( B - 1  downto 0) 

) ;  
IS end mux2d; 

a r c h i t e c t u r e  two-d-arch of mux2d i s  
begin 

process  ( a ,  sell 
20 begin 

y < = ( o t h e r s = > J O J ) ;  
f o r  i in  0 to  ( P - 1 )  loop 

i f  i= to-integer(unsigned(se1)) then 
f o r  j in  0 t o  ( B - 1 )  l oop  - B - b i t s  of t h e  p o r t  

end l o o p ;  
25 y ( j )  <= a(i,j); 

end i f  ; 
end l o o p ;  

end p r o c e s s ;  
30 end two-d-arch ; 

The code is basically patterned after the one-dimensional multiplexer code in List- 
ing 14.25. An extra inner for loop statement is added to route B bits from an input port to 
the output. 



DATA TYPES FOR TWO-DIMENSIONAL SIGNALS 553 

lmplementation with an emulated array The second description uses an emulated 
array, and the VHDL code is shown in Listing 15.2. The code also includes the util-pkg 
package since the log2c function is needed. It follows the description in Listing 15.1 but 
with several simple modifications: 

0 Use the regular std-logic-vector data type. 
0 Define the i x  function. 
0 U s e a ( i x ( i , j ) )  toreplacea(i,j). 

Lsting 15.2 Parameterized two-dimensional multiplexer using an emulated array 

l i b r a r y  ieee ; 
use ieee. std-logic-1164. a l l  ; 
use ieee . numeric-std. a l l  ; 
use work. util-pkg . a l l  ; 

5 e n t i t y  mux-emu-ad i s  
g e n e r i c  ( 

P: natural; - number of i n p u t  p o r t s  
B: natural - number of b i t s  p e r  p o r t  

1; 
10 p o r t (  

a: in  std-logic-vector (P*B-1 downto 0) ; 
sel : i n  std-logic-vector (log2c (P) -1 downto 0) ; 
y: out  std-logic-vector (B-I downto 0) 

1; 
15 end mux-emu-2d; 

a r c h i t e c t u r e  emu-2d-arch of mux-emu-2d i s  
f u n c t i o n  ix (r , c : natural) r e t u r n  natural is  

begin 

end ix; 
20 r e t u r n  (r*B + c); 

begin 
process  (a, sell 
begin 

25 y < = ( o t h e r s = > ’ O ’ > ;  
f o r  r i n  0 t o  ( P - 1 )  loop 

i f  r= to-integer(unsigned(se1)) then 
fo r  c in  0 t o  (B-1) loop -- B - b i t s  of t h e  p o r t  

y(c> <= a(ix(r,c>); 
M end l o o p ;  

end i f ;  
end loop ;  

end p r o c e s s ;  
end emu-2d-arch; 

~~~ ~~ 

Since we can specify a slice of array in the emulated array scheme, the inner loop

fo r c i n 0 t o (B-I) loop
y(c) <= a(ix(r,c)>;

end l o o p ;

can be replaced by

y <= a(ix(r,B-1) downto ix(r,O));

554 PARAMETERZED DESIGN: PRACTICE

implementation with an array of arrays Because the element data type of an array
of arrays must be a constrained array, the array-of-arrays data type is not general enough
to be used in the port declaration of the two-dimensional multiplexer. However, this data
type can still be used inside the architecture body. We can use the previous emulated array
in the entity declaration and then convert the input into the array-of-arrays data type in the
architecture body. The VHDL code of the architecture body is shown in Listing 15.3.

Listing 15.3 Parameterized two-dimensional multiplexer using an array of arrays

a r c h i t e c t u r e a-of-a-arch of mux-emu-ad i s
type s td-aoa- type i s

s i g n a l a a : s td -aoa - type ;

- c o n v e r t to a r r a y - o f - a r r a y s da ta t y p e
process (a)
begin

array (P-1 downto 0) of s t d - l o g i c - v e c t o r (B-1 downto 0) ;

5 begin

f o r r in 0 t o (P-1) loop
10 f o r c in 0 to (B-1) l oop

a a (r) (c) <= a (r * B + c) ;
end l o o p ;

end l o o p ;
end p r o c e s s ;

process (a a , s e l l
begin

IS - mux

y < = (o t h e r s = > ’ o ’) ;
fo r i in 0 to (P-1) loop

20 i f i= to-integer(unsigned(se1)) then
y <= a a (i) ;

end i f ;
end l o o p ;

end p r o c e s s ;
zs end a-of -a-arch ;

~ ~ ~~

The first process is for type conversion. It is static, and no physical circuit should be
inferred. The second process describes the actual multiplexer. The code is identical to
one-dimensional multiplexer code in Listing 14.25. The only difference is that the element
data type of the aa signal is std-logic-vector (B-1 downto 01, and the element data
type of the a signal of the one-dimensional multiplexer is std-logic. From this point
of view, the array-of-arrays data type is the most concise representation of the underlying
circuit structure.

15.2.5 Summary

Ideally, we wish to select a two-dimensional representation that can effectively describe the
underlying circuit structure and be universally accepted by synthesis software. It cannot
be easily achieved due to the intrinsic limitation of VHDL and the variation on synthesis
software support. However, since these representations describe the same two-dimensional
structure, conversion between the representations is fairly straightforward. We should select
a scheme that works with the synthesis software in hand and properly document the use of
these data types in the VHDL code so that they can be easily modified when needed.

COMMONLY USED INTERMEDIATE-SIZED RT-LEVEL COMPONENTS 555

In the remainder of this chapter, we use the std-logic-2d data type in general and use
the array-of-arrays data type if it closely matches the underlying structure.

15.3 COMMONLY USED INTERMEDIATE-SIZED RT-LEVEL COMPONENTS

We discussed the level of abstraction in Section 1.4. The focus of this book is on the
RT level, in which the main parts are intermediate-sized components. Most synthesis
software contains predesigned modules for relational operators and addition and subtraction
operators, and these modules are inferred and instantiated during synthesis. There are
many other intermediate-sized RT-level components that are frequently encountered in a
large design, including reduction circuit, decoder, encoder, multiplexer, barrel shifter and
multiplier. Since these components are common building parts that are needed in many
applications, they are good candidates to be parameterized.

As discussed in Section 7.4, the efficiency of a circuit relies heavily on its basic structure
and underlying topology. A good description helps the synthesis process to derive a more
effective implementation. To describe a parameterized multidimensional circuit is more
involved. The key to designing this type of circuit is to identify a general pattern and then
use for loop or for generate statements to describe the desired connection pattern. The
following procedure helps us to achieve this goal:

0 Draw a small-scale diagram with basic building blocks.
0 Derive a proper index for the connection signals in each stage.
0 Identify the general relationship between the signals in successive stages.
0 Identify the connection patterns between boundary stages and U0 ports.
0 Derive the VHDL code accordingly.

The remaining section illustrates the design and derivation of several RT-level components.

15.3.1 Reduced-xor circuit

In Chapter 14, we constructed a parameterized reduced-xor circuit using various VHDL
language constructs, as in Listings 14.1, 14.6 and 14.12. These codes essentially describe
the same cascading circuit of Figure 14.2. For an n-bit input, the critical path includes n xor
gates. We can rearrange the cascading chain into a tree-shaped structure, as discussed in
Section 7.4.1, and reduce the critical path to log, n xor gates.

For a non-parameterized design, we can use parentheses to force the desired order of
evaluation and thus implicitly construct a tree-shaped circuit, as shown in Listing 7.18.
Translating this approach into a parameterized description is not feasible. We need to
explicitly specify the connection pattern in VHDL code. The circuit diagram of a tree-
shaped eight-input reduced-xor circuit is shown in Figure 15.2. This is a two-dimensional
structure. We first divide the tree into stages and number the stages from right to left. Each
stage now contains multiple xor gates. We treat each xor gate as a row and number the
rows from top to bottom. An xor gate can be identified with a two dimensional index (s, r) ,
which represents the rth row of the sth stage. The corresponding output signals of the xor
gate is named ps,,.. We can label all the interconnection signals according to this naming
convention, as shown in Figure 15.2. Note that the input signals to the leftmost stage are
also named following the same convention to make a homogeneous diagram.

The key to describing a repetitive structure is to identify the relationship of the signals
between successive stages. Let us examine the xor gate in the rth row of the sth stage. Its two
inputs are from the the 2rth row and (2r+l)th row of the left stage (i.e., the (s+l)th stage).

556 PARAMETERZED DESIGN: PRACTICE

stage 2 stage 1 stage 0

Y
pw

Figure 15.2 Tree-shaped reduced-xor circuit.

The factor 2 in a row's index reflects the fact that the number of rows is reduced by half in
each stage. The input-output relationship of this xor gate can be described as

PS,? = Ps+l ,2r €3 Ps+l,2r+l

After identifying the key relationship, we can convert the circuit into VHDL code. The
two-dimensional structure implies that we need a two-dimensional data type for the p signal
and a nested generate statement for the structure, with the outer statement for iteration in
terms of the stages and the inner statement for iteration in terms of the rows. Since an xor
gate has two inputs, the number of rows is reduced by half at each stage. For an input of
n bits, the implementation needs log, n stages and there are 2s rows in the 8th stage.

The VHDL code is shown in Listing 15.4. The entity declaration is the same as the
one in Chapter 14 and is included for clarity. We assume that the width of the input is
in a power of 2. The code uses a nested two-level for generate statement for the general
structure and an additional for generate statement to convert the input signal to the internal
naming convention.

Listing 15.4 Parameterized tree-shaped reduced-xor circuit with input of 2" bits

l i b r a r y ieee;
use ieee. std-logic-1164, a l l ;
use work. util-pkg. a l l ;
e n t i t y reduced-xor i s

s gener ic (WIDTH : natural) ;
p o r t (.

a: in std-logic-vector (WIDTH-1 downto 0);
y : out std-logic

1;
10 end reduced-xor ;

a r c h i t e c t u r e gen-tree-arch of reduced-xor i s
cons tant STAGE: natural := log2c (WIDTH) ;
s i g n a l p:

I S std-logic-2d (STAGE downto 0, WIDTH -1 downto 0) ;
begin
- rename i n p u t s i g n a l
in-gen: for i in 0 to (WIDTH-1) generate

COMMONLY USED INTERMEDIATE-SIZED RT-LEVEL COMPONENTS 557

p(STAGE,i) <= a(i);
20 end g e n e r a t e ;

- r e p l i c a t e d s t r u c t u r e
stage-gen:
for 8 in (STAGE-1) downto 0 generate

row-gen :
25 f o r r in 0 to (2**s-1) generate

p(s,r) <= p(s+l,2*r) xor p(s+l,2*r+l);
end generate ;

end generate ;
-- rename o u t p u t s i g n a l

30 y <= p(0,O);
end gen-tree-arch;

If the number of input bits is not a power of 2, the input stage may appear irregular.
One way to handle the input of arbitrary width is to create a full-sized reduced-xor tree and
tie the unused inputs to 0’s. Since z @ 0 = z, there is no effect on functionality. These
0 inputs are static, and the redundant xor gates will be removed during synthesis. Thus, the
padding 0’s should have no adverse impact on the physical implementation. The revised
VHDL code is shown in Listing 15.5. An if generate statement is added. The input to the
leftmost stage will be padded with 0’s if its number is not a power of 2.

Listing 15.5 Parameterized tree-shaped reduced-xor circuit with input of arbitrary bits

a r c h i t e c t u r e gen-tree2-arch of reduced-xor i s
cons tant STAGE: natural : = log2c (WIDTH) ;
s i g n a l p:

std_logic_2d(STAGE downto 0, 2**STAGE-l downto 0) ;
5 begin

-- rename i n p u t s i g n a l
in-gen :
for i in 0 to (WIDTH-1) generate

end generate ;
-- p a d d i n g 0 ’ s
pad0-gen :
i f WIDTH < (2**STAGE) generate

p(STAGE,i) <= a(i>;

zero-gen :
for i in WIDTH to (2**STAGE-l) generate

end generate ;
p(STAGE,i) <= ’0’;

end generate ;
- r e p 1 i c a t e d s t r u c t u r e
stage-gen :
for s in (STAGE-1) downto 0 generate

row-gen :
for r in 0 to (2**s-1) generate

end generate ;
p(s,r> <= p(s+l,l*r) xor p(s+l,2*r+l);

end generate ;
- rename o u t p u t s i g n a l
y <= p(0,O);

end gen-tree2-arch ;

558 PARAMETERIZED DESIGN: PRACTICE

The design can also be coded with a for loop statement, as shown in Listing 15.6.

Listing 15.6 Parameterized tree-shaped reduced-xor circuit using for loop statement

a r c h i t e c t u r e loop-tree-arch of reduced-xor i s
cons tant STAGE: natural := log2c (WIDTH) ;
s i g n a l p:

std_logic_2d(STAGE downto 0. 2**STAGE-1 downto 0) ;
5 begin

process (a I p)
begin

for i in 0 to (2**STAGE-1) loop
i f i < WIDTH then

e l s e

end i f ;

10 p(STAGE,i) <= a(i); - rename i n p u t s i g n a l

p(STAGE,i) <= ’0’; - p a d d i n g 0 ’ s

end l o o p ;

for a in (STAGE-1) downto 0 loop
for r in 0 to (2**a-1) loop

end l o o p ;

IS - r e p 1 i c a t e d s t r u c t u r e

p (a , r) <= p(s+l,l*r) xor p (a + l , 2*r+1);

20 end l o o p ;
end p r o c e s s ;
- rename o u t p u t s i g n a l
y <= p(0,O);

end loop-tree-arch;

15.3.2 Binary decoder

We discussed the design of a parameterized binary decoder in Section 14.7.2. The code
in Listing 14.21 represents a one-dimensional vertical structure, as shown in Figure 14.1.
Since the decoding of each output bit is done in parallel, the code is better than the codes
of a cascading chain. However, the parallel vertical structure introduces a large number of
input signals and may hinder the placement and routing process.

An alternative is to construct a larger decoder with a collection of smaller decoders
that are arranged as a two-dimensional tree. This example illustrates the construction with
l-to-2l decoders. The block diagram and the function table of the l-to-2l decoder are
shown in Figure 15.3(a). An enable signal, en, is added to the decoder to accommodate the
construction. When it is not asserted, the decoder is disabled with an all-zero output. The
logic equations for this circuit are very simple:

yo = en . a’
y1 = en - a

The block diagram of a 3-t0-2~ decoder with 1-to-2l decoders is shown in Figure 15.3@).
In this scheme, the input signal is decoded in stages, from the MSB to the LSB. The leftmost
stage (i.e., stage 2) decodes the a2 bit, and its output enables either the top or bottom part of
the downstream decoding stages. The next stage decodes the a1 bit and enables one-half of
its downstream decoding stages. Thus, after two stages, only one-fourth of the downstream

COMMONLY USED INTERMEDIATE-SIZED RT-LEVEL COMPONENTS 559

~~ ~

input output

en a YI YO

0 - 0 0

1 0 0 1

(a) Symbol and function table of a 140-2~ decoder

stage 2 stage 1 stage 0

a yo POZ
PO3 en yi -

pzl
PM t r a YO-

pos en yt -

m'
en yi

- a y o d

en YI

code(2)

code(6)

code(7)
U

(b) 3-t0-2~ decoder using l-to-2l decoders

Figure 15.3 Tree-shaped binary decoder.

decoding stages is enabled. For an 71-to-2~ decoder, this operation repeats for each bit until
all the bits are decoded and one out of 2n output bits is asserted.

Note that there is an additional enable signal, en, in the input of the parameterized
module. If the en signal is not asserted, it disables the leftmost 1-to-2l decoder, which, in
turn, disables all downstream 1-to-2' decoders. None of the output bits will be asserted.

The VHDL description is shown in Listing 15.7, and the entity declaration of Chapter 14
is included for clarity. It is coded with a nested two-level for loop statement. The two inner
sequential signal assignments are based on the logic equations of the 1-to-2' decoder.

Listing 15.7 Parameterized tree-shaped binary decoder

l i b r a r y ieee ;
use ieee. std-logic-1164. a l l ;
use work. util-pkg. a l l ;
e n t i t y tree-decoder i s

s g e n e r i c (WIDTH: natural) ;
port (

a: in std-logic-vector (WIDTH-1 downto 0) ;
en:std-logic;
code : out std-logic-vector (P**WIDTH-l downto 0)

10 1 ;

560 PARAMETERIZED DESIGN: PRACTICE

end tree-decoder ;

a r c h i t e c t u r e loop-tree-arch of tree-decoder i s
cons tant STAGE: natural := WIDTH;

I5 s i g n a l p:
std_logic_2d(STAGE downto 0, 2**STAGE-1 downto 0) ;

begin
process (a,p)
begin

20 - l e f t m o s t s t a g e
p(STAGE,O) <= en;
- m i d d l e s t a g e s
for s in STAGE downto 1 l oop

for r in 0 to (2**(STAGE-s)-1) loop
p(s-1,2*r) <= (n o t a(s-1)) and p(s,r>;
p(s-l,2*r+l) <= a(s-1) and p(s,r>;

end l o o p ;
end l o o p ;
- l a s t s t a g e and o u t p u t

M for i in 0 to (2**STAGE-l) loop
code(i) <= p(0,i);

end l o o p ;
end p r o c e s s ;

end loop-tree-arch;

2.5

15.3.3 Multiplexer

A parameterized multiplexer was designed in Chapter 14 and the code is shown in List-
ing 14.25. The code represents a one-dimensional cascading priority routing network and
thus is not an ideal structure.

Tree-shaped multiplexer One scheme to derive a two-dimensional structure is to di-
vide the multiplexing into stages that are controlled by the individual bits of the selection
signal. The block diagram of an 8-to-1 multiplexer is shown in Figure 15.4. It consists of
three stages of 2-to-1 multiplexers. At each stage, the selection signals of the 2-to-1 mul-
tiplexers are tied together and connected to a bit of the selection signal, sel, of the 8-to-l
multiplexer. The LSB of the sel signal is connected to the leftmost stage (i.e., stage 2). It
selects one-half of the eight possible inputs and routes them to the next stage. The selection
process repeats two more times until a single input is routed to the output.

The operation of this circuit can be understood by examining an example. Routing with
the sel signal of "1 10" is shown in Figure 15.5. We use a "binary subscript" to make the
routing process clearer. For example, the a6 input is expressed as ~ 1 1 0 . The routing is done
as follows:

0 Stage 2 (the leftmost stage): The LSB of the sel signal is '0' and thus input signals
with index "xxO", which include ~000, solo, a100 and allo, are selected and routed
to the next stage.

0 Stage 1 (the middle stage): The second LSB of the sel signal is ' 1' and thus signals
with index "xlx", which include a010, and ~ 1 1 0 , are selected and routed to the next
stage.

COMMONLY USED INTERMEDIATE-SIZED RT-LEVEL COMPONENTS 561

stage 2 stage 1 stage 0

Figure 15.4 Tree-shaped 8-to- 1 multiplexer.

Figure 15.5 Routing with sel="l 10.

562 PARAMETERIZED DESIGN: PRACTICE

0 Stage 0 (the rightmost stage): The MSB of the sel signal is '1' and thus the signal

We can develop the VHDL code following the basic connection pattern of Figure 15.5.
Note that the basic structure of the multiplexer is similar to the tree-shaped reduced-xor
circuit of Section 15.3.1. Thus, the code of the reduced-xor circuit can be modified for the
multiplexer. The VHDL code using the for loop statement is listed in Listing 15.8.

with index "lxx", which is ~ 1 1 0 , is selected and routed to the output.

Listing 15.8 Parameterized tree-shaped multiplexer

l i b r a r y ieee ;
use ieee. std-logic-1164. a l l ;
use ieee . numeric-std. a l l ;
use work. util-pkg . a l l ;

5 e n t i t y muxl i s
g e n e r i c (WIDTH: natural) ;
p o r t (

a: i n std-logic-vector (WIDTH-1 downto 0) ;
sel : i n std-logic-vector (log2c (WIDTH) -1 downto 0) ;

10 y : ou t std-logic
1;

end muxl;

a r c h i t e c t u r e loop-tree-arch of muxl is
IS c o n s t a n t STAGE: natural:= log2c(WIDTH);

s i g n a l p:
std_logic_2d(STAGE downto 0, 2**STAGE-1 downto 0) ;

begin
process (a,sel ,p>

20 begin
f o r i i n 0 to (2**STAGE-l) loop

i f i < WIDTH then

e l s e

end i f ;

p(STAGE,i) <= a(i>; - rename i n p u t s i g n a l

2.5 p(STAGE,i) <= '0'; - p a d d i n g 0's

end l o o p ;
- r e p l i c a t e d s t r u c t u r e
f o r s i n (STAGE-1) downto 0 loop

f o r r i n 0 to (2**s-1) loop

p(s,r> <= p(s+l,2*r);

p(s,r) <= p(s+1,2*r+l);

i f sel((STAGE-l)-s)='O' then

e l s e

end i f ;
end l o o p ;

end l o o p ;
end p r o c e s s ;
- rename o u t p u t s i g n a l

40 y <= p(0,O);
end loop-tree-arch;

The code is identical to that in Listing 15.6 except that we replace the xor gate

p(s,r> <= p(s+l,2*r) xor p(s+l,2*r+l);

COMMONLY USED INTERMEDIATE-SIZED RT-LEVEL COMPONENTS 563

with a 2-to- 1 multiplexer:

i f sel ((STACE-1) - s) = ’ O ’ then

e l s e

end i f ;

p(s,r) <= p(s+i,2*r);

p(s , r) <= p(s+l,2*r+l);

Behaviorai description If the input of a multiplexer is represented as an array, as in the
code of Listing 15.8, the multiplexing can be considered as an indexing function that uses
the sel signal as an index to select an element from the array. Based on this observation,
we can derive the behaviorial VHDL code, as shown in Listing 15.9.

Listing 15.9 Behavioral description of a multiplexer

a r c h i t e c t u r e beh-arch of muxl i s
begin

end beh-arch ;
y <= a(to-integer(unsigned(se1)));

We have used the complex index expressions before. However, these expressions are
sfufic, which means that their values are determined during the elaboration process, and no
physical circuit will be inferred. On the other hand, the index expression in the beh-arch
architecture depends on the sel input. This implies that the expression is dynamic and will
infer a multiplexing circuit.

In the ideal case, the synthesis software recognizes this expression, and a predesigned,
optimized multiplexer is inferred from the device library accordingly. We can use a simple
one-line code to obtain an efficient implementation. However, not all synthesis software
accepts the dynamic expression in array index, and thus the code is less portable.

Two-dimensional description In Section 15.2.4, we extended the multiplexer to ac-
commodate two-dimensional input data. The code follows the cascading priority routing
network of the one-dimensional design and suffers the same performance problem.

We can follow the process in Section 15.2.4 and extend the tree-shaped multiplexer
to accept two-dimensional input data as well. The extension requires the use of a three-
dimensional data type to represent the internal signal. This can be done by defining a
new genuine data type like std-logic-2d or creating a new index function to emulate the
three-dimensional data type with a one-dimensional array.

Alternatively, we can construct a two-dimensional multiplexer by duplicating the existing
one-dimensional multiplexers. The VHDL code is shown in Listing 15.10. The a signal is
converted into an array-of-arrays data type internally, and a for generate statement creates
multiple instances of one-dimensional multiplexers.

Listing 15.10 lbo-dimensional multiplexer using one-dimensional multiplexers

a r c h i t e c t u r e from-muxld-arch of mux2d is
type aoa-transpose-type i s

s i g n a l aa: aoa-transpose-type ;

gener ic (WIDTH: natural) ;
port (

array (B-1 downto 0) of std-logic-vector (P-1 downto 0) ;

5 component muxl i s

a: in std-logic-vector (WIDTH-1 downto 0) ;

564 PARAMETERIZED DESIGN: PRACTICE

Table 15.1 Function table of an 8-to-3 binary encoder

Input Encoded output
(17(16 ' ' a1aO b2blbO

0000 0001 OOO
OOOO 0010 00 1
0000 0100 010
0000 1000 01 1
0001 0000 100
0010 OOOO 101
0100 0000 110
1000 0000 111

others don' t-care

sel : in s t d - l o g i c - v e c t o r (l o g 2 c (WIDTH) -1 downto 0) ;
10 y : ou t s t d - l o g i c

1;
end component;

- c o n v e r t t o a r r a y - o f - a r r a y s d a t a t y p e
IS process (a)

begin

begin

fo r i i n 0 to (B - I) loop
for j in 0 to (P - 1) loop

a a (i > (j > <= a (j , i > ;
20 end l o o p ;

end loop;
end p r o c e s s ;
-- r e p l i c a t e I - b i t m u l t i p l e x e r B t i m e s
g e n - n b i t : fo r i in 0 to (B - 1) generate

25 mux: muxl
g e n e r i c map (W I DTH = > P 1
port m a p (a = > a a (i) , sel=>sel, y=>y(i));

end generate ;
end f rom-muxld-arch ;

15.3.4 Binary encoder

A binary encoder is a circuit that converts a one-hot input into a binary representation. The
width of the input is normally a power of 2, and only 1 bit of the input is asserted. The
function table of an 8-to-3 binary encoder is shown in Table 15.1. One unique characteristic
of a binary encoder is the number of don't-care input combinations. For an n-bit input,
2" - n combinations are not used. This can lead to significant circuit reduction.

The circuit can easily be constructed by observing the function table. The logic expres-
sions of the previous 8-to-3 binary encoder are

b p = U7 -k U6 -k U5 -k U4
bi = a7 -k a6 -k U3 -k U2
bo = a7 + a5 + a3 + a1

COMMONLY USED INTERMEDIATE-SIZED RT-LEVEL COMPONENTS 565

Deriving an abstract parameterized code for the binary encoder is not very hard. However,
this kind of description tends to "overspecify" the circuit. For example, the priority encoder
code of Listing 14.24 can also be used to describe a binary encoder. Although the circuit
functions correctly, the overspecification leads to unnecessary circuit complexity.

One way to describe a more efficient implementation is to follow the pattern of the
previous or expressions. Close observation shows that the ak bit will be included in the or
expression of bi if the following condition is met:

k
- m o d 2 = 1
2i

For example, let i = 1. For an 8-to-3 binary encoder, the range of k is between 0 and 7,
and the condition is satisfied when k is 7,6,3 and 2. Thus, the or expression of bl can be
written as a7 + a6 + a3 + a2.

To accommodate the condition, we create a mask table mirroring the desired patterns
and apply the pattern to enable the desired bits. For example, the mask table of the previous
8-to-3 binary encoder is

"11110000"
11 00 1 100 1' ,

"10101010",

To obtain b2, we can perform the and operation between the a input and the first row of the
mask table and then perform reduced-or operation over the result. This scheme is coded
in Listing 15.11. We define a function, gen-oraask, to generate the mask table with an
array-of-arrays data type and then use it to disable the unneeded bits. The circuit is described
by a nested two-level for loop statement. The outer loop iterates through the log2 n output
bits, and the inner loop performs the reduced-or operation over the masked input. The code
for the reduced-or circuit represents a cascading structure. If needed, we can revise it to
make a tree-shaped implementation, as the reduced-xor circuit in Section 15.3.1. This is
probably not necessary since the synthesis software should be able to handle such a simple
circuit.

Listing 15.11 Parameterized binary encoder

l i b r a r y ieee ;
use ieee, std-logic-1164. a l l ;
use work. util-pkg. a l l ;
e n t i t y bin-encoder is

5 gener ic (N : natural) ;
port (

a: in std-logic-vector (N - 1 downto 0) ;
bcode : out std-logic-vector (log2c (N) -1 downto 0)

> ;
10 end bin-encoder ;

a r c h i t e c t u r e para-arch0 of bin-encoder i s
type mask-2d-type i s array (log2c (N I -1 downto 0) of

std-logic-vector (N - 1 downto 0) ;
15 s i g n a l mask : mask-2d-type ;

f u n c t i o n gen-or-mask return mask-2d-type i s

begin
v a r i a b l e or-mask : mask-2d-type ;

for i in (logZc(N)-1) downto 0 loop

566 PARAMETERIZED DESIGN: PRACTICE

2.5

20 f o r k in (N - 1) downto 0 loop
i f (k/(2**i) mod 2)= 1 then

or-mask(i) (k) := ’1 ’ ;
e l s e

or-mask(i)(k) := ’0’;
end i f ;

end l o o p ;
end l o o p ;
return or-mask ;

end funct ion ;
30

begin
mask <= gen-or-mask ;
process (mask, a)

v a r i a b l e tmp-row : std-logic-vector (N-1 downto 0) ;
35 var iab le tmp-bit : std-logic;

begin
for i in (log2c(N)-l) downto 0 loop

tmp-row : = a and mask(i) ;
-- reduced or o p e r a t i o n

for k in “-1) downto 0 loop

end l o o p ;
bcode(i) <= tmp-bit ;

40 tmp-bit := ’0’;

tmp-bit := tmp-bit or tmp-row(k);

45 end l o o p ;
end p r o c e s s ;

end para-arch0 ;

Note that the gen-ormask function and the mask operation are static. The masked bits
will become 0’s during elaboration process and be removed from the physical circuit during
synthesis.

15.3.5 Barrel shifter

In Section 7.4.4, we studied the design of a fixed-size 8-bit rotating-right circuit. It consists
of three stages of shifting-multiplexing circuits. According to the value of the control
signal, the input can be either passed directly to the output or shifted by a fixed amount.
The amount of shifting doubles in each stage, from 2’ to 2l and 22. The 3-bit selection
signal controls the three shifting-multiplexing circuits. After an input signal passes through
three stages, the total shifted amount is the summation of the three individual stages set by
the selection signal.

This is an efficient implementation for several reasons. First, as the number of inputs
increases, the number of stages grows on the order of 0(10g2 n). The length of the critical
path grows in the same order, and thus its performance is much better than the cascading
chain. Second, the circuit exhibits a regular two-dimensional structure and thus is easier
for the synthesis and placement and routing software to obtain better results. Finally, recall
that shifting a fixed amount requires only reconnection of the input and output signals.
The shifting-multiplexing circuit is essentially a simple 240-1 multiplexer. Because of
the regular structure, this scheme can be extended easily to accommodate parameterized
design.

COMMONLY USED INTERMEDIATE-SIZED FIT-LEVEL COMPONENTS 567

To make the parameterized shifting circuit more flexible, we include a feature parameter
to indicate the type of shift operation, which can be shifting left, rotating left, shifting right
and rotating right. The design starts with the shifting-multiplexing module. The basic
block diagram is shown in Figure 15.6(a). The VHDL code of the parameterized shifting-
multiplexing module is shown in Listing 15.12. The code includes three parameters. The
WIDTH generic specifies the size of the circuit, the SAMT generic specifies the amount to
be shifted and the SMODE generic specifies the type of shifting operation. Four if generate
statements generate the desired amount of shifting or rotation, and the result is passed to a
2-to-1 multiplexer. Note that the shifted amount is determined by the SAMT generic and
thus is static. The shiftinghotation circuit involves only reconnection of the signals.

Listing 15.12 Parameterized fixed-size shifting-multiplexing module

l i b r a r y ieee ;
use ieee. std-logic-1164. a l l ;
use work. util-pkg. a l l ;
e n t i t y f ixed-shifter i s

s g e n e r i c (
WIDTH : natural ;
S-AMT : natural ;
S-MODE : natural

1;
10 p o r t (

s-in: in std-logic-vector (WIDTH-1 downto 0) ;
shft: in std-logic;
S-out : out std-logic-vector (WIDTH-1 downto 0)

1;
IS end f ixed-shif ter ;

a r c h i t e c t u r e para-arch of f ixed-shifter i s
c o n s t a n t L-SHIFT: natural : = O ;
c o n s t a n t R-SHIFT : natural : = l ;

20 c o n s t a n t L-ROTAT: natural : = 2 ;
c o n s t a n t R-ROTAT : natural : = 3 ;
s i g n a l sh-tmp , zero: std-logic-vector (WIDTH-1 downto 0) ;

begin

40

zero <= (o t h e r s = > ’ O ’) ;
-- s h i f t l e f t
1-sh-gen :
i f S-MODE=L-SHIFT generate

sh-tmp <= s-in(W1DTH-S-AMT-1 downto 0) %
zero (WIDTH-1 downto WIDTH-S-AMT) ;

end generate ;
- r o t a t e l e f t
1-rt-gen :
i f S-MODE=L-ROTAT generate

sh-tmp <= s-in(W1DTH-S-AMT-1 downto 0) %
s-in(W1DTH-1 downto WIDTH-S-AMT) ;

end generate ;
-- s h i f t r i g h t
r-sh-gen :
i f S-MODE=R-SHIFT generate

sh-tmp <= zero(S-AMT-1 downto 0) %

568 PARAMETERZED DESIGN: PRACTICE

stage 0 stage 1 stage 2

S-AMT=I S-AMT=P S-AMT4

w...\-, ~~

(b) Block diagram of an %bit three-stage barrel shifter

Figure 15.6 Parameterized barrel shifter.

s-in (WIDTH -1 downto S-AMT) ;
end generate ;
- r o t a t e r i g h t
r-rt-gen :

4s if S-MODE=R-ROTAT generate
sh-tmp <= s-in(S-AMT-1 downto 0) tz

s-in (WIDTH -1 downto S-AMT) ;
end generate ;
- 2 - t o - I m u l t i p l e x e r

M s-out <= sh-tmp when shft=’l’ e l s e
s-in ;

end para-arch ;

The block diagram of a general &bit three-stage barrel shifter is shown in Figure 15.6(b).
Each stage is a shifting-multiplexing module, and the ith bit of the amt signal is connected
to the shf t signal of the ith stage. The amount of shifting is determined by the stage and is
2i for the ith stage. The VHDL code is shown in Listing 15.13. We assume that the value
of input (Le., the WIDTH parameter) is a power of 2.

Listing 15.13 Parameterized barrel shifter

l i b r a r y ieee ;
use ieee. std-logic-1164. a l l ;
use work. util-pkg. a l l ;
e n t i t y barrel-shifter i s

MORE SOPHISTICATED EXAMPLES 569

5 g e n e r i c (
WIDTH : n a t u r a l ;
S-MODE : n a t u r a l

) ;
port (

10 a : in s t d - l o g i c - v e c t o r (W I D T H - 1 downto 0) ;
amt : in s t d - l o g i c - v e c t o r (l o g l c (WIDTH) -1 downto 0) ;
y : out s t d - l o g i c - v e c t o r (W I D T H - 1 downto 0)

1;
end b a r r e l - s h i f t e r ;

a r c h i t e c t u r e p a r a - a r c h of b a r r e l - s h i f t e r i s
I S

cons tant STAGE: n a t u r a l := logPc(W1DTH) ;
type s t d - a o a - t y p e i s array(STAGE downto 0) of

s t d - l o g i c - v e c t o r (W I D T H - 1 downto 0) ;
20 s i g n a l p : s t d - a o a - t y p e ;

component f i x e d - s h i f t e r i s

WIDTH : n a t u r a l ;
S-AMT : n a t u r a l ;

U S-MODE : n a t u r a l

g e n e r i c (

1;
port (

s - i n : in s t d - l o g i c - v e c t o r (W I D T H - 1 downto 0) ;
s h f t : in s t d - l o g i c ;

30 s -ou t : out s t d - l o g i c - v e c t o r (WIDTH-1 downto 0)
1;

end component ;

p (0) <= a ;
35 s t age -gen :

fo r s in 0 t o (STAGE-1) generate
s h i f t - s l i c e : f i x e d - s h i f t e r

begin

g e n e r i c map(WIDTH=>WIDTH , S-MODE=>S-MODE ,
S-AMT=>l**s)

40 port map(s-in=>p(s), s - o u t = > p (s + l) , s h f t = > a m t (s)) ;
end generate ;
y <= p(STAGE);

end p a r a - a r c h ;

15.4 MORE SOPHISTICATED EXAMPLES

We study more sophisticated design examples in this section, including a reduced-xor-
vector circuit and cell-based combinational multiplier, which exhibit more complex two-
dimensional structures, and a priority encoder and FIFO, which are constructed using pre-
designed parameterized RT-level components.

570 PARAMETERZED DESIGN: PRACTICE

15.4.1 Reduced-xor-vector circuit

The reduced-xor-vector circuit was explained in Section 7.4.2. It performs the xor operation
over successive ranges of the input. For example, for a 4-bit input a3a2~1a0, the circuit
returns four values: ao, a1 @ ao. a2 @ a1 @ a0 and a3 @ a2 @ a1 @ a0 .
Cascading-chain structure We discussed two implementations in Section 7.4.2. The
linear cascading implementation requires a minimal number of gates, and its VHDL code
is very simple. The code of Listing 7.21 takes advantage of the VHDL array construct and
can easily be modified to accommodate a parameterized design. The revised code is shown
in Listing 15.14.

Listing 15.14 Parameterized cascading-chain reduced-xor-vector circuit

l i b r a r y ieee ;
use ieee. std-logic-1164. a l l ;
use work. util-pkg. a l l ;
e n t i t y reduced-xor-vector i s

s g e n e r i c (N : natural) ;
port (

a : in std-logic-vector (N-1 downto 0) ;
y: out std-logic-vector (N-1 downto 0)

1;
10 end reduced-xor-vector ;

a r c h i t e c t u r e linear-arch of reduced-xor-vector i s

begin
s i g n a l p : std-logic-vector (N-1 downto 0) ;

IS p <= (p(N-2 downto 0) % '0') xor a;
y <= p ;

end linear-arch;

The cascading structure experiences a large propagation delay. For an N-bit input, the
critical path includes N xor gates.

ParaNekprefix structure A more efficient structure was shown in Figure 7.8(b), which
reduces the critical path to log, N xor gates and achieves the maximal amount of sharing.
The interconnection is arranged according to a special class of structures based on the
parallel-prefix algorithm.

The connection structure of this circuit is more involved. To better understand the
connection pattern, we rename the signals in the circuit diagram of Figure 7.8(b) and add
some pass-through boxes. The revised diagram is shown in Figure 15.7.

Assume that a reduced-xor-vector circuit has N-bit input and N = 2*. The circuit can
be divided into n stages, each containing 2" blocks (rows). A block can be an xor gate or
an empty pass-through box. We number the stages from left to right and the rows from top
to bottom. For the ith row in the sth stage, its output is labeled as psi. An 8-bit circuit is
shown in Figure 15.7.

Closer observation of the diagram shows that it follows a simple pattern. Consider the
sth stage:

0 The stage is divided into 2n-S modules. Each module contains 28 blocks and is

0 The top-half blocks of the module are pass-through boxes. The input of a box is
shown as a shaded rectangle in Figure 15.7.

connected to the output from the same row of the preceding stage.

stage 1 stage 2

MORE SOPHISTICATED EXAMPLES 571

stage 3

Figure 15.7 Parallel-prefix reduced-xor-vector circuit.

0 The bottom-half blocks of the module are xor gates. One input of an xor gate is
connected to the output from the same row of the preceding stage. The other input
is the same for all xor gates in the module. It is from the output whose row index is
one smaller than the index of the top xor gate in the module.

For example, consider the second stage in the diagram. We can divide it into two 22
modules. In the first module, the top half of the first module, whose outputs are labeled
p20 and p21, is connected to pl0 and p l l . The outputs of the bottom half of the module are
labeled p22 and p23. In addition to the p12 and pi3 signals, the xor gates share a common
input, the p l l signal. The second module has a similar pattern. Note that the pi5 signal is
connected to the xor gates whose outputs are labeled -6 and p27.

The VHDL code is shown in Listing 15.15. We assume that the number of elements of
the a input is a power of 2.

Listing 15.15 Parameterized parallel-prefix reduced-xor-vector circuit

a r c h i t e c t u r e para-pref ix-arch of reduced-xor-vector i s
cons tant ST : natural := log2c (N I ;
s i g n a l p: std_logic_2d(ST downto 0, N - 1 downto 0);

begin
5 process (a , p I

begin
- rename i n p u t
for i in 0 to “-1) loop

end l o o p ;
- main s t r u c t u r e
f o r s in 1 t o ST l oop

p (0 , i) <= a(i>;
10

572

IS

PARAMETERIZED DESIGN PRACTICE

for k in 0 to (2 * * (S T - s) - 1) loop
- 1 s t h a l f : p a s s - t h r o u g h boxes
for i i n 0 to (2 * * (s - 1) - 1) loop

end loop;
-- 2 n d h a l f : x o r g a t e s
for i in (2 * * (s - 1)) to (2 * * s - 1) loop

p (s , k*(2**s)+i) <=

p (s , k * (2 * * s) + i) <= p (s - 1 , k * (2 * * s) + i) ;

p (s - 1 , k * (2 * * s) + i) xor
p (s - 1 , k * (2 * * ~) + 2 * * (~ - 1) -1) ;

end loop;
end loop;

end loop;
- rename o u t p u t
for i in 0 to N - 1 loop

y (i) <= p (S T , i) ;
end loop;

end process;
end para-pref i x -arch ;

The main structure is described by a nested three-level for loop statement. The outer
loop specifies the iterations over ST stages:

for s in 1 to ST loop

The middle loop iterates over the modules:

for k i n 0 to (2**(ST-s) -1) loop

The two inner loops iterate over the blocks inside a module:

for i in 0 to (2 * * (s - 1) - 1) loop

for i in 2 * * (s - 1) to (2 * * s - 1) loop
. . .

. . .
The first inner loop iterates through the pass-through boxes and the second inner loop iterates
through the xor gates. Note that the loop index represents half of the number of the blocks
in a module.

15.4.2 Multiplier

Multiplication is a frequently needed arithmetic operation and its synthesis is not supported
by all software. Two fixed-size implementations were discussed earlier, including an adder-
based combinational multiplier in Section 11.6 and a sequential multiplier in Section 7.5.4.
In this section, we convert the previous implementations to parameterized modules and also
introduce a more efficient cell-based design.

Sequential multiplier The sequential multiplier utilizes a simple shift-and-add algo-
rithm to iterate additions sequentially through a single adder. Since the algorithm can be
applied for any input width, the design can be easily parameterized.

The original fixed-size 8-bit multiplier code is shown in Listing 11.8. Various array
boundaries, initial values, and test conditions are based on the input width. To convert the
code into a parameterized design, we just need to represent these values in terms of the
WIDTH generic. The revised code is shown in Listing 15.16.

MORE SOPHISTICATED EXAMPLES 573

10

40

Listing 15.16 Parameterized sequential multiplier

l i b r a r y ieee ;
use ieee. std-logic-1164. a l l ;
use ieee . numeric-std. a l l ;
use work. util-pkg. a l l ;

5 e n t i t y seq-mult-para is
g e n e r i c (WIDTH: natural) ;
p o r t (

clk, reset: in std-logic;
start : in std-logic ;
a-in, b-in: i n std-logic-vector(W1DTH-1 downto 0);
ready : out std-logic ;
r: o u t std-logic-vector (2*WIDTH-1 downto 0)

1;
end seq-mult-para;

a r c h i t e c t u r e shift-add-better-arch of seq-mult-para i s
I5

c o n s t a n t C-WIDTH: integer:=log2c(WIDTH)+l;
c o n s t a n t C-INIT : unsigned(C-WIDTH-1 downto 0)

:=to-unsigned(WIDTH,C-WIDTH);
20 type state-type i s (idle, add-shft) ;

s i g n a l state-reg , state-next : state-type ;
s i g n a l a-reg , a-next : unsigned(W1DTH-1 downto 0) ;
s i g n a l n-reg , n-next : unsigned(C-WIDTH-1 downto 0) ;
s i g n a l p-reg , p-next : unsigned (P*WIDTH downto 0) ;

a l i a s pu-next: unsigned(W1DTH downto 0) i s

a l i a s pu-reg: unsigned(W1DTH downto 0) i s

zs - a l i a s f o r the upper p a r t and l o w e r p a r t s of p - r e g

p-next (2*WIDTH downto WIDTH) ;

p-reg (2*WIDTH downto WIDTH) ;

p-reg (WIDTH -1 downto 0) ;

-- s t a t e and da ta r e g i s t e r s
process (clk , reset)

M a l i a s pl-reg: unsigned(W1DTH-1 downto 0) i s

begin

35 begin
i f reset=’l’ then

state-reg <= idle;
a-reg <= (o t h e r s = > ’ O ’) ;
n-reg <= (o t h e r s = > ’ O ’) ;
p-reg <= (o t h e r s = > ’ O ’) ;

state-reg <= state-next;
a-reg <= a-next;
n-reg <= n-next;

45 p-reg <= p-next;

e l s i f (clk’event and clk=’l’) then

end i f ;
end p r o c e s s ;
- combina t iona l c i r c u i t
process (start ,state-reg ,a-reg ,n-reg ,p-reg, a-in ,b-in,

begin
50 n-next , p-next

a-next <= a-reg;

574 PARAMETERIZED DESIGN: PRACTICE

70

75

n-next <= n-rag;
p-next <= p-reg;

case state-reg i s
when idle =>

55 ready < = ’ O ’ ;

i f start=’l’ then
p-next (WIDTH-1 downto 0) <= unsigned(b-in) ;
p-next (2*WIDTH downto WIDTH) <= (o t h e r s = > ’ O ’) ;
a-next <= unsigned(a-in) ;
n-next <= C-INIT;
state-next <= add-shft ;

state-next <= idle;
e l s e

end i f ;
ready <=’l’;

n-next <= n-reg - 1 ;
- add
i f (p-reg(O)=’l’) then

e l s e

end i f ;
- - s h i f t
p-next <= ’0’ 6 pu-next & pl-reg(W1DTH-1 downto 1);
i f (n-next /= 0) then

when add-shft =>

pu-next <= pu-reg + (’0’ & a-reg);

pu-next <= pu-reg;

state-next <= add-shft ;

state-next <= idle;
so e l s e

end i f ;
end c a s e ;

end process;
85 r <= std-logic-vector(p-reg (Z*WIDTH-l downto 0)) ;

end shift-add-better-arch;

Adder-based combinational multiplier The adder-based combinational multiplier
uses an array of adders to perform additions in parallel, as discussed in Section 7.5.4.
The revised block diagram of Section 9.4.3 illustrates the repetitive nature of this design.
Our parameterized design is based on this structure. The block diagram is repeated in
Figure 15.8. We modify the internal signal names to help us to identify the input and output
relationships of each stage.

To increase the flexibility of this module, we include two parameters, N and WITH-PIPE,
in this design. The N generic specifies the width of the operand, and the WITHSIPE generic
indicates whether to add a pipeline to the multiplier. If the pipeline is desired, registers will
be inserted between the stages.

The VHDL code is shown in Listing 15.17. Two array-of-arrays data types are defined for
the internal signals. The std-aoan-type data type is used for the propagated operands, and
the std-aoa-2n-type data type is used to represent the partial product and the bit product.
The code includes three major parts. The first part is composed of two if generate statements,
which either generate buffer registers between stages or serve as a direct connection. The
second part is the process that generates the bit product vector. The bit product in the ith

Y

MORE SOPHISTICATED EXAMPLES 575

a b

Figure 15.8 Adder-based combinational multiplier with new signal labels.

576 PARAMETERIZED DESIGN: PRACTICE

stage is represented by the bp (i 1 signal, which is in the form of 0 - - 0 a,- 1 bi - - a a&
0 - - SO. There are N - i and i padding 0’s in the front and end respectively. The process
includes two for loop statements, one for the two boundary bit products (i.e., bp(0) and
bp (1)) and the other for regular stages. The third part specifies the addition operation in
each stage. It includes a for generate statement for the middle stages and special signal
connections for the first and the last stages.

Listing 15.17 Parameterized adder-based combinational multiplier

l i b r a r y ieee ;
use ieee. std-logic-1164. a l l ;
use ieee. numeric-std. a l l ;
e n t i t y multn i s

5 g e n e r i c (
N: natural;
WITH-PIPE : natural

1;
p o r t (

10 clk , reset : std-logic ;
a , b: i n std-logic-vector(N-1 downto 0);
y: out std-logic-vector (2*N-1 downto 0)

1;
end multn;

a r c h i t e c t u r e n-stage-pipe-arch of multn i s
IS

type std-aoa-n-type i s

type std-aoa-2n-type i s

s i g n a l a-rag , a-next , b-reg , b-next : std-aoa-n-type;
s i g n a l bp , pp-reg , pp-next : std-aoa-2n-type ;

a r r a y (N-2 downto 1) of std-logic-vector (N-1 downto 0) ;

20 a r r a y (N-1 downto 0) of unsigned (2*N-1 downto 0) ;

begin

40

45

- p a r t 1
- w i t h o u t p i p e l i n e b u f f e r s
g-wire;
i f (WITH-PIPE/=l) g e n e r a t e

a-reg <= a-next;
b-reg <= b-next;
pp-reg(N-1 downto 1) <= pp-next(N-1 downto 1);

end g e n e r a t e ;
- w i t h p i p e l i n e b u f f e r s
g-reg :
i f (WITH-PIPE=l) g e n e r a t e

process (clk ’reset
begin

i f (reset =’l’) then
a-reg <= (others=>(others=>’O’));
b-reg <= (o t h e r s = > (o t h e r s = > ’0 ’1) ;
pp-reg(N-1 downto 1) <= (o t h e r s = > (o t h e r s = > ’0’));

a-reg <= a-next;
b-reg <= b-next;
pp-reg(N-1 downto 1) <= pp-next(N-1 downto 1);

e l s i f (clk’event and clk=’l’) then

MORE SOPHISTICATED EXAMPLES 577

50

55

6Q

65

70

75

80

end i f ;
end p r o c e s s ;

end generate ;
-- p a r t 2
- b i t - p r o d u c t g e n e r a t i o n
process (a , b , a - r e g , b - r e g)
begin

-- b p (0) and b p (1)
f o r i in 0 t o 1 loop

b p (i) <= (o t h e r s = > ’ O ’) ;
f o r j in 0 t o N - 1 loop

end l o o p ;
end l o o p ;
- r e g u l a r b p (i)
for i in 2 to (N - 1) loop

b p (i) (i + j) <= a (j) and b (i) ;

b p (i) <= (o t h e r s = > ’ O ’) ;
f o r j in 0 to (N - 1) loop

end l o o p ;
b p (i) (i + j) <= a - r e g (i - l) (j) and b - r e g (i - l) (i) ;

end l o o p ;
end p r o c e s s ;
-- p a r t 3
-- a d d i t i o n of t h e f i r s t s t a g e
p p - n e x t (1) <= b p (0) + b p (1) ;
a - n e x t (1) <= a ;
b - n e x t (l) <= b ;
- a d d i t i o n of t h e m i d d l e s t a g e s
g l :
f o r i in 2 t o (N-2) generate

pp-next (i) <= p p - r e g (i - 1) + b p (i) ;
a -nex t (i) <= a - r e g (i - 1) ;
b-next (i) <= b - r e g (i - 1) ;

end generate ;
- a d d i t i o n of t h e l a s t s t a g e
pp-next (N - 1) <= pp-reg(N-2) + bp(N-1);
-- rename o u t p u t
y <= s t d - l o g i c - v e c t o r (pp-reg(N-1)) ;

end n - s t a g e - p i p e - a r c h ;

Cell-based carry-ripple combinational multiplier The previous adder-based mul-
tiplier utilizes “coarse” RT-level parts, namely the 2N-bit adders. The alternative is to use
a 1-bit full-adder cell as the basic building block. This allows us to explore the “fine”
structure of the multiplier and derive a more efficient circuit.

The multiplication of two 4-bit binary numbers is shown in Figure 15.9. The operation
can be considered as the summation over the aibj terms, which are aligned in a specific
two-dimensional pattern.

The aibj term returns a l-bit value, and the addition of any two terms can be done by a
l-bit adder, which is commonly known as afull udder. The input of a full adder includes
two l-bit operands, ai and bi, and a l-bit carry-in, ci, and the output includes a sum bit,
so, and a carry-out, CO. The gate-level VHDL description is shown in Listing 15.18. For

578 PARAMETERIZED DESIGN: PRACTICE

X
a3 a2 a1 a0 multiplicand
b3 b2 bl bo multiplier

Figure 15.9 Multiplication as a summation of aibj terms.

most ASIC technologies, there is a predesigned full-adder cell in the device library, and it
will be inferred during synthesis.

Listing 15.18 l-bit full adder

l i b r a r y ieee;
use ieee. std-logic-1164. a l l ;
e n t i t y fa i s

port (
5 ai, bi, ci: in std-logic;

so, CO: out std-logic
1;

end fa;

10 a r c h i t e c t u r e arch of fa i s

so <= ai xor bi xor ci;
CO <= (ai and bi) or (ai and ci) or (bi and ci);

begin

end arch;

To summate the ai b j terms, we can arrange the full-adder cells according to the two-
dimensional structure of multiplication operation in Figure 15.9. ' h o common arrange-
ments are carry-ripple architecture and carry-save architecture. We study the carry-ripple
multiplier in this subsection and the carry-save multiplier in the next subsection.

Theblockdiagramof a4-bitcarry-ripplemultiplier is showninFigure 15.10. Because the
carry is propagated (i.e., rippled) from the LSB to the MSB stage by stage, this arrangement
is hown as the carry-ripple architecture. In the diagram, each full adder cell is given an
index and expressed as FAij, indicating that the cell is located in the ith row and the j t h
column. For a non-boundary cell, such as FA21 and FA22 in the diagram, the input and
output signals of the FAij cell follow a specific pattern:

0 The ci port is connected to the ci,j signal.
0 The CO port is connected to the ~ + l , j signal, which becomes the carry-in of the

0 The so port is connected to the s,,j signal, which is connected to the bi port of the

0 The ai port is connected to the ui'bj term.
0 Thebiportisconnectedtothesi-l,j+l signal, whichisthes~signaloftheFAi-~,~+~

FAi+l,j cell.

FAi+l,j-1 cell.

cell.

full-adder cell

CO FA ci

MORE SOPHISTICATED EXAMPLES 579

O(aob4) aoba aobz

Figure 15.10 Cell-based carry-ripple combinational multiplier.

The boundary cells are located in the top and bottom rows, and the leftmost and rightmost

0 Top row: The bi port of the FAlj cell is connected to the aobj+l term. Note that the
b4 bit does not exist and the leftmost term (i.e., aob4 in the diagram) is used for the
naming convention. The aob4 term is actually connected to ’0’.

0 Bottom TOW: The so ports of the cells and the CO port of the leftmost cell form the
top portion of the final result.

0 Rightmost column: The ci port of the FAio cell is connected to ’0’. The so ports of
the cells form the lower portion of the final result.

0 Lefimost column: The bi port of the FAi4 cell is connected to the CO port from the
leftmost cell in the previous row. In other words, the ~ , 3 signal is used in the place
of the s i , 3 signal.

Once identifying the normal and boundary connection patterns and the signal naming
convention, we can derive the VHDL description accordingly. The code is shown in List-
ing 15.19. We define an array-of-arrays type for the internal bit-product, carry and sum
signals. The code is divided into several segments. The first segment is a nested two-level
for generate statement that generates the ab signal, which consists of all ai bj terms. The
second segment specifies the connection patterns for the leftmost and rightmost columns.
The third segment specifies the input signal of the top row. The fourth segment is a nested
two-level for generate statement that instantiates the two-dimensional N-by-(N - 1) full-
adder cells of the middle rows. The last segment uses the sum signals of the bottom row
and rightmost column to form the final result.

columns. Their connections are modified as follows:

Listing 15.19 Parameterized cell-based carry-ripple combinational multiplier

l i b r a r y ieee ;
use ieee. std-logic-1164. a l l ;
e n t i t y mult-array i s

gener ic (N : natural) ;
I p o r t (

a-in , b-in : in std-logic-vector (N-1 downto 0) ;
y: out std-logic-vector (2*N-1 downto 0)

580 PARAMETERIZED DESIGN: PRACTICE

1;
end mult-array ;

10

a r c h i t ec t u r e ripple-c arry- arch of mult-array is
type two-d-type i s

s i g n a l ab, c, 8 : two-d-type;
a r r a y (N-1 downto 0) of std-logic-vector (N downto 0) ;

I5 component fa
p o r t (

ai, bi, ci: in std-logic;
s o , CO: out std-logic

1;
zo end component;

- b i t p r o d u c t
g-ab-row :
f o r i i n 0 to N-1 g e n e r a t e

begin

15 g-ab-col: for j i n 0 to (N-1) g e n e r a t e
ab(i)(j) <= a-in(i) and b-in(j>;

end g e n e r a t e ;
end g e n e r a t e ;
- l e f t m o s t and r i g h t m o s t columns

f o r i i n 1 t o (N-1) g e n e r a t e
M g-O-N-col:

c(i)(O) <= '0';
s(i) (N) <= c(i) (N); - l e f t m o s t column

end g e n e r a t e ;

s (0) <= ab(0);
ab(O)(N) <= '0';
- midd le rows
g-f a-row :

35 - t o p row

40 fo r i i n 1 to (N-1) g e n e r a t e
g-f a-col :
f o r j i n 0 to (N-1) g e n e r a t e

u-middle: fa
p o r t map

45 (ai=>ab(i)(j>, bi=>s(i-l)(j+l), ci=> c(i>(j>,
so=>s(i)(j), co=>c(i>(j+l>>;

end g e n e r a t e ;
end g e n e r a t e ;
-- bot tom row and ou tpu t

fo r i i n 0 to (N-2) g e n e r a t e

end g e n e r a t e ;
y(2*N-1 downto N-1) <= s(N-1);

M g-out:

y(i) <= s (i) (O > ;

55 end ripple-carry-arch ;

Although the appearance of this code is different from that of the previous adder-based
code in Listing 15.17, the circuit it describes is very similar. Each row of the full-adder
cells in Figure 15.10 forms a 4-bit ripple adder. Thus, this code actually describes a ripple
adder-based combinational multiplier.

MORE SOPHISTICATED EXAMPLES 581

0 (a0b4) aobs aobz aobl aobo

Y7 YE Y5 Y4 Y3 Y2 Y l YO

Figure 15.11 Non-optimal pipelined carry-ripple multiplier.

. The fine granularity does provide more information about the underlying implementation
and helps us better understand the operation of this circuit. For example, our previous
pipelined design inserts pipeline registers for the sum output of the adders, as shown in
Figure 15.1 1. These are not the optimal locations since no signal can be passed to the next
row until the slowest carry bit (i.e., the MSB) becomes available.

A better division can be obtained by examining the signal propagation in the cell-level
diagram. If we assume that the propagation delay of a full-adder cell is Tfa and the delay
of obtaining ai - b j is negligible, the signal propagation from the LSB of the top row to
the MSB of the bottom row is shown in Figure 15.12. The propagation is shown as a set
of contour lines, each representing an increment of a delay of “fa. Recall that a good
pipelined design should divide the combinational circuit into stages of similar propagation
delays. The pipeline registers should be inserted along these contour lines.

The contour lines also help us to identify the critical paths. One path is marked as a thick
dashed line in Figure 15.12. For an N-bit multiplier, there are N - 1 rows, each consisting
of N full-adder cells. The critical path includes N cells in the top row and two cells of each
remaining N - 2 rows. Thus, the propagation delay is

N T f a + 2(N - 2)Tfa = (3N - 4)Tfa

Cell-based carry-save combinational multiplier The carries of the carry-ripple
architecture form a cascading chain and introduce a large propagation delay. Instead of
propagating the carry to the next cell in the same row, an alternative is to “save” the carry
outputs and pass them to the cells in the next row, where they are summed in parallel.
This is known as the curry-save archirecrure. The block diagram of a 4-bit carry-save
combinational multiplier is shown in Figure 15.13. In the first three rows, a full-adder cell
adds the aibj term and the sum bit (i.e., so) and the carry-out bit (i.e., CO) from the previous
row, and passes the results to the next row. The arrangement in each row represents a
carry-save udder. The cells in the last row are arranged as a regular carry-ripple adder,

582 PARAMETERIZED DESIGN: PRACTICE

y7 ye Y5 Y4 Y3 Yz

Figure 15.12 Propagation delay contour lines of a carry-ripple multiplier.

a&

YO

yr Y6 Y5 Y4 Y3 Y2

4 c10 FAio
d

110

aobo

Yl

Figure 15.13 Cell-based carry-save multiplier.

MORE SOPHISTICATED EXAMPLES 583

which summates the carry-out signals from the last carry-save adder and forms the final
result.

The derivation of the VHDL code is similar to that of the cell-based carry-ripple multi-
plier. We first identify the connection pattern of a non-boundary cell and then specify the
special requirements for the cells in the first and last rows and the leftmost and rightmost
columns. The complete VHDL code is shown in Listing 15.20.

Listing 15.20 Parameterized cell-based carry-save combinational multiplier

a r c h i t e c t u r e c a r r y - s a v e - a r c h of mul t - a r r a y i s
type two-d-type is

s i g n a l a b , c , s: two-d - type ;

component f a
p o r t (

a r r a y (N - 1 downto 0) of s t d - l o g i c - v e c t o r (N - 1 downto 0) ;

5 s i g n a l rs , r c : s t d - l o g i c - v e c t o r (N - 1 downto 0) ;

a i , b i , c i : in s t d - l o g i c ;
s o , C O : ou t s t d - l o g i c

10) ;

begin
end component;

I5

20

25

30

35

40

45

-- b i t p r o d u c t
g-ab-row:
f o r i in 0 to N - 1 g e n e r a t e

g - a b - c o l : fo r j in 0 to “-1) g e n e r a t e
a b (i) (j) <= a - i n (i) and b - i n (j > ;

end g e n e r a t e ;
end g e n e r a t e ;
- l e f t m o s t column
g-N-col:
f o r i in 1 to (N - 1) g e n e r a t e

end g e n e r a t e ;
-_ t o p row
s(0) <= a b (0) ;
c (o) <= (o t h e r s = > ’ O ’) ;
-- midd le rows
g-f a-row :
fo r i i n 1 to (N - 1) g e n e r a t e

s (i) (N - 1) <= a b (i) (N - 1) ;

g - f a - c o l : fo r j in 0 to (N-2) g e n e r a t e
u -midd le : f a

p o r t map
(a i = > a b (i) (j) , b i = > s (i - l) (j + l) , c i = > c (i - l) (j) ,

s o = = > s (i) (j) , c o = > c (i > (j));
end g e n e r a t e ;

end g e n e r a t e ;
- bot tom row r i p p l e adder
r c (0) <= ’0’;
g-acel l -N-row:
f o r j i n 0 t o (N-2) g e n e r a t e

unit-N-row : f a
p o r t map (a i = > s (N - l) (j + l) , b i = > c (N - l) (j) , c i = > r c (j) ,

s o = > r s (j) , c o = > r c (j +I> ;
end g e n e r a t e ;

584 PARAMETERIZED DESIGN: PRACTICE

I J-

Figure 15.14 Propagation delay contour lines of a carry-save multiplier.

- o u t p u t s i g n a l
&out :
f o r i i n 0 to “-1) generate

y (i) <= s (i) (O) ;
50 end g e n e r a t e ;

y(2*N-2 downto N) <= r s (N - 2 downto 0) ;
y(2*N-1) <= r c (N - 1) ;

end c a r r y - s a v e - a r c h ;

The propagation of the carries is much easier to trace for the carry-save multiplier. The
propagation delay contour lines and the critical path are shown in Figure 15.14. For an
N-bit multiplier, the critical path includes N - 1 cells in the bottom row and one cell of
each remaining N - 1 rows. Thus, the propagation delay becomes

(N - l)Tfa + (N - l)Tfa = (2N - 2)Tfa

This value is about two-thirds of the delay of the previous ripple-carry multiplier. Fur-
thermore, since the single ripple adder in the last row accounts for one-half of the delay, we
can replace it with a faster adder architecture to further improve the performance.

Because of the clear propagation delay contour lines, we can easily divide the carry-save
multiplier into stages of identical delays and convert it to a pipelined design. The sketch of
the location of the pipeline registers is shown in Figure 15.15. The cells in the last row are
rearranged for clarity. To reduce cluttering, the pipeline registers for the operands are not
included.

MORE SOPHISTICATED EXAMPLES 585

Figure 15.15 Pipelined carry-save multiplier.

586 PARAMETERIZED DESIGN: PRACTICE

15.4.3 Parameterized LFSR

The LFSR was discussed in Section 9.2.3. Its feedback circuit is simple and involves only
one or three xor gates, as shown in Table 9.1. Despite its simplicity, the xor expression
depends on the size of the shift register and is determined on an ad hoc basis. One way
to parameterize the xor expression is to list all of the expressions in a table. Each row
of the table corresponds to a specific size and indicates which register bits are needed in
the expression. For example, the feedback expression of a 5-bit LFSR is q2 @ QO, and the
corresponding row is “00101”. The table can be considered as a mask table, and the pattern
in each row can be used to enable or disable the corresponding bits. Consider the pervious
example. The “00101” pattern can function as a mask. After performing a bitwise and
operation between the mask pattern and q 4 q 3 ~ 2 q l q 0 , we obtain OOq2Oqo. The feedback
circuit can be obtained by applying reduced-xor operation (i.e., 0 @ 0 63 q2 63 0 @ 40) over
the result. Since z 63 0 = z, the 0’s will be removed during synthesis, and the expression
will be simplified to q2 cB qo.

There is no algorithm to generate the mask table. It must be exhaustively listed. Follow-
ing Table 9.1, we can define the mask table as a constant of a two-dimensional array-of-arrays
data type:

type tap-array-type i s array(2 to MAX-N) of

constant TAP-CONST-ARRAY : tap-array-type :=
std-logic-vector (MAX-N-1 downto 0) ;

(2 = > (1)0=>’1’, others=>’O’)
3 => (110=>’1 I , o t h e r s = > ’ O ’) ,
4 => (110=>’1’, o t h e r s = > ’ O ’) ,
5 = > (210=>’1’, others=>’O’)
. . .) ;

The M A X I term is a constant. It specifies the maximal range of the parameter.
Section 9.2.3 shows that we can use additional logic in the feedback path to include the

all-zero pattern and make an n-bit LFSR circulate through all 2n states. This can be made
as an option in a parameterized LFSR.

The complete VHDL code is shown in Listing 15.21. There are two generics: N, which
specifies the size of the LFSR, and WITH-ZERO, which specifies whether the all-zero pattern
should be included. The MAXN is chosen to be 8, and thus the range of N is between 2 and
8. The M A X I can be enlarged by adding additional rows to TAP-CONSTARRAY.

Listing 15.21 Parameterized LFSR
l ibrary ieee ;
use ieee. std-logic-1164. a l l ;
use ieee. numeric-std. a l l ;
e n t i t y lfsr i s

5 g e n e r i c (
N: natural;
WITH-ZERO : natural

1;
port (

10 clk, reset: in std-logic;
q : out std-logic-vector (N-1 downto 0)

1;
end Ifsr;

MORE SOPHISTICATED EXAMPLES 587

I5 a r c h i t e c t u r e para-arch of lfsr i s
c o n s t a n t MAX-N: natural : = 8 ;
c o n s t a n t SEED: std-logic-vector (N-1 downto 0)

type tap-array-type i s a r r a y (2 t o MAX-N) of

c o n s t a n t TAP-CONST-ARRAY: tap-array-type:=

:=(0=>’1’, o t h e r s = > ’ O ’) ;

20 std-logic-vector (MAX-N-1 downto 0) ;

(2 => (.110=>’1’, o t h e r s = > ’ O ’) ,
3 => (lIO=>’l’, o t h e r s = > ’ O ’) ,
4 => (110=>’1’ , o t h e r s = > ’ O ’) ,

25 5 => (210=> ’1 ’ , o t h e r s = > ’ O ’) ,
6 = > (l l O = > J 1 l , o t h e r s = > ’ O ’) ,
7 = > (310=>’1’, o t h e r s = > ’ O ’) ,
8 => (4131210=>’1’ , o t h e r s = > ’ O ’ >) ;

s i g n a l r-reg r-next : std-logic-vector (N-1 downto 0) ;
M s i g n a l fb, zero, fzero: std-logic;

begin
- r e g i s t e r
process (clk reset)
begin

3s i f (reset=’l’) then
r-reg <= SEED;

r-reg <= r-next;
e l s i f (clk’event and clk=’l’) then

end i f ;
40 end p r o c e s s ;

-- n e x t - s t a t e l o g i c
process (r-reg)

c o n s t a n t TAP-CONST : std-logic-vector (MAX-N-1 downto 0)
:= TAP-CONST-ARRAY(N);

45 v a r i a b l e tmp : std-logic ;
begin

tmp := ’0’;
f o r i in 0 t o (N-1) loop

tmp : = tmp xor (r-reg(i) and TAP-CONST(i));
50 end l o o p ;

end p r o c e s s ;
-- w i t h a l l - z e r o s t a t e
gen-zero:

fb <= tmp;

SS i f (WITH-ZERO=l) g e n e r a t e
zero <= $1’ when r-reg(N-1 downto l)=

(r-reg(N-1 downto 1) ’ range=>’O’)
e l s e

’0’;
60 fzero <= zero xor fb;

end g e n e r a t e ;
-- w i t h o u t a l l - z e r o s t a t e
gen-no-zero :
if (WITH-ZERO /=l) g e n e r a t e

end g e n e r a t e ;
r-next <= fzero & r-reg(N-1 downto 1) ;

65 fzero <= fb;

588 PARAMETERZED DESIGN: PRACTICE

- output l o g i c
q <= r-reg;

70 end para-arch ;

The xor feedback circuit is implemented by a for loop statement, in which the reduced-
xor operation is performed over the masked register output. The optional logic to process
the all-zero pattern is implemented by two if generate statements. One statement generates
the logic, and the other just reconnects the original feedback signal.

15.4.4 Priority encoder

A parameterized priority encoder was described in Listing 14.24. The code maps to a one-
dimensional cascading priority routing network, and thus the performance suffers. One way
to improve the performance is to construct the circuit using a collection of smaller priority
encoders and multiplexers, as discussed in Section 7.4.3. The structure is quite complex.

An alternative way is to first convert the input into one-hot code and then pass the code into
a regular binary encoder. For example, if an 8-bit input is "001 10101", it will be converted
to "0010OOO" and then encoded as a one-hot input. The conversion process can be explained
by an example. Consider an 8-bit priority encoder whose input is a7, a6, . . . , a0 and a7 has
the highest priority. Let the corresponding one-hot code be t7 , t 6 , . . . , to . For the ti bit to
be asserted, the ai bit must be '1' and all the upper bits, which include a7, a6,. . . , ai+l,
must be '0'. This can be translated into a logic expression:

ti = ai . a ; . a; .. . a:+1

The logic expression represents a variant of reduced-and operations. As for the reduced-xor
circuit, we can describe the reduced-and circuit as a tree to improve its performance. The
specific pattern of the and operations also provides an opportunity for further optimization.
Let us first list all logic expressions:

t7 = a7
t 6 = a6.a;
t 5 = a5 . a; * a;
t 4 = a4-a7 .a6 ' a 5
t3 = a3 a; . a; a5 . a4
t 2 = a2 a: 9 a; a: a: - a$

tl = a1 a; a; a: - a: . a$ - a;
t o = a0 - a; - a; . a; - a: . a$ - a& . a;

1 1 1

I 1

If we ignore the first non-inverted element, the expressions become

MORE SOPHISTICATED EXAMPLES 589

The pattern is similar to the output of the reduced-xor-vector circuit discussed in Sec-
tion 15.4.1. We can duplicate the code in Listing 15.15 to describe a reduced-and-vector
circuit to take advantage of the sharing opportunity. The VHDL code is shown in List-
ing 15.22.

Listing 15.22 Parameterized parallel-prefix reduced-and-vector circuit

l i b r a r y ieee ;
use ieee. std-logic-1164, a l l ;
use work. util-pkg. a l l ;
e n t i t y reduced-and-vector i s

5 g e n e r i c (N : natural) ;
p o r t (

a: in std-logic-vector (N - 1 downto 0) ;
y: o u t std-logic-vector (N - 1 downto 0)

1;
10 end reduced-and-vector ;

20

25

30

a r c h i t e c t u r e para-prefix-arch of reduced-and-vector i s
c o n s t a n t ST: natural := log2c (N I ;
s i g n a l p: std_logic,2d(ST downto 0, N - 1 downto 0);

process (a, p)
begin

IS begin

- rename i n p u t
for i in 0 t o (N - 1) loop

end l o o p ;
- main s t r u c t u r e
f o r s in 1 to ST loop

p(0,i) <= a(i);

f o r k in 0 t o (2**(ST-s)-1) loop
- 1 s t h a l f : p a s s - t h r o u g h boxes
f o r i i n 0 to (2**(s-1)-1) loop

end l o o p ;
- 2 n d h a l f : and g a t e s
fo r i in (2**(s-1)) t o (2**s-1) loop

p(s, k*(2**s)+i) <= p(s-1, k*(2**s)+i);

p(s, k*(2**s)+i) <=
p(s-1, k*(2**s)+i) and
p(s-1, k*(2**~)+2**(~-1)-1) ;

end l o o p ;
35 end l o o p ;

end l o o p ;
- rename o u t p u t
f o r i in 0 to (N - 1) loop

y(i) <= p(ST,i);
40 end l o o p ;

end p r o c e s s ;
end para-prefix-arch;

After developing the reduced-and-vector circuit, we can derive the VHDL code, as
shown in Listing 15.23. The code uses the reduced-and-vector circuit and simple glue logic
to generate the one-hot code and then pass it to a binary encoder. ' h o for loop statements
are used to reverse the order of the input to match the convention used in the reduced-and-

590 PARAMETERZED DESIGN: PRACTICE

vector circuit. Since the critical paths of the parallel-prefix reduced-and-vector circuit and
the optimized binary encoder circuits are on the order of O(log, n), the performance of this
circuit is much better than that of the cascading design.

Listing 15.23 Parameterized priority encoder

l i b r a r y ieee ;
use ieee, std-logic-1164. a l l ;
use ieee. numeric-std. a l l ;
use work. util-pkg. a l l ;

5 e n t i t y prio-encoder is
g e n e r i c (N : natural ;
p o r t (

a: in std-logic-vector (N-1 downto 0) ;
bcode : out std-logic-vector (log2c (NI -1 downto 0)

10 1 ;
end prio-encoder ;

U

a r c h i t e c t u r e para-arch of prio-encoder i s
component reduced-and-vect or i s

15 g e n e r i c (N : natural) ;
p o r t (

a: i n std-logic-vector (N-1 downto 0) ;
y : ou t std-logic-vector (N-1 downto 0)

1;
20 end component;

component bin-encoder is
g e n e r i c (N : natural) ;
p o r t (

a : i n std-logic-vector (N-1 downto 0) ;
bcode : out std-logic-vector (loglc (N) -1 downto 0)

) ;
end component ;
s i g n a l a-not-rev : std-logic-vector (N-1 downto 0) ;
s i g n a l a-vec , a-vec-rev , t : std-logic-vector (N-1 downto 0) ;

30 begin
r e v e r s e a -

gen-reverse-a:
f o r i i n 0 to (N-1) g e n e r a t e

a-not-rev(i) <= not a(N-1-i);
35 end g e n e r a t e ;

- reduced and o p e r a t i o n
unit-token: reduced-and-vector

gene r i c map (N = > N 1
p o r t map(a=>a-not-rev, y =>a-vec-rev) ;

40 - r e v e r s e the r e s u l t
gen-reverse-t :
for i in 0 to (N-1) g e n e r a t e

end g e n e r a t e ;

t <= a and ('1' & a-vec(N-1 downto 1));
- r e g u l a r b inary encoder
unit-bin-code: bin-encoder

a-vec(i) <= a-vec-rev(N-1-i);

45 - form one-hot code

MORE SOPHISTICATED EXAMPLES 591

w-data w-data r-data

w-addr r-addr

register file

wr

full

clk __*
reset d

r-data

1
I - rd - empty

Figure 15.16 Block diagram of a FIFO buffer.

g e n e r i c map (N=>N 1
so port map(a=>t, bcode=>bcode) ;

end para-arch ;

15.4.5 FIFO buffer

Implementation of a four-word FIFO buffer was discussed in Section 9.3.2. .The code can be
modified for a parameterized design. To achieve better performance, we use the previously
developed modules to implement the circuit. The basic organization of the parameterized
buffer is similar to that in Section 9.3.2, and its block diagram is shown in Figure 15.16.
In the top level, the FIFO buffer is divided into a FIFO control circuit and a register file,
which contains one write port and one read port. The control circuit contains two counters
for the read and write pointers and the logic to generate full and empty status. The register
file consists of a register array and a decoder to generate the proper enable signal and
a multiplexer to route the desired value to output. The main components of the design
hierarchy is shown in Figure 15.17.

For parameterized FIFO, we normally want to specify the width of a word (i.e., the
number of bits in a word) and the size of the buffer (i.e., the number of words in the buffer).
In our code, the B generic is used for the number of bits in a word. For simplicity, the buffer
size is specified indirectly by the number of address bits of the buffer, represented by the
W generic. To provide more flexibility and achieve better efficiency, we include a feature
parameter, the CNTAODE generic, to indicate whether binary or LFSR counters are used
for the read and write pointers. Note that the sizes of the buffer for the binary and LFSR
counter options are 2w and 2w - 1 respectively.

The top-level VHDL code is shown in Listing 15.24. It is the instantiation of two
components and a simple glue logic for the write enable signal of the register file. The codes
of the register file and FIFO control circuit are discussed in the following two subsections.

592 PARAMETERIZED DESIGN: PRACTICE

U buffer

(1 , ,pf-l, ,
control circuit

1 LFSR I
next-state logic 1 multiplexer I I decoder I
Figure 15.17 Design hierarchy of a FIFO buffer.

Listing 15.24 Parameterized FIFO buffer top-level instantiation

l i b r a r y ieee ;
use ieee. std-logic-1164. a l l ;
e n t i t y fifo-top-para i s

g e n e r i c (
5 B: natural; - number of b i t s

W: natural; - number of a d d r e s s b i t s
CNT-MODE: natural - b i n a r y o r LFSR

1;
port (

10 clk, reset: in std-logic;
rd, wr: in std-logic;
w-data: in std-logic-vector (B - 1 downto 0) ;
empty, full: out std-logic ;
r-data : out std-logic-vector (B - 1 downto 0)

I S 1 ;
end fifo-top-para;

a r c h i t e c t u r e arch of fifo-top-para i s
component f if o-sync-ctrl-para

20 g e n e r i c (
N : natural;
CNT-MODE : natural

1;
port (

25 clk, reset: in std-logic;
wr, rd: in std-logic;
full , empty : out std-logic ;
w-addr , r-addr : out std-logic-vector (N - 1 downto 0)

1;
IO end component;

component reg-f ile-para

W : natural;
B : natural

g e n e r i c (

35 1;
port (

MORE SOPHISTICATED EXAMPLES 593

40

clk, reset: in std-logic;
wr-en : in std-logic ;
w-data: in std-logic-vector (B - 1 downto 0) ;
w-addr , r-addr : in std-logic-vector (W-1 downto 0) ;
r-data: out std-logic-vector (B - 1 downto 0)

) ;
end component;
s i g n a l r-addr : std-logic-vector (W-1 downto 0) ;

45 s i g n a l w-addr : std-logic-vector (W-1 downto 0) ;
s i g n a l f -status , wr-f ifo : std-logic ;

begin
U-ctrl: fifo-sync-ctrl-para

SO g e n e r i c map(N=>W, CNT-MODE=>CNT-MODE)
port map(clk=>clk , reset=>reset , wr=>wr , rd=>rd,

full=>f-status , empty=>empty ,
w-addr=>w-addr, r-addr=>r-addr);

wr-fifo <= wr and (n o t f-status);

U-reg-file: reg-file-para
SS full <= f-status;

g e n e r i c map(W=>W, B = > B)
port map(clk=>clk , reset=>reset , wr-en=>wr-fifo,

w-data=>w-data, w-addr=>w-addr,
bu r-addr=> r-addr , r-data => r-data) ;

end arch;

Register file The operation and implementation of a fixed-size register file was discussed
in Section 9.3.1. It consists of a register array, write-enable decoding logic and an output
multiplexing circuit. The parameterized code can simply follow the skeleton of the fixed-
size VHDL code in Listing 9.15 and replace the original segments with a parameterized
register array and the predeveloped parameterized decoder and multiplexer. The array-of-
arrays data type is a natural match for the register array. However, since the input data
type of the parameterized multiplexer is a genuine two-dimensional array, the output of the
register array must first be converted to the proper data type and then mapped to the input
of the multiplexer. The complete VHDL code is shown in Listing 15.25.

Listing 15.25 Structural description of a parameterized register file

l i b r a r y ieee ;
use ieee. std-logic-1164. a l l ;
use ieee. numeric-std. a l l ;
use work. util-pkg . a l l ;

s e n t i t y reg-file-para i s

W : natural;
B : natural

gener ic (

1;
10 p o r t (

clk, reset: in std-logic;
wr-en : in std-logic ;
w-data: in std-logic-vector (B - 1 downto 0) ;
w-addr , r-addr : in std-logic-vector (W - 1 downto 0) ;
r-data: out std-logic-vector (B - 1 downto 0) IS

594 PARAMETERIZED DESIGN: PRACTICE

35

65

a r c h i t e c t u r e str-arch of reg-f ile-para is
U) component mux2d is

g e n e r i c (
P: natural; - number of i n p u t p o r t s
B: natural - number of b i t s p e r p o r t

> ;
25 p o r t (

a: i n std-logic-2d(P-l downto 0 , B-I downto 0) ;
sel : i n std-logic-vector (log2c (PI -1 downto 0) ;
y: out std-logic-vector (B-I downto 0)

) ;
30 end component;

component tree-decoder i s
g e n e r i c (WIDTH : natural) ;
p o r t (

a: i n std-logic-vector(W1DTH-1 downto 0) ;
en : std-logic ;
code : o u t std-logic-vector (2**WIDTH-l downto 0)

1;
end component;
c o n s t a n t W-SIZE: natural : = 2**W;

40 type reg-file-type i s a r r a y (2**W-I downto 0) of
std-logic-vector (B-1 downto 0) ;

s i g n a l array-rag : reg-f ile-type ;
s i g n a l array-next : reg-f ile-type ;
s i g n a l array,-2d: std-logic-2d (2**W-1 downto 0 .B-I downto 0) ;

45 s i g n a l en : std-logic-vector (2**W-1 downto 0) ;
begin
- r e g i s t e r a r r a y
p r o c e s s (clk, reset)
begin

rn i f (reset=’l’) then
array-reg <= (o t h e r s = > (o t h e r s = > ’0 ’) I ;

array-reg <= array-next ;
e l s i f (clk’event and clk=’l’) then

end i f ;
55 end p r o c e s s ;

- e n a b l e d e c o d i n g logic f o r r e g i s t e r a r r a y
u-bin-decoder: tree-decoder

g e n e r i c map (W I DTH = > W
p o r t map(en=>wr-en, a=>w-addr, code=>en) ;

60 - n e x t - s t a t e l o g i c of r e g i s t e r f i l e
p r o c e s s (array-reg , en, w-data)
begin

f o r i i n (2**W-1) downto 0 loop
i f en(i)=’l’ then

e l s e

end i f ;

array-next (i) <= w-data;

array-next (i) <= array-reg(i) ;

MORE SOPHISTICATED EXAMPLES 595

end l o o p ;
70 end p r o c e s s ;

-- c o n v e r t to s t d - l o g i c - 2 d
p r o c e s s (array-reg)
begin

f o r r i n (2**W-1) downto 0 loop
75 f o r c in 0 t o (B-1) loop

array-2d (r , c) <=array-reg (r) (c) ;
end l o o p ;

end l o o p ;
end p r o c e s s ;

read-mux : mux2d
80 -- r e a d p o r t m u l t i p l e x i n g c i r c u i t

g e n e r i c map(P=>P**W, B=>B)
p o r t map(a=>array_2d, sel=>r-addr , y=>r-data) ;

end str-arch ;

Register file operation can be consider as accessing an array with a dynamic index
(i.e., using a signal as an index), and some synthesis software may recognize this type of
description. If this is the case, the behavioral VHDL code can be used for the register file,
as shown in Listing 15.26.

Listing 15.26 Behavioral description of a parameterized register file

type reg-file-type is a r ray (2**W-1 downto 0) of

s i g n a l array-reg : reg-f ile-type ;

a r c h i t e c t u r e beh-arch of reg-f ile-para i s

std-logic-vector (B-1 downto 0) ;

5 s i g n a l array-next : reg-f ile-type ;
begin
- r e g i s t e r a r r a y
process (clk, reset
begin

10 i f (reset=’l’) then
array-reg <= (o t h e r s = > (o t h e r s = > ’0 ’1) ;

array-reg <= array-next ;
e l s i f (clk’event and clk=’l’) then

end i f ;
IS end p r o c e s s ;

- n e x t - s t a t e l o g i c f o r r e g i s t e r a r r a y
process (array-reg , wr-en , w-addr , w-data)
begin

array-next <= array-reg ;
20 i f wr-en=’l’ then

array-next(to-integer(unsigned(w-addr))) <= w-data;
end if ;

end p r o c e s s ;
- r e a d p o r t

25 r-data <= array-reg(to-integer (unsigned(r-addr))) ;
end beh-arch ;

FIFO Controller We choose the look-ahead configuration of Section 9.3.2 for the param-
eterized FIFO controller because LFSR counters can be used to achieve better performance.
The main task is to derive parameterized code to determine the counter’s successive value.

596 PARAMETERIZED DESIGN: PRACTICE

Since the look-ahead configuration requires the next value of the counter, the predevel-
oped parameterized LFSR counter of Section 15.21 cannot be used directly. Instead, we
must create a customized module for this purpose. This module is essentially the next-
state logic of the parameterized LFSR of Listing 15.21. The VHDL code is shown in
Listing 15.27.

Listing 15.27 Parameterized LFSR next-state logic

l ibrary ieee ;
use ieee. std-logic-1164. a l l ;
e n t i t y Ifsr-next i s

generic (N: natural);
5 p o r t (

q-in : in std-logic-vector (N-1 downto 0) ;
q-out : out std-logic-vector(N-1 downto 0)

1;
end If sr-next ;

a r c h i t e c t u r e para-arch of lfsr-next i s
10

constant MAX-N: natural := 8;
type tap-array-type i s

array (2 to MAX-N) of std-logic-vector (MAX-N-1 downto 0) ;

(2 = > (l l o = > i l ’ I o thers=>’O’) I

3 => (l l O = ~ i l i I o t h e r s = > ’ O ’) ,
4 => (lIO=>’l’ I o t h e r s = > ’ O 1) I

5 => (2I0=>’l1 I o t h e r s = 7 ’ 0 1) I

20 6 = > (110=>’1’, others=>’O’) I

7 = > (310=>’1’ I o t h e r s - 7 ’ 0 ’) I

8 => (4131210=>’1’, o t h e r s = > ’ O ’)) ;

IS constant TAP-CONST-ARRAY: tap-array-type:=

s ignal fb : std-logic ;
begin

z - n e x t - s t a t e l o g i c
process (q-in)

constant TAP-CONST : std-logic-vector (MAX-N-1 downto 0)

variable tmp : std-logic ;

tmp := ’0‘;
for i in 0 to (N-1) loop

end loop;

end process;
q-out <= fb k q-in(N-1 downto 1) ;

:= TAP-CONST-ARRAY(N);

M begin

tmp : = tmp xor (q-in(i) and TAP-CONST(i));

35 fb <= not(tmp1; - e x c l u d e a l l 1 ’ s

end para-arch ;

There is a minor modification over the original code. The feedback xor expression is
inverted before it is appended to the MSB of the output. The purpose is to replace the
all-zero state with the all-one state (i.e., the “11 - - . 11” pattern, instead of the “00 - - - 00“
pattern, will be excluded from the circulation). This simplifies the system initialization.

MORE SOPHISTICATED EXAMPLES 597

The complete code of the parameterized FIFO controller is shown in Listing 15.28. It is
similar to fixed-size code in Listing 9.16 except that two if generate statements are used to
generate the desired successive value.

Listing 15.28 Parameterized FIFO control circuit
l i b r a r y ieee ;
use ieee. std-logic-1164. a l l ;
use ieee . numeric-std. a l l ;
e n t i t y fifo-sync-ctrl-para i s

s g e n e r i c (
N: natural;
CNT-MODE : natural

1;
p o r t (

10 clk, reset: in std-logic;
wr, rd: in std-logic;
full , empty: out std-logic;
w-addr , r-addr : out std-logic-vector (N-1 downto 0)

1;
IS end f if o-sync-ctrl-para ;

a r c h i t e c t u r e lookahead-arch of fifo-sync-ctrl-para is
component If sr-next i s

g e n e r i c (N : natural) ;
20 p o r t (

q-in: in std-logic-vector (N-1 downto 0) ;
q-out : out std-logic-vector(N-1 downto 0)

1;
end component;

s i g n a l w-ptr-reg , w-ptr-next , w-ptr-succ:

s i g n a l r-ptr-reg , r-ptr-next , r-ptr-succ :

zs c o n s t a n t LFSR-CTR: natural :=O;

std-logic-vector (N-1 downto 0) ;

std-logic-vector (N-1 downto 0) ;
M s i g n a l full-reg , empty-reg , full-next , empty-next :

std-logic ;
s i g n a l wr-op: std-logic-vector (1 downto 0) ;

begin

35

40

45

I r e g i s t e r f o r read and w r i t e p o i n t e r s
p r o c e s s (clk , reset)
begin

i f (reset= 1 ’ 1 then
w-ptr-reg <= (o t h e r s = > ’0’);
r-ptr-reg <= (o t h e r s = > ’ O ’ > ;

u-ptr-reg <= w-ptr-next ;
r-ptr-reg <= r-ptr-next ;

e l s i f (clk’event and clk=’l’> then

end i f ;
end p r o c e s s ;
-- s t a t u e FF
p r o c e s s (clk, reset)
begin

i f (reset=’l’) then

598 PARAMETERIZED DESIGN: PRACTICE

w

90

95

IM

f u l l - r a g <= '0' ;
50 empty-reg <= '1 ' ;

e l s i f (c l k ' e v e n t and c l k = ' l ') t h e n
f u l l - r e g <= f u l l - n e x t ;
empty-reg <= empty-next ;

end i f ;
55 end p r o c e s s ;

- s u c c e s s i v e va lue f o r LFSR c o u n t e r
g - l f s r :
i f (CNT-MODE=LFSR-CTR) g e n e r a t e

U - l f sr-wr : I f s r - n e x t
g e n e r i c map (N = > N
p o r t map(q , in=>w-p t r - r eg , q - o u t = > w - p t r - s u c c) ;

U- l f sr-rd : I f s r - n e x t
g e n e r i c map (N = > N 1
p o r t m a p (q - i n = > r - p t r , r e g , q - o u t = > r - p t r - s u c c) ;

B end g e n e r a t e ;
- s u c c e s s i v e va lue f o r b i n a r y c o u n t e r
g-b in :
i f (CNT-MODE/=LFSR-CTR) g e n e r a t e

w-ptr-succ <= std_logic-vector(unsigned(w-ptr-reg) + 1) ;
70 r - p t r - s u c c <= std-logic,vector(uneigned(r-ptr-reg) + 1) ;

end g e n e r a t e ;
- n e x t - s t a t e l o g i c f o r read and w r i t e p o i n t e r s
wr-op <= w r 8 r d ;
p r o c e s s (w-p t r - r eg , w-ptr-succ , r - p t r - r e g , r - p t r - s u c c , wr-op ,

begin
75 e m p t y - r e g , f u l l - r e g)

w-ptr-next <= w-p t r - r eg ;
r - p t r - n e x t <= r - p t r - r e g ;
f u l l - n e x t <= f u l l - r e g ;
empty-next <= empty-reg ;
case wr-op is

when 1100" => - no op
when 1101" => - read

i f (empty-reg /= ' 1 ') then - not empty
r - p t r - n e x t <= r - p t r - s u c c ;
f u l l - n e x t <= #O';
i f (r - p t r - s u c c = w - p t r - r e g) t hen

end i f ;
empty-next <='l';

end i f ;

i f (f u l l - r e g /= j1 ') then - not f u l l
when "10" => - w r i t e

w-ptr-next <= w-ptr-succ ;
empty-next <= '0';
i f (w - p t r - s u c c = r - p t r - r e g) t hen

end i f ;
f u l l - n e x t < = ' l J ;

end i f ;

w-ptr-next <= w-ptr-succ ;
r - p t r - n e x t <= r - p t r - s u c c ;

when o t h e r s => - w r i t e / r e a d ;

SYNTHESIS OF PARAMETERIZED MODULES 599

end c a s e ;
end p r o c e s s ;
__ o u t p u t

IM U-addr <= w-ptr-reg;
full <= full-reg;
r-addr <= r-ptr-reg;
empty <= empty-reg;

end lookahead-arch ;

15.5 SYNTHESIS OF PARAMETERIZED MODULES

In a parameterized module, the parameter is assigned to a fixed value when the module
is instantiated. At the time of synthesis, the software is always performing the synthesis
of a fixed-size circuit. From this point of view, parameterized code imposes no additional
requirement on actual synthesis.

On the other hand, to facilitate the use of parameters, the expressions tend to be more
general and the parameterized code normally needs more “preparation” work, including
the flattening of the multidimensional array and the processing and optimization of static
expressions. Recall that a static expression is an expression whose value can be calculated
when the VHDL code is analyzed. It implies that the expression does not depend on any
external signal and that no physical circuit should be inferred from the expression.

In a parameterized code, static expressions are commonly used to express the size of
arrays and the range of for generate and for loop statements. They are also used to represent
more involved indexing structures, as in the parallel-prefix reduced-xor-vector code of
Listings 15.15. In a complex circuit structure, we sometimes use auxiliary static expressions
to assist development of the parameterized VHDL codes. For example, the VHDL code
of the binary encoder in Listing 15.11 first utilizes an auxiliary gen-orslask function to
generate the static mask and then applies the mask to the input signal (via the and operation)
to disable the unneeded elements of the input signal. The function and the and operation
are both static. Good synthesis software should be able to calculate the mask, propagate
the constants through the and expression, and keep only the needed elements of the input
signal for the final or expression.

15.6 SYNTHESIS GUIDELINES

0 Portability of two-dimensional data type can be an issue since it is not defined in the

0 User-defined genuine unconstrained two-dimensional data types are the most general

RTL synthesis standard.

type.

0 Userldefined array-of-arrays data types cannot have unconstrained elements and are
not general enough to be used in a port declaration.

0 Be aware of the difference between static and dynamic expressions. The former
should not infer any physical logic during synthesis and can be of assistance in
developing parameterized code.

0 A one-dimensional cascading-chain structure should be avoided and replaced by more
efficient two-dimensional alternatives.

600 PARAMETERIZED DESIGN: PRACTICE

15.7 BIBLIOGRAPHIC NOTES

While developing parameterized VHDL codes relies on an understanding of basic language
constructs and some programming skills, developing eflcient parameterized codes requires
the insight and in-depth knowledge of the problem domain, as demonstrated by the parallel-
prefix reduced-xor-vector circuit and carry-save multiplier. The parallel-prefix scheme is a
class of algorithms that can be applied to a variety of operations. The dissertation, Binary
Adder Architectures for Cell-Bused VLSI and Their Synthesis by R. Zimmermann of Swiss
Federal Institute of Technology, provides a detailed analysis on applying the algorithms to
construct addition circuits. Implementing and synthesizing complex arithmetic circuits is
an active research topic. The text, Computer Arithmetic Algorithms by I. Koren, gives a
comprehensive coverage of the algorithm and construction of various arithmetic functions.

Problems

15.1 Consider the parameterized binary decoder in Section 15.3.2. Derive the VHDL
code for a l-to-2l decoder with an enable signal and rewrite the code using a generate
statement and component instantiation.

15.2 The parameterized binary decoder can also be constructed using 2-to-2' decoders.
(a) Derive the VHDL code for a 240-2~ decoder with an enable signal.
(b) Derive the VHDL code of the parameterized binary decoder using only the 2-to-2'

15.3 Repeat part (b) of Problem 15.2. Instead of being limited to 240-2~ decoders, use
a 1-to-2l decoder in the leftmost stage if the input of the parameterized decode has an odd
number of bits.

15.4 Consider the parameterized multiplexer in Section 15.3.3. Redesign the multiplexer
using 4-to-1 multiplexers and derive the VHDL code accordingly.

15.5 Extend the parameterized multiplexer code in Listing 15.3.3 to accommodate two-
dimensional data. We need to define a three-dimensional data type for the internal signals.

(a) Follow the definition of std-logic-2d and define a genuine three-dimensional
data type. Derive the VHDL code using this data type.

(b) Follow the discussion of the emulated two-dimensional array and define an index
function to emulate a three-dimensional array. Derive the VHDL code using this
method.

15.6 Consider the parameterized binary encoder in Section 15.3.4. Instead of using for
loop statements, rewrite the VHDL code with for generate statements.

15.7 We want to extend the parameterized barrel shifter in Section 15.3.5 by adding one
additional mode of shift operation, arithmetic shift right. In this mode, the MSB, instead
of '0', will be shifted into the left portion of the output. Modify the VHDL code to include
this mode.

15.8 The VHDL code in Listing 15.15, the number of input bits of the parallel-prefix
reduced-xor-vector circuit is limited a power of 2. Revise the code so that the number of
input bits can be any arbitrary number.

15.9 Discuss the circuit complexity (in terms of the number of two-input xor gates) of
the two reduced-xor-vector circuits discussed in Section 15.4.1,

decoders of part (a).

PROBLEMS 601

15.10 The code of the adder-based multiplier of Listing 15.17 has a feature parameter to
insert pipeline registers to the circuit. The number of stages of the pipeline is the same as
the width of the input operand. Modify the code to incorporate an additional parameter that
specifies the number of desired pipeline stages.

15.11 In the discussion of the multiplier circuit, the widths of the two input operands (i.e.,
multiplier and multiplicand) are assumed to be identical. In some application the widths can
be different. Let the number of bits of multiplier and multiplicand be MR and MD respectively.
Modify the sequential multiplier code of Listing 15.16 for the new requirement.

15.12 Repeat Problem 15.1 1, but modify the adder-based multiplier of Listing 15.17.

15.13 Repeat Problem 15.11, but modify the cell-base carry-ripple multiplier of List-
ing 15.19.

15.14 Repeat Problem 15.11, but modify the cell-base carry-save multiplier of List-
ing 15.20.

15.15 Both the adder-based multiplier of Section 15.4.2 and the carry-save multiplier of
Section 15.4.2 can be configured as a pipelined circuit. Assume that the ripple adders are
used in the adder-based multiplier. Let both the input width and the number of pipelined
stages be N . Compare the delay and bandwidth of the two circuits.

15.16 The parameterized LFSR of Section 15.4.3 can only circulate through 2N - 1 or
2 N patterns. Modify the design so that the LFSR can circulate through M patterns, where
M is a separate parameter and M c 2 N . You can create a function that determines the
Mth pattern in the LFSR sequence and load the initial value to the register when the LFSR
reaches this pattern.

15.17 The register file of Section 15.4.5 has one read port. We want to revise the design
so that the number of read ports can be specified by a parameter. To achieve this, the read
ports need to be grouped as a single output with a two-dimensional data type. Use the
std-logic-2d data type and derive the VHDL code.

15.18
dure in Section 15.4.5 to derive VHDL code for a parameterized stack.

15.19
design procedure in Section 15.4.5 to derive VHDL code for a parameterized CAM.

The operation of a stack was discussed in Problem 9.1 1. Follow the design proce-

The operation and design of a CAM was discussed in Section 9.3.3. Follow the

This Page Intentionally Left Blank

CHAPTER 16

CLOCK AND SYNCHRONIZATION:
PRINCIPLE AND PRACTICE

The single most important design principle used in this book is the synchronous method-
ology, in which all registers are controlled by a common clock signal. Design and analysis
so far are based on an ideal clocking scenario. We assume that the entire system can be
driven by a single clock signal and that the sampling edge of this clock signal can reach
all registers at the same time. In reality, this is hardly possible. We need to take into
consideration a non-ideal clock signal and sometimes even have to divide a large system
into subsystems with independent clock signals. This chapter discusses the modeling and
effect of a non-ideal clock signal, the synchronization of an asynchronous signal, and the
interface between two independent clock domains.

16.1 OVERVIEW OF A CLOCK DISTRIBUTION NETWORK

16.1.1

The clock distribution network is the circuit that distributes the clock signal to all FFs in the
system. Since the circuit does not perform any logic function, its design and analysis are
mainly at the transistor level. In Section 6.5.1, we discussed the low-level model of gates
and wires for propagation delay calculation. As shown in Figure 6.15, each input port of a
gate and each wire introduce small values of resistance and capacitance. The output port of
a cell has to charge or discharge (i.e., “drive”) all capacitors when a signal switches state.
The number of input ports driven by a cell is known asfun-out. The driving capability of

Physical implementation of a clock distribution network

RTL Hardware Design Using VHDL: Coding for Eflciency, Ponability, and Scalubility. By Pong P. Chu
Copyright @ 2006 John Wiley & Sons, Inc.

603

604 CLOCK AND SYNCHRONIZATION: PRINCIPLE AND PRACTICE

to clock of up to 4 FFs

E
Figure 16.1 Conceptual clock distribution network.

a cell depends on the electrical characteristics of the internal transistors. A typical cell can
normally drive up to half a dozen cells.

While the basic transistor-level model of the clock distribution network is similar to that
in Figure 6.15, the fan-out is much larger. Since all registers are connected to the same
clock signal in a synchronous circuit, the fan-out of a clock signal is the number of FFs
in the system. It may reach thousands or even tens of thousands in a large system. Thus,
the physical implementation of a clock distribution network is very different from that of
regular connection wires. Its construction is separated from the routing of regular logic and
processed independently.

In addition to the clock signal, the reset signal is connected to all FFs of the system.
Thus, construction of the reset network is somewhat similar to that of the clock distribution
network. Because the reset signal does not impose many strict timing constraints, its
implementation is simpler and less critical.

Clock synthesis of ASlC devices In ASIC technology, the clock distribution network
is constructed by a process known as clock synthesis, which is a step in the physical design.
The clock synthesis uses multiple levels of buffers to increase the driving capability and
applies a special routing algorithm to balance the distribution network and minimize the
difference in propagation delays. A conceptual three-level clock distribution network is
shown in Figure 16.1. We assume that each buffer can drive four input ports. The buffers
are used to increase the driving capability and do not perform any logic function.

An example of idealized physical routing of the previous distribution network is shown
in Figure 16.2. It is done by a two-level recursive H-shaped network so that the wire length
from the clock source to each FF is about the same. While the propagation delay from
the clock source to an FF is unavoidable, this routing helps to ensure that the clock signal
reaches each FF at about the same time.

OVERVIEW OF A CLOCK DISTRIBUTION NETWORK 605

Figure 16.2 Idealized routing of a clock distribution network.

Clock distribution networks of FPGA devices In FPGA technology, a chip usually
has one or more prerouted and prefabricated clock distribution networks. If we develop the
VHDL code in a disciplined way, the synthesis software can recognize the existence of the
clock signal and automatically map it to a prefabricated clock distribution network.

16.1.2 Clock skew and its impact on synchronous design

The construction and analysis of a clock distribution network is essentially a task at the
transistor level. At the gate and RT levels, the effect of the clock distribution network is
modeled by propagation delays from the clock source to various registers. Because of the
variation in buffering and routing, the propagation delays may be different, as shown in the
simple example in Figure 16.3. The key characteristic is the difference between the arrival
times of the sampling edges, which is known as the clock skew. For multiple registers, we
consider the worst-case scenario and define the clock skew as the difference between the
arrival times of the earliest and latest sampling edges.

As the size of a circuit and the number of FFs increase, the clock distribution network
becomes larger and more complex. Controlling the arrival time of the clock’s sampling
edge to each FF becomes more difficult. This introduces larger variations over the arrival
times, which, in turn, increase the clock skew. Thus, we can expect that the clock skew
increases with the size of the circuit.

To accommodate the existence of clock skew, we have to modify the synchronous design
methodology. The modification depends on the size and clock rate of the system. For a
small circuit, propagation delays from the clock source to various FFs are small and almost
identical, which implies that the rising edge of the clock signals arrives at the register at
almost the same time. We can treat this as the ideal clocking scenario and ignore the clock
skew.

For a moderately-sized system, the clock skew is normally a small fraction (a few per-
cent) of the clock period. We can treat it as an ideal synchronous system and design it
accordingly. However, during the analysis of setup time and hold time constraints, the

606 CLOCK AND SYNCHRONIZATION: PRINCIPLE AND PRACTICE

clk

clkl a
clk2 a

clock skew between
clkl and clk2

Figure 16.3 Clock skew.

clock skew must be taken into consideration. The skew usually introduces tighter timing
requirements and reduces system performance. Current technology can support a clock
distribution network with up to several tens of thousands of FFs with an acceptable clock
skew. Recall that the proper partition size for synthesis is between 5000 and 50,000 gates.
There are no problems applying synchronous design methodology inside each partition
block. Section 16.2 discusses the effect of small clock skew in timing analysis.

For a fast, large-scale system, the skew may become comparable to the clock period
and can no longer be treated as a small deviation of the arrival time. Because of the lack
of a common clock, the synchronous design methodology can no longer be applied. One
way to deal with this problem is to divide the system into several smaller subsystems and
let each subsystem be controlled by an independent clock signal. Whereas the internal
operation of a subsystem is synchronous, its interface to other subsystems is asynchronous.
Because of the asynchronous interface, timing violations may occur. We need to use special
synchronization schemes and protocols to ensure that the control signals and data can be
transferred between subsystems reliably. These schemes and protocols are discussed in
Sections 16.3 to 16.9.

16.2 TIMING ANALYSIS WITH CLOCK SKEW

Clock skew is the difference between the arrival times of the sampling edges of a clock
signal. It has a significant impact on the timing of sequential circuits. In general, clock
skew degrades system performance and imposes a tighter hold time margin. In Section 8.6,
we analyzed the timing of sequential circuits with an ideal clock and showed conditions to
meet setup time and hold time constraints. The following subsections repeat the analysis
with the existence of clock skew.

16.2.1 Effect on setup time and maximal clock rate

For a digital system with an ideal clock, there is no clock skew. We bundle all registers
together into a single element, as shown in the basic sequential circuit block diagram of
Figure 8.5. To express the different arrival times, individual registers must be considered.

TIMING ANALYSIS WITH CLOCK SKEW 607

clk

next-state
logic

Figure 16.4 Next-state logic feedback path with positive clock skew.

A conceptual diagram of two registers and a single feedback path is shown in Figure 16.4.
We assume that the lengthy routing wire introduces a delay of Tskew and thus the arrival
times of the rising edges are different for the clkl and clk2 signals. In this particular
case, the arrival time of the clk2 signal is late by the amount Tskew. The late arrival is also
known as a positive clock skew.

The timing diagram is shown in Figure 16.5. We follow the procedure used in Sec-
tion 8.6.2 to analyze the new circuit. To satisfy the setup time constraint, the r2next
signal must be stabilized before t 4 . This requirement translates into the condition

From the timing diagram, we see that

After we substitute t 3 and t 4 , the inequality equation is simplified to

and the minimal clock period is

Note that in this particular case, the existence of clock skew reduces the minimal clock
period and actually helps the performance.

The clock skew does not always mean late arrival of the sampling edge. For example, if
we switch the locations of the two registers in the previous example, the arrival time of the
clk2 signal is ahead of the arrival time of the clkl signal by the amount Tskew. The early
arrival is also known as a negative clock skew. In this case, t 4 becomes

608 CLOCK AND SYNCHRONIZATION: PRINCIPLE AND PRACTICE

t o h t t

clkl

clk2

rl-reg

r2-next

Figure 16.5 Timing analysis of positive clock skew.

and the minimal clock period becomes

Tc(min) = Tcq + Tnezt(maz) + Tsetup + Tskew
This implies that the clock period must be increased by the amount TakeW.

If there are multiple feedback paths, the effect of the clock skew can be positive for some
paths and negative for the others. Consider that we add a feedback path from the r2 register
to the rl register, as shown in Figure 16.6. For simplicity, we assume that the propagation
delays of the next-state logic are identical. The minimal clock periods of the two paths are

Tskew

and

respectively. Since the design has to satisfy the worst-case scenario, the clock period of the
system must be at least Tcq + Tnezt(maz) + Tsetup + Tskew.

While the positive clock skew can be used to reduce the minimal clock period in theory,
it is very difficult to do this in real design because of the existence of multiple feedback
paths and constraints on the placement of registers and routing of the clock distribution
network. The clock skew usually has a negative effect on the clock period and thus imposes
a penalty on performance.

Tcq + Tnezt(maz) + Tsetup + Takew

TIMING ANALYSIS WITH CLOCK SKEW 609

clk

Figure 16.6 Circuit with multiple feedback paths.

16.2.2 Effect on hold time constraint

The hold time analysis is similar to that in Section 8.6.3. To satisfy the hold time constraint,
we must ensure that

th < t2
From the timing diagram, we see that

t2 = to + Tcq + Tnext(rnin)
and

After substitution, the inequality equation can be simplified to

t h = to -k Thold + Tskew

Thold < Tcq + Tnext(min) - Tskew
Compared to the original inequality equation, the positive clock skew imposes a tighter
margin for the hold time constraint.

In the worst-case scenario, Tnezt(min) can be close to 0 (when the output of one FF is
connected to the input of another FE, as in a shift register). The inequality equation becomes

Thold < Tcq - Tskew

Recall that the device manufacture usually guarantees that Thold < T,,, and thus the
inequality equation will always be satisfied if there is no clock skew. With a positive clock
skew, the margin on the inequality equation will be reduced. It may even lead to a timing
violation if Tskew is greater than the safety margin of T,, - Thold.

Unfortunately, there is no fix from the RT-level design. Thold, Tcq and Tskew are the
three parameters in the inequality equation. The first two are inherent characteristics of
the device, and the third can only be obtained after synthesis of the clock distribution
network. Although in theory we can add some redundant combinational logic (such as a
pair of cascading invertors) to introduce artificial propagation delay, this approach is delay
sensitive and is not recommended. This problem is better left for the physical design. After

61 0 CLOCK AND SYNCHRONIZATION: PRINCIPLE AND PRACTICE

construction of the clock distribution network and completion of the placement and routing,
accurate clock skew information can be obtained. The physical design software will check
for hold time violations. It should correct the problem by rearranging the clock routing or
inserting a delay element in the violated path.

The analysis of negative clock skew is similar. The inequality equation becomes

The clock skew provides extra slack. Since the device manufacturer usually guarantees that
Thold < Tcq, the extra margin provides no additional benefit.

16.3 OVERVIEW OF A MULTIPLE-CLOCK SYSTEM

When we apply the synchronous design methodology, all FFs of the system are controlled
by a single global clock. However, as digital systems grow more complex, it becomes
very difficult or even impossible to follow the pure synchronous design principle. Multiple
clocks may exist or become necessary for several reasons:

0 Inherent multiple-clock sources. A digital system frequently needs to interact with
external systems, such as peripheral devices, or to exchange information through
communication links. These external systems or links may not use the same clock
signal.

0 Circuit size. As discussed in Section 16.1, the clock skew increases with the size
of the circuit and the number of FFs. When a circuit is large, it is not possible to
maintain a single clock. We must divide the system into smaller subsystems and use
separate clock signals in the subsystems.

0 Design complexity. A large digital system is frequently composed of several small
subsystems of different performance and power criteria. Applying pure synchronous
design methodology may introduce unnecessary constraints. For example, consider
a system with a 16-bit 20-MHz processor, a fast 100-MHz 1-bit serial network inter-
face and several 1-MHz peripheral 110 controllers. If the pure synchronous design
methodology is used, the system must be operated at 100 MHz to accommodate the
highest clock rate, even though this clock rate is only used in the serial-to-parallel con-
version of the serial network interface. It is clear that this system is “overdesigned”
for the processor and U 0 controllers. The artificial, unnecessarily high clock rate
introduces a tighter timing constraint, complicates the design and synthesis process,
and increases the hardware complexity. Utilizing separate clock signals can reduce
the circuit complexity and simplify the design process,

Power consideration. The dynamic power of a CMOS device is proportional to the
switching frequency of transistors, which is correlated to the system clock frequency.
An inflated system clock rate will unnecessarily increase the system’s power con-
sumption. If we consider the previous system, synchronous design methodology
requires the entire system to be operated at 100 MNZ. It will consume much more
power than three subsystems with clock rates of 100,20 and 1 MHz.

As discussed in Section 8.2, the synchronous methodology is the fundamental principle
in today’s digital system development, and most design and analysis schemes are based on

OVERVIEW OF A MULTIPLE-CLOCK SYSTEM 61 1

clk

clk-x;!

clk-x4

clk-xll

Figure 16.7 Poorly conceived clock divider.

this methodology. Thus, even with multiple clocks, we still want to apply this methodology
as much as possible. The basic approach is to divide a system into multiple synchronous
subsystems and design a special interface between the subsystems. This allows us to
continuously apply the synchronous methodology to design a much larger system.

In a multiple-clock system, the subsystems can use either a derived clock signal or an
independent clock signal. We briefly review the two schemes in the following subsections.

16.3.1 System with derived clock signals

A derived clock signal is a clock signal obtained from a known clock signal. A special
clock generation circuit takes the original clock signal, generates new clock signals with
different frequencies or phases, and routes them to different subsystems. Each subsystem
then utilizes its own clock distribution network to distribute the clock signals to the registers
within the subsystem.

In theory, we can apply general RT-level design technique to modify the frequency of a
clock signal. For example, we can obtain three lower-frequency clock signals by tapping
the output of 3-bit binary counter, as shown in Figure 16.7. There are two problems with
this approach. First, because of the clock-to-q delay, there is a skew between the rising
edges of original clock signal and the derived clock signals. Second, due to the variation of
the clock-to-q delays of the FFs and the unknown wiring delays, it is difficult to determine
the exact values of the skews among the three derived clock signals.

To control the skew between the clock signals, the clock generation circuit should be
separated from regular logic, and manually analyzed and implemented. Special analog
components, such as delay lines and buffers, or even a phase-locked loop (PLL), can be
used to minimize the skew.

A system with derived clock signals is subjected to the same setup and hold time con-
straints. Once the clock skew between the two clock signals is known, we can apply the
technique in Section 16.2 to analyze timing. The derivation procedure is similar except that
we must take into consideration the difference in the clock periods.

61 2 CLOCK AND SYNCHRONIZATION: PRINCIPLE AND PRACTICE

In a multiple-clock system, we use the term clock domain to describe use of the clock
signal. A clock domain is a block of circuitry in which the FFs are controlled by the same
clock signal. Although a derived clock signal has a different clock frequency or phase, its
relationship to the original clock signal is known. The design and analysis techniques of
synchronous sequential circuit can be modified and applied in such a system. Because of
this, we consider that subsystems with derived clock signals are in the same clock domain.
Note that these derive clock signals need their own individual clock distribution networks
even though they are in the same clock domain.

16.3.2 GALS system

Due to the clock skew of large circuit size or inherent U 0 characteristics, it is sometimes
difficult or impossible to maintain or find the relationship between the clock signals of
subsystems. The clock signals in these subsystems are considered to be independent, and
each subsystem constitutes its own clock domain.

Within a clock domain, the circuit operation is completely synchronous and its design
follows the synchronous design methodology. Interface between the two clock domains
involves two independent clocks and thus is asynchronous. This configuration is sometimes
known as a globally asynchronous locally synchronous (GALS) system. After we develop a
proper asynchronous interface, this scheme allows us to continuously apply the synchronous
methodology to design a much larger system.

The major difficulty in designing a GALS system is the interface of clock domains;
i.e., how to exchange information and transfer data between two clock domains (known as
domain crossing). Since the circuit in one domain has no clock information about another
domain, a signal may switch at the clock‘s sampling edge of another domain, which leads
to a setup or hold time violation. Recall that one main advantage of the synchronous design
methodology is that it provides a systematic way to avoid a riming violation. Since a timing
violation in the domain crossing is not avoidable, the design must focus on what to do after
a timing violation occurs.

The interface between clock domains is very different from a regular synchronous system
or a system with derived clock signals. Its design cannot be automated and usually needs
detailed manual analysis. It is more difficult and error-prone. Furthermore, the existence of
multiple clock domains affects other processes in the development flow and complicates the
static timing analysis, formal verification and test circuit synthesis. Thus, before adding an
additional clock domain, we must carefully consider the trade-off between the benefits and
potential complexities. In general, it is warranted only for a substantially sized subsystem
or a critical high-performance subsystem. The subsequent sections discuss the nature
of synchronization failure, the design of a synchronization circuit, and the design and
implementation of data transfer protocols.

16.4 METASTABILITY AND SYNCHRONIZATION FAILURE

One fundamental timing constraint of a sequential circuit is the setup and hold times of an
FF. It specifies that the input data to an FF must be stable in a decision window around
the sampling edge of the clock signal. Consider the basic sequential circuit block diagram
shown in Figure 8.5. The input of the register is the next-state logic’s output, which is
obtained from the register’s output and an external input.

METASTABILIN AND SYNCHRONIZATION FAILURE 61 3

(a) Input stable during setup and hold time

(b) Input changing during setup or hold time

Figure 16.8 Timing diagrams of a D FE

Since the register's output is based on the sampling edge of the clock, we have timing
information about this signal. Our timing analysis examines the closed loop formed by the
register and next-state logic and ensures that no timing violation will occur. Similar analysis
can be performed if the external input signal is generated in the same clock domain. On
the other hand, if the external input signal comes from another clock domain, as in a GALS
system, the subsystem has no information about the timing relation to its clock, and thus the
signal is treated as an asynchronous signal. An asynchronous input signal can change any
time, including inside the decision window, and cause a timing violation. The following
subsections discuss the characteristics of a timing violation.

16.4.1 Nature of metastability

When an input data signal satisfies the timing constraint, the sampled value will be prop-
agated to the FF's output after the clock-to-q (Tcq) delay, as shown in Figure 16.8(a). On
the other hand, if the input signal changes during setup or hold time, it violates the timing
constraint and the output response is very different. Assume that the input changes from '0'
to '1' during the setup and hold time window. One of three scenarios happens:

0 The output of the FF becomes '1'.
0 The output of the FF becomes '0'.

61 4 CLOCK AND SYNCHRONIZATION: PRINCIPLE AND PRACTICE

0 The FF enters a metastable state, and the output exhibits an in-between voltage value.
The first scenario is the desired result and causes no problem. The second scenario

implies that the FF just sampled the previous value. If the input remains unchanged, the
correct value will be sampled at the next rising edge. Since we make no assumption about
the arrival time of the input signal, there will be no ill effect.

The third scenario is the troublesome one. In normal operation, an FF stays in one of the
two stable states, and its output voltage is either high or low. They are interpreted as logic 1
or logic 0 if the positive logic is used. When an FF enters a metastable state, its output
voltage is somewhere between the low and the high, and cannot be interpreted as either
logic 0 or logic 1. If the output of the FF is used to drive other logic cells, the in-between
value may propagate to downstream logic cells and lead the entire digital system into an
unknown state.

As its name indicates, a metastable state is not really a stable state. A small noise
or disturbance will offset its “balance” and force the FF to enter one of the stable states.
In other words, the FF will eventually resolve to a stable state. The time required to
reach a stable state is known as the resolution time, T,. The timing diagram is shown in
Figure 16.8(b). Theoretical study shows that a bistable device always has a metastable state,
and this phenomenon is unavoidable. The only solution is to provide enough time to let the
device resolve the situation and reach a stable state.

The resolution time, unfortunately, is not deterministic. It is characterized by a proba-
bility distribution function

P(T,) = e-?

In this equation, 7 is the decay time constant and is determined by the electrical charac-
teristics of the FF. A typical value of today’s device technology is around a fraction of a
nanosecond. The equation indicates the probability that the metastability condition persists
beyond T, after the clock edge. It can be interpreted as the probability that the metastability
cannot be resolved within T, seconds.

16.4.2 Analysis of MTBF(T’)

Since the timing violation can occur in any asynchronous input, the goal of the design
is to confine the metastable condition in an FF and to prevent the in-between value being
propagated to the downstream logic. When an FF cannot resolve the metastability condition
within the given time, it is known as a synchronization failure.

Because of the stochastic nature of the occurrence of a timing violation and resolution
time, analysis of the metastable condition is characterized by a statistical average. We use
the average time interval between two synchronization failures to express the reliability
of the design. It is known as mean time between synchronization failures (MTBF) and is
the main quantity used in metastability timing analysis. MTBF depends on many factors.
However, in a realistic design scenario, most factors cannot be easily changed, and the only
freedom we have is to provide proper resolution time. Thus, MTBF is frequently expressed
as a function of T,, as in MTBF(T,).

We can derive the MTBF by calculating the average rate of synchronization failures, AF,
which is the reciprocal of MTBF. A F is defined as the average number of synchronization
failures occurring in a l-second interval. It is determined by two factors:

Rmeta: The average rate at which an FF enters the metastable state.
0 P(T,): The probability that an FF cannot resolve the metastable condition within T,..

METASTABILITY AND SYNCHRONIZATION FAILURE 61 5

Rmeta is determined by the formula

In this formula, w is the susceptible time window, which is a constant determined by
the electrical characteristics of the FF. It can be interpreted as a metastability susceptible
time interval associated with the triggering edge of the clock signal. For current device
technology, the typical value of w is from few picoseconds to a fraction of a nanosecond.
The f c l k parameter is the frequency of the clock signal, which is defined as the number of
clock cycles per second. During the l-second interval, there are f c l k triggering edges, and
thus the w * fc lk portion of 1 second is susceptible for the metastability. The fd parameter
is the rate of change in input data, which is defined as the number of input changes per
second. We assume that the input data is independent of the clock and that the change
can occur at any time. The probability of a single change occurring within a metastability
susceptible interval is w * f c l k . Since there are fd changes in 1 second, the FF will enter
the metastability state w * f & * fd times per second, as shown in the equation above.

Once an FF enters the metastable state, it takes a certain amount of time to resolve to a
stable state. The discussion in Section 16.4.1 shows that the probability that the FF cannot
resolve the metastable condition within the given resolution time of T,. is

P(T,.) = e-%

In other words, when an FF enters the metastable state, it may resolve the condition within the
givenresolution time. Only P(T,.) of the events persists over T,. and leads to synchronization
failure. Since the FF enters the metastability state beta times per second on average and
only P(T,.) of the entries leads to synchronization failure for the given T,., the average
number of synchronization failures per second is &eta * P(Tr); that is,

For a given T,., MTBF(T,.) becomes

G 1 e r
MTBF(T,.) = - -

AF(Tr) - * fc lk * fd
Note that the f&, fd, w and T parameters are associated with original system specifications
and device technology, and revising them can lead to significant design modification. The
only freedom we have is to adjust the resolution time (T,.) in the synchronization circuit.
That is why we normally express MTBF as a function of T,., as in MTBF(T,).

In the MTBF calculation, T and w depend on the electrical characteristics of the device,
and their values can be found in the manufacturer’s data sheet. Note that some FPGA
manufacturers define the resolution time as the additional time needed after the regular
clock-to-q delay (Tcq). If we call this time Tr2, the relationship between Tr and Trz is

Tr = Tcq + T ~ z

After simple mathematical manipulation, we can easily convert MTBF(T,.z) to MTBF(T,),
and vice versa.

61 6 CLOCK AND SYNCHRONIZATION: PRINCIPLE AND PRACTICE

Table 16.1 Sample MTBF(T,) computation

T, MTBF

0.0 ns
2.5 ns
5.0 ns
7.5 ns

10.0 ns
12.5 ns
15.0 ns
17.5 ns
20.0 ns
22.5 ns
25.0 ns
27.5 ns
30.0 ns
32.5 ns
35.0 ns

4.00 * 10-05 sec (0.04 msec)
5.94 * 10-03 sec (5.94 msec)
8.81 * 10-O' sec (0.88 sec)
1.31 * 10+O2 sec (131 sec)
1.94 * 10+04 sec (5.39 hours)
2.88 * 10+O6 sec (3.33 days)
4.27 * 10+O8 sec (1 -36 years)
6.34 * 10+lo sec (2.01 * 103 years)
9.42 * 10+l2 sec (2.99 * 105 years)
1.40 * 10+15 sec (4.43 * 107 years)
2.07 * 10+17 sec (6.58 * log years)
3.08 * 10+19 sec (9.76 * 10l1 years)
4.57 * 10+21 sec (1.45 * 1014 years)
6.78 * 10+23 sec (2.15 * 10l6 years)
1.01 * 10+26 sec (3.19 * 10l8 years)

16.4.3 Unique characteristics of MTBF(T!)

We have examined various timing parameters, such as propagation delay, setup time and
hold time. The metastability resolution time is very different. It is not deterministic and
not even bounded, and thus must be characterized by a probability distribution function.
Note that the resolution time is random in nature, and MTBF, as its name shows, is an
average value. When a system has an MTBF value of 1 year, it does not mean that the
synchronization failure always happens once a year. It means that the synchronization
failure happens once a year on average. The actual interval can be 1 month, 6 months,
1 year, 2 years, 5 years and so on. A system may fail in a year regardless of whether its
MTBF value is 1 year, 10 years or 1000 years. However, the probability of failure for the
system with a 1000-year MTBF is much smaller.

Another observation about the resolution time relates to its highly non-linear character-
istics. Note that T, is in the exponent position of the MTBF(T,) formula. A small variation
over T, leads to drastic change in the value of MTBF. For example, consider an FF with a
w of 0.1 ns and a T of 0.5 ns and assume that the system clock frequency (fclk) is 50 MHz
and the data rate (fd) is O.lfclk. The resolution time of a synchronizer is normally ranged
between a fraction of a clock period to one or two clock periods (discussed in the next
section). Table 16.1 lists the MTBF values of T, from 0 to 35 ns at increments of 2.5 ns.
Note that the period of a 50-MHz clock signal is 20 ns. When no resolution time is provided
(i.e., T, = 0), the MTBF is an unacceptable 0.04 ms. If we can use a T, value of half a clock
period (i.e., 10 ns), the MTBF becomes about 5 hours. Because of the exponential rate,
each extra 2.5 ns can increase the MTBF more than 100 times. When T, reaches 17.5 ns,
the MTBF reaches about 2000 years. If we provide 1.5 times the clock period (i.e., 30 ns),
the MTBF becomes about 1014 years (for comparison, the age the universe is on the order
of 10" years, and the appearance of the human being is on the order of 105 years).

This phenomenon is a mixed blessing. On the positive side, while the synchronizing
failure cannot be eliminated, we can make the probability of occurrence extremely small,

BASIC SYNCHRONIZER 617

On the negative side, because of the sensitivity of the resolution time, a small decrease in
the resolution time can significantly degrade the value of MTBF. Thus, minor revisions in
the system, such as the slight increment of the system clock rate or use of an FF with a
slightly larger setup time, may lead to a drastic consequence.

16.5 BASIC SYNCHRONIZER

When an asynchronous input causes a setup or hold time violation, the FF may enter the
metastable state and its output exhibits an in-between value. If not blocked, the in-between
value will be passed to the next stage and gradually propagated through the entire system.

As its name shows, a synchronization circuit (or a synchronizer) is to synchronize an
asynchronous input with the system clock. As we learned from the previous sections, no
circuit can prevent the occurrence of the metastability of a bistable device. The purpose
of a synchronization circuit is to stop the propagation of the in-between value and confine
the metastability condition within the synchronizer. Since the metastability condition will
eventually resolve itself, the task of a synchronizer is just to provide enough time for the
FF to reach a stable state.

The following subsections analyze various configurations of a synchronizer and their
MTBFs. In our examples, we assume that the circuit utilizes the FF of Section 16.4.3, and
has same clock frequency and data rate; i.e., w = 0.1 ns, 7 = 0.5 ns, f C l ~ = 50 MHz and
fd = O.lfclk.

16.5.1 The danger of no synchronizer

We first consider a sequential circuit that has no synchronizer for its asynchronous in-
put, as shown in Figure 16.9(a). If the asynchronous signal causes a timing violation, the
system register may enter the metastable state, and the in-between value will be propa-
gated to the next-state logic circuit. We can analyze how frequently the system enters the
metastable state using the previous MTBF formula. Since there is no synchronizer, no
resolution time is provided (i.e.. T,. = 0). Substituting this value into the formula, we have
MTBF(0) = 0.04 ms. This failure rate is clearly unacceptable.

16.5.2 One-FF synchronizer and its deficiency

The first design of a synchronizer is to use a single D FE, as shown in Figure 16.9(b). Let
T,, Tsetup and Tcomb be the clock period of the system, the setup time of the FF and the
propagation delay of the combinational circuit respectively. Consider the path from the
synchronizer D FF to the system D FF. The synchronizer provides one clock period for the
out -sync signal to resolve, propagate through the combinational logic and satisfy the setup
time constraint of the system D FE. The required time for the latter two is Tcomb + Tsetup,
and the remaining balance can be used to resolve the metastability condition, which is

TT = Tc - (Tcomb + Tsetup)

Assume that Tsetup of the system register is 2.5 ns. The resolution time of this circuit
becomes

T,. and MTBF depend on Tcomb, the propagation delay of the combinational circuit. For a
simple combination circuit, the TT will be relatively large. For example, if Tcomb is 1 ns,

TT = 20 - (Tcomb + 2.5) = 17.5 - Tcomb

61 8 CLOCK AND SYNCHRONIZATION: PRINCIPLE AND PRACTICE

1
- in-async comb 1

logic -

7 synchronizer

-

(b) One-FF synchronizer

synchronizer

in-async

clk

(c) Two-FF synchronizer

synchronizer I

Figure 16.9 Synchronizers.

BASIC SYNCHRONIZER 619

T,. becomes 16.5 ns and MTBF(16.5 ns) is about 272 years. On the other hand, a complex
combination circuit can drastically reduce the MTBF value. If Tcomb is 12.5 ns, T,. becomes
5 ns and MTBF(5 ns) is dropped to about 0.88 second.

As discussed earlier, MTBF is extremely sensitive to T,., and a small variation leads to
a huge swing in MTBF value. The value of Tcomb depends on the logic function of the
combinational circuit, device technology as well as synthesis and placement and routing
process, and thus cannot be determined in advance. A minor modification in the combi-
national logic, the synthesis process or the placement and routing process can lead to a
significant reduction in MTBF and make the system susceptible to synchronization failure.
Therefore, this is not a reliable design. A better alternative is to use two D FFs for the
s ynchronizer.

16.5.3 Two-FF synchronirer

The previous analysis shows that a maximal resolution time can be obtained if Tcomb
is 0. Since the function of the combinational logic is defined by the original system,
we cannot modify it arbitrarily. Instead, we can insert another D FF to form a two-FF
synchronizer, as shown in Figure 16.9(c). The resolution time provided by the two FFs
inside the synchronizer is

If Tsetup is 2.5 ns, the resolution time becomes

Tr = Tc - Tsetup

T,. = 20 - 2.5 = 17.5 ns

The MTBF(17.5 ns) is about 3000 years. In addition to providing more resolution time,
this design is also more robust since no logic function or synthesis is involved. The only
uncertain factor in this design is the wiring delay, which can be substantial if the two D FFs
are located far apart. To minimize this delay, the two D FFs must be placed as close as
possible. In physical design, we may need to manually perform the placement and routing
for the synchronizer.

The VHDL code for the synchronizer is straightforward, following the block diagram of
Figure 16.9(c). The code is shown in Listing 16.1.

Listing 16.1 -0-W synchronizer

l ibrary ieee ;
use ieee. std-logic-1164, a l l ;
e n t i t y synchronizer i s

port (
5 clk, reset: in std-logic;

in-async : in std-logic ;
out-sync: out std-logic

1;
end synchronizer ;

archi tecture two-ff-arch of synchronizer is
s ignal meta-reg , sync-reg : std-logic ;
s ignal meta-next , sync-next : std-logic ;

10

begin
IS - two D FFs

process (clk , reset 1

CLOCK AND SYNCHRONIZATION: PRINCIPLE AND PRACTICE 620

20

25

M

begin
i f (reset=JIJ) then

meta-reg <= '0 ;
sync-reg <= '0 ;

meta-reg <= meta-next ;
sync-reg <= sync-next;

e l s i f (clk'event and c l k = J I J) then

end i f ;
end process;
- n e x t -s t a t e 1 og i c
meta-next <= in-async ;
sync-next <= meta-reg;
- o u t p u t
out-sync <= sync-reg ;

end two-f f -arch ;

Because of its simplicity and robustness, the two-FF configuration is the most widely used
synchronizer. It is satisfactory in most applications. However, the regular D FF occasionally
may not be able to provide sufficient T,. For example, if we increase the system clock by
one-third to 66.7 MHz, the clock period is reduced to 15 ns and T, becomes 12.5 ns. The
MTBF is reduced to 3.33 days. To overcome this problem, many ASIC technologies have
a special metastubility-hardened D FF cell in their libraries. The functionality of this D FF
is identical to that of a regular D FF, but its w, r and Tsetup are made smaller to increase
MTBF. We can use component instantiation in V h L code to instantiate this type of D FF
cell in a synchronizer. Due to its internal implementation, the circuit size of a metastability-
hardened D FF cell is several times larger than that of a regular D FF cell and thus should
not be used in regular sequential circuits.

16.5.4 Three-FF synchronizer

If the device technology does not provide a metastability-hardened D FF cell, we can
increase the resolution time by cascading more D FF cells or artificially enlarging the clock
period of the synchronizer. The three,-FF synchronizer is shown in Figure 16.9(d). An extra
D FF is cascaded with a two-FF synchronizer. The idea behind this design is to use the
extra D FF to provide an additional opportunity to resolve the metastability condition.

We can follow the procedure in Section 16.4.2 to calculate the MTBF of this circuit.
Recall that Rmeta, the average rate at which the first D FF enters a metastable state, is

&eta = * fclk * fd
Once the FF enters the metastable state, it has a time interval of T, - Tsetup to resolve the
situation. The probability that the metastability condition persists beyond the current clock
cycle is

Tc-Tsetup
P l = e - T

If this situation happens, the metastability condition is sampled and passed to the second
FF. The second FF, again, has a time interval of T, - Tsetup to resolve the situation, and
the probability that the metastability condition persists beyond this clock cycle is

BASIC SYNCHRONIZER 621

The MTBF of this circuit becomes

If we compare this equation to the two-FF synchronizer, which is

(Tc-Tsetup)
e r - - 1

R m e t a * p1
MTBF =

W * fclk * fd
We can interpret that the three-FF synchronizer increases the resolution time from Tc -

Since this term is in the exponent of the equation, its impact is very significant. If Tc
is 20 ns and T s e t u p is 2.5 ns, the resolution time increases from 17.5 ns to 35 ns, and the
MTBF increases from 2000 thousand years to 101* years. If Tc is 15 ns, the resolution
time increases from 12.5 ns to 25 ns and the MTBF increases from 3 days to about 6 billion
years, which is a pretty safe number.

The disadvantage of the three-buffer synchronizer is the delay for the input signal. The
extra D FF increases the delay from two clock cycles to three clock cycles. When possible,
we should use a metastability-hardened D FF cell rather than using an additional D FF.

We can cascade more D FFs to increase the MTBF. However, because of the effect of
the exponential decay, this is seldom needed in reality.

T s e t u p to 2(Tc - T s e t u p) .

16.5.5 Proper use of a synchronizer

The function of a synchronizer is to provide a non-metastable output value. We must use
it properly to obtain a reliable synchronized result. Good design practices can help us to
achieve this goal and avoid subtle errors:

0 Use a glitch-free signal for synchronization.
0 Synchronize a signal in a single place.
0 Avoid synchronizing multiple "related" signals.
0 Reanalyze the synchronizer after each design change.

These practices are discussed in the following paragraphs.

Use a giifch-free signal for synchronization The asynchronous input signal nor-
mally comes from another clock domain. Since the synchronizer has no knowledge about
the clock signal in another domain, it can sample the asynchronous input any time. If a
glitch exists in the input signal, it may be sampled and synchronized incorrectly as a legit-
imate value. It is important to pass a glitch-free signal for synchronization. This can be
achieved by adding an output buffer when the signal is generated.

Synchronize a signai in a single piace The function of a synchronizer is to generate
a stable output value. The synchronizer, however, cannot guarantee which value will be
reached. For example, if a timing violation occurs when the input changes from '0' to 'l',
the synchronized input value can be '0' or '1' at the current sampling clock edge. Assume
that the input signal does not change. It will be sampled again at the next rising edge of the
clock and a stable '1' will be obtained. This implies that the arrival time of a synchronized
asynchronous input signal may exhibit a random one-clock delay. We must take the random
delay into consideration when using a synchronizer.

622 CLOCK AND SYNCHRONIZATION: PRINCIPLE AND PRACTICE

synchronizer

-

synchronizer

in-async -
It-> -
-

>

(a) Synchronizing a signal in two places

synchronizer -
in-async - I

-
1

elk -
>

Figure 16.10 Synchronization at multiple places.

An asynchronous input signal may be used in multiple places in a clock domain. It
should be synchronized in a single entry point. An example of a poor design is shown in
Figure 16.10(a), in which the in-async signal and its derivative are synchronized by two
individual synchronizers. The potentially random one-clock delay may introduce incon-
sistent values to the system and lead to incorrect operation. A better alternative is shown
in Figure 16.10(b). The signal is synchronized by a single synchronizer, and the system is
always fed with the same value.

A void synchronizing related signals A similar issue is to synchronize related sig-
nals. Related signals means that a group of signals are combined to represent a command,
state and so on. For example, we may use two signals to represents four possible actions.
Because of the random one-clock delay, synchronizing related signals may to lead to uncer-
tain results. For example, consider that two related signals changes from "00" to "1 1". If
the two signals switch at about the same time and both transitions cause timing violations,
the resolved results can be "OO", "Ol", "10" or 11" for one clock cycle. Although the signal
will eventually be settled to "1 1" in the next clock cycle, the "01" and " 1 0 conditions may
exist for one clock cycle. This may cause a serious problem for some applications.

There are two ways to correct the problem. The first is to apply special coding patterns,
such as Gray code, to ensure that only one bit changes during the transition. One example

SINGLE ENABLE SIGNAL CROSSING CLOCK DOMAINS 623

is given in Section 16.9.1. A better, more systematic alternative is to bundle all signals and
pass them as a single data item. The data transfer between two clock domains is discussed
in Section 16.8.

Reanalyze the synchronizer after each design change MTBF is extremely sen-
sitive to the available resolution time, and a small variation can lead to drastic change. For
example, consider the two-FF synchronizer discussed in Section 16.5.3. If the original
system is running at 50 MHz, the MTBF is about 3000 years. Assume that we upgrade the
design using faster functional units and the new system can run at 66.7 MHz, about 33%
faster. Since the same device technology is used for the D FFs, 20 and T remain unchanged.
The MTBF is reduced to a mere 3 days, which is only 0.0002% of the original value. The
example demonstrates the sensitivity of the synchronizing circuit. It is good practice to
examine the synchronizer after each design modification.

16.6 SINGLE ENABLE SIGNAL CROSSING CLOCK DOMAINS

In a GALS system, clock domains are driven by independent clock signals. The clock
frequencies and data processing rates of these domains may not be identical. A subsystem
can communicate with another subsystem whose clock frequency is 10 times faster or
10 times slower. The function of a synchronizer is to prevent the subsystems from entering
the metastable state. Additional control schemes are needed to coordinate the information
exchange between the two clock domains. We show how to propagate an enable pulse
signal from one clock domain to another clock domain in this section and Section 16.7 and
discuss the data transfer in Sections 16.8 and 16.9.

16.6.1 Edge detection scheme

A digital system frequently includes a control signal in the form of an enable pulse, which
activates the desired action for a single time. The enable signal of a counter and the start
signal of a sequential multiplier are signals of this type. An enable pulse should be sampled
by exactly one clock edge. A longer duration may cause errors. For example, a counter
may count twice for a single event or a multiplier may load the incorrect operands.

While using an enable pulse between two synchronous subsystems is straightforward,
it is much harder to pass the pulse crossing the clock domains. We must consider the
synchronization and the difference in clock rates. The following subsections discuss several
ad hoc edge detection schemes to regenerate an enable pulse from a slow or a fast clock
domain. A more robust scheme that involves feedback signal is discussed in the next section.

Wide enable signal If an enable pulse is generated from a slow clock domain, its
duration may last for several clock cycles in the current clock domain, and the signal
appears as a very wide pulse. A rising-edge detection circuit is needed to regenerate a
shorter, synchronized enable pulse in the current clock domain. The block diagram is
shown in Figure 16.1 l(a), which includes a synchronizer and an edge detection circuit.

The rising-edge detection circuit can be designed by using an FSM or direct implemen-
tation, as discussed in Section 10.4.1. We use the implementation shown in Figure 10.19
of Section 10.8.1, and its VHDL code is repeated in Listing 16.2.

624 CLOCK AND SYNCHRONIZATION: PRINCIPLE AND PRACTICE

en-in

- -

en-in

clk

en-out

synchronizer edge
detector

en-out

- en-strobe

(b) Correct circuit diagram

en-out en-in

clk

(c) Incorrect implementation

Figure 16.11 Regeneration of a wide enable signal.

Listing 16.2 Rising-edge detection circuit

l i b r a r y ieee;
use ieee. std-logic-1164, a l l ;
e n t i t y rising-edge-detector i s

port (
5 clk, reset: in std-logic;

strobe : in std-logic ;
pulse : out std-logic

1;
end rising-edge-detector;

a r c h i t e E t u r e direct - ar c h of rising- edge- de t ec t or i s

begin

10

s i g n a l delay-reg : std-logic ;

- d e l a y r e g i s t e r

begin
IS process (clk ,reset)

i f (reset=’l’) then
delay-rag <= ’0 ’ ;

SINGLE ENABLE SIGNAL CROSSING CLOCK DOMAINS 625

e l s i f (clk ’ event and clk= ’ 1 ’ then

end i f ;
end p r o c e s s ;
-- decod ing l o g i c
pulse <= (n o t delay-reg) and strobe;

20 delay-reg <= strobe ;

25 end direct-arch ;

After substituting the gate-level implementation in the blocks, we can obtain a more
detailed circuit diagram, as shown in Figure 16.1 l(b).

The VHDL code for the complete enable pulse regeneration circuit is shown in List-
ing 16.3. We intentionally use the component instantiation and create two component
instances in the top-level description to highlight the use of a synchronizer and to differenti-
ate it from a regular sequential circuit. After each design change, the synchronizer instance
must be reexamined and, if needed, replaced, to ensure the proper MTBF.

Listing 16.3 Enable pulse regenerator for a wide enable signal

l i b r a r y ieee ;
use ieee. std-logic-1164. a l l ;
e n t i t y sync-en-pulse i s

port (
5 clk, reset: in std-logic;

en-in : in std-logic ;
en-out : out std-logic

1;
end sync-en-pulse ;

a r c h i t e c t u r e slow-en-arch of sync-en-pulse i s
10

component synchronizer
port (

clk, reset: in std-logic;

out-sync: out std-logic
15 in-async : in std-logic ;

1;
end component;
component rising-edge-detector

20 port (
clk, reset: in std-logic;
strobe : in std-logic ;
pulse : out std-logic

1;
2s end component;

s i g n a l en-strobe : std-logic ;

sync: synchronizer
begin

port map (clk=>clk, reset=>reset , in-async=>en-in,
30 out-sync=>en-strobe);

edge-detect: rising-edge-detector
port map (clk=>clk, reset=>reset , strobe=>en-strobe ,

pulse=>en-out);
end slow-en-arch ;

626 CLOCK AND SYNCHRONIZATION: PRINCIPLE AND PRACTICE

1
en-in

clk

en-out

Figure 16.12 Regeneration of a narrow enable signal.

We may be tempted to use the second D FF of the synchronizer to function as the
edge detection circuit to save a D FF and to reduce the propagation delay, as shown in
Figure 16.1 l(c). This is a poor design since the unresolved signal may leak through the and
cell and propagate to the downstream logic.

Narrow enable signal Handling an enable pulse from a fast clock domain is more
difficult. For example, if the pulse is generated from a domain whose clock frequency is
eight times faster than the frequency of the current clock domain, the duration of the enable
pulse is only one-eighth of the period of the current clock signal. The sampling edge of the
D FF of the synchronizer is likely to miss the narrow pulse.

Since the signal cannot be sampled by the clock edge, no synchronous design method
can solve this problem. We must turn to ad hoc techniques to “stretch” the pulse until it
is sampled by the current clock. One possible design is shown in Figure 16.12. In this
design, the enable pulse is used as the clock for the stretcher D FF. When a pulse arrives, the
stretcher D FF is loaded with ’ 1’. The output of the D FF is then passed to the synchronizer.
After the pulse is synchronized, the asserted synchronizer output clears the first D FF via the
asynchronous reset. Due to the random one-clock delay of the synchronizer, the duration of
the synchronized output can be one or two clock periods, and thus an edge detection circuit
is needed to ensure correct operation. Because the first D FF is driven by a different clock
signal, it should be excluded for the regular timing analysis and testing circuit. The VHDL
code of the revised architecture body is shown in Listing 16.4.

Listing 16.4 Enable pulse regenerator for a narrow enable signal

a r c h i t e c t u r e f ast-en-arch of sync-en-pulse is
component synchronizer

port (
clk, reset: in std-logic;

out-sync: out std-logic
5 in-async : in std-logic ;

1;
end component;
component r is ing-edge-det ect or

10 port (
clk, reset: in std-logic;
strobe : in std-logic ;
pulse : out std-logic

1;

SINGLE ENABLE SIGNAL CROSSING CLOCK DOMAINS 627

IS end component;
s i g n a l en-strobe : std-logic ;
s i g n a l en-q: std-logic ;

begin

20

25

30

-- ad hoc s t r e t c h e r
process (en-in , en-strobe)
begin

if (en-strobe=’l’) then

e l s i f (en-in’event and en_in=’l’) then

end i f ;
end p r o c e s s ;
- s low e n a b l e p u l s e r e g e n e r a t o r
sync: synchronizer

en-q <= ’0’;

en-q <= ’1’;

port map (clk=>clk, reset=>reset , in-async=>en-q ,
out_sync=>en-strobe);

edge-detect: rising-edge-detector
port map (clk=>clk , reset=>reset , strobe=>en,strobe ,

pulse=>en-out) ;
35 end f ast-en-arch ;

Since the function of the first D FF depends only on the rising edge, not on the duration,
of the incoming pulse, this scheme can be applied to a wide enable pulse as well. Note that
the incoming enable pulse must be glitch-free to prevent false triggering.

16.6.2 Level-alternation scheme

An alternative to the ad hoc pulse-stretching circuit is to slightly modify the interface
between the two clock domains and use the alternation of the output level to cany the
information. In this scheme, the sending subsystem toggles the output value when an
enable pulse is generated and thus embeds the pulse information into the signal transition
edges. The block diagram is shown in Figure 16.13(a). The circuit is a T FF, which toggles
its output after each time the en signal is asserted. When an enable pulse arrives, the
en-level signal switches state, as shown in the top and middle parts of the timing diagram
in Figure 16.13(c). The corresponding VHDL segment is

. . .
- D FF
process (clk , reset
begin

i f (reset=’l’) then
t-next <= ’0’;

e l s i f (clk’event and clk=’l’> then
t-reg <= t-next ;

end i f ;
end p r o c e s s ;
- n e x t - s t a t e l o g i c
t-next <= not (t-reg) when en=’1’ e l s e

-- o u t p u t l o g i c
an-level <= t-rag

t-reg ;

. . .

628 CLOCK AND SYNCHRONIZATION: PRINCIPLE AND PRACTICE

en-out n n
(c) Simplified timing diagram

Figure 16.13 Pulse regeneration with level alternation.

In the domain that receives the enable pulse, it needs a synchronizer and a dual-edge
detection circuit that can detect both the rising and falling edges of an input signal. The
edge detection circuit senses the change in signal level and converts it back to a single
one-clock-period pulse. We can derive the dual-edge detection circuit by using an FSM or
direct implementation. One possible direct implementation is to perform an xor operation
over the current input value and the previous input value stored in a D FF, as shown in
Figurel6.13@). The output waveform of the regenerator is demonstrated in the bottom part
of the timing diagram in Figure 16.13(c). For clarity, the synchronizer delay is not included
in the diagram.

The VHDL codes for the dual-edge detection circuit and the architecture body of the
revised enable pulse regeneration circuit are shown in Listings 16.5 and 16.6 respectively.
Note that the new dual-edge-dector component is used in the architecture body.

Listing 16.5 Dual-edge detection circuit
l ibrary i eee ;
use i e e e . s t d - l o g i c - 1 1 6 4 . a l l ;
e n t i t y d u a l - e d g e - d e t e c t o r i s

port (

SINGLE ENABLE SIGNAL CROSSING CLOCK DOMAINS 629

5

20

clk, reset: in std-logic;
strobe : in std-logic ;
pulse : out std-logic

1 ;
end dual-edge-detector;

a r c h i t e c t u r e direct-arch of dual-edge-detector i s

begin

10

s ignal delay-reg : std-logic ;

-- d e l a y r e g i s t e r
process (clk , reset 1
begin

IJ

i f (reset=’l’) then

e l s i f (clk’event and clk=’l’) then

end i f ;
end p r o c e s s ;
-- decod ing l o g i c
pulse <= delay-reg xor strobe;

delay-reg <= ’ 0 ’ ;

delay-reg <= strobe ;

25 end direct-arch;

Listing 16.6 Enable pulse regenerator using the level-alternation scheme

archi tecture level-arch of sync-en-pulse i s
component synchronizer

port (
clk, reset: in std-logic;

out-sync : out std-logic
5 in-async : in std-logic ;

1 ;
end component;
component dual - e dge - det e c t o r

clk, reset: in std-logic;
strobe : in std-logic ;
pulse : out std-logic

10 port (

1 ;
IS end component;

s ignal en-strobe : std-logic ;

sync : synchronizer
begin

port map (clk=>clk , reset=>reset , in-async=>en-in ,
20 out-sync=>en-strobe);

edge-detect: dual-edge-detector
port map (clk=>clk, reset=>reset , strobe=>en-strobe ,

pulse=>en-out 1 ;
end level-arch ;

630 CLOCK AND SYNCHRONIZATION: PRINCIPLE AND PRACTICE

talker

data signals
4 b

eq listener

ack

b

4

Figure 16.14 Basic conceptual and timing diagrams of the four-phase handshaking protocol.

16.7 HANDSHAKING PROTOCOL

While the pulse regeneration schemes of Section 16.6 can handle an enable signal with
different widths, they cannot control the rate at which the enable pulses are generated. For
example, consider a sending subsystem with a clock frequency that is eight times faster
than that of a receiving subsystem. The previous schemes can regenerate the enable pulse
in the receiving subsystem even when the input’s width is only one-eighth that of the clock
period. However, if the enable pulse is generated every four clock cycles, the rate is too
fast for the receiving subsystem to process, and some pulses will be lost when crossing the
domains. In order to function properly, the sending subsystem needs some knowledge of
the receiving subsystem and issues the enable pulse accordingly.

To develop a more robust scheme, we must utilize a feedback signal from the receiving
subsystem to communicate its status and establish a rule, which is known as a protocol,
between the two subsystems. The following subsections discuss a four-phase and a two-
phase handshaking protocols. While these protocols can be used to regulate the rate of the
arriving enable pulses, their major applications are associated with the data transfer between
two clock domains. This subject is discussed in the next section.

16.7.1 Four-phase handshaking protocol

The most commonly used scheme to coordinate operations between two clock domains
is the four-phase handshaking protocol. This protocol makes no assumptions about the
relative data processing rates between the clock domains and thus can accommodate a wide
range of applications. In this protocol, the two subsystems are designated as the talker
and the listener respectively. The talker and the listener exchange information via the req
signal, which is the request signal from the talker to the listener, and the ack signal, which
is the acknowledge signal from the listener to the talker. The simplified block diagram is
shown in Figure 16.14(a).

The basic operation sequence (i.e.. the handshaking procedure) of the four-phase hand-
shaking protocol is illustrated in Figure 16.14(b). It consists of the following steps:

1. The talker activates the req signal.

HANDSHAKING PROTOCOL 631

synchronizer -A synchronizer

Figure 16.15 Handshaking system with synchronizers.

2. When the listener detects activation of the r e q signal, it activates the ack signal to

3. When the talker senses activation of the ack signal, it deactivates the r eq signal.
4. After the listener detects deactivation of the r eq signal, it deactivates the ack signal

5. Once the talker senses deactivation of the ack signal, it returns to the initial state.

In this protocol, the listener provides feedback information via the ack signal to let
the talker know that a change is detected in the req signal, and the talker can respond
accordingly. Note that there is no assumption about the operation speed of the listener and
the talker. The talker must keep the req signal asserted until the ack signal is activated.
The talker does not need to make any assumptions about the operation speed or the clock
rate and can send a signal to a subsystem with unknown characteristics.

Note that we can combine the talker and the listener and treat them as a single system.
The values of the req and ack signals define the "system state." When the r eq and ack
signals are "00", the system is in the idle or initial state. During the handshaking process,
they change to "lO", "1 1" and "01" and eventually return to "OO", the original state. We
call the protocol four-phase handshaking because the sequence progresses through four
distinctive states.

Since the req and ack signals cross the clock domains, two synchronizers are needed
in the actual implementation. The more detailed block diagram of the handshaking scheme
is shown in Figure 16.15. In the actual implementation, we use the -in, -out and s y n c
suffixes to indicate that the corresponding signal is an asynchronous input signal, output
signal and synchronized input signal respectively.

The protocol can be implemented by two separate FSMs, one for the talker and one for
the listener. Their ASM charts are shown in Figure 16.16. We assume that the talker FSM
also has an input command, start, and an output status, ready. The FSM initializes the
handshaking operation when the start signal is activated and asserts the ready signal
when it is in the id le state. When the sending subsystem wants to issue an enable pulse
across the clock domain, it checks the ready signal to ensure that the talker FSM is idle
and then activates the s t a r t signal for one clock cycle. After the talker FSM senses the

inform the talker.

accordingly.

The talker can issue a new request if needed.

632 CLOCK AND SYNCHRONIZATION: PRINCIPLE AND PRACTICE

,______________

ready <=1
re%out<=O

- F start=l

T

Talker FSM Listener FSM

Figure 16.16 ASM charts of the talker and listener of the four-phase handshaking protocol.

HANDSHAKING PROTOCOL 633

start signal, it moves to the s i e q l state, in which the req-out signal is activated. The
FSM then stays in the s i e q l state until activation of the acknowledge signal, ack-sync.
It then moves to the sreqO state and deactivates the req-out signal. The FSM returns to
the idle state after it senses deactivation of the ack-sync signal.

The listener FSM is similar to the talker FSM except that it contains no start signal
and thus can only respond to the talker FSM.

Because the ack-out and req-out signals are to be synchronized by a different clock
domain, they must be glitch-free. This can be achieved by adding proper output buffers.
Since they are designed as Moore outputs in the FSMs, we use the look-ahead output buffer
scheme discussed in Section 10.7.2. The VHDL codes of the two FSMs are shown in
Listings 16.7 and 16.8 respectively.

Listing 16.7 Talker FSM of the four-phase handshaking protocol

l i b r a r y i e e e ;
use i e e e . s t d - l o g i c - 1 1 6 4 . a l l ;
e n t i t y t a l k e r - f s m i s

port (
5 c l k , r e s e t : in s t d - l o g i c ;

s t a r t , ack-sync : in s t d - l o g i c ;
r e a d y : out s t d - l o g i c ;
r e q - o u t : out s t d - l o g i c

1;
10 end t a l k e r - f s m ;

a r c h i t e c t u r e a r c h of t a l k e r - f s m i s
type t - s t a t e - t y p e i s (i d l e , s - r e q l , s - r e q 0) ;
s i g n a l s t a t e - r e g , s t a t e - n e x t : t - s t a t e - t y p e ;

IS s i g n a l req-buf - r a g , req-buf - n e x t : s t d - l o g i c ;
begin -

- s t a t e r e g i s t e r and o u t p u t b u f f e r
process (c l k , r e s e t)
begin

i f (r e s e t = ’ l ’) then
s t a t e - r e g <= i d l e ;
req-buf - r e g <= ’0 ’ ;

e l s i f (c l k ’ e v e n t and c 1 k = ’ l J) then
s t a t e - r e g <= s t a t e - n e x t ;
r e q - b u f - r e g < = r e q - b u f - n e x t ;

end i f ;
end p r o c e s s ;
-- n e n t - s t a t e logic
process (s t a t e - r e g , s t a r t , ack - sync)
begin

r e a d y <=‘O’;
s t a t e - n e x t <= s t a t e - r e g ;
c a s e s t a t e - r e g i s

when i d l e =>
i f s t a r t = ’ l ’ then

end i f ;
r eady <= ’ 1 ’ ;

when s - r e q l =>

s t a t e - n e x t <= s - r e q l ;

CLOCK AND SYNCHRONIZATION PRINCIPLE AND PRACTICE 634

40

45

50

55

60

i f a c k - s y n c = ’ l then

end i f ;
when s - r e q 0 =>

i f ack-sync=’O’ then

end i f ;

s t a t e - n e x t <= s - r e q 0 ;

s t a t e - n e x t <= i d l e ;

end c a s e ;
end p r o c e s s ;
- l o o k - a h e a d o u t p u t l o g i c
process (s t a t e - n e x t)
begin

case s t a t e - n e x t is
when i d l e =>

when s - r e q l =>

when s - r e q 0 =>

req-buf - n e x t <= ’0 ’ ;

r e q - b u f - n e x t <= ’1’;

req-buf -nex t <= ’0 ’ ;
end c a s e ;

end p r o c e s s ;
r eq -ou t <= req-buf - r e g ;

end a r c h ;

Listing 16.8 Listener FSM of the four-phase handshaking protocol

l i b r a r y i e e e ;
use i eee . s t d - l o g i c - 1 1 6 4 . a l l ;
e n t i t y l i s t e n e r - f g m is

p o r t (
5 c l k , r e s e t : in s t d - l o g i c ;

req-sync : i n s t d - l o g i c ;
ack-out : out s t d - l o g i c

1;
end l i s t e n e r - f s m ;

a r c h i t e c t u r e a r c h of l i s t e n e r - f s m is
10

type 1 - s t a t e - t y p e i s (s-ackO , s - a c k l) ;
s i g n a l s t a t e - r e g , s t a t e - n e x t : 1 - s t a t e - t y p e ;
s i g n a l ack-buf , r e g , ack-buf - n e x t : s t d - l o g i c ;

- s t a t e r e g i s t e r and o u t p u t b u f f e r
IS begin

..

process (c l k , r e s e t 1
begin

i f (r e s e t = ’ l ’) then
m s t a t e - r e g <= s-ack0 ;

ack-buf - r e g <= ’0 ;
e l s i f (c l k ’ e v e n t and c l k = ’ l ’)

s t a t e - r e g <= s t a t e - n e x t ;
ack-buf-reg <= ack-buf -nex t

l5 end if ;
end p r o c e s s ;
- n e x t - s t a t e l o g i c

hen

HANDSHAKING PROTOCOL 635

30

35

process (s t a t e - r e g , r e q - s y n c)
begin

s t a t e - n e x t <= s t a t e - r e g ;
case s t a t e - r e g is

when s -ack0 =>
i f r e q - s y n c = 1 then

end i f ;
when s - a c k l =>

i f r e q - s y n c = '0 then

end i f ;

s t a t e - n e x t <= s - a c k l ;

s t a t e - n e x t <= s - a c k 0 ;

end c a s e ;
end p r o c e s s ;
-- look-ahead o u t p u t l o g i c
process (s t a t e - n e x t)
begin

case s t a t e - n e x t is
when s -ack0 =>

when s - a c k l =>

end c a s e ;
end p r o c e s s ;
ack-out <= ack-buf - r a g ;

ack-buf -nex t <= ' O J ;

ack-buf -nex t <= '1 ' ;

end a r c h ;

To complete the design, synchronizers are needed for the input signals. Again, to em-
phasize the unique characteristics of the synchronization circuits, we separate them from
the regular sequential circuits and instantiate the synchronizers in the top level. The VHDL
codes of the complete design follow the block diagram in Figure 16.15 and are shown in
Listings 16.9 and 16.10 respectively.

Listing 16.9 Talker of the four-phase handshaking protocol

l i b r a r y i e e e ;
use i e e e . s t d - l o g i c - 1 1 6 4 . a l l ;
e n t i t y t a l k e r - s t r is

p o r t (
5 c l k t : i n s t d - l o g i c ;

r e s e t t : i n s t d - l o g i c ;
a c k - i n : i n s t d - l o g i c ;
s t a r t : i n s t d - l o g i c ;
r e a d y : out s t d - l o g i c ;

10 r e q - o u t : out s t d - l o g i c
1;

end t a l k e r - s t r ;

a r c h i t e c t u r e s t r - a r c h of t a l k e r - s t r i s
I5 s i g n a l ack-sync : s t d - l o g i c ;

component s y n c h r o n i z e r
p o r t (

c l k : i n s t d - l o g i c ;
i n - a s y n c : in s t d - l o g i c ;

CLOCK AND SYNCHRONIZATION PRINCIPLE AND PRACTICE 636

20

25

30

reset : in std-logic ;
out-sync: out std-logic

1;
end component;
component talker-f sm

port (
ack-sync : i n std-logic ;
clk: in std-logic;
reset : in std-logic ;
start : in std-logic ;
ready : out std-logic ;
req-out : out std-logic

>;
end component;

begin
35 sync-unit : synchronizer

port map (clk=>clkt reset=>resett , in-async=>ack-in,
out-sync=>ack-sync);

f sm-unit : talker-f sm
port map (clk=>clkt , reset=>resett start=>start

40 ack-sync=>ack-sync ready=>ready
req-out=>req-out) ;

end str-arch ;

Listing 16.10 Listener of the four-phase handshaking protocol

l i b r a r y ieee ;
use ieee. std-logic-1164. a l l ;
e n t i t y listener-str i s

por t (
5 clkl: in std-logic;

reset1 : in std-logic ;
req-in: in std-logic ;
ack-out: out std-logic

1 ;
10 end listener-str;

a r c h i t e c t u r e str-arch of listener-str i s
s i g n a l req-sync : std-logic ;
component listener-f s m

IS port (
clk: in std-logic;
req-sync : in std-logic ;
reset : in std-logic ;
ack-out : out std-logic

M 1 ;
end component;
component synchronizer

port (
clk: in std-logic;

25 in-async : in std-logic ;
reset : in std-logic ;
out-sync: out std-logic

HANDSHAKING PROTOCOL 637

) ;
end component;

sync-unit: synchronizer
30 begin

port map (clk=>clkl , reset=>resetl , in-async=>req-in,
out-sync=> req-sync);

fsm-unit: listener-fsm
35 port map (clk=>clkl , reset=>resetl , req-sync=>req-sync ,

ack-out => ack-out ;
end str-arch ;

We can use this protocol to pass an enable pulse across the clock domain by connecting
the en signal to the start signal of the talker FSM. When an enable pulse arrives, the talker
initiates the handshaking operation. When the listener detects the activation edge of the
req-in signal, it can also generate an output pulse, which corresponds to the regenerated
enable pulse in the new clock domain. Since the sending subsystem cannot generate another
enable pulse until the handshaking operation is completed, the sending subsystem will not
ovenun the the receiving subsystem.

At first glance, the four phases may appear to be somewhat redundant. We may be
tempted to discard the second half of the handshaking to simplify the FSMs and let the
talker and listener return to the initial state automatically. Let us consider what happens
if this is done. Assume that the talker and the listener deactivate the req and ack signals
automatically after the system reaches the "1 1 " phase. There will be no problem if the
deactivations are done simultaneously, as shown in the timing diagram of Figure 16.17(a).
However, since the two subsystems are driven by different clocks, this is hardly possible.
If the talker is much slower, the listener may be fooled into thinking that the asserted r eq
signal is the initiation of a new request, as shown in the timing diagram of Figure 16.17(b).
At time t2, the listener deactivates the ack signal. It then senses the activation of the r e q
signal and mistakenly treats the condition as a new round of handshaking and responds
accordingly. Thus, the same incoming request pulse will be incorrectly regenerated again.
On the other hand, if the listener is too slow, the talker may start to send a new request
when the ack signal is still asserted, as shown in the timing diagram of Figure 16.17(c).
At time t3, the talker mistakenly thinks that the handshaking is completed and starts a new
round shortly after. Since the listener still processes the first request, the new request will be
lost. These examples show that all steps are needed in the original four-phase handshaking
protocol.

16.7.2 Two-phase handshaking protocol

In the four-phase handshaking protocol, the talker and the listener exchange information
on two separate occasions. One is during the first half of the handshaking, activation and
acknowledgment of the req signal, and the other is during the second half, deactivation and
acknowledgment of the r eq signal. Some applications, such as sending an enable pulse
across the domain, require only a single exchange of information. In these applications, the
req signal (e.g., the enable signal) has already been successfully detected and regenerated
in the first half. The purpose of the second half is to ensure that the system can return safely
to the initial state.

We can make the handshaking scheme more efficient by including only a single infor-
mation exchange in the protocol. In this scheme, we do not require the system to return
to the original state and define that the system is idle when the req and ack signals are

638 CLOCK AND SYNCHRONIZATION: PRINCIPLE AND PRACTICE

11

ack

(a) Ideal scenario

t

(b) Error due to slow talker response

b

ack 1
(c) Error due to slow listener response

Figure 16.17 Timing diagrams of an erroneous protocol.

both '0' or both '1'. The system will alternate between the two representations of the idle
state.

The operation sequence of the new protocol includes the following steps:
1. The talker activates the req signal.
2. When the listener detects activation of the req signal, it activates the ack signal to

3. After the talker senses activation of the ack signal, it knows that the handshaking is

Note that the values of the req and ack signals are "1 1". When a new round of handshaking
is initiated, the system starts from the "1 1" state and the steps are:

inform the talker.

completed and the system reaches the idle state.

1. The talker deactivates the req signal.
2. When the listener detects deactivation of the req signal, it deactivates the ack signal

3. After the the talker senses deactivation of the ack signal, it knows that the handshaking

Note that the values of the req and ack signals are "00" now, and thus the system returns
to its initial state. The timing diagram is shown in Figure 16.18. Although the appearance
of the four-phase and two-phase timing diagrams are similar, interpretation of the req and
ack signals (i.e., system state) is very different.

to inform the talker.

is completed and the system reaches the idle state.

DATA TRANSFER CROSSING CLOCK DOMAINS 639

req -9 P 7-F-
Figure 16.18 Timing diagram of the two-phase handshaking protocol.

We can follow the previous procedure to derive the talker and listener FSMs for the
two-phase handshaking protocol. The revised the talker and listener ASM charts are shown
in Figure 16.19. Note that the talker FSM stays in the s i e q l and s r eq0 states until a new
round of handshaking is initiated (i.e., when the s t a r t signal is ’1’). Closer observation
shows that the idle and s req0 states of the talker FSM are equivalent, and we can merge
the two states and remove the idle state.

As in the four-phase handshaking system, two synchronizers are needed for the acknowl-
edge and request signals in the final implementation.

16.8 DATA TRANSFER CROSSING CLOCK DOMAINS

Data transfer between synchronous subsystems is just passing data from one register to
another register, and the operation takes one clock cycle. Data transfer between two clock
domains is more complicated. As in passing a single enable signal, it involves two issues,
which are synchronization of the data signals and regulation of the data transfer rate.

In most applications, the interface between clock domains includes command signals,
data lines and address lines. As we discussed in Section 16.5.5, synchronizing related
signals is difficult and error-prone. A better alternative is to bundle all signals and use
an enable signal to coordinate the access of the bundled signals. Basically, the sending
subsystem activates the bundled signals, waits until they are stabilized, and then activates
an enable signal to inform the receiving subsystem to access the bundled signals. Since
the bundled signals are stabilized when accessed, no timing violation will occur. Only
the enable signal is subjected to the metastability condition and needs to be synchronized.
Instead of worrying about the synchronization of all signals, we need only focus on the
enable signal.

Since clock frequencies and data processing rates are likely to be different in two clock do-
mains, resolving the synchronization problem alone cannot guarantee reliable data transfer.
We also need a mechanism to control the rate of data transfer to ensure that no information
is lost or duplicated during the transaction. We can incorporate the data transfer into the
earlier handshaking protocols and divide the transfer into three categories:

0 Four-phase handshaking transfer
0 -0-phase handshaking transfer
0 One-phase transfer

The four-phase handshaking transfer has the highest overhead but is most robust. It
assumes that the two subsystems have minimal information about each other. One-phase
transfer uses a single enable signal with no feedback. It involves minimal overhead, but its
operation is based on the assumption that the two subsystems have prior knowledge of the
other’s timing characteristics.

640 CLOCK AND SYNCHRONIZATION: PRINCIPLE AND PRACTICE

1 _ _ _ _ _ _ _ _ _ _ _ _ _ T

Figure 16.19 ASM charts of the talker and listener of the two-phase handshaking protocol.

DATA TRANSFER CROSSING CLOCK DOMAINS 641

talker

i

data
b

req listener
b

a&
4

ack req d
data valid data

Figure 16.20 Push operation using the four-phase handshaking protocol.

For an asynchronous subsystem, storing data into another subsystem is known as apush
operation and retrieving data from another subsystem is known as a pull operation. Many
applications process data stage after stage, and thus the push operation is more common.

16.8.1 Four-phase handshaking protocol data transfer

The req and ack signals of the handshaking protocol form a special signaling mechanism
and can be associated with various operations in the talker and listener. They can be used
to perform push, pull or combined operations.

Basic one-direction data transfer Let us first consider the basic push operation, in
which the talker transfers one data word to the listener. The conceptual block diagram and a
representative timing diagram are shown in Figure 16.20. The basic handshaking sequence
remains the same, and the talker places data on the data bus according to activation and
deactivation of the req signal. The operation follows the basic handshaking sequence:

1.
2.

3.

4.
5.

The talker activates the req signal and also places the data on the data bus.
The listener detects activation of the req signal and understands that data is available.
After retrieving and processing the data, it activates the ack signal.
When the talker senses activation of the ack signal, it deactivates the req signal and
removes the data from the data bus.
The listener deactivates the ack signal accordingly.
Once the talker senses deactivation of the ack signal, it knows the data transfer is
completed and a new one can be initiated.

A possible implementation of the talker and listener is shown in Figure 16.2 1. We assume
that the data line is a tri-state bus. The talker can place the data word on the bus by asserting
the tri-oe signal, the enable signal of the tri-state buffer. As discussed above, the data is
placed on the bus when the req signal is asserted. This can be achieved by asserting the
tri-oe signal in the s r e q l state of the talker FSM. Note that when the data is on the bus,

642 CLOCK AND SYNCHRONIZATION: PRINCIPLE AND PRACTICE

I\ data

Start

tri-oe tJ data-ei r
talker r%ou listener
FSM I ack-out FSM

>
clkt clkl -

synchronizer

P

Figure 16.21 Block diagram of the push operation.

the req-out signal is also asserted. We can actually use the req-out signal to control the
hi-state buffer.

The listener has a register for the input data and retrieves the data word by asserting the
data-en signal, the enable signal of the register. The data-en signal can be asserted when
the listener detects activation of the req-syn signal. Since the req-syn signal is delayed by
two D FFs of the synchronizer, its activation is at least one clock cycle later than activation
of the req and data signals. Thus, the data signal should be stabilized when the req-sync
signal is activated and thus no timing violation will occur. We can modify the code of the
listener FSM in Listing 16.8 to include the data-en signal as an output signal:

. . .
s t a t e - n e x t <= s t a t e - r e g ;
d a t a - e n <= 0 ’ ;
case s t a t e - r e g i s

when 8-ack0 =>
i f r e q - s y n c = 1 then

s t a t e - n e x t <= s - a c k l ;
d a t a - e n < = J l ; - a c t i v a t e enab le s i g n a l

end i f ;
when s - a c k l =>

. . .
end c a s e ;

Note that this design is only for demonstration purposes. Since the data transfer is not
bidirectional, the hi-state buffer is not actually needed. The push operation should function
properly as long as the desired data is placed on the data bus when the req-out signal is
asserted.

The basic pull operation is similar to the push operation except that the listener provides
the data and the talker retrieves the data. The simplified block diagram and timing diagram
are shown in Figure 16.22. After sensing activation of the req signal, the listener places
the data on the data bus and activates the ack signal. Once detecting activation of the ack
signal, the talker retrieves the data and deactivates the req signal. The listener then removes
the data and deactivates the ack signal accordingly. Again, because the ack-syn signal is

DATA TRANSFER CROSSING CLOCK DOMAINS 643

talker L listener 71
data valid data (1

Figure 16.22 Pull operation using the four-phase handshaking protocol.

delayed by the synchronizer, the data signal should be stabilized when the ack-sync signal
is activated.

Bidirectional data transfer The four-phase handshaking protocol can also incorporate
more sophisticated operation. The talker can bundle additional information, such as the
commands and address lines, push them to the listener and later pull the result back. The
listener retrieves the bundled signals, processes the data according to the command and
activates the ack signal when the operation is done. The following example illustrates the
use of handshaking to access an eight-word register file in a different clock domain. We
assume that a system consists of a processor and an U0 controller, which reside in different
clock domains. The processor can read data from or write data to the eight-word register file
of the VO controller through an asynchronous interface based on the four-phase handshaking
protocol. The talker and listener are in the processor’s clock domain and the VO controller’s
clock domain respectively. The basic block diagram is shown in Figure 16.23. To reduce
the clutter, only the main components and connections of the data paths are shown.

In this system, the processor first checks the ready signal to ensure that the talker is not
busy and then initiates the access by activating the start signal of the talker accordingly.
When asserting the start signal, the processor also uses the rw signal to indicate the type
of operation (’1’ for read and ’0’ for write), places the address of the register file on the
addr line and, in the case of a write operation, places data on the data line. After detecting
the start signal, the talker of the asynchronous interface loads the address, the r w control
signal and data (if needed) into its internal registers and starts the handshaking and data
transfer operation.

The bundled signals include a 3-bit address line, a control signal, pull, and an 8-bit data
line. Since the pull and push operations are mutually exclusive, the data line can be shared
and thus is bidirectional.

The data path of the talker includes a register for the address, a register for the rw signal
and two data registers to store the transmitted and received data. The data path of the listener
is an eight-word register file. In a realistic scenario, the VO controller should also be able

644 CLOCK AND SYNCHRONIZATION: PRINCIPLE AND PRACTICE

talker data path

!.b

................................ ._.__....... 1; t

pull

addr

data

listener data path

register

z:

-e
?--
I-tri-en

.......__.._. t

talker ELout listener
FSM a&-out I FSM

start ------+ -
w --+

ready +- >
- clkt clkl - \ -

synchronizer I synchronizer

Figure 16.23 Block diagram of a push-and-pull system using the four-phase handshaking protocol.

DATA TRANSFER CROSSING CLOCK DOMAINS 645

to access the register file, and thus all signals should be multiplexed. For simplicity, the
signals from the I/O controller to the register file are not shown.

The basic handshaking sequence of this circuit remains the same, and thus the state
transition is similar to the FSMs of Section 16.7.1. The talker and listener FSMs also
function as the control paths that control operation of the two data paths. In the idle state,
the talker FSM checks the start signal. If it is asserted, the FSM moves to the s i e q l
state and stores the relevant information to the registers. The remaining operation of the
data path depends on the type of access. Let us first consider the push operation. In the
s r e q l state, the talker activates the req-out signal and enables the tri-state buffer. The
data is placed in the data line accordingly. Note that since the address line and the p u l l
signal are not shared, they are connected to the listener data path during the entire operation.

When the listener FSM detects activation of the req-sync signal, it also checks the p u l l
signal, whose ’0’ value indicates a push operation. At the next rising edge of the clock, the
FSM moves to the s-ackl state, and the data will be stored into the location specified by the
addr line. Note that the req-sync signal is delayed by the D FFs of the synchronizer. All
other signals are already stabilized when its activation is detected. The FSM also activates
the ack-out signal when entering the s-ackl state.

After the talker FSM senses activation of the ack-sync signal, it moves to the s r e q O
state, deactivates the req-out signal and disables the tri-state buffer. The talker and listener
then proceed as in regular four-phase handshaking protocol to return to the initial state.

For the pull operation, the tri-state buffer of the talker is always disabled. When the
listener FSM detects activation of the req-sync signal and assertion of the p u l l signal,
it knows that the transaction is a pull operation. At the next rising edge of the clock, the
listener FSM moves to the s-ackl state, activates the ack-out signal, and enables the
tri-state buffer to place the register’s output on the data line. When the talker FSM senses
activation of the ack-sync signal, it knows that the data is also available. At the next rising
edge of the clock, the talker FSM moves to the s i e q O state, deactivates the req-out signal
and stores the data into the 12 t register. The talker and listener then proceed to return to
the initial state.

The VHDL codes for the talker and listener interfaces are shown in Listings 16.1 1 and
16.12 respectively.

Listing 16.11 Talker interface of a push-and-pull system

l i b r a r y ieee ;
use ieee. std-logic-1164. a l l ;
e n t i t y talker-interface i s

port (
5 clkt , resett : in std-logic;

start, rw: in std-logic; -read or w r i t e t o i/o
ack-sync : in std-logic ;
ready : out std-logic ;
req-out: out std-logic;

addr-in: in std-logic-vector (1 downto 0) ;
d-12t : out std-logic-vector (7 downto 0) ;
pull : out std-logic ;
addr: out std-logic-vector (1 downto 0) ;

10 d-t21: in std-logic-vector (7 downto 0) ;

IS d: inout std-logic-vector (7 downto 0)

1;
end talker-interface;

646 CLOCK AND SYNCHRONIZATION: PRINCIPLE AND PRACTICE

a r c h i t e c t u r e a rch of t a l k e r - i n t e r f a c e i s
2o type t - s t a t e - t y p e i s (i d l e , s - r e q l , s - r eq0) ;

s i g n a l s t a t e - r e g , s t a t e - n e x t : t - s t a t e - t y p e ;
s i g n a l req-buf-reg , req-buf-next : s t d - l o g i c ;
s i g n a l t - t r i - e n : s t d - l o g i c ;
s i g n a l 12 t -next , 1 2 t - r e g : s t d - l o g i c - v e c t o r (7 downto 0) ;

25 s i g n a l t 2 l -nex t , t 2 l - r e g : s t d - l o g i c - v e c t o r (7 downto 0) ;
s i g n a l rw-next , rw-reg : s t d - l o g i c ;
s i g n a l addr-next , addr- reg : s t d - l o g i c - v e c t o r (1 downto 0) ;

begin

M

55

60

63

70

-================
- t a l k e r FSM

- s t a t e r e g i s t e r and ou tpu t b u f f e r
process (c l k t , r e s e t t)
begin

-================

i f (r e s e t t = ’ l ’) then
s t a t e - r e g <= i d l e ;
req-buf- reg < = ’ O n ;

s t a t e - r a g <= s t a t e - n e x t ;
req-buf- reg <- req-buf-next ;

e l s i f (c l k t ’event and c l k t = ’ l ‘) then

end i f ;
end p r o c e s s ;
- n e x t - s t a t e l o g i c
process (s t a t e - r e g , s t a r t , ack-sync)
begin

ready < = ’ O ’ ;
s t a t e - n e x t <= s t a t e - r e g ;
case s t a t e - r e g i s

when i d l e =>
i f s t a r t p ’ l ’ then

s t a t e - n e x t <= s - r e q l ;
end i f ;
ready <= ’ 1 ’ ;

when s - r e q l =>
i f ack-sync= ’ 1 ’ then

end i f ;
when s-req0 =>

i f ack-sync=’O’ then

end i f ;

s t a t e - n e x t <= 8-18

s t a t e - n e x t <= i d l e

end c a s e ;
end p r o c e s s ;
- look-ahead ou tpu t l o g i c
process (s t a t e - n e x t)
begin

case s t a t e - n e x t i s
when i d l e =>

when s - r e q l =>
req-buf-next <= ’0’;

DATA TRANSFER CROSSING CLOCK DOMAINS 647

req-buf-next <= ’1’;

req-buf-next <= ’0’;
when s-req0 =>

end c a s e ;
75 end p r o c e s s ;

req-out<= req-buf-reg;

-- t a l k e r da ta pa th
-==================

__------------------ ------------------
80 - da ta r e g i s t e r

process (clkt , resett
begin

i f (resett=’l’) then
t2l-reg <= (o t h e r s = > ’ O ’) ;

85 12t-reg <= (o t h e r s = > ’ O ’) ;
addr-rag <= (o t h e r s = > ’0 ’> ;
rw-reg <= ’0’;

e l s i f (clkt’event and clkt=’l’) then
t2l-reg <= t2l-next;

90 12t-reg <= lat-next;
addr-reg <= addr-next ;
rw-reg <= rw-next;

end i f ;
end p r o c e s s ;

process (state-reg , t2l_reg, 12t-reg I addr-reg , rw-reg , d-t21 ,

begin

95 -- da ta p a t h n e x t - s t a t e l o g i c

addr-in ,d ,rw , start , ack-sync)

t2l-next <= t2l-reg;
IM

IM

I10

I15

1 20

12t-next <= 12t-reg;
addr-next <= addr-rag;
rw-next <= rw-rag;
t-tri-en <= ’0’;
case state-rag i s

when idle =>
rw-next <= rw;
addr-next <= addr-in;
i f (start=’l’ and rw=’O’) then - w r i t e t o i / o

t2l-next <= d-t21;
end i f ;

when s-reql =>
i f (rw-reg=’O’) then - w r i t e t o i / o

end i f ;
i f (ack-sync=’l’) and (rw-reg=’l’) then

end i f ;
when s-req0 =>

t-tri-en <= ’0 ’ ;

t-tri-en <= ’1’;

12t-next <= d;

end c a s e ;
end p r o c e s s ;
I outpu t
d <= t2l-reg when t-tri-en= 1 e l s e (o t h e r s = > ’ Z ’1 ;

648 CLOCK AND SYNCHRONIZATION: PRINCIPLE AND PRACTICE

pull <= rw-reg;
125 d-12t <= 12t-reg;

addr <= addr-reg;
end arch;

Listing 16.12 Listener interface of a push-and-pull system
l i b r a r y ieee;
use ieee. std-logic-1164. a l l ;
use ieee . numeric-std. a l l ;
e n t i t y listener-interface i s

5 p o r t (
clkl , reset1 : i n std-logic ;
req-sync : i n std-logic;
ack-out : o u t std-logic ;
pull: i n std-logic;

d: i n o u t std-logic-vector (7 downto 0)
10 addr: i n std-logic-vector (1 downto 0) ;

1;
end listener-interf ace ;

I5 a r c h i t e c t u r e arch of listener-interface i s
t ype 1-state-type i s (s-ackO, s-ackl);
s i g n a l state-reg , state-next : 1-state-type;
s i g n a l ack-buf -reg, ack-buf-next : std-logic;
s i g n a l 1-tri-en , r-en : std-logic ;

20 t ype r-file-type i s a r r a y (3 downto 0) of
std-logic-vector (7 downto 0) ;

s i g n a l r-f ile-reg : r-f ile-type ;
begin

45

- l i s t e n e r FSM

- s t a t e r e g i s t e r and o u t p u t b u f f e r
p r o c e s s (clkl ,resetl)
begin

-================

i f (resetl=’l’) t hen
state-reg <= s-ack0;
ack-buf-reg < = ’ O J ;

state-reg <= state-next;
ack-buf-reg <= ack-buf-next;

e l s i f (clkl’event and clkl=’l’) t hen

end i f ;
end p r o c e s s ;
- n e x t - s t a t e l o g i c
p r o c e s s (state-reg , req-sync)
begin

state-next <= state-reg;
case state-reg is

when s-ack0 =>
i f req-sync=’l’ t hen

end i f ;
state-next <= s-ackl;

DATA TRANSFER CROSSING CLOCK DOMAINS 649

M

when s-ackl =>
i f req-sync= ’0 ’ t hen

end i f ;
state-next <= s-ack0;

end c a s e ;
end p r o c e s s ;
- l o o k - a h e a d o u t p u t l o g i c
p r o c e s s (state-next

SS begin
c a s e state-next i s

60

when s-ack0 =>

when s-ackl =>
ack-buf -next <= ’ 0 ’ ;

ack-buf -next <= ’1 ’ ;

U - l i s t e n e r d a t a p a t h

- r e g i s t e r f i l e
p r o c e s s (clkl , resetl)
begin

I-------------------_

70 i f (resetl=’l’) t hen
f o r i i n 0 t o 3 loop

end l o o p ;
r-file-reg(i) <= (o t h e r s = > ’ O ’) ;

e l s i f (clkl’event and clkl=’l’) t hen
15 i f r-en= ’1 ’ t hen

end i f ;
r-file-reg(to-integer(unsigned(addr))) <= d ;

end i f ;
end p r o c e s s ;

80 -- e n a b l e l o g i c

85

90

95

p r o c e s s (state-reg , req-sync ,pull)
begin

1-tri-en <= ’0’;
r-en <= ’0’;
c a s e state-reg is

when s-ack0 =>
i f (req-sync=’l’) t hen

r-en <= ’1’;
i f (pull=’O’) t hen - p u s h

end i f ;
end i f ;

when s-ackl =>
i f (pull=’l’) then

end i f ;
1-tri-en <=’l’;

end c a s e ;
end p r o c e s s ;
- o u t p u t

d <= r-file-reg(to-integer(unsigned(addr)))

650 CLOCK AND SYNCHRONIZATION: PRINCIPLE AND PRACTICE

ICQ when l-tri-en=’l’ e l se
(others=>’Z’) ;

end arch;
~ ~ ~~ ~~

As in the handshaking code of Section 16.7.1, we must add two synchronizers for the
request and acknowledge signals to complete the implementation.

Performance of four-phase handshaking data transfer The strength of four-
phase handshaking is that it makes a minimal assumption about the two subsystems. It
will function properly even if a subsystem has no knowledge of the clock frequency and
the data processing rate of other subsystems. However, there is a high overhead associated
with this protocol. Assume that the clock period of the talker and listener are Tc-t and T c ~
respectively. We can estimate the required time to complete one data transfer. During a
data transfer, each FSM traverses all its states and then returns to the initial state. Since
the talker and listener FSMs have three and two states respectively, it takes 3Tc-t + 2Tc-1.
Because both the ack and req signals cross the clock domain, synchronizers are needed. If
we assume that two-FF synchronizers are used, the synchronization requires up to two clock
cycles whenever a signal is synchronized. The ack signal is used twice in the talker FSM,
and the synchronization introduces an overhead of 4Tc-t. Similarly, synchronization of the
req signal introduces an overhead of 4Tc-1. Thus, it takes 7Tc-t 4- ~ T , J to complete one
data transfer, which is very slow compared with the one-clock synchronous data transfer.

16.8.2 Two-phase handshaking data transfer

The two-phase handshaking protocol can reduce the overhead by half. However, since only
a single handshaking occurs in the protocol, this scheme is less flexible and imposes certain
constraints on the data transfer.

Let us first consider the push operation. The data transfer can be embedded in the
two-phase handshaking protocol as follows:

1. The talker activates the req signal and places data on the data bus.
2. The listener detects activation of the req signal. It retrieves the data and activates

3. Once the talker senses activation of the ack signal, it removes the data from the data

The first push operation is done at this point. Note that both the req and ack signals are ’1’.
When the talker wants to push the next data, the handshaking continues from this state:

the ack signal.

bus.

1. The talker deactivates the req signal and places data on the data bus.
2. The listener detects deactivation of the req signal. It retrieves the data and deactivates

3. Once the talker senses deactivation of the ack signal, it removes the data from the

Note that after two push operations, the req and ack signals will be ’0’ and the system
returns to the original state.

The block diagram for the two-phase push operation is identical to the four-phase push
operation, as shown in Figure 16.20(a). A representative timing diagram is shown in
Figure 16.24(a). Unlike the four-phase push operation, the req signal remains unchanged
when the talker removes the data from the data bus.

Using the two-phase handshaking protocol to perform a pull operation is more difficult.
The two-phase operation only allows the listener to signal the talker that it has placed the

the ack signal.

data bus.

DATA TRANSFER CROSSING CLOCK DOMAINS 651

ack

valid data valid data
data

(from talker)

(a) Push operation

req "1 P *
ack

valid data valid data
data

(from listener)

(b) Pull operation

Figure 16.24 Timing diagrams of push and pull operations using two-phase handshaking protocol.

data on the data bus. There is no explicit signaling mechanism to let the listener know when
the data is retrieved and when the data can be removed from the bus. One way to overcome
the problem is to embed this information in the next operation. When the talker initiates a
new data transfer, it implicitly indicates that the data from the previous pull operation has
been retrieved. Thus, when the listener detects the transition of the req signal of the next
operation, it can safely remove the data from the data bus. The timing diagram is shown
in Figure 16.24(b). Note that data must stay on the data bus for a long time if the two pull
operations are far apart.

In the four-phase handshaking protocol, the two handshaking operations are used to
indicate the initiation and completion of the data transfer. The values of the req and ack
signals represent the system state and can be used to indicate the status of the data line as
well. The talker and the listener, or any other subsystems that have access to the two signals,
can determine the status of the data line via the two signals. This feature is important if the
data line is shared. For example, in the push-and-pull design of Section 16.8.1, the push
and pull are done in the same data line. The talker and listener need to know the status of
the line to avoid bus fighting. On the other hand, in the two-phase handshaking protocol,
handshaking operation is used only for initiation of the data transfer. The status of the data
line cannot be determined by the req and ack signals, and thus the line cannot be shared.
If we want to use the two-phase handshaking protocol for the previous push-pull design,
separate data lines are needed for the push and pull operations.

16.8.3 One-phase data transfer

If the characteristics of the listener are known in advance, we can customize the data transfer
timing and eliminate the acknowledge signal. Since there is no feedback, the request signal
behaves like the enable pulse discussed in Section 16.6.

652 CLOCK AND SYNCHRONIZATION: PRINCIPLE AND PRACTICE

req I I

valid data data
(from talker))

(a) Push operation

valid data data
(from listener)

(b) Pull operation

Figure 16.25 Timing diagrams of push and pull operations using one-phase protocol.

Let us first consider the push operation. The req signal now functions as an enable
signal to inform the listener of the availability of the data. Since there is no feedback from
the listener, the talker relies on prior knowledge about the listener to calculate the minimal
assertion time for the data signal. The talker asserts the req signal and places the data on the
data bus for a predetermined interval. The listener will detect activation of the req signal
and retrieve the data within this interval. We can use the schemes discussed in Section 16.6
to regenerate an enable pulse from the req signal. A representative timing diagram is shown
in Figure 16.25(a). If we assume that the listener is always available, the listener needs
about three clock cycles (i.e., 3T,J to store the data into a register. The interval includes
two clock cycles to synchronize the req signal and one clock cycle to store the data.

The basic pull operation can be done in a similar fashion. The listener knows in advance
how long the data should be put on the data line, and the talker knows when the data should
be available. After activating the req signal, the talker waits for a predetermined amount of
time and then retrieves data from the data line. A representative timing diagram is shown
in Figure 16.25(b).

16.9 DATA TRANSFER VIA A MEMORY BUFFER

Although the handshaking protocol provides a reliable mechanism to transfer data across
clock domains, it is not an efficient scheme. Each transaction involves a large overhead,
and thus this mqthod is good only for small, random exchanges of information between
two subsystems. It is not an effective way to move a large amount of data between the two
clock domains. A better alternative is to use a memory buffer as temporary storage. Instead
of direct interactions, the two subsystems store and retrieve data via the memory buffer.
Two common configurations are the asynchronous FIFO buffer and shared memory. These
configurations cannot eliminate the metastable condition but can significantly reduce the
overhead associated with data transfer.

16.9.1 FIFO buffer

A FWO buffer is like a one-directional pipe. The sending subsystem puts the data in one
end of the pipe, and the receiving subsystem retrieves the data from the other end of the

DATA TRANSFER VIA A MEMORY BUFFER 653

pipe. In Section 9.3.2, we discussed the operation and design of a synchronous FIFO buffer,
in which the two subsystems are controlled by the same clock signal. The operation of an
asynchronous FIFO is similar, but the sending and receiving subsystems are controlled by
clocks from different clock domains.

In an asynchronous FIFO, the read pointer (counter) is controlled by the clock signal
from the receiving subsystem and the write pointer (counter) is controlled by the clock
signal from the sending subsystem. Since the operation of these counters only involves the
clock signal from its own domain, the counters impose no synchronization problem. The
difficulty comes from the f u l l and empty status signals. As discussed in Section 9.3.2,
there are several different methods to obtain the status. These methods need information
from both the sending and receiving subsystems and thus involve the signals from two clock
domains. The main task of implementing an asynchronous FIFO is to design a circuit that
generates reliable, properly synchronized status signals.

One possible implementation is to follow the synchronous FIFO organization discussed
in Figure 9.14. For a synchronous FIFO with an n-bit address space (i.e., 2n words), it is
constructed as follows:

0 Use two (n + 1)-bit binary counters as the pointers, one for the read pointer and one
for the write pointer.

0 Use two n-bit binary counters (which are the n LSBs of the (n + 1)-bit counters) as
the read and write addresses to access the designated element of the memory array.

0 Compare the two (n + 1)-bit counters to obtain full and empty status.
To use this scheme in an asynchronous environment, we must ensure that the compari-

son circuit can generate the full and empty status signals that are synchronized with their
respective clock domains. To accomplish this, we must revise the design as follows:

0 Add a synchronizer in the comparison circuit to synchronize the pointer from the

0 Replace (n + 1)-bit and n-bit binary counters with the (n + 1)-bit and n-bit Gray

In synchronous FIFO, the read and write pointers are implemented by binary counters or
LFSRs. In these counters, there may be multiple bit changes in a transition. For example,
consider a 4-bit binary counter. When the counter wraps around from "1 1 11 " to "oooO",
all four bits change. As discussed in Section 16.5.5, synchronizing multiple changing bits
may lead to the capture of erroneous, intermediate transition values, and thus these counters
can cause problems if the values are passed to a different clock domain. To prevent this,
we must use a Gray counter for the pointer, in which only one bit is changed in a transition.
The circulation pattern of a 4-bit counter is shown in the first column of Table 16.2.

In Section 9.3.2, we add an extra bit in the binary counter and use this bit (the MSB of
the counter) to distinguish whether the FIFO is full or empty. In this approach, we use two
(n + 1)-bit binary counters as the read and write pointers, and use two n-bit binary counters
for the write and read addresses of the memory array. Note that the MSB of the Gray counter
is the same as the MSB of the binary counter, and thus it can be used to distinguish whether
the FIFO is empty or full. As in the binary counter-based implementation, we need two
(n + 1)-bit Gray counters as the pointers and two n-bit Gray counters as the addresses.

It is straightforward to obtain the n-bit binary counting patterns since they are the same
as the n LSBs of the (n + 1)-bit binary counter. It is more difficult for the Gray counter. For
example, the counting patterns of three LSBs of the 4-bit Gray counter and the counting
patterns of a 3-bit Gray counter are shown in the second and third columns of Table 16.2.
Their patterns are different in the bottom half. Although the patterns are not identical, there

other clock domain.

counters.

654 CLOCK AND SYNCHRONIZATION: PRINCIPLE AND PRACTICE

Table 16.2 Circulation pattern of 4-bit and 3-bit Gray counters

4-bit Gray counter 3 LSBs of 3-bit Gray counter
4-bit Gray counter

OOOO
000 1
001 1
0010
01 10
0111
0101
0100
1100
1101
1111
1110
1010
101 1
1001
1000

000
00 1
01 1
010
110
111
101
100
100
101
111
110
010
01 1
00 1
000

000
001
01 1
010
110
111
101
100
000
001
01 1
010
110
111
101
100

is no need to construct a separate n-bit Gray counter from scratch. Closer observation
shows that the (n - 1) LSBs of the (n + 1)-bit Gray counter and n-bit Gray counter are
identical, and the MSB of the n-bit Gray counter can be obtained by performing an xor
operation on the two MSBs of the (n + 1)-bit Gray counter. In other words, let a,, a,-1,

. . . , a0 be the bits of an (n + 1)-bit Gray counter, and b,-l, bn-2, . . . , bo be the bits of an
n-bit Gray counter. We can derive the n-bit counting pattern by using

{ ai otherwise

The block diagram of an n-bit asynchronous FWO control circuit is shown in Fig-
ure 16.26. In the write control part, an (n + 1)-bit Gray counter is used as the write pointer
and the derived n-bit Gray counter is used for the write address. The read pointer is ob-
tained from the read control part. It is first synchronized by an (n + 1)-bit synchronizer.
The comparing circuit derives the n-bit read address and compares it to the write address.
If the read and write addresses are the same and the MSBs of the read and write pointers are
different, the FWO is full and the full signal is asserted accordingly. Since all inputs of
the comparing circuits are synchronized with the write controller’s clock, the full signal
will not cause a timing violation when used. The read control part essentially mirrors the
write control except for the minor difference in the comparing circuit. The empty signal
will be asserted when the read and write addresses are the same and the MSBs of the read
and write pointers are the same.

The VHDL codes of the write port control and the read port control are shown in List-
ings 16.13 and 16.14 respectively. The code of the Gray counter is similar to the code
discussed in Section 7.5.1. We use a generic, N, to express the number of bits of the RFO
control circuit. The code of a generic n-bit two-FF synchronizer is shown in Listing 16.15.

bi =
ai+l $a i i f i = n - 1

DATA TRANSFER VIA A MEMORY BUFFER 655

Memory array

1 r - - - - - - -
I I

I

I I
I I

I I
I

Gray pattern Gray pattern
conversion conversion

I

(A)-bit
Gray counter

~

(n+l)-bit rd

clkr Gray counter

full 4 -b empty

I \
synchronizer J synchronizer

Figure 16.26 Block diagram of an asynchronous FIFO controller.

The complete asynchronous FIFO control circuit follows the basic block diagram, and its
VHDL code is shown in Listing 16.16.

Listing 16.13 Write port control of an asynchronous FWO

l ibrary ieee ;
use ieee. std-logic-1164. a l l ;
use ieee . numeric-std. a l l ;
e n t i t y fifo-write-ctrl i s

generic (N: natural) ;
port (

clkw I resetw : in std-logic ;
wr: in std-logic;
r-ptr-in : in std-logic-vector (N downto 0) ;

w-ptr-out : out std-logic-vector (N downto 0) ;
w-addr: out std-logic-vector (N-1 downto 0)

10 full : out std-logic ;

) ;
end fifo-write-ctrl;

a r c h i t e c t u r e gray-arch of f if o-write-ctrl i s
IS

s i g n a l w-ptr-reg I w-ptr-next :

s ignal gray1 I bin, bin1 : std-logic-vector (N downto 0) ;
std-logic-vector (N downto 0) ;

656 CLOCK AND SYNCHRONIZATION: PRINCIPLE AND PRACTICE

20 s i g n a l waddr-all: std-logic-vector (N-1 downto 0) ;
s i g n a l waddr-msb , raddr-msb : std-logic ;
s i g n a l full-f lag : std-logic ;

- r e g i s t e r

begin

begin

ZI, process (clkw ,resetw)

i f (resetw=’l’> then

e l s i f (clkw’event and clkw=’l’) then

end i f ;
end p r o c e s s ;
- (N + I) - b i t Gray c o u n t e r
bin <= w-ptr-reg xor (’0’ & bin(N downto 1));

grayl <= binl xor (’0’ & binl(N downto 1));
- u p d a t e w r i t e p o i n t e r
w-ptr-next <= grayl when wr=’l and full_flag=’O’ e l s e

w-ptr-reg <= (o t h e r s = > ’ O ’) ;

30 w-ptr-reg <= w-ptr-next ;

35 binl <= std-logic-vector(unsigned(bin) + 1);

w-ptr-reg ;
40 - N - b i t Gray c o u n t e r

waddr-msb <= w-ptr-reg (NI xor w-ptr-reg(N-1) ;
waddr-all <= waddr-msb & w-ptr-reg(N-2 downto 0) ;
- c h e c k f o r FIFO f u l l
raddr-msb <= r-ptr-in(N) xor r-ptr-in(N-1);

’1 ’ when r-ptr-in(N) /=w-ptr-reg(N) and
4s full-flag <=

r-ptr-in(N-2 downto O)=w-ptr-reg (N-2 downto 0) and
raddr-msb = waddr-msb e l s e

’0’;
s o - - o u t p u t

w-addr <= waddr-all ;
w-ptr-out <= w-ptr-rag ;
full <= full-flag;

end gray-arch ;

Listing 16.14 Read port control of an asynchronous FIFO

l i b r a r y ieee;
use ieee. std-logic-1164. a l l ;
use ieee. numeric-std. a l l ;
e n t i t y fifo-read-ctrl i s

s g e n e r i c (N: natural) ;
p o r t (

clkr , resetr : i n std-logic ;
w-ptr-in : in std-logic-vector (N downto 0) ;
rd: in std-logic;

r-ptr-out : out std-logic-vector (N downto 0) ;
r-addr : out std-logic-vector (N-1 downto 0)

10 empty : out std-logic ;

1;
end f if o-read-ctrl ;

I S

DATA TRANSFER VIA A MEMORY BUFFER 657

a r c h i t e c t u r e gray-arch of fifo-read-ctrl i s
s i g n a l r-ptr-reg , r-ptr-next : std-logic-vector (N downto 0) ;
s i g n a l grayl , bin, binl : std-logic-vector (N downto 0) ;
s i g n a l raddr-all: std-logic-vector (N-1 downto 0) ;

s i g n a l empty-f lag : std-logic ;
20 s i g n a l raddr-msb , waddr-msb : std-logic ;

begin
- r e g i s t e r
process (clkr ,resetr)
begin

i f (resetr=’l’) then

e l s i f (clkr’event and clkr=’l’) then

end i f ;
end p r o c e s s ;
- (N + l) - b i t Gray c o u n t e r
bin <= r-ptr-reg xor (’0’ & bin(N downto 1));
binl <= std-logic-vector (unsigned(bin1 + 1) ;
grayl <= binl xor (’0’ & binl(N downto 1));
-- u p d a t e r e a d p o i n t e r
r-ptr-next <= grayl when rd= ’ 1 ’ and empty-f lag= ’0 ’ e l s e

-- N - b i t G r a y c o u n t e r
raddr-msb <= r-ptr-reg(N) xor r-ptr-reg (N-1) ;
raddr-all <= raddr-msb & r-ptr-reg (N-2 downto 0) ;
waddr-rnsb <= w-ptr-in(N) xor w-ptr-in(N-1) ;
-- c h e c k f o r FIFO empty
empty-f lag <=

r-ptr-reg <= (o t h e r s = > ’ O ’1;

r-ptr-reg <= r-ptr-next ;

r-ptr-reg;

’ 1 when w-ptr-in(N)=r-ptr-reg(N) and
w-ptr-in (N-2 downto O)=r-ptr-reg (N-2 downto 0) and
raddr-msb = waddr-msb e l s e

’0’;
- o u t p u t
r-addr <= raddr-all;
r-ptr-out <= r-ptr-reg;
empty <= empty-flag;

end gray-arch ;

Listing 16.15 n-bit synchronizer

l i b r a r y ieee ;
use ieee, std-logic-1164. a l l ;
e n t i t y synchronizer-g i s

g e n e r i c (N : natural) ;
5 p o r t (

clk, reset: in std-logic;
in-async : in std-logic-vector (N-1 downto 0) ;
out-sync : out std-logic-vector (N-1 downto 0)

1;
10 end synchronizer-g;

a r c h i t e c t u r e two-ff-arch of synchronizer-g i s

658 CLOCK AND SYNCHRONIZATION: PRINCIPLE AND PRACTICE

s i g n a l meta-reg , sync-reg : std-logic-vector (N-1 downto 0) ;
s i g n a l meta-next sync-next :

IS std-logic-vector (N-1 downto 0) ;
begin

m

75

_- two r e g i s t e r s
process (clk , reset)
begin

i f (reset=’l’) then
meta-reg <= (o t h e r s = > ’0 ;
sync-reg <= (o t h e r s = > ’ O ’) ;

meta-reg <= meta-next ;
sync-reg <= sync-next ;

e l s i f (clk’event and clk=’lJ) then

end i f ;
end p r o c e s s ;
- n e x t - s t a t e l o g i c
meta-next <= in-async ;
sync-next <= meta-reg ;
I o u t p u t
out-sync <= sync-reg;

end two-ff-arch;

Listing 16.16 Top-level structural description of an asynchronous FIFO control circuit

l i b r a r y ieee ;
use ieee. std-logic-1164. a l l ;
use ieee. numeric-std. a l l ;
e n t i t y fifo-async-ctrl is

s g e n e r i c (DEPTH : natural) ;
p o r t (

clkw: in std-logic;
resetw : in std-logic ;
wr: in std-logic;

w-addr : out std-logic-vector (DEPTH-1 downto 0) ;
clkr: in std-logic;
resetr : in std-logic ;
rd: in std-logic;

r-addr : out std-logic-vector (DEPTH-1 downto 0)

10 full: out std-logic;

IS empty : out std-logic ;

1;
end f if o-async-ctrl ;

m a r c h i t e c t u r e str-arch of fifo-async-ctrl i s
s i g n a l r-ptr-in: std-logic-vector (DEPTH downto 0) ;
s i g n a l r-ptr-out : std-logic-vector (DEPTH downto 0) ;
s i g n a l w-ptr-in : std-logic-vector (DEPTH downto 0) ;
s i g n a l w-ptr-out : std-logic-vector (DEPTH downto 0) ;

component f if o-read-ctrl
zs - component d e c l a r a t i o n s

g e n e r i c (N : natural ;
p o r t (

clkr: i n std-logic;

DATA TRANSFER VIA A MEMORY BUFFER 659

30

35

40

45

55

rd: in std-logic;
resetr : in std-logic ;
w-ptr-in : in std-logic-vector (N downto 0) ;
empty : out std-logic ;
r-addr : out std-logic-vector (N - 1 downto 0) ;

r-ptr-out : out std-logic-vector (N downto 0)
1;

end component;
component f if o-write-ctrl

generic (N : natural) ;
port (

clkw: in std-logic;
r-ptr-in : in std-logic-vector (N downto 0) ;
resetw : in std-logic ;
wr: in std-logic;
full : out std-logic ;
w-addr : out std-logic-vector (N - 1 downto 0) ;
w-ptr-out : out std-logic-vector (N downto 0)

) ;
end component;
component s y n c h r o n i z e r - g JO

generic (N : natural) ;
port (

clk: in std-logic;
in-async : in std-logic-vector (N - 1 downto 0) ;
reset : in std-logic ;
out-sync : out std-logic-vector (N - 1 downto 0)

1;
end component;

begin
60 read-ctrl: fifo-read-ctrl

g e n e r i c map (N = > DEPTH)
port map (clkr=>clkr , resetr=>resetr , rd=>rd,

w-ptr-in->w-ptr-in, empty=>empty,
r-ptr-out=>r-ptr-out, r-addr=>r-addr);

65 write-ctrl: fifo-write-ctrl
generic map" =>DEPTH)
port map(clkw=>clkw , resetw=>resetw , wr=>wr,

r-ptr-in=>r-ptr-in, full=>full,
w-ptr-out=>w-ptr-out, w-addr=>w-addr);

70 sync-w-ptr : synchronizer-g
g e n e r i c map (N=> DEPTH +I)
port map(clk=>clkw , reset=>resetw ,

in-async=>w-ptr-out, out-sync=>w-ptr-in);
sync-r-ptr: synchronizer-g

ge n er i c map (N=> DEPTH + 1)
port msp(clk=>clkr , reset=>resetr ,

75

in-async=>r-ptr-out, out-sync =>r-ptr-in);
end str-arch ;

Because of the synchronizer, the onset of the empty and full signals may be delayed.
For example, assume that the FIFO is originally empty. After a write operation is performed,
the write pointer changes and the FJFO contains one data item. It takes two clock cycles

660 CLOCK AND SYNCHRONIZATION: PRINCIPLE AND PRACTICE

to propagate the change through the two cascading FFs of the synchronizer, and thus the
onset of the empty signal is delayed by two clock cycles. During this interval, the reading
subsystem will falsely assume that there is no data to retrieve and will stay idle. While the
delay causes late data retrieval, the functionality of the FIFO remains intact and no invalid
data item is retrieved though the buffer. The same situation happens to the f u l l signal.
The deassertion of the f u l l signal is delayed by two clock cycles. During this interval, the
sending subsystem falsely assumes that the FIFO is full and suspends the write operation.

The delayed empty and f u l l signals force the subsystems to be idle unnecessarily and
thus penalize the performance. The penalty is essentially due to the overhead associated
with the synchronization of two clock domains and cannot be avoided. However, the idle
situation occurs only when the FIFO is almost empty or almost full. There is no overhead
or extra delay when the FIFO is partially full. In comparison, the handshaking scheme
involves the overhead in every data transaction, and thus the FIFO buffer is more efficient.

16.9.2 Shared memory

Another frequently used buffering scheme is shared memory. The basic idea is to allow
multiple subsystems to access a common memory. The sending subsystem can first write
the data into the memory, and the receiving subsystem then obtains the data by reading the
same memory location. This scheme is best suited when a large chunk of data, such as a
high-resolution image, has to be transferred.

The shared memory scheme can be implemented by using a regular single-port memory
or a special dual-port memory. For a single-port memory configuration, we can treat the
memory as the shared resource and use an arbiter to resolve the conflicting requests and
coordinate the memory usage. The basic design of the arbiter is similar to that in Sec-
tion 10.8.2. Because the interactions are between different clock domains, synchronization
circuits are needed for all request and grant signals.

The request-grant process is somewhat like the handshaking procedure and has a similar
overhead. However, the overhead is associated with each resource arbitration, not each
data transaction. Since one round of arbitration allows any amount of data to be transferred
(up to the size of the shared memory), the average overhead of a single data transaction
becomes very small.

A better alternative is to use dual-port memory. A dual-port memory has two indepen-
dent access ports, each containing its own address line, data line and control signals. The
multiplexing and decoding circuits are duplicated inside the memory module. Two memory
accesses can be performed simultaneously as long as the memory addresses are different.
A conflict occurs when two memory operations access the same memory location (i.e., two
operations have the same memory addresses). An arbiter is used to resolve the condition.
When there is no clock in the regular dual-port memory, the internal arbitrator is an asyn-
chronous sequential circuit. It may enter a metastable state if the two request signals are
asserted too closely. As in the synchronizer, the arbitration circuit needs to provide some
time to resolve the metastable condition and thus introduces similar overhead.

As with other memory modules, dual-port memory cannot be synthesized from scratch
in RT-level code. We must instantiate the predesigned module from the target device
technology.

SYNTHESIS OF A MULTIPLE-CLOCK SYSTEM 661

16.10 SYNTHESIS OF A MULTIPLE-CLOCK SYSTEM

The synchronous design is the most important methodology and the cornerstone of the
entire design and fabrication process. The synthesis, timing analysis, verification and
testing of synchronous systems are well understood, and many EDA software tools have
been developed to automate the tasks.

One major motivation behind the synchronous methodology is to provide a systematic
way to satisfy the timing constraints. The objective of synthesis and verification is to identifv
and prevent timing violations. The EDA software tools are developed to assist designers in
achieving this objective. On the other hand, the metastability analysis and synchronization
circuit are to deal with the scenario that a timing violation has already occurred. This is
essentially a transistor-level phenomenon, and its behavior cannot easily be modeled at the
gate or RT level. The EDA tools are not able to handle metastability, and the analysis and
synthesis process cannot be automated. Most software can only detect and warn the onset
of a time violation but cannot model or analyze what happens afterward. For example, in
the std-logic data type, the ’ X J value is used to model the output after a timing violation.
After a timing violation occurs, the output X ’ value will be permanent and propagated to
the downstream circuit. This is very different from the actual timing violation, in which the
output signal may become ’0’ or ’ l’, or be resolved to a stable value after a random period
of time.

While the design considerations for a multiple-clock system are different from those of
a synchronous system, it is not wise to abandon the synchronous design methodology and
start from scratch. Instead, we want to incorporate the methodology into the new design
flow and utilize the previous techniques and EDA tools as much as possible.

To achieve this goal, a multiple-clock system should be divided into synchronous subsys-
tems and crossing-domain interfaces. A synchronous subsystem is within the same clock
domain, and thus we can design it just as a regular synchronous system. On the other hand,
the crossing domain interface involves the synchronization and data transfer protocol. Its
analysis and design are very different from those of the synchronous system, and very few
EDA tools are available for these tasks. We usually have to manually analyze, design and
verify the interface circuit and protocols. Since the synchronization circuit depends on the
device characteristics and the data transfer protocol sometimes depends on the clock rates
of the domains, the interface is usually device dependent and is not portable.

The general design approach for a multiple-clock system can be summarized as follows:
1. Partition the system into locally synchronous subsystems.
2. Design and verify these subsystems following the synchronous methodology.
3. Develop protocol to pass data and exchange information between clock domains.
4. Manually analyze and design the necessary synchronization circuits between clock

5 . Verify operation of the entire system.
A representative top-level partition of a system with two clock domains is shown in

Figure 16.27. It is a good idea to treat the synchronization circuit and data transfer interface
as separate modules and instantiate them individually in VHDL code. These modules are
normally device dependent and may need to be reanalyzed and redesigned when the system
is ported to a different device technology or operation environment (e.g., a different clock
rate).

domains.

662 CLOCK AND SYNCHRONIZATION PRINCIPLE AND PRACTICE

-
-b

4

regular + inter-
sequential face I inter- 1 circuit face -

-b

regular

circuit
+ sequential

synchronizer 1 synchronizer

Figure 16.27 Partition of a system with two clock domains.

16.11 SYNTHESIS GUIDELINES

16.11.1 Guidelines for general use of a clock

0 Do not manipulate the clock signal in regular RT-level design and synthesis.

0 Minimize the number of clock signals in a system.

0 Minimize the number of clock domains (i.e., the number of independent clock sig-
nals). Use a derived clock signal when possible.

0 If a derived clock signal is needed, manually derive and instantiate the circuit and
separate it from the regular synthesis.

<

16.1 1.2 Guidelines for a synchronizer

0 Synchronize a signal in a single place.

0 Avoid synchronizing related signals.

0 Use a glitch-free signal for synchronization.

0 Reanalyze and examine the synchronizer and MTBF when the device is changed or
the clock rate is revised.

b 4

< -

16.11.3 Guidelines for an interface between clock domains

0 Clearly identify the boundary of the clock domain and the signals that cross the
domain.

0 Separate the synchronization circuits and asynchronous interface from the synchronous

0 Use a reliable synchronizer design to provide sufficient metastability resolution time.

0 Analyze the data transfer protocol over a wide range of scenarios, including faster

subsystems and instantiate them as individual modules.

and slower clock frequencies and different data rates.

BIBLIOGRAPHIC NOTES 663

16.12 BIBLIOGRAPHIC NOTES

The construction of the clock network involves the transmission and distribution of elec-
tronic signals. It is normally covered under the subjects of signal integration and high-speed
design. Tivo texts by Howard Johnson, High-speed Digital Design: A Handbook of Black
Magic and High-speed Signal Propagation: Advanced Black Magic, provide comprehen-
sive coverage of this topic.

The study of metastability and synchronization failure relies on transistor-level model and
analysis. The text, Digital Systems Engineering by William J. Dally and John W. Poulton,
covers the theoretical foundation of this subject. The book also includes a discussion of the
design of asynchronous circuit.

The more practical design materials on the synchronizer and asynchronous interface can
be found in manufacturers’ application notes or articles from technical conferences. Ar-
ticles by Clifford E. Cummings, Synthesis and Scripting Techniques for Designing Multi-
Asynchronous Clock Designs, Simulation and Synthesis Techniques for Asynchronous FIFO
Design and Simulation and Synthesis Techniques for Asynchronous FIFO Design with Asyn-
chronous Pointer Comparisons, provide many practical design examples and good advice.

Problems

16.1 Assume that a sequential system with an ideal clock signal can operate at a maximal
clock rate of 100 MHz. If the physical clock distribution network introduces a 1.5-ns clock
skew, what is the new maximal clock rate?

16.2 Consider a D FF with w and T.
(a) If we improve the D FF by reducing w by 10%, discuss the effect on MTBF.
(b) If we improve the D FF by reducing T by 10%, discuss the effect on MTBF.

16.3 At the end of Section 16.4.2, we discuss the difference between T, and TT2. As-
sume that w and T are identical for the calculation of MTBF(T,) and MTBF(T,.2). Derive
MTBF(T,) in terms of MTBF(T,z), w and T.

16.4 For the two-FF synchronizer discussed in Section 16.5.3, determine the new MTBF
for the following:

(a) The placement and routing process adds a 2.5-ns wiring delay.
(b) The system clock rate is decreased by 10%.
(c) The setup time of the D FF is reduced by 10%.
(d) The setup time of the D FF is reduced by 25%.
(e) The T of the D FF is reduced by 10%.
(f) The T of the D FF is reduced by 25%.

16.5 We want to regenerate the enable pulse in the listener’s clock domain using the
four-phase handshaking protocol. In this scheme, the listener has an output signal that is
asserted once during the handshaking process.

(a) Revise the listener ASM chart of Figure 16.16 to add a Mealy output signal.
(b) Modify the VHDL code to reflect the revised ASM chart.

16.6

16.7

Repeat Problem 16.5, but add a Moore output signal.

Repeat Problem 16.5 for the two-phase handshaking protocol of Figure 16.19.

664 CLOCK AND SYNCHRONIZATION: PRINCIPLE AND PRACTICE

16.8 Repeat Problem 16.5, but add a Moore output signal for the two-phase handshaking
protocol of Figure 16.19.

16.9 Revise the talker ASM chart of the two-phase handshaking protocol of Figure 16.19
to eliminate the idle state.

16.10 In a handshaking protocol, we like to include a ready signal in talker to indicate
that the system is idle and ready to accept another operation. Revise the talker ASM chart
of the two-phase handshaking protocol of Figure 16.19 to include the ready output signal.

16.11 We want to design a four-phase handshaking asynchronous interface for the se-
quential multiplier in Section 11.6. The operand width is 8 bits and the data is passed by
a 16-bit bidirectional bus. After sensing the start signal, the talker of the sending sub-
system places the data on the data bus and activates the handshaking operation. Once the
receiving subsystem detects the request, it retrieves the data and performs the multiplication
operation. When the operation is completed, the listener of the receiving subsystem places
the result on the data bus and asserts the acknowledge signal, and the talker retrieves the
result accordingly. Draw the block diagram and derive VHDL code for this system.

16.12 Repeat Problem 16.1 1, but use an 8-bit data bus. Since the operation involves two
data transfers, we need a master control FSM to coordinate the operation. Derive VHDL
code for this system.

16.13 Modify the push-and-pull system of Section 16.8.1 using the two-phase handshak-
ing protocol (additional data lines are needed). Derive the revised block diagram and VHDL
code.

16.14 Repeat Problem 16.1 1, but use the two-phase handshaking protocol and two 16-bit
unidirectional data buses. Derive the VHDL code.

16.15 Consider the one-phase push operation in Section 16.8.3. Derive VHDL code for
the sending and receiving subsystems with the following clock rates.

(a) = 10 MHz and freceive = 10 MHz
(b) fsend = 10 MHz and freceive = 40 MHz
(c) fsend = 10 MHz and freceive = 2.5 MHz

16.16 Repeat Problem 16.15 for the one-phase pull operation.

16.17 Consider the FIFO buffer of Section 16.9.1, and let the clock periods of the writing
and reading subsystems be T, and T, respectively. Assume that the sending subsystem
has 10 words to pass through the FlFO buffer. Determine the total time to complete the
operation with the following buffer sizes:

(a) One word.
(b) ' h o words.
(c) Four words.
(d) Eight words.
(e) 16 words.

REFERENCES

1 . P. Alfke, “Efficient Shift Registers, LFSR Counters, and Long Pseudo-Random Sequence Gen-

2. M. G. Amold, Verilog Digital Computer Design, Prentice Hall, 1998.

3. P. J. Ashenden, The Designer’s Guide to VHDL, 2nd ed., Morgan Kaufmann, 2001.

4. P. H. Bardell, Built In Test for VLSI: Pseudorandom Techniques, Wiley-Interscience, 1987.

5. L. Bening and H. D. Foster, Principles of Ver@able RTL Design, 2nd ed., Springer-Verlag, 2001.

6. J. Bergeron, Writing Testbenches: Functional Verification of HDL Models, Springer-Verlag,

7. M. D. Ciletti, Advanced Digital Design with the Verilog HDL, Prentice Hall, 2003.

8. M. D. Ciletti, Starter’s Guide to Verilog 2001, Prentice Hall, 2003.

9. C. E. Cummings, “Coding and Scripting Techniques for FSM Designs with Synthesis-Optimized,
Glitch-Free Outputs,” SNUG (Synopsys Users Group conference), Boston, 2000.

10. C. E. Cummings, “Synthesis and Scripting Techniques for Designing Multi-Asynchronous Clock
Designs,” SNUG (Synopsys Users Group conference), San Jose, 2001.

1 1 . C. E. Cummings, “Simulation and Synthesis Techniques for Asynchronous FIFO Design,” SNUG
(Synopsys Users Group conference), San Jose, 2002.

12. C. E. Cummings and P. Alfke, “Simulation and Synthesis Techniques for Asynchronous FIFO
Design with Asynchronous Pointer Comparisons,” SNUG (Synopsys Users Group conference),
San Jose, 2002.

13. W. J. Dally and J. W. Poulton, Digital Systems Engineering, Cambridge University Press, 1998.

14. G. De Micheli, Synthesis and Optimization of Digital Circuits, McGraw-Hill, 1994.

15. S. Devadas et al., Logic Synthesis, McGraw-Hill Professional, 1994.

erators,’’ Xilinx Application Note XAPP-052, 1996.

2003.

RTL Hardware Design Using VHDL: Coding for Eflciency, Portability, and Scalability. By Pong P. Chu
Copyright @ 2006 John Wiley & Sons, Inc.

665

666 REFERENCES

16. M. D. Ercegovac and T. Lang, Digital Arithmetic, Morgan Kaufmann, 2003.

17. D. D. Gajski, Principles of Digital Design, Prentice Hall, 1997.

18. D. D. Gajski, High-Level Synthesis: Introduction to Chip and System Design, Springer-Verlag,

19. S. Ghosh, Hardware Description Languages: Concepts and Principles, Wiley-IEEE Press, 1999.

20. IEEE, IEEE Standard for Verilog Hardware Description Language, (IEEE Std 1364-2001), In-

21. IEEE, IEEE Standard VHDL Language Reference Manual (IEEE Std 1076-2001), Institute of

22. IEEE, IEEE Standard for VHDL Register Transfer Level (RTL) Synthesis, (IEEE Std 1076.6-

23. IEEE, IEEE Standard VHDL Synthesis Packages (IEEE Std 1076.3-1997), Institute of Electrical

24. IEEE, IEEE Standard Multivalue Logic System for VHDL Model Interoperability (IEEE Std

25. H. Johnson, High-speed Digital Design: A Handbook of Black Magic, Prentice Hall, 1993.

26. T. Kam, Synthesis of Finite State Machines: Functional Optimization, Kluwer Academic, 1997.

27. R. H. Katz and G. Borriello, Contemporary Logic Design, 2nd ed., Prentice Hall, 2004.

28. M. Keating andP. Bricaud, Methodology ManualforSystem-on-a-Chip Designs, jrded., Springer-

29. I. Koren, Computer Arithmetic Algorithms, 2nd ed., A. K. Peters, 2002.

30. H. A. Landman, “Visualizing the Behavior of Logic Synthesis Algorithms,” SNUG (Synopsys

3 1 . C. M. Maxfield, The Design Warrior’s Guide to FPGAs, Newnes, 2004.

32. S. Palnitkar, Verilog HDL, 2nd ed., Prentice Hall, 2003.

33. D. A. Patterson and J. L. Hennessy, Computer Organization and Design: The HardwardSoOftare

34. Jan M. Rabaey, Digital Integrated Circuits, 2nd ed., Prentice Hall, 2002.

35. A. Rushton, VHDL for Logic Synthesis, 2nd ed., John Wiley & Sons, 1998.

36. P. Sinander, VHDL Modelling Guidelines, European Space Agency, 1994.

37. T. Villa et al., Synthesis of Finite State Machines: Logic Optimization, Kluwer Academic, 1997.

38. J. E Wakerly, Digital Design: Principles and Practices, Prentice Hall, 2002.

39. W. Wolf, FPGA-Based System Design, Prentice Hall, 2004.

40. W. Wolf, Modem VLSI Design: System-on-Chip Design, 3rd ed., Prentice Hall, 2002.

41. R. Zimmermann, Binary Adder Architectures for Cell-Based VLSI and Their Synthesis, PhD.

42. R. Zimmermann, “VHDL Library of Arithmetic Units,” First International Forum on Design

1992.

stitute of Electrical and Electronics Engineers, 2001.

Electrical and Electronics Engineers, 2001.

1999), Institute of Electrical and Electronics Engineers, 2000.

and Electronics Engineers, 1997.

1164-1993), Institute of Electrical and Electronics Engineers, 1993.

Verlag, 2002.

Users Group conference), 1998.

Interface, 3rd ed., Morgan Kaufmann, 2004.

thesis, Swiss Federal Institute of Technology (FiTH), Zurich, 1998.

Languages (FDL’98), 1998.

INDEX

abstraction, 9
gate-level, 10
processor-level, 12
register-transfer (RT) level, 11
transistor-level, 10

actual signal, 478
adder, 171,201,510
alias, 52
ALU, 75,87,104,112
arbiter, 353
architecture body, 28.46
may

aggregate, 59
array-of-arrays, 548
constrained, 546
emulated two-dimensional, 550
two-dimensional, 546
unconstrained, 503,547

full custom, 3
gate array, 3

ASM chart, 317
ASMD chart, 379
association

named, 479
positional, 480

ASIC, 3

Standad-cell, 3, 143

asynchronous circuit, 216,219
attribute

'event, 222

'high, 502
'left, 502
'length, 502
'low, 502
'range, 502
'reversemge, 502
'right, 502
array, 502
enum-encoding, 339
user, 339

barrel shifter. 178,192,566
bidirectional UO, 134
big-0 notation, 126
b i n q decoder, 73, 86,104, 112,513,528,558
binary encoder, 564
binding, 461
CAM (content addressable memory), 287
case statement, 112
clock

derived, 262,611
distribution network, 603
gated, 260
skew, 605

combinational circuit, 69, 213
comment, 47
comparator, 173,177
component, 30,475

declaration, 3 1,475
instantiation, 32,477

computability, 126

667

668 INDEX

computation complexity, 126
concurrent statement, 46
conditional signal assignment statement, 72, 105
configuration, 37,46,485,526

declaration, 486
specification, 488

constant, 52
cost

development, 7
non-recumng engineering (NRE), 6
part, 6
time-to-market, 7

arbitrary-sequence, 232
binary, 233,247,367,482,518,521
decade, 236,476
decimal, 272,481
Gray, 265
mod-n, 483
programmable, 237,248,252
ring, 266,5 1 1

critical path, 152
D FF, 214,222,226,245
D latch, 214,219, 221
data type, 53

bit, 53
bit-vector, 53
boolean, 53
realization, 133
signed, 60
stdJogic, 56
stdJogic-vector, 56
unsigned, 60

dataflow graph, 461
delay-sensitive, 159
delta delay (&delay), 30,70
design reuse, 21,218,474
design unit, 44.46
design-for-test, 16
development flow, 17,38
difference circuit, 175
don’t-care, 137
EDA (Electronic Design Automation), 16, 125, 148,

edge detection circuit, 326,348,623
entity declaration, 28.44
equivalence check, 126
exit statement, 537
false path, 152
field programmable device, 4

CPLD, 4
FPGA, 4,146
simple, 4

counter

218

FWO buffer, 279,591,652
floor planning, 14
for loop statement, 118. 528
formal signal, 478
FSM, 219,313,379,422

output buffering, 342
safe, 342

FSMD, 376,385

function, 491
gate count, 11,132
generate statement

conditional, 517
for, 512

generic, 481,501
glitch, 156
globally asynchronous locally synchronous (GALS),

216,612
Gray code, 196,338
greatest common divisor (GCD), 445
Hamming distance circuit, 206
handshaking, 630

four-phase, 630,641
two-phase, 637,650

hardware emulation, 16,218
HDL (hardware description language), 23
hold time, 216,243,609
identifier, 48
EEJ3 standard, 26

1076 VHDL standard, 26
1076.3 Synthesis Packages, 26
1076.6 RTL Synthesis, 26
1164 Multivalue Logic, 26

if statement, 103
intractable, 128
P (Intellectual Property), 12
leading-zero counting circuit, 538
LFSR (linear feedback shift register), 269,586
library, 46,489

ieee, 47
work, 46

LUT (look-up table), 146
Manchester encoding circuit, 363
mask, 2
maximal clock rate, 240
Mealy output, 314,327,400
metastability, 613
micron, 2
mode, 45

buffer, 45
in, 45
inout, 45,135
out, 45

look-ahead output buffer, 344
Moore output, 314,326

MTBF (mean time between synchronization failure),

multiplexer, 72,78,85, 103, 112,532,552,560

multiplier

614

abstract, 77,88,90

cell-based carry-save, 581
cell-based ripple-carry, 577
combinational, 203
pipelined, 297,303,305,574
repetitive-addition, 382
sequential add-and-shift, 407, 572

netlist, 9
next statement, 540
number, 49
object, 51

INDEX 669

one-shot pulse generator, 422
operator, 54

overloaded, 57,61,65
precedence, 55
realization, 129
sharing, 164,396
synthesis support, 130

package, 46,492
parallel-prefix structure, 187,570
parameter, 500

feature, 501
width, 500

partition, 495
physical design, 14
pipeline, 293
placement and routing, 14
population counter, 206,534,540
priority encoder, 74,86,104,112,187,199,530,588
pnxless, 33,97
propagation delay, 132, 150
PWM (pulse width modulation), 275
RAM, 225

controller, 430
reduced-and, 509,537
reduced-xor, 181,501,505,509,514,518,528,533,

reduced-xor-vector, 183,570
register file, 276, 593
register transfer, 12

555

RT methodology, 12,219,373,375,425
RT-level abstraction, 12

register, 225
reserved words, 48
resolution time, 614
scheduling, 461
selected signal assignment statement, 85, 114
sensitivity list, 33, 98
sequential circuit, 69,213

combined, 219
random, 219
regular, 219,424

sequential signal assignment statement, 100
sequential statement, 97
serial-to-parallel converter, 510,515,529
setup time, 216,240,606
shift register, 229
signal, 51
square-root approximation circuit, 460
state assignment, 338
state diagram, 315
string, 49
strobe generation circuit, 358
strongly typed language, 53

synchronizer, 617
synchronous circuit, 21 6-21 7
synthesis, 13

behavioral, 469
clock, 604
flow, 139
FSM, 337
FSMD, 417
gate-level, 13
high-level, 13,469
iterative structure, 541
logic, 142
module generator, 141
multilevel, 142
multiple clock, 661
pipelined circuit, 307
retiming, 308
RT-level, 13, 139
sequential circuit, 253
technology mapping, 14, 143
two-level, 142

T FF, 228,246
testbench, 35
testing, 16,218
timing analysis, 15,218

clock skew, 606
FSM, 324
FSMD, 404
synchronous sequential circuit, 239

timing hazards, 156
dynamic hazards, 156
static hazards, 156

tractable, 128
tri-state buffer, 133
hi-state bus, 135
type casting, 63
type conversion, 53,57,62
UART, 455
variable assignment statement, 101
variable, 51,250
verification, 14

formal, 15
functional, 14
timing, 15

Verilog, 25
VHDL, 25

analysis, 47
elaboration, 47

behavioral, 8.33
physical, 9
structural, 9,30

wait statement, 99

view

