

Creating Games with
Unity and Maya

This page intentionally left blank

Creating Games
with Unity and Maya
How to Develop Fun and Marketable 3D Games

Adam Watkins

AMSTERDAM • BOSTON • HEIDELBERG • LONDON
NEW YORK • OXFORD • PARIS • SAN DIEGO

SAN FRANCISCO • SINGAPORE • SYDNEY • TOKYO
Focal Press is an imprint of Elsevier

Focal Press is an imprint of Elsevier
30 Corporate Drive, Suite 400, Burlington, MA 01803, USA
The Boulevard, Langford Lane, Kidlington, Oxford, OX5 1GB, UK

© 2011 Elsevier Inc. All rights reserved.

No part of this publication may be reproduced or transmitted in any form or by any means,
electronic or mechanical, including photocopying, recording, or any information storage and
retrieval system, without permission in writing from the publisher. Details on how to seek
permission, further information about the Publisher’s permissions policies and our arrangements
with organizations such as the Copyright Clearance Center and the Copyright Licensing Agency, can
be found at our website: www.elsevier.com/permissions.

This book and the individual contributions contained in it are protected under copyright by the
Publisher (other than as may be noted herein).

Notices

Knowledge and best practice in this field are constantly changing. As new research and experience
broaden our understanding, changes in research methods, professional practices, or medical
treatment may become necessary.

Practitioners and researchers must always rely on their own experience and knowledge in
evaluating and using any information, methods, compounds, or experiments described herein. In
using such information or methods they should be mindful of their own safety and the safety of
others, including parties for whom they have a professional responsibility.

To the fullest extent of the law, neither the Publisher nor the authors, contributors, or editors,
assume any liability for any injury and/or damage to persons or property as a matter of products
liability, negligence or otherwise, or from any use or operation of any methods, products,
instructions, or ideas contained in the material herein.

Library of Congress Cataloging-in-Publication Data
Watkins, Adam.
 Creating games with Unity and Maya : creating games with Unity and Maya : how to develop fun
and marketable 3D games / Adam Watkins.
 p. cm.
 ISBN 978-0-240-81881-8
1. Computer games--Programming. 2. Video games--Design. 3. Unity (Electronic resource)
4. Maya (Computer file) 5. Three-dimensional display systems. I. Title.
 QA76.76.C672W322 2012
 794.8'1526--dc23

2011017562

British Library Cataloguing-in-Publication Data
A catalogue record for this book is available from the British Library.

ISBN: 978-0-240-81881-8

For information on all Focal Press publications

visit our website at www.elsevierdirect.com

11 12 13 14 15 5 4 3 2 1

Printed in the United States of America

v

Dedication
As always, to my beautiful and exciting Kirsten, Anaya, and Isaiah.

vi

Acknowledgments
Books like this are the results of a lot of work by a lot of people. It is important
to point them out.

First, many thanks to Kelly Michel and the team at the Los Alamos National
Laboratory that made working on this book possible. The opportunities to
learn and grow have been exciting to me professionally, and I've personally
very much enjoyed my time working with my teammates Brian Dickens,
 Elise Elfman, Jake Green, and Birch Hayes.

Also, thanks to the tireless efforts of my tech editor, Anson Call; the book is
more accurate, and tighter conceptually than it would have been without his
meticulous work.

Thanks also, of course, to the editors at Focal with whom I have worked on the
project: Sara Scott, Laura Lewin, Katy Spencer, and Lauren Mattos.

Finally, working on books is always a bit of an exercise in patience by the
family of the author. This round, the patience of my forever friend Kirsten and
her care of the little peeps has been of unimaginable help.

vii

Contents
Acknowledgments . vi

Introduction . xv

Chapter 1: Game Production Process .1

The Team . 1

The Tools and Unity . 4

Teams of Teams and Pipelines . 4

Assets . 5

Art Assets . 5

Technology Assets (Scripts) . 5

Order of Operations . 6

Conclusion and Introduction to Incursion . 6

A Note on Research . 7

And on We Go… . 8

Chapter 2: Asset Creation: Maya Scenography Modeling 9

Scenography Modeling within the Game Design Pipeline 9

Why Maya Tutorials? .10

A Bit of 3D Theory .11

Rendering .12

Video Cards .13

Limitations and Optimizations for Games .13

Rules of 3D Game Modeling .14

Polycount Matters .14

Topology .15

On to the Tools .16

Tutorial 2 .1: Game Level Modeling: The Entryway .17

Columns Base Shape .18

Dock Creation .20

Dock Optimization .22

Backface Culling .25

Roof Creation .26

Cleaning or Deleting History .27

Handrails .28

Archway and Booleans .28

viii

Contents

Beveling .32

Wrapping Up .33

Homework and Challenges .34

Chapter 3: Asset Creation: Maya Scenography UV Mapping 37

Scenography UV Layout within the Game Design Pipeline 37

UVs .38

Exploring the UV Texture Editor .39

Tutorial 3 .1: Game Level UV Layout, Tools, and Techniques 40

Mapping Beginning with Automatic Mapping .42

Sewing Shells .45

Further Optimization .49

Maya's Unfold UV via Smooth UV Tool .50

Manual Mapping .52

Conclusion .61

Homework and Challenges .62

Chapter 4: Asset Creation: Maya Scenography Texturing 63

Textures, Materials, and Shaders .63

Nature of Effective Textures .64

Maya and Unity .65

Tutorials .66

Tutorial 4 .1: Seamless Tiled Textures .66

Select and Prepare a Raw Texture Image .68

Offset and Clone Stamp .68

Unify the Color Balance .70

Apply the Texture . .71

Conclusion .74

Tutorial 4 .2: Nontiled Textures and Their Dirt .74

UV Snapshots .75

Preparing the UV Snapshot for Painting in Photoshop 76

Painting the Texture .77

Layer Mixing .78

Layer Masks .79

Saving Multiple Files .82

Application in Maya .82

Conclusion .83

Homework and Challenges .84

ix

Contents

Chapter 5: Asset Creation: Unity Scenography Importing 89

Unity .89

The Plan .90

Unity Projects .90

Tutorial 5 .1: Creating a Unity Project .90

About the New Project File .92

Unity Interface .93

Toolbar .94

Scene .95

Game .95

Inspector Panel .95

Hierarchy Panel .96

Project Panel .96

Using It All .96

Tutorial 5 .2: Exporting from Maya .97

Optimizing in Maya .97

Export Options .98

The Import Process .99

Unity Nomenclature .101

GameObject .101

Prefabs .101

Scenes .101

Tutorial 5 .3: Importing, Tweaking, and Placing Scenography
Assets into Unity .102

Inspector Breakdown .108

Conclusion .112

Homework and Challenges .112

Chapter 6: Asset Creation: Unity Scenography Creation Tools 113

Asset Creation in Unity .113

Tutorial 6 .1: Adding and Manipulating Unity Water, Sky, and Fog 114

Importing Packages .114

Water .114

Skyboxes .116

Fog .119

Wrapping Up .120

Tutorial 6 .2: Terrain Creation .121

Restrictions of Terrains .122

x

Contents

Terrain Editing Tools .125

Conclusion .136

Tutorial 6 .3: Primitives and Particles .136

Tweaking Terrain Settings .143

Conclusion .144

Chapter 7: Asset Creation: Advanced Shading, Lighting, and Baking 145

Baking .146

Baking in Unity (aka Unity Lightmapping) .146

Limitations to Unity Lightmapping .147

Plan of Attack .148

Tutorial 7 .1: Normal Maps .148

Additional Tools .150

Conclusion .159

Tutorial 7 .2: Lighting and Baking in Unity .159

Unity's Lighting Instruments .160

Conclusion .177

Homework and Challenges .178

Chapter 8: Asset Creation: Maya Character Creation 179

Aegis Chung .180

Style Sheet .180

Considerations of Style Sheets .181

Chapter Overview .182

Tutorial 8 .1: Game Character Modeling: Aegis Chung 182

Polycount .182

Conclusion .232

Chapter 9: Asset Creation: Maya Character UV Mapping
and Texturing . 233

UV Mapping .234

Tutorial 9 .1: Character UV Mapping .234

Mesh Inspection and Cleanup .234

Finishing Up .260

Conclusion .262

Tutorial 9 .2: Character Texture Painting .262

Ambient Occlusion Pass .264

Face and Head .269

Conclusion .273

xi

Contents

Chapter 10: Asset Creation: Maya Rigging and Skinning and
Unity Animated Character Importing and Implementation 275

The Process .276

Tutorial 10 .1: Rigging .276

Cleanup .276

Joints and Rigging .280

Conclusion .301

Tutorial 10 .2: Maya Skinning .302

Binding Rigid Body Parts .303

Painting Skin Weights .305

Conclusion .308

Tutorial 10 .3: Maya Animation .310

General Notes on Game Animation .310

Conclusion .314

Tutorial 10 .4: Getting Animated Characters to Unity .314

Using Aegis .316

Tutorial 10 .5: Animating in Unity .319

Conclusion .321

Wrapping Up .321

Homework and Challenges .322

Chapter 11: Unity Sound . 323

Get the Sounds .323

Sound Listener and Sound Source Paradigm .325

Tutorial 11 .1: Placing Sound in Unity .325

Audio Reverb Zones .327

Footsteps .328

Scripting Sound .330

Conclusion .332

Homework and Challenges .332

Chapter 12: Introduction to Unity Scripting Basics and
Graphical User Interface . 333

Unity's Scripting Languages .334

Boo Script .334

C# . .335

JavaScript .335

Using Scripts in Unity .335

xii

Contents

A Note about This Approach .336

Tools for Scripts .336

What Is a Script? .337

Getting to It .340

Tutorial 12 .1: Graphical User Interfaces .340

GUITexture .340

Conclusion .354

Homework and Challenges .354

Chapter 13: Unity Triggers . 355

Designating Triggers .356

Tutorial 13 .1: Activating and Changing Screen Hints
with Triggers .356

GUIText .357

Custom Fonts .358

Creating Triggers .358

Scripting the GUIText .359

Scripting Triggers .361

Triggers to Swap Levels .364

Conclusion .367

Tutorial 13 .2: Triggers and Doors .367

Divergent Methods .369

Sound and Scripts .372

Cleaning Up with Destroy and Booleans .373

Conclusion .377

Homework and Challenges .377

Chapter 14: Unity Raycasting . 379

Frame Miss .379

Raycasting .380

But First . . . A Few Notes on Scripting and Help .381

Comments via // .381

Commenting Blocks of Script with /* .382

Accessing the Documentation .383

F1 in UniSciTE .384

Decoding a Help Page .384

Tutorial 14 .1: Highlighting Actionable Objects with Raycasting 386

Turning on the Lights .393

xiii

Contents

Conclusion .402

Homework and Challenges .402

Chapter 15: Unity Prefabs and Instantiation . 403

Prefabs .403

Prefabs versus Prefab Connections .404

Tutorial 15 .1: The Power of Prefabs .407

Tags .408

Adding Sound .411

Conclusion .412

Instantiation .413

Tutorial 15 .2: Setting Up the Armed Arms . .414

Conclusion .417

Tutorial 15 .3: Firing a Gun .417

A Few Notes about Pistol Sparks .419

Quick Note about Detonator and Explosion Framework 420

Conclusion .423

Tutorial 15 .4: Sound Revisited .423

Scope and Optimizing Script .425

Tutorial 15 .5: The EMP Mines .427

Layers .436

Make the EMP Effective .437

Conclusion .439

Chapter 16: Unity: Creating Inventory Systems . 441

State Engine and How Many Scripts? .441

Tutorial 16 .1: Setting Up Inventory GUI and Script .443

Refresher on Interscript Communication .446

Firing Animations in Script .448

Hiding and Showing Weapons .453

Bulking up the GUI System .457

Create a GUIElements Prefab .458

Animate the Inventory to Show and Hide .459

Conclusion .463

Tutorial 16 .2: Keys .464

Accessing the State Engine .465

Building upon the Raycasting Mechanism .465

Fleshing Out PickUpKey .466

xiv

Contents

Creating a Smart Trigger .467

Conclusion .472

Homework and Challenges .472

Chapter 17: Health Systems, Winning, and Losing the Game 473

Tutorial 17 .1: Winning .474

The Endgame Trigger .476

Conclusion .477

Tutorial 17 .2: Health Systems .478

Creating Health Display .479

Back to Script .481

Things That Hurt . .482

Creating the Damage Triggers .482

Broadcast Message .434

Particles Doing Damage (Steam) .487

Timers on Cameras .490

Scene-ClosingFail .491

Global Variables .492

Final Test .494

Conclusion .494

Homework and Challenges .494

Chapter 18: Unity Debugging, Optimization, and Builds 495

Finding the Bugs .495

Optimization .496

Finding What Needs to Be Optimized .496

Optimizing with Textures .498

Optimizing with Scripts .500

Making the Build .501

Preparing Player Settings .501

Outputting the Final Build .506

Conclusion .508

Index . 509

xv

Introduction
Why This Book?

The Unity Game Engine has been shaking things up. The engine is only a little
over five years old now and in 2010 they have earned Develop Magazine's
Grand Prix Award and surpassed 170,000 developers. The user base of
consuming Unity products has grown dynamically as well. There are over
30 million total Unity Web Player installations, and the base continues to
expand at over 2 million installs per month.

Part of this success undoubtedly comes from their 2009 bold move to give
away a free version of Unity Indie. Suddenly, everyone could get their hands
on a game engine and anyone with the will to learn could start making
games. Unity further empowered the masses by making Unity a viable
development platform for iDevices (iPhone, iPod Touch, iPad), Mac, PC,
Xbox 360, Wii, and now Android and PlayStation 3. Web deployment further
democratized the 3D development and distribution process. At conferences
and online Unity is generating quite the buzz. Since I have been using the
software, conversations among faculty at training institutions and game
developers alike have gone from, “Unity? No, I've never heard of that. Is it
new?” to “Yeah, we're using Unity in three of our courses coming up this
semester,” and Skype tags that say, “I want Unity 3.0.”

But with all this buzz, and the rapid development and deployment cycle that
the Unity 3D team has undergone, there has been a distinct lack of introductory
documentation, especially documentation aimed at the entire process of game
development. In recent months there have been some new (and really nice)
books released to get people into Unity and it is true that Unity provides some
nice downloadable projects and some tutorials attached to those projects
(which you should grab for free if you haven't yet), but often while my students
(who are trained as 3D artists) have worked through these, although they
have become familiar with Unity's interface and with what does what, they are
simply unable to extrapolate this knowledge into a new “authored from scratch”
game. Further, most of the Unity 3D provided tutorials are focused on Unity and
provide prebuilt assets that the reader simply plugs into his or her Unity project.
This misses some of the vital creative processes and tricks of getting these
assets into Unity.

And so the impetus for this book emerged: create artist-driven, holistic
training modules that provide the theory of game development and the
methodology behind Unity that empower readers to create their own games.

xvi

Introduction

Who's It For?
My professional background recently has been developing training games
for inspectors in pursuit of nonproliferation efforts at the Los Alamos National
Laboratory. But this is a temporary assignment and part of a one-year research
sabbatical. I am on sabbatical from a position as head of 3D Animation at
the University of the Incarnate Word in San Antonio, TX where I have taught
3D animation for over 10 years. With this background, as I use tools, I am
always thinking of how this particular tool or technique can be taught, and
how it can be taught differently to different demographics.

In the construction of this book, there are three main groups of learners in mind:

•	 Game Enthusiasts: The biggest group of students we have coming
into our university are those with the idea, “I love to play video games,
therefore, I'll be great at making them.” Unfortunately this is often not
the case—consuming is much different than creating—but, this sort of
enthusiasm is important to maintain through the long learning arcs that
are required for making 3D games. This book assumes that, at the very
least, you love games. And that you are passionate enough about them
that you want to create your own games.

This volume is for you. Equipped with a free version of Unity and a
copy of Maya, this book will provide you with the necessary steps and
ideas to empower your own game creation. The book is organized
into manageable tutorials coupled with theory discussions so you can
see measurable progress quickly that you can bridge into your own
development. In a few days, or weeks, you could have your first tutorial-
driven game developed, and the scripts to begin your own.

•	 Students: Ten years ago, developing 3D animation programs was all the
rage at colleges and universities. This enthusiasm has crept into high
schools and even middle schools. With this 3D curriculum—of which
you may be a part—has come the natural desire to expand into game
development. This book has been specifically structured with you in mind.

The tutorials are structured so that they can be tackled in class or as part
of a homework assignment. The pacing has been carefully considered to
allow for bite-sized chunks of knowledge that are still delivered at a brisk
pace. Most importantly, each chapter builds on the next and allows for
real progress really quickly.

•	 Teachers: I have done a lot of training for teachers at colleges, universities,
and high schools. I have seen the panic in teachers’ eyes—the teachers
with little 3D or game training—but who have been tasked with
developing a game development curriculum and then teaching that
curriculum. To be sure, it is a daunting task, and one that is a little unfair to
saddle on a teacher with their other tasks. Have no fear though, this book
will help lighten the load.

xvii

Introduction

Included in the appendices for this book (on the supporting website
(http://www.Creating3DGames.com) are some suggested curricula
for using this book in a classroom setting. It will help in being able
to plug this book into your work flow and class plans. Although it
will be critical that you follow the tutorials yourself to understand
the questions that the students will undoubtedly have, this volume
will provide some tutorials for in class or homework that will help to
provide a lot of instruction in learning the 3D-to-game publication
process.

Structure
Although presently I am also a game developer, my long-term passion
is teaching. I know how people learn 3D and game engines. There is
an unfortunate trend for many early learners to pick up a tutorial and
immediately start working through the steps without any consideration to
why that tutorial was written, and what the basic concepts are behind the
steps they are following. At the end of the tutorial, readers have the sense
of accomplishment that they have finished the tutorial, but suddenly come
to the crushing reality that they can't create their own project, and they
couldn't even replicate this project unless the tutorial was in front of them
again. Essentially, they have become recipe followers—they can only cook
if the book is open in front of them, and if someone else has figured out the
steps. They certainly aren't chefs. The goal of this book is to make master
game chefs. To do this, there are some specific conventions this book will
follow.

First, every chapter and every tutorial will be prefaced with some theory—
some explanations of the method behind the madness of what they are about
to embark on. This theory will cover not only the reasoning of the tutorial
and its goals but also the reasoning behind Maya or Unity and their particular
implementation of 3D technique. Avoid the temptation to skip the theory and
smash into the tutorial; you will be much more enriched by understanding the
reason behind the steps.

Every chapter will also include tutorials, some longer than others, but each
with a very specific learning objective in mind. Each tutorial will build upon
the last and move us closer to completing the game that will be playable
at the end of this book. However, this book is a novel, not a collection of
short stories, and if you skip too far ahead too quickly, you will miss vital
information that make later chapters seem logical. So even if you know the
technique covered and you have no need to follow a given tutorial, be sure
you skim through it to see what is being covered there.

Finally, each chapter will include some challenges—homework assignments
if you will—that ask you to use the information you have gathered to create
your own implementation of the techniques. Hobbyist rarely use these, but

xviii

Introduction

they are an important self-assessment tool to check if you have really gotten
the core concepts presented in the chapter. You will get the most out of this
book if you tackle those challenges. They will cement ideas and strengthen
technique before you move on.

Book Paradigm and Assumptions
Although Creating Unity3D Games is meant to be holistic, it is not comprehensive
of everything involved in creating 3D games. It is assumed that you have the
following things:
•	 Unity and Maya: At the publication of this book, the latest versions of this

software will be Maya 2011 and Unity 3.2. The Unity 3.2 Indie license is free
(downloadable at www.unity3d.com), and if you are a student, Maya 2011
can be had for free for one year at http://students.autodesk.com/ if you
sign up at the Autodesk Education Community. For a registered student,
your biggest expense of the process will be this book.

•	 Basic Knowledge of Maya: This knowledge can indeed be basic, but this
book will not take a huge amount of time to work through Maya interface,
or basic tools. You should know how to navigate the camera controls and
how to conduct basic functions of moving, rotating, and scaling objects.
This book will be focusing on very game-specific techniques to modelling,
texturing, and animating, and so some general knowledge of Maya will be
of great help, although not critical.

•	 Love and Knowledge of Games: No need to be a game geek. But,
knowing the basics of how games work and what makes them fun will
be important to making games. The game in this book will be a first-
person and third-person hybrid with both first-person shooter and
puzzle elements. These are carefully designed to help you grasp some
important concepts. But always be referencing past knowledge and
looking for ways to expand the ideas covered in these pages to your
own blockbuster title.

Book Conventions
Throughout this volume, I will be making use of several conventions to assist
you in understanding what I'm talking about, and where.

When we are tackling a tutorial, each step will be numbered:
Step 1: Do this and then,
Step 2: Do this. When you're finished,
Step 3: Try this.

Usually, these instructions will be tied closely to screenshots to help illustrate
the step, or the results of a step.

Because the goal of this book is not to simply recreate the game presented
here, but to equip you with the skills and tools to create your own game after

xix

Introduction

finishing this tome, there will be frequent “breaks” in the tutorials to do some
explaining. Watch for:

Tips and Tricks
Warnings and Pitfalls
Why?

These will be the important notes that get you beyond the confines of the
tutorials, and on to your own million-dollar games.

Finally, navigating through the programs can be tricky (especially in Maya with
its multiple nodes). Drop-down menus will be indicated with the following
format:

Modeling>Mesh>Combine (Options)

This is shorthand for, “In Modeling mode, go to the Mesh drop-down menu
and look for Combine, and choose the Options box.”

In Unity, this will be a little simpler since there are no disappearing drop-down
menus like there are in Maya. However, it will be important that we are aware
of what things need to be typed—as in code. Any script we type will be listed
and formatted like this:

function Update(){
SetActiveRecursively(true);

}

Occasionally, there will be some salient information within the code that
is important to notice. When this is needed, the text will be bolded (you,
however, would not need to use bold text when writing the script):

function Update(){
SetActiveRecursively(true);

}

Similarly, new ideas, concepts, or keywords will be bolded within the body of
the text.

A Note about the Approach
I come from an art background. I have a BFA in Theatre Set Design and an MFA
in Graphic Design with an emphasis in 3D animation. I think like a 3D artist
and I teach 3D artists. Because of this, this book and its approach to learning
Unity is constructed through the lens of a 3D artist. This does not mean that
there won't be programming or scripting—in fact, scripting is a critical part of
the game development process. Without it there is no game, and so it cannot
be ignored, and will be covered heavily in this volume. Even for artists, it's best
to surrender now and embrace the power of scripting within a game engine.
However, the entire process will be covered from the viewpoint of a 3D artist.

This will be very effective for some readers, particularly those who are coming
at the game development cycle from an art or 3D background. But it may

xx

Introduction

include some information that might be too basic for those approaching this
from a programming background. Not to worry though, the first part of the
book is 3D focused, and so there should be plenty of new material for those
coming from the scripting world.

So there it is. Tear into it. Be sure to read the theory and do the homework.
It will be fun to have a completed game when you finish this book, but not
nearly as fun as utilizing the tools and techniques we explore to create your
own 3D interactive and engaging gaming masterpiece!

Chapter 1

1
Creating Games with Unity and Maya
© 2011 by Elsevier Inc. All rights reserved.

Game Production Process

Chapter 1

Describing the game production process is actually a bit tricky, partly because
it is different for every team and different for every budget. But also, the reality
is that a team might be, well, you. Indeed, sometimes games are produced by
very small groups of people, and occasionally by a team of one.

However, whether you are a team of fifty working on the next AAA blockbuster or
a team of one creating a student project that you hope will get you on that team
of fifty, there are some specific steps that need to happen to create a playable
game. How successful you or your team are at these steps, and completing the
steps in a timely manner, will play a big role in how efficiently the project comes
together and how successful the game ultimately appears and plays.

The specifics of team management and money management and even time
management are really out of the scope of this book (along with marketing your
game and getting funding). However, understanding what needs to happen in
what order will help you as you assemble your team or build your project.

The Team
“The Team” refers to the Design and Production Team—the group of people that
actually make the game. This doesn't include the important roles of publishers,
financial teams, marketing teams, or even quality assurance teams. Although all

2

Creating Games with Unity and Maya

of these are important for a profitable game, the focus of this book is learning
the technology, so the production of the game will be the focus.

Generally most game production teams (or development teams) contain
people in the following roles:

Designer: The Game Designer is the head of the creative vision. He or she
must be artistically able and technically proficient. He is able to straddle
the aesthetic and programming ends of the spectrum. More importantly,
he understands and often has authored the goals of the game, the genre
of the game, the game play, the rules and structure of the game, and any
other game mechanics. The game designer typically communicates these
goals through a document called a Game Design Document.
The Game Design Document is often predicated by a Game Proposal
Document before it can be created. Usually, a game designer has
substantial writing skills to be able to communicate the vision of a game.
This Game Design Document becomes the bible upon which the other
designers reference as the game production goes on.
The structure of this document is out of the scope of what we are
covering here, but there are multiple references and examples online of
such documents. Further, Game Design Documents should be specific
to an organization, financial structure, and even work culture. However,
although we might not cover the details of what this document is, what it
does is relevant.
Now a Game Design Document is rarely set in stone. The scope of a game
and the features of a game often have to be adjusted due to time, talent,
or budget reasons. However, as the production cycle grinds on, effective
management and distribution of this document becomes important to
keeping the team on task. I have personally witnessed many times where
days and even weeks of labor were wasted because team members
failed to reference—and managers failed to confirm—that they were
referencing a Game Design Document.
Even if you are working as an expansive team of one, developing an
internal Game Design Document (even if it is a bulleted list, or a flowchart
sketch on your whiteboard, or a list on the back of a napkin) can help you
keep an eye on the prize and avoid pitfalls like feature creep, where new
options forever find their way into a game and keeps it from ever being
released.
Mechanics Engineer: Games have mechanics. Mechanics are the rules
by which the game functions, including things like balance in power,
physics illustrations, interaction between player and game, and interplayer
interactions. Game mechanics are part of every game from checkers to
the most sophisticated of PC first-person shooters to training modules for
nuclear inspectors. The mechanics engineer (or Game Mechanics Designer
as he or she is sometimes called), works through the details of how the
vision outlined by the lead Game Designer can be implemented best. Often
this team member comes from a programming or scripting background.

3

Game Production Process

A quick note on this: The academic community has been studying the
issue of game play and game mechanics fairly rigorously in recent years.
It is still a developing field of study, and is a bit of a moving target as the
rules of engagement with your game continue to change. However, if
you want to get serious about understanding what makes games fun and
how game mechanics can help this, there is an ever-increasing library
of research that explores this. In the long run, researching this literature
will be worth your while if you want to be a successful game designer or
mechanics engineer.
Level Designer: Justifiably, this position has become more and more
prominent in the game production process. This designer creates the
environment in which the gameplay takes place. He works carefully with
the Game Designer and Mechanics Engineer to ensure that the space he
is designing both remains true to the vision of the designer and allows
the space for effective game mechanics. These designs are carefully
considered and designed and almost always begin with conceptual
sketches or paintings and detailed floor plans that lay out where puzzles,
challenges, pitfalls, and enemies appear or are interacted with.
Character Designer: This is often one of the sexiest roles because this
person designs the characters. These characters are based upon the
goals defined in the Game Design Document, and almost always start on
paper with drawings. Conceptual sketches provide quick communication
devices before the considerable modeling time is undertaken. These
sketches also can provide a visceral response to a concept that often a
T-pose-modeled character lacks.
Animator or Motion Designer: Animation is incredibly important in
games since it seems to be the thing that draws our attention. Ironically,
even complex games have a fairly limited collection of animations that
are cycled as the game is played. Some characters have as many as
100 different moves, but most have much, much less. The animator
will create in-game animations that are cycled, but will also often
be responsible for cut scenes and more “meaty” assignments where
traditional noncycled animation is used. Very large studios often will
have separate cinematic (cut scenes and intro animations) departments
that are creating higher-rez, prerendered animations.
Writer: Due to strikes in recent years, there has been a migration (at least
temporarily) of film and television writers to the game industry. Writing
for games is certainly different than any other medium, and too often
people who have no business writing for games do so—and the results
are usually cliché at best or downright corny at worst. However, a good
writer can certainly assist in making a game experience more immersive
with believable and engaging dialog, narrative, on-screen elements (think
character correspondence or journals), and even in-game verbiage that
lets the player know what to do. Often the writer is used for only part of
the process since there is usually insufficient work to keep one occupied
through the entire production cycle.

4

Creating Games with Unity and Maya

Sound Designer: Playing a game with the sound off has its charms,
but anyone who has played a game on a big screen TV, with the lights
off, and the sound pumped way up (or on headphones) knows how an
effective sound design creates perhaps more ambiance than any visual
elements of a game. Too often in all aspects of 3D animation, students
or beginners treat sound and music as an afterthought, but it never is in
big-budget games.
Sometimes for students there are budget restrictions that prevent custom
soundtracks from being used. However, thinking early of sound effects and
music will allow for proper timing and can even influence visual choices.

The Tools and Unity
Now that we have generally looked at who is on a team, it is important to talk
through what the tools of that team are, and specifically how Unity fits within
that tool box.

Unity is classed as a game engine. What this means is that it is the technology
that drives a game. The way to think about it in production terms though is
as an “assembler.” Unity itself is generally not used to create assets (although
there are some things like particles that are created within Unity itself).
Almost all the art assets are created outside of Unity itself—the 3D models
are created in a 3D application (Maya, Cinema4D, Blender, modo, 3DS Max,
Lightwave, etc.), the texture assets are made in Photoshop or BodyPaint, and
even the scripts are actually written in some other application (UniSCTE on
a PC, Unitron on the Mac, or some other scripting tool all together). All these
assets are imported in Unity through a quite painless process where you are
then able to combine these assets to create the game.

So, you assemble games in Unity, but most games—and all games with any
level of visual complexity—make heavy use of lots of other applications in the
process. Just as there are lots of different ways to create 3D assets (some will
choose Maya, others 3DS Max, for instance), there are multiple game engines
as well. Unity is particularly flexible and accessible; that is why it is the tool
of choice in this book. But be aware that there are lots of other methods of
creating games (Unreal Engine, CryEngine, Source, etc.).

Teams of Teams and Pipelines
Often, a production team will be broken into two teams, an art team
(sometimes called “Creative”) and a technology team. The work of both is
critical for a successful game, and communication between the two teams
better ensures a smooth process.

One of the benefits of working as part of a team—or a team of teams—is
that assets need not be created sequentially. The technology team doesn't
need to wait for creative to finish up their work before starting on scripts.

5

Game Production Process

Often, technology is being developed and has been developed when the
creative team delivers certain assets that are then plugged directly into
the game.

However, if you are working alone (and the assumption is that most readers
of this book are doing just that) creation of assets in an appropriate order will
make the development process much more efficient. So to begin, let's look at
the assets needed for the game produced in this book.

Assets

Once the Game Design Document is completed, the lead designer will need
to start working out what assets need to be created and when they need to
be done. Assets can be a lot of things: 2D elements like GUI and interface
designs, texture files, 3D models, sound files, animation clips, as well as things
like scripts and other mechanisms that drive the game. For this book, we will
focus on two categories of assets: art assets and scripting assets.

Art Assets

For the tutorials covered in this game we will need three art-based assets:
models, textures, and animations. The models and animations will be created
in Maya while the textures will be created in Photoshop, but linked to the
models within Maya. Other visual elements like lighting will take place in both
Maya and Unity (depending on which version of Unity you are using).

Technology Assets (Scripts)

Unity allows for mechanics to be built with a variety of scripting
mechanisms. Most reference or discussion you will find will be in either
Unity's implementation of JavaScript or C#. These scripts are attached to an
object or objects within your Unity scene and drive the interaction between
the player and the game.

There are many approaches for tackling the scripting problem. My software
engineer colleagues that I work with extensively here make heavy use of C#
and drive nearly everything in the game (including creation and placement
of assets) with these scripts. They understand the structure of the game when
they can see the script that is doing it.

The scripts we will be creating will primarily use Unity's version of
JavaScript, and we will (with a few instantiation exceptions) hang
these scripts off of objects we manually place within the scene. We
use JavaScript because historically, the documentation's examples are
primarily in JavaScript, and referencing Unity's documentation in the
future will be a necessity when moving beyond the scope of this book and
it will be important to have an established vernacular with the provided
documentation. Likewise, much of the discussion that takes place on

6

Creating Games with Unity and Maya

forums uses Unity's version of JavaScript as the vernacular. We will hang
the scripts off of objects (rather than allowing the script to do this for
us) because it is a more visual approach and often easier for artists to
understand what's controlling what within the scene.

In either case, the technology assets are just little pieces of ASCII text that
harness the power of Unity and allow interaction to be created and controlled.

Order of Operations

In this book, we will be creating all of our art assets first, importing them
into Unity as we go, and then we spend the last part of the book creating
the tech assets. However, it is important to note that this process of art first,
script second is certainly not a rigid one. Unity is very good at allowing
art assets to be updated and changed along the way. Sometimes it takes
a little bit of reattaching scripts to new objects, but with careful naming,
even this is minimized. I find in my own development process, the back and
forth between my 3D application and Unity is frequent and important.

So in this way, the process outlined in this book is quite unlike a studio's
workflow. In a studio, although the scripters will do most of the bug
squashing and wrapping up, they will start on developing scripts and
programming solutions long before the artists have finished their work.
Further, in your own development process, you will find that spaces you
thought would work well for a particular challenge or battle don't work quite
as planned. Or that a character doesn't quite convey what you had planned.
So you go back and rework in 3D in the middle of your scripting process.

So while our linear process here lends itself to learning Unity well, it likely will
not be the way you work on your own projects.

Conclusion and Introduction to Incursion
But enough talking about making assets and games; let us get to it. For the
game presented in the coming pages we will assume that the game designer
(me) has already done the conceptual work and written a stunning Game
Design Document that is so perfect that it needs no revision. With this fantasy
in mind we can create the specific assets we need to create our game, and in a
sure-footed manner write the scripts that enable the game to function.

The game will be called Incursion. The basic narrative is that you—Aegis
Chung—are an American post-cold-war warrior sent on a mission to infiltrate
an abandoned Soviet facility and retrieve a stolen classified device. The
equipment was handed over to the Soviets by a traitorous scientist who is
now living in Russia. The Soviets were unable to capitalize on the technology
and left it in an abandoned submarine service base. Although abandoned for
years, the old security systems are still running off and on. Several unmanned
mechanisms like cameras and other security devices are left to monitor the

7

Game Production Process

premises. You must bypass these security systems through whatever means
necessary (espionage, alternate paths, hacking, explosives) to gain entry to
the inner lab where the device is stored. Along the way, all your training (both
physical and mental) will be tested (Figure 1.1).

For you as the game development team, this will provide opportunities
to model a character, a level design, and various instrumentation. As the
scripting team, this game will allow for extensive mini-games as you get a
chance to build in the puzzles that are the security devices the player must
bypass. All in all, there are a lot of learning opportunities with this game.

Note to teachers and students: To make sure that the game stays appropriate
for larger audiences, although we will use a gun to defeat certain obstacles,
there will be no shooting of people.

A Note on Research
Often people like to pretend that they can sit down and create beautiful
environments or characters that flow beautifully out of their minds, through
their pencils onto the paper. I suppose there are some character designers
who can do exactly this, but only after years of study and observation of
anatomy, people, animals, and other designer's work. For most of us mortals,
before great work can emerge, we have to research similar locations, feelings,
and styles.

The space on which we will be basing our game's style is really an abandoned
Soviet nuclear submarine base. The base is in Balaklava, Ukraine and has some
really fine reference photos online. Because I don't own the rights to these
images, they can't be included in the book; however, before we get started, be

Figure 1.1 Screen shot of final
in-game experience.

8

Creating Games with Unity and Maya

sure you do a quick Internet search for “balaklava ukraine submarine” and you
will be led to a great collection of web sites with background information, and
loads and loads of great photographs.

It will be worth your while to collect images of the space, as you'll recognize
them coming together in the book, and these additional reference photos
will be valuable. In any case, good research provides information about
spaces that most people simply won't include if they are “building it from
their head.” There's no need to copy directly from your research, but let your
research inform your choices as you build any space. Research, if followed,
is guaranteed to bring an added level of sophistication and believability
to any project. When you move on to create your own game from scratch,
be sure you are providing some real visual meat to your project by doing
appropriate research.

And on We Go…
So hang on, be sure to check out the justification of each tutorial before
diving in, and let's get creating.

9
Creating Games with Unity and Maya
© 2011 by Elsevier Inc. All rights reserved.

Asset Creation: Maya
Scenography Modeling

Scenography Modeling within the Game
Design Pipeline
The game pipeline—specifically, the Unity game development pipeline—
can be a fairly flexible thing. There are not that many elements that must
be done in a sequential order. Many can be done concurrently, and often
the order of steps can be leapfrogged and rearranged. While the art team is
developing models, textures, and animations, the tech team (i.e., scripters
and programmers) can be developing the technology and mechanics that
drive the game. So the things that happen in the following three scenography
chapters do not need to be complete before the programmers do their thing
(or before you do the programming thing).

In fact, in our studio, we almost always create quick mock-ups of the
level design and even objects the player will interact with, and throw
those over the fence to the programming team. This gives them a chance
to work with scale, and have something to work with as they work out
the technical wrinkles. Even if you are a one-man studio, this is a very
effective strategy because you may find that the level you had planned

Chapter 2

10

Creating Games with Unity and Maya

doesn't work quite as well as you had hoped when laying it out on paper.
Once you walk a space, or try playing the mechanics, you may find that
the space you had planned may not be the best. If you've just got quick
mock-ups, you can quickly adjust before investing all the time into the
scenography asset creation.

However, in a book setting we need to work largely in a linear progression.
So for these tutorials we want to imagine that the prototypes have yielded
results that have cemented the level and character design. And so, with the
approval of the game designer, we are moving forward with our art asset
creations.

Why Maya Tutorials?
Unity is the last step in the chain of technologies that creates the game.
Without it, an effective game can't be made. But the success of the game will
also rely heavily on the effectiveness of the assets that go into it. No matter
how well the chef knows the tools and the oven when baking, if he or she
uses poor quality ingredients, the cake is not edible.

I've had many students who, when working in Unity, are unable to create
the game they envisioned because of poor choices or techniques in their
3D application of choice. General 3D techniques are not necessarily the
same as 3D game techniques. Creating economic and correctly structured
3D assets and textures is an absolutely critical part of creating games
in Unity.

Why Maya? Well, Maya isn't even my favorite 3D package. However, it does
have an amazing market penetration and without a doubt is one of the
most powerful 3D tools out there. Ironically, modeling is not one of its
strongest points, but for our purposes its polygonal modeling tools will
do just fine. Among other parallels, the default camera manipulation and
object manipulation tools in Unity have identical keyboard shortcuts to
Maya. Additionally, Maya has some very powerful character animation
tools, which we will use, that import via FBX very easily into Unity.
Ultimately, I chose to create our assets in Maya because the large base
means there are lots of people who know how to use the software and you
will have lots of options to further your skill set beyond this book once you
are done reading it.

Even if you are not a Maya user and are capable in some other 3D app, take
a quick look at these chapters to make sure you make note of topology and
texture creation and how to extrapolate those techniques into your own
application. It will make your game assets stronger, tighter, and better to work
within Unity.

So here we go. In the following few chapters the art assets will come
together, and these assets will be imported into Unity to allow for
exploration and refinement. Although these are largely Maya-based

11

Asset Creation: Maya Scenography Modeling

tutorials, the assumption is that you are familiar with the basic Maya tools
(Move, Scale, Rotate) as well as how to select component parts (vertices,
edges, faces). If you don't understand these concepts, it will be worth your
while at least to watch the introductory videos that are included with your
Maya installation.

A Bit of 3D Theory
Although we assume you know something about Maya's tools, it will
be vital that the basic theory of 3D is understood. Without this baseline
understanding of how digital 3D works, it will be impossible to appropriately
construct assets to be used in a game framework.

Figure 2.1 shows the anatomy of the polygon—the building block of 3D. The
main form that we think of as a polygon is referred to in Maya as a face. The
face is what the video card (and thus we) “see.” The face's shape is editable by
the components that surround it. The face is surrounded by edges that are
joined by vertices (singular form is vertex). Most of these sorts of concepts
are covered in some form of junior high geometry; the one other important
concept and part of a polygon is the normal. The normal defines the front of
the polygon. In Figure 2.1, this is indicated by the green line coming right out
of the middle of the face. Understanding that faces have normals is important
since most game engines save processing power by only drawing the front of
a polygon. If the camera is behind the polygons (if the normal is facing away
from the camera), the polygon is invisible.

Three-dimensional forms in a 3D application are created when collections of
polygons are put together. Think of polygons as unbending sheets of metal.
Where the sheets of metal connect can hinge, but the polygon itself cannot.
This means that the more polygons present, the more places the mesh can
bend, and thus the more complex the form can be. Take a look at Figure 2.2 to
see how a form goes from six polygons to 32 polygons to 100 polygons, and
the resulting forms that are possible.

Forms that are seen in a 3D environment are drawn by the video card in your
computer via a rendering engine of some sort. The rendering engines see
shapes by recognizing polygons. To be more specific, most rendering engines
actually see only triangular polygons (sometimes called tris). There are several
ways to construct these tris; Maya's techniques include NURBS, Subdivs, and
straight polygonal modeling. All of these are different methodologies of

Figure 2.1 Anatomy of a polygon.

12

Creating Games with Unity and Maya

constructing forms of assembling polygons. Some methods are derived from
curves; others work along the line of creating polygons directly. But at the end
of the process, all the methods' results are turned into triangles by a process
called tessellation, so that the engine can see them and the video card can
draw them.

Rendering

This drawing of polygons and the textures and lighting associated with them
is called rendering. There are two kinds of rendering: software and hardware
rendering. Software rendering is what commonly is used in television and
film projects. The scene is built within a 3D application including lights and
textures, and then the CPU is engaged to draw the complex interaction of the
objects, colors, and lights in the scene. Because the results are displayed later
(not in real time), if it takes a second for a frame to be rendered, or a minute,
or even an hour per frame, this is acceptable. The sequential stills that are
the output of this process are put together via a video editing package, and
watched as a moving image.

Hardware rendering is much different. Games are in this category because
the video card renders the polygons within the digital space to represent
3D space. The hardware draws what is on the screen (including all the objects,
textures, and light) and needs to do so at many times per second. Generally,
if players are getting much below 30 frames per second, they notice the
choppiness of the game.

So how does a computer draw 30 frames per second of one project, but one
frame every 30 minutes of another? The answer is simply the size of the data
set and the hardware dedicated to handle that set. For projects that will not
be rendered in real time, the amount of data can be much higher. The number
of polygons can be much more, the size and number of textures bigger, and
the complex calculations of light more sophisticated. In real-time situations
(hardware rendering, with dedicated hardware chugging away on this data
set), the amount of data the video card deals with is much, much smaller.

Figure 2.2 More polygons means
more places to bend. This allows for
more rounded forms, but it requires a
bigger data set.

13

Asset Creation: Maya Scenography Modeling

Video Cards

Video cards are a big part of the “hardware” in “hardware rendering.” Video cards
come in lots of different configurations and power combinations. The intricacies
of how a video card works are varied and cards that seem the same (share
the same amount of video RAM) may not actually be identical in their ability
to draw assets. However, for our purposes we will oversimplify and say that
“bigger” cards (cards with more video RAM) are able to draw more information.

“More information” can include a lot of things: more polygons, more textures,
or larger textures. It can also mean dynamic lighting visualization. In all
cases, a video card being able to render more information means that the
complexity of a scene can increase as the video card gets larger.

At this point it is worth noting that the cost of gamer's video cards have become
a very manageable cost in most computers. And in fact, when students come
to me complaining about slow working conditions on their home computer,
the first suggestion I almost always make is to upgrade the video card. One GB
video cards can easily be had for less than $100 and it's a quick and easy way to
empower a computer to show more polygons more quickly.

The technology embedded in video cards evolves so quickly it would be
foolish to try and explain it all in a book—as soon as it was published the
specs would be outdated. However, generally, there's no need to buy a
workstation card—the gamer's cards usually do quite reasonably and come
with a substantially cheaper price tag.

In my 10-plus years of using Maya, I generally have had better experiences
with NVidia cards. Either ATI or NVidia seem to get along well with Unity;
but NVidia has provided the most predictable experience in authoring
3D elements when using Maya. This is based largely upon anecdotal evidence
of my systems and the systems of a few hundred students, but when buying
or upgrading a card to work with Maya, NVidia has worked better for me.

Limitations and Optimizations for Games

So what does this all mean? With video cards getting bigger and better by the day
and their price tags continually dropping, we should be able to create shapes
with reckless abandon with no concern for the data set we are creating. Right?

Well, unfortunately, no. For years, the implied promise of instantaneous
output of trillions of polygons always seems to be just over the horizon.
Computers get faster, video cards get bigger, and it seems like the process
of drawing polygons would become a nonissue, one that just happened
flawlessly behind the scenes. However, what has happened is that as
computers got faster new things became possible. Suddenly, game
engines could start using dynamic lighting (a light bulb swings around
in the scene and the objects and walls reflect this change), reflections
became the norm (which really means that everything in the scene gets

14

Creating Games with Unity and Maya

drawn twice, essentially doubling the number of polygons in the scene),
and new visual effects like particles and complex shaders became used
and expected by gamers. As the hardware got more powerful, we simply
asked more of it.

Rules of 3D Game Modeling
So now that we've established that there are indeed limitations to what
computers can show, it's easy to see that limits or rules need to be heeded
when creating assets for unity. We will visit new rules with each step (there are
specific considerations for texturing, for instance, that we won't cover until
later). For this first tutorial, the two rules are:

1. Polycount matters.
2. Topology is critical (quads are best).

Polycount Matters

All the dynamic rise in hardware means that the visual sophistication of games
continues to rise at an exciting pace. It also means that carefully creating
our assets to allow for room to create these great effects remains the reality.
Ultimately, effective use of the number of polygons in a scene (polycount)
will be critical to both the immersive impact of the game and conversely, the
performance in frame rate at which the game will play. Now, with most recent
machines, polycount is much less of an issue than it once was. And frankly, usually
if a game is dog-slow, it isn't a case of the sheer number of polys—it's usually
related to other texture problems or other issues related to draw calls (more on
this later). However, keeping an eye on the number of polys in your scene remains
one of the pressures on a video card, and keeping a reasonable poly-budget is
important (especially if ultimately developing for any mobile devices).

This can sometimes be a tricky balance. Figure 2.3 shows two sphere-like objects.
The one on the right has 1000 polygons and the one on the left has 20. Sure
enough, the 20-polygon model will require less video card power to draw, but it
really doesn't appear to be a sphere anymore. Carefully dialing the details up to
effectively communicate the shape while keeping the number of polygons low
enough to draw quickly is part of the art that is game asset creation.

Figure 2.3 Varying polycounts can
widely change the draw on a video
card, but optimized too much moves
away from the form.

15

Asset Creation: Maya Scenography Modeling

For our uses we will be focusing primarily on polygonal modeling techniques
(the techniques using the tools in Maya's Polygons mode). The other methods
of NURBS (non-uniform rational b-splines) and Subdivs are too indirect in their
creation of polygons, and thus we lose control over polygon placement and count.

Topology

Topology refers to the structure or organization of polygons on a surface.
Topology matters. Correctly structuring polygons makes a huge difference
in how the mesh can be deformed later (with things like joints), how the
form interprets collisions in Unity, and how easy it is to lay out UV maps.
Much of topology concern centers around the tessellation process—the
process of converting the form into three-sided polygons (tris) when it
comes time to render.

Maya, like most 3D software, allows the user to create polygons of any
number of sides (usually called n-gons). This is relatively new in the 3D
production history. Not many years ago, 3D software would allow polygons to
be constructed only as tris or quads (four-sided polygons). Tris are pretty hard
to work with and manipulate quickly, so quads became the preferred method
of organizing polygons. To allow artists to more fluidly create forms, most 3D
apps began allowing the user to pay no attention to the number of sides of a
polygon as the form was built. However, woe be the modeler who doesn't pay
attention to the construction of his polygons. Five- (and more) sided polygons
cause all sorts of problems down the road.

The issue is in the tessellation process. When the 3D software (or game engine,
like Unity) converts a 3D form into all tris (which it must for the video cards to
draw them), there are some shapes that are easier to tessellate. A quad is relatively
easy, since it just splits it in half from vertex to vertex (Figure 2.4). However, the
tessellation of the n-gon is often unpredictable, especially from a game asset
creation standpoint. It does it for sure, but the resulting mesh is a mess (Figure 2.5).

This messy tessellation that can be seen in Figure 2.5 may not seem to
be a big deal here, but when these polygons are subjected to distortion
techniques (like bending a mesh with joints), suddenly the edges where
things can actually bend end up being in unpredictable places and result in

Figure 2.4 Tessellating a quad is
pretty straightforward. Just split it
corner to corner to create two tris.

16

Creating Games with Unity and Maya

unpredictable distortion, and even worse pinching of the mesh. Additionally,
when we get to creating UV maps, quads are much easier to work with than
any other form.

So the first consideration we need to always keep in mind when modeling
is to work with quads. Quadrangles will always make for easier modeling
and for the most predictable results as we go. Don't succumb to Maya's
temptation to allow for the creation of n-gons; they are nothing but trouble.

On to the Tools

Now that we've established the reason for our two rules of game modeling and
discussed the importance of them, we can start to use them in action. In this
chapter we will complete four tutorials that will culminate with a completed
level (none of the mini-puzzles, just the architecture) in which our game will be
set. At the end of this chapter, the player will be able to walk through the unlit
halls of the Soviet facility. The tutorials will allow us to model, UV, and texture
our asset. Finally, the last tutorial will bring the completed model into Unity.

Before we get started, make sure to set up a new Maya project called
“Incursion–Maya.” If you are unfamiliar with setting up projects (a vital part
of creating assets with Maya, be sure to check out Appendix A, “Creating and
Setting Maya Projects” that is housed on the supporting website (http://www.
Creating3dGames.com).). Then move on to the tutorial.

The facility we are about to model is large. It was used to service nuclear
submarines during the Cold War, and includes multiple levels and many,
many hallways. In the following tutorials, we will not be modeling the entire
complex or even the entire level that we will be using in the game. Instead, we
will be targeting a few specific sections of the facility that are either indicative
of the aesthetic style of the level, or that help illustrate a particular technique
of modeling that is important to understand.

Do note that we will be using a much larger version of the facility in the
construction of the game. We will be building parts of the game in these
tutorials with challenges to create the rest included at the end of the chapter. If
you're confident with your modeling skills, and don't want to have to create the

Figure 2.5 Working with an n-gon
makes for messy tessellation that can
even be different from 3D application
to application and from game engine
to game engine.

17

Asset Creation: Maya Scenography Modeling

remaining parts of the level, you can simply use the versions that are included
on the web site (http://www.Creating3dGames.com). However, if you're looking
to make sure your game modeling skills are tight, be sure to attempt the
challenges at the end of the chapter and complete the entire level by yourself.

Tutorial 2.1: Game Level Modeling:
The Entryway
The entry of the Balaklava facility is a great place to start. First, the parts that
make up the entry are largely rectilinear. Anything man-made and rectilinear
is easily created in 3D applications. Second, all these rectilinear forms are a
perfect trap for beginning modelers—a trap to create shapes that neither
produce the appropriate sense of age or dirt. Over the course of the tutorials,
we will look at taking a simple geometric space and making it look like it's
been around for a while (Figure 2.6).

Step 1: Double-check you've got a project set up called “Incursion–Maya.”
If you don't, or don't know how, check out Appendix A.
Step 2: Choose File>Save Scene (Options).
Step 3: Check Incremental Save and click Save Scene.

Why?
Incremental Saves are insurance policies. What happens is that each
time a scene is saved, Maya makes a copy of the scene from the last time
it was saved and saves it to a folder called incrementalSaves. This does
mean that there are lots of copies of your file, but it makes sure that in
the catastrophic case of corrupted files you have a backup. Even if you
run out of Undo's, an incrementalSaves folder means you can go back
in time to what you wanted or needed. Every single semester I have
taught, incremental saves have saved at least one student's project.

Step 4: In File Name: enter EntryWay and click the Save button. Note that
if the project has been defined correctly, you are in the Incursion–Maya\
scenes folder.

Warnings and Pitfalls
I know it's tempting to
skip this step since you're
anxious to get started.
Worse, I see lots of
students who don't quite
understand this step
and skip it because it
doesn't seem important.
But keeping track of
your assets is critical to
success in projects as
diverse as games. Create
and Set your project in
Maya. You must know
that your texture files
are in the sourceimages
folder, and that your
scene files are in your
scenes folder.

Figure 2.6 Completed model at the
end of this tutorial.

18

Creating Games with Unity and Maya

Columns Base Shape

Step 5: Create the base shape of the cement columns with a polygonal
cube (Create>Polygon Primitives>Cube). Using the Channel box, make the
cube Width = 1, Height = 16, Depth = 1 units by adjusting the polyCube1
INPUTS (Figure 2.7). Make sure the Subdivision Width, Height, and Depth
is set to 1. In the Outline (Window>Outliner), double-click this new pCube
and rename it EntryWayColumn.

Why?
X = 1 Y = 16 and Z = 1? How come? Well, no reason actually, except that it's
a nice round number. Scale between apps and Unity is always a little tough
and something that we will tackle more specifically in Unity. In Maya, absolute
sizes are frustratingly difficult to keep track of, so we will focus on relative
sizes. However, it is clear from the research that the pillar's cross-sections are
square, and so numerically ensuring that this is so is much more accurate than
eyeballing the thing. The Subdivision settings are set to 1 because we only
need one subdivision to describe the shape, and any more is a waste of polys.

Step 6: Create a base using the Extrude tool to widen the base and give
it depth (Figure 2.8). As a review, right-click on the object and select Face.
Select the bottom face, choose Polygons>Edit Mesh>Extrude, and use the
manipulator handles to scale out the first extrusion. Repeat the process
and use the manipulator handles to add depth.

Figure 2.7 Creating a long tall cube
as the basis of our pillar.

19

Asset Creation: Maya Scenography Modeling

Why?
The shape here is really a long cube on top of a short squatty one, so
why not just create two cubes? There are several reasons for this. First,
when we create textures for this object, it will be much easier if we have
one solid mesh (more on this later). Second, and more importantly, if we
have one object that defines the base and shaft of the column, we have
half as many objects to define the same shape. Less objects mean less
Draw Calls and thus a faster game (more on this later too).

Step 7: Delete the bottom face.

Why?
We will never see that bottom polygon. But, this polygon will take up
texture space (which is at a premium in games) and add to the overall
polycount. Yes, it's only one quad (two tris), and doesn't seem like it
would be a big deal in the scheme of a big game, but if there are going to
be many duplicates of any object, cleaning up faces that absolutely won't
be seen can pay dividends for over 100 duplicates. Taking time to keep it
clean now will save optimization time later.

Step 8: Repeat similar process to create column capital (Figure 2.9).

Figure 2.8 Creating column base.

Figure 2.9 Capital created by extruding faces.

20

Creating Games with Unity and Maya

Dock Creation

Step 9: Begin creation of the cement dock area in similar fashion. Start
with a cube (renamed in the Outliner to EntryWayDock) that is X = 20,
Y = 4, Z = 60 (this can be adjusted later as we build), and extrude the faces
as shown in Figure 2.10.

Step 10: Continue working around the dock making sure to make
extrusions at locations that will allow new extrusions that will allow for
holes (Figure 2.11).

Tips and Tricks
Deciding when to make extrusions is a skill you build up over time and
with experience. I find that sketching out the shape I want to make on a
sheet of paper, and then sketching out the places that extrusions would
need to be made, helps me quite a bit when it comes time to do it digitally.

Figure 2.10 Beginning to lay out
dock.

Figure 2.11 Continuing dock layout.

21

Asset Creation: Maya Scenography Modeling

Step 11: Here's where things might get a bit tricky. What we want to do is
make sure we have new locations to build outcroppings of the dock. Look
carefully at how extrusions are made to allow for future extrusions that
make the stepping out. Notice that this creates some pretty inefficient
topology (geometry where there needn't be), but we will clean that up in
a bit (Figure 2.12).

Tips and Tricks
This part of the process is really about roughing out the shape. It
won't be perfect right away, so don't worry too much about being exact.
When creating this tutorial, I ended up with lots and lots of Undo's to get
back to a place that would allow me to more efficiently create the form.
3D creation is a process of stops and starts to be certain.

Step 12: Create a stepped section by deleting faces and filling them in
with the Append to Polygon tool. Select the faces on the far corner (as
shown in Figure 2.13) and delete them. This will leave a hole in the mesh
that needs to be filled. One way to fill this is the Append to Polygon tool.
To use this tool, be sure to be in Object Mode (right-click the object and
select Polygons>Edit Mesh>Append to Polygon Tool) and then click an
edge of the hole. Purple arrows will appear that show the path of the new
polygon that will be created. Click these arrows until the face is filled and
press Enter. Repeat for the other plane that needs to be filled.

Figure 2.12 Dock continuation.

Figure 2.13 Deleting polygons
and filling holes with the Append to
Polygon tool to create stepped forms.

22

Creating Games with Unity and Maya

Tips and Tricks
When using the Append to Polygon tool, usually there is no need to go all
around the outside of the shape that is being filled. It is faster to click one
edge, and then click the edge opposite that edge and press Enter. This fills the
hole quickly as it figures out the other edges are included in the function.

Tips and Tricks
Notice that after filling the hole, there will be some black chunks across
the new planes that have been made. This is happening because the new
polygon has soft normals, which are great for organic shapes, but not so
great with rigid forms like this dock. To get rid of these, select the object
and choose Polygons>Normals>Harden Edge.

Step 13: Rotate the front of the dock. Right-click the dock and choose
Vertex from the hotbox menu. Marquee select the vertices across the front
of the docs as shown in Figure 2.14. Choose the Rotate tool (keyboard
shortcut is the E key), and then (to move the axis of rotation) press and
hold the D key on the keyboard. Move the manipulator handles back
to the back corner of the collection of vertices that have been selected.
Release the D key and rotate the vertices from this new axis just defined.

Tips and Tricks
This rotation trick or moving the axis of rotation (via holding down the
D key or by pressing the Insert key) works in Object mode too. The axis
of rotation can be moved to wherever it needs to be for a given object.
In our case, it's temporary for a selection of components (vertices in
this example), but when done while in Object mode, the object will
“remember” this new axis location.

Dock Optimization

Step 14: Optimize the mesh. In the process of outlining this shape, we
have quickly made some shapes that could be optimized. As pointed out
earlier, polycount is rarely the problem with slow games, but it is certainly
one of them. Especially if you are developing for iOS (iPad, iPhone, iPod
Touch) or Android, keeping a tight grasp on polycount will be critical.

Figure 2.14 Rotating a collection of points from a new axis of rotation.

23

Asset Creation: Maya Scenography Modeling

To optimize what we've created, we will be deleting edges that aren't needed
and rearranging some of the edges that exist. Figure 2.15 shows one such
edge that we should delete. Double-click the edge that will attempt to select
an edge loop and then either press Delete on the keyboard (and then select
and delete the vertices it leaves behind), or Ctrl-right-click and choose Edge
Loop Utilities > To Edge Loop and Delete (which will automatically delete the
left-behind points).

Step 15: Adjust topology to ensure four-sided polygons. Look carefully at
Figure 2.16. Note that this top polygon is actually a five-sided polygon. It's
deceptive as sides 4 and 5 at first blush appear to be one edge, but there is
a vertex in the middle where that other edge comes out. In a case like this,
where all the polygons on the top of the deck are on the same plane, this
five-sided poly would likely not cause any trouble; to be sure we will use
another new tool, the Split Polygon tool.

In Object Mode, choose Polygons>Edit Mesh>Split Polygons Tool. This
tool works by clicking and dragging on an edge to establish where to split
the polygon. Usually click an edge and drag along that edge to a point
(Figure 2.17). Click again on the opposite edge and drag to the point opposite
the first. This will create two polygons (a four-sided one and a three-sided
one) where there was once one five-sided polygon.

Step 16: Clean corners. Now that we've used the Split Polygon tool, we
can further optimize our polycount in places that make right corners.
Figure 2.18 shows the result of using the Split Polygon tool to make a new
cut from corner to corner. After this diagonal cut is made, the two straight
edges that used to make the corner can be deleted.

Figure 2.16 Deceptive five-sided polygon.

Figure 2.15 Edge that isn't needed and should be
deleted. Make sure you delete the points it leaves
behind.

Figure 2.17 Using the Split Polygon tool.
Figure 2.18 Optimizing a corner. Split Polygon tool creates
the diagonal which then makes two edges unneeded.

24

Creating Games with Unity and Maya

Tips and Tricks
Be sure that when getting rid of the edges that are no longer needed that
those edges as they continue down the size and bottom of the shape are
deleted as well. Additionally, watch for left-over vertices that should be
selected and deleted as well.

Step 17: Repeat and optimize throughout right corners (Figure 2.19).

Why?
Looking at Figure 2.19, you can count four four-sided polygons that
were involved in the three right angle turns the shape made. This
makes for eight tris. Compare that with the seven four-sided polys
that were there before (14 tris), and you can see how this sort of
optimization can whittle down a polycount in a hurry. Ultimately
there are some tradeoffs you have to make. It takes a bit of time
to optimize, and if you're taking too much time out to optimize
you're eating into your creation time. However, I find that if I do a
bit of obvious optimizing as I go, it saves me from hours of painful
optimization later.

Step 18: Delete the polygons along the bottom. We don't see them, we
don't need them, get rid of them.

There is certainly some other optimization that can be done here, but we have
looked at the basic techniques that are used to make a lean, mean mesh. Feel
free to further optimize, but for now we'll move on.

Step 19: Add the lip to inside of the channel. Select the faces as shown
in Figure 2.20 (the faces that are along the inside of the channel into the
mountain), and use the Extrude tool to extrude them out just a small bit.
This will create a new collection of faces along the dock top. Select these
and extrude up to create the lip.
Step 20: Duplicate and place the column roughly as shown in Figure 2.21.
Yes, I realize it would be better to UV map the column first before
duplicating it. And in fact, these columns we are placing now will
undoubtedly be deleted and replaced by duplicates that are UV mapped.
However, placing these here allow for some important placement of items
in the upcoming steps.

Figure 2.19 Optimized corners.

25

Asset Creation: Maya Scenography Modeling

Backface Culling

Step 21: Turn on Backface Culling in the Persp view panel. In the Persp
view panel go to Shading>Backface Culling and click it on.

Why?
Backface Culling is not drawing the backs of polygons—it culls
(excludes) the backfaces. By default this is turned off in Maya, which
can be a problem because it is always on in Unity. Without it turned
on, you could build a beautiful form that you'd only see the inside of

Figure 2.20 Creating the lip.

Figure 2.21 Placing columns.

26

Creating Games with Unity and Maya

in Unity. Or, create a plane for a wall that was completely invisible in
Unity. Turning this on will give you a better idea of how things will
appear in Unity.

Roof Creation

Step 22: Create a roof. Figure 2.22 shows a collection of cubes with one
big plane across the top. The exact shape of this is unimportant, so don't
worry about that (although it's safe to assume that the long vertical beams
are paired 2×6s and the shorter horizontal ones are 2×4s). The importance
of this is how we are going to optimize this form.

Tips and Tricks
The roof shown in Figure 2.22 has a few additional extrusions (extruding
edges instead of faces to get the outcropping bits), but to start with
it was a single 1 Subdivision × 1 Subdivision plane. Working with
planes (like the top of this roof unit) can be among the most efficient
uses of polys available (a 1×1 subdivision plane is one—yes one—
four-sided poly). However, remember that this one polygon has a
front and a back. Since Backface Culling is turned on, quickly it will
become apparent that the plane disappears if being viewed from the
“wrong” side. Remember that we will be below this roof looking up, so
make sure and either rotate the roof so its face is facing down, or use
Polygons>Normals>Reverse to make sure the plane can be seen when
the player is beneath it and looking up.

Tips and Tricks
When working with something with regular repetitions like this roof has,
use Maya's Duplicate (Edit>Duplicate) and Duplicate With Transform
(Edit>Duplicate With Transform). Create one cube. Ctrl-D will duplicate it,
and if you move immediately in one move (with one click and drag) and
press Shift-D, Maya will duplicate again, offsetting the new duplicate by
the same amount as the last copy was moved. It's a quick way to create
lots of equally spaced copies.

Figure 2.22 Created, but nonoptimized roof.

27

Asset Creation: Maya Scenography Modeling

Step 23: Optimize by combining. Select all of the roof (cubes and plane)
and select Polygons>Mesh>Combine. Then select Modify>Center Pivot.
Finally name it EntryWayRoof.

Why?
In my example, I have 29 rafters and one plane for the roof. This is 30
objects (and thus at least 30 draw calls on the video card). If each of these
rafters had a material on them, we would need at least 60 draw calls just
to draw the roof. By combining the meshes into one, and assigning one
material to it, we will go from over 60 draw calls to two (well actually a bit
more than that, but it's easiest to round off at this point in the process).
From 60 to two is a significant savings.

Why?
When meshes are combined, Maya automatically puts the axis of that
new mesh at 0,0,0 in world space, which is absolutely useless when trying
to organize and place an item. By using the Center Pivot command, we
get this pivot back into a place where the manipulator handles will be in a
useful location.

Cleaning or Deleting History

Step 24: Delete history; all of it. Choose Edit>Delete All by Type>History.

Why?
Maya keeps a history of the steps taken in construction. This history is
stored in series of nodes. This history can allow for an amazing amount
of flexibility because it allows you to go back to one step in the creation
process and make a change to that node, and all the nodes downstream
of that will be calculated based upon this tweak. However, keeping
track of this history increases the size of the data set by quite a bit, and
can yield some really funky results when things are taken out of Maya
(like into Unity). So cleaning the history (by deleting it) occasionally as
you go along will help you keep a clean Outliner and avoid hidden and
unexpected items showing up in Unity.

Tips and Tricks
For even more optimizing, delete the faces on the tops of those
rafters. This pays dividends in a couple of ways. First, it cuts down on
the polycount of the roof, but second, it frees up that UV space for
textures later.

28

Creating Games with Unity and Maya

Handrails

Step 25: Create handrails, optimize them into one mesh (Figure 2.23).
Center the pivot, and name it EntryWayHandrails. Delete the history.

Tips and Tricks
If an element is optimized before duplicating (for instance deleting the
top and bottom planes of the vertical posts of the handrails), it'll save the
step later of selecting a big bunch of them later.

Archway and Booleans

Step 26: Create the start of the entry arch with a modified cube. Create
a cube (Create>Polygons>Cube), then scale and position it similar to
Figure 2.24. Select the top face, and using the Extrude tool, extrude and
scale the top of the box (Figure 2.24).

Why?
The idea for this next group of steps will be to use Maya's Boolean
functions to create a form. Booleans work on the idea of subtracting (or
adding or intersecting) two shapes. To make this work we have to have
this block to subtract from. In the next step we will form the shape we
wish to subtract from this block.

Tips and Tricks
Notice that in Figure 2.24 the scaling that occurs after the plane is
extruded only happens along the X axis. This makes sure that the front
two polygons line up and makes the Boolean to come a bit cleaner.

Figure 2.23 Completed handrails.

Figure 2.24 Beginning of entry arch.

29

Asset Creation: Maya Scenography Modeling

Step 27: Create a cylinder with 60 (yes, 60) Axis Divisions. Do this one of
two ways. Either create the cylinder (Create>Polygon Primitives>Cylinder),
then in the Channel Box, select the polyCylinder node in the INPUTS section
and change the Subdivision Axis entry there. Or, select Create>Polygon
Primitives>Cylinder (Options) and in the Polygon Cylinder Options box,
change the Axis Division entry to 60.
Rotate and translate the cylinder to match Figure 2.25.

Why?
“60 axis division?!” you cry incredulously, “all this talk of being
efficient with our polycount and you make such a heavy primitive!
What gives?” Yes, yes, 60 subdivisions is a lot, and it's important to be
very careful where to use such a heavy (high polycount) object. This is
one of those places. The reason is that the curve across that archway
is very large, and in fact at times in the game it may indeed cover the
entire screen. When a curve spans such a large visual space, this is
a good place to blow some of the polygon budget. When elements
are small on screen—or never get much scrutiny in the course of
game play—this is where to stay super stingy with polys. Note that
although we started out with a 60-subdivision shape, we actually only
used half of them, so there are only 30 subdivisions across the top of
that arch.

Step 28: Tweak the cylinder to make an arched entry (rather than a round
tube). Press the space bar (to move into four-panel mode), then move
the mouse over the front View panel, and press the space bar again.
This will make the front View panel full screen. Switch to vertex mode
(right-click the cylinder and select Vertex from the hotbox) and Marquee-
select the vertices that make up the bottom half of the sphere. Use the
Translate tool to move them down below the bottom of the modified box
(Figure 2.26).
Step 29: Subtract the cylinder from the modified box. In Object Mode,
select the box, then Shift-select the cylinder (the order of selection is
important here). Choose Polygons>Mesh>Booleans>Difference. The result
should be similar to Figure 2.27.

Figure 2.25 Placed elements ready for Boolean function.

Warnings and Pitfalls
Although it is a bit
difficult to see in the
screenshot, that cylinder
completely penetrates
the altered cube and
comes out the other side.
For this Boolean function
to work, the hole object
(the cylinder) must be
longer than the object it
is being subtracted from.

30

Creating Games with Unity and Maya

Completing Geometry

Step 30: Finish. Alright, this is a big step, but it is where you get a chance to
use the modeling skills and optimization that we've learned so far to create
some good-looking models. Keep your polycount low. Model things to
look close to Figure 2.28.

Why?
Everything that remains in the scene thus far (as can be seen in the files
contained on the web site, http://www.Creating3dGames.com), use the same
methods we have just described. Since the focus of this book is on techniques
and Unity, we won't cover every single step of the creation process. However,
take a look at any research you can get your hands on online, and make some
choices in how you would like to have the space constructed. The important
thing is that you are being efficient with your polygons; the techniques we
have covered thus far will assist you in doing this.

Figure 2.26 Adjusted cylinder.

Figure 2.27 Results of Boolean
function.

Figure 2.28 Finished entry.

31

Asset Creation: Maya Scenography Modeling

Why?
There is lots of latitude in the construction of this space. The only critical
part will be the entryway shown in Figure 2.29. This is how we will enter
the base. Otherwise, populate the docks with old guns, trash, or anything
else you think adds to the ambiance of the space.

Step 31: Delete all history (Edit>Delete All by Type>History).
Step 32: Take stock of your polycount. Choose Display>Heads Up
Display>Polycount. Pull way out so you can see all the geometry on your
screen, and take a look at your Tris: number. For me it is 8358.

Why?
This will turn on some numbers and words in the top left of your View
panel—this is your Heads Up Display (HUD). There should be three
columns (Figure 2.30). The first represents the Verts, Edges, Faces, Tris,
and UVs that are visible on your screen. The second column shows
the information for the selected object(s). The third column shows the
information on a component level (so you could have 56 verts selected
out of an object that contains 267 for instance).

Knowing your polycount is important information. With a quick glance you
can see if you need to be concerned about further optimization. Or, you can
quickly see that your polycount is indeed quite manageable, and you have
some room to spice things up.

8358 tris is a relative number. If the plan for this level is to have 200 characters
on the screen, 8000 polygons might be too many and we'd need to cut it

Figure 2.29 Needed entryway.

Figure 2.30 Heads Up Display showing polycount.

Warnings and Pitfalls
Although useful, this
particular function within
Maya is fairly buggy. In
Maya 2011, this seems
to work sometimes and
sometimes it doesn't.
If you are not getting
values, or getting strange
nonsensical values, save
and restart. Maya usually
fixes itself.

32

Creating Games with Unity and Maya

way down. However, if there is not going to be a lot more on the screen
(i.e., characters), 8000 polys is really a low number for an entire scene. Most
characters in current generation games have more polys than this. This means
that we can do some refining, or add a lot more visual elements to this level.

Visual elements can include additional polygons (like trash on the sidewalk,
or the big gun shown in the extra challenges). Alternately, it can include
“up-rezing” elements that are already created. Up-rezing is slang for adding
additional polygons (higher resolution) to make surfaces smoother or more
complex. This should be used carefully because a very efficient scene can
suddenly get out of hand with someone who is up-rezing their work.

Deciding what to up-rez can be tricky. Generally, if you are in the lucky
situation of finding you have a nice low polycount, the first thing to do
is generally to add additional elements. In our case, we will be using
the up-rez process to add a bit of visual complexity to the columns. The
reason we're doing this to the columns is that the player will be able to
get up close to these things, and perfect corners and edges (like they
presently have) can really quickly rip the player out of the experience
as the artificiality and “computerness” of the game is suddenly revealed.

Beveling

Step 33: Select the edges highlighted in Figure 2.31.

Tips and Tricks
You can probably do this by double-clicking on an edge. Maya will attempt
to find Contiguous Edges, which essentially are edges that are within a
particular angle of each other. It's a quick way to select rings of edges.

Step 34: Select Polygons>Edit Mesh>Bevel (Options). Match the settings
in Figure 2.31.

Why?
Beveling is the process of taking an edge (or all the edges of an object)
and splitting it into a defined number of segments. It then offsets each of
those segments over a given width and softens these new edges to give
the corner a rounded look. It's a sort of corner-softener tool. The default

Figure 2.31 Beveling edges of a column.

33

Asset Creation: Maya Scenography Modeling

setting of 1 segment creates a hard edge bevel. Generally, I find that
three segments rounds the edges with a noticeable result, but keeps the
number of polys manageable.

Applying a bevel to edges helps get rid of that exactness that computers are so
good at creating. It helps the surface feel like it's been standing there for a while
when the edges of the form aren't razor sharp. When doing high-rez (as in not
games) 3D, I bevel most edges. In games, that luxury would kill the polycount;
however, some careful choices in bevel can add some sophistication to scenes.

Tips and Tricks
Bevel only one column. We are going to delete all the columns, but we
delete one later, after the form is UVed.

Tips and Tricks
Remember that you need to fine-tune the bevel settings depending on
the edges and size of the objects you are beveling. Also remember that
some objects may be far enough away from the camera that a setting of 2
or even 1 for the number of segments might just do the trick without the
polygonal overhead.

Step 35: Bevel other surfaces that need it (and that you can afford).

Tips and Tricks
As you bevel you may find some strange visual artifacts popping up in
the corners of newly beveled surfaces. Sometimes this occurs because
of problems in the edge normals. Usually, these artifacts can be fixed by
selecting the edges in the affected area and using Polygons>Normals>Soften
Edge. Sometimes, selecting the edges on the outside edge of the bevel and
doing the opposite (Polygons>Normals>Harden Edge) will fix the issue.
It depends on the situation; tweak for best results.

Wrapping Up
And with that we will leave our discussion of level modeling. There is still a
lot of level modeling to do for our game. The additional areas of the model
can be seen in the Challenges section of this chapter. Feel free to take up
the challenges, or use your research to create hallways and corridors of
your own. Be sure to remember the tools discussed here to create efficient
meshes that stay light on the polycount, but high on the visual impact.

If you are comfortable with your modeling skills and know that you can model
with efficiency and speed, all the results of the challenges are included on
the web site (http://www.Creating3dGames.com). These assets can be used
quickly in the tutorials once inside of Unity. However, if you are still finding
your modeling legs, try building them from scratch.

Warnings and Pitfalls
Once you start beveling,
the temptation will be
to bevel everything. “If
it looks good here, it'll
look good everywhere!
Right?” Well, that may
be true, but be aware
that beveling carries
other costs besides in
the polycount. UV layout
isn't nearly as clean and
speedy when you are
dealing with beveled
edges. Every surface
you bevel will add some
considerable time to
your UV layout efforts. So
while applying a bevel is
a nice touch, be aware
it does exact a toll later.
Bevel is good, but bevel
with care.

34

Creating Games with Unity and Maya

Homework and Challenges
Challenge 1: There will actually be two levels to this game. The first is the
entryway we are building here. But the second will be a long hallway in
which cameras, steam, and locked doors conspire against our hero. Using
the techniques covered in this chapter, model a hallway that includes lots
of doors, some great arches, and stairs. My solution (should you wish to
copy it) is on the supporting web site (http://www.Creating3dGames.com;
Figures 2.32–2.36).

Challenge 2: Props. There are lots of objects that “dress” the scene.
Some will be functional to the game, and others will not. Try modeling
some (or all) of the following objects that will be placed in the scene
(Figures 2.37–2.44).

Figure 2.36 The Pit.

Figure 2.33 View from long hall.Figure 2.32 Entire level.

Figure 2.35 Junction hall.Figure 2.34 Main loading hall.

35

Asset Creation: Maya Scenography Modeling

Figure 2.37 CCTV camera. Figure 2.38 The device Aegis is after.

Figure 2.39 EMP mine. Figure 2.40 Keypad.

Figure 2.41 Attached light. Figure 2.42 Hanging light.

Figure 2.43 Lockbox. Figure 2.44 Trolley.

37
Creating Games with Unity and Maya
© 2011 by Elsevier Inc. All rights reserved.

Chapter 3

Asset Creation: Maya
Scenography UV Mapping

Scenography UV Layout within the Game
Design Pipeline
In the previous chapter we discussed how flexible the pipeline was when using
Unity, and how it is often preferable to not tear through all the art assets before
starting on game mechanics and scripting. However, in the 3D art asset pipeline,
there are some fairly clearly delineated steps that need to be followed.

UV layout is the second step of these strict guidelines. Generally, it is
important to make sure the geometry (model) is just as it should be before
starting your UV layout. If a UV layout is created, and then the geometry is
changed, the UV layouts have to be redone.

Similarly, the UVs need to be complete before extensive work is done on
texture creation. Since UVs define how a texture is “attached” to a geometric
form, if UVs are changed (or the form), the texture will no longer lay
appropriately across it.

So, although there is almost always some adjustments as the UV is laid out
(stray polygons that aren't needed are found or additional geometry is

38

Creating Games with Unity and Maya

needed), the more effectively this particular step of the scenography creation
process (i.e., modeling, UV layout, texturing) is completed, the more efficient
the process will be.

UVs
The process of creating and editing UVs can be one of the most frustrating in all
of 3D. There is little intuitive about them. Unfortunately, understanding UVs and
how to manipulate and utilize UV space is one of the most important aspects to
visually believable projects—and absolutely critical to effective games.

So what are UVs? Well, they really aren't so much of a what as a where. UVs are
coordinates. They are involved in the complex problem of how to take a 2D
texture and wrap it around a 3D form. Think of the problem as much like that
of cartographers attempting to create a map of the earth. How do you take a
sphere and flatten it out into a flat shape on a page?

UV mapping is the process of taking three-dimensional shapes, and unfolding
or unwrapping them into a two-dimensional representation where a texture
can be painted on them (Figure 3.1). UV coordinates on a surface are the
locations at which to “pin” the textures. Once these locations are pinned down,
even if the surface flexes or distorts, the texture will flex and distort with it.

At the end of the day, UV mapping is what helps a texture look “right” on a
surface. A poorly laid out UV map yields unsightly stretching and pinching of
the texture that is applied to it. A well-executed UV map produces believable
surfaces with textures that belie the usually simple geometry beneath it. In
games especially, where textures do much of the visual work, a good UV map
is critical to visual success.

In the following tutorial, we will be looking at three ways to create UV maps.
Through this process, it will be important that we understand texture space
and how it relates to 3D space. We will look at the UV Texture Editor within
Maya and how it allows for the manipulation of UVs. We will look at Maya's
automatic mapping options, its unfolding capabilities, and manual mapping
and manipulation of UVs.

Figure 3.1 An illustration of UV
unwrapping.

39

Asset Creation: Maya Scenography UV Mapping

Exploring the UV Texture Editor

When any of Maya's primitives are created, these primitives include a
default UV layout. For instance, go to Create>Polygon Primitives>Cube.
With this cube selected, choose Window>UV Texture Editor (Figure 3.2). In
the UV Texture Editor, the six-sided cube will appear unfolded. All the faces
are laid out flat in the top (1,1) quadrant of the UV Texture Editor space. By
default, the background here will be a medium gray color; this is actually
the texture that is applied to the cube. Within the UV Texture Editor, right-
click and hold, and a hotbox will be presented that allows for choosing
which type of component to select. The regular Edge, Vertex, and Face are
presented, as well as UV.

After choosing a component type from the hotbox, these components are
now selectable within the UV Texture Editor. At first blush it seems that the
only difference between Vertex and UV is the color of the component when
it is selected (vertices highlight yellow and UVs always highlight green).
This is because Maya's primitives have their UVs located at the vertices
of the form. However, don't confuse the two. Vertices and UVs are one-
dimensional—they have no geometry of their own—but they serve much
different functions.

In fact, once faces or edges are extruded new vertices will always be created
along with the faces created (there cannot be faces without the vertices);
however, these new vertices will not necessarily have new UVs attached to
them. Further, although UVs are visible in 3D space (i.e., the View panels),
they can only be altered—moved, rotated or scaled—in 2D space, within the
UV Texture Editor.

This transition from 2D texture space to 3D space is often a hard thing to
visualize and even harder to explain. However, it becomes much easier
to comprehend once it is seen in action. Because of this we won't spend
too much time pounding on the theory further. Let's start seeing it in
action.

Figure 3.2 UV Texture Editor and the
UV layout of a cube primitive.

40

Creating Games with Unity and Maya

Tutorial 3.1: Game Level UV Layout, Tools,
and Techniques
In this tutorial, we will continue working on the EntryWay we began earlier.
Although we won't explicitly map every object, the techniques covered here
are extensible to all the objects in this scene, and indeed into all the scenes in
the rest of the game.

Step 1: Create a checkered pattern. In Photoshop, create an image that is
32×32 pixels. Create guides horizontally and vertically in the middle of the
canvas. Fill the top left and right with black. Select all, choose Edit>Define
Pattern. Name the pattern.
Step 2: Create a checkered base texture. Create a new image that is
1024×1024. Choose Edit>Fill. In the Fill dialog box, choose Use:Pattern and
pick the previously created checkered pattern and click OK. The results
should look like Figure 3.3. Pretty exciting, eh?

Why?
Why a checkered pattern? Why not just use the checkered texture that's
canned in Maya? Why 1024×1024? All good questions. As we attempt
to lay out the UV map, it will be important to know that the mapping
we have created does not cause stretched or pinched textures. Further,
sometimes we want to know how much texture is actually on any one
part of the mesh. By using a checkered texture, we can have a quick
reference of how the texture is mapped across the surface, and how we
are distributing the texture in 3D space. The reason to build your own
instead of using Maya is that the Maya checkerboard is set at the number
of checks across and down. By creating our own, we can create a more
densely populated collection of checks. The file is 1024×1024 because we
want to get in the habit of building by power of two when working with
texture (much more about this later).

Figure 3.3 Base checkered texture.

41

Asset Creation: Maya Scenography UV Mapping

Step 3: Save as Checkerboard.psd in the sourceimages folder of the
project file.

Why?
The sourceimages folder is where Maya goes to look for textures when a
new material is created. There are lots of other seductively logical folders
(images, textures, etc.), but don't succumb. The only folder that matters
for saving textures within Maya is sourceimages.

Creating and Applying New Material

Step 4: Create and apply a new material on a column. Right-click and hold
on the column that we previously beveled. Choose Assign New Material.
In the Assign New Material window, click Lambert. This should open a new
lambert material in the Attributes Editor. If it does not, press Ctrl-A, and
the Attribute Editor will show the attributes of this new material.

Why?
Why a lambert? Lamberts are matte materials that Maya draws really quickly
and well. More importantly for us, when Unity initially brings in the Maya-
created objects, everything looks like a lambert. Any other attributes present
in other materials (specular in Phong, etc.) has to be redefined in Unity
anyway. So spending a lot of time tweaking settings in Maya is wasted since
it has to be redone. For this reason, lamberts are quick, easy, and predictable
ways to get textures applied and to see the general look of the scene.

Step 5: Name the material. Name the material. Name the material. Did I
mention to name the material? Name the material EntryWay_Column_Mat.

Why?
Beginning modelers or beginning game builders often skip effective
naming and pay the horrible price later. When moving assets between
applications (like from Maya to Unity), assets will be tied together
differently, and sometimes in the production process materials will
become disconnected from objects. If there are 100 materials named
lambertx, you will be immensely slowed in your work. Take just a little
time to name materials what they are, and you will save many hours
later. Especially if you ever hope to work with others as part of a team—
effective naming is critical to smooth work flows and keeping your job.

Step 6: Create a Render Node for the Color attribute. In the Attribute
Editor, at the far right of the Color channel is a little button that (ironically)
looks like a checkerboard. Click this to bring up the Create Render Node
window. Tell Maya to import a file to define the color attribute of the
material by clicking the File button.

42

Creating Games with Unity and Maya

Step 7: Choose Checkerboard.psd to define the color attribute. After
following the previous step, the Attribute Editor will change to display a
file1 node with an Image Name input field. Click the folder icon next to
that input field, and you should be taken to the sourceimages folder of the
project. Double-click Checkerboard.psd.
Step 8: View the scene in Textured mode. Do this by pressing 6 on the
keyboard. This will show the scene with any applied textures and should
yield a strange result as seen in Figure 3.4.

Why?
So what are we seeing here? Think way back to when we first began building
this column; the shape we began with was a cube. The parts of the column
that have texture are the original faces of that cube. The polygons we extruded
off of that shape are gray; they have no UV coordinates, and thus have no
location for the texture to be “pinned” to. Further, the texture that is applied to
the main shaft of the column is stretched and not efficiently organized.

Mapping Beginning with Automatic Mapping

Why?
The first way we are going to look at UV mapping is to start with
Automatic Mapping. Generally, anytime software does something
“automatically” be a little wary—this is no exception. However, Automatic

Figure 3.4 Base checkerboard texture applied and the strange current default UV map.

Warnings and Pitfalls
If the folder next to
the Image Name input
field is clicked and you
are not taken to the
sourceimages folder
of your project, stop.
It means the project
is not set right, and if
you start maneuvering
through file trees to find
the right file, you could
break the project on any
other machine than the
machine you are working
on. If you find yourself
in another location than
what you anticipate,
stop, save the file, and go
back and set your project
(File>Set Project).

43

Asset Creation: Maya Scenography UV Mapping

Mapping does create UVs for all the geometry we have, and once we have
those UVs we can fix the map into what we need.

Step 9: Use Automatic Mapping on the column. With the column
selected, choose Polygons>Create UVs>Automatic Mapping
(Figure 3.5). In the UV Texture Editor window, choose Image>Display
Image (to turn off the checkerboard), and see the shapes that
represent the column.

Why?
At first glance all is well—that was amazingly easy. But take a look at
the UV Texture Editor (Window>UV Texture Editor) and you'll notice a
couple of important things. In the UV Texture Editor window choose
Image>Display Image (to turn the background checkerboard off), and
see the shapes that represent the faces of the column. First, notice that
there is a lot of the texture space that we are not making use of. In the
game, we are paying for that space whether we use it or not, and it's very
inefficient to leave so much of that texture space unused. Second, notice
that each of the sides of the column are separate. This means that the
texture won't crawl around the corners or the column—there will be a
seam across every corner of our form.

Seams are inevitable. If a form is to be unwrapped, there has to be a
seam somewhere, but we want to minimize those. To do this, we will
be cutting up some of this map and reassembling (via sewing)
other parts.

Step 10: Cut the heads off the columns. In the UV Texture Editor, right-
click and choose Edge from the hotbox. Select the edges (there are really
three there, although they are all in a line) shown in Figure 3.6. In the
Editor window choose Polygons>Cut UV Edges.

Figure 3.5 Results of Automatic Mapping.

44

Creating Games with Unity and Maya

Why?
We are cutting the heads off so we can sew up the side edges of the shaft.
In the game, we will see much more of the shaft than the capital of the
columns. So making sure there is only one seam on the shaft makes for a
better experience for the game player.

Step 11: Move the head away via UVs. Right-click again and choose UV from
the hotbox. Marquee select a few UVs (that are part of the column capital -
maybe the top right corner of UVs) and then Ctrl-right-click-hold (I know it's a
lot) and choose To Shell (Figure 3.7). This will select the shell of UVs that make
up the top of the column. Move them aside. Moving a UV shell can be done
with the regular Move tool (press W to activate it) or in the Editor window
choose Tool>Move UV Shell Tool and then move them aside (anywhere really).

Why?
What is a shell? Shells of UVs are shared UVs that share UVs, or edges.
Because we cut the edges at the bottom of the column capital, the edges
there were no longer shared, so when we selected a shell, it stopped there.

Figure 3.7 Selecting a shell of UVs.

Figure 3.6 Cutting the heads off the column.

45

Asset Creation: Maya Scenography UV Mapping

Step 12: Repeat steps 10 and 11 for the other sides of the column. Keep in
mind that this all takes place in the UV Texture Editor. Figure 3.8 shows the
capital chunks all separated.

Sewing Shells

Step 13: Sew the edges of the shaft. In the UV Texture Editor, right-click
and choose Edge from the hotbox. Click (don't marquee select), on any
one of the outside edges of the shaft sections of the column. Notice that
although an edge was clicked, a second edge will highlight somewhere in
the UV Texture Editor. This is because it is the same edge but is split (which
is why we'd have a seam).
With this single edge selected twice, choose Polygons>Move and Sew UV
Edges. One shell will slide over to the other and the split edge will become
one (Figure 3.9).

Figure 3.8 Separated column capitals.

Figure 3.9 Sewing edges.

46

Creating Games with Unity and Maya

Why?
Sewing these edges up mean that the texture will be seamless as it crawls
around that corner. For a better understanding of what this does, select
the shell that is the newly sewn together shaft segment and use the Move
tool to move this shell in the UV Texture Editor (we're moving the UVs
through texture space here), and look at what happens in the View panel.
See that along the edge that was just sewed up, the texture crawls across
the corner without a problem, but on the other three corners there is a
visual disconnect.

Step 14: Repeat for all the outside vertical edges of the column shaft. The
final shell should appear like Figure 3.10.

Why?
Notice that there will still be one seam on either outside edge of the shell.
This is OK and inevitable. As we finally position the columns we may look
at ways to rotate this away from where the player will see it.

Step 15: Repeat the process for the column base. However, this time,
instead of sewing up the vertical edges, we will sew up the horizontal
edges that run across the top of the base. The completed shell will look
something like Figure 3.11.

Figure 3.10 Sewed-up shaft.

47

Asset Creation: Maya Scenography UV Mapping

Why?
We are looking to reduce seams in places where the player will most likely
notice them. For the shaft, it would be easy to see the vertical seams,
so we take care to get rid of those. For the base, where we would be
standing above it and looking down, the player would most likely notice
seams as the form moved from the top to the side, so we get rid of
those seams and leave the vertical seams by the ground.

Step 16: Repeat the process for column capital shells (Figure 3.12).

Why?
Why Move and Sew UV Edges and not just Sew UV Edges? Part of what the
Automatic Mapping did for us was to evenly distribute our UVs so the checkers
were indeed square. When Move and Sew UV Edges is used, Maya moves
the entire shell and thus keeps the relative position of the UVs constant. This
means the texture is not distorted in the process. Sew UV Edges moves just
the edge, and in the process distorts the texture across the surface.

Figure 3.11 Sewn column base.

Figure 3.12 Column capital shell.

48

Creating Games with Unity and Maya

Tips and Tricks
Often, when working with objects that have had things like bevel applied
to them, they will end up with little shards of polys floating around in the
texture space. Keep your eye open for these, and look at where they could
be resewn (via Move and Sew UV Edges) back onto larger chunks.

Step 17: Arrange the shells to better take advantage of the space (Figure 3.13).

Why?
“Hey, wait a minute!” you may be saying, “that doesn't look like you're
using very much of the texture space. I see a whole lot of empty space.”
And you're right. There is a whole lot of empty space left in this UV map.
There are two things we could do with that space. One, we could resize
our UV shells to better take advantage of that space—but if we did that
we would need to construct our texture equally distorted to match the
distortion in texture space. This can be harder than it sounds.

The second alternative is to simply use that space to hold the UVs of
another object. This is the idea of atlasing, meaning that a texture atlas
can be created that holds the texture information of multiple objects.
A texture atlas is really just like any texture—only there are multiple
objects' texture information crammed into one file. This is actually a very
useful optimization technique because the video card then simply draws
the same texture on the same shader multiple times to represent a lot of

Figure 3.13 Arranged shells.

Warnings and Pitfalls
Notice that in Figure 3.13
the shells have been
scaled (the shaft now
vertically fills the
quadrant). Scaling the
UVs is alright and in fact
a good thing to do—UVs
that use more of the
texture space are UVs
that allow a texture to
show up higher fidelity
in the game. However, in
this case it is important
that if any part of the
UV is scaled, that all of
the UVs for that object
are scaled as well. This
isn't always the case, but
in this case where we
will be using a painted
cement texture we don't
want to have the tactile
parts of the texture
(pocks and bumps) to be
smaller in some places
than others. Keeping the
relative size of the UV
shells will ensure that
the surfaces get the right
amount of texture space.

49

Asset Creation: Maya Scenography UV Mapping

different objects on the screen. It takes much less of the video memory,
and dramatically reduces the draw calls. Since in my scene I have other
things that are attached to the columns (ladders and frames), I am going
to place the UVs for those objects in the spaces of the quadrant that are
empty, and then assign the same texture to all these objects. The idea of
Texture Atlases are so powerful that we will be visiting them again.

Finally, when the UV was done for this level, the UV map for the single
mesh EntryWay_Columns (which was actually the result of lots of
combines) looked like Figure 3.14.

Further Optimization

Step 18: Duplicate, place, and combine this UVed column. Delete
the old duplicates of the column and replace them with this one.
When they are all placed, select all of them and combine them
(Polygons>Mesh>Combine). Name this new polygon shape
EntryWay_Columns. Finally, to make sure the manipulator handle for
this new group makes sense, select Modify>Center Pivot.
Step 19: Repeat this process for other squarish shapes. Using the
objects in my scene this included the beams above the columns, the
roof, and various other obviously square structures. Those shapes
that were UV mapped using this technique are shown checkered in
Figure 3.15.

Figure 3.14 Final UV layout of the
object EntryWay_Columns with the
EntryWay_Columns_Mat material
assigned. Don't worry about making
this happen just yet—but be
aware that this is the final goal of
a texture atlas.

Figure 3.15 Objects UV mapped
using the Automatic Mapping
as a start.

50

Creating Games with Unity and Maya

Tips and Tricks
Remember to create a new material for each object or groups of objects
(that are going to share the same material). Although all of them will
share the same Checkerboard.psd file as their color texture, we want to be
sure they have their own unique material assigned to them.

Tips and Tricks
A nice thing about using the same checkerboard for all the UV mapping
is that it gives a quick look at how much texture space each object will
have. Knowing this helps show how high fidelity the texture will likely
appear in a game. Notice in Figure 3.15 that objects that are close to the
ground or on the ground have small checkers. This means they have a lot
of texture space, which means there will be a lot of pixels used to describe
this surface. Things that are far away from the player in the game (like the
beams overhead) have larger checks because they won't need quite as
much texture since they won't be subject to quite so close a scrutiny.

Maya's Unfold UV via Smooth UV Tool

Why?
Automatic mapping works great if working with cubes or objects that
are largely cubic in shape. But a scene full of crates makes for a pretty
boring scene, and ultimately more organic shapes become important to
most scenes that have any variation. Maya's Unfold UV tool is a relative
newcomer to the Maya toolset (at least in the configuration it currently
uses). This kind of technique is available with other tools (see the free
and powerful Roadkill http://www.pullin-shapes.co.uk/page8.htm), but
is nice to have available in Maya. In the next few steps we will be looking
at how Unfold works within Maya in a simple shape. However, this tool
is especially powerful for things like faces and other complex organic
shapes, so we will be visiting it again.

Step 20: Assign new material (with checkerboard as the color texture) to
the EntryWay_Earthwall object (if you are building off of the version of the
map downloaded from the site; if you are using your own version assign
the new material to whatever you are using for the big retaining wall). For
a refresher on how to do this, be sure to view steps 4 through 7. Name the
new material EntryWay_EarthWall_Mat.
Step 21: Use Planar Mapping to ensure the entire object has UVs. With the
object selected, choose Polygons>Create UVs>Planar Mapping (Options).
Change the Fit projection to: setting to Best Plane, and press Project
(Figure 3.16).

51

Asset Creation: Maya Scenography UV Mapping

Why?
Unfold works great; however, it only unfolds UVs that exist. As we have
seen before, when faces or edges are extruded, often the new faces that
are created lack UVs. Using Planar Mapping does a few important things
for us. First, it ensures every part of a particular mesh has UVs. Second,
it ensures all these are part of one shell. Third, by choosing Best Plane in
the options, we give Unfold its best chance at providing a distortion-free
UV map.

Step 22: Unfold (interactively) the UVs via the Smooth UV tool. In the
UV Texture Editor (Window>UV Texture Editor), right-click the mesh and
choose UV from the hotbox. Marquee select all the UVs. Select the Smooth
UV tool either from the iconography in the top left of the UV Texture Editor
or from Tool>Smooth UV Tool.
Step 23: Drag the new Unfold button to unfold the mesh. Look for the
new pop-up tools that are surrounded in yellow boxes. Drag the word
Unfold and watch as the UVs unfold and reveal a much better distributed
checker pattern in the View panel (Figure 3.17).
Step 24: Resize (and rotate if needed) the UV Shell to get it to fit into the
top-right quadrant.

Why?
Although UVs do not need to always remain in that top-right quadrant
(and in fact in the next setup steps we will be moving out of that space),
if the situation calls for a nonrepeating texture, it needs to have it remain
within this quadrant. For this earth wall, since we will be seeing all of it at
once within the game, we will want to avoid a repeating pattern if we can.
Plus, by rotating and scaling these UVs, it allows us further texture space
to create another mini-atlas.

Figure 3.16 Results of Planar
Mapping (showing parts that didn't
work so well).

Warnings and Pitfalls
At first blush, all looks
well—the entire surface
is covered with checks.
However, if you look
carefully at the checkers
you will see that there
are some really distorted
checkers (especially in
the upper-right corner
of Figure 3.16). This is
happening because
Planar Mapping shoots a
texture across a surface
like a slide projector. As
the image is projected
against faces that are
perpendicular to the
projection plane it looks
great; but as the form
begins to wrap around
so that the planes are
parallel to the projection,
we get stretching. If
this is left this way, the
rock texture that will
be applied will also be
deformed as it wraps
around the form. Thus,
the next steps are
important and powerful.

52

Creating Games with Unity and Maya

Manual Mapping

Why?
With all the “auto-magic” techniques that are available in Maya,
sometimes some manual mapping with some good ol' fashioned edge
sewing is the only way to get a good UV map. If you're familiar with
manual mapping, skip the next few steps, but if you haven't made UV
maps before, the following steps will be of value.

Step 25: Isolate the main archway (EntryWayArch). Select the arch and
choose Display>Hide>Hide Unselected Objects.
Step 26: Assign a new material (EntryWay_Arch_Mat) to the arch. As
usual, be sure that Checkerboard.psd is the color texture.
Step 27: Select all the faces that make up the front of the arch, and use
a Planar Mapping to map these faces. To do this, right-click the archway
and choose Face from the hotbox. Select all the faces that are not inside
the arch. Select Polygons>Create UVs>Planar Mapping (Options). In
the Planar Mapping Options window, check Bounding Box and Z Axis
(unless your arch is facing a different direction than mine). Click Project
(Figure 3.18).

Figure 3.17 Unfolding the EarthWall.

Figure 3.18 Planar Mapping front face.

53

Asset Creation: Maya Scenography UV Mapping

Tips and Tricks
Selecting faces can be a tricky thing. Remember that sometimes it's easier
to select all the faces and deselect the faces not wanted. Sometimes the
Paint Selection tool is the best way to go.

Tips and Tricks
Notice that after the Planar Projection was created, the checks might
not be perfectly square. Also notice that immediately after the Planar
Projection, there are some manipulator handles that surround the
area just mapped and that these handles allow for the projection to be
adjusted so it can be scaled narrower if needed.

Why?
Yes, you're right. A flat projection creates some mean distortion as the faces
turn the corner to create the relief of the archway. To fix this, use the trick of
using the Unfold section of the Smooth UV tool (not Polygons>Unfold).

Step 28: Map the UVs of the inner curve of the arch. In Face mode, select
the faces that make the curved part of the arch (Figure 3.19).

Step 29: Select Polygons>Create UVs>Cylindrical Mapping. Rotate the
projection by –90 degrees in X. Press Ctrl-A to bring up the Attributes Editor.
There should be a polyCylProj1 tab active. Make sure Projection Attributes is
expanded. In the first Rotate input field (the X), enter -90 (Figure 3.20).

Why?
Cylindrical projections are like wrapping an object with a tortilla—or
more accurately, by default, wrapping half the object with half a tortilla.
This half tortilla by default is standing up. In this case, the polygons we are
attempting to map would be best wrapped with a tortilla wrapping from
the top. By rotating the projection by –90 degrees, the projection (as can
be seen by the manipulator) is much closer to the shape of the polygons
they are projecting upon. Getting closer.

Figure 3.19 Selected faces for cylindrical mapping.

54

Creating Games with Unity and Maya

Step 30: Adjust the manipulator to get the checkers square. It's a little
hard to see this in the screenshots as the manipulator handles are so
small, but there will be green handles on the top and bottom edge of the
manipulator. Pull one out to lengthen the projection to get the checkers
closer to square (Figure 3.21).

Step 31: Adjust the projection center to match the curve of polygons.
Figure 3.21 also highlights a little tool on the corner of the manipulator
that looks like a little red T. Click this, and the manipulator will change
and show a new manipulator handle in the middle of the projection
that looks like the Extrude tool's (it has Translate, Scale, and Manipulator
handles). Use the Translate tools to slide the projection down so that the

Figure 3.20 Rotating cylindrical
projection.

Figure 3.21 Adjusting manipulators
to get closer to square checkers (and
thus a well-distributed UV map).

55

Asset Creation: Maya Scenography UV Mapping

projection matches more closely the arch. It is right when the checkers at
the top of the arch are without distortion (Figure 3.22).

Step 32: Project the bottom polygons of the arch. Select the two faces on
either side of the bottom of the arch. Choose Polygons>Create UVs>Planar
Mapping (Options). In the Planar Mapping Options window, check the
Bounding Box and X axis radio buttons and press Project.
Step 33: Adjust the manipulator handles to get the checkers to match
those in the curved part of the arch (Figure 3.23).

Step 34: Arrange the shells so they can all be seen separately in the UV Texture
Editor. In the UV Texture Editor, click (not marquee select) any one UV. Ctrl-
right-click-hold and choose To Shell from the hotbox. Use the Move tool to
move the shell away to a place where it can be worked with. Repeat for each of
the shells until all the shells can be seen in distinct shapes (Figure 3.24).

Figure 3.22 Adjusting the center of
the projection.

Figure 3.23 Adjusting the Planar
Projection manipulator handles to
get the checkers the correct size and
proportions.

56

Creating Games with Unity and Maya

Why?
We are going to sew some of these shells together so that the texture can
move uninhibited across the surface. When we used Automatic Mapping
the shells were all laid out well for us; but not so when we manually map.

Step 35: Resize shells to appropriate sizes. Earlier we learned that when
an edge is selected, if that edge is shared in another shell it will highlight
as well. As this happens, it may become clear that earlier estimates of
matching checkers in the View panel doesn't quite hold up here (the
edges might not be the appropriate sizes). Move and scale the shells to be
appropriately matched (Figure 3.25).

Step 36: Sew arch edges up. Select an edge at the bottom of the arch, which
should select the top of one of the bottom polygons and use Polygons>Move
and Sew UV Edges. Do this on both ends of the arch (Figure 3.26).

Figure 3.24 Arranging shells.

Figure 3.25 Adjusted shells. Shells
were moved and scaled.

Figure 3.26 Finished arch manually
mapped. The edges that were sewn
are highlighted.

57

Asset Creation: Maya Scenography UV Mapping

Tips and Tricks
Since we projected both sides at once (with a Planar Projection), one face
is going to have UVs that are backward—mirrored of what they should
be. When edges start to get sewn together, one side will yield a really
strange result. Figure 3.27 hows the result with the Toggle UV Shaded
display activated. The lavender area shows overlapping UVs. If this
happens, Undo back so that the backward shell is disconnected. Select
the shell and flip it using the Flip Selected UVs in V Direction button. Then
resew and things will behave more predictably.

Tips and Tricks
That Toggle UV Shaded display tool is very handy. Notice that with it
checked you can see if any shell is backward. Generally, all the shells
should appear blue; they show up pink if the back of the shell is being
shown. In this case, it doesn't matter if the entire inner arch shell is
backward, but if you wish to flip it, use the Flip Selected UVs in V (or U) to
get it facing the right way.

Step 37: Move and scale the shells to fill (but not overflow) the quadrant.

Why?
This is a very large object in the scene, and an area where the player may
indeed be walking up close. Because of this, we are going to leave this
object as one UV map, and not try and force it into one of our texture atlases.

Step 38: Make everything visible. Back in Maya's main interface, select
Display>Show>All.

Floor UV Strategies
Floors are actually deceptively tricky. It seems like a flat plane would be a really
easy thing to texture. However, in most games, the player ends up seeing an
awful lot of floor at any one time. It's not unusual for players to have two-thirds of

Figure 3.27 Problems with sewing
due to planar mapping two facing
faces, and the tools to fix it.

58

Creating Games with Unity and Maya

their visual space taken up with a floor plane with wide open spaces. So having a
floor with a texture that holds up to this scrutiny ends up being very important.

To make this successful, we are going to work with tiling textures. For most
of the UV maps we have set up so far, the texture is meant to have a 1:1 ratio.
The UVs are all contained within the top-right quadrant of the UV space. This
means the column texture is painted and wrapped around the column once.
Each pixel is represented once on the surface of the column. But on large
surfaces like the dock deck, this technique would yield a very pixely surface
and one that would look very poor if the character looked down.

For this technique we will be making UV maps that are much bigger than
the top-right quadrant. This means the texture will repeat, or tile across the
surface. This also means that the texture can be much higher resolution and
will hold up much better in the game.

In order to do this, we can't be dealing with texture atlases—the entire
texture needs to replicated multiple times across a surface—and if there are
multiple textures, all of that would show up. So we can either split the dock up
into separate objects, each with their own material, or we can apply multiple
materials to one object on a per-face basis.

Step 39: Create three new materials in the Hypershade. The Hypsershade is
available via Window>Rendering Editors>Hypershade (the exact layout of the
Hypershade may differ depending on which version of Maya you are using).
Figure 3.28 shows Maya 2011's Hypershade layout. To create a new material
here, click the Lambert button in the Create tab. The new material can be
worked in the Hypershade, or continue working with it in the Attributes
Editor (Ctrl-A). For each, import the same Checkerboard.psd file into the Color
channel. Name the first EntryWay_DockTile_Mat, the second EntryWay_
DockWhiteCement_Mat, and the third EntryWay_DockCement_Mat.

Warnings and Pitfalls
Don't be fooled by
the gray thumbnails.
This is sometimes the
drawback of using the
very flexible .psd format,
but sometimes the
previews of the textures
are not accurate in the
Hypershade. Rest assured
(and you can see),
these materials indeed
have the checkerboard
assigned within them.

Figure 3.28 Hypershade in Maya 2011.

59

Asset Creation: Maya Scenography UV Mapping

Why?
Why are we suddenly building a bunch of materials in the Hypershade,
when in the past we have built them as we went? Well, creating a material
as we assign it works great for situations when one material is all that will
be on a given object. However, when assigning multiple materials to one
object, it works best if the materials are already constructed.

Step 40: Assign EntryWay_DockTile_Mat to the polygons shown in
Figure 3.29. To do this first swap to Face mode in the View panel (right-
click-hold and select Face from the hotbox). Select the polys shown in
Figure 3.29. Open the Hypershade, and right-click and hold on EntryWay_
DockTile_Mat and select Assign Material to Selection from the hotbox.

Tips and Tricks
When the material names get long, while in the Hypershade, it can
be difficult to know which is which depending on the size of your
thumbnails. However, as the mouse hovers over any material swatch, a
yellow hint box will pop up with the full name.

Step 41: Assign EntryWay_DockWhiteCement_Mat to the polygons shown
in Figure 3.30. The polygons selected are essentially all the polygons along
the inside of the canal, and the polys of the lip. The process of assigning the
material to just these polys is the same as in the previous step.

Step 42: Finally select all the remaining polygons (and deselect those
that we have already assigned materials to) and assign EntryWay_
DockCement_Mat to them.

Figure 3.29 Picking the faces to assign EntryWay_DockTile_Mat.

Figure 3.30 Polygons for
EntryWay_DockWhiteCement_Mat.

60

Creating Games with Unity and Maya

Why?
Pretty strange results, no? If you are working with the version of your set
that you built from the previous chapters, you are finding that there are
lots of polygons that are still gray, and those polygons that have texture
are all sorts of screwy. Of course, this is because we have not UV mapped
this form, so the only polys that will have any textures are the original
faces of the cube we began this form with. In the next few steps we will
take control of the UVs again, and give recognizable texture to this form.

Step 43: Planar map the tiled part of the dock. Select the two polys
that we previously assigned EntryWay_DockTile_Mat to. Choose
Polygons>Create UVs>Planar Map (Options). Tick the Bounding Box and
Y axis radio buttons and press Project. Use the manipulators to adjust the
projection to yield square checkers (Figure 3.31).

Why?
Don't worry too much about the exact size of these checkers. The UVs
that are being edited at this point can be way out of the top-right
quadrant of the UV Texture Editor, and in fact once we start building
textures, this will undoubtedly change. What we're interested in is
undistorted UV mapping at this point. So as long as the checkers are
square, you're good.

Step 44: UV the white cement parts with automatic mapping.
Select the polygons that have previously been assigned EntryWay_
DockWhiteCement_Mat to, and UV map these polys with Automatic
Mapping (Polygons>Create UVs>Automatic Mapping). Use the
projection manipulators (visible in the View panel immediately after
Automatic Mapping is chosen) to scale the UVs to ensure square
checkers (Figure 3.31).

Tips and Tricks
Be sure you are looking at all sides of this projection. The manipulators
for Automatic Mapping look different than those for Planar Mapping, and
it will be important to take a close look at all the polygons to get things
adjusted appropriately. Remember that sometimes that manipulator is
good for gross adjustments, but for any sort of fine adjustment use the
UV Texture Editor.

Figure 3.31 Mapped white cement
parts of the dock via Automatic
Mapping.

61

Asset Creation: Maya Scenography UV Mapping

Tips and Tricks
The UV Texture Editor can be very powerful, but a little picky. One trick I like
to use goes like this: Immediately after using Automatic Mapping, use the
Manipulator in the View panel to get a very rough cut of square checkers.
Then, without selecting any other object or component, bring up the UV
Texture Editor (Window>UV Texture Editor). There notice that only the
polygons (faces) just mapped are selected and highlighted. Right-click and
select UV from the hotbox, and marquee select around everything visible.
As soon as this is done, notice that all the UVs of the form appear (it'll look
a mess), but only the UVs that you just mapped will be selected. Use the
Move tool to move these UVs off to the side somewhere you can work with
them. Here, you can scale UV shells into submission. Move and Sew UVs if
there are easy places to eliminate seams.

Step 45: UV map the remaining polygons (those assigned to EntryWay_
DockCement_Mat) by either automatic mapping, manually mapping chunks
and sewing them together, or some combination of both (Figure 3.32).

Tips and Tricks
Again, don't worry about the absolute size of the checkers. Figure 3.33
shows how my UV map looks at this point. There are three clusters of UV
shells (the left is cement, the middle is white cement, and the far right is
tile), but they aren't concerned with living inside the top-right quadrant.
Since we will be repeating the texture, we want the shells to be larger
than the texture. Remember that although we see all the shells together
here, there are actually three materials involved. When we texture (next
chapter) we will spend some good time again here understanding how to
work with multiple materials on one object.

Step 46: Finish UV mapping the scene. At this point there won't be too much
left, but using the techniques covered thus far, you should be able to finish
UV mapping the scene so you are ready to texture in the coming chapters.

Conclusion
So there you have it. We have looked at all the core ideas to UV mapping.
Hopefully this is largely a review of techniques you have worked with
previously, but placed within a game design framework. At this point, the

Figure 3.32 Finished dock UV Mapped.

62

Creating Games with Unity and Maya

scene will look like a jumble of checkers. Working with this checkerboard
texture helps to know what objects have yet to UV, and how the textures are
distributing across the objects.

Knowing how to use texture atlases and assigning multiple materials to a single
combined object will assist in keeping the draw calls low(er) and keep the scene
running smoothly. In the next chapter we will be creating several texture atlases
to see how this works; but texture atlases (textures) are only as effective as the UVs
that are laid out to take advantage of them. Having control of how to distribute
UVs, and how to cut, sew, and position UV edges means you have absolute
control over what parts of the texture appears on what parts of the polygons.

To me, UV mapping is work. It has to be done, and it has to be done well.
Don't take shortcuts because good textures are a critical part of the visual
impact of games (at least as important as the geometry beneath it), and a
good UV map is the way to effectively place and control textures.

The good news is that texturing the scene—the sexy visual part of the
process—comes next. And once your UVs are well laid out, the texturing
process really does become an immensely fun and rewarding process.

Homework and Challenges
Challenge 1: UV Map the Hallway challenge built in the last chapter.
Challenge 2: UV Map all the props built in the Homework and Challenges
of the last chapter.

Figure 3.33 Current layout of UVs
for dock.

Chapter 4

63
Creating Games with Unity and Maya
© 2011 by Elsevier Ltd. All rights reserved.

Chapter 4

Asset Creation: Maya
Scenography Texturing

Textures, Materials, and Shaders
Now that you've paid the price of UV mapping you're ready to dive into the
fun part of creating the visual impact of a scenography element—the color
and visual tactile elements called “texturing.”

There are a lot of terms that sometimes get thrown around when talking
about adding visual information to your gray (or in our case, checkered)
set. But technically there are some very real meanings to these terms that
shouldn't get confused.

Textures are really images; they can be photos or painted images. Textures
are 2D elements that define a particular attribute of a material. Textures
can be used to define a material's color or visual tactile elements like bump.
When a material is applied to an object, a shader is used to show how this
material will react to light and the viewer's angle of view. When someone says
they are “texturing” a scene, they usually mean they are creating materials by
assembling textures that will be applied to geometry that when lit will reveal
what can be visually sophisticated forms.

64

Creating Games with Unity and Maya

Nature of Effective Textures

Not all textures are created equal. Some textures (image files) are
simply easier to envision in a 3D and texture space. Further, and
importantly, some textures draw faster, which in game design is a critical
consideration.

Be Square
When we were working on the UV layouts, we were working in the top-
right quadrant of the UV texture space. Notice that this quadrant is square.
If any textures are imported into a material in Maya, it will still show up
square within this space. Because of this, it is generally easier to visualize
textures by working with square images. Although materials can be
deformed (squash them for instance), we went through great effort to
create perfectly squared checks when doing the UV layout. This means that
we are assuming the texture is not deformed and the results will be much
more predictable.

It is important to notice, however, that texture within Maya (or within Unity)
do not have to be square. And there may be times when an oblong texture
makes the most sense (a long wall for example); however, Maya will still
show it as a square image within the UV Texture Editor. So in most cases it
just makes the creation process easier for beginners if they see the texture
undistorted.

Power of Two
Video cards draw certain assets quicker than other. Part of this has to do
with how computer hardware is able to package information. Start with 1
and multiply it by 2 and in turn multiply each result by 2 and a sequence of
numbers will emerge like this: 1, 2, 4, 8, 16, 32, 64, 128, 256, 512, 1024, 2048,
4096, and so on. These values are referred to as power of two (POT). Textures
work most efficiently if their pixel measurements are one of these packaged
values. So if we are working with square textures, think 256×256, 512×512,
1024×1024, 2048×2048, or even 4096×4096.

There was a time not long ago when video cards could not display textures
that were not a power of two texture. Most video cards today have some
strategy to deal with this; however, this almost always includes some sort
of resampling the texture into a power of two texture. This means valuable
horsepower is being wasted converting a 300×300 texture down to a
256×256. This waste of processing power usually results in lower frame rates
and slower game play.

Maya will happily take any size texture thrown at it with nary a complaint,
which can lead to a false sense of security. Additionally, new to Unity 3,
Unity will take non-power-of-two textures without griping, either—in
fact it won't even alert you (unless you look in the Inspector for each
texture) that it's taken in non-power-of-two textures and what it's doing

65

Asset Creation: Maya Scenography Texturing

with them. However, behind the curtain, Unity is quietly converting the
non-power-of-two textures into power of two versions. In Unity 2.x and
earlier, Unity had to be told to do this, but now Unity assumes you mean
to and chugs away on import bending the files into the size that they will
work fastest with.

However, resampling an image that is just off of power of two (say 520×520)
down to 512×512 can lead to muddy images. It can be tough for software to
know exactly which pixels to leave out as they resize down, or which pixels to
double when resizing up.

Ultimately, creating textures as power-of-two texture will yield time-saving
results on import and create crisper images that MIP Map (more on this later)
better and play quicker on all video cards.

Seamless Textures
Some of the UV Mapping we have completed works on the idea that
each pixel of the texture is shown once, and only once on the surface it is
applied to. This can yield really intricate textures, but is sometimes hard to
maintain good resolution without monstrously large files (and thus lower
frame rates). For other maps (like the floor, for example) we built a UV
map with the assumption that we were going to repeat, or tile a texture.
This means that instead of seeing one 1024×1024 texture spread across
our entire dock (which would mean a very few muddy pixels being visible
when we look down at our feet), we could repeat that texture many times
so that we could (in theory) see the entire 1024×1024 texture right at
our feet. This allows for a texture that holds up much better upon close
inspection.

However, when a texture is going to be repeated like this it becomes critical
that there are no seams as the texture tiles. If the top of the texture doesn't
line up perfectly with the bottom, the tiling will be seen and the illusion of an
unbroken surface will be destroyed.

Maya and Unity

Luckily, the Unity paradigm for describing Textures/Materials/Shaders is
virtually the same as Maya's. It is part of why Maya and Unity make such a
good pairing. If you understand the creation of materials in Maya, moving into
Material and Shader creation in Unity will be much smoother.

However, having said this, some data is lost in the .fbx conversion process
when moving assets from Maya to Unity. Unity deals with .fbx files. What it
does with most any model that it imports is convert that model from Blender
or Maya or C4D or whatever into an .fbx file. Unfortunately, complex shader
networks created in Maya do not transfer as is into Unity. There almost
always is some rebuilding when the assets move from Maya (or whatever 3D
application you're using) into Unity.

66

Creating Games with Unity and Maya

Because of this reality and restriction, we aren't going to create really terribly
complex shader networks in Maya. Generally, we will create very simple
materials that may have a color and bump channel (sometimes a transparent
channel), so we can get the feel for the efficacy of our textures; however, we
will likely need to reassemble some of this within Unity.

Tutorials
Creating effective textures is truly an art form and many of the most successful
texture artists I have worked with had a serious painting background. There is
much to effective texture design that is beyond the scope of this volume, but
there are some techniques that are useful to most all 3D artists when creating
interesting texture maps.

In this chapter we will cover two tutorials. The first two will focus on
essentially Photoshop techniques with a smaller section within Maya that
allows for the creation of seamless textures and dirty textures. Creating
textures that really feel grimy and that tile well can give a scene an entirely
new sense of history—as if people and the weather have actually been there
before—and hold up under scrutiny.

In our game, we are largely working with photorealistic or photo-inspired
textures. To accomplish this best, good resource material is critical. Generally,
when working on a commercial game it's a good idea to go and take your
own photographs of the surfaces you wish to use in your game. However,
taking good photos and working out the lens distortion issues is nontrivial
and beyond the scope of this book.

Luckily, for our purposes, there are quite a few places for surface resource
on the web. My favorite is at http://www.cgtextures.com. Loads of great
textures there, most of which have had some work done on them to
compensate for lens distortion issues, and many that have had the issues of
seamless edges worked out for you. However, even with these great textures
as base, you will likely find that some manipulation of the images is required
to make it match your research, or just to make the textures visually yours.

So, as per the official licensing agreements of CG Textures: One or more textures
on this 3D-model have been created with images from CGTextures.com. These
images may not be redistributed by default. Please visit www.cgtextures.com for
more information. (Note that CGTextures requires a quick registration and has a
bandwidth limit per 24 hours. Still it's a great resource and worth the hassle.)

Tutorial 4.1: Seamless Tiled Textures
So before we get into the “hows” of creating seamless textures, we should
chat a bit about the “whens.” In the UV layouts we did in the previous
chapters, there were times when all the UVs for a shape fit within the top-
right quadrant. In this case none of the UVs were sharing any texture space.
This means that the texture that is applied to that surface is very linear; each

67

Asset Creation: Maya Scenography Texturing

pixel in the texture will be shown once on the surface. In situations like this,
there is no need for seamless texture. We can paint a custom texture that
wraps around the form and add or include any specific crack, stain, or bullet
hole. There are times when this works great and in some ways is preferable. It
allows for very interesting and accurate textures and texture placement.

However, there are other areas of the model, like the ground surface,
where we did not make sure that the UVs were set within the top-right
quadrant. Although having all the UVs not sharing any texture space allows
for intricately painted textures, these textures can fall apart upon close-up
inspection (unless HUGE texture files are used that slow your game to a crawl)
because suddenly more and more of the screen is being filled with a smaller
and smaller chunk of the texture file. Although a crate may be able to use a
512×512 texture since the crate takes up only a small section of the screen, if
a 512×512 texture is stretched out over the entire floor surface of our dock,
when the player looks at his feet and the floor takes up the whole screen, he'd
see only one or two pixels of the texture file; it'd look terrible (Figure 4.1).

This is where seamless textures become powerful. If a seamless texture is
created at 512×512, but repeated many times over the same dock surface,
when the player looks at his feet, he may be seeing all 512×512 or even more
if the texture has tiles small enough. It means that as the player looks out
on the scene and the floor takes up a lot of screen space, the fidelity of the
texture holds up much better (Figure 4.1).

There are inherent problems with tiling a texture over a large surface. The
first is that it can become pretty obvious that a texture is being tiled as it is
easy to visually pick out the repeating pattern. This problem can sometimes
be mitigated through picking a texture that doesn't have too many large
defining visual elements (Figure 4.2). This can also be mitigated by developing
a good lightmap (much more on this later).

The second problem with tiling textures is when the tiles don't match up.
If a texture is not seamless, it is easy to see where one copy of the texture
ends and the next begins. This tutorial is out to fix this problem. Interestingly,
solving the seamless problem is not a 3D issue at all, and thus not solved in
Maya. We'll solve it in Photoshop.

Figure 4.1 The image on the left is a
huge (4096×4096) texture stretched
across the entire ground plane.
The image on the right uses only a
512×512 image, but tiles.

68

Creating Games with Unity and Maya

Select and Prepare a Raw Texture Image

Step 1: Find a raw texture file that would work well as the base of the dock
concrete surface. I'm using ConcreteBare0312_S (see the support web site,
http://cgtextures.com/texview.php?id=44665).

Why?

There are actually a few parts of the dock surface. One part is tiled,
another is a sort of worn painted cement, and then there is a raw cement
section. This is going to be for the raw cement section. My research photo
shows a sort of brownish cement, but the exact choice is up to you.

Tips and Tricks

CGTextures allows for huge-sized textures. In a TV or film situation, using
huge resource and piecing together a huge collection of big textures
to create a massive texture that holds up on the big screen might be
needed, but for a tileable texture, it hardly ever is. So download the
smallest version of whatever texture you choose.

Step 2: In Photoshop, resize the image to 512×512. Select Image>Image
Size. Click off the Constrain Proportions option, and enter 512 into both
the Width and Height (pixels) input fields.

Why?

512×512 is a power-of-two size and thus will create an image that will

render quickly and import cleanly into Unity.

Offset and Clone Stamp

Step 3: Offset the image by 256 pixels in both horizontal and vertical.
Choose Filter>Other>Offset. Change the Horizontal and Vertical to both
read 256. Be sure the Wrap Around radio box is checked. The results can
be seen in Figure 4.3.

Warnings and Pitfalls
Generally it's not a good
idea to resize an image; it
can create some mushy
stuff on resampling
(Photoshop can't always
decide which pixels to
leave out as it reduces
the total amount of
information). In this
case though we will be
adjusting the UVs anyway
to make the texture look
right once it's applied to
the dock, so we have a
bit more tolerance.

Figure 4.2 Textures (even if
seamless) that have a big easily
identifiable element will produce
output that the tiling is revealed too
overtly.

69

Asset Creation: Maya Scenography Texturing

Why?

The problem with any image and trying to make it seamless is getting to the
seams. The seams are the edges of the image. The Offset with the Wrap Around
option activated does some important things for us. First, it offsets or slides
all the pixels over (and/or down) and then wraps the pixels that it slides off
the edge of the canvas around to the other side of the image. This means two
important things. First, after the Offset filter has been applied, the right edge
of the image matches seamlessly to the left edge of the image and the top and
the bottom match as well. Second, it takes the old edges (the old seams) and
puts them right in the middle of the scene where we can deal with them.

Step 4: Clone Stamp out the seams. The Clone Stamp is an incredibly
powerful tool that allows for interactively painting the pixels from one
part of an image to another. To use it, select it from the Photoshop tool
bar, then hold the Alt (Option on a Mac) and click the area where the pixels
are to be pulled from. Release the Alt and mouse, and then go and paint
where the pixels are to be painted (in this case the seams in the middle of
the image). The results are seen in Figure 4.4.

Figure 4.3 Offset and the results.

Figure 4.4 Clone Stamped image.

70

Creating Games with Unity and Maya

Tips and Tricks

The [and] keys will change the size of the brush (bigger and smaller).
Often this is an important step in effective seam working. Make sure to
have control of the brush size.

Tips and Tricks

The Clone Stamp tool has several options that (in CS5) show up at the
top of the Photoshop interface. NEVER paint with Opacity and Flow both
at 100 percent. The texture will become a blotchy mess very quickly, and
will begin to show features too frequently, in effect reducing the visual
information available in the texture. I like to paint with a Flow value of
around 10 percent, which allows me to gently layer pixels onto a seam
and through the combination with the pixels beneath, make an area
that doesn't exist anywhere else on the texture. Think of the process as
massaging the seam out, not painting it out.

Step 5: Save. File>Save and name the file EntryWay_DockColor. Be sure
to save it in the sourceimages folder of the project file.

Tips and Tricks

The file format is not terribly important. Maya reads most image formats,
although it can get pretty persnickety about .psd files if using Mental Ray.
Unity, on the other hand, reads most anything. Since my original was a
.jpg, I am saving it as a .jpg as well. But if there is a lot of layer action going
on, don't shy away from .psd. Unity will keep the original multilayered
.psd file, and import it as a flattened image.

Unify the Color Balance

Step 6: Run a High Pass filter on the image. Filter>Other>High Pass
will open a dialog box. Within this dialog box, drag the Radius slider
to the far right (250 pixels). This will make the image look quite gray
(Figure 4.5).

Why?

Often, when sampling an image or cropping, the image looks fine until
it is offset. Then the gentle gradients that are often visible in textures
becomes apparent. Suddenly, when the left side of the image lines up
with the right side of the image, the colors there can be totally different.
This process allows for the unification of the color fields. The High Pass
filter desaturates much of the colors, but leaves a data set that will work
well with the coming steps.

Warnings and Pitfalls
While working out
seams, watch out for
areas that might be
too conspicuous when
repeated. For instance
look at Figure 4.4; notice
the dark black splotch.
When repeated 20 times
across a surface, this
splotch will be very
problematic. Use the
Clone Stamp tool to
get rid of (or at least
minimize) these sorts of
blemishes.

Warnings and Pitfalls
This is not a trivial issue:
Save this bad boy in the
sourceimages folder.
For further rantings on
the importance of Maya
projects see the previous
chapters.

71

Asset Creation: Maya Scenography Texturing

Step 7: With EntryWay_DockColor still open, choose File>Open and open
the original file used as the base texture (in my case ConcreteBare0312_S).
This will become our source image.
Step 8: Go back to EntryWay_DockColor (Window> EntryWay_DockColor).
Step 9: Match color. Choose Image>Adjustments>Match Color. At the
bottom of the Match Color dialog box, choose ConcreteBare0312_S (or
your image) in the Source drop-down menu. Press OK (Figure 4.6).

Step 10: Test the texture in Photoshop. Do this by again selecting
Filter>Other>Offset and moving the sliders around to all sorts of different
values. The result should remain seamless; the seams that once were there
should never be seen.
Step 11: When satisfied, save.

Apply the Texture

Step 12: Open Maya (make sure the project is appropriately set) and open
EntryWay.mb

Figure 4.5 Results of the High Pass filter.

Figure 4.6 Matching color to unify texture's color fields.

72

Creating Games with Unity and Maya

Step 13: Open the Hypershade and graph the EntryWay_DockCement_
Mat material. Open the Hypershade with Window>Rendering
Editors>Hypershade. In the Hypershader choose the Materials tab, and
then select the EntryWay_DockCement_Mat swatch. Select Graph>Input
and Output Connections. This should appear like Figure 4.7.

Why?

What you're seeing here is how the nodes are connecting to create the
material. The far left node indicates how the texture is placed within the
UV space (by default 1:1), the second is actually the checkerboard texture,
the third is the material, and the far right is the shading group. Once the
material is graphed like this, it's easy to see how the material is assembled
and how to make the desired changes.

Step 14: Rename the texture node. Still in the Hypershade, double-
click the texture node (the one with pink at the bottom). This will open
the node in the Attributes Editor. There in the file: input field enter
EntryWay_DockCement_Color.

Why?

This is a bit of housecleaning that could have been done earlier. When a
file node is created while creating a material, Maya automatically names
it file##. In my case it was at file12. The problem is that this makes it hard
to keep track of what nodes are where. Especially when there are so many
checkerboards, it can become very difficult to see them visually. By taking
a moment to rename, it becomes clear (especially to any other artists who
may access this file later) what is going on.

Figure 4.7 Graphing the EntryWay_
DockCement_Mat material.

73

Asset Creation: Maya Scenography Texturing

Step 15: Replace the checkerboard with the new EntryWay_DockColor. Still
in the Attributes Editor, look at the Image Name input field. It should read:
sourceimages\Checkboard.psd. To change out the cement texture, click the
folder icon to the right of the input field. Then, in the Open dialog box that
comes up, choose EntryWay_DockColor.jpg. Click Open (Figure 4.8).

Why?

So what just happened? Notice that the entire dock didn't change; this
is by design. In the previous chapter we assigned different materials to
different parts of the dock. When we swapped out the checkerboard and
defined a different image to describe the color attributes of the material,
only the polygons with the EntryWay_DockCement material changed.
Now we can adjust the UV sizes to make this texture the right size.

Step 16: Adjust the UVs to taste. Select the dock and choose Window>UV
Texture Editor. Select the UVs that define the part of the dock that is our
cement and scale (in all directions by dragging on the yellow square in the
middle) the UVs up so that they become larger (meanwhile, your texture
will begin to tile in the View panel). Watch the View panel as the handles
are dragged in the UV Texture Editor to see how the size of the texture
changes on the surface (Figure 4.9).

Tips and Tricks

Within the UV Texture Editor notice that multiple textures can be
displayed in the Textures drop-down menu. This is because (in this case)
we have multiple materials assigned to a single mesh. Sometimes when
working with UVs it will be important to see how the UVs align with a
particular texture, so toggle through them here.

Warnings and Pitfalls
If you press the folder
button and are not
taken directly to the
sourceimages folder
of the project, or if
EntryWay_DockColor
isn't sitting there waiting,
stop. It means you are
either in the wrong
project or you've saved
the texture file to the
wrong location. Take
a moment and either
reset your project or
track down where you've
errantly saved the file and
get things in order.

Figure 4.8 Results of swapping out
checkers for new cement texture.

74

Creating Games with Unity and Maya

Conclusion

And there you have it. This same technique will work for most any texture that
needs to be tiled. Admittedly, it can get trickier for surfaces like (ironically) tile,
where getting the ends to line up can take some deft handling. But, the work
will pay off. As large surfaces become visible, the effective texture will pay
visual dividends down the road.

Notice that there are some good things happening here. Zoom down and
place the camera about where a player would be in the game; the texture
should hold up pretty well. However, when the camera is way up (as in
Figure 4.9), the repeating pattern will be pretty clear. Some of this will
become a nonissue once the scene is baked, and since we are never very
high in relation to this dock, it's unlikely we'll notice the repeating pattern.
If, in the game, we do have a distracting repeating pattern, we can go
back and scale the texture a bit, or work with a larger sampling of texture,
or both.

Tutorial 4.2. Nontiled Textures and Their Dirt
One of the biggest errors of young 3D students is that they are too clean. Yes,
I agree it's hard to believe that 18- and 19-year-olds can ever be accused of
that, but in 3D this is almost always the case.

This is what happens: The student goes out and does some good research,
tracks down some great resource textures, creates the appropriate paintings
of the surface from copying and pasting the necessary textures together, and
then slaps that onto the surface.

Figure 4.9 Scaled UVs to allow
multiple repeating texture.

75

Asset Creation: Maya Scenography Texturing

The problem emerges once everything is put together. In reality, the region
where two surfaces meet is a really interesting area. It collects all sorts of dirt,
grime, and visually interesting things if it's an inside corner (think of where the
floor meets the wall), and collects all sorts of drips on outside corners. When
the texture artist fails to take this into account, the scene loses much of the
visual information that clues the eye in on these all-important corners.

For the first part of this tutorial, we will look at how to put together a texture-
for-texture space without overlapping UVs. For the second part, we will take
this texture and dirty it down.

Step 1: Select an object with nonoverlapping UVs and open the UV
Texture Editor (Figure 4.10). For this tutorial, I will be texturing the small
portico (downloadable at www.Creating3dGames.com) of the main door
that lets Aegis Chung into the facility.

UV Snapshots

Step 2: Output a UV Snapshot. When the UV Map is displayed in the UV Texture
Editor, choose Polygons>UV Snapshot (all within the UV Texture Editor). Within
the UV Snapshot window, make sure Size X and Size Y both read 2048 and that
the Image format is set to TIFF. Change the name to EntryWay_PorticoUV.

Tips and Tricks

Notice that the File Name input field includes a path. Notice that this path
is (or should be) the project file and the images folder within the project
file. The images folder is one of the default output locations for Maya.
Once again, having the project set correctly raises its head.

Why?

Why 2048×2048? First it's a power-of-two value texture. But why not
1024×1024 or even 4096×4096 or even 512×512? This is a good question;
what size to make a texture is dictated largely by experience and the situation.

Figure 4.10 Taking a UV Snapshot.

Warnings and Pitfalls
Make sure that the
object is selected in
Object Mode. If in any
component mode,
the next step won't
work. Outputting a UV
Snapshot only works
when the whole object
is selected, not just its
parts.

76

Creating Games with Unity and Maya

In this case, we will be spending some time within this portico, and so we
want to have a reasonable resolution so that the walls that surround the
player holdup to visual scrutiny. Now, we may discover that we don't need
2048×2048 (that is in fact a big texture). I suspect a 1024×1024 might do the
job just fine. But because Unity allows for some really easy adjustments in the
size that it imports files to, there is little penalty from creating the texture a
little larger for now, and then optimizing if need be or the situation allows. It's
better to have the resolution and not need it than the other way around.

Step 3: Open the UV map in Photoshop (Figure 4.11).

Preparing the UV Snapshot for Painting in Photoshop

Step 4: Copy the UV guidelines to another layer. The easiest way to do this is to
open the Channels palette (Window>Channels). Ctrl-click the Alpha 1 channel
(this will select the white lines), choose Edit>Copy, and then Edit>Paste. Open
the Layers palette and rename this new layer UV Guidelines.

Why?

The UV Snapshot in Photoshop is the image that will serve as the guide
to know what texture is being applied where. If a red line is painted
through the middle of a wall on this map, bring this map into the color
channel of the material, and the red line will appear in the scene (on the
wall). This is tremendously powerful since texture is placed right where it
should be on the mesh.

However, painting on top of the default image is a problem because it
covers up the guides that help to know where on the surface is being
manipulated. By duplicating the UV lines onto another layer, new layers
can be created between this new UV Guidelines layer and the Background
layer. So as the texture map is created it remains clear where on the
object you are applying texture.

Figure 4.11 UV Snapshot.

77

Asset Creation: Maya Scenography Texturing

Tips and Tricks

Depending on the texture being built, this new UV Guidelines may be
more effective with black lines. Remember a layer can have a stroke applied
(Edit>Stroke) or inverse the white lines to black (Image>Adjustments>Invert).

Painting the Texture

Step 5: Lay down an initial color pass using photo reference. Figure 4.12 shows
the results of my first pass. It is made with many copies of BunkerPainted0010
(http://cgtextures.com/texview.php?id=47345) for the white painted parts,
and ConcreteBare0314 (http://cgtextures.com/texview.php?id=44689) for the
cement floorboards. If you'd like to use these same textures the links are on the
supporting web site (http://www.Creating3dGames.com), although feel free to
use whatever you feel is most effective here.

Tips and Tricks

As much as possible, try and use nondestructive methods to cobble
together swatches of texture. My favorite way to do this is by applying
layer masks to each layer, and then paint out sections by painting black
on the mask. Then if I need some of that texture back later, I can just paint
it back in with white on the layer mask.

Step 6: Find and download an image that provide some good grime for
corners. Figure 4.13 shows ConcreteDirty0271 from CGTextures (http://
cgtextures.com/texview.php?id=51950). We're looking for a straight edge
(at the bottom of the image) and then an organic color shape next to that.
Don't worry about the stuff at the top of the image (we'll mask it out).
Step 7: Import or cut and paste the image into the UV Snapshot. Scale it
and rotate it so the “grime” sits at the base of the wall (Figure 4.14).

Figure 4.12 Initial color pass.

78

Creating Games with Unity and Maya

Tips and Tricks

Be sure that as these new layers are created or copy and pasted that they
are named. As discussed earlier, naming is important both for the efficacy
of the artist creating the asset, and for the artists who inherit assets later.

Layer Mixing

Step 8: In the Layers palette (and on this newly created grime layer), change
the Layer Mixing setting from Normal to Multiply (Figure 4.15).

Why?

The Layer Mix option of the Layers palette is incredibly powerful. It
allows the layers to interact in important ways beyond just “put this
layer atop the one beneath it.” Multiply is one of my favorites because its

Figure 4.13 Base texture of our
corner grime.

Figure 4.14 Placed grime layer.

79

Asset Creation: Maya Scenography Texturing

result allows both the top layer and layers beneath it to be seen. Notice
that once this is done, the painted cement beneath it is visible, but this
layer has certainly changed its appearance.

Layer Masks

Step 9: Apply a Layer Mask. Make sure your grime layer is selected. At the
bottom of the Layers Palette, click the Add Mask button. Paint the mask to
paint out the parts not desired (Figure 4.16) and allow this grime layer to
blend better with the texture beneath it.

Figure 4.15 Results of using
Multiply for Layer Mix setting.

Figure 4.16 Applied and painted
Layer Mask.

80

Creating Games with Unity and Maya

Tips and Tricks

The easiest way to apply the Layer Mask is still within the Layers palette.
Remember that the Layer Mask works by painting black or white to hide
or show various parts of the image. Also note that the keyboard shortcut
X will swap the foreground and background colors to allow for quick
addition and subtraction of the mask.

Step 10: Duplicate the layer and apply to all inside corners. Scale, rotate,
copy, and paste as needed (Figure 4.17).

Tips and Tricks

A few keyboard shortcuts that make this quicker include Ctrl-J (or
Command-J) to duplicate the selected layer and Ctrl-T or (Command-T) to
free transform a layer.

Step 11: Find and download an image to provide dripping that comes
down from a top seam. Check out the Decal/Stains section of CGTextures.
I'm using DecalsStains0061_1 (using the smallest size since that's all we
need for game textures (http://cgtextures.com/texview.php?id=53349)).
The image looks like Figure 4.18.

Why?

This texture again has the important qualities of a flat edge, and has the
added benefit of the nonstained part already being taken out. However,
the same techniques we looked at in the previous steps could be
employed if you find a texture that you prefer elsewhere.

Figure 4.17 Inside corners dirtied
up with masked layer.

81

Asset Creation: Maya Scenography Texturing

Step 12: Import or copy and paste the drip texture to spots along the top
of the form (Figure 4.19).

Tips and Tricks

Notice that in this case there are flat areas where placing this
dripping texture would be simple, and other areas that are diagonal
where it's a bit trickier. The easiest way to do this is still with the Free
Transform tool (Ctrl-T). When in the Free Tranform mode, if Ctrl is
held down, you can deform the image to alter the perspective and
allow those drips to run straight down the wall starting from a
diagonal top.

Step 13: Continue to layer additional texture images as needed in the
texture. Remember that layered textures add a real sense of visual depth
to any scene and ensure that the scene is yours with your original touch.
My finished texture can be seen in Figure 4.20.

Figure 4.18 Dripping texture from
CGTextures.

Warnings and Pitfalls
Notice that this collection
of layers is also using
Multiply as the Layer
Mixing setting.

Figure 4.19 Dripping texture
applied.

82

Creating Games with Unity and Maya

Tips and Tricks

When working with many, many layers of textures, it is always worth the
time to spend a bit of time organizing and labeling. I like to use the ability
to make folders in the Layers Palette to organize my layers.

Saving Multiple Files

Step 14: Save the file back to the images folder as EntryWay_
PorticoUV-Raw.psd.

Why?

It is always a good idea to have a copy of the construction file in case an edit
to the texture is needed once it has been placed in the scene. However, my
file is clocking in at 156 MB and it is usually not a good idea to force Maya or
Unity to chew on a file that size (if nothing else it just takes too long to do so).
By keeping a copy of the construction file in the images folder, this version is
always available to come back to, but you can also save another version (in
the sourceimages folder) that will actually be used in the Maya/Unity scene.

Step 15: Hide the UV Guidelines layer and save the file to the
sourceimages folder at EntryWay_Portico_Color.psd. In the Save As
window be sure to turn off Alpha Channels and Layers.

Application in Maya

Step 16: Apply the texture to the portico in Maya. Back in Maya, open the
Hypershade (Window>Rendering Editors>Hypershade), track down the
material that is applied to the EntryWayPortico (do this in the Hypershade
by choosing Edit>Select Materials from Objects), and graph the material
(Graph>Input and Output Connections). Double-click the node that contains

Figure 4.20 Finished layered
texture.

83

Asset Creation: Maya Scenography Texturing

the checkerboard (probably named file16 or something like that). In the
Attributes Editor rename the node to EntryWayPortico_Color and click
the folder next to the Image Name input field. The directory should be the
sourceimages folder where EntryWay_Portico_Color.psd can be chosen as the
image to define the color of the material. The results are shown in Figure 4.21.

Step 17: Finish texturing the EntryWay scene. I know again, lots to do, but
you've got the tools to do it (Figure 4.22).

Conclusion

There's the process. The rest of the scene can be textured using one of
the two methods looked at in this chapter. Which technique to use will be
dictated by how big the UVs ended up being in the UV Texture Editor. If
all the UVs of a shape are within the top-right quadrant, create carefully
custom-painted textures like those shown in Figure 4.21 and explained

Figure 4.21 Applied texture in Maya.

Figure 4.22 Textured scene.

84

Creating Games with Unity and Maya

in Tutorial 4.2. If working with a very large space (like the dock) where
the situation calls for a smaller texture tiled, then the first tutorial is the
process to use.

The “Homework and Challenges” section includes renders of other assets
in our game. Look at how these different shapes might call for different
methods. My choices can be found on the accompanying web site
(http://www.Creating3dGames.com). Pick them apart and see if our choices
matched.

Additionally, if you've got the idea of texturing and don't want to spend time
reworking, just download my version to continue on to the next chapter,
where we get to start taking the hard work we've done in Maya and place it
within Unity, where the fun really begins.

Tips and Tricks

One of the myths that tutorials sometimes propagate is the one that
creation is a linear process. In the tutorial, the author creates something,
then creates the next object, textures it, and never goes back. The
reality (at least for me) is that the creation process is full of “oops” and
“shoot, didn't notice that, I need to fix it.” As you work, be on the lookout
for mistakes that you've made in the past—a stray poly here or there,
UV layouts that just aren't as efficient as you'd like them to be, and so
on. As you look through the example files from these tutorials you'll find
loads of these sorts of tweaks and adjustments. They're part of the fun
of creating.

Homework and Challenges
Challenge 1: Texture the hallway (Figures 4.23–4.27).

Figure 4.23 Textured entrance to
hallway.

85

Asset Creation: Maya Scenography Texturing

Figure 4.26 Textured junction.

Figure 4.24 Long hallway textured.

Figure 4.25 Textured dock.

86

Creating Games with Unity and Maya

Challenge 2: Texture props (Figures 4.28–4.33).

Figure 4.27 Textured pit.

Figure 4.28 Textured CCTV camera.

Figure 4.29 Textured device.

87

Asset Creation: Maya Scenography Texturing

Figure 4.30 Textured EMP.

Figure 4.31 Textured keypad.

Figure 4.32 Textured lock box.

88

Creating Games with Unity and Maya

Figure 4.33 Textured trolley.

89
Creating Games with Unity and Maya
© 2011 by Elsevier Inc. All rights reserved.

Chapter 5

Asset Creation: Unity
Scenography Importing

Unity
The fun can begin. The assets of the level design are designed and produced.
Now we can get to the fun where we actually get to walk around and explore
the level within Unity.

Remember that it is always a good idea to actually import assets into Unity
well before this point. What looks good as the scene is tumbled around in
Maya may not when the player is walking through the space in Unity. The
textures that seem to be a great move in Maya just may not hold up as
planned inside Unity. The process of prototyping a space is an important one,
and dropping a prototyped space into Unity will provide very instructive time
for the space's feel and mood.

However, in the linear medium that books are, we are working in the classic
“finish this step and then do this one.” So, here we are with a completed model
that we will be bringing into Unity.

90

Creating Games with Unity and Maya

The Plan

Here's the plan for this chapter. First, out of necessity, we will very quickly
look at the Unity interface. Because this is covered fairly well in the free Unity
documentation we won't spend a lot of time covering all the details of what is
what, but we will spend just a bit of time understanding what these parts are
and how best to use them.

After a quick run through the interface, we will jump back into Maya to explore
how best to prepare the file for export. There is always a bit of cleaning that
can be done to make the process smoother. Here we will also discuss how best
to transfer the files into Unity, and why I argue to always do the .fbx export
manually (and not simply drag the .mb into the Unity assets folder).

Finally, back in Unity we will import our completed scene and do a bit of
optimizing to make sure the game can run smoothly. We will optimize our
textures, and dig down to find the resolution we need to give the visual effect
we want while keeping the amount of resources required to run the game low.

Unity Projects

One of the reasons Maya and Unity make so much sense as sister technologies
is that Unity's working structure is much like Maya's. Among the equivalencies
is the importance of the project file. In the Maya chapters we worked very
hard to establish a project and to make sure all relevant assets were stored in
the appropriate locations within this project file. Unity is the same way—in
fact, Unity will not even open unless there is a project defined.

Before we get to defining projects, we need to talk a bit about how Unity
creates and deals with projects.

Like Maya, when a project is created in Unity, a new folder is created on the
hard drive. This folder will include several subfolders that we will get into later.
This folder is important in several ways, and treating this folder right will be
important to an uninterrupted creation process.

Tutorial 5.1: Creating a Unity Project
If you have not downloaded and installed Unity at this point, please do so
now. Remember the standard Unity license is free and available at http://
www.unity3d.com. Just go to the Download section. There are some very
nice features in Unity Pro (real-time shadows, deferred rendering, occlusion
culling), but to learn Unity, there is plenty that can be done with the standard
(and free) Unity.

To set up a new Unity project and to set up Unity to effectively allow for the
management of projects, do the following.

Step 1: After installing Unity, when run, Unity will present a Unity-Project
Wizard window (Figure 5.1). This Wizard has two tabs: the Open Project
and Create New Project.

91

Asset Creation: Unity Scenography Importing

Tips and Tricks
If you've already been using Unity, there will be a slew of projects listed in
the Open Project tab. In fact, if you've already been using Unity, the wizard
may not be presented at all. Unity automatically defaults and opens to the
last opened project and thus skips the Project Wizard. I'm not a big fan
of this method because it opens up a lot of possible mistakes of saving
files to the wrong project. Luckily Unity has a setting (Edit>Preferences)
called Show Project Wizard at Startup. Activate this so that when Unity is
launched you always know that you are working in the correct project.

Step 2: Select the Create New Project tab.
Step 3: Click the Browse… button. Choose a location to save the Project
file. Create a new folder (Unity requires that the location of a new project
be within an empty folder). In our case, it's easiest to find where you have
your Incursion–Maya folder and (not within that folder but) at the same
place create a folder named Incursion-Unity. Click Select Folder.

Why?
In the development of a game, there will be a lot of assets created
and manipulated. If you've been doing 3D production for a while, you
know how easily you can wind up in a mess if you don't keep a good
eye on where you're storing your textures. In a game there not only
are models and textures but a slew of other assets. By keeping the
Maya file and the Unity projects in close proximity to each other it's
not only easier to get assets from one place to another, but it keeps all
the relevant data near.

Step 4: Back in the Create New Project tab, look in the “Import the
following packages:” section and choose “Character Controller.
unityPackage”. Click Create.

Figure 5.1 The Unity-Project Wizard.

92

Creating Games with Unity and Maya

Why?
There are a huge number of packages made available in this tab. Packages
are just what they sound like: they are a little parcel of assets that include
information on how these assets may (or may not) be tied together.
Packages are a great way of moving certain types of assets (especially
objects that have scripts draped on them) from project to project.

Beginning Unity users often simply click all the packages. “I might need
them sometime,” they say. And this could be true, they might be needed
sometime, but until they are used, there is a tremendous performance price
that is paid. Whenever a new script is made or changed, Unity recompiles all
the scripts that are within the Assets folder. So if there are 50 or 100 scripts
that were imported as part of these other packages that aren't used, Unity
will have to take a look at them every time script editor is touched. Popping
in and out of the script editor is a very common occurrence, and these slow
compile times can really start to add up. Additionally, by keeping the project
clean you ensure that you don't have some rogue script floating around
your project that is affecting your project in ways you don't know about.

Having said all that, we do know that we will be using the Character
Controllers that come shipped with Unity (custom controllers can be built,
but the included ones are sophisticated and powerful so we will restrain
ourselves from reinventing the wheel and roll with the ones provided). So,
now is a perfect time to include them.

If later we decide that we need the contents of other packages (which we
will), we can always import them at a later time (which we also will do in
the process of the tutorials).

About the New Project File

So what's happening now? Unity will chug along for a minute before presenting
the Unity assembly interface. What Unity is doing is unpackaging the packages
you've selected, as well as a few other packages of data, and putting them in
some folders it will create on the hard drive. In the OS, look at the newly created
Incursion–Unity folder, and find that it contains three folders: Assets, Library,
and Temp. Generally, don't mess with the Library or Temp folders. The Assets
folder though is where we will be doing much of our work.

Importing Items Paradigm
Don't actually import anything right this minute, because it's important to
understand how we will interact with this new project file. The way to import
assets into Unity is to (in the OS, not in Unity) find the Assets folder within
the project folder. Then, using the OS, just drag the things Unity should
access into the Assets folder. When a new model, texture, sound, or movie is
placed there, Unity recognizes something new and acts on it—it attempts to
understand the file and always attempts to import it. What this means is the

93

Asset Creation: Unity Scenography Importing

Assets folder should be treated with a bit of reverence, and not filled with
garbage or files that won't be part of the game.

I've seen developers and students just throw their entire Maya project folder
inside of this Assets folder. This is really a poor work flow as it forces Unity to
analyze all the files (including all the raw texture construction files, swatches,
incremental saves, etc.) and indeed to then chug away to convert all that stuff into
forms Unity likes to work with. There really isn't a “please stop importing” button
or a “ignore this stuff” option, so it becomes important that only the assets that are
going to be used in the game end up in that Assets folder. Otherwise, there will be
much waiting done as Unity chews on mounds of stuff that will never be used.

Exactly which items to actually place in the Assets folder is actually a little
trickier than it might sound. Some developers like placing their Maya file (.mb
or .ma) there and then sorting through their sourceimages folder to pull out
the textures they know they finally used in their project and including those in
the Assets folder. I'm not a fan of this approach because it quickly becomes an
unmanageable collection of files if there are multiple Maya files and keeping
track of what textures are used where can be a chore.

Instead (and much more on this later), I prefer to export my files manually from
Maya as a .fbx file and simply have that file embed the media it uses for the
material creation. A streamlined collection of files into the Assets folder means
a streamlined import process and a much more streamlined production cycle.

Deleting or Rearranging Items
While placing assets into the Unity project happens in the OS, deleting files
from the project shouldn't be done in this way. When assets are dropped into
the Assets folder, and Unity imports them, it creates a series of metadata files
that help Unity keep track of where files are at and how they are tied to other
files. The problem is that if files are deleted or moved around in the OS, the
metadata doesn't go with it—or update to represent these changes. This can
really mess Unity up as it loses track of where assets are.

Instead, whenever an already imported asset needs to be deleted or
reorganized, do it within Unity. This will happen within the Inspector window
and we will look at how to do this in the tutorials to come. However, just keep
in mind, from the project's inception, to bring in assets to be used in the game
outside of Unity (in the OS), but once the assets are in Unity do all organizing
and deletion within Unity—it will save much frustration. The details of Unity's
import process will be covered in the coming pages.

Unity Interface
Figure 5.2 shows the Unity interface and what the parts of the interface are.
We aren't going to spend a huge amount of time picking through this since,
by this time, I'm sure you're anxious to get into it, but a quick overview will
help in understanding how Unity “thinks.”

Warnings and Pitfalls
I know I just said it,
but it bears repeating.
Reorganize or delete the
asset files only within
Unity. Do not do so in the
OS's file browser.

94

Creating Games with Unity and Maya

Toolbar

Across the top of the interface are some navigation and organizational tools.
The first four tools are navigation tools. However, if these are used to navigate,
a monumental amount of time is lost. If you're familiar with Maya's camera
navigation tools, this will be an easy transition. Alt-left-mouse-button-drag
orbits (or spins) the camera, Alt-middle-mouse-button-drag tracks (or slides
up and down or back and forth) the camera, and Alt-right-mouse-button-drag
dollys (or moves closer or further) the camera. Stay away from the interface
navigation buttons. Use the keyboard/mouse shortcuts to move the camera
about in the Scene view.

On a side note, to make Unity further like Maya, W activates the Move tool, E
activates the Rotate tool, and R activates the Scale.

Next in line are the Pivot/Center and Local/Global toggle buttons. These have
to do with where Unity places the handles for a selected object. They allow
an object to be rotated around a pivot point that has been defined in Maya,
or around the geometric center, and choose to move an object relative to its
local orientation or relative to its local rotation. More on these later.

The VCR-looking buttons are about moving from the authoring environment to the
game environment. Pressing the Play button plays the game. Pressing it again stops
the game and returns to the authoring environment. The Pause button pauses the
game play, which allows any physics simulations to stop or for the developer to take
a close look at what's happening. The last button of the batch is the Step button,
which allows for movement through the game or simulation one frame at a time.

On the far right are two drop-down menus that allow for hiding (or making
visible) various layers. Or choose various preset layouts. Objects can be
assigned to layers. The layers can become very powerful because a layer can
be hidden within the Scene view, and certain cameras can be told to see only
certain layers (and this can be used with things like Raycasting). The Layout
tab can be very handy if you are the kind of software user who tends to set up
custom layouts for various tasks.

Figure 5.2 Unity interface.

95

Asset Creation: Unity Scenography Importing

Scene

The Scene area is where the game is actually constructed. In this window
objects can be placed or manipulated in space. This is most like Maya's View
panels and even has that handy Scene Gizmo (in the top right corner), which
helps understand where the editor camera is in global space and allows for
quick movement to the various Top, Bottom, Right, and Left othrographic views.

Note that there are several buttons at the top of the Scene area including
the ability to show how the scene is presented. The scene can be shown as
Wireframe, with Alpha, with or without Lights, Grid, and/or sound.

The other thing that is important to notice about the Scene area is that it's
hiding the Game area.

Game

The Game view is actually what the game will look like. When you Play the game
(Play with a capital P meaning you press the Play button), the Game window will
come to the foreground where you actually see what happens in the game.

This actually seems to me to be a really unintuitive way to work. Having either
the Scene or the Game view visible can sometimes cause real problems when
trying to understand what is happening in the game or when troubleshooting.
If you have a big enough monitor to support it, you will find it worth your while
to rearrange the default workspace to be able to see both the Scene and Game
at the same time.

Tips and Tricks
To rearrange your workspace within Unity, just click and drag any of the
tabs where the name of the area appears. So Game tab can be grabbed
and remounted below the Scene area, or move the Hierarchy and Project
views to your second monitor. It's really an important update to Unity 3,
and makes Unity a much more configurable tool. Figure 5.3 shows how I
have my workspace set up with my dual monitor setup.

Inspector Panel

This does exactly what it sounds like—it allows assets to be inspected. If
an asset is selected in any view or panel (Scene, Hierarchy, or Project), the
attributes of that object will be visible in the Inspector panel (think the

Figure 5.3 The WatkinsCustomLayout,
made to utilize dual monitors by
dragging areas of the interface around.
Note the Console visible (an important
tool not visible in the default layout).

96

Creating Games with Unity and Maya

Attribute Editor in Maya). Not only does this allow for the inspection of the
asset, it also allows for changes to be made to the attributes of the object. Lots
of attributes and connections can be seen here. Which scripts are attached to
which GameObjects can be seen. Which texture is assigned to a mesh can be
seen. Further, even important details like which scripts are talking to which
other objects in the scene are laid out here.

Hierarchy Panel

This and the Project panel work in close concert. The Hierarchy panel shows
what objects are in the scene. Here the organization of the objects can be
changed (which objects are children of which) and, when the game is playing,
can show what additional objects have been instantiated (which means
“created during game play”). To get assets to the Hierarchy (and thus in the
game), either put them there programmatically (via script) or drag them from
the Project panel.

Notice that the Hierarchy panel has a Create drop-down menu that
allows for the addition of all sorts of Unity-generated assets to the
scene. This can also be done via the GameObject>Create Other drop-
down menu.

Note too, that there is a search input field to find an asset that you know is in
the scene but you can't quite find by perusing the list.

Project Panel

Think of this panel as the library or storage bin. This is where all the assets
that are available for the game live until they are dropped into the Hierarchy
(or pulled over via script). Remember that when assets are represented in the
Hierarchy panel, they are in the game as well.

The Project panel is essentially the Assets folder. In the OS's file browser, when
things are dragged into the Assets folder—and after they have been imported
and understood by Unity—they will be presented in the Project panel. It is
here that reorganizing and deleting of assets should be done (as discussed
earlier in the chapter).

Notice that here too is a Create drop-down menu with a different collection
of Unity-generated assets. Also, here new Folders for organizational purposes
can (and should) be created to organize the assets into logical bins for easy
access. Lastly, notice that here too is a search input field to find a particular
asset if it's not immediately visible.

Using It All

So there's the crammed interface overview. The best way to learn an interface is
to use it. The pieces and method to the madness begins to become clear. So let's
do that.

97

Asset Creation: Unity Scenography Importing

Tutorial 5.2: Exporting from Maya
Optimizing in Maya

“What?!” you cry, “I thought we were about to get into Unity…finally!” Agreed, it's
time to walk around the space we've made. However, as is the case with much
of 3D, effective preparation of assets in earlier stages yield superior results later.
Cleaning up the file in Maya will ensure a smoother transition into Unity, and
exporting manually from Maya will ensure only the needed assets get transferred.

Step 1: Open the scene in Maya. In this case, it will be the EntryWay.mb
file that we have been building in earlier tutorials.
Step 2: Delete All History. Choose Edit>Delete All by Type>History.

Why?
Hopefully you've been cleaning your history as you were working in Maya,
but here's the chance to make sure there are no lingering unwanted data
nodes floating around your file.

Step 3: Remove unused Materials. Open the Hypershade (Window>Rendering
Editors>Hypershade). Within the Hypershade choose Edit>Delete Unused
Nodes.

Why?
If it's not used, why include it in the data being passed around?

Step 4: Check for orphaned nodes. Open the Outliner (Window>Outliner)
and make sure that all the elements listed there are accounted for in the
scene. Occasionally, even after cleaning history, there can be some leftover
remnants of modeling process in the past (groups without anything in
them, or other null objects). If any of these are present, delete them.
Step 5: Double-check all the naming. In the Outliner and the Hypershade
make sure there are no pCube25 objects or lambert26 materials. Every
object should have a descriptive name that makes sense not only to you,
but would make sense to someone else inheriting the file.

Why?
Taking time in the middle of the creation process to name objects and
materials is not a favorite of beginning artists or students. The students
think they can select the object and know what it is, so who cares what the
thing is actually named? The problem is twofold. First, when working in
Unity and working with scripts, sometimes objects will be called by name,
not by the Unity user selecting them. If there are 50 spheres in the scene, it
really slows the process trying to track down exactly which sphere is what.
Second, game production is very often a team activity. Even a project that
a solo developer began can often end up being a team project before it
sees release. Team members that inherit a poorly named file with poorly
named assets within do not remain happy for long. Name your stuff.

Warnings and Pitfalls
Remember that there are
some default materials
here that can't be
deleted (lambert1 and
particlecloud1). Don't
worry about those, they
can be left as is. It's part
of the beauty of manually
exporting the Maya
file that none of these
default nodes will be
included.

98

Creating Games with Unity and Maya

Export Options

Unity has attempted to make the Export/Import process very painless by
doing a lot of the conversion process behind the scenes. Technically, this
.mb file could just be dropped into the Assets folder of the Incursion–Unity
file. Then in the background, Unity opens a version of Maya (the Render
application actually) and converts the .mb into a .fbx, which it can then read.
Unity actually does this with any of the file formats it supports (i.e., opens C4D
and exports the C4D file into an .fbx). On the surface this seems like a really
amazing and painless process as Unity “automagically” converts bunches of
things into the formats it uses.

However, I have found through many projects that I prefer to manually export
files from their respective applications. Here are my reasons:

•	 When	Unity	does	the	conversion	(via	the	3D	software),	there	is	no	way	of	
knowing what version of FBX the 3D software is attempting to use and
if that particular version is compatible with the version of Unity being
used. For instance, there were some significant differences between
FBX2010 and FBX2011, and FBX2011 stuff was not coming into Unity at
all until Unity had a chance to catch up with the new file format.

•	 While	Unity	is	doing	the	converting,	you	are	powerless	to	intervene	in	
the process. If it crashes, is it crashing on export from the 3D application
or crashing on import into Unity? Very tough to troubleshoot without
knowing which is the problem.

•	 When	Unity	does	the	conversion,	it	is	up	to	the	user	to	include	all	the	
relevant texture files that are used in the scene. If the user misses a file,
Unity forgets that the material is ever tied to it, which means the materials
all have to be relinked manually. It's quick to do this but can add up quickly.

•	 By	manually	exporting	you	are	creating	another	backup	of	your	model	and	
work in another file format. As a professor, I have seen at least one student each
semester with a .mb file that suddenly shows up at 0 kb—it's gone. While using
Incremental Saves in Maya can help prevent some tears, it is certainly nice to
have the asset in another format in case something goes bad with your Maya
install, or some other catastrophe happens mid-production cycle.

•	 In	a	team	situation,	manually	exporting	from	Maya	means	that	other	
members of the team do not have to have Maya installed on their
machines to access the files that are output. This means that a team
could have artists using a wide variety of 3D applications, and they
could all be assembled on a machine without any licenses of the 3D
applications (perhaps used by a scripter or programmer).

•	 By	manually	exporting	the	file	from	Maya,	all	the	necessary	textures	can	
be embedded into the .fbx exported. This means one file is moved into the
Assets folder for each Maya scene built. When Unity unpacks the .fbx it will
create a sister folder where it includes all the relevant textures. This means
that automatically, all the textures involved in a particular Maya scene are
organized. It makes it easier to find assets when in the midst of heated
Unity development.

99

Asset Creation: Unity Scenography Importing

So, if you buy my reasoning, here are the simple steps to manually control
the export/import process in Unity.

Step 6: In Maya, choose File>Export All.
Step 7: In the Export All dialog box, change the Files of type: drop-down
menu to FBX export.
Step 8: In the Options… section of the Export All dialog box expand the
File Type Specific Options, then the Include section, and finally the Embed
Media. Check the Embed Media option.

Why?
Embed Media means that all the textures used in the scene will be
included in the .fbx file that is exported. It essentially packages all the
used textures and keeps them with the geometry file.

Step 9: Still in the Export All dialog box, expand the Advanced Options
and the FBX File Format options within. In the Version drop-down menu
choose FBX 2010.

Why?
FBX2011 is a new format that has had some problems with early
versions of Unity 3. By using FBX 2010, all the important characteristics
are carried through to Unity, but with a much more reliable flow.
Unity has a good habit of catching up with hotfixes, and hopefully the
FBX2011 wrinkles will all be ironed out. Knowing and controlling the
export format, however, is still an important part of the troubleshooting
process.

Step 10: Enter EntryWay into the File name: input field and navigate to the
Assets folder of Incursion–Unity. Press Export All (Figure 5.4).

Tips and Tricks
Next time a file is exported from Maya, these settings will be remembered.
So it takes just a moment to set up a reliable workflow, but things go much
smoother when it ends up in Unity. Do remember that these settings
have been changed. Maya works hard to remember what settings were
changed last time, and if you're dealing in other situations, you may not
want these same settings.

The Import Process

Interestingly enough, by saving the EntryWay.fbx file into the Assets folder,
a big chunk of the importing has been done. When Unity is swapped to or
launched (and make sure it's pointed at the Incursion–Unity project file), Unity
will look at this new .fbx file and start chewing on it.

Warnings and Pitfalls
These steps are very
specific to Maya 2011. If
you are using any earlier
version of Maya be aware
that the step details may
be a bit different.

100

Creating Games with Unity and Maya

On a PC, disconcertingly the Unity interface will not be visible except for an
Importing Assets: progress bar (although Windows 7 will show some nice detail
of progress in the Taskbar). On a Mac, usually there is a bit more of the Unity
interface visible. But either way, watch for this progress bar to know that Unity is
working on understanding the new assets it has been presented with (Figure 5.5).

Once Unity has indeed chewed on all the assets, the project file should look
something like Figure 5.6.

There are several things worth noting in Figure 5.6. Let's start from the bottom up.

The Standard Assets folder is actually the result of setting up the project and
importing the Character Controller package. Any of the default packages that
ship with Unity will be placed within this Standard Assets folder. It's a handy
way to separate which scripts are yours and which came from Unity. It's wise
to not place any non-Unity provided assets within this folder to keep track of
what assets came from where.

Figure 5.4 The Export All dialog box
with the two important settings to
change before exporting.

Figure 5.6 Results of the export/import process.
Figure 5.5 The Importing Assets progress bar may be the only indication that
Unity is indeed importing the assets it's been given.

101

Asset Creation: Unity Scenography Importing

The Materials folder is new since the EntryWay.fbx was imported. When Unity
imported the .fbx and understood what it was, it created this folder and in it
are all the materials that Unity has applied to the polygon meshes you built in
Maya. We will be adjusting the attributes of these materials as time goes on.
Generally, there is little need to mess with this folder or its organization.

The EntryWay.fbm folder is the result (and benefit) of manually exporting
the .fbx file from Maya. In this folder are all the texture files created for use in
Maya. These specifically are the texture files that are used on the geometry
contained in EntryWay.fbx.

EntryWay with its unique icon is the Prefab of the imported Maya .fbx. This is the
model created in Maya with the materials attached to the meshes. To understand
what this is, we need to talk nomenclature for a minute.

Unity Nomenclature
GameObject

GameObjects are essentially things in your scene—anything that is in the
scene is a GameObject. GameObjects can be thought of as containers; they
can contain all sorts of components including cameras, lights, geometry,
audio sources, audio listeners, and so on. GameObjects can hold lots of
components at once. For instance, look at the Hierarchy panel of the scene
and there is a Main Camera object there. This is a GameObject with a Camera
component on it. If the Main Camera is selected in the Hierarchy panel, the
Inspector will show all the components that are actually attached to this
GameObject (including an Audio Listener).

Sometimes, certain GameObjects include other important items like
geometry. Looking at the Project panel, the prefab EntryWay is a type of
GameObject that includes meshes with attached materials.

Prefabs

Prefabs are GameObjects that can be reused. Sometimes these prefabs
contain meshes, as EntryWay does, but they can also contain other types of
components (audio, texture, text, particles, etc.). When prefabs are dragged
into the Hierarchy panel (or into the Scene view, which also then populates
the Hierarchy panel), an instance or copy is made in the scene. Multiple
instances can be placed in the scene, and if the original prefab is ever altered
the changes inherit down to all the instances placed within the scene.

Scenes

Unity thinks of Scenes in the same way that Maya does. A Unity scene file will
contain lots of different assembled assets. Any particular game may contain
several scenes that the player passes through over the course of the game.
A scene can contain a single prefab, or many. Often multiple scenes can make for

102

Creating Games with Unity and Maya

a quicker startup to a game (since the starting scene does not contain the entire
game), but means that there are loads as the player moves through the game.
Currently in our tutorial, we do not have a Unity scene saved yet but we soon will.

Now that we know a bit about what is in the Unity project, we can start
assembling and tweaking a Unity scene.

Tutorial 5.3: Importing, Tweaking, and
Placing Scenography Assets into Unity

Step 1: Save a Unity scene. Choose File>Save Scene. In the Save Scene
dialog box, name the scene Scene-EntryWay and Save.

Why?
Before we start creating or assembling things, saving the scene where
things are going will speed up the process. Saving often is always a good
idea, and being able to quickly press Ctrl-S or Command-S to save allows
for a minimal amount of work to be lost.

Tips and Tricks
Notice that by default Unity points to the Assets folder within the project
file. At this point, saving the Unity scene right to the Assets folder will be
fine, and leaving EntryWay and EntryWay.fbm at the Assets folder level is
no problem. However later it will be important to start organizing assets.

Why?
Notice that once a scene is saved to the Assets folder, a new asset will
appear in the Project panel. This will have the Unity logo as its icon to
indicate that indeed this is a Unity Scene file.

Step 2: Delete the Main Camera. In the Hierarchy panel, select Main
Camera and press Delete on the keyboard.

Why?
Main Camera in this case is a pretty useless GameObject. Yes, it would
allow us to see the model in the game, but it gives us no information on
scale and it can't even be moved in its present state in the game. Deleting
it will make room for the kinds of camera and control that is needed.

Step 3: Place a First Person Controller into the scene. In the Project panel,
expand the Standard Assets Folder and then the Character Controllers
folder. Drag the First Person Controller prefab from the Project panel into
the Hierarchy panel.

103

Asset Creation: Unity Scenography Importing

Why?
By moving the asset from the Project panel (our library) to the Hierarchy
panel, the prefab First Person Controller has been placed into the game.
Alternatively, this could have been done by dragging the First Person
Controller prefab into the Scene window.

Why?
So why place the First Person Controller now when there is nothing
for it to do? This is a good question and an important part of the
scaling process. The First Person Controller prefab has some important
information such as size. If the First Person Controller instance is
selected in the Hierarchy panel, the Inspector panel will show the
attributes of the instance. Note that the height of the Character
Controller is 2 (meters).

This is important because now there is a guideline object to help us
understand how big the later-placed objects should be. As other assets
are placed in the Unity scene, they will be scaled around the First Person
Controller. Although this may seem counterintuitive—it seems like it
would be easier to scale the controller to fit the scene—this ensures
that the scale of the objects is appropriate for the world scale. This is
particularly critical for functions like physics. If the objects in the scene are
very large or very small, the physics simulations will always appear off.

Step 4: Move the First Person Controller instance to 0,1,0. Select the
First Person Controller instance in the Hierarchy panel. Then in the
Inspector, look to the Transform component and change the Position
X=0, Y=1, Z=0.

Why?
By placing the First Person Controller at 0,1,0 we are placing it at the
world center with the bottom of the controller on the ground (it's 2 units
high with its center at the geometric center so Y=1 puts its bottom on the
“ground”).

Step 5: Center the First Person Controller in the Scene window. Still with
the First Person Controller selected in the Hierarchy panel, press F on the
keyboard. This will center the selected element (First Person Controller) in
the Scene window.
Step 6: Place the EntryWay prefab into the scene. This time, drag the
prefab EntryWay from the Project panel into the Scene window.
Step 7: Place the EntryWay instance at 0,0,0 in the world space. In the
Hierarchy panel, select the EntryWay instance and in the Inspector set the
Position X,Y,Z to 0 (Figure 5.7).

104

Creating Games with Unity and Maya

Why?
When there is little in the scene, moving prefabs into the scene can be a
strange experience. It is very tough to understand where an object is in
world space or even how big the object is within that space. By moving
both the First Person Controller and EntryWay to world center, we can get
a good view of what the size is of the imported elements.

Step 8: Scale EntryWay to fit appropriately in the scene. To do this, tweak the
EntryWay prefab's import settings. In the Project panel, click once on EntryWay.
This will open the EntryWay's characteristics in the Inspector. Specifically, in
the FBXImporter section, the Inspector will show the settings Unity used when
importing EntryWay.fbx into the Unity project. Change the Scale Factor to .5
and press the Apply button. Now adjust the Scale Factor as needed (Figure 5.8).

Why?
Why not simply scale the object in the Scene view? In many cases, that
would be perfectly acceptable, and actually in this case that would work
since the EntryWay prefab is likely to be used only once. However, when a
prefab is going to be used a lot of times, it is best to adjust the Scale Factor

Figure 5.8 Scaled EntryWay. For
this example the setting of 0.5 was
the best. This may be different in your
scene.

Figure 5.7 Imported and placed
First Person Controller and EntryWay
(your results may be a bit different).
Not quite right yet, eh?

105

Asset Creation: Unity Scenography Importing

of the FBXImporter so that every time that prefab is placed in a scene it
is already at the right size. Additionally, by making sure this is the right
size on import, it keeps the work flow smooth and the size of everything
constant if the project ends up inherited by another artist or scripter.

Tips and Tricks
Scaling of objects is often a battle when working between 3D applications.
Generally, 1 unit in Maya is 1 unit in Unity. So if your tool of choice is
exclusively Maya, making a 2-unit-tall stand-in guy in the Maya scene will
allow for good scaling in Maya as the scene is built. Still, the FBXImporter's
Scale Factor will need to be changed from its default 0.01 setting to 1.

However, when working with a team, especially a team working with
various 3D applications, scale gets all funky, and getting used to adjusting
the Scale Factor is just a part of the process.

Tips and Tricks
When adjusting the scaling, it can be tough to find the right size. Look for
areas that allow for good comparisons, like doorways. If the First Person
Controller is moved over to a spot like a doorway, it can be easier to figure
out the appropriate size.

Step 9: Fall through the floor. In the Toolbar, press the Play button. There
will be one glorious moment of seeing the scene and then “you” (the First
Person Controller) will start falling, and falling, and falling until the Play
button is pressed again. This is because by default the EntryWay prefab
has no colliders so it doesn't stop things passing through it.

Why?
Colliders are important components of GameObjects in Unity. They do just
what their name implies—they register collisions. A collider may be the exact
shape of a polygon mesh (called a Mesh Collider) but they can also be more
basic shapes like cubes, spheres, and capsules that approximate a shape.

Calculating collisions is a nontrivial function and if allowed to get out of
hand can drag a game to a standstill. We recently were developing a bomb-
defusing tool and had used Mesh Colliders on a complex bomb mesh. In
the game, whenever the First Person Controller got anywhere close to the
bomb, the frame rate would drop to 2 or 3 frames a second. All the hundreds
of little components in the bomb with Mesh Colliders was just too much for
Unity and our machines to calculate. The solution for us was to remove the
Mesh Colliders and place Box Colliders on just the elements the player was
to interact with. Suddenly, the frame rate was back up to where it should be.

Because of problems like this, Unity does not assume that the meshes that
are imported are all using the accurate but intensive Mesh Colliders. In
fact, it doesn't assume any collider at all. Unity has to be told to add them.

106

Creating Games with Unity and Maya

Step 10: Add colliders to EntryWay. Select the EntryWay prefab in the
Project panel. In the Inspector, under the FBXImporter check the Generate
Colliders option. Click Apply.

Tips and Tricks
Clicking Generate Colliders is a quick and dirty way to make sure that
a mesh is “solid,” meaning the player can't pass through it. However, it
isn't the most efficient method in terms of optimizing for game play. By
clicking this option, every single mesh in the scene has a Mesh Collider,
including the parts of the scene that the player can't even get to. For
instance, are colliders on the beams overhead really necessary if the game
play never calls for getting up to them?

For a PC-based game like this, using Mesh Colliders is acceptable since
there just won't be that much happening at this point in the game.
However, if this were being developed for iOS or Android or even for
distribution on machines that may not be very tough, it would be more
efficient to leave off the Generate Colliders option and instead create
some manual Box Colliders around just the areas that the player would
actually touch.

Step 11: Play the game. Press the Play button in the Toolbar. Using the
standard WASD or Arrow keys, move around the scene using the mouse
to look around (Figure 5.9). Press the Play button again to stop playing
the game.

Tips and Tricks
Make sure that the First Person Controller is not halfway through the floor,
or that it is hovering over empty air. Select the First Person Controller
in the Hierarchy panel, and then in the Scene window make sure that it
is just slightly above the ground, so that when the game is played, the
controller will actually be in contact with the floor.

Figure 5.9 Moving around the scene.

107

Asset Creation: Unity Scenography Importing

Why?
It's fun to actually walk around the space. However, notice that everything
is looking really flat. This is mostly because the scene has yet to be lit, which
will add all sorts of important dimension to the scene. However, this can
provide a quick “feel” for the scene, and help track down any problem areas.

Step 12: Adjust the Ambient Light. Because the scene is too dark to see,
temporarily make everything brighter. Select Edit>Render Settings. Click
the long gray color swatch next to Ambient Light. In the Color Picker that
comes up next, choose a much lighter gray and watch as the scene lights
up (Figure 5.10).

Why?
Ambient light generally is a bad idea in 3D. It is light that comes from
everywhere and nowhere. Ironically, it will make the scene look as flat as
it did before it was turned up, but the textures will be visible, and that's
what is important at this point. Later, the Ambient Light settings will be
adjusted again when the scene is appropriately lit.

Step 13: Inspect the scene again. Press the Play button again and walk
around the scene. After having fun moving through the scene, take some
time to look carefully at the textures and the geometry and look for problems.
Figure 5.11 shows an area of the level that is indeed problematic—the texture
on that stone wall is such low resolution that it simply does not hold up.

Why?
The textures seemed to look fine in Maya—what gives? Well, in Maya
remember that most of the textures were built at 2048×2048. Unity
attempts to help its users streamline their games by automatically
downsampling imported textures to no bigger than 1024×1024.
Sometimes this works great and it is difficult to tell the difference between
the textures in Maya and Unity. However, sometimes, this downsampling
causes some problems and the textures need to be upsampled again.

Figure 5.10 Increasing the Ambient
Light to better view the scene.

108

Creating Games with Unity and Maya

Step 14: In the Scene window, select the rock wall by clicking it and then
clicking it again.

Why?
The first time a mesh is clicked, the parent-most object in its prefab is
what is selected. But if the mesh is clicked again, Unity will drill down and
actually select the object that is being clicked.

Step 15: Look in the Inspector to understand how Unity sees the mesh.

Inspector Breakdown

Figure 5.12 shows what the Inspector shows when the EntryWayWallsInner
mesh is selected. There is actually loads of important information here, so
please excuse this brief tangent while it's broken down.

This inspector is broken down into six areas. It is worthwhile to discuss what is
seen here.

Immediately under the Inspector tab is the name of the object next to a
checkmark and a symbol (looks like a blue cube) that indicates that this is
indeed a GameObject. Here the GameObject can be renamed or turned off
(with the checkbox). Notice that this section also has areas to assign the
GameObject a Tag or assign it to a Layer (more on this later). The Model
section there allows for prefabs to be updated (more on this later as well).

The Transform section is just like the Channels Box in Maya, and has been
looked at before. Here the GameObject can be moved, scaled, or rotated
numerically.

The Mesh Filter section actually defines which mesh the GameObject contains
(this can be changed although usually it is not).

The Mesh Render is an important area because it simply decides if a mesh is
to be drawn on the screen. This can be turned off so that the object remains

Figure 5.11 Problem area of
texture simply not being high enough
resolution for the game's needs.

109

Asset Creation: Unity Scenography Importing

in the scene and still blocks the player from walking through it, but cannot
be seen.

The Mesh Collider is the component that was added when Generate Colliders
was checked in the FBXImporter settings in previous steps. This is what
prevents the player from running through the wall.

Finally, the last section is the Material applied to this GameObject. Notice
that there are actually several sections here. Immediately underneath the
name of the material is a drop-down menu allowing for the changing of
the Shader. Much, much more on this later. But for now, just note that
the default shader is “Diffuse.” A diffuse shader uses a color texture file to
define the color of the material. It has no specular highlight or bump to
it. This will be changed later, but is a nice way to get started checking out
materials.

Below that section is the Main Color section that shows the texture file that is
being used to define the color of the material. This texture file is what we are
interested in.

Step 16: Select the color texture file. In the Inspector, in the Main Color
section, click the Main Color texture swatch (Figure 5.13).

Figure 5.12 Inspector for
a selected mesh.

110

Creating Games with Unity and Maya

Why?
A number of things happen temporarily when this swatch is clicked. The
Project panel will expand and the file that this swatch represents will be
temporarily highlighted (as can be seen in Figure 5.13). The actual file can
then be selected within the Project panel.

Step 17: In the Project panel, select the highlighted file. If using your
own file, choose the inner wall (or any object really). If using the files
provided on the web site (http://www.Creating3dGames.com), this will be
EntryWay_WallsInner_Color.

Why?
Immediately, the Inspector will show the attributes of the EntryWay_
WallsInner_Color file. This is important since now we can see what the
settings were when this asset was imported, and more importantly, these
settings can be changed.

Step 18: In the Inspector, change the Max Size to 2048. Press Apply.

Why?
The Inspector will be showing a preview of the texture (Figure 5.14).
Notice on the very bottom, Unity will indicate that the texture is
1024×1024 RGB Compressed DXT1 0.7 MB. The part that is important
to us is the 1024×1024. It means that Unity thinks of the texture as
1024×1024. This is because the Max Size setting (seen a little further
up in the Inspector) is set to 1024. With that setting, no matter how
big the image, Unity reduces it to 1024×1024. By changing it the
Max Size to 2048, Unity will then see if there is 2048×2048 worth of
information in the file and if there is, will reimport it at this newer
higher resolution. There will be an immediate change in quality in the
Scene view.

Figure 5.13 Selecting the texture
file used in a material. Notice that
when the swatch is clicked, the file
it represents highlights in the Project
panel.

Warnings and Pitfalls
Truth be told, 2048×2048
is a big texture—too
big in fact. A 2048×2048
texture isn't twice as big
as a 1024×1024, it's four
times as big. So choosing
to use such a big texture
is not a choice to be
taken lightly. In fact, using
multiple UV sets is a
technique that can allow
for small tileable textures
to be overlaid by larger,
rougher textures. Using
multiple UVs can actually
create much more
efficient games than what
we are currently building.
However, it's a fairly
obtuse process and a bit
beyond the scope of this
book. So the compromise
we are making is by
making larger textures
that are not tileable but
easy to understand how
they apply to a surface.
To compensate for this
compromise though, be
careful choosing which
textures must be of larger
sizes. If the texture looks
acceptable at a lower
resolution, leave it there.

111

Asset Creation: Unity Scenography Importing

Step 19: Examine the scene closely, and change the Max Size for any
textures that need it.
Step 20: Examine the scene for any abnormal geometry. In my version of
EntryWay that was completed in Chapter 4, there is an error (that I'd like to
say was left there on purpose, but it was just an error) that can be seen in
Figure 5.15. See how only one side of the door is visible, although we can
see the inside of the left side door? What this means is that the normals
are reversed on that left side door. This is a common problem during the
building process if a mesh was duplicated and scaled by –1 to get a mirror
version. To fix it, we need to get back into Maya.
Step 21: In Unity, choose File>Save Scene.

Why?
Saving often is always a good idea. When bouncing between Unity and a
3D application, always save the Scene file to avoid losing work in case of
import problems.

Figure 5.14 Inspector for a texture file (note this is after doing step 18).

112

Creating Games with Unity and Maya

Step 22: In Maya, open the Maya file EntryWay.mb (not the .fbx we
exported). Fix any geometry or normals problems.
Step 23: Export manually from Maya again (File>Export All), although
this time turn off Embed Media in the File Type Specific Options section of
the Export All dialog box. Be sure to overwrite the old EntryWay.fbx in the
Assets folder of your Unity project file.

Why?
Because all the textures have already been imported into Unity, there is
no need to include them in this new version of the .fbx. It will save loads
of time in exporting and even more importing. By overwriting the old
EntryWay.fbx, the changes made here will automatically fix themselves in
the instances placed in the scene.

Conclusion
So there it is—exporting manually from Maya and importing to Unity.
I haven't had a project yet where I didn't have to do a little bit of tweaking
to a level once it was imported. But because the process is so quick, it
really is quite painless to make the necessary adjustments.

Now the game is playable enough to walk around the scene. It still has a lot of
problems (no lighting, the sky is that strange flat blue, etc.), but not to fear; in
the next chapters, we will use some of Unity's built-in asset creation tools to
give some more life to the scene.

Homework and Challenges
Challenge 1: If you've been building the hallway (along with UV and
texture), export the hallway from Maya and create a new scene within Unity
to place it in (save the file as Scene-Hallway). Walk through the level to test.

Figure 5.15 Problem area found in a
scene once placed in Unity.

Warnings and Pitfalls
In this case the problem
was in my construction
technique. As I was
creating the doors, I
duplicated a door and
then scaled it using X =
–1. The tricky thing about
this is that in Maya, the
normals look correct
but in Unity they do
not. The problem here is
that by using the Scale
X = –1 method, that
mesh ends up with an
Opposite tag that can
be tough to track down.
A better method is to use
Mesh>Mirror Geometry
when needing this sort
of duplication.
To fix this problem, either
reconstruct using the
Mirror Geometry method
(and then separating
the duplicate from the
original (Polygons>Mesh>
Separate)) or, take the
errant copy and combine
it with the original. Then
the normals will appear
as they will in Unity.
Reverse the normals that
are reversed (Polygons
>Normals> Reverse), and
separate the two doors.
Be sure to rename the
newly separated meshes
appropriately.

Chapter 6

113
Creating Games with Unity and Maya
© 2011 by Elsevier Inc. All rights reserved.

Asset Creation: Unity
Scenography Creation Tools

Chapter 6

Asset Creation in Unity
In the previous chapters we have looked at using Maya as the primary
asset creation tool. Indeed through the course of those tutorials we
molded polygons and textured them using a tool completely outside
of Unity.

Generally, this is how games are created; the assets are assembled in a
package built for 3D object manipulation. Unity is just not a modeler
(although it has been becoming an increasingly robust animator), and so to
get complex forms and textures to bring those forms alive the game artist
needs another package.

However, despite these limitations, Unity does have some asset creation
capabilities. It can do more than simply bring assets in from outside. In this
chapter, the EntryWay scene that has been created thus far will be further
augmented with some of Unity's asset creation tools: built-in prefabs like
water, terrains, trees, and particles.

114

Creating Games with Unity and Maya

Tutorial 6.1: Adding and Manipulating
Unity Water, Sky, and Fog
Before getting to the business at hand, it's worthwhile to revisit the idea
of Packages. In Unity, we have seen how to import meshes that become
GameObjects that have attached to them materials (and other components).
These GameObjects can also have scripts and other functionality hung on them
as additional components. When a GameObject has scripts attached to it, or
special shaders to define the visual appearance, it can be a fairly robust asset.

To move these robust assets from project to project, Unity has developed this
idea of packages that contain decorated and configured GameObjects. When
the project was created, we imported the Character Controller packages that
included the prefab GameObjects of First Person Controller (which has already
been used in the scene). At the time the project was created we refrained
from adding other packages to keep the project lean and mean.

At this point, however, there are some very sophisticated and beautiful-looking
prefabs that Unity has created that would be useful to us here … specifically
the water. In this tutorial we will look at importing these additional assets via
packages and place them in our scene.

Importing Packages

Step 1: Open Unity. Make sure to set the project to Incursion–Unity.
Step 2: Import Water packages. Choose Assets>Import Package>Water
(Basic or Pro depending on which license you have). If you have Unity Pro,
import the Water (Pro Only) package. If you are using the free Unity, use
Water (Basic).

Why?
What's the difference? Unity Pro includes some render to texture effects
that allow for some more visually sophisticated water. Although you can
import both packages (which I do for screen shot purposes here), if you do
not have a Pro license, the functionality of the Pro water will not be seen.

Step 3: After Unity decompresses the package, press Import in the
Importing Package window that will pop up. Unity will then bring up an
Importing Assets progress bar. When done, a new Water (Pro Only) folder
or Water (Basic) folder will appear as a child of the Standard Assets folder
within the Project panel.

Water

Step 4: Explore the water prefabs this process has brought in. In the
Project panel, expand the Water folder and click once on one of the
prefabs that has been imported (either Daylight Water/Nighttime Water
or Daylight Simple Water/Nighttime Simple Water).

115

Asset Creation: Unity Scenography Creation Tools

The Inspector will explode with information. Notice that the GameObject will
have some familiar components (Transform, Mesh Filter, Mesh Renderer) but will
also contain a Water (Script) component and a very complex shader with lots and
lots of inputs (especially if using the Pro version). This is the benefit of bringing in
a package—all the appropriate textures that make the water look and move like
water have been attached to the shader where they belong, and the script that
further helps the effect has been attached and configured (Figure 6.1).

Step 5: Place the water in the scene. From the Project panel, drag one of
the Daylight waters into the scene view (Figure 6.2).

Why?
Yes, the water could have been placed by dragging from the Project panel
to the Hierarchy panel. However, by dragging directly into the scene, the
water can be roughly positioned within the space. The results, however,
are the same as dragging to the Hierarchy panel.

Step 6: Move and scale the water to approximate Figure 6.3. The idea here
is to make the water big enough so the edge cannot be seen inside the
tunnel, and expands out past the edges of the dock enough so the edge is
not too pronounced (we will hide it later with fog).

Figure 6.1 The settings of the
Daylight Water prefab as brought in
via the Water package.

116

Creating Games with Unity and Maya

Step 7: Play the game to check out the new water. Press the Play button
(or press Ctrl-P on the PC or Command-P on the Mac) and walk around the
scene to see how the water looks.

Why?
Don't worry too much about how this looks quite yet. It's very likely that
in the game view the water looks way too blue (even if you are using a Pro
license). This is because the water is reflecting the sky, which at this point is
just a flat blue. It will be prettier as we define the environment further.

Skyboxes

Skyboxes are interesting things. In effect they paint a sky behind everything in
your scene. The sky behaves visually as the real sky does (although generally
not animated). There are a few things that are a little unintuitive about them
though. First, a skybox is not a GameObject—it can't be seen in the Hierarchy
panel. Skybox materials are chosen in the Render Settings (of all places),
and then Cameras have the option of whether to draw them or not. Second,
skyboxes don't affect any sort of lighting or baking. They are images that looks

Figure 6.2 Placing a water prefab
by dragging from Project panel to the
Scene view. Note that this is using
the Pro version of water (real-time
reflection).

Figure 6.3 Placed water.

117

Asset Creation: Unity Scenography Creation Tools

like the sky (and this sky shows up in reflections if you have Unity Pro), but
don't really do anything to the scene.

Still, even though it's a bit unintuitive to track down where a skybox is, it really
does help take a scene out of that flat look that the solid blue background
gives it. In the next few steps we will set up a skybox to see how it works and
what it does for the scene. However, this is an exploration of the tool—and in
steps soon after that we will eliminate the skybox to give the scene a much
more ambient effect.

Step 8: Import Unity's skybox package. Unity, as part of the standard
packages that it ships, includes some fairly nice skyboxes. While
custom skyboxes can be created, for now choose Assets>Import
Package>Skyboxes. Again, after importing, the Project panel will show a
new folder called Skyboxes within the Standard Assets folder.

Step 9: Examine any of the skyboxes. In the Project panel, expand the
Standard Packages folder, and then expand the Skyboxes folder. Notice
that the skyboxes contained there are not prefabs or GameObjects
at all. That circle icon represents a material. If any of these materials
are selected, the Inspector will show that the skybox material actually
consists of six images for each side of the box (Figure 6.4).

Step 10: Apply a skybox material in the Render Settings. Select
Edit>Render Settings. The render settings will appear in the Inspector
panel. There, notice the Skybox Material area. To apply a material here,
either (1) drag a skybox material from the Project panel into the area
where it says None (Material) or (2) click the little target icon at the far
right of the Skybox Material line and pick a skybox material from the
displayed swatches.

Figure 6.4 Skyboxes are constructed
with materials made of six texture
images. No GameObjects are involved.

118

Creating Games with Unity and Maya

Tips and Tricks
Either of these methods work. Sometimes, deciding which material to use
is much easier to do by seeing a visual preview of it and other times, if the
name is known, it's faster just to drag it from the Project panel. It's part of
the power of Unity that either way will work.

Step 11: Try throwing a few different skybox materials in there to see the
dramatic difference it makes in the scene. Especially if your copy of Unity is
Pro and the water is reflective, the entire color balance of a scene changes
with a skybox (Figure 6.5).

Tips and Tricks
The built-in skyboxes are nice, but custom is always better. One of my
favorite tools is to use C4D (which has some really great sky creation
tools) and using the custom rig found here (http://forum.unity3d.com/
threads/9030-Unlimited-SkyBoxes-from-Cinema4D) to create and output
the images needed to construct a custom skybox.

Step 12: Remove all skybox materials. Access the Render Settings
again (Edit>Render Settings) and click the target icon at the end of
the Skybox Material line. Double-click the None swatch in the Select
Material window.

Why?
Yes, I know—the skies were so pretty. Agreed—but they really are a bit too
pretty and don't give the scene quite the ominous feeling this game requires.
The other problem with a sky like that is the horizon must be taken care of in
a reasonable way and this current model simply wasn't designed to do this. In
the following steps, we will be making use of Unity's fog capabilities to help
hide the end of the water and make the scene more ominous and interesting
and (most importantly) appropriate for this genre of game.

Figure 6.5 Quick dramatic changes
with various skyboxes.

119

Asset Creation: Unity Scenography Creation Tools

Fog

In Unity, fog is handy and easy to use. Think of it as more than just the gray fog
that is seen in the real world (although Unity's fog can be used to do that as well).
Fog in Unity can be used to make dark scenes darker as the player gazes into the
faraway corners of a space. Fog in Unity can be used to provide a soft haze on
the horizon line to soften the sky/ground plane line. Fog can be used to make
underwater feel like a murky mess, or just allow the water to “blue-out” as it gets
further from the player. In short, fog—with a bit of tweaking—can be used for all
sorts of interesting effects that can bring depth and polish to the scene.

In the case of Incursion, fog will be used to hide the edge of the water, and to give
the scene a damp and murky feel. It will provide a sense of ambiance of a truly
abandoned location, but one in which the player is never quite sure if he is alone.

Step 13: Change the background color of the Main Camera to gray.
The background color is an attribute of the Camera component. In the
Hierarchy panel, expand the First Person Controller and select the Main
Camera GameObject. Its attributes will appear in the Inspector. Under
the Camera component, click the long blue swatch next to Background.
Choose a new color that is rather gray-blue (this can be changed easily
later; Figure 6.6). Jot down the RGBA values (mine were 89,101,120,255).

Why?
When there is no skybox present, cameras paint a solid color behind all
visible geometry (or actually more accurately, it draws a solid color field and
then draws the geometry on top of it). Unfortunately, fog doesn't affect this
background quite as we would expect. Regardless of the density of the fog,
that color field will still be visible. For that matter, a skybox is also still visible
even if the fog is so thick the player can't see any other geometry. This, of
course is not how fog really works, so to fix this, match the background
color to the fog color to begin with so the fog really appears to thicken the
further it gets away from the player even if there is no geometry out there.

Figure 6.6 Changing the
background color.

120

Creating Games with Unity and Maya

Tips and Tricks
It's important to note that the background color is an attribute of a
camera. This means that changes to the background color can only be
seen through the camera. If Main Camera is selected in the Hierarchy,
a little Camera Preview window will be set within the Scene window
(Unity 3 or later only). Or, by bringing the Game window forward by
clicking its tab, the background color changes will also become apparent.
But, the background change will not be shown in the Scene window.

Note that this also means different cameras can have different background
colors. So if another camera is providing a map view or a night-vision view,
that camera can have its own black (or whatever) color. Background color
affects cameras, not the actual environment.

Step 14: Activate fog. Choose Edit>Render Settings (which will open in
the Inspector). Click the Fog check box.
Step 15: Change the Fog Color to match background. Still in the Render
Settings, the Fog Color has a long color swatch similar to the Background
Color setting. Click this swatch and change the color to match the
background (in my case 89, 101, 120, 255).
Step 16: Adjust the Fog Density. The higher the Fog Density value is, the
closer the fog obscures objects. This value can be adjusted in a couple of
ways, either by clicking the numerical value and entering a new one or
by moving the mouse up to the Fog Density word and click-dragging left
or right (the cursor will have a double-tipped arrow appear (Figure 6.7).
Adjust to about 0.04 (although change this to your taste).

Tips and Tricks
Generally, I find that dragging values can sometimes be a little tricky (it either
slides way too high too quickly or never seems to move at all). A lot depends
on the situation, but a quick way to work is to drag the value higher or lower
to get in the general neighborhood of the value (and thus the look) that you
are after. Then, for the fine-tuning, numerically tweak the value to taste.

Wrapping Up

The screenshot in Figure 6.8 shows the current results of water, fog, and
background color adjustments made in this tutorial. Notice that the water
may be a different color than yours. This comes from some tweaking made to
the scene after all the previous steps were complete. You should do this too to
make the water look as you'd like.

Figure 6.7 Adjusting value by dragging left and right on the variable's word.

121

Asset Creation: Unity Scenography Creation Tools

Tweak the background color to various hues to see which matches your vision
of the scene. Be sure to match the fog to that value. The water has all sorts of
parameters that can be tweaked. To tweak them, select the Daylight Water
in the Hierarchy panel and make the adjustments in the Inspector panel.
Figure 6.8 shows water that had the Refraction Color adjusted to a dark green
and the Wave Speed settings cut in half. These adjustments are fairly painless
and can quickly help establish a different scale to the water, and an entirely
different hue and style.

So there are still some issues here. The lighting—or lack of lighting—
combined with a high ambient color setting still makes the scene look flat.
However, a bit of reflective water and a splash of fog can go a long way to
give a scene just a bit of depth.

Some other benefits of the approach here is that what was once a very
small space (just the dock) suddenly feels like a much bigger space. The
player can feel the large space of the sea out beyond the dock even
if he cannot see it. Although in the next few tutorials the hill this base
is built into will be built, not much of it will be seen, although it will be
implied. Very often, the most expansive-feeling levels may not be that
large at all.

Tutorial 6.2: Terrain Creation
Terrains are a relatively new addition to Unity (Unity 2.x). Terrains can be
really cool in the right situation. A Terrain is a GameObject that is created in
Unity that can contain texture maps and “smart” objects like trees and grass.
By “smart” I mean they do some really fancy things like change their level
of detail as the player moves closer or further away from them. The classic
example is trees. Trees that are a mile from the player shouldn't contain 2000
polygons; the player would just never see this sort of detail. So the trees
that are a long way away are billboards—a two-triangle plane that has an
image of the tree on it. Then as the player gets closer, the tree morphs to
high resolution until, when the player is right up to it, the tree is in its high-
resolution splendor that holds up much better to inspection.

Figure 6.8 Results of this tutorial
with a few additional minor tweaks
to water parameters.

122

Creating Games with Unity and Maya

Additionally, terrains allow for some basic sculpting of the landscape. It's a bit
like the Sculpt Geometry tool in Maya where virtual brushes allow the user
to push or pull soft clumps of the geometry. Once this geometry is painted,
Unity provides for a similar experience to MAXON's BodyPaint texturing
scheme, where the user can layer texture in various opacities and size over the
terrain. So you want a beach that gently transitions into a rocky shoreline that
transitions into grassy plains and then to rocky mountains? It will probably
be easier and quicker to do it with terrains in Unity than to model that sort of
thing in Maya.

To further empower the user, custom trees can be brought in or built within
Unity itself. These trees will blow in the breeze (along with the grass beneath
them) and will adjust their level of detail as well. There is not much that
restricts getting a custom look in a scene and getting very expansive scenes.
In fact, there are many games where the vast majority of the actual level was
created exclusively within the Unity Terrain system.

Restrictions of Terrains

Terrains can definitely do some great stuff but not everything. For instance,
the tools to sculpt terrains will allow for meshes to be moved essentially in
the Y direction only. This works great for hills or mountains or even canyons,
but this means no caves (unless the cave is going down into the ground as
opposed to straight into a mountain).

Terrains are great for broad strokes of organic surfaces. It's quick and easy
to make forms gently rise from the surface. However, it can be tricky to be
very accurate in the painting of forms or textures. For instance, recently I was
modeling some custom homes for a builder and attempting to put grass
around the home but not have it poke up through the sidewalk that I had
modeled in Cinema 4D. Alas, getting that grass to neatly edge the sidewalk
was nearly impossible and I ended up spending more time on trying to get
that look right than I did modeling the outside of the house.

Still, even with the accuracy issues and restrictions on forms, terrains can be
a powerful tool to make some beautiful game assets. As is the case with all
tools, making believable terrains is an art and takes some study. True, with
Unity's tools, anyone can make a terrain with hills, mountains, grass, and
textures, but to get a terrain that looks believable or stylistically appealing
takes some study of good research and careful refinement. So be sure to
surround yourself with the look you're after.

In this tutorial we will be building the mountain that the submarine base was
carved out of. This mountain will do a few things for the scene. First, it will
provide a visual masking of the edge of the scene so the player can't see where
the model stops. And second, it will provide a physical barrier to the player so
he doesn't go traipsing off into parts of the level where there is no geometry—it
keeps him from falling off the end of the world.

Step 1: Turn off the fog. Do this in Edit>Render Settings and flip off the
Fog checkbox.

123

Asset Creation: Unity Scenography Creation Tools

Why?
Although in the game the fog will be a great thing, it really makes it hard
to work in the scene. While building the terrain, turning off the fog will
give us a clear view of the shape and textures being formed.

Step 2: Create a terrain. Use Terrain>Create Terrain. This will create a huge
terrain object with the corner at 0,0,0 in world space (Figure 6.9).

Tips and Tricks
Note that when a terrain is added, new things appear all over the place. First,
there is the physical placement of the terrain in the scene visible in the Scene
window, but a terrain object also appears in the Hierarchy panel. Additionally,
there is now a new terrain object in the Project panel. All of these are interacted
with in different ways, but be aware that they are all present now.

Step 3: Resize the terrain. Select the terrain instance in either the Scene
window or the Hierarchy panel. Choose Terrain>Set Resolution. Change
the Terrain Width and Terrain Length to 150. Change the Terrain Height to
35 (Figure 6.10). Press Set Resolution.

Figure 6.9 Newly created terrain.

Figure 6.10 Setting terrain size via
the Set Resolution drop-down menu.
Note that the results of the changes
made do not appear until after the Set
Resolution button was pressed.

124

Creating Games with Unity and Maya

Tips and Tricks
Note that the screenshot in Figure 6.10 shows the already resized terrain;
however, Unity draws the newly sized terrain only after the Set Resolution
button is pressed.

Why?
Why not just use the Scale tool? It doesn't work on terrains. Probably
because of the parametric and procedural basis of terrains, the Scale and
Rotate tools won't affect them. The Move tool will, but the only way to
change the size of a terrain is via the Set Resolution drop-down menu.

Why?
Why so small? Remember that with the fog the player won't be able to see
much beyond a few feet off the end of the dock. If a sunny bright scene was
called for in the game, a big terrain could be great to show the other side of
a river or bay and the land that emerges there, but in this case we are only
building small chunks of stuff right around the existing geometry of the
EntryWay. Keeping the terrain a reasonable size keeps all the relevant assets
in a size and placement that makes moving around the scene easier.

A size of 150×150 is just an approximation of the size of the scene, and
was found through trial and error. The height setting of 35 indicates the
highest the mountains will rise off the surface of the terrain. This too
can and might be edited later, but a reasonable height setting allows for
easier fine-tuning as the terrain is painted.

Step 4: Move the terrain so that it sits beneath the water and extends
beyond the edges of the dock, and also that the EntryWay is situated
roughly in the middle of the terrain (Figure 6.11).

Figure 6.11 Positioned terrain.

125

Asset Creation: Unity Scenography Creation Tools

Why?
Although terrains can be painted by raising parts up or pushing them
down, I find it easiest to simply pull stuff up for the rough cut. And since
the player should look down and see the water and not the mountain,
sticking it below the water to begin with makes for a quick solution.

Tips and Tricks
Remember the keyboard shortcuts for Move, Rotate, and Scale are
the same in Unity as they are in Maya (W-Move, E-Rotate, R-Scale).
Additionally, remember that the movement can be constrained with the
cone handles on the manipulator once the Move tool is active.

Step 5: Examine the Inspector for the terrain:

Terrain Editing Tools

Figure 6.12 shows the Inspector when the terrain is selected. At the top,
there is the usual Transform component (although the Rotation and
Scale settings here have no effect). On the bottom is the Terrain Collider
component that allows the player to walk across the terrain. Right in the
middle under the Terrain (Script) section are the tools that allow for the
manipulation of the actual terrain.

These tools (Raise/ Lower Terrain, Paint Height, Smooth Height, Paint Texture,
Place Trees, Paint Details, Terrain Settings) allow for various modification of the
terrain. If the mouse hovers over any of the tool buttons a screen hint will pop
up to indicate what the tool does. If a tool is selected, the options beneath
it will change to allow for the specifics of how the tool works to be tweaked.
Following is a brief description of what these tools do.

Figure 6.12 The Inspector for a
terrain instance.

126

Creating Games with Unity and Maya

Raise/Lower Terrain: This works much like the Airbrush tool in Photoshop.
A brush is defined by size and opacity (the rate the brush actually changes
the area it is painting). Note that there are a bunch of different types of
brushes (why anyone would use a Star brush is a mystery to me), but
they can quickly allow for organic forms as the brush is left in one spot or
dragged across the surface. Clicking and holding or clicking and dragging
raises the terrain surface until it reaches the Terrain Height setting defined
in the Terrain Resolution from step 3, at which point the terrain will
plateau. Holding the Shift button down while clicking and holding or
clicking and dragging pushes the surface back down until it reaches its
default starting height.

Paint Height: In many ways this is similar to the Raise/Lower Terrain;
however, it also allows for areas of the terrain to paint up to a specific
height and stop (think tiered plateaus). To use it, either set the height with
the slider, or Shift-click the terrain to define a target height, and then paint
on the terrain to raise (or lower) the terrain to plateau at the target height.

Smooth Height: Think of this as erosion. It smoothes areas of the terrain
and softens the area.

Paint Texture: This tool allows the user to define textures and then apply
them to the terrain. Note that this tool is useless until the tool has been
told which textures can be used in the scene. This happens with the Edit
Textures… button contained in the tool nested within the Inspector
panel (much more on how to use this later). The power of this tool
becomes apparent when there are several textures defined, and these
textures are layered using various opacities upon the terrain.

Place Trees: Much like the Paint Texture this allows for trees (as in geometry)
to be placed on the terrain using a painting paradigm (or Paint Effects if you're
familiar with Maya). This tool does not include a wide variety of brushes, but
the size of the default round brush can be changed as well as other variables
including the density of trees as they are placed; the color, height, and width
of the trees; and the variation of these attributes. Again, this tool is useless until
tree meshes have been defined; this tool is done via the Edit Trees… button
within the tool (nested in the Inspector panel). This tool can also be used to
remove trees by Shift-painting over the terrain to remove all types of trees and
Ctrl-painting to remove only the active types of trees.

Paint Details: “Details” is kind of a funny word here. It actually means
grass or detail meshes. Grass is an appealing part of Terrain as it is low
poly but moves in the wind in believable ways and can really bring a
scene to life. Detail meshes are things like rocks—things that when
spread about on the scene and slightly adjusted in size or rotation can
suddenly change the profile of the scene. Detail meshes can be anything
really, including low vegetation. As expected, the tool only works after
Grass or Detail Meshes have been defined. They are defined with the Edit
Details… button in the Inspector when the Paint Details tool is active.

127

Asset Creation: Unity Scenography Creation Tools

Terrain Settings: This area includes a lot of settings that define how the
terrain will react with the player. How far away from the player with a tree
swap from a billboard to a high-poly tree? How hard and fast will the wind
blow? How much will the wind bend elements? This and more await the
user within the Terrain Settings. If there is a setting that should be adjusted
for how the terrain looks or plays, chances are it's within this panel of sliders.

But enough of the grocery list of descriptions. Let's build something with it.

Creating the Ground Topography
Step 6: Using the Raise/Lower Terrain tool, make a first rough pass similar to
Figure 6.13. Don't worry about poking in too far into the dock, just use as big a
brush as you can; just make sure it has a soft edge, and give the terrain a rough
outline to mask out the edges of the dock and come up to the walls of the dock.

Tips and Tricks
Notice that generally the first pass here is simply a ridge of mountains
around the outer ring of the shape of the EntryWay object. Big strokes
like this are made to just give a little bit of structure to deciding what
is needed. The key to effective terrain creation is multiple passes. Don't
worry about getting any one area just right on the first pass.

Step 7: Add some mass to the terrain with further raising of the terrain
(Figure 6.14). Again, use a large brush to quickly rough it out.

Figure 6.13 First draft with a
big brush using the Raise/Lower
Terrain tool.

Figure 6.14 Added mass.

128

Creating Games with Unity and Maya

Step 8: Carve back the mountain for walls. Pick one of the round brushes
with a hard edge. Reduce its size to 10. Find areas where the terrain is poking
through the walls that are supposed to be holding it back (Figure 6.15) and
hold down the Shift key and paint right in front of the walls. This will allow for
carving into the mountain and pulling it away from the wall.

Why?
Often it is much easier to carve chunks out of mountainous terrain than it
is to add it up in delicate areas like retaining walls.

Tips and Tricks
Although the mountain and its retaining walls should generally match
up, do not worry about getting them perfectly aligned. Remember that
there is no reason for the player to be running up the mountains; in fact
later we will add some colliders to ensure that he cannot. The only place
the player will ever see these mountains is from the dock. Looking up from
below it is difficult to see if the top of the retaining walls match up with the
mountainside.

Step 9: When the mountains appear correct be sure to Play the game
and walk around carefully inspecting whether the new terrain does what
it should. What looks good way up in God's view as the terrain is created
might not be nearly so perfect where the boots hit the ground.

Adding Texture to the Topography
Although the snowy-looking marshmallows that have just been painted
might look yummy, they aren't really in sync with the style of the game or
the style of the model created in Maya. It's time to start adding some dirt and
rocks to this form.

Warnings and Pitfalls
When carving out
areas, be sure to take a
close look at all parts of
your models. An easy
place to forget would
be the tunnel. There
shouldn't be any parts
of the mountain poking
through there. Part of the
challenge with terrains
is moving from the very
big to the very small, but
it is very important to get
close and personal with
all parts of the level when
the terrain interacts with
imported meshes as
closely as these do.

Figure 6.15 The process of carving
back terrain behind retaining walls.

129

Asset Creation: Unity Scenography Creation Tools

Step 10: Find a rocky base texture and make it seamless. Figure 6.17
shows Cliffs0168_1_S from CGTextures (http://cgtextures.com/texview
.php?id=55487) as the Terrain Texture applied to the terrain created in
earlier steps. Other textures could certainly work as well. Use the seamless
texture techniques used in the previous chapter.

Why?
The terrain created so far includes a sort of UV map and the textures
we are going to apply will be tiled. Since they are tiled, they need to be
seamless.

Step 11: Add this new seamless texture to your available assets. In the
Unity Project Panel, click the Create drop-down menu and choose Folder.
Rename the folder Terrain Textures. In Photoshop save the seamless
texture to this Terrain Textures folder (or simply drag it to this folder in the
OS if the texture has already been saved somewhere).

Why?
The project is beginning to have a larger collection of assets. A few
effective folders keep your workspace clean and the assets easy
to find.

Step 12: In the Hierarchy panel, select Terrain. In the Inspector, click
the Paint Texture tool. Click the Edit Textures… button and choose Add
Texture… from the drop-down menu.
Step 13: In the Add Terrain Texture window that will pop up click
the target icon. The Select Texture2D window will appear. From this
window find the seamless texture you just made and double-click it.
The window will close and the texture will be added next to Splat in
the Add Terrain Texture window. Click the Add button (Figure 6.16),
which will close the window and add the texture to the terrain
(Figure 6.17).

Figure 6.16 Adding a terrain texture.

130

Creating Games with Unity and Maya

Why?
When a first Terrain Texture is added to the available textures, that texture
is automatically plastered over the entire terrain. This seems awfully
forward of Unity, but since there will be lots of other textures painted over
this one, it's not a bad strategy and can save a lot of time in the long run
to have a base texture applied.

However, the size of the texture as plastered across the terrain may not be
quite right.

Step 14: Adjust the Terrain Texture size. Still with the Terrain selected
in the Hierarchy, click the Terrain Texture in the Inspector. Click
the Edit Textures… button and the Edit Texture… option. In the
Edit Terrain Texture window, change the Tile Size X and Tile Size Y
settings from the default 15 to 5 (or whatever looks best in the scene
(Figure 6.18)).

Tips and Tricks
Remember that there are two ways of looking at the scene. The first is
via the Scene view, but the second is the more important—the Game
view. Be sure to check out changes in terrain textures in the Game
window as well. That's the only way the player will see the scene and
sometimes things that look good in Scene don't look as good in Game.

Step 15: Find a cliff-side texture, make it seamless, and import it as a
Terrain Texture (note this is a repeat of steps 10–14). I am using http://
cgtextures.com/texview.php?id=49431.

Figure 6.17 Result of adding the first terrain texture.

131

Asset Creation: Unity Scenography Creation Tools

Tips and Tricks
Most all Terrain Textures are going to be repeated and tiled. Because of
this, there is usually no need for a very large original file. When going
through CGTextures and accumulating textures, the smallest size is
usually sufficient.

Step 16: Paint with the texture. With the terrain selected, choose the Paint
Texture tool in the Inspector panel. Click the newly imported cliff-side
texture (it will highlight with a blue bar beneath the swatch). Use a soft-
edged brush (one of the first two in the Brushes section) and paint areas
of the terrain that would be cliff side (Figure 6.19).

Tips and Tricks
Note that in order to paint with any Terrain Texture, that texture must first
be selected in the Terrain section of the Inspector. It's a powerful function
to be able to swap back and forth between multiple Terrain Textures.

Figure 6.18 Resized Terrain Texture.

Figure 6.19 Painting with additional Terrain Texture.

132

Creating Games with Unity and Maya

Tips and Tricks
Layering textures is a very powerful way to add nice variation to any
terrain. However, if the layered textures are too different, no matter how
much Opacity adjustments and Target Strength tweaks are made, the
results can appear ham-fisted. By using textures that share a common hue
balance, the transition between the textures can appear much gentler.

Step 17: Import and paint with additional textures to taste.

Tips and Tricks
Be sure to spend time only on areas that will be seen. Remember that
most of this terrain will never be seen by the player because of the fog.
A quick pass or two with additional textures helps to make the terrain
look better for sure, but if it isn't going to be seen, don't sweat it.

To check the progress, try turning on the fog (Edit>Render Settings) and
walk around the scene to see what holds up and what needs more refining.

Adding Trees and Rocks (Trees and Detail Meshes)
Once the Terrain's workflow is understood (as just outlined for painted textures),
the rest of the tools fall easily into an artist's toolbelt. Within the Terrain paradigm,
trees actually follow a similar workflow as textures. A tree is defined within
the Inspector, and then painted onto the surface of the terrain. Shift-painting
removes all trees and Ctrl-painting removes the trees of the selected type.

For a quick rundown of the technique and a few tricks, the next few steps will
make use of Unity's Terrain Assets package. We will paint in a few variety of
trees, and look at placement and editing strategies.

Step 18: Import Unity's Terrain Assets package. Among the resources
Unity includes on its site is a collection of prebuilt Terrain Assets. They are
available at http://unity3d.com/support/resources/assets/terrain-assets
and are a pretty nice collection of ready-to-use textures, trees, bushes, and
so on. Just go to the URL, download the package, and then import the
package (Assets>Import Packages>Custom Package…). This will create a
new Terrain Assets folder within the Assets folder of the project file.

Why?
True, using prebuilt, ready-everywhere-on-the-web assets is generally a
bad idea. If it looks good in your scene, it will look good (and exactly the
same) in everyone's scene. For a commercially created game, generally
it is preferable to make your own trees—and in fact, Unity now comes
with a really fun Tree generator (GameObject>Create Other>Tree…). But
for the learning process here, downloading and using prebuilt assets will
speed the overarching learning process.

133

Asset Creation: Unity Scenography Creation Tools

Step 19: Add a ScotsPineTypeA tree to your tree types. With the Terrain
selected in the Hierarchy view, go to the Inspector and click the Place Trees
button. Click the Edit Trees… button and choose Add Tree from the drop-
down options. In the Add Tree dialog box, click the target icon, which will
pull up a (now well-populated) Select GameObject window. Double-click
the ScotsPineTypeA icon. Lastly, click the Add button in the Add Tree dialog
box. This will add a new tree in the Place Trees section of the Inspector.
Step 20: With the default settings, paint on the Terrain. Insta-forest.
Step 21: Undo (Edit>Undo or Ctrl-Z or Command-Z).

Why?
The default settings of placing trees make for a very dense placement of
trees. This actually can be a hint at how Unity plans for trees to be placed
(lots and all over), but in our stark scene, there really isn't need for that
many trees, especially since there will be very few visible through the fog.
So the settings need to be tweaked.

Step 22: In the Settings area adjust Brush Size to 10 and the Tree Density
to 75. Now paint these new trees across the highest parts of the scene
(Figure 6.20).

Tips and Tricks
Having a smaller Brush Size allows for slightly more accurate tree
placement. In this case, where there are not going to be many of these
large trees down close to the entrance, an accurate placement helps.
However, remember that often it is much easier to remove trees where they
shouldn't be than to try and get any one tree exactly where it needs to be.

By throwing up a lot of trees, and then Shift-painting to remove the
excess, the random placement of the trees holds up and saves the
frustration of painting on an area with a low Tree Density setting and
never getting the stinkin' tree you're after.

Figure 6.20 Painted Scots Pines.

134

Creating Games with Unity and Maya

Step 23: Repeat for a few other trees or bushes. Add other trees to the tree
library (including bushes) and experiment with various Brush Sizes, Tree
Densities, Tree Height, and Color Variation. Place trees and bushes and
remove them in places where they would not make sense (Figure 6.21).

Why?
Figure 6.21 seems to show a pretty sparse placement of trees and bushes. And it
is. The point of the trees is to help shake up the profile of the land a bit, but since
this game calls for a foggy outside, we only want to catch a hint of those trees.
No need to have trees in areas of the Terrain that will never be seen, so careful
placement will continue to keep the data set small and the game snappy.

Tips and Tricks
Remember that in this game, the scene will never be seen from way up in the
God-mode that the trees are painted in. When painting in God-mode, the trees
will be continually popping in and out of billboards and sometimes look really
strange on the Terrain. Be sure to get down close to see how the trees really lie
across the terrain. Further, be sure to Play the game and see which of the trees
you can see and which are just invisible. Get rid of the stuff not needed and be
sure to understand really how those trees look and feel in the game.

Step 24: Add rocks as Detail Meshes. Still with the Terrain selected, click
the Paint Details button in the Inspector. Here, click the Edit Details…
button and Add Detail Mesh… from the drop-down menu. As before,
click the target, and then choose RockMesh. Change the options to match
Figure 6.22. Click the Add button.

Why?
The Random Width and Height are settings that mean the painted rocks
can be up to five times the size of the original mesh. For some objects,
this should be very low (houses for instance), but for rocks, a wide
variation will work much better.

Figure 6.21 Several tree types and
bush types placed throughout the
scene.

135

Asset Creation: Unity Scenography Creation Tools

The Healthy Color and Dry Color seem like really strange settings for a
rock, and they are. They are the basis of the other half of the Paint Details
tool—grass. When not using grass, these color values still need to be
defined. If they are left green, Unity will paint some very green-looking
rocks. These can be adjusted after the rocks are painted (and usually need
to be changed), so give them your best gray guess.

Finally, the Render Mode settings should be changed to Vertex Lit for any
detail meshes (like our rocks). When painting grass, Grass should be the
render setting selected.

Step 25: Change the brush size to 2, the Opacity to 0.05, and the Target
Strength to 0.06.

Why?
Just for fun, don't do step 25 and try painting with this new RockMesh
detail mesh. The results are some very strange mounds of indistinguishable
forms. The detail meshes are being painted too densely. Using a very small
brush size with low Opacities and Target Strengths will take a little longer to
place a bunch of rocks, but will allow some semblance of control.

Step 26: Paint in rocks along the seam of where the dock meets the
mountain, and along the shoreline where the mountains drop into the sea
(Figure 6.23).

Why?
Rocks are a very organic way of helping imported meshes transition
into terrains. As discussed in earlier chapters, transitions and corners are
where 3D models often fall into the computery-looking valley of death.
By breaking these transition spots up, the too-clean line of assets meeting
can be made more organic.

Figure 6.22 Options for importing the rock mesh.

Warnings and Pitfalls
When painting detail
meshes onto a Terrain, it
is important to remember
that the Scene view
is also using a sort of
camera. This means that
the settings Unity uses
to keep Terrains snappy
(namely not drawing
objects that are far from
the camera) are in effect.
So if you are a long way
from the mountain and
painting on a terrain,
details and trees could be
added that weren't visible
until you were much
closer. Be sure to get in
close and personal during
the painting process to
make sure the painted
details are really what was
planned.

136

Creating Games with Unity and Maya

Tips and Tricks
The absolute size of any detail mesh can be changed by changing the prefab.
For instance, to change the size of the RockMesh, find it in the Project panel
(Terrain Assets>Rocks>RockMesh) and select it. Like any other imported
mesh, change the FBXImporter setting's Scale Factor and click Apply. The
change won't show up immediately, but by selecting the Terrain again (in the
Hierarchy) and double-clicking on the RockMesh (in the Place Detail button),
Unity will go out and look at the RockMesh again—see its new size and update.

Conclusion

As is the case with most any organic elements, multiple passes and careful refining
will help in the final product. Now that Terrain editing is within your toolbelt, keep
adjusting and make the scene appear as Aegis Chung should happen upon it.

Continuing on in the next tutorial, we will look at a few more Unity-created
assets to give the scene a few last finishing touches.

Tutorial 6.3: Primitives and Particles
Earlier, when talking about the union of Maya and Unity, we spoke of how Unity
was not a polygonal-generating machine; rather it presented polygons made
by other applications and made them interactive. Well, that's not entirely true.
Turns out Unity can make a few shapes itself: cube, sphere, capsule, cylinder, and
plane. Yes, this list is a bit underwhelming and further problematic when these
polygons are presented and nothing can really be done with them except for
move, scale, and rotate the entire shape (well this isn't entirely true, I've got a
colleague busy having Unity make shapes with holes cut in them—he's got all
sorts of control over Unity-created meshes, but he does it all programmatically
and is doing some pretty heavy under-the-hood work to make this happen) and
it is why most forms are still built in other applications.

Figure 6.23 Placed rocks.

Warnings and Pitfalls
RockMesh does some
things well and some
things not so well. If it
were to be opened in
Maya, it would reveal
it has no bottom. It is a
mesh designed to be
jutting out of the ground
and specifically out of a
flat ground. This means
that if the RockMesh
detail is painted on
a mountainside, the
orientation of the hole in
the bottom of the mesh
points straight down. This
means that looking up
you can see the missing
bottom. The RockMesh
doesn't hold up well on a
steep hillside.

To fix this, the rock could
have the bottom added
back in (or a new rock
could be modeled and
textured from scratch), or
just be very careful in the
placement. Be sure to run
around in the game and
take a look at these rocks
once they are placed.

Further, note that detail
meshes (by default) have
no colliders attached
to them. This means
that the player will walk
through the rocks (which
could be awkward if the
rock is a huge boulder).
Not really much of a
problem in this case
since the rocks are up
on the mountainside
that the player won't be
allowed to travel to, but
an important detail to
remember.

137

Asset Creation: Unity Scenography Creation Tools

This small collection of primitives can be useful for a few things though. For
roughing out ideas or a temporary placeholder, using GameObject>Create
Other> to drop in a spare cube or sphere can be a real time saver and allow for an
idea to very quickly be explored. Additionally, there are times when a polygonal
object can be used to control other capabilities of Unity, like particle emitters.

In this tutorial, we will briefly create a few polygonal primitive GameObjects
and then use them to define the attributes of a particle system. The particle
system we are going to create is a low-lying steam rising off the water surface
in this cold and uninviting scene. It will help provide some further movement
to the scene and give it further ambiance.

A quick bit of theory about what particles are. Essentially, particles in Unity
are little tiny billboards or planes (although the mesh can be more complex)
that emit into the scene and always face the camera. This gives the illusion
of volume for things like smoke when these planes are textured with
semitransparent textures. Because the default emission object is a place, the
polycount remains low but great effects are added.

Particles can be effectively used for smoke, fire, sparks, steam, and so on.

Step 1: Create a new Plane. GameObject>Create Other>Plane. This will
create a new Plane object in the scene in the middle of the screen space.
Note this could be in all sorts of weird places, so swap to the Move tool
and move the Plane up to where it can be seen in the Scene view.

Tips and Tricks
Note that when creating one of Unity's polygonal primitives, it only shows
up in the Hierarchy and Scene window (it does not become a prefab
automatically and thus does not show up in the Project panel). It can be
made into a prefab if the object needs to be used again and again after it
has been created, but we'll get to that in a minute.

Step 2: In the Hierarchy panel, name the Plane WaterSteamEmitter.
Rename objects in the Hierarchy by either right-clicking and choosing
Rename, or clicking once, waiting, and then clicking again, or by selecting
it in the Hierarchy and renaming it in the Inspector.
Step 3: Remove the material. Select WaterSteamEmitter in the Hierarchy
panel, and in the Inspector look for the Mesh Renderer section. Expand the
Materials part, and click the target icon next on the Element 0 line. Double-
click None in the Select Material window. The mesh should turn pink.

Why?
There really isn't a hard and fast rule or need to get rid of the material. In
later steps we will be turning off the Mesh Renderer for this GameObject
completely so it won't be seen in the scene; so the current material doesn't
matter much. The reason we are turning it off is the scene is awfully gray,
and when a polygonal GameObject has no material it turns it bright pink,
which makes it very easy to see.

138

Creating Games with Unity and Maya

Step 4: Scale and Move the WaterSteamEmitter to match Figure 6.24.

Why?
This plane is going to be the source of the water steam (as the name
implies). Although we could create a particle system (GameObject>Create
Other>Particle System) that is really independent of polygons or any
mesh, when working with particles that need to come from a very specific
area, making a polygonal object that matches this area is a quick and easy
way to take control of this.

It is a little smaller than the channel because the steam particles will be
expanding, and when particles cut through polygons (like the side of the
dock) they can make strange artifacts appear. So having the emitter a bit
smaller will give the same steaming-water effect but avoid the artifacts.

Step 5: Add the three key components to a Particle System: Particle
Emitter, Particle Animator, and Particle Renderer. All three of these are
in the Component drop-down menu. Make sure the WaterSteamEmitter
is selected and then choose Component>Particles>Mesh Particle
Emitter, Component>Particles>Particle Animator, and then
Component>Particles>Particle Renderer.

Why?
What each of these components do is pretty obvious from their names;
but it is clumsy to have to add each individually. However, it's worth
noting that usually when a straight Particle System is created, all of these
components are already added to the system as it is created.

Step 6: Create a new material. This can be done in one of three ways.
Either (1) Choose Asset>Create>Material, (2) in the Project panel, choose
Create>Material, or (3) in the Project panel, right-click and choose
Create>Material. Rename the new material WaterSteam Material.

Figure 6.24 Placed WaterSteamEmitter.

139

Asset Creation: Unity Scenography Creation Tools

Tips and Tricks
When creating a new asset (like a material), Unity will create and place
that asset within the Project field within whatever folder is active. So, if
for some reason, the folder Standard Assets is highlighted in the Project
panel, that is where the new material would stick itself. To make sure to
create it outside all the folders (where it can be seen and then placed
later), just click any of the empty-space in the Project panel first.

Step 7: Change the WaterStream Material's shader type to use Particles/
Additive (Soft). To do this, select the material in the Project panel. The
Inspector panel will then show you the attributes of this material.
Immediately under the name of the material is the Shader-type drop-
down menu. Change this to Particles>Additive (Soft).

Why?
Shaders are tricky things and although they can be written from scratch, the
authoring of such things is way beyond the scope of this book. So generally
we will be using the built-in shaders. Not to worry though—many a great
looking game has been created without making custom shaders. The
built-in shaders are a powerful collection of tools to manipulate and exploit.

Anyway, emitters don't need to emit objects that have particle shaders
on them. However, for smoke, fire, and steam, these particle shaders are
just the ticket, and they produce some engaging visual effects. Additive
(Soft) provides a gentle very transparent effect that makes the start of one
particle and the end of another very hard to visually detect.

Step 8: Find a smoke puff that would work as a steam puff. This can be
done manually by rendering something manually in Photoshop, or our
good friend CGTextures can provide a good resource. http://cgtextures
.com/texview.php?id=43653 is the texture used for the next few steps and
are shown in Figure 6.25.
Step 9: In Photoshop, use the Crop tool (and hold Shift down to crop to
a square (future power of two) image) to get the core parts of the image
(Figure 6.26).
Step 10: Use the Clone Stamp tool to soften out any hard edges (Figure 6.27).

Why?
Although this image will have a heavy alpha and thus be largely
transparent, making sure there are not hard edges to highlight where
the end of a particle is will help hide individual puffs of steam. The image
should be seamless due to black around the entire edge of the image.

Step 11: Run a Gaussian Blur filter to soften the image.
Filter>Blur>Gaussian Blur… with a setting of around 2 will provide a nice
soft image (very smoky; Figure 6.28).

140

Creating Games with Unity and Maya

Step 12: Resize the image to 512×512. Do this with Image>Image Size.

Why?
512×512 is of course a power of two size and thus a quick renderer.

Step 13: Save the file to the Incursion–Unity project's Assets folder as
WaterSteam_Color.
Step 14: Adjust the import settings to include alpha. Back in Unity, the
WaterSteam_Color image should now appear in the Project panel. Select
it and in the Inspector panel click the Generate Alpha from Grayscale
checkbox. Click Apply.

Figure 6.26 Cropping to create square image.

Figure 6.27 Cloning in soft edges everywhere.

Figure 6.25 Smoke puff used as basis of steam (Smoke0170 (Texture:
#43653) at CGTextures).

Figure 6.28 Softened image due to Gaussian blur.

141

Asset Creation: Unity Scenography Creation Tools

Why?
Alpha channels—or the channels that define what parts of the image
to render transparent—can be created in Photoshop and Unity will
recognize them upon import. However, for black-and-white images
like this one, Unity can generate an alpha automatically. It just looks at
the grayscale image and the parts of the image that are white become
opaque and black pixels are rendered as transparent.

Step 15: Apply this color texture to the WaterSteam_Material. In the
Project panel, click once on the WaterSteam_Material (this will bring it
up in the Inspector panel). In the Inspector panel, notice that the Particle
Texture area swatch says None with a little Select subbutton. Click that
Select and then double-click WaterSteam_Color in the Select Texture2D
window (you may have to scroll down to find all of these options).
Step 16: Use WaterSteam_Material as the material for the WaterSteam
Emitter's Particle Renderer component. In the Hierarchy view, Select Water
SteamEmitter. In the Inspector, scroll down to see the Particle Renderer
section. Expand the Materials area and make sure the Size input field reads 1.
Then (either click the target icon on the next line and choose WaterSteam_
Material or) drag WaterSteam_Material from the Project panel into the
Element 0 input field.
Step 17: Animate the Particle. Still with WaterSteamEmitter selected in the
Hierarchy panel, move to the Particle Animator component. Ensure that
Does Animate Color? is checked. Then in the Color Animation[x] section
click each of the five color swatches. Look at Figure 6.29. Notice that there
is a gray color at the top of each, and then a black-white bar at the bottom
of the swatch. This swatch represents the alpha of that color. Each of these
swatches show how the particle will be tinted over its lifetime with Color
Animation[0] representing birth and Color Animation[4] representing the
particle's death. The idea here is to have the alpha very low (mostly black)
at birth and death so the particle fades into and out of existence.

Tips and Tricks
The Alpha setting is changed in the Color Picker (when a color swatch is
clicked) using the A slider.

Step 18: In Particle Animator component change the Size Grow to 0.4.

Figure 6.29 Particle Animator settings.
Specific colors are not important, but
be sure the Alpha settings are very
transparent on both Color Animation[0]
and Color Animation[4].

142

Creating Games with Unity and Maya

Why?
This will make sure that the particles also get smaller as they get older. It
helps to keep the particles from popping out of existence.

Step 19: Finally, adjust the Mesh Particle Emitter settings to match Figure 6.30.

Why?
So many settings here it is just easiest to take a screenshot. Most of the
entries are pretty self-explanatory, but here are a few that may not be. Min
and Max Energy determine how long a particle is in existence (randomized).
Min and Max Emission indicates how many particles are in existence at
any one time. World Velocity indicates how fast and in what direction the
particles leave the particle emitter. Rnd Velocity (Random Velocity) helps to
provide a more organic movement to the particles as they emerge.

Tips and Tricks
Particle Emitter systems are fun since they happen in real time in both the
Scene window and in the game. If the emitter is selected in the Hierarchy
panel, when the attributes are changed, the Scene window will draw the
effects of that change. However, remember that the particles that have
already been emitted will not change with the new settings—only the

Figure 6.30 Mesh Particle Emitter
settings.

143

Asset Creation: Unity Scenography Creation Tools

particles that are about to be emitted. So when changes are made, give
Unity a second to really see how those changes affect the scene.

Step 20: Turn off the Mesh Renderer. In the Inspector (with WaterSteam
Emitter still selected) check off the Mesh Renderer component.

Why?
No need to see the plane any longer, just the particles it emits.

Step 21: Play the game and test the effect (Figure 6.31).

Step 22: When pleased with the look, Copy/Paste the WaterSteamEmitter.
Move, Scale, and Rotate the copy to approximate Figure 6.32 (to fill the
other channel).

Step 23: Test the scene by Playing through. Be sure to turn on Fog in the
render settings to make sure all the effects created thus far are compatible
(Figure 6.33).

Tweaking Terrain Settings

Step 24: Adjust Terrain settings. With Terrain selected, check the Inspector.
The far right button within the Terrain(Script) section looks like a little gear;
this is where the Terrain Settings are stored. If, when walking through the
game, the trees were all billboards (Billboard Start) or the detail meshes were

Figure 6.31 Effects of the Particle
Emitter system.

Figure 6.32 Second Particle
Emitter system.

144

Creating Games with Unity and Maya

upsampling at the wrong time (Detail Distance), take a look at this section
where all these attributes can be tweaked for a more seamless experience.

Remember that it is important for performance to have trees that are indeed
far away to be billboards and detail meshes to be very low poly when they
are far from the player. The quick solution a lot of students employ is to just
crank these settings up (or down) so that all the trees are never billboard
(for instance), but this starts to defeat the whole point of allowing Unity to
generate these dynamic terrains. It takes a little tweaking to get the settings
just right, but it's worth it when the game looks beautiful and plays smoothly.

Conclusion
In the course of this one chapter, we have created a great deal of assets solely
within Unity. Largely these have not been objects to interact with (although
theoretically they could be), but rather objects to add style or atmospheric effects.

The scene has some great things happening. The scale feels good, the previously
modeled level is now surrounded by mountains with trees and rocks to hide the
transitions. The atmosphere of steaming water and thick fog give the scene both
movement and a cold feel. However despite all this, the scene still feels very flat
at times because of the evenly lit scene. This is a result of that shortcut of adding
ambient light to the scene. Everything is lit, but everything is lit the same.

In the next chapter we will continue in Unity and look at lighting the scene so
that it has a sense of light and shadow and visual depth. Lighting is one of the
most important parts of getting a scene to look “right.” Taking time to get the
lighting right and then baking that lighting in will start to make the scene feel
complete and ready to play.

Figure 6.33 Finished Particle
Emitter systems.

Chapter 7

145
Creating Games with Unity and Maya
© 2011 by Elsevier Inc. All rights reserved.

Asset Creation: Advanced
Shading, Lighting, and Baking

Chapter 7

You're a baker baking a cake. You fly to South America to personally select
the very best chocolate, travel to Wisconsin to personally massage the cows
so they produce the very best milk, assemble pure wheat from Nebraska
after ensuring that every stalk is untouched by anything that would mar
the precious kernels it held, sing to the chickens every night in the barn to
make sure they lay the most perfect eggs, and then after putting all these
ingredients in a bowl, you go out and grab the water needed from the
gutter outside. This is how beginning game artists far too often go about
approaching their shading/lighting/baking design in their levels.

Much, much too often students spend huge amounts of time planning, modeling,
and texturing a level or set design. They spend many sleepless nights refining a
normal map to get the bump just right on a character's costume. They go without
food and drink to get the form just right on a piece of architectural detail. Then,
when all the models and textures are complete—often after weeks or even
months of effort—they try and slap together a lighting scheme in 15 minutes.

Models and textures are only as good as the lights that illuminate them.
Many a beautiful asset has been completely muddied and ruined by poor

146

Creating Games with Unity and Maya

lighting. Similarly, sometimes mediocre work or simplistic design reads very
sophisticated due to some especially effective lighting schemes.

When teaching Maya by itself, I spend several weeks in class working through
lighting techniques as well as rendering technologies (Maya Software vs
Mental Ray vs VRay, etc.). In reality effective lighting is worthy of its own book
and thus beyond the scope of this one.

However, it is important to see how Unity's lighting tools work—specifically,
how these lighting tools can be used to “bake” a lighting scheme onto the
textures that cover an object.

Baking
Baking can refer to a lot of things in 3D. Animation can be baked. Physics
simulation can be baked. Cloth can be baked. And of course, lighting can be
baked. At its core, baking is the process of taking something that is calculated
dynamically (balls falling and colliding with objects in a physics simulation,
or cloth bending and deforming, or shadows being rendered on a surface)
and transferring that information into a static file that is inflexible (cannot
be changed without appending or rebaking) but very quick. So in Maya, a
complex cloth simulation that takes several seconds a frame to figure out, can
be baked down into something that plays in realtime.

In the case of lighting, baking is the process of taking the illumination a light
gives off (and more importantly), the shadows that objects cast on other
objects, and painting those adjusted color values on objects. Think of painting
cast shadows across a surface, and painting a tint on a surface that shows the
yellowish light of the dirty lamp post.

This is important because rendering lighting in realtime is an expensive
process. Video cards (even dedicated cards) have to expend a lot of cycles
and memory to make this happen. By baking the lighting in, the video card
is simply drawing a texture (or layered textures) and not having to draw
illumination and shadow passes.

Baking in Unity (aka Unity Lightmapping)

So why not Maya? Why not cover Maya's lighting tools and how to bake
in Maya? Good questions with some good answers. It can be a tough call
deciding what to do in Maya and what to complete in Unity, especially as
Unity increases its flexibility in level organization and movement. Previous to
Unity 3, Maya undeniably would have been the place to bake, but with the
new technologies in Unity 3, baking in Unity has some distinct advantages.

The first reason we won't be covering baking in Maya in this book is because
there's a really nice Maya baking tutorial at http://unity3d.com/support/
resources/tutorials/lightmapping-in-maya; no need to replicate it here. Second,
lighting a scene and baking it in Maya usually means a whole lot of material
reconstruction once the asset is imported into Unity. Unity essentially brings in

147

Asset Creation: Advanced Shading, Lighting, and Baking

all the materials as flat Diffuse shaders. If the shadows and lighting are baked
into the color texture in Maya then this import goes well and quickly. But if
the scene has some tiled textures applied to a UV set that is bigger than the
1,1 quadrant in the UV Texture editor, then this isn't possible. In Maya, the way
around this is to make a separate UV set that tells a separate texture (a lightmap)
how to apply to a surface without any overlapping UVs. This then generates
another problem when the scene is brought into Maya because all the materials
then have to be rebuilt to include this new lightmap. This remapping and
rebuilding is not a trivial task and can suck up a lot of time.

Alternatively, Unity 3 includes some new, really amazing technology (Beast)
that allows for lighting solutions to be baked within Unity. Essentially this
does the same thing as baking in Maya but with much added flexibility. Unity
will generate its own lightmap UV set (more on this later), and after baking
automatically builds the materials appropriately to show the lightmap. Plus, if
the scene suddenly needs to be at night, or in different weather, the lighting
can be rebaked in Unity without having to go back to Maya, relight, rebake,
and then reimport (including all the material rebuilds).

To further empower this new system, Unity's lightmapping process creates
texture atlases to ease the hardware requirements. To really make things
exciting, this baked lightmap can be swapped out for dynamic lighting based
upon the player's distance from an object. So if a door opens and changes
the lighting in the scene, this lighting can update in game rather than stay
painted on as it would with a Maya lightmapped scene. Talk to most scenic
game artists who work in Unity—the new lightmapping capabilities are
among the new features of Unity they are most excited about.

Limitations to Unity Lightmapping

Before we all get too euphoric there are some restrictions and problems with
Unity's new lightmapping. First, the demo videos seem to show that Unity's
lightmapping is quick and easy and that users can continue to work while
their scenes bake. It is true that clicking the Bake button is easy, but getting
the settings right to provide for the best quality in the least time can take a
bit of practice and patience. In the demo videos on Unity's site, the baking
time is indeed phenomenal, but the scenes are also not particularly complex
either. It's one thing to bake a four-sided room or a collection of buildings
without any overhanging areas—it's an entirely different issue to bake a
complex scene with real spaces and corners. It means that baking can take a
while. A big scene with a complex lighting scheme can take several hours to
bake and it almost always takes multiple sessions of baking to get the look
just right. Here at our studio, with some particularly complex scenes, baking
has taken over 5 hours on very well-equipped machines. Additionally, it is true
that other things can be done on the machine doing the baking (e-mail, web
browsing, even some basic Maya work), but you'll find that trying to work in
Unity while it is baking is a jerky, losing process. Press the Bake button as you
leave for the day; it'll save lots of frustration.

148

Creating Games with Unity and Maya

Plan of Attack
As implied in this chapter, the main focus will be on baking the lighting of
the scene. This will actually take a few steps that build upon each other.
First, before we start doing much lighting, we will look at some advanced
shader construction—the use of Normal Maps, which will help to provide
surfaces that appear bumpy (or not) and not just like flat objects with
color on them. This advanced shader construction will come in handy as
we look at Unity's lighting scheme and how to control Unity's lighting
instruments.

Finally, once some real-time lighting has been established we will look at
baking strategies and settings to get a nicely baked lightmap that will look
good in the game. Along the way, we will light the scene for a couple of
different scenarios—first for a bright sunny day (since it allows the effects of
light maps to be seen most clearly), and then for the dark, damp, and dismal
day that the game actually calls for.

Tutorial 7.1: Normal Maps
Normal maps are maps that help create more tactile-looking surfaces.
Normal maps don't actually change the polygons of a surface—they
don't really change the object they are attached to, but they present the
visible representation of a more complex form. The grandfather of normal
maps was bump maps, but normal maps are more powerful in some
important ways.

Bump maps were largely grayscale (or at least that was the only value that
mattered to the 3D software rendering them). When the texture map that was
used to define bump had pixels closer to white, they were rendered as raised
and pixels close to black were rendered as receding. The power of this was
that a surface looked as though it had all sorts of bumps and valleys when the
geometry did not.

Normal maps take this to the next level in that they use a similar idea, but
instead of simply rendering the surface as raised or lowered in one direction,
they describe the x, y, and z coordinates of a normal vector. The science and
math here is well beyond what is relevant, but the net results are low-poly
forms that are able to visually indicate much higher forms. The textures react
to change in light and behave in believable and predictable ways as a player
moves around them. In 3D arenas where polycount is important (like games),
normal maps are tremendously powerful.

Historically, there are three ways that normal maps are usually created. The
first is to actually model a very high-poly version of a surface (including
characters) and then generate a normal map from that high-poly mesh that
will be applied to a much lower-rez version of the form. In many ways this is
most accurate, and frankly often produces the best normal maps. However,

149

Asset Creation: Advanced Shading, Lighting, and Baking

this essentially means creating the form twice, which can take some serious
time. Although for characters that will be seen throughout a game, this could
well be a worthwhile technique.

The second method is to use some of the relatively new tools on the market
(ZBrush or Mudbox) to paint normal maps. Essentially what these packages
are doing is creating higher-resolution copies of a form that are sculpted
(in some really fun ways) in these applications and then normal maps
are generated and applied to their lower-resolution cousin. Especially for
character work ZBrush and Mudbox are some really awesome tools. They
have become ubiquitous in game character creation. If character design and
creation are your thing, be sure to get your hands on one of these tools
(I prefer Mudbox because it interfaces well into Maya, but there are fantastic
results coming out of both packages).

The third method is the method we will be exploring—extracting a normal
map from a color map. Up to this point we have been defining a surface
by the color attributes alone. A rock wall is painted to look like a rock wall.
However, this painted rock wall is flat without any of the real peaks and
valleys that such a wall would have from one rock to the next. This means
that the still image might work out, but as a player walks up to and past
the wall, there is never any of the visual clues that there are actually rocks
coming out of that mortar.

Because the color maps are complete, and because the raw versions of those
color textures are carefully saved in the images folder of the Maya project file
(Incursion–Maya), the core building blocks of this technique are at hand. A bit
of time in Photoshop and a few additional tools will yield some reasonable
normal maps.

The drawback to using Photoshop to develop normal maps is that the
creation is a little more opaque. Figure 7.1 shows what a bump map would
look like as opposed to a normal map.

Figure 7.1 Bump (top) vs normal (bottom).

150

Creating Games with Unity and Maya

It's easy to see how bump maps can be easily altered with a bit of contrast
adjustment, and even by hand painting some white areas that needed to
be rendered higher. Not so with the normal map. In fact, the red, green, and
blue normal-vector values must equal exactly 1, and if the colors are painted
by hand the values may not be what are needed and break the texture. So to
ensure these values are correct and will function in the game we will need to
use some other tools.

Additional Tools

There are some cheap and even free software packages that assist in creating
normal maps. A very nice one (and one that is reasonably priced: $299 for
Professional, $99 for Personal, $49 for Student) is CrazyBump (http://www.
crazybump.com). CrazyBump allows for a 30-day trial, but anyone who tries
this will quickly see how powerful and easy it is to refine a normal map from a
color map. If it's in your budget, CrazyBump is a really great time-saving tool
to add to your tool kit. Importantly, CrazyBump is available for Mac and PC
whereas the plug-ins for the next step unfortunately appear to be PC only. So if
you're Mac based, be sure to grab CrazyBump's free trial and skip this tutorial.

For those of you who use a PC and are interested in the free options, there
are some free alternatives (which are what we will be using for this tutorial).
NVidia has released a free set of plug-ins for Photoshop that assist in the
creation of normal maps. They are available at http://developer.nvidia.com/
object/photoshop_dds_plugins.html. We will only be using the Normal Map
Filter part of the package, but just this part is quite powerful.

Step 1: Download and install NVidia's Plug-ins for Photoshop (use the
preceding URL). The install package is a .exe, so just launch it and follow
the instructions to install.

Unfortunately, when using the default installer, the plug-ins will be installed in
the 64-bit version of Photoshop. On install, you should be able to define which
version of Photoshop the plug-ins are installed to, and if you are, just point the
installer to the 32-bit version. However, if you were not able to define which
version of Photoshop to install the plug-ins to, go to C:\Program Files\Adobe\
Adobe Photoshop CS5\Plug-ins\Filters and copy the NormalMapFilter plug-in
and paste it into C:\Program Files (x86)\Adobe\Adobe Photoshop CS5\Plug-
ins\Filters. Then, of course, launch the 32-bit version of Photoshop when you
wish to use these plug-ins.

Step 2: Select a texture to work from. I am using the texture assigned to
the EntryWayWallsInner. This texture is EntryWay_WallsInner_Color. Open
the unflattened (all the layers intact) version in Photoshop (Figure 7.2).
This version will probably be within the images folder of the Maya project
file and may be labeled either EntryWay_WallsInner_Raw or EntryWay_
WallsInner_UV if you just saved over the UV snapshot. Do not edit the
version of this texture in the sourceimages folder. We need the layers.
Finally, resave this file as EntryWayWallsInnerNormalRaw.

Warnings and Pitfalls
It has been a while since
NVIDIA updated these
plug-ins. Unfortunately
this means they
are apparently not
compatible with 64-bit
versions of Photoshop.
So, if you are using a
64-bit operating system
(Windows 7 or Windows
XP 64-bit) you will need
to use the version of
Photoshop that was
installed in the Program
Files (x86) folder—this is
the 32-bit version.

151

Asset Creation: Advanced Shading, Lighting, and Baking

Tips and Tricks
Remember that in the texture creation chapter (Chapter 4), whenever we
built a texture we kept a copy of the construction texture in the images
folder and a flattened version in the sourceimages folder (both within
the Maya project folder). Keeping that raw version pays dividends in
situations like this. Because all the dirt and drips are on separate layers,
those can just be hidden to reveal the base texture beneath.

If you are following exactly along with the tutorial and using the assets I
use as provided on the web site (http://www.Creating3dGames.com), the
file we are after, EntryWayWallsInnerUV, is in the images folder.

Cleaning up the Raw Texture
Step 3: Hide all the grime, dirt, and drips layers. Do this in the Layers palette
by just turning off the eye icon on the layers that are not wanted (Figure 7.3).

Figure 7.2 Raw version of the inner walls texture. Notice the complex collection of layers that will pay off here.

Figure 7.3 Base texture without added dirt and grime.

152

Creating Games with Unity and Maya

Why?
The dirt and grime was very important for the effective color map. However,
in the real world usually this dirt and grime is over the top of existing
tactile attributes. This means, usually the grime is going over the peaks and
settling into the valleys of a surface and not actually changing the rises and
falls. Through this process we will be using the light and dark parts of the
color texture to define (roughly) the high parts and low parts of the surface.
If the drips (for instance) were left, the normal map would interpret them as
actually recessed sections of the surface rather than grime atop a surface.

Step 4: Gray out areas without much bump (Figure 7.4). This can happen
with an adjustment layer, or with a new layer with 50% gray filled or
painted in over areas that are smooth.

Why?
The two areas that are grayed out in Figure 7.4 are the cement floorboards
and the cement wall under the roof. Since this is cement, it may have a bit
of bump (which is why the gray isn't a solid gray), but not a whole lot. If this
is not grayed out, then every dark splotch on the color part would register
at a pock mark. Graying it out keeps the surface visually smooth.

Step 5: Flatten the layers. Layer>Flatten Image.

Why?
Once we are down to the core color information, there is little need for all
the other layers to be taking up all that memory space and slowing the
work. Alternately, the dirt layers could just be deleted instead.

High Pass Filter
Step 6: Run a High Pass filter. Select Filter>Other>High Pass. Adjust the
Radius to about 10 (although this is largely to taste (Figure 7.5).

Figure 7.4 Areas without bump grayed out.

153

Asset Creation: Advanced Shading, Lighting, and Baking

Why?
The High Pass filter does some important things for us. First, it
desaturates or removes the color information. Second it starts to remove
some of the detail from the image. Ultimately, the goal of the normal
map is to create some large undulations across the surface; but when
building the normal map off a color map, there can end up being
way too much information and the result being entirely too bumpy.
By removing a bit of the variation on the surface of the rock, we can
keep the focus on higher rocks with much lower grout and not on
sandpapery-looking stones.

Step 7: Adjust the Levels to take advantage of the highs and lows of the
image. Access the Levels via Image>Adjustments>Levels… and move the
sliders beneath the histogram to where the input levels really start to rise
(Figure 7.6).

NormalMapFilter
Step 8: Apply NVidia's NormalMapFilter. Assuming the NVidia package
has been installed, choose Filter>NVidia Tools>Normal Map Filter….
Change the settings to match Figure 7.7, basically changing the Filter
Type to 4 Sample, the Height Source to Average RGB, and the Scale
to 10. Press OK. A sample of the newly created normal map is seen in
Figure 7.8.

Figure 7.5 Applying a High
Pass filter.

154

Creating Games with Unity and Maya

Why?
These settings are not entirely intuitive. The parts we are more
interested in allow for a fairly soft sampling (Filter Type) with a pretty
high Scale (10).

Step 9: Gaussian blur the results. Select Filter>Blur>Gaussian Blur. For this
size image, change the Radius to 1 pixel (Figure 7.9).

Figure 7.6 Adjusting the levels.

Figure 7.7 NVidia's NormalMapFilter settings.

155

Asset Creation: Advanced Shading, Lighting, and Baking

Why?
Even with our High Pass, there is still quite a bit of “noise” in that initial
pass. Giving a little blur helps soften the noise and keeps the information
where it should be. This shouldn't be too high since too much of a blur
will simply wipe out all the detail (including the desirable large detail).

Tips and Tricks
How much to blur this first pass is tricky. Much of it is relative to the file being
affected. A Radius of 1 might be just the trick for a 2048×2048 image, but way
too much for a 512×512. Further, if the image is tillable and much closer, it
might need to be much higher (5 or more). So keep frequent saves to make
sure you can go back to an earlier version if things aren't going as planned.

Layering to Increase Height
Step 10: Duplicate the Background layer. The quick keyboard shortcut for
this is Ctrl-J (Command-J on a Mac). This will create a new layer (Layer 1)
identical to the first that sits atop the original.
Step 11: Change the new Layer 1 Blending to Overlay. You can do this
either within the Layers palette (immediately beneath the Layers tab) or
by double-clicking the layer and in the Blending Options section of the
Layer Style window changing the Blend Mode drop-down menu. The
results can be seen in Figure 7.10.

Why?
Often the results of the NormalMapFilter are too muted. The amount the
surface will be raised is just too low. By duplicating the information and
adding the color information to the original via the Overlay Blending
Mode, the height of the normal map will increase.

Step 12: Gaussian blur Layer 1 with a Radius of 2 (Figure 7.11).

Figure 7.8 Sample of the newly created normal map. Figure 7.9 Sample of first level of Gaussian blur.

Figure 7.10 Results of duplicate layer with an Overlay Blending Mode.

Warnings and Pitfalls
By using an additional
layer and adding the
value, this is no longer
a valid normal map.
Remember when we
talked earlier about the
normal vectors needing
to equal exactly 1? Well,
now they definitely do
not. So be sure not to use
the file in its current state
or the results will be very
unpredictable.

156

Creating Games with Unity and Maya

Why?
By making the next level up blurred a bit more, we are creating a stepped
increase in the new height being created. Each successive layer copy will
be blurred a bit more, thus increasing the height and spreading the up
ramp out a bit.

Step 13: Repeat the process of duplicating the level and then running a
Gaussian Blur, but this time with a radius of 4.
Step 14: Repeat the duplication and Gaussian blur process five
more times, each time increasing the radius of the blur by 2
(Figure 7.12).

Why?
Take a look at Figure 7.13, which shows the initial output by NormalMapFilter
and compares it to the result of the multiple overlayed layers. Notice how
much more information is there, and how much richer the normal map
actually is.

Figure 7.12 Multiple layers of
increasingly blurred normal maps.

Figure 7.11 Blurring new layer.

157

Asset Creation: Advanced Shading, Lighting, and Baking

Housekeeping
Step 15: Save again. Be sure you're saving as EntryWayWallsInner
NormalRaw.

Why?
Since this strange bluish image makes it pretty tough to know what the
result will look like, it will be important to have the raw version to come
back to if the final result in Unity is not what was planned.

Step 16: Flatten the image (Layer>Flatten Image).

Why?
We will need to “normalize” the image to bring the normal vectors back
into the needed value of 1, but this needs to be done to the total image
and not just one layer.

Step 17: Normalize the image. Choose Filter>NVidia Tools>NormalMapFilter.
In the Alternate Conversion area check Normalize Only. Press OK.

Why?
The other settings can all remain the same because none of them will be
used. Normalize Only will ensure the red, green, and blue normal vectors
are exactly 1 and thus ready to be a normal map.

Step 18: Save the image for use in Unity. Save the file as EntryWay_
WallsInner_Normal into the Incursion-Unity/Assets/EntryWay.fbm. The
file format can be whatever you'd like (I saved it as a .psd).

Why?
Due to our deft use of manual exporting, all the texture files related to the
EntryWay are in this EntryWay.fbm folder that Unity created. Adding any new
texture assets that are meant for EntryWay keeps the Project panel clean.

Figure 7.13 Comparison between original output and layered approach.

158

Creating Games with Unity and Maya

Back in Unity
After all this work in Photoshop, we need to help Unity understand what this
new asset is and where to use it.

Step 19: Help Unity understand that this is a Normal map. In Unity, in the
Project panel, select EntryWay_WallsInner_Normal. In the Inspector look
for the Texture Importer section and change the Texture Type to Normal
map. Click off the Generate from grayscale setting. Click Apply.

Why?
Unity likes to know what it's dealing with. If this image is used to define
the normal channel of a bumped shader, Unity will complain that the
image is “not tagged as a normal map.” By telling Unity to bring the image
in as a normal map, this warning will be avoided. However, the Generate
from grayscale option is not what we want here. What this option
attempts to do is what CrazyBump does or what we just did in the past
17 steps—it attempts to create a normal map from a color texture image.
However, in my experience, the result here is neither optimal nor easy to
control. The most control comes from techniques outside of Unity.

Step 20: Select the EntryWayWallsInner GameObject. Do this by either
clicking the object in the Scene window or finding it by name in the Hierarchy
panel. The attributes of the GameObject will appear in the Inspector.
Step 21: Change EntryWayWallsInner's shader to be Bumped Specular. In
the Inspector look down toward the bottom at the entryway-entryway_
wallsinner_mat. In the Shader section there, choose Bumped Specular
from the drop-down menu. There should appear a new Normalmap
section.

Why?
Really, most any of the Bumped shader would work. However, to really get a
look at what this normal map does, the specular flavor shows it off the quickest.
This will probably be changed later as the specular shaders make things look
shiny or wet, but for now, for illustration purposes it'll do just the trick.

Tips and Tricks
If there are no options below the Shader section in the Inspector, click
once on the sphere swatch. It will expand or collapse the settings for that
particular material.

Step 22: Use EntryWay_WallsInner_Normal as the Normalmap. Still in the
Inspector, in the Normalmap section, click the Select button and choose
our newly imported EntryWay_WallsInner_Normal image. The results
should be immediately visible in the Scene window. Figure 7.14 shows
the before and after.

159

Asset Creation: Advanced Shading, Lighting, and Baking

Why?
Yes, it appears a bit hyper right now—it is too wet with too much
specular. But because the scene has not been lit yet, we just needed a
glimpse of the visual effect of the process. Later it'll be changed and
made a bit dustier. Do note that normal maps show differently depending
on the lighting that is illuminating it. Upon first applying the normal map,
there may not be a huge difference in the appearance of the surface—
this will come later when additional lights are placed in the scene. If you
would like to experiment with some quick lighting (GameObject>Create
Other>Point Light (or Spotlight or Directional Light)), you can get a quick
feel for how lighting and shading are closely intertwined as the light is
moved around. Don't sweat the lighting too much at this point though.
We will be working much more with lighting in steps to come.

Step 23: Repeat this process for any surfaces that need a normal map.
This could include the tiles and maybe even parts of the rusty beams.
Don't worry about areas that are mostly smooth (well-worn cement for
example), but areas that should be bumpy need normal maps.

Conclusion

Normal maps can add tremendous depth to a scene. If you are using a quick
tool like CrazyBump, they won't even take very long to implement. We could
have made these while working in Maya, and indeed it would have made
the model look better in Maya. However, because Unity interprets some
things (especially normal maps) differently than Maya does, it is usually not
worth getting too caught up making extensive materials in Maya. Do that
assemblage in Unity.

Tutorial 7.2: Lighting and Baking in Unity

Up to this point, the scene has made use of a very simple lighting scheme—it
had none. OK, well, turning up the Ambient Light in the Render Settings could
be considered a lighting scheme, but that's stretching it. Ambient light in

Figure 7.14 Before (right) and after
(left) using the normal map.

160

Creating Games with Unity and Maya

a 3D software sense is light that comes from everywhere and nowhere (for
example, objects have no shading, and appear flat). In reality, what we think
of as “ambient light” in the real world is really bounced light. There is a light
source (the sun, a light bulb, etc.), and that light emits from the source and then
bounces off surfaces to further illuminate other objects around it. This bounced
light really isn't “ambient light” but light that has been dissipating as it continues
to strike and ricochet through our reality until all its energy is absorbed.

Back in 3D world, the problem is that all this bouncing light is a nontrivial
calculation. In fact for a long time, most rendering solutions did not calculate
any bounced light at all; when a light ray hit a surface, it stopped. This meant
that the area behind the surface received no light (from this light source) and
thus rendered black, as a shadow. At first blush, this sounds fine. The problem is
that real shadows in most situations are never black. There is enough bounced
light shooting around the environment to still illuminate the objects in shadow,
and thus the grass under a tree on a sunny day is simply less lit, not black.

As rendering technologies matured, radiosity-based solutions emerged that
simulated bounced light. In Maya, MentalRay is typically the rendering engine
to enable this. Through tools like Final Gather and Global Illumination, nice
diffuse light appears to be bounced across surface and the light even picks
up the color of the surface it has just bounced off of (actually the lit surface is
really just sampling surfaces around it through stochastic samples, but let's
not split hairs). The problem is that all this beautiful bounced light simulation
is processer intensive. Rendering a complex scene with great sampling rates
was a very time-intensive task. It just is not that unusual to have 12- or 15-hour
renders for a single frame, which of course won't work in game situations.

Hence the need to bake the lighting. Previous to Unity 3, baking in Maya
could yield some very nice results that could then be brought into Unity (with
the time-intensive reconstruction of materials). Now though, via Beast (the
technology for which Unity Technologies has a license), a built-in radiosity-like
renderer will calculate a render that includes bounced light that yields much
more believable shadows and even color bleed.

So baking in Unity is not only a possibility but preferred (for further convincing,
just wait until we talk about Deferred Lighting—yeeha!). This means that
learning Unity's light tools becomes more than just a placeholder or “rough-it-
out” technique—it becomes critical to getting the scene to look right.

In this tutorial we will be looking for a bit at Unity's lighting instruments and
the options they allow for. In the course of the tutorial we will light the scene
for daytime on a sunny day and again for the dusk time on a foggy day, which
the game calls for.

Unity's Lighting Instruments

Unity's lighting instruments are all available under the GameObject>Create
Other drop-down menu. There you will see Point Light, Spotlight, and
Directional Light. Here's a quick overview of each. Don't worry about placing

161

Asset Creation: Advanced Shading, Lighting, and Baking

any lights in the scene quite yet, just take a look at the following explanations
to see what the lights do before placing any in the scene.

Point Light
Think of point lights as a single light bulb suspended in space. Figure 7.15 shows
a point light sitting in the scene (with ambient light turned off). There are really
two types of handles that a selected point light presents in Unity 3. The first is
the actual light source—the point from which the illumination emits. This light
source can be moved, scaled, or rotated, although since the light is emanating
from all sides, only moving it will yield any noticeable results. The second are
the Range Handles. These handles are actually just the six little yellow dots at
the intersection of the three yellow rings that surround the source. In any tool
(move, rotate, or scale), selecting these handles will increase or decrease the
falloff range of the light. The illumination from the point light will go no further
than these handles.

Tips and Tricks
These handles are really, really picky. The tip of the arrow of the cursor has
to be exactly on that handle. Takes a little practice to grab those just right,
but they are definitely more intuitive to use than the numerical range
input field in the Inspector.

The Inspector shows the other options available for the point light. Because
these are covered fairly well in the documentation, we will refrain from
covering them all here except for a few tips.

Intensity and range have an interesting relationship. Intensity refers to
the brightness of the illumination, but this illumination will still stay within
the light's range.

Figure 7.15 Point lights and its relevant handles available in the Scene window.

162

Creating Games with Unity and Maya

Cookies are gobos from the theatre world. What they do is provide a
textured light—a light with some shadow on it. Think of the shadow made
as light streams through a tree without a dense canopy of leaves. Cookies
can be handy to imply geometry that isn't there (think of plays that take
place in a forest lit with a “cookie” so the audience can see the shadows
of trees and leaves that are not actually present). For point lights, cookies
must be Cube Maps with alpha channels.
Shadows are beautiful but expensive in terms of resources. It takes a
good deal of horsepower to draw the shadows emitted by any light. Point
lights are especially expensive because they are essentially six spotlights
shooting out in each direction. This means drawing all these shadows
and draw calls in realtime can very quickly drag your game to a crawl.
Hard shadows are easier to draw than soft, but without some serious
baking, multiple-point lights with shadows will kill a frame rate. Note that
shadows drawn in realtime are available only with Unity Pro—although
they will be present in baked scenes when using the free Unity.
Halos can be thought of as glows.
Render mode is used for determining how critical a light is when Unity is
determining what to draw. For our level (and for most levels) Auto is a fine
setting.
Culling mask determines what this light illuminates. By default it
illuminates everything, but this can be restricted so a certain light only
lights certain objects. This actually comes in handy more often than
you'd think.
Lightmapping allows for the definition of whether this light is used in
the lightmapping process or not. It can be used in both lightmapping and
realtime of course, and in most situations a setting of Auto works fine.

Spotlight
Illumination emanates from a single point from a spotlight but emits out in
a cone shape just like a real spotlight. Figure 7.16 shows a spotlight and its
relevant handles. It still has a Range handle, but only one, and it indicates the
linear throw the light has. The new handles available here are the Spot Angle
Handles, which allow for the angle of the spot.

The Move and Rotate tools are very important for this tool. Rotating to find
the right spot to spotlight is the key to this tool.

Most of the notes for point lights apply to spotlights as well. A couple of
notable exceptions are (1) for a spotlight, cookies can be a single image with
an alpha channel, but it must have a black edge all the way around the image;
and (2) upon import, the Texture Import settings must have Border Mipmaps
activated, and the wrapping mode selected to Clamp.

Directional Light
Directional lights can be a little goofy to understand. Figure 7.17 shows the
scene with one directional light that is casting shadows. Remember that only
Unity Pro will cast realtime shadows, but shadows help illustrate what this

163

Asset Creation: Advanced Shading, Lighting, and Baking

light is doing. Notice that the actual light source is underneath the roof, yet the
shadows indicate that the light source is above the roof. What gives?

The core idea here is that directional lights (like directional lights in Maya)
come from infinitely far away and throw an infinite distance (with parallel
rays). This means that the angle of the light is more important than its physical
location. It can sit anywhere in the world, but the light will still come from far
away in the sky. This is why there are no Range Handles in the Scene window
or Range settings in the Inspector.

The most obvious use for directional lights is as the sun. They quickly light
everything in the scene. This also brings up other challenges though. If you're
using Unity Pro, the shadows that a directional light casts (by default) can
seem to be of really poor quality (Figure 7.18).

Shadows
Since understanding shadows is an important part of fine-tuning the visual
quality of the game, it's worthwhile to take a bit of time out here and talk
about how Unity deals with the shadows it draws. In Figure 7.18 it's easy to

Figure 7.16 Spotlight with its handles.

Figure 7.17 Directional light casting
shadows. Notice that the light is
beneath the roof, but the shadows
indicate the illumination coming from
above it.

164

Creating Games with Unity and Maya

see the drawbacks to the default settings, but getting this to look and behave
better is not hard. But before we look at how to fix the problem, let's look for a
minute at why the problem exists.

Shadows are drawn as maps laid over the top of existing texture. In 3D-speak
these are referred to as shadow maps. When using Maya or other 3D
applications, drawing the shadow map can indeed be a slow process as the
software figures out where to draw these dark blobs of pixels. A shadow map
is essentially an image with a finite resolution (and, like any raster image, can
look pixilated when viewed at a close range).

Choose Edit>Project Settings>Quality. This will bring up an image
like Figure 7.19. First look at the top collections of settings (Default
Standalone Quality, Default Web Player Quality, Editor Quality). By
default these are all set to Good. The specifics of what Good means are
contained in the following sections (Good and Fantastic are expanded in
Figure 7.19).

Figure 7.19 Quality Settings from
Edit>Project Settings>Quality.

Figure 7.18 Poor-quality shadows
from the default directional light.

165

Asset Creation: Advanced Shading, Lighting, and Baking

Standalone is a build that is its own executable on Windows or application on
a Mac. Web Player is a build destined for the web and includes some partner
html files. Editor is the space we are currently working in. Editor refers to both
the Scene window and the Game window.

So with the Editor Quality set to Good, it is important to know what Good
means. In Figure 7.19 the Good settings are expanded. Note that there are
four sections focused on shadows: Shadows, Shadow Resolution, Shadow
Cascades, and Shadow Distance.

Shadows: This actually has two meanings. First, here you can turn off
all shadows (No Shadows) and choose what types of shadows will be
rendered (Hard only or Hard and Soft Shadows). Hard Shadows are
cheaper to render in realtime although Soft Shadows often have a more-
refined look, especially in interiors.
Shadow Resolution: When it's understood that a shadow map is really a
sort of image, a shadow resolution starts to make more sense. A higher-
resolution shadow map means there are more pixels to define a shadow.
Take a look at Figure 7.20 to see a quick illustration of this idea. At higher
resolutions, there are more pixels available to describe any one shadow,
which means the individual pixels are smaller, which means the shadow is
cleaner.
Shadow Cascades: These are used only for Directional Lights. The idea
is that Unity divides the viewing area into sections (cascades) that get
larger as they get further from the camera. Yet each section uses the
same-sized shadow map. So areas far from the camera are much lower
resolution (larger area covered by a map), and areas closer are higher
resolution (smaller area covered by a map). Four Cascades looks better
than Two Cascades as the viewing area is split up into smaller sections
with each section having the same amount of shadow information.
More information in one cascade (the nearest) means higher-quality
shadows (Figure 7.21). Remember though that the additional cascades
means additional calculations, so there is a bit of a performance hit with
higher cascades, although for well-equipped systems this hit may not
be noticeable. It's just one more of the performance/quality balance
considerations that are forever a part of game creation.
Shadow Distance: This refers to how far away from the cameras shadows
are rendered. By decreasing the shadow distance, the surface area that
the shadow map is covering becomes smaller and thus the quality
of the visible shadows increases. But (and this is important), it means
that shadows further than the Shadow Distance setting are simply not
rendered. An illustration of this idea is seen in Figure 7.22. A Shadow
Distance of 5 means the shadows right in front of the camera look great,
but the spheres stop casting shadows further away. The shadows that
used to define the area under the overhang are gone altogether.
However, a Shadow Distance of 5000 means that all the shadows are
there, but since the shadow map is being shared by such a long distance,
the quality is horrible.

166

Creating Games with Unity and Maya

Finding the sweet spot for a game becomes an important piece of optimization.
In many scenes, objects may be far away and casting shadows, but the shadows
can hardly be seen even when visible. This is a perfect situation to decrease the
Shadow Distance and allow more of that resolution to be used right up close to
the camera.

Figure 7.23 shows the quality settings high and with a shadow depth that
seems to be a good balance in quality and coverage.

Tips and Tricks
Note that Fantastic settings include High Resolution and Four Cascades. If,
up in the Quality Settings, the Editor Quality was changed from Good to
Fantastic, the shadows would instantly look better in the scene. However,
it would still be important to optimize the Shadow Distance setting.

Figure 7.20 Shadow resolution
differences.

167

Asset Creation: Advanced Shading, Lighting, and Baking

Figure 7.21 Cascade comparison.
More cascades mean smaller chunks
of viewing area getting a shadow
map.

Figure 7.22 Shadow Distance
illustration. Too low and shadows that
are needed disappear. Too high and
the shadow quality gets too low.

168

Creating Games with Unity and Maya

Clear Day Lighting
Exterior lighting can be some of the easiest to make happen in Unity. At its
core, outdoor lighting has one key light—the sun—and a lot of bounced
light. Because Beast uses a radiosity-like engine, the light bounce will be
automatically calculated during baking. However, before baking we need to
quickly light the scene and look for any holes.

Often with scenes like this, when the game calls for subdued lighting, getting
the lighting right, and seeing flaws in the model and lighting design, can be
tricky with a first pass. By lighting for a clear day, it can be easier to see any
problems before trying to finesse in the foggy lighting situation.

Step 1: Turn the Ambient Light off. Open Render Settings
(Edit>Render Settings) and click the color swatch next to Ambient
Light. Turn it to black.

Why?
In the same way that Ambient light provided a quick look at the set,
turning it off entirely will help to illustrate exactly what the light is doing
in the scene. It will likely be reactivated, though at a much lower intensity
later, but we need to see what the light is doing to the scene without this
everywhere and nowhere light always lighting surfaces.

Step 2: Create and orient a Directional light. GameObject>Create
Other>Directional Light will create a Directional light GameObject in the
Hierarchy panel and in the Scene window. Its placement may be strange, so
move it up into the sky (more as an intuitive place to go find it later) and rotate
it so it is pointing down on the scene. The exact rotation and angle is not
important, as long as it is illuminating the scene. Name the GameObject Sun.

Baking

Step 3: Enable shadows for baked textures. If using Unity Pro, select Sun and
in the Inspector turn the Shadow Type to Hard Shadows. Behind the scenes,
this will make sure that when the scene is baked it will include the shadows.

If you are using Unity (Standard), Shadow Type may be grayed out since
real-time shadows are a Unity Pro feature (or, when you try to activate

Figure 7.23 Settings that make the
real-time shadows appropriate for this
scene (they could all be different for a
different scene with different lengths
of visible distance.

169

Asset Creation: Advanced Shading, Lighting, and Baking

shadows, Unity will tell you this feature requires Unity Pro). However, it will be
important that this light is casting shadows when the scene bakes. To make
sure that the Sun is indeed casting shadows in the baking calculation select
Window>Lightmapping. In the Lightmapping window, click the Object tag/
button. The Sun(Light) object will appear here. Change the Baked Shadows
setting to On (Realtime: Hard Shadows).

Step 4: Create custom Lightmap UVs. In the Project panel, select
EntryWay. In the Inspector, in the (FBXImporter) section, check the
Generate Lightmap UVs checkmark. Click Apply.

Why?
In some cases this doesn't need to be done. If the model imported has no
overlapping UVs (and all the UVs are completely contained in the top-right
quadrant of Maya's UV Texture Editor), the existing UVs will work fine. Unity
will bake the shadows and know right where to paint those shadows on
the surface. However, if you have used any overlapping UVs or worked with
tiled textures your UVs won't work for lightmapping; with overlapping UVs
a shadow would be painted across objects multiple times and be wrong.
By clicking this Generate Lightmap UVs button, Unity knows that it needs
to create a custom set of UVs (with no overlapping UVs) for the entire scene
that it will use to map the lightmap it will render in the coming steps. This
new lightmap is reasonably well laid out and tightly packed. So although a
second UV set could be manually created in Maya before importing, usually
it's not worth the effort since Unity's automatic version works quite well.

Step 5: Prepare geometry for baking. In the Hierarchy panel click the EntryWay
GameObject. In the Inspector panel look for the Static checkbox (it will be in
the upper-right-hand corner of the Inspector). Check this. A warning dialog will
pop up (called Change is Static) that will ask, “Do you want to make the object
and all its child objects static?” Click the Yes, change children button.

Why?
What's this static business? The Static check box is (among other things)
Unity's way of knowing which objects to be included in the baking
process. Generally, the thinking here is to bake in shadows and objects
only of things that won't move. Since only the door in the EntryWay level
will move, we can have everything in the EntryWay GameObject inherit
the Static label. This means all these objects will be included.

Step 6: Ensure that the Terrain is also set to Static. Remember to select
the GameObject in the Hierarchy and look for the Static checkbox in the
Inspector.
Step 7: Prepare to bake the scene. Open the Lightmapping window via
Window>Lightmapping. Click the Bake tab/button at the top. For this first
pass, if using Unity Pro, change the Bounces setting to 2. Change the Bounce
Boost and Bounce Intensity settings. Change both of these to 2 (Figure 7.24).

170

Creating Games with Unity and Maya

Why?
The default settings for lightmapping are generally reasonable for a first
pass. For interior scenes, these settings will frequently result in some
splotchy sections on the walls that will result in some adjustments of
some of these specifics. However, for exterior scenes, and for first passes,
the default settings are alright. If using Unity Pro, the settings that are
changed here (Bounce Boost and Bounce Intensity Settings) are needed
because of the huge overhang the scene has. “Bounce” in both of these
cases refers to light bouncing, and without a bit of help, the light from the
overhead Sun won't get back to the dark corners of the map.

Tips and Tricks
If you have Unity Pro, you also have access to the Global Illumination
settings. For this scene, turn down the Intensity of the Sun to 0.4, then
in the Lightmapping window, change the Sky Light Intensity to 0.5 and
press bake. The results are more refined.

Step 8: Press the Bake button and go for a coffee/beer/soda/bathroom
break. It's likely to take a while. The progress bar is shown in the lower
right corner. The results are shown in Figure 7.25.

Figure 7.25 Results of single light
baking with Bounces, Bounce Boost,
and Bounce Intensity set at 2.

Figure 7.24 Settings for lightmapping.

171

Asset Creation: Advanced Shading, Lighting, and Baking

Step 9: Carefully examine the scene. Examine the scene as a player (Play)
and within the Scene window. Carefully check that the shadows that
should be there are indeed in place. Look for areas where light may be
leaking through places it shouldn't. Similarly, Figure 7.25 shows the results
of the scene baked with Unity Pro (and thus light bounces, etc.). If you
are using Unity (as in without the Pro), you may need to add a few extra
lights (sometimes low intensity directional lights work great to imitate the
bounced light effect) and rebake.
Step 10: Compensate for areas with problems. Figure 7.26 shows an area
inside the tunnel that has sunlight streaming in from above. This shouldn't
be there, but has occurred because sections of the tunnel that wouldn't be
seen were left without a roof. This can be a fairly common occurrence when
carefully optimizing a scene. To fix it, create a Plane (GameObject>Create
Other>Plane) and move the plane over the tunnel part (Figure 7.26). Name
the plane TunnelLightMask and mark it as Static.

Why?
There are actually a couple of ways to fix this issue. One is to go back
into Maya and actually add the geometry needed to plug that light leak.
However, creating and placing a plane that will never be seen is much,
much quicker than opening Maya, changing geometry, exporting, Unity
importing, and so on. Sometimes Unity's built-in polygon GameObjects
are perfect for this sort of quick fix.

Step 11: Bake and examine again.

Deferred Lighting and Dual Lightmaps
Unfortunately (if you don't own Unity Pro), Deferred Lighting is a Unity Pro-
only feature. If you are not using Pro, go ahead and skip down to the Foggy
Day lighting section.

For those of you lucky enough to have Unity Pro, Deferred Lighting is one of
the most powerful parts of Unity 3, especially when it comes to baked lighting
and an important idea called Dual Lightmaps. Dual Lightmaps is the idea of
creating two separate lightmaps—one for close up, which can also make use

Figure 7.26 Compensating for
unintended lighting holes.

Warnings and Pitfalls
Although Figure 7.27 is a
clear illustration of how
the two lightmaps are
swapped out, this should
usually not be seen in the
game. Seeing a shadow
change like that would
be disconcerting and
would pull the player
out of the experience.
To most effectively use
this technique it would
need to be done further
away from the player
so that he couldn't see
the lightmaps changing
out—it should be
seamless magic.

172

Creating Games with Unity and Maya

of dynamic lights, and a second lightmap for objects further away. This means
that when objects are far from the player, a lightmap is used to illuminate the
surface and the painted shadows are used. Objects closer to the player use the
second lightmap, but also make use of dynamic shadows. What is so cool about
this is that Unity will dynamically transition from one lightmap to the other, and
from not using dynamic shadows to making them visible. This allows for very
sophisticated lighting schemes to be baked into the scene, yet allow dynamic
elements to move and cast realistic moving shadows when close to the camera.

There are a couple of conditions that must be met to make use of this
though. The first is that when baking, both lightmaps must be created. In the
Lightmapping window, the very first option is Mode, which (by default) is set
to Dual Lightmaps. Changing this to Single Lightmaps will speed the baking
process, but means dynamic lighting will not be employed.

The second condition is that the Rendering Path must be set to Deferred. The
way to set this is via Edit>Project Settings>Player. Look to the Other Settings
section and change Rendering Path to Deferred.

Figure 7.27 shows dual lightmaps in action. This is not an optimal setup,
because it is never preferable to have the player see the two maps swapping
out (as we can here); but it shows how as the player gets closer, the one
lightmap is fading into the other.

To change the distance from the camera that this transition takes place,
either change the Shadow Distance setting in the Quality Settings
(Editor>Project Settings>Quality) or, when the Lightmapping window is
open (Window>Lightmapping), look to the bottom-right corner of the Scene
window for the Lightmap Display window (Figure 7.28). There the Shadow

Figure 7.27 Dual lightmaps in action
(with a Shadow Distance setting of 5).

Figure 7.28 Lightmap Display window present at the bottom right of the Scene window when the
Lightmapping window is active.

Warnings and Pitfalls
For a sunny day where
the shadows are crisp,
shifting to real-time
lighting can be a really
nice solution. However,
in the steps to follow,
we will be taking a lot
of care to try and make
sure that the shadows
are all sorts of soft. If the
real-time lighting kicks in,
suddenly the nice softly
baked shadows transition
into unsightly crisp ones
(even with Soft Shadows
turned on). So in some
cases, like the foggy day,
if you are using Unity Pro,
make sure the Rendering
Path is set to Forward.

173

Asset Creation: Advanced Shading, Lighting, and Baking

Distance can be changed quickly and interactively and allow you to dial up or
down until it works best in the game.

Foggy Day
In the Sunny Day section, the goal was to see how nice bounced light and
shadows could be created via Unity's Lightmapping capabilities. Although it
was a fun exploration, it isn't what the game calls for. So, for this section we
will look at how to light the scene for the foggy situation.

First, take a look at a bit of research to understand how fog affects lighting. A quick
Google Images search for “foggy park” or “foggy day” reveals a plethora of images
that show some interesting things happening with shadows. While there is often
a blobby shadow beneath objects, the shadow is quite soft, and it is very difficult
to see where the sun is coming from. The fog just diffuses the light too much.

The next few steps will attempt to mimic this visual effect.

Step 12: Turn the Sun straight down. Select the Sun GameObject and in
the Inspector change the Rotation X = 90 with Y and Z both equal to 0.

Why?
Turning the Sun straight down will make all the shadows be right beneath
the objects, just like in the research.

Step 13: Change the Sun's shadows to Soft. Still in the Inspector for the
Sun, change the Shadow Type drop-down menu to Soft Shadows.

Why?
Again, we are after soft, blobby shadows. This step alone won't soften the
shadows sufficiently, but will get us closer.

Step 14: Reduce the Shadow Strength. If using Unity Pro, still in the Inspector,
right beneath the Shadow Type, change the Strength setting to 0.5.

Why?
A shadow strength of 1 creates a solid black shadow (absent any bounced
light or other lights to diffuse the shadow). Since in this case, the ground
should show some shadows, but very diluted shadows, turning the
Shadow strength down will help provide much gentler shadows.

Tips and Tricks
This trick of changing the shadow color to a value less than 1 can be a
nice solution for even sunny days because it can allow areas that are deep
in the recesses of a covering not to be completely covered by thick black
shadows.

174

Creating Games with Unity and Maya

Step 15: Add a filler Sun. In the Hierarchy panel, select Sun and duplicate
it (Edit>Duplicate). Rename it to SunFiller. Select it and open the
Lightmapping window (Window>Lightmapping). Change the Baked
Shadows setting to Off.

Why?
A filler sun will provide some added illumination that can help diffuse the
shadows cast by the Sun directional light.

Step 16: Adjust the intensity settings of the two Suns. For a first pass
change both's intensity to 0.2.

Why?
Now that there are two lights, the combined effect would likely be way
too bright. We will be taking a few test renders to find out if the intensity
here is a good choice or not. We will dial down the render settings to
allow for quicker renders but this is where you get your money's worth
out of bigger processors and more RAM.

Step 17: Further soften Sun's shadows. Select Sun and open the
Lightmapping window. In the Object setting, increase the Shadow
Samples to 100 and change the Shadow Angle to 45.

Why?
Both of these are baked-only settings, and both help the baked shadow
render with softer edges. On a sunny day, this would not be preferable
because outside shadows are often crisp; but on a cloudy or foggy day
getting a really mushy shadow is the goal.

Step 18: Bake with faster preview options. Open the Lightmapping
window and select the Bake Button/Tab. Change the Mode to Single
Lightmaps, (if using Pro) make sure the Bounces is at 1 and change the
Final Gather Rays to 200. press Bake.

Why?
Finding the right lighting is a process of baking and then rebaking (like
rendering and then tweaking and rerendering back in Maya). Taking
some time to get the baked lighting just right always pays dividends in
the final game play. However, with high-quality settings, the test bakes
can simply take too long to get through. While the values for lights
are being tweaked, baking a single lightmap with a single bounce and
fewer Final Gather Rays will yield faster results that will inform future
decisions.

Warnings and Pitfalls
Remember that the
quality settings have
been turned down.
Eventually it will be
important to get those
back up for a final bake.

175

Asset Creation: Advanced Shading, Lighting, and Baking

Tips and Tricks
Again, in many of these steps we are dealing with bounced light that is a
Pro-only feature. If you are using standard Unity, add some extra lights to
simulate the bounced light.

Step 19: In the Hierarchy panel, select the Terrain. In the Inspector, turn off
Static.

Why?
The terrain is automatically set to Static, which means it's automatically
baked. To bake the terrain, a huge—and I mean huge—texture is created
(although it doesn't take up any of the texture space created with Unity's
generated lightmap UV). This means that baking the terrain is a long, long
process. In this situation, turning off the Terrain when baking will result
in several benefits. First, the scene will bake much faster. Second, we are
using detail meshes (the rocks), which don't bake; they simply inherit
the color value of the terrain beneath it. So, in spots where the terrain is
beneath the dock, the detail meshes will bake black. In the final version of
the game included on the web site (http://www.Creating3dGames.com),
the terrain is never baked (it just can't be seen well enough in the fog to
make baking worthwhile).

Step 20: Evaluate output. Open the Render Settings (Edit>Render
Settings) and reactivate Fog. Play the game and run around checking to
see how the baked solution is working (or not; Figure 7.29).

Step 21: Based upon the run-through, adjust the two Sun's settings and
rebake. Reanalyze and rebake. The settings that I finally liked for the Sun
were both Suns at Intensity = 0.15 (in the Inspector). The Baked Shadows
settings (in the Lightmapping Window/Object section) were Shadow
Samples = 100 and Shadow Angle = 45). Results are in Figure 7.30.
Step 22: Examine critical locations and double-check that there is enough
light reaching these spots. For instance, the door that lets the player
into the facility was too dark on my bakes (Figure 7.31), so an additional
spotlight was needed at a very low intensity (0.5). Look for these sorts of
areas on your version (Figure 7.31).

Figure 7.29 The in-game results
of the first rendering pass. Too much
shadow and the shadow is too crisp.

176

Creating Games with Unity and Maya

Why?
Using little spotlights or even point lights to help paint in areas of needed
detail is a common tool for lighting designers in theatre, homes, film, TV,
and games. Especially when baking, take a moment and see if there is a
particular part of the scene that needs a little boost.

Tips and Tricks
If these “cheater lights” shouldn't be illuminating characters in the game
or casting shadows, there are a couple of easy fixes. First, after baking,
cheater lights can be deleted and they will no longer affect the scene or
game. Or (and this is better), the Inspector for a light includes a drop-
down menu called Lightmapping. Change this to Baked Only and it will
only be used in the baking process and not cause unwanted shadows in
game play if the game is using deferred lighting/rendering.

Ambient Occlusion
Ambient Occlusion has all sorts of fancy descriptions depending on where
you read. At its core (at least in how we are going to use it in Unity) ambient
occlusion (AO) is the dark regions where two surfaces meet. In broad strokes,
AO can simulate the blobby shadows on a foggy day. AO can also be thought
of as the dirt that collects in corners. Either way, AO does some very important
things in a scene and helps give definition to the objects in a scene.

Figure 7.30 Results of light settings
listed in step 20.

Figure 7.31 Adding extra spotlight
to give light to overly dark areas.

177

Asset Creation: Advanced Shading, Lighting, and Baking

Unity includes some dynamic AO (see the SSAO techniques), but these can
quickly make the frame rate become a slide-show by the time the settings are
at a place that provides good results. Luckily, with Beast's implementation, AO
can be baked right in to the lightmap.

Step 23: Activate Ambient Occlusion. Open the Lightmapping window
and click the Bake Object/Tab. Turn the Ambient Occlusion to 1. Change
the Max Distance to 5 and Contrast to 2.
Step 24: Bake the scene (Figures 7.32–7.34).

Conclusion
There is almost always a bit of massaging that can be done with lighting and
baking, even after you have to move on to other parts of the game. Lighting
can be tricky because a scene may look too bright on one monitor and too
dark on another. There are some predictable differences as a game moves
from PC to Mac (Mac will be brighter), and it is hard to know when a scene will
look its best on most platforms. I find that a baked solution that finally looks
good on my machine needs to be run (as a build) on other machines before
I'm confident with the solution.

The baked solutions that Unity produces can be further adjusted in Photoshop.
When baking is done but before the results can be seen, a progress bar will pop
up to show that new assets (the newly made lightmaps) are being imported.
These new assets are actually accessible in the Project panel. In this case they

Figure 7.32 Final output with loads of AO and appropriate shadows. Figure 7.33 In-game screenshots of baked light.

Figure 7.34 One more.

178

Creating Games with Unity and Maya

are in a new folder called Scene-EntryWay. Any of these lightmaps can be
opened in Photoshop and lightened, darkened, or edited in any way desired.

There are a few functionalities that baking allows for (like emmisive materials—or
lighting a scene with luminescent materials—no light instruments required) that
have not been covered in this tutorial. They are assigned in the homework, but for
a little extra help check out Appendix C, “Emmisive Light Baking.”

Hopefully this chapter has given you a quick look at how to work with Unity lights,
and some strategies to attack a lighting scheme in different weather situations.
Through effective manipulation of shadows and even multiple lights, a refined
ambient lighting scheme that is flexible in implementation can be achieved.

Homework and Challenges
Challenge 1: Light and bake the hallway. A few tips on this. Bring in and
place a hanging light as modeled in earlier challenges. Within this light,
place a spotlight with a very wide Spot Angle (Figure 7.35). Make the
spotlight a child of the geometry. Make sure the geometry is not Casting
Shadows. Copy and paste this hanging light in the places you plan to
put them. This populates the level with geometry that indicates the light
source as you light the scene. See my finished solutions in figures 7.36-7.38.

Figure 7.35 Creating a light source that includes geometry. Figure 7.36 Lit hallway.

Figure 7.37 Lit loading dock. Figure 7.38 Lit pit.

Chapter 8

179
Creating Games with Unity and Maya
© 2011 by Elsevier Inc. All rights reserved.

Depending on the type of game being played, the character design can
be as important as the set. Standard third-person games mean that there
is lots of looking at the back of yourself as the space is explored. Because
this is the case, having a really well-designed protagonist (and more
specifically, a protagonist with a well-designed back) becomes incredibly
important to the visual impact of the game. Even in first-person games
(like Incursion will be), having enemy characters that are interesting in
design, beautiful (that includes gross) in texture, and dynamic in motion
can make a huge difference in the level of engagement and visceral
experience of the player.

In Incursion, the primary Play mode is going to be first person, which means
that the player will hardly ever be seen (other than the hands when holding
a weapon or tool). In fact, in a first-person situation, there may not ever be a
need to develop a character (unless the game is multiplayer). But character
creation is an art with some specific topology issues that should be covered in
any discussion of game asset creation.

Asset Creation:
Maya Character Creation

Chapter 8

180

Creating Games with Unity and Maya

Because of this, in this chapter we will be modeling and texturing the
player's character in Incursion. This character will be used in the opening
screen and will be animated. This also means that this character is available
if the game ends up (in your able hands) morphing into a third-person game
or a multiplayer game.

Aegis Chung
The player's character is Aegis Chung, who is part of the US Government's Special-
Ops Forces (or any imaginary government agency of your choosing). The specifics
of this character would be found in the design document that would help define
how the character should be designed. For this book, these conversations occurred
between the character designer (Jake Green; www.jakegreenanimation.com) and
the game designer (me). The design we settled on is shown in Figure 8.1.

Style Sheet
Character style sheets are an important part of the character design process—
they define what a character will look like from at least a front and side view.
Really accurate design sheets can be used as reference and the 3D model can
be constructed right over the top of the drawing within Maya (or whatever
the 3D application might be). Occasionally I will work with a student who can

Figure 8.1 Aegis Chung (design by Jake Green; www.jakegreenanimation.com).

181

Asset Creation: Maya Character Creation

create a character in 3D effectively without visualizing it first in 2D—on paper.
But overwhelmingly, the students who build the best models are working
from of a well-designed character style sheet. In studios this is especially the
case since a character design on paper is much quicker and much cheaper to
create, approve, or send back for revision than one created in 3D.

This doesn't mean that character modelers are necessarily good character
designers, or the other way around. Some of the best characters developed in
class have been designed by one student and modeled by another; however,
the language of visual communication has been that character style sheet.

Considerations of Style Sheets

The best style sheets will often begin on graph paper. This is because having the
front and side views match up exactly is key. When the bottom of the nose is at
the exact same height in both images, when the polygons that define that area
are being constructed, the two images will help inform how those polygons
will need to be assembled. Conversely, if any area of the face is slightly off,
referencing the image can be murderously confusing in the modeling process.

However, just drawing the two images (front and side) lined up is just half
the battle. After scanning in the image, be sure to use Photoshop's guides to
assure that the image is still lined up. Get in close, very close, and make sure
that the nose; eyes; tops and bottoms of ears; tops, middle, and bottom of
lips; knees; crotch; and armpits are lined up correctly. A few extra minutes in
Photoshop will save hours modeling. For further details on this preparation
process see Appendix C, “Preparing Character Style Sheets.”

Arm position is often a contentious issue in the 3D community. Some people
insist on modeling characters in the T pose (arms straight out). The reason for
this often has to do with rigging and skinning. It is definitely easier to skin an
arm pit when it is easily seen because the arms are at the side of the body. Here's
the reason I prefer not to use this: put your arm straight out and with the other
arm feel what occurs at the top of your shoulder (your deltoid). There is a lot of
compression of that muscle and indeed the entire shoulder deforms with a big
bulge of muscle there. However, this bulge of muscle disappears when your arm
is returned to your side. Modeling a character with arms outstretched then leaves
the modeler with an impossible choice—either model the shoulder incorrectly
when it is outstretched, or be left with a bulbous shoulder that is incorrect
once the character is rigged, skinned, and the arm is back at the side. You have
probably seen this sort of 3D character that seems to be in a perpetual shrug;

I prefer to model characters with their arms either at their side or at a 45-degree
angle to their body. Yes, it does make skinning the armpit a bit more difficult
since there are a lot of polygons next to each other, but since skinning tools
have become more effective this is not as big a deal as it once was. The benefit
is that this allows the shoulders to be modeled in the form that they usually are
in—down and relaxed with the deltoids not compressed and balled up.

182

Creating Games with Unity and Maya

Chapter Overview
In this chapter we will be using the character style sheet of Aegis Chung as
designed and created by Jake Green to model, UV map, and texture the game
character. The image is downloadable on the accompanying web site (http://www.
Creating3dGames.com), although you might want to use your own design if you
have one that is better. Note that the Photoshop work of ensuring that the front and
side images are lined up has been done and these drawings are reasonably close.
So, if you are going to use your own, make sure you do the appropriate prep work.

Tutorial 8.1: Game Character Modeling:
Aegis Chung
As is the case in most of 3D, there are many ways to skin this cat. There are
almost as many methods of organic modeling as there are organic modelers.
The method we are going to use here is based upon the idea that most
muscles in our face tend to ring the orifice they manipulate. There are rings
of muscles around the eye and mouth. By creating polygons in rings around
these objects the forms are easier to find, and more importantly, the area can
deform in a more lifelike manner.

This is largely an additive method then. The method will start with a single
polygon, and the additional polygons will be extruded out from that.

As always, polycount will be important. Knowing how many extrusions to make and
how close to make them can be a tricky thing and is largely informed by experience.
It is not too hard to go back and eliminate unwanted rings. Similarly, it is fairly easy
to go back and add rings if added detail is needed. So as the forms are built, use the
screenshots as a rough guide to the density of polygons, but don't sweat it.

Polycount

For this character we will be aiming at the 15,000 tri mark. If there were going
to be 300 of this character on the screen at a time, this is likely too high. If this
is the only character to ever be seen we could probably go higher. But 15,000
is a very reasonable count with most hardware today and will allow for a good
balance of efficient modeling with engaging detail.

Image Planes in Photoshop

Step 1: Prepare resource image in Photoshop. If you are using the preprepared
images contained in the downloadable files on the resource web site (http://
www.Creating3dGames.com), you're set. There are four images of note: AC_
Front_Body, AC_Side_Body (both full body images), AC_Front_Head, and
AC_Side_Head (just head shots). If you're using your own, be sure to review the
steps in Appendix C, “Preparing Character Style Sheets.” At the end, be sure to
have two separate files, a Front view of the character and a Side view. Save the
files that will be used for reference in the sourceimages folder.

183

Asset Creation: Maya Character Creation

Step 2: Chop the head off. Still in Photoshop, make a selection of the head
and neck in the Front drawing. Copy and paste it into a new Photoshop
document. Save it as AC_Front_Head in the sourceimages of the Maya
project file (Incursion–Maya). Make note of the actual image size, and
make a selection in the Side drawing of the same pixel height. Copy and
paste this into a new Photoshop document. Save it as AC_Side_Head.

Why?
Figure 8.1 shows the completed character style sheets; this will be the
basis of the model to be created. However, if this is imported into Maya
at too high a resolution, Maya can be dragged to a crawl, but too low
a resolution can mean that any detail (like the face) is just a patchwork
of blotchy pixels. By working with a high-resolution head, most of the
critical information will be available for that detailed modeling; then later,
when it's time to do the body, this image can be swapped out for a lower-
resolution body.

Image Planes in Maya

Step 3: Open Maya and set the project to Incursion–Maya (File>Set Project).
Step 4: Save the new file as Aegis_Chung (this should save to the Scenes
folder; if it does not, return to step 3).
Step 5: Import the AC_Front_Head as an image plane in the front-view panel.
Swap to four view (where you can see persp, top, front, and side view panels). In
the front View panel, choose View>Image Plane>Import Image…. In the Open
dialog box that pops up from there, choose AC_Front_Head and press Open.

Why?
Image planes are cool things that allow for a reference image to sit within
a specific view panel. This image can either be visible in all views or in just
one, which works great for a specific front image.

Step 6: Import the AC_Side_Head as an image plane. Repeat step 5 in the
side-view panel and bring in AC_Side_Head. The results of steps 5 and 6
are shown in Figure 8.2.
Step 7: Move the images off of 0,0,0. In the front-view panel, choose
View>Image Plane>Image Plane Attributes>imagePlane1. In the Attribute
Editor, the specifics of the image plane will appear. Scroll down to the
Placement Extras section. Look for Center and change the Z setting to –20.

Why?
The Center setting here refers to where in space the center of the image
plane is placed. At placement it is sitting at 0,0,0, which means that in

184

Creating Games with Unity and Maya

the front-view panel, when polygons are constructed behind Z = 0 (or
anything toward the back of the head), they will be hidden behind the
image plane. Moving it back will ensure that the polygons will all be
visible in front of the image plane.

Step 8: Repeat for the side-view panel, changing the Center X setting
to –20 (Figure 8.3).

Figure 8.2 Imported (but yet to be
adjusted) image planes.

Figure 8.3 Offset image planes. This
leaves an empty spot that allows for
the construction of the polys without
being hidden.

185

Asset Creation: Maya Character Creation

Tips and Tricks
In tech review, my tech editor (who is using a Mac) pointed out that this
step can be a little flaky. There appears to be a bug in the Mac build that
makes it so you have to restart Maya before you can access the side-
view panel's image plane settings if you've already accessed the front.

Step 9: Hide the image planes except in their respective view panel.
Again, in the front-view panel activate the attributes of the image plane
(View>Image Plane>Image Plane Attributes>imagePlane1), and at the top
of the Attributes Editor click the Looking Through Camera radio button.
Do this again in the side-view panel.

Why?
Image planes are most effective when they are visible only in the orthographic
views that they are most relevant in (front and side) and not cluttering up the
perspective view panel.

Eyeball

Step 10: Create an eyeball. Create a polygon sphere (Create>Polygon
Primitives>Sphere).
Step 11: Reduce its polycount. Select the sphere and make sure the
Channel Box is open. In the INPUTS section click polySphere1 and change
the Subdivisions Axis and Subdivision Height to 10.

Why?
It's an eyeball that is very unlikely to be seen terribly close. Keeping the
polycount low (as always) helps keep the frame rate high in the game.

Step 12: Move, rotate, and scale the eyeball into place. Looking at both the
front- and side-view panels, move the eyeball into place so that it matches
both sketches. Rotate it 90 degrees along its X-axis so that the pole of the
image is pointing forward. Scale the eyeball to actually be the size of the
eyeball (much bigger than the part of the eye that can be seen; Figure 8.4).

Figure 8.4 Placed eyeball.

186

Creating Games with Unity and Maya

Why?
Creating the eyeball first provides an important starting point. With an
appropriately placed eyeball, the polygons that will become the eyelid
can quickly and easily be organized to have the appropriate shape.

Step 13: Duplicate the eyeball. Ctrl-D (Cmd-D on Mac) will duplicate the
eyeball. In the Channels Editor, change the Translate X value to a negative
value (mine went from 3.022 to -3.022).
Step 14: Take time to name the spheres Left_Eye and Right_Eye in the
Outliner. Remember to label these relevant to the character (the character's
left and right).

Creating Polygon Rings

Step 15: Create the first polygon. Choose Polygons>Mesh>Create
Polygon tool. In the Front view, create a four-sided polygon that
approximates the shape of the start of the eyelid (Figure 8.5).

Tips and Tricks
The Create Polygon tool will allow for the creation of those dastardly
n-sided polygons. When using this tool, be sure that after creating the
fourth side, to press the Enter button to exit the tool.

Step 16: Adjust in 3D (via the side- and persp-view panels) to get the
shape of this polygon correct in relationship to the eyeball.

Why?
This is essentially the core process: create new polygons in one view
(in this case the front view panel) and then tweak in the other views to
ensure this newly created polygon is the right shape in space.

Figure 8.5 Starting out with the
first polygon.

187

Asset Creation: Maya Character Creation

Step 17: Extrude out the new polygon. Select the top polygon's edge
and use the Extrude tool (Polygons>Edit Mesh>Extrude) to then pull out
another polygon to roughly match Figure 8.6.

Tips and Tricks
Notice that in Figure 8.6 the eye is no longer visible. It's not deleted, it's
just hidden. Sometimes having it there is important, but other times it just
makes things like the side view cluttered and unwieldy. To hide the eye,
select it and press Ctrl-H. It can be made visible again by selecting it in the
Outliner, then in the Channels Box, changing the Visible setting to On.

Step 18: Repeat this process, being sure to rotate the new polys, to cover
the top lid (Figure 8.7).
Step 19: Continue extruding and rotating around the bottom of the eye.
Step 20: Use Append to Polygon to close the final gap. When the extrusions
have gone to where there would be one more polygon to complete the
ring, exit the Extrude tool and choose Polygons>Edit Mesh>Append to
Polygon Tool. Click the started edge of the first polygon, and then the
ending edge of the last polygon. A new polygon will appear, thus closing
the ring of polygons (Figure 8.8).

Figure 8.6 Extruding new polygons.

Figure 8.8 Closing the ring with the Append to Polygons tool.Figure 8.7 Top lid being formed.

188

Creating Games with Unity and Maya

Step 21: Adjust the new polygons in 3D space. Change to vertex mode. In
the side- and persp-view panels, select and move collections (often pairs)
of vertices only in Z so that they move back to the appropriate place on
the eyeball (Figure 8.9).

Step 22: Provide thickness to the eyelid. Once the general shape of the eye
is complete, change to edge mode and double-click an edge of the inside
of the ring of polygons (this will select the ring). Choose the Extrude tool
(Polygons>Edit Mesh>Extrude), and then immediately swap to the Move
tool. Move this newly extruded edge back into the eyeball along the Z-axis
(Figure 8.10).

Why?
Every time the Extrude tool is selected it extrudes a new collection of
polygons. If the Extrude tool's manipulators are used, the new polygons
are moved, scaled, or rotated along the polygons' normals. But swapping
to the Move tool allows this new collection of polygons (or edges) to be
manipulated en masse along a global direction (in this case Z).

Figure 8.9 Adjusting vertices
around the eyeball.

Figure 8.10 Providing eyelid with
thickness.

189

Asset Creation: Maya Character Creation

Step 23: Mirror the mesh. Swap to object mode and select the face thus far.
Select Edit>Duplicate Special (Options). In the Duplicate Special Options
window choose Edit>Reset Settings. Change the Geometry Type: to Instance.
Change the Scale X input setting (the first column of Scale) to –1. Click the
Duplicate Special button to finish the mirroring of the geometry (Figure 8.11).

Why?
Scaling an object –1 in any direction will create a mirror version of the
object. By making sure this duplicate is an instance, we ensure that as
one side of the face is built up, this duplicate will also update. Now this –1
scaled half of the character will not be the one imported into Unity (the
normals are funky), but as a construction method, this works well to see
the whole face rather than just one half at a time.

Expanding Rings

Step 24: Expand the rings. Change to edge mode and double-click one
of the outer edges (this should select the outer ring of edges). Choose the
Extrude tool and then immediately swap to the Scale tool and scale (by
dragging on the middle cube manipulator handle) this new collection of
edges out in every direction (Figure 8.12).

Figure 8.11 Mirrored geometry for
construction via Duplicate Special.

Figure 8.12 Expanding new ring of
polygons.

190

Creating Games with Unity and Maya

Why?
And thus it begins. The process from here on out is working with rings of
polygons expanded out a ring at a time.

Step 25: Looking at all the view panels (and working in each as needed),
continue to extrude edges and tweak vertices to find appropriate form.
Step 26: As the center of the nose is neared, align the vertices that lie on the
axis of symmetry. Do this by selecting the vertices that will be the middle of
the nose. Double-click the Move tool to bring up the Tool Attributes. Turn
off the Retain Component Spacing check box. Back in persp, hold the X-key
down (to snap to grid) and move the selected vertices to the middle (they
should snap). The rough approximation of the form is seen in Figure 8.13.

Tips and Tricks
Sometimes when cleaning up the center of a face, there are some polys
that are too small, or unneeded. Be sure to delete them along that mirror
plane if need be so that there isn't an awkward bunch of polys there.
Then, of course, be sure to clean up the center again.

Step 27: Continue extruding sans the edges in the middle of the nose. This can
be done by continuing to double-click an outside edge, but be sure to deselect
the edges across the middle of the nose before extruding (Figure 8.14).

Figure 8.13 Centered vertices of the
middle of the nose.

Figure 8.14 Continued extrusion
after centering the center of the nose.

191

Asset Creation: Maya Character Creation

Why?
Keep extruding until there is a Phantom of the Opera-esque mask
complete. Do not worry about the mass at the end of the nose.

The Mouth

Step 28: Repeat steps 15 to 27 to create the mouth. Again, the flow is to
create a new polygon, then extrude the edges around. The biggest difference
here is that instead of creating a complete ring, create a half ring (Figure 8.15).

Step 29: Create an oral cavity. Do this by selecting the edges on the inside
of the mouth and extruding back into the head. Finally take the very last
collection of vertices and snap them to the center (hold X while using
the Move tool). Marquee select these vertices and choose Polygons>Edit
Mesh>Merge (Figure 8.16).

Figure 8.15 First pass of the mouth.

Figure 8.16 Oral cavity creation.

192

Creating Games with Unity and Maya

Why?
The oral cavity may not even be needed. If the game will never show the
character with his mouth open there is no need to blow this chunk of the
poly budget here. However, since this is the main protagonist, including
an oral cavity will allow for future possibilities. Still, it is the inside of the
mouth, so no need to use any more polygons here than needed.

Step 30: Add geometry as needed to finish lips. Figure 8.17 shows a new
ring of edges created with the Insert Edge Loop tool (Polygons>Edit
Mesh>Insert Edge Loop Tool). Don't bury too many polygons here, but an
extra ring can help give the lips volume.

Step 31: Extrude the outer ring to build up toward the upper face (Figure 8.18).
Use the Extrude tool's move handles instead of the Scale tool. Since we are
dealing with half the mouth, using the edge's normals gives a better result.

Step 32: Periodically clean the mirror plane. Select the vertices that
should be on the mirror place and snap to the center (hold X down while
moving in X). Figure 8.19 shows a quick cleanup of current progress.
Step 33: Continue building out (and up) toward the mask.

Figure 8.17 Rounded lips via
additional edge ring.

Figure 8.18 Extruding the outer
ring to build geometry.

193

Asset Creation: Maya Character Creation

Step 34: As the two shapes get close to each other, snap vertices to
match. While in vertex mode, holding down the V-key when moving a
vertex will allow it to be snapped to another vertex (Figure 8.20).

Mask and Mouth Together

Step 35: Combine the mouth to the mask. In object mode select the mask
and then Shift-select the mouth. Choose Polygons>Mesh>Combine.

Why?
Ultimately, most of this character (except for the weapons) will be one
single mesh. Although Maya and Unity will both support multiple meshes
skinned to one joint structure, it is quicker computationally to have fewer
meshes being deformed at one time. So for efficiency's sake, and because
our faces are a single mesh, it will be important to have the mask and
mouth be one mesh. Combine does this.

Step 36: Merge appropriate vertices. Select the vertices that are at the
seam where the two meshes combined (Marquee select) and choose
Polygons>Edit Mesh>Merge.

Figure 8.19 Cleaning up mirror
plane.

Figure 8.20 Building toward the two
meshes and snapping when close.

194

Creating Games with Unity and Maya

Why?
Just because two meshes are combined so that it appears as though
they are one mesh, that doesn't mean that the appropriate vertices are
merged. And, in fact, if vertices are not manually merged, they remain
separate after the Combine has happened. Manually merging makes sure
that the seam is using shared vertices and not just lined-up ones.

Step 37: Along the mouth, extrude out further rings to continue connecting
to the lower edge of what was once the mask (Figure 8.21). Be sure to merge
relevant vertices to connect new polys to one solid mesh.
Step 38: Soften Normals. In object mode, select the mesh and choose
Polygons>Normals>Soften Edge (Figure 8.22).

Why?
As new polygons are built, the normals of those edges and faces are still
hard, which can give the mesh a very 1980s 3D look. By softening the
edge, the low-poly version of the model can look surprisingly smooth and
much more complex than the underlying polygons alone.

Step 39: In object mode choose Edit>Duplicate Special (with X = –1).
Make sure the center vertices are centered first.

Why?
Along the process of combining, the old duplicate of the mask will have
been lost. By mirroring again (via Duplicate Special), once again the shape
of the face will be easier to see.

Nose

Step 40: Close the centermost gap with the Append to Polygon tool (Figure 8.23).
Step 41: Create additional places to round the nose with additional
polygons. Create these with the Insert Edge Loop tool (Figure 8.24).

Figure 8.21 Extruding out to continue connecting the mouth to the
bottom of what was the mask.

Figure 8.22 Results after softening normals.

195

Asset Creation: Maya Character Creation

Step 42: Bend the new vertices to find the form of the nose. Be sure to use
all the view panels to find this form (Figure 8.25).

Step 43: Create the upper edge of nostril. Select a pair of edges where the
nostril would be and extrude them around to create the rough outline of
the nostril (Figure 8.26).

Figure 8.23 Beginning to add mass to the nose. Start with creating
a new poly with the Append to Polygon tool.

Figure 8.24 Adding geometry to the nose to allow for rounding
of the form.

Figure 8.25 Roughing out the tip of the nose.

196

Creating Games with Unity and Maya

Why?
Pairs of edges are very important in most all of organic modeling because
it allows for some roundness to a form. Especially at a place like this where
the geometry is making a corner (from the bottom of the nostril to the
side), extruding pairs can greatly speed up the vertex sculpting process.

Step 44: Close up the top of the nose with the Append to Polygon tool
(Figure 8.27).

Figure 8.26 Roughing out the nostril.

Figure 8.27 Closing up the top of
the nose.

197

Asset Creation: Maya Character Creation

Step 45: Complete the nostril. Select the edges that now make up the hole
at the bottom of the nose that will become the nostril. Select Polygons>Edit
Mesh>Extrude and then immediately swap to the Move tool. Move this new
collection of edges up into the nose. Sculpt as needed by moving vertices
(Figure 8.28).

Cranium
We'll leave the face area for a bit here. By building up the cranium for a minute
we can lay the foundation for tricky areas like the ears and mandible (jaw
bone).

Step 46: Select and extrude the edges at the top of the forehead
(Figure 8.29).
Step 47: Continue extruding and sculpting the head until polygons are
created over the area of the ear (Figure 8.30).
Step 48: Extrude off the back of the face area to meet up with the newly
created cranium geometry (Figure 8.31).
Step 49: Clean up. Do this in two steps. First merge the vertices of this
new seam between cranium and face mask (Marquee around pairs of
vertices and use Polygons>Edit Mesh>Merge). Then do a quick pass across
the middle of the head and make sure that all the vertices that should be
on the mirror axis really are (Select, hold down X, and snap to the middle;
Figure 8.32).

Mandible
One of the things Jake's models are always very good at is appropriate
topology. The organization of polygons (and particularly, loops of polygons)
is very important for face models because the face is a very complex form,
and if the polygons are oriented incorrectly, and there just aren't the places
to bend, it's impossible to get the right form. Picking where to extrude what
polygons becomes a very important process, and is a big reason why I prefer
this additive process to others that might be built from a cube.

Figure 8.28 Finishing off nostril by
extruding up inner nostril.

198

Creating Games with Unity and Maya

Step 50: Select an edge off the face mask that would represent where the
mandible would drop down and extrude down and around to create the
edge of the jaw bone (Figure 8.33).

Tips and Tricks
In the style sheets (the drawings) there sometimes are some areas where
the front and side don't line up perfectly. This mandible area is one of
those. Be sure to be looking at the perspective view to get the right look
and anatomy. While good style sheets are really close in the side and front
drawings, it's very difficult to have them exactly right in every place.

Figure 8.29 Begin extruding the cranium.

Figure 8.30 Continued extrusion over the ear.

199

Asset Creation: Maya Character Creation

Figure 8.31 Connecting the new cranium geometry with the face mask.

Figure 8.32 Cleaning up. Merging vertices and snapping vertices on mirror plane.

200

Creating Games with Unity and Maya

Step 51: Attach this new strip to the bottom of the face mask (around the
chin). Usually this is most easily done with the Append to Polygon tool.
Step 52: Fill in the cheek. This can be done with collections of the Append
to Polygon tool and Extrude tool with some vertex merges (Figure 8.34).

Step 53: Use the Sculpt Geometry tool (Polygons>Mesh>Sculpt Geometry Tool
(Options)) to sculpt and smooth these newly created polygons (Figure 8.35).

Figure 8.33 Roughing out the mandible.

Figure 8.34 Filling in the cheek.

201

Asset Creation: Maya Character Creation

Tips and Tricks
The Sculpt Geometry tool can be an incredibly great tool to nudge vertices into
submission. The real key to this tool is quick changes in the brush size (hold
down B while dragging left and right) and a low Opacity setting (the default is
1, but I usually paint with a 0.1 or even a 0.05). Remember that this tool has a
push and pull function, but also has smoothing functions that can allow hard
edges and awkward sections to be smoothed into a more organic form.

Cranium, Continued (and Ear Beginnings)

Step 54: Create the base shape of the ear by extruding off the back of the
face mask (Figure 8.36).

Why?
The idea here is to leave some polygons (probably four rows) from which
to build the ear, but do not worry about building the ear out at all.

Step 55: Continue building toward the occipital bun by extruding around
the side of the head toward the back of the cranium (Figure 8.37).

Figure 8.35 Sculpt Geometry tool to massage shape into good form.

Figure 8.36 Laying the foundation for the ear.

202

Creating Games with Unity and Maya

Step 56: Close off the bun. Continue extruding until the new polygons are
aligned across the back of the head (Figure 8.38).

Why?
In Figure 8.38 notice that the bun was closed off and then additional
subdivisions (via the Insert Edge Loop tool) were created. This could also
have been done via several extrusions, but sometimes up-rezing a form
by adding polygons to an already created form is easier than extruding,
moving a bunch of vertices, then extruding again. Figure 8.38 really
shows the idea of roughing out a shape, and then going back in to refine.

Figure 8.37 Building back toward the occipital bun.

Figure 8.38 Finishing off the occipital bun.

203

Asset Creation: Maya Character Creation

Step 57: Sculpt with the Sculpt Geometry tool to massage the head into
shape (Figure 8.39).

Step 58: Close off the top of the head. In Figure 8.40 this was done with
by using the Extrude tool followed by Merge to merge up the vertices.

Ears
Ears in game models can be very tricky. In reality our ears are tremendously
complex forms. There are more curves in the ears than on the rest of our body
combined. It's easy to get lost in the folds and channels that are the ears.

Figure 8.39 Sculpting and softening the form into an organic one.

Figure 8.40 Extruding to finish off
the head.

204

Creating Games with Unity and Maya

In a game model, there simply are not the available polygons to create
terribly detailed ears. Luckily, if the game player is spending a lot of time
checking out a character's ears there is something seriously wrong with the
game play.

So the strategy here is to change the silhouette of the face enough to
represent the ears from the front, top, and back views, but to let the texture
for the ear do most of the visual work.

Step 59: Select, Extrude, and rotate the ear polygons off the side of the
head (Figure 8.41).

Why?
Yes, this creates an ugly ridge on the front of the ear—a sort of “Shrek-ear”
like a trumpet emerging off the head. Hang tight, we'll fix that.

Step 60: Use the Sculpt Geometry tool to massage out the front ledge
created by the previous step. Use the Smooth function of the Sculpt
Geometry tool to average out the vertices there on the front of the ear so
that the ear ramps up off the side of the face (Figure 8.42).

Figure 8.41 Extruding the ear polygons off the head.

205

Asset Creation: Maya Character Creation

Tips and Tricks
The smooth part of the Sculpt Geometry tool works by averaging the
value of the vertices included within the radius of the brush. For best
results dial that brush in or out so that it includes approximately the
number of vertices shown in Figure 8.42. Again, make sure to use a low
Opacity setting (0.1 or less) to gently get the result desired.

Step 61: Create the back end of the ear by moving the vertices in to create
the helix part off the head (Figure 8.43). If need be, use Insert Edge Loops
to add geometry if added shape is desired.

Step 62: Continue to tweak existing vertices to get the shape of the ear
right. This may include a bit of work on the lobule section of the ear (ear
lobe; Figure 8.44).

Figure 8.42 Smoothing out the
front of the ear with the Sculpt
Geometry tool.

Figure 8.43 Creating the trumpet
part of the ear by moving existing
vertices.

206

Creating Games with Unity and Maya

Moving Down the Neck
Step 63: Select and Extrude the edges on the back of the head to create
the rough outline of the back of the neck (Figure 8.45).
Step 64: Extrude the front of the neck from the chin/mandible down.
Be sure to merge up the two flaps of polygons emerging down
(highlighted in Figure 8.46).

Figure 8.44 Continued tweaking of
existing polygons; specifically working
on the lobe.

Figure 8.45 Extruding back of the neck.

207

Asset Creation: Maya Character Creation

Tips and Tricks
Notice in Figure 8.46 the ring of edges under the chin, one in the middle
of the neck, and one at the bottom of the neck. Remember that polygons
don't bend, and only at the edges and vertices can a mesh deform.
Without the added edge loop in the center of the neck, this character
would always appear to have a very stiff neck because there would be no
bending from his clavicle to his mandible.

Step 65: Sculpt to refine. Use the Sculpt Geometry tool to build out cheek
bones or strengthen the mandible. Much of this work will be done in
the persp view panel with quick glances at the orthographic front and
side views. It's time to get the form looking right in 3D regardless of the
2D sketches behind them (within reason of course—go too far and the
character designer will be quite vexed and the model will be sent back to
you anyway).
Step 66: Select the object and soften the normals (Polygons>Normals>
Soften Edge).
Step 67: Harden some select edges. Swap to edge mode and select some
edges where strong corners may be present (eyelid, nasal labial fold, chin
(highlighted in Figure 8.47) and choose Polygons>Normals>Harden Edges.

Figure 8.46 Extruded front of the neck from the chin.

208

Creating Games with Unity and Maya

Why?
Often this combination of softened edges with select hardened edges
can help provide the best of the high-poly look that softened edges
provides along with hard edges to highlight attributes. Be on the lookout
for any places in modeling organic forms where this combination can
provide very effective visual effects.

Torso
The head is only one-eighth of the total height of most adults, yet modeling it is
easily half the total effort of the form. Starting with the torso, we will be able to make
great chunks of progress. In fact, while we were very careful to make adjustments as
we went along on the head, for the body generally the process is about modeling
with very broad strokes and then going back in to create the necessary detail.

Before continuing, be sure to swap out the image planes. Up to this point we've
been using AC_Front_Head and AC_Side_Head. We need to use AC_Front_
Body and AC_Side_Body for the rest of the steps. To do this, a bit of adjustment
is needed. To swap the image out, select the image plane attributes in each
view panel via View>Image Plane>Image Plane Attributes>[imagePlanex]
(remember that on some machines Maya 2011 exhibits a bug that requires
Maya to be restarted before the image plane attributes can be displayed). This
will open up the image plane in the Attribute Editor. In the Image Plane input
field, press the folder icon and choose the full body version for that view.

The problem is the general size of the image. When the new body images are
brought in, they will be the same size as the head images. Adjusting them is
done in the Placement Extras section of the imagePlane node.

To be honest, getting these setting right can be maddening because they
have to be eyeballed into place, and the only way to move them is by
entering values in the input fields. If you are using the version of style sheets
downloaded from the web site (http://www.Creating3dGames.com), the center
values that work are Center (0, –60.5, 0), with Width and Height set at 156. If
you are using your own version, it just takes a bit of adjustment and tweaking.

Figure 8.47 Hardening select edges.

209

Asset Creation: Maya Character Creation

Back to modeling, the key here is that the bottom of the neck (as shown in
Figure 8.47) has a ring of edges that we can use to continue on developing
the body.

Step 68: In a couple of extrusions, extrude out and down to create the top
of the shoulders. Remember, sometimes the best way to manipulate this
new collection of edges is to select Extrude and then immediately swap to
the Move or Scale tools (Figure 8.48). Stop when the ring gets to the top of
what will become the arms.

Step 69: Select the edges across the back and extrude down to the
bottom of the shoulder blade. Remember to be constantly looking at all
the views to make sure that the new geometry being created makes sense
in every view (Figure 8.49).
Step 70: Repeat the process of extruding a row of edges down the front of
the chest (Figure 8.50).

Why?
The idea here is to create a ring of polygons that the arm will be extruded
from. By coming down the back and then down the front we can create
the chest and back as we go. The ultimate goal here is to make sure there
are 10 edges around what will become the arm.

Figure 8.48 Extruding out the top of the shoulders.

210

Creating Games with Unity and Maya

Figure 8.49 Working down the back (creating the shoulder blade and what will become the back of the arm).

Figure 8.50 Extruding down the front of the chest.

211

Asset Creation: Maya Character Creation

Step 71: Complete the ring of edges that will become the arm with the
Append to Polygon tool to connect the chest flap of polygons to the back
flap of polygons (Figure 8.51).

Step 72: Use the Insert Edge Loop to split the new polygon (Figure 8.52).
The Split Polygon tool could also be used effectively here.

Figure 8.51 Completing the ring of edges that will become the arm.

Figure 8.52 Splitting the new
polygon with the Insert Edge Loop tool.

212

Creating Games with Unity and Maya

Why?
Generating a poly mesh where the form is being covered by well-
distributed polygons is part of the challenge of good character modeling.
When modeling a level, it is perfectly acceptable to have a huge polygon
to cover a big flat space, and then a cluster of polys to define a curve.
In character work, we are building a mesh that is going to be deformed
through joints. Providing a well-distributed collection of polygons will be
key to a mesh that deforms correctly. Part of this is avoiding one polygon
covering a big part of the body. Step 72 is about better distributing the
collection of polygons used to describe the torso.

Step 73: Take some time to sculpt this big mass of vertices into the
appropriate form. This can be done by moving each vertex one at a time,
or by selecting the object in object mode and then using the Sculpt
Geometry tool (Figure 8.53).

Tips and Tricks
My tech editor reminded me that another way to nudge tools into place
is with the Soft Mod tool, and he's right. If you haven't dealt with this tool,
give it a try and see how nice it is to select and move big collections of
components (like vertices). Remember that holding down B and dragging
will resize the area of influence.

Step 74: Continue extruding down to the belt (Figure 8.54).

Figure 8.53 Sculpting and massaging new polys into place.

213

Asset Creation: Maya Character Creation

Arms
In the previous steps we carefully created a hole from which to extrude
the arms. It is important that this ring is carefully constructed since it will
define how many polys will be used to describe the roundness of the arm.
Remember these polygons will be the basis of not only the arm, but the hand
as well. In this kind of modeling, you are looking to find the balance of having
just the right amount of polygons to describe the surface, without having too
many or too few; it is a skill that simply takes time to develop.

The important thing to note is that there are 10 edges. This will allow for four
fingers later. If you have more or less than this, now is a good time to adjust.
Adjusting can include adding new vertices by using the Split Polygon tool or
Insert Edge Loop tool if you need additional edges, or selecting and deleting
edges if you need fewer. It's also worth noting that the spacing of these 10
edges should be fairly even. Adjust the spacing now if you have undesired
clusters because well-spaced edges will save you loads of time as you work
down the arm.

Step 75: Select the ring of edges that is around the arm hole, and begin
extruding out to create the form that is the arm. Figure 8.55 shows
two extrusions. Note that the second extrusion is a really long one that
anticipates us going back to add needed detail.
Step 76: Using the Insert Edge Loop tool, add a subdivision around the
middle forearm, and then three around the elbow area (Figure 8.56).

Why?
At first glance, it seems rather silly to be dropping so much of the polygon
budget on the elbow; I mean, surely there isn't that much visually
happening there, right? Well, visually this is true, but remember that
these meshes are going to be deformed by joints. Consider the following
simplified illustration.

Figure 8.57 shows a simple joint chain and the real-world equivalency.
Figure 8.58 shows how an elbow would deform if there was a single subdivision
at the elbow. See the compression that occurs there? Figure 8.59 shows the

Figure 8.54 Continued extrusions to the belt.

214

Creating Games with Unity and Maya

Figure 8.55 Extruding out the arm shape.

Figure 8.56 Adding extra loops to define form. Of special importance are the three loops around the elbow.

215

Asset Creation: Maya Character Creation

Figure 8.57 Joint layout for a
simplified arm.

Figure 8.58 Result of an elbow
topology with a single deformation
at the elbow with unacceptable
compression.

216

Creating Games with Unity and Maya

results with three subdivisions at the elbow. The outside deformed area
maintains its volume better, and with a bit of skin weight painting (more on this
later), the inside nook of the elbow creates a more believable deformation.

Step 77: Add additional subdivisions and sculpt the results (Figure 8.60).

Why?
These additional rings help lay the foundation for further details in
muscle form and clothing folds.

Figure 8.59 Results of elbow
topology with three rings around the
elbow. Results hold volume better
and make for much more believable
deformation.

Figure 8.60 Additional rings added
and sculpted.

217

Asset Creation: Maya Character Creation

Hands
Anyone who has done a figure drawing class or done any figure drawing
knows that drawing hands is a particularly difficult task. It seems as though
they should be simple—we work with them every day and everyone knows
what hands look like. But because everyone knows what hands look like, they
are pretty tough to get “right.”

In 3D this can be a challenge as well. Of further complexity are the issues of
deciding how many polys to drop into these bad boys. Should each finger be
modeled separately or could we get away with a mitt and save the polys? How
well defined should each joint of each finger be modeled and subdivided?

Most of the answers to these questions are defined by the nature of the game and
nature of the character. If the character is only going to be seen from a long way
off, there is little need—and in fact it is a waste of time—to put a huge amount
of detail into the hand. It would be quicker to model and then quicker to rig and
then quicker to skin and then quicker to animate the hand as a closed fist that
would be grasping a gun (for instance). However, a character who will be close up
and who might be swapping weapons might need to have more-articulate hands.

For this character, since he is the main protagonist, the hands will be given a
fair amount of detail. In first person, the hands will often be the only part of
the person's body that we see, so getting them right will be important.

Step 78: Extrude the end of the arm down to create the polys that will
become the palm (Figure 8.61).

Figure 8.61 Creating polygons for the palm.

218

Creating Games with Unity and Maya

Step 79: Refine palm and create base of the thumb by moving new
vertices around (Figure 8.62). Additionally, add a line of vertices with
the split polygon tool that runs up the middle of the outer palm and
terminates in a triangle near the elbow.

Step 80: Close off the bottom of the arm. Do this with the Append to
Polygon tool. Notice that with the 10 edges we so carefully built for the
arm, we are left with four faces from which to build the arm (Figure 8.63).

Step 81: Extrude the fingers. To do this, first select the four faces (in face
mode). Then go to Edit Mesh>Keep Faces Together (this will check off the
box). Now Extrude and each of the polygons will extrude separately and
create individual digits (Figure 8.64).

Figure 8.62 Palm refined with basis
of thumb.

Figure 8.63 Fingers' base created by
closing up the end of the arm.

219

Asset Creation: Maya Character Creation

Step 82: Add an extra loop around the palm for additional shape
and then extrude out the thumb. Go back up to the nub created in
step 79 and begin extruding out the polys that will form the thumb
(Figure 8.65).

Step 83: With the new faces that define the fingers and thumb, pull out
the rough shape for all the digits.
Step 84: Add additional edge loop to allow for roundness of fingers. Do
this with the Insert Edge Loop tool and click the edge of any side of the
finger (Figure 8.66).

Figure 8.64 Extruding out base of
fingers. Be sure to turn off Keep Faces
Together before extruding.

Figure 8.65 Beginnings of the thumb.

220

Creating Games with Unity and Maya

Why?
This will likely create new polygons all the way up the arm and into the
chest—not to worry, we will make use of these later. However, without
this additional collection of polygons, the fingers would always be square.
With this one extra loop, we get a new edge on the inside and outside of
every digit, which means a more rounded shape can be sculpted in.

Step 85: Add loops to the thumb. Sculpt the new vertices to refine the
hands (Figure 8.67).

Figure 8.66 Inserting extra
subdivision to allow for round fingers.

Figure 8.67 New vertices sculpted
to better define the hand.

221

Asset Creation: Maya Character Creation

Step 86: Insert edge loops around knuckles to allow for proper bending
and additional shape definition (Figure 8.68).
Step 87: Tweak new edges/vertices on the inside of fingers to help define
fleshy parts of the finger (Figure 8.69).

Why?
Deciding when to start manipulating vertices and edges and when to keep
adding geometry is born of experience. In this case, it is easy to rough out
some good finger flesh with very small collections of data (really four edges),
so it makes sense to rough it out here instead of after further details are added.

Step 88: Extrude the knuckle base. Turn Keep Faces Together back on
(Polygons>Edit Mesh>Keep Faces Together). Be sure to select two faces
for each knuckle (Figure 8.70). Don't select all the faces for all the knuckles.

Figure 8.68 Added rings (via Insert Edge Loop tool) around knuckles. Figure 8.69 Tweaking new rings for fleshy finger bits.

Figure 8.70 Building the basis of
the knuckles.

222

Creating Games with Unity and Maya

First, select the first two polys for a knuckle. Extrude the faces, scale them
inward, and then continue on to the next knuckle repeating the same
process. We will reduce the number of polys in the next step.
Step 89: Using the Merge tool, collapse one of the newly extruded faces
to create peaks for the knuckles (Figure 8.71). Do this for all the knuckles at
the base of the fingers.

Why?
Having a profile change across the knuckles is an important silhouette
attribute. However, there is no need to bury too many polys there. By
extruding up, and then collapsing, the rise in the surface can be obtained
with minimal poly investment.

Step 90: Add detail to the base of the thumb by extruding out a new
collection of polys and then using the Sculpt Geometry tool to smooth
them out (Figure 8.72).

Figure 8.71 Optimizing knuckles
via merge.

Figure 8.72 Creating base of thumb
via extrusion, scaling, and sculpting
(smoothing).

223

Asset Creation: Maya Character Creation

Step 91: Add new geometry and sculpt as needed. Figure 8.73 shows one
more ring of edges inserted to allow for some extra flesh on the outer end
of the palm. At this point, there should be plenty of geometry to create a
well-shaped hand. Sculpt to taste.

Gloves
The general hand shape is complete but you might notice that they are a little
bulkier than they should be. This is because (as per the style sheet) they are
actually inside of gloves. We need to make sure the arm indicates this.

Step 92: Create an extrusion midway up the forearm to create the top end
of the gloves. Select an entire ring of faces and use the Extrude tool to do
this (Figure 8.74).
Step 93: Eliminate the bottom ledge of the new ring by merging vertices
(Figure 8.75). Select the vertices around the bottom edge of the newly
extruded faces, and choose Polygons>Edit Mesh>Merge (Options). Turn the
Threshold setting up to probably 1 (this may need to be changed depending
on the size of the model—the results should look like Figure 8.76).
Step 94: Create glove detail. Figure 8.77 shows details atop the top
of the glove. It was created by inserting edge loops to allow for new
collections of polygons to be extruded. These new polygons (with
very little sculpting) are further defined by adjusting the edge normals
(Polygons>Normals>Harden Edge).

Figure 8.73 Added geometry to
better distribute polys and allow for
proper form.

224

Creating Games with Unity and Maya

Figure 8.74 Creating the top part of the glove via extrusions.

Figure 8.75 Using the Merge tool to
eliminate an unwanted ledge.

Figure 8.76 Results of the
Merge tool.

225

Asset Creation: Maya Character Creation

Pads
Aegis Chung has a lot of patches and pads on his outfit. Creating this
geometry is done using similar techniques covered already; namely, taking
extant polygons and extruding them to create a new raised section. If the
needed geometry is missing, using the Insert Edge Loop tool or the Split
Polygon tool can provide the needed polygons.

Be sure that along the process undesirable (as in five-sided polygons) topology
is not created. If there is, be sure to clean it up with some careful vertex merging.

Step 95: Add upper body shoulder pads and shirt edge using the Insert
Edge Loop tool. (Figure 8.78).

Figure 8.77 Detail added to the glove with new geometry extruded.

Figure 8.78 Upper body detail
modeling via added extrusions.

226

Creating Games with Unity and Maya

Legs
Creating the crotch area and later the legs uses a few important techniques
to ensure that the geometry created will actually be appropriately deformed
later. A common problem among students is to get the visual form of the
crotch and legs right, but end up with a collection of polys that is nearly
impossible to skin appropriately. These steps will show a good technique for
creating animatable geometry.

Step 96: Create the geometry that will be used to define the belt and crotch.
Starting from the bottom of the torso modeled earlier, create one extrusion
that will become the belt, and then another that goes down to the bottom of
the crotch. Reshape this bottom “hem line” to match what a speedo or “tighty-
whities” would look like (Figure 8.79). Be sure to sculpt this in the front and back.
Step 97: Add a G-string. Using the Append to Polygon tool, connect a
long poly from the center front to the center back (Figure 8.80).

Why?
Note that this also creates a rough ring of polygons from which to begin
extracting the leg. There still needs to have some work done on this
shape, but you can see how the same technique used to create the arm is
beginning to emerge here as well.

Figure 8.79 Creating the belt and
crotch.

Figure 8.80 Adding a G-string
polygon to connect front and back.

227

Asset Creation: Maya Character Creation

Step 98: Add subdivisions to the G-string and sculpt into form. Subdivisions
again can be added with Split Polygon tool or Insert Edge Loop. After
creating the new places to bend the form, bend the form to complete the
ring for the leg (Figure 8.81). Be sure to keep the mirror plane clean.
Step 99: With a couple of quick extrusions, rough out the leg (Figure 8.82).
Model down to the top of the boots with these extrusions.

Step 100: Add rings for needed detail. Again, this is very rough. Give an
extra ring on the upper thigh (near the crotch) and then a quick ring or
two down the leg to rough out the general shape (Figure 8.83).

Figure 8.81 Adding subdivisions and creating appropriate form.

Figure 8.82 Roughed out leg via two extrusions.

228

Creating Games with Unity and Maya

Step 101: Model the harness from existing polygons. Do this with
previously discussed methods of extruding new faces and appropriately
hardening the edges (Figure 8.84).

Step 102: Refine the knees. No new techniques here, but notice in
Figure 8.85 that there are 12 rings to define this knee area. Some are for
allowing the bend to deform properly with joints, but some are to help
define the bunching of the pants over the top of the boots.
Step 103: Extrude down a rough boot shape (Figure 8.86).
Step 104: Close the bottom of the boot with the Append to Polygon tool.
Step 105: Add detail via extrusions and inserted edge loops (Figure 8.87).
Step 106: Add a sole to the boot. Further extrusions. Notice that a few
extra loops are also added here to allow for the boot to deform right
around the ball of the foot (Figure 8.88).
Step 107: Add pants (pocket detail). Use the same techniques as already
covered, but remember to make careful use of hard and soft normals
(Figure 8.89).
Step 108: Tweak and sculpt as desired. The model as constructed thus far
is show in Figure 8.90.

Figure 8.83 Added geometry to allow for added bending and to better define the form.

Figure 8.84 Harness modeling.

229

Asset Creation: Maya Character Creation

Figure 8.85 Knee area (and
coincidentally the top of the boot
area).

Figure 8.86 Roughing out the boot with some careful extrusions.

Figure 8.87 Added detail to boot.

230

Creating Games with Unity and Maya

Tying It All Together

Step 109: Delete the instanced half of Aegis Chung. In my case this is the
right side of the body (the character's right).

Why?
Up to now, all the things we've been modeling on his body have been
symmetrical, so working with an instance makes sense. However, from
here on out, most of the details are going to be asymmetrical so it's time
to sew him up to one solid mesh.

Figure 8.88 Boot with sole and added deformations for appropriate bending.

Figure 8.89 Pant details.

Figure 8.90 Aegis Chung in semirough form.

231

Asset Creation: Maya Character Creation

Step 110: Clean up the mirror plane. Select all the vertices that should
be right on the mirror plane and snap them in the middle (you may want
to double-check that Retain Component Spacing is still turned off in the
Move tool settings).
Step 111: Select the mesh in object mode, and choose Polygons>Mesh>
Mirror Geometry Options. Click the –X radio button and check the Merge
With Original check box. Press Mirror.

Why?
If you have the left side of Aegis (his left), the mirrored version would be
in the –X direction (and thus the –X radio button). By clicking the Merge
With Original check box, the mirrored version of Aegis will also merge
up the middle, making it truly one mesh with shared vertices along the
middle of the form.

Step 112: If needed, soften the edges along the middle of the new single
mesh model.

Asymmetrical Details
Now is the chance to make that big leap from tutorial following to asset
building. Figures 8.91, 8.92, and 8.93 show a completed Aegis Chung.
Everything on him was modeled using techniques covered in this chapter
with the guns using a few techniques from the level modeling chapter. All it
takes is time and a bit of sweat equity to get him complete.

Figure 8.91 Aegis Chung.

232

Creating Games with Unity and Maya

Of special note is Figure 8.93. This shows the three weapons: the pistol, rifle,
and knife. Along with the eyes, these three objects are separate meshes.
However, all the rest (including holsters and backpacks) are part of the core
mesh. When all is said and done, there should be six meshes total (Aegis, left
eye, right eye, knife, pistol, and rifle).

Conclusion
And there his is. He's ready to kick some serious butt. OK, well he's ready to try
and sneak into an old cold war submarine facility anyway. In this chapter we
have covered a lot of techniques that provide a mesh that is effective (mine is
14,280 tris) and will deform well when it is time to rig the character. Character
modeling takes a good while, but frankly a good character helps separate the
professional-looking games from the wannabes.

In the next chapter we will take this cold gray character, lay out his UVs, and
create textures that will bring him to life and provide extra depth to his form.

Figure 8.92 Aegis Chung with some
facial hair.

Figure 8.93 Aegis Chung's weaponry.

233

c0045

Creating Games with Unity and Maya
© 2011 by Elsevier Inc. All rights reserved.

Chapter 9

Asset Creation: Maya
Character UV Mapping
and Texturing

Effective UV mapping and texture creation is what helps conceal the low
polycount of characters. In reality, the form created in the last chapter
paints the form with some pretty broad strokes (think of how the ears
were modeled). But with a carefully constructed texture, all these
minimalist polygon collections can have the final appearance of a quite
complex form.

Although the form built in the last chapter is strong, in this chapter we will
add this needed extra detail through a painted texture map that is based from
photographs. But before we paint with photos to create the beautiful texture
maps, it will be important to have a good UV map first.

234

Creating Games with Unity and Maya

UV Mapping
UV mapping characters can be a daunting task. When UV mapping the level,
we were generally working with fairly simple shapes that lent themselves
easily to planar maps and cylindrical maps. The human form really is much
more complex than that at first blush.

Fortunately, there have been some important tools that have emerged in the last
few years that can assist in efficient and quickly created UV maps. Maya actually
has some of my favorite UV editing tools; however applications like Modo have
emerged with some really powerful UV tools that are much more efficient than
Maya's. To make matters even more complicated, there are free tools like RoadKill
(http://www.pullin-shapes.co.uk/page8.htm) that integrate fairly seamlessly with
Maya that allow for some extraordinarily fast UV mapping using all the latest
pelt/LCSM mapping technologies. If you do a lot of UV mapping, or plan to,
learning one of these two tools may be in your best interest.

With all that said, Maya's UV mapping tools have done some catching up in
recent versions, and many of the tools and techniques available in Modo and
Roadkill are available in Maya as well. There are enough available that we will
stick to Maya's tool set for this chapter's tutorials. Many of the techniques
used for UV mapping the human form are similar to those used for mapping
the level, so building upon the toolset you are already familiar with will move
us along quickest.

Tutorial 9.1: Character UV Mapping
In this tutorial we will be doing several things. First, Maya's UV tools are
powerful, but sometimes require some very specifically created polygonal
structure. Before we even start building UV maps, we will take a moment to
make sure that the geometry built in the last chapter does indeed fit into
these Maya-imposed requirements. The requirements actually are good to
keep our eye out for (they are mostly concerned with the problems that arise
from nonfour-sided polygons) since identifying and fixing them at this state
will ultimately save time within Unity.

Mesh Inspection and Cleanup

Step 1: Open Maya and set the project to Incursion–Maya.
Step 2: Open AegisChung.mb.
Step 3: Turn on Backface Culling. In the persp view panel, choose
Shading>Backface Culling (Figure 9.1).

Why?
Figure 9.1 shows the results of the last chapter with backface culling
activated. It appears that the entire body has the normals facing the
wrong way. If you are using the version of Aegis Chung that is included

235

Asset Creation: Maya Character UV Mapping and Texturing

on the support web site (http://www.Creating3dGames.com), much
of this cleanup has been done. But if you are using your own version
there might be a lot of this type of cleanup. In the last chapter where
this was modeled, we could have modeled with backface culling turned
on to begin with, but I often find modeling that way tough to do as
some objects that are modeled may not be seen at all at a certain
angle, so I prefer to model characters with backface culling turned off.
Unfortunately, that preference usually leads to a bit of cleanup later.
Luckily, the cleanup is fast.

Step 4: Fix errant normals. If your model has normals facing the wrong
way, switch to face mode and double-click one of the incorrectly oriented
faces. This will select outward until it hits polys that have normals facing in
another direction. Select Polygons>Normals>Reverse.
Step 5: Double-check one more time that all normals are correct.

Why?
Reversed normals are just a general pain. It's always a major annoyance to
discover a see-through polygon in Unity when you've moved on to other
Unity-specific issues. With a bit of careful inspection, a lot of bothersome
stops in procedure can be prevented.

Step 6: Hunt and destroy five-sided polygons. In object mode, select
AC_AegisChung. Choose Mesh>Cleanup… In the Cleanup Effect section
change the Operation radio button to Select Matching Polygons. In the Fix
by Tesselation section check the Faces With More Than 4 Sides check box.
Click the Apply button (Figure 9.2). This will highlight all the faces with
more than four sides. Use the Split Polygon tool to cut these bad boys into
three- and four-sided polygons.

Figure 9.1 Results of activating
backface culling. Uh oh.

236

Creating Games with Unity and Maya

Why?
This cleanup trick was discovered by one of my students, Giovanni
Sabella, in our Advanced Game class. Giovanni was having problems
getting meshes to work well in Mudbox and discovered that most of the
normals painting applications also had some very specific requirements
for polygon topology because they did so much subdividing. But I've
found this technique to be invaluable when preparing for UV mapping
as well. The UV Unfold tools and UV Smooth tools make shells disappear
if the appropriate topology isn't present. You learn the best stuff from
students—I refer to this in class as the Sabella Step.

Step 7: Repeat steps 4 through 6 on the weapons as well.
Step 8: Delete all history. Edit>Delete All by Type>History.

Why?
The cleanup steps have created bits of history throughout the scene.
To make sure that steps in the future are working with the cleanest
collection of data possible, always delete the history before moving onto
other big steps.

Planning
In the last chapter we took great pains to make sure the model was one single
mesh with the idea that calculations for joint-driven deformations were much
faster with a minimal number of meshes. However, even though it is a single
mesh doesn't mean that the UV map has to be made of one shell. For that matter,
it doesn't even have to be one material (or texture). For instance, if a character
had shiny armor plating part of his body but matte chunks of material on other
parts, different materials could be created and applied on a per-poly basis. Then

Figure 9.2 Using the Cleanup to identify faces with more than four sides. Once these are identified they can be fixed.

237

Asset Creation: Maya Character UV Mapping and Texturing

in Unity the shaders could be constructed to provide that interesting balance of
high specularity and matte surfaces. Of course this comes with a cost, a single
object with multiple materials means more draw calls to draw that single object,
so generally this nice effect has to be weighed against the performance cost.

In this case we will create a texture atlas for all three weapons, but the entire
character mesh (AC_AegisChung) along with his eyes (AC_LeftEye and
AC_RightEye) will use one texture. This means that all the UVs for the
character must reside in the 1,1 quadrant of the UV Texture Editor. But,
because there are obvious changes in what his “real” materials are (he wears
a shirt tucked into a belt attached to his pants, for instance), there are some
obvious places where seams can be allowed.

This should actually come as a great relief. Trying to get a form as complex as
the human one into one seamless (or nearly seamless) UV shell without a lot
of distortion is a very difficult task. With the ability to break the character up
into various shells dictated by the change in fabric on his body brings with it
tons of flexibility. When you build a game with a nude protagonist though,
well, then you've got issues.

Figure 9.3 shows a quick schematic of places where obvious seams would
occur. Although in your own work these zones can usually be identified by a
quick visual glance at the form (no need to create this kind of schematic), this i
mage should show the idea of breaking shells up by the breaks in fabric.

One other note about seams that we will address again later in the tutorial:
an obvious place to plan seams are where there are clothing seams. Clothing

Figure 9.3 Locations for UV shell seams.

238

Creating Games with Unity and Maya

Figure 9.4 Aegis with
Checkerboard.psd assigned.

has seams where strips of fabric are sewed together. Look at most any shirt
and where the sleeves are connected to the bodice section, there is a seam.
Your pants likely have a seam down the inside of the leg and another on the
outside. These clothing seams are perfect places to allow UV seams to occur
and allow for much more easily created distortion-free shells.

New Material
Step 9: Create a new material for Aegis. Right-click-hold on Aegis and
choose Assign New Material from the hotbox menu that comes up.
Create a lambert material in the Assign New Material window. This
should open the new material in the Attributes Editor. Name the material
AC_AegisChung_Mat. In the Color channel import our good friend
Checkerboard.psd (which should still be sitting in the sourceimages
folder of the project). The results will be a tremendous mess (Figure 9.4).

Tips and Tricks
Remember that to see any texture applied to a mesh, 6 must be pressed
on the keyboard while the mouse is in the view panel the texture should
be visible in.

Why?
A mess indeed. A close look at the mesh will show chunks of him without
texture, and other parts with squished checkers and still others with
stretched checkers. For an even better look at the mess, open the UV
Texture Editor (Window>UV Texture Editor) and take a look at that
(Figure 9.5). Basically, the UVs are all over each other. There are UVs that
fill the entire quadrant, and others that may be just a sliver. Either way,
ultimately, the goal is to take this jumbled collection of UVs and unfold
them all into easy-to-see, easy-to-paint shells.

239

Asset Creation: Maya Character UV Mapping and Texturing

Cylindrical Shapes and Projections
We'll start with the arms. UV mapping the arms is really picking some of the
low-hanging fruit. The reason why the arms are fairly easy is that they are
essentially cylinders, which lends themselves quickly to a cylindrical projection.

Step 10: Make a selection similar to Figure 9.6.

Tips and Tricks
Often, when working with checkerboard textures, swapping to a smooth
shade without texture display (press 5 on the keyboard) makes specific
selection of polygons much easier.

Why?
This selection is important because it shows where seams are obviously
going to be (at the seam of the shoulder and at the top of the gloves). But
it also is an important selection for what it does not include (the pouch
up on the outside of the deltoid). This pouch is likely sewn onto the arm

Figure 9.6 Initial selection for UV
Mapping the arms.

Figure 9.5 The UV Texture Editor
before we work our magic.

240

Creating Games with Unity and Maya

sleeve, and thus there would be a seam all the way around where the
pouch attached to the sleeve as well. To minimize distortion on the arm,
this pouch will be mapped separately.

Tips and Tricks
When selecting objects or components in Maya (especially when detailed
selections like this are involved) it's important to remember a few things
about Maya's selection paradigm. First, remember that Maya (by default)
selects through the object. So as a Marquee selection is made around a
collection of polygons, remember it is selecting the polygons on the back
side of the mesh as well. Lots of students don't like this at first, but in the
long run it can be a huge time-saver.

Second, remember that Shift-selecting an object or component will select
the object if it is not selected, but will deselect an object or component
that is already selected. Ctrl-selecting will always deselect, and Shift-Ctrl-
selecting will always add the object or polygons to the selection.

Step 11: Create a cylindrical projection. Select Polygons>Create
UVs>Cylindrical Mapping. A new set of manipulators should appear
similar to Figure 9.7.

Why?
It's important to understand what we're seeing in Figure 9.7. What the
manipulator is displaying is a semicylinder wrapped halfway around the
arm from the front. This means that the texture would be repeated for the
back half (obviously not what we want). Additionally, the default projection
of the cylindrical mapping is straight up and down, but the shape of the
polygons being mapped are not straight up and down. Finally, currently,
there would be two seams (one where the half cylinder starts and another
where it ends), and one of these seams would be running down the outside
of the arm—not a good place for a seam. We need to adjust this.

Figure 9.7 Immediately after a
cylindrical mapping function and the
new manipulator handles that appear
(emphasis added).

241

Asset Creation: Maya Character UV Mapping and Texturing

Tips and Tricks
These manipulator handles are important since they will allow us to refine
the projection to closely match the shape of the polygons being mapped.
Sometimes though, if a click goes awry, the handles can disappear. If this
happens and they disappear, do the following. First, change to object
mode and select the mesh. Next, open the Channel Box and look for a
node (in the INPUTS section) called polyCylProj1 (or some other number).
Select this node, and then choose the Show Manipulator tool (the ninth
tool down in the toolbox (just beneath the Soft Selection tool).

Step 12: Expand the projection so it completely surrounds the arm. Do
this by dragging the red rectangles that are at either end of the line that is
at the cylinder's equator (Figure 9.8). Make sure they touch.

Why?
This is an important step because it makes it so the texture does not
repeat (it was using the texture once for the front of the arm and once for
the back, which meant two seams). Now, the texture will wrap completely
around the arm with no repeating, and leave us with one seam (currently
across the back of the arm).

Figure 9.8 Expanding the coverage of the cylindrical projection.

242

Creating Games with Unity and Maya

Step 13: Rotate the seam to the inside of the arm. The center circle of the
projection manipulator is a handle itself. Click-drag this handle to rotate
the seam (where the two red rectangle handles meet) to the inside of the
arm (Figure 9.9).

Why?
Of constant concern to the artist tasked with UV mapping should be
where to hide the seams. Hiding the seam across the back of a character
might seems like a good idea at first until the game becomes third person
and suddenly all we see is the back of the character. A much smarter
place to hide seams for things like legs and arms are where the seam is
tucked between two surfaces. It turns out that the inside of the arm and
leg also have natural seams since that's where the fabric of shirts and
pants are often sewn together.

Step 14: Rotate the projection to match the rotation of the arm. At the
bottom edge of the projection cylinder is a little red T (Figure 9.10, left).
Clicking this T will reveal a new set of manipulator handles (Figure 9.10,
right) that allows the projection to be moved, scaled, or rotated. Use the
rotation handles to rotate the projection to more closely match the angle
of the collection of polygons being mapped.

Tips and Tricks
Getting back to the first set of manipulation handles can be done by
clicking the little red T again.

Figure 9.9 Rotating the seam to the
inside of the arm.

243

Asset Creation: Maya Character UV Mapping and Texturing

Step 15: Press 6 on the keyboard to see how the checkers are falling into
place (Figure 9.11).

Step 16: Adjust the scale if needed to eliminate most distortions in the checkers.
Step 17: Move this new shell to the side in the UV Texture Editor. Open the
UV Texture Editor and this projection should still have its handles visible
there. Grab the manipulator handles by either the yellow circle in the
middle or the red triangle handle and move this projection (and its shell)
away from the mass of other UVs (Figure 9.12).

Why?
Yes, this shell is much to big—it's taking up the size that the entire form
will eventually take up. That's OK. Right now the shells should be big
enough to easily illustrate the size of the checkerboard pattern so we can
see relative sizes. Later the shells will be scaled and arranged.

Figure 9.10 Rotating cylindrical
projection to match rotation of
the arm.

Figure 9.11 Checkers showing
well-distributed texture.

244

Creating Games with Unity and Maya

Step 18: Use the Smooth UV tool to unfold the new shell. In the UV
Texture Editor right-click-hold and select UV from the hotbox (to tell
Maya you want to deal with UVs now). Marquee select this new shell.
Activate the Smooth UV tool in the top-left corner of the UV Texture Editor
(Figure 9.13). This will show two little buttons at the bottom left corner of
the shell called Unfold and Relax. Drag the Unfold button left and right to
see the shell relax. Be sure to be watching the view panel as well to see the
checker pattern relax into better proportions.

Step 19: Repeat process for the other arm.
Step 20: Repeat this technique for each of the legs (Figure 9.14). Project
one leg at a time and come all the way up to the bottom of the belt
with the selection. Treat the back pockets as though they were sewn-on
pouches. Note that there will be several shells created through this
process. Be sure to use the UV Smooth tool to unfold each individually.

Figure 9.13 Using the UV Smooth
tool to relax a shell.

Figure 9.12 Sequestering the newly
created shell.

245

Asset Creation: Maya Character UV Mapping and Texturing

Tips and Tricks
Inevitably after making a projection you will discover that the
projection didn't cover enough polygons or you ended up grabbing
polys you didn't need. No worries. If a polygon is missing, just make
the selection again and create another mapping. If you grabbed too
many, just move the extras aside and pick them up in further mapping
functions.

Sewing Up Certain Seams
Among the shells are two separate shells for the fly (crotch) area. While
there usually is a seam that runs along the side of the zipper and then down
through the middle of the crotch, getting the zipper flap to look right when
the two shells are separate as they are can be quite difficult.

This can be an issue for the butt area and various other places as UV
mapping occurs. The fly area just provides a quick and easy example of how
projected shells can (and should) be combined to assist in later texture
painting.

Step 21: Find the edges where the fly is split. In the persp view panel,
select a few of the edges along the seam. Take a look in the UV Texture
Editor to find out what these edges are (Figure 9.15).

Figure 9.14 Cylindrical mapping
the legs.

246

Creating Games with Unity and Maya

Step 22: Find matching-sized shells and remove faces that offset the
balance of the new combined crotch. The steps ahead work easiest if there
are no flaps of polygons hanging off of a shell (your particular UV layout
may be different). In the UV Texture Editor, begin selecting down the fly on
either shell until the end is reached of the smaller of the two shells. Select
the edges along the end of that desired shell (where it connects to the
unwanted flap) and choose Polygons>Cut UV Edges. Then, select a UV on
the chunk of the shell to remove, Ctrl-right-click-hold and select To Shell,
and then use the Move tool to move this new shell away (Figure 9.16).

Why?
Remember that the idea here is that mapping the crotch will be much
easier if things like the fly area are one shell. Your particular situation may
vary, but in step 22, we're looking at getting rid of flaps of stuff that will
make combining the crotch and then preparing the shells combine to
finish the crotch.

Figure 9.16 Finding and creating
two shells that will share a common
edge without additional flaps.

Figure 9.15 Tracking down which
edges in 3D are represented in
the UV Texture Editor.

247

Asset Creation: Maya Character UV Mapping and Texturing

Step 23: Sew edges. Still in the UV Texture Editor, select the edges that the
two fly shells share (as you select the edge on one shell it will highlight
selected on the other). Select Polygons>Move and Sew UV Edges. The
not-quite-finished results are shown in Figure 9.17.

Step 24: Use Smooth UV tool's Unfold to relax the new shell.
Step 25: Rotate the shell so that the fly area is straight up and down
(Figure 9.18).

Why?
Rotating the shell is probably not mission critical. However, anytime
there are areas that need to be precise (people will notice if the fly is all
crooked), having it sit straight up and down will make the space easier to
paint within Photoshop.

Pouches, Packs, and Sheaths
Cylindrical projects work for lots of areas of the body (arms and legs as
illustrated are obvious cylindrical shapes). However, in our case there are
other shapes (namely all the pouches on Aegis's pants, his pack, and the
various holster and knife sheaths) that are essentially square.

In the next few steps we will look at how to UV map these sorts of forms.
Much of this is similar to the methodology used to map the level, so we
should be able to move through the steps quite quickly.

Step 26: Select the polygons of a pouch or pocket (Figure 9.19). Which
one doesn't matter, but Figure 9.19 shows one that is mostly a cube in
shape.

Figure 9.17 Sewing edges.

Figure 9.18 New fly region.

248

Creating Games with Unity and Maya

Step 27: Map the pouch. Choose Create UVs>Automatic Mapping
(Options). Make sure the Planes setting is set to 6. Press Project. In the UV
Texture Editor the faces that have just been mapped will be highlighted
in salmon. Before selecting anything else, in the UV Texture Editor right-
click-hold and choose UV. Immediately Marquee select all the faces that
are in that top-right quadrant. At this point, all the other faces will show
up in that space, but if the Move tool is immediately used, the UVs for the
pouch can be moved off to the side (Figure 9.20).

Step 28: Sew it up. Figure 9.21 shows the pouch sewn up. The process
was the same as sewing up the pillar back in the set design: select an
edge on the outside of a shell (which will select an edge elsewhere
on another shell), check in the 3D view if these edges should be sewn
together, then use Polygons>Move and Sew UVs. Repeat until the pouch
is assembled.

Why?
Note that there are two shells here—one is the pouch and the second is
the clasp. Since the clasp is another type of material, it's an easy place to
leave a seam. If this shell were to be sewn onto the larger shell, the results
would be a very distorted shell.

Figure 9.20 Initial projection on
the pouch.

Figure 9.19 Pouch to map.

249

Asset Creation: Maya Character UV Mapping and Texturing

Step 29: Use the Smooth UV tool and Unfold the shell to relax it.
Step 30: Rotate and organize the shells. The big pouch shell will be
rotated to make for easiest texture painting, while the latch will be tucked
in to make use of the texture space (Figure 9.22).

Step 31: Repeat for all other squarish pouches (Figure 9.23).

Tips and Tricks
As the number of shells increase, the number of functions will increase, which
means the number of nodes increases and the file gets heavier and heavier
with history. As I was working toward the previous steps, Maya began to get
really sluggish as it tried to work through all that history for every step. A quick
Edit>Delete All by Type>History cleans up the history and Maya is snappy again.

Figure 9.21 Shells assembled via
Move and Sew UV.

Figure 9.22 Completed pouch.

Figure 9.23 UV-mapped pouches,
holsters, and sheaths—anything that
is square.

250

Creating Games with Unity and Maya

Step 32: Size shells to find constant checkerboard across all mapped
surfaces (Figure 9.24).

Why?
The checkerboard texture does more than just indicate distortion due
to faulty UV map. They help indicate how much of the texture space any
one section is getting. Objects that are smaller in world space generally
should have less texture space. In world space (in the view panel), if the
checkers have the same size across surfaces, Maya is indicating that they
are taking up an appropriate amount of texture space for the physical size
of the polygons.

Chest
The chest is (roughly speaking) another cylinder. This means that the
chest could be mapped with one big cylindrical map. However on closer
inspection, the chest is really more like a flattened cylinder, which means
that a cylindrical map will result in some strange distortion if done by itself.

Often, a better approach to the chest are two cylindrical maps, one from each
direction with some careful adjustment to the scale and placement of the
manipulator.

Step 33: Make a selection of the front of the chest (Figure 9.25).

Figure 9.24 Resized shells to create consistently sized checkers.

Warnings and Pitfalls
A warning about the
previous Tips and Tricks
though. Once history is
deleted, those projection
nodes that allow the
manipulation handles
for a projection to return
are now gone. Since
the UVs are present and
roughly laid out in the
UV Texture Editor, this
isn't that huge a deal
since most UV editing
will be done there and
not with the manipulator
handles at this point. But
be aware that deleting
history limits the nodes
that allow for the handles
to return.

251

Asset Creation: Maya Character UV Mapping and Texturing

Why?
Why not the shoulders or the collar or the undershirt? On my version of
Aegis, the character has some shoulder pad made of a different fabric.
Since this is another fabric, it will be mapped with another more accurate
mapping (a half-cylindrical map using the technique in the following
steps). The collar will be best mapped with one cylindrical map that wraps
entirely around that ring of faces.

Step 34: Create a cylindrical projection (Polygons>Create UVs>Cylindrical
Mapping).
Step 35: Move the projection's center back in Z. Press the red T to
manipulate the center of the projection. This is a little hard to show
in screenshots, so take a close look at Figure 9.26. The persp view
panel shows the results, while the actual movement takes place in
the side-view panel. Using the move handles on the projector (the
cone—specifically the blue cone for Z—it'll turn yellow when selected),
move the projection's center back in Z. This will cause the distortion
particularly visible in the shoulder area to gradually lessen until it is
almost gone.
Step 36: Scale the projection to achieve square checkers
(Figure 9.27).
Step 37: Unfold and move. In the UV Texture Editor, swap to UV mode
and move this new collection of shells off to the side. Use the Smooth
UVs tool and Unfold. Scale the shells so the checkers are the right size in
relationship to the rest of the mapped surfaces.
Step 38: Repeat this step for the back of the chest and for areas like the
shoulder pads (Figure 9.28).

Figure 9.25 First selection in mapping the chest.

252

Creating Games with Unity and Maya

Figure 9.27 Scaling projection.

Figure 9.26 Moving the projection
center to reduce distortion on chest
front projection.

253

Asset Creation: Maya Character UV Mapping and Texturing

Tips and Tricks
Notice that in Figure 9.28, projection has moved around a lot to get into
that place. The manipulator handles can be really tough to see, especially
with a strong texture pattern like the checkerboard. With lots of quick
switches between textured or not (pressing 5 or 6), it can be easier to
see and manipulate the handles, see the results, then back to seeing the
handles.

The Face
Here's where the magic happens. In versions past, Maya required an
incredible mess of projections that were painstakingly stitched together in
an attempt to get a texture to crawl across a face correctly. With the newer
UV technologies emerging in recent years, texturing the face has become
almost . . . fun.

Step 39: Select the polygons of the head and neck (Figure 9.29).

Step 40: Create a planar projection. Select Polygons>Create UVs>Planar
Mapping (Options). For Fit Projection To, click the Bounding Box radio
button. For Project From, click the Z-axis radio button. Click Project.

Figure 9.28 Projection for the shoulder pads (emphasis added).

Figure 9.29 Selecting the faces of the head.

254

Creating Games with Unity and Maya

Why?
Making a quick planar projection ensures that all the polygons of
the head have UVs (remember that this cannot be assumed). By
projecting straight on from the Z-axis and making sure that it fits
the Bounding box of the poly shapes, the most important polygons
(those across the character's face) will have the most accurate
projection from the start.

Step 41: In the UV Texture Editor move this new shell away from the
quadrant and other shells so it can be worked on.
Step 42: Cut the edges across the top and back of the head.
Figure 9.30 shows the edge selection to make in the view panel; it
should start at about the hairline in the front and run clear to the end
of the back of the neck. In the UV Texture Editor select Polygons>Cut
UV Edges.

Why?
We are about to use Maya's handy Smooth UV tool again with its Unfold
options. However, we need to make a slice in the head to give this head a
place to split as it unwraps the form from 3D to 2D.

Step 43: Remove potential problem areas—the oral cavity and nostrils.
Again, the idea here is to cut edges. This time though cut rings of edges.
Figure 9.31 shows two selections. The first is a ring of edges just inside
the lips; the second are two rings just inside the nostrils. Once these two
selections are made in the view panel, go to the UV Texture Editor and
select Polygons>Cut UV Edges. Move the two shells (for the nostrils and
the oral cavity) away (Figure 9.32).

Figure 9.30 Selecting the edges
to cut.

255

Asset Creation: Maya Character UV Mapping and Texturing

Why?
When this head is unfolded, the geometry in the mouth and nostrils
will need to be accounted for. The oral cavity is a really big space, which
means that as Maya attempts to solve for the head, it will cheat the
polygons around the mouth to make room for this big oral cavity. The
same would happen for the nose. Because the oral cavity and nose
will likely be mostly black (or a very dark red/brown), we can map
that separately and leave more texture space for the mouth and nose.
What we're doing here is cutting those parts of the face off into their
own shell so that they aren't included in the Unfold function to come
(Figure 9.32).

Step 44: Unfold the head. In the UV Texture Editor, swap to UV mode
and select the shell that is the head (remember this might be done
easiest by selecting one UV of the head, Ctrl-right-click-hold and
select To Shell). Activate the Smooth UV tool, and drag (to the right)
on the Unfold button. Do this until all movement in the UVs stop. This
may mean that the Unfold button needs to be dragged several times
(Figure 9.33).

Figure 9.31 Three rings of edges (one inside the lips and one for each nostril) that will be cut.

Figure 9.32 The head moved away from the nostril and oral cavity shells.

Warnings and Pitfalls
Unfolding with the UV
Smooth tool is truly one
of the greatest inventions
of all 3D-dom. However
if the geometry isn't
“right”—if there are
any 5-or-more-sided
polygons—when this
tool is used the shell
just disappears. If this
happens, be sure to go
back and look at the
Cleanup process to get
rid of any bad geometry.

256

Creating Games with Unity and Maya

Step 45: Look for overlapping regions of UV. In the UV Texture Editor
toggle the UV-shaded display with the button shown in Figure 9.34. The
dark purple or red areas indicate where UVs are overlapping and thus
sharing texture space (this is bad).

Step 46: Relax. Select the region around one of the overlapping areas.
Don't be too stingy; notice in Figure 9.35 that the selection is two rings of
UV out from the overlapping area. Activate the Smooth UV tool and this
time drag on the Relax button.
Step 47: Repeat for any other overlapping areas.
Step 48: Relax again. This time, select the entire shell. Go to Polygons>Relax
(Options). In Pinning, choose Pin UV Border and in Other Settings
activate World Space. Looking at the view panel and the UV Texture
editor, press the Apply Button once or twice (this may need to be
more or less—be looking to get a good balance of squares shifting to
distribute checkers well, but not so much that they begin stretching
too much around the lips and mouth). The solution for me was two
applies (at Maximum iterations 5 (the default)) and is shown in
Figure 9.36.

Figure 9.34 Tracking down overlapping UV spots.

Figure 9.33 Unfolding the head.

257

Asset Creation: Maya Character UV Mapping and Texturing

Hands
Sigh . . . hands. So beautiful, so complex, and so difficult to UV map. Often
UV mapping the hands is an exercise in compromise. Getting all the digits
unwrapped into a 2D space is just a tough job. The following steps are a quick
compromise to generate a UV map that works very well for game situations
where the hands are rarely the full-screen close-up.

The process will consist of two planar projects followed by some careful
relaxation along the edges of the map.

Step 49: Select the faces along the outside of the hand (Figure 9.37).

Step 50: Apply a planar projection via Polygons>Create UVs>Planar
Mapping (Options). Change the Project From setting to X-axis. Press Project.

Why?
We want to project from the side—thus along the X-axis.

Figure 9.35 Using the Relax part
of the Smooth UV tool to relax out
overlapping regions.

Figure 9.36 Using Polygon>Relax.

258

Creating Games with Unity and Maya

Step 51: Use the manipulator handles to scale the projection down to get
more square checkers (Figure 9.38).

Step 52: In the UV Texture Editor, move the new shell out of the top-right
quadrant.
Step 53: Select the polygons of the hand that weren't involved in the first
planar projection (all the palm and inner forearm).

Tips and Tricks
Sometimes the UV Texture Editor can be a great polygon selection tool.
In the view panel, Marquee around the entire hand (the glove area
extending up the forearm). Then, in the UV Texture Editor, Ctrl-Marquee
around the faces that were just mapped in the previous steps. This will
deselect those polygons in the view panel.

Step 54: Apply another planar projection via Polygons>Create UVs>Planar
Mapping. The settings used for the last projection will work great here too.
Be sure to scale the projection if needed to get those square checkers.
Step 55: Move the new shell out of the quadrant and toggle the shaded
UV display to on (Figure 9.39).

Figure 9.38 Using the manipulator
handles to get better texture
distribution.

Figure 9.37 Selecting the polygons
for the first planar projection.

259

Asset Creation: Maya Character UV Mapping and Texturing

Why?
The planar mapping function was used twice on two sides of the hand.
The projection was coming in from the positive X direction. This meant
that the polygons on the outside of the hand were projected correctly—
the projection hit the outside of the polygons. But the polygons on the
inside of the hand (the palm side) also received their projection from
the positive X direction. This meant that they were hit through the hand
on the inside. The shaded UV display mode allows for the identification
of UVs that are backward since they will show up pink.

Step 56: Flip the pink shell. In the UV Texture Editor, select the pink shell
(the palm) and choose Polygon>Flip (Options). Make sure the Horizontal
and Local radio buttons are checked. Click Apply and Close (Figure 9.40).

Step 57: Marquee select the UVs along the outer edge of each shell and
use the UV Smooth tool's Unfold to unwrap the UVs that might be tucked
behind (Figure 9.41).

Figure 9.39 Two hand projections. With shaded UV display on, it's easy to see that the palm is projected
backward (it's pink).

Figure 9.40 Flipped UV shell.

260

Creating Games with Unity and Maya

Tips and Tricks
Note that Figure 9.41 shows the edge unfolded. Remember that when
selecting the UVs along that outer edge, the UVs could be right on top of each
other. Be sure to Marquee select to select all the UVs along that outer edge.

Step 58: Scale the shells to an appropriate texture space usage so that the
checker sizes match the other shells in the view panel (Figure 9.42).

Finishing Up

Step 59: The rest of the unmapped parts, the boots and the collars, all use
the same techniques used thus far. Apply what you've learned and map
the rest of the form.
Step 60: Organize the shells. Make sure that there are equal-sized
checkers all over the mesh. Then select all the UVs and scale them down
en masse. It is important to scale them all together in order to keep the
relative use of texture space consistent. This makes for an interesting
puzzle—the idea here is to pack the shells in as tightly as possible without
any overlapping UVs; but if one shell gets scaled, they all need to scale.
Figure 9.43 shows my solution to the puzzle. Yours may differ.

Figure 9.41 Unfolding the edges of the shells.

Figure 9.42 Scaled and
completed hands.

261

Asset Creation: Maya Character UV Mapping and Texturing

Why?
A tightly packed set of UVs means that the texture (when applied) is efficient.
A UV map that has a lot of wasted space means that the texture painted on
that map will have a lot of pixels that aren't assigned to any polygons. This
means that the polygons will not have as high a fidelity as they could.

In the old days, UV maps were so tightly packed that there was nary a
gap between shells. In all reality this is not a bad technique although
new hardware today makes large-texture maps possible and thus the
absolutely most efficient map a little less critical. However, use all the
space possible when laying out the map.

In Figure 9.43 there is (admittedly) a fair amount of empty space, although
not too bad. For me, there is a balance of creating a map that is efficient
and making a map that is usable to paint on. There is even a tool in the UV
Texture Editor (Polygons>Layout) that will attempt to organize the shells
into the absolutely most efficient layout. The problem with this is that it
scatters shells all over the place. One part of the shirt is in one corner and
another part is in an entirely different spot. This makes deciphering what
is being painted pretty tough in Photoshop. By doing the layout manually,
body parts can be left together, costume pieces can be left in clusters so
that when it is time to paint it is easy to know what's being painted.

Figure 9.43 UV layout.

262

Creating Games with Unity and Maya

Tips and Tricks
Often you will see another way of working with character UVs that includes
making a separate UV set for the face and head. The idea here is that
the character will use two materials, one for the face (which is the most
important part of most characters) and another for all the body. This often
means that the face gets as much texture as the rest of the body combined.

If the game calls for close-ups of the character, this is indeed a great
way to work. However, for this project, there will be no close-ups, so to
keep the draw calls down there will be only one texture for the whole
character, including the face.

However, to cheat just a bit, the head and face shell in Figure 9.43 is a little
bigger than it should be. Since there is an easy seam between the neck
and the clothes, we can make the head UV shell just a tad larger to use a
bit more of the texture space without throwing off the balance of textures
on the rest of the model.

Step 61: Delete all history. Keep the file clean.
Step 62: Export the UV Map. Select AC_AegisChung in Object Mode.
In the UV Texture Editor select Polygons>UV Snapshot. For now set the
resolution to 2048×2048 and save it as AegisChungUV. This will be the file
used to paint the texture in the next tutorial. Changing the Image Format
to TIFF will often yield more predictable results.

Conclusion

Now on to the fun part. The UV map is laid out, the snapshot is taken, and the
file is available for painting in Photoshop. In the next tutorial we will look at
a few quick techniques for using photos as our source for character texture
painting.

Tutorial 9.2: Character Texture Painting
For the most part, texturing is texturing and the techniques used to texture
the level are similar to those used to texture a character: lay down a base
texture and layer on dirt, seams, and folds. Because of this, we will move
quickly in this tutorial until we get to the area of the face.

The head is really the only skin we see on this character. There are many ways
of attacking the face of a character. Many times students in class with some
good painting skills are able to create really interesting textures from scratch
by painting within Photoshop. Still others will print out the UV map and use
more traditional media (often gouache) to paint a skin texture that they then
scan and work back into the UV map within Photoshop. Often these result in
very stylized textures, which can be really great for the right project.

263

Asset Creation: Maya Character UV Mapping and Texturing

For our project, our textures for the set design were all constructed using real
photographs of real surfaces as the base. The clothes will also be done this same
way, so to keep the texture style consistent the technique used here will also start
with a photo reference. This technique takes a little finesse, but comes together
quite quickly and is easier than the final product would lead you to believe.

Step 1: Prepare the AegisChungUV for painting. In Photoshop, open the file.
In the Channels palette Alt/Command click the Alpha channel (to select it).
Back in the Layers palette, copy and paste the selection to a new layer called
UV Guide. Finally create a new layer and begin placing elements on that layer.

Tips and Tricks
Remember there really is no penalty to a whole lot of layers (assuming
your machine has the RAM to handle it). More layers usually means more
flexibility and quicker selections. Remember to group the layers and label
as they are built.

Step 2: Lay down the base textures for everything but the head. All the
textures shown in Figure 9.44 were retrieved from CGTextures.com. Your
choices may vary.

Step 3: Save the file as a raw version (with all its layers) in the images
folder and another flattened version in the sourceimages. Both files can
be saved in the Photoshop format. Be sure to hide the UV Guide layer
before saving the flattened version. Save the sourceimages version as AC_
AegisChung_Color.psd.

Figure 9.44 Base textures for all
Aegis Chung surfaces but the head.

264

Creating Games with Unity and Maya

Step 4: In Maya, replace the checkerboard texture for the material AC_
AegisChung_Mat with AC_AegisChung_Color.psd.

Ambient Occlusion Pass

In Unity we have used ambient occlusion to help better define corners. In
Maya, this same trick can be used to help give depth to flat textures. In the
next few steps, we will bake some AO and then implement that into the
texture as it currently stands. The results will be a texture that highlights the
geometry of the form.

Step 5: In Maya, save AegisChung (assuming that is the file that is open).

Why?
We are about to do some things to this model that we want the output of,
but don't want the changes Maya will inflict on the model in the process.
It will be important to be able to get back to the prebake state since all
we want is the texture Maya will output.

Step 6: Create a new surface shader. Open the Hypershade. Select
Create>Materials>Surface Shader. A new swatch representing this new
material should appear in the Materials section.
Step 7: Create an ambient occlusion texture node. Select Create>mental
ray Textures>mib_amb_occlusion. This will create a new node under the
Texture tab.
Step 8: Bring both nodes into the Work Area to connect (if they aren't
there already). Under the Materials tab, middle-mouse drag sufaceShader1
into the work area. Then under the Textures tab, middle-mouse drag the
mib_amb_occlusion1 into the work areas as well. Ctrl-middle-mouse drag
from the output of mib_amb_occlusion1 to the input of surfaceShader1
(Figure 9.45).

Why?
Ctrl-middle-mouse-drag is a pretty complicated (but ever so Maya-esque)
way of working. What is happening here is that the ambient occlusion is
being defined as the color controller of the surface shader. This trick can

Figure 9.45 Connecting the ambient occlusion node to the color input of the surface shader.

265

Asset Creation: Maya Character UV Mapping and Texturing

work for other materials as well and can allow for assembling of materials
in the Hypershade rather than via the Attributes Editor as we have been
doing in the past.

Step 9: Adjust the mib_amb_occlusion node. In the Hypershade, double-
click the mib_amb_occlusion1 node. This will open its attributes in the
Attribute Editor. Change the samples to 256 (the rest of the settings
should be fine).

Why?
A low sample rate will render quickly but will be very grainy. In some
cases this may be the desired effect, but not in this one. By turning up the
sample rate, the AO will be smoother and more refined.

Step 10: Change the render settings to render with Mental Ray. Go to
Window>Rendering Editors>Render Settings. Change the Render Using
drop-down to mental ray. Click the Quality tab and change the Quality
Presets to Production.

Why?
The ambient occlusion node we are using is a mental ray only node.

Step 11: Apply the surface shader to AegisChung. You can do this by
middle-mouse-dragging the surface shader from the Hypershade onto the
geometry in the view panel. Or, in the view panel, right-click-hold Aegis and
select Assign Existing Material>surfaceshader1 from the hotbox menu.
Step 12: Render (Figure 9.46).

Figure 9.46 Render with a surface
shader using AO.

266

Creating Games with Unity and Maya

Why?
He looks kind of ghostly. That's OK. The part that we are interested in is
the dark parts—see how the dark parts are the crevices and corners? This
is the desired effect as it will help define those edges.

Step 13: Bake the AO pass to an image file. In object mode, select
Aegis. Go to Rendering>Lighting/Shading/Batch Bake(mental ray)
(options). Change Objects To Bake, to Selected; Bake To, to Texture; Bake
Optimization, to Single object. Check the Use Bake Set Override check
box, which will activate a slew of options below that. The important ones
are Color mode: Occlusion; Occlusion rays: 256; X resolution = 2048;
Y resolution = 2048. Press Convert and Close (Figure 9.47).

Why?
Most of the settings here should be reasonably self-explanatory. Do note
that we are baking at 2048 because the texture file we are currently building
from is at 2048 so this image will drop right on top of the current painting.

Figure 9.47 Lots of settings to
tweak. All provided here.

267

Asset Creation: Maya Character UV Mapping and Texturing

Step 14: Take a break. Baking this AO pass with high-quality render
settings and our high number of Occlusion rays will take a while. When
the process is done, the view panel will look something like Figure 9.48.

Step 15: Close Maya—DO NOT SAVE.
Step 16: Open Maya and open AegisChung.mb. He should look like he did
before baking.
Step 17: Open the baked AO texture in Photoshop (Figure 9.49). The
results of the baking process in Maya will also yield an image. This
image can be found in your project file (Incursion-Maya\renderData\
mentalray\lightmap). It will have some crazy name like bakedAO-
surfaceShader1SG-AC_AegisChung. Open this image in Photoshop.
Step 18: Copy and paste this image into the AegisChung raw version of
the texture. You can do this quickly by selecting all, Edit>Copy, then in the
AegisChung raw texture Edit>Paste (it will automatically create a new layer).
Step 19: Make sure this layer is the topmost layer (except for the UV Guide
layer).
Step 20: Change the Blend Mode to Multiply for this AO layer. Do this
either in the Layers palette, or double-click the image and change
the Blend Mode in the Layer Style window. The results can be seen in
Figure 9.50.

Tips and Tricks
Note that a blend mode of Overlay will reveal a similar result but be a bit
lighter. This is largely a matter of taste and can change based upon the
project. Give both a look to decide which you like better.

Step 21: Save a new version of AC_AegisChung_Color.psd. Be sure the UV
Guide layer is shut off. Remember to not save it with Layers and remember
to save it in the sourceimages folder. Back in Maya, select AC_AegisChung.

Figure 9.48 Results of AO baking
in Maya.

268

Creating Games with Unity and Maya

Figure 9.50 Results of multiply
blend mode of the AO layer.

Figure 9.49 Results of AO baking in
Photoshop.

269

Asset Creation: Maya Character UV Mapping and Texturing

In the Attributes editor go to the AC_AegisChung_Mat tab, click the Output/
Input button in the Color channel and click the Reload button under the
Image Name input field to get Maya to take another look at the texture
(Figure 9.51).

Face and Head

So why the head now? Why not do the head before the AO pass? Well, that's
a good question, and you may choose to actually use the AO pass across the
head at the end. Generally there are some seam issues that surround AO passes.
Seams are especially problematic on the head, so I prefer to paint the face at the
last and place it over the top of the AO pass. It helps to keep the seams clean.

A quick note about resources. Taking your own photos for skin textures is a great
way to work, especially if there is a readily available model since he can always be
rephotographed for needed imagery. However, this isn't always feasible.

Just as CGTextures is my favorite source for nonorganic texture resources, 3D.sk
is my favorite human resource site. Take a look at http://www.3d.sk to find a
fantastic treasure trove of photographs taken especially for artists and game
designers of all sorts of different body types and poses. 3D.sk is a great resource
for the modeling process and especially potent for the texture process.

Figure 9.52 shows a quick visual sampling of the kind of resource available on
the site. Extensive studies of all parts of the body are available for download and

Figure 9.51 Final Maya results of AO pass.

270

Creating Games with Unity and Maya

use in your scenes. 3D.sk isn't free, it is a subscription service, but is well worth it.
Even if you subscribe for a month for each character created, it is well worth it.

3D.sk has graciously agreed to allow a sampling of their images to be included
on the supporting web site (http://www.Creating3dGames.com) for this book
for use in the tutorial.

Step 22: Either grab the face textures package off the supporting web
site, or go to 3d.sk and download a collection of images that provide a
good front, side, and top image of the source texture.

Why?
Remember there is no need to find a subject that looks like your character
(we are about to really change the shape of the image); but do look for
skin tones and history (scars, etc.) that will help communicate who your
character is and where he is from.

Step 23: In Photoshop, copy and paste the front view into the raw
AegisChung texture (Figure 9.53).
Step 24: Use Liquefy for a quick pass of adjusting. Choose Filter>Liquefy.
Move the pixels for the eyes, nose, and mouth (although we will give
considerable attention to the mouth later), to more approximate the
polygons they are to represent (Figure 9.54).

Tips and Tricks
Using the Liquefy tool is a lot of fun. The trick is to be sure to use varying
sizes of brushes to avoid really noticeable smearing, and use Show
Backdrop (bottom-right corner) to dial in the UV guides to make sure you
are liquefying into the proper place.

Figure 9.52 Sampling of the types
of image available at 3d.sk and the
images we will be using for this
tutorial.

271

Asset Creation: Maya Character UV Mapping and Texturing

Step 25: Copy and paste a side view into the raw texture (Figure 9.55).
Step 26: Apply a layer mask and using a soft-edged brush paint out the
seam (Figure 9.56).
Step 27: Repeat for the other side of the face (Figure 9.57).

Tips and Tricks
Notice that at this point there are no ears or beard and the mouth is
clearly problematic. No worries. We'll get back to that, and at this point it
is preferable to not worry about those parts.

Step 28: Check progress in Maya. Again, hide the UV Guide and save a
flattened version to the sourceimages folder. Reload in Maya and see how
it's going (Figure 9.58).
Step 29: Back in Photoshop paste in details like the ears. Again, make sure to
use layer masks (nondestructive) to mask out parts not needed (Figure 9.59).
Step 30: Finish up. The process is the same. Copy and paste source
information in; be sure to carefully use layer mask to make it impossible
to see where one patchwork of imagery begins and the next one ends
(Figures 9.60 and 9.61).

Figure 9.53 Imported front view.

Figure 9.54 Liquefy to get rough
pass of appropriate pixel placement.

272

Creating Games with Unity and Maya

Figure 9.55 Pasting in a side view.

Figure 9.56 Using layer masks to
remove the seam.

Figure 9.57 First pass.

273

Asset Creation: Maya Character UV Mapping and Texturing

Conclusion
There is Aegis Chung textured. OK, so the guns still need to be textured
(consider that homework), but the shapes of the weapons are fairly simple
(cylinders and long planes or cubes), meaning that the UV mapping and
texturing should go quickly.

Aegis suddenly has life. A bit of texture makes a huge difference in how a
character breathes. In this chapter we looked at the sometimes complicated
process of UV mapping for organic forms, and then the photo-based process
of painting textures.

If he looks alive now, wait until the next chapter. In the chapter after this we
will look at a quick sample rig for Aegis so that he can move. Then he will be
imported into the scene within Unity and the basic visual building blocks of
a scene (character and set) will be complete and we can start building the
scripting and interactivity.

Figure 9.59 Added ears.

Figure 9.58 Checking progress. Not
bad, but tweaks need to be made and
attributes need to be added.

274

Creating Games with Unity and Maya

Figure 9.61 Applied texture.

Figure 9.60 Finished texture.

275
Creating Games with Unity and Maya
© 2011 by Elsevier Inc. All rights reserved.

Chapter 10

Asset Creation: Maya
Rigging and Skinning
and Unity Animated
Character Importing and
Implementation

Character creation is fun. Hard, but fun. Undoubtedly in the previous chapters
you've seen how exciting (but challenging) it is to see a character come together
and come alive with appropriate UV mapping and carefully constructed textures.
Of course, up to now, all we have is a nicely painted mannequin that, though
interesting to look at, is still, well . . . dead.

In this chapter this will change. It's time to get this character ready to come
alive. The process of bringing a textured character to life is fun but can be a
little bit tricky. However, with a bit of care, there is nothing quite like a lifelike
character moving in a scene to help immerse a player into the game.

276

Creating Games with Unity and Maya

The Process
The process of getting a lifelike character into a game goes like this:

1. Clean up completed textured models.
2. Create a rig. A rig is a collection of joints that can deform the polygons of

a model. This rig can vary greatly in its complexity and flexibility and will
depend on how much animation is actually needed for a given character.

3. Skin the rig to the model. Skinning is the process of attaching the rig of
joints to the polygons they will affect. Maya 2011 has some new skinning
tools that help make this process faster.

4. Animate the rig. Animating the rig means rotating (mostly) and moving
the joints and setting keyframes to record that motion over time. As the
joints rotate or move, the polygons attached to them will move and viola!
the character looks alive.

5. Bake the animation. Baking an animation is the process of simplifying
animation of joints down to the simplest translation or rotation keyframes.
This means that more-complex (but powerful) tools like IK (inverse
kinematics) are baked out of the animated output; thus the baked
version isn't particularly editable, but the results in Unity are much more
predictable.

6. Export the baked animated character (as an .fbx).
7. Import the .fbx into Unity.
8. Divide the animations.
9. Call them up either via Play Automatically or via script.

I know. That looks like a lot at first blush; but it's actually very manageable in
these sorts of short discreet steps. In this chapter we will be going through
a simplified version of this entire process. The rig will be fairly simple but will
allow us to create some animation quickly.

Since the game is a first-person shooter, we won't see the character very
much. This would be very different for a third-person situation. However,
knowing how to work with characters is an important part of Unity's game-
creation capabilities, so we will make a small mini-level that shows what “you”
(Aegis Chung) look like before he, er . . . you, undertake your mission.

Tutorial 10.1: Rigging
Cleanup

In the process of creating and texturing the character, there undoubtedly was
quite a bit of Maya construction history that was built up. Each projection and
every tweak generated a new node, which can be very helpful to be able to
access while working, but at the end of the process represent a huge amount
of extra data that we no longer need. Of further concern with these nodes is
that the .fbx export doesn't always do well with the nodes and some strange
output files can be the result.

277

Rigging, Skinning & Animation

Cleaning a file frequently is always a good idea. However, before rigging and
skinning it is especially important to provide Maya with a simple mesh that is
just polygons and texture without any of the heavy overhead that the extra
nodes bring with them.

Remember that the point of all these Maya exercises is to get the assets into
Unity. We have already seen some of the strange things that happen with
scaling. Scaling a rigged character is certainly possible, but things go much
easier if the meshes are scaled and positioned correctly within Maya's space
before rigging and skinning. It keeps the Maya-centric process cleaner, and
makes for more reliable translation from Maya to Unity.

Step 1: Open the latest version of Aegis Chung in Maya.
Step 2: Delete all history. Edit>Delete All by Type> History.
Step 3: Name the body mesh AC_AegisChung. Name the weapons
AC_Rifle, AC_Pistol, AC_Knife, respectively. Name the eyes
AC_LeftEye and AC_RightEye.

Why?
AC (of course) stands for Aegis Chung. Giving objects names that help to
group them together has all sorts of benefits further down the road in
Unity including the ability to quickly search for all assets dealing with the
character by searching for AC within Unity.

Step 4: Select all the meshes and press Ctrl-G (Command-G on a Mac) to
group them together.

Why?
We need to resize Aegis before moving on. By resizing the group, all the
parts will remain correctly scaled in relationship to each other since they
will all scale around the group's center. This is different than selecting all
the objects and scaling; this will scale them according to each object's
center, and all the meshes will separate from each other.

Step 5: Create a new cylinder to use as size reference. Create>Polygon
Primitives>Cylinder. Select the Cylinder, and then in the Channels Box,
click polyCylinder1 in the INPUTS section. Change the Radius to 0.25 and
the Height to 2 (Figure 10.1). Move the cylinder up so that it's sitting on
the “ground” or Y = 0 plane.

Why?
Back when we were modeling the scene, we discussed briefly that one
unit in Maya roughly equaled one unit in Unity. In Unity, we know that
the First Person Controller is 2 units tall (about 2 meters). If we can get
Aegis scaled correctly in Maya it will save a lot of tweaking time when he's
brought into Unity.

278

Creating Games with Unity and Maya

Step 6: Scale the Aegis group to visually match the cylinder. Be sure to
select the group (probably best done in the Outliner). Use the Scale tool to
scale the group down. Note that scaling him will undoubtedly also force
the need to move him (Figure 10.2). Be sure he is moved so his feet sit on
the “floor” or the grid at Y = 0. Also make sure to center him so the center
of his body is at Z = 0, so that when joints are placed from the front view,
they will be in the center of his body.

Step 7: Ungroup and delete unused objects. Do this in the Outliner by
expanding the group that contains Aegis and all his gear (and eyes). Select
all the meshes and either middle-drag them out of the group or press
Shift-P (as in capital P) to unparent them from the group. Delete the group
and the cylinder.
Step 8: Clean transformations. Select AC_AegisChung, AC_LeftEye, and
AC_RightEye, and select Modify>Freeze Transformations.

Figure 10.1 Reference
cylinder created.

Figure 10.2 Correctly scaled Aegis.

279

Rigging, Skinning & Animation

Why?
With all that scaling and moving, the values in the Channels Box are likely
a mess. Before we get going on any rigging, having all this cleaned up will
make for a cleaner data set. Freezing transformations resets the Translate
and Rotate values to 0 and the Scale values to 1.

Step 9: Clean transformations for weapons. Select AC_Pistol, AC_Rifle, and
AC_Knife. Choose Modify>Freeze Transformations (Options). In the Freeze
Transformations Options window, turn off the Rotate and press Freeze
Transform.

Why?
In modeling and placing the guns, you undoubtedly rotated them into
their place on Aegis. If we freeze the transformation on the rotation
for the weapons, their rotation values will return to 0,0,0. This makes
getting the weapons back to point straight ahead very difficult to do.
By not resetting their rotation values we know that a rotation of 0 (in X,
Y, and/or Z) will likely return the weapon to an upright or flat position.
It's also important that this relative rotation is maintained since it means
the rotation handles would be aligned with the gun. So, we don't want
to freeze the rotation transformation, but all the rest of the transform
information (Translate and Scale) we do.

Step 10: Save a copy of this file for future use. Choose File>Save As… and
save the file as AegisChung-Separate.mb.

Why?
This version of Aegis has the guns, knife, and eyeballs separate. In other
versions of this game, having these parts separate could be important.
For instance, if you were building a third-person game where we could
see the character throughout the game we would need Aegis to be
able to take his guns out of their various holsters and use them. In our
version of the game the player will only see Aegis' arms and the transition
from guns will happen off camera. This means that later we will want
a version of Aegis that essentially is just arms with a much simpler rig
setup. However, having an intact but clean version of the model is an
important place to be able to go back to for stripped down assets or if the
requirements of the game change.

Step 11: Combine all the meshes together. Do this by selecting
everything (both eyes, all the weapons, and Aegis himself) and choose
Polygons>Mesh>Combine.
Step 12: Delete all history (Edit>Delete All by Type>History). You should
be left with one single polymesh in the Outliner.
Step 13: Name the mesh AC_AegisChung_SM (in the Outliner). Save the
file as AegisChung-SingleMesh (File>Save As…).

280

Creating Games with Unity and Maya

Why?
Making Aegis a single mesh in this situation has several benefits. First,
the plan is to have Aegis simply in an idle animation as an introductory
level for the game. The animation will be simple and he won't be holding
any of his weapons. By reducing Aegis from six meshes to one we are
reducing the number of draw calls required to draw him in this animation
because Unity only has to draw one object (although this object has
several materials on it) instead of six. Further, joint deformation within
Unity is a fairly expensive process. Every mesh that needs to be deformed
costs processor cycles. So while we could skin all six objects to the same
single joint structure, we will further optimize playback by having only
one object deformed by that joint structure. Plus, the actual skinning
process will be easier working with this single mesh.

Finally, saving as a different file name keeps the old version where Aegis is
separated into his component parts.

Joints and Rigging

Generally, students intuitively think of placing bones in a character, and then
the idea is moving the bones moves the character; in this paradigm, joints are
just where the bones happen to meet. Joints are a little bit different way to
think of moving a character. Maya makes the joints the important part and the
bones simply visually connect these joints.

At its core, a joint is a deformation object, which means it can be used to deform
another object, or more importantly, parts (including polygons) of another object.
The work flow is reasonably intuitive: first, these joints are created and placed
within the polygon mesh. Then, after these joints are bound to the mesh, when
they rotate, the polygons that are skinned to those joints rotate with it.

There are a few things to remember about working with Maya's joints that
will make working with them smoother. First, every bone has a joint at its start
and end. This means that there will be joints at places that may seem a bit
strange, like the tips of the fingers and top of the head. Second, when placing
joints, as long as you are still in the Joint tool, each joint will automatically
orient to point to the next-placed joint. This is good in some cases but
problematic in others. Third, we want to make sure we're working smarter, not
harder. This means we will only be creating one half of the skeleton and then
have Maya figure out the other half. But to make this happen smoothly, we
need to place joints in specific view panels; some will need to be placed in the
side-view panel, others specifically in the front. Although joints can be moved
and reoriented, if we simply place them in the right-view panel, some things
(like being placed on the mirror plane) will automatically happen.

Step 14: Switch to a four-view setup. Do this by either pressing the space
bar quickly (Figure 10.3) or, if you have other nested windows, by choosing
the four-panel preset from the view panel presets beneath the Toolbox
(on the left side of the interface).

281

Rigging, Skinning & Animation

Step 15: In the top-side- and front-view panels activate X-Ray (Shading>-
X-Ray). Be sure to be viewing as either Smooth Shade (press 5 on the
keyboard) or Smooth Shade with Textures (press 6 on the keyboard).

Root Joint

Step 16: Place the Root joint. Activate the Joint tool (Animation>
Skeleton>Joint Tool), and in the side-view panel click once about
halfway between the navel and bottom of the crotch. A really big joint
(Figure 10.4) will appear. Press Enter to exit the tool.

Why?
Several why's here. First, the Root joint is going to be the one joint to rule
them all. This joint is going to be the parent-most joint of all the joints in
the skeleton. It will be important that it is sitting in the middle of Aegis
because this will be the mirror point. By placing the joint from the side-
view panel, we know that the X Position value of the joint is 0.

Second, we exited the tool right after placing the joint. Part of the reason for
this is that we need to change the size of the joints, but also, it's important

Figure 10.3 Setting up the interface
for effective joint placement.

Figure 10.4 Initial placement of
Root joint. Yep, way too big.

282

Creating Games with Unity and Maya

that this Root joint is rotated at 0,0,0 (when animating, it's much easier to
make sure the character is standing straight up if we can just zero out the
rotation values of the joint in the Channels box). If we were to have clicked
again with the Joint tool, another joint would have been created that is the
child of the Root, and the Root would have turned to point at this new joint.

Step 17: Resize the size of the joints. Go to Windows>Settings/
Preferences>Preferences. Look or the Display section and select the
Kinematics section beneath that. Change the Joint Size setting to 0.1.
The one joint in the view panel should downsize. Click Save (Figure 10.5).
Step 18: In the Outliner, rename joint1 to AC_Root.

Why?
Naming matters. Taking the time to name joints not only saves time when
it finally comes time to mirror the skeleton, but becomes vital when it
comes time to animate.

Leg Joints

Step 19: Create the leg joints. Activate the Joint tool again and in the
side-view panel create five joints to represent the hip, knee, ankle, ball, and
toe joints. If you haven't used the Joint tool to create joint chains before,
just click where a joint should be placed and then click where the next joint
is to be placed. Maya will connect the joints with a bone and automatically
make each joint a child of the joint preceding it (Figure 10.6). Be sure to
press Enter when the toe joint is placed to exit the tool.

Tips and Tricks
After joints have been placed and the Joint tool has been exited, the joints
can still be moved and adjusted with the Move tool. However, at this point,
do not rotate the joints, just move them. When joints are placed and they
orient to the next joint, their rotation values remain at 0,0,0, which is very
handy later when we animate (we can get the character back to a neutral
pose quickly); but if the joints are rotated in placement, this gets messed up.

Step 20: In the Outliner rename these joints AC_L_Hip, AC_L_Knee,
AC_L_Ankle, AC_L_Ball, AC_L_Toe.

Figure 10.5 Adjusting the size of
drawn joints.

283

Rigging, Skinning & Animation

Tips and Tricks
Make sure to get that “L” in there and make sure it is capitalized. Later
when we mirror one half of the skeleton, if we have carefully named
things, the mirrored side will be appropriately renamed for us.

Step 21: In the front-view panel, move the leg chain of joints so they are
in the leg (Figure 10.7). To do this you only need to move AC_L_Hip and

Figure 10.6 Placing the joints for
the leg. This represents hip, knee,
ankle, ball, and toe.

Warnings and Pitfalls
Be very sure that the
joints are not built in
a straight line (as in
the knee joint directly
beneath the hip joint).
We are going to animate
the character's legs
using something called
IK (Inverse Kinematics)
and the calculations are
made much easier if the
joints that are to be bent
already have a bend to
them (so Maya knows
which direction to bend
them).

Also note that the hip,
knee, and ankle joints
are in the middle of the
leg (where these joints
really exist in a person's
anatomy), but the ball
and toe joints are on
the ground, which
represents the axis that
the polygons assigned to
these joints should rotate
around.

Figure 10.7 Moving leg joints into appropriate place.

284

Creating Games with Unity and Maya

the children joints will go with it. Be sure to only move using the X handle
(red cone) to maintain the positioning in Y and Z.

Why?
By building the leg joints in the side view, we were sure that they
were straight up and down when looking at the character from the
front (this also makes the future IK calculations cleaner). However,
creating the joints from the side also ensured that the joints were
along the X-axis. Moving them over is a pretty quick and painless
process though.

Leg IK Chain
Kinematics refers to the movement of objects or groups of objects. In
animation terms there are two types of kinematics that are used. The first is
forward kinematics (FK), which is the process of animating a chain of joints
by rotating a parent joint, then rotating the next joint down the hierarchy,
then the next, and so on. The benefit of FK animation is that it moves body
parts in nice arches (which is how real anatomy tends to move). However, it
can sure be a slow process having to rotate each joint separately. Still, for the
upper body, FK (because of its nice arches) is a great way to animate.

The second method is inverse kinematics (IK). IK works by moving a child
joint (note, moving as in translating, not rotating) and the joints above it
rotating to accommodate that movement. Using IK, you could move the foot
and the hip and knee would rotate to allow the foot to get there (as opposed
to manually rotating the hip, then the knee, then the ankle to get the pose
desired). This can speed up the animation process considerably.

Of further power to the IK system is the ability to have sticky IK. Sticky IK
actually has a fairly intuitive, although goofy, name. What it does is allows for
the end of an IK chain to stick to a location. So when a foot at the end of an IK
chain is set on the ground, it doesn't move even if joints above it do. This means
that moving the hips up and down will automatically bend the knees, and that a
character can walk with feet that plant on the ground without sliding.

For Aegis, we will set up IK for the legs.

Step 22: Create the leg IK chain. Select Animation>Skeleton>IK Handle Tool.
In the side-view panel click first on the hip joint (AC_L_Hip) and then a second
time on the ankle joint (AC_L_Ankle). The results should show a line between
the hip and ankle and a very large IK handle at the ankle (Figure 10.8). Note
that there is also a new object in the Outliner called ikHandle1.

Why?
Why just to the ankle? Why not to the toe? IK chains can be powerful, but
can be tough to control if there are too many joints along the chain. Maya
can have a hard time deciding how much to bend the joints along the
chain to solve for the IK or get to the location of the IK handle. By going

285

Rigging, Skinning & Animation

from the hip to ankle we are working with a simple three-joint chain that
Maya can easily solve for. Try testing it by using the Move tool to select
the IK handle and move it around. The knee and hip will rotate to allow
for the motion to happen. Notice that the problem here is that the foot is
also rotating, which isn't a problem when the foot is just being picked up,
but will be a problem when we need control over how that ankle bends
(like walking). We'll take care of the foot rotation via another IK chain in
the coming steps. Be sure to undo any moves you make in this test so the
leg gets back into position.

Step 23: In the Outliner, rename ikHandle1 to AC_L_AnkleIK.
Step 24: Create a second IK chain from the ankle to the ball. Again, select
the IK Handle tool and in the side-view panel click once on the ankle
joint (AC_L_Ankle) and a second time on the ball (AC_L_Ball). The results
should look something like Figure 10.9.

Figure 10.8 Creating a leg IK chain.

Figure 10.9 Creating the second
foot-controlling IK chain.

286

Creating Games with Unity and Maya

Step 25: In the Outliner, rename the new IK handle to AC_L_BallIK.
Step 26: Create one more IK chain from the ball to the toe. Select IK
Handle Tool and in the side-view panel, click once on the ball and a
second time on the toe (Figure 10.10).

Why?
There are a lot of philosophies on foot rigs. This rig is one of the
most basic but provides a great deal of direct control. There is still
some organizing to do, but when all is done, the feet will have some
great flexibility in movement that will allow for foot and even toe
movement.

Step 27: Rename the ikHandle to AC_L_ToeIK.
Step 28: Resize IK Handles. Go to Windows>Settings/Preferences>Preferences.
Again, look for the Display section and choose the Kinematics section
from the menu on the left. Change the IK Handle Size setting to 0.1.
The IK handles will size down to something more manageable in the view
panels.
Step 29: Turn on Stickiness for all three IK handles. To do this select
one of the handles in the Outliner. Press Ctrl-A to bring up the
Attribute Editor and look for the IK Handle Attributes area. Expand this
and change the Stickiness setting to sticky. Be sure to do this for all
three handles.

Mirroring the Legs
After the IK handles have been created and named, the leg is done (except for
the handles we will create to control it). That makes this a great time to mirror
the joint chain and automatically create the other leg.

Step 30: Make AC_L_Hip a child of AC_Root. Do this in the Outliner by
middle-mouse-dragging AC_L_Hip onto AC_Root. After expanding the
chain, it should look like Figure 10.11.

Figure 10.10 Last IK chain from
ball to toe.

287

Rigging, Skinning & Animation

Why?
Notice that once this happens in the Outliner, a new bone becomes
visible in the view panel connecting the Root to the Hip. This connection
is important and when we mirror we want this connection (that shows
which joints are children of which) on the other side as well. So setting up
this connection now is important.

Step 31: Mirror the leg. Select the AC_L_Hip (easiest to do in the Outliner).
Choose Animation>Skeleton>Mirror Joint (Options). In Mirror Across
check the YZ radio button and then in the Search for: enter L_ and Replace
with: enter R_. Press Mirror (Figure 10.12).

Why?
“Mirror across” is asking which plane to use as the mirror plane. If
the character is facing forward (looking toward positive Z), YZ is the
appropriate plane. The Replacement Names For Duplicated Joints just
goes through all the joints and looks for L_ and replaces it with R_.
This means that the left versions (designated by L_) are all renamed to
right versions (called R_); this includes the associated IK handles. Cool, no?

Figure 10.11 Appropriate hierarchy to this point.

Figure 10.12 Mirror Joint settings.

288

Creating Games with Unity and Maya

Creating a Handle for IK

Step 32: Create a NURBS circle (Create>NURBS Primitives>Circle). If
Interactive Creation is turned on, draw the circle on the ground near the
foot (Figure 10.13). The absolute size is unimportant.
Step 33: Center circle on ball. Choose the Move tool and snap the circle to
the ball joint by holding down the V key as you move it (Figure 10.14).

Tips and Tricks
As the screenshot shows, doing this in Wireframe (press 4 on the
keyboard) makes it easier to know that it is indeed the ball that the circle
is being snapped to.

Step 34: Adjust the shape of the circle. Right-click and hold on the circle
and choose Control Vertex from the hotbox selector. Use the Move tool
(but only along the X- and Z-axes) to adjust the shape of the circle to be
more indicative of a foot (Figure 10.15).

Tips and Tricks
Remember that when in the Move tool, Ctrl-clicking a directional handle
(like the Y (green cone)) will deactivate the ability to move an object/
component in that direction. You may wish to do this to the Y-axis handle
because it is important that all these vertices remain on the “floor.” All the
handles can be reactivated by Ctrl-clicking on the center yellow box.

Step 35: Swap back to Object Mode by right-click-hold on the circle and
choosing Object Mode.

Figure 10.14 Centering circle on the ball joint.

Figure 10.15 Reshaping circle for a good handle.

Figure 10.13 Creating the beginning of a handle (note
the right leg joints are hidden here for clarity's sake).

289

Rigging, Skinning & Animation

Step 36: Rename the circle to AC_L_Foot in the Outliner.
Step 37: Freeze AC_L_Foot's transformations. Still with AC_L_Foot
selected, choose Modify>Freeze Transformations (Options). Make sure
Translate, Rotate, and Scale are all checked and press Freeze Transform.

Why?
If the circles transform values for Translate and Rotate are at 0,0,0 you can
always return the circle to this exact spot by zeroing out the values in the
Channels Box. Freezing the transformations gives you clean values.

Step 38: Duplicate AC_L_Foot and rename to AC_R_Foot. Remember
Ctrl-D will duplicate an object.
Step 39: Snap AC_R_Foot to the right ball joint. Remember holding down
V will snap to joints (and vertices by the way). Figure 10.16 shows the
current state of things.

Step 40: Mirror the AC_R_Foot handle in the Channel box. Change the
Scale X setting to –1.

Why?
As an object is scaled down (or in this case as it is scaled in X (getting
thinner and thinner), its scale value gets closer and closer to zero. If
the object continues to scale down beyond zero, it begins growing out
the opposite direction. Thus, a Scale X of –1 is the mirrored version of a
Scale X of 1.

Step 41: Freeze the transformations for AC_R_Foot (Modify>Freeze
Transformations).
Step 42: Make the IK handles children of their respective handles. This
means in the Outliner, select AC_L_AnkleIK, AC_L_BallIK, and AC_L_ToeIK
and middle-mouse drag them onto AC_L_Foot (which will make the
IK handles children of the AC_L_Foot). Do the same for their right-side
counterparts.
Step 43: Test the rig. Select the AC_L_Foot curve and use the Move tool
to move it. The leg rig should bend up in natural ways. By rotating AC_L_
Foot, you can rotate the foot around the ball (Figure 10.17). Then, the
beauty of it all—enter 0 in the Channel box for the Translate X,Y,Z and
Rotate X,Y,Z and watch the leg get back into place.

Figure 10.16 Duplicated and moved
foot handle.

Warnings and Pitfalls
However, although the
handle looks fine in the
view panel, check out
the transformation values
in the Channels box. In
mine Translate X is –0.025
and Scale X is –1. We
really need to get this
transform information
clean again so we can
easily get back to this
position.

290

Creating Games with Unity and Maya

Tips and Tricks
When working with this rig, further refinement can be done by moving
the IK handles within the handle. For instance, moving the toe IK handles
will raise the toe. Now, although this provides some quick-and-dirty
access to foot movement, it is clumsy and crude. This version is saved in
the files included on the web site (http://www.Creating3dGames.com) for
this book as AegisChung-SingleMesh-SimpleFoot, but for an alternative
foot rig (that's beyond the scope of this book), check out the AegisChung-
SingleMesh also included in the sample files.

Spine
The next chunk of joints will be up the spine, neck, and head. In reality, our
spines are actually 24 articulating vertebrae (and another 9 fused vertebrae
in the sacrum and coccyx). However, we won't be putting nearly that many
joints in Aegis.

There are two reasons for this. First, controlling that many joints without a
complex back rig is unwieldy and would make animation much too painful.
But, in games, the most important reason is we are attempting to keep
our data set manageable. A mesh that is being deformed by hundreds
of joints will be a slow real-time calculation and thus slow the game
down. Keeping the number of joints low keeps the mesh deformation
calculations light and the game snappy. Picking the number of joints is
another of the choices in that never-ending challenge of game design in
which the designers and artists must find the balance between quality and
performance.

Step 44: Activate the Joint tool (Animation>Skeleton>Joint Tool) and in
the side-view panel, create a string of six joints to match Figure 10.18.
Name them as indicated in the screenshot.

Figure 10.17 Testing the leg rig.
Moving and rotating the modified
circle allows the entire leg and foot
to be modified.

291

Rigging, Skinning & Animation

Tips and Tricks
Remember when finished placing joints, press Enter to exit the Joint tool.

Why?
Notice that there are very few joints in the back. We really have one at the
base of the back and one at the small of the back but none through the rib
cage area. Although in real life there is definitely bending through ranges like
the rib cage, it's unlikely we would notice such a thing in a game situation.
However, do notice that the joints get pretty dense up near the neck area; be
sure you have a joint at the base of the neck and the base of the head.

Be really sure that the joint at the base of the head is where the spine connects
to the base of the cranium. If this is in the wrong place, the head will deform in
very strange ways when animated. Also note that there is a joint at the top of
the head; this simply gives the head base joint a location to point to.

Step 45: Make the AC_Back_Base a child of AC_Root. Do this in the
Outliner by middle-mouse-dragging the back base on to the root.

Why?
Eventually all the joints will need to be in one skeleton. With this step, we
again have all the joints as part of a skeleton lead by AC_Root.

Arms
The arms and hands can be a bit tricky. This is largely because the joints
need to be placed and adjusted in more than one view panel at a time. No
matter which view panel the joints are initially placed in, they will need to be
adjusted in another. In the short term this creates some problems because
once the joints are moved around (after placement), the orientation of the
joint above them no longer matches. No big deal though; we will look at ways
to get all this sorted out in the coming steps.

Step 46: Activate the Joint tool and in the front-view panel, click the AC_
Clavicle_Base joint to tell Maya to build new joints off of this joint. Then
create four new joints to represent the clavicle, shoulder, elbow, and wrist
(Figure 10.19). Name them (in the Outliner) as indicated in Figure 10.19.
Step 47: In the side-view panel, use the Move tool to adjust the location
of the joints to match Figure 10.20.

Figure 10.18 Creating the spine
collection of joints.

Warnings and Pitfalls
Remember to make the
adjustments with the
Move tool. Don't rotate
them at this point.

292

Creating Games with Unity and Maya

Step 48: Create and position a string of joints to control the middle, ring,
and pinky fingers. Do this in either the front- or side-view panels with the
Joint tool. Be sure to grow this new chain off of the extant AC_L_Wrist
joint (with the Joint tool activated, first click the wrist joint (it will highlight
green) and then start clicking to create new joints). The final results should
look like Figure 10.21 (which is a perspective view for illustration purposes).

Tips and Tricks
Figure 10.21 is the perspective view with a few options turned on. It uses
Shading>Wireframe on Shaded and Shading>X-Ray Joints. This shows the
wireframe of all the meshes, which can help indicate where the joints of the
mesh actually are, and always draws the joints on top of everything else.
Note that Figure 10.21 is in the persp view panel with X-Ray turned off.

Figure 10.20 Adjusting the position of joints in the
side view to more accurately match real anatomy.

Figure 10.21 Newly created finger
joints.

Figure 10.19 Creating the start of the arms.

293

Rigging, Skinning & Animation

Why?
Fingers? Why fingers and not an individual finger? A lot of this depends
on the needs of a game and a model. In our game the character will
generally be holding a weapon or perhaps pressing a button. This means
that the index finger and thumb would need to be separately articulated,
but the middle, ring, and pinky fingers would not—they would generally
function as a unit. This might be different for different games; the hand
would be rigged in a different way if all the fingers needed to articulate
separately. But to add joints to the ring and pinky fingers would be
another eight joints (per hand) or 16 added joints for the model;
considering that the entire rig now is 25 joints, rigging those extra fingers
is a significant cost.

Step 49: Create a string of joints for the pointer finger as shown in
Figure 10.22. Build this chain off the wrist (from either side- or front-
view panels) and remember to tweak their positions in front-side- and
perspective-view panels to get their positioning right.
Step 50: Create a string of joints for the thumb as shown in Figure 10.23.
Again, build off the wrist in front- or side-view panels, and go back and
adjust later with just the Move tool.

Figure 10.22 Pointer finger joints.

Figure 10.23 Building the thumb.

294

Creating Games with Unity and Maya

Tips and Tricks
OK, this is actually a disclaimer. There are a lot of joints in this hand that in
nongame situations would definitely be needed. If you're screaming that
there are no metacarpal joints, you're right. In most higher-rez situations
these are a vital part of good hand rigging. To make matters worse, we
are leaving out joints in the thumb that are critical for hand close-ups. But, for
game situations on hardware today we want to strip down rigs to the joints
we need. Five years from now, even on mobile devices we might throw joints
in with reckless abandon. Today though, the compromises are necessary.

Step 51: Orient upper body joints. Select AC_Back_Base (probably easiest
in the Outliner). Then choose Animation>Skeleton>Orient Joint. The
results can sometimes be a little tough to see, but see the before and after
shown in Figure 10.24.

Why?
When placing joints, it is pretty impossible (especially through the hands)
to get them in just the right place without having to go back and move
them. The problem is that the orientation of the parent joint (to whichever
joint is created) is defined on the first click of placement. So when the joints
are later moved into their correct locations, the parent joints no longer are
pointing toward the next joint, which makes for awkward animation later.
The Orient Joint command (which by default orients all the children of the
selected joint) tells all the joints to take a look at the next joint in their chain
and point to that chain (although this isn't perfect; see the following steps).
Importantly this only affects the joint's orientation, not its rotation (as can
be seen in the Channels box). This means that later, zeroing out the rotation
values of the joints will return them to this neutral pose.

Figure 10.24 Before and after
Orient Joint. Notice how the joints
(once oriented) point downward
toward the next joint in the chain.

295

Rigging, Skinning & Animation

Step 52: Examine the newly oriented joints and manually adjust any that
are needed. Swap to the Rotate tool and examine the joints in the upper
body. Try rotating them and seeing if the axis of the rotation handle makes
sense for that joint (be sure to undo the rotation each time). For instance,
the elbow will really bend only in one direction. Does rotating that
joint require rotation along only one axis? If not, it should be adjusted.
Figure 10.26 shows the adjustment of my wrist joint (yours may or may
not require such an adjustment). To adjust the orientation first we need to
be selecting by component type and be able to select what Maya deems
“miscellaneous components.” The easiest way to do this is in the top shelf
(Figure 10.25—take careful note of the highlighted pressed buttons). Then
when a joint is clicked it will show a few floating x, y, and z letters. Activate
the Rotate tool and click any of these letters to get handles to adjust the
orientation. Use the Rotation tool to rotate the orientation of the joint
(Figure 10.26).

Why?
This can be a tedious process. Hopefully, the Orient Joint function lines
things up pretty well for you and there is very little manual adjustment
that needs to take place. Much of it depends on how carefully the joints
are organized as they are placed, but if a series of joints are even just a
little out of line, Maya will tend to twist joints to try and orient toward the
next, thus they need to be readjusted manually.

Figure 10.25 Setting up the ability to select and modify the joint orientation.

Figure 10.26 The process of adjusting joint orientation. First click the x, y, or z, then with the Move tool rotate the orientation to desired position.

296

Creating Games with Unity and Maya

Still, remember that the idea here is that this yields dividends by having
joints that are oriented in ways that make the animation cleaner with
fewer axes needing to be rotated for any movement. Further, this makes it
so the joints can be returned to this neutral position by entering 0 in the
Rotate X, Y, and Z input fields of the Channel box.

Step 53: Swap to Object Mode and mirror from the clavicle down. Select
AC_L_Clavicle and choose Animation>Skeleton>Mirror Joint.

Tips and Tricks
The settings from last time this was done should still be there (the mirror
axis along YZ and the instructions to replace L_ with R_), although if the
results are not as anticipated, undo and check the Mirror Joint options.

Facial Rig
Unfortunately, out of the box, Unity does not support blendshapes (often
the preferred method of rigging the face for animation). However, if you're
familiar with Maya, you know that there are several camps when it comes to
facial rigs; one fairly persuasive group argues that rigging the face with joints
is a flexible and powerful solution.

In Unity, this is the only solution; however, an extensive facial rig can become
both a performance and time killer. If you're playing a first-person shooter and
are spending a lot of time examining facial expressions, there's something
wrong with the game. If you're playing a third-person game, the majority of
the time is spent looking at the character's back, so again, an extensive facial
rig is not called for.

Of course, in cinematic-cut scenes a good facial rig can really be valuable.
And in fact, great strides are being made in facial animation in games as of
late (take a look at the work coming out of Rockstar Games' L. A. Noire, for
example). However, in this case, our budget doesn't allow for good voice
talent (and animators and programmers hardly ever provide acceptable
performances) so there is no need for a very complex facial rig.

However, a bit of facial movement, especially in the jaw and eyes can help
a character have a bit of life so they don't feel quite so much like a walking
mannequin. So in the coming steps we will create a very simple face rig that
will provide some facial articulation but keep the joint count low.

Step 54: Create a two-joint chain for the jaw. Do this from the side view
and build the chain from the AC_Head_Base joint. Create the first joint just
in front of the ear (the hinge of the mandible) and put the second down at
the end of the chin (Figure 10.27). Be sure to press Enter after creating the
joint at the chin to exit the tool.
Step 55: Create an eye joint. Do not grow this joint out of any extant
joints (we want it to be facing straight forward), but in the side-view panel
activate the Joint tool again and create one joint (click and then press
Enter) in the center of the eye. In the front-view panel, adjust its location
to be in the center of the eye (Figure 10.28). Rename the joint AC_L_Eye.

297

Rigging, Skinning & Animation

Step 56: Make AC_L_Eye a child of AC_Head_Base.
Step 57: Mirror Joint for AC_L_Eye.

Preparing the Rig for Animation
Technically speaking, the rig could now be animated (although only the joints
would move, not the character). For the legs, the animation would occur
via the IK chain controlled with the handle we created. For the upper body,
the joints would be selected and rotated. The problem is that most of these
joints are inside the mesh, making them difficult to actually grab. Maya has
developed some tools to help in this. Maya allows joints to be drawn in other
ways than the default three intersecting circles.

In the following steps we will change the appearance of many of the joints
to make them easier to see and access. This will make animating faster and
more fun.

To further optimize the animation process we are going to restrict the kinds
of attributes that can be animated. Animation on a computer is really the
process of setting key poses at various times (called keyframes) that the
computer interpolates between; in essence Maya or Unity figures out the
frames between the poses the animator defines. Moving joints and then
setting keyframes and then adjusting those keyframes is what animating is.
Adjusting keyframes is a pretty critical part of the process and so having a
small data set that is easier to manage becomes critical.

Right now, all the joints we have created can be moved, scaled, and rotated.
In reality, in realistic animation like this game calls for, the joints should really
only rotate. By telling joints that their translate and scale attributes are locked,

Figure 10.27 Creating and naming
the jaw joints.

Figure 10.28 Creating the eye joint.

298

Creating Games with Unity and Maya

we can avoid mistakes that would cause body parts to stretch unnaturally, and
allow for keyframes to be set by simply pressing S on the keyboard (more on
this later).

Step 58: Change AC_Root to draw as a circle. To do this select AC_Root
and open the Attributes Editor (Ctrl-A if it is not open). Look to the Joint
section and expand it. Change the Draw Style from Bone to Circle.

Why?
Move the mouse to the persp view panel and press 4 on the keyboard
to go to Wireframe mode. The circle is probably too small. But we can
change that.

Step 59: Resize the circle representing the joint. Still with AC_Root
selected and still in the Joint section of the Attribute Editor, change
the Radius value to 1.3. Figure 10.29 shows what the wireframe should
look like.

Why?
The absolute size of the radius is subjective. The goal is to make the circle
a bit wider than the pouches on his belt so that it is easy to see and grab.
However it shouldn't be so big that it's always in the way of the hands.
This size can be tweaked to taste.

Step 60: Change AC_Back_Base and AC_Back_Small to draw as CircleXY
with a Radius of 0.75. Again, the process here is to select the joint, then
in the Attributes Editor, in the Joint change the Draw Style from bone
to (in this case) CircleXY. Then change the Radius setting immediately
beneath it (Figure 10.30).

Figure 10.29 Resized Radius of a joint with a Circle draw style.

299

Rigging, Skinning & Animation

Why?
CircleXY simply changes and forces the direction of the drawn circle.
Although the circles could remain parallel to the ground this sometimes
makes the handle (joint) a bit harder to see. By rotating them up on their
side they are easy to see sticking out of Aegis's back and help define a
little easier what the back rotation will usually be doing.

Step 61: Repeat this process for the rest of the joints in the upper body.
For each joint, make a choice as to which Draw Style will provide the
easiest access to the circle that is going to be drawn. Or, if you'd prefer,
choose something besides a circle (Figure 10.31 shows my finished setup; I
used Square for the eye joints).

Figure 10.30 AC_Back_Base and
AC_Back_Small drawn as CircleXY
with radius of 0.75.

Figure 10.31 Completed upper
body adjustments to joint Draw
Styles.

300

Creating Games with Unity and Maya

Step 62: Change the color of the left-side joints to blue and the right side
to red. To do this, select AC_L_Clavicle and open the Attributes Editor.
Look for the Display section and the Drawing Overrides section beneath
that. Click the Enable Overrides checkbox and use the Color slider to
pick a pretty blue. This will change all the joints all the way down the
arm (although you won't be able to see the change until you click away
from the joint). Repeat this for AC_R_Clavicle and choose a red color
(Figure 10.32).

Why?
Once the animation process begins, there are going to be a lot of circles
floating around. Sometimes, especially when animating from the
side-view panel, it can become pretty difficult to see which side that circle
represents. By color coding it becomes much easier to identify joints.

Step 63: Color code other upper body joints as desired. You may wish to
color code all the back joints one color and the head another, and so on.
Step 64: Delete unnecessary joints. There are several joints that we placed
that will actually not affect the polygons: the tips of all the fingers and
thumbs (AC_L/R_FingersTip, AC_L/R_ThumbTip), the jaw tip (AC_Jaw_Tip),
and the head tip (AC_Head_Tip). These joints were placed to give the
joints that were their parents a location to point to, but they actually serve
no purpose now. By deleting these joints (now that their parents are all
oriented) we can further streamline the data set.
Step 65: Lock and Hide unwanted transforms. Start with AC_L_Shoulder.
Select this joint and activate the Channel Box. Select the words Translate
X, Translate Y, and Translate Z (not the input fields). Right-click-hold and
choose Lock and Hide Selected. Next, do the same for Scale X, Scale Y, and
Scale Z and Visibility (Figure 10.33).

Figure 10.32 Colored joints.

301

Rigging, Skinning & Animation

Why?
We are only going to rotate the shoulder. We will never move or scale
that joint. By locking the values, we can set quick keyframes by pressing
S on the keyboard and not record move and scale keyframes. This makes
editing much easier. Similarly, by hiding these transforms, we inform
other animators who may inherit this rig that the only attribute meant to
be animated is rotation.

Step 66: Repeat this process for all joints in the upper body. Remember
you can do this for multiple joints at the same time.

Why?
Why not the lower body? In the legs, the rotation of the joints is not
controlled directly by us; that is, we won't be selecting the knee (for
example) and rotating it. Rather, we'll be moving (and rotating) the foot
handles we created earlier. These foot handles happen to contain children
that are the IK handles that control the rotation of the leg joints through
IK calculations. So no need to mess with those.

Conclusion

And with that the rig is done. It is one of the more basic rigs that you may see in
Maya but will still provide a very good level of control. If you've dealt with higher-
rez rigging solutions there is likely some missing rig handles you're complaining
of (no handle for the entire rig, etc.). But in game animation, the character will be
doing most of the animations in place, so there is little need to move the entire rig
at any one time; therefore, we can leave those sorts of handles out.

The next step will be to get these joints so that they actually influence the
mesh they are inside of.

Figure 10.33 Results of Lock and Hide selected.

302

Creating Games with Unity and Maya

Tutorial 10.2: Maya Skinning
Skinning is the process of attaching vertices to joints. This means that each
vertex can be influenced by one or more joints and as that joint moves (or
rotates) the vertices go with it. Getting the right amount of influence for
each vertex to the correct joint or collections of joints takes a little bit of
refinement; however, getting the skin (the mesh) weighted (assignments to
joints) correctly is a very important part of the process.

Step 1: Bind the skin to the joints. To do this, select AC_Root and
then shift-select AC_AegisChung_SM. This selects the parent-most
joint of the skeleton and the single mesh that is Aegis Chung. Select
Animation>Skin>Bind Skin>Smooth Bind (the default settings should
be fine).

Why?
Smooth binds are binds where vertices can share their influence between
several joints. For most organic situations, smooth binds are the method
of choice. It means places like the front of the knee can spread their
influence across a couple of joints to get a gentle bend. Alternatives such
as Rigid Bind work on the idea that each vertex is 100% assigned to one
joint. Although there are some really interesting and compelling uses of
Rigid Binds with other deformation objects (Lattices for instance), for our
purposes we'll go with Smooth binds.

Step 2: Test the bind. Do this by moving Aegis. With the Move tool, grab
AC_Root and move it around (he should bend his knees and squat), use
the Rotate tool to bend the arms, wrists, head, jaw, and so on. Basically
pretend he's a doll and pose him to see how the default bind holds up
(Figure 10.34).

Figure 10.34 Posing with the
default skin binding. I hope yours
looks better than mine….

303

Rigging, Skinning & Animation

Why?
Maya is smart in a lot of ways, but when it comes to skin binding it's
kind of dumb. Basically, on initial bind, each vertex looks around itself
and allows some of its influence to be lent to the nearest five joints. This
means that the pouches around the waist may lend a lot of their influence
to the wrist joint and the gun will be influenced by the hip and wrist joint.
Basically it's all a mess, especially with a tightly modeled character like
this one. Frankly, this is one of the drawbacks of modeling with the arms
down; should the character have been in a T-pose, or even if the arms
were modeled at 45 degrees, it would be less likely that the areas around
the waist would be influenced by the wrist. Either way though, adjusting
the skin weights is a necessary part of the gig.

Step 3: Make sure to undo all the rotations or movements.

Binding Rigid Body Parts

There are a few parts of the body (the head for instance) and things attached
to Aegis (like guns) that shouldn't bend; really they should be attached 100
percent to a particular joint. To do this we will start with a very numerically
based method of adjusting skin weights and adjust the Component Editor.

The Component Editor allows for, well, editing of components—like vertices
and specifically which joints those vertices are being influenced by. This
method will be very Excel-esque, and might not be terribly appealing at first,
but is the quickest way to take care of rigid parts of the body.

Step 4: Make joints unselectable. At the top-left corner of the Maya
interface are a collection of tools that allow a user to mask which types of
objects are selectable. Turn off the ability to select joints (Figure 10.35).

Why?
We are about to do a whole lot of vertex selection. Maya has a sort of
object selection hierarchy to actually assist in animation. This means that
if a click is made in a view panel if there is a joint beneath the mouse
(even if it is inside of a poly mesh) it will select that before the mesh that
surrounds it. So, if joints are selectable, every time a marquee selection is
made that touches a joint, whatever you were hoping to select won't be
selected—instead the joint will be picked.

Figure 10.35 Turning off the ability
to select joints.

304

Creating Games with Unity and Maya

Step 5: Select the vertices that make up the head. Don't grab down the
neck, just all of the head (Figure 10.36).

Step 6: Assign these vertices to AC_Head_Base. To do this, choose
Window>General Editors>Component Editor. Click the Smooth Skins tab.
Use the bottom slider to slide over to see AC_Head_Base (the joints will be
listed alphabetically) column. Highlight the entire column and enter 1 (press
Enter), and all the values for that column will change to 1 (Figure 10.37).

Why?
The paradigm here is between 0 and 1—0 is 0 percent and 1 is 100
percent. By changing the value of all the vertices (listed in the first
column) for AC_Head_Base to 1, these vertices will be 100 percent
assigned to this joint. When AC_Head_Base moves, all the vertices we've
got selected will go with it . . . no sharing.

Figure 10.36 Selection of head
vertices.

Figure 10.37 Setting a value of 1
to AC_Head_Base for all the vertices
of the head.

305

Rigging, Skinning & Animation

Step 7: Assign eye vertices to respective joints. For the eyes, this is actually
a little simpler. Try this trick: Switch to Faces mode and double-click any of
the faces of the left eye. This will select out until it finds the edges of the
eyeball and go no further. Ctrl-right-click-hold and choose To Vertices and
then all the vertices of the eye will be selected. Again, in the Component
Editor enter 1 as the value for all the vertices under the AC_L_Eye column
(be sure to press Enter after entering 1).

Why?
There are actually a few interesting things happening here that should
be pointed out. Notice that when we selected the vertices and went
to the AC_L_Eye column, all the values were 0. They were 0 because in
the previous step they were part of the collection of vertices that were
assigned to the AC_Head_Base joint. A vertex's total weight value will be
1. So if more influence is defined to one joint, the vertex must rob that
influence from other places it may have been affiliated with. So when the
eye vertices were assigned to the head, it zeroed out the influence AC_L_
Eye had on it. Now that we've assigned all the influence to AC_L_Eye, the
influence that was on the head is gone (which is what should happen).

Step 8: Repeat the process for the right eye, only assign the vertices to be
influenced 100 percent by the AC_R_Eye joint.
Step 9: Use this same trick on the hip pistol and holster (assigned to
AC_R_Hip), the knife (assigned to AC_L_Knee), the backpack, and the rifle
(assigned to AC_Back_Small).

Why?
None of these objects should be bending. Other than the backpack, they
are all very rigid. By assigning them to any one joint, we'll ensure that they
won't tear away or bend when other surrounding joints are moved.

Painting Skin Weights

If you select AC_AegisChung_SM (the actual mesh) and look in the Channels
box, there will be a node called skinCluster1 in the Inputs. The skinCluster
node is actually the node that attaches the vertices to the joints, and it is part
of the mesh (not the joints). We have already looked at how to adjust this
skinCluster via the Component Editor, which works great for rigid parts of
the body.

However, most joints are much softer in their deformation. Most vertices on
the body need to lend their influence to a couple of joints at a time. Maya has
some fairly effective methods of allowing for this fine-tuning via very visual
workflows.

A note about skin weights first. We've already alluded to the idea that if a
vertex has a setting of 1 assigned to any one joint, its influence setting for all

306

Creating Games with Unity and Maya

other joints is 0. Adjusting skin weights is constantly the battle of “robbing
Peter to pay Paul.” However, it should always be about paying Paul; that is,
always think of painting vertices as painting where influence should be, not
about where it shouldn't.

This means that as we paint in influence we want to be adding influence to
joints, not taking it away. Although it is possible to paint a vertex so that its
influence is zero in respect to a particular joint, painting away influence like
this causes problems because you don't know where the influence goes.

But enough theory, let's look at how to use the tools.

Step 10: Select the mesh AC_AegisChung_SM and activate the Paint Skin
Weights tool (Animation>Skin>Edit Smooth Skin>Paint Skin Weights
(Options)). Be sure to select the Options square to get the interface shown
in Figure 10.38.

Why?
The Paint Skin Weights tool interface has greatly improved in Maya
2011. There are some really nice tools in Maya 2011 that help a lot in the
sometime arduous process of painting skin weights (the Hammer tool
rocks!). But for quite a while now, the basics of this tool has remained
the same. The first section (Tool Settings) should be a bit familiar—it
allows for the user to decide the type of brush including size that
will be used to paint across the surface of the mesh. The second area
(Influence) lists the joints that are attached to the vertices of the mesh
selected.

Figure 10.38 Paint Skin Weights
tool in Interface.

307

Rigging, Skinning & Animation

The way this interface works is this: when a joint is selected in the
Influence section, the vertices that are affected by that joint will highlight
white (or gray) in the view panel. As the vertices show up closer to black,
the influence is less. Painting on the mesh (only vertices matter) will
allow influence to be defined (via the Paint Operation: Replace radio
button), added (via Add radio button), scaled (via the Scale radio button),
or smoothed (via the Smooth radio button, which really means share
influence between the selected joint and the next nearest joint).

Step 11: Resize the brush to a more appropriate size. Move the mouse
out into the view panel and look for a red circle (this is likely larger than
the entire model). To resize the brush hold the B key while dragging the
mouse left and right (this is the same as adjusting the Radius over in the
Tool Settings).
Step 12: With the Replace radio button activated and an Opacity setting of
1, paint an influence that approximates Figure 10.39. Be sure to work around
to the back side as well so the influenced area is a band around the belt.

Tips and Tricks
Paint an influence range just a little bigger than what the joint will
actually be influencing since we will smooth the transitions in later steps.

Step 13: Smooth the influence. In the Influence section of the Paint Skin
Weights tool, change the Paint Operation to Smooth and click the Flood
button twice (Figure 10.40).

Why?
Smoothing shares influence up and down a chain of joints. By painting
in at 1 (which yields very harsh transitions of influence from joint to
joint), and then flooding with smooth later, the core area of influence is
preserved, but the transition from bone to bone remains gentle.

Figure 10.39 Rough first pass of influence for AC_Root.

308

Creating Games with Unity and Maya

Step 14: Repeat this process of painting at 1 and then smoothing starting
from the extremities and working in. So start from the toe and work up to
the hip, then start at the finger tips and move up to the shoulders.

Conclusion

In all the books I've written, writing about painting skin weights is always the
toughest. They just don't lend themselves well to step-by-step tutorials. Although
we could go joint by joint and look at painting the influence for each, the results
would be maddeningly tedious and still yield results not identical to mine.

I've found through many years of teaching this that the best way to learn
skin weights is to paint skin weights. So tear into it, test often (you'll need to
re-enable the ability to select joints to test and then turn them off again) and
discover the fun of making the form deform correctly.

As you work, consider the following tips:

 1. Remember that when painting the influence of a joint, you are painting
what vertices are influenced by that joint, not just the vertices that are
around the joint. So a knee joint should not just be painted around the
knee; rather the knee joint will be affecting from the knee down the shin
and the top of the ankle (Figure 10.41).

 2. Remember that painting skin weights is a dynamic process. As you paint
skin weights on one area of the body, it is robbing influence from other
parts. This means that the skinCluster is very fluid, and what you painted
may not remain that way, so don't assume that once a joint has been
painted it's complete and done. Multiple passes are necessary to get
things right.

 3. Be very careful not to paint areas not intended. This seems obvious, but
very often I see a student oriented below their character painting the end
of the toe and end up picking up the tip of the nose. So every time the
character picks up a foot or moves the leg, the tip of the nose moves.

Figure 10.40 Smoothing influence
through Smooth Flood.

309

Rigging, Skinning & Animation

 4. Watch for vertex twitching. Even when you think the skin weight is
painted well, test and look carefully for spots where the mesh is twitching
(especially along the thighs near where the hands are). This twitching of
vertices means that there is trace influence on a vertex (sometimes this can
be cleaned via Animation>Skin>Edit Smooth Skin>Prune Small Weights).

 5. Remember that there is a Mirror Skin Weights function (Animation>Skin>Edit
Skin Skin>Mirror Skin Weights). This isn't an ideal situation to use it since
the character isn't exactly symmetrical (especially with all the guns and
knives and diagonal straps), but it can be useful as long as you're willing
to go back and rework some of the rigid bind sections (guns, etc.).

 6. Get that brush small and then big again. Especially when working on
areas like the fingers, sometimes the process is working down one vertex
at a time. A small brush will allow for exact painting. Scaling the brush up
and down often makes for a much faster work flow.

 7. Paint while posed. Painting skin weights is possible even when the
character isn't in a neutral pose (called Bind Pose, or the pose the joints
were in when they were bound to the mesh). So raise that arm up, pull
that foot up and then paint on the mesh so that the deformed places look
right, or so you know which vertices are being pulled away when they
shouldn't. Then, zero out the rotation values for any joints you rotated in
the upper body, and zero out the translation and rotate values for the foot
handles if you moved the foot.

 8. Remember that sometimes the easiest way to get to vertices (as in to
paint them) is from inside the mesh. This is especially true for areas like
the back beneath the backpack or inside the mouth.

 9. Save often. [sarcasm] Not that Maya ever crashes [sarcasm]; but it crashes
more often while painting skin weights. It's easy to get lost in the black
and grays of the process, but it is especially painful to lose work due to a
crash while painting skin weights. Save often.

Figure 10.41 Influence area of the
knee; notice it's from the knee down
to where the ankle takes over.

310

Creating Games with Unity and Maya

10. Just as the desire to eat cake never really goes away (because, let's face
it, cake tastes awesome, which contrasts with weighting), painting
skin weights often feels like it's never done. Getting to a point that is
acceptable is probably where you should decide to move on. Chances are,
when you are animating, you'll find something that bugs you and you'll
be back fixing it anyway.

Tutorial 10.3: Maya Animation
In this game we don't see a whole lot of Aegis moving (he'll move his
arms, but not his whole body in game play). But, seeing how to prepare
an animated mesh for export from Maya and import to Unity is an
important part of the game creation process; so we're making a brief
introduction level using our now rigged and skinned Aegis to illustrate
these techniques.

But before we can get him exported we need to animate him. Getting all the
intricacies of effective animation in is way beyond the scope of this book, but
we will look at a few of the important concepts and techniques unique to
animating an asset for game engine consumption.

If you're confident with your rig and skinning, use it for sure. If you grew tired
of skinning, feel free to use the version of Aegis included on the web site
(AegisChung-SingleMesh-Rigged).

General Notes on Game Animation

There are a few things unique to game animation that is worthwhile to
point out. First, think cycles. Almost every game character animation should
be a cycle; this means that the first and the last keyframe of each motion
should match. For walks, animate from left foot fall to left foot fall. In an idle
animation, have the character return to exactly the same pose as he began.
The reason for this is that most animations in games are quite short and
called up via script (programmatically). Different animations will be called up
at different times, but sometimes (like in an idle animation) there might not
be any new input and an animation needs to play through more than once.
Without a cycle, the animation will jump and jerk in very awkward ways.

Second, remember that for game animations, most cycles should be
short—or often shorter than they would be for high-rez projects. For example,
a common problem for students is the jump animation. They've animated
it before in a nongame situation with a lot of great squash and stretch that
when used in game means the character hasn't even gotten ready to jump
before they should be in the air. This doesn't mean that good concepts of
animation (i.e., squash and stretch) shouldn't be used—in fact it's critical
that they are. They just often need to happen quicker and subtler. The one
exception to this would be an idle animation—the animation a character does
when it's waiting for other instructions. A longer idle animation keeps the
repeating cycle from being quite so obvious.

311

Rigging, Skinning & Animation

Third, do the animations in place. For animations like walk, run, or jump,
imagine that the character is on an invisible treadmill and while his feet are
moving as though he's covering ground, he needs to stay put, walking in
place. The actual translation of the character will take place programmatically
and the character will move forward, backward, or side to side based upon
user input. Think of the walking-in-place character being in a capsule that is
moved as the animation is played, thus giving the illusion of movement. For
those of you who have done some high-rez work and worked with IK chains
specifically to keep the foot from sliding this will be an adjustment; but in
game walk cycles, the feet should always be sliding. For an illustration of what
this would look like take a look at the animation between frames 300 and
330 in the AegisChung_SingleMesh. mb file on the web site (http://www
.Creating3dGames.com). This frame range includes a quick animated-in-10-
minutes walk cycle animated as a stationary cycle. A quick note though; for
standing-still animations (like the idle), keep those feet stationary because
when the character is not moving and the feet slide, any illusion of gravity,
friction, and reality will be gone.

Keep it in one file and note the range. There are actually different ways to
attack this issue. On the one hand Unity allows you to import several files,
each with its own animation. Then these animations can be called up later
and assembled on one mesh. However, I generally find it easier to have
all the animations created in one Maya file and take note of the ranges
(idle: frame 1–240, walk: frames 300–330, etc.). Then when Unity imports
the .fbx we are going to export in a bit, you can tell Unity to interpret these
different animation clips by defining the range of frames that that animation
occurs in. This just keeps all the animations contained in one file and makes
the housekeeping easier inside of Unity.

Step 1: Save a backup copy of Aegis. Use File>Save As… and save the
file as AegisChung-SingleMesh-Rigged. Close the file and reopen
AegisChung-SingleMesh.

Why?
Once animation is started, the file contains keyframes and poses. Although
it's not overwhelmingly difficult to get rid of all the keyframes or to get
the character back into his bind pose (it's pretty easy actually), I always
prefer to save sequential versions of the process in case something
horrific happens. We will animate AegisChung-SingleMesh, but if need be
the unanimated but ready to be animated version is always waiting for us.

Tips and Tricks

An alternative to saving multiple versions like this—and one that we
teach at UIW—is to use referencing. Referencing is the process of
importing an instance of a Maya file that can then be manipulated
(including animated) but leaves the original referenced file untouched.

312

Creating Games with Unity and Maya

When doing a lot of scenes with a lot of different Maya files, this works
really well since if a change is made to the original referenced rig file
(adjustments to skin weights for example), the change will automatically
be propagated to all the Maya scenes that the model is referenced in. In
this game situation though, we will be putting all the animation into one
file; so saving a backup will be just as easy without working through new
interfaces.

Step 2: Hide things that won't be animated. In our current rig it's really
just the leg joints. To hide them, select AC_L_Hip and press Ctrl-H or
Display>Hide>Hide Selection. Repeat this for AC_R_Hip.

Tips and Tricks
These can always be made visible again later. Take a look in the Outliner,
and the joints that have been hidden are grayed out. If those are selected
(in the Outliner) they can be shown again via Display>Show>Show
Selection.

Step 3: Make sure joints and curves are selectable and the mesh is not
selectable. Do this with the selection masks we have looked at before.
Your collection of masks should look like Figure 10.42.

Why?
When animating, it greatly speeds the process if objects that are
animatable are easily selectable. We will be animating the mesh via the
joints so we don't want to be able to grab hold of the mesh itself; thus we
make surfaces unselectable. However, we do want to be able to quickly
select joints (drawn as circles in our current rig) and the handles for the
feet (which are curves).

Step 4: Pose the character to start an idle animation cycle. First, click
frame 1 in the Time Slider (the list of numbers at the bottom of the screen).
Then, begin to pose Aegis. The key here is that after each joint is rotated,
or each foot handle is moved or rotated, press S on the keyboard to set the
keyframe (Figure 10.43).
Step 5: Make sure there is a keyframe for every animatable object (this
means all the joints and the foot controllers, even if they hasn't been
posed). Do this by expanding the entire skeleton and selecting all the
joints (select AC_Root and then Shift-select the very last joint (in mine it
was AC_R_ThumbEnd). Press S. Do this for the feet handles as well. Keep
the selection that you've made in the Outliner for the next step.

Figure 10.42 Making sure that joints are selectable but the poly mesh is not.

Warnings and Pitfalls
Keyframes are stored
on a per-object basis.
This means that each
joint that is moved must
have its own keyframe.
Forgetting to set
keyframes means that
Maya forgets that pose at
that particular time and
thus you have no pose to
reference when the next
keyframe is set, and thus
no animation.

313

Rigging, Skinning & Animation

Why?
When making that initial pose, sometimes all the joints get moved, but not
always. However, to make sure that there is a true loop of the animation, it
is critical that there is a keyframe for everything that moves. By keyframing
everything that could move, we will ensure that this state exists.

Step 6: Copy and paste the keys set at frame 1 to frame 240. In the Outliner,
use the same selection as step 5 for all the joints and the foot handles (all
these should have keyframes represented by a red line in the Time Slider).
In the Time Slider, right-click-hold frame 1 and select Copy. Expand the
Time Slider to 240 (enter 240 in the first input field to the right of the Power
Slider just beneath the Time Slider). Move the time to 240 in the Time Slider
and then right-click-hold frame 240 and choose Paste>Paste.

Why?
By taking the time to copy/paste the first keyframe to the last keyframe
we can ensure that the animation is indeed a loop—a cycle.

Step 7: Fill in the animation. Shift his weight, wave at the camera, scratch
his head, do whatever. No hard rules here. This is just for fun. For an actual
animation in a game (if this were a third-person game), the idle would
be fairly tight so he was staying focused ahead of him; but for this one,
explore and have fun.

Tips and Tricks
Be sure that you are playing the animation in real time as you preview it.
You can change the Playback Speed in Windows>Settings/Preferences>

Figure 10.43 Starting pose for idle animation.

314

Creating Games with Unity and Maya

Preferences. Go to the Time Slider section and change the Playback Speed
option to real time.

Conclusion

Lots left to do. This is a seven-step tutorial that will probably take you a couple
of hours to complete. Just animating a game character is worth an entire book
on its own, so if you haven't a lot of animation experience, don't sweat it. Get
a bit of animation in there and call it good; or feel free to use the AegisChung-
SingleMesh-Animated.mb file to use for the next tutorial.

Tutorial 10.4: Getting Animated
Characters to Unity
In previous chapters I've argued passionately for manually exporting assets
from Maya for consumption in Unity. Because the topic's been beaten pretty
hard, I'll avoid proselytizing too much in this chapter; however, it's important
to note that for game characters manual export carries some real benefits.

The most important benefit has to do with how IK is calculated. In our current rig
and animation, the rotation of all the leg joints has been done via IK chains, and
specifically with the translate keyframes of the foot handles. These calculations
are dynamic within Maya, meaning that each frame isn't just seen as an
incremental rotation difference since it is in the upper body, but a much more
complex calculation of incremental difference in translation of the IK handle, and
then another calculation of how to rotate the involved joints to solve for this IK
handle location. If you've used different 3D applications, you know that IK can
work differently and have different personalities across different programming
solutions. It's no different in the Maya/Unity marriage; and IK might solve great
in Maya and not solve quite so nicely in Unity. Especially if using things like pole
vectors, Unity doesn't always see the IK the same way Maya does.

To help alleviate this, we'll look at baking our animation into all joint rotation
procedures. The IK will then not actually be calculated by Unity at all—Unity
will simply see joint rotation keyframes.

Step 1: Save a backup version of the file. Save as Aegis_Chung-
Animated.mb.

Why?
We are about to bake the animation. Once the animation is baked, it is
very difficult to do any sort of meaningful editing. It's always good to
have a nonbaked version of the file. You may never need to go back to
this unbaked version, but if you need it and don't have it, the animation
practically needs to be started over.

Step 2: Bake the animation. In the Outliner select AC_Root. Then choose
Edit>Keys>Bake Simulations (Options). In the Bake Simulation Options

315

Rigging, Skinning & Animation

window, in Hierarchy click the Below radio button. In Time Range: click
the Start/End option and for Start Time: enter 1 and for End Time: enter 240 (if
you've only done the idle as listed earlier) or the last frame of all the animations
you have (Figure 10.44). When everything is set, press the Bake button.

Why?
Baking with these settings will set a keyframe for every joint below AC_
Root at every frame. After this has been baked, the foot control handles
themselves can be deleted entirely since the IK that was controlling those
legs is no longer needed. By doing this, the animation attached to this
Maya file is much, much simpler for Unity to interpret. However, this is a
suggestion (not necessary for successful completion).

Step 3: Export as .fbx. Choose File>Export All. Navigate to the Unity
project folder (Incursion–Unity) and into the Assets folder. Change the file
type to FBX Export and (as we've done in the past) be sure that Embed
Media is checked (in the Include section) and that the Version is set to
FBX 2010 (in Advanced Options/FBX File Format section). If you have
not changed them, these should be the same as they were back when
exporting assets for the scene files. Name the file AegisChung and press
the Export All button.

Tips and Tricks
You're likely to get a Warnings and Errors window. Generally, this is not a
big problem. Usually it is warning about Animation Tangent-type changes
that are unavoidable in this situation and shouldn't affect much in the
scene. If you get this error window, just press the Close button.

Step 4: Save your file and open Unity. Of course, make sure you are
working in the appropriate project once inside Unity.
Step 5: Adjust AegicChung's import settings. Once Unity has opened
(it may chug for a minute as it recognizes the new AegisChung.fbx file),

Figure 10.44 Baking animations.

316

Creating Games with Unity and Maya

in the Project panel, select the AegisChung prefab. This will show it in
the Inspector panel. Change the Scale Factor to 1. Then look carefully
(you may have to scroll down) to the Animation section and an area
that has columns of Name, Start, End, WrapMode, and Loop. Click the
little + symbol to tell Unity you wish to define/add an animation. As soon
as this is done a new animation will appear already named “idle.” The Start
column should read 1, but change the End entry to read 240. Change the
WrapMode to Loop (not the Loop checkmark—this is something else.)
By changing the WrapMode to Loop, the animation will, well, loop until
told to stop. If you have animated other animations, add them here now.
When done, click the Apply button (Figure 10.45).

Why?
We carefully scaled Aegis in Maya to allow for this quick setting of Scale
Factor of 1. The Animations area is where we get to define the multiple
animations that may be attached to any one asset. This can really have
any amount of animations. The key here is defining the animations with a
good name that we can call up later. The default animation this asset will
run (in the absence of other instructions) is that first one—idle. But, with
script we could call up any of the others (more on this later).

Using Aegis

Technically, he's in. He's a prefab and ready to be placed, used, and abused.
For fun, drag him into the Scene-EntryWay (drag from the Project panel

Figure 10.45 Importing Aegis
Chung including importing
animations.

317

Rigging, Skinning & Animation

up into the Scene window); play the game and you should be able to walk
around him (although he may be kind of dark because we haven't lit for
characters yet), and he will be looping the idle animation. All that movement
and no place to go. When you're done playing around, go ahead and select
him in the Scene window (or the Hierarchy panel) and press the Delete key
(on a PC) or Command-backspace (on a Mac).

Step 6: Create a new scene file. File>New Scene.

Why?
We're going to lay the groundwork for an opening scene—an opening
level really—that will show Aegis, give a little bit of background,
provide an explanation of the goals of the game, and then allow the
player to press a Start button to start the game. Aegis is the eye candy.
Although technically, all of this could be done in the EntryWay scene,
having only Aegis in this scene will allow for some nicer lighting, and a
very quick startup to the game (very few assets to load).

Step 7: Create a floor and then a back wall. Do both of these by creating
a plane (GameObject>Create Other>Plane). Scale to match Figure 10.46.
Make sure the floor plane (named Floor) is set at 0,0,0.

Step 8: Place Aegis. From the Project panel, drag AegisChung up into the
Scene window. New to Unity 3, he should snap so that he's standing on
the floor as the mouse is moved over it. Place him in about the center of
the floor (Figure 10.47).
Step 9: Light the scene. Figure 10.48 shows a lighting scheme using a
fairly standard key light, two fill lights (amber and blue), a back light, and a
light to light the back wall. Light for the dramatic effect you're after.

Tips and Tricks
Figure 10.48 shows the scene lit with all spotlights. Spotlights allow for a
good amount of control but don't necessarily take a huge amount of horse
power to draw. Do note, however, that lighting will often draw differently

Figure 10.46 Setting up the floor
and back wall.

318

Creating Games with Unity and Maya

in the Scene window than in the game. Be sure to get the camera moved
into an appropriate position to show Aegis, and play the game (which will
just be a static camera) to see how the lighting looks. The Game window's
appearance is the only one that matters since it's the only one the player
will see.

Step 10: Turn off ambient light. Select Edit>Render Settings. Click the
Ambient Light swatch and change it to black (Figure 10.49).

Figure 10.48 Basic lighting scheme.
Specifics aren't important; light so
you like it.

Figure 10.49 Game view with
ambient light turned off.

Figure 10.47 Placed Aegis.

319

Rigging, Skinning & Animation

Why?
Ambient light can work great in a lot of situations, but in dramatic
lighting situations it's a mess. Turning it off may require some
adjustments to the lighting scheme, but the look will be much more
polished. Importantly, it will allow for some truly black areas where white
text will show up well.

Tutorial 10.5: Animating in Unity
Unity continues to make improvements in functionality and interface. Among
the biggest jumps has been within its built-in animation system. In many
previous editions of Unity, everything (and I mean everything) needed to
be animated outside for any reasonable control. There were eternal infernal
processes of animating a null-object in Maya and then importing that and
parenting a camera to it to get good camera motion; really a pain. And then
there was the awkward time when Unity didn't include any animation at all.
Luckily, all of that is behind us now and Unity has a quite reasonable and
intuitive (if you're familiar with other animation tools) interface.

Still, most complex animation (like character for instance) is best done
outside of Unity in your 3D application. But for some simple moves (camera
cinematics for instance), Unity's built-in animation system works just fine.

In this tutorial, we will organize and animate Aegis so we see him spinning
around slowly in the scene as he idles.

Step 1: Create a new empty GameObject. Do this via GameObject>Create
Empty. Make sure it's position is at 0,0,0 and name it AegisGroup.

Why?
In Maya, when multiple objects are grouped together, Maya automatically
creates a null object to contain the new group. Unity does not do this.
However, by creating the empty game object first, we can then have this
as a container to hold other things.

Step 2: Make Aegis, the floor, and any lights lighting Aegis children of
this new AegisGroup. Do this in the Hierarchy by dragging those assets
onto the AegisGroup GameObject (which will make them children of
AegisGroup).
Step 3: Create an animation for AegisGroup. In the Hierarchy panel,
select AegisGroup. Choose Window>Animation. This will pull up the
Animation window and timeline. In the top-left corner is a little red
dot (for record). Click this and a Create New Animation dialog box will
appear. Enter AegisGroupRotation.anim in the File Name input field
and click Save.

320

Creating Games with Unity and Maya

Why?
What's going on? Think of animations as components of GameObjects.
Whenever an object is to be animated in Unity, Unity will create
a separate editable file (with a .anim label) that will store the
information. What this means is that the animation can be used again
and again on other objects (which is powerful in itself). It also means
that there is this new asset that will be in the assets folder that is
important not to delete.

Note that after the .anim file is created, the Animation window will show
the record button in the top left highlighted in red as if pressed. This is
Unity's way of telling you that you can now record animations by creating
and editing keyframes.

Step 4: Set a rotation keyframe. In the Animation window, click once on
the Rotation Y text under the Transform section of AegisGroup. Along the
top of the interface is a little diamond with a plus next to it. Mousing over
this should provide the screen hint of Add Keyframe. Click this button
once. This will create a little diamond that actually records a keyframe for
all the rotation values.
Step 5: Create a second rotation keyframe to create rotation animation.
Along the top of the Animation window are the current time values.
These can be a little tricky to understand at first. The format is
Second:Frame. So 1:30 is one second plus 30 frames' worth of time.
Unity's timeline here is working as though the game is playing at 60 fps
so 1:30 would be about a second and a half. Slide the red time marker
over to any place in the timeline (besides 0). In the Inspector, change
the Rotation Y to 360. A new keyframe will appear in the Animation
window with a yellow line to connect the two keyframes we have thus
far for RotateY.
Step 6: Test the animation. In the Animation window, next to the Record
button is a Play button. Press this to see how things are looking. Press it
again to pause.
Step 7: Adjust the timing. This second keyframe can be dragged to a new
location in time most easily by dragging the gray diamond (keyframe)
symbol on the AegisGroup line (not the yellow keyframe in the graph
section) along in time. The timeline will provide more time as the keyframe
is dragged to the right. I chose a 15-second duration (Figure 10.50). Maya's
navigation commands work here too; the window can be zoomed and
panned by holding down the Alt button and dragging or middle-mouse
dragging.
Step 8: Set the animation to loop. Still in the Animation window, look at
the bottom left. Next to the Show button is a drop-down menu that will
read Default to begin with. Click this and change the value to Loop (since
we don't want the animation to stop).
Step 9: Play the game to see everything in action.

321

Rigging, Skinning & Animation

Conclusion

And there it is. It's easy to see how in a pinch, a bit of animation can be easily
added to an object in Unity. To edit this animation later, just click the object
(AegisGroup) and open Window>Animation. The animation will be shown
there and keyframes can be moved, interpolation adjusted, and new keyframes
added (the red Record button needs to be clicked to add additional keyframes).

Wrapping Up
Aegis is modeled, rigged, skinned, animated, and in the game. At this point
all the 3D assets we are going to model for the game have been created and
imported. Now it's time to move wholly into the realm of Unity to add some
interactivity to the scene.

In the coming chapters we will be looking at how to develop scripts that turn
the levels we have created into a game. Some of the assets needed for this
game were assigned as homework and challenges in the past chapters. But
if you didn't do those challenges, there is a package created that will include
the other items and sections needed for the game.

Part of the power of Unity is that new art assets can be brought in and
configured anytime along the way. We could do most of the scripting in the
coming chapters first to work out the mechanics of the game, and then bring
in the art assets. We could add assets as the game play brought up new ideas;
it is a very nonlinear and flexible process.

If you are unhappy with your results thus far, an imported version of Aegis
and a bunch of other character assets are available on the support web site
(http://www.Creating3dGames.com) as CharacterAssets.unitypackage. Even
if you are happy with the results, download this and import into your project
(Asset>Import Package>Import Custom Package).

But with this we'll leave the creation and importing of assets behind. It's time
to make this thing a game!

Figure 10.50 Finished animation of Aegis turning.

322

Creating Games with Unity and Maya

Homework and Challenges
Challenge 1: Create a walk cycle for Aegis.
Challenge 2: Create a separate rig that is just Aegis's arms. Just have joints
for the clavicle and down. Make the weapons children of the wrist, and
animate Aegis pulling out and putting away the weapons. Remember this
is a first-person shooter, so all this animation will be viewed as though the
arms are yours (Figure 10.51).

Figure 10.51 Rigged arms.

Chapter 11

323
Creating Games with Unity and Maya
© 2011 by Elsevier Inc. All rights reserved.

Unity Sound

Chapter 11

Thus far we have imported levels that were modeled in Maya into Unity and
used Unity's atmospheric effects to add fog and particle-generated steam.
We've also brought in an animated character who runs an idle animation in
a loop. We've even used Unity's animation tools to create animation in the
game engine.

In this chapter we will make the experience further immersive with sound.
Unity 3 includes some very nice additional sound mechanisms that allow for
a very interesting experience for the player. Setting up sound is actually very
quick and simple in Unity and is one of my favorite parts of the engine. So, this
chapter will be short, but the overall effect with be huge.

Get the Sounds
This is often a problem, especially for students. Where to get those sounds
that can be used legally? On the one hand, if you go and record your own
sounds they are yours to use as desired. Unfortunately, most game designers
haven't the equipment or know-how to record good quality audio samples.
Luckily, online there are lots of good libraries that include some very
reasonable licensing fees. Among my favorites is http://www.sounddogs.com.

324

Creating Games with Unity and Maya

It allows for low-resolution versions of its sounds to be downloaded and
tested. Then if the sound clip is effective, a license can be purchased for
(usually) very reasonable terms. For commercial projects this is a
great way to go because it provides good quality sounds with a good
license.

An alternative, especially for students learning, is http://www.freesound.org.
The FreeSound Project has some great sounds released under a Creative
Commons Sampling Plus License (although you need to register to download
clips). Take a close look and read the full license for details of how to use the
sound and how it can be included in your project.

For this chapter, go to either of these sites, or to some other sound source of
your choosing, and pick up (as in download to the hard drive and save within
the Unity project file for Incursion; see step 1 in the upcoming tutorial for
details) the following sounds:

1. Waves: This should be a sound as though you are hearing the waves
rolling up on the shore. The version I am using is “oceanwavescrushing.wav”
(http://www.freesound.org/samplesViewSingle.php?id=48412). We will
use this sound whenever around the water of the EntryWay scene.

2. Mechanical rumble: This should be a low rumble as though heavy
machinery can be heard through a heavy door. We will use this sound
when approaching the entrance to the facility. I used “low_register.mp3”
(http://www.freesound.org/samplesViewSingle.php?id=33843).

3. Walking sound: This should be a subtle sound of someone walking
(preferably on cement). This sound is easy to overdo, so be sure to
remember this guy is supposed to be stealthy—so no stomping. I used
“WalkGravelLoop.wav” (http://www.freesound.org/samplesViewSingle.
php?id=31152). An alternative is “running gravel of dry leaves loop.wav”
(http://www.freesound.org/samplesViewSingle.php?id=54778).

4. Pistol shot: This will be used when Aegis (the player) fires his pistol.
I used “Gun-Pistol(One Shot).wav” (http://www.freesound.org/
samplesViewSingle.php?id=37236).

5. Others as desired. As you walk through the model, other sounds will
become obvious to use. Find some and place them as desired.

Tips and Tricks
Often a bit of editing is needed before a sound is “just right.” There are
many powerful audio editing tools on the market that can be purchased
for high-end sound editing. However, if you are looking for a cheap (as in
free) and reasonably powerful editing software, take a look at Audacity
(http://audacity.sourceforge.net/). It's Open Source and available for
Mac and PC. A very handy tool to have for those quick tweaks, or for the
occasional need in format conversion (although Unity is very tolerant of
sound formats).

325

Unity Sound

Sound Listener and Sound Source Paradigm
Unity works with a fairly straightforward metaphor for sound—namely,
one object contains or emits the sound, and another object hears it. Strictly
speaking, an Audio Source (emits the sound) is a component of a GameObject
placed in the scene. This means any object (ticking bomb, dripping pipe, etc.)
can have an Audio Source component and thus can be the source of audio.
However, an empty GameObject can also be created with the express purpose
of emitting sound from a certain locale.

Similarly, the Audio Listener is also a component of a GameObject in the
scene. Cameras automatically include the Audio Listener component. So our
First Person Controller's Main Camera is always listening for any Audio Sources
in the scene and then plays that sound through the player's speakers. Because
this is already in effect (you can take a look at it in the Inspector when Main
Camera is selected), and because the Audio Listener really has few options,
our main focus will be on creating and adjusting our Audio Sources.

Tutorial 11.1: Placing Sound in Unity
As discussed earlier, Audio Source components can be added to any
GameObject; however, I prefer to always assign static (as in not moving around
within the scene) Audio Sources to GameObject specifically created to house
them. It just allows for a much quicker understanding of the scene when I can
see the Audio Sources in the Hierarchy as opposed to searching them out if they
are attached to other GameObjects. This tutorial is built up on this preference.

Step 1: Be sure that the audio clips have been imported in Unity. In
the Project panel, choose Create>Folder. Name the new folder Sounds
and make sure all the sounds downloaded and assembled reside here.
Alternately, this organization could have been done previous to placing
the assets into the Unity project folder and simply placing the entire
Sounds folder within it.

Why?
Unity is pretty friendly when it comes to sounds. Among the sounds
included in my project is an .aif, .wav, and .mp3; and all came in without
so much as a complaint from Unity. It's one of the real benefits of Unity's
open arms approach.

Tips and Tricks
If an audio clip is selected in the Project panel, the Inspector will show
that clip. Of particular use is the Preview pane that will appear at the
bottom of the Inspector. Here you can take a quick listen to any sound
clip that is part of the Unity project.

326

Creating Games with Unity and Maya

Step 2: Create an empty GameObject to house the waves sound. Choose
GameObject>Create Empty. This will create a new GameObject in the
Hierarchy. Move this GameObject so it is just off the end of the dock
(where the ocean is (Figure 11.1)). Name this GameObject Sound-Waves.

Step 3: Add Audio Source component. With Sound-Waves selected in the
Hierarchy panel, choose Component>Audio>Audio Source. In the Inspector
notice the new Audio Source component that is part of Sound-Waves.
Step 4: Define the Audio Clip. Still with Sound-Waves selected so the
Audio Source component is visible in the Inspector, drag (from the Project
panel) the waves sound into the Audio Clip input field (note the target
icon next to the input field could also be clicked and the waves sound clip
chosen that way).
Step 5: Make the clip loop. Still in the Audio Source section, ensure that
Play on Awake and Loop are both checked.

Why?
The waves shouldn't stop. When the game starts, the sound for the
waves should be playing (Play on Awake), and when the end of the clip is
reached it should begin again (Loop).

Step 6: Play the game and adjust. Make sure you are wearing headphones
to see how the sound works in stereo, and walk around the scene. Walk
closer and further from the sound source. Open the 3D Sound Settings in
the Inspector window. If the sound gets too loud or too quiet, change the
Min Distance and Max Distance (within the Min Distance the volume is at
100%, and drops off until the player is outside of the Max Distance). The
settings I settled on were Min Distance = 10 and Max Distance = 500.

Why?
It's fairly important in this scene that the sound of the waves never
disappears completely—thus the very large Max Distance setting.

Figure 11.1 Placement of Sound-
Waves GameObject.

327

Unity Sound

Step 7: Repeat for additional sound source in the tunnel. Duplicate
Sound-Waves in the Hierarchy window by selecting it, then right-click it
and choose Duplicate. Rename the copy to Sound-Waves Tunnel and then
move it into place (Figure 11.2).

Why?
The idea here is that the waves lapping against the side of the tunnel will
create additional audio vibrations (sound). Placing an additional sound
source here will ensure that this effect is heard.

Step 8: Test, test, test. When working with sound, testing often is critical
and is really the only way to make sure that the settings work.

Audio Reverb Zones

Audio Reverb Zones are areas of the model where effects are applied to the
sounds that an Audio Listener is receiving. Audio Reverb Zones are fairly
easy to place and are pretty handy in most simple situations. They simply
create two spheres that define the effect of the reverb zone. The inner sphere
indicates the area in which the reverb is in full effect, and the effect drops off
to the volume of the outer sphere.

This works well, unless the zone is a cube (like the back of an enclosed truck).
This can create goofy situations where walking around the outside of the
truck can produce audio reverb effects as the player walks through the
spheres that define the zone.

Still, in situations like ours, this will work fine since we don't need a terribly
accurate zone (our zone will be the space under the covering).

Step 9: Create a new empty GameObject (GameObject>Create Empty).
Place it in the back corner (where the entrance is). Name the GameObject
Sound-ReverbZone.

Warnings and Pitfalls
When playing the game,
it is possible to make
changes to parameters
of components (like
Audio Sources) within
the scene; and when
these changes are made
they will instantaneously
be in effect. However,
remember that these
changes will revert once
the game is stopped.
So while tweaking
things like volume while
in-game are quick ways
to find the right values,
be sure to write these
values down because
they will need to be
input again when the
game is stopped.

Figure 11.2 Additional wave source
within the tunnel.

328

Creating Games with Unity and Maya

Step 10: Add Audio Reverb Zone component to Sound-ReverbZone. With
Sound-ReverbZone selected in the Hierarchy, choose Component>Audio>
Audio Reverb Zone. A new component will appear in the Inspector. In the
Scene view, adjust the Min Distance and Max Distance spheres (the blue
squares allow for these regions to be resized) to roughly match Figure 11.3.

Step 11: In the Inspector, change the Reverb Preset to Hangar.
Step 12: Test. Play the game with headphones, and take a listen to how
the audio changes when the player is within the Audio Reverb Zone.
Adjust the Min Distance, Max Distance, and Reverb Presets to taste.
Step 13: Add addition sounds as desired. For instance, I added another
sound source near the doorway entrance using the mechanical rumbling
sound. Be sure to adjust volumes and Min and Max distances to get this
just right. Adjust, test, and adjust again.
Step 14: Organize the sound sources. Create a new GameObject (make sure
it is at Transform Position 0,0,0) and rename it Sounds. Take all the sound
GameObjects created thus far and make them children of this new Sounds
(in the Hierarchy, just drag them onto Sounds).

Why?
We are starting to get a lot of objects floating around in the scene. By taking
a moment to organize we can hide collections of stuff that we don't need.

Footsteps

So far we have created ambient sounds, which are great and help make the
scene much more immersive. But there are other sounds (like footsteps) that
can also help bring the scene to life.

There are many ways to work with things like footsteps. In third-person games
the exact timing of footsteps could be very important—we'd want the sound
to play at the exact moment that the character's feet (which we can see) hit

Figure 11.3 Adjusting the reverb
zone.

329

Unity Sound

the ground. However, in this sort of game, where the player cannot see his
own feet, this sort of exact timing isn't of concern. However, being able to
hear those feet even if they can't be seen will help bring the player in.

To make this happen believably we will need to do just a bit of scripting. No
worries though. Although we won't spend a lot of time explaining the script
right now, after the next couple of chapters you can come back and take a look
at it and it'll be much easier to understand what the script is actually doing.

But before we get into any scripting, we need to create the necessary assets.

Step 15: Create a new Audio Source for the footsteps. First, select the
First Person Controller in the Hierarchy. Move the mouse over the Scene
view, and press F on the keyboard (this will focus on the First Person
Controller GameObject). Choose GameObject>Create Empty. Rename the
GameObject Sound-Footsteps.

Why?
By first focusing on an object, when the empty GameObject is created,
it will be created at the same location as the focused object. This means
this new GameObject (which will contain our Audio Source) is already
positioned correctly on the First Person Controller.

Step 16: Make this Sound-Footsteps a child of First Person Controller. Do this
in the Hierarchy by dragging it on top of First Person Controller. You will be
presented with a warning indicating that doing this will cause the loss of a
“prefab connection.” Go ahead and press the Continue button (Figure 11.4).

Why?
The footsteps are caused by the player's feet. Wherever the character
goes, those footsteps should go with him. By making the source a child
of the First Person Controller, when the footstep audio plays, the Audio
Listener attached to the Main Camera (also a child of the First Person
Controller) will always “hear” it.

Tips and Tricks
Losing prefab connection can be a hassle in some situations. Remember
that when importing an object into Unity, Unity automatically creates a

Figure 11.4 Losing prefab warning.

330

Creating Games with Unity and Maya

sort of prefab that can then be dragged up into the Hierarchy and used. If
any changes are made to the core GameObject, all the prefabs will update
to reflect this change. Especially when bouncing back and forth between
Maya and Unity, keeping a prefab connection can be of immense help
because the updates made in Maya will automatically propagate into the
scene when the new .fbx is brought in. However, in this case, where there
is only going to be one First Person Controller in this scene, it is of no
concern that we lose this prefab connection; go ahead and break it.

Step 17: Try this shortcut. From the Project panel, drag the footstep
audio clip up and drop it onto the Sound-Footsteps GameObject. This will
“automagically” add an Audio Source component to the GameObject. It's
really the same as using the Component>Audio>Audio Source method—
just quicker.
Step 18: Make sure the audio clip is set to Play on Awake and to Loop.
Remember both of these options are available in the Inspector in the
Audio Source component of the Sound-Footsteps GameObject.
Step 19: Play the game and adjust volume. It will be a little weird since
right now, when the game is played, the footsteps will be running all
the time. Ignore this little glitch and dial in the right volume for the
sound clip. We will make it so that the sound isn't continuously running
in a bit.

Scripting Sound

So we now have sound that we walk past. And we have sound that sticks
with us as the player as we walk through the scene. Now we need to take a
moment and make this sound only play on demand—when we're moving.

The process here will go like this: first, we'll make the Audio Source inactive so
that it doesn't play. Then we'll construct a simple script that will activate the
Audio Source when the player is moving; or more precisely, when the keys
that move the character are pressed.

Step 20: Deactivate Sound-Footsteps' Audio Source component. Do this
by selecting Sound-Footsteps in the Hierarchy panel. Then in the Inspector
panel, click off the Audio Source component. Be sure to leave Play on
Awake and Loop still checked.
Step 21: Create a new JavaScript. In the Project panel, choose
Create>JavaScript. This can also be done via Assets>Create>JavaScript.
A new icon will appear in the Project panel called NewBehaviourScript
(Unity is built by Europeans, thus the funky spelling). Note that the
icon next to it has a little JS on it for “JavaScript.” Rename this script
SoundFootstepsControl.
Step 22: Open the script. Do this by double-clicking the script in the
Project panel. This will open another application. By default on a PC it will
be UniSciTE and on a Mac it will be Unitron. There you will be presented
with the basics of a script (Figure 11.5).

331

Unity Sound

Step 23: Enter the following text:

function Update () {
if (Input.GetButton(“Vertical”) ||

Input.GetButton(“Horizontal”)){
audio.enabled = true;
}
else {

audio.enabled = false;
}

}

Tips and Tricks
Notice that there is that strange || symbol. That is the script symbol for
“or” and is generally made by pressing Shift-\ (the key right beneath the
Backspace key) on US keyboards. Also note that the line that begins with
"if (Input.GetButton)" is all one line and doesn't end until the "{".

Why?
OK, I know I said we weren't going to go into great depth about what was
happening here, but it's worth a quick look.

“function Update” just means “check every frame.” So the script tells Unity
to check every frame “if” the player is pushing the Vertical or Horizontal
buttons. And if he is, it sets the audio component to be enabled (audio.
enabled=true;), which means the audio is playing. If the player is not
pushing either of these buttons (else), it sets the audio component to
not be enabled (audio.enabled=false;) and thus turns the sound off.

Vertical and Horizontal are two inputs that are already defined in the
Input section of Unity (Edit>Project Settings>Input). Don't worry too
much about this for now, but Horizontal are the strafing A and D keys, and
Vertical are the W and S keys. So when W, A, S, or D are pressed, the audio
clip is enabled and the sound plays.

Step 24: Save the script (File>Save). When you return to Unity, open
the Console (Window>Console) where Unity will tell you of any obvious
syntax errors. If you find any errors, Unity will give point toward the line
number where the error exists. Go back and correct.

Figure 11.5 Basics of a script as presented in UniSciTE.

332

Creating Games with Unity and Maya

Tips and Tricks
Usually the errors are things like forgetting to close parenthesis or
forgetting the “;” at the end of a statement. Computers are pretty stupid
when it comes to writing script/code and can't interpret what you
mean—it has to be exactly right. Just be prepared to go back in and
double-check things in the script if Unity complains.

Step 25: Apply the script to Sound-Footsteps. Once there are no errors,
drag SoundFootstepsControl from the Project panel, up onto the Sound-
Footsteps GameObject in the Hierarchy. This script will now appear in the
Inspector if Sound-Footsteps is selected.
Step 26: Play and test. What should happen is every time the player
moves forward, backward, or side to side, the sound clip of the footsteps
will play. You can visually see this if you have the Inspector open for
Sound-Footsteps. Notice how the Audio Source checkmark turns on and
off when you push your A, D, S, and W buttons.

Conclusion
There it is. A short look at how Unity deals with sound. Pretty straightforward, eh?

Now of course, there are lots of details that can further enhance the power
of sound. Just the specifics of how a sound attenuates (drops off in volume
controlled via the Rolloff Mode settings for an Audio Source) based upon
how far away the player is from the source can add tremendous interest to
sound. However, in most situations, the baseline settings for Audio Source
with a bit of adjustments to the Min Distance and Max Distance does
the trick.

Don't cheat yourself on sound. Although the tools to control sound are fairly
quick and straightforward, a good sound design can do a lot for a game.
Spooky games are made downright scary with effective Foley (sound effects),
and an adrenaline-inducing first-person shooter can be made even more
intense with the right collection of sounds. Give it some love and sound will
help take your games to new levels.

In the next chapter we'll start looking at adding some real interactivity to the
game via a GUI.

Homework and Challenges
Challenge 1: Create a sound design for Hallway.

333
Creating Games with Unity and Maya
© 2011 by Elsevier Inc. All rights reserved.

c0060

Chapter 12

Introduction to Unity
Scripting Basics and Graphical
User Interface

In this chapter we are going to start to make this game a game! Now that we
have imported game levels and game characters and populated those levels
with light and sound, it's time to start making things interactive.

This is where the power of games starts to come through; without the
scripting part games are pretty pictures, or at best walk-through models. And
while there are markets for both of those, they both pale in comparison to the
market for an engaging game.

While strong graphical elements are often an important part of an immersive
game experience, they are not the primary driving force for games that are
fun. The gutless Wii is a perfect illustration of weak graphics but fun game play
driving big growth and big profits. Now, with the emergence of the PS3 Move
system and Xbox's Kinect we may get a look at the Wii control paradigm tied
to strong graphics; it's bound to be an exciting time in video game evolution.
But I digress….

334

Creating Games with Unity and Maya

The point here is that game mechanics need to be developed through
scripting; there's no way around it. Large studios (and even smaller
multiperson studios) usually departmentalize the responsibilities of a
game. The artists are the artists and produce the nonscripting assets, and
the scripters/software engineers do the scripting. There is little need for all
the artists to do a lot of scripting (or any, really) and the same goes for the
scripters. Here at the Los Alamos National Laboratory, in our team, we have
scripters and artists; and while the artists may mock up a game with a bit of
basic scripting, before that game goes out to the client, the software engineer
rebuilds the mechanics using more efficient and elegant code. However, for
most indie developers or game developers getting started it's one person
doing everything, and thus, even if you're coming from an art background,
scripting is necessary to get working.

Now after you sell that first million copies of your game and are ramping up
for the next, it might be worth it to hire a scripting specialist; it's probably
just a better use of your time if you're not a scripting maestro. But even then,
being able to speak a bit of the scripting language becomes an important
part of the team dynamic. So here we go.

Unity's Scripting Languages
Technically speaking, when scripting we aren't programming. That is, we
really need not know a great deal about the nuts and bolts of the game
engine source code to start taking advantage of it. Unity does this through a
collection of instructions or behaviors (called classes) that are accessible via a
few scripting languages. Through these scripts, these classes can be accessed
and utilized. Of further power, by writing scripts, new classes can be created
that can further access functionality deep down in the game engine
source code.

Unity uses three scripting languages, JavaScript (UnityScript), C#, and Boo.
These three scripting languages are really multiple ways of accessing the
same game engine core functionality; three tools with the same goal. One
caveat though: It would seem that Unity—since it supports all three scripting
languages—would be happy digesting all three within a project. And in fact,
there are times (check out the iTween package at http://itween.pixelplacement
.com) that a C# script can define classes that other scripting languages can't
access. Generally, once you pick your poison (scripting language), the entire
project should be built in that language. C# scripts and JavaScripts don't
communicate well with each other.

Boo Script

Boo is a type of Python, so if you've been using Maya's new Python mechanism,
you may find this is the way to go since it will be most analogous to your
knowledge set; however, Boo is the least used of the scripting languages within
the community, and in fact it can be a bit difficult to find help with it. A Boo

335

Introduction to Unity Scripting Basics and Graphical User Interface

script will appear in the Project panel as an icon with a little Pac-Man ghost on it
(those silly Unity guys!).

C#

This is probably the most powerful of the scripting mechanisms provided
with Unity. In my experience with hard-core software engineers working
with Unity, no matter which scripting language they start with, they end
up settling here. Especially if dealing with “lower level” access (system-level
stuff) and accessing things deep within Unity, C# provides better channels
into the heart of the beast.

Either way, C# use and support has been rapidly increasing in the Unity
community, and in fact, the documentation for Unity in Unity 3 includes
C# examples, which makes it much easier to use in time-sensitive situations.
In Unity, a C# script will have an icon with C# on it (imagine that!).

JavaScript

Alright, so excuse this technical detour but this is a bit tricky: Unity's JavaScript
isn't really what the rest of the world knows as JavaScript. JavaScript for Unity
is really very similar to Jscript.NET (much more than standard JavaScript). It's
so different in fact, that sometimes people refer to it as UnityScript. However,
on the forums or in the documentation, this sort of script is referred to as
JavaScript.

JavaScript is generally how people begin scripting in Unity. To the untrained
eye, it provides the most intuitive syntax. Additionally, scripts included on
Unity's Wiki or forums are most usually authored in JavaScript. Because of
these issues, in this book, we will be focusing on JavaScript to create our
interactivity through the course of these tutorials.

Using Scripts in Unity
There are actually a few different ways to use scripts in Unity's environment.
The way Unity knows to use a script is that it has to be attached to something
in the scene—anything really. Because of this, often scripts are implemented
into a scene by being attached to the object that the script is directly
affecting. In the last chapter, we did this with the Audio Source; we wrote
a script that turned that audio on and off, so we attached the script to the
GameObject that contained the sound. There is something very intuitive
about this—attach the script to the thing it affects. However, this can also
cause some problems later or for other members of a team since it can
sometimes be tough to track down or remember all the places that scripts
have been squirreled away. It's very frustrating to be trying to squash a bug
and have it be in a script you didn't even realize was in the scene because it
was attached to an object deep, deep within a hierarchy.

336

Creating Games with Unity and Maya

Alternatively, scripts can also be attached to empty GameObjects that serve no
other function but to hold scripts. So, for instance, an empty GameObject called
Script Holder could be created in a scene, and then all the scripts that were in
effect in the scene (or most of them anyway) would be attached to that object.
This has several benefits; for instance, if someone else picks up the project, they
know right where to go to find out what the functionality of the game was.
My software developer colleagues always use this sort of mechanism; they are
good at reading code and how code interacts with each other and find this
methodology much, much faster. For the beginner though, this can be tough.
The only way to know if an object is being affected by a script is to read through
the scripts; trying to discern those tea leaves can be a daunting task. Another
important benefit is this method can often keep prefabs intact. When a script
is hung off a prefab, it breaks it, or simply makes it so it's not tied to the original
any longer. By keeping the scripts elsewhere, these prefabs can be maintained,
which can make the asset update game a little easier.

For us, in this book, we will be using a little bit of both methods. It really is
easiest to get started by simply dropping a script on the object you want
affected; but in the long run, the script holder that contains scripts does allow
for some real benefits.

A Note about This Approach

Through the course of these scripting tutorials, we will be looking at concepts
realized through specific project-based efforts. Sometimes, this means we
won't be using the absolutely most efficient method on our first pass since
sometimes the most efficient methods are harder to understand. This means
that sometimes we'll create a script and then later go back and optimize our
approach as we learn more.

Tools for Scripts

The following section describes some tools that are available for use with scripts.

Editors
Unity itself does not edit scripts. Although you can view the contents of
a script within Unity, the actual editing of the asset is done in some other
application. On a Mac the included editor is Unitron. On the PC the included
editor is UniSciTE. There are many other editors that could be used; really any
basic text editor (Notepad for instance) can be used to edit scripts as they are
just basic text. Some of the more sophisticated script editors (MonoDevelop,
Unity Script Editor, or UnityDevelop) have some very elegant and powerful
functionality built in to assist in scripting.

Both UniSciTE and Unitron “understand” Unity's JavaScript, and thus will
provide some visual clues about the script that is being written. Often this
will include hints as simple as color coding recognized terms and can include
suggestive options as the editor tries to guess what you mean. In these

337

Introduction to Unity Scripting Basics and Graphical User Interface

tutorials we will use the default UniSciTE and Unitron; although give some of
those other editors a look—they do some great things.

When scripts are created or edited in the editor, they are just text. When the
script is saved (back into the Assets folder), Unity will take a look at the text and
attempt to compile the script—this means it checks to see if it understands the
script. If there are problems, they will show up in the Console and the game
will not run until the errors (mostly syntax) have been corrected.

Console
The Console is actually built into Unity, but is not (by default) shown (although
the last line of the Console is visible at the bottom left corner of the interface).
It's accessible via Window>Console. The Console can provide some important
information. First, if there are errors in a script, the error will be listed in the
Console. The Console will even attempt to let you know which line of which script
has the problem. None of the errors can be corrected in the Console, but after
fixing the problems, the Console will let you know all's well by not complaining.

Additionally, the Console can be used to report what's happening in a script.
Scripts can include commands that print values, or list what's called a (Debug.
Log) that can help track where a script was fired in game, or what Unity thinks
the values of a particular variable are. Being able to see the Console while
creating script is critical. Be sure it is visible (Window>Console), and docked
within the interface. To dock it, just drag the Console tab to where you wish
the Console to reside within the Unity interface.

What Is a Script?

A script contains commands (statements), organized in blocks and functions,
as described next.

Commands and Statements
At its core, scripts are collections of instructions or commands (sometimes
also called statements). In JavaScript, each command ends with a semicolon.
Without a semicolon, Unity will throw an error and require you to go back and
add that bit of punctuation before it will even bother reading the statement.
An example of a JavaScript command can be as simple as:

height = 6;

Blocks
A collection of commands are called blocks of code. JavaScript recognizes a
block of commands by { and }. It's important that for every single { there is a }.
Again, without this piece of punctuation, Unity won't bother trying to listen to
what you're saying. See the functions example next for how this works.

Functions
Commands can be just floating around within a script, but generally, blocks
of commands are grouped within a function. Grouping commands within a

338

Creating Games with Unity and Maya

function allows for control over when a collection of commands are actually
called on. For instance, if we're pulling a power switch, we only want
the animation to play when the character clicks the power switch on; by
grouping the collection of commands that do this into a function, we can tie
that function to a player's action (like clicking an object).

Any script may contain multiple functions. Some functions just are named by
you, the scripter, but there are also some predefined functions in Unity that
dictate how a block of code will be carried out, or more importantly, when.
These include things like function Update(), which means, “do these
instructions every frame of the game,” and function OnMouseDown(), which
means, “do these instructions when the player clicks on the object this script is
attached to.” Much more on these later.

The key to writing functions is to remember all the appropriate punctuation
hints. The format works like this:

function TurnSoundOff(){
audio.enabled = false;

}

We tell Unity we're building a function named TurnSoundOff with function
TurnSoundOff and tell it there are no particular parameters for the function
with the empty (). Then Unity knows we're starting the block of commands
for this function by the {. Then, the command audio.enabled = false; is
included and ended with a semicolon. Finally, we tell Unity we're done with
this function by ending it with a }.

Capitalization matters. “function” is not the same as “Function”. When defining a
function, always use lowercase function. Generally, the name of the function is
capitalized. The organization of this example block of code is mostly for readability.
The closing } is at the same indentation as the function (so it's easy to see that the
function has been closed. However, technically, it could also look like this:

function TurnSoundOff()
{audio.enabled = false;}

which is really tough to read, or like this:

function TurnSoundOff()
{

audio.enabled = false;
}

which is easier still to see how the function is created, but can make the code
very long and difficult to read in the book. Usually, the way code is formatted
is with the fairly standard:

function TurnSoundOff(){
audio.enabled = false;

}

339

Introduction to Unity Scripting Basics and Graphical User Interface

Variables
Variables are most often described as containers or named locations of
information. Variables can contain numbers (integers—whole numbers
with no decimal; or float—number with decimals), on/off switches
(Booleans), collections of text (strings), and XYZ values (Vector3) among
others. The way scripts work is by declaring the variables that will be used
by the script at the beginning of the script (although they can be declared
in other places along the way as well). Then, the functions that follow
know of these variables and more importantly of the value that they
contain. These values can be defined, accessed, or changed in the blocks
of code that follow.

Variables are defined with a declaration statement with the var label and
should start with lowercase. They can include letters and numbers but
shouldn't start with a number. Lastly, it's important that a variable not use
the name of other reserved terms that Unity uses for other purposes (so
no naming a variable “boolean,” for example, since that is used to define a
variable type). So, for instance, a variable declaration and access could look
like this:

var litScene : GameObject;

function TurnLightsOff (){
litScene.active = false;

}

So what's happening there is the script is starting off by declaring the variable
litScene (notice it's all one word with lowercase to start and uppercase to
define each new word) and we are assigning a type with the : GameObject
(this could also be Boolean, String, int, or float). Then, in the function
TurnLightsOff, we are deactivating this GameObject (which could be any
object in Unity) that we've given the name of litScene.

Of course, this script is pretty ineffective right now since we've defined a
function but have not told Unity when to “fire” it. It has the instructions,
but doesn't know when to use them. We would use other functions like
OnMouseDown to trigger that.

Dot Syntax
This is a very useful mechanism within Unity's JavaScript. Basically it is a
way of drilling down through objects to components and then to individual
attributes of components. It's a way of accessing information in a hierarchical
manner from biggest or most general to smallest or most specific. So for
instance if we wanted to set the rotation value of a GameObject that we have
defined (with a variable that we've named in the script as enemyTank) we
could do it like this:

enemyTank.transform.rotation.y = 60;

340

Creating Games with Unity and Maya

It starts with the GameObject enemyTank, then goes to the transform
component, then drills down to the rotation part of that component and
then the Y value and enters 60 for its value. Note that enemyTank is a name
known only to the script; the name of the object in the hierarchy could be
something entirely different. Later, we'll look at how to let the script know that
enemyTank is actually the object that we named MyAwesomeTank in Maya.
Also later we will look at how this can be used to define variables in other
scripts, and even other scripts attached to other GameObjects. When any
script can talk to any other script, very sophisticated things can happen.

Getting to It

That of course isn't everything about scripting. There's loads and loads of
powerful functionality there (if–then statements, counting, lerping, etc.), but
much of this is best understood in practice rather than endless descriptions
of what code is. In the tutorials of this chapter, we will be writing some scripts
using the basics described here, and then talk about what we've done. Along
the way new ideas will be presented, so be sure to read the Why? sections.

To get going on scripting, we're first going to build a GUI that we can use the
scripting mechanism on.

Tutorial 12.1: Graphical User Interfaces
Graphical User Interfaces (GUI—often pronounced “gooey”) are basically the
way the user interacts with the computer or program, and usually in ways
besides entering text (like through a command line). Computer and web users
are very familiar with GUI today, and in fact, most users would be lost without it.

GUI in games are important parts of the gamer's experience. At its most basic
level, a GUI will help a player know how to start playing the game after he's
been given instructions. In games, GUI has also come to include screen hints
or other information that helps the player know what to do and when to do it.
The most elegant games provide this guidance in much more intuitive ways,
but we will look at some straightforward (but clumsy) methods of providing
guidance in the game for the player.

To start with, though, we will use our opening scene as a vehicle to provide a
bit of background on the character as well as define the goals of the game.
To do this we will make use of Unity's GUITexture mechanism.

GUITexture

The name of GUITexture gives us some hints as to what sorts of assets it likes
to work with—textures. Because it is a texture, it means that Unity will be
using an image that it draws on the screen. For this opening GUI (Figure 12.1),
we will be using several images—a logo, three buttons (mission, bio, begin),
two data panels (one to show the mission and another for Aegis's bio info),
and finally a Loading plate.

341

Introduction to Unity Scripting Basics and Graphical User Interface

You can make these yourself if you'd like, or they can be downloaded
on the supporting web site (http://www.Creating3dGames.com) as
2DAssets.unitypackage and imported into your project via Assets>Import
Package>Custom Package.

A few notes about these textures for use in GUITextures:

•	 They	were	created	in	Photoshop.
•	 The	size	of	the	textures	are	all	power	of	two.	The	buttons	are	512×128,	

the	logo	is	1024×256,	the	data	panels	are	512×512,	and	the	loading	
plate	is	1024×1024.	Although	not	strictly	necessary,	coming	in	as	
power-of-two textures makes the compression faster and keeps the
images cleaner.

•	 Each	of	the	textures	(except	for	the	Loading	plate)	have	a	distinct	Alpha	
channel (not just a transparent background in Photoshop).

Step 1: Make sure the assets are present in the project. They should be
visible in the Project panel. If you imported the 2DAssets.unitypackage,
they will be within a folder called 2D Assets.
Step 2: Open the Unity scene Scene-Opening by double-clicking it in the
Project panel. Remember that this is the scene we created earlier with
Aegis spinning.
Step 3: Organize the interface to allow the Game window to be clear
and large. If you have a dual-monitor setup, setting up the Game
window to fill an entire monitor is very helpful. Even if you don't
optimize by grabbing the Game tab and tearing it away from the
interface so that it is a floating window, resize the window to fill much of
your available screen.

Why?
Laying out GUI requires that the game can be seen. Making sure it's not
nested or squished within the Unity interface will provide a better chance
of getting the look of the final game upon construction.

Warnings and Pitfalls
Remember that
when bringing
packages in, always
use Assets>Import
Package—dragging a
package into your Assets
folder will not work.

Warnings and Pitfalls
When this 2DAssets
package is imported, you
are likely to get some
errors in relation to an
“Unknown identifier:
‘iTween’ ” This is due to
some things that we'll
work on later, so for
now, don't worry about
these errors. They'll be
fixed later when iTween
is brought into your
project.

Figure 12.1 Interface with
GUITextures.

342

Creating Games with Unity and Maya

Step 4: In the Scene window, move the Main Camera in the scene so that
(in the Game window) Aegis appears on the side with room for the GUI on
the right side of the screen.
Step 5: Create a GUITexture GameObject. Choose GameObject>Create
Other>GUI Texture. A new GameObject will appear in the Hierarchy panel
called UnityWatermark-small (or possibly New Texture, depending on your
system setup). You will also likely see a Unity logo appear in the middle
of both the Scene and Game windows. This is the GUITexture that Unity
automatically and narcissistically assigns its own logo to.
Step 6: Assign the Incursion_Logo texture to the GUITexture. Do this by
either dragging the Incursion_Logo texture from the 2D Assets folder in
the Project panel to the Texture input field of the GUITexture component
in the Inspector, or by using the target icon button next to the Texture
(of the GUITexture component) input field.
Step 7: Resize the texture. Do this in the Inspector under the GUITexture
component.	Expand	the	Pixel	Inset	section	and	change	the	Width	to	512	
and	the	Height	to	128	(or	smaller	if	need	be	on	your	monitor).

Tips and Tricks
Defining the Width and Height defines the absolute size of the GUITexture
on	the	screen.	Although	the	image	was	built	at	much	larger	(1024×256),	
upon placement it just seemed too big. But because we can define the
absolute size in the GUITexture component, the original size doesn't carry
a huge importance. Do keep in mind though that if the Width and Height
are set larger than the original image, there is always some degradation
of quality, and sometimes it's just worth it to go back into Photoshop and
rebuild the image at a more appropriate size.

Step 8:	Position	the	logo	by	changing	the	Transform	X	=	0.5,	the	Transform	
Y = 1, and changing the Pixel Inset X = 0 and Y = –200. All of this of course
is done in the Inspector (Figure 12.2).

Why?
Step	7	resized	the	texture	while	step	8	gets	it	in	the	right	spot.	The	way	
that GUITextures work can be a little confusing. Notice that by default
the	Transform	component	for	the	New	Texture	object	is	set	up	with	X	=	0.5	
and	Y	=	0.5	(note	that	these	are	not	the	Pixel	Inset	values,	they	are	the	
Transform values); this is the center of the screen. What's happening here
is	Unity	looks	at	the	total	size	of	the	screen	and	defines	it	at	1×1.	X	=	0	
and Y = 0 is the bottom-left corner of the screen while X = 1 and Y = 1
is the top right. Unity takes the bottom-left corner of the GUITexture, and
places it at the Transform Position coordinates, then offsets the image
according to the Pixel Inset section of the GUITexture component.

So, since Unity thinks of the image's axis point as the bottom left if the Pixel
Inset X and Y are both set to 0, and the Transform's X and Y are both at 0, the
image will be nested against the bottom-left corner of the screen. Give it a try.

343

Introduction to Unity Scripting Basics and Graphical User Interface

If	Transform's	Position	X	is	0.5,	the	bottom-left	corner	of	the	image	will	be	
in the middle of the screen horizontally. Then, if the Pixel Inset for X is set
to the negative value of half the size of the image (offsetting the image
half the width of the image to the left), the center of the image will be
sitting	at	exactly	halfway	on	the	screen	horizontally.	So	if	the	image	is	512	
pixels	wide,	having	the	Transform's	Position	X	=	0.5	and	the	Pixel	Inset	
X	=	–256,	the	center	of	the	image	(horizontally)	will	be	at	the	horizontal	
center of the screen.

If the assumption is that the screen will be split about in half with the left
half being Aegis spinning and the interface on the right half (or a little
more than the right half), we can align the left corner of the image in the
center	of	the	screen	(Transform's	Position	X	=	0.5).	Then,	if	it	should	be	at	
the top we can change the Transform's Position Y = 1. Then change the
Pixel Inset Y = –200 (this pulls it 200 pixels off the top of the screen).

Step 9: Rename the GameObject to Incursion_Logo.
Step 10: Create another GUITexture and assign the texture Button_
Mission to it. Change its Pixel Inset Width to 256 and Height to 64. Rename
New Texture to Button_Mission.
Step 11: Change the Transform Position X=0.5 and Y=0.

Why?
This will roughly place this button at the bottom center of the screen.
From here we can finesse its placement on the screen.

Figure 12.2 Settings for the
title logo.

344

Creating Games with Unity and Maya

Step 12: In the Inspector window, move the mouse so that it rests over
Pixel Inset X. Notice that the mouse grows a pair of arrows (Figure 12.3).
By clicking-dragging here, the value of Pixel Inset X will dial up or down.
Correspondingly, the image will slide left and right in the Game window.
Position it toward the bottom of the screen to allow for additional content
between it and the logo (Figure 12.4).

Step 13: Copy and paste Button_Mission. Change the Texture from
Button_Mission to Button_Bio. Rename in the Hierarchy to Button_Bio.
Use the sliding value trick to adjust the Pixel Inset X to slide this new one
over to the right.
Step 14: Repeat step 13, but use Button_Begin. Be sure to rename
appropriately. The final output should look something like Figure 12.5.

Figure 12.4 First button placed.

Figure 12.5 Placed and named buttons and data panels.

Figure 12.3 Grown arrows allowing for values to be slid up and down.

345

Introduction to Unity Scripting Basics and Graphical User Interface

Step 15: Create biography data panel. Do this by creating a GUITexture,
using DataPanel_Biography (in 2D Assets) to define the Texture. Center it
on the screen (Transform Position X = 0.5 and Y = 0.5). Set the size to
512×512	(Pixel	Inset	Width	=	512, Height = 512) and offset Y to taste (Pixel
Inset Y = –256 on my screen). Rename to DataPanel_Biography.
Step 16:	Repeat	step	15	and	create	a	data	panel	DataPanel_Mission.
You could also just copy/paste DataPanel_Biography, swap the Texture (use
DataPanel_Mission from the 2D Assets), and rename to DataPanel_Mission.

Why?
Note that both of the DataPanels will be active and right on top of each
other. Don't worry, we'll hide them in just a bit.

Step 17: Change the color of each of the buttons to a dark gray. Do this
by selected each button in the Hierarchy panel. Then in the Inspector
panel, click the Color swatch. Pick a darker gray (I used RGB all equal
to	50).

Why?
The idea here is to make the buttons highlight white when the player
mouses over them. Although we could define this programmatically, we
can also manually start with the buttons unhighlighted.

Scripting the GUI

Step 18: Nest the Console in your interface. First make the Console visible
with Window>Console. Grab the console tab and drag it over the Unity
interface. Unity will attempt to snap and dock it into place. When the
mouse is released, the console will stay there.
Step 19: Create a Scripts folder to hold the script assets. In the Projects
panel, be sure nothing is selected (click some empty gray space if need
be), and choose Create>Folder. Rename the folder Scripts.
Step 20: Create a new script in the Scripts folder. To do this, select
the Scripts folder and choose Create>JavaScript. This will create a
NewBehaviourScript that is already inside the Scripts folder.
Step 21: Rename the NewBehaviourScript to OpenSceneButtonsScript.
Step 22: Open the script by double-clicking OpenSceneButtonsScript.
This will open either Unitron or UniSciTE (or another script editor if you've
defined it to do so).
Step 23: Delete all the contents of the script (highlight it all and delete).

Why?
By default these new scripts contain the built-in function, function Update()
and the {} that sandwich the function Unity is sure you're going to write.
In this case, we are going to write a function that doesn't fire every frame

346

Creating Games with Unity and Maya

(which is what Update does) but rather fires only when the mouse is over
an object—in this case a GUITexture. So delete the suggested script start.

Step 24: Enter the following script:

function OnMouseEnter () {
guiTexture.color = Color (1,1,1);

}

Why?
OnMouseEnter is a built-in function Unity knows and includes. Basically,
when using it Unity is saying, “when the mouse enters the space of
the object this script is attached to, do the commands within the {}.”
In this case, the commands between the {} is to define the color of the
GUITexture to be RGB = 1 (the three values there (1,1,1) are (R,G,B). So
when this script is attached to one of the GUITextures that are buttons,
when the mouse rolls over it, it will pop up white.

Step 25: Save, and go back into Unity. Check the Console for errors
(usually a forgotten “;” or a missing “)” or “}”). If the Console remains quiet,
all's well with the syntax of the script.

Tips and Tricks
If there are problems with the script's syntax, Unity will point out which
line numbers they are on. Annoyingly, UniSciTE is set up so that the line
numbers don't appear by default. To display them, in UniSciTE, choose
View>Line Numbers. Having access to that makes fixing syntax problems
much, much faster.

Step 26: Apply the script. Drag the OpenSceneButtonsScript script from
the Project panel onto the Button_Mission GameObject in the Hierarchy.
Also drag the script to Button_Bio and Button_Begin.

Tips and Tricks
Note that what's happening here is we are using the same script on
multiple objects. Reusing scripts like this can be a tremendous time saver.

Why?
Right now we are draping individual objects with scripts that affect
those objects' direction. It's worthwhile to point out that the dot syntax
is in full effect here. In the script, the command reads guiTexture.color,
but what this really means is this.guiTexture.color. The “this” means this
GameObject the script is attached to. So it's looking at the GameObject
the script is attached to, then down to the guiTexture component, and
the color attribute of that component.

Warnings and Pitfalls
Before Unity will let you
run a game, all the script
errors must be fixed.
If (for some reason),
you have scripts that
were brought in from a
unitypackage that you
aren't using and they're
throwing errors, you
can just delete, or even
better, copy them to
some place outside of
the Unity assets folder
and then delete them
from the Unity project
(be sure to delete from
within Unity).

347

Introduction to Unity Scripting Basics and Graphical User Interface

Step 27: Play the game. Move the mouse over the buttons and watch them
light up.

Why?
But there's a problem, no? The buttons light up but they stay lit. The
reason for this is that the script is looking for the frame where the
mouse moves over the button and on that frame it fires the command
guiTexture.color = Color (1,1,1);. Then it doesn't do anything to this
GameObject until the mouse again is over it. It means that the guiTexture
node never gets the instructions to go back to gray. But we can fix that.

Step 28: Reopen the OpenSceneButtonsScript script by double-clicking it
in the Project panel. Add the following text to the script:

function OnMouseExit (){
guiTexture.color = Color (.2,.2,.2);

}

Why?
Taking a look at this, you can see that the script just watches for when the
mouse exits the object, and then changes the color to RGB = 0.2 (which
happens to be the gray of the unhighlighted buttons). So we now have
a function that does one thing when the mouse is on the button, and
another when it leaves.

Step 29: Save, check the console for errors, fix any that appear, and test
the game. The buttons should highlight and darken appropriately.

Recognize What's Being Clicked
Alrighty. The buttons highlight and dehighlight, but they do nothing when
clicked. To make this happen we need to flush out the script still further.
Now, on the one hand we could create a custom script for each button that
said OnMouseDown activate the corresponding DataPanel. However, this
would have to be custom to each button since the Bio button would need to
activate the DataPanel_Biography object and deactivate DataPanel_Mission,
but it would be the opposite for the Mission button. Then, the Button_Begin
would need yet another collection of script to launch the next game level.

If Statements
Instead, let's look at a little more elegant approach and modify the existing
script to do all of this for us. To do this, we need Unity to check the name of
the object it is clicking. To do this we need to look at the idea of if statements.

The format for if statements goes like this (this isn't real code, just an illustration):

if(this is true){
do these things;

}

348

Creating Games with Unity and Maya

There are a few ways to ask Unity to check if (this is true). One way is to check
if two values equal each other. To check this, JavaScript uses two equals signs
(==). One equal sign is used to define a value, two checks for equivalency. So
(with some more pseudo code):

if (pieceofClothing == “hat”){
PutOnHead

}

This checks if the piece of clothing is a hat. If it is (==“hat”), then go ahead and
fire the command Put On Head.

What we're going to do there is when a button is clicked, Unity is going to
check to see if the name of the object matches “Button_Bio” for instance, and
then if it does, activate the DataPanel_Biography GameObject.

But before we do that, we need to create some variables to hold the
DataPanel objects. Then these variables can be used in the code to turn the
DataPanels on and off.

Step 30: Open OpenSceneButtonsScript. At the top of the script make the
following variable declarations (the entire code is included here with the
additions in italics):

var dataPanelBiography : GameObject;
var dataPanelMission : GameObject;

function OnMouseEnter () {
guiTexture.color = Color (1,1,1);

}

function OnMouseExit (){
guiTexture.color = Color (.2,.2,.2);

}

Why?
We know it's a variable declaration because it begins with var. Then we
name the variable (dataPanelBiography and dataPanelMission) and
define its type (tell Unity what kind of information will be housed in this
variable—in this case a GameObject). This means anywhere else in the
code we can do things to, or get information from, these new variables.
Of course, we aren't doing anything with them and we have not linked
them to our GUI Textures quite yet, but we will.

Step 31: Save and return to Unity.
Step 32: Assign the contents of the variables. Select any of the three
buttons where this script is attached and look for the Button Highlight
(Script) component that will show up in the Inspector. Notice that there
are two new input fields there (Data Panel Biography and Data Panel
Mission). These are the variables we just declared. Both should read None
(Game Object). To assign a GameObject to this variable, just drag the
GameObject from the Hierarchy onto the input field. So for Data Panel

349

Introduction to Unity Scripting Basics and Graphical User Interface

Biography, drag the DataPanel_Biography GUITexture object from the
Hierarchy to its input field. Do the same for Data Panel Mission. Repeat this
process for each of the buttons.

Why?
Now each button knows what the DataPanels are. Now it's time to define
what to do with them.

Step 33: Open OpenSceneButtonsScript (or just swap to UniSciTE or
Unitron where the script is likely still open).
Step 34: Add the following block (italicized):

var dataPanelBiography : GameObject;
var dataPanelMission : GameObject;

function OnMouseEnter () {
guiTexture.color = Color (1,1,1);

}

function OnMouseExit (){
guiTexture.color = Color (.2,.2,.2);

}

function OnMouseDown(){
if (name == “Button_Bio”){

dataPanelBiography.guiTexture.enabled = true;
dataPanelMission.guiTexture.enabled = false;

}
}

Why?
The first part of the script (function OnMouseDown ()) should be
pretty clear now. We're telling Unity that when the mouse is clicked
on this object do the things within {}. Then comes the powerful part;
when the object (what this script is attached to) checks to see if the
name is “Button_Bio” (if name == “Button_Bio”, and it is important
that the name typed here matches exactly the name listed in the
Hierarchy). If it is, turn on the dataPanelBiography's GUITexture
component (dataPanelBiography.guitTexture.enabled=true) and turn
off the dataPanelMission component (dataPanelBiography.guiTexture.
enabled=false).

If the name of the object clicked is not “Button_Bio” it moves on to the
next block of code.

Tips and Tricks
Enabled vs Active: Generally GameObjects are activated (this
.active = true), while components are enabled (this.component
.enabled = true).

350

Creating Games with Unity and Maya

Step 35: Further flesh out the checking mechanism to include the
Mission button:

var dataPanelBiography : GameObject;
var dataPanelMission : GameObject;

function OnMouseEnter () {
guiTexture.color = Color (1,1,1);

}

function OnMouseExit (){
guiTexture.color = Color (.2,.2,.2);

}

function OnMouseDown(){
if (name == “Button_Bio”){

dataPanelBiography.guiTexture.enabled = true;
dataPanelMission.guiTexture.enabled = false;

}
if (name == “Button_Mission”){

dataPanelMission.guiTexture.enabled = true;
dataPanelBiography.guiTexture.enabled = false;

}
}

Why?
Now, when the object is clicked it checks to see if the name of the object
is “Button_Bio”; if it is not, it checks to see if its name is “Button_Mission”
and if it is, it disables dataPanelMission's GUITexture and enables
dataPanelBiography's GUITexture.

Step 36: Allow the game to start on clicking the begin button.

var dataPanelBiography : GameObject;
var dataPanelMission : GameObject;

function OnMouseEnter () {
guiTexture.color = Color (1,1,1);

}

function OnMouseExit (){
guiTexture.color = Color (.2,.2,.2);

}

function OnMouseDown(){
if (name == “Button_Bio”){

dataPanelBiography.guiTexture.enabled = true;
dataPanelMission.guiTexture.enabled = false;

}
if (name == “Button_Mission”){

dataPanelMission.guiTexture.enabled = true;
dataPanelBiography.guiTexture.enabled = false;

351

Introduction to Unity Scripting Basics and Graphical User Interface

}
if (name == “Button_Begin”){

Application.LoadLevel (“Scene-EntryWay”);
}

}

Why?
Lastly, if the object is named “Button_Begin” it will load the level or go
to the level Scene-EntryWay, which is the Unity scene created in earlier
tutorials.

Step 37: Save and return to Unity. Adjust any errors with syntax; this can
take a little while and some careful scrutiny, but remember Unity won't
run until the syntax is acceptable.
Step 38: Deactivate DataPanel_Biography and DataPanel_Mission
GameObjects' GUITextures. One at a time, select the GameObject in the
Hierarchy, then in the Inspector click off GUITexture component. This will
make these DataPanels disappear from the Game view.

Why?
When the level starts, both of the DataPanels should be off and only be
visible when their corresponding button is clicked.

Step 39: Play. Test the game. The mission and bio buttons should both
work and show the corresponding DataPanels when clicked. The begin
button assuredly will not work yet—we'll fix that in a bit.

Further Optimization
The script works (well mostly, but we'll fix that Begin button in a bit). However,
it's fairly clumsy to have to define manually the DataPanels for each pesky
button. It would sure be nice if Unity would do that for us.

function Start and function Awake
So far we have used functions that are activated when a specific user-defined
event occurs (the player moves the mouse over an object, leaves the object,
or clicks the object). We can also write functions that happen when the game
begins on an object (containing a script) that is activated.

function Awake is a function that is called when the game launches. Well,
in theory it fires after all the objects in the scene are loaded, but before the
player can interact with the rest of the game. This means certain settings can
be set here, or variables defined.

A close cousin to function Awake is function Start. The difference is that
function Start fires after function Awake, and will fire only if the object is
active. This means an object could be turned off and the game started, and

352

Creating Games with Unity and Maya

the function Start would remain dormant but would fire up as soon as the
object was activated. However, anything that is in a function Awake will still
fire whether the object is active or not.

The reason all this matters to us is we can have the script go and find our
two DataPanels and populate the variables of the OpenSceneButtonsScript
for us (no need to manually populate). For most cases where we're defining
variables, function Awake should be used because the definitions should
happen right at the beginning.

Step 40: Reopen OpenSceneButtonsScript . Replace the variable
declarations with the following:

private var dataPanelBiography : GameObject;
private var dataPanelMission : GameObject;

function Awake (){
dataPanelBiography =

GameObject.Find(“DataPanel_Biography”);
dataPanelMission =

GameObject.Find(“DataPanel_Mission”);
}

function OnMouseEnter () {
guiTexture.color = Color (1,1,1);

}

function OnMouseExit (){
guiTexture.color = Color (.2,.2,.2);

}

function OnMouseDown(){
if (name == “Button_Bio”){

dataPanelBiography.guiTexture.enabled = true;
dataPanelMission.guiTexture.enabled = false;

}
if (name == “Button_Mission”){

dataPanelMission.guiTexture.enabled = true;
dataPanelBiography.guiTexture.enabled = false;

}
if (name == “Button_Begin”){

Application.LoadLevel (“Scene-EntryWay”);
}

}

Why?
There are two things happening here. First, private was added before
each of the variable declarations. A private variable is a variable that can
be defined, but it isn't defined in the Unity Editor via dragging items as
we did before. Although these could remain public, since they are going
to be defined in the script, it keeps another developer from trying (or
feeling like they need) to populate variables.

Warnings and Pitfalls
GameObject.Find is
a very handy tool to
have. However, it can
quickly be abused. For
instance, if GameObject.
Find is contained within
a function Update, this
means that Unity is
being asked to go find
an object on every single
frame. Very many of
these and suddenly Unity
is more busy looking for
objects than it is running
the game. Generally,
use GameObject.Find
when it can fire once
(like in function Awake
situations or within
another function that is
called at a very specific
time).

Warnings and Pitfalls
Some of the lines of
code are longer than
the format of a book will
allow. Remember that
there is usually a new
line at the end of each
statement, and that each
statement ends with a ";".
So if a line shown here
doesn't end with a ";" or
a "{" (for blocks of code),
keep it as a solid line of
code.

353

Introduction to Unity Scripting Basics and Graphical User Interface

Next is the function Awake section. It uses the handy GameObject.Find
functionality. The code statements are defining the two variables we've
declared earlier, and doing so by going out and finding the GameObjects
whose names match DataPanel_Biography and DataPanel_Mission,
respectively.

Step 41: Save and return to Unity.
Step 42: Select any of the buttons and notice that the public variables are
gone. But note that when the game is played, everything still works.

Application.LoadLevel
The last button, the Begin button makes use of the Application.LoadLevel
function. This allows us to move from one Unity scene to another. However, if
the Begin button is clicked now a warning will pop up in the console that says
“Level ‘Scene-EntryWay’ (-1) couldn't be loaded because it has not been added
to the build settings.” We haven't talked much of builds, and we will much
more later, but it will be important to cover a bit of it here.

Build Settings
Builds are actually what Unity outputs. People play the builds that Unity
produces. Part of Unity's strength is the ability to author once and then output
builds for multiple platforms. Incursion is undoubtedly too heavy for mobile
devices, although with a bit of poly paring down and the appropriate licenses
it could ultimately be published to Android or iOS.

The Build Settings are where the target platform is defined, and the levels
to be included are indicated. To access the Build Settings go to File>Build
Settings (Figure 12.6).

Figure 12.6 Build settings.

354

Creating Games with Unity and Maya

The top part of the Build Settings window (Scenes in Build) is where the
scenes that are to be included in the build are dragged to. Figure 12.6 shows
what it looks like after this area is populated for Incursion. Below that is where
the Platform and details of that platform (Windows vs Mac) are defined. Down
at the bottom also includes options to adjust the Player Settings (this is Player
as in the container that holds the game, not the player that is the person
playing the game). There are also the Build and Build and Run buttons. These
will actually output the game as it presently stands.

But don't output yet; for now, just populate the Scenes in Build with Scene-
Opening and Scene-EntryWay and close the window.

Step 43: Populate scenes to be included in the game by dragging the
scene files from the Project panel into the Scene In Build section of the
Build Settings window.
Step 44: Play the game. This time, when the begin button is pressed you'll
be immediately transported to the EntryWay built in past tutorials.

Conclusion
So there's your first script. Well, ok, maybe the second, but hopefully the first
where you understand how things were constructed and why.

There's actually a lot that was covered in this introduction to scripting. You
now know how to construct a block of code, what a function is, several types
of functions, and how to declare variables, and how to populate them in the
editor or populate them via script.

But, there is still lots to do and lots to learn. In the next chapter we'll start looking
at more advanced functionality and setups that will allow the player to enter a
blackened base with a flashlight, find the power switch, and turn everything on.

Homework and Challenges
Challenge 1: Going from the Opening scene to the EntryWay scene works,
but is a little abrupt—everything freezes and then jumps suddenly to the
next scene. Use the OpenButtonsScript to add a big Loading Plate that
comes up when the Begin button is pressed so the player doesn't think
the game has frozen.

Hints:

1. Remember to build a new GUITexture object.
2. Account for this new GUITexture in the script both as a variable and when

the variable is populated.
3. Be sure to pull up this new GUITexture before the command that takes us

to the new level.
4. Note that in addition to Transform X and Y, there is still a Transform Z. This

determines which GUITexture (if there are several) is closer to the camera,
and thus drawn on top.

Chapter 13

355
Creating Games with Unity and Maya
© 2011 by Elsevier Inc. All rights reserved.

Unity Triggers

Chapter 13

Thus far we have looked at causing commands to be fired on user-driven
events (such as mouse over, mouse down, etc.). We've looked at firing
commands at the game's opening. In this chapter we will begin looking at
firing commands based upon where the player is in the level. We'll do this via
triggers.

Specifically we will look at using this sort of mechanism to provide screen
hints via GUIText. Additionally, this will allow for a new way to move from this
EntryWay level to the Hallway level. Triggers can be used to trip any event
though. Booby traps could be sprung, lighting changed, objects created or
destroyed, all through a trigger.

The First Person Controller has a collider around it that's actually part of
the Character Controller script. Remember that colliders are Unity's way
of keeping track of when objects bump into each other or penetrate each
other (referred to as collision detection). When we imported the EntryWay
level from Maya, we activated the Generate Colliders option in the FBX
Import section. This ensured that we didn't fall through the floor—the
collider of the level and the collider on the First Person Controller kept this
from happening.

356

Creating Games with Unity and Maya

Any object can be a trigger. With a bit of script the collider that is attached to
an object won't act as a stop for other objects coming into contact with it, but
rather will make note that it's happening. On the frame that another collider
collides with an object that is designated as a trigger, other events can be
triggered via linked functions.

Designating Triggers
Any object with a collider can be a trigger. Usually though, the easiest thing
to do is create a cube (Asset>Create Other>Cube) since it already comes
with an efficient Box Collider component. Then, to make it a trigger, just
click the Is Trigger checkbox in the Inspector under the Box Collider section
(Figure 13.1). Then, checking off the Mesh Renderer component makes the
trigger invisible to the player.

Tutorial 13.1: Activating and Changing
Screen Hints with Triggers
In this chapter we are going to tackle a couple of Unity tricks at once. We are
going to use triggers to help the player understand where he is supposed
to go and what he is supposed to be doing. While a really elegant game will
provide this in a much more subtle way (sometimes providing a training level,
sometimes simply by great game mechanics design), for our short game we'll
be more overt and just tell the player what to do.

To do this we will first look at how Unity works with GUIText. GUIText is simply text
that is drawn on the screen above everything else; this is similar to GUITextures
except this uses a font and can be dynamic (the text can change in game).

Figure 13.1 Designating a trigger.

357

Unity Triggers

Then, once we have set up some GUIText, we will set up triggers that
designate when certain text should appear. Lastly, we'll tie it all together and
work with the particularly powerful idea of firing functions contained in one
script through the commands of another. A quick disclaimer: The method
we're employing here will be a great illustration of some concepts within
Unity. However, some of these things can be done more efficiently and we'll
revisit this mechanism later to tighten things up.

Step 1: Open Scene-EntryWay in Unity.

GUIText

Step 2: Create a GUIText GameObject. GameObject>Create Other>GUIText.
This will create a new GameObject in the Hierarchy that contains a GUIText
component accessible in the Inspector. It will also draw the words “GUI
Text” in the middle of the Game and Scene windows.
Step 3: Rename the GUIText GameObject to GUITextHints.
Step 4: Select GUITextHints in the Hierarchy and in the Inspector change
the Anchor to Lower Center. Change Alignment to Center. Change the
Font Size to 30 (or to taste). Finally use Unity's sliding value arrows to
change the Pixel Offset Y and pull the GUIText to the bottom of the screen
(Figure 13.2).

Why?
GUIText has a few more options than the GUITextures, and some that
are quite handy. For instance, Anchor allows for a different axis for the
text. With a lower center for the Anchor setting and a center setting for
the Alignment, we can easily make sure that the text is centered at the
bottom of the screen. This is especially powerful because later we will be
dynamically adjusting the text that actually appears, and these settings
will ensure that the block of text down there has a quick and reliable
typographical layout.

Figure 13.2 Settings and results of
the GUIText adjustments.

358

Creating Games with Unity and Maya

Custom Fonts

GUIText allows for the use of outside fonts. True to Unity's work flow
paradigm, fonts are considered just another asset, and thus are imported
by dropping them into the Unity project Assets folder. True Type Fonts work
great and are readily available all over the web. I'm using a font called Mom's
Typewriter that is easily found with a quick Google search. Find a font you like
and download it to your hard drive.

Step 5: Import your font. Do this in your OS and drag the downloaded (or
installed font) into the Assets folder of the Incursion–Unity project folder.
I placed my copy of the font in my 2D Assets folder.
Step 6: Use the font for GUITextHints. To do this, just select GUITextHints and
drag the font from the Project panel to the Font input field of the GUIText
component. The GUIText on screen will update to this new font (Figure 13.3).

Step 7: Deactivate the GUIText component for GUITextHints (in the Inspector).

Why?
We don't want text always visible—only when prompted by triggers. Turning
it off here allows us to flip it back on via script when we want it there.

Creating Triggers

There's actually very little new information here. Creating triggers (in this
case) will be the process of creating and placing Cubes in the spots of the
game where we want screen hints to appear.

Step 8: Move the First Person Controller to approximate Figure 13.4, as
though he has just come up over the mountain after being dropped off in
the vicinity.

Figure 13.3 Updated font.

Figure 13.4 Rough starting location
of the First Person Controller.

359

Unity Triggers

Step 9: Create and place a cube to match Figure 13.5. Create the cube
with GameObject>Create Other>Cube. Move, scale, and rotate the cube
so its location approximates Figure 13.5.

Why?
Basically we're boxing in the First Person Controller. No matter where the
player goes, he will hit this box and get the first bit of information that will
tell him to go find the door.

Step 10: Rename the cube Trigger-FindDoorHint.
Step 11: Make Trigger-FindDoorHint a trigger. Do this in the Inspector
with the object selected. Look for the Box Collider component and click
the Is Trigger option.

Why?
Visually nothing will change, but functionally things are different in Unity.
Go ahead and try playing the game right now and you will walk right
through that box. The collider is no longer stopping you, just noting that
you have collided (or entered) its volume.

Scripting the GUIText

The scripting for this section will be in two parts. One script, which will be
attached to the GUITextHints object (the GUIText) will control what text
is shown and for how long. The second script that will be attached to the
triggers will be responsible for determining when a trigger is tripped, and
then sending the message to the GUIText object to display the appropriate
text. We'll build the GUIText controlling script first.

Step 12: In your Project panel, select the Scripts folder (where you'll want to
store scripts). Create a new JavaScript and name it EntryWayGUITextScript.
Double-click the script to open it in your script editor.

Figure 13.5 Placed cube to act as
first trigger.

360

Creating Games with Unity and Maya

Step 13: Delete the default information contained in that script and enter
the following:

function FindDoorHint (){
guiText.enabled = true;
guiText.text = “Find the secure entrance to the

base.”;
yield WaitForSeconds (3);
guiText.enabled = false;

}

Why?
This function is a bit different than those we've written in the past. While
most of the functions we've built included a call to action (OnMouseDown,
OnMouseEnter, etc.), this one simply provides a name, FindDoorHint—we
are creating a custom function that we're are deciding to name FindDoorHint.
In this case, our function is a block of instructions waiting to be told to
jump into action, but presently there is no such instruction; we'll build that
into the other script.

The first line of this block just turns on the GUIText component (remember
we turned it off earlier?). Then it defines what the text should actually say
(it's defining the text part of the GUIText component). The third line says,
“after you've shown the text, wait for 3 seconds,” and then the fourth line
turns the GUIText component off so the onscreen text will disappear.

Step 14: In the same script, create two more similar functions with a water
warning and a hint to use the EMP. Here's what the whole thing should
look like up to this point:

function FindDoorHint (){
guiText.enabled = true;
guiText.text = “Find the secure entrance to the

base.”;
yield WaitForSeconds (3);
guiText.enabled = false;

}

function StayOutOfWaterHint (){
guiText.enabled = true;
guiText.text = “Stay out of the water! At this

temperature, it's lethal.”;
yield WaitForSeconds (5);
guiText.enabled = false;

}

function TryEMPHint (){
guiText.enabled = true;
guiText.text = “Try using EMP to disable exterior

security system.”;

361

Unity Triggers

yield WaitForSeconds (5);
guiText.enabled = false;

}

Why?
These are literally copied and pasted with the specifics of what the text says
and how long to display it altered. Again, what we have here are a lot of
instructions waiting for the nod to fire. Note that we also haven't created
the triggers for the StayOutofWaterHint and TryEMPHint. That will come.

Step 15: Save, return to Unity, and check for syntax errors in the Console.
Fix if needed.
Step 16: Attach this script to the GUITextHints GameObject. Remember
this is done by just dragging the script from the Project panel to the
GameObject in the Hierarchy.

Scripting Triggers

It's all fairly anticlimactic at this point. This script is attached to the
object it needs to be and is all set to start displaying and changing text,
but nobody's told it to do so yet. With this next script we will add real
functionality to the trigger created earlier and instruct it to start firing
functions created in the first script.

Step 17: In your Project panel, select the Scripts folder. Create a new
JavaScript and name it EntryWayTextTriggerScript. Open it by
double-clicking it.
Step 18: Delete the default code and enter the following:

private var guiTextObject : GameObject;

Why?
This script we are writing here will be attached to the triggers. But this
script needs to talk to another script attached to another GameObject.
The other GameObject is GUITextHints, which we're going to call
guiTextObject here.

Step 19: Add the following to define the new variable:

private var guiTextObject : GameObject;

function Awake () {
guiTextObject = GameObject.Find(“GUITextHints”);

}

Why?
Similar to the last chapter, this function Awake runs at the start of the
game and goes out and finds the object GUITextHints and defines that as
guiTextObject within this code.

362

Creating Games with Unity and Maya

Tips and Tricks
Knowing where to put spaces and new lines can be a point of concern
for many beginning scripters. In some cases, Unity is very tolerant of
spaces (for instance in the preceding code there could be spaces here
guiTextObject = GameObject or not (guiTextObject=GameObject) and
both would work. However, when describing a “phrase” (like GameObject
.Find(“GUITextHints”)) or using dot syntax, leave the spaces out.

Step 20: Create the trigger functionality with the following code:

private var guiTextObject : GameObject;

function Awake(){
guiTextObject = GameObject.Find(“GUITextHints”);

}

function OnTriggerEnter (other:Collider){
if (name == “Trigger-FindDoorHint”){
guiTextObject.GetComponent(EntryWayGUITextScript)

.FindDoorHint();
}
if (name == “Trigger-WaterHint”){
guiTextObject.GetComponent(EntryWayGUITextScript)

.StayOutOfWaterHint();
}
if (name == “Trigger-EMPHint”){
guiTextObject.GetComponent(EntryWayGUITextScript)

.TryEMPHint();
}

}

Why?
So here we get to the meat of triggers. The function OnTriggerEnter
(other:Collider) line is simply saying, “when another collider enters
the volume of the trigger, do the following.” What follows is an
extension of techniques we learned in the last chapter; when a
collider enters the trigger, it first checks to see if the name of the
object this script is attached to is Trigger-FindDoorHint. If it is,
it goes to the guiTextObject GameObject (which is our GUITextHints),
gets the component EntryWayGUITextScript (the script we wrote
earlier in this chapter), and fires the function FindDoorHint. Pretty
cool eh?

If the trigger this script is attached to is not named Trigger-FindDoorHint
it moves on to check for the next name on the list and so on.

The exciting idea here is one script on one object is going out finding
another object, finding a script on that object, and executing a function
within that other script.

363

Unity Triggers

Step 21: Save and return to Unity. Fix any syntax errors that pop up in the
console.
Step 22: Attach this script to Trigger-FindDoorHint (the big cube acting as
a trigger).
Step 23: Play the game. The cube is probably big and dark in your
scene, but will be easy to see. As you walk through it, the text “Find the
secure entrance to the base” will appear at the bottom of the screen and
disappear after 3 seconds. If this doesn't happen, double-check all the
names called for in the scripts.

Tips and Tricks
The approach we've used here of nesting all the variables in private
variables and using the GameObject.Find and GetComponent
methodologies keep the Unity editor clean. We don't need to connect
a bunch of objects manually to any scripts, we are taking care of it in
script. The benefit of this is if for some reason an object is deleted and
we recreate it, we don't have to remember the places where it had to be
plugged in. The drawback is that the connections of objects to scripts can
only be seen in the scripts and not directly in the Editor. There are trade
offs either way.

Step 24: Create additional cubes (converted to triggers) for the Trigger-
WaterHint (around the water areas) and Trigger-EMPHint (as the player
approaches the door) triggers. Be sure that these triggers also include the
EntryWayTextTriggerScript. Remember this can also be done by copying/
pasting the Trigger-FindDoorHint GameObject and moving/scaling/
rotating/renaming the copy. Notice that in Figure 13.6 there are two large
triggers covering the canal part. As long as both of these triggers have the
same name, our mechanism will work.

Step 25: Test the triggers. Play the game and see if indeed the text
appears and changes at the appropriate places.

Figure 13.6 Additional triggers
in the scene to provide additional
on-screen hints.

364

Creating Games with Unity and Maya

Step 26: Turn off the trigger's Mesh Renderer components. Select each
trigger in the Hierarchy and then in the Inspector panel, and click off Mesh
Renderer. This will make the triggers disappear from view.

Why?
They are no longer visible, but still functional. When we were building
the mechanism it was handy to have the triggers visible because it made
placement easier, and it made it easier to see when we actually had hit a
trigger when playing the game. However, obviously we don't want these
seen in the final game, so once we're confident that they are working,
making them invisible is required.

Step 27: Test again. Play the game to ensure the triggers are still working
as planned.

Triggers to Swap Levels

In the last chapter we used a GUITexture as a button that when clicked invoked
the Application.LoadLevel process that exited Scene-Opening and entered
Scene-EntryWay. Triggers are another nice way of doing this. As a player walks to a
certain place in a level, Unity can exit that level and take the player to a new one.

Now, in today's games, this sort of Loading screen between levels is not as
elegant as many other games. And in fact, Unity's new Occlusion Culling
mechanisms would allow (in theory) for very large levels or even collections
of levels to all be in one scene file. Occlusion Culling simply wouldn't draw
the parts or levels that aren't seen (as opposed to the default behavior where
Unity draws everything within the camera's frustrum but just draws the things
closest to the camera last). But Occlusion Culling is a Unity Pro feature and
requires some careful construction of assets to begin with, so we're not going
to get too far into this method. Instead we'll work with the old school scheme
of having one Unity scene be the EntryWay and another be inside the base.
If you plan to expand the game, you might consider other parts of the base
as still further separate Unity scene files that are called up only when the
character moves into that part of the facility.

For the next few steps it will be important to have the inside of the base
available. These assets have been part of the Homework and Challenges of
the past tutorials, but if you have not been doing those, they are also part of a
package on the supporting web site (http://www.Creating3dGames.com). Be
sure to grab those and import the package into your Unity project (Hallway_
Chapter13-Start.unitypackage).

The results of the import will be a new Unity scene called Scene-Hallway.
It should already be baked, but if the baking doesn't look right, you may
need to fire the bake again. During the tech edit process we have found that
some assets when moving between operating systems sometimes lose their
lightmap connections.

365

Unity Triggers

Step 28: Create a new trigger and place it just behind the EntryWay doors
(Figure 13.7). This can be a bit hard to make out in the screenshot, but
think of this trigger as being just inside the doors so that as the doors
open and the player walks in, he'll hit this trigger. Name the trigger
Trigger-HallwayPortal.

Step 29: Ensure this trigger still has the EntryWayTextTriggerScript
attached to it.
Step 30: Open EntryWayTextTriggerScript.
Step 31: Include the following statement:

private var guiTextObject : GameObject;
function Awake(){

guiTextObject = GameObject.Find(“GUITextHints”);
}
function OnTriggerEnter (other:Collider){

if (name == “Trigger-FindDoorHint”){
guiTextObject.GetComponent(EntryWayGUITextScript)

.FindDoorHint();
}
if (name == “Trigger-WaterHint”){
guiTextObject.GetComponent(EntryWayGUITextScript)

.StayOutOfWaterHint();
}
if (name == “Trigger-EMPHint”){
guiTextObject.GetComponent(EntryWayGUITextScript)

.TryEMPHint();
}
if (name == “Trigger-HallwayPortal”){

Application.LoadLevel (“Scene-Hallway”);
}

}

Figure 13.7 Placed Hallway
portal trigger.

366

Creating Games with Unity and Maya

Why?
Just like in the last chapter, what this will do is that when the trigger is
penetrated by another collider (like our First Person Controller), if the
trigger's name is Trigger-HallwayPortal (which this trigger is), then the
current level (Scene-EntryWay) will close as Scene-Hallway is loaded.

Step 32: Save and return to Unity. Fix any syntax errors that pop up in the
console.
Step 33: If Scene-Hallway has not been added to the Scenes in Build
section of the Build Settings, do so now (File>Build Settings).
Step 34: To test this trigger, we will need to temporarily deactivate the
doors. If you are using the version included on the web site (http://www
.Creating3dGames.com) these are called EntryWayDoorGroup. If you're
using your own, select the GameObject in the Hierarchy and turn it off in
the Inspector (be sure to include the children when deactivating).

Why?
When the game is actually finished, these doors will (of course) be active.
The goal of this part of the game will be to use the EMP to short out the
card reader that will open the doors. When the doors are open, the player
can then walk into them where he would hit the trigger. The key is that
we don't want the player to be able to hit this trigger before the doors are
open so the trigger needs to be back behind the doors.

Step 35: Test; walk through this trigger and see if you end up in the hallway.
Step 36: If all's well, reactivate the doors.
Step 37: Apply all the changes you've made to the First Person Controller
prefab, so that it can be used elsewhere. Select First Person Controller in
the Hierarchy, and in the Inspector press the Apply Button on the Prefab
line. We want all the interface details to be included here in other levels.
We'll discuss much more about prefabs later (Chapter 15).
Step 38: Create a new prefab and name it GUIElements (remember to
do this in the Project panel). Drag GUITextHints from the Hierarchy panel
to this new GUIElements prefab in the Project panel (this populates the
new prefab). Now, delete GUITextHints from the Project panel and drag
GUIElements up to the Hierarchy. Finally, make sure that GUIElements'
Transform Position XYZ are all set to 0 (this is done by selecting GUIElements
in the Hierarchy and changing the values (if needed) in the Inspector).

Why?
We've carefully arranged these GUITextHints to be at the bottom of the screen,
and we've done this with the Transform Position settings. If the parent of the
GUITextHints is not at 0,0,0 then Unity has to do some funny tweaking to the
values of its children to get them in the same place as they were before being
children. So taking just a second and making sure that empty parent objects
are indeed at a position of 0,0,0 will help solve all sorts of problems later.

367

Unity Triggers

Conclusion

So far we have used triggers to provide on-screen help via GUI Text. We've
also used a trigger to transport us to a new level. Triggers can really be used to
launch anything. In the next tutorial we will look at using a trigger to open a
door automatically as we approach.

It's worth pointing out some of the limitations of this method and some
alternatives. Our current method uses OnTriggerEnter and attaches the
script to the actual trigger. Alternatively, Unity has a built-in function of
OnControllerColliderHit that is built specifically for use with the First Person
Controller (and should be applied to the First Person Controller). This can also
do some great things and can help avoid situations where a trigger might be
set off by other colliders moving within the scene. However, it requires a bit
of extra theory that we haven't covered yet, and for this particular scene (that
doesn't have other random colliders moving through the scene) the solution
we've used is quick and easy.

Tutorial 13.2: Triggers and Doors
Using triggers as automatic door openers can work well in simple
situations. As the situation increases in sophistication (you need to have
a key, or the door is opening toward you) there are some better methods
dealing with Raycasting (more on this later). For instance, with the trigger
solution we are using now, an opening door will open whether we are
looking at it or not; using Raycasting we can mitigate problems like
that. However, let us look at how triggers can be used in some simple
situations.

For this tutorial we will be using the Scene-Hallway. There are loads
of doors there that need to be opened. So, if you need this scene,
be sure to download the package from the web site (http://www.
Creating3dGames. com).

Once the Scene-Hallway (see step 1) is open, there are actually two versions
of the hallway—one that is lit and baked (called Hallway_BakedGroup) and
a second one called Hallway_Unbaked. When the scene is opened, Hallway_
Unbaked will be deactivated. This is because it's dark—really dark—and pretty
tough to work with. Although much of what we'll do here has to do with
that version of the hallway, we'll set up our mechanics on the Hallway_Baked
version for ease of use.

Step 1: Open Scene-Hallway.
Step 2: Reuse our First Person Controller prefab and the GUIElements
prefab for this scene. Do this by dragging them from the Project panel up
into the Hierarchy. Position the GUIElements to Transform Position (0,0,0).
Maneuver the First Person Controller into position at the front of the
scene.

368

Creating Games with Unity and Maya

Why?
This is the power of our prefabs. Make them once, reuse them again and
again. Of further power is that if we make changes in this scene—if we
press Apply on the Prefab line of the Inspector—those changes will show
up back in the Entryway scene as well.

Step 3: Locate the Hallway_DoorBulkhead_Group that is located in the
second room after the entrance. Be careful because there are several of
these in the scene. Be sure to get the one shown in Figure 13.8. Also note
that this is a group and should include both the objects Hallway_Door_
Bulkhead and Hallway_Door_BulkheadWheel.

Step 4: Rotate the group closed. This can most easily be done in the
Inspector by entering 0 for Rotation X, Y, and Z.
Step 5: Create a new trigger named Trigger-BulkheadDoor1. Remember
to do this create a cube, check Is Trigger in its Box Collider, and move it
into place in front of the door. The size of the trigger will determine how
early the door opens before the player reaches the door (Figure 13.9).

Figure 13.9 Trigger-BulkheadDoor1
in place.

Figure 13.8 Hallway_Door_
Bulkhead_Group to work with.

369

Unity Triggers

Divergent Methods

At this point, when we are ready to start writing the script, there are a couple of
ways we could proceed. The first method would be to animate the door in Maya,
reimport, and use the trigger to play the animation nested on the door. The
second way is to create the animation within Unity and call up that animation
with the trigger. The third way is to use a collection of custom classes developed
by Bob Berkebile called iTween. We are going to look at calling up animations in
later tutorials so in this tutorial we will focus on the iTween method.

Unity has a lot of built-in classes and functions that help provide access
to core Unity game engine functionality. However, custom classes can
be authored that further expand scripting ease. iTween is one of those
expansions. Bob Berkebile has authored and released for free to the
community a collection that is so flexible and powerful, I find myself using it
on every single project.

iTween is available at http://itween.pixelplacement.com/index.php. Go
download it. The way to install it is simple. In Unity, create a folder called
Plugins. Out in your OS place iTween (really a C# script) into this folder and
you're ready to go. Alternately, this could be done all in the OS by creating
a folder called Plugins inside the Assets folder of the Unity project, placing
iTween there, and then reentering Unity.

Tips and Tricks
Although Mr. Berkebile has released iTween free for use, it is provided on a
donation-based system. If, after this book, you find yourself using iTween a
lot, contribute—I did. It'll help encourage further development and updates.

Step 6: Create a new JavaScript called HallwayDoorsTriggerScript.
Open it in your editor.
Step 7: Start by declaring a variable for the door:

var door : GameObject;

Why?
This time we're using a public variable (var) as opposed to a hidden
private variable (private var). This is because this script is going to be
useable all over the place with pretty much any door anywhere. This
sort of flexibility will mean that we need to do a little bit more work
implementing the script, but this will work all over the place.

Step 8: Create the OnTriggerEnter functionality:

var door : GameObject;

function OnTriggerEnter (other:Collider){
iTween.RotateTo(door, Vector3(0,-120,0), 5.0);

}

370

Creating Games with Unity and Maya

Why?
The first line of that function should be familiar by now. The second line is
where iTween becomes helpful. The RotateTo function allows us to define
(object to rotate, angle to rotate to, duration of rotation). The documentation
for iTween is at http://itween.pixelplacement.com/documentation.php.
There all the new functionalities are listed along with the specifications of
how to use them. There's a lot of customization possible with iTween (charts
of “hashable args”); however the basic functionality is outlined as shown in
Figure 13.10. Generally following these format lists does the trick.

Do note that there aren't necessarily any examples so being aware of
what the arguments mean is important. In this case “Vector3 rotation”
must take the format Vector3(x,y,z). Similarly the duration of rotation
(float time) must be a float so it can have a decimal.

It sometimes takes just a bit to get used to some of this terminology, but
the more script you write, the more natural these sorts of specification
will find their way into the scripts.

Step 9: Save and return to Unity. Fix any syntax errors that pop up in the
console.
Step 10: Apply this script (HallwayDoorsTriggerScript) to Trigger-
BulkheadDoor1.
Step 11: Define the door to be affected. In the script, we declared a
public variable that will show up as “Door” that will appear empty.
This script and its variable are visible in the Inspector when
Trigger-BulkheadDoor1 is selected. To define Door, drag Hallway_Door_
Bulkhead_Group from the Hierarchy panel to the input field for Door
(Figure 13.11). For now, use the one that is in Hallway_BakedGroup/

Figure 13.10 iTweens web site with the core functionality highlighted.

371

Unity Triggers

Hallway-Baked (there are actually two versions of the Hallway if you're
using the imported package, one that's unlit for use with a flashlight
(next chapter) and one that is baked. For now we'll use the baked
version since it will just be easier to see).

Why?
This tells the script which object to rotate when the trigger is tripped. This
can be the only way to work if there are many objects that have the same
name; if we were using the GameObject.Find method, Unity could get
very confused. With this method, Unity knows exactly which object to be
working with and doesn't have to use cycles when it starts going out and
finding GameObjects.

Step 12: Make sure that the door is not set to Static. Select Hallway_Door_
Bulkhead_Group and in the Inspector, be sure the Static button is not
checked (Figure 13.12). Be sure this is also the case for the children.

Figure 13.11 Public variable being
defined via drag and drop.

Figure 13.12 Ensuring the door
is not Static. Static objects won't
animate.

372

Creating Games with Unity and Maya

Why?
This might seem like a blast from the distant past, but when we were
baking lighting, we marked objects or entire levels as Static. If an object
is not marked as Static it won't be included in the baking. However, if it is
marked as Static, Unity assumes that it's unmoving, that it's, well, static.
Luckily, an object can be marked as Static and used in baking, but be
dynamic later (as in this case) by just turning the Static option off after
baking.

Step 13: Test. Play the game and walk through that trigger and see if the
timing is good. If the values of how far the door opens or the timing is not
to your liking, adjust in the script.
Step 14: Turn off the Mesh Renderer for the trigger Trigger-BulkheadDoor1.

Sound and Scripts

The door should now open for us as we approach, but it's fairly creepy (and
unrealistic) that it produces no sound as this door in an old sealed-up base
opens. In this section we will add sound to the door and trigger it with our
already extant script.

Step 15: On the web, track down a sound clip that you think would be
appropriate for this big door. I used “elevator door opening.wav” from
FreeSound.org. Edit any unnecessary dead noise at the beginning or end
of the sound (Audacity will do this quickly if you haven't any other sound
application).
Step 16: Import it to your Sounds folder by dragging it there in the
operating system.
Step 17: Create an empty GameObject (GameObject>Create Empty).
Name it Sound-DoorOpenBulkhead1. Position it near where the opening
door is. Drag the sound clip from the Project panel to this GameObject so
that it contains an Audio Source component.

Why?
Potentially this could also be attached to the character, but by actually
placing it near where the sound would be emitting, we get the benefits of
Unity's positionally aware sound system.

Step 18: Turn off the Play on Awake option within the Audio Source
component.

Why?
By not playing on awake, the audio source stays silent until we ask it to
play sound (which we will do in just a bit).

373

Unity Triggers

Step 19: Open the HallwayDoorsTriggerScript.
Step 20: Add a variable to store the object that emits the sound and a line
to play it. Note that there are two lines in italics here:

var door : GameObject;
var doorOpenSound : GameObject;

function OnTriggerEnter (other:Collider){
iTween.RotateTo(door, Vector3(0,-120,0), 5.0);
doorOpenSound.audio.Play();

}

Why?
The public variable declaration allows us to define (for each trigger
down the road) the actual object that the sound belongs to (and it
can be a different sound for each door). The last line of code there says,
“go find the doorOpenSound, find the audio attached to it, and
play it.”

Step 21: Save and return to Unity. Fix any syntax errors that pop up in
the console. Populate the door variable for the script by dragging the
door that is to open from the Hierarchy view to the variable entry in the
Inspector.
Step 22: Test. Make any adjustments to the Audio Source component
that you feel is needed to make the sound softer/louder, and so on.

Cleaning Up with Destroy and Booleans

So the sound now runs as the door opens. The only problem here is that the
trigger is still sitting there. Now, if part of the game included shutting the door
as well, this could be good as the trigger could check the state of the door
and close it if it were open when we passed through it again. However, in this
case, there is little need for this trigger since the door doesn't do anything
else after this. With just a little bit of extra code we can get rid of elements
(GameObjects and or components) that we simply won't have need of later in
the game. This keeps the game snappy because Unity has less to keep track of,
and importantly makes sure that these triggers aren't used later.

But, sometimes we might not want to destroy a trigger. Perhaps there are
times when the trigger is meant to play a thump or something every time
the player walks up to it (for instance a locked door). It would do no good to
destroy the trigger after our first approach. So in our script we'll build in a
switch that allows us to tell the script on a case by case basis if it's to destroy
the trigger or not.

Booleans are either true or false; think of them as a switch. They can keep track
of whether a state of being is true or false. Once this state is remembered or
available, scripts can check with it to see if they should execute a particular
task based upon the Boolean state.

374

Creating Games with Unity and Maya

Step 23: Add the mechanism to destroy both the sound and the trigger.
For HallwayDoorsTriggerScript add (in italics):

var door : GameObject;
var doorOpenSound : GameObject;

function OnTriggerEnter (other:Collider){
iTween.RotateTo(door, Vector3(0,-120,0), 5.0);
doorOpenSound.audio.Play();
Destroy (doorOpenSound);
Destroy (gameObject);

}

Why?
The first destroy destroys the GameObject that contains the sound (that
we declared at the top of the script and populate in the editor). The
second destroy destroys the GameObject that this script is attached to,
which in this case is the trigger.

Step 24: Make the destroy wait—specifically wait for the duration of the
sound clip before destroying things. Add the following line:

var door : GameObject;
var doorOpenSound : GameObject;

function OnTriggerEnter (other:Collider){
iTween.RotateTo(door, Vector3(0,-120,0), 5.0);
doorOpenSound.audio.Play();
yield WaitForSeconds (doorOpenSound.audio.clip

.length);
Destroy (doorOpenSound);
Destroy (gameObject);

}

Why?
Without our yield statement, the sound wouldn't be heard at all. Looking
at the script in step 21 shows a script that destroys the sound object
immediately after telling it to play—thus the sound would be gone before
we got a chance to enjoy it. Yield in JavaScript means “wait” or “allow
something to finish first.” In this case we are using yield to wait for a specific
duration of time (WaitForSeconds). The seconds that this waits for can be
defined with a simple integer (for instance: yield WaitForSeconds (3); would
wait for three seconds before executing the next step). However, we want
this script to be more flexible so it can be used with different situations and
sounds. So we tell it to check out the length of the audio clip attached to
doorOpenSound (doorOpenSound.audio.clip.length) and wait that long.

375

Unity Triggers

As is, this script would work in this situation. However, currently it always
destroys the trigger and sound after the sound is played. We need to add
further flexibility to this script so we can choose whether to destroy the
trigger or not.

Step 25 : Declare a Boolean variable:
var door : GameObject;
var doorOpenSound : GameObject;
var destroyWhenFinished : boolean;

function OnTriggerEnter (other:Collider){
iTween.RotateTo(door, Vector3(0,-120,0), 5.0);
doorOpenSound.audio.Play();
yield WaitForSeconds (doorOpenSound.audio.clip

.length);
Destroy (doorOpenSound);
Destroy (gameObject);

}

Why?
By making this Boolean a public variable, we will make it a check box that
is accessible in the Inspector later.

Step 26: Make the script check to see if the Boolean destroyWhenFinished
is true before destroying:

var door : GameObject;
var doorOpenSound : GameObject;
var destroyWhenFinished : boolean;

function OnTriggerEnter (other:Collider){
iTween.RotateTo(door, Vector3(0,-120,0), 5.0);
doorOpenSound.audio.Play();
yield WaitForSeconds (doorOpenSound.audio.clip

.length);
if (destroyWhenFinished){

Destroy (doorOpenSound);
Destroy (gameObject);

}
}

Why?
Take a close look at that—it really adds one line of code (if (destroyWhen
Finished)), but be careful to notice that it puts the destroys inside {}.
What's happening there is if the Boolean state of destroyWhenFinished is
true it executes the block of code that does the destroys.

376

Creating Games with Unity and Maya

Tips and Tricks
Just a side note, if we wanted it to do something only if the Boolean was
false, it would look like this: if (!destroyWhenFinished){

Step 27: Save and return to Unity. Fix any syntax errors that pop up in the
console.
Step 28: Select Trigger-BulkheadDoor1 and look at the Inspector
(Figure 13.13). Here is where the Door (Hallway_Door_Bulkhead_Group)
is populated and the Door Open Sound (Sound-DoorOpenBulkhead1) is
populated by dragging those GameObjects from the Inspector to their
respective variable location. Lastly, notice the Destroy When Finished
boolean is available there to be checked (or not, if the trigger is meant to
be reused).

Step 29: Test. To see if the destroy is happening, make sure the Hierarchy
panel is still opened and watch what happens to the trigger after it is
tripped the first time.
Step 30: Further allow the script to be customized by exposing a variable
to control the angle to which the door angles. Adjust as follows, save it,
and then return to Unity to see the results in the Inspector for Trigger-
BulkheadDoor1:

var door : GameObject;
var doorOpenSound : GameObject;
var destroyWhenFinished : boolean;
var openAngle : float;

function OnTriggerEnter (other:Collider){
iTween.RotateTo(door.gameObject,

Vector3(0,openAngle,0), 5.0);
doorOpenSound.audio.Play();
yield WaitForSeconds (doorOpenSound.audio.clip

.length);

Figure 13.13 Populated
variables for our new
HallwayDoorsTriggerScript.

377

Unity Triggers

if (destroyWhenFinished){
Destroy (doorOpenSound);
Destroy (gameObject);

}
}

Why?
Note that we declared a new variable (openAngle) that is defined as a
float (a numerical value that can include a decimal). Then, in the iTween
command, for the Y value, instead of listing a number, we plug in the
variable (now listed on Trigger-BulkheadDoor1 in the Inspector as Open
Angle). So when Unity runs this line, it checks for what the game designer
has defined the angle to be. This will add tremendous flexibility since not
all doors will open the same amount.

Conclusion
And with that we're going to leave triggers. They can be a very handy way to
make things happen as a character moves through the scene.

Triggers are handy, but sometimes clumsy. A trigger can cause problems if
there are other things moving in the scene. If, for instance, there is an object
animated in the scene that has a collider on it and it passes through the
trigger, suddenly things can begin happening that are only meant to happen
when the character walks through it. Some of this can be mitigated by
checking the object colliding with the trigger for specific names or tags, but
this takes some extra overhead.

Alternately, there are some exciting and interesting alternatives to triggers that
make use of Unity's raycasting functionality. In the next chapter we'll start to
look at this very powerful ability in Unity and how to make use of it in our game.

The fun is just beginning.

Homework and Challenges
Challenge 1: In this chapter we looked at using triggers to open doors, and
we've looked at using triggers to provide on-screen hints. Scene-Hallway is
full of doors that shouldn't open. Create triggers for these doors that bring
up a screen hint indicating that “This door appears to be locked or sealed.”
Challenge 2: Our current method of displaying screen hints when we hit a
trigger did some important things in illustrating communication between
scripts. However, it's actually more complicated than it needs to be. Design
a script that is applied to any triggers that are meant to display screen
hints, that simply defines what the text should be, turns the text on, waits
5 seconds, and then turns the script off. Even better, make it so flexible
that we can enter the message in the Inspector on a trigger by trigger
basis and not have to hard code it into the script (one solution is included
in the downloadable versions of the game as ScreenHintsTriggerScript).

Chapter 14

379
Creating Games with Unity and Maya
© 2011 by Elsevier Inc. All rights reserved.

Unity Raycasting

Chapter 14

Collision detection as shown in the last chapter is an easily accessible way of
driving interactions in Unity. It's easy to think of triggers as triggering specific
events or commands, and setting these things up is simple. However, there
are some clear potential drawbacks, the biggest of which is something called
frame miss.

Frame Miss
Unity looks for events on frames. If a game is running at 30 frames a second,
Unity is checking for and potentially firing commands 30 times each second.
Frame miss is a term that refers to actions (like a collision detection) happening
between frames. If it happens between frames, Unity misses it—Unity just
doesn't see it happen. In most cases involving a moving First Person Controller
this is unlikely—the character just doesn't move that fast (unless the collider is
super small); however, let's take a look at a very likely and classic scenario.

Guns are part of a lot of games. They are part of Incursion (although we'll be
shooting cameras and not people). Bullets are fast, really fast, which means
they travel a very long distance in a very short time, or more relevant to us,
they travel a long distance in each frame. Let's assume that a 0.22 bullet
travels at 1500 feet per second. That means if the bullet we create in Unity is
traveling at a realistic speed, if the game is playing at 30 frames per second,

380

Creating Games with Unity and Maya

that bullet travels 50 feet every frame. Unity then “sees” the bullet and checks
for collisions every 50 feet. So a thin object that was 10 feet, 20 feet, 30 feet,
40 feet from the gun would not be registered as hit by that bullet because
Unity simply wasn't looking when the bullet would have been in that object's
space. In fact, only objects that were 50 feet, 100 feet, 150 feet, 200 feet, and
so on from the gun would be registered as hit. Of course if the object were
50 feet thick, it would register, but we digress.

Frame miss is a very real problem for other issues as well. In one of the projects
we use here when we are briefing on our technology, we have a pipe filled with
particles flowing through it to show how we can illustrate building infrastructure.
The particles are colliding off the inside of the pipe that keeps the particle stream
contained. Occasionally, one of the particles gets moving so fast that Unity
misses the frame where it's supposed to calculate the end of the pipe and it
escapes, flying through the facility, and often then bouncing off walls and other
equipment. Although it's pretty funny for whoever is being briefed, it always
makes me cringe as it yanks the viewer right out of the experience of the space.

Avoiding frame miss is an important thing to be paying attention to in the
construction of a game.

Raycasting
One way to avoid issues involved with frame miss is to use a sort of sister
technology to collision detection called raycasting. Raycasting is the process
where an invisible ray is “cast” or thrown from an object. This ray is cast outward
(in the direction of the object's forward direction (Z)) and can be defined to
have a particular length (or to shoot out infinitely until it hits something).

Figure 14.1 shows a screenshot of a ray being cast from the camera attached
to the First Person Controller. The ray shoots out until it hits the wall right
ahead of it. The cool thing about this is that this ray is pretty smart and fast.
In one frame, the ray shoots out until it strikes a collider (thus avoiding frame
miss issues possible in things like collision detection) and the ray can report
back about what it's hit. The ray can tell us information about what the
object is, where in world space it was stopped by an object, and all sorts of
other useful data. We can utilize this data for some preemptive functions like
deciding whether a bullet would hit an object.

We are going to explore using raycasting for use in several situations. First, we
are going to make use of raycasting as an alternative to the OnMouseOver
functionality we used in the GUITextures tutorials. For GUITextures, OnMouseOver
works fairly reliably and is a great way to work. In the 3D world though, it's often
more accurate to highlight objects via raycasting than OnMouseOver.

Using raycasting we will highlight actionable items in the game. Namely, we'll
use this method to flip the main power switch in the base. Then later, we'll
also use it to identify and pick up a key that opens a locked door.

381

Unity Raycasting

Second, we will use raycasting for firing Aegis's pistol. After the power is
restored, the security cameras will be on in the base and the player will need
to take these out with his pistol. Using raycasting we will “fire” bullets that will
affect and destroy the cameras. With raycasting we will avoid the problems
previously discussed inherent in actually using a projectile moving through
space at a high velocity.

Finally, we are going to use raycasting to give us hints on placing an object.
Among Aegis's tool kit is an electromagnetic pulse mine that the player
will use to disable the EntryWay electronic lock. Using raycasting we will
instantiate (create in game) an object that will show the player where he
potentially can mount the device.

Lots of fun stuff to do with raycasting once the mechanics of it are realized.
Let's get to it.

But First . . . a Few Notes on Scripting and Help
Up to this point, the scripts we have written have been pretty straightforward
and fairly short. However, as our scripts begin to increase in length it's
worthwhile to note some practices that we should be following as we work.

Comments via //

Scripting languages provide mechanisms to help document scripts as they
are written right within the script itself. JavaScript (along with some other
languages) allow comments to be injected anywhere as long as there is a //
before the comment. Whenever Unity sees // it ignores whatever comes after
that until it reaches the end of a line (where you press Enter). It just takes a
moment to notate the script you are writing, but can save tons of time when
it comes to trying to figure out what you were thinking when the script is
accessed later in the project.

Figure 14.1 Visual debugging
shows a ray from a raycasting
function.

382

Creating Games with Unity and Maya

Figure 14.2 shows the script we built to open doors with a bit of extra
functionality; note that UniSciTE color codes things like comments. A habit I
like to establish is to include the comments on the line that the comment is
referring to and tab them all over so they are easy to see and read.

Even though a script might make perfect sense as you are writing it, you will
be amazed at how long it takes to get back into the mode of thinking you
were in when you wrote the script several days later when you're deep in the
script again bug squashing.

And if you're working as part of a team, good grief, comment the script. It will
keep teammates happy.

Lastly, if there is one line that needs to be temporarily disabled, putting // in
front of that line of code will cause it to be ignored by Unity at runtime.

Commenting Blocks of Script with /*

Perhaps there are scripters who write perfect code on the first pass. I'm not
one of them, and frequently what I think is going to work simply doesn't. The
problem is that sometimes I'm uncertain if it's just a syntax problem I've got,
or my whole approach is flawed. On occasion this means that I need to try

Figure 14.2 A commented script.

383

Unity Raycasting

something else, but don't want to necessarily get rid of blocks of code that are
already written. Within JavaScript for Unity a block of code can be “commented
out” by surrounding it with /* at the start and */ at the end (Figure 14.3).

Unity will then disregard anything that lies between those two markings. This
allows blocks of code to be saved in case they are needed later.

Accessing the Documentation

Help>Scripting Reference opens the help files for Unity's scripting languages
in a web browser. Now to be honest, this scripting help document is built
for folks who have a background in scripting. It very often uses terms and
language that is very opaque to the scripting newbie. I can tell you from
personal experience that there are many, many entries that left me with an
utterly hopeless feeling after I read them. Sometimes the explanations are so
scant they provide nearly no information, and other times they are so dense
with scripting jargon, that a mere mortal is left hopelessly floundering.

Further, the scripting guide is often only as good as your vocabulary. If you
know you're looking for information on RaycastHit, it'll pull it right up. But
without knowing that particular phrase, it's tough to stumble upon it. In many
cases it's not a “tell me how to do this” kind of guide.

Figure 14.3 Commenting out blocks of code.

384

Creating Games with Unity and Maya

But even with the things that it isn't, it still can be a very valuable tool. On occasion
the details in the explanations can get you to the right place. For instance, if you
wanted to know how to play a sound, “play sound” can be entered in the Search
input field where a plethora of classes and variables will be presented. It certainly
takes a bit of wading from there, but do the wading. Lots of important stuff can be
learned along the way when trying to secure knowledge of one topic.

Keep in mind that there is more than one word for a lot of concepts. So for
instance if “play sound” isn't providing the information you think it should, try
“play audio.” Frequently a bit of rewording provides much more usable results.

In the best-case scenario, some of the entries are indeed fleshed out well
and even provide some examples of how to use a particular class or variable.
Many, many a script has begun with a quick copy/paste of the example
followed by a bit of tweaking for the specific situation at hand.

F1 in UniSciTE

On the PC, the script editor UniSciTE has one function that alone is the reason
I do my scripting on my PC rather than my Mac. Select any term within a script
(OnTriggerEnter, for example) and press F1 on the keyboard and the browser
will automatically open and Unity's scripting help will open to that term.
Especially when trying to understand someone else's script or script snippet
that was obtained through the help file, the forums (http://forum.unity3d.com),
the wiki (http://www.unifycommunity.com/wiki/), or Unity Answers (http://
answers.unity3d.com)—all of which are excellent supplemental help
materials—being able to select a function or variable and get that quick
feedback keeps the learning and script building less slow.

Decoding a Help Page
So why talk about the help now? Well, in our past examples, accessing the
Scripting Reference would have provided little help—we simply needed
to provide the starting terms to get going. However, as your scripting
prowess grows, knowing how to decipher the Scripting Reference will
help you make the leap beyond this book's tutorials and onto your own
killer games.

So take a look at what the Scripting Reference has to say about raycasting.
Select Help>Scripting Reference and enter raycast in the search input field.
Look for Physics.Raycast and click that link. (I know, how would you know to
click that one instead of any of the other options? You don't, it's likely this
would require some wading, but we'll save the time today and jump right to
where we need to be.)

This will bring up the page for the Runtime Class of Physics.Raycast
(Figure 14.4). There is lots of information on this page, in fact so much it can
be tough to know what's relevant for our particular situation. But focus for a
minute on the line immediately below Physics.Raycast.

385

Unity Raycasting

That line reads:

static function Raycast (origin : Vector3, direction :
Vector3, distance : float = Mathf.Infinity, layerMask :
int = kDefaultRaycastLayers) : bool

There's a lot of stuff there, but here's how to interpret it. Raycast has several
parameters that are definable. Those parameters are laid out within the (). Each
of the parameters are separated by a comma. Each of these parameters are
typed with the colon. So for instance, the first parameter is the “origin” of the
ray and this value must be a Vector3; the second parameter is the “direction” of
the ray, which is also expressed as a Vector3; the third is the “distance” the ray
casts and will be written as a float, which means it can contain decimals; finally,
the fourth parameter is the layerMask (which layers to ignore when casting the
ray), which will be expressed as an integer (layers are numbered).

Further down the page are other formats where this class can be used. These will
include other parameters that can be expressed and the order in which they must
be expressed. So for instance, a little way down the page, the following appears:

static function Raycast (origin : Vector3, direction :
Vector3, out hitInfo : RaycastHit, distance : float =
Mathf.Infinity, layerMask : int = kDefaultRaycastLayers) :
bool

Notice that it has the same parameters of the origin, the direction, but then
includes a parameter for something called a RaycastHit, which is a variable
that will be used to hold information about the things the ray hits. Later if we
want to (and we will) we can access this RaycastHit and check the name of the
object or find its exact location. This is followed by distance and layer mask.

Figure 14.4 Scripting reference for
Physics.Raycast.

386

Creating Games with Unity and Maya

Now not all of these parameters must be expressed; however, if they are,
they have to be laid out in the order listed there. So, for instance, the line
of code:

Physics.Raycast (transform.position, transform.forward,
hit, 100);

means, “Cast a ray. As its origin, use the position of the object this script is
attached to (transform.position). For the direction, cast the ray along the
object's Z-axis (transform.forward, which is really shorthand for ‘along the
Z-axis’). Keep track of what we hit in the variable ‘hit’ and cast the ray 100 units
out—ignore everything further away than that.” That's a lot of information in
one line of script, no?

Now of course that line of script by itself is pretty useless. And in fact if it were
just floating around in a script it would be fired once and therefore be pretty
useless. However, if we told it to do that every frame we could start to gather a
lot of information.

So consider the following function:

function Update () {
var hit : RaycastHit;
Physics.Raycast (transform.position, transform

.forward, hit, 100);
}

function Update() just says, “do the things within the {} every frame.”
var hit : RaycastHit just declares that we want to keep track of the
RaycastHit with a variable called “hit.” Technically, this could go way up at
a higher level and we could declare this variable at the top of the script,
but since it is absolutely only going to be accessed within the raycasting
mechanism, declaring the hit variable here helps keep relevant ideas
together. Then comes the power line of code starting with Physics.Raycast.
What this block of code is doing is always shooting out a ray that looks in
the same direction as whatever this code is attached to (like a camera). The
ray is keeping track of what it's hitting (via the RaycastHit), which we can
use later.

And all of that comes from that Scripting Reference. It may still be a little
abstract here, so let's get going in some tutorials to look at how to use this
newfound knowledge.

Tutorial 14.1: Highlighting Actionable
Objects with Raycasting
The first tutorial we're going to use raycasting for is to highlight an object
that can be acted upon. Specifically, in this game we have a key that needs
to be picked up and a power main switch that needs to be thrown. In games

387

Unity Raycasting

like this, it can be tough to know what items the player can actually do
something to and which are there for visual fodder. Different games handle
this in different ways, but a fairly consistent convention is to have the item
glow, or change color, or otherwise highlight when the player moves his
mouse or crosshairs over the item. This is the convention we are going to
build.

Raycasting will do this really well. We'll set up a raycasting mechanism that
shoots a ray from the camera and shoots it straight forward. When the center
of the screen (where we will place a crosshairs) lines up on an object, the ray
will strike it and let us know what the name of that object is. In the script we
will compare the names of the objects the ray strikes with a list of actionable
items; if it matches, we will turn up all the material's color values so that the
item looks white hot. When the ray is not striking the object, the material will
return to its regular color.

To do this, we'll need to make use of a crosshairs image. There is one included
with the 2D Assets package imported in earlier tutorials (it's called Crosshairs)
or you can make your own. The image should be a power of 2 in size (mine is
32×32) and have an alpha channel built into it in Photoshop.

We'll be doing these steps within the Scene-Hallway scene within Unity
(continuing on from the last chapter).

Step 1: Create crosshairs. Create a GUITexture to house the crosshairs
(GameObject>Create Other>GUI Texture). Rename the GameObject
Crosshairs. Use the Crosshairs image within the 2D Assets folder as the
Texture for the GUITexture. If using the provided image, change the Pixel
Inset X and Y to -16 and the Width and Height to 32.
Step 2: Reduce the transparency of the crosshairs. With the Crosshairs
GUITexture object selected, click the color swatch and reduce the Alpha
(the A slider) to around 50 (Figure 14.5).

Figure 14.5 Setting up the
crosshairs.

388

Creating Games with Unity and Maya

Why?
This all provides a crosshairs that sits exactly in the middle of the screen. This
also happens to be the location of where the ray that will be generated by
the raycasting will be terminating. Later we'll be locking the mouse down
and hiding it so the player can't see it unless he is picking a weapon/tool
from the inventory. So giving the player a location for the crosshairs allows
him to have some idea of where the computer is looking for input from.

By making the texture a bit transparent, we can try and allow the
crosshairs to be a good visible hint, but not become overly important in
the overall visual impact of the game. In fact, if you still find the crosshairs
to be too dominant, turn the Alpha down further.

Step 3: Create a new JavaScript. Rename it AC_ToolFunctionality
Script. Open the script.
Step 4: Within the extant function Update, add the following:

function Update () {
var hit : RaycastHit;

if (Physics.Raycast (transform.position, transform
.forward, hit, 100)){

Debug.DrawLine (transform.position, hit
.point);

Debug.Log (hit.collider.gameObject.name);
}

}

Why?
This is one of the first times we've used the function Update. We're
telling Unity to do something every frame: first, create a variable to store
the object that the ray hits (RaycastHit); then, check if there is indeed
anything that the ray strikes, and specifically, that the ray that emerges
from the position of the object this script is attached to (it'll be attached
to the camera) shoots straight forward for 100 units; and finally (for
illustration purposes) we're including a couple of Debug functions there.
The first one actually draws the ray the raycasting mechanism is using
(Debug.DrawLine) and the second is writing the name of the object that
the ray strikes to the Console (Debug.Log).

Step 5: Save and return to Unity. Fix any syntax errors that pop up in the
console.
Step 6: Attach this script to the Main Camera that is a child of the First
Person Controller (add a First Person Controller if needed). Go ahead and
click OK if Unity warns of breaking the prefab.
Step 7: Play the game. Take special note of the Scene view and the Console.
Look to see the bright white line emanating out of the camera that is the
Debug.DrawLine and check out the Console to see how it is returning the
name of the objects the ray comes in contact with (Figure 14.6).

389

Unity Raycasting

Tips and Tricks
Note that in Figure 14.6 the Collapse button is clicked in the Console.
The script (as it now exists) is checking for the name of objects the ray is
colliding with every single frame. This means that there will be 30 Debug
.Log's per second (at least) showing up in the Console making it hard to
read much of what's going on. The Collapse button collapses repeating
warnings or Debug.Logs into one entry making it a bit easier to see what's
happening down there.

Why?
Why bother with these Debug thingies? True, true, Debug anything
is most often used when trying to squash bugs, and in fact can be a
very important part of trying to figure out if a script is going wrong
and where it's going wrong. However, I find that using some basic
Debug stuff early on in the process of developing a script helps me
find out if the early drafts of the script are doing what I think they're
doing. In fact, for some really elegant Debug stuff, try changing the last
line to Debug.Log (“Selected object is ” + hit.collider.
gameObject.name);

Step 8: Create an independent highlighting function. Further down from
the function Update create a new function that reads thusly:

function Update () {
var hit : RaycastHit;

if (Physics.Raycast (transform.position, transform
.forward, hit, 100)){

Debug.DrawLine (transform.position, hit
.point);

Figure 14.6 Using Debug to
check if the raycasting is working as
anticipated.

390

Creating Games with Unity and Maya

Debug.Log (“Selected object is ” + hit
.collider.gameObject.name);

}
}

function AddHighlight(hiOb:GameObject){
hiOb.renderer.material.color.r = hiOb.renderer

.material.color.r*10;
hiOb.renderer.material.color.g = hiOb.renderer

.material.color.g*10;
hiOb.renderer.material.color.b = hiOb.renderer

.material.color.b*10;
yield WaitForSeconds (0.1);
hiOb.renderer.material.color.r = hiOb.renderer

.material.color.r/10;
hiOb.renderer.material.color.g = hiOb.renderer

.material.color.g/10;
hiOb.renderer.material.color.b = hiOb.renderer

.material.color.b/10;
}

Why?
Lots to discuss here. First, what we're creating here is a new function that
we can call on at other places within this script, or even call from other
scripts. Of course, at this point we haven't called out to use this function
quite yet, but we'll get to that in a bit. For now, let's look at what this
script will do when it's called.

The first line simply creates a name for the new function (AddHighlight).
But additionally, it declares a new variable that will be used just within this
function (hiOb:GameObject) but can be called to from other functions (hiOb
is just short for highlightObject and is a term I made up to use here—you
could name it differently). Specifically, this means that when we call for this
script we can call for it and include what the GameObject is that this function
will use for hiOb. We're essentially allowing a variable of one function to be
populated by another function elsewhere. Really powerful stuff.

Now below that, in the meat of the meal are lines that just say, “take the
object to highlight, look in its renderer component, find the material,
and then take whatever the red value is for the color of the material and
multiply it by 10.” Then do this for the green and blue values and the net
results will be that the object highlights in bright white.

After that is a little trick that essentially says, “wait for 1/10th of a second,
and then change it all back.” The reason we're doing this is that we want
to make sure that when the ray is no longer casting on the object to
highlight, the object turns back to the way it was.

The function AddHighlight being separate means we can reuse this chunk of
code multiple times without retyping it. We can start to develop mechanisms

391

Unity Raycasting

that say, “if you Raycast onto the power switch, highlight it (using the code in
the AddHighlight function) and then if the mouse is clicked, turn the lights
on.” Then, later we can say, “if you Raycast on the key, highlight it (using
the code in the AddHighlight function) and then if the mouse is clicked
pick the key up.” And so on. In each case we're using the exact same
highlight mechanism, but not having to retype all those instructions.

Step 9: Check to see if the object being hit by the ray has the same name
as “Hallway_PowerPanel_Switch,” and if it does, call up the AddHighlight
function:

function Update (){
var hit : RaycastHit;
if (Physics.Raycast (transform.position, transform

.forward, hit, 100))}
Debug.DrawLine (transform.position, hit

.point);
 Debug.Log (“Selected object is ” + hit

.collider.gameObject.name);
 if (hit.collider.gameObject.name ==

“Hallway_PowerPanel_Switch”){
 AddHighlight(hit.collider.gameObject);

 }
}

}
function AddHighlight(hiOb:GameObject){

hiOb.renderer.material.color.r = hiOb.renderer
.material.color.r*10;

hiOb.renderer.material.color.g = hiOb.renderer
.material.color.g*10;

hiOb.renderer.material.color.b = hiOb.renderer
.material.color.b*10;

yield WaitForSeconds (0.1);
hiOb.renderer.material.color.r = hiOb.renderer

.material.color.r/10;
hiOb.renderer.material.color.g = hiOb.renderer

.material.color.g/10;
hiOb.renderer.material.color.b = hiOb.renderer

.material.color.b/10;
}

Why?
So what's happening there is that (every frame) the ray is cast, the two
debug lines are still happening, and then it compares the name of the
object hit to “Hallway_PowerPanel_Switch” and if the names do match,
it calls up the AddHighlight function and passes to it the very object it is
casting on (which is the switch). The AddHighlight receives the message
to fire, and upon which object to fire, and does its thing (turns up the RGB
values; then turns them down again).

392

Creating Games with Unity and Maya

Step 10: Repeat for the Hallway_Key.

function Update () {
var hit : RaycastHit;
if (Physics.Raycast (transform.position, transform

.forward, hit, 100)){
 Debug.DrawLine (transform.position, hit

.point);
 Debug.Log (“Selected object is ” + hit

.collider.gameObject.name);
if (hit.collider.gameObject.name == “Hallway

_PowerPanel_Switch”){
AddHighlight(hit.collider.gameObject);

}
 if (hit.collider.gameObject.name == “Hallway

_Key”){
AddHighlight(hit.collider.gameObject);

}
}

}

function AddHighlight(hiOb:GameObject){
hiOb.renderer.material.color.r = hiOb.renderer

.material.color.r*10;
hiOb.renderer.material.color.g = hiOb.renderer

.material.color.g*10;
hiOb.renderer.material.color.b = hiOb.renderer

.material.color.b*10;
yield WaitForSeconds (0.1);
hiOb.renderer.material.color.r = hiOb.renderer

.material.color.r/10;
hiOb.renderer.material.color.g = hiOb.renderer

.material.color.g/10;
hiOb.renderer.material.color.b = hiOb.renderer

.material.color.b/10;
}

Why?
This is just doing the same thing as the power switch. Notice that the
script lists this next if statement after the power switch comparison.
Essentially, Unity simply looks to see if the object is called “Hallway_
PowerPanel_Switch” and if it isn't, it moves down to the next set of
instructions. It then checks to see if the object its ray is casting on is called
“Hallway_Key” and if it isn't, it does nothing.

Now, these two if statements look an awfully lot alike. And in fact, it could
be simplified into if(hit.collider.gameObject.name == “Hallway_
PowerPanel_Switch || hit.collider.gameObject.name ==
“Hallway_Key”{. However, we want to make sure that there are actually two
very different things that happen if these objects are clicked. So separating
them into different commands allows for an easy way to distinguish that.

393

Unity Raycasting

Step 11: Save and return to Unity. Fix any syntax errors that pop up in the
console.
Step 12: Test the game. As the player walks up to the key (inside the large
dome-like room) or the power closet (down the long hall and in the closet
to the left of the loading bay), the objects should highlight bright white as
the crosshairs go over them (Figures 14.7 and 14.8).

Turning on the Lights

Now that we've highlighted that actionable items, we need to make an
action happen when they are clicked. The first thing we're going to do is
make the scene so that when the player enters the scene all the lights are
turned off. The player will be able to use a flashlight to find his way to the
closet where the main power switch is on (the one we created the highlight
mechanism for). When the player clicks on the highlighted switch, the
switch itself needs to animate, and then the lights need to come on. We
will build all this into our current script. However, before we continue on
with the script, let's make some adjustments to the scene file to make this
mechanism work.

Figure 14.7 Highlighted
power switch.

Figure 14.8 Highlighted key.

394

Creating Games with Unity and Maya

Step 13: Turn off the baked version of Hallway, and activate the unlit
version. In the scene file that was imported (if you're using that one),
there will actually be two versions of the hallway. One is within the group
Hallway_BakedGroup and the second is called Hallway_Unbaked. Select the
Hallway_BakedGroup and in the Inspector, turn the group off (click off the
check mark up by the object's name). Click the Deactivate Children button
in the resulting Deactivating Game Object dialog box (Figure 14.9). Activate
the Hallway_Unbaked version (it should show up completely black).

Why?
Our method of turning the lights on and off here is going to be a
little clumsy, but it is very easy to see how things are happening in
the script. The way we are going to manage this light switching is by
deactivating and reactivating big collections of stuff. Specifically in
this scene there is an unbaked version of the scene that will show up
completely dark (except for a flashlight we'll create in a minute). There
is also the baked version of the scene that we have now deactivated.
When the switch is thrown, we'll reactivate the baked version and
deactivate the blacked-out version. It's a bit like weeding the garden
with a backhoe, but it'll do the trick.

Tips and Tricks
If you built your own version of this hallway, by this point, hopefully it
has been lit and baked. To replicate the preceding situation, simply bring
up another instance of the Hallway from the project into the Hierarchy
(this will be unbaked). Relabel it as Hallway_Unbaked, and relabel the
baked version as Hallway_BakedGroup. My version of the file Hallway_
BakedGroup also includes the lights, cameras, and keybox. These will just
be hidden when working through the base with the flashlight to keep the
player on task.

Step 14: Create a flashlight for the First Person Controller's camera. In
the Hierarchy, select First Person Controller. In the Inspector make sure
its Rotation XYZ values are all set to 0. Back in Hierarchy, select the Main
Camera object that is a child of the First Person Controller. Move the
mouse into the scene view and press F to focus on the camera. Choose
GameObject>Create Other>Spotlight. Make the Spotlight a child of Main
Camera and rename it Flashlight. Finally, make the Flashlight a child of
Main Camera.

Figure 14.9 Deactivating an entire
hierarchy.

395

Unity Raycasting

Why?
By rotating the First Person Controller to 0,0,0 we are orienting the
controller (and thus the camera) in the direction that the spotlight will
be in when it's created. By pressing F on the keyboard when the Main
Camera is selected, we focus on the Main Camera, which means that
when the spotlight is created, it will match the position of the Main
Camera. It just takes a minute to do these things but is much easier than
creating a spotlight somewhere in space and then attempting to get it
positioned and rotated correctly.

Step 15: Add a Flashlight cookie to the Flashlight. A cookie is a sort of
texture for a light source. Unity ships with a few easy-to-use cookies.
Choose Assets>Import Package>Light Cookies. After completing the
import process, there will be a new folder in the Standard Assets folder
called Light Cookies. In the Hierarchy panel, select Flashlight and then
drag the Flashlight cookie from the Project panel into the Inspector and
into the Cookie input field of the Light component of the Flashlight.
Step 16: Test and adjust the light settings to taste (Figure 14.10).

Tips and Tricks
Let the flashlight remain a bit dim. This part of the game should be a bit
spooky. The way that the flashlight is set up now is that when the player
looks around, the flashlight goes with him, which works great. Don't
worry about any shadows (although they would be creepier). At this point
we should be using Forward rendering (Edit>Project Settings>Player) and
thus we won't be getting real-time shadows anyway. The shadows would
be directly behind objects and tough to see in many cases, so leaving this
flashlight as a very light (not a lot of resources needed to make it work)
instrument will work great for as long as it's needed.

Figure 14.10 Flashlight with cookie.

396

Creating Games with Unity and Maya

Step 17: Adjust bulkhead trigger. In the last chapter on triggers, we set
up the first bulkhead door to open via our trigger. The version we opened
was the baked version because it was just easier to see, but now we need
the Trigger-BulkheadDoor1 to open the door that's in the unbaked version
of Hallway. So select Trigger-BulkheadDoor1 in the Hierarchy this time
and redefine the Door using the version of Hallway_DoorBulkhead_Group
within the unbaked version of Hallway.

Why?
This is actually one of the benefits of making these variables public (as
opposed to using private variables that we populate on a function Start
with a find function). If we have multiple objects named the same thing,
or if we want to make adjustments without having to descend again into
the script, the public variables are there and flexible.

Tips and Tricks
When working with this unlit version of the map, things can be dark,
really dark. Sometimes, when working with a dark scene it can be
very helpful to turn off the lighting in the Scene window. Just turn off
the lighting as shown in Figure 14.11 and the scene view will show
everything well lit, although the in-game lighting will remain true in the
Game window.

Step 18: Test. The player should be able to walk through the scene and
the bulkhead door should open. Make any other adjustments using
triggers to accommodate this new darker version.
Step 19: Create a new function that swaps the unlit and lit models. Add
the following to the bottom of AC_ToolFunctionalityScript:

var hallwayBaked: GameObject;
var hallwayDark: GameObject;

function Update () {
var hit : RaycastHit;
if (Physics.Raycast (transform.position, transform

.forward, hit, 100)){
Debug.DrawLine (transform.position, hit

.point);
Debug.Log (“Selected object is ” + hit

.collider.gameObject.name);

Figure 14.11 Turning off lighting in the Scene window.

397

Unity Raycasting

if (hit.collider.gameObject.name ==
“Hallway_PowerPanel_Switch”){

AddHighlight(hit.collider.gameObject);
}
if (hit.collider.gameObject.name ==

“Hallway_Key”){
AddHighlight(hit.collider.gameObject);

}
}

}

function AddHighlight(hiOb:GameObject){
hiOb.renderer.material.color.r = hiOb.renderer

.material.color.r*10;
hiOb.renderer.material.color.g = hiOb.renderer

.material.color.g*10;
hiOb.renderer.material.color.b = hiOb.renderer

.material.color.b*10;
yield WaitForSeconds (0.1);
hiOb.renderer.material.color.r = hiOb.renderer

.material.color.r/10;
hiOb.renderer.material.color.g = hiOb.renderer

.material.color.g/10;
hiOb.renderer.material.color.b = hiOb.renderer

.material.color.b/10;
}

function TurnOnLights(){
hallwayBaked.SetActiveRecursively(true);
hallwayDark.SetActiveRecursively(false);
Destroy(hallwayDark);

}

Why?
At the beginning of the script we declare two public variables (hallwayBaked
and hallwayDark). Then at the end of the script we create a new function
(TurnOnLights) that uses the SetActiveRecursively function. This
means that an object and all of its children are set active (or inactive).
Note that what's happening there is that the lit version is all turned on,
and then the dark version is all turned off. Finally, since the lights are
going to stay on, we can destroy the unlit version of the hallway so
we needn't deal with it later or keep it in the dataset that Unity is
working with.

Step 20: Define when the TurnOnLights function is to fire. We'll want
this to happen on a mouse click, but only when the power switch is
highlighted. Add the following code:

var hallwayBaked: GameObject;
var hallwayDark: GameObject;

398

Creating Games with Unity and Maya

function Update () {
var hit : RaycastHit;
if (Physics.Raycast (transform.position, transform

.forward, hit, 100)){
 Debug.DrawLine (transform.position, hit

.point);
 Debug.Log (“Selected object is ” + hit

.collider.gameObject.name);
if (hit.collider.gameObject.name ==

“Hallway_PowerPanel_Switch”){
AddHighlight(hit.collider.gameObject);
if (Input.GetMouseButtonDown(0)){

TurnOnLights();
}

}
if (hit.collider.gameObject.name ==

“Hallway_Key”){
AddHighlight(hit.collider.gameObject);

}
}

}

function AddHighlight(hiOb:GameObject){
hiOb.renderer.material.color.r = hiOb.renderer

.material.color.r*10;
hiOb.renderer.material.color.g = hiOb.renderer

.material.color.g*10;
hiOb.renderer.material.color.b = hiOb.renderer

.material.color.b*10;
yield WaitForSeconds (0.1);
hiOb.renderer.material.color.r = hiOb.renderer

.material.color.r/10;
hiOb.renderer.material.color.g = hiOb.renderer

.material.color.g/10;
hiOb.renderer.material.color.b = hiOb.renderer

.material.color.b/10;
}

function TurnOnLights(){
hallwayBaked.SetActiveRecursively(true);
hallwayDark.SetActiveRecursively(false);
Destroy(hallwayDark);

}

Why?
In the area of the code that's telling Unity what to do if the name of the
object being raycast against is Hallway_PowerPanel_Switch, we're saying,
“If the user clicks the mouse button 0 (the left mouse button), go run the
TurnOnLights function.”

399

Unity Raycasting

Step 21: Save and return to Unity. Fix any syntax errors that pop up
in the console.
Step 22: Populate the two variables hallwayBaked and hallwayDark by
selecting the script AC_ToolFunctionalityScript (which is attached to the
First Person Controller), then (from the Hierarchy) dragging Hallway_
BakedGroup to the hallwayBaked variable in the inspector, and then
dragging Hallway_Unbaked to hallwayDark.
Step 23: Test. If you didn't accept the challenge in the last chapter of a
trigger to open the door to this closet, either create one now or hide the
closet door. Then, when you enter the closet, the power switch should
highlight when the crosshairs are over it, and if the player clicks the
mouse, the lights will turn on (actually swaps models out).
Step 24: Refine the script to turn off the flashlight and animate the
switch rotating up. We can do this with iTween, which also gives some
really powerful tools that allow for a function to be fired. To do this we'll
need to do a bit of work with what are called Hashtable Args. Replace the
TurnOnLights(); command with the following:

var hallwayBaked: GameObject;
var hallwayDark: GameObject;

function Update () {
var hit : RaycastHit;
if (Physics.Raycast (transform.position, transform

.forward, hit, 100)){
 Debug.DrawLine (transform.position, hit

.point);
 Debug.Log (“Selected object is ” + hit

.collider.gameObject.name);
 if (hit.collider.gameObject.name ==

“Hallway_PowerPanel_Switch”){
AddHighlight(hit.collider.gameObject);
if (Input.GetMouseButtonDown(0)){

iTween.RotateTo(hit.collider.gameObject, {“x”: 0,
“time”: 1, “oncompletetarget” : gameObject, “oncomplete” :
“TurnOnLights”});

}
}
if (hit.collider.gameObject.name ==

“Hallway_Key”){
AddHighlight(hit.collider.gameObject);

}
}

}

function AddHighlight(hiOb:GameObject){
hiOb.renderer.material.color.r = hiOb.renderer

.material.color.r*10;
hiOb.renderer.material.color.g = hiOb.renderer

.material.color.g*10;

400

Creating Games with Unity and Maya

hiOb.renderer.material.color.b = hiOb.renderer
.material.color.b*10;

yield WaitForSeconds (0.1);
hiOb.renderer.material.color.r = hiOb.renderer

.material.color.r/10;
hiOb.renderer.material.color.g = hiOb.renderer

.material.color.g/10;
hiOb.renderer.material.color.b = hiOb.renderer

.material.color.b/10;
}

function TurnOnLights(){
hallwayBaked.SetActiveRecursively(true);
hallwayDark.SetActiveRecursively(false);
Destroy(hallwayDark);

}

Why?
That's a long line of code, so let's look at what's happening there.
iTween.RotateTo is calling up the custom class RotateTo that
iTween provides. Then, hit.collider.gameObject is the object
being rotated (in this case it's the power switch that the ray is
casting upon). Then are the Hashtable Args. The format for these is
argumentToChange : value, so in order these arguments are saying
“rotate to X = 0 (“x”:0), do it over 1 second (“time” :1), when
done look back to the object the script is attached to, not the object
you were rotating (“oncompletetarget” : gameObject), and when
you're done, fire the TurnOnLights function (“oncomplete” :
“TurnOnLights”).” Cool power in one line of code.

Tips and Tricks
If you're using your own version of the hallway, you may need to take some
special notes on the rotation of the power switch. The power switch of the
unlit version should begin the game rotated down; but should rotate up so
it ends the animation at the rotation of the power switch in the lit version.

Step 25: Turn the flashlight off automatically when the big lights come on.

var hallwayBaked: GameObject;
var hallwayDark: GameObject;
var flashlight : GameObject;

function Update () {
var hit : RaycastHit;
if (Physics.Raycast (transform.position, transform

.forward, hit, 100)){
 Debug.DrawLine (transform.position, hit

.point);

401

Unity Raycasting

 Debug.Log (“Selected object is ” + hit
.collider.gameObject.name);

 if (hit.collider.gameObject.name ==
“Hallway_PowerPanel_Switch”){

AddHighlight(hit.collider.gameObject);
if (Input.GetMouseButtonDown(0)){

iTween.RotateTo(hit.collider.gameObject,{“x”:0,
“time”:1, “oncompletetarget”:gameObject, “oncomplete”:
“TurnOnLights”});

}
}
if (hit.collider.gameObject.name == “Hallway

_Key”){
AddHighlight(hit.collider.gameObject);

}
}

}

function AddHighlight(hiOb:GameObject){
hiOb.renderer.material.color.r = hiOb.renderer

.material.color.r*10;
hiOb.renderer.material.color.g = hiOb.renderer

.material.color.g*10;
hiOb.renderer.material.color.b = hiOb.renderer

.material.color.b*10;
yield WaitForSeconds (0.1);
hiOb.renderer.material.color.r = hiOb.renderer

.material.color.r/10;
hiOb.renderer.material.color.g = hiOb.renderer

.material.color.g/10;
hiOb.renderer.material.color.b = hiOb.renderer

.material.color.b/10;
}

function TurnOnLights(){
hallwayBaked.SetActiveRecursively(true);
hallwayDark.SetActiveRecursively(false);
flashlight.active = false;
Destroy(hallwayDark);

}

Why?
Just two lines of text (both in italics in the code snippet). The first declares
a variable, and the second within the TurnOnLights function sets the
flashlight object to be inactive.

Step 26: Save and return to Unity. Fix any syntax errors that pop up
in the console.

402

Creating Games with Unity and Maya

Step 27: Populate the new flashlight variable in Unity by dragging
your flashlight from the Hierarchy to the flashlight variable on the AC_
ToolFunctionalityScript (attached to the First Person Controller).
Step 28: Test. The handle should highlight, when clicked it will swing up,
and then the lights will appear to come on (Figure 14.12).

Conclusion
The functionality of the game is starting to emerge. We've looked at ways to
make things happen by clicking things directly (OnMouseDown), we've made
things happen by running into triggers (OnTriggerEnter), and now we've
used raycasting to highlight objects, and then while an object is positively
identified trigger other actions and functions.

But we're not done yet, not by a long way. In fact there are some things we left
undone in this chapter. Currently, we can highlight the key, but do nothing
with it. In later chapters we will build a “state engine” and an inventory system
that will make use of our present system. But first, in the next chapter we
will look at the ideas of Prefabs and instantiation. We will build upon what
we know and build a Raycast-driven system that will allow for the player to
shoot out the CCTV cameras to avoid detection. In that same chapter we will
instantiate new objects like our EMP Mine to get into the facility.

Homework and Challenges
Challenge 1: The power closet could be already open, or another trigger
could be set up to allow it to open as the character approaches. Or, a
raycasting system could be set up that would allow the door to open,
but only if the player was facing the door (as in, the ray was cast upon it)
and if the player was within a certain distance of the door (length of ray),
and if the door matched a certain name. Try and build a door-opening
mechanism using your new raycasting skills.

Figure 14.12 The power switch
mechanics (before and after).

Chapter 15

403
Creating Games with Unity and Maya
© 2011 by Elsevier Inc. All rights reserved.

Chapter 15

Unity Prefabs and
Instantiation

Prefabs
If you come from a long Maya lineage, you are undoubtedly familiar with
the concept of instances. An instance in most of the 3D world is the idea of
simply displaying an object multiple times rather than having multiple copies
of the object. In applications like Maya, this means that if I made a change
to the original object (candle modeled onto the cupcake), the change is
automatically made to every instance of that object (500 instances of the
cupcake suddenly all automatically have candles).

In Unity, this same idea is present, but uses slightly different nomenclature.
In Unity this idea of displaying an object multiple times and having those
additionally displayed versions inherit changes is called prefabs. We've
talked of these before, but when constructing a game these can be
tremendously powerful, and changes can be quickly propagated through
the model. Of special use for us is the ability to add functionality to an
object and have the prefabs throughout the model instantly inherit that
capability.

404

Creating Games with Unity and Maya

In the first tutorial of this chapter we are going to write a script that allows
the CCTV cameras in the scene to become “smart.” They are going to really
be looking for intruders (actually just raycasting along the camera's line of
sight), and when the player does indeed come within the line of sight (collides
with the ray), the camera's LED will begin to flash and a countdown will begin
unless the player destroys the camera.

Prefabs versus Prefab Connections

If you are working from the imported assets (brought in from Chapter 13),
the CCTV cameras are already placed within the scene and roughly oriented
for reasonable coverage. Take a look at Figure 15.1 to see how the camera is
arranged.

The camera is organized to allow for quick rotation of the camera (via rotating
the Hallway_CCTV_Camera object). The LED actually will be doing a few
things for us that are important. The camera itself is organized so that the
orientation axis is down on the post that connects to the base. The problem
with this is that the forward direction for the camera is straightforward rather
than along the axis that the camera is pointing. The LED, however, is actually
oriented so that its forward direction is straight out to where the camera
would actually be looking. The reason for this piece of trickery will become a
little more clear in a moment.

This camera, of course, was modeled in Maya and brought into Unity via FBX.
When this model is imported, its icon will look like Figure 15.2 (as we've seen
before).

Notice that the blue square (the traditional symbol in Unity for a prefab) has
a little document symbol in front of it. As we've seen, the great thing about
these objects is that if the model is adjusted in Maya and then replaced in

Figure 15.1 Diagram of camera
organization.

Figure 15.2 Imported model.

405

Unity Prefabs and Instantiation

the Assets folder of the Unity project file, this object automatically updates to
represent these changes.

Here's the thing though—if in Unity changes are made to this object (objects
added, scripts added, objects deleted etc.), they will not propagate to any other
copies of this placed GameObject in the model. As soon as any changes are
made to this GameObject, Unity will warn that “This action will lose the prefab
connection. Are you sure you wish to continue?” and upon clicking Continue,
the connection is indeed lost. The only option after that is to Revert to the state
of the object when it was imported, or leave this orphaned object as is.

Conversely, look at Figure 15.3, which is a prefab constructed from an
imported model.

The difference in the icon is subtle, and it is why I prefer to name Unity-
created prefabs as such, but the difference in functionality is big. With a prefab
constructed within Unity, if changes are made to the prefab (objects added
or taken away), Unity will warn of the prefab connection being broken, but
then after the changes are as desired, the Inspector allows for the changes to
be applied (via an Apply button; Figure 15.4), and those changes are inherited
everywhere this prefab has been placed.

Creating a prefab in Unity is very simple. To create one simply choose
Assets>Create>Prefab. This will create a new object in the Project panel that
shows a white cube (Figure 15.5). This represents an empty prefab. After the prefab
is named, the prefab can be populated/filled by dragging any object on top of the
empty prefab. It will then turn blue in the Project panel and you're in business.

Figure 15.3 Prefab build within Unity.

Figure 15.4 Ability to apply
changes to prefabs.

Figure 15.5 Empty prefab.

406

Creating Games with Unity and Maya

Once a prefab is populated, it can be placed within the scene, copied and
pasted there, and all the copies will be tied to this prefab. If any of the
instances of the prefab are altered, those changes can be inherited to all other
instances of the prefab.

Sometimes, building scenes with combinations of imported assets and
prefabs can save huge amounts of time. Consider how the Hallway scene
included in the downloadable assets was built.

The main body of the hallway was created in Maya and combined (mostly)
into one object so the drawcalls remained low. This did not include any
of the light fixtures or the cameras. The light fixtures (the hanging lights
and the mounted lights) were modeled in Maya and exported individually
and brought into Unity. Once inside of Unity, a new prefab for the hanging
lights was created and a Unity light source (a spotlight) was added.
Then this prefab was placed, copied/pasted, and placed throughout the
model. When the lighting was being worked out, the color balance of
the light could be changed on one light, applied, and then automatically
updated everywhere. Even things like specifications of a light's angle or
shadow characteristics were quickly distributed throughout the model by
adjusting just one.

A similar flow happened with the CCTV camera. The camera was modeled
in Maya and brought into Unity. Within Unity, a new prefab was created
and the CCTV camera was added to it. Then, the LED light was created
from a Unity sphere and organized so it would be the raycasting agent.
The cameras were placed throughout the scene in Unity. As we work
to increase the functionality of these cameras, we only need add the
functionality to one, apply the change, and all the placed cameras will
instantly become smarter.

Even if you're creating your own cameras, take a minute and download and
install the CCTV_Cameras Unity package available on the supporting web
site (http://www.Creating3dGames.com). Once these are within the project
file, you'll have all the tools to take some dumb GameObjects and make them
aware of all sorts of things.

So let's make them smarter.

Tips and Tricks
If you are working from your own assets, you'll need to model a camera.
Or, even if you are working from your own Hallway assets, for time-
saving's sake, use the CCTV that is within the Scenography Assets folder
(specifically the Hallway_CCTV_Prefab). Place and organize the camera
prefab. Of course, if you're using the provided assets from the Hallway
package, the cameras are already placed.

407

Unity Prefabs and Instantiation

Tutorial 15.1: The Power of Prefabs
Step 1: Open Scene-Hallway.
Step 2: Deactivate Hallway_Unbaked and activate the Hallway_BakedGroup
(and all its children). Remember, to do this, just select the object in the Hierarchy
panel, and then check (or uncheck) the box next to the object's name.

Why?
When the game is run we'll eventually want the baked version to be
turned on later, but the CCTV camera will only be active when the power
is on, and thus we want to build the functionality in as though the scene
has already turned on the lights.

Step 3: Create a new JavaScript and name it CCTV-
CameraSearchingScript. Open it in your script editor.
Step 4: Create the raycasting mechanism. Start with this familiar code:

function Update () {
var hit : RaycastHit;
if (Physics.Raycast (transform.position,transform

.forward, hit, 100)){
Debug.DrawLine (transform.position, hit.point,

Color.yellow);
}

}

Why?
Everything there should be familiar—it literally is the same code as used
in the last chapter. The only variation is the Color.yellow part. This is
just coloring the debug ray so it's easy to see and differentiate from any
other rays that might be cast in the scene.

Step 5: Save and return to Unity. Fix any syntax errors that pop up in the
Console.
Step 6: Apply this CCTV-CameraSearchingScript to any of the camera's
Hallway_CCTV_Led GameObjects in the Hierarchy (Hallway_CCTV_
Group/Hallway_CCTV_Prefab/Hallway_CCTV_Camera/Hallway_CCTV_
Led). When a new script is added to the prefab, Unity will warn that the
prefab connection is about to be broken. Go ahead and click Continue.
Step 7: Apply this change to all the CCTV_Camera_Prefabs in the scene.
To do this, in the Hierarchy just select the prefab to which the script was
added (Hallway_CCTV_Led), and in the Inspector, click the Apply button
that is on the Prefab line of buttons.
Step 8: Test. Play the game and take special note of what's happening in
the Scene window (Figure 15.6).

408

Creating Games with Unity and Maya

Why?
And just like that all the cameras in the level can “see.” Quick and powerful
prefabs are. Next—tags.

Tags

Thus far, our scripts have identified objects by their names (hit.collider
.gameObject.name == “Object's Name”). There is something direct about this
method because we have the script looking directly for something solely
based upon the name we typed. However, this can also be fairly brittle as well.
Especially during the prototyping process, objects can very easily end up
renamed in either Maya or Unity to help suit this artist or that scripter. If this
happens, all the scripts that are looking for that object by name break. It can
be pretty icky trying to track down which script called for that object by name,
especially if you don't know what the name was. Alternatively, Unity can compare
other attributes as well. One of my favorites is to compare an object's tag.

When any GameObject is selected in the Hierarchy, the Inspector will
allow for the object to be given a tag and/or assigned to a layer. By default
the tag on objects is set to Untagged. To assign a tag to an object, just use
the drop-down menu next to tag in the Inspector (Figure 15.7). While we're

Figure 15.6 Loads of rays being
casted (represented in yellow);
all from adjusting one prefab and
applying the change.

Figure 15.7 Assigning a tag
to an object.

409

Unity Prefabs and Instantiation

here, it's worthwhile to point out that custom tags can be created as well.
Just select Add Tag . . . from the Tag drop-down menu, and the Inspector will
appear like Figure 15.8 where the user can define a new tag name.

So the power of this idea is that a script can look for objects with a matching
tag (say “Player”). So the main character can be called Fred at the beginning of
development, Aegis midway, and be Janine when it's finally ready to be built,
and as long as all three are tagged as Player, the script referencing it never
breaks throughout the development process.

Step 9: In the Inspector panel, give First Person Controller a Player tag.
Step 10: Make our camera searching script watch specifically for objects
whose tag is Player. If the ray strikes an object whose tag is “Player,” change
the LED to red (RGB value is 1,0,0):

function Update () {
var hit : RaycastHit;
if (Physics.Raycast (transform.position, transform

.forward, hit, 100)){
Debug.DrawLine (transform.position, hit.point,

Color.yellow);
if (hit.collider.gameObject.tag == “Player”){

renderer.material.color = Color (1,0,0);
}

}
}

Why?
This should look a little familiar. Instead of checking for name, hit
.collider.gameObject.tag is checking for the tag. If they match,
it takes the renderer.material.color of the object this script is
attached to (which is the LED) and changes the color values to R = 1,
G = 0, B = 0.

Step 11: Save and return to Unity. Fix any syntax errors pointed out in the
Console.
Step 12: Test. Walk through any part of the level and as the camera “sees”
you, the LED on the top of the camera will change to red (Figure 15.9).

Figure 15.8 Defining new tags.

410

Creating Games with Unity and Maya

Step 13: Make the light pulse. To do this we will make a looping function.
To create this looping function we'll create a mini-state-engine to define
the state of things. The looping function will continue to loop as long
as this state is true. So we'll need to do a few things to the script: add a
Boolean (true/false switch), define that this Boolean is true when the ray
hits the Player tag, and then fire the looping function:

var seenSomething : boolean;

function Update () {
var hit : RaycastHit;
if (Physics.Raycast (transform.position, transform

.forward, hit, 100)){
Debug.DrawLine (transform.position, hit.point,

Color.yellow);
if (hit.collider.gameObject.tag == “Player”){

seenSomething=true;
PulseLight();

}
}

}
function PulseLight(){

while (seenSomething){
var textureColor : Color;
textureColor.r = Mathf.Sin (Time.time * 10.0);
renderer.material.color = textureColor;
yield;

}
}

Why?
So note the three new things. var seenSomething is the declaration of
the Boolean variable. Then in the Update function, note that we define
seenSomething as true when the ray collides with something with the tag
“Player.” Then, when seenSomething is true, we tell Unity to go fire the
function PulseLight.

PulseLight is the looping function. After defining the name of the
function we are saying, “while seenSomething is true, then create a

Figure 15.9 The camera “seeing” the
First Person Controller.

411

Unity Prefabs and Instantiation

variable that's only accessible in this function called textureColor that is
of type Color. Then use a sin curve (looks kind of like a sound wave if it's
been too long since your last math class that has gentle slopes up and
gentle slopes down) to define the red value of the textureColor Color. This
sin curve means that the red value is slowly being turned up, and then
slowly turned down. Then, use the textureColor to define the color of the
LED (renderer.material.color). yield; just means “wait” and keeps
the looping function from being an infinite loop and crashing Unity.

Step 14: Save and return to Unity. Fix any syntax problems.
Step 15: Test. When the camera sees the player we should have a flashing LED.

Adding Sound

Step 16: Find an alarm sound you like (I'm using alarms.wav from
FreeSound.org; http://www.freesound.org/samplesViewSingle
.php?id=54048). Download it and place within the Unity project file.
Step 17: On any CCTV_Camera prefab in the scene, select the
LED (Hallway_CCTV_Led) and add an Audio Source component
(Component>Audio>Audio Source). Place the alarm sound in the Audio
Clip input field (either use target icon or drag and drop from Project
panel). Turn off the Audio Source component, but make sure Play On
Awake and Loop are both checked (Figure 15.10).

Why?
We don't want this sound to always be playing; we want to trigger it in
the script (which is why we're turning off the Audio Source component),
but once it does awake (and thus play) we want it to loop.

Figure 15.10 Settings for the
CCTV camera.

412

Creating Games with Unity and Maya

Step 18: Click the Apply button up in the Prefab buttons to spread the
love to all the other LEDs in the scene.
Step 19: Adjust the CCTV-CameraSearchingScript to include turning the
Audio Source component on within the PulseLight function:

var seenSomething : boolean;

function Update () {
var hit : RaycastHit;
if (Physics.Raycast (transform.position, transform

.forward, hit, 100)){
Debug.DrawLine (transform.position, hit.point,

Color.yellow);
if (hit.collider.gameObject.tag == “Player”){

seenSomething=true;
PulseLight();

}
}

}

function PulseLight(){
audio.enabled = true;
while (seenSomething){

var textureColor : Color;
textureColor.r = Mathf.Sin (Time.time * 10.0);
renderer.material.color = textureColor;
yield;

}
}

Step 20: Save and return to Unity. Fix any syntax problems.
Step 21: Test. Make adjustments to the Volume and Min Distance/Max
Distance settings on the Audio Source to make the sound do what you
want. Be sure that when a change is made, the Prefab Apply button is
pressed so all the other prefabs get the message.

Tips and Tricks
Note that when a value is changed within a component on a prefab, the
entry goes bold. This is also a powerful idea since it allows for prefabs to
be customizable within a scene. Just because a change is made to one
prefab doesn't mean it has to be propagated to the other prefabs. Each
prefab can be customized. However, in this case we want a fairly constant
sound, so as changes are made, don't forget that Prefab Apply button.

Conclusion

We will be back to this script. It sees the player and warns the player that he
has been seen; however, there currently are no consequences. We'll need to
build a timer into this mechanism so that if the player doesn't destroy the
camera within a certain amount of time, he is assumed caught/seen and loses
the game. But we'll take care of that in a future chapter.

413

Unity Prefabs and Instantiation

For now, we'll look at how to shoot the cameras and how to show that the
cameras have been shot.

Instantiation
Instantiation is the idea of creating objects at runtime (when the game is
running). Actually, you've been doing it all along. When Unity runs the game,
the prefabs that have been placed in your scene via the Hierarchy are all
instantiated, and that's what the player actually runs through. This protects
the original assets and these instances of the objects can be destroyed or
otherwise changed and mucked up without long-term consequences.

Instantiation can also happen in a much more deliberate and controlled
manner as well, and can create some very interesting visual tricks. For
example, in our case we're going to play a bit of sleight of hand when the
player shoots a camera. When a camera is hit, we will destroy the existing
camera and instantiate a broken version of the camera at the same location. It
will appear that we've destroyed the camera, when we've just swapped it out.
We'll cover the trickery a little bit with a little explosion and some smoke.

But before we can do that we need to set up a gun-firing mechanism. And to
do that we need to make use of some Aegis arms.

Download from the supporting web site (http://www.Creating3dGames
.com) the AegisArms.unitypackage. This is an animated model (done in
Maya of course) that uses the same texture as Aegis's entire body. Upon
importing the package (Assets>Import Package>Custom Package), the
model AegisChung_Arms should be placed inside a Character Assets folder
in the Project panel (Figure 15.11).

It has a much simpler rig than the whole body (for performance issues and
ease of animation). This rig can also be downloaded as the .mb file on the
supporting web site (http://www.Creating3dGames.com) if you'd like to see
how it's set up. There is very little new rigging technique there, so there is not

Figure 15.11 Aegis Chung arms
as included in the AegisArms
.unitypackage.

414

Creating Games with Unity and Maya

a new tutorial on it. Additionally, the polygons that are not part of the arms
have been deleted to keep the polycount low.

This file will only include three animations—PistolReady, PistolFire, and
FlashlightReady—since this version of the game will not use the rifle and
knife. However, notice in Figure 15.11 that there is an awful lot going on in
Aegis's right hand. He's actually holding all the weapons and tools at once.
In a more robust version of the game, we'd include RifleReady, RifleFire,
KnifeReady, KnifeStab animations, then via script we'd just turn off the
weapons that weren't being used. Note that this also includes a prefab
called PistolSparks that is a simple particle system that we'll use in coming
tutorials.

For us, in the next tutorial we will turn off the rifle and knife and call up the
animations for the pistol.

Tutorial 15.2: Setting Up the Armed Arms
Step 1: Check to see if there is a file in the Character Assets folder
called AegisChung_Arms_Prefab, which should have come in through
processes in Chapter 10. However, if you skipped Chapter 10 for
some reason, or if the AegisChung_Arms_Prefab is not there, be
sure to import the AegisArms unity package (Assets>Import
Package>Custom Package and then find where you've downloaded
the package to).
Step 2: In the Hierarchy, select First Person Controller and make sure its
Rotation XYZ are all set to 0. Move the mouse over the Scene view and
press F to frame the First Person Controller.

Why?
Again, the idea here is that when the arms are placed as children of the
Main Camera, that everything is lined up.

Step 3: Expand the First Person Controller group so that Main Camera is
visible.
Step 4: Place AegisChung_Arms in the scene as a child of Main Camera.
The quickest way to do this is to drag AegisChung_Arms from the Project
panel directly on to Main Camera (Figure 15.12).

Why?
This will look weird for a minute. The arms will be embedded in the white
capsule and will be difficult to see. Similarly, all the weapons may be
visible. Not to worry, we'll fix that in a minute.

We're making the arms a child of the camera so that wherever the camera
moves, the arms move—which means the guns will always be pointed at
where we're looking.

415

Unity Prefabs and Instantiation

Step 5: Play the game. It's going to look weird (Figure 15.13).

Why?
The arms are too high, we can see through the inside of the arm, all the
weapons are active and on top of each other, there's no way those weapons if
fired would hit where the crosshairs are pointing. The list of things that are wrong
go on and on. No worries though, we just need to get those arms adjusted.

Step 6: If the gun, knife, and flashlight are visible, deactivate them. If they
are not visible, they have already been deactivated. These three meshes
are children of the wrist so you have to dig way down. Be sure to work
in the Hierarchy and expand the AegisChung_Arms GameObject and
keep expanding down until AC_R_Wrist is expanded. Select AC_Knife
and deactivate it in the Inspector panel. Do the same for AC_Rifle and
AC_Flashlight.

Figure 15.12 Placed AegisChung_
Arms (child of Main Camera).

Figure 15.13 What the game looks
like at this point—just wrong.

416

Creating Games with Unity and Maya

Step 7: Move AegisChung_Arms down and out a bit (Figure 15.14). The
exact Position settings for me were X = 0, Y = –.35 and Z = 0.4 (all visible
in the Inspector for AegisChung_Arms). However, move them to get your
best guess. Play the game and adjust again.

Why?
When testing and moving be sure to stop playing the game to make
adjustments. Moving the arms while the game is playing will work well
right then, but the position of the arms will revert when the game is
stopped. Also, undoubtedly, you'll notice that the arms strangely disappear
altogether on occasion, leaving just the pistol. We need to fix that.

Step 8: Fix the disappearing arm. In the Hierarchy, expand AegisChung_
Arms and look for the ArmsCenter object. This (in Maya) was the actual first
joint of the rig. Here in Unity, it has a Skinned Mesh Render component.
Check the Update When Offscreen option (Figure 15.15).

Figure 15.15 Tracking down and
activating the Update When Offscreen
option.

Figure 15.14 AegisChung_Arms
cheated out so they will be seen.

417

Unity Prefabs and Instantiation

Why?
Unity (and all game engines, really) work hard to make sure no
processor cycles are being wasted on things that aren't seen. Among
the strategies it employees is not to calculate certain things that are
not visible to the player's camera—it doesn't update them when off
screen. Joint deformations are one of these things that Unity doesn't
bother with when it can't see them. But, sometimes, Unity gets a bit
confused at what it considers on screen and thus the arms disappear
intermittently when they are right on the edge of what the camera sees.
By forcing updates even when the arms aren't on screen, we ensure that
they always stay visible.

Step 9: Create a prefab for this complete First Person Controller with
arms. First, rename First Person Controller to FPC_AegisChung. Then,
in the Project panel, choose Create>Prefab. Rename this new prefab
to the same FPC_AegisChung. Then drag the FPC_AegisChung that is
in the Hierarchy down on top of the FPC_AegisChung prefab in the
Project panel.

Why?
We've spent a lot of work getting this character set up and we'll want to
be able to use it in our other level, EntryWay. By creating the prefab, we'll
have quick access to it later when we replace the First Person Controller in
EntryWay with this one.

Conclusion

So there is still some functionality missing here. Once the game starts, the
gun comes up. This is because the arms are set to automatically play the first
animation attached to it. This means that currently, the gun is always visible
once the game starts, which we probably don't want it to be; and we don't
have any way of using the PistolFire animation yet. Don't worry, we'll return to
controlling these arms later. For now though, let's move on to being able to
have the gun actually hit stuff.

Tutorial 15.3: Firing a Gun
Fortunately, we actually have a lot of the mechanism for the gun already
created. We created it in the raycasting tutorial that build the AC_
ToolFunctionalityScript script. Open that script and take a look. We have
set up already a raycasting system that shoots a ray from the camera and
understands what it hits. In this tutorial we'll build upon that mechanism to
use raycasting to fire our gun.

418

Creating Games with Unity and Maya

Step 1: Open the script AC_ToolFunctionalityScript.
Step 2: Make the script know whether or not the pistol is out and ready
to be fired. Declare the following variable at the beginning of the script
(since the script is getting long, the needed added snippet will be called
out by itself):

…
var pistolActive : boolean = true;
…

Why?
We're actually doing several things here. We're declaring the variable
pistolActive and telling Unity it's going to be a type Boolean (on/off
switch), and in the same line we're telling Unity its value is true (on). Later,
we're going to adjust this so we can determine if the pistol is active via our
inventory system, but for now, we just want to turn it on and leave it on.

Step 3: Have the script check to see if the pistolActive is true, and if it is,
instantiate something that we'll call gunSpark (which will be a particle
system). Add the following code:

…
if (hit.collider.gameObject.name == “Hallway_Key”){

AddHighlight(hit.collider.gameObject);

}
if (pistolActive){

if (Input.GetMouseButtonDown(0)){
var hitDirection = Quaternion

.LookRotation (hit.normal);
Instantiate(gunSpark, hit.point,

hitDirection);
}

}
…

Why?
So this new snippet checks to see if pistolActive is true; if it is, it
listens for the player to press the left mouse button (if (Input
.GetMouseButton(0)); when the player does this Unity creates a
temporary variable (called hitDirection) and has it look at the normal
of where the ray is striking the surface. Remember that the normal of a
surface is the front of the surface, or the direction the surface is facing.
This is laying the groundwork so that when the gunSpark fires, it will fire
out from the direction of the surface it hits.

The last line there is the important one for our purposes. It's instantiating or
creating while the game runs an object called gunSpark, at the location of
hit.point facing the hitDirection that we defined in the line before. So the
syntax of Instantiate is Instantiate (an object, at this spot, rotated like this).

419

Unity Prefabs and Instantiation

Step 4: Declare a gunSpark variable. We're telling the script to instantiate
whatever is residing in gunSpark, but we haven't declared a variable to hold
it yet. At the top of the script, include the following variable declaration:

…
var gunSpark : GameObject;
…

Why?
We still need to build this gunSpark, but we have the container and
mechanism now to access it.

Step 5: Save and return to Unity. Fix any syntax problems that pop up in
the console.
Step 6: Populate the Gun Spark variable. The AC_ToolFunctionalityScript is
(or should be) attached to Main Camera (the one that is a child of the now
FPC_AegisChung). Select Main Camera in the Hierarchy, and then in the
Inspector look for the “AC_ToolFunctionalityScript (Script)” component.
From the Character Assets folder in the Project panel (in the Character
Assets folder), drag the PistolSparks prefab onto the Gun Spark variable
input field of the Inspector.

A Few Notes about Pistol Sparks

If PistolSparks is selected in the Project panel (Figure 15.16), you can see
the settings of this particle system. It's actually just a variation of the Sparks
prefab that was included back when we imported Unity's Particles package. In
the Ellipsoid Particle Emitter section it has smaller values for Min Size (0.005)

Figure 15.16 The very critical
AutoDestruct for PistolSpark.

420

Creating Games with Unity and Maya

and Max Size (0.05) and a lower value for Max Energy (0.1). In the Particle
Renderer, it has a shortened Length Scale (1). All this was found by duplicating
Unity's Spark, relabeling it PistolSparks, and then dropping a copy of it into
the Scene window, tweaking to taste and pressing the Prefab Apply button.
Feel free to tweak further if you don't like my settings.

However, the critical setting that does need to be there is in the Particle
Animator section. The Autodestruct option is checked. This means that after
the particle fires once, it destroys itself. Since this particle system is going
to be instantiated at each point where the player fires his gun, it will be
important that once the spark fires, it dies and doesn't create a geyser of
sparks for every move.

Step 7: Play the game. Shoot around. Since the pistol is active from its
declaration, wherever the player fires, the little PistolSpark particle system
will be instantiated on the surfaces where the ray collides and will be
sparking away from the surface (Figure 15.17). Fire away (we'll still be here
when you're done playing).

Step 8: Download and import Unity's explosion framework, “Detonator.”
This is available at http://unity3d.com/support/resources/unity-
extensions/explosion-framework. When downloaded, this will be
a unitypackage that can be brought in as usual via Assets>Import
Package>Custom Package.
Step 9: Download and import the package CCTV_Cameras.unitypackage
from the support web site (http://www.Creating3dGames.com). This will
include some assets already in the scene, and some (like a broken version
of the camera) that you do not have.

Quick Note about Detonator and Explosion Framework

These scripts all with a Detonator prefix are part of the Unity Explosion
Framework. On Unity's web site, Unity provides some very handy tools for
download and manual implementation. If you are working from the Unity
scenes provided on the web site (http://www.Creating3dGames.com),

Figure 15.17 Instantiating a spark
where the ray shooting from the Main
Camera strikes a surface.

421

Unity Prefabs and Instantiation

these will be included, and by importing the CCTV_Cameras Unity Package
earlier, you installed some of these scripts within the project. The entire
Detonator package is available at http://unity3d.com/support/resources/
unity-extensions/explosion-framework. It's a package that includes scripts,
textures, and sample prefabs for all sorts of explosions. The prefabs can
be dropped into a scene, or (as in this case) the particular features desired
for an explosion can be plucked from the menu of Detonator scripts and
dropped on the object you wish to explode.

Some Detonator functionalities (heat wave) are Pro-only features, but most
things work just fine in Unity as well. In this broken version of the camera, I've
dropped on the Detonator script and the Detonator Sparks script (with a few
minor tweaks to color and size). To see the explosion in action, just play the
game and the explosion will fire (Figure 15.19). In fact, what's happening is
the explosion fires when this broken version of the camera (Hallway_CCTV_
Broken) is instantiated. In the upcoming script we will instantiate this broken
version of the Camera when it is shot, which will trigger the explosion and
hide the swap of objects.

Step 10: Explore the broken version of the CCTV camera (in Scenography
Assets called Hallway_CCTV_Broken). Drag it out anywhere in the scene,
select it, and press F on the keyboard to focus on it (Figure 15.18). Notice

Figure 15.18 The broken camera.

Figure 15.19 When playing the
game, the Detonator scripts attached
to the camera will fire.

422

Creating Games with Unity and Maya

that it contains a Sparks particle system, and some curious scripts that are
attached to Hallway_CCTV_Base….Detonator Scripts.
Step 11: Declare a variable to hold the broken version of the camera.
Add the following declaration to the beginning of the AC_
ToolFunctionalityScript script:

var brokenCamera : GameObject;

Step 12: Create the instantiation mechanism to pull off the ol' camera
switcheroo. This needs to happen only if the raycasting mechanism hits
something, and if pistolActive is true, and if the player presses the mouse
button when this is happening, and if the object the ray hits is indeed
a camera. Since some of the lines are getting long and for clarity's sake,
the entire function Update is shown in Figure 15.20 with the new script
highlighted.

Why?
Notice that this if statement is within several if statements and only fires if
the mouse button is pressed while the pistolActive Boolean is true. Then,
the instantiate statement is saying, “instantiate brokenCamera at the
position of the camera that was hit, and make sure it's rotated at the same
angle as the camera that was hit.” Finally, the Destroy command destroys
the object that was hit (the old camera).

Figure 15.20 Added mechanism that checks to see if the object is tagged “Camera,” and if it is, replace it with the broken version of the camera.

423

Unity Prefabs and Instantiation

Step 13: Save and return to Unity. Fix any syntax problems.
Step 14: Populate the brokenCamera variable. Select the Main Camera, and
look to the AC_Tool Functionality Script (Script) component. Drag Hallway_
CCTV_Broken from the Project panel's Scenography Assets folder to the
input field for Broken Camera. Be sure to press the Prefab Apply button.
Step 15: Play and test. Since the pistol is always visible, you should be able
to start shooting cameras. They'll explode as the broken version pops into
existence (Figure 15.21).

Conclusion

We still haven't built in the mechanism for the cameras to end the game.
However, using raycasting, prefabs, and instantiation, we have created
a working pistol. Let's look at how to continue to use raycasting and
instantiation to place other items, like the EMP Mine.

Tutorial 15.4: Sound Revisited
The first-person controller is coming together nicely, and is becoming the
central depository for many of the functionality scripts. However, the version
of the first-person controller that we've been constructing in the Hallway
scene is different than the one out in the EntryWay. Of particular worry is the
fact that the controller outside has our footstep script and sound and the
controller out there is lacking all the raycasting capability created here.

Eventually, since we've created a prefab of the controller in here, we will be
using this version out in the EntryWay. So we'll quickly rebuild the footstep
functionality of the EntryWay controller and add a bit more functionality,
including gunshot sounds to round him out.

Step 1: Select FPC_AegisChung in the Hierarchy. Press F to focus on the
object.

Figure 15.21 The shooting camera
mechanism working.

Warnings and Pitfalls
When the technical editor
was going through the
chapters, he found and
pointed out some of the
trickier aspects of what
happens sometimes in
Unity's scripts. Be very
careful of capitalization
issues. His note read
like this: “Dang, it's not
working. And I'm not
getting any errors, so
some of the conditions
must not be being met

“Going back and looking
at the Script, it seemed
to me that ‘Camera’ is
wrong. It should read
Hallway_CCTV_Prefab,
but then I realized the
script is already doing
that through .tag text.

“Come to find out I
didn't capitalize the O in
gameObject. Tricky stuff.”

Unity needs to see things
just the right way for
things to go right. Pay
special attention to things
like capitalization to make
sure stuff like that doesn't
sneak past you.

424

Creating Games with Unity and Maya

Step 2: Create two empty GameObjects (GameObject>Create Empty).
Name one Sound-Footsteps and the other Sound-Gunshot.
Step 3: Make both of these children of FPC_AegisChung (go ahead and
continue through the breaking prefab warning).
Step 4: For each, add an Audio Source component (Component>Audio>
Audio Source).
Step 5: Define the sound for each by dragging the desired sound from the
Project panel to the Audio Clip input field for the Audio Source component.
Step 6: For Sound-Footsteps, be sure to disable the Audio Source
component (the footsteps script simply turns it on when needed). Be sure
Play on Awake and Loop are both checked.
Step 7: Drag the SoundFootstepsControl script (that we wrote back in our
sound chapter and should currently be in the Project panel) onto Sound-
Footsteps (you'll be warned about breaking a prefab). The footsteps
should be done. Play to make sure and adjust the volume to taste.
Step 8: For Sound-Gunshot we're going to run things a bit differently. Leave
the Audio Source active, but turn off Play on Awake (also, leave Loop off).
Step 9: Open AC_ToolFunctionalityScript and create two variables—
one for the GameObject that contains the audio (we'll call it
gunshotSoundSource) and one for the actual AudioClip (we'll call this
one gunshotSound). So at the top of the script add these two variables:

var gunshotSoundSource : GameObject;
var gunshotSound : AudioClip;

Why?
We'll be using the function PlayOneShot to trigger the sound (just looking
at many different ways to handle sound). PlayOneShot requires an object, its
audio component, and the specific audio clip to play. While we could declare
these variables within the body of the script, it can be easier to tell what's
going on in a script sometimes when the variables can be quickly read up top.

Step 10: Find the place where the player fires the gun in the script
(Figure 15.22). Add the following line:

gunshotSoundSource.audio.PlayOneShot(gunshotSound);

Why?
This line finds the object gunshotSoundSource, finds its audio
component, and plays the audio clip gunshotSound once.

Step 11: Save and return to Unity. Fix any syntax errors that the Console
complains about.
Step 12: Populate the two new variables. For gunshotSoundSource, drag
Sound-Gunshot from the Hierarchy to the Gunshot Sound Source input
field in the Inspector. For the Gunshot Sound input field, drag the file from
the Project panel (it's the easiest way to get the name right).

425

Unity Prefabs and Instantiation

Step 13: Play and test. Fire around and see how the gun sound fires off every
time the gun is active (all the time) and the player pushes the fire button.
Step 14: Save all these additions to the prefab by selecting the parent
FPC_AegisChung in the Hierarchy and pressing the Prefab Apply button.
Step 15: Save the Unity scene (File>Save); we're finally about to leave the
hallway.

Scope and Optimizing Script
Scope refers to the parts of the code that have access to a given variable. If a
variable is declared at the beginning of a script, all the functions that happen
in that script have access to it. We can even declare Global variables, or
variables that are accessible to all scripts in a game (more on this later). But we
can also declare local variables, or variables that are accessible only within the

Figure 15.22 Complete script at this point including highlighted location of new gun sound command.

426

Creating Games with Unity and Maya

block of code that they are declared in. Keeping track of what parts of a script
(or project) have access to what information is important to understanding
what values are floating around, and to keeping the script tidy.

This AC_ToolFunctionalityScript script is getting quite powerful, but also quite
long and has some inefficiencies when it comes to reading the document.
Perhaps expert scripters are able to construct script flawlessly from the get-go,
but for most of us mere mortals, scripts tend to evolve quite organically and
thus sometimes need a little bit of trimming.

The main trimming for us at this point will entail a few important things. First,
we can strip the Debug functions. They were a valuable instrument when trying
to understand concepts like raycasting, but for now they are just visual clutter. If
we need them later to figure out a problem, it's easy to add them back.

Second, we can look at certain objects or components that we are
accessing again and again within a function and create a local variable
(a variable that is only available within the function in which they were
declared) to house the object, and just call on that variable. So for instance,
if you look at the code right now we are accessing hit.collider.gameObject
a lot. In nearly every block of code this particular chunk of script appears.
Right after we cast the ray (which creates the hit), if we declare a variable
that houses the object that the ray hits (which is what hit.collider
.gameObject is), we can save a lot of typing and make the code much
easier to read. So add the following line (surrounding code included):

…
function Update () {

var hit : RaycastHit;

if (Physics.Raycast (transform.position, transform
.forward, hit, 100)){

var hitObj = hit.collider.gameObject;
if (hitObj.name == “Hallway_PowerPanel_Switch”){

…

Then, everywhere in the code (except for line that defines hitObj) where hit.
collider.gameObject appears, just swap out hitObj. This can quickly be
done with the search and replace function of the editor.

Similarly, in the if(pistolActive) block of code, we create a local variable for a
LookRotation (the rotation of an object we instantiate). Unfortunately, this
means we tie that variable into that block of code, and it would be nice to
access it throughout the function. And in fact, we want access to it as we
work toward setting up the EMP Mines functionality. However, with it nested
down inside the pistolActive block of code, it can be tough to track it down
later when we're bug squashing, and really annoying for someone else who
inherits the script and has to try and figure out what's going on. For these
reasons, it makes sense to lift this particular variable declaration up to the top
of the function as well. So . . .

427

Unity Prefabs and Instantiation

…
function Update () {

var hit : RaycastHit;

if (Physics.Raycast (transform.position, transform
.forward, hit, 100)){

var hitObj = hit.collider.gameObject;
var hitDir = Quaternion.LookRotation(hit.normal);

if (hitObj.name == “Hallway_PowerPanel_Switch”){
…

The entire function Update can be tightened up and can look like
Figure 15.23.

Tutorial 15.5: The EMP Mines
The EMP mines are meant to allow electronic systems to be overloaded
and disabled. They are meant to be mounted on the floor or wall next to an
electronic device, and then when they go off, do their damage and disable
any electronics around them. These are particularly valuable when trying
to get through things like electronic security systems like the one near the
entrance to the base.

Placing things in a game is always an interesting challenge. Different games
have attempted to this in different ways, but among my favorites is how the
engineer works in Team Fortress 2. He sets up turrets. The player playing
the engineer has to decide where the turret is set up and how it is oriented.
The methodology is sort of a ghosted version and blueprint that appears
before the player, which shows where the turret will be placed once the
player activates it. We will use a very similar methodology for this game.

Figure 15.23 Tightened script with local variables.

428

Creating Games with Unity and Maya

The mechanism will work like this: When the player activates the EMP Tool,
a ghosted version of the EMP will appear centered on the screen. As the
character moves and moves his mouse, the ghosted EMP will crawl along
the surfaces of the level. When the player is happy with the placement, he
will click the mouse button and the real (armed) EMP will be placed and will
detonate after a short delay.

This is going to be an interesting problem to solve. It's going to require an
object to be instantiated once, and then moved around the scene based upon
where the player looks. Then, this object will need to be destroyed as another
object is created in its place. Then this last object will need to have scripts
attached to it activated after a short wait. Fun stuff—let's do it.

Step 1: Download and import the Unity package EMPs from the
supporting web site (http://www.Creating3dGames.com).

Why?
This will bring a few things into a Character Assets folder. It should bring
an .fbx EMP that was used to create EMP_Prefab and EMP_Ghost (both of
which are prefabs). The EMP_Prefab has attached to it a Detonator script
that is inactive (we'll activate it via script later). EMP_Ghost has a separate
shader that allows it to be semitransparent. There's nothing particularly
special about either, but they do use some shaders we haven't talked
about yet—feel free to explore them.

Step 2: Open Scene-EntryWay. Disable the fog (Edit>Render Settings) so
we can see the scene.
Step 3: Ensure that you have an entryway with a digital lock within the
scene (Figure 15.24). Hopefully this was created in earlier steps if you're
using your own model. However, if you don't have one, or if you want
another, an EntryWayDoors Unity package is available on the supporting
web site (http://www.Creating3dGames.com).

Figure 15.24 EntryWay.

429

Unity Prefabs and Instantiation

Step 4: Delete the old First Person Controller that is placed within this
scene (the one we worked with back with sounds).
Step 5: Place our newly constructed FPC_AegisChung prefab (drag it from
the Project panel into the Scene window). Put it back in about the same
place as the other unit (Figure 15.25).

Step 6: Turn off the flashlight. Select it and deactivate it in the Inspector
panel. You may need to also deactivate the rifle and knife again.
Step 7: Open AC_ToolFunctionalityScript.
Step 8: Declare two variables: empGhost and empReal. Do this at the top
of the script. Both should be typed as GameObject:

…
var empGhost : GameObject;
var empReal : GameObject;
…

Why?
These two objects don't exist when the game starts—they are not part of
the scene. But by declaring these public variables, we can populate them
with assets from the Project panel so Unity knows what to instantiate
when the time comes.

Step 9: Declare two private variables (placingEMP and placedEMP) that
will act as the holders of the instantiated ghost version and placed version.
Again add this to the top of the script:

private var placingEMP : GameObject;
private var placedEMP : GameObject;

Step 10: Declare a Boolean variable for when the EMP is active
(empActive). Create a second one for when the EMP Ghost is active
(empGhostActive). I like to group my variable declarations, so the total
variable declaration pack looks something like this:

Figure 15.25 Placement of FPC_
AegisChung prefab, which replaces
First Person Controller that was in
the scene.

430

Creating Games with Unity and Maya

var hallwayBaked : GameObject;
var hallwayDark : GameObject;
var flashLight : GameObject;
var gunSpark : GameObject;
var brokenCamera : GameObject;
var gunshotSoundSource : GameObject;
var switchSoundSource : GameObject;
var empGhost : GameObject;
var empReal : GameObject;
private var placingEMP : GameObject;
private var placedEMP : GameObject;

var gunshotSound : AudioClip;

var pistolActive : boolean;
var empActive : boolean;
var empGhostActive : boolean;
…

Why?
We could make this new variable public, but nothing but this script ever
sees it or ever needs to access it. Keeping it private keeps the Unity Editor
space from getting cluttered and helps future users of the scene not feel
like they need to populate it.

Step 11: Check to see if empActive is true, and if it is, start doing things
(that we haven't defined yet). Do this at the end (but still within) the
function Update block of code (since we want this to be happening
every frame).

…
if (empActive){

}
…

Why?
This seems like a bit of empty code, and indeed it is. It says, “check to
see if empActive is true and if it is, do nothing.” It's a trick I learned from
our team's hard-core software developer. What he does is every time he
creates a function or an if statement, he creates the start { and end } right
from the beginning, and then fills in the middle. It helps him keep track of
all the opening and closing brackets.

Step 12: Have the script instantiate empGhost only if empGhostActive
(the Boolean) is not true, and then once the object is instantiated, set
empGhostActive to be true:

431

Unity Prefabs and Instantiation

…
if (empActive){

if (!empGhostActive){
placingEMP = Instantiate(empGhost, hit.point,

hitDir);
empGhostActive = true;

}
}
…

Tips and Tricks
As you've probably gathered by now ! means “not.” So (!empGhostActive)
means empGhostActive is not true. Or != means “not equal to.”

Why?
Some important things are happening here. This collection of code is
within a function Update. This means that the code is firing every frame.
If we were to just use empPlacement = Instantiate(empGhost,
hit.point, hitDir); without checking to see if empGhostActive was
not true (!empGhostActive), Unity would be instantiating empGhost
every frame and leaving a trail of ghosted EMP mines.

What this block does is create the empGhost object and assign it to the variable
empPlacement, and then immediately sets the empGhostActive state to true
(empGhostActive = true;)—all in the same frame. So in the next frame,
since empGhostActive is true, it doesn't fire the code to Instantiate again.

The problem with the code right now is that this creates the empGhost
(and has this newly instantiated object populate the empPlacement
variable), but this new ghost is sitting right where it was created. We
need it to move around according to where the player looks.

Step 13: In the code check to see if empPlacement has been populated,
and if it has, have empPlacement's position and rotation match the raycast
hit's location and normal direction:

…
if (empActive){

if (!empGhostActive){
placingEMP = Instantiate(empGhost, hit.point,

hitDir);
empGhostActive = true;

}
if (empPlacement != null){

placingEMP.transform.position = hit.point;
placingEMP.transform.rotation = hitDir;

}
…

432

Creating Games with Unity and Maya

Why?
We don't want Unity to be chugging away trying to move an object that isn't
there yet. The if statement there (if (empPlacement != null){) makes
sure that empPlacement has indeed been populated. If it has not, it doesn't
fire the two lines beneath it that move it. But if it has been populated (if its
value is not null), then go ahead and set empPlacement's position to match
the point the ray hits (hit.point) and rotate in the direction of hitDir.

Step 14: Actually place the “real” EMP:

if (empActive){
if (!empGhostActive){

placingEMP = Instantiate(empGhost, hit.point,
hitDir);

empGhostActive = true;
}
if (placingEMP != null){

placingEMP.transform.position = hit.point;
placingEMP.transform.rotation = hitDir;

}
if (Input.GetMouseButtonDown(0)){

Destroy (placingEMP);
placedEMP = Instantiate(empReal, hit.point,

hitDir);
ExplodeEMP(placedEMP);

}
}

Why?
This last block of code says, “if the user presses the mouse button (if
(Input.GetMouseButtonDown(0)){), then destroy the empPlacement
object (which is the instantiated ghost version of the EMP), and instantiate
the object empReal at the point and rotate it to the surface's normal. Then,
run the function ExplodeEMP (that we haven't created yet). When you run
ExplodeEMP pass to this function the object that we just used to populate
placedEMP.

This is another instance of the importance of understanding scope. We
defined placedEMP with the line placedEMP = Instantiate(empReal,
hit.point, hitDir);. But because this definition is within an if
statement block and inside an Update function, this would not carry on
down to the ExplodeEMP function (that we're going to write in a minute).
This is why we have to manually pass down to the ExplodeEMP the
parameter of what placedEMP is.

Step 15: Clean up. We're going to add one more block of code that may
seem a little obscure right now but will be important later. This will make
sure there aren't extra ghost EMPs floating around:

433

Unity Prefabs and Instantiation

if (empActive){
if (!empGhostActive){

placingEMP = Instantiate(empGhost, hit.point,
hitDir);

empGhostActive = true;
}
if (placingEMP != null){

placingEMP.transform.position = hit.point;
placingEMP.transform.rotation = hitDir;

}
if (Input.GetMouseButtonDown(0)){

Destroy (placingEMP);
placedEMP = Instantiate(empReal, hit.point,

hitDir);
ExplodeEMP(placedEMP);

}
}
if (!empActive){

if (placingEMP != null){
Destroy (placingEMP);
empGhostActive = false;

}
}

Why?
We want to make sure that if the player uses the EMP tool, but doesn't actually
place the EMP, that the ghost version gets deleted. This is especially important
later when there are multiple tools that the character can use. So the code
says, “if empActive is NOT true, and placingEMP is not empty (as in there is one
in the scene), destroy the placingEMP object, and set empGhostActive to false.”

Step 16: Create the ExplodeEMP to fire the Detonator script. This is
another function and so should happen further on down the script
(Figure 15.26). Enter the following:

function ExplodeEMP(placedEMP:GameObject){
yield WaitForSeconds (2);
placedEMP.audio.enabled = true;
placedEMP.GetComponent(“Detonator”).enabled = true;
placedEMP.renderer.material.color = Color (0,0,0);

}

Why?
The first line defines the name of the function and that it can include the
parameter of a variable that is a GameObject. Then, when the function is
fired, it immediately waits 2 seconds before activating the audio component
on placedEMP (placed.audio.enabled = true;) and enabling the script
called Detonator on that script (placed.GetComponent(“Detonator”).
enabled = true;), and then changes the color of the material to black
(placedEMP.renderer.material.color = Color (0,0,0);).

434

Creating Games with Unity and Maya

Figure 15.26 Total script thus far.

435

Unity Prefabs and Instantiation

So why do all this as a separate function? Couldn't it all be done
with the rest of the instructions on what to do when the user
clicks the mouse button? Well, it could if it wasn't for that pesky
yield statement. Yields are considered “coroutines” and coroutines
cannot be part of a function Update (since function Update is firing
every frame). By breaking this function out, though, we can play
with time and when to fire what based upon things like yield
WaitForSeconds. The reason for waiting 2 seconds in the first place
is to allow the player to place the EMP and then get back before it
goes off.

Step 17: Save and return to Unity. Fix any syntax errors that might
pop up.
Step 18: Populate the new variables for the script. Remember that
the script is attached to the Main Camera. Drag EMP_Ghost and EMP_
Prefab into their respective spots (drag them from the Project panel
(Figure 15.27). Make sure Pistol Active and Emp Ghost Active are both
unchecked to be inactive.

Tips and Tricks
Notice that currently some of the variables are not populated. Namely,
the objects that are only available in the Hallway scene. While this might
not be as elegant as it could be, it's still alright. In the version of this
prefab that lives in the Hallway scene, these variables are populated so all
should be OK.

Step 19: Play and test. Since EMP Active is turned on from the start, there
should be a ghosted version of the EMP floating around. As the player
moves, it will move in front of them. When the mouse button is clicked,
the ghosted version will be replaced by the real EMP that will fire its
detonator script (and sound) after two seconds.
Step 20: Play again and walk up to any of the triggers set up in the scene
and notice how the ghost EMP ends up sticking to these invisible surfaces
(Figure 15.28).

Figure 15.27 Populated AC Tool
Functionality Script.

436

Creating Games with Unity and Maya

Layers

This is an annoying, but fixable, predicament. The triggers need to have a
collider on them or they won't work as colliders. But these colliders are what
cause the raycasting to see them, and then the ghosted EMP to crawl up the
sides of these imaginary objects.

Luckily, the fine folks at Unity have foreseen such troubles and created a
method of allowing objects to live on layers. These layers aren't like Photoshop
layers—they don't actually (by default) live in a particular order over the top of
each other. But they are very handy for Unity mechanisms that “see” things.

For instance, cameras and lights can be told to only “see” certain layers. For
lights this means that a light might illuminate certain objects
(that are on certain layers) and not illuminate adjacent objects (that are
assigned to different layers). It means that a camera could be told to ignore
certain layers and thus not to draw some objects that exist in the scene. This
can be a handy way to handle things like X-rays or night-vision goggles.

In the case of raycasting this can be very important. Via script, a raycasting
mechanism can be told to ignore certain layers, or, lucky for us, there is
already an Ignore Raycast layer that does some of this for us.

If an object, like a trigger, is assigned to this Ignore Raycast layer, all
raycasting functions see right through the object (they don't stop
the ray).

Which layer a GameObject is assigned to is seen in the Inspector and is right
next to the Tag drop-down menu. Creating new layers is actually within the
same mechanism as creating new tags (use the Layer drop-down menu to
select Create New Layer). We aren't going to be doing much with layers for
this project, but be aware that it's there.

Step 21: Assign each of the triggers to the layer Ignore Raycast. Do this
by selecting each trigger in the Hierarchy and then using the Layer drop-
down menu (Figure 15.29).

Figure 15.28 Problem with triggers;
the raycasting is “seeing” the triggers,
and placing our EMP on them as well.

437

Unity Prefabs and Instantiation

Make the EMP Effective

So now we can place the EMP. This visually explodes, but we need to
make it actually do something. The first thing we need to do is check if the
EMP has been placed within a certain distance of the keypad. If it has, it
needs to short the keypad out. We'll indicate that by changing the color
of the texture on the keypad, turning on some smoke, and then opening
the doors.

We can nest all of this within the ExplodeEMP function. But first we need to
create some variables to hold everything.

Step 22: Create public variables for keypadLock, keypadSmoke,
entryWayLeftDoor, and entryWayRightDoor. Place them all at the
beginning block of the script:

var keypadLock : GameObject;
var keypadSmoke : GameObject;
var entryWayLeftDoor : GameObject;
var entryWayRightDoor : GameObject;

Step 23: Down in the ExplodeEMP function, add the following code:

function ExplodeEMP(placedEMP:GameObject){
yield WaitForSeconds (2);
placedEMP.audio.enabled = true;
placedEMP.GetComponent(“Detonator”).enabled = true;
placedEMP.renderer.material.color = Color (0,0,0);
if (Vector3.Distance(placedEMP.transform.position,

keypadLock.transform.position) <= 1){.
keypadLock.renderer.material.color = Color

(.5,.5,.5);
keypadSmoke.active = true;
iTween.RotateTo (entryWayLeftDoor, Vector3

(0,45,0), 8);
iTween.RotateTo (entryWayRightDoor, Vector3

(0,-45,0), 8);
}

}

Figure 15.29 Adjusting the trigger's
layer so they won't be seen by the
raycasting mechanism.

438

Creating Games with Unity and Maya

Why?
Measuring distance is actually pretty straightforward and is presented
reasonably clearly in the documentation (just do a search for
“distance”). There are several ways to measure distance; Vector3
.Distance just means to measure distance in all dimensions. What this
code is doing is saying, “if the Vector3.Distance between the position
of placedEMP and keypadLock is less than or equal to 1, then do the
following things.” The next four lines should be familiar to you by
now—they change the color of keypadLock, activate keypadSmoke,
and then use iTween to rotate open both doors to 45 and –45 degrees,
respectively, over 8 seconds.

Now this has some limitations. It assumes we are only using the EMP to
break open the keypadLock (which we are). But if in an expanded version
of the game the EMPs were going to be used for other objects, we'd need
to include some other mechanism (perhaps additional Booleans) to do
this. But for now, this is going to work out great.

Step 24: Save and return to Unity. Fix syntax problems.
Step 25: Populate the new public variables (Figure 15.30). These should be
populated from objects in the Hierarchy (not the Project panel). If you're
using the Unity packages, the names will largely match. But feel free to
use your own.

Tips and Tricks
As a side note, the EntryWay_KeyPadSmoke (Figure 15.31) is actually just
a slightly modified smoke particle emitter from Unity's built-in Particles
(accessible in the Standard Assets/Particles folder if you've already
imported the Particles Unity Package). Pick one and then put it into the
scene next to the keypad. Make any changes you want to the smoke.
Then use that smoke to populate the Keypad Smoke entry field.

Step 26: Test and play.

Figure 15.30 Populating the new
variables.

439

Unity Prefabs and Instantiation

Conclusion
If all is working right, after the EMP is placed next to the keypad, it should
explode, turn itself black, turn the keypad black, start the smoke coming from
the keypad, and open the doors. If you've been following all the tutorials,
there should also be a trigger set within those open doors that will move us to
Scene-Hallway.

There's some important things left to do. Right now, we have no inventory
system, so it's clumsy (we have to manually activate or deactivate the tool
before running the game). We need to build in a system so that the player can
determine which tool or weapon to use. We also need to build in mechanisms
that kill the player if he falls in the water, and that make the player lose if the
alarms in the building go off for too long. Lastly, we need to build in some way
for the player to win.

In the next chapter we'll build in this endgame sort of mechanics. At that
point we'll have a functioning game that's ready to be built and distributed.

Figure 15.31 EntryWay_
KeypadSmoke. Just a modified version
of Unity's built-in smoke.

Chapter 16

441
Creating Games with Unity and Maya
© 2011 by Elsevier Inc. All rights reserved.

Unity: Creating Inventory
Systems

Chapter 16

Thus far we have created several weapons and tools (our flashlight, EMP, and
pistol). However right now, in order to use any of the three, they have to be
activated in the script manually before running the game. This, of course, is
a useless method to the player. What we need to do is create an inventory
system that allows the player to choose which tool he wants to use and when.
This inventory system will also do the work behind the scenes of turning
various tool functionality on and off in the scripts.

Right now, the gun is active even when placing an EMP. The flashlight is
shining even when the flashlight isn't visible. We need to get these tools so we
use them one at a time. Before we get to the nitty-gritty, though, there are a
few core ideas to cover.

State Engine and How Many Scripts?
A state engine is a mechanism that (for our purposes) will keep track of what
state the game is in. Or more directly, what state the player is in. Or more
specifically, what weapon/tool the character is using. It turns out we've actually
been creating one as we've been building the AC_ToolFunctionalityScript.

442

Creating Games with Unity and Maya

So far this script's main chunk of code is a big Update function that checks if a
list of Booleans are true or false. Depending on which Boolean is true, the script
fires a block of code, or calls on another function within the script. Currently,
the only way to define which Boolean is true is via the public variables
accessible in the Inspector.

But this state engine can be much more robust. We can build in functionality
that allows other scripts to call back to AC_ToolFunctionalityScript and tell it
that a certain state (Boolean) is now active, or deactivate a Boolean. With this
new information, AC_ToolFunctionality can fire new blocks of script at the
appropriate times.

Currently almost all these blocks of script are housed within
AC_ToolFunctionalityScript. And this script is getting a bit unwieldy to
show in this book since it's getting long. In fact, large chunks of this script
could indeed be broken out into other distinct and discreet scripts and
this AC_ToolFunctionalityScript could simply call out to these particular
scripts when needed. There are some real benefits to working this way: the
gun functionality can be included in a GunFunctionality script. Someone
coming into the project can look at a script folder and see quickly what
things are happening and what's doing it without having to read through
too much script. The drawback to a whole lot of scripts is the temptation to
start letting multiple scripts control the same thing, like locking and hiding
the mouse.

I've been involved and have authored projects (to my shame) that have
multiple scripts hanging around the project that have access to things like
hiding the cursor. The problem is that as the game development progresses
and there's a bug that the mouse isn't becoming visible when needed, it is a
nightmare tracking down which script is turning it off, and which script should
be turning it on when multiple scripts have that capability.

Using a centralized script to house things like the mouse turning off and on,
and what the state of the game is in means there is only one place to go when
searching out and squashing bugs. This centralized script houses the state
engine and coordinates what's happening with other scripts. Other scripts can
call out to it, but it keeps track of the central state of the game. Once script to
rule them all.

My colleague here at Los Alamos National Laboratory who is the central
programmer for our team works hard to develop sophisticated state
engines. The training modules he authors are a thing of beauty since
the prefabs are hardly ever broken, and all of his scripts sit in an empty
GameObject in the game called ScriptContainer. All the functionality is
contained in that one little package. Of further interest is how few scripts
actually sit in there—oftentimes a complex game will have only three or
four scripts (he also is constructing custom classes similar to iTween that
reside in the Project panel that he can call on within the few scripts he
hangs in the Hierarchy panel).

443

Unity: Creating Inventory Systems

Eventually, this is where you will end up if programming is your path of
choice. The problem (for beginners) with this methodology is that it can be
fairly opaque and abstract to understand how things are working. It is why in
Incursion we have focused on hanging scripts off of objects. However, with
the complexity of the AC_ToolFunctionalityScript, you can see the start of
fewer scripts controlling more things.

We've looked a little bit at scripts talking to each other already. But understanding
inner-script communication is a critical part of an effective project, and central to
the state engine concept. It also happens to be one of the most frequently asked
questions on the forums.

To further illustrate this, we'll create another script that controls our
inventory system. This inventory system will communicate with the tool
functionality script (AC_ToolFunctionalityScript) to let it know which tool
to fire up.

To do this, we'll return to where we started and create a new inner-game GUI
system.

Tutorial 16.1: Setting Up Inventory GUI
and Script

Step 1: Open Scene-EntryWay if it is not already open.
Step 2: Create GUI layout with GUITextures. Create four GUITexture
objects (GameObject>Create Other>GUI Texture). Name them
InventoryButton_EMP, InventoryButton_Flashlight,
InventoryButton_Pistol and InventoryButton_Tab.
Step 3: Populate the GUITextures with textures. In the 2D Assets folder
(from the 2DAssets Unity Package imported earlier) are a bunch of texture
files that start with ButtonInventory. Use ButtonInventory-EMP for the
InventoryButton_EMP GUITexture, ButtonInventory-Flashlight for the
InventoryButton_Flashlight, Inventory-Pistol for the InventoryButton_
Pistol GUITexture, and Inventory-Tab-Vert for the InventoryButton_Tab
GUITexture.
Step 4: Size the GUITextures. For all but the Inventory_Tab GUITexture,
change the Pixel Inset Width and Height to 128. For the InventoryButton_Tab
GUITexture, change the Pixel Inset Width to 32 and the Height to 128.
Step 5: Arrange all four GUITextures to be aligned in the top-left
corner of the game screen. Do this by selecting each and in the
Inspector, under the Transform, enter Position X = 0 and Position
Y = 1. Since GUITextures are set up from the bottom-left corner of the
texture image, this will make them all disappear. We'll fix that in the
next step.
Step 6: Offset all –128 in Y. Select each, and in the Inspector, under the
GUITexture component, change the Pixel Inset Y to –128. This will show all
the GUITextures, but they'll be on top of each other.

444

Creating Games with Unity and Maya

Why?
Each of these images are 128 pixels tall. Offsetting by –128 when the
Transform Y = 1, make the texture aligned to the top of the screen.

Step 7: Change the Pixel Inset X value to spread out the GUITextures.
Leave InventoryButton_Flashlight as is. Change the InventoryButton_
Pistol's Pixel Inset X = 128 (slides it over an additional 128 pixels).
Change InventoryButton_EMP's Pixel Inset X = 256, and finally change
InventoryButton_Tab's Pixel Inset X = 384.
Step 8: Change the Alpha value for each texture to 64. Do this for each
GUITexture, but click the color swatch (in the Inspector panel in the
GUITexture component) and change the A slider (Figure 16.1). The final
results should look like Figure 16.2.

Why?
We're going to turn down the alpha values to make the buttons more
transparent. In a bit we'll create a script that swaps out these versions of
the buttons with a highlighted version that includes the name of each
tool. Those versions will be at full opacity.

Figure 16.1 Adjusting the alpha.

Figure 16.2 Initial GUI Layout for
inventory system.

445

Unity: Creating Inventory Systems

Step 9: Create the mouse over scripts to highlight each button as the mouse
moves over them. Create a new JavaScript. Name it InventoryButtonScript.
Open this script in your script editor and enter the following:

var buttonReg : Texture2D;
var buttonOver : Texture2D;

function OnMouseOver () {
guiTexture.texture = buttonOver;

}

function OnMouseExit(){
guiTexture.texture = buttonReg;

}

Why?
First we're declaring two variables, both of which are of type Texture2D,
which just means they are images used as textures. Then in a bit of code
that should look a bit familiar we say, “when the mouse is over this object,
go to the guiTexture component, and make its texture be buttonOver.
When we move out of this object, change the guiTexture's texture to be
buttonReg.”

This script will be assigned to each button, and for each button we'll drag
and drop the two versions of the texture for that button.

Step 10: Save and return to Unity. Fix syntax problems.
Step 11: Assign this script to the EMP, Flashlight, and Pistol buttons in the
Hierarchy.
Step 12: Populate the Button Reg and Button Over variables for each
by dragging the respective textures from the Project panel's 2D Assets
folder. So, for instance, for InventoryButton_EMP, the Button Reg variable
should be populated with ButtonInventory-EMP texture (from the Project
panel) and the Button Over variable should be populated with the
ButtonInventory-EMPText texture, and so on (Figure 16.3).

Figure 16.3 The button-swapping
script in action.

446

Creating Games with Unity and Maya

Step 13: Play and test. This will be a little weird because the character will
be looking around wildly as the mouse moves to get over the buttons.
Step 14: Further refine by telling the texture to not only swap out, but to
turn up its Alpha value so it becomes more opaque. And then tell it to turn
it back down when the mouse exits:

var buttonReg : Texture2D;
var buttonOver : Texture2D;

function OnMouseOver(){
guiTexture.texture = buttonOver;
guiTexture.color = Color (.5,.5,.5,.5);

}

function OnMouseExit(){
guiTexture.texture = buttonReg;
guiTexture.color = Color (.5,.5,.5,.25);

}

Step 15: Save. Return to Unity and fix any syntax issues.
Step 16: Ensure the engine state is ready. Open the AC_ToolFunctionalityScript.
Toward the top of the script (in all the variable declarations) there should
be several Booleans. Change all the Booleans to private variables (we don't
want to control them in Unity's editor, we want the buttons to do it), and
create a new variable for flashlightActive. Your variables should look like this:

private var flashlightActive : boolean;
private var pistolActive : boolean;
private var empActive : boolean;
private var empGhostActive : boolean;

Why?
The only ones that really matter to us for the inventory system
are flashlightActive, pistolActive, and empActive. Remember that
empGhostActive is part of the EMP mechanism.

Step 17: Save AC_ToolFunctionalityScript.

Refresher on Interscript Communication

Remember that in the AC_ToolFunctionality script, we are calling functions
within the script, and we do so by just calling out the name of the function
(AddHighlight(hitObj), for instance, says, “go fire the function AddHighlight
with the parameter hitObj. And this function is included here in this
script”). However, we can fire functions that exist in other scripts as well.
We just need to tell Unity where that script is; particularly, what object it's
attached to.

We do this with the following format:

GameObject.GetComponent(“name of script”).NameOfFunction;

447

Unity: Creating Inventory Systems

We can also send a message that defines one of the variables (like a Boolean)
in much the same way:

GameObject.GetComponent(“name of script”).BooleanVariable
= true;

Eventually we're going to want to do both in the inventory script; we're going
to want Unity to understand that when we click a button, it needs to activate
a particular Boolean in AC_ToolFunctionality.

We'll be talking to this same script a lot, so we can shorten things a bit by
declaring some additional variables and then referencing those variables
throughout the script.

Step 18: Open InventoryButtonScript. Create a new variable to contain
the object that holds the script we'll be referencing. Then have the script
find Main Camera on Awake.

var buttonReg : Texture2D;
var buttonOver : Texture2D;
private var mainCamera : GameObject;

function Awake(){
mainCamera = GameObject.Find(“Main Camera”);

}

Why?
Remember that AC_ToolFunctionalityScript is attached to the Main Camera
that is a child of our prefab FPC_AegisChung. So in order to reference that
script, we need to make sure this script knows where that object is.

Now, we're taking a calculated risk here. In this case, we're making the var
mainCamera a private variable, and having the function Awake go and find it.
This is in contrast to the method we've been using of manually defining public
variables within Unity. In this case, we're making the reasonably safe assumption
that there will only be one object named “Main Camera” in the scene. And
since this script is attached to three objects, having Unity go and find it on start
is a bit easier on us since we needn't populate the variables manually.

Step 19: Create another private variable that will hold the reference to the
actual script; then have this script also found on awake:

var buttonReg : Texture2D;
var buttonOver : Texture2D;
private var mainCamera : GameObject;
private var toolFunctionality;

function Awake(){
mainCamera = GameObject.Find(“Main Camera”);
toolFunctionality = mainCamera.GetComponent(“AC_Tool

FunctionalityScript”);
}

448

Creating Games with Unity and Maya

Why?
Note that this new private variable isn't typed. This is a funky reality of
JavaScript—the type does not have to be defined. It can usually help in
performance, but in this case where we're accessing a particular script, we can
leave the type blank, which is often the practice when working with scripts.

Step 20: Create a new OnMouseDown function that starts setting
Booleans via this script. Now that the script is going out and finding the
script, start passing commands to it:

…
function OnMouseDown (){

if (name == "InventoryButton_EMP"){
toolFunctionality.flashlightActive = false;
toolFunctionality.pistolActive = false;
toolFunctionality.empActive = true;

}
if (name == "InventoryButton_Pistol"){

toolFunctionality.empActive = false;
toolFunctionality.flashlightActive = false;
toolFunctionality.pistolActive = true;

}
if (name == "InventoryButton_Flashlight"){

toolFunctionality.empActive = false;
toolFunctionality.pistolActive = false;
toolFunctionality.flashlightActive = true;

}
}

Why?
That looks like a lot of script, but it's a pretty straightforward concept. It says,
”when the user clicks on this object (function OnMouseDown), check if this
object's name is InventoryButton_EMP. If it is, go to toolFunctionality (which
we just defined as the component (script) attached to mainCamera) and
there, set the Boolean flashLightActive to false, set the boolean pistolActive
to false, and set the Boolean empActive to true. If the object clicked is not
InventoryButton_EMP, then check if it is InventoryButton_Pistol and if it is…”
and so on. There are more elegant solutions as well (take a look at Switch
Statements or Singletons); but this one is particularly easy to use.

Firing Animations in Script

So far we've got the InventoryButtonScript so that it can go talk to the mini-
state-engine included in AC_ToolFunctionalityScript and turn on and off
Booleans contained there. But before this works really smoothly, we need
to do a bit of additional beefing up of the functions that are included in
AC_ToolFunctionalityScript.

449

Unity: Creating Inventory Systems

For instance, right now, the pistol is always out since the AegisChung_Arms
prefab has the PistolReady animation running first thing. This was great when we
were setting up the firing of the gun, but is a little awkward now since it's pretty
unbelievable that the gun will make the EMP work or shine light like a flashlight.

So we need to create a couple of functions to bring the pistol out and put
it away. We'll create these functions within the InventoryButtonScript (with
the idea that this script handles all the defining when tools are used with
their respective buttons), and call them up when the buttons are pressed to
activate or deactivate a weapon/tool.

The way we'll put the pistol away (and the flashlight for that matter) is by
playing the animation PistolReady (and FlashlightReady) forward (to bring it
out) and backward (to put it away). The way animations are called on is like this:

GameObject.animation.Play(“Name of Animation”);

Let's call up some animations.

Step 21: Still within InventoryButtonScript, at the top of the script, declare
a new variable to hold the object that has the animations attached to it
(Aegis's arms).

private var aegisArms : GameObject;

Step 22: Create a new function to ready the pistol. And when the pistol is
ready set the pistolReady Boolean to active. Do this at the bottom of the
script:

function ReadyPistol(){
aegisArms.animation["PistolReady"].speed = 1;
aegisArms.animation.Play("PistolReady");
yield WaitForSeconds (aegisArms.animation.clip.length);
toolFunctionality.pistolActive = true;

}

Why?
The first line there simply says, “on the GameObject aegisArms, find the
animation called “PistolReady” and set its speed to 1 (play at regular
speed). There usually is little need to change the speed of an animation
(if it's animated correctly); however, in a bit, we're going to play this
animation backward by setting the speed to –1. If we don't make sure it's
set to positive 1 here, we won't know if the animation is playing forward
when it's called up in the next line.

Next we're telling Unity to wait for the animation to play—or more
specifically wait for the amount of seconds it takes for the animation to
play before going to the script contained in the toolFunctionality variable
(which we declared on Awake as the AC_ToolFunctionalityScript that is
attached to Main Camera) and setting pistolActive to true.

Warnings and Pitfalls
Note that there is a
subtle but important
difference when working
with attributes of an
animation (like changing
the speed)—namely
that the name of the
animation is contained
in [] and not () like it is
when the clip is being
played.

450

Creating Games with Unity and Maya

Step 23: Create another function to store the pistol. Add this to the
bottom of the script:

function StorePistol(){
aegisArms.animation["PistolReady"].speed = –1;
aegisArms.animation["PistolReady"].time = aegisArms

.animation["PistolReady"].length;
aegisArms.animation.Play("PistolReady");
yield WaitForSeconds (aegisArms.animation.clip.length);
toolFunctionality.pistolActive = false;

}

Why?
This StorePistol function says, “set the speed of the animation PistolReady
to –1 (plays backward), then set its current time to the length of the
animation (think of this as fast-forwarding to the last frame), and then
play the animation.” This will play the animation backward, having
Aegis put the gun away. Finally, Unity waits until the animation of
putting the pistol away before it makes pistolActive false over in
AC_ToolFunctionalityScript.

Step 24: Create similar functions to ready the flashlight and put it away:

function ReadyFlashlight(){
aegisArms.animation["FlashlightReady"].speed = 1;
aegisArms.animation.Play("FlashlightReady");
yield WaitForSeconds (aegisArms.animation.clip.length);
toolFunctionality.flashlightActive =true;

}

function StoreFlashlight(){
aegisArms.animation["FlashlightReady"].speed = –1;
aegisArms.animation["FlashlightReady"].time = aegisArms

.animation["FlashlightReady"].length;
aegisArms.animation.Play("FlashlightReady");
yield WaitForSeconds (aegisArms.animation.clip.length);
toolFunctionality.flashlightActive = false;

}

Why?
Again, this is just the same thing, only talking to the animation
FlashlightReady. Remember that the names of these animations were
declared when the asset was first imported. We did this way back when
we brought in the full-body Aegis as well.

Note that since we are now turning the Booleans off and on in these
functions we'll need to remove them from the OnMouseDown function.

451

Unity: Creating Inventory Systems

Step 25: Look to the OnMouseDown function. Look at the new
functions when buttons are pressed. In each place where the line
toolFunctionality.pistolActive = false; appears, we need to
replace it with the block of code:

if (toolFunctionality.pistolActive){
StorePistol();

}

Why?
Instead of just turning pistolActive to false (which would leave the arms
showing the pistol even though it couldn't be fired), we're telling Unity, “if
in the component toolFunctionality, the state of pistolActive is true, run
the function StorePistol.” Then in the StorePistol function the pistolActive
Boolean will be shut off in toolFunctionality.

Step 26: Continuing in the OnMouseDown function, replace everywhere
that the script says toolFunctionality.flashlightActive = false;
with the following block of code:

if (toolFunctionality.flashlightActive){
StoreFlashlight();

}

Step 27: In the block of code that is checking to see if the button pressed is
InventoryButton_Pistol, remove the toolFunctionality.pistolActive
= true; line. Remember we are now turning that on in the ReadyPistol
function. Instead, we just need to tell the script to go and fire the ReadyPistol,
which will switch the Boolean on for us. This will make sure the gun gets
pulled out before we can fire it. So the block of code that deals with the
InventoryButton_Pistol should look like this, with new code in italics:

if (name == "InventoryButton_Pistol"){
toolFunctionality.empActive = false;
if (toolFunctionality.flashlightActive){

StoreFlashlight();
}
ReadyPistol();

}

Step 28: Further expand this chunk of code to be a toggle. This will make
it so that when the InventoryButton_Pistol is clicked, Unity will pull the
pistol out if it's not the active tool, but put it away if it's already deployed:

if (name == "InventoryButton_Pistol"){
toolFunctionality.empActive = false;
if (toolFunctionality.flashlightActive){

StoreFlashlight();
}

452

Creating Games with Unity and Maya

if (toolFunctionality.pistolActive){
StorePistol();

} else {
ReadyPistol();

}
}

Why?
So when the InventoryButton_Pistol is clicked, this script goes out to
the toolFunctionality script and turns off the Boolean empActive. Then,
it checks to see if flashlightActive is true, and if it is, it runs the function
StoreFlashlight (which sets flashlightActive to false). Then, it checks if
pistolActive is true. If it is, it fires the StorePistol function (which sets
pistolActive to false). If pistolActive is not true, it fires the ReadyPistol
function (which sets pistolActive to true).

Step 29: Create an identical structure for the flashlight. Make sure it's set
up to work as a toggle as well:

if (name == "InventoryButton_Flashlight"){
toolFunctionality.empActive = false;
if (toolFunctionality.pistolActive){

StorePistol();
}
if (toolFunctionality.flashlightActive){

StoreFlashlight();
} else {

ReadyFlashlight();
}

}

Step 30: Get Unity to wait around for just a bit while animations play
and mouse clicks are registered. Add the following yield WaitForSeconds
commands:

function OnMouseDown (){
var toolFunctionality = mainCamera.GetComponent

("AC_ToolFunctionalityScript");
if (name == "InventoryButton_EMP"){

if (toolFunctionality.flashlightActive){
StoreFlashlight();

}
if (toolFunctionality.pistolActive){

StorePistol();
}
yield WaitForSeconds (.75);
toolFunctionality.empActive = true;

}
if (name == "InventoryButton_Pistol"){

toolFunctionality.empActive = false;

453

Unity: Creating Inventory Systems

if (toolFunctionality.flashlightActive){
StoreFlashlight();

}
yield WaitForSeconds (.75);
if (toolFunctionality.pistolActive){

StorePistol();
} else {

ReadyPistol();
}

}
if (name == "InventoryButton_Flashlight"){

toolFunctionality.empActive = false;
if (toolFunctionality.pistolActive){

StorePistol();
}
yield WaitForSeconds (.75);
if (toolFunctionality.flashlightActive){

StoreFlashlight();
} else {

ReadyFlashlight();
}

}
}

Why?
Currently, in one frame, this script is doing things like enabling the
empActive (which then means that the click is also registered as
placing the actual mine). Of other problems, in one frame we're
doing things like telling Unity to fire the StorePistol function (which
plays an animation backward) and telling it to play ReadyFlashlight.
These commands are happening right after each other, which means
it abandons playing the first animation and just plays the second. By
providing a few yields, we allow the animations to play before firing
the next batch. This also ensures that the mouse click that Unity
registers when the button is clicked does not register as firing the
gun or placing the mine.

Step 31: Save and return to Unity. Don't try running the game yet, we've
got some other things to do, but do check to make sure there are no
syntax problems.

Hiding and Showing Weapons

Currently, the pistol is likely active, but the flashlight is not. This means that
even though the animations for the arm are firing, Aegis is always holding the
gun—and holding it very strangely when he's supposed to be holding the
flashlight.

454

Creating Games with Unity and Maya

We already know how to turn objects on and off (GameObject.active = true/
false;), we just need to declare the variables and then have them turned on
and off in the right places.

Step 32: Declare three new private variables at the top of the script:

private var aegisFlashlight : GameObject;
private var aegisFlashlightLight : GameObject;
private var aegisPistol : GameObject;

Why?
We're declaring a variable to house the geometry of the flashlight
(aegisFlashlight), the light (created way back when working in the
hallway), and the pistol geometry (aegisPistol). We'll populate these here
in our Awake function in a bit.

Step 33: Populate these new private variables in the Awake function. So it
should read like this:

function Awake(){
mainCamera = GameObject.Find("Main Camera");
toolFunctionality = mainCamera.GetComponent("AC_Tool

FunctionalityScript");
aegisArms = GameObject.Find("AegisChung_Arms_Prefab");
aegisFlashlight = GameObject.Find("AC_Flashlight");
aegisFlashlightLight = GameObject.Find("Flashlight");
aegisPistol = GameObject.Find("AC_Pistol");

}

Why?
Again, the assumption at this point is that we won't be renaming things,
and that we go out and find only one of the objects. Again, the benefit
of this is that we needn't populate them within Unity's editor—the
drawback is that if we rename something, this script will break.

Step 34: Activate these and deactivate them in the appropriate places
within the ReadyPistol, StorePistol, ReadyFlashlight, and StoreFlashlight
functions:

function ReadyPistol(){
aegisPistol.active = true;
aegisArms.animation["PistolReady"].speed = 1;
aegisArms.animation.Play("PistolReady");
yield WaitForSeconds (aegisArms.animation.clip.length);
toolFunctionality.pistolActive = true;

}

function StorePistol(){
aegisArms.animation["PistolReady"].speed = –1;

455

Unity: Creating Inventory Systems

aegisArms.animation["PistolReady"].time = aegisArms
.animation["PistolReady"].length;

aegisArms.animation.Play("PistolReady");
yield WaitForSeconds (aegisArms.animation.clip

.length);
aegisPistol.active = false;
toolFunctionality.pistolActive = false;

}

function ReadyFlashlight(){
aegisArms.animation["FlashlightReady"].speed = 1;
aegisArms.animation.Play("FlashlightReady");
aegisFlashlight.active = true;
yield WaitForSeconds (aegisArms.animation.clip

.length);
aegisFlashlightLight.active = true;
toolFunctionality.flashlightActive = true;

}

function StoreFlashlight(){
flashLight.active = false;
aegisArms.animation["FlashlightReady"].speed = –1;
aegisArms.animation["FlashlightReady"].time =

aegisArms.animation["FlashlightReady"].length;
aegisArms.animation.Play("FlashlightReady");
yield WaitForSeconds (aegisArms.animation.clip

.length);
aegisFlashlight.active = true;
toolFunctionality.flashlightActive = false;

}

Why?
Most of that is pretty straightforward (i.e., turn on the aegisPistol right
before running the animation that shows it and turn it off after the
animation that stores it). The strange one is where the flashlight is. This
is placed so that the light doesn't turn on until after the FlashlightReady
animation has been run, and turns off right before the flashlight is
put away.

Step 35: Make sure both pistol and flashlight are turned off when the
game begins. Do this within a Start function (if you don't have one).
Usually this is done toward the top of the script after the variable
declarations and any Awake functions but before any other functions:

function Start(){
aegisFlashlight.active = false;
aegisFlashlightLight.active = false;
aegisPistol.active = false;

}

456

Creating Games with Unity and Maya

Why?
This makes sure that the pistol and flashlight are turned on only when
they are called (i.e., in the ReadyFlashlight or ReadyPistol functions). If
we carefully turned them off in the editor before running the game, this
wouldn't be a problem, but including this little code snippet helps protect
us against future carelessness.

Step 36: Save and return to Unity. Fix any syntax problems.
Step 37: Turn on Flashlight, AC_Flashlight, and AC_Pistol. In the Hierarchy,
select each of these objects and make sure they are active in the Inspector.

Why?
One of the potential drawbacks to populating variables in Awake (or
Start) functions with a GameObject.Find command is that if an object
is inactive, Unity can't find it. If the variable is a public variable that is
populated by dragging the item from the Hierarchy, this isn't an issue. But
with the method we're using here (private variables that are populated
with Find), we need to make sure that when the game starts the objects
are active to find. Remember that up in step 33, we immediately turn
them all off again, but Unity now has an understanding of what they are
and can reactivate them when told.

Step 38: Select AegisChung_Arms_Prefab and in the Animation
component, turn off Play Automatically.

Why?
Now we are carefully calling up when to play the animations of bringing
up the pistol and flashlight. Without turning off Play Automatically, the
pistol would always come up at the beginning of the game rather than
when the player tells it to.

Step 39: Open AC_ToolFunctionalityScript.
Step 40: Turn off all the Booleans. Add the following lines to make sure
that Unity knows on start up that there are no tools active.

function Start(){
pistolActive = false;
empActive = false;
empGhostActive = false;
flashlightActive = false;

}

Step 41: Save and return to Unity. Fix any syntax errors or typos.
Step 42: Play and test. There is still the pesky problem of the character
looking up and to the left as the player attempts to select a piece of
inventory (which we'll fix in a minute); but at this point, the player should
be able to activate any of the tools and they should work.

457

Unity: Creating Inventory Systems

Step 43: Apply these changes to the prefab. With FPC_AegisChung selected
in the Hierarchy, in the Inspector click the Apply button on the Prefab line.

Why?
We want to make sure that all this work on the inventory system is
functional in the Hallway too (and any other levels we create). By applying
the changes to the prefab, we know that these new functionalities will
work later as well.

Bulking up the GUI System

We need to solve a couple of problems with our inventory system. First we
don't want it visible all the time; with it always there, it detracts from the
immersive experience and the player assumes he can reach up and select
a tool. The second problem is that we don't want the mouse visible usually.
It'd be necessary to have it visible when selecting tools, but it needs to go
away when the game is running in noninventory mode. We'll solve both of
these problems by authoring a couple of new functions to show and hide the
inventory.

But before we go too far, let's clean up, expand, and make a prefab of all our
GUIElements to clean up our Hierarchy, and make the elements more easily
accessible and reusable.

Step 44: Create a new GUITexture (GameObject>Create Other>GUI
Texture). Name it InventoryPrompt. Use ButtonInventory-Tab-Horizontal
(from the Project panel's 2D Assets) for the Texture. Change the Transform
X = 0 and Transform Y = 1. Change the Pixel Inset to X = 0, Y = –32,
Width = 256, Height = 32.

Why?
This GUITexture will serve as the prompt to remind the player how to
access the inventory.

Step 45: Make InventoryButton_EMP, InventoryButton_Flashlight,
and Inventory_Button_Pistol children of InventoryButton_Tab (in
the Hierarchy, select these three GUITextures and drag them atop
InventoryButton_Tab).

Why?
We are going to use iTween's MoveTo to move all the buttons on
and off en masse. By making the buttons a child of one element (the
InventoryButton_Tab), we can animate just the tab, and all the buttons
will go with it.

458

Creating Games with Unity and Maya

Step 46: Create a new GUITexture, name it Crosshairs. Use the Crosshairs
texture from the project panel as the texture for the GUITexture. Leave the
Transform values as is, but change the Pixel Inset values to X = –16, Y = –16,
Width = 32, Height = 32.

Why?
Yeah, you're right. We made one of these back in the Hallway. We're going
to delete that one eventually. The idea is that now that we've determined
the GUI elements for the game, we'll assemble them all there and be able
to use them again and again as a prefab.

Step 47: Create a new empty GameObject (GameObject>Create Empty).
Name it GUIElements. Make sure its Transform Position and Rotation
values are all 0.
Step 48: Make Crosshairs, EntryWayTextHints, InventoryButton_Tab (with
its children), and InventoryPrompt all children of GUIElements (Figure 16.4).

Step 49: Rename EntryWayTextHints to just GUITextHints.
Step 50: Open the script EntryWayTextTriggerScript.
Step 51: Change the guiTextObject = GameObject.Find line to read:

function Awake(){
guiTextObject = GameObject.Find("GUITextHints");

}

Why?
We renamed an object. Since we were finding that object via a GameObject
.Find command, we've got to make sure and change the script.

Step 52: Save and return to Unity. Fix any syntax problems.

Create a GUIElements Prefab

Step 53: In the Project panel, choose Create>Prefab. Rename the new
prefab GUIElements. This can be placed within a folder if you are
organizing your prefabs into one place, or just floating within the project.
Step 54: Drag the GUIElements from the Hierarchy to the new GUIElements
prefab in the Project panel.

Figure 16.4 All the GUIElements grouped under one GameObject, ready to be made a prefab.

Warnings and Pitfalls
It's VERY important that
the Transform values for
Position and Rotation are 0.
If they are not, when they
become the parents of
the GUI elements, all sorts
of things will go awry as
the children will need to
change their Position and
Rotation to account for
their parent.

459

Unity: Creating Inventory Systems

Why?
This populates the prefab we just created and makes the GUIElements in
the Hierarchy tied to this new prefab.

Animate the Inventory to Show and Hide

So we've got a great collection of GUIElements that we can reuse again
(and will in the Hallway). But we still need to solve the problem of the
mouse problems and always having the inventory visible. To fix this, we'll
create a new script and get a few scripts to do a bit of talking to each other.

Step 55: Create a new JavaScript. Name it InventoryToggle. Open
InventoryToggle.
Step 56: Create three new private variables to hold the Inventory Prompt, the
Main Camera, and the FPC_AegisChung (the First Person Controller prefab):

private var inventoryPrompt : GameObject;
private var mainCamera : GameObject;
private var fpcAegis : GameObject;

Why?
The inventoryPrompt will need to be hidden when the buttons are out
so we need access to it. The Main Camera and FPC_AegisChung both
have attached to them a special script called Mouse Look that makes
the character/camera rotate around based upon the mouse moving.
We'll need to disable these when working with the inventory so we need
access to both.

Step 57: On the game start, have Unity populate these variables:

function Start(){
inventoryPrompt = GameObject.Find("InventoryPrompt");
mainCamera = GameObject.Find("Main Camera");
fpcAegis = GameObject.Find("FPC_AegisChung");

}

Why?
Assuming we don't rename these elements, this is a quick way to make
sure Unity has access to the elements it needs.

Step 58: Establish a Boolean that defines whether or not the inventory is
visible. Add the following line to the variable declarations:

private var inventoryPrompt : GameObject;
private var mainCamera : GameObject;
private var fpcAegis : GameObject;
private var inventoryVisible : boolean;

Warnings and Pitfalls
If, for some reason
an extra GUIElement
appears in the Hierarchy
when doing this step, be
sure to delete one. This
happened to me while
writing this step, but I
was unable to get it to
repeat. In either case, we
only need one copy of it.

460

Creating Games with Unity and Maya

Why?
If the inventory is visible, and the user presses I on the keyboard, we need
to do one thing (hide the buttons), but if it is not when the user presses I,
we need to do something else (show the buttons). We need Unity to keep
track of whether the inventory is or is not visible.

Step 59: Tell Unity on start that the inventory is indeed not visible:

function Start(){
inventoryPrompt = GameObject.Find("InventoryPrompt");
mainCamera = GameObject.Find("Main Camera");
fpcAegis = GameObject.Find("FPC_AegisChung");
inventoryVisible = false;

}

Step 60: Set up the scene to make sure the inventory is indeed
not visible. To do this, back in Unity, select InventoryButton_Tab
and change the Transform Position X value to –0.5. This will slide
the buttons off the screen leaving just the InventoryPrompt visible
(Figure 16.5).

Step 61: Lock the cursor. Unity provides a very quick and easy way to lock
(and hide) the cursor. Make sure that when the game starts, the cursor is
indeed locked.

function Start(){
inventoryPrompt = GameObject.Find("InventoryPrompt");
mainCamera = GameObject.Find("Main Camera");
fpcAegis = GameObject.Find("FPC_AegisChung");
inventoryVisible = false;
Screen.lockCursor = true;

}

Figure 16.5 Sliding the buttons off the screen so just the Inventory Prompt is visible.

461

Unity: Creating Inventory Systems

Step 62: Tell Unity to listen for the player to press the I button, and if I is
pressed, run a function that shows/hides the prompt and the inventory.
Do this with a new function Update.

function Update(){
if (Input.GetKeyDown(KeyCode.I)){

ToggleInventory();
}

}

Why?
So the code is saying, “check every frame (function Update) to see if
I has been pressed (if (Input.GetKeyDown (KeyCode.I)). If it has,
run the function ToggleInventory.” Of course, at this point this function
doesn't exist … but it will.

Step 63: Write the ToggleInventory function to check if inventoryVisible is
true, and if it is, slide the inventoryPrompt on the screen and then slide the
buttons off (then lock the cursor and free the camera to look around). If it
is not true, have the inventoryPrompt slide off the screen and the buttons
on (then unlock the cursor and lock down the camera). Add this function
to the bottom of the script:

function ToggleInventory(){
if (inventoryVisible){

iTween.MoveTo (inventoryPrompt, Vector3 (0, 1,
0), 1);

iTween.MoveTo (gameObject, Vector3 (-.5, 1,
0), 2);

inventoryVisible = false;
Screen.lockCursor = true;
mainCamera.GetComponent("MouseLook").enabled =

true;
fpcAegis.GetComponent("MouseLook").enabled =

true;
} else {

iTween.MoveTo (inventoryPrompt, Vector3 (0,
1.1, 0), 1);

iTween.MoveTo (gameObject, Vector3 (0,1,0), 2);
inventoryVisible = true;
Screen.lockCursor = false;
mainCamera.GetComponent("MouseLook").enabled =

false;
fpcAegis.GetComponent("MouseLook").enabled =

false;
}

}

462

Creating Games with Unity and Maya

Why?
The iTween.MoveTo should look familiar. After checking to see if
inventoryVisible is true, the iTween line is saying, “take the inventoryPrompt
GameObject, and move it to the coordinates (0,1,0), and do it over 1 second.”
Also take the gameObject this script is attached to and move it to the
coordinates (–.5,1,0). If inventoryVisible is not true then slide inventoryPrompt
to coordinate (0,1.1, 0). Then, take the gameObject this script is attached
to and move it to (0,1,0). Remember that 0,1,0 for a GUITexture means that it
is aligned in the top-left corner of the interface (visible in this case), but that at
0,1.1,0 the GUITexture is slid off the top left of the screen and at (–.5,1,0),
the GUITexture is slid off the left of the screen. So what's happening here
is the prompt slides up as the buttons slide in to make inventoryVisible
true, and the other way around to make inventoryVisible false.

In each block, notice that after the animations are called, we then
define whether inventoryVisible is true or not (inventoryVisible =
false;), then we lock or free the cursor (Screen.lockCursor =
true;) and finally turn on or off the MouseLook scripts attached to
both the Main Camera and FPC_AegisChung object (mainCamera
.GetComponent(“MouseLook”).enabled = false; and fpcAegis
.GetComponent(“MouseLook”).enabled = false;).

Step 64: Save and return to Unity. Check for syntax problems.
Step 65: Apply this new InventoryToggle script to InventoryButton_Tab
in the Hierarchy. Apply this addition to the prefab by clicking the Prefab
Apply button.
Step 66: Play and test. The inventory system should be all set up and
running.
Step 67: Save Scene-EntryWay.
Step 68: Open Scene-Hallway.
Step 69: Delete the existing Crosshairs GUITexture from the Hierarchy.

Why?
Remember that now the Crosshairs are part of the GUIElements prefab
we've constructed. And since we don't want or need to, we need to get
rid of one before bringing in the GUIElements prefab.

Step 70: Place the GUIElements prefab in the scene. Do this by dragging it
from the Project panel to the Hierarchy. Make sure its Transform XYZ are all 0.

Why?
Remember that the GUIElements includes our screen hints mechanism
as well as our Crosshairs, and most importantly, our Inventory system.
Bringing it in as a prefab makes everything work for us.

Warnings and Pitfalls
There can be a bit
of confusion about
whether or not the
lockCursor is working
when dealing with the
editor environment. Make
sure that when testing
something that locks the
cursor, that the cursor
is indeed in the Game
window when the game
starts. Then, also realize
that as the mouse is
moved around within the
game, it could be escaping
and actually be invisible
on some other part of the
Unity interface. So when
the mouse is clicked, Unity
could be thinking you're
clicking something in the
Hierarchy, or elsewhere.
If this happens, just
guide the mouse back to
the game window and
click again to tell Unity,
“Yeah, I'm working in
this window, and I want
the mouse click to
register here.”

463

Unity: Creating Inventory Systems

Step 71: Double-check the AC_ToolFunctionalityScript that should be
attached to the Main Camera object that is a child of the FPC_AegisChung
prefab already within the Hierarchy. Make sure that all the elements
needed in this scene (Hallway Baked, Hallway Dark, etc.) are populated.
Leave things like Keypad Lock and Keypad Smoke unpopulated as they
are specific to the EntryWay.
Step 72: Make sure FPC_AegisChung is placed at the entrance.

Why?
When this level is loaded up, the assumption is that we've just walked in the
doors. So he needs to be just inside those doors he just entered through.

Step 73: Make sure AC_Flashlight, Flashlight, and AC_Pistol are all
activated for FPC_AegisChung in the Hierarchy.

Why?
Our InventoryButtonScript now goes out and finds these objects (if they
are inactive Unity can't find them) and then turns them off on start.

Step 74: Activate the unbaked version (the dark version) of the hallway
labeled Hallway_Unbaked if you're using downloaded prefabs, and
deactivate Hallway_BakedGroup. Be sure to Activate/Deactivate all the
children as well.
Step 75: Play and test.

Conclusion

Some great stuff is happening. At this point, the inventory system works, the
player can break into the front door, turn on the lights, and then shoot out
cameras. The game is almost done. We still need a few more added features.

First, we created a key that we can highlight (via the raycasting mechanism).
But we can't do anything with this key. Nothing happens there (other than
the highlight). We'll need to do just a bit of adjustment to make this key
work to open a door later. In the last tutorial of this chapter we'll create the
mechanism for the key to work.

Then we need to create a mechanism to allow the player to succeed and to
fail. Right now, the cameras sound the alarm if they see the player, but there
are no consequences to this besides a headache from the never-ending sirens.
And, if the player makes it all the way down to the bottom of the stairs and
finds the device, we haven't a way to indicate to the player that he has indeed
found the device and has beaten the game. In the next chapter we'll create
a simple health/success/failure engine to keep track of how successful the
player is.

464

Creating Games with Unity and Maya

Tutorial 16.2: Keys
Hopefully, this will be a fun tutorial. In the process of this tutorial, we'll make
use of the techniques we've covered in the past tutorials. By assembling these
skills in a new way, we'll have a new mechanism in the game.

The process will go like this. First we'll need to create a trigger that checks
to see if the player has the key when the player enters it. If the player does
indeed have the key, the door will open; if the player does not, a text prompt
will pop up to alert the player that he needs the key. We'll create a PickUpKey
function that fires when the player's ray is cast upon the key and the player
clicks it. When the player clicks the key, we'll make the key disappear from
the scene, but create a GUI element to indicate that the key is on the player's
person. It's going to be fun!

Step 1: Create a new GUITexture to show the key. Create a new GUITexture
(GameObject>Create Other>GUITexture) and name it KeyIcon. Use the
texture Icon-Key from the 2D Assets folder to define its texture.
Step 2: Place the key in the top-right corner of the screen. Select KeyIcon
in the Hierarchy and in the Inspector change the Transform X and Y values
to 1. Change the Pixel Inset values to X = –70, Y = –70, Width = 64,
Height = 64 (Figure 16.6).

Why?
The image is 64×64. With the GUITexture at 1,1,0, the bottom-left corner
of the image is at the top-left corner of the screen, meaning that the
image is off the screen. By offsetting the pixels by –70 in both X and Y, we
slide the image back onto the screen with a 6-pixel buffer above and to
the right.

Step 3: Now that you can see what it will look like when visible, move it off
the screen. Select KeyIcon in the Hierarchy and in the Inspector, change
the Transform X = 1.1.

Figure 16.6 Placed key icon.

465

Unity: Creating Inventory Systems

Why?
We're just sliding it off the screen, so that when the key is actually
acquired, it can slide back on.

Step 4: Make KeyIcon a child of GUIElements. Go ahead and break the
prefab. Then once the KeyIcon is a child of GUIElements, be sure to press
the Prefab Apply button.

Accessing the State Engine

Step 5: Open AC_ToolFunctionalityScript.

Why?
Our state engine exists in the AC_ToolFunctionalityScript. Remember this is
where we're keeping track of flashlightActive, pistolActive, empActive, and
empGhostActive. We need to add a new state (a new Boolean): keyAcquired.

Step 6: Make the state engine is aware of a new potential state:
keyAcquired. Add the following lineup among the variable
declarations:

private var flashlightActive : boolean;
private var pistolActive : boolean;
private var empActive : boolean;
private var empGhostActive : boolean;
private var keyAcquired : boolean;

Why?
We could technically store this Boolean in other places, but keeping
all the Booleans in one place really helps when it comes time for bug
squashing. If all the states are being stored in one place, we know exactly
what place to look if the state isn't working as desired.

Building upon the Raycasting Mechanism

Remember that earlier we set up this AC_ToolFunctionalityScript with a
raycasting mechanism. Look up in the function Update section and see that
the following block of code exists:

if (hitObj.name == "Hallway_Key"){
AddHighlight(hitObj);

}

This exists within the raycasting mechanism and says, “if the object we raycast
against is named ‘Hallway_Key’ fire the AddHighlight function.” This really is
just a placeholder for what's really going to happen here.

466

Creating Games with Unity and Maya

In reality, if the object that is being raycast against is named Hallway_Key, we
need to highlight it, and then if the user clicks the mouse we need to fire a
new function called PickUpKey.

Step 7: Rework this section to read as follows:

if (hitObj.name == "Hallway_Key"){
AddHighlight(hitObj);
if (Input.GetMouseButtonDown(0)){

PickUpKey();
}

}

Why?
So what we're saying here is “if the object raycast against is named Hallway_
Key, then highlight it, and then (if the object being raycast against is still
Hallway_Key) if the user clicks the mouse button, fire the function PickUpKey.”

Fleshing Out PickUpKey

Now we can do all the action involved in actually picking up the key.

Step 8: Scroll and create a new function called PickUpKey. Flesh the
function out like this:

function PickUpKey(){
var keyIcon : GameObject=GameObject.Find("KeyIcon");
iTween.MoveTo (keyIcon, Vector3 (1,1,0), 1);
var keyGeometry : GameObject = GameObject.Find
("Hallway_Key");
keyGeometry.active = false;
keyAcquired = true;

}

Why?
This does some interesting things. First, notice that there are two local
variables declared (keyIcon and keyGeometry). We will use these only
once (the character picks up the key only once), so rather than cluttering
up an already crowded block of variable declarations, we'll declare these
new variables as we need them.

Immediately after declaring each, and even in the same line, we tell
Unity to go out and populate them by finding objects by a particular
name. Generally, using GameObject.Find in a function can be dangerous,

467

Unity: Creating Inventory Systems

especially if the function is fired a lot since we don't want Unity spending
a lot of processor cycles just finding stuff. But since this particular function
fires only once, it's just as expensive to put it here as it is to further clutter
the function Awake or function Start areas of the code.

After we declare the keyIcon variable and populate it, we use iTween's
MoveTo to slide it onto the screen. Finally, after we declare and populate
keyGeometry, we turn it off. So in the game, if the player mouses over the
key it highlights. Then, if the user clicks the key, the keyIcon slides in and
the geometry of the key disappears.

Finally—and this is important—we tell Unity to keep track and know
that now we have acquired the key and to set the Boolean keyAcquired
to true. We'll need Unity to know this later when we want to open a door
with the key.

Step 9: Save and return to Unity. Fix any syntax errors.
Step 10: To test, temporarily deactivate Hallway_Unbaked and
activate Hallway_BakedGroup (deactivate and activate children when
prompted).

Why?
Remember that we're cheating a little bit. The Key and LockBox don't
even exist in the unlit version (Hallway_Unbaked), but become extant
when the power switch is thrown and the Hallway_BakedGroup comes
online.

Step 11: Play and test.

Creating a Smart Trigger

So now Unity is able to identify if the ray coming from the camera strikes the
key (if it does, the key highlights). If the user clicks the mouse while the ray is
on the key, the geometry of the key disappears and the key icon appears on
the screen. Importantly, Unity also knows that the player has acquired the key.
Now we need to make the door that this key opens have a trigger that checks
to see if the character has indeed acquired the key.

Step 12: For the locked door, we need the baked version of the level.
Deactivate Hallway_Unbaked and reactivate Hallway_BakedGroup (and
their children).
Step 13: Find Hallway_Door_Bulkhead_Group 1. This should be in the
large room with the rust-colored walls if you're using the assets provided
(Figure 16.7).

468

Creating Games with Unity and Maya

Step 14: Rotate the group so that the door is shut. The Rotation XYZ
should all be 0.
Step 15: Make sure the group (and its children) is set to non-Static. Do this
in the Inspector by checking off the Static option.

Why?
The group was probably originally set to Static since it needs to be to
be included in the bake. However, if it remains marked as Static we
can't animate it with iTween (or any other script-driven method for that
matter).

Step 16: Create a trigger called Trigger-LockedDoor. As a refresher,
remember this can be done by creating a Cube (GameObject>Create
Other Cube). Click off its Mesh Renderer in the Inspector. Turn on its Is
Trigger option within the Box Collider and resize and place it as seen in
Figure 16.8.

Step 17: Create an AudioSource that contains the sound of a squeaky
door opening. Make sure Play on Awake is turned off. Place the
AudioSource right by the door and name it Sound-DoorLocked.

Figure 16.7 The door that will be locked.

Figure 16.8 Trigger-LockedDoor.

469

Unity: Creating Inventory Systems

Step 18: Create a new JavaScript. Name it
HallwayDoorsLockedTriggerScript. Open the script in your script editor.

Why?
I can hear you hard-core scripters screaming from here, “Just use the
HallwayDoorsTriggerScript and alter it to be able to check for a Boolean
state.” And you'd be absolutely right. A much more efficient method
would be to create one door-opening script that is useful in almost all
situations; however, we're going to build another to review how triggers
function, and to keep the script easy to read within the book.

Step 19: Define variables for the door, the bulkheadHandle, a
doorOpenSound, the mainCamera, and the guiTextHints:

var door : GameObject;
var bulkheadHandle : GameObject;
var doorOpenSound : GameObject;
private var mainCamera : GameObject;
private var guiTextHints : GameObject;

Why?
The door is the object that opens. The bulkheadHandle is the wheel that
turns. The doorOpenSound is a sound that plays when this big ol’ door
opens. The next two private variables allow us to go track down where
our state engine lives (attached to Main Camera), and drive a screen hint if
the player has not gotten the key yet.

Step 20: On Start, have the script populate mainCamera and guiTextHints:

function Start(){
mainCamera = GameObject.Find("Main Camera");
guiTextHints = GameObject.Find("GUITextHints");

}

Why?
So why make mainCamera and guiTextHints private variables and
populate them in script and not do this for the others? Good question;
the answer is that this will make the script applicable in other locked-
door situations. In most all situations where the door is locked (and we
want to be able to open it), the state engine will be accessed, and the
screen hints will be shown. Since these two objects won't change, hard
coding them saves populating in Unity. But since the door may indeed
change if this script is used elsewhere, keeping it a public variable (along
with the door handle and sound the door plays) will allow this script
more uses.

470

Creating Games with Unity and Maya

Step 21: Have the script check to see if keyAcquired is true and if it is,
open the door.

function OnTriggerEnter (other:Collider){
if (mainCamera.GetComponent("AC_

ToolFunctionalityScript").keyAcquired){
iTween.RotateTo(door, Vector3(0,–110,0), 5.0);
iTween.RotateBy(bulkheadHandle, Vector3(3,0,0), 5);
doorOpenSound.audio.Play();
yield WaitForSeconds (doorOpenSound.audio.clip.

length);
Destroy (doorOpenSound);
Destroy (gameObject);

} else {
guiTextHints.guiText.text = "You need a key to open

this door.\nCheck the lock box near the entrance.";
iTween.MoveTo (guiTextHints, Vector3(.5,0,0), .5);
yield WaitForSeconds (3);
iTween.MoveTo (guiTextHints, Vector3(.5, -.1,0), 1);

}
}

Why?
So in plainspeak, the code says, “if the component ‘AC_
ToolFunctionalityScript’ that is attached to mainCamera says
that keyAcquired is true (if(mainCamera.GetComponent(‘AC_
ToolFunctionalityScript’).keyAcquired){), then take the
door object and use iTween's RotateTo class and rotate it to Y =
–110 (iTween.RotateTo(door, Vector3(0,–110,0), 5.0);).
Then spin the bulkheadHandle with iTween's RotateTo (iTween.
RotateBy(bulkheadHandle, Vector3(3,0,0), 5);). Play the
audio attached to doorOpenSound (doorOpenSound.audio.Play();).
Wait for the length of the doorOpenSound audio, and then destroy
the sound and the gameObject this script is attached to (Destroy
(doorOpenSound); and Destroy (gameObject)).”

But if keyAcquired is not true (else {), then change the text on the
guiText component of the guiTextHints GameObject to read, “You need
a key to open this door (and then on a second line). Check the lock box
near the entrance.” Then move the guiTextHints object up with iTweens
MoveTo, wait for 3 seconds and then move it back down.

Tips and Tricks
Note that the \n is not a typo. Without spaces, this tells Unity to split the
string we've used to define the guiText's text into two lines.

Step 22: Save and return to Unity. Fix syntax problems.

Warnings and Pitfalls
If the door isn't opening,
double-check to make
sure that it isn't still
marked as Static (left over
from the baking process).
This always trips me up
because I want to make
sure doors are included
in the baking, but I want
to be able to control
them later on in the
process via script. Gotta
make sure and get Static
turned off for items that
won't be, well … static.

471

Unity: Creating Inventory Systems

Step 23: Apply this script to the Trigger-LockedDoor trigger.
Step 24: Populate the script in the Inspector. Use Hallway_Door_
Bulkhead_Group 1 as the Door. Use Hallway_Door_BulkheadWheel 1
as the Bulkhead Handle. Use the Sound-DoorLocked as the Door Open
Sound.
Step 25: Test and play. First go walk up to the trigger without picking up
the key (Figure 16.9) and the text should provide some guidance. Then
go back for the key (which should highlight; Figure 16.10), and then
disappear when it is clicked (which should also pull up the key icon in the
top-right corner). Finally, go back to the locked door, which should yield
before your mighty gaming prowess (Figure 16.11).
Step 26: Make Trigger-LockedDoor a child of Hallway_BakedGroup.

Why?
We don't want the character getting tied up looking for the key before
he's turned the lights on. For one thing, the keybox doesn't exist yet.
By making the Trigger-LockedDoor a child of Hallway_BakedGroup, we

Figure 16.9 Walking up to the locked door, providing help on how to get through the door.

Figure 16.10 Raycasting against the key, which disappears when clicked.

472

Creating Games with Unity and Maya

ensure that this trigger isn't functioning until the parent is set active
when the lights are turned on.

Step 27: Reactivate Hallway_Unbaked and deactivate Hallway_BakedGroup.

Conclusion
And there it is. Other than the fact that there is no winning or losing the
game, the game is done. All the obstacles have been presented to the player,
and all of them can be overcome. The scripting mechanisms are in place to
handle all of it.

Still, playing the game is pretty unfulfilling when the player can't lose and
can't win. In the next chapter we'll set up this engine.

Homework and Challenges
Challenge 1: The inventory system works well; but currently, when a tool
is picked, the player is still locked in the inventory system. Wouldn't it be
nice if when the player picks a tool, it automatically returns him to the
game? Make this happen.
Challenge 2: The inventory system is useless without the player knowing
how to use it. Create a trigger so that as the player walks across the dock,
a screen hint appears that shows the inventory and provides a bit of
instruction on how to use it.
Challenge 3: When the player first enters the hallway, it's awfully dark.
How can the player be prompted to activate his flashlight?
Challenge 4: After flipping on the main switch, create a prompt that
allows the player to know to watch out for cameras and to shoot them if
he finds them.

Figure 16.11 Once the key is acquired, the door opens before the player.

Chapter 17

473
Creating Games with Unity and Maya
© 2011 by Elsevier Inc. All rights reserved.

Health Systems, Winning,
and Losing the Game

Chapter 17

The game is playable. But the player is in that strange limbo of being unable
to win and unable to lose. In this chapter we will look at enabling the player to
do both.

Winning will actually be very simple—if the player gets to the end of the
level (at the bottom of the stairs) alive, he wins. This means that if we have
a trigger down there, when the player passes through it, we can launch the
“Congratulations! You Win!” level. We'll further flesh out that tutorial with
script to allow for the game to be quit or restarted.

Losing is actually a bit tougher, but allows us opportunities to explore new
ideas. To allow the player to lose we need to allow him to have a health system
that keeps track of what sort of damage he has taken. We'll throw some
escaping steam into the level that hurts the player if he isn't careful about
where he walks, and make sure that the frigid water we warn him about does
indeed do him in.

First, let's set up the winning mechanism.

474

Creating Games with Unity and Maya

Tutorial 17.1: Winning
The process we're going to follow is to first create the congratulations level—
the level the game goes to if the player indeed gets to the end and wins.
Within this level we'll build the scripting mechanism to allow the game to quit
and to restart the game. Then, in the Hallway scene we'll create the trigger
that will signal that the player has reached the end.

Step 1: Duplicate Scene-Opening in the Project panel. Just select
Scene-Opening and choose Edit>Duplicate. Rename the duplicate
Scene-Closing.

Why?
This congratulations level could be a lot of things, and if you'd like it
to be something besides the spinning version of Aegis, go ahead and
create that. This closing level can have anything as the visual candy—the
important thing will be the buttons.

Step 2: Open Scene-Closing by double-clicking it in the Project panel.
Step 3: In the Hierarchy delete the data panels and buttons. Left behind
should just be Aegis (Figure 17.1).

Step 4: Create three GUITexture objects. Populate them with DataPanel_
Congratulations, Button_Exit, and Button_PlayAgain. Resize and
place them to approximate Figure 17.2 or to taste. Rename them
Congratulations, Button-Exit and Button-PlayAgain.

Tips and Tricks
Remember this is done with combinations of the Transform X and Y
values and using the Pixel Inset settings.

Step 5: In the Project panel, duplicate OpenSceneButtonsScript. Rename
the duplicate CloseSceneButtonScript and open it.

Figure 17.1 Beginnings of closing
level.

475

Health Systems, Winning, and Losing the Game

Why?
Really, the additional functionality for these two buttons could be
appended to the OpenSceneButtonScript, and generally, in my own
projects in the name of fewer scripts, this is how I would do it (and
rename the script GUIButtonsScript). However, in the format of a book,
this starts to again become a really long script and can sometimes be
difficult to see how it all works with the extra script. So for clarity's sake,
we'll make a new script.

Step 6: Get rid of the variables and Awake function (neither are
needed here) and adjust the OnMouseDown function to check for the
name of the buttons being clicked. If the Button-Exit is clicked, quit
the game. If Button-PlayAgain is chosen, load the level Scene-Opening.
Finally, make sure that the mouse is free when the level starts (we'll be
entering the CloseScenes after playing other levels that may be locking
the cursor):

function Start(){
Screen.lockCursor = false;

}

function OnMouseEnter () {
guiTexture.color = Color (1,1,1);

}

function OnMouseExit (){
guiTexture.color = Color (.2,.2,.2);

}

function OnMouseDown(){
if (name == “Button-Exit”){

Application.Quit();
}

Figure 17.2 Placed closing GUI
elements.

476

Creating Games with Unity and Maya

if (name == “Button-PlayAgain”){
Application.LoadLevel(“Scene-Opening”);

}
}

Step 7: Save and return to Unity. Fix syntax problems.
Step 8: Apply CloseSceneButtonScript to Button-Exit and Button-
PlayAgain in the Hierarchy.
Step 9: Change the color value of Button-Exit and Button-PlayAgain to
RGB=50. Remember to do this, select each button in the Hierarchy; then in
the GUITexture component, click the color swatch to change the values.
Step 10: Play and test. When the Exit button is clicked nothing will
happen (it'll work when the game is built though). When the Play Again
button is clicked, we should be back in Scene-Opening.
Step 11: Save Scene-Closing.

The Endgame Trigger

Step 12: Open Scene-Hallway.
Step 13: Create a trigger that sits right in front of the closet where
the device resides (at the bottom of the stairs (Figure 17.3). Name it
Trigger-Endgame.

Tips and Tricks
Note that Figure 17.3 shows the positioning of the trigger with Unbaked
hidden, and Baked visible (although it could also be placed by disabling
the lighting in the Scene view).

Figure 17.3 Trigger location for final trigger.

477

Health Systems, Winning, and Losing the Game

Step 14: Create a new JavaScript and name it EndgameTriggerScript.
Open it.
Step 15: This script will be easy. When we run into this trigger, load the
level Scene-Closing:

function OnTriggerEnter (other:Collider){
Application.LoadLevel(“Scene-Closing”);

}

Why?
It's pretty straightforward here. If the player makes it to the end and runs
into the collider, the Scene-Closing scene fires.

Step 16: Save and return to Unity. Fix any syntax problems.
Step 17: Deactivate Hallway_Unbaked and activate
Hallway_Baked.
Step 18: Move the FPC_AegisChung toward the end of the map (so that
when we test in a minute, the player doesn't have to run through the
entire level).
Step 19: Add Scene-Closing to the Build Settings. Remember, to do this,
choose File>Build Settings and then drag Scene-Closing from the Project
panel into the Scenes in Build section of the Build Settings window
(Figure 17.4).
Step 20: Apply EndgameTriggerScript to the Trigger-Endgame trigger.
Test and play.
Step 21: When satisfied that everything works, place FPC_AegisChung
back at the beginning of the level.
Step 22: Make Trigger_Endgame a child of Hallway_BakedGroup.

Why?
Not that the character could actually get to the end of the level when the
game was all dark (the Unbaked version being visible), but just in case,
having the trigger not active until the Baked version is turned on will help
ensure the game proceeds as planned.

Step 23: Deactivate Hallway_BakedGroup and activate
Hallway_Unbaked.
Step 24: Save Scene-Hallway.

Conclusion

Great! He can win. Winning can be fun—but only when there's the possibility
that you can't. Let's create a health system so the player can lose.

478

Creating Games with Unity and Maya

Tutorial 17.2: Health Systems
As usual in Unity, there are several ways to approach a health system. We're
going to approach it in the most common way and create a health engine
that is attached to FPC_AegisChung. This health engine is really just a counter.
It will start knowing that the health of the character is 100 (or whatever).
Then, as the character comes in contact with certain situations (gets hit by
a bullet, has a rock dropped on him, steam hits him, falls too far—use your
twisted imagination here), a message will be sent to this health engine to
subtract from whatever the health value is. When the health equals 0, fire a die
function to alert the player that he's kicked the bucket and lost the game.

So to begin, we'll need to create the health script.

Step 1: Create a new JavaScript. Name it HealthEngineScript
and open it.
Step 2: Define a couple of variables. One (an integer) will hold the actual
value of the health. The second (a GameObject) will hold the GUIText
GameObject that displays the health level:

var health : int;
private var healthLevel : GameObject;

Step 3: For now, we want to tell Unity that when the game starts, set the
health to 100 and then display that value:

var health : int;
private var healthLevel : GameObject;

Figure 17.4 Making sure that the
Scene-Closing is part of the scenes
that Unity knows to play.

479

Health Systems, Winning, and Losing the Game

function Awake (){
healthLevel = GameObject.Find(“HealthLevel”);

}

function Start(){
health = 100;
healthLevel.guiText.text = health.ToString();

}

Why?
The first command of the Start function simply defines the value of
health. Later we will want to pass this value between levels so that if Aegis
gets into trouble in the EntryWay, that his reduced health is the same
when he's in the Hallway. But for now, let's just have it set to 100 when
the game starts.

The second command defines what should be in the text of the guiText
component of the GameObject healthLevel. Notice that this makes use
of the fancy ToString function. This is a built in function in Unity that
converts (in this case) an integer (which a guiText can't display) to a string
(which a guiText can display). So it just takes the value of health, converts
it to string (a collection of text), and displays that. Seems a little laborious
but it's typical of how many scripting languages work.

Now we haven't created the guiText GameObjects yet. We'll get to that
in a bit.

Step 4: Save and return to Unity. Fix syntax.

Creating Health Display

Step 5: Open Scene-EntryWay.
Step 6: Create a new GUITexture (GameObject>Create Other>GUI
Texture). Label it HealthLabel and populate its Texture with the
HealthBG texture from the 2D Assets folder. Position it with the
settings shown in Figure 17.5. Make sure Transform X = .5, Y = 1. Then
be sure the Pixel Inset values are set to X = –32, Y = –64, Width = 64,
Height=64.

Why?
The image is 64×64 (thus the width and height settings). By setting the
Transform values at 0.5, 1 we're putting the bottom-left corner of the
image at the center of the top of the screen. Offsetting the image by
X = –32 slides the middle of the image to the middle of the screen, and
then offsetting the image by Y = –64, slides it down so the top of the
image is at the top of the screen.

480

Creating Games with Unity and Maya

Step 7: Create a GUIText object (GameObject>Create Other>GUI Text).
Label it HealthLevel. Set the Transform Position to X = 0.5, Y = 1, and
Z = 2. Set the text to read 0. Change the Anchor to “upper center.” Change
the Alignment to “center.” Change the Pixel Offset Y = –30 and assign a
font you like (Figure 17.6).

Why?
So this GUIText is set at the top center of the screen (Transform Position
(0.5, 1, 2)) and is aligning the text center and using as its anchor the upper
center. Then we're sliding it down 30 pixels off the top of the screen. Note
that the Z = 2 makes sure that the text is drawn on top of the HealthBG.

Step 8: Make both of these children of the GUIElements prefab in the
Hierarchy.
Step 9: Select GUIElements and press Prefab Apply.

Figure 17.5 Settings for
HealthLabel.

Figure 17.6 Settings for HealthLevel
GUIText.

481

Health Systems, Winning, and Losing the Game

Step 10: Apply HealthEngineScript to FPC_AegisChung. Go ahead and
break the Prefab connection when prompted, then reattach to prefab via
the Prefab Apply button. Test and play. The HealthLevel that should be
displayed at the top of the screen should swap from 0 to 100.

Why?
We'll want this health system in all the places we're showing the
GUIElements. Make it once here, reap the benefits everywhere.

Back to Script

Step 11: Reopen HealthEngineScript.
Step 12: Create the function that deducts from the health level when
damage is done:

var health : int;
private var healthLevel : GameObject;

function Awake (){
healthLevel = GameObject.Find(“HealthLevel”);

}

function Start(){
health = 100;
healthLevel.guiText.text = health.ToString();

}

function ApplyDamage (damage : int){
health –= damage;
healthLevel.guiText.text = health.ToString();
if (health <=0){

KillPlayer ();
}

}

Why?
The first line is defining the name of the function (ApplyDamage declares
a local variable “damage” that is an integer). This local variable declared
here will mean we can easily pass values to the function.

Then, the first command is a bit of programming shorthand. health–=
damage means, “subtract damage from health, and that's the new health
value.” It's a little unintuitive at first glance, but saves loads of time when
doing counting sorts of things.

The next command just says (as before), write the string version of the
health value to the text of the guiText component attached to healthLevel.

Finally, it checks to see if the health level is equal to or has dropped beneath 0,
and if it has, fire the function KillPlayer (which we haven't written yet).

482

Creating Games with Unity and Maya

Step 13: Build a simple KillPlayer function:

var health : int;
private var healthLevel : GameObject;

function Awake (){
healthLevel = GameObject.Find(“HealthLevel”);

}

function Start(){
health = 100;
healthLevel.guiText.text = health.ToString();

}

function ApplyDamage (damage : int){
health –= damage;
healthLevel.guiText.text = health.ToString();

if (health <=0){
KillPlayer ();

}
}

function KillPlayer(){
Application.LoadLevel(“Scene-ClosingFail”);

}

Why?
We haven't built Scene-ClosingFail yet, but the KillPlayer function loads it.

Things That Hurt

What we've built so far is an engine that keeps track of what the health level is
for the player. But we need to now create things that will hurt the player. We're
going to create a couple of things that do this. The first will be a trigger that we
place where the player shouldn't be (like where the water is or in the empty
space in the tall hall of stairs). Then, if the character collides with these triggers,
the trigger will send a message to the object that has collided with it (the
FPC_AegisChung) that the player has sustained damage, and how much damage
he's taken. For this mechanism we'll even build in a timer so that if the player
remains in the trigger (like in the icy water), the damage amount increases.

The second mechanism we'll build is using particles. There are lots of pipes in
the hallways; we'll have some steam leaks pop out, and if the player walks too
close to the steam, he'll incur damage.

Creating the Damage Triggers

Step 14: Create a new trigger that encompasses all the areas where the
player may come in contact with the water (Figure 17.7). Note that it
goes off the front of the dock, but also includes the channel. Make sure

483

Health Systems, Winning, and Losing the Game

that it's lower than the dock (of course) since it should register
a collision only when the player steps off the dock. Name it
Trigger-WaterKiller.

Step 15: Create a new JavaScript. Name it DamagePlayerScript and
open it.
Step 16: Create two variables—one to store the amount of damage the
trigger will do, and a second to keep track of whether the player is still in
the trigger or not:

var damageAmount : int;
private var inTrigger : boolean;

Why?
By leaving damageAmount as a public variable, we can reuse this script
again and again. So for the water, the script can be set to do a little bit of
damage (and then repeat the damage if the player remains in the water),
but if the player jumps off a cliff, it can do 100 damage and kill them
right away.

Step 17: Create the mechanism that checks to see if something has
entered the trigger. Have it check to see if the object's tag is “Player” and if
it is, set the Boolean inTrigger to true, and fire a function that does damage:

var damageAmount : int;
private var inTrigger : boolean;

function OnTriggerEnter (other:Collider){
if (other.gameObject.tag == “Player”){

inTrigger = true;
DoDamage (other.gameObject);

}
}

Figure 17.7 Our water collider.

484

Creating Games with Unity and Maya

Why?
Of course we haven't made the function that actually does the damage
yet (DoDamage), but we'll create that in a minute. Do notice, however,
that in the last command in that block of code we're telling Unity to go
fire DoDamage, but take with it the gameObject attached to other (which
is the collider that entered the trigger).

Step 18: Add a function to set inTrigger to false when the player exits the
trigger:

var damageAmount : int;
private var inTrigger : boolean;

function OnTriggerEnter (other:Collider){
if (other.gameObject.tag == “Player”){

inTrigger = true;
DoDamage (other.gameObject);

}
}

function OnTriggerExit (other:Collider){
inTrigger = false;

}

Why?
For some of the triggers this will be used on, the player will never leave
it alive. But, the player could enter the water trigger, and then climb out
via the terrain. So we need Unity to keep track of whether the player has
emerged alive or not.

Broadcast Message

We've looked at a few ways to communicate between objects and scripts.
There's one final method we'll look at in this book—a powerful method
called Broadcast Message. What Broadcast Message does is shout a message
out and objects that are listening for it hear it and obey. In this game we're
using Broadcast Message in a fairly targeted fashion, but consider a situation
in which lots of objects in a scene need to do something (say enemies
needing to reset their target); using Broadcast Message, a weapon could
“shout” to all of them at once, “oy! Now go chase this little distraction robot
I've launched!” Using the past methods of finding an object, then accessing
a specific script on that object, and then accessing a specific function, would
be problematic if there were 100 enemies on screen. But with Broadcast
Message, the enemies would hear the command, and all fire their respective
function to realign target.

Warnings and Pitfalls
There are some very
specific designed
restrictions to Broadcast
Message that have to
do with where objects
are within Hierarchy and
who hears a message.
So if you plan to use this
extensively in a project
be sure to read the
documentation on these
sorts of issues.

485

Health Systems, Winning, and Losing the Game

In this case, we are going to use Broadcast Message to yell specifically to the
object that has entered the collider. However, this still carries some benefits
since we just shout the message, and the object figures out which script
needs to hear it.

Step 19: Create the DoDamage function. Include a sort of timer in this
function so that if inTrigger is active, it continues to damage the player.

var damageAmount : int;
private var inTrigger : boolean;

function OnTriggerEnter (other:Collider){
if (other.gameObject.tag == “Player”){

inTrigger = true;
DoDamage (other.gameObject);

}
}

function OnTriggerExit (other:Collider){
inTrigger = false;

}

function DoDamage (target : GameObject){
while (inTrigger){

target.BroadcastMessage(“ApplyDamage”,
damageAmount);

yield WaitForSeconds (2);
}

}

Why?
We're using our old trick of a while statement so that as long as the
inTrigger is true (which is set earlier by setting it to true when an object
with tag “Player” enters the trigger), every 2 seconds Unity fires the
command that says “get target (which is the object that collided with
the trigger) and broadcast the message “ApplyDamage” along with the
parameter of how much damage to subtract (damageAmount).

In this case “target” will always be FPC_AegisChung, which also has
attached to it the HealthEngineScript. Remember that within this script
is a function called ApplyDamage that has a parameter of damage:int.
When target “hears” this broadcast message and the parameter of the
damageAmount, it will subtract the damage amount from the current
health value (check out the HealthEngineScript for review).

The cool thing here is that we didn't have to tell the object what script to
use. The object itself received the message and then passed it along to
its components. If a component couldn't do anything with it, it ignores it.
But when a component recognizes the message (like HealthEngineScript),
it obeys.

486

Creating Games with Unity and Maya

Step 20: Save and return to Unity. Fix syntax.
Step 21: Attach this new DamagePlayerScript to the Trigger-WaterKiller
GameObject in the Hierarchy.
Step 22: Select Trigger-WaterKiller and in the Inspector under the
Damage Player Script component, define the Damage Amount as 10.
Step 23: Test and play. Jump in the water and stay there. Watch the Health
meter at the top and see how it drops by 10 every 2 seconds. Eventually,
the Console will throw an error because you'll be dead, but Unity won't
know of any Scene-ClosingFail scene.
Step 24: Save Scene-EntryWay.
Step 25: Open Scene-Hallway.
Step 26: Deactivate Hallway_Unbaked and activate Hallway_BakedGroup.

Why?
I know, you're probably sick of turning these off and on, and it would have
been great if the tutorials were set up so we never had to do that but alas,
with the concepts we're exploring this little annoyance is necessary to
allow ideas to build upon each other.

Step 27: Create a new trigger that fits into the area between all the stairs
(Figure 17.8). This needs to be very accurate because if it's too big the
player will hit it running down the stairs and die, but if it's too small, he
might be able to fall all the way to the ground without hitting the trigger.
Name the trigger Trigger-FallDeath.

Why?
There are different ways to handle a character falling to his death. Some
are more interesting than this one and can include timing how long a
character is not grounded and is falling. Others simply measure how far a

Figure 17.8 Trigger-FallDeath.

487

Health Systems, Winning, and Losing the Game

character has fallen to determine how much damage a fall does. However,
for this one, we'll kill with very broad strokes and say that if the character
jumps off any of the stairs very far up, he doesn't survive the fall.

Step 28: Apply DamagePlayerScript to Trigger-FallDeath. Set the Damage
Mount for the script (in the Inspector) to 100.
Step 29: Test and play. Try jumping over the rail—an error will pop up
in the Console (which is just what we want to see) that says it can't find
Scene-ClosingFail. It means the script is working like it should and is trying
to launch the level that tells the player he failed.

Particles Doing Damage (Steam)

To add extra peril to the game, we'll make some of the pipes in the facility
spew steam. Of course, if the player walks through that steam he'll get
hurt and his health level should decrease. The steam of course will be
constructed with a particle emitter system (there is already one in the
scene if you've brought in the Scene-Hallway), or it can be brought in
as a Unity Package (Steam.unitypackage) from the supporting web site
(http://www.Creating3dGames.com). But how to make the HealthEngine
know that the player has been hit by the steam can be accomplished in a
myriad of ways.

Unity includes a function for OnParticleCollision that can allow an object to
know when a particle has hit it and then perform actions. So, we could add a
script (or append a script) that was attached to FPC_AegisChung that watched
for particles, checked to see if the particles came from Steam, and then hit the
HealthEngineScript. But this means adding the script that does the hurting
to the player, which would really shift us away from the current system of
the player containing the health information and the objects doing the hurt
containing the script that communicates the hurting.

Or, the GameObject that contains the steam could be set up with a
raycasting mechanism so that when the player is struck by the ray, the
message to hurt him is sent. But this means that the area of pain is quite
small (within a ray), and sends the message only when the player is directly
in front of the steam.

Or, and this is the method we'll use, we can reuse the idea of a trigger. With a
trigger we can set up a broader area of influence for the steam, and then as
the character comes in contact with this influence (collides with the trigger),
the steam can tell the player's HealthEngineScript to DoDamage. With the
current mechanism, we already have things set up to take care of duration of
time within the steam.

If you wish to build your own steam package, feel free to do so. It's simply a
modified version of the Smoke particle system included with Unity's Particle
Unity Package (and renamed Steam). Under the Ellipsoid Particle Emitter

488

Creating Games with Unity and Maya

component Emit is turned off (a script activates it). This script is called
SteamEmitters and it simply turns the emitters on and off based upon the
distance the emitters are from the player:

private var fpcAegis : GameObject;

function Start (){
fpcAegis = GameObject.Find(“FPC_AegisChung”);

}

function Update () {
var dist = Vector3.Distance (fpcAegis.transform

.position, transform.position);
if (dist <=25){

particleEmitter.emit = true;
} else {

particleEmitter.emit = false;
}

}

This is so that when walking through the dark version of the model, the
steam for the entire level isn't visible (the shaders for particles are light
independent). So as the player gets closer, the emitter emits.

The version of steam included in the Steam Unity package also includes
an Audio Source component (Component>Audio>Audio Source) with a
looping steam sound. Importantly, it contains a Box Collider component
(Component>Physics>Box Collider) that is set to be a trigger. Finally, the
Steam GameObject has attached to it the DamagePlayerScript with a Damage
Amount set to 2 (Figure 17.9).

Figure 17.9 Steam prefab.

489

Health Systems, Winning, and Losing the Game

If you understand how this was all put together, don't worry about
assembling your own; just use the provided prefab.

Step 30: Either create your own steam prefab with these directions or
import Steam.unitypackage from the supporting web site (http://www
.Creating3dGames.com).
Step 31: Place a bunch of Steam prefabs into the scene. Stick them inside
the pipes that run through the hallways. Be sure to vary the rotations
(some pointing straight down, some at an angle), so they don't all appear
quite as much like copies of themselves (Figure 17.10).

Step 32: Group the Steam objects by creating an empty GameObject,
labeling it SteamEmitters and placing all the Steam objects as
children of it.
Step 33: Play and test (Figure 17.11). As the player hangs out in the steam,
their Health should decrease by 2 units every 2 seconds.

Step 34: Save Scene-Hallway.

Figure 17.10 Placed steam prefabs.

Figure 17.11 Working steam and damage being done as we hang out in it.

490

Creating Games with Unity and Maya

Timers on Cameras

Getting closer. We now have all sorts of ways to die. In a few pages, we will
keep track of health from level to level (right now he miraculously is healed
when he moves from the EntryWay to the Hallway). We just need to do a little
bit of cleaning up.

Currently, if the CCTV cameras see you they throw up an awful racket, but
there are no consequences. We need to add a mechanism to the cameras so
that once they see the player, a countdown begins where if it reaches 0, the
player loses the game.

Luckily, much of the mechanism already exists within the CCTV-
CameraSearchingScript. We simply need to add a CountDown function that
ends the game if the player doesn't destroy the camera.

Step 35: Open CCTV-CameraSearchingScript.
Step 36: Tell the script that when the raycast hits the object with the
tag Player, to not only fire the PulseLight function, but to also fire a new
function called CountDown:

var seenSomething : boolean;

function Update () {
var hit : RaycastHit;
if (Physics.Raycast (transform.position, transform

.forward, hit, 100)){
Debug.DrawLine (transform.position, hit

.point, Color.yellow);
if (hit.collider.gameObject.tag == “Player”){

seenSomething=true;
PulseLight();
CountDown();

}
}

}

function PulseLight(){
audio.enabled = true;
while (seenSomething){

var textureColor : Color;
textureColor.r = Mathf.Sin (Time.time * 10.0);
renderer.material.color = textureColor;
yield;

}
}

Step 37: Create a simple function that tells Unity to wait for 10 seconds,
and then launch the level Scene-ClosingFail:

var seenSomething : boolean;

function Update () {
var hit : RaycastHit;

491

Health Systems, Winning, and Losing the Game

if (Physics.Raycast (transform.position, transform
.forward, hit, 100)){

Debug.DrawLine (transform.position, hit
.point, Color.yellow);

if (hit.collider.gameObject.tag == “Player”){
seenSomething=true;
PulseLight();
CountDown();

}
}

}

function PulseLight(){
audio.enabled = true;
while (seenSomething){

var textureColor : Color;
textureColor.r = Mathf.Sin (Time.time *

10.0);
renderer.material.color = textureColor;
yield;

}
}

function CountDown(){
yield WaitForSeconds (10);
Application.LoadLevel(“Scene-ClosingFail”);

}

Why?
Remember that this script is attached to the camera itself, and when
the camera is shot it's destroyed and the broken version is instantiated
in its place. Because the camera itself gets destroyed, the scripts
attached to it destroy as well. So, if the player does indeed find the
alerting camera and shoots it, this function (CountDown) never gets to
its 10 seconds and therefore never launches Scene-ClosingFail.

Step 38: Save and return to Unity. Fix syntax problems.

Scene-ClosingFail

Step 39: Duplicate Scene-Closing (select it in the Project panel and
choose Edit>Duplicate). Rename the duplicate Scene-ClosingFail.
Open this new Scene-ClosingFail.
Step 40: Rename the Congratulations GUITexture to Fail and replace its
texture with the DataPanel-Failed texture from the Project panel's 2D Assets.
Step 41: Adjust lighting or other visual elements to give this version a
darker feeling of failure. The image shown in Figure 17.12 simply turns the
color balance of all the lights toward red.
Step 42: Save Scene-ClosingFail.
Step 43: Add Scene-ClosingFail to the Build Settings' (File>Build Settings)
Scenes in Build.

492

Creating Games with Unity and Maya

Global Variables

We've created all sorts of variables at this point. We've created public variables
(var nameOfVariable) that create a variable that can be populated within
Unity's editor. We've created private variables (private var nameOfVariable)
that store data, but usually are controlled and populated within the script.
We've created local variables whose scope is limited to just a particular
function.

The last type of variable we're going to cover is called a global variable.
Global variables actually do just what the name implies—they are variables
that are accessible globally. Importantly, a global variable remains constant
between scenes. This becomes ideal for something like health.

Step 44: Open the script HealthEngineScript.
Step 45: Convert the variable “health” from a private to global variable
and give it an initial value. Because we're defining an initial value in the
declaration, remove the line health = 100; from the Start function:

static var health : int = 100;
private var healthLevel : GameObject;

function Awake (){
healthLevel = GameObject.Find(“HealthLevel”);

}

function Start(){
healthLevel.guiText.text = health.ToString();

}

function ApplyDamage (damage : int){
health –= damage;
healthLevel.guiText.text = health.ToString();
if (health <=0){

KillPlayer ();
}

Figure 17.12 Scene-ClosingFail.

493

Health Systems, Winning, and Losing the Game

}

function KillPlayer(){
Application.LoadLevel(“Scene-ClosingFail”);

}

Why?
In the very first line we’re declaring a variable that any script can access
via HealthEngineScript.health. There is a lot of functionality there
that could be exploited that we haven’t discussed in this book (and
unfortunately won’t be able to as our journey together draws to an end).
However, the power that is going to be important to us is that the value
of health—since it is a global variable—will now transfer between levels.

So if the player goes for a little icy swim in Scene-EntryWay and loses 20
health points, after he enters the doors and Scene-Hallway is loaded, he
isn’t miraculously healed. His health remains at 80.

Step 46: Save and return to Unity.
Step 47: Make sure to reset the Health to 100 if the player chooses to
play again. Do this in the CloseSceneButtonScript. Add the following line:

function Start(){
Screen.lockCursor=false;

}

function OnMouseEnter () {
guiTexture.color = Color (1,1,1);

}

function OnMouseExit (){
guiTexture.color = Color (.2,.2,.2);

}

function OnMouseDown(){
if (name == “Button-Exit”){

Application.Quit();
}
if (name == “Button-PlayAgain”){

HealthEngineScript.health = 100;
Application.LoadLevel(“Scene-Opening”);

}
}

Why?
Remember that health is a static variable and thus accessible at any time
through any scripts in the project. By entering this line we simply say,
“when someone presses the Button-PlayAgain GUITexture, set the player's
health back to 100 (the health that's stored over in the HealthEngineScript
script), and then launch the Scene-Opening level.”

Step 48: Save and return to Unity. Correct syntax problems.

494

Creating Games with Unity and Maya

Final Test

Step 49: Make sure the Scene-Hallway is set up appropriately (Hallway_
BakedGroup deactivated, Hallway_Unbaked activated, etc.).
Step 50: Open Scene-Opening.
Step 51: Play the game. Be sure to die and see if Scene-ClosingFail indeed
pops up. Also, get a bit damaged and make sure that the health state
transfers from level to level.
Step 52: Celebrate! The game is done; or at least started.

Conclusion
So there's the game. There is still one vital step before we can share it—we
need to “build” it, or more accurately, “create a build.” This will produce the
actual product that others can launch. Additionally, we'll need to create a
build to make sure that the game does indeed quit. In the next chapter we'll
wrap up with a brief discussion of builds.

But the basic functionality is complete. This, of course is just the beginning.
Be sure to be thinking about how the game might be expanded, and while
these assets are still familiar to you, add new challenges to it. There are lots of
doors unopened, and lots of mini-games that could still be implemented.

Homework and Challenges
Challenge 1: The EndgameTriggerScript gets the job done, but can this be
polished some more? Maybe a fade (Hint: Consider a GUITexture (all black)
with an animated iTween.FadeTo attached to it)? Or an additional camera
with some animation to ease us out of the scene? How could these be
integrated into the EndgameTriggerScript? Can this be expanded to allow
for smoother transitions into Scene-Closing?
Challenge 2: The camera countdown works, but it could let the player
know better the consequences of not taking out the cameras. Create a
mechanism that alerts the player that if he doesn't destroy the camera
that's seen him, the authorities will descend and catch him.
Challenge 3: At this point the game can be ended by losing (either by the
cameras catching you or by the health hitting 0). However, what if the player
wants to quit? On a Mac, Command-Q will stop the game, and on a PC, Alt-F4
will do the same thing, but this isn't something that most PC users instinctively
know. Their first impulse is to press the Esc key. Create a new script that listens
for the key input of the Esc key (Hint: Keycode.Escape), and then quits the
application (Application.Quit). Where should this script be housed?
Challenge 4: The steam emitter uses a tool that constantly checks for the
distance between fpcAegis and the emitter (and turns the steam emitter
on if he is within a certain range). Unfortunately, this is very expensive to
have a bunch of objects checking every single frame what their distance
is to another object. How could this be instigated in a more efficient way
(hint: think collider triggers).

Chapter 18

495
Creating Games with Unity and Maya
© 2011 by Elsevier Inc. All rights reserved.

Unity Debugging,
Optimization, and Builds

Chapter 18

Finding the Bugs
The game is playable. We don't know whether some things work yet (like
anything that uses Application.Quit), but more importantly we need to get
this game in the hands of someone else. Quality assurance is always a tough
thing for indies to handle since it requires other people to play the game. As
the designer, you know where to look and what to do, but you don't count.
The game needs to make sense to the uninitiated. Can someone just playing
the game figure out what they're supposed to do? What's the goal? Where are
they supposed to go? Beyond that are the important issues of how bullet-
proof the game is. When the uninitiated play the game, do they use the
Inventory as anticipated? As they are using it, are there new bugs that pop up
because they push buttons too quickly? Do they use the tools in unexpected
ways that result in unexpected and undesired results?

All of this can happen only when someone else plays the game. Get your
game at various states into the hands of others, and sit back with a notebook
with your mouth shut and just watch how they interact and what they do.
Very often the results are quite surprising.

496

Creating Games with Unity and Maya

Luckily because of the Console and Unity's functionality, which allows you
to play the game within their Editor environment, most big bugs in the code
have been taken care of long before you even think of having someone else
play your game. However, there are those design bugs—bugs that happen
when a tool is used in a way that isn't intended—that also need to be
squashed before the game is shipped to the general public.

There are other reasons to get your game in other people's hands, or more
specifically, on other people's computers. There really is tremendous variation
in machines out there—not only Mac/Windows/Linux, but even within a given
platform the hardware on which that platform is running can vary significantly,
and how your game looks and plays also can vary significantly. We've had games
that looked great on our development machines and then suddenly on the users'
machines the trees on the terrains were fluorescent green. In other cases the
real-time shadows were suddenly a checkerboard that was equally spread out all
over the scene. None of these issues were present on the machines we built the
projects on, but the experience was certainly other than intended for the player.

Now to be fair, often these issues were fixed with a driver update (the player
hadn't updated the driver on his video card for three years!), and one of the
things Unity does really, really well is provide a very constant experience
across platforms. The built-in shaders are smart and if the video card drawing
them can't do some of the things the game is asking it to, the shaders will
send other information so the game doesn't crash or look really terrible.
However, there are always potential issues, so the more people and the
greater variation of hardware and operating configurations that can test the
game, the more troubles can be found and bugs can be squashed.

Optimization
Optimization is really a process that happens all along the game creation
process. We've already covered extensively the issues on the art side that can
keep games running smoothly (low polygon count, effective textures, texture
maps, combined meshes, etc.). Ideally, much of the optimization of a project is
done during art production. It can be difficult to go back and reduce polygons
in a model, so building efficiently to begin with helps a great deal.

When trying to work out the mechanics of a game, it can be frustrating and
not terribly productive to try and do a whole lot of optimizing (although
knowing what kind of code is expensive and not using it in the first place
can certainly help). But once the game is functional, taking a bit of time to
optimize both art assets and script can ensure a smoother experience for
playing the game.

Finding What Needs to Be Optimized

There are a several ways that Unity lets you see what's taking a lot of hardware
resources. They all take some interpretation but can be very effective.

497

Unity Debugging, Optimization, and Builds

The Profiler
This is a Pro-only feature; since most people reading this book will not have
Unity Pro we won't spend a huge amount of time on it. But it does what its
name says it does—it profiles (Figure 18.1).

The Profiler really is a thing of beauty and can let you know as you're running
the game what's taking the most processing power. Generally, of course,
rendering (drawing the stuff we can see) is what takes the most, but there are
also peaks of scripts taking a lot of resources as well.

The Profiler is available at Window>Profiler, and when the game is run it
provides a real-time histogram of where your resources are going. This can be
very educational to see; for instance, what kind of resources the water takes
when it is being drawn on screen. Or how much of a hit the system takes
when passing through a trigger. Importantly, as the player moves around in
the screen, the Profiler will show which areas are taking the most rendering
power; this can begin to show where textures are the largest or the polygon
count is the highest, and thus provide a hint on where to start optimizing.

Stats
Even if you don't own Unity Pro, standard Unity offers some good tools to see
how hardware resources are being used. In the top-right corner of the Game
window is a Stats button (Figure 18.2). Activating this will provide real-time
stats on what's happening on that frame of the game. Importantly, it will
provide the frame count (in frames per second, fps). Anything below 30 fps
will appear jerky to the player—it's better to be up around 60 fps if possible.

Notice that this little panel also provides a plethora of other information. It
will show Draw Calls, number of tris and verts, and how much texture memory
is being used. All of this can be incredibly valuable as the player walks around.
It can show exactly where—or when you're looking at objects, what—the
biggest drop in frame rate might be. Once the bottleneck regions are located,
much of the art optimization can happen.

Figure 18.1 Profiler in action.

498

Creating Games with Unity and Maya

Log Files
The Console shows errors generated when playing a game within Unity's editor. This
is the preferred method of bug squashing and optimization since the warnings and
errors can be fixed as the game is created. However, there are also log files that are
created when the stand-alone game is run. These log files can be a laborious but
comprehensive form of tracking down what's happening in the game.

Most beginning game designers never have need to access this level of information,
but it's worthwhile to point out that these logs exist and where to find them.

For Mac users, the logs are stored at ∼/Library/Logs/Unity. For Windows
XP logs are usually stored in C:\Documents and Settings\UserName\Local
Settings\Application Data\Unity\Editor. On Windows 7 the logs are stored at
C:\Users\UserName\AppData\Local\Unity\Editor.

It's important to remember though that each time the game is run, the log
(Editor.log) is overwritten. So if you need to compare logs, be sure you're
moving copies of the log out of that folder or renaming them.

Optimizing with Textures

Keeping an eye on the prize of maximum impact with the smallest texture
file size is a nonstop consideration in the creation of textures for a game.
However, often a texture is created at a resolution that we think we need and
turns out not to be needed at that high a resolution. This is commonly where I
find the quickest and most needed optimization to take place.

Remember that when texture files are imported into Unity, by default its max
size is set to 1024. This means that if an image comes in at 512×512, it remains
at 512×512, but if a 2048×2048 image is brought in, Unity down-samples
it to 1024×1024. While putting together the Scene-EntryWay, we looked at
how to up-sample this texture information so that Unity is indeed using the
2048×2048 if it's needed.

What often happens is that when creating a scene and closely scrutinizing
each object, the tendency is to feel the need to up-sample all sorts of
stuff. But when all is said and done, especially when lighting has been

Figure 18.2 Stats activated.

499

Unity Debugging, Optimization, and Builds

created and baked into a scene, these higher-resolution textures are often
indistinguishable from their lower-res versions in game.

As an example, in optimizing the final build included on the web site
(http://www.Creating3dGames.com), I went through the objects in Scene-
EntryWay, and halved the resolution of nearly every texture—quartered the
size of some. This is done by selecting the texture in the Project panel, and
then in the Inspector changing the Max Size (Figure 18.3).

This is a nondestructive method. The original file is still at its resolution. This
means the Max Size can be turned back up if the texture's visual quality in
game degrades too far. But as I went through, halving textures, I watched
carefully for its impact on the scene. With all the ambiance of the darker
lighting and the fog, usually there was little or no visual difference.

Figure 18.3 Changing the Max Size
of a texture.

500

Creating Games with Unity and Maya

However, after doing this, on my machine, the frames per second went
from being about 30 to 33 fps to 45 to 47 fps. This is a significant speedup
for just a little bit of detective work. Of course this can be taken too far and
suddenly the textures turn to mush, so work with caution, but be aware of the
significant benefits of tweaking down textures.

Optimizing with Scripts

Writing fast code is a skill that is highly desired, but too rarely mastered. The
code that we have written for this project without a doubt are not the fastest
or most efficient solutions, but they are effective. Unfortunately, some of the
most efficient code can sometimes be difficult to interpret for the uninitiated.
So at the risk of slower code, our approach has been to focus on understanding
some core ideas of scripting and creating in-game functionality.

However, there are some general notes to keep in mind that we've largely
subscribed to as the scripts were created. Following is a recap of some ideas
for faster code.

Be Careful of Where Lookups Occur
Lookups can refer to things like GameObject.Find(“name of object”) or
GetComponent(“name of script”)—situations in which the script is telling Unity
to go find something before the script can complete the task. Placing this sort
of thing in a function Awake or a function Start works great—it means they fire
once. However, occasionally beginner scripters will include them in something
like a function Update. Included in an Update function means the script is telling
Unity to go out and find a particular object every frame of the game. That's an
awful lot of work for something that the script could do once and just remember.

Type the Variables
JavaScript allows for a variable to be simply declared (var myVariable;) without
indicating what type of thing will be contained in that variable. In our code for
this book, we have been careful to assign types to variables that we declare
(GameObject, boolean, int, float, string). But when reading code others have
posted online, occasionally you'll see the lazy scripter who simply declares a
variable without declaring a type to save that little bit of extra typing it takes to
type it. When there is not a type assigned to a variable, Unity has to infer what
the type is and make some guesses at how to treat it. When you consider how
many variables we have declared even in our basic game, you can see how this
sort of guesswork can add up quickly for Unity and start to impact performance.

Don't Fire a Function or Activate an AI if You're Not Close Enough
to See It
One of the scripts on the steam prefab simply checks the distance between
the player and the steam object. If the player is too far away, the steam shuts
itself off. In Unity's documentation, they list the example of having an enemy
go to sleep when the player can't see him or be close enough to be aware

501

Unity Debugging, Optimization, and Builds

of him. If the enemy's processor-cycle-using scripts aren't firing, or if the
enemy doesn't even exist until the player gets close, the computer has more
cycles to use on the immediate experience of the player. Even within this
optimization tip, there are smarter ways to do it. For instance, using a function
that checks for the distance of the player (via an Update) is less efficient than
if there were a trigger with an OnTriggerEnter function. Checking the distance
via function Update means that the computer is doing work every frame to
check distance, whereas the OnTriggerEnter doesn't do anything until the
player walks into the realm of influence.

Making the Build
Once the game is built, and the optimizations have been made, it's time to
create a build of the game that is consumable by either the general public or
just your nearest friends. Either way, making a build means making an .exe (for
Windows), an .app (for Mac), a web player, an Android app, or an iOS app that
can be run by players without having Unity installed on their machine.

In this book we have been focusing on developing a PC/Mac/Web application,
although with a little modification in the input system, the game could run on
iOS or Android platforms—it was designed primarily as a keyboard-and-mouse-
driven game. Because of this we'll focus on creating builds for Mac and PC output.

There are a few things we need to do to get ready to create a build, but then
making the builds themselves is really quite trivial.

Preparing Player Settings

When Unity refers to Player Settings it is referring to Player as in the vehicle
that carries the game, not the player as a person. In the past, we looked at
Player Settings to select the default Rendering Path (Figure 18.4). But Player
Settings carries oh so much more power.

Figure 18.4 The Player Settings
window.

502

Creating Games with Unity and Maya

Specifically, the Player Settings window can allow us to start to brand the
build we are about to output. This can include text branding but also can
allow visual elements like what the icon looks like for the executable once the
file is built (Figure 18.5) and what the splash image looks like when the user
first launches the game (Figure 18.6).

There are two ways to access Player Settings: Edit>Project Settings>Player,
or File>Build Settings and then pressing the Player Settings button at the
bottom of that dialog box.

The Player Settings window has an interface that can be a little confusing at
first glance—the buttons don't always make it easy to see what's happening.
There are two main sections of the window, Cross-Platform Settings and
Per-Platform Settings.

The Cross-Platform Settings allows for the quick definition of your Company
Name and the Product Name. Easy enough.

The Per-Platform Settings actually includes quite a few sections. Resolution
and Presentation, Icon, Splash Image, and Other Settings are all expandable
sections that expand once you click the word. At the top of the Per-Platform
settings are two tools for either PC and Mac Standalone mode (shown in
Figure 18.7) or Web Player settings. It can be goofy figuring out which one is
actually selected so be sure to just note which is active with the line of text
immediately beneath the buttons.

Resolution and Presentation
This area of course allows for how the game is to be presented. It's an
interesting area though as in some ways it's simply a “suggest how the game
should look” section. All the default settings (Screen Width, Screen Height, Is
Full Screen) are simply the suggested settings when the player launches the
application. As long as the Display Resolution Dialog drop-down menu (also
in this Resolution and Presentation area) is set to Enabled, the player still has
the chance to change the resolution up or down.

Figure 18.5 Player Settings allows for the
executable icon to be defined.

Figure 18.6 Player Settings also allows for definition
of the images shown in the game's startup dialog.

503

Unity Debugging, Optimization, and Builds

Now this can be an important issue if the project's GUI elements are built
in peculiar ways. For instance, if any of the GUI elements you've built are
really huge, a small resolution could be a problem. Or, if the GUITextures
were not laid out using the Transform methodology (0,0 is lower-left corner)
and instead were laid out using the Pixel Offset options exclusively, some
resolutions could be a problem. Generally though, if the GUITextures were
handles the way we did them in these tutorials, a flexible resolution and
Aspect Ratio work great and allow the player to adjust per their machine.

Generally, I tend to be optimistic that the player has a good-sized monitor on
which to play my games, and change the default screen width and height to
1600×1200 and leave the rest of the settings the same.

Note that this area also has things for Dashboard Widgets (which seems cool,
but why would anyone want to play a 3D game as a widget?). Although if
you wanted to author a Dashboard Widget (likely not a game) with Unity, this
would be the place to activate this.

Icon
The Icon area just defines the icon that will be used to represent the .exe. It is
populated in the Default Icon area in the Cross-Platform settings. This is really
just a 2D texture file (the one shown in Figure 18.8 is included in the 2D Assets
folder (called BuildIcon)) that works best (without distortion) if it is authored

Figure 18.7 Player Settings and the
Per-Platform area.

504

Creating Games with Unity and Maya

as a square image. Be sure to include an Alpha channel in Photoshop if you
don't want a frame around the image.

Splash Image
This is the image that shows up in the dialog box that appears when the
player first launches the game (shown back in Figure 18.5). The maximum size
for this image is a curious 432×163, but there are some specific things that
need to be tweaked before this can be used effectively.

In Photoshop, creating a 432×163 image and authoring to that image is the
way to start, and is the way to save the image (Figure 18.9). Of course, this
image should be saved to the Assets folder of the Unity project file.

Figure 18.8 Icons for the final build.

Figure 18.9 Starting out with a
432×163 image is how to start the
Splash Image.

505

Unity Debugging, Optimization, and Builds

The problem is that Unity now attempts to automatically resize images to
power of two textures. The problem is that 432×163 is not a power of two. This
means that the image gets stretched (and thus mushy) so that even when it
is defined as the Config Dialog Banner (Figure 18.10), it looks really bad in the
final build (Figure 18.11).

The solution to this is simple but surprisingly poorly documented in the
Dialog Banner support documents. We just need to make sure that Unity does
not resize this particular image to a power of two image. To do this, select the
file in the Project panel, and then in the Inspector change the Texture Type to
Advanced. Change the nonpower-of-two drop-down menu to None and press
the Apply button to reimport the file (Figure 18.12).

Figure 18.10 Defining an image as the Config Dialog Banner. Figure 18.11 The poor output of Unity being a bit of a busybody.

Figure 18.12 Telling Unity to leave
the banner image alone and leave it
at its nonpower-of-two settings.

506

Creating Games with Unity and Maya

The result will be a cleaner image that actually fills the space of the Dialog
Banner as anticipated (Figure 18.13).

Outputting the Final Build

Once the Player Settings have been configured to your taste, to create the
build, choose File>Build Settings. Here, double-check that all the Scene
files for the game are included in the Scenes In-Build section. If you've been
testing the complete game in Unity this will already be populated.

Then, pick the Platform (in this case PC and Mac Standalone) and choose
Windows or Mac in the Target Platform drop-down menu (Figure 18.14). Then
click the Build button (or Build and Run if you want Unity to automatically
open the .exe or .app it creates).

Now, to be honest, there's a bit of marketing going on in this window. The
Platform area shows all sorts of target platforms (Web Player, iOS, Android,
Xbox 360, PS3, and Wii). With standard Unity and even with Unity Pro, the
only builds you can actually create and use are Web Player and PC and Mac
Standalone. The rest of those platforms listed is Unity's way of saying, “You
could build for these if you were a licensed developer with those platforms,
and if you owned the additional licenses we sell to develop on those
platforms.” So don't let that fool you—just because they are options doesn't
mean they can actually be used.

However, having griped about that, after making a Windows build (for
instance) simply change the Target Platform to Mac OS X Universal (if you've
got people on legacy Macs who might be playing the game) or Mac OS
X Intel Only if you're sure all the Mac users will be on reasonably recent
hardware, and press the Build button. Just like that you've created a cross-
platform application.

Figure 18.13 Banner as anticipated.

507

Unity Debugging, Optimization, and Builds

A Few Notes on the Output Files
When creating a Windows build, do note that there are actually two files. The
first is the .exe file—the actual executable that the player launches to play the
game. The second is a folder that is called NameOfYourGame_Data. To play
the game, both must be present and in the same folder. When distributing
the build, I find it helpful to take both files (the executable and the data
folder) and zipping them into one archive and sending that off. We have had
occasion here where we sent off a project to a client, who then tried to show it
to someone else by just sending the .exe—it doesn't work.

On the Mac side, things are a little more elegant for the final user. An .app in Mac
OS X looks to the user like a simple icon in their Finder. However, in reality it's really
a folder (that OSX calls a Package) that contains a bunch of things. When Unity
creates a Mac build, it creates an .app folder. On a PC, this will appear as a folder
(which I usually compress into a zip archive before sending it off to someone), but
when a Mac user unzips it to his machine, it will appear as a single icon that will
contain all the assets he needs. The user just double-clicks to launch it.

Finally, note that when creating a Web Player build, Unity won't ask for a simple
location to save the build—it will ask specifically for a Folder. The reason
for this is that there are some very closely linked files that Unity will output.
One will be the .html file that presents the Unity content (a .unity3d file). The
specifics of this .html file can be controlled in a general way via the Player
Settings in the Per-Platform Setting section. Specifically, the look of this html
file can be altered and customized manually via your favorite HTML editor.

Figure 18.14 Creating a build.

508

Creating Games with Unity and Maya

When creating this build, Unity puts an extra layer of compression on assets
(LZMA) to try and help the player actually get to play the game faster; so the
build can take a little bit longer to output.

Conclusion
And with that we end. By this point, you should have a build that you can
pass on to most any of your friends with Windows on Mac machines. It's a
functioning game, but just a start.

Through many years of teaching 3D and game design in semester-long formats
and one week seminars and writing many books, I've seen a lot of students
create a lot of projects. Often these projects are of dazzling complexity, and
sometimes they were more the stuff of very solid foundational understanding.
But in all cases, the nature of books or classes can yield a kind of dependency
on the information deliverer (either the instructor or the book).

What this means is that the learners think they've got it all under control and
that they've learned lots—and they have. But usually this new knowledge
is right on the edge of their memory, and without immediate further
application, it slides out of their memory banks.

So here's my plea. If you have not been doing the Homework and Challenges,
go back and hit a few of them to expand on the game we've just built
together. And go back and do this soon (as in today or tomorrow). Then, start
a new project from scratch within the week. Being able to access skills and
techniques and apply them to your unique situation is when a book or class
has really been worth the money and time you've invested in them.

We've covered a lot in the pages of this book. Now go make the leap from
tutorial follower to game creator and be brilliant!

509

Symbols
! symbol, not, 431
!= symbol, not equal to, 431
{ and }, indicating a block of

commands in JavaScript, 337
-= symbol, 481
== symbol, checking if two values are

equal in JavaScript, 348
|| symbol, 331
/*, commenting blocks of script,

382–383, 383f
//, indicating comments, 381–382

Numerics
2048x2048 texture, size of, 110
2D texture

transition to 3D, 39
wrapping around a 3D form, 38

2DAssets.unitypackage, importing,
341

3D
assets, creating, 10
basic theory of, 11–14
creation as process of stops and

starts, 21
game modeling, 14–17
game techniques, 10
models, 4

3D application, three-dimensional
forms in, 11

3D art asset pipeline, 37
3D Sound Settings, in Inspector

window, 326
3D.sk, 269–270
512x512, as power of two size, 68

A
AC_Flashlight, deactivating, 415
AC_Knife, deactivating, 415
AC_R_Wrist, expanding, 415
AC_Rifle, deactivating, 415
AC_Side_Head, importing as an

image plane, 183, 184f

AC_ToolFunctionalityScript
allowing other scripts to call back

to, 442
beefing up functions included in, 448
opening, 418, 429, 446
populated, 435f
selecting, 399
as state engine, 441–442
state engine existing in, 465
trimming, 426

actions, happening between frames,
379

activating, compared to enabling, 349
Add Mask button, in Layers Palette,

79–80
Add Tag, from the Tag drop-down

menu, 408–409
Add Terrain Texture window, 129–130,

129f
Add Tree dialog box, 133
AddHighlight function

calling up, 391
firing, 465
reusing, 390–391

Additive (Soft) shader, 139
Aegis Chung, 180

completed, 231, 231f, 232f
creating a new material for, 238
deleting instanced half of, 230
importing, 316f
making a single mesh, 280
placing, 317, 318f
posing, 312, 313f
resizing, 277
scaling correctly in Maya, 277
in semirough form, 228, 230f
using, 316–319

Aegis group, scaling, 278, 278f
AegisArms unity package

downloading, 413
importing, 414

AegisChung_Arms
in the AegisArms unitypackage,

413f
cheated out, 416f
placing in the scene as a child of

Main Camera, 414, 415f

AegisChung_Arms_Prefab, 414
AegisChungUV, preparing for

painting, 263
aegisFlashlight variable, declaring, 454
aegisFlashlightLight variable,

declaring, 454
AegisGroup GameObject, 319–320
aegisPistol variable, declaring, 454
Airbrush tool, in Photoshop, 126
alarm sound, finding, 411
alpha channels, 141
Alpha setting, changing in Color

Picker, 141
Alpha value, 444, 444f, 446
Alt-F4, on a PC, 494
ambient light

in a 3D software sense, 159–160
adjusting, 107, 107f
generally bad idea in 3D, 107
turning off, 168, 318–319, 318f

ambient occlusion (AO), 176–177
baking, results of, 267f, 268f
pass, 264–269
texture node, 264

ambient occlusion (AO) pass
baking to an image file, 266
final May results of, 269f
seam issues surrounding, 269

.anim label, 320
Animation window, showing record

button, 320
animations

baking, 276, 314–315, 315f
calling, 449
as components of GameObjects,

320
doing in place, 311
filling in, 313–314
firing in script, 448–453
important in games, 3
intricacies of effective, 310
notes on, 310–314
playing in real time, 313–314
preparing rig for, 297–301
setting to loop, 320
speed of, 449
waiting for, 449

Index
Note: Page numbers followed by f indicate figures.

510

Index

Animations area, defining multiple
animations, 316

Animator, 3
AO. see ambient occlusion (AO)
.app folder, for a Mac build, 501, 507
Append to Polygon tool, 21–22, 196,

196f, 200
adding a g-string, 226, 226f
closing final gap, 187
connecting chest flap to back flap,

211, 211f
using, 22

Append to Polygon Tool option, 187,
187f

Application.LoadLevel function, 353
Apply Button, distributing checkers,

256, 257
ApplyDamage function, 481
arch, projecting bottom polygons

of, 55
arch edges, sewing up, 56–57, 56f
areas, carving out, 128
arm hole, selecting ring of edges

around, 213
arm position, as contentious, 181
arm shape, extruding out, 213, 214f
arms

adjusting, 416
closing off bottom of, 218, 218f
creating, 213–216
edges around, 209
extruding to create polys for

palm, 217, 217f
fixing disappearing, 416–417
joint layout for simplified, 215f
joints for, 291–296
rigged, 322f

art assets, 5
bringing in, 321
created outside of Unity, 4
creating first, 6

art team, 4
artifacts, 33, 138
assets

assembling in a package, 113
categories of, 5
creating, 5, 139, 329
deleting or reorganizing within

Unity, 93
described, 5
for the game produced in this

book, 5
importing into Unity, 4, 89, 92–93
inspecting, 95–96
keeping track of, 16

manually exporting for game
characters, 314

organizing, 102
treating with reverence, 92–93

Assets folder, 92–93, 96
Assign New Material, from the hotbox

menu, 238
Assign New Material window, 41, 238
asymmetrical details, for Aegis

Chung, 231–232
atlasing, 48–49
attenuation, of sound, 332
Attribute Editor

bringing up, 53, 286
bringing up Create Render Node,

41
Drawing Overrides section, 300
in Maya compared to inspector in

Unity, 95–96
opening, 298
opening texture node in, 72
Placement Extras section,

183–184
renaming node, 82–83

attributes, of an animation, 449
Audacity audio editing tool, 324
Audio Clip, defining, 326
Audio Clip input field, 211,

424
audio clips, importing in Unity, 325
audio editing tools, on the market,

324
Audio Listener, 325
Audio Reverb Zones, 327–328
Audio Source, 325, 329, 330
Audio Source components

adding, 326, 424
adding to any GameObject, 325
adding to CCTV_Camera prefab,

211
with a looping steam sound, 488

AutoDestruct for PistolSpark option,
419f

automatic door openers, triggers as,
367

Automatic Mapping
beginning mapping with, 42–45
creating UVs, 42–43, 43f
manipulators for, 60

Awake function, 351–352, 361
finding mainCamera, 447
populating private variables in,

454
Axis Divisions, creating a cylinder

with 60, 29, 29f

axis of retation, rotating a collection
of points from, 22f

axis of rotation, moving, 22

B
back (spine). see also spine

few joints in, 291
selecting edges across, 209, 210f

back of the neck, rough outline of,
206, 206f

back wall, creating, 317, 317f
Backface Culling

excluding back faces, 25–26
in the Persp view panel, 25–33
turning on, 234–235, 235f

background color
affecting cameras, 120
attribute of a camera, 120
attribute of Camera component,

119–120
tweaking, 121

backpack, assigning vertices, 305
Bake button, pressing, 147, 170,

314–315
Bake Simulation Options window,

314–315
baked animated character, exporting

as .fbx, 276
baked light, game screenshots of,

177f
baked lighting, setting just right, 174
Baked Shadows settings, 168–169,

175, 176f
baked solutions, adjusting in

Photoshop, 177–178
baking

at 2048, 266
in 3D, 146–147
animation, 276
taking a while in Unity, 147
terrain, 175
in Unity, 146–147, 160, 168–171

Balaklava, Ukraine
abandoned Soviet nuclear

submarine base, 7–8
facility entry, 17–24

ball joint, centering circle on, 288f
banner image, leaving at nonpower

of two settings, 505, 505f
base textures

for everything but the head, 263,
263f

without added dirt or grime, 151f

511

Index

Beast, built in radiosity-like renderer,
160

Begin button, 350–351, 353
belt, extruding down to, 212, 213f
belt and crotch, creating geometry

used to define, 226, 226f
Berkebile, Bob, 369
Best Plane

choosing, 51
setting, 50–51

bevel settings, fine-tuning, 33
beveling, 32–33
Bind Pose, 309
binding, rigid body parts, 303–305
binds

smooth, 302
testing, 302–303, 302f

biography data panel, creating, 345
Blend Mode, changing to Multiply,

267, 268f
blendshapes, Unity not supporting, 296
blocks

of script, commenting, 382–383,
383f

in scripts, 337
blue square, symbol in Unity for a

prefab, 404–405
body parts, binding rigid, 303–305
BodyPainting texturing scheme, in

MAXON, 122
bones, joints at start and end, 280
Boo script, in Unity, 334–335
Boo scripting language, 334
book setting, in a linear progression,

10
Boolean (true/false switch), adding,

410–411
Boolean functions, creating a form, 28
Boolean variables, 339

changing to private variables, 446
declaring, 375, 410, 429–430
defining whether or not inventory

is visible, 459–460
keeping in one place, 465
tracking true or false, 373

boot
adding a sole to, 228, 230f
adding detail to, 228, 229f
shape, extruding down, 228, 229f

Bounce Boost setting, 169–170
Bounce Intensity setting, 169–170
bounced light, 159–160

as nontrivial calculation, 160
simulating, 160, 175

Bounding Box, checking, 52–53, 52f

Box Collider component, in a cube, 356
Box Colliders

creating manual, 106
placing just on elements

interacted with, 105
Broadcast Message, 484–487
Brush Size, for more accurate tree

placement, 133
brushes

changing the size of in
Photoshop, 70

defined by size and opacity, 126
resizing in Paint Skin Weights, 307
smaller allowing for exact

painting, 309
types of, 126

bugs, finding, 495–496
Build button, 506
build settings, 353–354, 353f
builds, 353, 501–507
built-in shaders, 139
bulkhead trigger, adjusting, 396
bullets, speed of, 379–380
bump, graying out areas without

much, 152, 152f
bump maps, 148, 149, 149f
Bumped Specular shader, 158
bush types, placing several, 134, 134f
Button Over variables, populating, 445
Button Reg variables, populating, 445
button swapping script, in action, 445f
Button_Mission texture, 343
ButtonInventory-EMP, 443
ButtonInventory-Flashlight, 443
buttons

changing color of, 345, 476
placing, 344f

C
C# language, 5, 334, 335
C# script, defining classes, 334
C4D tool, sky creation tools, 118
Camera Preview window, 120
camera searching script, for a specific

tag, 409
cameras

ignoring certain layers, 436
instantiating broken versions of,

413
organization of, 404, 404f
painting a solid color, 119
timers on, 490–491

capitalization, in scripts, 423

cast shadows, painting across a
surface, 146

CCTV cameras, 35f
audio settings for, 411f
becoming “smart”, 404
broken version of, 421–422, 421f
modeled in Maya, 406
textured, 86f

CCTV_Cameras Unity package, 406,
420

CCTV-CameraSearchingScript
adding CountDown function to, 490
adjusting to include Audio Source

component, 412
applying, 407

cement columns, base shape of, 18, 18f
cement dock, creation of, 20–22, 20f,

21f
cement texture, changing out, 73, 73f
Center Pivot command, 27
centralized script, using, 442
CG Textures

allowing for huge sized textures, 68
licensing agreements of, 66

challenges, results of, 33
Channel Box

selecting polyCylinder node, 29
values in, 279

Channels palette, opening, 76
Character Assets folder, in the Project

panel, 413
Character Controller package,

importing, 100
Character Controllers, shipped with

Unity, 92
character design, as important as the

set, 179
Character Designer, 3
character style sheets, 180–181, 183
character UVs, another way of

working with, 262
characters

breaking up into various shells, 237
making life-like, 276
modeling with arms outstretched,

181
texture painting, 262–271

cheater lights, fixes for, 176
checkerboard pattern, assigning to

Aegis, 238, 238f
checkerboard texture

indicating texture space, 250
replacing with new texture, 73

Checkerboard.psd, defining color
attribute, 42

512

Index

checkered base texture, creating, 40
checkered pattern, creating, 40
checkers, falling into place, 243, 243f
cheek, filling in, 200, 200f
chest

extruding row of edges down
front of, 209, 210f

mapping, 250–253
selecting front of, 250–251

child joint, moving, 284
chin, ring of edges under, 207
cinematic cut scenes, facial rig

valuable, 296
circle, reshaping for a good handle,

288f
Circle draw style, resized radius of a

joint with, 298f
CircleXY draw style, 299
classes, in Unity, 334
cleanup, 276–280
clear day lighting, in Unity, 168
cliff side, painting areas of terrain as,

131–132, 131f
cliff-side texture, finding, 130–131
clip loop, making, 326
Clone Stamp tool

getting rid of blemishes, 70
options in Photoshop, 70
out the seams in Photoshop,

69–70, 69f
softening hard edges, 139, 140f

CloseSceneButtonScript, 474–475,
493

closing level
beginnings of, 474f
visual candy for, 474

clothing, seams, 237–238
code, ideas for faster, 500
Collapse button, in the Console, 389
collar, mapping, 251
colliders, 105, 105b, 106
collision detection, 355
collisions, 105
color balance, unifying, 70–71
color coding, identifying joints, 300
color information, desaturating or

removing, 153
color map, extracting a normal map

from, 149
Color slider, picking blue or red, 300,

300f
color texture file, selecting, 109–110,

110f
column base, 19f, 46–47, 47f
column capital shell, sewing, 47f

column capitals
creating, 19, 19f
separated, 45, 45f

columns
Automatic Mapping on, 43
beveling edges of, 32f
creating and applying a new

material on, 41
cutting heads off, 43–44, 44f
duplicating, placing, and

combining, 49
duplicating and placing, 24, 25f
shaft sections of, 45

columns base shape, 18–19, 18f
combining, optimizing by, 27
Command-Q, on a Mac, 494
commands

grouping within a function,
337–338

in scripts, 337
Command-Z (undo), 133
commented script, 382f
commenting

blocks of script with /*, 382–383,
383f

via //, 381–382
complex shader networks, 65
Component Editor, taking care of

rigid body parts, 303
components, enabling, 349
computers, variation in, 496
Config Dialog Banner, defining an

image as, 505, 505f
congratulations level, creating, 474
Console

checking for errors, 346
making visible, 345
in Unity, 337

Constrain Proportions options, in
Photoshop, 68

construction file, having a copy of, 82
containers, GameObjects as, 101
Contiguous Edges, Maya finding, 32
cookies

flashlight with, 395f
for point lights, 162
for a spotlight, 162

corners
cleaning, 23–24
optimizing, 24, 24f

corner-softener tool, 32–33
“coroutines”, yields as, 435
CountDown function, 490
cranium

building up, 197

continued, 201–203
merging vertices with face mask,

197, 199f
cranium geometry, 197, 199f
CrazyBump tool, 150
Create drop-down menu

in hierarchy panel, 96
in Project panel, 96

Create New Animation dialog box,
319–320

Create New Project tab, 91
Create Polygon tool, 186
creation, as a linear process, 84
Creative Commons Sampling Plus

License, 324
Crop tool, in Photoshop, 139, 140f
Crosshairs GameObject

creating, 387, 387f
part of the GUIElements prefab,

462
Crosshairs GUITexture, creating, 458
crosshairs image, 387, 387f
cross-platform application, creating,

506
Cross-Platform Settings, in Player

Settings, 502
crotch area, creating, 226–228
Ctrl-D, in Maya, 26
Ctrl-G, grouping meshes, 277
Ctrl-J (Command-J on a Mac), 80, 155
Ctrl-selecting, always deselecting, 240
Ctrl-T (Command-T), 80
Ctrl-Z (undo), 133
cube primitive, UV layout of a, 39, 39f
cubes

creating, 28, 356, 363
creating and placing as a trigger,

359, 359f
in spots where screen hints

appear, 358
culling mask, for point lights, 162
cursor

in the Game window when Game
starts, 462

locking, 460
curves

making selectable, 312
spanning large visual space, 29

custom fonts, in GUIText, 358
custom texture, painting, 66–67
custom trees, built within Unity itself,

122
Cut UV Edges command, 43–44,

254–255, 255f
cycles, game characters as, 310

513

Index

cylinder
creating with 60 Axis Divisions,

29, 29f
subtracting from the modified

box, 29, 30f
tweaking to make an arched

entry, 29
cylindrical mapping, default

projection of, 240
cylindrical projections

creating, 240–241, 240f, 251
described, 54f
rotating, 54f

D
damage triggers, creating, 482–484
damageAmount, as a public variable,

483
DamagePlayerScript, 483, 487
dark scenes, making darker, 119
Dashboard Widgets, things for, 503
DataPanel objects, variables holding,

348
DataPanel_Biography, creating, 345
DataPanel_Mission, creating, 345
DataPanels

defining for buttons, 351
disappearing from Game view, 351

Daylight Water prefab, settings of, 115f
Daylight waters, dragging into scene

view, 115
Deactivate Children button, 394
death, character falling to, 486–487
Debug functions, 388, 389, 389f
Decal/Stains section, of CGTextures, 80
declaration statement, defining

variables, 339
Default Icon area, in Cross-Platform

settings, 503–504
default workspace, rearranging, 95
deferred lighting, in Unity, 171–173
deformation object, joint as, 280
Design and Production Team, 1–4
design bugs, 496
Destroy command, destroying hit

object, 15875
detail meshes, 126, 134–135, 135f,

136
“Detonator”, downloading and

importing Unity's explosion
framework, 420

Detonator package, described,
420–421

Detonator scripts, firing, 421, 421f
device

Aegis is after, 35f
textured, 86f

Dialog Banner, image filling space of,
506, 506f

die function, alerting the player, 478
diffuse shader, 109
directional lights

coming from infinitely far away,
163

creating and orienting, 168
poor quality shadows from

default, 164f
in Unity, 162–163, 163f

dirt and grime, over the top of
existing tactile attributes, 152

dirty textures, 66
Display Resolution Dialog drop-down

menu, 502
Display>Show>All command, 57
distance

checking via function Update,
500–501

measuring, 438
distortion techniques, polygons

subjected to, 15–16
dock

creation, 20–22, 20f, 21f
optimization, 22–24
texture file for concrete surface, 68
textured, 85f
UV mapped, 61f

documentation, accessing, 383–384
DoDamage function, 484, 485
doorOpenSound variable, 469
doors

adding sound to, 372
defining affected, 370–371
defining variables for, 469
ensuring not Static, 371–372, 371f
not opening, 470

dot syntax, 339–340, 346
downsampling, of textures in Unity,

108f
draw calls, 14, 48–49, 280
Draw Style, changing, 298–299
drawn circle, direction of, 299
drip texture, 81, 81f
dripping, coming from a top seam,

80, 81f
Dry Color, for Detailed Meshes, 135
dual lightmaps

in action, 172, 172f
in Unity, 171–173

dual monitor setup, for Unity, 95, 95f
Duplicate, in Maya, 26
Duplicate Special button, clicking,

189, 189f
Duplicate Special (with X= -1),

mirroring, 194
Duplicate With Transform, in Maya, 26
duration of rotation, 370
dynamic AO, in Unity, 177
dynamic lighting, using, 13–14

E
ear polygons, extruding and rotating,

204, 204f
ears

adding, 271, 273f
continued extrusion over, 197,

198f
continuing to shape, 205, 206f
creating back end of, 205, 205f
creating base shape of, 201, 201f
in game models, 203–205
laying foundation for, 197
as tremendously complex forms,

203–205
Edge Loop Utilities, choosing, 23
edge normals, adjusting, 223
edges

applying a bevel to, 33
cutting across top and back of

head, 254, 254f
deleting, 23f, 23, 24
for four fingers, 213
hardening some select, 207–208,

208f
manipulating versus adding

geometry, 221
pairs of important in most organic

modeling, 196
of a polygon, 11
sewing, 45f, 247

Edit Terrain Texture window, 130
Editor Quality, 165
editors, for scripts, 336–337
elbow

droppinig polygon budget on, 213
with a single deformation,

213–216, 215f
topology, 213–216, 216f

elements, optimizing before
duplicating, 28

Ellipsoid Particle Emitter component,
487–488

514

Index

Ellipsoid Particle Emitter section,
419–420

Embed Media option, 99
EMP

ghosted version, 428
making effective, 437–438
textured, 87f
Unity package downloading and

importing, 428
using to short out card reader to

open doors, 366
EMP mines, 35f, 427
EMP Tool, player activating, 428
EMP_Ghost, 428, 435
EMP_Prefab, 428, 435
empActive

checking, 430
declaring, 429–430

empGhost
declaring, 429
instantiating, 430–431

empGhostActive, declaring, 429–430
empPlacement, checking to see if

populated, 431–432
empReal variable, declaring, 429
empty prefab, representing, 405, 405f
enabling, compared to activating, 349
endgame trigger, 476–477
EndgameTriggerScript, 477
entry arch, creating start of, 28, 28f
entryway

continuing work on, 40
with a digital lock, 428, 428f
modeling, 17–24
needed, 31, 31f
scaling for the scene, 104–105

EntryWay controller, 423
EntryWay.fbm folder, 101
EntryWay prefab, placing into the

scene, 103
EntryWay scene, texturing, 83, 83f
EntryWay_Columns_Mat material, 49f
EntryWay_DockCement_Mat, 72, 72f
EntryWay_DockWhiteCement_Mat,

59, 59f
EntryWay_Earthwall object, 50
EntryWay_KeyPadSmoke, 438, 439f
EntryWayDoors Unity package, 428
EntryWayGUITextScript, creating, 359
EntryWay.mb file, opening in Maya,

112
EntryWayTextTriggerScript, 361, 365
EntryWayWallsInner GameObject, 158
.exe (for Windows), 501
.exe file, 507

executable icon, defining variables
for, 502, 502f

ExplodeEMP function
adding code, 437–438
creating, 433–435
running, 432

Explosion Framework, 420–423
Export All button, 315
Export All dialog box, 99, 100f
Export options, in Unity, 98–99
export/import process, controlling in

Unity, 99
Extrude tool

creating a base, 18–19
extruding a new collection of

polygons, 188
on faces, 24
selecting, 188
using, 28

extrusions
allowing for extrusions, 20, 21
deciding when to make, 20
in the roof, 26

eye, hiding, 187
eye joint, creating, 296, 297f
eye vertices, assigning to respective

joints, 305
eyeball

adjusting vertices around, 188,
188f

creating, 185–186
duplicating, 186

eyelid, providing thickness to, 188,
188f

F
F1, in UniSciTE, 384
face

building, 269–271
with mirrored UVS, 57f, 57
muscles tending to ring the orifice

manipulated, 182
of a polygon, 11
separate UV set for, 262
texturing, 253–256

Face mode, in the View panel, 59
face mode, selecting faces making

curved part of the arch, 53, 53f
face models, organization of

polygons, 197
faces

cleaning up, 19
deleting on tops of rafters, 27

picking to assign EntryWay_
DockTile_Mat, 59f

selecting, 53
Faces With More Than 4 Sides

checkbox, 235–236, 236f
facial animation, in games, 296
facial movement, in the jaw and eyes,

296
facial rig, 296–297
Fantastic settings, 166
faster code, ideas for, 500
FBX, versions of, 98
FBX 2010 format, 99
.fbx conversion process, data lost

in, 65
.fbx EMP, 428
.fbx file, 93

exporting as, 315
new version of, 112
result of manually exporting from

Maya, 101
File Name input field, including a

path, 75
files

cleaning, 277
exporting manually, 93, 98
nonbaked version of, 314

Fill dialog box, choosing Use Pattern,
40

filler Sun, adding, 174
final build, outputting, 506–507
FindDoorHint function, 360
fingers

allowing for roundness of,
219–220, 220f

extruding, 218, 219f
new edges/vertices on the inside

of, 221, 221f
string of joints controlling,

292–293, 292f
First Person Controller

camera “seeing”, 410f
centering in the Scene window, 103
collider around, 355
creating a prefab for complete, 417
imported and placed, 104f
making Sound-Footsteps a child

of, 329–330
placing, 102–103, 106
ray from camera attached to, 380,

381f
renaming to FPC_AegisChung, 417
selecting in the Hierarchy panel, 103
starting location of, 358, 358f

Fit projection, changing setting, 50–51

515

Index

flashlight
creating, 394–395
creating functions for, 450
player using, 393
refining script to turn off, 399–400
remaining a bit dim, 395
structure for, 452
turning off automatically, 400–401
turning on when called, 456
variable housing geometry, 454

Flashlight cookie, 395
FlashlightReady animation, 450, 455
Flip Selected UVs command, 57
float, 339, 377
float time, 370
floors

creating, 317, 317f
taking a lot of screen space, 67, 67f
UV strategies for, 57–61

Flow value, for seams, 70
fly area, 245
fog

adding and manipulating in Unity,
119–120

affecting lighting, 173
hiding end of the water, 118
reactivating, 175, 175f
turning off, 122–123
turning on, 132

Fog check box, 120
Fog Color, changing, 120
Fog Density, adjusting, 120, 120f
Foggy Day section, 173–176
foot control handles, deleting

entirely, 315
foot handles

containing children that are IK
handles, 301

duplicated and moved, 289f
foot rigs, 286, 290
footsteps, adding, 328–330
forearm, adding a subdivision around,

213, 214f
forehead, selecting and extruding,

197, 198f
forms, in a 3D application, 11
forward kinematics (FK), 284
four-view setup, switching to, 280, 281f
FPC_AegisChung prefab

placing, 429, 429f
renaming First Person Controller

to, 417
frame count, in frames per second

(fps), 497
frame miss, 379–380

frames
defining range of, 311
events on, 379

Free Transform mode, holding down
Ctrl, 81

Free Transform tool, 81
FreeSound Project, 324
FreeSound.org, 324, 411
Freeze Transformations (Options), 289
Freeze Transformations Options

window, 279
front view, imported, 264f, 270
front view panel, 29, 283–284
function Update, meaning check

every frame, 331
functions. see also specific functions

predefined, 338
in scripts, 337–338

G
game, stopping, 494
game animation, notes on, 310–314
Game Design Document, 2
game design pipeline, 9–10
Game Designer, 2
game engines, 4
game level modeling tutorial, 17–24
Game Mechanics Designer, 2
game mechanics, developing

through scripting, 334
game production

describing, 1
as a team activity, 97

game production teams, 2
Game Proposal Document, 2
Game view, 95, 130
game walk cycles, 311
Game window, 341
GameObject.Find command, 456
GameObject.Find functionality, 352,

353
GameObjects

activating, 349
adding Audio Source components

to, 330
assigning to layers, 436
attaching scripts to empty, 336
creating a new empty, 319
creating empty for waves sound,

326
renaming or turning off, 108
with scripts or shaders, 114
in Unity, 101

games
limitations and optimizations for,

13–14
writing for, 3

Gaussian Blur filter, 139, 140f
Gaussian blur, sample of first level

of, 155f
Generate Colliders option, 106, 355
Generate Lightmap UVs button, 169
geometry, completing, 30–32, 30f
Geometry Type, changing to Instance,

189
ghost EMPs, deleting, 432–433
Global Illumination settings, 170
Global variables, 425–426, 492–493
glove detail, creating, 220f, 223
gloves

creating, 223
creating top end of, 223, 224f

God-mode, painting in, 134
Good settings, for shadows, 165
graph paper, beginning style sheets

on, 181
grass, moving in the wind, 126
Green, Jake, 182
grime, for corners, 77, 78f
ground topography, creating, 127–128
g-string, 226, 226f, 227, 227f
GUI (Graphical User Interface)

building to use scripting
mechanism on, 340

described, 340
elements, placing closing, 475f
scripting, 345–347
system, bulking up, 457–458

guideline object, for size of later-
placed objects, 103

GUIElements
children of, 448, 458f
making a prefab of, 457

GUIElements GameObject, creating, 458
GUIElements prefab

creating, 366, 458–459
placing in the scene, 462

GUIText
described, 356
providing screen hints, 355
scripting, 359–361
settings and results of

adjustments, 357f
use of outside fonts, 358
working with, 357

GUIText GameObject
creating, 357, 480
displaying the health level, 478

516

Index

GUITextHints
arranging to be at bottom of

screen, 366
creating, 357
deleting from Project panel, 366
populating, 469
using font for, 358, 358f

GUITexture, 340–354
compared to GUIText, 357
defining absolute size of, 342
showing the key, 464

GUITexture component, of
dataPanelBiography, 349

GUITexture GameObject, creating,
342

GUITexture objects
creating, 443, 474
sizing, 443

gun, firing, 417–423
Gun Spark variable, populating, 419
gun-firing mechanism, 413
guns, in games, 379–380
gunshotSound variable, 424
gunshotSoundSource variable, 424
gunshotSource object, 424
gunSpark particle system,

instantiating, 418
gunSpark variable, declaring, 419

H
hallway

lit, 178f
main body created in Maya, 406
modeling, 34
textured entrance to, 84f
turning off baked version of, 394
versions of, 367

Hallway portal trigger, creating, 365,
365f

Hallway_CCTV_Broken, 421–422
Hallway_CCTV_Camera object, 404,

404f
Hallway_CCTV_Prefab, 406
Hallway_DoorBulkhead_Group

finding, 467, 468f
locating, 368

HallwayDoorsTriggerScript
checking for a Boolean state, 469
creating, 369
opening, 373
populated variables for, 376f

halos, for point lights, 162
handrails, creating, 28, 28f

hands
adding geometry to complete,

223, 223f
creating, 217–223
giving, 217
scaled and completed, 260f
UV mapping, 257–260

hanging lights, prefab for created in
Unity, 406

hard shadows, 162, 165
hardware rendering, 12
hardware resources, 496–498
harness, modeling, 228, 228f
Hashtable Args, 399–400
head

all polygons having UVs, 254
building, 269–271
chopping off a character, 183
closing off top of, 203, 203f
joint at the base of, 291
moving away from nostril and oral

cavity shells, 255f
selecting polygons of, 253, 253f
selecting vertices making up, 304,

304f
separate UV set for, 262
unfolding, 255, 256f

head lamp, 171
head UV shell, making larger, 262
Heads Up Display (HUD), showing

polycount, 31, 31f
health, as a static variable, 493
health display, creating, 479–481
health engine, attaching to FPC_

AegisChung, 478
health global variable, 492
health level, deducting from, 481
health script, creating, 478
health system, 473, 478
HealthBG texture, from 2D Assets

folder, 479
HealthEngineScript, 478, 481, 485
HealthLabel, settings for, 479, 480f
HealthLevel GUIText, 480f
HealthLevel object, 480
Healthy Color, for Detailed Meshes,

135
heavy (high polycount) object, using,

29
height, layering to increase, 155–156
help page, decoding, 384–386
Hide Selection option, 312
hierarchy, deactivating an entire, 394f
Hierarchy and Project views, moving

to a second monitor, 95

Hierarchy panel, 96
dragging to, 115
naming a Plane, 137
prefabs dragged into, 101
selecting Terrain, 129
terrain object in, 123

High Pass filter
desaturating colors, 70
running, 70, 71f, 152–153, 153f

highlighted key, 393f
highlighting function, creating an

independent, 389–391
high-poly mesh, generating a normal

map from, 148–149
hip pistol, assigning vertices, 305
histogram, of where resources are

going, 497
history

cleaning, 97
cleaning or deleting, 27
deleting all, 236
deleting limiting projection

nodes, 250
hole object, 29
holster, assigning vertices, 305
Horizontal input, 331
.html file, 507
Hypershade

creating new materials in, 58–59
gray thumbnails in, 58
in Maya 2011, 58–59, 58f
opening, 72, 82–83

I
Icon area, in Player Settings, 503–504,

504f
ideas, roughing out, 137
idle animation cycle, starting, 312,

313f
if statements, in scripts, 347
Ignore Raycast layer, assigning

triggers to, 436
IK (inverse kinematics), 284

animating characters legs, 283
baking out, 276
calculating, 314
creating a handle for, 288–290
different personalities across

different programming
solutions, 314

for the leg, 284
IK chain, 285, 285f, 286f
IK Handle tool, selecting, 284–285

517

Index

IK handles
making children of respective

handles, 289
moving, 290
resizing, 286

image formats, Maya reading most, 70
Image Name input field, 42
Image Plane input field, 208
image planes

in Maya, 183–185
offset, 184f
in orthographic views, 185
in Photoshop, 182–183

images
from 3D.sk, 270
flattening, 157
normalizing, 157
resampling from, 64–65
resizing, 68, 140
swapping out, 208
used as textures, 445

import process, in Unity, 99–101
Importing Assets progress bar, 100,

100f
Importing Package window, 114
incrementalSaves folder, 17
Incursion

hanging script off of objects, 443
introduction to, 6–7
primary Play mode first person,

179
Incursion_Logo texture, assigning to

GUITexture, 342
“Incursion-Maya” project, 16
Incursion-Unity folder, folders in, 92
influence

painting, 307, 307f
smoothing, 307

influence area, of the knee, 309f
Influence section, joint selected in,

307
influence to joints, adding, 306
initial color pass, laying down, 77, 77f
inner walls texture, raw version of,

151f
inner-script communication, 443
Insert Edge Loop tool, 192, 225, 225f

clicking edge of any side of finger,
219–220, 220f

splitting new polygons, 211–212,
211f

Inspector
breakdown of, 108–112
in Normalmap section, 158–159
for a selected mesh, 109f

showing a preview of texture,
110, 111f

for a terrain instance, 125f
Inspector panel, 95–96
instances, 403, 413
instantiation, 413–414
instantiation mechanism, changing to

broken camera, 422, 422f
integers, 339
intensity, for point lights, 161
interscript communication, refresher

on, 446–448
inTrigger, setting, 484
inventory

animating to show and hide,
459–463

toggling with Update function, 461
Inventory Prompt, private variables

holding, 459–460
inventory system

allowing players to choose tools,
441

improving, 457
initial GUI Layout for, 444f
script controlling, 443

InventoryButton_Pistol, 451, 452
InventoryButton_Tab, children of,

457
InventoryButtonScript

creating, 445
creating a new variable, 447
creating functions within, 390

Inventory-Pistol, for the
InventoryButton_Pistol
GUITexture, 443

InventoryPrompt, leaving visible, 460
InventoryPrompt GUITexture,

creating, 457
Inventory-Tab-Vert, for the

InventoryButton_Tab
GUITexture, 443

InventoryToggle script, creating, 459
inventoryVisible, defining as true or

not, 462
inverse kinematics. see IK (inverse

kinematics)
items, deleting or rearranging in

Unity, 93
iTween tools

allowing for a function to be fired,
399–400

custom classes, 369
documentation for, 370

iTween.MoveTo, in ToggleInventory,
462

J
JavaScript (UnityScript), 334, 335

creating, 330
leaving private variable type

blank, 448
scripts using Unity's version of,

5–6
JavaScript command, example of, 337
jaw, two joint chain for, 296
jaw bone, creating edge of, 198, 200f
jaw joints, creating and naming, 297f
joint deformation, within Unity, 280
joint Draw Styles, upper body

adjustments to, 299f
Joint Size setting, changing, 282, 282f
Joint tool

activating, 281–282, 290–291,
291f

creating joint chains, 282
joints

adding ring and pinky fingers, 293
attaching vertices to, 302
changing appearance of, 297
changing size of, 281–282
collection of, 276
creating, 291, 292f
deleting unnecessary, 300
identifying by color coding, 300
as important part, 280
making selectable, 312
making unselectable, 303, 303f
orienting upper body, 294
placing, 280, 294
resizing, 282
returning to neutral position, 296
selecting quickly for animation, 312

Jscript.NET, 335
jump animation, 310
junction, textured, 85f
junction hall, 34f

K
Keep Faces Together, turning on,

221–222
key

highlighted, 393f
opening door, 472f
raycasting against, 471f

key icon, 464f
keyAcquired variable, 465, 470
keyboard shortcuts, for Move, Rotate,

and Scale, 125

518

Index

keyboard/mouse shortcuts, moving
camera in Scene view, 94

keyframes
adjusting, 297
copy/paste first to last, 313
for every animatable object,

312–313
setting, 297
stored on a per-object basis, 312

KeyIcon GUIText, 464, 465
keypad, 35f, 87f, 437
Keypad Smoke entry field,

populating, 438
KillPlayer function, building, 481, 482
Kinect, strong graphics, 333
kinematics, types of, 284
Kinematics section, selecting, 282
knees, refining, 228, 229f
knife, assigning vertices, 305
knuckle base, extruding, 221–222, 221f
knuckles

inserting edge loops around, 221,
221f

optimizing via merge, 222f

L
Lambert button, 58–59
lambert material, 41
lamberts, 41
Layer drop-down menu, 436, 437f
layer masks, 77, 79–80, 272f
Layer Mix option, of the Layers

palette, 78
layered texture, finished, 82f
layering, 132, 155–156
layers

blurring, 156f
naming, 78
no penalty to a whole lot of, 263
objects living on, 436
powerful in Unity, 94

Layers palette
changing Layer Mixing setting, 78
folders organizing layers, 82
opening, 76
turning off the eye icon, 151–152

Layout tab, in Unity, 94
LED, defining the color of, 410–411
LED light, created from a Unity

sphere, 406
leg IK chains, 284–286, 285f
leg joints

building in the side view, 284

creating, 282–284, 283f
hiding, 312
moving, 283f

legs
adding geometry for, 227, 228f
completing ring for, 227, 227f
creating, 226–228
cylindrical mapping of, 245f
mirroring, 286–287
roughing out, 227, 227f

level design, mockups of, 9–10
Level Designer, 3
levels

adjusting, 153, 154f
triggers to swap, 364–366

libraries, reasonable licensing fees for
sound, 323–324

light
attached, 35f
hanging, 35f
variable housing geometry, 454

Light Cookies folder, 395
light fixtures, modeled in Maya, 406
light source, 161, 178f
lighting

baking in, 146
for a clear day, 168
fog affecting, 173
need to bake, 160
rendering in real-time, 146

lighting holes, compensating for
unintended, 171f

lighting instruments, in Unity, 160–177
lighting scheme

baking onto textures, 146
slapping together, 147

Lightmap Display window, 172–173,
172f

Lightmap UVs, creating custom, 169
lightmapping

default settings for, 170
for point lights, 162
settings for, 170f

lightmapping window, opening,
169–170

lightmaps, creating two separate,
171–172

lights
seeing certain layers, 436
turning on, 393–402
turning on and off, 394

line of code, disabling temporarily, 382
lines, placing in scripts, 362
lip, creating, 24, 25f
lips, adding geometry to finish, 192, 192f

Liquefy tool, 270, 271f
lit models, swapping with unlit,

396–397
loading dock, lit, 178f
local variables

creating, 426
declaring, 425–426
described, 492
tightened script with, 427f

Local/Global toggle button, 94
lock box, 35f, 87f
lockCursor, testing, 462
locked door, walking up to, 471f
locking, the cursor, 460
log files, created when stand along

game is run, 498
logo, positioning, 342–343, 343f
long hall, view from, 34f
long hallway, textured, 85f
LookRotation, local variable for, 426
Lookups, placing, 500
looping function, 410–411
losing, the game, 473

M
Mac, .app, 507
main archway (EntryWayArch),

isolating, 52
Main Camera

changing background color of,
119–120

deleting, 102
finding on Awake, 447
focusing on, 395
listening for any Audio Sources,

325
populating, 469
as private variable, 447

Main Color section, of Inspector, 109
Main Color texture swatch, 109–110,

110f
main loading hall, 34f
mandible (jaw bone), 197–201
manipulator handles, 240f, 241

getting checkers square, 54
revealing a new set of, 242, 243f
scaling projection down, 258, 258f
surrounding area just mapped, 53
switching between textured or

not, 253
manual mapping, described, 52–61
masked layer, inside corners dirtied

up with, 80f

519

Index

masks
collection of, 312, 312f
combining with mouth, 193–194

Match Color dialog box, 71, 71f
matching color, to unify texture's

color fields, 71f
Material applied section, in Inspector,

109
materials

creating, 50, 138–139
naming, 41, 97
particular attribute of, 63

Materials folder, 101
Materials tab, in Hypershader, 72
Max Distance, for sound, 326
Max Size

changing for a texture, 499, 499f
in Inspector, 110

Maya
absolute sizes difficult to keep

track, 18
allowing creating of polygons of

any number of sides, 15
applied texture in, 83f
applying texture to portico in,

82–83
Backface Culling, turning on, 25–26
baking tutorial, 146–147
cleaning up the file in, 97
creating assets in, 10
creating models and animations

in, 5
exporting manually from, 112
history of steps taken in

construction, 27
image planes in, 183–185
instances, 403
introductory videos, 10
lighting tools, 146
making a separate UV set, 146–147
NVidia providing most predictable

experience in authoring, 13
optimizing in, 97
selected for tutorials, 10–11
selecting objects or components

in, 240
skin binding and, 303
taking any size texture, 64–65
Textures/Materials/Shaders

compared to Unity, 65–66
UV editing tools, 234

Maya checkerboard, 40
.mb file, 98
mechanical rumble, 324
mechanics, defined, 2

Mechanics Engineer, 2
Mental Ray

baking options, 266
rendering with, 265
simulating bounced light, 160

Merge tool, 222, 223, 224f
Merge With Original checkbox, 231
mesh, unfolding, 51
Mesh Collider, 105, 109
Mesh Filter section, of Inspector, 108
Mesh Particle Emitter, 142–143, 142f
Mesh Render, in Inspector, 108–109
Mesh Renderer components, 356,

363
meshes

combining, 27, 279
deformed by hundreds of joints, 290
inspection and cleanup, 234–260
mirroring, 189
moving in the Y direction only, 122
naming, 279–280
not selectable, 312
twitching, 309

Min and Max Emission setting, 142
Min and Max Energy setting, 142
Min Distance, for sound, 326
Mirror Geometry method,

reconstructing, 112
Mirror Geometry Options, 231
Mirror Joint (Options), 287, 287f
mirror plane

cleaning up, 192, 193f, 231
snapping vertices on, 197, 199f

mirror point, in middle of Aegis, 281
Mirror Skin Weights function, 309
mirrored version, merging up the

middle, 231
mirroring, legs, 286–287
Mission button, 350
modeling process, leftover remnants,

97
Modify>Center Pivot, 27
Modo, powerful UV tools, 234
Motion Designer, 3
mountain

building, 122
carving back for walls, 128, 128f
matching up with retaining walls,

128
mouse, hovering, 59, 125
Mouse Look script, 459
mouse over scripts, 445
mouse turning off and on, 442
MouseLook scripts, turning on or

off, 462

mouth
combining with the mask, 193–194
continuing to connect, 194f
creating, 191–193

Move and Sew UV Edges, 45–46, 47
Move and Sew UVs option, 248
move handles, in Extrude tool, 192
Move tool

adjusting location of joints, 291,
292f

Ctrl-clicking a directional handle,
288

selecting IK handle, 284–285
swapping to, 188

MoveTo, of iTween, 457
Mudbox tool, for character work, 149
Multiple for Layer Mix setting, 79f

N
\n, splitting string into two lines, 470
NameOfYourGame_Data folder, 507
naming

double-checking all, 97
importance of, 282
layers, 78
materials, 41
materials and objects, 97
objects, 277

navigation tools, in Unity, 94
neck

extruding from the chin, 206–207,
207f

moving down, 206–208
ring of edges at bottom of, 207
ring of edges in middle, 207
selecting polygons of, 253, 253f

NewBehaviourScript, creating, 345
NewBehaviourScript icon, in Project

panel, 330
n-gons, 15
nodes, connecting to create material,

72
normal maps, 148–177

adding tremendous depth to a
scene, 159

creating, 148–149
creating large undulations across

the surface, 153
multiple layers increasingly

blurred, 156f
newly created, 153–154, 155f
showing differently depending on

lighting, 159

520

Index

normal maps, before and after using,
159f

Normal Maps, use of, 148
NormalMapFilter

initial output compared to result
of multiple overlayed, 156

NVidia's, 153–155, 154f
results, 155

normals
defining the front of a polygon, 11
facing the wrong way, 234–235
fixing errant, 235
softening, 194, 194f

nose
adding mass to, 194–197, 195f
centered vertices of middle of, 190f
continued extrusion after

centering, 190f
finding form of, 195, 195f

nostril
completing, 197, 197f
creating upper edges of, 195–196,

196f
NURBS (non-uniform rational

b-splines), 15
NURBS circle, creating, 288, 288f
NVidia, plug-ins for Photoshop, 150
NVidia cards, better experiences

with, 13

O
Object Mode, 288, 296
object selection hierarchy, in Maya,

303
objects

assigning to layers in Unity, 94
attaching scripts to, 335
changing in Unity, 405
creating at runtime, 413
displaying multiple times, 403
highlighting in bright white, 390
naming, 97, 277
scaling, 105, 189, 289
as triggers, 356

oblong texture, times making the
most sense, 64

occipital bun
building toward, 201, 202f
finishing off, 202, 202f

Occlusion Culling, 364
Offset, with Wrap Around option

activated, 69
Offset command, selecting, 68–69

Offset filter, applying, 69
OnControllerColliderHit function, 367
OnMouseDown function, 338

adjusting, 475–476
creating a new, 448
removing functions from, 451

OnMouseEnter built function, 346
OnMouseExit function, 347
OnMouseOver, raycasting as an

alternative to, 380
OnParticleCollision function, in Unity,

487
OnTriggerEnter function, 362

building, 483
checking distance, 500–501
creating, 369–370

Open Project tab, of Unity-Project
Wizard, 91

opening GUI, images for, 340
opening scene, laying ground work

for, 317
OpenSceneButtonsScript

adding to, 348
creating, 345
duplicating, 474–475
opening, 345, 348

optimization, 49–50, 496–501
optimizing

in Maya, 97
with scripts, 500–501
with textures, 498–500

oral cavity, 191–192, 191f
order of operations, 6
organic modeling, methods of, 182
Orient Joint command, 294, 294f
Orient Joint function, 295
orphaned nodes, checking for, 97
outdoor lighting, 168
Outliner

baking animation in, 314–315, 315f
hierarchy in, 286–287, 287f
keeping a clean, 27
renaming joints, 282–283
renaming new IK handle, 286

output files, notes on, 507
overlapping UVs, shadows and, 169
Overlay Blending Mode, 155f

P
Package, in OSX, 507
packages, importing, 92, 114, 341
packs, UV mapping, 247–250
pads

on Aegis Chung's outfit, 225
creating, 225

Paint Details button, in the Inspector,
134–135

Paint Details tool, 126
Paint Height tool, 126
Paint Operation, changing to Smooth,

307
Paint Skin Weights tool, 306–307, 306f
Paint Texture tool, 126
painting

influence of a joint, 308
skin weights, 305–308
texture, 77–78
on top of the default image, 76

palm
adding an extra loop around, 219,

219f
refining, 218, 218f

pants, adding detail to, 228, 230f
parameters, of a class, 385
parent joint, 284, 294
Particle Animator component,

moving to, 141
Particle Animator section,

Autodestruct option, 420
particle emitter system

constructing steam, 487
effects of, 143f
finished, 144f
second, 143f

particle shaders, for smoke, fire, and
steam, 139

particle system
attributes of, 137
key components of, 138

Particle Texture area swatch, 141
particles

cutting through polygons, 138
doing damage (steam), 487–489
in Unity, 137
uses for, 137

parts, of another object, 280
patches, on Aegis Chung's outfit, 225
Pause button, pausing game play, 94
Per-Platform Settings, 502, 503f
persp view panel, 250f, 251

Backface Culling, 25–33
with X-Ray turned off, 292, 292f

Photoshop
creating alpha channels, 141
creating splash image, 504, 504f
developing normal maps, 149,

149f
image planes in, 182–183

521

Index

NVidia's Plug-ins for, 150
opening baked AO texture in, 267
pasting in details, 271, 273f
resizing the image to 512x512, 68
results of AO baking, 268f
testing texture in, 71

physical barrier, providing to the
player, 122

Physics.Raycast, Runtime Class of,
384, 385f

PickUpKey function
creating, 464
firing, 466
fleshing out, 466–467

pipes, spewing steam, 487
pistol

creating another function to store,
450

turning on when called, 456
variable housing geometry, 454

pistol shot, 11025
pistol sparks, notes about, 419–420
pistolActive variable, declaring, 418
PistolReady, playing animation, 449
PistolSpark particle system, 420, 420f
PistolSparks prefab, 414, 419
pit, 34f

lit, 178f
textured, 86f

Pivot/Center toggle button, in Unity, 94
Pixel Inset section, of GUITexture

component, 342
Pixel Inset X, dialing value up or

down, 344
Pixel Offset options, 503
Pixel Offset Y, changing, 357
Place Trees tool, 126
placedEMP private variable, declaring,

429
placeholder, temporary, 137
Placement Extras section, of the

imagePlane node, 208
Planar Mapping

shooting texture across a surface,
51

using, 51
using to ensure entire object has

UVs, 50–51, 51f
Planar Mapping Options window, 55
planar projection

applying, 257
creating, 253–254

Planar Projection manipulator
handles, 55, 55f

Plane, creating, 137, 171

Play Automatically, turning off, 456
Play button

in Animation window, 320
playing the game, 94
in the Toolbar, 106–107

Play on Awake option, turning off, 372
player

creating things to hurt, 482
function checking for distance of,

500–501
giving location for crosshairs, 388
quitting the game, 494
using a flashlight, 393

Player Settings
accessing, 502
options to adjust, 354
preparing, 501–506

Player Settings window, 501f, 502
Playing the game, 95
PlayOneShot function, 424
pockets, selecting polygons of, 247,

248f
point lights, 161–162, 161f
pointer finger, creating joints for, 293,

293f
poly mesh, generating, 212
polycount

for a character, 182–232
effective use of, 14–15
as important, 182
keeping a tight grasp on, 22–24
knowing, 31
taking stock of, 31
varying, 14f

Polygon Cylinder Options box, 29
polygon rings, creating, 186–189,

186f
polygonal modeling techniques, 15
polygons

anatomy of, 11–14
creating and tweaking, 186
deleting along the bottom, 24
describing roundness of the arm,

213
deselecting in the view panel, 258
expanding new ring of, 189f
extruding out, 187, 187f
hunting and destroying five-

sided, 235–236
methods of assembling, 11–12
more allowing more bending, 11
shards of floating in texture space,

48
Polygons>Mesh>Booleans>Difference,

choosing, 29

Polygons>Mesh>Combine, 27
Polygons>Normals>Reverse, 26
pouch

completed, 249f
mapping, 239–240, 248
moving UVs off to the side, 248,

248f
selecting polygons of, 247, 248f
sewn up, 248, 249f
UV mapping, 247–250

power of two (POT), 40, 64–65
power switch

highlighted, 393f
mechanics of, 402f
rotation of, 400

prebuilt assets, using, 132
predefined functions, in Unity, 338
Prefab, of the imported Maya .fbx,

101
Prefab Apply button, 412, 423
prefab connection

causing loss of, 329–330, 329f
losing, 329–330, 405

prefabs, 403–406
applying changes to, 405, 405f,

457
constructed from an imported

model, 405
customizing, 412
keeping intact, 336
moving into a scene, 104
power of, 368, 406–413
versus prefab connections,

404–406
in Unity, 101

Preview pane, in Inspector, 325
primitives, small collection in Unity,

137
private variables, 352, 369

declaring, 429
described, 492
holding reference to the actual

script, 447–448
nesting all variables in, 363

problem area, in a scene placed in
Unity, 112, 112f

production team, broken into two
teams, 4

Profiler, 497, 497f
programming, compared to scripting,

334
progress bar, watching for, 100
project file

folder in, 100, 100f
importance of, 90

522

Index

Project panel, 96, 419–420
projection

expanding, 241, 241f
rotating, 242, 243f
scaling, 251, 252f

projection center
adjusting to match curve of

polygons, 54–55, 54f, 55f
moving to reduce distortion, 251,

252f
projects, setting up, 16
props, modeling, 34
protagonist, really well-designed, 179
PS3 Move system, 333
.psd format, 58
public variable declaration, 373
public variables, 369

benefits of, 396
creating, 437
declaring, 397, 429
defining via drag and drop, 371f
described, 492
populating, 438, 438f

PulseLight function, firing, 410
push and pull function, of Sculpt

Geometry tool, 201

Q
quads, 15, 16
Quality Settings, 164, 164f

R
radiosity-based solutions, 160
radius, absolute size of, 298
Raise/Lower Terrain tool, 126, 127, 127f
Random Height, for Detailed Meshes,

134
Random Width, for Detailed Meshes,

134
range, for point lights, 161
Range handle, in spotlight, 162, 163f
Range Handles, 161
raw cement section, of the dock, 93
raw texture

cleaning up, 151–152
copying and pasting side view

into, 271, 272f
selecting and preparing, 68

raycasting
described, 380–381
highlighting actionable objects,

402

against a key, 471f
“setting” triggers, 436f
shooting ray from a camera, 387

raycasting mechanism
building upon, 465–466
creating, 407
GameObject containing steam set

up with, 487
ignoring certain layers, 436

raycasting tutorial, 417
ReadyFlashlight function, 450
ReadyPistol function, 449
real-time situations, 12
record button, in Unity, 320
referencing, 311–312
reflections, as the norm, 13–14
Refraction Color, adjusted to a dark

green, 121
region, where two surfaces meet, 75
renaming, assumption on, 454
render mode, for point lights, 162
Render Mode settings, changing to

Vertex Lit, 135
Render Node, creating for the Color

attribute, 41
Render Settings

accessing, 118
applying a skybox material in,

117–118
Skybox materials chosen in,

116–117
rendering

described, 12
kinds of, 12

Replacement Names For Duplicated
Joints, 287

research, note on, 7–8
resizing, images, 68
Resolution and Presentation area,

502–503
Retain Component Spacing

checkbox, 190, 231
reverb zone, adjusting, 328f
reversed normals, as a general pain,

235
rifle, assigning vertices, 305
rig

animating, 276
creating, 276
preparing for animation, 297–301
testing, 289–290, 290f

rigged character, scaling, 277
rigging, 276–301
Rigid Binds, 302
rigid body parts, binding, 303–305

rings, expanding, 189–191
rings of edges, cutting, 254–255, 255f
Rnd Velocity (Random Velocity)

setting, in Mesh Particle
Emitter, 142

Roadkill tool, 50, 234
rock wall, selecting, 108
RockMesh detail mesh, 135, 136
rocks

adding, 132–136, 135f
imported meshes transitioning

into terrains, 135
painting in, 135–136, 136f

rocky base texture, finding, 129
Rolloff Mode settings, for an Audio

Source, 332
roof

creating, 26–27, 26f
rotating so its face is facing down,

26
Root joint

placing, 281–282, 281f
ruling them all, 281

Rotate tool, 22, 295–296
RotateTo class, of iTween, 400, 470
RotateTo function, 370
rotation, maintaining relative, 279
rotation keyframe, 320
Rotation tool, 295–296, 295f

S
Sabella, Giovanni, 236
sample rate, turning up, 265
Save Scene dialog box, 102
saving, often, 111, 309
Scale Factor, adjusting, 104–105, 104f
Scale tool

not working on terrains in Unity,
124

scaling a group, 278
swapping to, 189–190

Scene area, in Unity, 95
Scene Gizmo, 95
Scene view, 104–105, 130, 135
Scene window

selecting Aegis in, 316–317
turning off lighting in, 396, 396f

Scene-Closing
adding to Build Settings, 477, 478f
duplicating, 474, 491

Scene-ClosingFail, 491, 492f
Scene-ClosingFail level, launching,

490–491

523

Index

Scene-EntryWay, opening, 428
Scenegraphy Assets folder, CCTV

within, 406
Scene-Hallway scene, 364, 367
scenes

examining for any abnormal
geometry, 111

lighting, 317–318, 318f
moving around, 106f
populating in Build, 354
in Unity, 101–102
walking around, 107
ways of looking at, 130

scenography
assets, 102–112
creation process, 37–38
modeling, 9–10

scope
defined, 425–426
importance of understanding, 432

ScotsPineTypeA tree, 133
screen hints, providing via GUIText,

355
Script Holder GameObject, 336
scripting

the GUI, 345–347
GUIText, 359–361
sound, 330–332
triggers, 361–364

scripting languages
mechanisms to help document

scripts, 381
opening help files for, 383
in Unity, 334–335

Scripting Reference, deciphering, 384
scripting tools, 4
scripts, 5–6

AC_ToolFunctionality firing new
blocks of, 442

applying, 346
attaching to objects, 335
back to, 481–482
capitalization in Unity's, 423
compiling, 337
defined, 337–340
drawback to a whole lot of, 442
firing animations in, 448–453
leaving the type bank, 448
on multiple objects, 346
opening, 330
optimizing with, 500–501
saving, 331–332
syntax problems, 346
tools for, 336–337
in Unity, 335–340

Scripts folder, creating, 345
Sculpt Geometry tool

building out cheek bones, 207
massaging head into shape, 203,

203f
massing out front ledge of ear,

204–205
in Maya, 122
push and pull function, 201
sculpting and smoothing newly

created polygons, 200–201,
201f

smooth part of, 205
using, 212, 212f

sealing, UVs, 48
seamless textures, 65

adding to assets, 129
creation of, 66
power of, 67
tutorial on tiled, 66–74

seams
hiding, 242
minimizing, 43
reducing, 47
rotating to inside of arms, 242,

242f
schematic of places for obvious,

237, 237f
sewing up, 245–247

security systems, bypassing in
Incursion, 6–7

segments, splitting edges into, 32–33
Select GameObject window, 133
Select Texture2D window, 129–130,

130f, 141
Set Resolution drop-down menu,

setting terrain size, 123f
SetActiveRecursively function, 397
Sew UV Edges command, 56–57
shaded UV display mode, 259
shaders, 63, 139
Shadow Cascades section, 165, 167f
shadow color, changing to a value

less than 1, 173
Shadow Distance section, 165, 167f
Shadow Distance setting, in Quality

Settings, 172–173
shadow maps, 164
Shadow Resolution section, 165, 166f
Shadow Strength, reducing, 173
shadows

drawing, 162
drawn as maps, 164
enabling for baked textures,

168–169

in most situations never black, 160
for point lights, 162
sections focused on, 165
turning off, 165
understanding, 163–166

Shadows section, 165
shaft

ensuring one seam on, 44
sewed, 46f
sewing the edges of, 45

sheaths, UV mapping, 247–250
shells

arranging, 48–49, 48f, 55–56, 56f
finding and creating for the fly,

246, 246f
organizing, 260–262
resizing, 56, 56f
rotating, 247
scaling for checkers, 251
sequestering newly created, 244f
sewing, 45–49
sewing some together, 56
sizing, 250, 250f
unfolding edges of, 260f
of UVs, 44, 44f

Shift-\, 331
Shift-Ctrl-selecting, always adding,

240
Shift-D, in Maya, 26
Shift-P, 278
Shift-selecting, an object or

component, 240
shooting camera mechanism,

working, 423f
shoulder pads

adding upper body, 225, 225f
projection for, 251–253, 253f

shoulders
creating top of, 209, 209f
rotating, 301

Show Backdrop, dialing in UV guides,
270

Show Manipulator tool, 241
Show Project Wizard at Startup

setting, in Unity, 91
Shrek-ear, creating, 204
sine curve, defining red value,

410–411
size reference, creating a new cylinder

to use as, 277, 278f
skin

binding in Maya, 303
binding to joints, 302

skin textures, taking your own photos
for, 269

524

Index

skin weights
adjusting, 305–306
learning by painting skin weights,

308
painting, 305–308

skinCluster node, 305
skinning

process of, 302
rig to a model, 276

sky, behaving visually as real sky,
116–117

Skybox Material area, 117–118
skybox package, importing Unity's,

117
skyboxes

adding and manipulating in Unity,
116–118

constructed with materials made
of six texture images, 117, 117f

custom as best, 118
dramatic changes with, 118f

smart objects, 121
smart trigger, creating, 467–472
smoke particle emitter, modified, 438
smoke puff, finding, 139, 140f
smooth binds, 302
Smooth Flood, smoothing influence

through, 308f
Smooth function, of Sculpt Geometry

tool, 204–205, 205f
Smooth Height tool, 126
Smooth Skins tab, 304
Smooth UV tool

dragging on the Unfold button,
255

Relax button, 256, 257f
Unfold, 53, 247, 254
unfolding a new shell, 244, 244f
unfolding UVs via, 51, 52f

smoothing, sharing influence up and
down a chain of joints, 307

Soft Mod tool, nudging tools into
place, 212

soft normals, new polygon having, 22
soft shadows, 162, 165, 173
softened edges, with select hardened

edges, 208
software rendering, 12
sound

adding, 372, 411–412
getting, 323–324
scripting, 330–332

sound clip
for a big door, 375
dragging to a GameObject, 372

making destroy wait for duration
of, 374–375

previewing, 325
Sound Designer, 4
sound formats, accepted by Unity,

325
sound listener and sound source

paradigm, 325
sound object, script destroying, 374
sound sources, organizing, 328
sounddogs.com, 323–324
Sound-Footsteps GameObject, 329,

332, 424
SoundFootstepsControl script, 330,

424
Sound-Gunshot GameObject, 424
Sound-ReverbZone GameObject,

327, 328
Sounds folder, creating, 325
Sound-Waves GameObject, 326, 326f
sourceimages folder, of the project

file, 41, 70
space, feeling much bigger, 121
spaces

placing in scripts, 362
prototyping, 89

Spark, duplicating Unity's, 419–420
speed, of an animation, 449
spine. see also back (spine)

controlling joints of, 290–291
splash image, 502, 502f, 504–506
Split Polygon tool, 23, 211–212,

235–236, 236f
making a new cut from corner to

corner, 23–24, 23f
selecting, 28
using, 23f

Spot Angle Handles, 162, 163f
spotlights

adding extra, 175–176, 176f
scene lit with, 317–318
in Unity, 162, 163f

Square images, visualizing textures
by working with, 64

squarish shapes, repeating
optimization for, 49–50

Standalone Quality, 165
Standard Assets folder, 100, 117
Start function, 351–352, 455–456
state engine

accessing, 465
described, 441–443
developing sophisticated, 442

statements, in scripts, 337
static Audio Sources, adding, 325

Static button, not checked, 371–372,
371f

Static checkbox, checking, 169
Static option, turning off after baking,

372
Stats panel, activating, 497, 498f
steam, doing damage, 487–489
Steam GameObject, 488
Steam objects, grouping, 489
Steam prefabs, 488f, 489
Steam Unity package, 488, 489
SteamEmitters GameObject, creating,

489
SteamEmitters script, 487–488
Step button, allowing for movement

through the game, 94
stepped section, creating, 21–22, 21f
Stickiness, turning on for IK handles,

286
sticky IK, 284
StoreFlashlight function, 450
StorePistol function, 450
strings, 339, 470
style sheets, 180–181, 198
Subdivs, 15
sun, 163, 173
surface resource, on the web, 66
surface shader, 264f, 265, 265f
Surface Shader option, 264
syntax errors, correcting in a script,

331–332

T
T pose (arms straight out), 181
tags

assigning to objects, 408–411,
408f

defining new, 408–409, 409f
Target Platform drop-down menu,

506, 508f
Team, 1–4
team activity, game production as, 97
team situation, manually exporting, 98
techniques and Unity, focus of this

book on, 30
technology, embedded in video

cards, 20215
technology assets, 5–6
technology team, 4
terrain(s)

adding mass to, 127, 127f
automatically set to Static, 175
basic sculpting of landscape, 122

525

Index

broad strokes but not detail, 122
creating, 123, 123f
keeping reasonable size, 124
making believable, 122
making seamless, 129
moving, 124–125, 124f
resizing, 123–124
restrictions of, 122–125

Terrain, as a GameObject, 121
Terrain, setting to Static, 169
Terrain Assets, collection of prebuilt,

132
Terrain Assets package, 132
Terrain Collider component, 125
terrain creation, multiple passes key

to effective, 127
terrain editing tools, 125–136
Terrain Settings tool, 127
terrain settings, tweaking, 143–144
terrain surface, raising, 126
Terrain Texture size, adjusting, 130, 131f
Terrain Textures, 131
Terrain Textures folder, saving

seamless texture to, 129
tessellation, 11–12, 15–16, 16f
tessellation process, 15
testing

binds, 302–303, 302f
lockCursor, 462
rigs, 289–290, 290f
sound, 327
texture in Photoshop, 71

texture assets, made in Photoshop or
BodyPaint, 4

texture atlases
creating for weapons, 237
holding texture information of

multiple objects, 48–49
knowing how to use, 62

texture files
more and more screen filled with,

67
related to EntryWay, 157
user including relevant, 98

texture images, layering additional,
81–82

Texture Import settings, for spotlight,
162

texture node, renaming, 72
texture space, 43, 255
Texture2D type, 445
textureColor, defining color of the

LED, 410–411
Textured mode, viewing the scene

in, 42

textured scene, 83f
textures

adding to topography, 128–132
aligning to top of the screen, 444
applying, 71–73
applying to a mesh, 238
automatically over entire terrain,

130
changing Max Size, 499, 499f
cobbling together swatches of, 77
creating in Photoshop, 5
described, 63
embedding into .fbx exported, 98
finishing, 271, 274f
folder for saving, 41
giving depth to flat, 264
layering, 132
looking fine in Maya but not

Unity, 107
nature of effective, 64–65
optimizing with, 498–500
painting, 77–78
painting with, 131–132, 131f
populating GUItextures with, 443
problem area of, 108f
repeating, 65
resizing, 342
seamless, 65
selecting size of, 75–76
tiling over a large surface, 67, 68f
for use in GUITextures, 341

Threshold setting, turning up, 223,
224f

thumb
adding loops to, 220, 220f
creating base of, 218, 218f, 222,

222f
creating string of joints for,

293–294, 293f
tiling textures

over a large surface, 67,
67f

working with, 58
timers, on cameras, 490–491
timing, adjusting, 320
toggle, expanding code to be,

451–452
Toggle UV Shaded display, 57, 57f
ToggleInventory function, writing,

461–462
Tool Attributes, bringing up, 190
tool functionality script, 443
toolbar, of Unity, 94
tools, 16–17

creating normal maps, 150–159

for scripts, 336–337
used by a team, 4

top lid, covering an eye's, 187, 187f
topography, adding texture to, 128–132
topology

described, 15–16
ensuring four-sided polygons,

23, 23f
torso, completing, 208–212
ToString function, built in Unity, 479
Transform component, 125
Transform methodology, GUITextures

laid out using, 503
Transform section, of Inspector, 108
Transform values, for Position and

Rotation, 458
transformations

cleaning, 278–279
freezing, 289

transforms, locking and hiding
unwanted, 300–301, 301f

Translate tools
moving vertices, 29, 30f
sliding projection down, 54–55

Tree generator, in Unity, 132
tree types, placing several, 134, 134f
trees

adding, 132–136
painting across highest parts of

the scene, 133, 133f
placing, 126, 133
removing, 126
as smart objects in Unity, 121

triangular polygons (tris), 11–12, 15, 31
trigger functionality, creating, 362
Trigger-BulkheadDoor1, creating, 368
Trigger-Endgame, creating, 476, 476f
Trigger-FallDeath, 486–487, 486f
Trigger-FindDoorHint cube, 359
Trigger-HallwayPortal, creating, 365,

365f
Trigger-LockedDoor, creating, 468, 468f
triggers

activating and changing screen
hints with, 356–367

checking key entered, 464
creating, 358–359
described, 355
designating, 356, 356f
destroying, 373
handy but sometimes clumsy, 377
scripting, 361–364
setting up area of influence for

steam, 487
to swap levels, 364–366

526

Index

Trigger-WaterKiller, creating, 482–483
Trigger-WaterKiller GameObject, 486
tris (triangular polygons), 11–12, 15
Tris: number, looking at, 31
trolley, 35f, 88f
True Type Fonts, in GUIText, 358
tunnel, sound source in, 327
TurnOnLights function, 397–398, 401
Tutorials

10.1: Rigging, 276–301
10.2: Maya Skinning, 302–310
10.3: Maya Animation, 310–314
10.4: Getting Animated Characters

to Unity, 314–319
10.5: Animating in Unity, 319–321
11.1: Placing Sound in Unity,

325–332
12.1: Graphical User Interfaces,

340–354
13.1: Activating and Changing

Screen Hints with Triggers,
356–367

13.2: Triggers and Doors, 367–377
14.1: Highlighting Actionable

Objects with Raycasting, 402
15.1: The Power of Prefabs,

406–413
15.2: Setting Up the Armed Arms,

414–417
15.3: Firing a Gun, 417–423
15.4: Sound Revisited, 423–425
15.5: The EMP Mines, 427–438
16.1: Setting Up Inventory GUI

and Script, 443–463
16.2: Keys, 464–472
17.1: Winning, 481–482
17.2: Health Systems, 478–494
2.1: Game Level Modeling: The

Entryway, 17–24
3.1: Game Level UV Layout, Tools

and Techniques, 40–61
4.1: Seamless Tiled Textures, 66–74
4.2: Nontiled Textures and Their

Dirt, 74–84
5.1: Creating a Unity Project, 90–93
5.2: Exporting from Maya, 97–101
5.3: Importing, Tweaking, and

Placing Scenography Assets
into Unity, 102–112

6.1: Adding and Manipulating
Unity Water, Sky, and Fog,
114–121

6.2: Terrain Creation, 121–136
6.3: Primitives and Particles,

136–144

7.1: Normal Maps, 148–177
7.2: Lighting and Baking in Unity,

159–160
8.1: Game Character Modeling:

Aegis Chung, 182–232
9.1: Character UV Mapping,

234–262
9.2: Character Texture Painting,

262–271
on textures, 66

twitching, of vertices, 309
types

assigning to a variable, 339
assigning to variables, 500

U
Undo (Edit>Undo or Ctrl-Z or

Command-Z), 133
unflattened version, of inner walls

texture, 150–151
Unfold button, dragging several

times, 255
Unfold UV tool, in Maya, 50
unification, of color fields, 70
uninitiated, making sense to, 495
UniSciTE script editor

basics of a script in, 330, 331f
F1, 384
line numbers not appearing by

default, 346
on a PC, 336

Unitron editor, on a Mac, 336
Unity

adding interactivity to a scene,
321

allowing for easy adjustments in
size, 75–76

assembling games in, 4
asset creation in, 113
attempting to resize images, 505
bringing image in as a normal

map, 158
bringing in Maya-created objects,

41
built-in animation system, 319
constant experience across

platforms, 496
converting non-power-of-two

textures, 64–65
creating a new folder, 91
creating and dealing with

projects, 90–93
described, 4

documentation's examples
primarily in JavaScript, 5–6

downsampling imported textures,
107

exploring the level within, 89
free license, 90
game development pipeline, 9
generating an alpha

automatically, 141
getting animated characters to,

314–319
getting assets into, 277
lighting and baking in, 159–160
lighting instruments in, 160–177
lighting tools, 146
lightmapping, 146–147
nomenclature, 101–102
placing scenography assets into,

102–112
placing sound in, 325–332
prefabs, 403, 405
presenting polygons, 136
reading most anything, 70
scripts in, 335–340
seeing joint rotation keyframes,

314
standard (and free), 90
taking non-power of two textures,

64–65
Textures/Materials/Shaders

compared to Maya, 65–66
tracking whether player has

emerged alive, 484
understanding new asset, 158
working structure much like

Maya, 90
working with GUIText, 356

Unity 3
new technology (Beast) for

lighting solutions, 147
sound mechanisms, 323

Unity Explosion Framework,
420–423

Unity interface, 93–96, 100
Unity Pro

casting shadows, 162–163
Deferred Lighting, 171–173
features in, 90
Global Illumination, 170
real-time shadows, 168–169
render to texture effects, 114
scene baked with, 170f, 171

Unity-Project Wizard window, 90–91,
91f

Untagged tag, 408–409

527

Index

unused materials, removing, 97
unused objects, ungrouping and

deleting, 278
unwrapping, UVs, 38, 38f
Update function, 338, 345–346

Lookups in, 500
using, 388

Update When Offscreen option,
416–417, 416f

updates, forcing, 417
upper body joints, 299

color coding, 300
orienting, 294

up-rezing
compared to extruding, 202
elements, 32

Use Bake Set Override checkbox, 266,
266f

UV coordinates, on a surface, 38
UV display, toggling to on, 258–259,

259f
UV guidelines, copying to another

layer, 76
UV layout

within game design pipeline,
37–38

of the object EntryWay_Columns,
49f

as second step, 37
UV lines, duplicating onto another

layer, 76
UV map

current for the dock, 61, 62f
empty space left in, 48
opening in Photoshop, 76, 76f

UV mapping, 38
of characters, 234
undistorted, 60
using same checkerboard

for, 50
UV sets, using multiple, 110
UV shell

flipped, 259f
resizing, 51

UV Smooth tools
making shells disappear, 236
Unfold, 258–259, 260f
unfolding, 255

UV Snapshot
in Photoshop, 76
preparing for painting in

Photoshop, 76–77
taking, 75–76

UV Snapshot window, 75–76
UV Texture Editor

arranging shells, 55–56, 56f
choosing, 73
displaying multiple textures, 73
exploring, 39
flipping pink shell in, 259, 259f
opening, 75, 75f, 243
as polygon selection tool, 258
powerful, but picky, 61
selecting down the fly, 246
swapping to UV mode, 251
tracking down edges in 3D, 246f

UV Texture Editor window, 43
UV texture space, top right quadrant

of, 64
UV Unfold tools, making shells

disappear, 236
UVs

completing before texture
creation, 37

creating and editing, 38–39
of the inner curve of the arch, 53
looking for overlapping regions

of, 256, 256f
scaled allow multiple repeating

texture, 74f
tightly packed set of, 261

V
variable declaration, 348
variables, 339

assigning contents of, 348–349
defining with a declaration

statement, 339
global, 492–493
populated by another function,

390
typing, 500

VCR-looking buttons, in Unity, 94
Vector3, 339
Vector3.Distance, measuring, 438
Vertex, from the hotbox menu, 22
vertex, of a polygon, 11
vertex mode, 29, 193
vertex twitching, watching for, 309
Vertical input, 331
vertices

100 percent assigned to a joint,
304

compared to UVs, 39
manipulating versus adding

geometry, 221
merging appropriate, 193–194
of a polygon, 11

video cards, 13
View panel, Manipulator in, 61
Visible setting, changing, 187
visual complexity, adding to

columns, 32
visual effects, new, 13–14
visual elements, including additional

polygons, 32
volume, tweaking while in-game,

327

W
walk cycle, animated as stationary

cycle, 311
walking sound, 324
Warnings and Errors window, 315
water

adding and manipulating in
Unity, 114–116

fog hiding edge of, 119
placing in a scene, 115
tweaking parameters for, 121

Water (Basic) package, 114
Water (Pro Only) package, 114
Water (Script) component, of

GameObject, 115
water collider, 483f
water prefabs, 114, 116f
water steam, source of, 138
WaterSteamEmitter, 138, 138f
Wave Speed, settings cut in half,

121
waves, rolling up on shore, 324
waves sound, dragging into Audio

Clip, 326
weapons

for Aegis Chung, 232
hiding and showing, 453–457

Web Player build, 507
Web Player Quality, 165
web site, for this book, 34
white cement parts

mapped via Automatic Mapping,
60f

UV with automatic mapping,
60–61, 60f

width, offsetting segments over,
32–33

Wii, 333
Windows build

changing to Mac, 506
two files in, 507

winning, the game, 473, 481–482

528

Index

Wireframe mode, going to, 298
workspace, rearranging within

Unity, 95
World Space, activating, 256
World Velocity setting, 142
Wrap Around radio box, 68–69, 69f
WrapMode, changing to Loop,

315–316
wrist joints, adjustment of, 295–296,

295f
Writer, 3

X
X-Ray (Shading), activating, 281
X-Ray Joints option, 292

Y
Y axis handle, Ctrl-clicking, 288
Yield, in JavaScript, 374
yield statement, 435

yields, allowing animations to play,
453

yieldWaitForSeconds commands,
452–453

Z
Z Axis, checking in Planar Mapping

Options window, 52–53, 52f
ZBrush tool, 149

	Front Cover
	Creating Games with Unity and Maya
	Copyright
	Dedication
	Acknowledgments
	Contents
	Introduction
	Chapter 1: Game Production Process
	The Team
	The Tools and Unity
	Teams of Teams and Pipelines
	Assets
	Art Assets
	Technology Assets (Scripts)
	Order of Operations

	Conclusion and Introduction to Incursion
	A Note on Research
	And on We Go…

	Chapter 2: Asset Creation: Maya Scenography Modeling
	Scenography Modeling within the Game Design Pipeline
	Why Maya Tutorials?
	A Bit of 3D Theory
	Rendering
	Video Cards
	Limitations and Optimizations for Games

	Rules of 3D Game Modeling
	Polycount Matters
	Topology
	On to the Tools

	Tutorial 2.1: Game Level Modeling: The Entryway
	Columns Base Shape
	Dock Creation
	Dock Optimization
	Backface Culling
	Roof Creation
	Cleaning or Deleting History
	Handrails
	Archway and Booleans
	Beveling

	Wrapping Up
	Homework and Challenges

	Chapter 3: Asset Creation: Maya Scenography UV Mapping
	Scenography UV Layout within the Game Design Pipeline
	UVs
	Exploring the UV Texture Editor

	Tutorial 3.1: Game Level UV Layout, Tools, and Techniques
	Creating and Applying New Material
	Mapping Beginning with Automatic Mapping
	Sewing Shells
	Further Optimization
	Maya's Unfold UV via Smooth UV Tool
	Manual Mapping

	Conclusion
	Homework and Challenges

	Chapter 4: Asset Creation: Maya Scenography Texturing
	Textures, Materials, and Shaders
	Nature of Effective Textures
	Maya and Unity

	Tutorials
	Tutorial 4.1: Seamless Tiled Textures
	Select and Prepare a Raw Texture Image
	Offset and Clone Stamp
	Unify the Color Balance
	Apply the Texture
	Conclusion

	Tutorial 4.2. Nontiled Textures and Their Dirt
	UV Snapshots
	Preparing the UV Snapshot for Painting in Photoshop
	Painting the Texture
	Layer Mixing
	Layer Masks
	Saving Multiple Files
	Application in Maya
	Conclusion

	Homework and Challenges

	Chapter 5: Asset Creation: Unity Scenography Importing
	Unity
	The Plan
	Unity Projects

	Tutorial 5.1: Creating a Unity Project
	About the New Project File

	Unity Interface
	Toolbar
	Scene
	Game
	Inspector Panel
	Hierarchy Panel
	Project Panel
	Using It All

	Tutorial 5.2: Exporting from Maya
	Optimizing in Maya
	Export Options
	The Import Process

	Unity Nomenclature
	GameObject
	Prefabs
	Scenes

	Tutorial 5.3: Importing, Tweaking, and Placing Scenography Assets into Unity
	Inspector Breakdown

	Conclusion
	Homework and Challenges

	Introduction
	Why This Book?
	Who's It For?
	Structure
	Book Paradigm and Assumptions
	Book Conventions
	A Note about the Approach

	Chapter 6: Asset Creation: Unity Scenography Creation Tools
	Asset Creation in Unity
	Tutorial 6.1: Adding and Manipulating Unity Water, Sky, and Fog
	Importing Packages
	Water
	Skyboxes
	Fog
	Wrapping Up

	Tutorial 6.2: Terrain Creation
	Restrictions of Terrains
	Terrain Editing Tools
	Conclusion

	Tutorial 6.3: Primitives and Particles
	Tweaking Terrain Settings

	Conclusion

	Chapter 7: Asset Creation: Advanced Shading, Lighting, and Baking
	Baking
	Baking in Unity (aka Unity Lightmapping)
	Limitations to Unity Lightmapping

	Plan of Attack
	Tutorial 7.1: Normal Maps
	Additional Tools
	Conclusion
	Tutorial 7.2: Lighting and Baking in Unity
	Unity's Lighting Instruments

	Conclusion
	Homework and Challenges

	Chapter 8: Asset Creation: Maya Character Creation
	Aegis Chung
	Style Sheet
	Considerations of Style Sheets

	Chapter Overview
	Tutorial 8.1: Game Character Modeling: Aegis Chung
	Polycount

	Conclusion

	Chapter 9: Asset Creation: Maya Character UV Mapping and Texturing
	UV Mapping
	Tutorial 9.1: Character UV Mapping
	Mesh Inspection and Cleanup
	Finishing Up
	Conclusion

	Tutorial 9.2: Character Texture Painting
	Ambient Occlusion Pass
	Face and Head

	Conclusion

	Chapter 10: Asset Creation: Maya Rigging and Skinning and Unity Animated Character Importing and Implementation
	The Process
	Tutorial 10.1: Rigging
	Cleanup
	Joints and Rigging
	Conclusion

	Tutorial 10.2: Maya Skinning
	Binding Rigid Body Parts
	Painting Skin Weights
	Conclusion

	Tutorial 10.3: Maya Animation
	General Notes on Game Animation
	Conclusion

	Tutorial 10.4: Getting Animated Characters to Unity
	Using Aegis

	Tutorial 10.5: Animating in Unity
	Conclusion

	Wrapping Up
	Homework and Challenges

	Chapter 11: Unity Sound
	Get the Sounds
	Sound Listener and Sound Source Paradigm
	Tutorial 11.1: Placing Sound in Unity
	Audio Reverb Zones
	Footsteps
	Scripting Sound

	Conclusion
	Homework and Challenges

	Chapter 12: Introduction to Unity Scripting Basics and Graphical User Interface
	Unity's Scripting Languages
	Boo Script
	C#
	JavaScript

	Using Scripts in Unity
	A Note about This Approach
	Tools for Scripts
	What Is a Script?
	Getting to It

	Tutorial 12.1: Graphical User Interfaces
	GUITexture

	Conclusion
	Homework and Challenges

	Chapter 13: Unity Triggers
	Designating Triggers
	Tutorial 13.1: Activating and Changing Screen Hints with Triggers
	GUIText
	Custom Fonts
	Creating Triggers
	Scripting the GUIText
	Scripting Triggers
	Triggers to Swap Levels
	Conclusion

	Tutorial 13.2: Triggers and Doors
	Divergent Methods
	Sound and Scripts
	Cleaning Up with Destroy and Booleans

	Conclusion
	Homework and Challenges

	Chapter 14: Unity Raycasting
	Frame Miss
	Raycasting
	But First ...a Few Notes on Scripting and Help
	Comments via //
	Commenting Blocks of Script with /*
	Accessing the Documentation
	F1 in UniSciTE

	Decoding a Help Page
	Tutorial 14.1: Highlighting Actionable Objects with Raycasting
	Turning on the Lights

	Conclusion
	Homework and Challenges

	Chapter 15: Unity Prefabs and Instantiation
	Prefabs
	Prefabs versus Prefab Connections

	Tutorial 15.1: The Power of Prefabs
	Tags
	Adding Sound
	Conclusion

	Instantiation
	Tutorial 15.2: Setting Up the Armed Arms
	Conclusion

	Tutorial 15.3: Firing a Gun
	A Few Notes about Pistol Sparks
	Quick Note about Detonator and Explosion Framework
	Conclusion

	Tutorial 15.4: Sound Revisited
	Scope and Optimizing Script
	Tutorial 15.5: The EMP Mines
	Layers
	Make the EMP Effective

	Conclusion

	Chapter 16: Unity: Creating Inventory Systems
	State Engine and How Many Scripts?
	Tutorial 16.1: Setting Up Inventory GUI and Script
	Refresher on Interscript Communication
	Firing Animations in Script
	Hiding and Showing Weapons
	Bulking up the GUI System
	Create a GUIElements Prefab
	Animate the Inventory to Show and Hide
	Conclusion

	Tutorial 16.2: Keys
	Accessing the State Engine
	Building upon the Raycasting Mechanism
	Fleshing Out PickUpKey
	Creating a Smart Trigger

	Conclusion
	Homework and Challenges

	Chapter 17: Health Systems, Winning, and Losing the Game
	Tutorial 17.1: Winning
	The Endgame Trigger
	Conclusion

	Tutorial 17.2: Health Systems
	Creating Health Display
	Back to Script
	Things That Hurt
	Creating the Damage Triggers
	Broadcast Message
	Particles Doing Damage (Steam)
	Timers on Cameras
	Scene-ClosingFail
	Global Variables
	Final Test

	Conclusion
	Homework and Challenges

	Chapter 18: Unity Debugging, Optimization, and Builds
	Finding the Bugs
	Optimization
	Finding What Needs to Be Optimized
	Optimizing with Textures
	Optimizing with Scripts

	Making the Build
	Preparing Player Settings
	Outputting the Final Build

	Conclusion

	Index

