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1 Introduction

This document shows how to determine if two bounded cylinders intersect. The algorithm uses the method of
separating axes, although the construction is more complicated than one encounters when separating convex
polyhedra. The resulting algorithm is a fairly expensive one if you plan on using cylinders for bounding
volumes in a real-time graphics engine. A better alternative to a cylinder is a capsule, the set of points a
specified distance from a line segment. Two capsules intersect if and only if the distance between capsule
line segments is smaller or equal to the sum of the capsule radii, a much cheaper test to perform.

2 Nonintersection of Convex Objects by Projection Methods

Consider the problem of determining whether or not two convex objects in 3D are intersecting. This test
intersection geometric query is not concerned about constructing the intersection set, if it exists. The latter
problem is denoted a find intersections geometric query. The methods described here involve projection of
the objects onto linear subspaces and testing for intersection on the projected sets.

2.1 Separation by Projection onto a Line

A test for nonintersection of two convex objects is simply stated: If there exists a line for which the intervals
of projection of the two objects onto that line do not intersect, then the objects are do not intersect. Such
a line is called a separating line or, more commonly, a separating axis. The translation of a separating line
is also a separating line, so it is sufficient to consider lines that contain the origin. Given a line containing
the origin and with unit-length direction D, the projection of a compact convex set C' onto the line is the

interval
I = Din(D), Amax(D)] = min{D - X : X € C},max{D - X : X € C}].

Two compact convex sets Cy and C; are separated if there exists a direction D such that the projection
intervals Iy and I; do not intersect, Io N I; = @. Specifically they do not intersect when

A (D) > AL (D) or O (D) < AL (D).

min max
The superscript corresponds to the index of the convex set. Although the comparisons are made where D
has unit length, the comparison results are invariant to changes in length of the vector. This follows from
Amin (tD) = tAmin (D) and Apax (D) = tAmax(D) for ¢ > 0. The Boolean value of the pair of comparisons is
also invariant when D is replaced by the opposite direction —D. This follows from Apin (—D) = —Apax(D)
and Apax(—D) = —Apnin (D). When D is not unit length, the intervals obtained for the separating axis tests
are not the projections of the object onto the line, rather they are scaled versions of the projection intervals.
I make no distinction in this document between the scaled projection and regular projection. I will also use
the terminology that the direction vector for a separating axis is called a separating direction, said direction
not necessarily being unit length.

For a pair of convex polyhedra, only a finite set of direction vectors needs to be considered for separation
tests. That set includes the normal vectors to the faces of the polyhedra and vectors generated by a cross
product of two edges, one from each polyhedron. I am aware of no general theory for constructing the
smallest set of potential separating directions for other convex objects.



2.2 Separation by Projection onto a Plane

Another test for nonintersection of two convex objects is stated: If there exists a plane for which the regions
of projection of the two objects onto that line do not intersect, then the objects are do not intersect. Such
a plane is called a separating plane. This is not to be confused with a plane that is perpendicular to a
separating line and for which the objects are on opposite sides of the plane. The translation of a separating
plane is also a separating plane, so it is sufficient to consider planes that contain the origin. Given a plane
containing the origin and with unit-length normal N, the projection of a compact convex set C' onto the line
is the set of points
R={Y:Y=X-(N-X)N=(I-NNDX, XeC}

where [ is the 3 x 3 identity matrix. The projection set is itself a compact convex set. Two compact convex
sets Cy and C; are separated if there exists a normal N such that the projection sets Ry and R; do not
intersect, Ry N Ry = (). The determination of this condition can involve one of many geometric methods,
for example by showing that the distance between the two sets is positive. It might be possible to analyze
the projections in native 2D and attempting to find a separating line in 2D, but such a construction should
work as well in 3D.

3 Representation of a Cylinder

A cylinder has a center point C, unit-length axis direction W, radius r and height h. The end disks of
the cylinder are located at C & (h/2)W. Let U and V be any unit-length vectors so that {U, V, W} is
a right-handed set of orthonormal vectors. That is, the vectors are unit length, mutually orthogonal, and
W = U x V. Points on the cylinder surface are parameterized by

X(0,t) = C+ (rcosf)U + (rsinf)V +tW, 60 € [0,2n), |t| < h/2.
The end disks are parameterized by
X(0,p) =C+ (pcos®)U + (psind)V + (h/2)W, 0 € [0,27), p € [0,7].

The projections of a cylinder onto a line or plane are determinely solely by the cylinder wall, not the end
disks, so the second parameterization is not relevant for intersection testing.

The choice of U and V is arbitrary. Intersection queries between cylinders should be independent of this
choice, but some of the algorithms are better handled if a choice is made. A quadratic equation that
represents the cylinder wall is (X — C)T(] —= WWT)(X — C) = 72. The boundedness of the cylinder is
specified by |[W - (X — C)| < h/2. This representation is dependent only on C, W, r, and h.

4 Projection of a Cylinder onto a Line

Let the line be sD where D is a nonzero vector. The projection of a cylinder point onto the line is
A0,t) =D -X(0,t) =D -C+ (rcosf)D - U + (rsinf)D -V +¢D - W.

The interval of projection has end points determined by the extreme values of this expression. The maximum
value occurs when all three terms involving the parameters are made as large as possible. The t-term has



a maximum of (h/2)|D - W|. The 6-terms, not including the radius, can be viewed as a dot product
(cosf,sinf) - (D -U,D - V). This is maximum when (cos 6, sin ) is in the same direction as (D - U,D - V).
Therefore,

(D-U,D-V)

VD0 + DV

(cosf,sinf) =

and the maximum projection value is
Amax = D - C+7/[D]? — (D - W)? + (h/2)|D - W]

where I have used the fact that D = (D-U)U+ (D - V)V + (D - W)W, which implies (D-U)?+ (D-V)? +
(D-W)? = |DJ2. The minimum projection value is similarly derived,

Amin =D - C —7y/|D]2 = (D - W)2 — (h/2)|D - W]|.

5 Projection of a Cylinder onto a Plane

Let the plane be N - X = 0 where N is a unit-length normal. The projection of a cylinder onto a plane has
one of three geometric configurations

1. a disk when W is parallel to N,
2. a rectangle when W is perpendicular to N, or

3. a rectangle with hemielliptical caps.

The projection matrix is P = I — NNT. In the first case, the center of the disk is PC and the radius is 7.
In the second case, the rectangle has center PC and has unit-length axis directions W and W x N. The
four corners of the rectangle are PC £ rW x N £ (h/2)W.

The third case is only slightly more complicated. The center point of the projection region is PC. The axis
of the projection region has non-unit-length direction PW. An axis of the cylinder that is in the plane and
perpendicular to N has direction U = (PW) x N/|(PW) x N|. The four points on the cylinder that map
to the four corners of the rectangular portion of the projection are C £ 7U =+ (h/2)W. The four corners are
PC+7rU + (h/2)PW.

Let V.= W x U. The end circles of the cylinder are X(0) = C £ r((cos0)U + (sind)V) £+ (h/2)W. Let
Y = P(X—-C=£ (h/2)W); then Y = r((cos @)U + (sinf)PV). Therefore, U-Y = rcosf and PV -Y =
|PV|?rsinf. Combining these yields

1= (02 Fm(PV-Y))
_ 1~T T 1 PV pV T
= Y <UU + BVEIPV] [PV >Y

= (P(X - C=(h/2)W))T (;UUT + v ljjx‘ §¥|T) (P(X — C £ (h/2)W)).

This is the equation for two ellipses with centers at P(C & (h/2)W), axes U and PV/|PV]|, and axis
half-lengths r and r|PV]|.



6 Separating Line Tests for Two Cylinders

Given two cylinders with centers C;, axis directions W, radii r;, and heights h;, for « = 0, 1, the cylinders
are separated if there exists a nonzero direction D such that either

D - Cy—r9y/|D]2— (D-Wy)2 - (hg/2)]D-Wy| >D-Cy +71y/|D]2— (D-W;)2 + (h/2)|D - W,|

or

D - Co+70V/|DJ2 — (D-Wq)2 + (ho/2)|D - Wy| < D-C; —r1/|D|2 — (D-W;)2 — (h1/2)|D - W4|.
Defining A = C; — Cy, these tests can be rewritten as a single expression, f(D) < 0, where
f(D) = ro|PyD[ 4 r1|PiD| + (ho/2)|D - Wo| + (h1/2)|D - Wy| — [D - Al.
and where P; = I — WZWlT for i =0,1.

If A =0, then f > 0. This is geometrically obvious since two cylinders with the same center already
intersect. The remainder of the discussion assumes A # 0. If D is perpendicular to A, then f(D) > 0. This
shows that any line perpendicular to the line containing the two cylinder centers can never be a separating
axis. This is also clear geometrically. The line of sight Cg + sA intersects both cylinders at their centers.
If you project the two cylinders onto the plane A - (X — Cy) = 0, both regions of projection overlap. No
matter which line you choose containing Cy in this plane, the line intersects both projection regions.

If D is a separating direction, then f(D) < 0. Observe that f(tD) = |¢|f(D), so f(tD) < 0 for any ¢t. This
is consistent with the geometry of the problem. Any nonzero multiple of a separating direction must itself
be a separating direction. This allows us to restrict our attention to the unit sphere, |[D| = 1. Function
f is continuous on the unit sphere, a compact set, so f must attain its minimum at some point on the
sphere. This is a minimization problem in two dimensions, but the spherical geometry complicates the
analysis somewhat. Different restrictions on the set of potential separating directions can be made that yield
minimization problems in a line or a plane rather than on a sphere.

The analysis of f involves computing its derivatives, V(f), and determine its critical points. These are
points for which V(f) is zero or undefined. The latter category is easy to specify. The gradient is undefined
when any of the terms inside the five absolute value signs is zero. Thus, V(f) is undefined at Wy, Wi,
at vectors that are perpendicular to Wy, at vectors that are perpendicular to W1, and at vectors that are
perpendicular to A. I already argued that f > 0 for vectors perpendicular to A, so we can ignore this case.

7 Tests at Wy, W1, and Wy x W,

The cylinder axis directions themselves can be tested first for separation. The test function values are
F(Wo) =71|Wo X Wi[ + (ho/2) + (h1/2)[Wo - Wi| — [Wy - A

and
F(W1) =19|Wo x Wi|+ (ho/2)|Wo - Wi+ (h1/2) — [W1- Al

If either function value is negative, the cylinders are separated. The square roots can be avoided. For
example, the test f(W() < 0 is equivalent to

T1|W0 X W1| < |W0 . A‘ —h0/2— (h1/2)|W0 W1| =:p.



The right-hand side is evaluated. If p < 0, then the inequality cannot be true since Wy x W1 # 0 and the
left-hand side is positive. Otherwise, p > 0 and it is now enough to test r1|Wy x W1|? < p?. A similar
construction applies to f(W1) < 0.

One last test that does not require many more operations and might lead to a quick no-intersection test is
f(W() X Wl) = (7’0 +T1>|W0 X W1| — IWO x Wiy - A‘ <0

or equivalently
(ro +71)%Wo x W1|* < [Wy x Wy - AJ?,

assuming of course that Wy x W1 # 0. This vector is actually one for which the gradient of f is undefined.
If Wy and W, are parallel, then Wy x W; = 0 and |W( - W;| = 1. The identity
(AxB)-(CxD)=(A-C)(B-D)-(A-D)(B-C)
can be used to show that [Wo x W1|2 =1 — (Wg - Wi)2. The test function for Wy evaluates to
f(Wo) = (ho + h1)/2 — [Wq - Al.

The two cylinders are separated if (hg + h1)/2 < |[Wy - A|. If f(Wg) > 0, the two cylinders are potentially
separated by a direction that is perpendicular to Wy. Geometrically it is enough to determine whether or
not the circles of projection of the cylinders onto the plane W - X = 0 intersect. These circles are disjoint
if and only if the length of the projection of A onto that plane is larger than the sum of the radii of the
circles. The projection of A is A — (Wy - A)YW and its squared length is

A — (Wo- A)Wo|* = |A]P — (Wg - A)>.

The sum of the radii of the circles is the sum of the radii of the cylinders, r¢ + r1, so the two cylinders are
separated if A2 — (Wq - A)2 > (rg +71)%

For the remainder of this document I assume that Wy and W are not parallel.

8 Tests at Vectors Perpendicular to W, or W;

Considering the domain of f to be the unit sphere, the set of vectors perpendicular to Wy is a great circle
on the sphere. The gradient of f is undefined on this great circle. Define D(6) = (cos0)Uj + (sin ) V) and
F(0) = f(D(9)). If we can show that F(6) < 0 for some 6 € [0,27), then the corresponding direction is a
separating line for the cylinders. However, F' is a somewhat complicated function that does not lend itself
to a simple analysis. Since f(—D) = f(D), we may restrict our attention to only half of the great circle.
Rather than restricting f to a half circle, we can restrict it to a tangent line D(z) = 2U( 4+ Vj and define
F(z) = f(D(x)), so

F(l‘) = rovaz+1 +7“1|(P1U0)l‘—|— (P1V0)| + (h1/2)|(W1 Uo)x-l- (W1 Vo)‘ — |(A Uo)l‘—F (AVO)|
= 7’0\/1‘2 + 1 +T1|AOI+B0‘ + (h1/2)|a1:z:+b1| — |a2x+b2|.

This function is more readily analyzed by breaking it up into four cases by replacing the last two absolute
values with sign indicators,

G(z) =rovaz?+ 1+ r1|Aoz + Bo| 4+ 01(h1/2)(a1z + by) — oa(azx + bs)



with |o1| = |o2] = 1. The minimum of G is calculated for each choice of (o1, 02) by computing G’(z) and
determining where it is zero or undefined. Any critical point = must first be tested to see if is consistent with
the choice of signs. That is, a critical point must be tested to make sure o1(a12+b1) > 0 and oo (agz+b2) > 0.
If so, then G(z) is evaluated and compared to zero. The derivative is

on + BO

X
G (z) = 1rg———— + 1Ay -
() 0 1220 |A0$+B0|

$2+1 +(01h1/2)a1 702b2.
The derivative is undefined when |Agz + Bg|, but this case is actually generated when the original direction
is parallel to Wy x Wy, discussed earlier. To algebraically solve G'(z) = 0, a few squaring operations can
be applied. Note that G'(z) = 0 is of the form

Lov/Qo + L1V Q1 = ¢\/QoQ:

where L; are linear in x, ); are quadratic in x, and c is a constant. Squaring and rearranging terms yields

2LoL1v/QoQ1 = *QoQ1 — LiQo — L3 Q1.

Squaring again and rearranging terms yields
ALFLIQoQ1 — (*QoQ1 — LiQo — L1Q1)* = 0.

The left-hand side is a polynomial in x of degree 8. The roots can be compute by numerical methods, tested
for validity as shown earlier, and then G can be tested for negativity.

Yet one more alternative is to notice that attempting to locate a separating direction that is perpendicular
to Wy is equivalent to projecting the two cylinders onto the plane Wy - X = 0 and determining if the
projections are disjoint. The first cylinder projects to a disk. The second cylinder projects to a disk, a
rectangle, or a rectangle with hemielliptical caps depending on the relationship of W to Wy. Separation
can be determined by showing that (1) the projection of Cy is not inside the projection of the second
cylinder and (2) the distance from Cg to the projection of the second cylinder is larger than ro. If the
second projection is a disk, the distance is just the length of the projection of A. If the second projection
is a rectangle, then the problem amounts to computing the distance between a point and a rectangle in
the plane. This test is an inexpensive one. If the second projection is a rectangle with hemielliptical caps,
then the problem amounts to computing the minimum of the distances between a point and a rectangle and
two ellipses, then comparing it to rg. Calculating the distance between a point and an ellipse in the plane
requires finding roots of a polynomial of degree 4. This alternative trades off, in worst case, finding the roots
to a polynomial of degree 8 for finding the roots of two polynomials of degree 4.

9 Tests for Directions at which V(f) =0

The symmetry f(—D) = f(D) implies that we only need to analyze f on a hemisphere; the other hemisphere
values are determined automatically. Since f > 0 on the great circle of vectors that are perpendicular to
A, we can restrict our attention to the hemisphere whose pole is W = A/|A|. Rather than project onto
the hemisphere, we can project onto the tangent plane at the pole. The mapping is D = 2U + yV + W
where U, V, and W form a right-handed orthonormal set. Defining the rotation matrix R = [U|V|W] and
& = (z,y,1), the function f reduces to

F(x,y) = ro| PoRE| + 71| PLRE| + (ho/2)|Wo - RE| + (h1/2)|W1 - RE| — |A|



for (x,y) € R To determine if F(x,y) < 0 for some (z,y), it is enough to show that the minimum of F is
negative. The point at which the minimum is attained occurs when the gradient of F' is zero or undefined.
V(F) is undefined at points for which any of the first four absolute value terms is zero. In terms of points
D on the unit sphere, the first term is zero at Wy, the second term is zero at Wy, the third term is zero at
any vector perpendicular to Wy, and the fourth term is zero at any vector perpendicular to W. After all
such points have been tested only to find that F' > 0, the next phase of the separation test is to compute
solutions to V(F') = 0 and test if any of those force F' < 0.

If D is a separating direction, then f(D) < 0. Observe that f(tD) = |t|f(D), so f(tD) < 0 for any ¢t. This
is consistent with the geometry of the problem. Any nonzero multiple of a separating direction must itself
be a separating direction. This allows us to restrict our attention to the unit sphere, |D| = 1. Function f is
continuous on the unit sphere, a compact set, so f must attain its minimum at some point on the sphere.
This is a minimization problem in two dimensions, but the spherical geometry complicates the analysis
somewhat. A different restriction on the set of potential separating directions can be made that yields a
two-dimensional minimization in the plane rather than a two-dimensional minimization on a sphere.

First, some notation. The function f(D) can be written as
f(D) = 70| AgAgD| + 1| A1 ATD| + (ho/2)|D - Wo| + (h1/2)|D - Wy| — [D - A

where the matrices 4; = [U;|V;] are 3 x 2. Observe that ATA; = I, the 2 x 2 identity, and A;AT =
Is — W; W where I3 is the 3 x 3 identity matrix.

The symmetry f(—D) = f(D) implies that we only need to analyze f on a hemisphere; the other hemisphere
values are determined automatically. The complicating factor in directly analyzing f turns out to be the
presence of the absolute value terms |D - Wy|, |D - W[, and |D - A|. Instead I will look at functions where
the absolute values are removed. To illustrate, consider

go(D) = ’I"0|AOAED| + 7’1|A1A?D| -D- ¢

where ¢ = A — (ho/2)Wo — (h1/2)W;. If the analysis of go produces a direction D for which go(D) < 0
andif D-Wy >0, D-W; >0, and D-A >0, then f(D) < 0 and we have a separating direction. However,
the inequality constraints might not be satisfied, even when go(D) < 0, in which case D is rejected as a
candidate for separation. The companion function is

gl(D) = T0|A0AOTD| + T1|A1A?D‘ + D- ¢

If the analysis of ¢g; produces a direction D for which ¢;(D) < 0 and if D- Wy < 0, D- W; < 0, and
D-A <0, then f(D) < 0 and we have a separating direction. However, the inequality constraints might not
be satisfied, even when g; (D) < 0, in which case D is rejected as a candidate for separation. There are four
such pairs of functions to consider, exhausting all eight sign possibilities on the three absolute value terms.

Let us now analyze go(D). If ¢ = 0, then clearly go(D) > 0 for all directions, so no separation can occur.
For the remainder of the argument, assume ¢ # 0. Any direction D for which D - ¢ < 0 cannot be a
separating direction. This allows us to restrict our attention to a hemisphere of directions whose pole is
W = ¢/|¢|. Moreover, we can avoid working on the hemisphere by projecting those points radially outward
onto the tangent plane at the pole. That is, we need only analyze gq for directions D = 2U +yV + W where
{U,V, W} forms a right-handed orthonormal set of vectors. Defining the rotation matrix R = [U|V|W]
whose columns are the indicated vectors, the restriction of g to the plane is F(z,y) = go(D) = go(RE)
where € = (z,y, 1), so

Fla,y) = 1ol AgATRE| + 11| A AT RE| — |. 1)



In order to determine if F(x,y) < 0 for some (x,y), I will determine the minimum of F' and test if it is
negative. The minimum must occur at critical points, those points where VF' is zero or undefined. Any
critical points that do not satisfy the inequality constraints for gg are rejected since F' can be viewed as
the restriction of gg to a convex subset of the plane defined by the inequality constraints. We only need to
compute the minimum of F on this convex subset, so critical points outside that convex set are irrelevant.
Analysis of the corresponding F'(z,y) for the companion function g; uses the projection D = 2U+yV — W.

10 Analysis of F(z,y)

Using ORE/0x = U and ORE/Jy = 'V, the partial derivatives of F' are

oF ( Ao AT RE A AT RE ) oF < Ao AL RE A1 ATRE >
—=U-[mnp T r1 T and — =V - [rg T 7 T )
Oz Ao Ag R | A1 A} R¢| |AoAg RE| |A1 A} R¢|

oy
If we define A = [U|V], the equation VF(z,y) = (0,0) can be summarized by

v (  AoATRE A ATRE
A To T T1 T
|40 A RE]| |A1 A} RE|

Define the unit-length vectors n, = AT R¢/|AT R¢| for i = 0,1. Define the 2 x 2 matrices B; = ATA;. The
system of equations to be solved is

roBomg +r1Bin; =0, o> =1, and |n, > =1. (2)

Given any solution 1, and 1, to these equations, it must be that ; and AT R¢ point in the same direction.
That is,
Mo - AgRE =0, 171 - A{RE =0, ny- AgRE >0, and n, - A{RE >0, (3)

where (a,b)t = (b, —a). Each pair (z,y) that satisfies these conditions is a critical point for F(x,y) with
VF(xz,y) = (0,0). The critical point can then be tested to see if F(x,y) < 0, in which case the cylinders are
separated.

The outline of the algorithm for the analysis of g0(D(x,y)) = F(z,y) is

e Using the notation R; = [U;|V;|W;] for ¢ = 0,1, the various dot products of vectors required in the

algorithm need to be computed. The eighteen values are represented abstractly as Go = RTRy = [ggJ)]

and G, = RTR; = [¢}'].
e Solve roBomng + r1Bim, = 0, |ng|?> = 1, and |n,|? = 1 for g, and n,. Note that there are multiple
solution pairs, the obvious one being (—n,, —1;) whenever (ny,n;) is. This negated pair leads to the
same system of equations to extract (z,y) in step 4, so it can be ignored.

e For each solution pair (1,,1,), solve ng - AT R = 0 and n7 - ATRE = 0 for €. This set of equations
can also have multiple solutions.

e For each solution &, verify that W - R€ > 0, Wy - RE, 1o - AT RE > 0, and n, - ATRE > 0.

e For each pair (z,y) from a valid £ in the last step, test if F'(z,y) < 0. If so, then D = RE is a separating
direction for the cylinders and the algorithm terminates.



The algorithm for the analysis of g;(xU 4 yV — W) is identical in the first three steps. The only difference
in steps 4 and 5 is that € = (z,y, 1) for go and & = (z,y, —1) for ¢;.

11 Solving for n;

Note that
U-U, U.V,

V.U, V.V,

” det(B;) = (U -U)(V-Vy) = (U-V)(V-U;) = (Ux V) (U; x V;) = W-W,.

If det(By) = 0 and det(B;) = 0, then W must be perpendicular to both Wy and W. Since W = ¢/|¢p|, ¢ is
perpendicular to both Wy and Wy. Observe that ¢ = (Cy — (h1/2)W1) — (Co + (ho/2)Wy), a difference of
two cylinder end points, one from each cylinder. The line segment connecting the two end points is therefore
perpendicular to each cylinder. Draw yourself a picture to see that intersection/separation is determined
solely by testing the direction D = W. Note that this direction does satisfy the inequality constraints since
W -Wy=0,W-W; =0, and W-A =W-¢ =|¢| >0. The two cylinders are separated if and only if
P > (ro +11)?.

If det(By) # 0 and det(B;) = 0, then the columns of B; are linearly dependent. Moreover, one of them must
be nonzero. If not, then 0 = (U - U;)? + (V- U;)? =1 — (W - U;)? which implies |[W - U;| = 1 and Uy is
either W or —W. Similarly V7 is either W or —W. This cannot happen since U; and V; are orthogonal.
Let 9 be a nonzero column of By. The vector ¢ = 1~ satisfies the condition B¢ = 0; therefore,

0= ¢ (roBomg + r1B1my) = ro(BJ <) - mg.

If Bf¢ = (a,b), then g = +(b, —a)/va? + b2. The vector n; is determined by |n;| = 1 and the linear
equation

ri(B{Y) -my = *TO(BOT’P) “Mo-
The 1, are therefore points of intersection, if any, between a circle and a line. The normalization of 1, can
be avoided by defining Py = |Bi¢|n, and Py = |BE¢{|n,. In this case Py = (BF¢)* and ri(Bfv) - Py =
—7ro(Bg) - Po. The extraction of (z,y) discussed later in fact does not require the normalizations. The
intersection of line and circle does require solving a quadratic equation, so a square root has to be calculated

(or the quadratic must be solved iteratively to avoid the cost of the square root). A similar construction
applies if det(By) = 0 and det(B;) # 0.

If det(Bp) # 0 and det(B;) # 0, then By is invertible and

Ny = —(r1/r0) By Bimy

with o] = 1 and |n;| = 1. The extraction of (x,y) discussed later does not require unit length quantities
for ny and 1, so the three equations can be rewritten to avoid some divisions and normalizations. Rewrite
the displayed equation as

rodet(Bo)n, = —r1Adj(Bo)B1m;,-

Define Py = rodet(Bg)ng, P1 = m1m;, and C = Adj(Bo)B;. The equations are now Py = —CPy, |[Po|? =
r3 det(Byp)?, and |P1|? = 3.
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The quadratic equations for Py are 72 det(By)? = PTCTCP; and |P1|> = r?. Factor CTC = QEQT
where E = Diag(ep, e1) are eigenvalues and the columns of @ are eigenvectors Let ¢ = QTP1 The
equations become [9|?> = 72 and r2det(By)? = ¥ Ev. If ¢ = (a,b), then a®> + b = r? and epa® +
e1b? = rd det(Bo) These are two linear equations in the two unknowns a? and b?. The formal solution is:
a? = (e1r? —r3 det(B)?)/(e1 —eg) and b = (r? — egrd det(By)?)/(e1 — €g). Assuming both right-hand sides
are nonnegative, you have four solutions (a,b), (—a,b), (a,—b), and (—a,—b), as expected (intersection of
ellipse and circle). Only (a,b) and (—a,b) need to be considered, the others generate no new information in

the extraction of (z,y). Given a solution for 1, the corresponding nonnormalized vectors for extraction are
P1 = Q’l,b and PO = —CPl.

12 Solving for (x,y)

The first two equations in (3) can be written as two systems of equations in the unknowns = and y as

C =d
Yy
where ng = (ao, bo), M, = (a1,b1), and
o— bogby — o9y bogly — aogyy D aogéﬁ — boghy
biges — arg)  bigly — argly) a1g8) = bigly

If C is invertible, then a unique solution is obtained for (z,y).

If C is not invertible, the problem is slightly more complicated. There are no solutions if Adj(C)d # 0.
Otherwise, the system only has one independent equation. Since 1, # 0 and since Ad R has full rank (equal
to 2), the 3 x 1 vector RT Agmg- cannot be the zero vector. In fact, ng- is unit length which implies Agn=*
is unit length. Finally, since R is a rotation matrix, RTAOn(J; is a unit length vector. The same argument
shows that RTA;mi is a unit length vector. Both of these conditions and the fact that the system has
infinitely many solutions implies that 2, + ¢3; # 0 and 3, + ¢3; # 0.

If co1 # 0, then y = (dg — coox)/co1- Replacing this in AT R yields

(0) (0) _ (0) (0) (0) () _ (0) (0)
900 911" — 901 910)% + (911 920 — 910 9
( 00 J11 01 10() ( 110) 20 10 21) = (0401‘+50)770

aogn - 5091

ATR¢ =

The numerator of g is det(By). If ¢p; = 0 instead, then cog # 0 and a similar expression is obtained for
AT RE in terms of y, namely afy + () where the numerator of af, is also det(By). Similarly, if c1; # 0, then
y = (d1 — c102)/c11 and

1 1) 1 1) @
(()() ()()) +(()(1) ()())

900 911 — Y01 Y10 911920 —Y910921) _.
) (1) —- (041$+ﬁ1)771
a1911 1910

ATRE =

The numerator of «; is det(Bj). If ¢;; = 0 instead, then ¢19 # 0 and a similar expression is obtained for
AT R¢ in terms of y, namely o}y + 3] where the numerator of ] is also det(By).
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In the case ¢p1 # 0 and ¢11 # 0, then F(z,y) reduces to
F(x,y) = rolaoz + fo| + rilarz + fi] — |4.

If ap # 0 and a; # 0, then the minimum of F' is attained at either x = —fy/ap or © = —f1/a;. Notice
that the first o forces A} R¢ = 0, in which case the corresponding direction must have been D = W,
The second x forces AT R¢€ = 0, in which case the corresponding direction must have been D = W;. Both
of these these directions were tested earlier, so this case can be ignored. If g # 0 and «; = 0, then the
minimum of F is attained at x = —fy/ap. The corresponding direction must have been D = W), again
handled earlier. The same argument applies to ag = 0 and a7 # 0. The final case is «g = a3 = 0, in which
case det(By) = det(B;) = 0, yet another case that was handled earlier. Therefore, these cases can be ignored
in an implementation. A similar argument applies when cog # 0 and c¢19 # 0 and F' reduces to

F(z,y) = rolagy + Byl + rilaty + 81| — |-

All possibilities can be ignored in an implementation since they are handled by other separation tests. Finally,
if there is a mixture of z and y terms,

F(z,y) = rolaoz + Bol + 1]ty + B1] — ||

or
F(x,y) = rology + Bol + rilonz + 61| — |@],

then the minimization is applied in each dimension separately, but just as before, other separation tests
cover these cases. The conclusion is that an implementation does not have to do anything when C' is not
invertible.

13 Fast Method to Test F(z,y) <0

The two square roots, |AT R€|, in equation (1) can be avoided. The test F(z,y) < 0 is equivalent to
rolAg RE| + r1|AT RE| < |@].
The inequality can be squared and rearranged to yield the test
2ror1|Ag RE|| AT RE| < |of® — 15| Ag RE|* — r}| AT RE|* =: p.

If p <0, then F(x,y) > 0 is forced and no more work needs to be done. If p > 0, then squaring one more
time yields the test
4rgri| Ag RE|| AT RE* < p*.
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