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C h a p t e r 1

Introduction

1.1 What is 3D Math?
This book is about 3D math, the study of the mathematics behind the geometry of a 3D world. 3D

math is related to computational geometry, which deals with solving geometric problems algorith-

mically. 3D math and computational geometry have applications in a wide variety of fields that

use computers to model or reason about the world in 3D, such as graphics, games, simulation,

robotics, virtual reality, and cinematography.

This book covers theory and practice in C++. The “theory” part is an explanation of the rela-

tionship between math and geometry in 3D. It also serves as a handy reference for techniques and

equations. The “practice” part illustrates how these concepts can be applied in code. The program-

ming language used is C++, but in principle, the theoretical techniques from this book can be

applied in any programming language.

This book is not just about computer graphics, simulation, or even computational geometry.

However, if you plan to study those subjects, you will definitely need the information in this book.

1.2 Why You Should Read This Book
If you want to learn about 3D math in order to program games or graphics, then this book is for

you. There are many books out there that promise to teach you how to make a game or put cool

pictures up on the screen, so why should you read this particular book? This book offers several

unique advantages over other books about games or graphics programming:

� A unique topic. This book fills a gap that has been left by other books on graphics, linear

algebra, simulation, and programming. It is an introductory book, meaning we have focused

our efforts on providing thorough coverage on fundamental 3D concepts — topics that are

normally glossed over in a few quick pages or relegated to an appendix in other publications

(because, after all, you already know all this stuff). Our book is definitely the book you should

read first, before buying that “Write a 3D Video Game in 21 Days” book. This book is not only

an introductory book, it is also a reference book — a “toolbox” of equations and techniques

that you can browse through on a first reading and then revisit when the need for a specific

tool arises.
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� A unique approach. We take a three-pronged approach to the subject matter: math, geome-

try, and code. The math part is the equations and numbers. This is where most books stop. Of

course, the math is important, but to make it powerful, you have to have good intuition about

how the math connects with the geometry. We will show you not just one but multiple ways to

relate the numbers with the geometry on a variety of subjects, such as orientation in 3D,

matrix multiplication, and quaternions. After the intuition comes the implementation; the

code part is the practical part. We show real usable code that makes programming 3D math as

easy as possible.

� Unique authors. Our combined experience brings together academic authority with

in-the-trenches practical advice. Fletcher Dunn has six years of professional game program-

ming experience and several titles under his belt on a variety of gaming platforms. He is cur-

rently employed as the principal programmer at Terminal Reality and is the lead programmer

on BloodRayne. Dr. Ian Parberry has 18 years of experience in research and teaching in acade-

mia. This is his sixth book, his third on game programming. He is currently a tenured full pro-

fessor in the Department of Computer Sciences at the University of North Texas. He is

nationally known as one of the pioneers of game programming in higher education and has

been teaching game programming to undergraduates at the University of North Texas since

1993.

� Unique pictures. You cannot learn about a subject like 3D by just reading text or looking at

equations. You need pictures, and this book has plenty of them. Flipping through, you will

notice that in many sections there is one on almost every page. In other words, we don’t just

tell you something about 3D math, we show you. You’ll also notice that pictures often appear

beside equations or code. Again, this is a result of our unique approach that combines mathe-

matical theory, geometric intuition, and practical implementation.

� Unique code. Unlike the code in some other books, the classes in this book are not designed

to provide every possible operation you could ever want. They are designed to perform spe-

cific functions very well and to be easy to understand and difficult to misuse. Because of their

simple and focused semantics, you can write a line of code and have it work the first time,

without twiddling minus signs, swapping sines and cosines, transposing matrices, or other-

wise employing “random engineering” until it looks right. Many other books exhibit a com-

mon class design flaw of providing every possible operation when only a few are actually

useful.

� A unique writing style. Our style is informal and entertaining, but formal and precise when

clarity is important. Our goal is not to amuse you with unrelated anecdotes, but to engage you

with interesting examples.

� A unique web page. This book does not come with a CD. CDs are expensive and cannot be

updated once they are released. Instead, we have created a companion web page,

gamemath.com. There you will be able to experience interactive demos of some of the con-

cepts that are the hardest to grasp from text and diagrams. You can also download the code

(including any bug fixes!) and other useful utilities, find the answers to the exercises, and

check out links to other sites concerning 3D math, graphics, and programming.
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1.3 What You Should Know Before Reading
This Book
The theory part of this book assumes a prior knowledge of basic algebra and geometry, such as:

� Manipulating algebraic expressions

� Algebraic laws, such as the associative and distributive laws

� Functions and variables

� Basic 2D Euclidian geometry

In addition, some prior exposure to trigonometry is useful, but not required. A brief review of

some key mathematical concepts is included in Appendix A.

For the practice part, you need to understand some basics of programming in C++:

� Program flow control constructs

� Functions and parameters

� Object-oriented programming and class design

No specific compiler or target platform is assumed. No “advanced” C++ language features are

used. The few language features that you may be unfamiliar with, such as operator overloading

and reference arguments, will be explained as they are needed.

1.4 Overview
� Chapter 1 is the introduction, which you have almost finished reading. Hopefully, it has

explained for whom this book is written and why we think you should read the rest of it.

� Chapter 2 explains the Cartesian coordinate system in 2D and 3D and discusses how the Car-

tesian coordinate system is used to locate points in space.

� Chapter 3 discusses examples of coordinate spaces and how they are nested in a hierarchy.

� Chapter 4 introduces vectors and explains the geometric and mathematical interpretations of

vectors.

� Chapter 5 discusses mathematical operations on vectors and explains the geometric interpre-

tation of each operation.

� Chapter 6 provides a usable C++ 3D vector class.

� Chapter 7 introduces matrices from a mathematical and geometric perspective and shows

how matrices can be used to perform linear transformations.

� Chapter 8 discusses different types of linear transformations and their corresponding matri-

ces in detail.

� Chapter 9 covers a few more interesting and useful properties of matrices.

� Chapter 10 discusses different techniques for representing orientation and angular displace-

ment in 3D.

Chapter 1: Introduction 3



� Chapter 11 provides C++ classes for performing the math from Chapters 7 to 10.

� Chapter 12 introduces a number of geometric primitives and discusses how to represent and

manipulate them mathematically.

� Chapter 13 presents an assortment of useful tests that can be performed on geometric

primitives.

� Chapter 14 discusses how to store and manipulate triangle meshes and presents a C++ class

designed to hold triangle meshes.

� Chapter 15 is a survey of computer graphics with special emphasis on key mathematical

points.

� Chapter 16 discusses a number of techniques for visibility determination, an important issue

in computer graphics.

� Chapter 17 reminds you to visit our web page and gives some suggestions for further

reading.
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C h a p t e r 2

The CartesianThe Cartesian

Coordinate SystemCoordinate System

3D math is all about measuring locations, distances, and angles precisely and mathematically in

3D space. The most frequently used framework to perform such measurements is called the Carte-

sian coordinate system. Cartesian mathematics was invented by, and named after, a brilliant

French philosopher, physicist, physiologist, and mathematician named René Descartes who lived

5

This chapter describes the basic concepts of 3D math. It is divided into three main

sections.

� Section 2.1 is about 1D mathematics, the mathematics of counting and measuring.

The main concepts introduced are:

� The math concepts of natural numbers, integers, rational numbers, and real

numbers.

� The relationship between the naturals, integers, rationals and reals on one hand

and the programming language concepts of short, int, float, and double on the

other hand.

� The First Law of Computer Graphics.

� Section 2.2 introduces 2D Cartesian mathematics, the mathematics of flat surfaces.

The main concepts introduced are:

� The 2D Cartesian plane

� The origin

� The x- and y-axes

� Orienting the axes in 2D

� Locating a point in 2D space using Cartesian (x,y) coordinates

� Section 2.3 extends 2D Cartesian math into 3D. The main concepts introduced are:

� The z-axis

� The xy, xz, and yz planes

� Locating a point in 3D space using Cartesian (x,y,z) coordinates

� Left- and right-handed coordinate systems



from 1596 to 1650. Descartes is not just famous for inventing Cartesian mathematics, which at the

time was a stunning unification of algebra and geometry. He is also well known for taking a pretty

good stab at answering the question “How do I know something is true?” This question has kept

generations of philosophers happily employed and does not necessarily involve dead sheep

(which will disturbingly be a central feature of the next section), unless you really want it to. Des-

cartes rejected the answers proposed by the ancient Greeks, which are ethos (roughly, “because I

told you so”), pathos (“because it would be nice”), and logos (“because it makes sense”), and set

about figuring it out for himself with a pencil and paper.

2.1 1D Mathematics
You’re reading this book because you want to know about 3D mathematics, so you’re probably

wondering why we’re bothering to talk about 1D math. Well, there are a couple of issues about

number systems and counting that we would like to clear up before we get to 3D.

Natural numbers, often called counting numbers, were invented millennia ago, probably to keep

track of dead sheep. The concept of “one sheep” came easily (see Figure 2.1), then “two sheep”

and “three sheep,” but people very quickly became convinced that this was too much work. They

gave up counting at some point and invariably began using “many sheep.” Different cultures gave

up at different points, depending on their threshold of boredom. Eventually, civilization expanded

to the point where we could afford to have people sitting around thinking about numbers instead of

doing more survival-oriented tasks, such as killing sheep and eating them. These savvy thinkers

immortalized the concept of zero (no sheep), and while they didn’t get around to naming all of the

natural numbers, they figured out various systems whereby we could name them if we really

wanted to, using digits such as “1”, “2”, etc. (or if you were Roman, “M”, “X”, “I,” etc.). Mathe-

matics was born.
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Figure 2.2: A number line for the natural
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The habit of lining sheep up in a row so that they can easily be counted leads to the concept of

a number line, that is, a line with the numbers marked off at regular intervals, as in Figure 2.2. This

line can, in principle, go on for as long as we wish, but to avoid boredom we have stopped at five

sheep and put on an arrowhead to let you know that the line can continue. Clear thinkers can visu-

alize it going off to infinity, but historical purveyors of dead sheep probably gave this concept little

thought, outside of their dreams and fevered imaginings.

At some point in history it was probably realized that you can sometimes, if you are a particu-

larly fast talker, sell a sheep that you don’t actually own, thus, simultaneously inventing the

important concepts of debt and negative numbers. Having sold this putative sheep, you would in

fact own “negative one” sheep. This would lead to the discovery of integers, which consist of the

natural numbers and their negative counterparts. The corresponding number line for integers is

shown in Figure 2.3.

The concept of poverty probably predated that of debt, leading to a growing number of people who

could afford to purchase only half a dead sheep, or perhaps only a quarter. This lead to a burgeon-

ing use of fractional numbers, consisting of one integer divided by another, such as 2/3 or 111/27.

Mathematicians called these rational numbers, and they fit in the number line in the obvious

places between the integers. At some point, people became lazy and invented decimal notation,

like writing “3.1415” instead of the longer and more tedious 31415/10000.

After a while, it was noticed that some numbers that appear to turn up in everyday life are not

expressible as rational numbers. The classic example is the ratio of the circumference of a circle to

its diameter, usually denoted as � (pronounced “pi”). These are the so-called real numbers, which

include rational numbers and numbers such as � that would, if expressed in decimal form, require

an infinite number of decimal places. The mathematics of real numbers is regarded by many to be

the most important area of mathematics, and since it is the basis for most forms of engineering, it

can be credited with creating much of modern civilization. The cool thing about real numbers is

that while rational numbers are countable (that is, placed into one-to-one correspondence with the

natural numbers), real numbers are uncountable. The study of natural numbers and integers is

called discrete mathematics, and the study of real numbers is called continuous mathematics.

The truth is, however, that real numbers are nothing more than a polite fiction. They are a rela-

tively harmless delusion, as any reputable physicist will tell you. The universe seems to be not

only discrete, but also finite. If there are a finite amount of discrete things in the universe, as cur-

rently appears to be the case, then it follows that we can only count to a certain fixed number.

Thereafter, we run out of things to count — not only do we run out of dead sheep, but toasters,

mechanics, and telephone sanitizers also. It follows that we can describe the universe using only
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discrete mathematics, and requiring the use of only a finite subset of the natural numbers at that.

(Large, yes, but finite.) Somewhere there may be an alien civilization with a level of technology

exceeding ours that has never heard of continuous mathematics, the Fundamental Theorem of

Calculus, or even the concept of infinity; even if we persist, they will firmly but politely insist on

having no truck with � , being perfectly happy to build toasters, bridges, skyscrapers, mass transit,

and starships using 3.14159 (or perhaps 3.1415926535897932384626433832795, if they are fas-

tidious) instead.

So why do we use continuous mathematics? It is a useful tool that allows us to do engineering,

but the real world is, despite the cognitive dissonance involved in using the term “real,” discrete.

How does that affect you, the designer of a 3D computer-generated virtual reality? The computer

is by its very nature discrete and finite, and you are more likely to run into the consequences of the

discreteness and finiteness during its creation that you are likely to in the real world. C++ gives

you a variety of different number forms that you can use for counting or measuring in your virtual

world. These are the short, the int, the float and the double, which can be described as follows

(assuming the current PC technology). The short is a 16-bit integer that can store 65,536 different

values, which means that “many sheep” for a 16-bit computer is 65,537. This sounds like a lot of

sheep, but it isn’t adequate for measuring distances inside any reasonable kind of virtual reality

that take people more than a few minutes to explore. The int is a 32-bit integer that can store up to

4,294,967,296 different values, which is probably enough for your purposes. The float is a 32-bit

value that can store a subset of the rationals — 4,294,967,296 of them, the details not being impor-

tant here. The double is similar, though using 64 bits instead of 32. We will return to this

discussion in Section 6.3.1.

The bottom line in choosing to count and measure in your virtual world using ints, floats, or

doubles is not, as some misguided people would have it, a matter of choosing between discrete

shorts and ints versus continuous floats and doubles. It is more a matter of precision. They are all

discrete in the end. Older books on computer graphics will advise you to use integers because

floating-point hardware is slower than integer hardware, but this is no longer the case. So which

should you choose? At this point, it is probably best to introduce you to the First Law of Computer

Graphics and leave you to think about it:

The First Law of Computer Graphics: If it looks right, it is right.

We will be doing a large amount of trigonometry in this book. Trigonometry involves real

numbers, such as � , and real-valued functions, such as sine and cosine (which we’ll get to later).

Real numbers are a convenient fiction, so we will continue to use them. How do you know this is

true? You know because, Descartes notwithstanding, we told you so, because it would be nice, and

because it makes sense.

8 Chapter 2: The Cartesian Coordinate System
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2.2 2D Cartesian Mathematics
You have probably used 2D Cartesian coordinate systems even if you have never heard the term

Cartesian before. Cartesian is mostly just a fancy word for rectangular. If you have ever looked at

the floor plans of a house, used a street map, seen a football game, or played chess, you have been

exposed to 2D Cartesian coordinate space.

2.2.1 An Example: The Hypothetical City of Cartesia
Let’s imagine a fictional city named Cartesia. When the Cartesia city planners were laying out the

streets, they were very particular, as illustrated in the map of Cartesia in Figure 2.4.
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As you can see from the map, Center Street runs east-west through the middle of town. All other

east-west streets (parallel to Center Street) are named based on whether they are north or south of

Center Street and how far away they are from Center Street. Examples of streets which run

east-west are North 3rd Street and South 15th Street.

The other streets in Cartesia run north-south. Division Street runs north-south through the

middle of town. All other north-south streets (parallel to Division Street) are named based on

whether they are east or west of Division street, and how far away they are from Division Street.

So we have streets such as East 5th Street and West 22nd Street.

The naming convention used by the city planners of Cartesia may not be creative, but it cer-

tainly is practical. Even without looking at the map, it is easy to find the doughnut shop at North

4th and West 2nd. It’s also easy to determine how far you will have to drive when traveling from

one place to another. For example, to go from that doughtnut shop at North 4th and West 2nd to the

police station at South 3rd and Division, you would travel seven blocks south and two blocks east.

2.2.2 Arbitrary 2D Coordinate Spaces
Before Cartesia was built, there was nothing but a large flat area of land. The city planners arbi-

trarily decided where the center of town would be, which direction to make the roads run, how far

apart to space the roads, etc. Much like the Cartesia city planners laid down the city streets, we can

establish a 2D Cartesian coordinate system anywhere we want — on a piece of paper, a chess-

board, a chalkboard, a slab of concrete, or a football field.

Figure 2.5 shows a diagram of a 2D Cartesian coordinate system.
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As illustrated in Figure 2.5, a 2D Cartesian coordinate space is defined by two pieces of

information:

� Every 2D Cartesian coordinate space has a special location, called the origin, which is the

“center” of the coordinate system. The origin is analogous to the center of the city in Cartesia.

� Every 2D Cartesian coordinate space has two straight lines that pass through the origin. Each

line is known as an axis and extends infinitely in two opposite directions. The two axes are

perpendicular to each other. (Actually, they don’t have to be, but most of the coordinate sys-

tems we will look at will have perpendicular axes.) The two axes are analogous to Center and

Division streets in Cartesia. The grid lines in the diagram are analogous to the other streets in

Cartesia.

At this point, it is important to highlight a few significant differences between Cartesia and an

abstract mathematical 2D space:

� The city of Cartesia has official city limits. Land outside of the city limits is not considered

part of Cartesia. A 2D coordinate space, however, extends infinitely. Even though we usually

only concern ourselves with a small area within the plane defined by the coordinate space, this

plane, in theory, is boundless. In addition, the roads in Cartesia only go a certain distance (per-

haps to the city limits), and then they stop. Our axes and grid lines, on the other hand, each

extend potentially infinitely in two directions.

� In Cartesia, the roads have thickness. Lines in an abstract coordinate space have location and

(possibly infinite) length, but no real thickness.

� In Cartesia, you can only drive on the roads. In an abstract coordinate space, every point in the

plane of the coordinate space is part of the coordinate space, not just the area on the “roads.”

The grid lines are only drawn for reference.

In Figure 2.5, the horizontal axis is called the x-axis, with positive x pointing to the right. The ver-

tical axis is the y-axis, with positive y pointing up. This is the customary orientation for the axes in

a diagram. Note that “horizontal” and “vertical” are terms that are inappropriate for many 2D

spaces that arise in practice. For example, imagine the coordinate space on top of a desk — both

axes are “horizontal,” and neither axis is really “vertical.”

The city planners of Cartesia could have made Center Street run north-south instead of

east-west. Or they could have placed it at a completely arbitrary angle. (For example, Long Island,

New York is reminiscent of Cartesia, where for convenience the streets numbered “1st Street,”

“2nd Street,” etc., run across the island and the avenues numbered “1st Avenue,” “2nd Avenue,”

etc., run along its long axis. The geographic orientation of the long axis of the island is an arbitrary

freak of nature.) In the same way, we are free to place our axes in any way that is convenient to us.

We must also decide for each axis which direction we consider to be positive. For example, when

working with images on a computer screen, it is customary to use the coordinate system shown in

Figure 2.6. Notice that the origin is in the upper left-hand corner, +x points to the right, and +y

points down rather than up.
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Unfortunately, when Cartesia was being laid out, the only mapmakers were in the neighboring

town of Dyslexia. The minor-level functionary who sent the contract out to bid neglected to take

into account that the dyslexic mapmaker was equally likely to draw his maps with north pointing

up, down, left, or right; although he always drew the east-west line at right angles to the

north-south line, he often got east and west backward. When his boss realized that the job had

gone to the lowest bidder, who happened to live in Dyslexia, many hours were spent in committee

meetings trying to figure out what to do. The paperwork had been done, the purchase order had

been issued, and bureaucracies being what they are, it would be too expensive and time-

consuming to cancel the order. Still, nobody had any idea what the mapmaker would deliver. A

committee was hastily formed.

The committee quickly decided that there were only eight possible orientations that the mapmaker

could deliver, shown in Figure 2.7. In the best of all possible worlds, he would deliver a map ori-

ented as shown in the top-left rectangle, with north pointing to the top of the page and east to the

right, which is what people usually expect. A subcommittee decided to name this the normal

orientation.

After the meeting had lasted a few hours and tempers were beginning to fray, it was decided

that the other three variants shown in the top row of Figure 2.7 were probably acceptable too,

because they could be transformed to the normal orientation by placing a pin in the center of the

page and rotating the map around the pin. (You can do this too by placing this book flat on a table
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and turning it.) Many hours were wasted by tired functionaries putting pins into various places in

the maps shown in the second row of Figure 2.7, but no matter how fast they twirled them, they

couldn’t seem to transform them to the normal orientation. It wasn’t until everybody important

had given up and gone home that a tired intern, assigned to clean up the used coffee cups, noticed

that the maps in the second row could be transformed into the normal orientation by holding them

up against a light and viewing them from the back. (You can do this too by holding Figure 2.7 up to

the light and viewing it from the back. You’ll have to turn it too of course.) The writing was back-

ward too, but it was decided that if Leonardo da Vinci (1452-1519) could handle backward writing

in the 15th century, then the citizens of Cartesia, though by no means his intellectual equivalent

(probably due to daytime TV), could probably handle it in the 21st century also.

In summary, no matter what orientation we choose for the x and y axes, we can always rotate

the coordinate space around so that +x points to our right, and +y points up. For our example of

screen-space coordinates, imagine turning upside down and looking at the screen from behind the

monitor. In any case, these rotations do not distort the original shape of the coordinate system

(even though we may be looking at it upside down or reversed). So in one particular sense, all 2D

coordinate systems are “equal.” Later, we will discover the surprising fact that this is not the case

in 3D.

2.2.3 Specifying Locations in 2D Using Cartesian
Coordinates
A coordinate space is a framework for specifying location precisely and mathematically. To define

the location of a point in a Cartesian coordinate space, we use Cartesian coordinates. In 2D, two

numbers are used to specify a location. (The fact that we use two numbers to describe the location

of a point is the reason it’s called two-dimensional space. In 3D, we will use three numbers.) These

two numbers are named x and y. Analogous to the street names in Cartesia, each number specifies

which side of the origin the point is on, and how far away the point is from the origin in a given

direction. More precisely, each number is the signed distance (that is, positive in one direction and

negative in the other) to one of the axes, measured along a line parallel to the other axis. This may

sound complicated, but it’s really very simple. Figure 2.8 shows how points are located in 2D Car-

tesian space.
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As shown in Figure 2.8, the x coordinate designates the signed distance from the point to the

y-axis, measured along a line parallel to the x-axis. Likewise, the y coordinate designates the

signed distance from the point to the x-axis, measured along a line parallel to the y-axis. By

“signed distance,” we mean that distance in one direction is considered positive, and distance in

the opposite direction is considered negative.

The standard notation that is used when writing a pair of coordinates is to surround the numbers in

parentheses, with the x value listed first, like (x, y). Figure 2.9 shows several points and their Car-

tesian coordinates. Notice that the points to the left of the y-axis have negative x values, while

those to the right of the y-axis have positive x values. Likewise, points with positive y are located

above the x-axis, and points with negative y are below the x-axis. Also notice that any point can be

specified, not just the points at grid line intersections. You should study this figure until you are

sure that you understand the pattern.

2.3 From 2D to 3D
Now that we understand how Cartesian space works in 2D, let’s leave the flat 2D world and begin

to think about 3D space. It might seem at first that 3D space is only 50 percent more complicated

than 2D. After all, it’s just one more dimension, and we already had two. Unfortunately, this is not

the case. For a variety of reasons, 3D space is more than incrementally more difficult for humans

to visualize and describe than 2D space. (One possible reason for this difficulty could be that our

physical world is 3D, while illustrations in books and on computer screens are 2D.) It is frequently

the case that a problem that is “easy” to solve in 2D is much more difficult or even undefined in

3D. Still, many concepts in 2D do extend directly into 3D, and we will frequently use 2D to estab-

lish an understanding of a problem and develop a solution, and then extend that solution into 3D.
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2.3.1 Extra Dimension, Extra Axis
In 3D, we require three axes to establish a coordinate system. The first two axes are called the

x-axis and y-axis, just as in 2D. (However, it is not accurate to say that these are the same as the 2D

axes. We will discuss this more later.) We call the third axis (predictably) the z-axis. Usually, we

set things up so that all axes are mutually perpendicular. That is, each one is perpendicular to the

others. Figure 2.10 shows an example of a 3D coordinate space:

As discussed in Section 2.2.2, it is customary in 2D for +x to point to the right and +y to point up.

(Sometimes +y may point down, but in either case, the x-axis is horizontal and the y-axis is verti-

cal.) These are fairly standard conventions. However, in 3D, the conventions for arrangement of

the axes in diagrams and the assignment of the axes onto physical dimensions (left, right, up,

down, forward, back) are not very standardized. Different authors and fields of study have differ-

ent conventions. In Section 2.3.4 we will discuss the conventions used in this book.

As mentioned earlier, it is not entirely appropriate to say that the x-axis and y-axis in 3D are

the “same” as the x-axis and y-axis in 2D. In 3D, any pair of axes defines a plane that contains the

two axes and is perpendicular to the third axis. (For example, the plane containing the x- and

y-axes is the xy plane, which is perpendicular to the z-axis. Likewise, the xz plane is perpendicular

to the y-axis, and the yz plane is perpendicular to the x-axis.) We can consider any of these planes a

2D Cartesian coordinate space in its own right. For example, if we assign +x, +y, and +z to point

right, up, and forward, respectively, then the 2D coordinate space of the “ground” is the xz plane.

2.3.2 Specifying Locations in 3D
In 3D, points are specified using three numbers, x, y, and z, which give the signed distance to the

yz, xz, and xy planes, respectively. This distance is measured along a line parallel to the axis. For

example, the x-value is the signed distance to the yz plane, measured along a line parallel to the
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x-axis. Don’t let this precise definition of how points in 3D are located confuse you. It is a straight-

forward extension of the process for 2D, as shown in Figure 2.11:

2.3.3 Left-handed vs. Right-handed Coordinate Spaces
As we discussed in Section 2.2.2, all 2D coordinate systems are “equal” in the sense that for any

two 2D coordinate spaces A and B, we can rotate coordinate space A so that +x and +y point in the

same direction as they do in coordinate space B. (We are assuming perpendicular axes.) Let’s

examine this idea in more detail.

Figure 2.5 shows the “standard” 2D coordinate space. Notice that the difference between this

coordinate space and “screen” coordinate space shown in Figure 2.6 is that the y-axis points in

opposite directions. However, imagine rotating Figure 2.6 clockwise 180� so that +y points up and

+x points to the left. Now rotate it by “turning the page” and viewing the diagram from behind.

Notice that now the axes are oriented in the “standard” directions like in Figure 2.5. No matter

how many times we flip an axis, we can always find a way to rotate things back into the standard

orientation.

Let’s see how this idea extends into 3D. Examine Figure 2.10 once more. Notice that +z points

into the page. Does it have to be this way? What if we made +z point out of the page? This is cer-

tainly allowed, so let’s flip the z-axis.

Now can we rotate the coordinate system around so that things line up with the original coor-

dinate system? As it turns out, we cannot. We can rotate things to line up two axes at a time, but the

third axis always points in the wrong direction! (If you have trouble visualizing this, don’t worry.

In a moment we will illustrate this principle in more concrete terms.)

All 3D coordinate spaces are not equal; some pairs of coordinate systems cannot be rotated to

line up with each other. There are exactly two distinct types of 3D coordinate spaces: left-handed

coordinate spaces and right-handed coordinate spaces. If two coordinate spaces have the same
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handedness, then they can be rotated such that the axes are aligned. If they are of opposite handed-

ness, then this is not possible.

What exactly do “left-handed” and “right-handed” mean? First, let’s look at a simple and intu-

itive way to identify the handedness of a particular coordinate system. The easiest and most

illustrative way to identify the handedness of a particular coordinate system is to use, well, your

hands! With your left hand, make an “L” with your thumb and index finger. (You may have to put

the book down. . . .) Your thumb should be pointing to your right, and your index finger should be

pointing up. Now extend your third finger so it points directly forward. (This may require some

dexterity — don’t do this in public or you may offend someone!) You have just formed a

left-handed coordinate system. Your thumb, index finger, and third finger point in the +x, +y, and

+z directions, respectively. This is shown in Figure 2.12.

Now perform the same experiment with your right hand. Notice that your index finger still points

up, and your third finger points forward. However, with your right hand, your thumb will point to

the left. This is a right-handed coordinate system. Again, your thumb, index finger, and third fin-

ger point in the +x, +y, and +z directions, respectively. A right-handed coordinate system is shown

in Figure 2.13.
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Try as you might, you cannot rotate your hands into a position so that all three fingers simulta-

neously point the same direction on both hands. (Bending your fingers is not allowed. . . .)

When looking toward

the origin from…

Clockwise rotation in a left-handed

coordinate space rotates…

Clockwise rotation in a right-handed

coordinate space rotates…

+x +y toward +z

+z toward –y

–y toward –z

–z toward +y

+y toward –z

–z toward –y

–y toward +z

+z toward +y

+y +x toward –z

–z toward –x

–x toward +z

+z toward +x

+x toward +z

+z toward –x

–x toward –z

–z toward +x

+z +x toward +y

+y toward –x

–x toward –y

–y toward +x

+x toward –y

–y toward –x

–x toward +y

+y toward +x

Now that we have discussed the intuitive definition of left- and right-handed coordinate systems,

let’s discuss a more technical one based on clockwise rotation. Study the table shown in Figure

2.14. To understand how to read this table, examine the first row. Imagine that you are looking at

the origin from the positive end of the x-axis. (You are facing the –x direction.) Now imagine rotat-

ing the y- and z-axes clockwise about the x-axis. In a left-handed coordinate system, the positive

end of the y-axis rotates toward the positive end of the z-axis and the positive end of the z-axis

rotates toward the negative end of the y-axis, etc. This situation is illustrated in Figure 2.15.
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In a right-handed coordinate system, the opposite occurs: the positive end of the y-axis rotates

toward the negative end of the z-axis, etc. The difference lies in which directions are considered

“positive.” We are performing the same rotation in both cases.

Any left-handed coordinate system can be transformed into a right-handed coordinate system,

or vice versa. The easiest way to do this is by swapping the positive and negative ends of one axis.

Notice that if we flip two axes, it is the same as rotating the coordinate space 180� about the third

axis, which does not change the handedness of the coordinate space.

Both left-handed and right-handed coordinate systems are perfectly valid, and despite what

you might read in other books, neither is “better” than the other. People in various fields of study

certainly have preferences for one or the other depending on their backgrounds. For example, tra-

ditional computer graphics literature typically uses left-handed coordinate systems, whereas the

more math-oriented linear algebra people tend to prefer right-handed coordinate systems. Of

course, these are gross generalizations, so always check to see what coordinate system is being

used. The bottom line, however, is that it’s just a matter of a negative sign in the z coordinate. So,

appealing to the First Law of Computer Graphics in Section 2.1, if you apply a tool, technique, or

resource from another book, web page, or article and it doesn’t look right, try flipping the sign on

the z axis.

2.3.4 Some Important Conventions Used in This Book
When designing a 3D virtual world, there are several design decisions that we have to make

beforehand, such as left-handed or right-handed coordinate system, which direction is +y, etc. The

mapmakers from Dyslexia had to choose from among eight different ways to assign the axes in 2D

(see Figure 2.7). In 3D, we have a total of 48 different combinations to choose from. Twenty-four

of these combinations are left-handed, and 24 are right-handed.

Different situations can call for different conventions in the sense that certain things can be

easier if you adopt the right ones. Usually, however, it is not a major deal as long as you establish

the conventions early in your design process and stick to them. All of the basic principles dis-

cussed in this book are applicable, regardless of the conventions used. For the most part, all of the

equations and techniques given are applicable regardless of convention as well. However, in some

cases there are some slight, but critical, differences in application dealing with left-handed versus

right-handed coordinate spaces. When those differences arise, they will be pointed out.

In this book, we use a left-handed coordinate system. +x, +y, and +z point right, up, and for-

ward, respectively. This is illustrated in Figure 2.16.
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In situations where “right” and “forward” are not appropriate terms (for example, when we dis-

cuss the world coordinate space), we will assign +x to “east” and +z to “north.”

2.4 Exercises
1. Give the coordinates of the following points:
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2. List the 48 different possible ways that the 3D axes may be assigned to the directions “north,”

“east,” and “up.” Identify which of these combinations are left-handed and which are

right-handed.

3. In the popular modeling program 3D Studio Max, the default orientation of the axes is for +x

to point right, +y to point forward, and +z to point up. Is this a left- or right-handed coordinate

space?
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C h a p t e r 3

Multiple CoordinateMultiple Coordinate

Spaces

In Chapter 2, we discussed how we can establish a coordinate space anywhere we want simply by

picking a point to be the origin and deciding on the directions we want the axes to be oriented. We

usually don’t make these decisions arbitrarily; we form coordinate spaces for specific reasons

(one might say “different spaces for different cases”). This chapter gives some examples of com-

mon coordinate spaces that are used for graphics and games. We will then discuss how coordinate

spaces are nested within other coordinate spaces.

23

This chapter introduces the idea of multiple coordinate systems. It is divided into five

main sections.

� Section 3.1 justifies the need for multiple coordinate systems.

� Section 3.2 introduces some common coordinate systems. The main concepts intro-

duced are:

� World space

� Object space

� Camera space

� Inertial space

� Section 3.3 discusses nested coordinate spaces, commonly used for animating hier-

archically segmented objects in 3D space.

� Section 3.4 describes how to specify one coordinate system in terms of another.

� Section 3.5 describes coordinate space transformations. The main concepts are:

� Transforming between object space and inertial space

� Transforming between inertial space and world space



3.1 Why Multiple Coordinate Spaces?
Why do we need more than one coordinate space? After all, any one 3D coordinate system extends

infinitely and thus contains all points in space. So we could just pick a coordinate space, declare it

to be the “world” coordinate space, and all points could be located using this coordinate space.

Wouldn’t that be easier? In practice, the answer to this is “no.” Most people find it more conve-

nient to use different coordinate spaces in different situations.

The reason multiple coordinate spaces are used is that certain pieces of information are only

known in the context of a particular reference frame. It is true that, theoretically, all points could be

expressed using a single “world” coordinate system. However, for a certain point a, we may not

know the coordinates of a in the “world” coordinate system. However, we may be able to express

a using some other coordinate system. For example, the residents of Cartesia (see Section 2.2.1)

use a map of their city with the origin centered, quite sensibly, at the center of town and the axes

directed along the cardinal points of the compass. The residents of Dyslexia use a map of their city

with the coordinates centered at an arbitrary point and the axes running in some arbitrary direction

that probably seemed like a good idea at the time. The citizens of both cities are quite happy with

their respective maps, but the State Transportation Engineer assigned the task of running up a bud-

get for the first highway between Cartesia and Dyslexia needs a map showing the details of both

cities, which introduces a third coordinate system that is superior to him, though not necessarily to

anybody else. The major points on both maps need to be translated from the local coordinates of

the respective city to the new coordinate system to make the new map.

The concept of multiple coordinate systems has historical precedent. While Aristotle

(384-322 BCE), in his books On the Heavens and Physics, proposed a geocentric universe with

the Earth at the origin, Aristarchus (ca. 310-230 BCE) proposed a heliocentric universe with the

Sun at the origin. So we can see that more than two millennia ago the choice of coordinate system

was already a hot topic for discussion. The issue wasn’t settled for another couple of millennia

until Nicholas Copernicus (1473-1543) observed in his book De Revolutionibus Orbium

Coelestium (“On the Revolutions of the Celestial Orbs”) that the orbits of the planets can be

explained more simply in a heliocentric universe without all the mucking about with wheels

within wheels in a geocentric universe. Of course, not everybody could appreciate the math,

which is what got Galileo Galilei (1520-1591) in so much trouble during the Inquisition, since the

church had reasons of its own (having little if anything to do with math) for believing in a geocen-

tric universe.

In Sand-Reckoner, Archimedes (d. 212 BCE), perhaps motivated by some of the concepts

introduced in Section 2.1, developed a notation for writing down very large numbers, numbers

much larger than anybody had ever counted to at that time. Instead of choosing to count dead

sheep as in Section 2.1, he chose to count the number of grains of sand that it would take to fill the

universe. (He estimated that it would take 8x1063 grains of sand, but he did not, however, address

the question of where we would get the sand from.) In order to make the numbers larger, he chose

Aristarchus’ revolutionary new heliocentric universe rather than the geocentric universe generally

accepted at the time. In a heliocentric universe, the Earth orbits the Sun, in which case the fact that

the stars show no parallax means that they must be much farther away than Aristotle could ever
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have imagined. To make his life more difficult, Archimedes deliberately chose the coordinate sys-

tem that would produce larger numbers. We will use the direct opposite of his approach. In

creating our virtual universe inside the computer, we will choose coordinate systems that make

our lives easier, not harder.

In today’s enlightened times, we are accustomed to hearing in the media about cultural rela-

tivism, which promotes the idea that it is incorrect to consider one culture or belief system or

national agenda to be superior to another. It’s not too great a leap of the imagination to extend this

to what we might call “transformational relativism,” that no place, orientation, or coordinate sys-

tem can be considered superior to others. In a certain sense, that’s true, but to paraphrase George

Orwell in Animal Farm, “All coordinate systems are considered equal, but some are more equal

than others.” Let’s look at some examples of common coordinate systems that you will meet in 3D

graphics.

3.2 Some Useful Coordinate Spaces
Different coordinate spaces are needed because some information is only meaningful in a particu-

lar context.

3.2.1 World Space
One of the authors of this book wrote in Lewisville, Texas (near Dallas and Fort Worth). More pre-

cisely, his location is:

� Latitude: 33° 01’ North

� Longitude: 96° 59’ West

The other author wrote in Denton, Texas, at:

� Latitude: 33° 11’ North

� Longitude: 97° 07’ West

These values express our “absolute” position in the world. You don’t need to know where Denton,

Lewisville, Texas, or even the United States is to use this information because the position is abso-

lute. (The astute reader will note that these coordinates are not Cartesian coordinates, but rather,

they are polar coordinates. That is not significant for this discussion — we live in a flat 2D world

wrapped around a sphere, a concept that supposedly eluded most people until Christopher Colum-

bus verified it experimentally.) The origin, or (0,0) point in the world, was decided for historical

reasons to be located on the equator at the same longitude as the Royal Observatory in the town of

Greenwich, England.

The world coordinate system is a special coordinate system that establishes the “global” refer-

ence frame for all other coordinate systems to be specified. In other words, we can express the

position of other coordinate spaces in terms of the world coordinate space, but we cannot express

the world coordinate space in terms of any larger, outer coordinate space.

In a non-technical sense, the world coordinate system establishes the “largest” coordinate sys-

tem that we care about, so the world coordinate system need not actually be the whole world. For
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example, if we wanted to render a view of Cartesia, for all practical purposes Cartesia would be

“the world,” since we wouldn’t care where Cartesia is located (or even if it exists at all). In differ-

ent situations, your world coordinate space will define a different “world.” In Section 4.3.1 we

will discuss how “absolute position” is technically undefined. In this book, we will use the term

“absolute” to mean “absolute with respect to the largest coordinate space we care about.” In other

words, “absolute” to us will mean “expressed in the world coordinate space.”

The world coordinate space is also known for obvious reasons as the global or universal coor-

dinate space.

Some examples of questions that are typically asked in world space include questions about

initial conditions and the environment, such as:

� What is the position and orientation of each object?

� What is the position and orientation of the camera?

� What is the terrain like in each position in the world? (For example, hills, mountains, build-

ings, lakes.)

� How does each object get from where it is to where it wants to be? (Motion planning for

nonplayer characters.)

3.2.2 Object Space
Object space is the coordinate space associated with a particular object. Every object has its own

independent object space. When an object moves or changes orientation, the object coordinate

space associated with that object is carried along with it, so it moves or changes orientation too.

For example, we all carry our own personal coordinate system around with us. If we were to ask

you to “take one step forward,” we are giving you an instruction in your object space. (Please for-

give us for referring to you as an object.) We have no idea which way you will move in absolute

terms. Some of you will move north, some south, and others in different directions. Concepts such

as “forward,” “back,” “left,” and “right” are meaningful in object coordinate space. When some-

one gives you driving directions, sometimes you are told to “turn left” and other times you are told

to “go east.” “Turn left” is a concept that is expressed in object space, and “east” is expressed in

world space.

Locations can be specified in object space as well as directions. For example, if I asked you

where the muffler on your car was located, you wouldn’t tell me “in Chicago,” even if you lived in

Chicago. I’m asking where it is within your car. In other words, I want you to express the location

of your muffler in the object space of your car.

In certain contexts, object space is also known as modeling space, since the coordinates for

the vertices of a model are expressed in modeling space. It is also known as body space.

Some examples of questions that can be asked in object space are:

� Is there another object near me that I need to interact with? (Do I need to kill it?)

� In what direction is it? Is it in front of me? Slightly to my left? To my right? (So I can shoot at

it or run in the opposite direction.)
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3.2.3 Camera Space
Camera space is the coordinate space associated with an observer. Camera space is similar to

screen space except that camera space is a 3D space, whereas screen space is a 2D space. Camera

space can be considered a special object space, where the “object” that defines the coordinate

space is the camera defining the viewpoint for the scene. In camera space, the camera is at the ori-

gin with +x pointing to the right, +z pointing forward (into the screen, or the direction the camera is

facing), and +y pointing “up” (not “up” with respect to the world, but “up” with respect to the top

of the camera). Figure 3.1 shows a diagram of camera space.

Note that other books may use different conventions for the orientation of the axes in camera

space. In particular, many graphics books that use a right-handed coordinate system point –z into

the screen, with +z coming out of the screen toward the viewer.

Typical questions asked in camera space include queries about what is to be drawn on the

screen (graphics questions), such as:

� Is a given point in 3D space in front of the camera?

� Is a given point in 3D space on screen, or is it off to the left, right, top, or bottom edges of the

camera frustum? (The frustum is the pyramid of space that can be seen by the camera.)

� Is an object completely on screen, partially on screen, or completely off screen?

� Which of the two objects is in front of the other? (This is called occlusion information.)

Notice that the answers to these questions are critical if we wish to render anything. In Section

15.3 we will learn how 3D camera space is related to 2D screen space through a process known as

projection.
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3.2.4 Inertial Space
Sometimes the right terminology is the key to unlocking a better understanding of a subject. In an

attempt to simplify the transformations between world and object space, we will use a new coordi-

nate space called the inertial coordinate space, which is in a certain sense “halfway” between

object space and world space. The origin of inertial space is the same as the origin of the object

space, and the axes of inertial space are parallel with the axes of world space. Figure 3.2 illustrates

this principle in 2D. (Notice that we have chosen to consider the point between the robot’s feet as

the origin of the robot’s object space, rather than the robot’s center of mass.)

Why is inertial space interesting? To transform a point between object space and inertial space

requires only rotation, and to transform a point between inertial space and world space requires

only a change of location, or a translation. Thinking about these two things independently is eas-

ier than trying to cope with both of them. This is shown in Figures 3.3 to 3.5. Figure 3.3 shows the

axes of the robot’s object space in black. Clearly, the robot thinks that her y-axis points from her

feet to her head and that her x-axis points to her left. The robot’s inertial space is obtained from her

object space by rotating her object axes about their origin until the axes are parallel with the world

axes (Figure 3.4). Finally, inertial space can be transformed to world space by moving the origin of

inertial space to the origin of world space (Figure 3.5). We will return to this concept in Section

3.5.
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Figure 3.3: The robot’s object space

Figure 3.4: The robot’s inertial space

Figure 3.5: The world space



3.3 Nested Coordinate Spaces
Each object in your 3D virtual universe has its own coordinate space — its own origin and its axes.

Its origin could be located at its center of mass, for example. Its axes specify which direction it

considers to be “up,” “right,” and “forward,” relative to its origin. A 3D model created by an artist

for your virtual world will have its origin and axes decided by the artist, and the points that make

up the polygon mesh will be relative to the object space defined by this origin and axes. For exam-

ple, the center of a sheep could be placed at (0,0,0), the tip of its snout at (0,0,1000), the tip if its tail

at (0,0,–1200), and the tip of its right ear at (100,200,800). These are the locations of these parts in

sheep space.

The position and orientation of an object at any point in time needs to be specified in world

coordinates so that we can compute the interactions between nearby objects. To be precise, we

must specify the location and orientation of the object’s axes in world coordinates. To specify the

city of Cartesia’s position (see Section 2.2.1) in world space, we could state that the origin is at lat-

itude q° and longitude p° and that the positive x-axis points east and the positive y-axis points

north. To locate the sheep in your virtual world, it is sufficient to specify the location of its origin

and the orientation of its axes in world space. The world location of the tip of its snout, for exam-

ple, can be worked out from the relative position of its snout to the world coordinates of its origin.

If the sheep is not actually being drawn, we can save effort by keeping track of only the location

and orientation of its object space in world space. It becomes necessary to compute the world

coordinates of its snout, tail, and right ear only at certain times, like when it moves into view of the

camera.

Since the object space moves around in world space, it is convenient to view the world space

as a “parent” space and the object space as a “child” space. It is also convenient to break objects

into subobjects and to animate them independently. For example, as the sheep walks, its head

swings back and forth and its ears flap up and down. In the coordinate space of the sheep’s head,

the ears appear to be flapping up and down; since the motion is in the y-axis only, it is relatively

easy to understand and animate. In the sheep’s coordinate space, its head is swinging from side to

side along the sheep’s x-axis, which is again relatively easy to understand. Now suppose that the

sheep is moving along the world’s z-axis. Each of the three actions — ears flapping, head swing-

ing, and sheep moving forward — involves a single axis and is easy to understand and draw in

isolation from the others. The motion of the tip of the sheep’s right ear, however, traces a compli-

cated path through the world coordinate space, truly a nightmare for a programmer to compute

from scratch. By breaking the sheep into a hierarchically organized sequence of objects with

nested coordinate spaces, the motion can be computed in separate components and combined with

relative ease using linear algebra tools, such as matrices and vectors, as we will see in later

chapters.

It’s convenient to think of the sheep’s coordinate space moving relative to world space, the

sheep’s head coordinate space moving relative to the sheep’s space, and the sheep’s ear space

moving relative to the sheep’s head space. Thus, we view the head space as a child of the sheep

space and the ear space as a child of the head space. Object space can be divided into many differ-

ent subspaces at many different levels, depending on the complexity of the object being animated.
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We can say that the child coordinate space is nested in the parent coordinate space. This par-

ent-child relationship between coordinate spaces defines a hierarchy, or tree, of coordinate spaces.

The world coordinate space is the root of this tree. The nested coordinate space tree can change

dynamically during the lifetime of your virtual world. For example, the sheep’s fleece can be

sheared and taken away from the sheep. Thus, the fleece coordinate space goes from being a child

of the sheep body’s coordinate space to being a child of the world space. The hierarchy of nested

coordinate spaces is dynamic and can be arranged in a manner that is most convenient for the

information that is important to us.

3.4 Specifying Coordinate Spaces
At this point, the reader may ask a very important question: exactly how do we specify a coordi-

nate space relative to another coordinate space?

Recall from Section 2.2.2 that a coordinate system is defined by its origin and axes. The ori-

gin defines the position of the coordinate space. The axes describe the orientation of the

coordinate space. (In addition, the axes can describe other information, such as scale and skew.

For the moment, we will assume that the axes are perpendicular and the units used by the axes are

the same as the units used by the parent coordinate space.) If we can find a way to describe the ori-

gin and the axes, then we have documented the coordinate space.

Specifying the position of the coordinate space is straightforward. All we have to do is

describe the location of the origin. Of course, we express this point using the parent coordinate

space, not the local child space. The origin, by definition, is always (0,0,0) if we express it using

the child coordinate space.

Specifying the orientation, and the other information that can be described by the axes, in 3D

is a far more complicated matter, and we will defer the details to Chapter 10.

3.5 Coordinate Space Transformations
Suppose that in our virtual world a robot is attempting to pick up a herring sandwich. We know the

position of the sandwich and the position of the robot in world coordinates. To pick up the sand-

wich, the robot must be able to answer some basic questions in its own coordinate space, such as,

“Which way should I turn to face the sandwich?” “How far away is the sandwich?” “Which way

do I move my herring sandwich scoop to get in position to pick up the sandwich?”

Suppose that we wish to render an image of the robot picking up the sandwich, and the scene

is illuminated by a light mounted in the center of the robot’s chest. We know the position of the

light within the robot’s object space, but in order to properly light the scene, we must know the

position of the light in world space.

These two problems are different aspects of the same basic problem — we know how to

express a point in one coordinate space, and we need to express that point in some other coordinate

space. The technical term for this computation is a coordinate space transformation. We need to

transform the position from world space to object space (in the example of the sandwich) or from
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object space to world space (in the example of the light). Notice that neither the sandwich nor the

light really move. We are just expressing their locations in a different coordinate space.

In Section 3.2.4, we learned that we can transform between object and world space by using

inertial space as an intermediary. We can transform between object space and inertial space by

rotation, and we can transform between inertial space and world space by translation.

Suppose we are attempting to transform the center point of the light from the robot’s object

space into world space. We know where the light is located in the robot’s object space — the large

rectangle at the center of its chest. We can see in Figure 3.6 that it is located on the object’s y-axis

in the positive direction, so its x coordinate is 0. To be specific, let’s say the light is at location

(0,100) in object space. Instead of thinking about how to transform the point from object space

into world space, however, we are going to think about how to transform object axes into world

axes. This will in fact give us a general transformation that we can apply to any point, not just the

light.

We first rotate to transform the object space axes into inertial axes. We can visualize the transfor-

mation by imagining the object coordinate space rotating to line up the object axes with the inertial

axes. If we rotate the object space axes in Figure 3.6 clockwise 45�, we get the inertial space axes

in Figure 3.7. Note that on the axes of inertial space, the light is now in the positive y direction and

the negative x direction, so the location of the light in inertial space would be something like

(–300,600).
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Second, we translate to transform the axes from inertial to world space. We can visualize the trans-

formation by imagining the origin moving from the origin of the inertial coordinate space in

Figure 3.7 down and to the left to line up with the world origin. Notice that the light is now in the

positive direction on both of the world axes, and so it is at (1200,1000) in world space.

To summarize the example, in order to transform the axes from inertial space to world space:

1. The object axes are transformed to inertial axes by rotating them clockwise 45�.

2. The inertial axes are transformed to world axes by moving them down and to the left.

3. Therefore, the object axes are transformed to world axes by rotating them clockwise 45� and

then moving them down and to the left.

From the perspective of a point on the object, like the light in the large rectangle on the robot’s

chest, the opposite happens:

1. The point is transformed from (0,100) in the object space to (–300,600) in inertial space by

rotating it counterclockwise 45�.

2. The point is transformed from (–300,600) in inertial space to (1200,1000) in world space by

moving up and right.

3. Therefore, a point is transformed from object space to world space by rotating it

counterclockwise 45� and then moving it up and right.
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Why are the rotation and translation for a point in the opposite direction than they were for the

axes? It’s like driving around in a car. For example, if you move forward, the world seems to move

backward. If you turn left, the world appears to move right. The world does the opposite of what

you do.

The beauty of this method is that by first thinking about what happens to the axes, we come up

with a transformation that can be applied to any point. We’ll talk about this more in Section 8.1.

3.6 Exercises
1. Draw a nested space hierarchy tree for the sheep described in Section 3.3, assuming that its

head, ears, upper legs, lower legs, and body move independently.

2. Suppose our object axes are transformed to world axes by rotating them counterclockwise

around the y-axis by 42� and then translating six units along the z-axis and 12 units along the

x-axis. Describe this transformation from the perspective of a point on the object.

3. Which coordinate space is the most appropriate in which to ask the following questions?

(Object, inertial, camera, or world)

a. Is my computer in front of me or behind me?

b. Is the book east or west of me?

c. How do I get from one room to another?

d. Can I see my computer?
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C h a p t e r 4

Vectors

Vectors are the formal mathematical entities we use to do 2D and 3D math. The word vector has

two distinct, but related, meanings. One meaning is primarily abstract and mathematical, while the

other meaning is geometric. Many books will focus on one interpretation or the other. However, in

order to be proficient with 3D math, we will need to understand both interpretations of vectors and

how the two interpretations are related.

35

This chapter introduces the concept of vectors. It is divided into three main sections.

� Section 4.1 covers some of the basic mathematical properties of vectors. The main

concepts are:

� Vector

� Scalar

� Vector dimension

� Row vs. column vectors

� Section 4.2 discusses how vectors may be interpreted geometrically. The main con-

cepts are:

� How to draw a vector

� Position and displacement

� How to express a vector as an array of numbers

� How to express a vector as a series of displacements

� Section 4.3 discusses the often confusing relationship between points and vectors.

The main concepts are:

� Relative position

� Displacement vs. position



4.1 Vector — A Mathematical Definition
To mathematicians, a vector is a list of numbers. Programmers will recognize the synonymous

term array. Mathematically, a vector is simply an array of numbers. If this abstract definition of a

vector doesn’t inspire you, don’t worry. Like many mathematical subjects, we must first introduce

some terminology and notation before we can get to the “fun stuff.”

4.1.1 Vectors vs. Scalars
Mathematicians distinguish between vector and scalar (pronounced SKAY-lur) quantities. Scalar

is the technical term for an ordinary number. We use this term specifically when we wish to

emphasize that a particular quantity is not a vector quantity. For example, as we will discuss

shortly, “velocity” and “displacement” are vector quantities, while “speed” and “distance” are

scalar quantities.

4.1.2 Vector Dimension
The dimension of a vector tells how many numbers the vector contains. Vectors may be of any

positive dimension, including one. In fact, a scalar can be considered a 1D vector. In this book, we

will primarily be interested in 2D, 3D, and (later) 4D vectors.

4.1.3 Notation
When writing a vector, mathematicians surround the list of numbers with square brackets. For

example: [1, 2, 3]. When we write a vector inline in a paragraph, we usually put commas between

the numbers. When we write it out in an equation, the commas are often omitted. In either case, a

vector written horizontally is called a row vector. Vectors are also frequently written vertically:

A vector written vertically is a column vector. In this book, we will use both notations. For now,

the distinction between row and column vectors won’t matter. However, in Section 7.1.8 we will

discuss why, in certain circumstances, the distinction is critical.

When we wish to refer to the individual components in a vector, we use subscript notation. In

math literature, integer indices are used to access the elements. For example, v1 refers to the first

element in v. However, since we are specifically interested in 2D, 3D, and 4D vectors, rather than

vectors of arbitrary dimension n, we will rarely use this notation. Instead, we will use x and y to

refer to the elements in a 2D vector, x, y, and z to refer to elements in a 3D vector, and x, y, z, and w

to refer to elements in a 4D vector. Equation 4.1 illustrates both notations:
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Notice that the components of a 4D vector are not in alphabetical order. The fourth value is w.

4.2 Vector — A Geometric Definition
Now that we have discussed what a vector is mathematically, let’s look at a more geometric inter-

pretation of vectors. Geometrically speaking, a vector is a directed line segment that has

magnitude and direction.

� The magnitude of a vector is the length of the vector. A vector may have any nonnegative

length.

� The direction of a vector describes which way the vector is pointing in space. Note that direc-

tion is not exactly the same as orientation, a distinction we will re-examine in Section 10.1.

4.2.1 What Does a Vector Look Like?
Figure 4.1 shows an illustration of a vector in 2D:

It looks like an arrow, right? This is the standard way to represent a vector graphically since the

two defining characteristics of a vector are captured, its magnitude and direction.

We will sometimes refer to the head and tail of a vector. As shown in Figure 4.2, the head is

the end of the vector with the arrow on it (where the vector “ends”), and the tail is the other end

(where the vector “starts”):

Chapter 4: Vectors 37

Equation 4.1:
Vector subscript
notation

Figure 4.1: A 2D vector



4.2.2 Position vs. Displacement
Where is this vector? Actually, that is not an appropriate question. Vectors do not have position,

only magnitude and direction. This may sound impossible, but many quantities we deal with on a

daily basis have magnitude and direction, but no position. For example:

� Displacement: “Take three steps forward.” This sentence seems to be all about positions, but

the actual quantity used in the sentence is a relative displacement and does not have an abso-

lute position. This relative displacement consists of a magnitude (three steps) and a direction

(forward), so it could be represented using a vector.

� Velocity: “I am traveling northeast at 50 MPH.” This sentence describes a quantity that has

magnitude (50 MPH) and direction (northeast), but no position. The concept of “northeast at

50 MPH” can be represented using a vector.

Notice that displacement and velocity are technically different from the terms distance and speed.

Displacement and velocity are vector quantities and entail a direction, whereas distance and speed

are scalar quantities and do not specify a direction.

Because vectors are used to express displacements and relative differences between things,

they can describe relative positions: “My house is 3 blocks east of here.” However, you should not

think of vectors as having absolute positions. (More on relative vs. absolute position in Section

4.3.1.) To help enforce this, when you imagine a vector, picture an arrow. Remember that the

length and direction of this arrow is significant, but not the position.

Since vectors do not have a position, we can represent them on a diagram anywhere we

choose, provided that the length and direction of the vector are represented correctly. We will

often use this to our advantage by “sliding” the vector around into a meaningful location on a

diagram.

4.2.3 Specifying Vectors
The numbers in a vector measure signed displacements in each dimension. For example, in 2D, we

list the displacement parallel to both the x-axis and the y-axis:
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Figure 4.4 shows several 2D vectors and their values:

Notice that a vector’s position on the diagram is irrelevant. (The axes are conspicuously absent to

enforce this policy, although we do assume the standard convention of +x pointing to the right and

+y pointing up.) For example, there are two vectors shown in Figure 4.4 with the value [1.5, 1], but

they are not in the same place on the diagram.

3D vectors are a simple extension of 2D vectors. A 3D vector contains three numbers which

measure the signed displacements in the x, y, and z directions, just as you’d expect.

4.2.4 Vectors as a Sequence of Displacements
One helpful way to think about the displacement described by a vector is to break the vector into

its axially aligned components. When these axially aligned displacements are combined, they

cumulatively define the displacement defined by the vector as a whole.

For example, the 3D vector [1, –3, 4] represents a single displacement, but we can visualize

this displacement as moving one unit to the right, three units down, and then four units forward.

(Assume our convention that +x, +y, and +z point right, up, and forward, respectively. Also note

that we do not “turn” between steps, so “forward” is always parallel to +z.) This is illustrated in

Figure 4.5 on the following page.
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Figure 4.3: Vectors are specified by giving the signed displacement in
each dimension

Figure 4.4: Examples of 2D vectors and
their values



The order in which we perform the steps is not important. We could move four units forward, three

units down, and then one unit to the right, and we would have displaced by the same total amount.

The different orderings correspond to different routes along the axially aligned bounding box con-

taining the vector. In Section 5.8, we will mathematically verify this geometric intuition.

4.3 Vectors vs. Points
Recall that a “point” has a location, but no real size or thickness. In this chapter, we have learned

how a “vector” has magnitude and direction, but no position. So “points” and “vectors” have dif-

ferent purposes, conceptually. A “point” specifies a position, and a “vector” specifies a

displacement.

Examine Figure 4.6 below, which compares an illustration from Chapter 2 (Figure 2.8) show-

ing how 2D points are located, with a figure from earlier in this chapter (Figure 4.3) showing how

2D vectors are specified. It seems that there is a strong relationship between points and vectors. In

this section, we’ll examine this important relationship.
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Figure 4.5: Interpreting a vector as a sequence of
displacements

Figure 4.6: Locating points vs.
specifying vectors



4.3.1 Relative Position
In Section 4.2.2, we discussed the fact that vectors can describe relative positions because they can

describe displacements. The idea of a relative position is fairly straightforward: the position of

something is specified by describing where it is in relation to some other known location.

This begs the question, where are these “known” locations? What is an “absolute” position? It

is surprising to realize that there is no such thing! Every attempt to describe a position requires that

we describe it relative to something else. Any description of a position is meaningful only in the

context of some (typically “larger”) reference frame. We have already touched on this subject in

Chapter 3 when we discussed nested coordinate spaces.

Theoretically, we could establish a reference frame encompassing everything in existence and

select a point to be the “origin” of this space, and thus defining the “absolute” coordinate space.

(This is assuming we could somehow overcome the effects of relativity, such as the curvature of

space. In fact, one important implication of the Theory of Relativity is that it is impossible to

establish an absolute reference frame.) However, even if such an absolute coordinate space were

possible, it would not be practical. Luckily for us, absolute positions in the universe aren’t impor-

tant. Do you know your precise position in the universe right now?

4.3.2 The Relationship Between Points and Vectors
Vectors are used to describe displacements, and therefore, they can describe relative positions.

Points are used to specify positions. We have just established in Section 4.3.1 that any method of

specifying a position will be relative. Therefore, we must conclude that points are relative. They

are relative to the origin of the coordinate system used to specify their coordinates. This leads us to

the relationship between points and vectors.

Figure 4.7 illustrates how the point (x, y) is related to the vector [x, y], given arbitrary values

for x and y.
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Figure 4.7: The relationship between points and
vectors



As you can see, if we start at the origin and move by the amount specified by the vector [x, y], we

will end up at the location described by the point (x, y). Another way to say this is that the vector

[x, y] gives the displacement from the origin to the point (x, y).

While this seems obvious, it is important to understand that points and vectors are conceptu-

ally distinct, but mathematically equivalent. This confusion between “points” and “vectors” can

be a stumbling block for beginners, but it needn’t be a problem for you. When you think of a loca-

tion, think of a point and visualize a dot. When you think of a displacement, think of a vector and

visualize an arrow.

In many cases, displacements are from the origin, and so the distinction between points and

vectors will be a fine one. However, we will often deal with quantities that are not relative to the

origin, or any other point for that matter. In these cases it will be important to visualize these quan-

tities as an arrow rather than a point.

The math we will develop in the following chapters operates on “vectors” rather than

“points.” Keep in mind that any point can be represented as a vector from the origin.

4.4 Exercises
1. Let:

a. Identify a, b, and c as row or column vectors, and give the dimension of each vector.

b. Compute by+cw+ax+bz.

2. Identity the quantities in each of the following sentences as scalar or vector. For vector

quantities, give the magnitude and direction. (Note: some directions may be implicit.)

a. How much do you weigh?

b. Do you have any idea how fast you were going?

c. It’s two blocks north of here.

d. We’re cruising from Los Angeles to New York at 600mph, at an altitude of 33,000ft.
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3. Give the values of the following vectors:

4. Identify the following statements as true or false. If the statement is false, explain why.

a. The size of a vector in a diagram doesn’t matter. We just need to draw it in the right place.

b. The displacement expressed by a vector can be visualized as a sequence of axially aligned

displacements.

c. These axially aligned displacements from the previous question must occur in the proper

order.

d. The vector [x, y] gives the displacement from the point (x, y) to the origin.
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C h a p t e r 5

Operations onOperations on

Vectors

In Chapter 4, we discussed what vectors are geometrically and mentioned that the term vector has

a precise definition in mathematics. This chapter describes in detail the mathematical operations

we perform on vectors. For each operation, we will first define the mathematical rules for per-

forming the operation and then describe the geometric interpretations of the operation.
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This chapter is about operations on vectors. It is divided into twelve main sections.

� Section 5.1 discusses the difference between the information found in a linear alge-

bra textbook and the information applicable for geometrical operations.

� Section 5.2 discusses some notational conventions we will use in this book to make

the data type of variables clear.

� Section 5.3 introduces a special vector known as the zero vector and discusses some

of its important properties.

� Section 5.4 defines vector negation.

� Section 5.5 describes how to compute the magnitude of a vector.

� Section 5.6 describes how a scalar may be multiplied by a vector.

� Section 5.7 introduces normalized vectors and explains how to normalize a vector.

� Section 5.8 explains how to add and subtract two vectors and gives several important

applications of this operation.

� Section 5.9 presents the distance formula and explains why it works.

� Section 5.10 discusses the first type of vector product, the dot product.

� Section 5.11 discusses a second type of vector product, the cross product.

� Section 5.12 presents a list of vector algebra identities.



5.1 Linear Algebra vs. What We Need
The branch of mathematics that deals primarily with vectors is called linear algebra. As men-

tioned in Section 4.1, a vector is nothing more than an array of numbers in linear algebra. This

highly generalized abstraction allows us to explore a large set of mathematical problems. For

example, in linear algebra, vectors and matrices of dimension n are used to solve a system of n lin-

ear equations for n unknowns. This is a very interesting and useful study, but it is not of primary

interest to our investigation of 3D math.

For 3D math, we are primarily concerned with the geometric interpretations of vectors and

vector operations. The level of generality employed by linear algebra textbooks precludes decent

coverage on the geometric interpretations. For example, a linear algebra textbook can teach you

the precise rules for multiplying a vector by a matrix. These rules are important, but, in this book,

we will also discuss several ways to interpret the numbers inside a 3×3 matrix geometrically and

why multiplying a vector by a matrix can perform a coordinate space transformation. (We’ll do

this in Section 7.2.)

Since our focus is geometric, we will omit many details of linear algebra that do not further

our understanding of 2D or 3D geometry. While we will often discuss properties or operations for

vectors of an arbitrary dimension n, we will usually focus on 2D, 3D, and (later) 4D vectors and

matrices.

5.2 Typeface Conventions
As you know, variables are placeholder symbols used to stand for unknown quantities. In 3D

math, we work with scalar, vector, and (later) matrix quantities, so it is important that we make it

clear what type of data is represented by a particular variable. In this book, we use different fonts

for variables of different types:

� Scalar variables will be represented by lowercase Roman or Greek letters in italics: a, b, x, y,

z, �, .

� Vector variables of any dimension will be represented by lowercase letters in boldface: a, b,

u, v, q, r.

� Matrix variables will be represented using uppercase letters in boldface: A, B, M, R.

Note that other authors use different conventions. One common convention, used frequently when

writing vectors by hand, is to draw a half-arrow over the vector, like this: a
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5.3 The Zero Vector
For any set, the additive identity of the set is the element x, such that for all y in the set, y+x=y. (The

typeface used here is not intended to limit the discussion to the set of scalars. We are talking about

elements in any set.)

For the set of vectors of a particular dimension, the additive identity element is the so-called

“zero vector” of that dimension, which has zeros in every position. We denote a zero vector of any

dimension using a boldface zero, as shown below:

For example, the 3D zero vector is [0, 0, 0].

The zero vector is special because it is the only vector with a magnitude of zero. For any other

magnitude, there are an infinite number of vectors of that magnitude, and they form a circle, as

shown below in Figure 5.1. The zero vector is also unique because it is the only vector that does

not have a direction.

Although we will graphically depict the zero vector using a point, it is not entirely accurate to

think of the zero vector as a “point,” in the sense that it does not define a location. Instead, think of

the zero vector as a way to express the concept of “no displacement,” much as the scalar zero

stands for the concept of “no quantity.”
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Figure 5.1: For any positive magnitude, there are an
infinite number of vectors with that magnitude.



5.4 Negating a Vector
For any set, the additive inverse of x, denoted by –x, is the element that yields the additive identity

of that set (zero) when added to x. Put simply: x + (–x) = 0. (Again, despite the typeface used for

the variables, we are talking about sets in general.) In other words, elements in the set can be

negated.

The negation operation can be applied to vectors. Every vector v has an additive inverse –v of

the same dimension as v, such that v + (–v) = 0. (We will learn how to add vectors in Section 5.8.)

5.4.1 Official Linear Algebra Rules
To negate a vector of any dimension, we simply negate each component of the vector. Stated

formally:

Applying this to the specific cases of 2D, 3D, and 4D vectors, we have:

A few examples:

5.4.2 Geometric Interpretation
Negating a vector results in a vector of the same magnitude but opposite direction. Figure 5.2

illustrates this:
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Equation 5.1:
Negating a
vector

Equation 5.2:
Negating 2D,
3D, and 4D
vectors
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Remember, the position at which a vector is drawn on a diagram is irrelevant. Only the magnitude

and direction are important.

5.5 Vector Magnitude (Length)
As we have discussed before, vectors have magnitude and direction. However, you might have

noticed that neither the magnitude nor the direction is expressed explicitly in the vector! For

example, the magnitude of the 2D vector [3, 4] is neither 3 nor 4; it’s 5. Since the magnitude of the

vector is not expressed explicitly, we must compute it. The magnitude of a vector is also known as

the length or norm of the vector.

5.5.1 Official Linear Algebra Rules
In linear algebra, the magnitude of a vector is denoted using double vertical bars surrounding the

vector. This is similar to the single vertical bar notation used for the “absolute value” operation for

scalars. This notation and the equation for computing the magnitude of a vector of arbitrary

dimension n are shown below:
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Figure 5.2: Examples of vectors and their
negatives

Equation 5.3:
Vector
magnitude



Thus, the magnitude of a vector is the square root of the sum of the squares of the components of

the vector. This sounds complicated, but the magnitude equations for 2D and 3D vectors are actu-

ally very simple:

(for a 2D vector v)

(for a 3D vector v)

The magnitude of a vector is a nonnegative scalar quantity. Here’s an example of how to compute

the magnitude of a 3D vector:

Note: Some books use a single bar notation to indicate vector magnitude, like this: |v|.

5.5.2 Geometric Interpretation
Let’s try to get a better understanding of why Equation 5.4 works. For any vector v in 2D, we can

form a right triangle with v as the hypotenuse:

Notice that the lengths of the legs are the absolute values of the components vx and vy. The compo-

nents of the vector may be negative, since they are signed displacements, but the length is always

positive.

The Pythagorean theorem states that for any right triangle, the square of the length of the

hypotenuse is equal to the sum of the squares of the lengths of the other two sides. When this theo-

rem is applied to Figure 5.3, we have:
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Equation 5.4:
Vector magni-
tude for 2D
and 3D vectors

Figure 5.3: Geometric interpretation of the magnitude equation



Since |x|2 = x2, we can omit the absolute value symbols:

After taking the square root of both sides and simplifying, we get:

which is the same as Equation 5.4. The proof of the magnitude equation in 3D is only slightly more

complicated.

5.6 Vector Multiplication by a Scalar
Although we cannot add a vector and a scalar, we can multiply a vector and a scalar. The result is a

vector that is parallel with the original vector, except with a different length and possibly opposite

direction.

5.6.1 Official Linear Algebra Rules
Vector-times-scalar multiplication is straightforward; we simply multiply each component of the

vector by the scalar. The scalar and vector may be given in either order, but we almost always write

the scalar on the left. Stated formally:

This rule when applied to 3D vectors as an example:

A vector may also be divided by a nonzero scalar. This is equivalent to multiplying by the recipro-

cal of the scalar:

for 3D vector v and nonzero scalar k.
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Equation 5.5:
Multiplying a
vector by a
scalar

Equation 5.6:
Multiplying a
3D vector by
a scalar

Equation 5.7:
Dividing a 3D
vector by a
scalar



Some examples:

A few notes:

� When we multiply a vector and a scalar, we do not use a multiplication symbol. The multipli-

cation is signified by placing the two quantities side by side (usually with the vector on the

right).

� Scalar-times-vector multiplication and division both occur before any addition and subtrac-

tion. For example, 3a+b is the same as (3a)+b, not 3(a+b).

� A scalar may not be divided by a vector, and a vector may not be divided by another vector.

� Vector negation can be viewed as the special case of multiplying a vector by the scalar –1.

5.6.2 Geometric Interpretation
Geometrically, multiplying a vector by a scalar k has the effect of scaling the length by a factor of

|k|. For example, to double the length of a vector, we would multiply the vector by 2. If k < 0, then

the direction of the vector is flipped. Figure 5.4 illustrates a vector multiplied by several different

scalars.
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Figure 5.4: A 2D vector multiplied
by various scalars



5.7 Normalized Vectors
For many vector quantities, we are concerned with direction and not magnitude. For example,

“which way am I facing?” In these cases, it is often convenient to use unit vectors. A unit vector is

a vector that has a magnitude of 1. Unit vectors are also known as normalized vectors or simply

normals.

5.7.1 Official Linear Algebra Rules
For any nonzero vector v, we can compute a unit vector vnorm that points in the same direction as v.

This process is known as “normalizing” the vector. To normalize a vector, we divide the vector by

its magnitude:

For example, to normalize the 2D vector [12, -5]:

The zero vector cannot be normalized. Mathematically, this is not allowed, since it would result in

division by zero. Geometrically, it makes sense because the zero vector does not define a

direction.

5.7.2 Geometric Interpretation
In 2D, if we draw a unit vector with the tail at the origin, the head of the vector will touch a unit cir-

cle centered at the origin. (A unit circle has a radius of 1.) In 3D, unit vectors touch the surface of a

unit sphere. Figure 5.5 shows several vectors in 2D in gray and their normalized counterparts in

black:
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Equation 5.8:
Normalizing
a vector



5.8 Vector Addition and Subtraction
We can add and subtract two vectors, provided they are of the same dimension. The result is a vec-

tor quantity of the same dimension as the vector operands. We use the same notation for vector

addition and subtraction that is used for addition and subtraction of scalars.

5.8.1 Official Linear Algebra Rules
The linear algebra rules for vector addition are simple: to add two vectors, we add the correspond-

ing components:

Subtraction can be interpreted as adding the negative, so a – b = a + (–b):
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Figure 5.5: Normalizing vectors in 2D

Equation 5.9:
Adding two
vectors

Equation 5.10:
Subtracting two
vectors



For example:

A few notes:

� A vector cannot be added or subtracted with a scalar or a vector of a different dimension.

� Just as with scalar addition and subtraction, vector addition is commutative, but vector sub-

traction is not. (a+b = b+a is always true, but a–b = –(b–a), so a–b = b–a is only true if a = b.)

5.8.2 Geometric Interpretation
We can add vectors a and b geometrically by positioning the vectors so that the head of a touches

the tail of b, and then draw a vector from the tail of a to the head of b. This is known as the “trian-

gle rule” of vector addition. We can also subtract vectors in a similar fashion. Examine Figure 5.6:
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Figure 5.6: 2D vector addition and subtrac-
tion using the triangle rule



The previous figure provides geometric evidence that vector addition is commutative, but vector

subtraction is not. Notice that the vector labeled a+b is identical to the vector labeled b+a, but the

vectors d–c and c–d point in opposite directions because d–c = –(c–d).

The triangle rule can be extended to more than two vectors. For example:

Armed with the triangle rule, we can now verify something mathematically that we stated geomet-

rically in Section 4.2.4: a vector can be interpreted as a sequence of axially aligned displacements.

Figure 5.8 is a reproduction of Figure 4.5, which shows how the vector [1, –3, 4] may be inter-

preted as a displacement of one unit to the right, three units down, and then four units forward:
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Figure 5.7: Extending the triangle rule to more
than two vectors

Figure 5.8: Interpreting a vector as a sequence of
displacements



We can interpret Figure 5.8 mathematically using vector addition:

This seems obvious, but it is a very powerful concept. We will use a similar technique in Section

7.2.1 to transform vectors from one coordinate space to another.

5.8.3 Vector from One Point to Another
It is very common that we will need to compute the displacement from one point to another. In this

case, we can use the triangle rule and vector subtraction. Figure 5.9 shows how the displacement

vector from a to b can be computed by subtracting a from b:

As the diagram above shows, to compute the vector from a to b, we interpret the points a and b as

vectors from the origin, and then use the triangle rule. In fact, vectors are defined in some texts as

the subtraction of two points.

Notice that the vector subtraction b–a yields a vector from a to b. It doesn’t make any sense to

simply find the vector “between two points,” since the language in this sentence does not specify a

direction. We must always form a vector that goes from one point to another point.

5.9 The Distance Formula
We are now prepared to introduce one of the most important formulas in computational geometry

— the distance formula. This formula is used to compute the distance between two points.

First, let’s define distance as the length of the line segment between the two points. Since a

vector is a directed line segment, it makes sense geometrically that the distance between the two

points would be equal to the length of a vector from one point to the other. Let’s derive the distance

formula in 3D. First, we will compute the vector d from a to b. We learned how to do this in Sec-

tion 5.8.3. In 3D:

Chapter 5: Operations on Vectors 57

Figure 5.9: Using 2D vector subtraction to compute the
vector from point a to point b



The distance between a and b is equal to the length of the vector d, which we learned how to com-

pute in Section 5.5.

Substituting for d, we get:

Thus, we have derived the distance formula in 3D. The 2D equation is even more simple:

Let’s look at an example in 2D:

Notice that it does not matter which point is a and which point is b. If we define d to be the vector

from b to a instead of from a to b, we will derive a slightly different, but mathematically equiva-

lent, equation.

5.10 Vector Dot Product
In Section 5.6 we learned that we can multiply a vector by a scalar. We can also multiply two vec-

tors together. There are two types of vector products. The first vector product we will discuss is the

dot product (also known as the inner product).

5.10.1 Official Linear Algebra Rules
The name “dot product” comes from the dot symbol used in the notation: a·b. Just like sca-

lar-times-vector multiplication, vector dot product is performed before addition and subtraction.

However, while we usually omit the multiplication symbol when multiplying two scalars or a sca-

lar and a vector, we do not omit the dot symbol when performing a vector dot product.

The dot product of two vectors is the sum of the products of corresponding components. This

results in a scalar:
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This can be expressed succinctly using summation notation:

Apply these rules to the 2D and 3D cases:

a and b are 2D vectors

a and b are 3D vectors

It is obvious from inspection of the equations that vector dot product is commutative: a·b = b·a.

More vector algebra laws concerning the dot product will be given in Section 5.12.

Examples of the dot product in 2D and 3D:

5.10.2 Geometric Interpretation
Generally speaking, the dot product in any dimension tells how “similar” two vectors are; the

larger the dot product, the more similar the two vectors. Geometrically, we can be more precise.

Examine Figure 5.10:
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Equation 5.13:
Vector dot
product

Equation 5.14:
Vector dot
product
expressed using
summation
notation

Equation 5.15:
2D and 3D dot
product

Figure 5.10: The dot product is related to the angle between
two vectors



The dot product is equal to the product of the magnitudes of the vectors and the cosine of the angle

between the vectors:

(Remember that in 3D, the angle between two vectors is measured in the plane that contains both

vectors.)

Solving for �:

We can avoid the division in Equation 5.17 if we know that a and b are unit vectors. In this case,

the denominator of the above equation is trivially 1, and we are left with:

, a and b are unit vectors

If we do not need the exact value of �, and only a classification of the relative orientation of a and

b, then we only need the sign of the dot product:

a�b � Angle is a and b are

> 0 0° � � < 90° acute pointing in basically the same direction

0 � = 90° right perpendicular

< 0 90° < � � 180° obtuse pointing in basically opposite directions

Figure 5.11: The sign of the dot product gives a rough classification of the angle between two vectors

Since the magnitude of the vectors does not affect the sign of the dot product, the above table

applies regardless of the magnitudes of a and b. However, notice that if either a or b is the zero

vector, then a·b will always equal zero. Thus, the dot product interprets the zero vector as being

perpendicular to every other vector.
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Geometric
interpretation of
the vector dot
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Computing the
angle between
two vectors
using the dot
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Computing the
angle between
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5.10.3 Projecting One Vector onto Another
Given two vectors v and n, it is possible to separate v into two values, v|| and v�. They are parallel

and perpendicular to n, respectively, such that v = v|| + v�. We sometimes refer to parallel portion

v|| as the result of projecting v onto n.

We compute the projection by using the dot product. Figure 5.12 below illustrates the geome-

try involved:

Let’s solve for v||. First, we can see that v|| is parallel to n, and so it can be expressed as:

So, if we can solve for just the magnitude of v||, we can then compute the vector value. Luckily, we

can do this easily using elementary trigonometry:

Substitute ||v|||| into our original equation and apply the geometric interpretation of the dot product

from Equation 5.16:

Of course, if n is a unit vector, then the division is unnecessary.

Once we know v||, we can easily solve for v�:
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Figure 5.12: Projecting one vector onto another

Equation 5.19:
Projecting one
vector onto
another



In the rest of this book, we will make use of these equations several times to separate a vector into

components that are parallel and perpendicular to another vector.

5.11 Vector Cross Product
The other vector product, known as the cross product or outer product, applies to 3D vectors only.

Unlike the dot product, which yields a scalar and is commutative, the vector cross product yields a

3D vector and is not commutative.

5.11.1 Official Linear Algebra Rules
Like the dot product, the term “cross product” comes from the symbol used in the notation: a×b.

We always write the cross symbol, rather than omitting it like we do with scalar multiplication.

The equation for the cross product is given by:

An example:

The cross product enjoys the same level of operator precedence as the dot product; multiplication

occurs before addition and subtraction. When dot product and cross product are used together, the

cross product takes precedence: a·b×c = a·(b×c). Because the dot product returns a scalar, (a·b)×c

is undefined since you cannot take the cross product of a scalar and a vector. The operation a·b×c

is known as the triple product. We will learn some special properties of this computation in Sec-

tion 9.1.

As was mentioned earlier, the vector cross product is not commutative. In fact, it is

anticommutative: a×b = –(b×a). Cross product is not associative, either. In general, (a×b)×c �
a×(b×c). More vector algebra laws concerning the cross product will be given in Section 5.12.

5.11.2 Geometric Interpretation
The cross product yields a vector that is perpendicular to the original two vectors, as illustrated in

Figure 5.13:
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Equation 5.20:
Cross product



In this diagram, vectors a and b are laying in a flat plane with the vector labeled a×b pointing

straight up out of the plane, perpendicular to a and b.

The length of a×b is equal to the product of the magnitudes of a and b and the sine of the angle

between a and b:

As it turns out, this is also equal to the area of the parallelogram formed on two sides by a and b.

Let’s see if we can’t verify why this is true. Examine Figure 5.14 below:

We know from classical geometry that the area of the parallelogram is bh, the product of the base

and the height. We can verify that this is true by “clipping” off a triangle from one end and moving

it to the other end, forming a rectangle, as shown in the following illustration:
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Figure 5.13: Vector cross product

Equation 5.21:
The magnitude
of the cross
product is
related to the
sine of the angle
between the
vectors

Figure 5.14: The cross product and the area of a
parallelogram



The area of a rectangle is given by its length and width. In this case, the area is the product bh.

Since the area of the rectangle is equal to the area of the parallelogram, the area of the parallelo-

gram must also be bh.

Back to Figure 5.14. Let a and b be the lengths of a and b, respectively. Note that sin � = h/a:

If either a or b is parallel, or if a or b is the zero vector, then a×b = 0. The cross product interprets

the zero vector as being parallel to every other vector. Notice that this is different from the dot

product, which interprets the zero vector as being perpendicular to every other vector. (Of course,

it is ill-defined to describe the zero vector as being perpendicular or parallel to any vector, since

the zero vector has no direction.)

We have stated that a×b is perpendicular to a and b. But there are two directions that are per-

pendicular to a and b. Which of these two directions does a×b point? We can determine the

direction of a×b by placing the tail of b at the head of a and examining whether we make a clock-

wise or counterclockwise turn from a to b. In a left-handed coordinate system, a×b points toward

you if the vectors a and b make a clockwise turn from your viewpoint. It points away from you if a

and b make a counterclockwise turn. In a right-handed coordinate system, the exact opposite

occurs. If a and b make a counterclockwise turn, a×b points toward you, and if a and b make a

clockwise turn, a×b points away from you.

The following figures show clockwise and counterclockwise turns:
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Figure 5.15: Area of a parallelogram



Notice that to make the clockwise or counterclockwise determination, we must align the head of a

with the tail of b. Compare this to Figure 5.13, where the tails are aligned. The tail-to-tail align-

ment shown in Figure 5.13 is the correct way to position the vectors to measure the angle between

them. However, to judge clockwise or counterclockwise turns, the vectors should be aligned

head-to-tail, as shown above.

One of the most important uses of the cross product is to create a vector that is perpendicular

to a plane (see Section 12.5), triangle (Section 12.6), or polygon (Section 12.7).

5.12 Linear Algebra Identities
Figure 5.18 lists some useful vector identities. Many of these identities are obvious, but they are

listed here just for the sake of completeness. All of these identities can be derived from the defini-

tions given in earlier sections.

Identity Comments

Commutative property of vector addition.

Definition of vector subtraction.

Associative property of vector addition.

Associative property of scalar multiplication.

Scalar multiplication distributes over vector addition.

Multiplying a vector by a scalar scales the magnitude by a

factor equal to the absolute value of the scalar.
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Figure 5.16: Clockwise turn Figure 5.17: Counterclockwise turn

In a left-handed coordinate system, a×b (not

shown) points toward you. In a right-handed

coordinate system, a×b points away from

you.

In a left-handed coordinate system, a×b

(not shown) points away from you. In a

right-handed coordinate system, a×b

points toward from you.



Identity Comments

The magnitude of a vector is nonnegative.

The Pythagorean theorem applied to vector addition.

Triangle rule of vector addition. (No side can be longer

than the sum of the lengths of the other two sides.)

Commutative property of dot product.

Vector magnitude defined using dot product.

Associative property of scalar multiplication with dot

product.

Dot product distributes over vector addition and

subtraction.

The cross product of any vector with itself is the zero

vector. (Because any vector is parallel with itself.)

Cross product is anti-commutative.

Negating both operands to the cross product results in

the same vector.

Associative property of scalar multiplication with cross

product.

Cross product distributes over vector addition and

subtraction.

The dot product of any vector with the cross product of

that vector and another vector is zero. (The cross

product produces a perpendicular vector, and the dot

product of perpendicular vectors is zero.)

Figure 5.18: Table of vector algebra identities
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5.13 Exercises
1. Evaluate the following vector expressions:

a.

b.

c.

d.

e.

2. Normalize the following vectors:

a.

b.

3. Evaluate the following vector expressions:

a.

b.

4. Compute the distance between the following pairs of points:

a.

b.

5. Evaluate the following vector expressions:

a.

b.

6. Compute the angle between the vectors [1, 2] and [–6, 3].

7. Given the two vectors

separate v into components that are perpendicular and parallel to n. (n is a unit vector.)
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8. Compute the value of

9. A man is boarding a plane. The airline has a rule that no carry-on item may be more than two

feet long, two feet wide, or two feet tall. The man has a very valuable sword that is three feet

long. He is able to carry the sword on board with him. How is he able to do this? What is the

longest possible item that he could carry on?

10. Verify Figure 5.7 on page 56 mathematically.

11. Is the coordinate system used in Figure 5.13 on page 63 a left-handed or right-handed

coordinate system?

12. Assume that Texas is flat. A minute of latitude is approximately 1.15 miles in length. At the

authors’ latitude (see Section 3.2.1), a minute of longitude is approximately 0.97 miles in

length. There are 60 minutes in one degree of latitude or longitude. How far apart are the

authors?
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C h a p t e r 6

A Simple 3D VectorA Simple 3D Vector

Class

The preceding chapters have focused on the theory of 3D math. In this chapter, we’ll turn for the

first time to the practice of 3D math by introducing a C++ class to represent a 3D vector.

6.1 Class Interface
Good class design always begins with the question, “What operations do I want to perform using

this class, and what values do I want to perform them on?” In other words, “What do I want this

class to do?” We know that we will use this class to store the x, y, and z values for a 3D vector. We

also know we will need some basic operations, such as the ability to:

� Access the individual components of the vector (x, y, and z).

� Assign one vector to another.

� Compare two vectors for equality.

From Chapter 5 we know that we will need to perform the following vector operations:

� Set a vector to the zero vector.

� Negate a vector.

� Compute the magnitude of a vector.

� Multiply or divide a vector by a scalar.

� Normalize a vector.
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This chapter puts theory into practice with a simple C++ vector class, Vector3. It is

divided into three main sections.

� Section 6.1 discusses the operations we want to implement in Vector3.

� Section 6.2 contains the complete code listing for Vector3.

� Section 6.3 discusses some of the design decisions embodied in classVector3 (and

all of the other C++ classes in this book).



� Add or subtract two vectors.

� Compute the distance between two points (expressed as vectors).

� Compute the dot product of two vectors.

� Compute the cross product of two vectors.

6.2 Class Vector3 Definition
Below is the complete listing for Vector3.h, which contains the definition of class Vector3:

Listing 6.1: Vector3.h

/////////////////////////////////////////////////////////////////////////////
//
// class Vector3 — a simple 3D vector class
//
/////////////////////////////////////////////////////////////////////////////

class Vector3 {
public:

// Public representation: Not many options here.

float x,y,z;

// Constructors

// Default constructor leaves vector in
// an indeterminate state

Vector3() {}

// Copy constructor

Vector3(const Vector3 &a) : x(a.x), y(a.y), z(a.z) {}

// Construct given three values

Vector3(float nx, float ny, float nz) : x(nx), y(ny), z(nz) {}

// Standard object maintenance

// Assignment. We adhere to C convention and
// return reference to the lvalue

Vector3 &operator =(const Vector3 &a) {
x = a.x; y = a.y; z = a.z;
return *this;

}

// Check for equality

bool operator ==(const Vector3 &a) const {
return x==a.x && y==a.y && z==a.z;

}
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bool operator !=(const Vector3 &a) const {
return x!=a.x || y!=a.y || z!=a.z;

}

// Vector operations

// Set the vector to zero

void zero() { x = y = z = 0.0f; }

// Unary minus returns the negative of the vector

Vector3 operator –() const { return Vector3(–x,–y,–z); }

// Binary + and – add and subtract vectors

Vector3 operator +(const Vector3 &a) const {
return Vector3(x + a.x, y + a.y, z + a.z);

}

Vector3 operator –(const Vector3 &a) const {
return Vector3(x – a.x, y – a.y, z – a.z);

}

// Multiplication and division by scalar

Vector3 operator *(float a) const {
return Vector3(x*a, y*a, z*a);

}

Vector3 operator /(float a) const {
float oneOverA = 1.0f / a; // NOTE: no check for divide by zero here
return Vector3(x*oneOverA, y*oneOverA, z*oneOverA);

}

// Combined assignment operators to conform to
// C notation convention

Vector3 &operator +=(const Vector3 &a) {
x += a.x; y += a.y; z += a.z;
return *this;

}

Vector3 &operator –=(const Vector3 &a) {
x –= a.x; y –= a.y; z –= a.z;
return *this;

}

Vector3 &operator *=(float a) {
x *= a; y *= a; z *= a;
return *this;

}

Vector3 &operator /=(float a) {
float oneOverA = 1.0f / a;
x *= oneOverA; y *= oneOverA; z *= oneOverA;
return *this;

}
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// Normalize the vector

void normalize() {
float magSq = x*x + y*y + z*z;
if (magSq > 0.0f) { // check for divide-by-zero

float oneOverMag = 1.0f / sqrt(magSq);
x *= oneOverMag;
y *= oneOverMag;
z *= oneOverMag;

}
}

// Vector dot product. We overload the standard
// multiplication symbol to do this

float operator *(const Vector3 &a) const {
return x*a.x + y*a.y + z*a.z;

}
};

/////////////////////////////////////////////////////////////////////////////
//
// Nonmember functions
//
/////////////////////////////////////////////////////////////////////////////

// Compute the magnitude of a vector

inline float vectorMag(const Vector3 &a) {
return sqrt(a.x*a.x + a.y*a.y + a.z*a.z);

}

// Compute the cross product of two vectors

inline Vector3 crossProduct(const Vector3 &a, const Vector3 &b) {
return Vector3(

a.y*b.z – a.z*b.y,
a.z*b.x – a.x*b.z,
a.x*b.y – a.y*b.x

);
}

// Scalar on the left multiplication, for symmetry

inline Vector3 operator *(float k, const Vector3 &v) {
return Vector3(k*v.x, k*v.y, k*v.z);

}

// Compute the distance between two points

inline float distance(const Vector3 &a, const Vector3 &b) {
float dx = a.x – b.x;
float dy = a.y – b.y;
float dz = a.z – b.z;
return sqrt(dx*dx + dy*dy + dz*dz);

}

/////////////////////////////////////////////////////////////////////////////
//
// Global variables
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//
/////////////////////////////////////////////////////////////////////////////

// We provide a global zero vector constant

extern const Vector3 kZeroVector;

6.3 Design Decisions
Every person who writes code does it slightly different. In this section, we will discuss a number of

design choices reflected in all of the code in this book, using class Vector3 as an example. We

will also comment on some techniques or options that are not reflected in class Vector3, that we

have seen in code on the Internet or tried ourselves and found to be a bad idea. There is no one

“right” way to write a vector class, but we will offer some advice from our experience.

6.3.1 Floats vs. Doubles
The first major choice that must be made is whether to use floats or doubles in your vector class.

We have chosen to use floats. There are circumstances in which the extra precision provided by

doubles is necessary. For example, if your world is very large, say bigger than 200 miles or so, and

you still need precision down to the inch, then the 24 bits of mantissa in a 32-bit float is not quite

enough. If your world is less than a mile, a 32-bit float is probably quite sufficient, since 24 bits of

mantissa is precise to about the nearest 1/250th of an inch. If you don’t need double precision, you

can make substantial savings in memory, and possibly performance, by using floats.

6.3.2 Operator Overloading
C++ allows overloaded operators. This means that you can define the operation that is performed

when an operator such as “+” is used with objects of your class. You define the behavior in a func-

tion, which is invoked when the operator is used. Aside from the syntax, which seems unusual if

you have not seen it before, an overloaded operator is just like any other function. Overloaded

operators can be member or nonmember functions, they accept parameters, and they can be

expanded inline.

Because vectors are mathematical entities, it makes sense to overload operators to make their

use in code more closely resemble their use on paper. We overload the following operators:

� Vector multiplication and division by a scalar.

� Vector negation.

� Vector addition and subtraction.

� Vector dot product.
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6.3.3 Provide Only the Most Important Operations
It is tempting to add too much to your classes. It is especially tempting to overload too many oper-

ators. After all, you’re going to use this thing everywhere, right? Why not make it do everything

you could want? Before you have used a vector class extensively, you don’t really know what

operations you need on a large scale. But in our opinion (and one of us is a professional game pro-

grammer with over a decade of experience), the operations provided in Listing 6.1 are probably

what you will use in 99% of your code.

One group of operations that is commonly added, but should be avoided, is shorthand for

working with scalars. For example, you may think it would be really handy to have a constructor

that accepts a scalar k and sets all three components to k. But, by creating a nifty little shortcut for

this seldom used operation, you have created all sorts of possibilities for accidental conversions

from scalar to vector. It’s not straightforward. It could cause confusion and programmer error, so

it’s best to avoid it.

Another common technique is to overload the array operator (operator []) or conversion

to float*. This is done so that the components may be accessed by integer index. For a vector

class to use with geometric problems, we access the elements by name (x, y, and z), rather than by

index. However, it may be your preference to be able to access the elements by index. In this case,

you should either make an explicit function or overload the array operator (operator []),

rather than providing operator float*. The array operator can check for array bounds

errors, and it does not introduce the possibility of accidental conversions.

You can imagine all sorts of other operations that could be added, such as extracting the larg-

est or smallest component of the vector, etc. Our advice is to wait to add any function to your

vector class until you actually use them in three different places in the code.

6.3.4 Don’t Overload Too Many Operators
Especially avoid overloading too many operators, unless it is extremely obvious what the opera-

tion does. Otherwise, use a function. As a general programming rule, tedium is preferred over

ambiguity. In other words, preventing accidental errors is more important than saving a few

keystrokes.

In particular, avoid the temptation to overload the following commonly overloaded

operations:

� Cross product. Cross product is used frequently, but not as frequently as dot product, which

is the first reason that dot product has the overloaded operator* and cross product does

not. The other reason is that “*” looks more like a dot than a cross. Since cross product is used

so frequently (and this operator overloading thing is so neat!), it is tempting to overload some

other operator for cross product. Particularly, the “%” operator is appealing, since “%” has the

correct operator precedence and looks somewhat like a cross. No C operator, other than “*”,

signifies “multiplication,” and no operator uses the cross symbol, so there really is no appro-

priate operator to use. An overloaded operator is not going to be that much more “elegant”

than a function call for cross product. However, the overloaded operator will very likely be
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less clear than a function call, especially to another programmer who doesn’t really see the

resemblance between “%” and “×”.

� Component-wise multiplication or (worse) division. If you really want to have this opera-

tion (and our experience is that it is seldom used), then use a nonmember function. Over-

loaded operators for these operations are confusing.

� Relational operators. The tests for equality and inequality are well defined. Either two vec-

tors are identical, or they are not identical. The other relational operators, however, are not

well defined. What does it mean for one vector to be “less than” another? We advise against

attempting to define some “meaningful” behavior, which you will most likely only end up

using in one or two places. (One common “meaningful” behavior is the so-called lexographic

sort, which can be useful for some implementations of computational geometry algorithms.

Even in this case, it’s probably best to have a separate function.)

� Vector magnitude. Again, using an operator for vector magnitude is not straightforward and

should be avoided.

6.3.5 Use Const Member Functions
Use const member functions as much as possible. If you are unfamiliar with the motivation for

const member functions, it’s a way for a function to promise to the caller that, “I won’t modify the

object.” The compiler enforces this promise. This can be a great way to make sure that your code

has no unanticipated side effects. That is, things aren’t getting modified without you knowing.

6.3.6 Use Const Reference Arguments
In addition to const member functions, all of the functions that accept vectors accept a constant

reference (const&) to a vector. Passing an argument by value to a function involves a constructor

call. Passing a const reference allows us to conceptually pass arguments by value, but actually

they are passed by reference (address) and without any constructor calls for speed. In addition, if

the function is not inline, passing a vector by value on the stack requires more space (and thus

more time to push the argument on the stack) than passing by reference.

When we pass a vector variable to a function that accepts a const reference, the address of the

argument is passed directly, just as if we had passed the argument using a pointer. When we pass a

vector expression to a function that accepts a const reference, the compiler generates code to eval-

uate the vector expression into a temporary variable, and then passes the address of the temporary

to the function. So we get the best of both worlds. Conceptually, we get pass-by-value, so we can

pass vector expressions to functions, letting the compiler do the tedious job of creating temporary

variables. Under the hood, the function actually uses pass-by-reference, which is faster.

6.3.7 Member vs. Nonmember Functions
Another design decision reflected in the code is the decision to make certain functions nonmember

functions, as opposed to member functions. A member function is declared in the class definition

and is invoked as a member of the class, with an implicit this pointer as one parameter. (For
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example, the zero() function is a member function.) A nonmember function is an ordinary

function that does not have an implicit this pointer. (For example, the vectorMag() func-

tion.) Many operations can be coded using either a member function or a nonmember function that

accepts a single vector argument. We prefer the nonmember style for most such functions. When

an operation needs to be applied to a vector expression (as opposed to just a vector variable), the

nonmember style looks better. For example:

Listing 6.2: Member vs. nonmember function semantics

class Vector3 {
public:

…

// member function to compute the magnitude

float mag() const;
};

// Nonmember version:

float vectorMag(const Vector3 &a);

…

void foo() {
Vector3 a,b;
float m;

// If computing the length of a vector
// variable, both forms look fine:

m = a.mag();
m = vectorMag(a);

// But when we have a vector expression,
// the member function style looks awkward:

m = (a + b).mag();

// The nonmember version is much easier to read:

m = vectorMag(a + b);
}

We use the nonmember function style for:

� Magnitude

� Cross product

� Distance

The only member functions declared (other than the overloaded operators, which do not suffer

from this “weird syntax” problem) are zero() and normalize(). It is not useful to call these

functions on vector expressions, so the “weird syntax” problem will not occur.
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6.3.8 No Default Initialization
The default constructor does not perform any initialization. If you declare a variable of type

Vector3, you must initialize it. This is the same as the C intrinsic types, such as int and

float. The vector class allocates no resources but can be used in many speed-critical places, so

our preference is to not perform default initialization. It may be your preference to have the default

constructor provide some sort of initialization, the most obvious choice being to zero the vector.

6.3.9 Don’t Use Virtual Functions
We do not use virtual functions in our vector class. There are multiple reasons for this. First, the

ability to “customize” the vector operations is not very useful. Dot product is dot product — it will

always be the same thing.

Second, Vector3 is a speed-critical class. The compiler’s optimizer would not be able to

generate inline expansion of member functions in many cases if virtual functions were used.

Third, using virtual functions necessitates the hidden pointer to the virtual function table. This

pointer must be initialized any time a vector is declared, and it adds 25% to the class size. It is com-

mon to store large arrays of vectors, and all that space for the v-table pointers is inordinately

wasteful in many cases.

Virtual functions just aren’t a good fit for a vector class.

6.3.10 Don’t Use Information Hiding
Information hiding is the practice of declaring member variables in the private or protected sec-

tion, allowing access to those members only through accessor functions. The idea is that

implementation details should be hidden from the users of a class, and the use of the class is

restricted to a limited set of well-defined operations, which are exported by public member func-

tions. Direct member variable access often works contrary to this end.

For example, the user of a string class should not need to know how the string class works

internally or be allowed to manipulate internal members directly. The string operations, such as

assignment, concatenation, substring extraction, etc., should be exported through a set of

well-defined public member functions.

The use of accessor functions also allows the class designed to maintain invariants, or rela-

tionships between member variables which we assume to always be true. (For example, we may

store the length of the string in a member variable for immediate access. In this case, the invariant

is that our length variable contains the correct length of the string. When the string changes, we

must update the length member to maintain the invariant.) Changes to private member variables

can only happen in the member functions of the class. So if a bug violates an invariant, there are a

limited number of functions that need to be checked for the bug.

In most cases, information hiding is a wise decision. However, for a vector class, information

hiding is not appropriate. The representation of a 3D vector is obvious; you store three numbers: x,

y, and z. Functions such as getX() and setX() only clutter the code. In addition, there are no

invariants we need to maintain. Any three numbers could be stored in a vector, so what would we
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check for in our accessor functions? Nothing is gained by information hiding, but simplicity and

efficiency suffer.

In our vector class, all member functions and variables will be public.

6.3.11 Global Zero Vector Constant
We declare a global zero vector constant, which we call kZeroVector. This is handy for pass-

ing a zero vector to a function instead of creating a zero vector on the fly every time with the

constructor call Vector3(0.0f,0.0f,0.0f).

6.3.12 No “point3” Class
We will use the vector class to store 3D “points,” such as the vertices of a triangle mesh, instead of

using, as some people do, a special Point3 class. Section 4.3 established that points and vectors

are mathematically equivalent. So certainly there is not a strict need for a point class. The argu-

ment for having a separate class for points is that points and vectors are conceptually distinct. This

is a somewhat valid argument. However, there is often a fine line between a “point” and a “vector.”

(See Section 4.3.2.) Our experience is that any benefits of the conceptual distinction provided by a

separate Point3 class are vastly outweighed by the problems it creates.

For example, let’s say we have a function that rotates a point or vector about the y-axis by a

certain amount. (We will learn how to use matrices to do this in Section 8.2.2.) This operation is

the same mathematically for points and vectors. However, if we decide to use two different classes

for points and vectors, we are faced with two options:

� We write two versions of our function, one that accepts a Vector3 argument and another

that accepts a Point3 argument.

� We make our function accept type Vector3 and convert arguments of type Point3 when-

ever they are passed to the function. (Or the other way around.)

Both of these scenarios are bad, but let’s examine the second option in more detail. The conversion

between Vector3 and Point3 that takes place can either happen explicitly or implicitly. Let’s

say we make the conversion explicit. This means we will be casting between vectors and points

everywhere. (If you don’t believe us, try it.) If the conversion happens implicitly (i.e., we define a

constructor or a conversion operator), then we can freely assign between points and vectors, and

the benefit of having two distinct classes is largely lost.

There are probably C++ contortions that can be done to avoid many problems like this. The

point is, we are bending over backward just so we can have aPoint3 class. It just isn’t worth it.

Use the same class to store “points” and “vectors.” Whether you actually name your class

“point” or “vector” is up to you.

6.3.13 A Word on Optimization
If you have seen vector classes elsewhere, this vector class may seem very simple in comparison.

Many vector classes on the Internet and other sources are much more complicated, usually for the

sake of “optimization.” There are two reasons to keep our vector class as simple as possible:
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� First, this book is intended to teach you how to program 3D math. All unnecessary complexi-

ties were removed so that there would be as few impediments to your understanding as

possible.

� Second, and more importantly, we have not been convinced that such so-called

“optimizations” actually increase execution performance significantly.

Let’s elaborate just a bit more on this second point. A famous programming rule of thumb states,

“95% of the time is spent in 5% of the code.” In other words, to speed up execution, you must find

the bottleneck and optimize it. Another famous quote related to optimization is, “Premature opti-

mization is the root of all evil.” Optimizing code that isn’t the bottleneck complicates the code

without appreciable benefit.

In the video game industry, performance is critical, and there are frequently times when vector

processing can be an execution bottleneck. In these cases, optimization is necessary and extremely

effective. However, almost invariably the way to get the biggest performance boost is to perform

the operations using a special platform-specific processing unit. Unfortunately, idiosyncrasies of

the vector processing unit (such as alignment restrictions or lack of a dot product operation) fre-

quently make it impossible to design the vector class to take advantage of the vector processing

unit in all situations. A large part of optimizing vector math code is to completely rearrange the

code in order to exploit superscalar architecture, or perform an entire batch of operations in paral-

lel on a separate processor. No amount of tweaking of the vector class can accomplish these

high-level optimizations. Even when optimizing some vector math in an inner loop, hand-tuned

assembly on sequences of vector operations will be much faster than the fastest com-

piler-generated code could possibly be, no matter how well the vector class is “optimized.”

These observations have caused us to divide vector math code (and code in general) into two

categories. The first category contains the majority of code. Not much time is actually spent in this

code, and therefore, optimization will not provide huge performance gains. The second category

is the minority of code in which optimization is actually effective and often necessary. Rear-

ranging the data structures or writing hand-tuned assembly is almost always significantly faster

than compiler-generated code, no matter how well organized the vector class. (Notice that the

above discussion applies to low-level optimization at the assembly instruction level and does not

necessarily apply to higher-level optimizations, such as using better algorithms.)

The bottom line: if you’re seriously concerned about speed, optimizing your vector class will

only speed up code that should be written in assembly. Also, it won’t make it as fast as the assem-

bly would be. It will speed up the code elsewhere, but, unfortunately, not much time is spent in that

code, so the gains will be relatively small. In our opinion, such small gains are not worth the added

complexities to the vector class.

At the same time, “optimizing” a vector class usually results in considerable complications to

the design of the vector class. This extra complexity can take its toll on compile times, your sanity,

and (depending on how the optimizations were written) the aesthetic quality of code written using

the vector class.

There are two specific optimizations that we should comment on in more detail. The first is

fixed-point math, and the second is returning references to temporary variables.
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Back in “the old days” (a few years ago), floating-point math was considerably slower than

integer math on consumer systems. Most notably, floating-point multiplication was slow. Pro-

grammers used fixed-point math in order to circumvent this problem. If you are unfamiliar with

fixed-point math, the basic idea behind the technique is that a number is stored with a fixed num-

ber of fractional bits. For example, there might be eight fractional bits, which would mean a

number would be stored times 256. So the number 3.25 would be stored as 3.25×256 = 832.

Except in a few special cases, fixed-point math is an optimization technique of the past. Today’s

processors not only can perform floating math in the same number of cycles as integer math, but

they have dedicated vector processors to perform floating-point vector math. Use floating-point

math in your vector class.

In our vector class, many of the vector operations (such as addition, subtraction, and multipli-

cation by a scalar) have been coded to return an actual object of type Vector3. Depending on the

compiler, this can be implemented in a variety of different ways. At the very least, returning a class

object always results in at least one constructor call (according to the C++ standard). We have tried

to code our functions with the constructor call in the actual return statement so that the com-

piler doesn’t generate any “extra” constructor calls. Unfortunately, it is true that returning a class

object can have performance implications.

However, beware of a special optimization “trick” that is often used to avoid these constructor

calls. The basic idea is to maintain a pool of temporary class objects. Instead of returning an actual

class object, the result of the function is computed into a temporary object, and then a reference to

this temporary is returned. It usually looks something like this:

// Maintain a pool of temporary objects

int nextTemp;
Vector3 tempList[256];

// Get a pointer to the next temporary object

inline Vector3 *nextTempVector() {

// Advance pointer and loop it

nextTemp = (nextTemp + 1) & 255;

// Return pointer to the slot

return &tempList[nextTemp];
}

// Now rather than returning an actual class object,
// we can return a reference to a temporary. For example,
// the addition operator could be implemented like this:

const Vector3 &operator +(const Vector3 &a, const Vector3 &b) {

// Snag a temp.

Vector3 *result = nextTempVector();

// Compute the result.
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result->x = a.x + b.x;
result->y = a.y + b.y;
result->z = a.z + b.z;

// Return reference. No constructor calls!

return *result;
}

// Now we can add and subtract vectors using the same
// natural syntax, just as before. Vector expressions
// with multiple additions and subtractions work, provided
// that no more than 256 temporaries are used in the same
// expression. (A very reasonable restriction.)

Vector3 a, b;
Vector3 c = a + b;

At first glance, this appears to be a great idea. The overhead of maintaining the index variable is

usually less than the compiler’s overhead of copy constructors and returning temporary objects.

Overall, performance is increased (slightly).

There’s just one problem. Our simple system of using a looping index variable assumes a

great deal about the lifetime of temporary objects. In other words, we assume that when we create

a temporary object, we won’t need that object again by the time 256 more temporaries have been

created. For simple vector expressions, this is usually not a problem. The problem comes when we

pass these references into functions. A temporary passed into a function should not expire before

the completion of the function. For example:

// A set of vertices of a triangle mesh

void bias(
const Vector3 inputList[],
int n,
const Vector3 &offset,
Vector3 outputList[]

) {
for (int i = 0 ; i < n ; ++i) {

outputList[i] = intputList[i] + offset;
}

}

// Elsewhere in the code...

void foo() {

const int n = 512;
Vector3 *before = new Vector3[n];
Vector3 *after = new Vector3[n];

// … (Compute the bounding box into min and max)

Vector3 min, max;

// Let’s recenter the model about its centroid
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// YIKES! But this doesn’t work because our temporary
// (min + max) / 2.0f gets trampled inside the function!

bias(before, n, (min + max) / 2.0f, after);

// ...
}

Of course, this example is a bit contrived in order to illustrate the problem in as few lines of code

as possible, but certainly the problem does arise in practice. No matter how big we make our pool,

we are in danger of having a bug, since even the most simple function may result in millions of

temporary objects being created. The basic problem is that evaluation of the lifespan of a tempo-

rary must be done at compile time (by the compiler), not at run time.

Bottom line: keep your classes simple. In the very few cases where the overhead of construc-

tor calls and the like is a significant problem, write the code in hand-tuned C++ or assembly. Also,

you can write your function to accept a pointer where the return value should be placed, rather than

actually returning a class object. However, don’t complicate 100% of the code in order to optimize

2% of it.
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C h a p t e r 7

Introduction toIntroduction to

Matrices

Matrices are of fundamental importance in 3D math, where they are primarily used to describe the

relationship between two coordinate spaces. They do this by defining a computation to transform

vectors from one coordinate space to another.

7.1 Matrix — A Mathematical Definition
In linear algebra, a matrix is a rectangular grid of numbers arranged into rows and columns.

Recalling our earlier definition of vector as a one-dimensional array of numbers, a matrix may

likewise be defined as a two-dimensional array of numbers. (The two in “two-dimensional array”

comes from the fact that there are rows and columns, and it should not be confused with 2D vec-

tors or matrices.) A vector is an array of scalars, and a matrix is an array of vectors.

7.1.1 Matrix Dimensions and Notation
Just as we defined the dimension of a vector by counting how many numbers it contained, we will

define the size of a matrix by counting how many rows and columns it contains. An r×c matrix

(read “r by c”) has r rows and c columns. Here is an example of a 4×3 matrix:
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This chapter introduces the theory and application of matrices. It is divided into two main

sections.

� Section 7.1 discusses some of the basic properties and operations of matrices strictly

from a mathematical perspective. (More matrix operations are discussed in Chapter

9.)

� Section 7.2 explains how to interpret these properties and operations geometrically.



This 4×3 matrix illustrates the standard notation for writing matrices. We arrange the numbers in a

grid, surrounded by square brackets. Note that other authors surround the grid of numbers with

parentheses rather than brackets. Other authors use straight vertical lines. We will reserve this

notation for an entirely separate concept related to matrices, the determinant of a matrix. (We will

discuss determinants in Section 9.1.)

As we mentioned in Section 5.2, we will represent a matrix variable with uppercase letters in

boldface, for example: M, A, R. When we wish to refer to the individual elements within a matrix,

we use subscript notation, usually with the corresponding lowercase letter in italics. This is shown

below for a 3×3 matrix:

mij denotes the element in M at row i and column j. Matrices use 1-based indices, so the first row

and column are numbered one. For example, m12 (read “m one two,” not “m twelve”) is the ele-

ment in the first row, second column. Notice that this is different from the C programming

language, which uses 0-based array indices. A matrix does not have a column 0 or row 0. This dif-

ference in indexing can cause some confusion if using actual C arrays to define matrices. (This is

one reason we won’t use arrays to define matrices in our code.)

7.1.2 Square Matrices
Matrices with the same number of rows as columns are called square matrices and are of particular

importance. In this book, we will be interested in 2×2, 3×3, and 4×4 matrices.

The diagonal elements of a square matrix are those elements where the row and column index

are the same. For example, the diagonal elements of the 3×3 matrix M are m11, m22, and m33. The

other elements are non-diagonal elements. The diagonal elements form the diagonal of the

matrix:

If all non-diagonal elements in a matrix are zero, then the matrix is a diagonal matrix. For

example:
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A special diagonal matrix is the identity matrix. The identity matrix of dimension n, denoted In, is

the n×n matrix with 1’s on the diagonal and 0’s elsewhere. For example, the 3×3 identity matrix is:

Often, the context will make the dimension of the identity matrix used in a particular situation

clear. In these cases, we will omit the subscript and simply refer to the identity matrix as I.

The identity matrix is special because it is the multiplicative identity element for matrices.

(We will learn about matrix multiplication in Section 7.1.6.) The basic idea is that if you multiply a

matrix by the identity matrix, you get the original matrix. So, in some ways, the identity matrix is

for matrices what the number 1 is for scalars.

7.1.3 Vectors as Matrices
Matrices may have any positive number of rows and columns, including one. We have already

encountered matrices with one row or one column: vectors! A vector of dimension n can be

viewed either as a 1×n matrix or as an n×1 matrix. A 1×n matrix is known as a row vector, and an

n×1 matrix is known as a column vector. Row vectors are written horizontally, and column vectors

are written vertically:

Until now, we have used the two notations interchangeably. Indeed, geometrically they are identi-

cal, and in most cases the distinction is not important. However, for reasons that will soon become

apparent, when we use vectors with matrices, we must be very clear about whether our vector is a

row or column vector.

7.1.4 Transposition
Consider a matrix M with dimensions r×c. The transpose of M (denoted M

T) is the c×r matrix

where the columns are formed from the rows of M. In other words, M
T

ij=Mji. This “flips” the

matrix diagonally. Equation 7.2 gives two examples of transposing matrices:
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Equation 7.1:
The 3D identity
matrix

Equation 7.2:
Transposing
matrices



For vectors, transposition turns row vectors into column vectors and vice versa:

Transposition notation is often used to write column vectors inline in a paragraph, like this:

[1, 2, 3]T.

There are two fairly obvious, but significant, observations concerning matrix transposition:

� (MT)T = M for a matrix M of any dimension. In other words, if we transpose a matrix, and then

transpose it again, we get the original matrix. This rule also applies to vectors.

� D
T = D for any diagonal matrix D, including the identity matrix I.

7.1.5 Multiplying a Matrix with a Scalar
A matrix M may be multiplied with a scalar k, resulting in a matrix of the same dimension as M.

We denote matrix multiplication with a scalar by placing the scalar and the matrix side by side,

usually with the scalar on the left. No multiplication symbol is necessary. The multiplication takes

place in the straightforward fashion; each element in the resulting matrix kM is the product of k

and the corresponding element in M. For example:

7.1.6 Multiplying Two Matrices
In certain situations, we can take the product of two matrices. The rules that govern when matrix

multiplication is allowed, and how the result is computed, may at first seem bizarre. An r×n matrix

A may be multiplied by an n×c matrix B. The result, denoted AB, is an r×c matrix.

For example, assume that A is a 4×2 matrix, and B is a 2×5 matrix. Then AB is a 4×5 matrix:
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Transposing
converts
between row
and column
vectors

Equation 7.4:
Multiplying a
4×3 matrix
by a scalar



If the number of columns in A does not match the number of rows in B, then the multiplication AB

is undefined.

Matrix multiplication is computed as follows: let the matrix C be the r×c product AB of the

r×n matrix A with the n×c matrix B. Then each element cij is equal to the vector dot product of row

i of A with column j of B. More formally:

(See Appendix A if you don’t know what the symbol that looks like a “Z” means.)

This sounds complicated, but there is a simple pattern. For each element cij in the result, locate

row i in A and column j in B. Multiply the corresponding elements of the row and column, and

sum the products. (This is equivalent to the dot product of row i in A with column j in B.) cij is

equal to this sum.

Let’s look at an example. Below we show how to compute c24:

The element in the second row and fourth column of C is equal to the dot product of the second

row of A with the fourth column of B.

Another way to help remember the pattern is to write B above C, as shown below. This aligns

the proper row from A with a column from B for each element in the result C:

For geometric applications, we will be particularly interested in multiplying square matrices —

the 2×2 and 3×3 cases are especially important to us. Equation 7.5 gives the complete equation for

2×2 matrix multiplication:
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Let’s look at a 2×2 example with some real numbers:

Now for the 3×3 case:

And a 3×3 example with some real numbers:

Beginning in Section 9.4, we will also use 4×4 matrices.

A few interesting notes concerning matrix multiplication:

� Multiplying any matrix M by a square matrix S on either side results in a matrix of the same

size as M, provided that the sizes of the matrices are such that the multiplication is allowed. If

S is the identity matrix I, then the result is the original matrix M:
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(That’s the reason it’s called the identity matrix!)

� Matrix multiplication is not commutative:

� Matrix multiplication is associative:

(Assuming that the sizes of A, B, and C are such that multiplication is allowed, note that if

(AB)C is defined, then A(BC) is always defined as well.) The associativity of matrix mul-

tiplication extends to multiple matrices. For example:

It is interesting to note that although all parenthesizations compute the correct result, some

groupings require fewer scalar multiplications than others. The problem of finding the

parenthesization that minimizes the number of scalar multiplications is known as the

matrix chain problem.

� Matrix multiplication also associates with multiplication by a scalar or a vector:

� Transposing the product of two matrices is the same as taking the product of their transposes

in reverse order:

This can be extended to more than two matrices:

7.1.7 Multiplying a Vector and a Matrix
Since a vector can be considered a matrix with one row or one column, we can multiply a vector

and a matrix using the rules discussed in the previous section. It becomes very important whether

we are using row or column vectors. Below we show how 3D row and column vectors may be pre-

or post-multiplied by a 3×3 matrix:
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Equation 7.7:
Multiplying 3D
row and
column vectors
with a 3×3
matrix



As you can see, when we multiply a row vector on the left by a matrix on the right, the result is a

row vector. When we multiply a matrix on the left by a column vector on the right, the result is a

column vector. The other two combinations are not allowed; you cannot multiply a matrix on the

left by a row vector on the right, nor can you multiply a column vector on the left by a matrix on the

right.

There are three interesting observations concerning vector-times-matrix multiplication:

� Each element in the resulting vector is the dot product of the original vector with a single row

or column from the matrix.

� Each element in the matrix determines how much “weight” a particular element in the input

vector contributes to an element in the output vector. For example, m11 controls how much of

the input x value goes toward the output x value.

� Vector-times-matrix multiplication distributes over vector addition. That is, for vectors v and

w and matrices M:

7.1.8 Row vs. Column Vectors
In this section, we will explain why the distinction between row and column vectors is significant

and give our rationale for preferring row vectors. In Equation 7.7, when we multiply a row vector

on the left with a matrix on the right, we get the row vector:

Compare that with the result when a column vector on the right is multiplied by a matrix on the

left:

Disregarding the fact that one is a row vector and the other is a column vector, the values for the

components of the vector are not the same! This is why the distinction between row and column

vectors is so important.

In this book, we will use column vectors only when the distinction between row and column

vectors is not important. If the distinction is at all relevant (for example, if vectors are used in con-

junction with matrices), then we will use row vectors.

There are several reasons for using row vectors instead of column vectors:

� Row vectors format nicely when they are used inline in a paragraph. For example, the row

vector [1, 2, 3] fits nicely in this sentence. But notice how the column vector
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causes formatting problems. The same sorts of problems occur in source code as well.

Some authors use transposed row vectors to write column vectors inline in their text, like

[4, 5, 6]T. Using row vectors from the beginning avoids all this weirdness.

� More importantly, when we discuss how matrix multiplication can be used to perform coordi-

nate space transformations, it will be convenient for the vector to be on the left and the matrix

on the right. In this way, the transformation will read like a sentence. This is especially impor-

tant when more than one transformation takes place. For example, if we wish to transform a

vector v by the matrices A, B, and C, in that order, we write vABC. Notice that the matrices

are listed in order of transformation from left to right. If column vectors are used, then the

matrix is on the left, and the transformations will occur in order from right to left. In this case,

we would write CBAv. We will discuss concatenation of multiple transformation matrices in

detail in Section 8.7.

� DirectX uses row vectors.

The arguments in favor of column vectors are:

� Column vectors usually format nicer in equations. (Examine Equation 7.7 on page 89.)

� Linear algebra textbooks typically use column vectors.

� Several famous computer graphics “bibles” use column vectors. (For example, [8], [17].)

� OpenGL uses column vectors.

Different authors use different conventions. When you use someone else’s equation or source

code, be very careful that you know whether they are using row or column vectors. If a book uses

column vectors, its equations for matrices will be transposed compared to the equations we pres-

ent in this book. In addition, when column vectors are used, vectors are pre-multiplied by a matrix,

as opposed to the convention chosen in this book, to multiply row vectors by a matrix on the right.

This causes the order of multiplication to be reversed between the two styles when multiple matri-

ces and vectors are multiplied together. For example, the multiplication vABC is valid only with

row vectors. The corresponding multiplication would be written CBAv if column vectors were

used.

Transposition-type mistakes like this can be a common source of frustration when program-

ming 3D math. Luckily, the C++ matrix classes we will present in Chapter 11 are designed so that

direct access to the individual matrix elements is seldom needed. Thus, the frequency of these

types of errors is minimized.

7.2 Matrix — A Geometric Interpretation
In general, a square matrix can describe any linear transformation. In Section 8.8.1, we will pro-

vide a complete definition of linear transformation. For now, it will suffice to say that a linear

transformation preserves straight and parallel lines, and there is no translation — the origin does

not move. While a linear transformation preserves straight lines, other properties of the geometry,

such as lengths, angles, areas, and volumes, are possibly altered by the transformation. In a
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non-technical sense, a linear transformation may “stretch” the coordinate space, but it doesn’t

“curve” or “warp” it. This is a very useful set of transformations:

� Rotation

� Scale

� Orthographic projection

� Reflection

� Shearing

Chapter 8 discusses each of these transformations in detail. For now, we will attempt to gain some

understanding of the relationship between a particular matrix and the transform it represents.

7.2.1 How Does a Matrix Transform Vectors?
In Section 4.2.4, we discussed how a vector may be interpreted geometrically as a sequence of axi-

ally-aligned displacements. For example, the vector [1, –3, 4] can be interpreted as a displacement

of [1, 0, 0], followed by a displacement of [0, –3, 0], followed by a displacement of [0, 0, 4]. Sec-

tion 5.8.2 described how this sequence of displacements can be interpreted as a sum of vectors

according to the triangle rule:

In general, for any vector v, we can write v in “expanded” form:

Let’s rewrite this expression in a slightly different form:

Notice that the unit vectors on the right-hand side are x-, y-, and z-axes. We have just expressed

mathematically a concept we established in Section 4.2.3: each coordinate of a vector specifies the

signed displacement parallel to corresponding axes.

Let’s rewrite the sum one more time. This time, we will define the vectors p, q, and r to be unit

vectors pointing in the +x, +y, and +z, directions, respectively:
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Now we have expressed the vector v as a linear combination of the vectors p, q, and r. The vectors

p, q, and r are known as basis vectors. We are accustomed to using the cardinal axes as basis vec-

tors, but, in fact, a coordinate space may be defined using any three vectors, provided the three

vectors are linearly independent (which basically means that they don’t lie in a plane). If we con-

struct a 3×3 matrix M using p, q, and r as the rows of the matrix, we get:

Multiplying a vector by this matrix, we get:

This is the same as our original equation for computing v after transformation. We have discov-

ered the key idea that:

If we interpret the rows of a matrix as the basis vectors of a coordinate space, then

multiplication by the matrix performs a coordinate space transformation. If aM=b,

we say that M transformed a to b.

From this point forward, the terms transformation and multiplication will be largely synonymous.

The bottom line is that there’s nothing especially magical about matrices. They simply pro-

vide a compact way to represent the mathematical operations required to perform a coordinate

space transformation. Furthermore, using linear algebra to manipulate matrices is a convenient

way to take simple transformations and derive more complicated transformations. We will investi-

gate this idea in Section 8.7.

7.2.2 What Does a Matrix Look Like?
“Unfortunately, no one can be told what the matrix is — you have to see it for yourself.” This is not

only a line from a great movie, it’s true for linear algebra matrices as well. Until you develop an

ability to visualize a matrix, it is just nine numbers in a box. We have stated that a matrix repre-

sents a coordinate space transformation. So when we visualize the matrix, we are visualizing the

transformation, the new coordinate system. But what does this transformation look like? What is

the relationship between a particular 3D transformation (i.e., rotation, shearing, etc.) and those

nine numbers inside a 3×3 matrix? How can we construct a matrix to perform a given transform

(other than by copying the equations blindly out of a book)?

To begin to answer these questions, let’s examine what happens when the basis vectors

[1, 0, 0], [0, 1, 0], and [0, 0, 1] are multiplied by an arbitrary matrix M:
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As you can see, when we multiply the basis vector [1, 0, 0] by M, the resulting vector is the first

row of M. Similar statements can be made regarding the other two rows. This is a critical

observation:

Each row of a matrix can be interpreted as a basis vector after transformation.

This is the same basic idea that we discovered in the previous section, only we have come at it

from a slightly different angle. This very powerful concept has two important implications:

� First, we have a simple way to take any matrix and visualize what sort of transformation the

matrix represents. Later in this section we will give examples of how to do this in 2D and 3D.

� Second, we have the ability to make the reverse construction — given a desired transforma-

tion (i.e. rotation, scale, etc.). We can derive a matrix which represents that transformation.

All we have to do is figure out what the transformation does to basis vectors and fill in those

transformed basis vectors into the rows of a matrix. This trick is used extensively in Chapter

8, where we will discuss the fundamental transformations and show how to construct matrices

to perform those transformations.

Let’s look at a couple of examples. First we will examine a 2D example to get ourselves warmed

up and then a full-fledged 3D example. Examine the following 2×2 matrix:

What sort of transformation does this matrix represent? First, let’s extract the basis vectors p and q

from the rows of the matrix:

Figure 7.1 shows these vectors in the Cartesian plane, along with the “original” basis vectors (the

x-axis and y-axis), for reference:
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As Figure 7.1 illustrates, the +x basis vector is transformed into the vector labeled p above, and the

y basis vector is transformed into the vector labeled q. So one way to visualize a matrix in 2D is to

visualize the “L” formed by the row vectors. In this example, we can easily see that part of the

transformation represented by M is a counterclockwise rotation of about 26�.

Of course, all vectors are affected by a linear transformation, not just the basis vectors. While

we can get a very good idea what this transformation looks like from the “L,” we can gain further

insight on the effect the transformation has on the rest of the vectors by completing the 2D paral-

lelogram formed by the basis vectors:
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Figure 7.1: Visualizing the row vectors of a 2D
transform matrix

Figure 7.2: The 2D parallelogram formed by the rows
of a matrix



This parallelogram is also known as a “skew box.” Drawing an object inside the box can also help:

It is clear that our example matrix M not only rotates the coordinate space, it also scales it.

We can extend the techniques we used to visualize 2D transformations into 3D. In 2D, we had

two basis vectors that formed an “L.” In 3D, we have three basis vectors, and they form a “tripod.”

First, let’s show an object before transformation. Figure 7.4 shows a teapot, a unit cube, and the

basis vectors in the “identity” position:
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Figure 7.3: Drawing an object inside the box helps visualize the transformation

Figure 7.4: Teapot, unit cube, and basis vectors
before transformation



(In order to avoid cluttering up the diagram, we have not labeled the +z basis vector [0,0,1], which

is partially obscured by the teapot and cube.)

Now consider the 3D transformation matrix below:

Extracting the basis vectors from the rows of the matrix, we can visualize the transformation rep-

resented by this matrix. The transformed basis vectors, cube, and teapot are shown below:

As you can see, the transformation consists of a clockwise rotation about the z-axis by about 45°

and a non-uniform scale that makes the teapot “taller” than it was originally. Notice that the +z

basis vector was unaltered by the transformation because the third row of the matrix is [0,0,1].

7.2.3 Summary
Before we move on, let’s review the key concepts of Section 7.2:

� The rows of a square matrix can be interpreted as the basis vectors of a coordinate space.

� To transform a vector from the original coordinate space to the new coordinate space, we mul-

tiply the vector by the matrix.

� The transformation from the original coordinate space to the coordinate space defined by

these basis vectors is a linear transformation. A linear transformation preserves straight lines,

and parallel lines remain parallel. However, angles, lengths, areas, and volumes may be

altered after transformation.

� Multiplying the zero vector by any square matrix results in the zero vector. Therefore, the lin-

ear transformation represented by a square matrix has the same origin as the original coordi-

nate space. The transformation does not contain translation.
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Figure 7.5: Teapot, unit cube, and basis vectors
after transformation
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� We can visualize a matrix by visualizing the basis vectors of the coordinate space after trans-

formation. These basis vectors form an “L” in 2D and a tripod in 3D. Using a box or auxiliary

object also helps in visualization.

7.3 Exercises
1. Use the following matrices:

a. For each matrix A through F above, give the dimensions of the matrix and identify the

matrix as square and/or diagonal.

b. Determine if the following matrix multiplications are allowed, and if so, give the

dimensions of the resulting matrix.

� DA

� AD

� BC

� AF

� ETB

� DFA

c. Compute the following transpositions:

� A
T

� E
T

� B
T

2. Compute the following products:

a.

b.
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3. Manipulate the following matrix product to remove the parentheses:

4. What type of transformation is represented by the following 2D matrix?

Chapter 7: Introduction to Matrices 99





C h a p t e r 8

Matrices and LinearMatrices and Linear

Transformations

In Chapter 7, we investigated some of the basic mathematical properties of matrices. We also

developed a geometric understanding of matrices and their relationship to coordinate space trans-

formations in general. This chapter discusses this relationship between matrices and linear

transformations in more detail.

To be more specific, this chapter is concerned with expressing linear transformations in 3D

using 3×3 matrices. Linear transformations were introduced in Section 7.2. Recall that one impor-

tant property of linear transformations is that they do not contain translation. A transformation

that contains translation is known as an affine transformation. Affine transformations in 3D cannot

be implemented using 3×3 matrices. We will see a formal definition of affine transformations in

Section 8.8.2, and we will learn how to use 4×4 matrices to represent affine transformations in

Section 9.4.3.
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This chapter discusses the implementation of linear transformations using matrices. It is

divided into eight sections.

� Section 8.1 describes the relationship between transforming an object and transform-

ing the coordinate space used to describe the object.

� Sections 8.2 through 8.6 describe the primitive linear transformations of rotation,

scaling, orthographic projection, reflection, and shearing, respectively. For each

transformation, examples and equations are given in 2D and 3D.

� Section 8.7 shows how a sequence of primitive transformations may be combined

using matrix multiplication to form a more complicated transformation.

� Section 8.8 discusses various interesting categories of transformations, including

linear, affine, invertible, angle-preserving, orthogonal, and rigid body transforms.



8.1 Transforming an Object vs.
Transforming the Coordinate Space
Before we can talk about transformations, we must be very precise about exactly what we are

transforming. We talked briefly about the relationship between transforming objects and trans-

forming coordinate spaces in Section 3.5. Let’s take a closer look now.

Consider the 2D example of “rotating an object clockwise 20�.” When transforming an

object, we mean that we are transforming the points of the object. These points move to a new

position, and we use the same coordinate system to express the location of the points before and

after transformation. Figure 8.1 illustrates this graphically.

Compare that with the concept of transforming the coordinate space. When we rotate the coordi-

nate space, the points of the object do not actually move; we are just expressing their location

using a different coordinate space, as illustrated in Figure 8.2.
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Figure 8.1: Rotating an object clockwise 20�



In a few minutes, we will show how the two types of transformations are, in a sense, equivalent.

For now, let’s discuss the conceptual merits of each.

The utility of transforming the object is fairly obvious. For example, in order to render the car,

it will be necessary to transform the points from the object space of the car into world space, and

then into camera space.

But why would we ever transform the coordinate space? Looking at Figure 8.3, it doesn’t

seem like there are many interesting things that we can accomplish by rotating the coordinate

space into this awkward position. However, by examining Figure 8.3, we see how rotating the

coordinate space can be put to good use.
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Figure 8.2: Rotating a coordinate space clockwise 20�

Figure 8.3: A useful example of rotating a coordinate space



In this figure, we have introduced a rifle that is firing a bullet at the car. As indicated by the

coordinate space on the left, we would normally begin by knowing about the gun and the trajec-

tory of the bullet in world space. Now, imagine transforming the coordinate space in line with the

car’s object space while keeping the car, the gun, and the trajectory of the bullet still. Now we

know the position of the gun and the trajectory of the bullet in the object space of the car, and we

could perform intersection tests to see if and where the bullet would hit the car.

Of course, we could just as easily have transformed the points of the car into world space and

performed the test in world space, but that would be much slower since the car is probably mod-

eled using many vertices and triangles, and there is only one gun. For now, don’t worry about the

details of actually performing the transformations; that’s what the remainder of this chapter is for.

Just remember that we can transform an object, or we can transform a coordinate space. Some-

times one or the other is more appropriate.

It is useful for us to maintain a conceptual distinction and to think about transforming the

object in some cases and transforming the coordinate space in other cases. However, the two oper-

ations are actually equivalent. Transforming an object by a certain amount is equivalent to

transforming the coordinate space by the opposite amount.

For example, let’s take the diagram from the right-hand side of Figure 8.2, which shows the

coordinate space rotated clockwise 20�. We will rotate the entire diagram (the coordinate space

and the car) so that the coordinate space is back to the “standard” orientation on the page. Since we

are rotating the entire diagram, we are merely looking at things from a different perspective, and

we are not changing the relationship between the car and the coordinate space.

Notice that this is the same as if we had started with the original diagram and rotated the car coun-

terclockwise 20�. So rotating the coordinate space clockwise 20� is the same as rotating the object

counterclockwise 20�. In general, transforming the geometry of an object is equivalent to trans-

forming the coordinate space used to describe the geometry of the object by the exact opposite

amount.
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Figure 8.4: Rotating the coordinate space is the same as rotating the object by the opposite amount



When multiple transformations are involved, we perform the transformations in the opposite

order. For example, if we rotate the object clockwise 20� and then scale it by 200%, this is equiva-

lent to scaling the coordinate space by 50% and then rotating the coordinate space

counterclockwise 20�. We will discuss how to combine multiple transformations in Section 8.7.

The following sections present equations for constructing matrices to perform various trans-

formations. These discussions will assume the perspective that the object is being transformed and

the coordinate space remains stationary. Remember that we can always transform the coordinate

space by transforming the object by the opposite amount.

8.2 Rotation
We have already seen general examples of rotation matrices. Now let’s develop a more rigorous

definition.

8.2.1 Rotation in 2D
In 2D, we are restricted to rotation about a point. Since we are not considering translation at the

moment, we will restrict our discussion even further to rotation about the origin. A 2D rotation

about the origin has only one parameter, the angle �, which defines the amount of rotation. Coun-

terclockwise rotation is usually (but not always) considered positive, and clockwise rotation is

considered negative. Figure 8.5 shows how the basis vectors p and q are rotated about the origin,

resulting in the new basis vectors p' and q':

Now that we know the values of the basis vectors after rotation, we can build our matrix:
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Figure 8.5: Rotation about the origin in 2D

Equation 8.1:
2D rotation
matrix



8.2.2 3D Rotation about Cardinal Axes
In 3D, rotation occurs about an axis rather than a point. (In this case, the term axis refers to a line

about which something rotates, and it does not necessarily have to be one of the cardinal x, y, or z

axes.) Again, since we are not considering translation, we will limit the discussion to rotation

about an axis that passes through the origin.

When we rotate about an axis by an amout �, we need to know which way is considered “posi-

tive” and which way is considered “negative.” The standard way to do this in a left-handed

coordinate system (like the coordinate system used in this book) is called the left-hand rule. First,

we must define which way our axis points. Of course, the axis of rotation is theoretically infinite in

length, but we still consider it having a positive and negative end, just like the standard cardinal

axes that define our coordinate space. The left-hand rule works like this: put your left hand in the

“thumbs up” position, with your thumb pointing toward the positive end of the axis of rotation.

Positive rotation about the axis of rotation is in the direction that your fingers are curled. This is

illustrated below:

If you are using a right-handed coordinate system, then a similar rule applies, using your right

hand instead of your left:
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Figure 8.6: The left-hand rule defines positive rotation in a
left-handed coordinate system



Figure 8.8 shows an alternative definition of positive rotation:

Left-handed coordinate system Right-handed coordinate system

Viewed from Positive

rotation

Negative

rotation

Positive

rotation

Negative

rotation

The negative end of the

axis, looking toward the

positive end of the axis

Counter-

clockwise

Clockwise Clockwise Counter-

clockwise

The positive end of the

axis, looking toward the

negative end of the axis

Clockwise Counter-

clockwise

Counter-

clockwise

Clockwise

Figure 8.8: Positive and negative rotation about an axis

The most common type of rotation we will perform is a simple rotation about one of the cardinal

axes. Let’s start with rotation about the x-axis, shown in Figure 8.9:
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Figure 8.7: The right-hand rule defines positive rotation in a
right-handed coordinate system



After constructing a matrix from the rotated basis vectors, we have:

Rotation about the y-axis is similar:

The matrix to rotate about the y-axis:
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Figure 8.9: Rotating about the x-axis in 3D

Equation 8.2:
3D matrix to
rotate about
the x-axis

Figure 8.10: Rotating about the y-axis in 3D

Equation 8.3:
3D matrix to
rotate about
the y-axis
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Finally, rotating about the z-axis:

8.2.3 3D Rotation about an Arbitrary Axis
We can also rotate about an arbitrary axis in 3D, provided of course that the axis passes through the

origin, since we are not considering translation at the moment. This is more complicated and less

common than rotating about a cardinal axis. The axis will be defined by a unit vector n. As before,

we will define � to be the amount of rotation about the axis.

Let’s derive a matrix to rotate about n by the angle �. In other words, we wish to derive the

matrix R(n, �) such that

where v' is the vector v after rotating about n. Let us first see if we can express v' in terms of v, n,

and �. The basic idea is to solve the problem in the plane perpendicular to n, which is a much sim-

pler 2D problem. To do this, we will separate v into two values, v|| and v�, which are parallel and

perpendicular to n, respectively, such that v = v|| + v�. (We learned the math for this in Section

5.10.3.) Since v|| is parallel to n, it will not be affected by the rotation about n. So if we can rotate

v� about n to compute v'�, then we can compute v' = v|| + v'�. To compute v'�, we will construct the

vectors v||, v�, and an intermediate vector w, according to Figure 8.12.
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Figure 8.11: Rotating about the z-axis in 3D

Equation 8.4:
3D matrix to
rotate about
the z-axis



The diagram above illustrates the following vectors:

� v|| is the portion of v that is parallel to n. Another way to say this is that v|| is the value of v pro-

jected onto n. This can be computed by (v·n)n.

� v� is the portion of v that is perpendicular to n. Since v = v|| + v�, v� can be computed by v – v||.

v� is the result of projecting v onto the plane perpendicular to n.

� w is a vector that is mutually perpendicular to v|| and v�, and it has the same length as v�. w and

v� lie in the plane perpendicular to n. w is the result of rotating v� about n by 90°. w can be

computed by n×v�.

Now we can see that the portion of v' perpendicular to n is given by:

Substituting for v� and w:
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Figure 8.12: Rotating a vector about an arbitrary axis



Substituting for v', we have:

Now that we have expressed v' in terms of v, n, and �, we can compute what the basis vectors are

after transformation and construct our matrix. We’ll work through the first basis vector:

The derivation of the other two basis vectors is similar and produces the following results:

Note: We used column vectors above strictly so that the equations would format nicely.

Constructing the matrix from these basis vectors:
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Equation 8.5:
3D matrix to
rotate about an
arbitrary axis



8.3 Scale
We can scale an object to make it proportionally bigger or smaller by a factor of k. If we apply the

same scale the same in every direction, “dilating” the object about the origin, we are performing a

uniform scale. Uniform scale preserves angles and proportions. Lengths increase or decrease uni-

formly by a factor of k, areas by a factor of k2, and volumes (in 3D) by a factor of k3.

If we wish to “stretch” or “squash” the object, we can apply different scale factors in different

directions, resulting in non-uniform scale. Non-uniform scale does not preserve angles. Lengths,

areas, and volumes are adjusted by a factor that varies according to the orientation relative to the

direction of scale.

If |k| < 1, then the object gets “shorter” in that direction. If |k| > 1, then the object gets “longer.”

If k = 0, then we have an orthographic projection. We will discuss orthographic projection in Sec-

tion 8.4. If k < 0, then we have a reflection. Reflections are covered in Section 8.5. For the

remainder of this section, we will assume that k > 0.

Applying non-uniform scale has an effect very similar to shearing (see Section 8.6). In fact, it

is impossible to distinguish between shearing and non-uniform scale.

8.3.1 Scaling along Cardinal Axes
The simplest way to perform scale is to apply a separate scale factor along each cardinal axis. The

scale is applied about the perpendicular axis (in 2D) or plane (in 3D). If the scale factors for all

axes are equal, then the scale is uniform; otherwise, it is non-uniform.

In 2D, we have two scale factors, kx and ky. Figure 8.13 shows an object with various scale val-

ues for kx and ky.
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Figure 8.13: Scaling a 2D object with various
factors for kx and ky



As is intuitively obvious, the basis vectors p and q are independently affected by the correspond-

ing scale factors:

Constructing the matrix from the basis vectors:

For 3D, we add a third scale factor kz, and the 3D scale matrix is then given by:

8.3.2 Scale in an Arbitrary Direction
We can apply scale independent of the coordinate system used by scaling in an arbitrary direction.

We will define n to be the unit vector parallel to the direction of scale, and k will be the scale factor

to be applied about the line (in 2D) or plane (in 3D) that passes through the origin and is perpendic-

ular to n.

Let’s derive an expression that, given an arbitrary vector v, computes v' in terms of v, n, and k.

To do this, we will separate v into two values, v|| and v�, which are parallel and perpendicular to n,

respectively, such that v = v|| + v�. v|| is the projection of v onto n. From Section 5.10.3, we know

that v|| is given by (v·n)n. Since v� is perpendicular to n, it will not be affected by the scale opera-

tion. Thus, v'=v'|| + v�, and all we are left with is to compute the value of v'||. Since v|| is parallel to

the direction of scale, v'|| is trivially given by kv||. This is shown below in Figure 8.14:
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Equation 8.6:
2D matrix to
scale on
cardinal axes

Equation 8.7:
3D matrix to
scale on
cardinal axes

Figure 8.14: Scaling a vector along an arbitrary
direction



Summarizing the known vectors and substituting, we have:

Now that we know how to scale an arbitrary vector, we can compute the value of the basis vectors

after scaling. We’ll work through the first basis vector in 2D. The other basis vector is derived in a

similar manner, and so we merely present the results. (Note that column vectors are used in the

equations below strictly to make the equations format nicely.)

Forming a matrix from the basis vectors, we arrive at the 2D matrix to scale by a factor of k in an

arbitrary direction specified by the unit vector n:
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Equation 8.8:
2D matrix to
scale in an
arbitrary
direction



In 3D, the basis vectors are computed by:

The 3D matrix to scale by a factor of k in an arbitrary direction specified by the unit vector n is:

8.4 Orthographic Projection
In general, the term projection refers to any dimension-reducing operation. As we mentioned in

Section 8.3, one way we can achieve projection is to use a scale factor of zero in a direction. In this

case, all the points are flattened, or projected, onto the perpendicular axis (in 2D) or plane (in 3D).

This type of projection is an orthographic projection, also known as a parallel projection, since

the lines from the original points to their projected counterparts are parallel. We will learn about

another type of projection, perspective projection, in Section 9.4.4.

Chapter 8: Matrices and Linear Transformations 115

Equation 8.9:
3D matrix to
scale in an
arbitrary
direction



8.4.1 Projecting onto a Cardinal Axis or Plane
The simplest type of projection occurs when we project onto a cardinal axis (in 2D) or plane (in

3D). This is illustrated in Figure 8.15:

Projection onto a cardinal axis or plane most frequently occurs not by actual transformation, but

by simply discarding one of the dimensions while assigning the data into a variable of lesser

dimension. For example, we may turn a 3D object into a 2D object by discarding the z components

of the points and copying only x and y.

However, we can also project onto a cardinal axis or plane by using a scale value of zero on

the perpendicular axis. For completeness, we will present the matrices for these transformations:
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Figure 8.15: Projecting a 3D object onto a cardinal
plane

Equation 8.10:
2D matrix to
project onto
the x-axis

Equation 8.11:
2D matrix to
project onto
the y-axis

Equation 8.12:
3D matrix to
project onto
the xy-plane

Equation 8.13:
3D matrix to
project onto
the xz-plane

Equation 8.14:
3D matrix to
project onto
the yz-plane



8.4.2 Projecting onto an Arbitrary Line or Plane
We can also project onto any arbitrary line (in 2D) or plane (in 3D). As always, since we are not

considering translation, the line or plane must pass through the origin. The projection will be

defined by a unit vector n that is perpendicular to the line or plane.

We can derive the matrix to project in an arbitrary direction by applying a zero scale factor

along this direction, using the equations we developed in 8.3.2. In 2D:

Remember that n is perpendicular to the line onto which we are projecting, not parallel to it. In

3D, we project onto the plane perpendicular to n:

8.5 Reflection
Reflection (also called mirroring) is a transformation that “flips” the object about a line (in 2D) or

a plane (in 3D). Figure 8.16 shows the result of reflecting an object.
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Equation 8.15:
2D matrix to
project onto an
arbitrary line

Equation 8.16:
3D matrix to
project onto an
arbitrary plane

Figure 8.16: Reflecting an object about an axis in 2D



Reflection can be accomplished easily by applying a scale factor of –1. Let n be a 2D unit vector.

Then the following matrix performs a reflection about the axis of reflection that passes through the

origin and is perpendicular to n:

In 3D, we have a reflecting plane instead of an axis. The following matrix reflects about a plane

through the origin perpendicular to the unit vector n:

Notice that an object can only be “reflected” once. If we reflect it again (even about a different axis

or plane), then the object is flipped back to “right side out,” and it is the same as if we had rotated

the object from its initial position.

8.6 Shearing
Shearing is a transformation that “skews” the coordinate space, stretching it non-uniformly.

Angles are not preserved; however, surprisingly, areas and volumes are. The basic idea is to add a

multiple of one coordinate to the other. For example, in 2D, we might take a multiple of y and add

it to x, so that x' = x + sy. This is shown in Figure 8.17:
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Equation 8.17:
2D matrix to
reflect about
an arbitrary
axis

Equation 8.18:
3D matrix to
reflect about
an arbitrary
plane

Figure 8.17: Shearing in 2D
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The matrix that performs this shear is:

The notation Hx denotes that the x coordinate is sheared by the other coordinate, y. The parameter s

controls the amount and direction of the shearing. The other 2D shear matrix, Hy is given below:

In 3D, we can take one coordinate and add different multiples of that coordinate to the other two

coordinates. The notation Hxy indicates that the x and y coordinates are shifted by the other coordi-

nate, z. These matrices are given below:

Shearing is a seldom-used transform. It is also known as a skew transform. Combining shearing

and scaling (uniform or non-uniform) creates a transformation that is indistinguishable from a

transformation containing rotation and non-uniform scale.

8.7 Combining Transformations
In this section we show how to take a sequence of transformation matrices and combine (or “con-

catenate”) them into one single transformation matrix. This new matrix will represent the

cumulative result of applying all of the original transformations in order.

One very common example of this is in rendering. Imagine there is an object at an arbitrary

position and orientation in the world. We wish to render this object given a camera in any position

and orientation. To do this, we must take the vertices of the object (assuming we are rendering

some sort of triangle mesh) and transform them from object space into world space, and then from

world space into camera space. The math involved is summarized below:
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Equation 8.19:
3D shear
matrices



From Section 7.1.6 we know that matrix multiplication is associative, and so we can compute one

matrix to transform directly from object to camera space:

Thus, we can concatenate the matrices outside the loop and have only one matrix multiplication

inside the loop (remember there are many vertices):

So we see that matrix concatenation works from an algebraic perspective using the associative

property of matrix multiplication. Let’s see if we can’t get a more geometric interpretation of

what’s going on. Recall our breakthrough discovery from Section 7.2 that the rows of a matrix

contain the basis vectors after transformation. This is true even in the case of multiple transforma-

tions. Notice that in the matrix product AB, each resulting row is the product of the corresponding

row from A times the matrix B. In other words, let the row vectors a1, a2, and a3 stand for the rows

of A. Then matrix multiplication can alternatively be written like this:

This makes it explicitly clear that the rows of the product of AB are actually the result of trans-

forming the basis vectors in A by B.

8.8 Classes of Transformations
We can classify transformations using several criteria. In this section, we will discuss classes of

transformations. For each class, we will describe the properties of the transformations that belong

to that class and specify which of the primitive transformations from Sections 8.2 through 8.6

belong to that class.

The classes of transformations are not mutually exclusive, nor do they necessarily follow an

“order” or “hierarchy” with each one more or less restrictive than the next.

When we discuss transformations in general, we may make use of the synonymous terms

mapping or function. In the most general sense, a mapping is simply a rule that takes an input and

produces an output. We denote that a mapping F maps a to b by writing F(a) = b (read “F of a
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equals b”). Of course, we will be primarily interested in mappings that can be expressed using

matrix multiplication, but it is important to note that other mappings are possible.

8.8.1 Linear Transformations
We met linear functions informally in Section 7.2. Mathematically, a mapping F(a) is linear if

and

This is a fancy way of stating that the mapping F is linear if it preserves the basic operations of

addition and multiplication by a scalar. If we add two vectors and then perform the transformation,

we get the same result as if we perform the transformation on the two vectors individually and then

add the transformed vectors. Likewise, if we scale a vector and then transform it, we should get the

same resulting vector as when we transform the vector and then scale it.

There are two important implications of this definition of linear transformation:

� The mapping F(a) = aM, where M is any square matrix, is a linear transformation because

and

� Any linear transformation will transform the zero vector into the zero vector. (If F(0) = a,

a � 0, then F cannot be a linear mapping, since F(k0) = a and therefore F(k0) � kF(0).)

Because of this, linear transformations do not contain translation.

Since all of the transformations we discussed in Sections 8.2 through 8.6 can be expressed using

matrix multiplication, they are all linear transformations.

In some literature, a linear transformation is defined as one in which parallel lines remain par-

allel after transformation. This is almost completely accurate, with one slight exception:

projection. (When a line is projected and becomes a single point, can we consider that point paral-

lel to anything?) Excluding this one technicality, the intuition is correct. A linear transformation

may “stretch” things, but straight lines are not “warped” and parallel lines remain parallel.
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8.8.2 Affine Transformations
An affine transformation is a linear transformation followed by translation. Thus, the set of affine

transformations is a superset of the set of linear transformations. Any linear transformation is an

affine translation, but not all affine transformations are linear transformations.

Since all of the transformations we discussed in this chapter are linear transformations, they

are also all affine transformations.

The class of affine transformations is the most general class of transformations that we will

consider. Any transformation of the form v' = vM + b is an affine transformation.

8.8.3 Invertible Transformations
A transformation is invertible if there exists an opposite transformation that “undoes” the original

transformation. In other words, a mapping F(a) is invertible if there exists a mapping F
–1, such that

F
–1(F(a)) = a for all a.

There are non-affine invertible transformations, but we will not consider them for the

moment. For now we’ll concentrate on determining if an affine transformation is invertible. An

affine transformation is a linear transformation followed by a translation. Obviously, we can

always “undo” the translation portion by simply translating by the opposite amount. So the ques-

tion becomes whether or not the linear transformation is invertible.

Intuitively, we know that all of the transformations other than projection can be “undone.”

When an object is projected, we effectively discard one dimension worth of information, and this

information cannot be recovered. Thus, all of the primitive transformations other than projection

are invertible.

Since any linear transformation can be expressed as multiplication by a matrix, finding the

inverse of a linear transformation is equivalent to finding the inverse of a matrix. We will discuss

how to do this in Section 9.2. If the matrix is singular (it has no inverse), then the transformation is

non-invertible. The determinant of an invertible matrix is nonzero.

8.8.4 Angle-preserving Transformations
A transformation is angle-preserving if the angle between two vectors is not altered in either mag-

nitude or direction after transformation. Only translation, rotation, and uniform scale are

angle-preserving transformations. An angle-preserving matrix preserves proportions. We do not

consider reflection an angle-preserving transformation because even though the amount of angle

between two vectors is the same after transformation, the direction of angle may be inverted. All

angle-preserving transformations are affine and invertible.

8.8.5 Orthogonal Transformations
Orthogonal is a term that is used to describe a matrix with certain properties. We will defer a com-

plete discussion of orthogonal matrices until Section 9.3, but the basic idea is that the axes remain

perpendicular, and no scale is applied. Orthogonal transformations are interesting because it is

easy to compute their inverse.
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Translation, rotation, and reflection are the only orthogonal transformations. Lengths, angles,

areas, and volumes are all preserved (although in saying this we must be careful of our precise def-

inition of angle, area, and volume, since reflection is an orthogonal transformation).

As we will learn in Chapter 9, the determinant of an orthogonal matrix is ±1.

All orthogonal transformations are affine and invertible.

8.8.6 Rigid Body Transformations
A rigid body transformation is one that changes the location and orientation of an object but not its

shape. All angles, lengths, areas, and volumes are preserved. Translation and rotation are the only

rigid body transformations. Reflection is not considered a rigid body transformation.

Rigid body transformations are also known as proper transformations. All rigid body trans-

formations are orthogonal, angle-preserving, invertible, and affine.

The determinant of any rotation matrix is 1.

8.8.7 Summary of Types of Transformations
The following table summarizes the relationship between the various classes and types of trans-

formations. In this table, a “yes” means that the transformation in that row always has the property

associated with that column. The absence of a “yes” does not mean “never,” but rather, “not

always.”

Transform Linear Affine Invertible Angle

preserving

Orthogonal Rigid Body Lengths

preserved

Areas/

volumes

preserved

Determinant

Linear

transformations

Y Y

Affine

transformations

Y

Invertible

transformations

Y � 0

Angle-preserving

transformations

Y Y Y

Orthogonal

transformations

Y Y Y � 1

Rigid body

transformations

Y Y Y Y Y Y Y

Translation Y Y Y Y Y Y Y

Rotation1 Y Y Y Y Y Y Y Y 1

Uniform scale2 Y Y Y Y Kn 3

Non-uniform

scale2

Y Y Y

Orthographic

projection4

Y Y 0
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Transform Linear Affine Invertible Angle

preserving

Orthogonal Rigid Body Lengths

preserved

Areas/

volumes

preserved

Determinant

Reflection5 Y Y Y Y Y Y6 –1

Shearing Y Y Y Y7 1

Notes:

1 About the origin in 2D or an axis passing through the origin in 3D.

2 About the origin, using positive scale factors.

3 The determinant is the square of the scale factor in 2D and the cube of the scale factor in 3D.

4 Onto a line (2D) or plane (3D) that passes through the origin.

5 About a line (2D) or plane (3D) that passes through the origin.

6 Not considering “negative” area or volume.

7 Surprisingly!

8.9 Exercises
1. Construct a matrix to rotate –22° about the x-axis.

2. Construct a matrix to rotate 30° about the y-axis.

3. Construct a matrix that transforms a vector from inertial space to object space. From the

“identity orientation,” the object rotated 30° around its y-axis and then –22° about its x-axis.

4. Express the object’s z-axis using inertial coordinates.

5. Construct a matrix to rotate 164° about the z-axis.

6. Construct a matrix to rotate –5° about the axis [99, –99, 99].

7. Construct a matrix that doubles the height, width, and length of an object.

8. Construct a matrix to scale by a factor of 5 about the plane through the origin perpendicular to

the vector [99, –99, 99].

9. Construct a matrix to orthographically project onto the plane through the origin perpendicular

to the vector [99, –99, 99].

10. Construct a matrix to reflect orthographically about the plane through the origin

perpendicular to the vector [99, –99, 99]. Construct the reflection matrix which mirrors about

the plane through the origin perpendicular to the vector [–99, 99, –99].

11. Does the matrix below express a linear transformation? Affine?
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C h a p t e r 9

More on MatricesMore on Matrices

Chapter 7 presented a few of the most important properties and operations of matrices and dis-

cussed how matrices are related to geometric transformations in general. In Chapter 8 we

discussed this relationship in detail. In this chapter, we complete our detailed coverage of matrices

by discussing some additional interesting and useful matrix operations.

9.1 Determinant of a Matrix
For every square matrix, there is a special scalar called the determinant of the matrix. The determi-

nant has many useful properties in linear algebra, and it also has interesting geometric

interpretations.

9.1.1 Official Linear Algebra Rules
The determinant of a square matrix M is denoted |M| or “det M.” The determinant of a non-square

matrix is undefined. The definition of the determinant of a matrix of arbitrary size n×n is fairly

complicated, so we will first discuss the 2×2 and 3×3 cases.

The determinant of a 2×2 matrix is given by:

Notice that when we write the determinant of a matrix, we place vertical lines surrounding the grid

of numbers, omitting the square brackets.
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This chapter extends our discussion of matrices from Chapters 7 and 8. It is divided into

four sections.

� Section 9.1 covers the determinant of a matrix.

� Section 9.2 covers the inverse of a matrix.

� Section 9.3 discusses orthogonal matrices.

� Section 9.4 introduces 4×4 homogenous matrices for affine transformations in 3D.

Equation 9.1:
Determinant of
a 2×2 matrix



Equation 9.1 can be easier to remember with the following diagram. Simply multiply entries

along the diagonal and back-diagonal, and then subtract the back-diagonal term from the diagonal

term.

A few examples:

The determinant of a 3×3 matrix is given by:

A similar diagram can be used to memorize this formula. We write two copies of the matrix M side

by side and once again multiply entries along the diagonals and back-diagonals. This time, add the

diagonal terms and subtract the back-diagonal terms.

An example:

If we interpret the rows of a 3×3 matrix as three vectors, then the determinant of the matrix is

equivalent to the so-called “triple product” of the three vectors:
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Determinant of
a 3×3 matrix



Assume M is a matrix with r rows and c columns. Let M
{ij} denote the matrix obtained by deleting

row i and column j from M. This matrix will obviously have r–1 rows and c–1 columns. The

submatrix M
{ij} is known as a minor of M. Consider the 3×3 matrix M:

The minor M
{12} is the 2×2 matrix that is the result of deleting the first row and second column

from M:

The cofactor of a square matrix M at a given row and column is the signed determinant of the cor-

responding minor of M:

As shown above, we will use the notation cij to denote the cofactor of M in row i, column j. Notice

that a minor is a matrix quantity, while a cofactor is a scalar quantity. The (–1)(i+j) term in the com-

putation of the cofactor has the effect of negating every other cofactor in a checkerboard pattern:

We will use minors and cofactors in the next section to compute determinants of an arbitrary

dimension n and again in Section 9.2.1 to compute the inverse of a matrix.

There are several equivalent definitions that exist for the determinant of a matrix of arbitrary

dimension n. The definition we will now consider expresses a determinant in terms of its

cofactors. (This definition is recursive, since a cofactor itself is a determinant of a submatrix.)

First, we arbitrarily select a row or column from the matrix. For each element in the row or

column, we multiply this element by the corresponding cofactor. Summing these products yields

the determinant of the matrix. For example, arbitrarily selecting row i, the determinant can be

computed by:
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Equation 9.3:
Matrix cofactor



As an example, let’s rewrite the equation for a 3×3 determinant:

Now, let’s derive the 4×4 matrix determinant:

Expanding the cofactors we have:

As you can imagine, the complexity of equations for determinants of higher degree grows expo-

nentially. Luckily, we can perform an operation known as “pivoting,” which does not affect the

value of the determinant but causes a particular row or column to be filled with zeros, except for a

single element (the “pivot” element). Then only one cofactor has to be evaluated. A complete dis-

cussion of pivoting is outside the scope of this book.

Some important characteristics concerning determinants are:

� The determinant of a matrix product is equal to the product of the determinants:

This extends to more than two matrices:

� The determinant of the transpose of a matrix is equal to the original determinant:

� If any row or column in a matrix contains all zeros, then the determinant of that matrix is zero.
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Equation 9.4:
Computing an
n×n
determinant
using cofactors

Equation 9.5:
Determinant of
a 4×4 matrix
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� Exchanging any pair of rows (or pair of columns) negates the determinant.

� Adding any nonzero multiple of a row/column to another row/column does not change the

value of the determinant.

9.1.2 Geometric Interpretation
The determinant of a matrix has an interesting geometric interpretation. In 2D, the determinant is

equal to the signed area of the parallelogram, or skew box, that has the basis vectors as two sides

(see Figure 9.1). (We discussed how we can use skew boxes to visualize coordinate space transfor-

mations in Section 7.2.2.) By signed area, we mean that the area is negative if the skew box is

“flipped” relative to its original orientation.

In 3D, the determinant is the signed area of the parallelepiped that has the transformed basis vec-

tors as three edges. The determinant will be negative in 3D if the object is turned “inside out” as a

result of the transformation.

The determinant is related to the change in size that results from transforming by the matrix.

The absolute value of the determinant is related to the change in area (in 2D) or volume (in 3D)

that will occur as a result of transforming an object by the matrix, and the sign of the determinant

indicates whether any reflection or projection is contained in the matrix.

The determinant of the matrix can also be used to help classify the type of transformation rep-

resented by a matrix. If the determinant of a matrix is zero, then the matrix contains a projection. If

the determinant of a matrix is negative, then reflection is contained in the matrix. See Section 8.8

for more about different classes of transformations.
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Figure 9.1: The determinant in 2D is the signed area
of the skew box formed by the transformed basis
vectors



9.2 Inverse of a Matrix
Another important operation that only applies to square matrices is the inverse of a matrix.

9.2.1 Official Linear Algebra Rules
The inverse of a square matrix M, denoted M

–1, is the matrix such that when we multiply M by

M
–1 on either side, the result is the identity matrix. In other words:

Not all matrices have an inverse. An obvious example is a matrix with a row or column filled with

zeros. No matter what you multiply this matrix by, you will end up with a matrix full of zeros. If a

matrix has an inverse, it is said to be invertible or non-singular. A matrix that does not have an

inverse is said to be non-invertible or singular. The determinant of a singular matrix is zero and the

determinant of a non-singular matrix is nonzero, so checking the magnitude of the determinant is a

good test for invertibility. Also, for any invertible matrix M, the vector equality vM = 0 is true only

when v = 0.

The classical adjoint of M, denoted “adj M,” is defined to be the transpose of the matrix of

cofactors. Let’s look at an example. Take the 3×3 matrix M given earlier:

Computing the cofactors of M:

The classical adjoint of A is the transpose of the matrix of cofactors:

Once we have the classical adjoint, we can compute the inverse of the matrix by dividing by the

determinant (which, incidentally, goes a long way toward explaining why matrices with zero

determinants are not invertible). In other words:
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Equation 9.6:
Matrix inverse



For example, to find the inverse of the matrix from above, we have:

There are other techniques that can be used to compute the inverse of a matrix, such as Gaussian

elimination. Many linear algebra textbooks incorrectly assert that such techniques are better suited

for implementation on a computer because they require fewer arithmetic operations. This may be

true for large matrices or matrices with a structure that may be exploited. However, for arbitrary

matrices of smaller order, like the ones we work with in geometric applications, the classical

adjoint method is likely to be faster. The reason is that the classical adjoint method provides for a

branchless implementation, which is likely to be faster on today’s superscalar architecture and

dedicated vector processors.

Now for a few important properties concerning matrix inverses:

� The inverse of the inverse of a matrix is the original matrix:

Of course, this assumes that M is non-singular.

� The identity matrix is its own inverse:

� The inverse of the transpose of a matrix is the transpose of the inverse of the matrix:

� The inverse of a matrix product is equal to the product of the inverses of the matrices taken in

reverse order:
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Equation 9.7:
The inverse of a
matrix can be
computed as the
classical adjoint
divided by the
determinant



This extends to more than two matrices:

9.2.2 Geometric Interpretation
The inverse of a matrix is useful geometrically because it allows us to compute the “reverse” or

“opposite” of a transformation — a transformation that “undoes” another transformation if they

are performed in sequence. So, if we take a vector, transform it by a matrix M, and then transform

it by the inverse M
–1 of M, then we will get the original vector back. We can easily verify this

algebraically:

9.3 Orthogonal Matrices
In this section, we will investigate a special class of square matrices known as orthogonal

matrices.

9.3.1 Official Linear Algebra Rules
A square matrix M is orthogonal if and only if the product of the matrix and its transpose is the

identity matrix:

Recall from Section 9.2 that, by definition, a matrix times its inverse is the identity matrix:

Thus, if a matrix is orthogonal, the transpose and the inverse are equal:

This is extremely powerful information, since the inverse of a matrix is often needed, and orthogo-

nal matrices arise so frequently in practice in 3D graphics. For example, it was mentioned in

Section 8.8.5 that rotation and reflection matrices are orthogonal. If we know that our matrix is

orthogonal, we can essentially avoid computing the inverse, which is a relatively costly

computation.
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Definition of
orthogonal
matrix



9.3.2 Geometric Interpretation
Orthogonal matrices are interesting to us primarily since their inverse is trivial to compute. But

how do we know if a matrix is orthogonal in order to exploit its structure?

In many cases, we may have information about the way the matrix was constructed and, there-

fore, know a priori that the matrix contains only rotation and/or reflection. This is a very common

situation and will be the case when we write the C++ classRotationMatrix in Section 11.4.

What if we don’t know anything in advance about the matrix? In other words, how can we tell

if an arbitrary matrix M is orthogonal? In order to do this, let’s look at the definition of an orthogo-

nal matrix given above, using a 3×3 matrix as an example. Assume M is a 3×3 matrix. Then by

definition, M is orthogonal if and only if MM
T=I. Let’s see what this means exactly:

This gives us nine equations, all of which must be true in order for M to be orthogonal:

Let the vectors r1, r2, and r3 stand for the rows of M:

Now we can rewrite the nine equations more compactly:
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Now we can make some interpretations:

� First, the dot product of a vector with itself is one if and only if the vector is a unit vector.

Therefore, the first, fourth, and ninth equations will only be true when r1, r2, and r3 are unit

vectors.

� Second, recall from Section 5.10.2 that the dot product of two vectors is zero if and only if

they are perpendicular. Therefore, the other equations are true when r1, r2, and r3 are mutually

perpendicular.

So, for a matrix to be orthogonal, the following must be true:

� Each row of the matrix must be a unit vector.

� The rows of the matrix must be mutually perpendicular.

Similar statements can be made regarding the columns of the matrix. This is made obvious by not-

ing that if M is orthogonal, then M
T is orthogonal as well.

When computing a matrix inverse, we will usually only take advantage of orthogonality if we

know in advance that a matrix is orthogonal. If we don’t know in advance, it’s usually a waste of

time to check. In the best of all possible worlds, checking for orthogonality to find that the matrix

is indeed orthogonal and then transposing may take as much time as going ahead and inverting the

hard way anyway. Also, if the matrix turns out to not be orthogonal, then checking was definitely a

waste of time.

There is one important note on terminology that can be slightly confusing. In linear algebra, a

set of vectors is considered an orthogonal basis if they are mutually perpendicular. It is not

required that they have unit length. If they do have unit length, they are an orthonormal basis.

Thus, the rows/columns of an orthogonal matrix are orthonormal basis vectors. However, con-

structing a matrix from a set of orthogonal basis vectors does not necessarily result in an

orthogonal matrix (unless the basis vectors are also orthonormal).

9.3.3 Orthogonalizing a Matrix
Sometimes we encounter a matrix that is slightly out of orthogonality. We may have acquired bad

data from an external source, or we may have accumulated floating-point error (which is called

“matrix creep”). In these situations, we would like to orthogonalize the matrix, resulting in a

matrix that has mutually perpendicular unit vector axes and is (hopefully) as close to the original

matrix as possible.

The standard algorithm for constructing a set of orthogonal basis vectors (the rows of a

matrix) is known as Gram-Schmidt orthogonalization. The basic idea is to go through the rows of

the matrix in order. For each row vector, we subtract off the portion of that vector that is parallel to

the proceeding rows, which must result in a perpendicular vector.

Let’s look at the 3×3 case as an example. As before, let r1, r2, and r3 stand for the rows of a 3×3

matrix M. Then an orthogonal set of row vectors, r'1, r'2, and r'3, can be computed according to the

following algorithm:
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The vectors r'1, r'2, and r'3 are now mutually perpendicular, and so they are an orthogonal basis.

However, they may not necessarily be unit vectors. We need an orthonormal basis to form an

orthogonal matrix, and so we must normalize the vectors. (Again, the terminology can be confus-

ing. Please see the note at the end of the previous section.) Notice that if we normalize the vectors

as we go, rather than in a second pass, then we can avoid all of the divisions.

The Gram-Schmidt algorithm is biased, depending on the order in which the basis vectors are

listed. As an obvious example, r1 never changes. A variation on the algorithm that is not biased

toward any particular axis is to not attempt to completely orthogonalize the entire matrix in one

pass. We select some small fraction k, and instead of subtracting off all of the projection, we only

subtract off k of it. We also subtract the projection on the original axis, not the adjusted one. In this

way, the order in which we perform the operations does not matter and we have no dimensional

bias. This algorithm is summarized below:

One iteration of this algorithm results in a set of basis vectors that are slightly more orthogonal that

the original vectors, but perhaps not completely orthogonal. By repeating this procedure multiple

times, we can eventually converge on an orthogonal basis. Selecting an appropriately small value

for k (say, ¼) and iterating a sufficient number of times (say, ten) gets us fairly close. Then, we can

use the standard Gram-Schmidt algorithm to guarantee a perfectly orthogonal basis.

9.4 4×4 Homogenous Matrices
Up until now, we have used only 2D and 3D vectors. In this section, we will introduce 4D vectors

and the so-called “homogenous” coordinate. There is nothing mysterious or magical about 4D

vectors and matrices (and no, the fourth coordinate in this case isn’t “time”). As we will see, 4D

vectors and 4×4 matrices are nothing more than a notational convenience for what are simple 3D

operations.
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Gram-Schmidt
orthogonaliza-
tion of 3D basis
vectors



9.4.1 4D Homogenous Space
As was mentioned in Section 4.1.3, 4D vectors have four components, with the first three compo-

nents being the standard x, y, and z components. The fourth component in a 4D vector is w

(because they ran out of letters in the alphabet!) and is sometimes referred to as the homogenous

coordinate.

To understand how the standard physical 3D space is extended into 4D, let’s first examine

homogenous coordinates in 2D, which are of the form (x, y, w). Imagine the standard 2D plane

existing in 3D at the plane w = 1. So the physical 2D point (x, y) is represented in homogenous

space (x, y, 1). For all points that are not in the plane w = 1, we can compute the corresponding 2D

point by projecting the point onto the plane w = 1 and dividing by w. So the homogenous coordi-

nate (x, y, w) is mapped to the physical 2D point (x/w, y/w). This is shown in Figure 9.2.

Thus, for any given physical 2D point (x, y), there are an infinite number of corresponding points

in homogenous space. All of them are of the form (kx, ky, k), provided that k � 0. These points

form a line through the homogenous origin.

When w = 0 the division is undefined and there is no corresponding physical point in 2D

space. However, we can interpret a 2D homogenous point of the form (x, y, 0) as a “point at infin-

ity,” which defines a direction rather than a location. There is more on this in the next section.

The same basic idea applies to 4D coordinates. The physical 3D points can be thought of as

living in the “plane” in 4D at w = 1. A 4D point is of the form (x, y, z, w), and we project a 4D point

onto this “plane” to yield the corresponding physical 3D point (x/w, y/w, z/w). When w = 0 the 4D

point represents a “point at infinity,” which defines a direction rather than a location.

Homogenous coordinates and projection by division by w are interesting, but why on earth

would we want to use 4D space? There are two primary reasons for using 4D vectors and 4×4

matrices. The first reason, which we will discuss in the next section, is actually nothing more than

a notational convenience.
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Figure 9.2: Projecting homogenous coordinates onto
the plane w = 1 in 2D



9.4.2 4×4 Translation Matrices
Recall from Section 8.8.1 that a 3×3 transformation matrix represents a linear transformation that

does not contain translation. Due to the nature of matrix multiplication, the zero vector is always

transformed into the zero vector, and, therefore, any transformation that can be represented by a

matrix multiplication cannot contain translation. This is unfortunate, since matrix multiplication

and inversion are very convenient tools for composing complicated transformations out of simple

ones and manipulating nested coordinate space relationships. It would be nice if we could find a

way to somehow extend the standard 3×3 transformation matrix to be able to handle transforma-

tions with translation. 4×4 matrices provide a mathematical “kludge” which allows us to do this.

Assume for the moment that w is always one. Thus, the standard 3D vector [x, y, z] will always

be represented in 4D as [x, y, z, 1]. Any 3×3 transformation matrix can be represented in 4D as

shown below:

When we multiply a 4D vector of the form [x, y, z, 1] by a matrix of the form shown above, we get

the same result as the standard 3×3 case, only the result in this case is a 4D vector with w = 1:

Now for the interesting part. In 4D, we can also express translation as a matrix multiplication,

something we were unable to do in 3D:

It is important to understand that matrix multiplication is still a linear transformation, even in 4D.

Matrix multiplication cannot represent “translation” in 4D, and the 4D zero vector will always be

transformed back into the 4D zero vector. The reason this trick works to translate points in 3D is

that we are actually shearing 4D space. (Compare Equation 9.10 with the shear matrices from
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Equation 9.10:
Using a 4×4
matrix to
perform
translation in
3D



Section 8.6.) The “plane” in 4D that corresponds to physical 3D space does not pass through the

origin in 4D. Thus, when we shear 4D space, we are able to translate in 3D.

Let’s examine what happens when we perform a transformation without translation followed

by a transformation with only translation. Let R be a rotation matrix. (In fact, R could possibly

contain other 3D linear transformations, but for now, let’s assume R only contains rotation.) Let T

be a translation matrix of the form in Equation 9.10.

We could then rotate and translate a point v to compute a new point v' as follows:

Remember that the order of transformations is important, and since we have chosen to use row

vectors, the order of transformations coincides with the order in which the matrices are multiplied

(from left to right). We are rotating first and then translating.

Just like 3×3 matrices, we can concatenate the two matrices into a single transformation

matrix, which we’ll assign to the matrix M:

Let’s examine the contents of M:

Notice that the upper 3×3 portion of M contains the rotation portion, and the bottom row contains

the translation portion. The rightmost column (for now) will be [0, 0, 0, 1]T. Applying this infor-

mation in reverse, we can take any 4×4 matrix and separate it into a linear transformation portion

and a translation portion. We can express this succinctly by assigning the translation vector

[�x, �y, �z] to the vector t:

Note: For the moment, we are assuming that the rightmost column is always [0, 0, 0, 1]T.
We will begin to encounter situations where this is not the case in Section 9.4.4.
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Let’s see what happens with the so-called “points at infinity” when w = 0. Multiplying by a “stan-

dard” 3×3 linear transformation matrix extended into 4D (a transformation that does not contain

translation), we get:

In other words, when we transform a point at infinity vector of the form [x, y, z, 0] by a transforma-

tion matrix containing rotation, scale, etc., the expected transformation occurs. The result is

another point at infinity vector of the form [x', y', z', 0].

When we transform a point at infinity vector by a transformation that does contain translation,

we get the following result:

Notice that the result is the same (i.e., no translation occurs). In other words, the w component of a

4D vector can be used to selectively “switch off” the translation portion of a 4×4 matrix. This is

useful because some vectors represent “locations” and should be translated, and other vectors rep-

resent “directions,” such as surface normals, and should not be translated. In a geometric sense, we

can think of the first type of data as “points” and the second type of data as “vectors.”

One reason why 4×4 matrices are useful is that a 4×4 transformation matrix can contain trans-

lation. When we use 4×4 matrices solely for this purpose, the rightmost column of the matrix will

always be [0, 0, 0, 1]T. Since this is the case, why don’t we just drop the column and use a 4×3

matrix? According to linear algebra rules, 4×3 matrices are undesirable for several reasons:

� We cannot multiply a 4×3 matrix by another 4×3 matrix.

� We cannot invert a 4×3 matrix, since the matrix is not square.

� When we multiply a 4D vector by a 4×3 matrix, the result is a 3D vector.

Strict adherence to linear algebra rules forces us to add the fourth column. Of course, in our code,

we are not bound by linear algebra rules. In Section 11.5, we will write a 4×3 matrix class that is

useful for representing transformations that contain translation. This matrix class doesn’t explic-

itly store the fourth column.
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9.4.3 General Affine Transformations
In Chapter 8, we presented 3×3 matrices for many primitive transformations. Because a 3×3

matrix can only represent linear transformations in 3D, translation was not considered. Armed

with 4×4 transform matrices, we can now create more general affine transformations that contain

translation. For example:

� Rotation about an axis that does not pass through the origin

� Scale about a plane that does not pass through the origin

� Reflection about a plane that does not pass through the origin

� Orthographic projection onto a plane that does not pass through the origin

The basic idea is to translate the “center” of the transformation to the origin, perform the linear

transformation using the techniques developed in Chapter 8, and then transform the point back to

its original location. We will start with a translation matrix T that translates the point p to the ori-

gin and a linear transform matrix R from Chapter 8 that performs the linear transformation. The

final affine transformation matrix M will be equal to the matrix product TRT
-1. T

–1 is a translation

matrix with the opposite translation amount as T.

It is interesting to notice the general form of such a matrix. Let’s first write T, R, T
–1 using the

“partitioned” form we used earlier:

Now we evaluate the matrix multiplications:
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Thus, the extra translation in an affine transformation only changes the last row of the 4×4 matrix.

The upper 3×3 portion, which contains the linear transformation, is not affected.

9.4.4 Perspective Projection
Our use of “homogenous” coordinates in the previous section was really nothing more than a

mathematical kludge to allow us to include translation in our transformations. We use quotations

around “homogenous” because the w value was always one (or zero, in the case of points at infin-

ity). In this section we will remove the quotations and discuss meaningful ways to use 4D

coordinates with other w values.

Recall from Section 9.4.1 that when we interpret a 4D homogenous vector in 3D, we divide by

w. This gives us a mathematical tool that we did not take advantage of in the previous section,

since w was always one (or zero). This division allows us to encapsulate very succinctly some

important geometric operations. Most notably, we can perform perspective projection.

We can learn a great deal about perspective projection by comparing it to another type of pro-

jection we have already discussed, orthographic projection. In Section 8.4, we learned how to

project 3D space onto a 2D plane, known as the projection plane, using orthographic projection.

Orthographic projection is also known as parallel projection because the projectors are parallel.

(A projector is a line from the original point in space to the resulting projected point on the plane.)

The parallel projectors used in orthographic projection are shown below in Figure 9.3:

Perspective projection in 3D also projects onto a 2D plane. However, the projectors are not paral-

lel. In fact, they intersect at a point, known as the center of projection. This is shown in Figure 9.4:
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Figure 9.3: Orthographic projection uses
parallel projectors



Because the center of projection is in front of the projection plane, the projectors cross before

striking the plane, and the image is inverted. As we move an object farther away from the center of

projection, its orthographic projection remains constant, but the perspective projection gets

smaller, as illustrated in Figure 9.5.

The teapot on the right is farther from the projection plane, and the projection is slightly smaller

than the closer teapot. This is a very important visual cue known as perspective foreshortening.

9.4.5 A Pinhole Camera
Perspective projection is important in graphics because it models the way the human visual system

works. Actually, the human visual system is slightly more complicated because we have two eyes,

and for each eye, the projection surface (our retina) is not flat. So let’s look at the simpler example

of a pinhole camera. A pinhole camera is a box with a tiny hole on one end. Rays of light enter the

pinhole (converging at a point) and then strike the opposite end of the box, which is the projection

plane. This is shown in Figure 9.6.
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projectors intersect at the center of projection

Figure 9.5: Perspective foreshortening



In this view, the left and back sides of the box have been removed so you can see the inside. Notice

that the image projected onto the back of the box is inverted. This is because the rays of light (the

projectors) cross as they meet at the pinhole (the center of projection).

Let’s examine the geometry behind the perspective projection of a pinhole camera. Imagine a

3D coordinate space with the origin at the pinhole and the z-axis perpendicular to the projection

plane. The x- and y-axes are parallel to the plane of projection. This is shown below in Figure 9.7:

Let’s see if we can’t compute, for an arbitrary point p, the 3D coordinates of p', which is p pro-

jected through the pinhole onto the projection plane. First, we need to know the distance from the

pinhole to the projection plane. We’ll assign this to the variable d. Thus, the plane is defined by the

equation z = –d. Now let’s view the problem from the side, and solve the problem for y. Examine

Figure 9.8.
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Figure 9.6: A pinhole camera

Figure 9.7: A projection plane parallel to the xy plane



By similar triangles, we can see that:

Notice that since a pinhole camera flips the image upside down, the signs of py and p'y are oppo-

site. The value of p'x is computed in a similar manner:

The z values of all the projected points are the same: –d. Thus, the result of projecting a point p

through the origin onto a plane at z = –d is:

In practice, having negative values creates unnecessary complexities, and so we move the plane of

projection in front of the center of projection (i.e., the plane z = d). This is shown in Figure 9.9.
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Figure 9.8: Viewing the projection plane from
the side

Equation 9.11:
Projecting onto
the plane
z = –d

Figure 9.9: Projection plane in front of the
center of projection



Of course, this would never work for a real pinhole camera, since the purpose of the pinhole in the

first place is to only allow in light that passes through a single point. However, in the mathematical

universe inside a computer, we can do this. As expected, moving the plane of projection in front of

the center of projection removes the annoying minus signs:

9.4.6 Perspective Projection Using 4×4 Matrices
Because the conversion from 4D to 3D space implies a division, we can encode a perspective pro-

jection in a 4×4 matrix. The basic idea is to come up with an equation for p' with a common

denominator for x, y, and z and then set up a 4×4 matrix which will set w equal to this denominator.

We will assume that the original points have w = 1.

First we manipulate the equation for p' to have a common denominator:

To divide by this denominator, we put the denominator into w, so the 4D point will be of the form:

So we need a 4×4 matrix that takes an “ordinary” homogenous vector of the form [x, y, z, 1] and

transforms it into the form given above. The matrix that does this is shown below:

Thus, we have derived a 4×4 projection matrix. There are several important points to be made

here:

� Multiplication by this matrix doesn’t actually perform the perspective transform; it just com-

putes the proper denominator into w. Remember that the perspective division actually occurs

when we convert from 4D to 3D by dividing by w.

� There are many variations. For example, we can place the plane of projection at z = 0 and the

center of projection at [0, 0, –d]. This results in a slightly different equation.

� This seems overly complicated. It seems like it would be simpler to divide by z, rather than

bothering with matrices. So why is homogenous space interesting? First, 4×4 matrices pro-

vide a way to express projection as a transformation that can be concatenated with other trans-

formations. Second, projection onto non-axially aligned planes is possible. Basically, we
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Equation 9.12:
Projecting a
point onto the
plane z = d

Equation 9.13:
Projecting onto
the plane
z = d using a
4×4 matrix



don’t need homogenous coordinates to perform any operations, but 4×4 matrices provide a

compact way to represent and manipulate projection transformations.

� The projection matrix in a real graphics geometry pipeline is not going to be exactly like the

one we derived here. There are many important details that must be considered. For example,

our matrix basically discards z, which many graphics systems use for z-buffering. See Chapter

15 for a description of how the graphics geometry pipeline would be implemented.

9.5 Exercises
1. Compute the determinant of the following matrix:

2. Compute the determinant, adjoint, and inverse of the following matrix:

3. Is the following matrix orthogonal?

4. Invert the matrix from the previous exercise.

5. Invert the 4×4 matrix:

6. Construct a 4×4 matrix to translate by [4,2,3].

7. Construct a 4×4 matrix to rotate 20° about the x-axis and then translate by [4,2,3].

8. Construct a 4×4 matrix to translate by [4,2,3] and then rotate 20° about the x-axis.

9. Construct a 4×4 matrix to perform a perspective projection onto the plane x=5. (Assume the

origin is the center of projection.)

10. Use the matrix from the previous exercise to compute the 3D coordinates of the projection of

the point (107, –243, 89) onto the plane x=5.
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C h a p t e r 1 0

Orientation and AngularOrientation and Angular

Displacement in 3DDisplacement in 3D

In this chapter, we will tackle the difficult problem of describing the orientation of an object in 3D.

We will also discuss the closely related concept of angular displacement. There are several differ-

ent ways we can express orientation and angular displacement in 3D. We will discuss the three

most important methods — matrices, Euler angles, and quaternions. For each method, we will

define precisely how the representation method works and discuss the peculiarities, advantages,

and disadvantages of the method.

Different techniques are needed in different circumstances, and each technique has its advan-

tages and disadvantages. It is important to know not only how each method works, but also which

technique is most appropriate for a particular situation and how to convert between

representations.

In this chapter, we will make extensive use of the terms object space and inertial space, which

were discussed in Section 3.2.

147

This chapter discusses orientation in 3D. It is divided into six sections.

� Section 10.1 discusses the subtle differences between terms like “orientation,”

“direction,” and “angular displacement.”

� Section 10.2 describes how to express orientation using a matrix.

� Section 10.3 describes how to express angular displacement using Euler angles.

� Section 10.4 describes how to express angular displacement using a quaternion.

� Section 10.5 compares and contrasts the three methods.

� Section 10.6 explains how to convert an orientation from one form to another.



10.1 What is Orientation?
Before we can begin to discuss how to describe orientation in 3D, let us first define exactly what it

is that we are attempting to describe. In this section, we will discuss how orientation is related to

other similar terms:

� Direction

� Angular displacement

� Rotation

Intuitively, we know that the “orientation” of an object basically tells us what direction the object

is facing. However, “direction” is not exactly the same as orientation. A vector has “direction,” but

not “orientation.” The difference is that when a vector points in a certain direction, you can “twist”

the vector along its length (see Figure 10.1), and there is no real change to the vector (or its direc-

tion) since a vector has no thickness or dimension other than its length.

However, if you have an object facing a certain direction and you twist that object in the same way

that we twisted the vector (see Figure 10.2), you will change the orientation of the object.

Technically, this is demonstrated by the fact that we can parameterize a direction in 3D using just

two numbers (i.e., polar coordinates), whereas an orientation requires a minimum of three

numbers.
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Figure 10.1: “Twisting” a vector along its length
results in no appreciable change to the vector

Figure 10.2: “Twisting” an object changes its
orientation
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When we specify the position of an object, we cannot do so in absolute terms; we must always

do so within the context of a specific reference frame. (See Section 4.3.1.) We have seen how spec-

ifying a position is actually the same as specifying an amount of translation from a given

reference point (usually the origin of some coordinate system).

In the same way, when we describe the orientation of an object, orientation cannot be

described in absolute terms. Just as a position is given by a translation from some known point, an

orientation is given by a rotation from some known reference orientation (often called the “iden-

tity” or “home” orientation). The amount of rotation is known as an angular displacement. In

other words, describing an orientation is mathematically equivalent to describing an angular

displacement.

We say “mathematically equivalent” because we will make a subtle distinction between “ori-

entation” and terms like “angular displacement” and “rotation” in this book. It is helpful to think

of “angular displacement” as having a direction of transformation attached with it. (For example,

the angular displacement from the old orientation to the new orientation, or from inertial space to

object space.) So there is a “source/destination” relationship. “Orientation” will be used in situa-

tions where we are not describing a “source/destination” relationship but a “parent/child”

relationship. This distinction between “orientation” and “angular displacement” is similar to the

distinction between “points” and “vectors” — two other terms that are equivalent mathematically

but not identical conceptually. In both cases, the first term is primarily used to describe a single

“state,” and the second term is used primarily to describe a “difference between two states.”

Of course, these conventions are purely a matter of preference, but they can be helpful. In par-

ticular, we will think about matrices and quaternions representing “angular displacements” and

Euler angles representing “orientations.”

10.2 Matrix Form
One way to represent the orientation of a coordinate space in 3D is to list the basis vectors of one

coordinate space, expressed using the other coordinate space. When these basis vectors are used to

form the rows of a 3×3 matrix, we have expressed the orientation in matrix form. Another way to

say this is that we can express the relative orientation of two coordinate spaces by giving the rota-

tion matrix that can be used to transform vectors from one coordinate space to the other.
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10.2.1 Which Matrix?
We’ve seen how a matrix can be used to transform points from one coordinate space to another.

When we are talking about using a matrix to represent an angular displacement, which transfor-

mation are we referring to exactly? Does the matrix transform vectors from inertial space into

object space, or is it in the other direction?

For our purposes in this chapter, it doesn’t matter. It will be sufficient that a matrix describes

an orientation by listing basis vectors after transformation. By describing the rotation from one

coordinate space to the other (whichever transformation we chose to represent), we have estab-

lished the orientation. The actual direction of transformation of the matrix is an implementation

detail. Since rotation matrices are orthogonal (see Section 9.3), using one matrix or the other is

simply a matter of transposing it to get the inverse transformation, if necessary.

10.2.2 Advantages of Matrix Form
Matrix form is a very explicit form of representing orientation. This explicit nature provides some

benefits.

� Rotation of vectors is immediately available. The most important property of matrix form

is that you can use a matrix to rotate vectors between object and inertial space. No other repre-

sentation of orientation allows this. In order to rotate vectors, you must convert the orientation

to matrix form. (It is an often touted advantage of quaternions that they can be used to perform

rotations through quaternion multiplication — see Section 10.4.8. However, if you examine

the math, you’ll see that this “shortcut” amounts to multiplication by the corresponding rota-

tion matrix.)

� Format used by graphics APIs. Partly due to reasons in the previous paragraph, graphics

APIs use matrices to express orientation. (API stands for application programming interface

— basically, this is the code that you use to communicate with the video hardware.) When you

are communicating with the graphics API, you must express your transformations as matrices

eventually. How you store transformations internally in your program is up to you, but if you
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Figure 10.3: Defining an orientation using a matrix



choose another representation, you must convert them into matrices at some point in the

graphics pipeline.

� Concatenation of multiple angular displacements. A second advantage of matrices is that

it is possible to “collapse” nested coordinate space relationships. For example, if we know the

orientation of object A relative to object B, and we know the orientation of object B relative to

object C, then by using matrices we can determine the orientation of object A relative to

object C. We encountered these concepts before when we learned about nested coordinate

spaces in Chapter 3, and then we discussed how matrices could be concatenated in Section

8.6.

� Matrix inversion. When an angular displacement is represented in matrix form, it is possible

to compute the “opposite” angular displacement using matrix inversion. Since rotation matri-

ces are orthogonal, this computation is a trivial matter of transposing the matrix.

10.2.3 Disadvantages of Matrix Form
The explicit nature of a matrix provides some advantages, as we have discussed in the previous

section. However, a matrix uses nine numbers to store an orientation, and it is possible to

parameterize orientation using only three numbers. These “extra” numbers can cause some

problems.

� Matrices take more memory. If we need to store many orientations, such as keyframes in an

animation sequence, that extra space for nine numbers instead of three can really add up. Let’s

take a modest example. Let’s say we are animating a model of a human that is broken up into

15 pieces for different body parts. Animation is accomplished strictly by controlling the ori-

entation of each part relative to its parent part. Assume we are storing one orientation for each

part, per frame, and our animation data is stored at a reasonable rate of 15 Hz. This means we

will have 225 orientations per second. Using matrices and 32-bit floating-point numbers, each

frame will take 8,100 bytes. Using Euler angles (which we will meet in Section 10.3), the

same data would only take 2,700 bytes. For a mere 30 seconds of animation data, matrices

would take 162 K more than the same data stored using Euler angles!

� Difficult for humans to use. Matrices are not intuitive for humans to work with directly.

There are just too many numbers, and they are all between –1 and 1. Also, humans naturally

think about orientation in terms of angles, but a matrix is expressed using vectors. With prac-

tice, we can learn how to decipher the orientation from a given matrix. (The techniques from

Section 7.2.2 for visualizing a matrix help with this.) This is still much more difficult than

Euler angles, and going the other way is much more difficult. It would take forever to con-

struct the matrix for a nontrivial orientation by hand. In general, matrices just aren’t the way

people naturally think about orientation.

� Matrices can be malformed. A matrix uses nine numbers when only three are necessary. In

other words, a matrix contains six degrees of redundancy. There are six constraints that must

be satisfied in order for a matrix to be “valid” for representing an orientation. The rows must

be unit vectors, and they must be mutually perpendicular. (See Section 9.3.2.)
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Let’s consider this last point in more detail. If we take any nine numbers at random and create a

3×3 matrix, it is very unlikely that these six constraints will be satisfied. Thus, the nine numbers

will not form a valid rotation matrix. In other words, matrices can be ill-formed, at least for pur-

poses of representing an orientation. Ill-formed matrices can be a problem because they can cause

numerical exceptions and other unexpected behavior.

How could we end up with a bad matrix? There are several ways:

� First, we may have a matrix that contains scale, skew, or reflection. What is the “orientation”

of an object that has been affected by such operations? There really isn’t a clear definition for

this. Any non-orthogonal matrix is not a well-defined rotation matrix. (See Section 9.3 for a

complete discussion on orthogonal matrices.) Reflection matrices, which are orthogonal, are

not valid rotation matrices either.

� Second, we may just get bad data from an external source. For example, if we are using a

physical data acquisition system, such as motion capture, there could be errors due to the cap-

turing process. Many modeling packages are notorious for producing malformed matrices.

� Finally, we can actually create bad data due to floating-point round-off error. For example,

suppose we apply a large number of incremental changes to an orientation, which could rou-

tinely happen in a game or simulation that allows a human to interactively control the orienta-

tion of an object. The large number of matrix multiplications, which are subject to limited

floating-point precision, can result in an ill-formed matrix. This phenomenon is known as

matrix creep. We can combat matrix creep by orthogonalizing the matrix, as we already dis-

cussed in Section 9.3.3.

10.2.4 Summary
Let’s summarize what we have learned in Section 10.2 about using matrices to represent angular

displacement:

� Matrices are a “brute force” method of expressing orientation; we explicitly list the basis vec-

tors of one coordinate system using a different coordinate system.

� The matrix form of representing orientation is useful, primarily because it allows us to rotate

vectors between coordinate spaces.

� Modern graphics APIs express orientation using matrices.

� We can use matrix multiplication to collapse matrices for nested coordinate spaces into a sin-

gle matrix.

� Matrix inversion provides a mechanism for determining the “opposite” angular displacement.

� Matrices take two to three times as much memory as the other techniques we will learn. This

can become significant when storing large numbers of orientations, such as animation data.

� Not all matrices are valid for describing an orientation. Some matrices contain mirroring or

skew. We can end up with a malformed matrix either by getting bad data from an external

source or through matrix creep.

� The numbers in a matrix aren’t intuitive for humans to work with.
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10.3 Euler Angles
Another common method of representing orientation is known as Euler angles. (Euler is pro-

nounced “oiler,” not “yoolur.”) The technique is named after the famous mathematician Leonhard

Euler (1707-1783) who proved that a sequence of angular displacements was equivalent to a sin-

gle angular displacement.

10.3.1 What are Euler Angles?
The basic idea behind Euler angles is to define an angular displacement as a sequence of three

rotations about three mutually perpendicular axes. This sounds complicated, but actually, it is very

intuitive. (In fact, its ease of use is one if its primary advantages.) We say “angular displacement”

because Euler angles can indeed be used to describe any arbitrary rotation. However, in this book,

we will use them primarily to describe the orientation of an object within a parent coordinate space

(such as world space).

Euler angles describe orientation as three rotations about three mutually perpendicular axes.

But which axes? And in what order? As it turns out, any three axes in any order will work, but it

makes the most sense to use the cardinal axes in a particular order. The most common convention,

and the one we will use in this book, is the so-called “heading-pitch-bank” convention for Euler

angles. In this system, an orientation is defined by a heading angle, a pitch angle, and a bank angle.

The basic idea is to start with the object in the “identity” orientation — that is, with the axes

aligned with the inertial axes. From there, we apply the rotations for heading, then pitch, and

finally bank, so that the object arrives in the orientation we are attempting to describe.

Before we define the terms “heading,” “pitch,” and “bank” precisely, let us briefly review the

coordinate space conventions we use in this book. We use a left-handed system, where +x is to the

right, +y is up, and +z is forward. (Check out Figure 2.16 for an illustration.) Also, if you have for-

gotten how positive rotation is defined according to the left-hand rule, you might want to flip back

to Figure 8.5 to refresh your memory.

As shown in Figure 10.4, heading measures the amount of rotation about the y-axis. Positive

rotation rotates to the right (clockwise when viewed from above).
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Figure 10.4: Heading is the first rotation and rotates
about the y-axis



After heading has been applied, pitch measures the amount of rotation about the x-axis. This is the

object space x-axis, not the original inertial space x-axis. Staying consistent with the left-hand

rule, positive rotation rotates downward. In other words, pitch actually measures the angle of dec-

lination. This is illustrated in Figure 10.5.

Finally, after heading and pitch have been applied, bank measures the amount of rotation about the

z-axis. Again, this is the object space z-axis, not the original inertial space z-axis. The left-hand

rule dictates that positive bank rotates counterclockwise when viewed from the origin looking

toward +z. This is illustrated in Figure 10.6.

It may seem contradictory that positive bank is counterclockwise, since positive heading is clock-

wise. Notice that positive heading is clockwise when viewed from the positive end of the axis

toward the origin, the opposite perspective from the one used when judging clockwise/counter-

clockwise for bank. If we look from the origin to the positive end of the y-axis, then positive

heading does rotate counterclockwise. Or, if we look from the positive end of the z-axis toward the

origin (looking backward from in front of the object), then positive bank appears to rotate the

object clockwise. In either case, the left-hand rule prevails.
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Figure 10.5: Pitch is the second rotation and
rotates about the object space x-axis

Figure 10.6: Bank is the third and final rotation;
it rotates about the object space z-axis



Remember, when we say the rotations happen in the order of heading, pitch, and then bank,

we are talking about the order in which we rotate the object from inertial space into object space. If

we are thinking about rotating from object space into inertial space, the order is reversed.

Another name given to the heading-pitch-bank system is “roll-pitch-yaw,” where roll is syn-

onymous with bank, and yaw is synonymous with heading. (Actually, yaw is not precisely the

same as heading. More on this in Section 10.3.2.) Notice that in the roll-pitch-yaw system, the

angles are named in the order that we rotate from object space to inertial space.

10.3.2 Other Euler Angle Conventions
As we’ve mentioned, the heading-pitch-bank system isn’t the only system of Euler angles. Any

sequence of rotations about any three mutually perpendicular axes can define an orientation.

There are several options that cause the variation in Euler angle conventions:

� First, the heading-pitch-bank system goes by other names. Of course, calling something by a

different name isn’t a different convention, but it is worth noting. One common set of termi-

nology is roll-pitch-yaw, where roll is the same as bank, and yaw is the basically the same as

heading. Notice that this order appears to be opposite from heading-pitch-bank. This is purely

semantics; they are naming the order of rotations when a vector is rotated from object to iner-

tial space. (Actually, there is a technical difference between “yaw” and “heading.” Yaw is a

rotation about the object y-axis, and heading is a rotation about the inertial y-axis. Since this

rotation is performed at a time when the object y-axis is coincident with the inertial y-axis, this

distinction is not important.)

� Second, any three axes can be used as the axes of rotation. The axes don’t have to be the cardi-

nal axes, although it makes the most sense to use these axes.

� Third, it is not necessary to adhere to the left- or right-hand rule when defining which direc-

tion is considered positive for each of the rotations. It is certainly possible and common to

define positive pitch to rotate upward, for example.

� Fourth, and most importantly, the rotations can occur in different order, and the order does

matter. Any system would work for defining an orientation, but the heading-pitch-bank order

is the most common order used because it is the most practical. Heading measures rotation

about the vertical axes, which is meaningful primarily because the environments we work in

frequently have some sort of flat “ground.” Knowing the amount of rotation about the inertial

x- or z-axis is usually not useful. The orderings for the other two angles were also chosen to be

useful: pitch is meaningful as an angle of declination from horizontal, and bank measures how

much we are “twisted” on our z-axis.

If you have to deal with Euler angles that use a different convention from the one you prefer, we

offer two pieces of advice:

� First, make sure you understand exactly how the other Euler angle system works. The little

details, such as definition of positive rotation and order of rotations, make a big difference.

� Second, the easiest way to convert the Euler angles to your format is to convert them to matrix

form and then convert the matrix back to your style of Euler angles. We will learn how to
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perform these conversions in Section 10.6. Fiddling with the angles directly is much more dif-

ficult than it would seem. See [21] for more information.

10.3.3 Advantages of Euler Angles
Euler angles parameterize orientation using only three numbers, and these numbers are angles.

These two characteristics of Euler angles provide certain advantages over other forms of repre-

senting orientation.

� Euler angles are easy for us to use, considerably easier than matrices or quaternions. Per-

haps this is because the numbers in an Euler angle triple are angles, which is naturally how

people think about orientation. If the conventions most appropriate for the situation are cho-

sen, then the most important angles can be expressed directly. For example, the angle of decli-

nation is expressed directly using the heading-pitch-bank system. The ease of use is a serious

advantage. When an orientation needs to be displayed numerically or entered at the keyboard,

Euler angles are really the only choice.

� Smallest representation possible. Euler angles use three numbers to describe an orientation.

No system can parameterize 3D orientation using fewer than three numbers. If memory is at a

premium, then Euler angles are the most economical way to represent an orientation.

� Any set of three numbers is valid. If we take any three numbers at random, they form a valid

set of Euler angles that we can interpret as an expression of an orientation. In other words,

there is no such thing as an “invalid” set of Euler angles. Of course, the numbers may not be

correct, but at least they are valid. This is not the case with matrices and quaternions.

10.3.4 Disadvantages of Euler Angles
In this section we discuss some disadvantages of the Euler angle method of representing orienta-

tion. These are primarily:

� The representation for a given orientation is not unique.

� Interpolating between two angles is difficult.

Let’s address these points in detail. First, we have the problem that for a given orientation, there

are many different Euler angle triples that can be used to describe that orientation. This is known

as aliasing and can be somewhat of an inconvenience. Basic questions such as “do two Euler angle

triples represent the same angular displacement?” are difficult to answer due to aliasing.

The first and simplest form of aliasing occurs when we add a multiple of 360° to one of the

angles. Obviously, adding a whole number of revolutions does not change the orientation

expressed, even though the numbers are different.

A second and more troublesome form of aliasing occurs because the three angles are not com-

pletely independent of each other. For example, pitching down 135° is the same as heading 180°,

pitching down 45°, and then banking 180°.

In order to guarantee a unique representation for any given orientation, we must restrict the

ranges of the angles. One common technique is to limit heading and bank to ±180° and limit pitch

to ±90°. This establishes a “canonical” set of Euler angles. For any orientation, there is only one
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canonical Euler angle set to represent the orientation. (Actually, there is one more irritating singu-

larity that must be handled, which we will describe in just a moment.)

Almost all of the functions in our code that accept Euler angle parameters will work given

Euler angles in any range. However, when we write code that computes, or returns, Euler angles,

we will always try to return the canonical Euler angle triple. Using canonical Euler angles simpli-

fies many basic tests such as “am I facing approximately east?”

The most famous (and irritating) type of aliasing problem suffered by Euler angles is illus-

trated by this example: if we head right 45° and then pitch down 90°, this is the same as pitching

down 90° and then banking 45°. In fact, once we choose ±90° as the pitch angle, we are restricted

to rotating about the vertical axis. This phenomenon, where an angle of ±90° for the second rota-

tion can cause the first and third angles to rotate about the same axis, is known as Gimbal lock. In

order to remove this aliasing from the canonical set of Euler angle triples, we will assign all rota-

tion about the vertical axis to heading in the Gimbal lock case. In other words, in the canonical set,

if pitch is ±90°, then bank is zero.

For the purposes of representing an orientation, aliasing doesn’t pose a huge problem, espe-

cially when canonical Euler angles are used. But let’s say we wish to interpolate between two

orientations, A and B. In other words, for a given parameter t, 0 � t � 1, we wish to compute an

intermediate orientation C, so that C interpolates smoothly from A to B as t varies from zero to

one. This is an extremely useful operation for character animation and automatic camera control,

for example.

The naïve approach to this problem is to apply the standard linear interpolation formula to

each of the three angles independently. This equation is shown below:

This is fraught with problems.

First, if canonical Euler angles are not used, we may have large angle values. For example,

imagine the heading of orientation A is 720°, and the heading of orientation B is 45°. 720° = 2 ×

360°, which is the same as 0°. So basically, the heading values are only 45° apart. However, naïve

interpolation will spin around nearly twice in the wrong direction, as shown below in Figure 10.7.
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Figure 10.7: Naïve interpolation can cause
excessive rotation



Of course, the solution to this problem is to use canonical Euler angles. We could assume that we

will always be interpolating between two sets of canonical Euler angles. Or, we could attempt to

enforce this by converting to canonical values inside our interpolation routine. (Simply wrapping

angles within the –180°…180° range is easy, but dealing with pitch values outside the –90°…90°

range is more challenging.)

However, even using canonical angles doesn’t completely solve the problem. A second type

of interpolation problem can occur because of the cyclic nature of rotation angles. Suppose the

heading in A was –170°, and the heading in B was 170°. Notice that these are canonical values for

heading, both in range –180°…180°. The two heading values are only 20° apart, but again, naïve

interpolation will not behave correctly, rotating the “long way around” across 340° instead of tak-

ing the shorter path of 20°, as shown in Figure 10.8.

The solution to this second type of problem is to wrap the “delta” angles used in the interpolation

equation in range –180°…180° in order to find the shortest arc:

Even with these two “Band-Aids,” Euler angle interpolation still suffers from Gimbal lock, which

in many situations causes a jerky, unnatural course. The object whips around suddenly and

appears to be “hung” somewhere. The basic problem is that the angular velocity is not constant

during the interpolation. If you have never experienced what Gimbal lock looks like, you may

wonder what all the fuss is about. Unfortunately, it is very difficult to fully appreciate the problem

from illustrations in a book; you need to experience it interactively. Luckily, the companion web

page for this book (gamemath.com) has an excellent interactive demonstration of Gimbal lock.

The first two problems with Euler angle interpolation were irritating, but certainly not insur-

mountable. Using canonical Euler angles and wrapping the delta values in range provided

relatively easy workarounds. Gimbal lock, unfortunately, is more than a minor nuisance; it’s a fun-

damental problem. Perhaps we could reformulate our rotations and devise a system that does not

suffer from these problems? Unfortunately, this is not possible. There is simply an inherent
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Figure 10.8: Naïve interpolation can rotate “the
long way around”
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problem with using three numbers to describe 3D orientation. We could change our problems, but

not eliminate them. Any system that parameterizes 3-space orientation using three numbers is

guaranteed to have singularities in the parameterization space and, therefore, be subject to prob-

lems such as Gimbal lock. In Section 10.4, we will learn how to overcome these problems using

quaternions.

10.3.5 Summary
Let’s summarize our findings in Section 10.3 concerning Euler angles:

� Euler angles store orientation using three angles. These angles are ordered rotations about

three mutually perpendicular axes.

� The most common system of Euler angles is the heading-pitch-bank system.

� In most situations, Euler angles are more intuitive for us to work with compared to other

methods of representing orientation.

� When memory is at a premium, Euler angles use the minimum amount of data possible for

storing an orientation in 3D.

� There is no such thing as an “invalid” set of Euler angles. Any three numbers have a meaning-

ful interpretation.

� Euler angles suffer from aliasing problems, due to the cyclic nature of rotation angles, and

because the rotations are not completely independent of one another.

� Using canonical Euler angles can simplify many basic queries on Euler angles. An Euler

angle triple is in the canonical set if heading and bank are in range –180°…180° and pitch is in

range –90°…90°. Also, if pitch is ±90°, then bank is zero.

� Gimbal lock occurs when pitch is ±90°. In this case, one degree of freedom is lost because

heading and bank both rotate about the vertical axis.

� Interpolating between two orientations expressed using Euler angles is problematic. Simple

forms of aliasing are irritating, but there are workarounds. Gimbal lock is a more fundamental

problem and no easy solution exists.

10.4 Quaternions
The term quaternion is somewhat of a buzzword in 3D math. That’s probably because most people

don’t understand quaternions. The mystery surrounding quaternions is largely due to the way qua-

ternions have been presented in most texts. Hopefully, this book will help you resolve any

confusion concerning quaternions.

There is a mathematical reason for why using only three numbers to represent a 3-space orien-

tation is guaranteed to cause the problems we discussed with Euler angles, such as Gimbal lock. It

has something to do with some fairly advanced math terms like “manifolds.” A quaternion avoids

these problems by using four numbers to express an orientation (hence the name quaternion).

Chapter 10: Orientation and Angular Displacement in 3D 159



10.4.1 Quaternion Notation
A quaternion contains a scalar component and a 3D vector component. We usually refer to the sca-

lar component as w. We may refer to the vector component as a single entity v or as individual

components x, y, and z. Both notations are illustrated below:

In some cases, it will be convenient to use the shorter notation using v, and in some cases, the

“expanded” version is clearer. In this chapter, we will present all equations using both forms, when

possible. In just a moment, we will describe exactly what these four numbers represent.

We also may write quaternions vertically. This is strictly to make the equations format nicely;

there is no significant distinction between “row” and “column” quaternions.

10.4.2 Quaternions as Complex Numbers
We will now make a brief digression into complex math. This material is not completely necessary

in order to understand how to use quaternions, since we will be able to interpret quaternions com-

pletely from a geometric perspective. However, it is interesting to know the mathematical heritage

of quaternions and the circumstances that surrounded their invention.

Recall that the complex pair (a, b) defines the number a+bi, where i is the so-called imaginary

number such that i2 = –1. a is known as the real part, and b is the imaginary part. Any real number

k (an “ordinary” number) can be expressed as the complex number (k, 0) = k + 0i.

Complex numbers can be added, subtracted, and multiplied as follows:

We also may compute the conjugate of a complex number by negating the imaginary portion. The

notation is shown below:

We may also compute the magnitude of a complex number. The notation and interpretation of this

operation is similar to the absolute value of a real number, and in fact, when we express a real num-

ber as a complex number, they produce the same result. Equation 10.3 shows the magnitude of a

complex number.
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The set of complex numbers “live” in a 2D plane. We can think about this plane as having two

axes: the real axis and the imaginary axis. Thus, we interpret the complex number (x, y) as a 2D

vector. When complex numbers are interpreted in this fashion, they can be used to perform rota-

tion in the plane (albeit in a roundabout way). A complex number p is rotated about the origin by

an angle �, as shown in Figure 10.9.

To perform this rotation, we define a second complex number q = (cos �, sin �). Now, the rotated

vector p' can be computed by the complex multiplication:

Of course, this is nothing more than the 2×2 rotation matrix from Section 8.2.1. However, com-

plex numbers provide an interesting notation for this. We shall see that quaternions can be used in

a similar way in 3D.

The Irish mathematician William Hamilton looked for a way to extend complex numbers

from 2D to 3D for years. This new type of complex number, he thought, would have one real part

and two imaginary parts. However, Hamilton was unable to create a useful type of complex num-

ber with two imaginary parts. Then, as the story goes, in 1843, on his way to a speech at the Royal

Irish Academy, he suddenly realized that three imaginary parts were needed rather than two. He

carved the equations that define the properties of this new type of complex number on the Broome

Bridge. (These equations are given on the following page.) Thus, quaternions were invented.
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Quaternions extend the complex number system by having three imaginary numbers, i, j, and

k, which are related as follows:

A quaternion [w, (x, y, z)] defines the complex number w + xi + yj + zk. As we will soon see, many

of the properties of standard complex numbers also apply to quaternions. Most importantly, in a

manner analogous to the way complex numbers can be used to rotate vectors in the plane, quater-

nions can be used to rotate vectors in 3D.

10.4.3 Quaternions as an Axis-Angle Pair
Euler proved that a sequence of rotations was equivalent to a single rotation. Thus, any angular

displacement in 3D can be described as a single rotation about a single axis. (The word axis here is

used in the general sense as a line about which something rotates and is not to be confused with the

cardinal axes. Quite often, an axis of rotation for a given orientation is arbitrarily oriented.) When

an orientation is represented in this form, it is known as an axis-angle representation. (Actually,

we could have defined axis-angle form as a fourth form for representing orientation. However,

axis-angle form is rarely used in practice; usually either quaternions or Euler angles are used

instead.)

In Section 8.2.3, we derived a matrix to rotate vectors about an arbitrary axis. As we did then,

let us define the vector n to be the axis of rotation. The length of n is not important for purposes of

defining an axis, although it will be convenient at this time for us to restrict n to have unit length.

The direction of n defines which way is considered “positive” rotation, according to the standard

“hand” rule for left-hand or right-hand coordinate spaces. (See Figure 8.5 if you have forgotten

this rule.) We will also define the scalar � to be the amount of rotation about this axis. Thus, the

pair (�, n) defines an angular displacement as a rotation of � radians about the axis specified by n.

A quaternion can be interpreted as an axis-angle representation of angular displacement. Of

course, n and � aren’t simply stored in the four numbers of the quaternion directly — that would be

too easy! They’re in there, but it’s not quite that straightforward. Equation 10.4 shows how the

numbers inside a quaternion q are related to � and n. Both forms of quaternion notation are used:

Keep in mind that the w component of q is related to �, but they are not the same thing. Likewise, v

and n are related, but not identical.
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10.4.4 Quaternion Negation
Quaternions can be negated. This is done in the obvious way of negating each component:

It is surprising to realize that the quaternions q and –q actually represent the same angular dis-

placement! If we add any multiple of 360° to �, it doesn’t change the angular displacement

represented by q, but it negates all four components of q. Thus, any angular displacement in 3D

has exactly two distinct representations in quaternion format, and they are negatives of each other.

10.4.5 Identity Quaternion(s)
Geometrically, there are two “identity” quaternions, which represent no angular displacement:

[1, 0] and [–1, 0]. (Note the boldface zero, which indicates the zero-vector.) When � is an even

multiple of 360°, then cos(�/2) = 1, and we have the first form. If � is an odd multiple of 360°, then

cos(�/2) = –1, and we have the second form. In both cases, sin(�/2) = 0, so the value of n is irrele-

vant. This makes sense; if the rotation angle � is a whole number of complete revolutions, then no

real change is made to the orientation, and the axis of rotation is irrelevant.

Mathematically, there is really only one identity quaternion: [1, 0]. When we multiply any

quaternion q by the identity quaternion, the result is q. (We will learn about quaternion multiplica-

tion in Section 10.4.8.) When we multiply a quaternion q by the other “geometric identity”

quaternion [–1, 0], we get –q. Geometrically, this results in the same quaternion, since q and –q

represent the same angular displacement. Mathematically, q and –q are not equal, so [–1, 0] is not

a “true” identity quaternion.

10.4.6 Quaternion Magnitude
We can compute the magnitude of a quaternion, just as we can for vectors and complex numbers.

The notation and formula, shown below, are similar to that used for vectors:

Let’s see what this means geometrically. Substituting using � and n:
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Recalling the restriction that n has unit length, we have:

Applying the trig identity sin2x + cos2x = 1 (see Appendix A):

For our purposes of using quaternions to represent orientation, we will only deal with so-called

unit quaternions that obey this rule. For information concerning non-normalized quaternions, we

refer the reader to [3].

10.4.7 Quaternion Conjugate and Inverse
The conjugate of a quaternion, denoted q

*, is obtained by negating the vector portion of the

quaternion:

The inverse of a quaternion, denoted q
–1, is defined as the conjugate of a quaternion divided by its

magnitude:

The quaternion inverse has an interesting correspondence with the multiplicative inverse for real

numbers (scalars). For real numbers, the multiplicative inverse a–1 is 1/a. In other words,

a(a–1) = a–1a = 1. The same applies to quaternions. When we multiply a quaternion q by its inverse

q
–1, we get the identity quaternion [1, 0]. (We will discuss quaternion multiplication in the next

section.)

Equation 10.8 is the official definition of quaternion inverse. However, since we will only be

using unit quaternions for our purposes, the quaternion conjugate and inverse will be equivalent.

The conjugate (inverse) is interesting because q and q
* represent opposite angular displace-

ments. It is easy to see why this is the case. By negating v, we are negating the axis of rotation n,

which reverses what we consider to be positive rotation. Thus, q rotates about an axis by an

amount �, and q
* rotates in the opposite direction by the same amount.

For our purposes, an alternative definition of quaternion conjugate could have been to negate

w, leaving v (and n) unchanged. This would negate the amount of rotation �, rather than reversing
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what is considered positive rotation by flipping the axis of rotation. This would have been equiva-

lent to the definition given in Equation 10.8 (for our purposes, at least) and provided for a slightly

faster implementation and a slightly more intuitive geometric interpretation also. However, the

term conjugate has a special significance in the context of complex numbers, and so we have cho-

sen to preserve the original definition.

10.4.8 Quaternion Multiplication (Cross Product)
Quaternions can be multiplied according to their complex number interpretation from Section

10.4.2:

This leads us to the standard definition for quaternion multiplication, given below using both

quaternion notations.

Note: This is not the definition of quaternion multiplication we actually use in this book. We
will use a slightly different form. This alternative definition, and the rationale behind it, will be
given in a few pages.

We do not use a multiplication symbol for quaternion cross product, and there is no distinction

made between “row” and “column” quaternions.
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Quaternion multiplication is associative, but it is not commutative:

Let’s examine the magnitude of the product of two quaternions.

After expanding this product and then canceling terms (a step which we have omitted because it is

very messy), we then factor:

Finally, applying the definition of quaternion magnitude:

Thus, the magnitude of a quaternion product is equal to the product of the magnitudes. This is very

significant, since it guarantees that when we multiply two unit quaternions, the result is a unit

quaternion.
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The inverse of a quaternion product is equal to the product of the inverses taken in reverse

order:

Now we come to a very interesting property of quaternions. Let us “extend” a standard 3D (x, y, z)

point into quaternion space by defining the quaternion p = [0, (x, y, z)]. (Of course, p will not, in

general, be a unit quaternion.) Let q be a rotation quaternion in the form we have discussed,

[cos �/2, n sin �/2], where n is a unit vector axis of rotation, and � is the rotation angle. It is surpris-

ing to realize that we can rotate the 3D point p about n by performing the following quaternion

multiplication:

We can prove this by expanding the multiplication, substituting in n and �, and comparing the

result to Equation 8.5. In fact, this is how most texts on quaternions derive the conversion from

quaternion to matrix form. We have chosen to derive the conversion from quaternion to matrix

form solely from the geometry of the rotations, which we will do in Section 10.6.3. As it turns out,

the correspondence between quaternion multiplication and 3D vector rotations is more of a theo-

retical interest than a practical one. In practice, it’s likely to be just as fast to convert the quaternion

to matrix form (using Equation 10.23, which we will derive in Section 10.6.3) and then multiply

the vector by the matrix.

Other than this bit of mathematical trivia, what’s the point of quaternion multiplication?

Examine what happens when we apply multiple rotations. We’ll rotate a point p by the quaternion

a and then rotate that result by another quaternion b:

Notice that rotating by a and then by b is equivalent to performing a single rotation by the

quaternion product ba. Thus, quaternion multiplication can be used to concatenate multiple rota-

tions, just like matrix multiplication.

According to the standard definition of quaternion multiplication, these rotations occur in

order from right to left. This is very unfortunate, since it forces us to write concatenation of multi-

ple rotations “inside out,” and it does not mirror the same operations in matrix form. (At least not

when row vectors are used.)

Chapter 10: Orientation and Angular Displacement in 3D 167

Equation 10.12:
Inverse of
quaternion
product equals
the product of
inverses, taken
in reverse order



Because of this “backwardness” resulting from Equation 10.9, in this book and in our code,

we will deviate from the standard definition and define quaternion multiplication with the

operands in the opposite order. Notice that only the vector cross product portion is affected:

This does not change the fundamental properties of quaternions or their geometric interpretation

using � and n. We can still use quaternion multiplication to rotate vectors directly, only with our

definition, we multiply by the quaternion on the right and its inverse on the left:

We see that the product representing the concatenation of multiple rotations does, indeed, read

from left to right in the order that rotations occur:

For the remainder of this book, and in all the code, we will use the definition of quaternion multi-

plication given above in Equation 10.13. To minimize confusion, we will always point out any

area where this deviation from the standard will cause our equations or code to differ from other

texts.

We do not take this deviation from the standard lightly, and we have done it for very good rea-

son. We will develop quaternion classes in Section 11.3, which will make direct manipulation of

the members of the quaternion class completely unnecessary. For us, quaternions’ ease of use in a

“high level” capacity as an angular displacement will be much more important than adherence to

the official standard. The goal is to understand the nature of quaternions and what operations are

available to us, design a class that exports these operations directly, and then use the class through

these operations, never having to fiddle around with the numbers inside the class again.

10.4.9 Quaternion “Difference”
Using quaternion multiplication and inverse, we can compute the “difference” between two qua-

ternions, with “difference” being defined as the angular displacement from one orientation to

another. In other words, for given orientations a and b, we can compute the angular displacement

d which rotates from a to b. This can be expressed compactly using the following quaternion

equation:

168 Chapter 10: Orientation and Angular Displacement in 3D

Equation 10.13:
Definition of
quaternion
multiplication
used in this
book

TE
AM
FL
Y

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Team-Fly® 



(Here we are using our more intuitive definition of quaternion multiplication, where the order of

rotations corresponds to the order of multiplications from left to right.) Let’s solve for d. If the

variables in the equation represented scalars, we could simply divide by d. However, we can’t

divide quaternions; we can only multiply them. Perhaps multiplication by the inverse will achieve

the desired effect? Multiplying both sides by a
–1 on the left (we have to be careful since quaternion

multiplication is not commutative):

Applying the associative property of quaternion multiplication and simplifying:

Now we have a way to generate a quaternion to represent the angular displacement from one ori-

entation to another. We will use this in Section 10.4.13.

Mathematically, the angular “difference” between two quaternions is actually more similar to

a division than a true difference (subtraction).

10.4.10 Quaternion Dot Product
The dot product operation is defined for quaternions. The notation and definition for this operation

is very similar to the vector dot product:

Notice that like the vector dot product, the result is a scalar. For unit quaternions a and b, –1

� a�b � 1. Usually we are only interested in the absolute value of a�b, since a�b = –(a�–b), even

though b and –b represent the same angular displacement.

The geometric interpretation of the quaternion dot product is similar to the interpretation of

the vector dot product; the larger the absolute value of the quaternion dot product a�b, the more

“similar” the angular displacements represented by a and b.

10.4.11 Quaternion Log, Exp, and Multiplication by
a Scalar
In this section, we discuss three operations on quaternions that, although they are seldom used

directly, are the basis for several important quaternion operations. These operations are quaternion

logarithm, exponential, and multiplication by a scalar.
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First, let us reformulate our definition of a quaternion by introducing a variable � to equal the half

angle, �/2:

Now the logarithm of q is defined as:

We use the notation � to mean “equal by definition.” Note that the result of log q is, in general, not

a unit quaternion.

The exponential function is defined in the exact opposite manner. First, we define the

quaternion p to be of the form [0, �n], with n a unit vector:

Then the exponential function is defined as:

By definition, exp p always returns a unit quaternion.

The quaternion logarithm and exponential are related to their scalar analogs. Recall that, for

any scalar a, the following relation holds:

In the same way, the quaternion exp function is defined to be the inverse of the quaternion log

function:

Finally, quaternions can be multiplied by a scalar, and the result is computed in the obvious way of

multiplying each component by the scalar. Given a scalar k and a quaternion q:
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Usually, this will not result in a unit quaternion, which is why multiplication by a scalar is not a

very useful operation in the context of representing angular displacement.

10.4.12 Quaternion Exponentiation
Quaternions can be exponentiated (raised to a power). This is denoted q

t. (Don’t confuse this with

the exponential function. The exponential function only accepts one quaternion argument.

Quaternion exponentiation has two parameters — the quaternion and the exponent.)

Quaternion exponentiation has a similar meaning to the result when a real number is raised to

a power. Recall that a0 = 1, and a1 = a, where a is a nonzero scalar. As t varies from 0…1, at varies

from 1…a. A similar statement holds for quaternion exponentiation: as t varies from 0…1, q
t var-

ies from [1, 0]…q.

Quaternion exponentiation is useful because it allows us to extract a “fraction” of an angular

displacement. For example, to compute a quaternion that represents one-third of the angular dis-

placement represented by the quaternion q, we would compute q
1/3.

Exponents outside the 0…1 range behave mostly as expected (with one major caveat). For

example, q
2 represents twice the angular displacement as q. If q represents a clockwise rotation of

30º about the x-axis, then q
2 represents a clockwise rotation of 60º about the x-axis, and q

–1/3 repre-

sents a counterclockwise rotation of 10º about the x-axis.

The caveat we mentioned is this: a quaternion represents angular displacements using the

shortest arc. “Multiple spins” cannot be represented. Continuing our example from above, q
4 is

not a 240º clockwise rotation about the x-axis as expected; it is an 80º counterclockwise rotation.

Of course, rotating 240º in one direction is the same as rotating 80º in the opposite direction, so the

correct “end result” is properly captured. However, if further operations on this quaternion were

performed, it might not behave as expected. For example, (q4)1/2 is not q
2, as we would intuitively

expect. In general, many of the algebraic identities concerning exponentiation of scalars, such as

(as)t = ast, do not apply to quaternions.

Now that we understand what quaternion exponentiation is used for, let’s see how it is mathe-

matically defined. Quaternion exponentiation is defined in terms of the “utility” operations we

learned in the previous section. The definition is given below:

Notice that a similar statement is true regarding exponentiation of a scalar:

It is not too difficult to understand why q
t interpolates from identity to q as t varies from 0…1.

Notice that the log operation basically extracts the axis n and angle �. Then, when we perform the

scalar multiplication by the exponent t, the effect is just to multiply � by t. Finally, the exp

“undoes” what the log operation did, recalculating the new w and v from t� and n. Thus, the defini-

tions given above are the official mathematical ones and work elegantly in theory, but direct
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translation into code is more complicated than necessary. The code below shows how we could

compute the value of q
t.

Listing 10.1: Code to raise a quaternion to a power

// Quaternion (input and output)

float w,x,y,z;

// Input exponent

float exponent;

// Check for the case of an identity quaternion.
// This will protect against divide by zero

if (fabs(w) < .9999f) {

// Extract the half angle alpha (alpha = theta/2)

float alpha = acos(w);

// Compute new alpha value

float newAlpha = alpha * exponent;

// Compute new w value

w = cos(newAlpha);

// Compute new xyz values

float mult = sin(newAlpha) / sin(alpha);
x *= mult;
y *= mult;
z *= mult;

}

There are a few points to notice about this code.

� First, the check for the identity quaternion is necessary, since a value of w = ±1 would cause

the compututation of mult to divide by zero. Raising an identity quaternion to any power

results in the identity quaternion, so if we detect an identity quaternion on input, we simply

ignore the exponent and return the original quaternion.

� Second, when we compute alpha, we use the acos function, which always returns a positive

angle. This does not create a loss of generality. Any quaternion can be interpreted as having a

positive angle of rotation, since negative rotation about an axis is the same as positive rotation

about the axis pointing in the opposite direction.
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10.4.13 Quaternion Interpolation — aka “Slerp”
The raison d’etre of quaternions in 3D math today is an operation known as slerp, which stands

for Spherical Linear interpolation. The slerp operation is useful because it allows us to smoothly

interpolate between two interpolations. Slerp avoids all the problems that plagued interpolation of

Euler angles (see Section 10.3.4).

Slerp is a ternary operator, meaning it accepts three operands. The first two operands to slerp

are the two quaternions between which we wish to interpolate. We’ll assign these “starting” and

“ending” orientations to the variables q0 and q1, respectively. The interpolation parameter will be

assigned to the variable t, and as t varies from 0 to 1, the slerp function

will return an orientation that interpolates from q0 and q1.

Let’s see if we can’t derive the slerp formula using the tools we have so far. If we were interpo-

lating between two scalar values a0 and a1, we could use the standard linear interpolation formula

below:

The standard linear interpolation formula works by starting at a0 and adding a tth of the difference

between a1 and a0. This requires three basic steps:

� Compute the difference between the two values.

� Take a fraction of this difference.

� Take the original value and adjust it by this fraction of the difference.

We can use the same basic idea to interpolate between orientations.

� Compute the difference between the two values. We learned how to do this in Section

10.4.9. The angular displacement from q0 to q1 is given by:

� Take a fraction of this difference. To do this, we will use quaternion exponentiation, which

we discussed in Section 10.4.12. The fraction of the difference is given by:

� Take the original value and adjust it by this fraction of the difference. We “adjust” the ini-

tial value by composing the angular displacements via quaternion multiplication:

(Again, we use our more intuitive definition of quaternion multiplication that reads from left to

right.)
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Thus, the equation for slerp is given by:

This is how slerp is computed in theory. In practice, a more efficient technique is used.

We start by interpreting the quaternions as existing in a 4D space. Since all of the quaternions

we will be interested in are unit quaternions, they “live” on the surface of a 4D “sphere.” The basic

idea is to interpolate around the arc that connects the two quaternions along the surface of the 4D

sphere. (Hence the name spherical linear interpolation.)

We can visualize this in the plane. Imagine two 2D vectors v0 and v1, both of unit length. We

wish to compute the value of vt, which is the result of smoothly interpolating around the arc by a

fraction t of the distance from v0 to v1. If we let � (pronounced “omega”) be the angle intercepted

by the arc from v0 to v1, then vt is the result of rotating v1 around this arc by an angle of t�. This is

illustrated in Figure 10.10.

We can express vt as a linear combination of v0 and v1. In other words, there exists nonnegative

constants k0 and k1 such that:

We can use basic geometry to determine the values of k0 and k1. Figure 10.11 shows how this can

be done.
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Applying some trig to the right triangle with k1v1 as the hypotenuse (and recalling that v1 is a unit

vector), we see that:

Using a similar technique to solve for k0 yields the following result:

Thus, vt can be expressed as:

The same basic idea can be extended into quaternion space, and we can reformulate the slerp as:

We can use the quaternion dot product to compute the “angle” between the two quaternions.

There are two slight complications. First, the two quaternions q and –q represent the same ori-

entation, but they may produce different results when used as an argument to slerp. This problem

doesn’t happen in 2D or 3D because the surface of a 4D sphere is not exactly a straightforward

extension of Euclidian space. The solution is to choose the signs of q0 and q1 such that the dot

product q0	q1 is nonnegative. This has the effect of always selecting the shortest rotational arc

from q0 to q1. The second consideration is that if q0 and q1 are very close, then sin � will be very

small, which will cause problems with the division. To avoid this, we will use simple linear inter-

polation if sin � is very small. Listing 10.2 applies all of this advice to compute the quaternion

slerp:
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Listing 10.2: How slerp is computed in practice

// The two input quaternions

float w0,x0,y0,z0;
float w1,x1,y1,z1;

// The interpolation parameter

float t;

// The output quaternion will be computed here

float w,x,y,z;

// Compute the "cosine of the angle" between the
// quaternions, using the dot product

float cosOmega = w0*w1 + x0*x1 + y0*y1 + z0*z1;

// If negative dot, negate one of the input
// quaternions to take the shorter 4D "arc"

if (cosOmega < 0.0f) {
w1 = –w1;
x1 = –x1;
y1 = –y1;
z1 = –z1;
cosOmega = –cosOmega;

}

// Check if they are very close together to protect
// against divide-by-zero

float k0, k1;
if (cosOmega > 0.9999f) {

// Very close - just use linear interpolation

k0 = 1.0f–t;
k1 = t;

} else {

// Compute the sin of the angle using the
// trig identity sin^2(omega) + cos^2(omega) = 1

float sinOmega = sqrt(1.0f – cosOmega*cosOmega);

// Compute the angle from its sin and cosine

float omega = atan2(sinOmega, cosOmega);

// Compute inverse of denominator, so we only have
// to divide once

float oneOverSinOmega = 1.0f / sinOmega;

// Compute interpolation parameters
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k0 = sin((1.0f – t) * omega) * oneOverSinOmega;
k1 = sin(t * omega) * oneOverSinOmega;

}

// Interpolate

w = w0*k0 + w1*k1;
x = x0*k0 + x1*k1;
y = y0*k0 + y1*k1;
z = z0*k0 + z1*k1;

10.4.14 Quaternion Splines — aka “Squad”
Slerp provides interpolation between two orientations, but what if we have a sequence of more

than two orientations which define a “path” we wish to interpolate through? We could use slerp in

between the “control points.” This is analogous to using simple geometric linear interpolation,

which uses straight lines between the control points. Obviously, there is a discontinuity at the con-

trol points — something we would like to avoid.

Although a complete discussion is outside the scope of this book, we will present the equation

for squad (which stands for spherical and quadrangle) which can be used to trace out a path

between control points. For a detailed analysis of this technique, including a description of some

of its shortcomings (the angular velocity is not constant), we refer the interested and mathemati-

cally inclined reader to [3]. Fortunately, it is not completely necessary to understand the math

involved in order to use squad!

Let our “control points” be defined by a sequence of quaternions:

We will also define the “helper” quaternion si, which can be thought of as intermediate control

points:

Notice that si is computed using qi–1 and qi+1, and, therefore, s1 and sn are undefined. In other

words, the curve extends from q2…qn–1. The first and last control points are only used to control

the interior of the curve. If it is necessary that the curve pass through these control points, then we

must insert extra dummy control points at the beginning and end, with the obvious choice being to

simply duplicate the control points.

Given four adjacent control points, squad is used to compute the correct interpolation

between the middle two, much like a cardinal spline.

Let’s denote the four control points:

We will also define an interpolation parameter h. As h varies from 0…1, squad traces out the seg-

ment of the curve between qi and qi+1:
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(As always, we are using our left-to-right definition of quaternion multiplication.) The entire

curve can be generated by applying squad piecewise.

10.4.15 Advantages/Disadvantages of Quaternions
Using quaternions offers a number of advantages over other methods of representing angular

displacement:

� Smooth interpolation. The interpolation provided by the slerp and squad operations pro-

vides smooth interpolation between orientations. No other representation method provides

smooth interpolation.

� Fast concatenation and inversion of angular displacements. We can concatenate a

sequence of angular displacements into a single angular displacement using the quaternion

cross product. The same operation using matrices is considerably slower. Quaternion conju-

gate provides a way to compute the opposite angular displacement very efficiently. This can

be done by transposing a rotation matrix, but it is not easy with Euler angles.

� Fast conversion to/from matrix form. As we will see in Section 10.6, quaternions can be

converted to and from matrix form slightly faster than Euler angles.

� Only four numbers. Since a quaternion contains four scalar values, it is considerably more

economical than a matrix, which uses nine numbers. (However, it still is 33% larger than

Euler angles.)

These advantages do come at some cost. Quaternions suffer from a few of the problems that

plague matrices, only to a lesser degree:

� Slightly bigger than Euler angles. This one additional number may not seem like much, but

an extra 33% can make a difference when large amounts of angular displacements are needed,

such as when storing animation data.

� Quaternions can become invalid. This can happen either through bad input data or from

accumulated floating-point round-off error. (We can address this problem by normalizing the

quaternion to ensure that it has unit magnitude.)

� Difficult for us to work with. Of the three representation methods, quaternions are the most

difficult for us to work with directly.
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10.5 Comparison of Methods
Let’s summarize our discoveries in the previous sections. Figure 10.12 summarizes the differ-

ences between the three representation methods.

Task/Property Matrix Euler Angles Quaternion

Rotating points

between coordinate

spaces (object and

inertial)

Possible Impossible (must

convert to matrix)

Impossible (must

convert to matrix)

Concatenation or

incremental rotation

Possible but usually

slower than quaternion

form; watch out for

matrix creep

Impossible Possible, and usually

faster than matrix form

Interpolation Basically impossible Possible, but aliasing

causes Gimbal lock and

other problems

Slerp provides smooth

interpolation

Human interpretation Difficult Easy Difficult

Storing in memory or

in a file

Nine numbers Three numbers Four numbers

Representation is

unique for a given

orientation

Yes No — an infinite

number of Euler angle

triples alias to the

same orientation

Exactly two distinct

representations for any

orientation, and they are

negates of each other

Possible to become

invalid

Matrix creep can occur Any three numbers

form a valid orientation

Error creep can occur

Figure 10.12: Comparison of matrices, Euler angles, and quaternions

Some situations are better suited for one orientation format or another. Here are a few words of

advice to aid you in selecting the right format:

� Euler angles are easiest for us to work with. Using Euler angles greatly simplifies human

interaction when specifying the orientation of objects in the world. This includes direct key-

board entry of an orientation, specifying orientations directly in the code (i.e., positioning the

camera for rendering), and examination in the debugger. This advantage should not be under-

estimated. Certainly don’t sacrifice ease of use in the name of “optimization” until you are

certain that it will make a difference.

� Matrix form must eventually be used if vector coordinate space transformations are needed.

However, this doesn’t mean you can’t store the orientation using another format and then
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generate a rotation matrix when you need it. An alternative solution is to store the “main

copy” of the orientation using Euler angles, but also maintain a matrix for rotations, recom-

puting this matrix anytime the Euler angles change.

� For storage of large numbers of orientations (i.e., animation data), use Euler angles or quater-

nions. Euler angles will take 25 % less memory, but they will be slightly slower to convert to

matrix form. If the animation data requires concatenation of nested coordinate spaces, quater-

nions will probably be the better choice.

� Decent interpolation can only be accomplished using quaternions. However, even if you are

using a different form, you can always convert to quaternions, perform the interpolation, and

then convert back to the original form.

10.6 Converting between Representations
We have established that different methods of representing orientation are appropriate in different

situations, and we have also provided some guidelines for choosing the most appropriate method.

In this section, we discuss how to convert angular displacement from one form to another.

10.6.1 Converting Euler Angles to a Matrix
Euler angles define a sequence of rotations. We can compute the matrix for each individual rota-

tion and then concatenate these matrices into one matrix that defines the total angular

displacement. Of course, it matters whether we want the object-to-inertial matrix or the iner-

tial-to-object matrix. In this section, we show how to compute both.

We have chosen to formulate our Euler angles as a sequence of rotations that transform an

object (and its coordinate space) from inertial space into object space. Thus, the generation of the

inertial-to-object rotation matrix is a straightforward translation of the definition of our Euler

angles:

H, P, and B are the rotation matrices for heading, pitch, and bank, which rotate about the y, x, and

z-axis, respectively. We learned how to compute these elementary rotation matrices in Section

8.2.2. However, there is a slight complication. As we discussed in Section 8.1, rotating a coordi-

nate space is the exact opposite of rotating a point. Imagine a point that is fixed in space while

these rotations are occurring. When we pitch the coordinate space down, for example, the point

actually rotates up, with respect to the coordinate space. Our formulation of Euler angles specifies

that the object and its coordinate space are rotated. Since we are seeking to compute a matrix to

transform points, when we compute our primitive matrices H, P, and B, we will rotate by the oppo-

site rotation amounts. Let us assign the rotation angles heading, pitch, and bank to the variables h,

p, and b, respectively.
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Concatenating these matrices in the proper order yields Equation 10.21:

If we wish to rotate vectors from object to inertial space, then we will use the inverse of the iner-

tial-to-object matrix. We know that since a rotation matrix is orthogonal, the inverse is simply the

transpose. However, let’s verify this.

To transform from object to inertial space, we will effectively “un-bank,” “un-pitch,” and then

“un-heading,” in that order. In other words:

Notice that we can either think of the rotation matrices B
–1, P

–1, and H
–1 as the inverse matrices of

their counterparts or as normal rotation matrices, using the opposite rotation angles b, p, and h.

(Remember that for the inertial-to-object matrix, we used the negatives of the rotation matrices.

So in this case, the angles will not be negated.)
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Just as we did before, let’s concatenate these in the correct order:

When we compare Equation 10.21 with Equation 10.22, we see that the object-to-inertial matrix is

indeed the transpose of the inertial-to-object matrix as expected.

10.6.2 Converting a Matrix to Euler Angles
Converting an angular displacement from matrix form to Euler angle representation entails sev-

eral considerations:

� We must know which rotation the matrix performs: either object-to-inertial or iner-

tial-to-object. In this section, we will develop a technique using the inertial-to-object matrix.

The process of converting an object-to-inertial matrix to Euler angles is very similar.

� For any given angular displacement, there are an infinite number of Euler angle representa-

tions due to Euler angle aliasing. (See Section 10.3.4.) The technique we present here will

always return “canonical” Euler angles, with heading and bank in range 
180° and pitch in

range 
90°.

� Some matrices may be malformed, and so we must be tolerant of floating-point precision

errors. Some matrices contain transformations other than rotation, such as scale, mirroring, or

skew. For now, we will discuss a technique that works only on proper rotation matrices.

With those considerations in mind, we set out to solve for the Euler angles from Equation 10.21

directly:

We can solve for p immediately from m23:

The C standard library function asin returns a value in the range –�/2 to �/2 radians, which is

–90� to +90�, exactly the range of values we wish to return for pitch.
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Now that we know p, we also know cos p. Let us first assume that cos p � 0. We can deter-

mine sin h and cos h by dividing m13 and m33 by cos p, as follows:

Once we know the sine and cosine of an angle, we can compute the value of the angle using the C

standard library function atan2. This function returns an angle from –� to � radians, which is in

our desired output range. A straightforward translation from the equations above yields:

However, we can actually simplify this because atan2(y,x)works by taking the arctangent of

the quotient y/x, using the signs of the two arguments to determine the quadrant of the returned

angle. Since cos p > 0, the divisions do not affect the quotient and are, therefore, unnecessary.

Thus, heading can be computed more simply by:

We can compute bank in a similar manner from m21 and m22:

If cos p = 0, then we cannot use the above trick since all the matrix elements involved are zero.

However, notice that when cos p = 0, then p = 
90°, which means we are either looking straight

up or straight down. This is the Gimbal lock situation, where heading and bank effectively rotate

about the same physical axis (the vertical axis). In this case, we will arbitrarily assign all rotation

about the vertical axis to heading and set bank equal to zero. Now we know the value of pitch and

bank, and all we have left is to solve for heading. Armed with the following simplifying

assumptions:

we can substitute these assumptions into Equation 10.21:
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Now we can compute h from –m31 and m11, which contain the sine and cosine of the heading,

respectively.

Let’s look at some code to extract the Euler angles from an inertial-to-object rotation matrix

using the technique developed above. To make the example simple, we will assume global vari-

ables for input and output:

Listing 10.3: Extracting Euler angles from an inertial-to-object rotation matrix

// Assume the matrix is stored in these variables:

float m11,m12,m13;
float m21,m22,m23;
float m31,m32,m33;

// We will compute the Euler angle values in radians and store them here:

float h,p,b;

// Extract pitch from m23, being careful for domain errors with asin(). We could have
// values slightly out of range due to floating point arithmetic.

float sp = –m23;
if (sp <= –1.0f) {

p = –1.570796f; // –pi/2
} else if (sp >= 1.0) {

p = 1.570796; // pi/2
} else {

p = asin(sp);
}

// Check for the Gimbal lock case, giving a slight tolerance
// for numerical imprecision

if (sp > 0.9999f) {

// We are looking straight up or down.
// Slam bank to zero and just set heading

b = 0.0f;
h = atan2(–m31, m11);

} else {

// Compute heading from m13 and m33

h = atan2(m13, m33);
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// Compute bank from m21 and m22

b = atan2(m21, m22);

}

10.6.3 Converting a Quaternion to a Matrix
To convert an angular displacement from quaternion form to matrix form, we will use the matrix

from Section 8.2.3, which rotates about an arbitrary axis:

This matrix is in terms of n and �, but remember that the components of a quaternion are:

Let’s see if we can manipulate the matrix into a form so that we can substitute in w, x, y, and z. We

need to do this for all nine elements of the matrix. Luckily, the matrix has a great deal of structure;

once we have a technique for computing one element on the diagonal, the other elements can be

solved in the same way. Likewise, the non-diagonal elements are very similar to each other.

Note: This is a tricky derivation, and it is not necessary to understand how the matrix is
derived in order to use the matrix. If you’re not interested in the math, skip to Equation 10.23.

Let’s examine the elements along the diagonal of the matrix. We’ll work through m11 completely;

m22 and m33 can be solved similarly.

We’ll start by manipulating the above expression in a manner that may seem to be a detour. The

purpose of these steps will become apparent in just a moment.

Now we need to get rid of the cos � term, and we’d like to replace it with something that contains

cos �/2 or sin �/2, since that’s what the elements of a quaternion are in terms of. As we have done
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before, let � = �/2. We’ll write one of the double-angle formulas for cosine from Appendix A in

terms of �, and then substitute in �:

Substituting for cos �:

Expanding the product and simplifying (Notice that we use the trig identity sin2 x = 1 – cos2 x.):

Finally, we can substitute using w and x:

The above equation is correct; however, it is not the standard equation given in other texts:

In fact, other forms exist, most notably the one found in a very authoritative text on quaternions

[22], which gives m11 as w2 + x2 – y2 – z2. Since w2 + x2 + y2 + z2 = 1, the three forms are equivalent.

However, let’s back up and see if we can’t derive the “standard” form directly. In the first step,

we’ll use the fact that since n is a unit vector, nx
2 + ny

2 + nz
2 = 1, and then1 – nx

2 = ny
2 + nz

2.

Elements m22 and m33 are derived in a similar fashion. The results are presented in Equation 10.23

when we give the complete matrix.

Let’s look at the non-diagonal elements of the matrix; they are easier than the diagonal ele-

ments. We’ll use m12 as an example.
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We’ll need the reverse of the double-angle formula for sine (see Appendix A):

Substituting and simplifying:

The other non-diagonal elements are derived in a similar fashion.

Finally, we present the complete rotation matrix constructed from a quaternion:

10.6.4 Converting a Matrix to a Quaternion
To extract a quaternion from the corresponding rotation matrix, we will reverse engineer Equation

10.23 directly. Examining the sum of the diagonal elements (known as the trace of the matrix) we

get:

Therefore, we can compute w by:

The other three elements can be computed in a similar way by negating two of the three elements

in the trace:
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Unfortunately, this does not always work, since the square root will always yield positive results.

(More accurately, we have no basis for choosing the positive or negative root.) However, since q

and –q represent the same orientation, we can arbitrarily choose to use the nonnegative root for

one of the four components and still always return a correct quaternion. We just can’t use the

above technique for all four values of the quaternion.

Another trick that works is to examine the sum and difference of diagonally opposite matrix

elements:

Thus, once we know one of the four values using the square root of the sum/difference of diagonal

elements, we can compute the other three, as shown below:

Which of the four should we use? It seems that the simplest strategy would be to always use the

same component, say w, and then compute x, y, and z by diving the sums of diagonally opposite

matrix elements by 4w. This is fraught with problems. If w = 0, then the division is undefined. If w

is very small, then numeric instability can result. Shoemake [22] suggests first determining which
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of w, x, y, and z is the largest (which can be done without performing any square roots), computing

that component using the diagonal of the matrix, and then using it to compute the other three,

according to the table above.

The code snippet below implements this strategy in a straightforward manner.

Listing 10.4: Converting a rotation matrix to a quaternion

// Input matrix:

float m11,m12,m13;
float m21,m22,m23;
float m31,m32,m33;

// Output quaternion

float w,x,y,z;

// Determine which of w, x, y, or z has the largest absolute value

float fourWSquaredMinus1 = m11 + m22 + m33;
float fourXSquaredMinus1 = m11 – m22 – m33;
float fourYSquaredMinus1 = m22 – m11 – m33;
float fourZSquaredMinus1 = m33 – m11 – m22;

int biggestIndex = 0;
float fourBiggestSquaredMinus1 = fourWSquaredMinus1;
if (fourXSquaredMinus1 > fourBiggestSquaredMinus1) {

fourBiggestSquaredMinus1 = fourXSquaredMinus1;
biggestIndex = 1;

}
if (fourYSquaredMinus1 > fourBiggestSquaredMinus1) {

fourBiggestSquaredMinus1 = fourYSquaredMinus1;
biggestIndex = 2;

}
if (fourZSquaredMinus1 > fourBiggestSquaredMinus1) {

fourBiggestSquaredMinus1 = fourZSquaredMinus1;
biggestIndex = 3;

}

// Perform square root and division

float biggestVal = sqrt(fourBiggestSquaredMinus1 + 1.0f) * 0.5f;
float mult = 0.25f / biggestVal;

// Apply table to compute quaternion values

switch (biggestIndex) {
case 0:

w = biggestVal;
x = (m23 – m32) * mult;
y = (m31 – m13) * mult;
z = (m12 – m21) * mult;
break;

case 1:
x = biggestVal;
w = (m23 – m32) * mult;
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y = (m12 + m21) * mult;
z = (m31 + m13) * mult;
break;

case 2:
y = biggestVal;
w = (m31 – m13) * mult;
x = (m12 + m21) * mult;
z = (m23 + m32) * mult;
break;

case 3:
z = biggestVal;
w = (m12 – m21) * mult;
x = (m31 + m13) * mult;
y = (m23 + m32) * mult;
break;

}

10.6.5 Converting Euler Angles to a Quaternion
To convert an angular displacement from Euler angle form to quaternion, we will use a technique

similar to the one used in Section 10.6.1 to generate a rotation matrix from Euler angles. We first

convert the three rotations to quaternion format individually, which is a trivial operation. Then we

concatenate these three quaternions in the proper format. As with matrices, there are two cases to

consider: one when we wish to generate an inertial-to-object quaternion, and a second when we

want the object-to-inertial quaternion. Since the two are conjugates of each other, we will only

walk through the derivation for the inertial-to-object quaternion.

As we did in Section 10.6.1, we’ll assign the Euler angles to the variables h, p, and b. Let h, p,

and b be quaternions which perform the rotations about the y, x, and z-axes, respectively. Remem-

ber, we’ll use the negative rotation amounts, since they specify rotation angles for the coordinate

space. (See Section 10.6.1 for an explanation of why we negate the rotation angles.)
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Concatenating these in the correct order, we get:

(Remember that our definition of quaternion multiplication allows us to perform the multiplica-

tions from left to right in the order that the rotations occur. See Section 10.4.8 for more on this.)

The object-to-inertial quaternion is the conjugate of the inertial-to-object quaternion:

10.6.6 Converting a Quaternion to Euler Angles
To extract Euler angles from a quaternion, we could solve for the Euler angles from Equation

10.24 directly. However, let’s see if we can’t take advantage of our work in previous sections and

arrive at the answer without going through so much effort. We’ve already come up with a tech-

nique to extract Euler angles from a matrix in Section 10.6.2, and we learned how to convert a

quaternion to a matrix. Let’s take our technique for converting a matrix to Euler angles and see if

we can plug in our results from Equation 10.23.

Summarizing our findings from Section 10.6.2:
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Here are the values of the matrix elements involved from Equation 10.23:

Substituting and simplifying, we have:

Now we can translate this directly into code, as shown in the listing below, which converts an iner-

tial-to-object quaternion into Euler angles:

Listing 10.5: Converting an inertial-to-object quaternion to Euler angles

// Use global variables for input and output

float w,x,y,z;
float h,p,b;

// Extract sin(pitch)

float sp = –2.0f * (y*z + w*x);

// Check for Gimbal lock, giving slight tolerance for numerical imprecision

if (fabs(sp) > 0.9999f) {

// Looking straight up or down

p = 1.570796f * sp; // pi/2

// Compute heading, slam bank to zero

h = atan2(–x*z – w*y, 0.5f – y*y – z*z);
b = 0.0f;
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} else {

// Compute angles

p = asin(sp);
h = atan2(x*z – w*y, 0.5f – x*x – y*y);
b = atan2(x*y – w*z, 0.5f – x*x – z*z);

}

To convert an object-to-inertial quaternion to Euler angle format, we use code very similar to the

above code. We just negate the x, y, and z values, since we assume the object-to-inertial quaternion

is the conjugate of the inertial-to-object quaternion.

Listing 10.6: Converting an object-to-inertial quaternion to Euler angles

// Extract sin(pitch)

float sp = –2.0f * (y*z – w*x);

// Check for Gimbal lock, giving slight tolerance for numerical imprecision

if (fabs(sp) > 0.9999f) {

// Looking straight up or down

p = 1.570796f * sp; // pi/2

// Compute heading, slam bank to zero

h = atan2(–x*z + w*y, 0.5f – y*y – z*z);
b = 0.0f;

} else {

// Compute angles

p = asin(sp);
h = atan2(x*z + w*y, 0.5f – x*x – y*y);
b = atan2(x*y + w*z, 0.5f – x*x – z*z);

}

10.7 Exercises
1. Construct a quaternion to rotate 30° about the x-axis. What is the magnitude of this

quaternion? What is its conjugate? What type of rotation is expressed by the conjugate?

2. What type of rotation is represented by the quaternion:

Compute a quaternion which performs one-fifth of this rotation.
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3. Consider the quaternions.

Compute the dot product a·b. Compute the difference from a to b. Compute the quaternion

product ab.

4. Convert the quaternion in Exercise 2 to matrix form.

5. Write the C++ code to convert an object-to-inertial matrix to Euler angle form.
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C h a p t e r 1 1

Transformations inTransformations in

C++

In this chapter, we will put to use the knowledge we have gained in Chapters 7 through 10. We will

present some C++ classes we can use to represent orientation in 3D and perform rotations and

coordinate space transformations.

For each of the classes in turn, we will begin by showing the header file and discussing the

interface that is exported. Then we will show the complete implementation in the .cpp file and dis-

cuss any significant implementation details.

We will not go into the theory behind the operations again; that has been covered in previous

chapters. At this point, we will focus primarily on interface and implementation issues.

195

This chapter gives code for representing orientation and performing transformations. It is

divided into five sections.

� Section 11.1 discusses a few ground rules that are common to all the helper classes.

� Section 11.2 presents class EulerAngles, which is used to store an orientation in

Euler angle format.

� Section 11.3 presents class Quaternion, which is used to store an angular dis-

placement in quaternion format.

� Section 11.4 presents class RotationMatrix, which is a special matrix class

tailored specifically for the purpose of rotating vectors between object and inertial

space.

� Section 11.5 presents class Matrix4×3, which is a more general matrix class to

perform arbitrary transformations from a “source” coordinate space to a “destina-

tion” coordinate space.



11.1 Overview
Before we can dive into the specific classes, let’s first cover a few points that apply to the code in

all of the remaining sections. Many of the comments from Chapter 6 also apply to the code in this

chapter.

Dealing with transformations can be confusing. Matrices are just tricky. If you’ve ever written

matrix code without the use of well-designed classes, you know that you frequently end up twid-

dling minus signs, transposing matrices, or concatenating things in the opposite order until it looks

right.

The classes in these sections have been designed to eliminate the guesswork usually associ-

ated with this type of programming. For example, direct access to the matrix and quaternion

elements are seldom needed. We have specifically limited the number of available operations in

order to prevent possible confusion. For example, there are no functions to invert or concatenate a

RotationMatrix because if you use a RotationMatrix for its intended purpose, these

operations are not useful or even meaningful.

We use a set of simple, common math constants and utility functions. These are provided in

MathUtil.h and MathUtil.cpp.

MathUtil.h is shown below:

Listing 11.1: MathUtil.h

/////////////////////////////////////////////////////////////////////////////
//
// 3D Math Primer for Graphics and Game Development
//
// MathUtil.h - Declarations for miscellaneous math utilities
//
// Visit gamemath.com for the latest version of this file.
//
/////////////////////////////////////////////////////////////////////////////

#ifndef __MATHUTIL_H_INCLUDED__
#define __MATHUTIL_H_INCLUDED__

#include <math.h>

// Declare a global constant for pi and a few multiples.

const float kPi = 3.14159265f;
const float k2Pi = kPi * 2.0f;
const float kPiOver2 = kPi / 2.0f;
const float k1OverPi = 1.0f / kPi;
const float k1Over2Pi = 1.0f / k2Pi;

// "Wrap" an angle in range –pi...pi by adding the correct multiple
// of 2 pi

extern float wrapPi(float theta);

// "Safe" inverse trig functions
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extern float safeAcos(float x);

// Compute the sin and cosine of an angle. On some platforms, if we know
// that we need both values, it can be computed faster than computing
// the two values seperately.

inline void sinCos(float *returnSin, float *returnCos, float theta) {

// For simplicity, we'll just use the normal trig functions.
// Note that on some platforms we may be able to do better

*returnSin = sin(theta);
*returnCos = cos(theta);

}

/////////////////////////////////////////////////////////////////////////////
#endif // #ifndef __MATHUTIL_H_INCLUDED__

The definitions for a few out-of-line functions are in MathUtil.cpp, shown below:

/////////////////////////////////////////////////////////////////////////////
//
// 3D Math Primer for Graphics and Game Development
//
// MathUtil.cpp - Miscellaneous math utilities
//
// Visit gamemath.com for the latest version of this file.
//
/////////////////////////////////////////////////////////////////////////////

#include <math.h>

#include "MathUtil.h"

//---------------------------------------------------------------------------
// "Wrap" an angle in range –pi...pi by adding the correct multiple
// of 2 pi

float wrapPi(float theta) {
theta += kPi;
theta –= floor(theta * k1Over2Pi) * k2Pi;
theta –= kPi;
return theta;

}

//---------------------------------------------------------------------------
// safeAcos
//
// Same as acos(x), but if x is out of range, it is "clamped" to the nearest
// valid value. The value returned is in range 0...pi, the same as the
// standard C acos() function

extern float safeAcos(float x) {

// Check limit conditions

if (x <= –1.0f) {
return kPi;

}
if (x >= 1.0f) {
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return 0.0f;
}

// Value is in the domain - use standard C function

return acos(x);
}

11.2 Class EulerAngles
The EulerAngles class is used to store an orientation in Euler angle form using the head-

ing-pitch-bank convention. For more information on Euler angles, and the heading-pitch-bank

convention in particular, see Section 10.3.

The class is fairly straightforward. For simplicity,we have chosen not to implement many

operations. Notably, we have not implemented addition and subtraction, multiplication by a sca-

lar, etc. These functions can be handy if the class is used to store not an orientation, but an angular

velocity or rate of change.

The interface file for class EulerAngles is EulerAngles.h. The few out-of-line functions

are implemented in EulerAngles.cpp. Below is the complete listing of EulerAngles.h:

Listing 11.2: EulerAngles.h

/////////////////////////////////////////////////////////////////////////////
//
// 3D Math Primer for Graphics and Game Development
//
// EulerAngles.h - Declarations for class EulerAngles
//
// Visit gamemath.com for the latest version of this file.
//
// For more details, see EulerAngles.cpp
//
/////////////////////////////////////////////////////////////////////////////

#ifndef __EULERANGLES_H_INCLUDED__
#define __EULERANGLES_H_INCLUDED__

// Forward declarations

class Quaternion;
class Matrix4�3;
class RotationMatrix;

//---------------------------------------------------------------------------
// class EulerAngles
//
// This class represents a heading-pitch-bank Euler angle triple.

class EulerAngles {
public:

// Public data

// Straightforward representation. Store the three angles, in
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// radians

float heading;
float pitch;
float bank;

// Public operations

// Default constructor does nothing

EulerAngles() {}

// Construct from three values

EulerAngles(float h, float p, float b) :
heading(h), pitch(p), bank(b) {}

// Set to identity triple (all zeros)

void identity() { pitch = bank = heading = 0.0f; }

// Determine "canonical" Euler angle triple

void canonize();

// Convert the quaternion to Euler angle format. The input quaternion
// is assumed to perform the rotation from object-to-inertial
// or inertial-to-object, as indicated.

void fromObjectToInertialQuaternion(const Quaternion &q);
void fromInertialToObjectQuaternion(const Quaternion &q);

// Convert the transform matrix to Euler angle format. The input
// matrix is assumed to perform the transformation from
// object-to-world, or world-to-object, as indicated. The
// translation portion of the matrix is ignored. The
// matrix is assumed to be orthogonal.

void fromObjectToWorldMatrix(const Matrix4�3 &m);
void fromWorldToObjectMatrix(const Matrix4�3 &m);

// Convert a rotation matrix to Euler Angle form.

void fromRotationMatrix(const RotationMatrix &m);
};

// A global "identity" Euler angle constant

extern const EulerAngles kEulerAnglesIdentity;

/////////////////////////////////////////////////////////////////////////////
#endif // #ifndef __EULERANGLES_H_INCLUDED__

Use of class EulerAngles is fairly straightforward. Only a few items warrant elaboration:

� The canonize()member function ensures that the angles are in the “canonical set” of Euler

angles as described in Section 10.3.4.

� The fromObjectToInertialQuaternion() and fromInertialToObject-

Quaternion() functions compute Euler angles from a quaternion. The first function
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accepts a quaternion that is assumed to rotate from object to inertial space, and the second

assumes the input quaternion rotates from object to inertial space. See Section 10.6.6 for more

on this conversion and why there are two different versions.

� Likewise, the fromObjectToWorldMatrix() and fromWorldToObjectMatrix()

functions convert orientation contained in the rotation portion of the matrix, which is assumed

to be orthogonal, into Euler angle form.

A few out-of-line functions are implemented in EulerAngles.cpp, which is shown below:

Listing 11.3: EulerAngles.cpp

/////////////////////////////////////////////////////////////////////////////
//
// 3D Math Primer for Graphics and Game Development
//
// EulerAngles.cpp - Implementation of class EulerAngles
//
// Visit gamemath.com for the latest version of this file.
//
/////////////////////////////////////////////////////////////////////////////

#include <math.h>

#include "EulerAngles.h"
#include "Quaternion.h"
#include "MathUtil.h"
#include "Matrix4�3.h"
#include "RotationMatrix.h"

/////////////////////////////////////////////////////////////////////////////
//
// Notes:
//
// See Chapter 11 for more information on class design decisions.
//
// See section 10.3 for more information on the Euler angle conventions
// assumed.
//
/////////////////////////////////////////////////////////////////////////////

/////////////////////////////////////////////////////////////////////////////
//
// global data
//
/////////////////////////////////////////////////////////////////////////////

// The global "identity" Euler angle constant. Now we may not know exactly
// when this object may get constructed, in relation to other objects, so
// it is possible for the object to be referenced before it is initialized.
// However, on most implementations, it will be zero-initialized at program
// startup anyway, before any other objects are constructed.

const EulerAngles kEulerAnglesIdentity(0.0f, 0.0f, 0.0f);

/////////////////////////////////////////////////////////////////////////////
//
// class EulerAngles Implementation
//
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/////////////////////////////////////////////////////////////////////////////

//---------------------------------------------------------------------------
// EulerAngles::canonize
//
// Set the Euler angle triple to its "canonical" value. This does not change
// the meaning of the Euler angles as a representation of orientation in 3D,
// but if the angles are for other purposes such as angular velocities, etc.,
// then the operation might not be valid.
//
// See section 10.3 for more information.

void EulerAngles::canonize() {

// First, wrap pitch in range –pi ... pi

pitch = wrapPi(pitch);

// Now, check for "the back side" of the matrix pitch outside
// the canonical range of –pi/2 ... pi/2

if (pitch < –kPiOver2) {
pitch = –kPi – pitch;
heading += kPi;
bank += kPi;

} else if (pitch > kPiOver2) {
pitch = kPi – pitch;
heading += kPi;
bank += kPi;

}

// Now check for the gimbel lock case (within a slight tolerance)

if (fabs(pitch) > kPiOver2 – 1e–4) {

// We are in gimbel lock. Assign all rotation
// about the vertical axis to heading

heading += bank;
bank = 0.0f;

} else {

// Not in gimbel lock. Wrap the bank angle in
// canonical range

bank = wrapPi(bank);
}

// Wrap heading in canonical range

heading = wrapPi(heading);
}

//---------------------------------------------------------------------------
// EulerAngles::fromObjectToInertialQuaternion
//
// Setup the Euler angles, given an object->inertial rotation quaternion
//

Chapter 11: Transformations in C++ 201



// See 10.6.6 for more information.

void EulerAngles::fromObjectToInertialQuaternion(const Quaternion &q) {

// Extract sin(pitch)

float sp = –2.0f * (q.y*q.z – q.w*q.x);

// Check for Gimbel lock, giving slight tolerance for numerical imprecision

if (fabs(sp) > 0.9999f) {

// Looking straight up or down

pitch = kPiOver2 * sp;

// Compute heading, slam bank to zero

heading = atan2(–q.x*q.z + q.w*q.y, 0.5f – q.y*q.y – q.z*q.z);
bank = 0.0f;

} else {

// Compute angles. We don't have to use the "safe" asin
// function because we already checked for range errors when
// checking for Gimbel lock

pitch = asin(sp);
heading = atan2(q.x*q.z + q.w*q.y, 0.5f – q.x*q.x – q.y*q.y);
bank = atan2(q.x*q.y + q.w*q.z, 0.5f – q.x*q.x – q.z*q.z);

}
}

//---------------------------------------------------------------------------
// EulerAngles::fromInertialToObjectQuaternion
//
// Setup the Euler angles, given an inertial->object rotation quaternion
//
// See 10.6.6 for more information.

void EulerAngles::fromInertialToObjectQuaternion(const Quaternion &q) {

// Extract sin(pitch)

float sp = –2.0f * (q.y*q.z + q.w*q.x);

// Check for Gimbel lock, giving slight tolerance for numerical imprecision

if (fabs(sp) > 0.9999f) {

// Looking straight up or down

pitch = kPiOver2 * sp;

// Compute heading, slam bank to zero

heading = atan2(–q.x*q.z – q.w*q.y, 0.5f – q.y*q.y – q.z*q.z);
bank = 0.0f;
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} else {

// Compute angles. We don't have to use the "safe" asin
// function because we already checked for range errors when
// checking for Gimbel lock

pitch = asin(sp);
heading = atan2(q.x*q.z – q.w*q.y, 0.5f – q.x*q.x – q.y*q.y);
bank = atan2(q.x*q.y – q.w*q.z, 0.5f – q.x*q.x – q.z*q.z);

}
}

//---------------------------------------------------------------------------
// EulerAngles::fromObjectToWorldMatrix
//
// Setup the Euler angles, given an object->world transformation matrix.
//
// The matrix is assumed to be orthogonal. The translation portion is
// ignored.
//
// See 10.6.2 for more information.

void EulerAngles::fromObjectToWorldMatrix(const Matrix4�3 &m) {

// Extract sin(pitch) from m32.

float sp = –m.m32;

// Check for Gimbel lock

if (fabs(sp) > 9.99999f) {

// Looking straight up or down

pitch = kPiOver2 * sp;

// Compute heading, slam bank to zero

heading = atan2(–m.m23, m.m11);
bank = 0.0f;

} else {

// Compute angles. We don't have to use the "safe" asin
// function because we already checked for range errors when
// checking for Gimbel lock

heading = atan2(m.m31, m.m33);
pitch = asin(sp);
bank = atan2(m.m12, m.m22);

}
}

//---------------------------------------------------------------------------
// EulerAngles::fromWorldToObjectMatrix
//
// Setup the Euler angles, given a world->object transformation matrix.
//
// The matrix is assumed to be orthogonal. The translation portion is
// ignored.
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//
// See 10.6.2 for more information.

void EulerAngles::fromWorldToObjectMatrix(const Matrix4�3 &m) {

// Extract sin(pitch) from m23.

float sp = –m.m23;

// Check for Gimbel lock

if (fabs(sp) > 9.99999f) {

// Looking straight up or down

pitch = kPiOver2 * sp;

// Compute heading, slam bank to zero

heading = atan2(–m.m31, m.m11);
bank = 0.0f;

} else {

// Compute angles. We don't have to use the "safe" asin
// function because we already checked for range errors when
// checking for Gimbel lock

heading = atan2(m.m13, m.m33);
pitch = asin(sp);
bank = atan2(m.m21, m.m22);

}
}

//---------------------------------------------------------------------------
// EulerAngles::fromRotationMatrix
//
// Setup the Euler angles, given a rotation matrix.
//
// See 10.6.2 for more information.

void EulerAngles::fromRotationMatrix(const RotationMatrix &m) {

// Extract sin(pitch) from m23.

float sp = –m.m23;

// Check for Gimbel lock

if (fabs(sp) > 9.99999f) {

// Looking straight up or down

pitch = kPiOver2 * sp;

// Compute heading, slam bank to zero

heading = atan2(–m.m31, m.m11);
bank = 0.0f;
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} else {

// Compute angles. We don't have to use the "safe" asin
// function because we already checked for range errors when
// checking for Gimbel lock

heading = atan2(m.m13, m.m33);
pitch = asin(sp);
bank = atan2(m.m21, m.m22);

}
}

11.3 Class Quaternion
Class Quaternion is used to store an orientation or angular displacement in quaternion form.

For more information on quaternions, see Section 10.4. From the complete set of mathematical

operations that can be performed on quaternions, only those operations that are meaningful for

unit quaternions are used for storing angular displacement. For example, quaternion negation,

addition, subtraction, multiplication by a scalar, log, and exp are not provided.

The quaternion class is defined in Quaternion.h, which is shown below:

Listing 11.4: Quaternion.h

/////////////////////////////////////////////////////////////////////////////
//
// 3D Math Primer for Graphics and Game Development
//
// Quaternion.h - Declarations for class Quaternion
//
// Visit gamemath.com for the latest version of this file.
//
// For more details, see Quaternion.cpp
//
/////////////////////////////////////////////////////////////////////////////

#ifndef __QUATERNION_H_INCLUDED__
#define __QUATERNION_H_INCLUDED__

class Vector3;
class EulerAngles;

//---------------------------------------------------------------------------
// class Quaternion
//
// Implement a quaternion for the purpose of representing an angular
// displacement (orientation) in 3D.

class Quaternion {
public:

// Public data

// The four values of the quaternion. Normally, it will not
// be necessary to manipulate these directly. However,
// we leave them public, since prohibiting direct access

Chapter 11: Transformations in C++ 205



// makes some operations, such as file I/O, unnecessarily
// complicated.

float w, x, y, z;

// Public operations

// Set to identity

void identity() { w = 1.0f; x = y = z = 0.0f; }

// Setup the quaternion to a specific rotation

void setToRotateAboutX(float theta);
void setToRotateAboutY(float theta);
void setToRotateAboutZ(float theta);
void setToRotateAboutAxis(const Vector3 &axis, float theta);

// Setup to perform object<->inertial rotations,
// given orientation in Euler angle format

void setToRotateObjectToInertial(const EulerAngles &orientation);
void setToRotateInertialToObject(const EulerAngles &orientation);

// Cross product

Quaternion operator *(const Quaternion &a) const;

// Multiplication with assignment, as per C++ convention

Quaternion &operator *=(const Quaternion &a);

// Normalize the quaternion.

void normalize();

// Extract and return the rotation angle and axis.

float getRotationAngle() const;
Vector3 getRotationAxis() const;

};

// A global "identity" quaternion constant

extern const Quaternion kQuaternionIdentity;

// Quaternion dot product.

extern float dotProduct(const Quaternion &a, const Quaternion &b);

// Spherical linear interpolation

extern Quaternion slerp(const Quaternion &p, const Quaternion &q, float t);

// Quaternion conjugation

extern Quaternion conjugate(const Quaternion &q);

// Quaternion exponentiation
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extern Quaternion pow(const Quaternion &q, float exponent);

/////////////////////////////////////////////////////////////////////////////
#endif // #ifndef __QUATERNION_H_INCLUDED__

Assuming a basic understanding of quaternions, most of the functionality of this class should be

obvious from the function names and/or comments. To create a quaternion that represents a

specific angular displacement, we would use one of the setToXXX functions. setToRotate-

ObjectToInertial() and setToRotateInertialToObject() are used to convert

Euler angles to quaternion form. The first function creates a quaternion that specifies the rotation

from object to inertial space, and the latter returns a rotation from inertial to object space. See Sec-

tion 10.6.5 for more information on these conversions and why there are two different functions.

Angular displacements are manipulated using functions that perform the mathematical opera-

tions exactly as they have been described in the preceding sections. Angular displacements are

concatenated using operator*(). (As always, the order of concatenations reads left to right.)

The conjugate() function returns a quaternion representing the opposite angular displace-

ment of the input quaternion.

The axis and angle of rotation can be extracted from a quaternion using getRota-

tionAngle() and getRotationAxis().

normalize() can be called to combat floating-point error creep. If you perform more than

a few hundred successive operations on the same quaternion, you might want to call this function.

Converting from Euler angles always generates a normalized quaternion and, therefore, removes

the possibility of error creep. However, conversion between matrix and quaternion forms does not

have the same effect.

The quaternion operations are implemented in Quaternion.cpp, which is listed below:

Listing 11.5: Quaternion.cpp

////////////////////////////////////////////////////////////////////////////
//
// 3D Math Primer for Graphics and Game Development
//
// Quaternion.cpp - Quaternion implementation
//
// Visit gamemath.com for the latest version of this file.
//
// For more details see section 11.3.
//
/////////////////////////////////////////////////////////////////////////////

#include <assert.h>
#include <math.h>

#include "Quaternion.h"
#include "MathUtil.h"
#include "vector3.h"
#include "EulerAngles.h"

/////////////////////////////////////////////////////////////////////////////
//
// global data
//
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/////////////////////////////////////////////////////////////////////////////

// The global identity quaternion. Notice that there are no constructors
// to the Quaternion class, since we really don't need any.

const Quaternion kQuaternionIdentity = {
1.0f, 0.0f, 0.0f, 0.0f

};

/////////////////////////////////////////////////////////////////////////////
//
// class Quaternion members
//
/////////////////////////////////////////////////////////////////////////////

//---------------------------------------------------------------------------
// Quaternion::setToRotateAboutX
// Quaternion::setToRotateAboutY
// Quaternion::setToRotateAboutZ
// Quaternion::setToRotateAboutAxis
//
// Setup the quaternion to rotate about the specified axis

void Quaternion::setToRotateAboutX(float theta) {

// Compute the half angle

float thetaOver2 = theta * .5f;

// Set the values

w = cos(thetaOver2);
x = sin(thetaOver2);
y = 0.0f;
z = 0.0f;

}

void Quaternion::setToRotateAboutY(float theta) {

// Compute the half angle

float thetaOver2 = theta * .5f;

// Set the values

w = cos(thetaOver2);
x = 0.0f;
y = sin(thetaOver2);
z = 0.0f;

}

void Quaternion::setToRotateAboutZ(float theta) {

// Compute the half angle

float thetaOver2 = theta * .5f;

// Set the values

w = cos(thetaOver2);
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x = 0.0f;
y = 0.0f;
z = sin(thetaOver2);

}

void Quaternion::setToRotateAboutAxis(const Vector3 &axis, float theta) {

// The axis of rotation must be normalized

assert(fabs(vectorMag(axis) – 1.0f) < .01f);

// Compute the half angle and its sin

float thetaOver2 = theta * .5f;
float sinThetaOver2 = sin(thetaOver2);

// Set the values

w = cos(thetaOver2);
x = axis.x * sinThetaOver2;
y = axis.y * sinThetaOver2;
z = axis.z * sinThetaOver2;

}

//---------------------------------------------------------------------------
// EulerAngles::setToRotateObjectToInertial
//
// Setup the quaternion to perform an object->inertial rotation, given the
// orientation in Euler angle format
//
// See 10.6.5 for more information.

void Quaternion::setToRotateObjectToInertial(const EulerAngles &orientation) {

// Compute sine and cosine of the half angles

float sp, sb, sh;
float cp, cb, ch;
sinCos(&sp, &cp, orientation.pitch * 0.5f);
sinCos(&sb, &cb, orientation.bank * 0.5f);
sinCos(&sh, &ch, orientation.heading * 0.5f);

// Compute values

w = ch*cp*cb + sh*sp*sb;
x = ch*sp*cb + sh*cp*sb;
y = –ch*sp*sb + sh*cp*cb;
z = –sh*sp*cb + ch*cp*sb;

}

//---------------------------------------------------------------------------
// EulerAngles::setToRotateInertialToObject
//
// Setup the quaternion to perform an object->inertial rotation, given the
// orientation in Euler angle format
//
// See 10.6.5 for more information.

void Quaternion::setToRotateInertialToObject(const EulerAngles &orientation) {
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// Compute sine and cosine of the half angles

float sp, sb, sh;
float cp, cb, ch;
sinCos(&sp, &cp, orientation.pitch * 0.5f);
sinCos(&sb, &cb, orientation.bank * 0.5f);
sinCos(&sh, &ch, orientation.heading * 0.5f);

// Compute values

w = ch*cp*cb + sh*sp*sb;
x = –ch*sp*cb – sh*cp*sb;
y = ch*sp*sb – sh*cb*cp;
z = sh*sp*cb – ch*cp*sb;

}

//---------------------------------------------------------------------------
// Quaternion::operator *
//
// Quaternion cross product, which concatenates multiple angular
// displacements. The order of multiplication, from left to right,
// corresponds to the order that the angular displacements are
// applied. This is backward from the *standard* definition of
// quaternion multiplication. See section 10.4.8 for the rationale
// behind this deviation from the standard.

Quaternion Quaternion::operator *(const Quaternion &a) const {
Quaternion result;

result.w = w*a.w – x*a.x – y*a.y – z*a.z;
result.x = w*a.x + x*a.w + z*a.y – y*a.z;
result.y = w*a.y + y*a.w + x*a.z – z*a.x;
result.z = w*a.z + z*a.w + y*a.x – x*a.y;

return result;
}

//---------------------------------------------------------------------------
// Quaternion::operator *=
//
// Combined cross product and assignment, as per C++ convention

Quaternion &Quaternion::operator *=(const Quaternion &a) {

// Multuiply and assign

*this = *this * a;

// Return reference to l-value

return *this;
}

//---------------------------------------------------------------------------
// Quaternion::normalize
//
// "Normalize" a quaternion. Note that normally, quaternions
// are always normalized (within limits of numerical precision).
// See section 10.4.6 for more information.
//
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// This function is provided primarily to combat floating point "error
// creep," which can occur when many successive quaternion operations
// are applied.

void Quaternion::normalize() {

// Compute magnitude of the quaternion

float mag = (float)sqrt(w*w + x*x + y*y + z*z);

// Check for bogus length to protect against divide by zero

if (mag > 0.0f) {

// Normalize it

float oneOverMag = 1.0f / mag;
w *= oneOverMag;
x *= oneOverMag;
y *= oneOverMag;
z *= oneOverMag;

} else {

// Houston, we have a problem

assert(false);

// In a release build, just slam it to something

identity();
}

}

//---------------------------------------------------------------------------
// Quaternion::getRotationAngle
//
// Return the rotation angle theta

float Quaternion::getRotationAngle() const {

// Compute the half angle. Remember that w = cos(theta / 2)

float thetaOver2 = safeAcos(w);

// Return the rotation angle

return thetaOver2 * 2.0f;
}

//---------------------------------------------------------------------------
// Quaternion::getRotationAxis
//
// Return the rotation axis

Vector3 Quaternion::getRotationAxis() const {

// Compute sin^2(theta/2). Remember that w = cos(theta/2),
// and sin^2(x) + cos^2(x) = 1
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float sinThetaOver2Sq = 1.0f - w*w;

// Protect against numerical imprecision

if (sinThetaOver2Sq <= 0.0f) {

// Identity quaternion, or numerical imprecision. Just
// return any valid vector, since it doesn't matter

return Vector3(1.0f, 0.0f, 0.0f);
}

// Compute 1 / sin(theta/2)

float oneOverSinThetaOver2 = 1.0f / sqrt(sinThetaOver2Sq);

// Return axis of rotation

return Vector3(
x * oneOverSinThetaOver2,
y * oneOverSinThetaOver2,
z * oneOverSinThetaOver2

);
}

/////////////////////////////////////////////////////////////////////////////
//
// Nonmember functions
//
/////////////////////////////////////////////////////////////////////////////

//---------------------------------------------------------------------------
// dotProduct
//
// Quaternion dot product. We use a nonmember function so we can
// pass quaternion expressions as operands without having "funky syntax"
//
// See 10.4.10

float dotProduct(const Quaternion &a, const Quaternion &b) {
return a.w*b.w + a.x*b.x + a.y*b.y + a.z*b.z;

}

//---------------------------------------------------------------------------
// slerp
//
// Spherical linear interpolation.
//
// See 10.4.13

Quaternion slerp(const Quaternion &q0, const Quaternion &q1, float t) {

// Check for out-of range parameter and return edge points if so

if (t <= 0.0f) return q0;
if (t >= 1.0f) return q1;

// Compute "cosine of angle between quaternions" using dot product
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float cosOmega = dotProduct(q0, q1);

// If negative dot, use –q1. Two quaternions q and –q
// represent the same rotation, but may produce
// different slerp. We chose q or –q to rotate using
// the acute angle.

float q1w = q1.w;
float q1x = q1.x;
float q1y = q1.y;
float q1z = q1.z;
if (cosOmega < 0.0f) {

q1w = –q1w;
q1x = –q1x;
q1y = –q1y;
q1z = –q1z;
cosOmega = –cosOmega;

}

// We should have two unit quaternions, so dot should be <= 1.0

assert(cosOmega < 1.1f);

// Compute interpolation fraction, checking for quaternions
// almost exactly the same

float k0, k1;
if (cosOmega > 0.9999f) {

// Very close - just use linear interpolation,
// which will protect againt a divide by zero

k0 = 1.0f–t;
k1 = t;

} else {

// Compute the sin of the angle using the
// trig identity sin^2(omega) + cos^2(omega) = 1

float sinOmega = sqrt(1.0f - cosOmega*cosOmega);

// Compute the angle from its sin and cosine

float omega = atan2(sinOmega, cosOmega);

// Compute inverse of denominator, so we only have
// to divide once

float oneOverSinOmega = 1.0f / sinOmega;

// Compute interpolation parameters

k0 = sin((1.0f - t) * omega) * oneOverSinOmega;
k1 = sin(t * omega) * oneOverSinOmega;

}

// Interpolate

Quaternion result;
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result.x = k0*q0.x + k1*q1x;
result.y = k0*q0.y + k1*q1y;
result.z = k0*q0.z + k1*q1z;
result.w = k0*q0.w + k1*q1w;

// Return it

return result;
}

//---------------------------------------------------------------------------
// conjugate
//
// Compute the quaternion conjugate. This is the quaternion
// with the opposite rotation as the original quaternion. See 10.4.7

Quaternion conjugate(const Quaternion &q) {
Quaternion result;

// Same rotation amount

result.w = q.w;

// Opposite axis of rotation

result.x = –q.x;
result.y = –q.y;
result.z = –q.z;

// Return it

return result;
}

//---------------------------------------------------------------------------
// pow
//
// Quaternion exponentiation.
//
// See 10.4.12

Quaternion pow(const Quaternion &q, float exponent) {

// Check for the case of an identity quaternion.
// This will protect against divide by zero

if (fabs(q.w) > .9999f) {
return q;

}

// Extract the half angle alpha (alpha = theta/2)

float alpha = acos(q.w);

// Compute new alpha value

float newAlpha = alpha * exponent;

// Compute new w value
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Quaternion result;
result.w = cos(newAlpha);

// Compute new xyz values

float mult = sin(newAlpha) / sin(alpha);
result.x = q.x * mult;
result.y = q.y * mult;
result.z = q.z * mult;

// Return it

return result;
}

11.4 Class RotationMatrix
Class RotationMatrix is the first of two matrix classes we present in this chapter. The pur-

pose of the class is to handle the very specific (but extremely common) task of rotating between

object and inertial space. See Section 3.2 if you have forgotten what these terms mean.

This matrix class is not a general transformation class. We assume that the matrix contains

rotation only and, therefore, is orthogonal. Using our specific terminology from Section 10.1, the

matrix contains an orientation, not an angular displacement. When you create the matrix, you do

not specify a direction of transformation (either from object to inertial, or inertial to object). The

direction of transformation is specified at the time you wish to actually perform the transforma-

tion, and there are two specific functions that are used, one for each direction. All of this is in

comparison to class Matrix4×3, which is presented in Section 11.5.

Class RotationMatrix is defined in RotationMatrix.h. The full listing is below:

Listing 11.6: RotationMatrix.h

/////////////////////////////////////////////////////////////////////////////
//
// 3D Math Primer for Graphics and Game Development
//
// RotationMatrix.h - Declarations for class RotationMatrix
//
// Visit gamemath.com for the latest version of this file.
//
// For more details, see RotationMatrix.cpp
//
/////////////////////////////////////////////////////////////////////////////

#ifndef __ROTATIONMATRIX_H_INCLUDED__
#define __ROTATIONMATRIX_H_INCLUDED__

class Vector3;
class EulerAngles;
class Quaternion;

//---------------------------------------------------------------------------
// class RotationMatrix
//

Chapter 11: Transformations in C++ 215



// Implement a simple 3�3 matrix that is used for ROTATION ONLY. The
// matrix is assumed to be orthogonal. The direction of transformation
// is specified at the time of transformation.

class RotationMatrix {
public:

// Public data

// The 9 values of the matrix. See RotationMatrix.cpp file for
// the details of the layout

float m11, m12, m13;
float m21, m22, m23;
float m31, m32, m33;

// Public operations

// Set to identity

void identity();

// Setup the matrix with a specified orientation

void setup(const EulerAngles &orientation);

// Setup the matrix from a quaternion, assuming the
// quaternion performs the rotation in the
// specified direction of transformation

void fromInertialToObjectQuaternion(const Quaternion &q);
void fromObjectToInertialQuaternion(const Quaternion &q);

// Perform rotations

Vector3 inertialToObject(const Vector3 &v) const;
Vector3 objectToInertial(const Vector3 &v) const;

};

/////////////////////////////////////////////////////////////////////////////
#endif // #ifndef __ROTATIONMATRIX_H_INCLUDED__

Because of its tight focus, class RotationMatrix is extremely easy to use. First, we set up the matrix

using Euler angles or a quaternion. If we are using a quaternion, then we must specify which sort

of angular displacement the quaternion represents. Once we have created the matrix, we perform

rotations using the inertialToObject() and objectToInertial() functions.

The implementation for class RotationMatrix is in RotationMatrix.cpp. The full listing

is below:

Listing 11.7: RotationMatrix.cpp

/////////////////////////////////////////////////////////////////////////////
//
// 3D Math Primer for Graphics and Game Development
//
// RotationMatrix.cpp - Implementation of class RotationMatrix
//
// Visit gamemath.com for the latest version of this file.
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//
// For more details see section 11.4.
//
/////////////////////////////////////////////////////////////////////////////

#include "vector3.h"
#include "RotationMatrix.h"
#include "MathUtil.h"
#include "Quaternion.h"
#include "EulerAngles.h"

/////////////////////////////////////////////////////////////////////////////
//
// class RotationMatrix
//
//---------------------------------------------------------------------------
//
// MATRIX ORGANIZATION
//
// A user of this class should rarely care how the matrix is organized.
// However, it is, of course, important that internally we keep everything
// straight.
//
// The matrix is assumed to be a rotation matrix only and, therefore,
// orthogonal. The "forward" direction of transformation (if that really
// even applies in this case) will be from inertial to object space.
// To perform an object->inertial rotation, we will multiply by the
// transpose.
//
// In other words:
//
// Inertial to object:
//
// | m11 m12 m13 |
// [ ix iy iz ] | m21 m22 m23 | = [ ox oy oz ]
// | m31 m32 m33 |
//
// Object to inertial:
//
// | m11 m21 m31 |
// [ ox oy oz ] | m12 m22 m32 | = [ ix iy iz ]
// | m13 m23 m33 |
//
// Or, using column vector notation:
//
// Inertial to object:
//
// | m11 m21 m31 | | ix | | ox |
// | m12 m22 m32 | | iy | = | oy |
// | m13 m23 m33 | | iz | | oz |
//
// Object to inertial:
//
// | m11 m12 m13 | | ox | | ix |
// | m21 m22 m23 | | oy | = | iy |
// | m31 m32 m33 | | oz | | iz |
//
/////////////////////////////////////////////////////////////////////////////

//---------------------------------------------------------------------------
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// RotationMatrix::identity
//
// Set the matrix to the identity matrix

void RotationMatrix::identity() {
m11 = 1.0f; m12 = 0.0f; m13 = 0.0f;
m21 = 0.0f; m22 = 1.0f; m23 = 0.0f;
m31 = 0.0f; m32 = 0.0f; m33 = 1.0f;

}

//---------------------------------------------------------------------------
// RotationMatrix::setup
//
// Setup the matrix with the specified orientation
//
// See 10.6.1

void RotationMatrix::setup(const EulerAngles &orientation) {

// Fetch sine and cosine of angles

float sh,ch, sp,cp, sb,cb;
sinCos(&sh, &ch, orientation.heading);
sinCos(&sp, &cp, orientation.pitch);
sinCos(&sb, &cb, orientation.bank);

// Fill in the matrix elements

m11 = ch * cb + sh * sp * sb;
m12 = –ch * sb + sh * sp * cb;
m13 = sh * cp;

m21 = sb * cp;
m22 = cb * cp;
m23 = –sp;

m31 = –sh * cb + ch * sp * sb;
m32 = sb * sh + ch * sp * cb;
m33 = ch * cp;

}

//---------------------------------------------------------------------------
// RotationMatrix::fromInertialToObjectQuaternion
//
// Setup the matrix, given a quaternion that performs an inertial->object
// rotation
//
// See 10.6.3

void RotationMatrix::fromInertialToObjectQuaternion(const Quaternion &q) {

// Fill in the matrix elements. This could possibly be
// optimized, since there are many common subexpressions.
// We'll leave that up to the compiler...

m11 = 1.0f – 2.0f * (q.y*q.y + q.z*q.z);
m12 = 2.0f * (q.x*q.y + q.w*q.z);
m13 = 2.0f * (q.x*q.z – q.w*q.y);

m21 = 2.0f * (q.x*q.y – q.w*q.z);
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m22 = 1.0f – 2.0f * (q.x*q.x + q.z*q.z);
m23 = 2.0f * (q.y*q.z + q.w*q.x);

m31 = 2.0f * (q.x*q.z + q.w*q.y);
m32 = 2.0f * (q.y*q.z – q.w*q.x);
m33 = 1.0f – 2.0f * (q.x*q.x + q.y*q.y);

}

//---------------------------------------------------------------------------
// RotationMatrix::fromObjectToInertialQuaternion
//
// Setup the matrix, given a quaternion that performs an object->inertial
// rotation
//
// See 10.6.3

void RotationMatrix::fromObjectToInertialQuaternion(const Quaternion &q) {

// Fill in the matrix elements. This could possibly be
// optimized since there are many common subexpressions.
// We'll leave that up to the compiler...

m11 = 1.0f – 2.0f * (q.y*q.y + q.z*q.z);
m12 = 2.0f * (q.x*q.y – q.w*q.z);
m13 = 2.0f * (q.x*q.z + q.w*q.y);

m21 = 2.0f * (q.x*q.y + q.w*q.z);
m22 = 1.0f – 2.0f * (q.x*q.x + q.z*q.z);
m23 = 2.0f * (q.y*q.z – q.w*q.x);

m31 = 2.0f * (q.x*q.z – q.w*q.y);
m32 = 2.0f * (q.y*q.z + q.w*q.x);
m33 = 1.0f – 2.0f * (q.x*q.x + q.y*q.y);

}

//---------------------------------------------------------------------------
// RotationMatrix::inertialToObject
//
// Rotate a vector from inertial to object space

Vector3 RotationMatrix::inertialToObject(const Vector3 &v) const {

// Perform the matrix multiplication in the "standard" way.

return Vector3(
m11*v.x + m21*v.y + m31*v.z,
m12*v.x + m22*v.y + m32*v.z,
m13*v.x + m23*v.y + m33*v.z

);
}

//---------------------------------------------------------------------------
// RotationMatrix::objectToInertial
//
// Rotate a vector from object to inertial space

Vector3 RotationMatrix::objectToInertial(const Vector3 &v) const {
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// Multiply by the transpose

return Vector3(
m11*v.x + m12*v.y + m13*v.z,
m21*v.x + m22*v.y + m23*v.z,
m31*v.x + m32*v.y + m33*v.z

);
}

11.5 Class Matrix4×3
Class RotationMatrix is extremely useful for the very specific purpose for which it was

designed. However, it is very limited. Class Matrix4×3 is a more general-purpose matrix class

designed to handle more complicated transformations. This matrix class stores a general affine

transformation matrix. Rotation, scale, skew, reflection, projection, and translation are all sup-

ported. Matrices can be inverted and concatenated.

Because of this, the semantics of class Matrix4×3 are different from class

RotationMatrix. Whereas classRotationMatrix applies specifically to object space and

inertial space, class Matrix4×3 will have more general application, so we will use the more

generic terms “source” and “destination” coordinate space instead. Unlike class Rotation-

Matrix, the direction of transformation is specified when the matrix is created, and then points

may only be transformed in that direction (from source to destination). If you need to transform in

the other direction, you must compute the inverse of the matrix.

We use linear algebra notation for the multiplications. operator*() is used both to trans-

form points and to concatenate matrices. Since our convention is to use row vectors rather than

column vectors, the order of transformations reads like a sentence from left to right.

Class Matrix4×3 is defined in Matrix4×3.h. The full listing is below:

Listing 11.8: Matrix4×3.h

/////////////////////////////////////////////////////////////////////////////
//
// 3D Math Primer for Graphics and Game Development
//
// Matrix4�3.h - Declarations for class Matrix4�3
//
// Visit gamemath.com for the latest version of this file.
//
// For more details, see Matrix4�3.cpp
//
/////////////////////////////////////////////////////////////////////////////

#ifndef __MATRIX4�3_H_INCLUDED__
#define __MATRIX4�3_H_INCLUDED__

class Vector3;
class EulerAngles;
class Quaternion;
class RotationMatrix;

//---------------------------------------------------------------------------
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// class Matrix4�3
//
// Implement a 4�3 transformation matrix. This class can represent
// any 3D affine transformation.

class Matrix4�3 {
public:

// Public data

// The values of the matrix. Basically, the upper 3�3 portion
// contains a linear transformation, and the last row is the
// translation portion. See the Matrix4�3.cpp for more
// details.

float m11, m12, m13;
float m21, m22, m23;
float m31, m32, m33;
float tx, ty, tz;

// Public operations

// Set to identity

void identity();

// Access the translation portion of the matrix directly

void zeroTranslation();
void setTranslation(const Vector3 &d);
void setupTranslation(const Vector3 &d);

// Setup the matrix to perform a specific transforms from parent <->
// local space, assuming the local space is in the specified position
// and orientation within the parent space. The orientation may be
// specified using either Euler angles or a rotation matrix

void setupLocalToParent(const Vector3 &pos, const EulerAngles &orient);
void setupLocalToParent(const Vector3 &pos, const RotationMatrix &orient);
void setupParentToLocal(const Vector3 &pos, const EulerAngles &orient);
void setupParentToLocal(const Vector3 &pos, const RotationMatrix &orient);

// Setup the matrix to perform a rotation about a cardinal axis

void setupRotate(int axis, float theta);

// Setup the matrix to perform a rotation about an arbitrary axis

void setupRotate(const Vector3 &axis, float theta);

// Setup the matrix to perform a rotation, given
// the angular displacement in quaternion form

void fromQuaternion(const Quaternion &q);

// Setup the matrix to perform scale on each axis

void setupScale(const Vector3 &s);
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// Setup the matrix to perform scale along an arbitrary axis

void setupScaleAlongAxis(const Vector3 &axis, float k);

// Setup the matrix to perform a shear

void setupShear(int axis, float s, float t);

// Setup the matrix to perform a projection onto a plane passing
// through the origin

void setupProject(const Vector3 &n);

// Setup the matrix to perform a reflection about a plane parallel
// to a cardinal plane

void setupReflect(int axis, float k = 0.0f);

// Setup the matrix to perform a reflection about an arbitrary plane
// through the origin

void setupReflect(const Vector3 &n);
};

// Operator * is used to transform a point, and it also concatenates matrices.
// The order of multiplications from left to right is the same as
// the order of transformations

Vector3 operator *(const Vector3 &p, const Matrix4�3 &m);
Matrix4�3 operator *(const Matrix4�3 &a, const Matrix4�3 &b);

// Operator *= for conformance to C++ standards

Vector3 &operator *=(Vector3 &p, const Matrix4�3 &m);
Matrix4�3 &operator *=(const Matrix4�3 &a, const Matrix4�3 &m);

// Compute the determinant of the 3�3 portion of the matrix

float determinant(const Matrix4�3 &m);

// Compute the inverse of a matrix

Matrix4�3 inverse(const Matrix4�3 &m);

// Extract the translation portion of the matrix

Vector3 getTranslation(const Matrix4�3 &m);

// Extract the position/orientation from a local->parent matrix,
// or a parent->local matrix

Vector3 getPositionFromParentToLocalMatrix(const Matrix4�3 &m);
Vector3 getPositionFromLocalToParentMatrix(const Matrix4�3 &m);

/////////////////////////////////////////////////////////////////////////////
#endif // #ifndef __ROTATIONMATRIX_H_INCLUDED__

Let’s look at the functionality provided by this class. Hopefully, the function names and comments

make elaboration unnecessary, but let’s review just for the sake of clarity.
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All of the member functions in class Matrix4×3 are designed to set up the matrix with a

primitive transformation:

� identity() sets the matrix to the identity matrix.

� zeroTranslation() removes the translation portion of the matrix by setting the last row

to [0,0,0], leaving the linear translation portion (the 3×3 portion) unaffected.

setTranslation() sets the translation portion of the matrix to the specified value, with-

out changing the 3×3 portion. setupTranslation() sets up the matrix to perform a

translation; the upper 3×3 portion is set to identity, and the translation row is set to the vector

specified.

� setupLocalToParent() creates a matrix that can be used to transform points from a

“local” coordinate space to its “parent” coordinate space, given the position and orientation of

the local space within the parent space. The most common use of this function will probably

be to transform points from object space to world space, but these terms were not used since

other types of nested relationships work as well. The orientation of the local space can be

specified using either Euler angles or a rotation matrix. The rotation matrix version is faster,

since no real math is necessary, only the copying of matrix elements. setupParent-

ToLocal() sets up the matrix to perform the exact opposite transformation.

� Both overloads of setupRotate() create a matrix to rotate about an axis. If the axis is a

cardinal axis, then an integer axis number may be used. As documented in the .cpp file, 1

specifies the x-axis, 2 specifies the y-axis, and 3 specifies the z-axis. To rotate about an arbi-

trarily oriented axis, use the second version of setupRotate(), which specifies the axis of

rotation using a unit vector.

� fromQuaternion() converts a quaternion to matrix form. The translation portion of the

matrix is zeroed.

� setupScale() creates a matrix that performs uniform or non-uniform scale along the car-

dinal axes. The input vector contains the scale factors on the x-, y-, and z-axes. For uniform

scale, simply use a vector with the same value for each axis.

� setupScaleAlongAxis() creates a matrix which scales in an arbitrary direction. The

scale occurs about a plane through the origin — the plane is perpendicular to the vector

parameter, which must be normalized.

� setupShear() creates a shear matrix. See the comments near the implementation of this

function for the details of the parameters.

� setupProject() creates a matrix to project orthographically onto the plane through the

origin that is perpendicular to the given normal vector.

� setupReflect() creates a matrix to reflect about a plane. In the first version, a cardinal

axis is specified by integer index, and the plane does not necessarily have to pass through the

origin. For the second version, an arbitrary normal may be specified, but the plane must pass

through the origin. (For a reflection about an arbitrary plane that doesn’t pass through the ori-

gin, you must concatenate this matrix with the appropriate translation matrices.)

As we have mentioned, the actual transformation operation is performed using operator*(),

according to linear algebra notation. Matrix concatenation also uses this syntax.
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The determinant() function computes the determinant of the matrix. Only the 3×3 por-

tion is actually used. If we assume a rightmost column of [0,0,0,1]T, then the last row (the

translation portion) is canceled out by the first three 0’s of this assumed rightmost column.

inverse() computes and returns the inverse of a matrix. As we noted in the source com-

ments, it is not technically possible to invert a 4×3 matrix, since only square matrices can be

inverted. Once again, assuming a rightmost column of [0,0,0,1]T will circumvent these legalities.

getTranslation() is a handy shorthand function for extracting the translation portion of

a matrix in vector form.

getPositionFromLocalToParentMatrix() and getPositionFromParent-

ToLocalMatrix() are functions (with extremely long names) that extract the position of a

local coordinate space within a parent coordinate space, given a matrix that performs the specified

transformation. In a way, these functions reverse-engineer the position part of setupLocalTo-

Parent() and setupparentToLocal(). Of course, you can call getPosition-

FromLocalToParentMatrix() and getPositionFromParentToLocalMatrix()

on any matrix (provided that it is a rigid body transform), not just a matrix that was created using

setupLocalToParent() or setupParentToLocal(). To extract the orientation from a

transform matrix in Euler angle form, use one of the member functions in classEulerAngles.

Class Matrix4×3 is implemented in Matrix4×3.cpp. The full listing is below:

Listing 11.9: Matrix4×3.cpp

/////////////////////////////////////////////////////////////////////////////
//
// 3D Math Primer for Graphics and Game Development
//
// Matrix4�3.cpp - Implementation of class Matrix4�3
//
// Visit gamemath.com for the latest version of this file.
//
// For more details see section 11.5.
//
/////////////////////////////////////////////////////////////////////////////

#include <assert.h>
#include <math.h>

#include "Vector3.h"
#include "EulerAngles.h"
#include "Quaternion.h"
#include "RotationMatrix.h"
#include "Matrix4�3.h"
#include "MathUtil.h"

/////////////////////////////////////////////////////////////////////////////
//
// Notes:
//
// See Chapter 11 for more information on class design decisions.
//
//---------------------------------------------------------------------------
//// MATRIX ORGANIZATION
//
// The purpose of this class is so that a user might perform transformations
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// without fiddling with plus or minus signs or transposing the matrix
// until the output "looks right." Of course, the specifics of the
// internal representation is important, not only for the implementation
// in this file to be correct, but occasionally direct access to the
// matrix variables is necessary, or beneficial for optimization. Thus,
// we document our matrix conventions here.
//
// We use row vectors, so multiplying by our matrix looks like this:
//
// | m11 m12 m13 |
// [ x y z ] | m21 m22 m23 | = [ x' y' z' ]
// | m31 m32 m33 |
// | tx ty tz |
//
// Strict adherance to linear algebra rules dictates that this
// multiplication is actually undefined. To circumvent this, we can
// consider the input and output vectors as having an assumed fourth
// coordinate of 1. Also, since we cannot technically invert a 4�3 matrix
// according to linear algebra rules, we will also assume a rightmost
// column of [ 0 0 0 1 ]. This is shown below:
//
// | m11 m12 m13 0 |
// [ x y z 1 ] | m21 m22 m23 0 | = [ x' y' z' 1 ]
// | m31 m32 m33 0 |
// | tx ty tz 1 |
//
// In case you have forgotten your linear algebra rules for multiplying
// matrices (which are described in section 7.1.6 and 7.1.7), see the
// definition of operator * for the expanded computations.
//
/////////////////////////////////////////////////////////////////////////////

/////////////////////////////////////////////////////////////////////////////
//
// Matrix4�3 class members
//
/////////////////////////////////////////////////////////////////////////////

//---------------------------------------------------------------------------
// Matrix4�3::identity
//
// Set the matrix to identity

void Matrix4�3::identity() {
m11 = 1.0f; m12 = 0.0f; m13 = 0.0f;
m21 = 0.0f; m22 = 1.0f; m23 = 0.0f;
m31 = 0.0f; m32 = 0.0f; m33 = 1.0f;
tx = 0.0f; ty = 0.0f; tz = 1.0f;

}

//---------------------------------------------------------------------------
// Matrix4�3::zeroTranslation
//
// Zero the fourth row of the matrix, which contains the translation portion.

void Matrix4�3::zeroTranslation() {
tx = ty = tz = 0.0f;

}

//---------------------------------------------------------------------------
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// Matrix4�3::setTranslation
//
// Sets the translation portion of the matrix in vector form

void Matrix4�3::setTranslation(const Vector3 &d) {
tx = d.x; ty = d.y; tz = d.z;

}

//---------------------------------------------------------------------------
// Matrix4�3::setTranslation
//
// Sets the translation portion of the matrix in vector form

void Matrix4�3::setupTranslation(const Vector3 &d) {

// Set the linear transformation portion to identity

m11 = 1.0f; m12 = 0.0f; m13 = 0.0f;
m21 = 0.0f; m22 = 1.0f; m23 = 0.0f;
m31 = 0.0f; m32 = 0.0f; m33 = 1.0f;

// Set the translation portion

tx = d.x; ty = d.y; tz = d.z;
}

//---------------------------------------------------------------------------
// Matrix4�3::setupLocalToParent
//
// Setup the matrix to perform a local -> parent transformation, given
// the position and orientation of the local reference frame within the
// parent reference frame.
//
// A very common use of this will be to construct an object -> world matrix.
// As an example, the transformation in this case is straightforward. We
// first rotate from object space into inertial space, and then we translate
// into world space.
//
// We allow the orientation to be specified using either Euler angles,
// or a RotationMatrix

void Matrix4�3::setupLocalToParent(const Vector3 &pos, const EulerAngles &orient) {

// Create a rotation matrix.

RotationMatrix orientMatrix;
orientMatrix.setup(orient);

// Setup the 4�3 matrix. Note: if we were really concerned with
// speed, we could create the matrix directly into these variables,
// without using the temporary RotationMatrix object. This would
// save us a function call and a few copy operations.

setupLocalToParent(pos, orientMatrix);
}

void Matrix4�3::setupLocalToParent(const Vector3 &pos, const RotationMatrix &orient) {

// Copy the rotation portion of the matrix. According to
// the comments in RotationMatrix.cpp, the rotation matrix
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// is "normally" an inertial->object matrix, which is
// parent->local. We want a local->parent rotation, so we
// must transpose while copying

m11 = orient.m11; m12 = orient.m21; m13 = orient.m31;
m21 = orient.m12; m22 = orient.m22; m23 = orient.m32;
m31 = orient.m13; m32 = orient.m23; m33 = orient.m33;

// Now set the translation portion. Translation happens "after"
// the 3�3 portion, so we can simply copy the position
// field directly

tx = pos.x; ty = pos.y; tz = pos.z;
}

//---------------------------------------------------------------------------
// Matrix4�3::setupParentToLocal
//
// Setup the matrix to perform a parent -> local transformation, given
// the position and orientation of the local reference frame within the
// parent reference frame.
//
// A very common use of this will be to construct a world -> object matrix.
// To perform this transformation, we would normally first transform
// from world to inertial space and then rotate from inertial space into
// object space. However, our 4�3 matrix always translates last. So
// we think about creating two matrices T and R, and then concatenating
// M = TR.
//
// We allow the orientation to be specified using either Euler angles,
// or a RotationMatrix

void Matrix4�3::setupParentToLocal(const Vector3 &pos, const EulerAngles &orient) {

// Create a rotation matrix.

RotationMatrix orientMatrix;
orientMatrix.setup(orient);

// Setup the 4�3 matrix.

setupParentToLocal(pos, orientMatrix);
}

void Matrix4�3::setupParentToLocal(const Vector3 &pos, const RotationMatrix &orient) {

// Copy the rotation portion of the matrix. We can copy the
// elements directly (without transposing), according
// to the layout as commented in RotationMatrix.cpp

m11 = orient.m11; m12 = orient.m12; m13 = orient.m13;
m21 = orient.m21; m22 = orient.m22; m23 = orient.m23;
m31 = orient.m31; m32 = orient.m32; m33 = orient.m33;

// Now set the translation portion. Normally, we would
// translate by the negative of the position to translate
// from world to inertial space. However, we must correct
// for the fact that the rotation occurs "first." So we
// must rotate the translation portion. This is the same
// as creating a translation matrix T to translate by -pos
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// and a rotation matrix R and then creating the matrix
// as the concatenation of TR

tx = -(pos.x*m11 + pos.y*m21 + pos.z*m31);
ty = -(pos.x*m12 + pos.y*m22 + pos.z*m32);
tz = -(pos.x*m13 + pos.y*m23 + pos.z*m33);

}

//---------------------------------------------------------------------------
// Matrix4�3::setupRotate
//
// Setup the matrix to perform a rotation about a cardinal axis
//
// The axis of rotation is specified using a 1-based index:
//
// 1 => rotate about the x-axis
// 2 => rotate about the y-axis
// 3 => rotate about the z-axis
//
// Theta is the amount of rotation, in radians. The left-hand rule is
// used to define "positive" rotation.
//
// The translation portion is reset.
//
// See 8.2.2 for more info.

void Matrix4�3::setupRotate(int axis, float theta) {

// Get sin and cosine of rotation angle

float s, c;
sinCos(&s, &c, theta);

// Check which axis they are rotating about

switch (axis) {

case 1: // Rotate about the x-axis

m11 = 1.0f; m12 = 0.0f; m13 = 0.0f;
m21 = 0.0f; m22 = c; m23 = s;
m31 = 0.0f; m32 = -s; m33 = c;
break;

case 2: // Rotate about the y-axis

m11 = c; m12 = 0.0f; m13 = -s;
m21 = 0.0f; m22 = 1.0f; m23 = 0.0f;
m31 = s; m32 = 0.0f; m33 = c;
break;

case 3: // Rotate about the z-axis

m11 = c; m12 = s; m13 = 0.0f;
m21 = -s; m22 = c; m23 = 0.0f;
m31 = 0.0f; m32 = 0.0f; m33 = 1.0f;
break;

default:
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// bogus axis index

assert(false);
}

// Reset the translation portion

tx = ty = tz = 0.0f;
}

//---------------------------------------------------------------------------
// Matrix4�3::setupRotate
//
// Setup the matrix to perform a rotation about an arbitrary axis.
// The axis of rotation must pass through the origin.
//
// Axis defines the axis of rotation, and must be a unit vector.
//
// Theta is the amount of rotation, in radians. The left-hand rule is
// used to define "positive" rotation.
//
// The translation portion is reset.
//
// See 8.2.3 for more info.

void Matrix4�3::setupRotate(const Vector3 &axis, float theta) {

// Quick sanity check to make sure they passed in a unit vector
// to specify the axis

assert(fabs(axis*axis - 1.0f) < .01f);

// Get sin and cosine of rotation angle

float s, c;
sinCos(&s, &c, theta);

// Compute 1 - cos(theta) and some common subexpressions

float a = 1.0f - c;
float ax = a * axis.x;
float ay = a * axis.y;
float az = a * axis.z;

// Set the matrix elements. There is still a little more
// opportunity for optimization due to the many common
// subexpressions. We'll let the compiler handle that...

m11 = ax*axis.x + c;
m12 = ax*axis.y + axis.z*s;
m13 = ax*axis.z - axis.y*s;

m21 = ay*axis.x - axis.z*s;
m22 = ay*axis.y + c;
m23 = ay*axis.z + axis.x*s;

m31 = az*axis.x + axis.y*s;
m32 = az*axis.y - axis.x*s;
m33 = az*axis.z + c;
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// Reset the translation portion

tx = ty = tz = 0.0f;
}

//---------------------------------------------------------------------------
// Matrix4�3::fromQuaternion
//
// Setup the matrix to perform a rotation, given the angular displacement
// in quaternion form.
//
// The translation portion is reset.
//
// See 10.6.3 for more info.

void Matrix4�3::fromQuaternion(const Quaternion &q) {

// Compute a few values to optimize common subexpressions

float ww = 2.0f * q.w;
float xx = 2.0f * q.x;
float yy = 2.0f * q.y;
float zz = 2.0f * q.z;

// Set the matrix elements. There is still a little more
// opportunity for optimization due to the many common
// subexpressions. We'll let the compiler handle that...

m11 = 1.0f - yy*q.y - zz*q.z;
m12 = xx*q.y + ww*q.z;
m13 = xx*q.z - ww*q.x;

m21 = xx*q.y - ww*q.z;
m22 = 1.0f - xx*q.x - zz*q.z;
m23 = yy*q.z + ww*q.x;

m31 = xx*q.z + ww*q.y;
m32 = yy*q.z - ww*q.x;
m33 = 1.0f - xx*q.x - yy*q.y;

// Reset the translation portion

tx = ty = tz = 0.0f;
}

//---------------------------------------------------------------------------
// Matrix4�3::setupScale
//
// Setup the matrix to perform scale on each axis. For uniform scale by k,
// use a vector of the form Vector3(k,k,k)
//
// The translation portion is reset.
//
// See 8.3.1 for more info.

void Matrix4�3::setupScale(const Vector3 &s) {

// Set the matrix elements. Pretty straightforward:

m11 = s.x; m12 = 0.0f; m13 = 0.0f;
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m21 = 0.0f; m22 = s.y; m23 = 0.0f;
m31 = 0.0f; m32 = 0.0f; m33 = s.z;

// Reset the translation portion

tx = ty = tz = 0.0f;
}

//---------------------------------------------------------------------------
// Matrix4�3::setupScaleAlongAxis
//
// Setup the matrix to perform scale along an arbitrary axis.
//
// The axis is specified using a unit vector.
//
// The translation portion is reset.
//
// See 8.3.2 for more info.

void Matrix4�3::setupScaleAlongAxis(const Vector3 &axis, float k) {

// Quick sanity check to make sure they passed in a unit vector
// to specify the axis

assert(fabs(axis*axis - 1.0f) < .01f);

// Compute k-1 and some common subexpressions

float a = k - 1.0f;
float ax = a * axis.x;
float ay = a * axis.y;
float az = a * axis.z;

// Fill in the matrix elements. We'll do the common
// subexpression optimization ourselves here, since diagonally
// opposite matrix elements are equal

m11 = ax*axis.x + 1.0f;
m22 = ay*axis.y + 1.0f;
m32 = az*axis.z + 1.0f;

m12 = m21 = ax*axis.y;
m13 = m31 = ax*axis.z;
m23 = m32 = ay*axis.z;

// Reset the translation portion

tx = ty = tz = 0.0f;
}

//---------------------------------------------------------------------------
// Matrix4�3::setupShear
//
// Setup the matrix to perform a shear
//
// The type of shear is specified by the 1-based "axis" index. The effect
// of transforming a point by the matrix is described by the pseudocode
// below:
//
// axis == 1 => y += s*x, z += t*x
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// axis == 2 => x += s*y, z += t*y
// axis == 3 => x += s*z, y += t*z
//
// The translation portion is reset.
//
// See 8.6 for more info.

void Matrix4�3::setupShear(int axis, float s, float t) {

// Check which type of shear they want

switch (axis) {

case 1: // Shear y and z using x

m11 = 1.0f; m12 = s; m13 = t;
m21 = 0.0f; m22 = 1.0f; m23 = 0.0f;
m31 = 0.0f; m32 = 0.0f; m33 = 1.0f;
break;

case 2: // Shear x and z using y

m11 = 1.0f; m12 = 0.0f; m13 = 0.0f;
m21 = s; m22 = 1.0f; m23 = t;
m31 = 0.0f; m32 = 0.0f; m33 = 1.0f;
break;

case 3: // Shear x and y using z

m11 = 1.0f; m12 = 0.0f; m13 = 0.0f;
m21 = 0.0f; m22 = 1.0f; m23 = 0.0f;
m31 = s; m32 = t; m33 = 1.0f;
break;

default:

// bogus axis index

assert(false);
}

// Reset the translation portion

tx = ty = tz = 0.0f;
}

//---------------------------------------------------------------------------
// Matrix4�3::setupProject
//
// Setup the matrix to perform a projection onto a plane passing
// through the origin. The plane is perpendicular to the
// unit vector n.
//
// See 8.4.2 for more info.

void Matrix4�3::setupProject(const Vector3 &n) {

// Quick sanity check to make sure they passed in a unit vector
// to specify the axis
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assert(fabs(n*n - 1.0f) < .01f);

// Fill in the matrix elements. We'll do the common
// subexpression optimization ourselves here, since diagonally
// opposite matrix elements are equal

m11 = 1.0f - n.x*n.x;
m22 = 1.0f - n.y*n.y;
m33 = 1.0f - n.z*n.z;

m12 = m21 = -n.x*n.y;
m13 = m31 = -n.x*n.z;
m23 = m32 = -n.y*n.z;

// Reset the translation portion

tx = ty = tz = 0.0f;
}

//---------------------------------------------------------------------------
// Matrix4�3::setupReflect
//
// Setup the matrix to perform a reflection about a plane parallel
// to a cardinal plane.
//
// Axis is a 1-based index, which specifies the plane to project about:
//
// 1 => reflect about the plane x=k
// 2 => reflect about the plane y=k
// 3 => reflect about the plane z=k
//
// The translation is set appropriately, since translation must occur if
// k != 0
//
// See 8.5 for more info.

void Matrix4�3::setupReflect(int axis, float k) {

// Check which plane they want to reflect about

switch (axis) {

case 1: // Reflect about the plane x=k

m11 = -1.0f; m12 = 0.0f; m13 = 0.0f;
m21 = 0.0f; m22 = 1.0f; m23 = 0.0f;
m31 = 0.0f; m32 = 0.0f; m33 = 1.0f;

tx = 2.0f * k;
ty = 0.0f;
tz = 0.0f;

break;

case 2: // Reflect about the plane y=k

m11 = 1.0f; m12 = 0.0f; m13 = 0.0f;
m21 = 0.0f; m22 = -1.0f; m23 = 0.0f;
m31 = 0.0f; m32 = 0.0f; m33 = 1.0f;
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tx = 0.0f;
ty = 2.0f * k;
tz = 0.0f;

break;

case 3: // Reflect about the plane z=k

m11 = 1.0f; m12 = 0.0f; m13 = 0.0f;
m21 = 0.0f; m22 = 1.0f; m23 = 0.0f;
m31 = 0.0f; m32 = 0.0f; m33 = -1.0f;

tx = 0.0f;
ty = 0.0f;
tz = 2.0f * k;

break;

default:

// bogus axis index

assert(false);
}

}

//---------------------------------------------------------------------------
// Matrix4�3::setupReflect
//
// Setup the matrix to perform a reflection about an arbitrary plane
// through the origin. The unit vector n is perpendicular to the plane.
//
// The translation portion is reset.
//
// See 8.5 for more info.

void Matrix4�3::setupReflect(const Vector3 &n) {

// Quick sanity check to make sure they passed in a unit vector
// to specify the axis

assert(fabs(n*n - 1.0f) < .01f);

// Compute common subexpressions

float ax = -2.0f * n.x;
float ay = -2.0f * n.y;
float az = -2.0f * n.z;

// Fill in the matrix elements. We'll do the common
// subexpression optimization ourselves here, since diagonally
// opposite matrix elements are equal

m11 = 1.0f + ax*n.x;
m22 = 1.0f + ay*n.y;
m32 = 1.0f + az*n.z;

m12 = m21 = ax*n.y;
m13 = m31 = ax*n.z;
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m23 = m32 = ay*n.z;

// Reset the translation portion

tx = ty = tz = 0.0f;
}

//---------------------------------------------------------------------------
// Vector * Matrix4�3
//
// Transform the point. This makes using the vector class look like it
// does with linear algebra notation on paper.
//
// We also provide a *= operator, as per C convention.
//
// See 7.1.7

Vector3 operator*(const Vector3 &p, const Matrix4�3 &m) {

// Grind through the linear algebra.

return Vector3(
p.x*m.m11 + p.y*m.m21 + p.z*m.m31 + m.tx,
p.x*m.m12 + p.y*m.m22 + p.z*m.m32 + m.ty,
p.x*m.m13 + p.y*m.m23 + p.z*m.m33 + m.tz

);
}

Vector3 &operator*=(Vector3 &p, const Matrix4�3 &m) {
p = p * m;
return p;

}

//---------------------------------------------------------------------------
// Matrix4�3 * Matrix4�3
//
// Matrix concatenation. This makes using the vector class look like it
// does with linear algebra notation on paper.
//
// We also provide a *= operator, as per C convention.
//
// See 7.1.6

Matrix4�3 operator*(const Matrix4�3 &a, const Matrix4�3 &b) {

Matrix4�3 r;

// Compute the upper 3�3 (linear transformation) portion

r.m11 = a.m11*b.m11 + a.m12*b.m21 + a.m13*b.m31;
r.m12 = a.m11*b.m12 + a.m12*b.m22 + a.m13*b.m32;
r.m13 = a.m11*b.m13 + a.m12*b.m23 + a.m13*b.m33;

r.m21 = a.m21*b.m11 + a.m22*b.m21 + a.m23*b.m31;
r.m22 = a.m21*b.m12 + a.m22*b.m22 + a.m23*b.m32;
r.m23 = a.m21*b.m13 + a.m22*b.m23 + a.m23*b.m33;

r.m31 = a.m31*b.m11 + a.m32*b.m21 + a.m33*b.m31;
r.m32 = a.m31*b.m12 + a.m32*b.m22 + a.m33*b.m32;
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r.m33 = a.m31*b.m13 + a.m32*b.m23 + a.m33*b.m33;

// Compute the translation portion

r.tx = a.tx*b.m11 + a.ty*b.m21 + a.tz*b.m31 + b.tx;
r.ty = a.tx*b.m12 + a.ty*b.m22 + a.tz*b.m32 + b.ty;
r.tz = a.tx*b.m13 + a.ty*b.m23 + a.tz*b.m33 + b.tz;

// Return it. Ouch - involves a copy constructor call. If speed
// is critical, we may need a separate function which places the
// result where we want it...

return r;
}

Matrix4�3 &operator*=(Matrix4�3 &a, const Matrix4�3 &b) {
a = a * b;
return a;

}

//---------------------------------------------------------------------------
// determinant
//
c// Compute the determinant of the 3�3 portion of the matrix.
//
// See 9.1.1 for more info.

float determinant(const Matrix4�3 &m) {
return

m.m11 * (m.m22*m.m33 - m.m23*m.m32)
+ m.m12 * (m.m23*m.m31 - m.m21*m.m33)
+ m.m13 * (m.m21*m.m32 - m.m22*m.m31);

}

//---------------------------------------------------------------------------
// inverse
//
// Compute the inverse of a matrix. We use the classical adjoint divided
// by the determinant method.
//
// See 9.2.1 for more info.

Matrix4�3 inverse(const Matrix4�3 &m) {

// Compute the determinant

float det = determinant(m);

// If we're singular, then the determinant is zero and there's
// no inverse

assert(fabs(det) > 0.000001f);

// Compute one over the determinant, so we divide once and
// can *multiply* per element

float oneOverDet = 1.0f / det;

// Compute the 3�3 portion of the inverse, by
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// dividing the adjoint by the determinant

Matrix4�3 r;

r.m11 = (m.m22*m.m33 - m.m23*m.m32) * oneOverDet;
r.m12 = (m.m13*m.m32 - m.m12*m.m33) * oneOverDet;
r.m13 = (m.m12*m.m23 - m.m13*m.m22) * oneOverDet;

r.m21 = (m.m23*m.m31 - m.m21*m.m33) * oneOverDet;
r.m22 = (m.m11*m.m33 - m.m13*m.m31) * oneOverDet;
r.m23 = (m.m13*m.m21 - m.m11*m.m23) * oneOverDet;

r.m31 = (m.m21*m.m32 - m.m22*m.m31) * oneOverDet;
r.m32 = (m.m12*m.m31 - m.m11*m.m32) * oneOverDet;
r.m33 = (m.m11*m.m22 - m.m12*m.m21) * oneOverDet;

// Compute the translation portion of the inverse

r.tx = -(m.tx*r.m11 + m.ty*r.m21 + m.tz*r.m31);
r.ty = -(m.tx*r.m12 + m.ty*r.m22 + m.tz*r.m32);
r.tz = -(m.tx*r.m13 + m.ty*r.m23 + m.tz*r.m33);

// Return it. Ouch - involves a copy constructor call. If speed
// is critical, we may need a seperate function which places the
// result where we want it...

return r;
}

//---------------------------------------------------------------------------
// getTranslation
//
// Return the translation row of the matrix in vector form

Vector3 getTranslation(const Matrix4�3 &m) {
return Vector3(m.tx, m.ty, m.tz);

}

//---------------------------------------------------------------------------
// getPositionFromParentToLocalMatrix
//
// Extract the position of an object given a parent -> local transformation
// matrix (such as a world -> object matrix)
//
// We assume that the matrix represents a rigid transformation. (No scale,
// skew, or mirroring)

Vector3 getPositionFromParentToLocalMatrix(const Matrix4�3 &m) {

// Multiply negative translation value by the
// transpose of the 3�3 portion. By using the transpose,
// we assume that the matrix is orthogonal. (This function
// doesn't really make sense for non-rigid transformations...)

return Vector3(
-(m.tx*m.m11 + m.ty*m.m12 + m.tz*m.m13),
-(m.tx*m.m21 + m.ty*m.m22 + m.tz*m.m23),
-(m.tx*m.m31 + m.ty*m.m32 + m.tz*m.m33)
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);
}

//---------------------------------------------------------------------------
// getPositionFromLocalToParentMatrix
//
// Extract the position of an object given a local -> parent transformation
// matrix (such as an object -> world matrix)

Vector3 getPositionFromLocalToParentMatrix(const Matrix4�3 &m) {

// Position is simply the translation portion

return Vector3(m.tx, m.ty, m.tz);
}
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C h a p t e r 1 2

Geometric PrimitivesGeometric Primitives

This chapter is about geometric primitives in general and specifically. First, we will discuss some

general principles related to representing geometric primitives. We will also cover a number of

specific important geometric primitives. We will talk about how to represent those primitives and

some important properties and operations. However, this chapter is not all theory. Along the way,

we’ll present some C++ code for representing primitives and performing the computations as they

are discussed.

12.1 Representation Techniques
In this section, we will discuss representation techniques in general. For any given primitive, one

or more of these techniques may be applicable. Different techniques are useful in different

situations.

12.1.1 Implicit Form
We can represent an object implicitly by defining a Boolean function f(x,y,z) that is true for all

points of the primitive and false for all other points. For example, the equation
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This chapter discusses the fundamental properties of many different geometric primi-

tives. It is divided into seven sections:

� Section 12.1 discusses methods for representing primitives in general.

� Section 12.2 discusses lines and rays.

� Section 12.3 discusses spheres and circles.

� Section 12.4 discusses bounding boxes.

� Section 12.5 discusses planes.

� Section 12.6 discusses triangles.

� Section 12.7 discusses polygons.



is true for all points on the surface of a unit sphere centered at the origin. Implicit form is some-

times useful for point inclusion tests and the like.

12.1.2 Parametric Form
An object may be represented parametrically. We’ll begin with a simple 2D example. Let us

define the following two functions of t:

The argument t is known as the parameter and is independent of the coordinate system used. As t

varies from 0…1, the point (x(t), y(t)) traces out the outline of the shape we are describing. In this

case, it is a unit circle centered at the origin. (See Figure 12.1.)

It is often convenient to restrict the parameter in range 0…1, although we may allow t to assume

any range of values we wish. Another common choice is 0…l, where l is the “length” of the

primitive.

When our functions are in terms of one parameter, we say that the functions are univariate.

Univariate functions trace out a curve. We may use more than one parameter. A bivariate function

accepts two parameters, usually assigned to the variables s and t. Bivariate functions trace out a

curved surface rather than a line.

12.1.3 “Straightforward” Forms
For lack of a better term, we have named this group of representation techniques “straightfor-

ward” forms. They vary depending on the type of primitive, and they usually capture the most

important and obvious information directly. For example, to store a line segment, we could give

two endpoints. For a sphere, we could give its center and radius. The straightforward forms are the

easiest for humans to work with directly.
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12.1.4 Degrees of Freedom
Each geometric primitive has an inherent number of degrees of freedom. This is the minimum

number of “pieces of information” which are required to describe the entity unambiguously. It is

interesting to notice that for the same geometric primitive, some representation forms use more

numbers than others. However, we will always find that any “extra” numbers are always due to a

redundancy in the parameterization of the primitive that could be eliminated by assuming the

appropriate constraint, such as a vector having unit length.

12.2 Lines and Rays
In this section, we consider lines and rays in 2D and 3D. Terminology is very important here. In

classical geometry, the following definitions are used:

� A line extends infinitely in two directions.

� A line segment is a finite portion of a line that has two endpoints.

� A ray is “half” of a line that has an origin and extends infinitely in one direction.

In computer science and computational geometry, there are variations on these definitions. In this

book, we will use the classical definitions for “line” and “line segment.” However, we will alter

our definition of “ray” slightly:

� A ray is a directed line segment.

To us, a ray will have an origin and an endpoint. Thus, a ray defines a position, a finite length, and

(unless the ray has zero length) a direction. Any ray also defines a line and a line segment (that

contain the ray). Rays are of fundamental importance in computational geometry and graphics,

and they will be the focus of this section. (See Figure 12.2.)
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12.2.1 Two Points Representation
The most obvious way to describe a ray is to give the two points that are the ray origin and the ray

endpoint: porg and pend.

12.2.2 Parametric Representation of Rays
A ray may be specified parametrically in 2D or 3D. A 2D ray is defined parametrically using the

two functions:

A 3D ray is a straightforward extension, adding a third function z(t). We restrict the parameter t in

range 0…1.

We may write the parametric equations for a ray more compactly using vector notation. This

form applies in any dimension:

The ray starts at the point p(0) = p0. Thus, p0 contains information about the position of the ray,

while the “delta vector” d contains its length and direction. The ray ends at the point p(1) = p0 + d,

as shown below.

A slight variation on Equation 12.2 that we will use in some of the intersection tests is to use a unit

vector d and vary the parameter t from 0…l, where l is the length of the ray.
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Equation 12.1:
Parametric
definition of
a 2D ray

Equation 12.2:
Parametric
definition of a
ray using vector
notation

Figure 12.4: Defining a ray parametrically



12.2.3 Special 2D Representations of Lines
In this section, we will describe some ways to describe (infinite) lines. These methods are only

applicable in 2D. Similar techniques are used in 3D to define a plane. (See Section 12.5.)

In 2D, we may represent a line implicitly using the following equation:

Note: Many sources use ax + by + d = 0. This flips the sign of d. We will use the form in
Equation 12.3 because it has fewer terms.

Alternatively, we may assign the vector n = [a, b] and write Equation 12.3 using vector notation:

Multiplying both sides of the equation by any constant k scales n and d without changing the line

defined. It is often convenient for n to be a unit vector. This gives n and d interesting geometric

interpretations, which we will discuss later on in this section.

Alternatively, this equation can be manipulated to express the line in slope-intercept form:

m is the “slope” of the line, expressed as a ratio of rise over run: for every rise unit that we move

up, we will move run units to the right. b is the y-intercept. (This is not the same b used in the first

implicit form.) b is called the y-intercept because that’s where the line crosses the y-axis. Substi-

tuting x = 0 clearly shows that the line crosses the y-axis at y = b, as shown in Figure 12.5.
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Figure 12.5: The slope and y-intercept of a line



The slope of a horizontal line is zero. A vertical line has infinite slope and cannot be represented in

slope-intercept form since the implicit form of a vertical line is x = k.

Another way to specify a line is to give a normal vector n perpendicular to the line and the per-

pendicular distance d from the line to the origin. The normal describes the direction of the line, and

the distance describes its location.

Note that this is just a special case of the implicit form from Equation 12.4. n is the unit vector nor-

mal to the line, and d gives the signed distance from the origin to the line. This distance is

measured perpendicular to the line (parallel to n). By signed distance, we mean that d is positive if

the line is on the same side of the origin as the normal points. As d increases, the line moves in the

direction of n.

A variation on this theme is to describe the location of the line by giving a point q that is on the

line, rather than the distance to the origin. Of course, any point will do. The direction of the line is

described using a normal to the line n, as before.

One final way to define a line is as the perpendicular bisector of two points q and r, as shown in

Figure 12.8. In fact, this is one of the earliest definitions of a line: the set of all points equidistant

from two given points.
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Figure 12.6: Defining a line using a perpendicular vector and
distance to the origin

Figure 12.7: Defining a line using a perpendicular vector and
a point on the line



12.2.4 Converting between Representations
In this section, we give a few examples of how to convert a ray or line between the various repre-

sentation techniques. We will not cover all of the combinations. Remember that the techniques we

learned for infinite lines are only applicable in 2D.

To convert a ray defined using two points to parametric form:

The opposite conversion, from parametric form to two-points form:

Given a parametric ray, we can compute the implicit line that contains this ray:

To convert a line expressed implicitly to slope-intercept form:

Note that the b on the left side of the equal sign refers to the slope in the slope-intercept equation

y = mx + b. The bs on the right side of the equal sign refer to the y coefficient in the implicit equa-

tion ax + by = d.
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Figure 12.8: Defining a line as the perpendicular bisector
of a line segment



Converting a line expressed implicitly to “normal and distance” form:

Converting a normal and a point on line to normal and distance form:

(This assumes that n is a unit vector.)

Finally, perpendicular bisector form to implicit form:

12.3 Spheres and Circles
A sphere is a 3D object defined as the set of all points that are a given distance from a given point.

The distance from the center of the sphere to a point is known as the radius of the sphere. The

straightforward representation of a sphere is to describe its center c and radius r:

Spheres are ubiquitous in computational geometry and graphics because of their simplicity. A

“bounding sphere” is often used for trivial rejection because the equations for intersection with a
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Figure 12.9: A sphere is defined by its center and radius



sphere are simple. Rotating a sphere does not change its shape, and so a bounding sphere can be

used for an object regardless of the orientation of the object.

The implicit form of a sphere comes directly from its definition: the set of all points that are a

given distance from the center. The implicit form of a sphere with center c and radius r is:

Notice that p is any point on the surface of the sphere. For a point p inside the sphere to satisfy the

equation, we must change the “ = ” to a “ � ”. Equation 12.6 is also the implicit definition of a cir-

cle in 2D. Expanding Equation 12.6 in 3D and squaring both sides yields:

For both circles and spheres, we compute the diameter (distance from one point to a point on the

exact opposite side), and circumference (distance all the way around the circle):

The area of a circle is given by:

The surface area and volume of a sphere are given by:

For the calculus buffs, it is interesting to notice that the derivative of the area of a circle is its cir-

cumference, and the derivative for the volume of a sphere is its surface area.

12.4 Bounding Boxes
Another simple geometric primitive commonly used as a bounding volume is the bounding box.

Bounding boxes may be either axially aligned or arbitrarily oriented. Axially aligned bounding

boxes have the restriction that their sides must be perpendicular to principal axes. The acronym

AABB is often used for axially aligned bounding box, and OBB is used for oriented bounding
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box. Axially aligned bounding boxes are simpler to create and use, and they will be the focus of

this section.

A 3D AABB is a simple six-sided box with each side parallel to one of the cardinal planes.

The box is not necessarily a cube — the length, width, and height of the box may each be different.

Figure 12.10 shows a few simple 3D objects and their axially aligned bounding boxes.

12.4.1 Representing AABBs
Let us introduce several important properties of an AABB and the notation we will use when

referring to these values. The points inside an AABB satisfy the inequalities:

Two corner points of special significance are:

The center point c is given by:

The “size vector” s is the vector from pmin to pmax and contains the width, height, and length of the

box:

We can also refer to the “radius vector” r of the box, which is the vector from the center to pmax:

To unambiguously define an AABB requires only two of the five vectors pmin, pmax, c, s, and r.

Other than the pair s and r, any pair may be used. Some representation forms are more useful in
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Figure 12.10: 3D objects and their
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particular situations than others. We advise representing a bounding box using pmin and pmax, since

in practice these are needed far more frequently that s, c, and r. Of course, computing any of these

three from pmin and pmax is very fast.

In our C++ code, we will use the following simple representation for an AABB. This is an

abbreviated listing with only the data members. (See Section 13.20 for the complete listing.)

class AABB3 {
public:

Vector3 min;
Vector3 max;

};

12.4.2 Computing AABBs
Computing an AABB for a set of points is a simple process. We first reset the minimum and maxi-

mum values to “infinity,” or what is effectively bigger than any number we will encounter in

practice. Then, we pass through the list of points, expanding our box as necessary to contain each

point.

In our AABB class, we will define two functions to help with this. The first function “emp-

ties” the AABB:

void AABB3::empty() {
const float kBigNumber = 1e37f;
min.x = min.y = min.z = kBigNumber;
max.x = max.y = max.z = -kBigNumber;

}

The other function “adds” a single point into the AABB by expanding the AABB if necessary to

contain the point:

void AABB3::add(const Vector3 &p) {
if (p.x < min.x) min.x = p.x;
if (p.x > max.x) max.x = p.x;
if (p.y < min.x) min.y = p.y;
if (p.y > max.x) max.y = p.y;
if (p.z < min.x) min.z = p.z;
if (p.z > max.x) max.z = p.z;

}

Now, to create a bounding box from a set of points, we could use the following code:

Listing 12.1: Computing the AABB for a set of points

// Our list of points

const int n;
Vector3 list[n];

// First, empty the box

AABB3 box;
box.empty();

// Add each point into the box
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for (int i = 0 ; i < n ; ++i) {
box.add(list[i]);

}

12.4.3 AABBs vs. Bounding Spheres
In many cases, AABBs are preferable to spheres as a bounding volume:

� Computing the optimal AABB for a set of points is easy to program and can be run in linear

time. Computing the optimal bounding sphere is a much more difficult problem. (See [4] and

[16] for algorithms on bounding spheres.)

� For many objects that arise in practice, AABBs usually provide a “tighter” bounding volume,

and thus, better trivial rejection. Of course, for some objects, the bounding sphere is better.

(Imagine an object that is itself a sphere!) Even in the worst case, an AABB will have a vol-

ume of just under twice the volume of the sphere. However, when a sphere is bad, it can be

really bad. Compare the bounding sphere and AABB of a telephone pole.

The basic problem with spheres is that there is only one degree of freedom to their shape — the

radius of the sphere. An AABB has three degrees of freedom — the length, width, and height.

Thus, it can usually adapt to differently shaped objects better. For most of the objects in Figure

12.11, the AABB is smaller than the bounding sphere, except the star in the upper-right corner. For

the star, the bounding sphere is slightly smaller than the AABB. Notice that the AABB is highly

sensitive to the orientation of the object; compare the AABBs for the two rifles on the bottom. In

each case, the size of the rifle is the same: only the orientation is different between the two. Also,

notice that the bounding spheres are the same size, since bounding spheres are not sensitive to the

orientation of the object.
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various objects



12.4.4 Transforming AABBs
As an object moves around in our virtual world, its AABB needs to move around with it. We have

two choices — either we compute a new AABB from the transformed object, or we can try apply-

ing the same transform to the AABB as we did to the object. What we get as a result is not

necessarily axially aligned (if the object rotated), and it is not necessarily a box (if the object

skewed). However, computing an AABB for the “transformed AABB” (we should perhaps call it

a NNAABNNB — a “not-necessarily axially aligned bounding not-necessarily box”) should be

faster than computing a new AABB for the transformed object because AABBs have only eight

points.

So, to compute an AABB for a transformed AABB, it is not enough to simply transform the

eight corner points. Nor can we simply compute new pmin and pmax by transforming the original

pmin and pmax — this could result in xmin > xmax, for example. To compute a new AABB, we must

transform the eight corner points and then form an AABB from these eight points.

Depending on the transformation, this may result in a bounding box that is larger than the

original bounding box. For example, in 2D, a rotation of 45� will increase the size of the bounding

box significantly, as shown in Figure 12.12.

Compare the size of the original AABB in Figure 12.12 (the gray box) with the new AABB (the

largest box on the right), which was computed solely from the rotated AABB. The new AABB is

almost twice as big. Notice that if we were able to compute an AABB from the rotated object

rather than the rotated AABB, it would be about the same size as the original AABB.

As it turns out, the structure of an AABB can be exploited to speed up the generation of the

new AABB so that it is not necessary to actually transform all eight corner points and build a new

AABB from these points.

Let’s quickly review what happens when we transform a 3D point by a 3×3 matrix. (See Sec-

tion 7.1.7 if you have forgotten how to multiply a vector by a matrix.)
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Figure 12.12: The AABB of a transformed box



Assume the original bounding box is in xmin, xmax, ymin, etc., and the new bounding box will be

computed into x'min, x'max, y'min, etc. Let’s examine how we might more quickly compute x'min as an

example. In other words, we wish to find the minimum value of

where [x, y, z] is any of the original eight corner points. Our job is to figure out which of these cor-

ner points would have the smallest x value after transformation. The trick to minimizing the entire

sum is to minimize each of the products individually. Let’s look at the first product, m11x. We must

decide which of xmin or xmax to substitute for x in order to minimize the product. Obviously, if

m11 > 0, then the smaller of the two, xmin, will result in the smaller product. Conversely, if m11 < 0,

then xmax gives a smaller product. Conveniently, whichever of xmin or xmax we use for computing

x'min, we use the other value for computing x'max. We then apply this process for each of the nine

elements in the matrix, as illustrated in AABB3::setToTransformedBox(), which is in

Listing 13.4 (see page 304).

12.5 Planes
A plane in 3D is the set of points equidistant from two points. A plane is perfectly flat, has no

thickness, and extends infinitely.

12.5.1 Implicit Definition — The Plane Equation
We can represent planes using techniques similar to the ones we used to describe infinite 2D lines

in Section 12.2.3. The implicit form of a plane is given by all points p = (x, y, z) that satisfy the

plane equation, which is shown below using both notation forms:

Note that in the second form, n = [a, b, c]. Once we know n, we can compute d from any point

known to be in the plane.

Reminder: Many sources give the plane equation as ax + by + cz + d = 0. This has the effect of

flipping the sign of d.
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The vector n is called the plane normal because it is perpendicular (“normal”) to the plane. Let’s

verify this. Assume p and q are both in the plane, and, therefore, satisfy the plane equation. Substi-

tuting p and q into Equation 12.11:

The geometric implication of the last line is that n is perpendicular to the vector from q to p. This

is true for any points p and q in the plane, and, therefore, n is perpendicular to every vector in the

plane.

We may consider a plane to have a “front” side and a “back” side. Normally, the front side of

the plane is the direction that n points; for example, when looking from the head of n toward the

tail, we are looking at the front side.

We can restrict n to have unit length without loss of generality, and it will often be convenient to do

so.

12.5.2 Definition Using Three Points
Another way we can define a plane is to give three noncollinear points that are in the plane, that is,

three points that are not on the same straight line. (If the three points are in a line, there would be an

infinite number of planes that contain that line, and there would be no way of telling which one we

mean.)

Let’s compute n and d from three points p1, p2, and p3 known to be in the plane. First, we must

compute n. Which way will n point? The standard way to do this in a left-handed coordinate sys-

tem is to assume that p1, p2, and p3 are listed in clockwise order when viewed from the front side of

the plane. (In a right-handed coordinate system, we usually assume the points are listed in coun-

ter-clockwise order. This way, the equations are the same no matter what coordinate system is

used.)
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We will construct two vectors according to the clockwise ordering. (See Figure 12.14.) The “e”

stands for “edge” vector, since these equations commonly arise when computing the plane equa-

tion for a triangle. (The seemingly strange indexing agrees with the indices used in Section 12.6

where triangles are discussed in more detail.) The cross product of these two vectors yields the

perpendicular vector n, but this vector is not necessarily of unit length. As mentioned earlier, we

will usually normalize n. All of this is summarized succinctly by the following equations:

Notice that if the points are collinear, then e3 and e1 will be parallel, and thus, the cross product will

be 0, which cannot be normalized. This mathematical singularity coincides with the physical sin-

gularity that collinear points do not unambiguously define a plane.

Now that we know n, all that is left to do is compute d. This is done by taking the dot product

of one of the points and n.

12.5.3 “Best-fit” Plane for More Than Three Points
Occasionally, we may wish to compute the plane equation for a set of more than three points. The

most common example of such a set of points is the vertices of a polygon. In this case, the vertices

are assumed to be enumerated in a clockwise fashion around the polygon. (The ordering matters

because it is how we decide which side is the “front” and which is the “back,” which in turn deter-

mines in what direction our normal will point.)

One naïve solution is to arbitrarily select three consecutive points and compute the plane

equation from those three points. However, the three points we chose may be collinear, or nearly

collinear, which is almost as bad because it is numerically inaccurate. Or, perhaps the polygon is

concave and the three points we have chosen are a point of concavity and form a counterclockwise

turn (which would result in a normal that points the wrong direction). Or, the vertices of the poly-

gon may not be coplanar, which can happen due to numeric imprecision or the method used to

generate the polygons. What we really want is a way to compute the “best fit” plane for a set of

points, which takes into account all of the points. Given n points:
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Figure 12.14: Computing a plane normal from three points
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Equation 12.12:
The normal of a
plane containing
three points



The “best-fit” perpendicular vector n is given by:

This vector must then be normalized if we wish to enforce the restriction that n be of unit length.

We can express Equation 12.13 succinctly using summation notation. If we let pn+1 = p1, then:

The following code illustrates how we might compute a best-fit normal for a set of points:

Listing 12.2: Computing the best-fit plane normal for a set of points

Vector3 computeBestFitNormal(const Vector3 v[], int n) {

// Zero out sum

Vector3 result = kZeroVector;

// Start with the "previous" vertex as the last one.
// This avoids an if-statement in the loop

const Vector3 *p = &v[n–1];

// Iterate through the vertices

for (int i = 0 ; i < n ; ++i) {

// Get shortcut to the "current" vertex

const Vector3 *c = &v[i];

// Add in edge vector products appropriately

result.x += (p–>z + c–>z) * (p–>y – c–>y);
result.y += (p–>x + c–>x) * (p–>z – c–>z);
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result.z += (p–>y + c–>y) * (p–>x – c–>x);

// Next vertex, please

p = c;
}

// Normalize the result and return it

result.normalize();
return result;

}

The best-fit d value can be computed as the average of the d values for each point:

12.5.4 Distance from Point to Plane
Imagine a plane and a point q that is not in the plane. There exists a point p that lies in the plane and

is the closest point in the plane to q. Clearly, the vector from p to q is perpendicular to the plane

and is of the form an. This is shown in Figure 12.15.

If we assume n is a unit vector, then the distance from p to q (and thus, the distance from q to the

plane) is simply a. (This “distance” will be negative when q is on the back side of the plane.)

What’s surprising is that we can compute a without knowing the location of p. We go back to our

original definition of q and then perform some vector algebra to eliminate p:
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Figure 12.15: Computing the distance between a point and
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12.6 Triangles
Triangles are of fundamental importance in modeling and graphics. The surface of a complex 3D

object, such as a car or a human body, is approximated with many triangles. Such a group of con-

nected triangles forms a triangle mesh, which is the topic of Chapter 14. Before we can learn how

to manipulate many triangles though, we must first learn how to manipulate one triangle.

12.6.1 Basic Properties of a Triangle
A triangle is defined by listing its three vertices. The order that these points are listed is significant.

In a left-handed coordinate system, we typically enumerate the points in clockwise order when

viewed from the “front” side of the triangle. We will refer to the three vertices as v1, v2, and v3.

A triangle lies in a plane. The equation of this plane (the normal n and distance to origin d) is

important in a number of applications. For more information on planes, including how to compute

the plane equation given three points, see Section 12.5.2.

Let us label the interior angles, clockwise edge vectors, and side lengths as shown in Figure

12.16.

Let li denote the length of ei. Notice that ei and li are opposite vi, the vertex with the corresponding

index, and they are given by:

Writing the law of sines and law of cosines using this notation:
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Figure 12.16: Labeling triangles
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The perimeter of the triangle is often an important value, and it is computed trivially by summing

the three sides:

12.6.2 Area of a Triangle
In this section, we investigate several techniques for computing the area of a triangle. The most

well-known method is to compute the area from the base and height (also known at the altitude).

Examine the parallelogram and enclosed triangle below.

From classical geometry, we know that the area of a parallelogram is equal to the product of the

base and height. (See Section 5.11.2 for an explanation on why this is true.) Since the triangle

occupies exactly one-half of this area, the area of a triangle, given the base and height is:

If the altitude is not known, then Heron’s formula can be used, which requires only the lengths of

the three sides. Let s equal one-half the perimeter (also known as the semiperimeter). Then the

area is given by:

Heron’s formula is particularly interesting because of the ease with which it can be applied in 3D.
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Sometimes the altitude or lengths of the sides are not readily available and all we have are the

Cartesian coordinates of the vertices. (Of course, we could always compute the side lengths from

the coordinates, but there are situations where we wish to avoid this relatively costly computa-

tion.) Let’s see if we can compute the area of a triangle using only the coordinates of the vertices.

Let’s tackle this problem in 2D. The basic idea is to compute, for each of the three edges of the tri-

angle, the signed area of the trapezoid bounded above by the edge and below by the x-axis, as

shown in Figure 12.18. By “signed area” we mean that the area is positive if the edge points from

left to right, and it is negative if the edge points from right to left. Notice that no matter how the tri-

angle is oriented, there will always be at least one positive edge and at least one negative edge. A

vertical edge will have zero area. The formula for the areas under each edge are given below:

As it turns out, the formula above works even when some (or all) of the triangle extends below the

x-axis.

By summing the signed areas of the three trapezoids, we arrive at the area of the triangle itself.

In fact, the same idea can be used to compute the area of a polygon with any number of sides,

although we will not need to do so in this book.

We assume a clockwise ordering of the vertices around the triangle. Enumerating the vertices

in the opposite order flips the sign of the area. With these considerations in mind, we sum the areas

of the trapezoids to compute the signed area of the triangle:
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We can actually simplify this further. The basic idea is to realize that we can translate the triangle

without affecting the area. In this case, we will shift the triangle vertically by subtracting y3 from

each of the y coordinates. (You can achieve the same simplifications using only algebraic

manipulations.)

In 3D we can use the cross product to compute the area of a triangle. Recall from Section 5.11.2

that the magnitude of the cross product of two vectors a and b is equal to the area of the parallelo-

gram formed on two sides by a and b. Since the area of a triangle is half the area of the enclosing

parallelogram, we have a simple way to calculate the area of the triangle. Given two edge vectors

from the triangle, e1 and e2, the area of the triangle is given by:

12.6.3 Barycentric Space
Although we certainly use triangles in 3D, the surface of a triangle lies in a plane and is inherently

a 2D object. Moving around on the surface of a triangle that is arbitrarily oriented in 3D is some-

what awkward. It would be nice to have a coordinate space that is related to the surface of the

triangle and is independent of the 3D space in which the triangle “lives.” Barycentric space is just

such a coordinate space.

Any point in the plane of a triangle can be expressed as the weighted average of the vertices.

The weights are known as barycentric coordinates. The conversion from barycentric coordinates

(b1, b2, b3) to standard 3D space is defined by:

The sum of the coordinates is always one:

The values b1, b2, and b3 are the “contributions” or “weights” that each vertex contributes to the

point. Figure 12.19 shows some examples of points and their barycentric coordinates.
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A few important observations can be made:

� First, notice that the three vertices of the triangle have a trivial form in barycentric space:

� Second, all points on the side opposite a vertex will have a zero for the barycentric coordinate

corresponding to that vertex. For example, b1 = 0 for all points on the line containing the side

opposite v1.

� Third, any point in the plane can be described using barycentric coordinates, not just the

points inside the triangle. The barycentric coordinates of a point inside the triangle will all be

in range 0…1. A point outside the triangle will have at least one negative coordinate.

Barycentric space tessellates the plane into triangles of the same size as the original triangle,

as shown in Figure 12.20.
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The nature of barycentric space is not exactly the same as Cartesian space. This is because

barycentric space is 2D, but there are three coordinates. Since the sum of the coordinates is one,

barycentric space only has two degrees of freedom; there is one degree of redundancy. In other

words, we could completely describe a point in barycentric space using only two of the coordi-

nates and compute the third from the other two.

To convert a point from barycentric coordinates to normal 3D coordinates, we simply com-

pute the weighted average of the vertices by applying Equation 12.21. Computing the barycentric

coordinates for an arbitrary point in 2D or 3D is slightly more difficult. Let’s see how we might do

this in 2D. Examine Figure 12.21, which shows the three vertices v1, v2, and v3 and the point p. We

have also labeled the three “subtriangles” T1, T2, and T3, which are opposite the vertex of the same

index. These will become useful in a moment.

Now, we know the Cartesian coordinates of the three vertices and the point p. Our task is to com-

pute the barycentric coordinates b1, b2, and b3. This gives us three equations and three unknowns:

Solving the system of equations yields:

Examining Equation 12.22 closely, we see that the denominator is the same in each expression,

and it is equal to twice the area of the triangle, according to Equation 12.20. Also, for each

barycentric coordinate bi, the numerator is equal to twice the area of the “subtriangle” Ti. In other

words:
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Note that this interpretation applies even if p is outside the triangle, since our equation for comput-

ing area yields a negative result if the vertices are enumerated in a counterclockwise order. If the

three vertices of the triangle are collinear, then the area in the denominator will be zero, and thus,

the barycentric coordinates cannot be computed.

Computing barycentric coordinates for an arbitrary point p in 3D is more complicated than in

2D. We cannot solve a system of equations as we did before, since we have three unknowns and

four equations. Another complication is that p may not lie in the plane that contains the triangle, in

which case the barycentric coordinates are undefined. For now, let’s assume that p lies in the plane

containing the triangle.

One trick that works is to turn the 3D problem into a 2D one, simply by discarding one of x, y,

or z. This has the effect of projecting the triangle onto one of the three cardinal planes. Intuitively,

this works because the projected areas are proportional to the original areas.

Which coordinate should we discard? We can’t always discard the same one, since the pro-

jected points will be collinear if the triangle is perpendicular to the projection plane. If our triangle

is nearly perpendicular to the plane of projection, we will have problems with floating-point accu-

racy. A solution to this dilemma is to choose the plane of projection so as to maximize the area of

the projected triangle. This can be done by examining the plane normal; the coordinate that has the

largest absolute value is the coordinate that we will discard. For example, if the normal is

[–1, 0, 0], then we would discard the x values of the vertices and p, projecting onto the yz plane.

The code below shows how to compute the barycentric coordinates for an arbitrary 3D point.

Listing 12.3: Computing barycentric coordinates in 3D

bool computeBarycentricCoords3d(
const Vector3 v[3], // vertices of the triangle
const Vector3 &p, // point that we wish to compute coords for
float b[3] // barycentric coords returned here

) {

// First, compute two clockwise edge vectors

Vector3 d1 = v[1] – v[0];
Vector3 d2 = v[2] – v[1];

// Compute surface normal using cross product. In many cases
// this step could be skipped, since we would have the surface
// normal precomputed. We do not need to normalize it, although
// if a precomputed normal was normalized, it would be OK.

Vector3 n = crossProduct(d1, d2);
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// Locate dominant axis of normal, and select plane of projection

float u1, u2, u3, u4;
float v1, v2, v3, v4;
if ((fabs(n.x) >= fabs(n.y)) && (fabs(n.x) >= fabs(n.z))) {

// Discard x, project onto yz plane

u1 = v[0].y – v[2].y;
u2 = v[1].y – v[2].y;
u3 = p.y – v[0].y;
u4 = p.y – v[2].y;

v1 = v[0].z – v[2].z;
v2 = v[1].z – v[2].z;
v3 = p.z – v[0].z;
v4 = p.z – v[2].z;

} else if (fabs(n.y) >= fabs(n.z)) {

// Discard y, project onto xz plane

u1 = v[0].z – v[2].z;
u2 = v[1].z – v[2].z;
u3 = p.z – v[0].z;
u4 = p.z – v[2].z;

v1 = v[0].x – v[2].x;
v2 = v[1].x – v[2].x;
v3 = p.x – v[0].x;
v4 = p.x – v[2].x;

} else {

u1 = v[0].x – v[2].x;
u2 = v[1].x – v[2].x;
u3 = p.x – v[0].x;
u4 = p.x – v[2].x;

v1 = v[0].y – v[2].y;
v2 = v[1].y – v[2].y;
v3 = p.y – v[0].y;
v4 = p.y – v[2].y;

}

// Compute denominator, check for invalid

float denom = v1 * u2 – v2 * u1;
if (denom == 0.0f) {

// Bogus triangle - probably triangle has zero area

return false;
}

// Compute barycentric coordinates

float oneOverDenom = 1.0f / denom;
b[0] = (v4*u2 – v2*u4) * oneOverDenom;
b[1] = (v1*u3 – v3*u1) * oneOverDenom;
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b[2] = 1.0f – b[0] – b[1];

// OK

return true;
}

Another technique for computing barycentric coordinates in 3D is based on the method for com-

puting the area of a 3D triangle using the cross product, which we discussed in Section 12.6.2.

Recall that given two edge vectors e1 and e2 of a triangle, we can compute the area of the triangle as

||e1×e2||/2. Once we have the area of the entire triangle, and the areas of the three “subtriangles,”

we can compute the barycentric coordinates.

There is one slight problem with this: the magnitude of the cross product is not sensitive to the

ordering of the vertices. Magnitude is, by definition, always positive. This will not work for points

outside the triangle, since these points must always have at least one negative barycentric

coordinate.

Let’s see if we can find a way to work around this problem. It seems like we need a way to cal-

culate the length of the cross product vector that would yield a negative value if the vertices were

enumerated in the “incorrect” order. As it turns out, there is a very simple way to do this using the

dot product.

Let’s assign c as the cross product of two edge vectors of a triangle. Remember that the magni-

tude of c will equal twice the area of the triangle. Assume we have a normal n of unit length. Now,

n and c are parallel, since they are both perpendicular to the plane containing the triangle. How-

ever, they may point in opposite directions. Recall from Section 5.10.2 that the dot product of two

vectors is equal to the product of their magnitudes times the cosine of the angle between them.

Since we know that n is a unit vector, and the vectors are either pointing in the same or exact oppo-

site direction, we have:

Dividing this result by two, we have a way to compute the “signed area” of a triangle in 3D. Armed

with this trick, we can now apply the observation from the previous section that each barycentric

coordinate bi is proportional to the area of the “subtriangle” Ti. We will first label all of the vectors

involved, as shown in Figure 12.22.
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As you can see in Figure 12.22, each vertex has a vector from vi to p named di. Summarizing the

equations for the vectors:

We’ll also need a surface normal, which can be computed by:

Now the areas for the entire triangle (which we’ll call T) and the three subtriangles are given by:

Each barycentric coordinate bi is given by A(Ti) / A(T), as shown below:

Notice that n is used in all of the numerators and all of the denominators. Thus, it is not actually

necessary that n be normalized. In this case, the denominator is simply n·n.
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This technique for computing barycentric coordinates involves more scalar math operations

than the method of projection into 2D. However, it is branchless and offers considerable opportu-

nity for optimization by a vector coprocessor. Thus, it may be faster on a superscalar processor

with a vector coprocessor.

12.6.4 Special Points
In this section, we discuss three points on a triangle that have special geometric significance:

� Center of gravity

� Incenter

� Circumcenter

Much of this section is inspired by [12]. For each point, we will discuss its geometric significance

and construction and give its barycentric coordinates.

The center of gravity is the point where the triangle would balance perfectly. It is the intersec-

tion of the medians. (A median is a line from one vertex to the midpoint of the opposite side.)

Figure 12.23 shows the center of gravity of a triangle.

The center of gravity is the geometric average of the three vertices:

The barycentric coordinates are:

The center of gravity is also known as the centroid.

The incenter is the point in the triangle that is equidistant from the sides. It is called the

incenter because it is the center of the circle inscribed in the triangle. The incenter is constructed as

the intersection of the angle bisectors.
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Figure 12.23: The center of gravity of a
triangle



Figure 12.24 shows the incenter of a triangle.

The incenter is computed by:

where p = l1 + l2 + l3 is the perimeter of the triangle. Thus, the barycentric coordinates of the

incenter are:

The radius of the inscribed circle can be computed by dividing the area of the triangle by its

perimeter:

The inscribed circle solves the problem of finding a circle tangent to three lines.

The circumcenter is the point in the triangle that is equidistant from the vertices. It is the cen-

ter of the circle that circumscribes the triangle. The circumcenter is constructed as the intersection

of the perpendicular bisectors of the sides. Figure 12.25 shows the circumcenter of a triangle.
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Figure 12.24: The incenter of a triangle

Figure 12.25: The circumcenter of a triangle
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To compute the circumcenter, we will first define the following intermediate values:

With those intermediate values, the barycentric coordinates for the circumcenter are given by:

Thus, the circumcenter is given by:

The circumradius is given by:

The circumradius and circumcenter solve the problem of finding a circle that passes through three

points.

12.7 Polygons
It is difficult to come up with a simple definition for polygon, since the precise definition usually

varies depending on the context. In general, a polygon is a flat object made up of vertices and

edges. In the next few sections, we discuss several ways in which polygons may be classified.

12.7.1 Simple vs. Complex Polygons
A simple polygon does not have any “holes,” whereas a complex polygon may have holes (see Fig-

ure 12.26). A simple polygon can be described by enumerating the vertices in order around the

polygon. (Recall that in a left-handed world, we usually enumerate them in clockwise order when

viewed from the “front” side of the polygon.) Simple polygons are used much more frequently

than complex polygons.
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We can turn any complex polygon into a simple one by adding pairs of “seam” edges, as shown in

Figure 12.27. As the close-up on the right shows, we add two edges per “seam.” The edges are

actually coincidental, although in the close-up they have been separated so you can see them.

When we think about the edges being ordered around the polygon, the two seam edges point in

opposite directions.

12.7.2 Self-intersecting Polygons
The edges of most simple polygons do not intersect each another. If the edges do intersect, the

polygon is considered a self-intersecting polygon. A simple example of a self-intersecting poly-

gon is shown in Figure 12.28.
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Figure 12.26: Simple vs. complex polygons

Figure 12.27: Turning complex polygons
into simple ones by adding pairs of seam
edges



Most people usually work with non-self-intersecting polygons.

12.7.3 Convex vs. Concave Polygons
Non-self-intersecting simple polygons may be further classified as either convex or concave.

Giving a precise definition for “convex” is actually somewhat tricky, since there are many sticky

degenerate cases. For most polygons, the following commonly used definitions are equivalent,

although some degenerate polygons may be classified as convex according to one definition and

concave according to another.

� Intuitively, a convex polygon doesn’t have any “dents.” A concave polygon has at least one

vertex that is a “dent” — a point of concavity.

� In a convex polygon, the line between any two points in the polygon is completely contained

within the polygon. In a concave polygon, we can find a pair of points in the polygon where

the line between the points is partially outside the polygon.

� As we move around the perimeter of a convex polygon, we will turn in the same direction at

each vertex. In a concave polygon, we will make some left-hand turns and some right-hand

turns. We will turn the opposite direction at the point(s) of concavity. (Note that this applies to

non-self-intersecting polygons only.)

As we mentioned, degenerate cases can make even these relatively clear-cut definitions blurry.

For example, what about a polygon with two consecutive coincident vertices, or an edge that dou-

bles back on itself? Are those polygons considered “convex”? In practice, the following

definitions for convexity are often used:

� If my code that is only supposed to work for convex polygons can deal with it, then it’s con-

vex. (This is the “If it ain’t broke, don’t fix it” definition.)

� If my algorithm that tests for convexity decides it’s convex, then it’s convex. (This is an

“Algorithm as definition” explanation.)

For now, let’s ignore the pathological cases and give some examples of polygons that we can all

agree are definitely convex or definitely concave. Some examples are shown in Figure 12.29. The

concave polygon in the upper-right corner has one point of concavity. The bottom concave poly-

gon has five points of concavity.
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Any concave polygon may be divided into convex pieces. For techniques on how this can be done,

see [19]. The basic idea is to locate the points of concavity (called “reflex vertices” in that text) and

systematically remove them by adding diagonals. In [4], an algorithm is given that works for com-

plex polygons as well simple polygons.

How can we know if a polygon is convex or concave? One method is to examine the sum of

the angles at the vertices. Consider a convex polygon with n vertices. The sum of interior angles in

a convex polygon is (n–2)180°. We have two ways to show this to be true.

� First, let �i measure the interior angle at vertex i. Clearly, �i � 180° (assuming the polygon is

convex). The amount of “turn” that occurs at each vertex will be 180° – �i. A closed polygon

will, of course, “turn” one complete revolution, or 360°. Therefore:

� Second, as we will show in Section 12.7.4, any convex polygon with n vertices can be triangu-

lated into n–2 triangles. From classical geometry, the sum of the interior angles of a triangle is

180°. The sum of the interior angles of all of the triangles is (n–2)180°, and we can see that

this sum must also be equal to the sum of the interior angles of the polygon itself.

Unfortunately, the sum of the interior angles is (n–2)180° for concave as well as convex polygons.

So how does this get us any closer to determining whether or not a polygon is convex? For a con-

vex polygon, the interior angle is not larger than the exterior angle. (The exterior angle is not the

same as the “turn amount.” The interior and exterior angles sum to 360°.)
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So, if we take the sum of the smaller angle (interior or exterior) at each vertex, then the sum

will be (n–2)180° for convex polygons and less than that if the polygon is concave. How do we

measure the smaller angle? Luckily, we have a tool that does just that — the dot product. In Sec-

tion 5.10.2, we learned how to compute the angle between two vectors using the dot product. The

angle returned using this method always measured the shortest arc.

The code below shows how to determine if a polygon is convex by summing the angles:

Listing 12.4: 3D polygon convexity test using angle sum

// Function to determine if a polygon is convex. The polygon is
// assumed to be planar.
//
// Input:
// n Number of vertices
// vl pointer to array of of vertices

bool isConvex(int n, const Vector3 vl[]) {

// Initialize sum to 0 radians

float angleSum = 0.0f;

// Go around the polygon and sum the angle at each vertex

for (int i = 0 ; i < n ; ++i) {

// Get edge vectors. We have to be careful on
// the first and last vertices. Also, note that
// this could be optimized considerably…

Vector3 e1;
if (i == 0) {

e1 = vl[n–1] – vl[i];
} else {

e1 = vl[i–1] – vl[i];
}

Vector3 e2;
if (i == n–1) {

e2 = vl[0] – vl[i];
} else {

e2 = vl[i+1] – vl[i];
}

// Normalize and compute dot product

e1.normalize();
e2.normalize();
float dot = e1 * e2;

// Compute smaller angle using “safe” function that protects
// against range errors which could be caused by
// numerical imprecision

float theta = safeAcos(dot);

// Sum it up
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angleSum += theta;
}

// Figure out what the sum of the angles should be, assuming
// we are convex. Remember that pi/2 rad = 180 degrees

float convexAngleSum = (float)(n – 2) * kPiOverTwo;

// Now, check if the sum of the angles is less than it should be;
// then we’re concave. We give a slight tolerance for
// numerical imprecision

if (angleSum < convexAngleSum – (float)n * 0.0001f) {

// We’re concave

return false;
}

// We’re convex, within tolerance

return true;
}

Another method for determining convexity is to search for vertices that are points of concavity. If

none are found, then the polygon is convex. The basic idea is that each vertex should turn in the

same direction. Any vertex that turns in the opposite direction is a point of concavity.

How do we know which way a vertex turns? One trick is to use the cross product on the edge

vectors. Recall from Section 5.11.2 that in a left-handed coordinate system, the cross product will

point toward you if the vectors form a clockwise turn.

What does “toward you” mean in this case? We’ll view the polygon from the front, as deter-

mined by the polygon normal. If this normal is not available to us initially, we have to exercise

some care in computing it. The techniques in Section 12.5.3 for computing the best-fit normal

from a set of points can be used in this case.

In 2D, we can simply act as if the polygon were in 3D at the plane z = 0, and we’ll assume the

normal is [0, 0, –1].

Once we have a normal, we check each vertex of the polygon, computing a normal at that ver-

tex using the adjacent clockwise edge vectors. We take the dot product of the polygon normal with

the normal computed at that vertex to determine if they point in opposite directions. If so (the dot

product is negative), then we have located a point of concavity.

For more on determining the convexity of a polygon, see [20].

12.7.4 Triangulation and Fanning
Any polygon can be divided into triangles. Thus, all of the operations and calculations for trian-

gles can be applied to polygons. Triangulating complex, self-intersecting, or even simple concave

polygons is no trivial task and is slightly out of the scope of this book. For more information, we

refer the reader to [4] and [19], both of which cover the intricacies of this task in excellent detail.

Luckily, triangulating simple convex polygons is a trivial matter. One obvious triangulation

technique is to pick one vertex (say, the first one) and “fan” the polygon around this vertex. Given
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a polygon with n vertices, enumerated v1…vn around the polygon, we can easily form n–2 trian-

gles each of the form { v1, vi–1, vi }, with the index i going from 3…n, as shown in Figure 12.30.

Fanning tends to create many long, thin “sliver” triangles, which can be troublesome in some situ-

ations. Numerical inaccuracies inherent in measuring extremely small angles can be problematic,

like when computing a surface normal.

A “smarter” technique is to triangulate as follows: consider that we can divide a polygon into

two pieces with a diagonal between two vertices. When this occurs, the two interior angles at the

vertices of the diagonal are each divided into two new interior angles. Thus, a total of four new

interior angles are created. To subdivide a polygon, select the diagonal that maximizes the small-

est of these four new interior angles. Divide the polygon in two using this diagonal. Recursively,

apply the procedure to each half until only triangles remain.

This algorithm results in a triangulation with fewer slivers, but, in practice, it is often overkill.

Depending on the geometry and the application, fanning may be perfectly adequate (and much

simpler).

12.8 Exercises
1. Give the slope and y-intercept of the 2D line defined implicitly by 4x + 7y = 42.

2. Consider a triangle defined by the clockwise enumeration of the vertices (6, 10, –2),

(3, –1, 17), (–9, 8, 0).

a. What is the plane equation of the plane containing this triangle?

b. Is the point (3, 4, 5) on the front or back side of this plane?

c. How far is this point from the plane?

d. Compute the barycentric coordinates of the point (–3.3, 12.4, 33.2).

e. What is the center of gravity? Incenter? Circumcenter?
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C h a p t e r 1 3

Geometric TestsGeometric Tests

In the previous chapter, we discussed a number of calculations that can be performed on a single

primitive. In this chapter, we will discuss calculations that relate more than one primitive.

13.1 Closest Point on 2D Implicit Line
Consider an infinite line L in 2D defined implicitly by all points p such that:

where n is a unit vector. Our goal is to find, for any point q, the point q' that is the closest point on L

to q. This is the result of projecting q onto L. Let us draw a second line M through q, parallel to L,

as shown in Figure 13.1. Let nM and dM be the normal and d value of the line equation for M. Since

L and M are parallel, they have the same normal: nM = n. Since q is on M, dM can be computed as

q·n.
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This chapter is about geometric tests that can be performed on primitives. It is divided

into twenty sections.

� Sections 13.1 through 13.5 present a number of closest point tests, which determine

the closest point on a given primitive to an arbitrary point.

� Section 13.6 discusses a few general issues related to intersection tests, which are

used to detect the 3D overlap of a pair of geometric primitives.

� Sections 13.7 through 13.18 present a variety of intersection tests.

� Section 13.19 discusses other intersection tests not covered in this book.

� Section 13.20 presents the complete listing for class AABB3.



Now the signed distance from M to L measured parallel to n is simply d – dM = d – q·n. This dis-

tance is obviously the same as the distance from q to q'. (If we only need the distance and not the

value of q', then we can stop here.) To compute the value of q', we can simply take q and displace

by a multiple of n:

13.2 Closest Point on Parametric Ray
Consider the parametric ray R in 2D or 3D defined by:

where d is a unit vector, and the parameter t varies from 0…l, where l is the length of R. For a given

point q, we wish to find the point q' on R that is closest to q.

This is a simple matter of projecting one vector onto another, which we learned how to do in

Section 5.10.3. Let v be the vector from porg to q. We wish to compute the result of projecting v

onto d, or the portion of v parallel to d. This is illustrated in Figure 13.2.
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Figure 13.1: Finding the closest point on a 2D implicit
line

Equation 13.1:
Computing the
closest point on
a 2D implicit
line
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The value of the dot product v·d is the value t such that p(t) = q'.

Actually, the equation for p(t) above computes the point closest to q on the infinite line containing

R. If t < 0 or t > l, then p(t) is not in the portion contained by R. In this case, the closest point on R to

q will be the origin (if t < 0) or endpoint (if t > l).

If the ray is defined where t varies from 0…1 and d is not necessarily a unit vector, then we

must divide by the magnitude of d to compute the t value:

13.3 Closest Point on Plane
Consider a plane P defined in the standard implicit manner as all points p that satisfy

where n is a unit vector. Given a point q, we wish to find the point q', which is the result of project-

ing q onto P. q' is the closest point on P to q.

We learned how to compute the distance from a point to a plane in Section 12.5.4. To compute

q', we simply displace by this distance, parallel to n:

Notice that this is the same as Equation 13.1, which computes the closest point to an implicit line

in 2D.
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Figure 13.2: Finding the closest point on a ray

Equation 13.2:
Computing the
closest point on
a parametric ray

Equation 13.3:
Computing the
closest point on
a plane



13.4 Closest Point on Circle/Sphere
Imagine a 2D point q and a circle with center c and radius r. (The following discussion will also

apply to a sphere in 3D.) We wish to find q', which is the closest point on the circle to q.

Let d be the vector from q to c. This vector intersects the circle at q'. Let b be the vector from q

to q', as shown in Figure 13.3.

Now clearly, ||b|| = ||d|| – r. Therefore:

Adding this displacement to q to project onto the circle:

If ||d|| < r, then q is inside the circle. There is some question as to what we should do with this situa-

tion. Should q' = q, or should we project q onto the surface of the circle? Certain circumstances

might call for either behavior. If we decide we wish to project the points onto the surface of the cir-

cle, then we will have a problem deciding what to do when q = c.

13.5 Closest Point in AABB
Let B be an AABB defined by the extreme points pmin and pmax. For any point q we can easily com-

pute q', the closest point in B to q. This is done by “pushing” q into B along each axis in turn, as

illustrated in Listing 13.1.

Listing 13.1: Computing the closest point in an AABB to a point

if (x < minX) {
x = minX;

} else if (x > maxX) {
x = maxX;

}

if (y < minY) {
y = minY;
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Figure 13.3: Finding the closest point on a circle

Equation 13.4:
Computing the
closest point on
a circle or sphere



} else if (y > maxY) {
y = maxY;

}

if (z < minZ) {
z = minZ;

} else if (z > maxZ) {
z = maxZ;

}

Notice that if the point is already inside the box, then this code returns the original point.

13.6 Intersection Tests
In the following sections, we will present an assortment of intersection tests. These tests are

designed to determine if two geometric primitives intersect and (in some cases) locate the inter-

section. These primitive tests form the foundation for a collision detection system, which is used

to prevent objects from passing through each other and to make things appear to bounce off each

other convincingly.

We will consider two different types of intersection tests:

� A static test checks two stationary primitives and detects if the two primitives intersect. It is a

Boolean test — that is, it usually only returns true (there is an intersection) or false (there is no

intersection). More information may be available if there is an intersection, but in general, the

test is primarily designed to return a Boolean result.

� A dynamic test checks two moving primitives and detects if and when two primitives inter-

sect. Usually the movement is expressed parametrically, and therefore, the result of such a test

is not only a Boolean true/false result but also a time value (the value of the parameter t) that

indicates when the primitives intersect. For the tests that we will consider here, the movement

value is a simple linear displacement — a vector offset that the primitive moves as t varies

from 0…1. Each primitive may have its own movement value. However, it will be easier to

view the problem from the point of view of one of the primitives; that primitive is considered

to be “still” while the other primitive does all of the “moving.” We can easily do this by com-

bining the two displacement vectors to get a single relative displacement vector that describes

how the two primitives move in relation to each other. Thus, all of the dynamic tests will usu-

ally involve one stationary primitive and one moving primitive.

Notice that many important tests involving rays are actually dynamic tests, since a ray can be

viewed as a moving point.
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13.7 Intersection of Two Implicit Lines in 2D
Finding the intersection of two lines defined implicitly in 2D is a straightforward matter of solving

a system of linear equations. We have two equations (the two implicit equations of the lines) and

two unknowns (the x and y coordinates of the point of intersection). Our two equations are:

Solving this system of equations yields:

Just like any system of linear equations, there are three possibilities (as illustrated in Figure 13.4):

� There is one solution. In this case, the denominators in Equation 13.5 will be nonzero.

� There are no solutions. This indicates that the lines are parallel and not intersecting. The

denominators are zero.

� There are an infinite number of solutions. This is the case when the two lines are coincident.

The denominators are zero.
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Equation 13.5:
Computing the
intersection of
two lines in 2D

Figure 13.4: Intersection of two lines in
2D — the three cases



13.8 Intersection of Two Rays in 3D
Consider two rays in 3D defined parametrically by:

We can solve for their point of intersection. For a moment, let us not restrict the range of t1 and t2,

and therefore, we consider the rays to be infinite in length. Also, the delta vectors d1 and d2 do not

necessarily have to be unit vectors. If the rays lie in a plane, then we have the same three cases pos-

sible from the previous section:

� The rays intersect at exactly one point.

� The rays are parallel, and there is no intersection.

� The rays are coincident, and there are an infinite number of solutions

However, in 3D we have a fourth case where the rays are skew and do not share a common plane.

An example of skew lines is illustrated in Figure 13.5.

We can solve for t1 and t2. At the point of intersection:

t2 is obtained in a similar fashion:
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If the lines are parallel (or coincident), then the cross product of d1 and d2 is the zero vector, and

the denominator of both equations is zero. If the lines are skew, then p1(t1) and p2(t2) are the points

of closest approach. To distinguish between skew and intersecting lines, we examine the distance

between p1(t1) and p2(t2). Of course, in practice, an exact intersection rarely occurs due to float-

ing-point imprecision, and a tolerance must be used.

The above discussion assumes that the range of the parameters t1 and t2 is not restricted. If the

rays have finite length (or only extend in one direction), then the appropriate boundary tests would

be applied after computing t1 and t2.

13.9 Intersection of Ray and Plane
A ray intersects a plane in 3D at a point. Let the ray be defined parametrically by:

The plane will be defined in the standard manner, by all points p such that:

Although we often restrict n and d to be unit vectors, in this case neither restriction is necessary.

Let us solve for t at the point of intersection, assuming an infinite ray for the moment:

If the ray is parallel to the plane, then the denominator d·n is zero and there is no intersection. (We

may also only wish to intersect with the front of the plane. In this case, we say there is an intersec-

tion only if the ray points in an opposite direction as the normal of the plane, i.e., d·n < 0.) If the

value of t is out of range, then the ray does not intersect the plane.
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13.10 Intersection of AABB and Plane
Consider a 3D AABB defined by extreme points pmin and pmax and a plane defined in the standard

implicit manner by all points p that satisfy:

where n is a unit vector. The plane must be expressed in the same coordinate space as the AABB.

For techniques on transforming AABBs, see Section 12.4.4. Transforming the plane is probably

faster.

The obvious place to start when designing a simple static intersection test is to check whether

the box is completely on one side of the plane or the other by taking the dot product of the corner

points with n and comparing these dot products with d. If all of the dot products are greater than d,

then the box is completely on the front side of the plane. If all of the dot products are less than d,

then the box is completely on the back side of the plane.

Actually, we don’t have to check all eight corner points. We’ll use a trick similar to the one

used in Section 12.4.4 to transform an AABB. For example, if nx > 0, then the corner with the min-

imal dot product has x=xmin and the corner with the maximal dot product has x=xmax. If nx < 0, then

the opposite is true. Similar statements apply to ny and nz. We compute the minimum and maxi-

mum dot product values. If the minimum dot product value is greater than d or if the maximum dot

product is less than d, then there is no intersection. Otherwise, if two corners are found that are on

opposite sides of the plane, then an intersection is detected.

A dynamic test goes one step further. We’ll consider the plane to be stationary. (Recall from

Section 13.6 that it is simpler to view the test from the frame of reference of one of the moving

objects.) The displacement of the box will be defined by a unit vector d and a length l. As before,

we first locate the corner points with the minimum and maximum dot product and check for an

intersection at t = 0. If the box is not initially intersecting the plane, then it must strike the plane at

the corner point closest to the plane. This will be one of the two corner points identified in the first

step. If we are only interested in colliding with the “front” of the plane, then we can always use the

corner with the minimum dot product value. Once we have determined which corner will strike

the plane, we use the ray-plane intersection test in Section 13.9.

Class AABB3 has working implementations of static and dynamic AABB-plane intersection

tests. See page 310.
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13.11 Intersection of Three Planes
In 3D, three planes intersect at a point, as shown in Figure 13.7.

Let the three planes be defined implicitly as:

Although we usually use unit vectors for the plane normals, in this case, it is not necessary that ni

be of unit length. The equations above give us a system of linear equations with three equations

and three unknowns (the x, y, and z coordinates of the point of intersection). Solving this system of

equations yields the following result, from [11]:

If any pair of planes is parallel, then the point of intersection either does not exist or is not unique.

In either case, the denominator is zero.

13.12 Intersection of Ray and Circle/Sphere
In this section, we discuss how to compute the intersection of a ray and a circle in 2D. This also

works for computing the intersection of a ray and a sphere in 3D, since we can operate in the plane

that contains the ray and the center of the circle and turn the 3D problem into a 2D one. (If the ray

lies on a line that passes through the center of the sphere, the plane is not uniquely defined. How-

ever, this is not a problem because any of the infinitely many planes that pass through the ray and

the center of the sphere can be used.)
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We will use a construction inspired by [15]. See Figure 13.8. The sphere is defined by its center c

and radius r. The ray will be defined by:

In this case, we will use a unit vector d and vary t from 0 to l, the length of the ray. We are solving

for the value of t at the point of intersection.

We can compute a as follows. Let e be the vector from p0 to c:

Now project e onto d. (See Section 5.10.3.) The length of this vector is a, and it can be computed

by:

Now, all that remains is to compute f. First, by the Pythagorean theorem, we clearly see that:

We can solve for b2 using the Pythagorean theorem on the larger triangle:

e is the distance from the origin of the ray to the center, i.e., the length of the vector e. Thus, e2 can

be computed by:

Substituting and solving for f:
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And finally, solving for t:

A few notes:

� If the argument r2 – e2 + a2 to the square root is negative, then the ray does not intersect the

sphere.

� The origin of the ray could be inside the sphere. This is indicated by e2 < r2. Appropriate

behavior in this case would vary depending on the purpose of the test.

13.13 Intersection of Two Circles/Spheres
Detecting the static intersection of two spheres is relatively easy. (The discussion in this section

will also apply to circles. In fact, we use circles in the diagrams.) Consider two spheres defined by

centers c1 and c2 and radii r1 and r2, as shown in Figure 13.9. Let d be the distance between their

centers. Clearly, the spheres intersect if d < r1 + r2. In practice, we can avoid the square root

involved in the calculation of d by checking if d2 < (r1 + r2)
2.

Detecting the intersection of two moving spheres is slightly more difficult. Assume for the

moment that we have two separate displacement vectors d1 and d2, one for each sphere, that

describe how the spheres will move during the period of time under consideration. This is shown

in Figure 13.10.
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Figure 13.9: Intersection of two spheres
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We can simplify the problem by viewing it from the point of view of the first sphere. Consider that

sphere to be “stationary,” while the other sphere is the “moving” sphere. This gives us a single dis-

placement vector d, computed as the difference of the two movement vectors d2 – d1. This is

illustrated in Figure 13.11.

Let the stationary sphere be defined by its center cs and radius rs. The radius of the moving sphere

is rm. The center of the moving sphere is cm at t=0. Rather than varying t from 0…1, we will nor-

malize d and vary t from 0…l, where l is the distance traveled. So the position of the center of the

moving sphere at time t is given by cm + td. Our goal is to find t, the time at which the moving

sphere touches the stationary sphere. The geometry involved is illustrated in Figure 13.12.
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so that one sphere is considered stationary



To solve for t, we begin by calculating an intermediate vector e as the vector from cm to cs and set r

equal to the sum of the radii:

According to the law of cosines (see Appendix A), we have:

Apply the geometric interpretation of the dot product (see Section 5.10.2) and simplify:

Apply the quadratic formula:

Which root do we pick? The lower number (the negative root) is the t value when the spheres

begin intersecting. The greater number (the positive root) is the point where the spheres cease to

intersect. We are interested in the first intersection:
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A few important notes:

� If ||e|| < r, then the spheres are intersecting at t=0.

� If t < 0 or t > l, then the intersection does not occur within the period of time being considered.

� If the value inside the square root is negative, then there is no intersection.

13.14 Intersection of Sphere and AABB
To detect the static intersection of a sphere and an axially aligned bounding box (AABB), we first

find the point on the axially aligned bounding box that is closest to the center of the sphere using

the techniques from Section 13.5. We compute the distance from this point to the center of the

sphere, and we compare this distance with the radius. (Actually, in practice, we compare the dis-

tance squared against the radius squared to avoid the square root in the distance computation.) If

the distance is smaller than the radius, then the sphere intersects the AABB.

In [1], Arvo discusses this technique, which he uses for intersecting spheres with “solid”

boxes. He also discusses some tricks for intersecting spheres with “hollow” boxes.

The static test was relatively simple. Unfortunately, the dynamic test is more complicated. For

details, see [16].

13.15 Intersection of Sphere and Plane
Detecting the static intersection of a sphere and a plane is relatively easy. We simply compute the

distance from the center of the sphere to the plane using Equation 12.14 (see Section 12.5.4). If

this distance is less than the radius of the sphere, then the sphere intersects the plane. We can actu-

ally make a more robust test, which classifies the sphere as being completely on the front,

completely on the back, or straddling the sphere. Examine Listing 13.2.

Listing 13.2: Determining which side of a plane a sphere is on

// Given a sphere and plane, determine which side of the plane
// the sphere is on.
//
// Return values:
//
// < 0 Sphere is completely on the back
// > 0 Sphere is completely on the front
// 0 Sphere straddles plane

int classifySpherePlane(
const Vector3 &planeNormal, // must be normalized
float planeD, // p * planeNormal = planeD
const Vector3 &sphereCenter, // center of sphere
float sphereRadius // radius of sphere

) {
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// Compute distance from center of sphere to the plane

float d = planeNormal * sphereCenter – planeD;

// Completely on the front side?

if (d >= sphereRadius) {
return +1;

}

// Completely on the back side?

if (d <= –sphereRadius) {
return –1;

}

// Sphere intersects the plane

return 0;
}

The dynamic situation is only slightly more complicated. We will consider the plane to be station-

ary, assigning all relative displacement to the sphere.

We will define the plane in the usual manner using a normalized surface normal n and dis-

tance value d, such that all points p in the plane satisfy the equation p·n = d. The sphere is defined

by its radius r and the initial position of the center c. The displacement of the sphere will be given

by a unit vector d specifying the direction and a distance l. As t varies from 0…l, the motion of the

center of the sphere is given by the line equation c + td. This situation is shown viewing the plane

edge-on in Figure 13.13.

The problem is greatly simplified by realizing that no matter where on the surface of the plane the

intersection occurs, the point of contact on the surface of the sphere is always the same. That point

of contact is given by c–rn, as shown in Figure 13.14.
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Figure 13.13: A sphere moving toward a plane



Now that we know where the point of contact will occur on the sphere, we can use a simple

ray-plane intersection test from Section 13.9. We start with our solution to the ray-plane intersec-

tion test from Equation 13.6, and then we substitute in for p0:

13.16 Intersection of Ray and Triangle
The ray-triangle intersection test is very important in graphics and computational geometry. In the

absence of a special ray trace test against a given complex object, we can always represent (or at

least approximate) the surface of the object using a triangle mesh and then ray trace against this tri-

angle mesh representation.

We will use a simple strategy from [2]. The first step is to compute the point where the ray

intersects the plane containing the triangle. We learned how to compute the intersection of a plane

and a ray in Section 13.9. Then, we test to see if that point is inside the triangle by computing the

barycentric coordinates of the point. We learned how to do this in Section 12.6.3.

To make this test as fast as possible, we use a few tricks:

� Detect and return a negative result (no collision) as soon as possible. This is known as “early

out.”

� Defer expensive mathematical operations, such as division, as long as possible. This is for

two reasons. First, if the result of the expensive calculation is not needed, for example, if we

took an early out, then the time we spent performing the operation was wasted. Second, it

gives the compiler plenty of room to take advantage of the operator pipeline in modern
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processors. If an operation such as division has a long latency, then the compiler may be able

to look ahead and generate code that begins the division operation early. It then generates

code that performs other tests (possibly taking an early out) while the division operation is

under way. Then at execution time, when and if the result of the division is actually needed,

the result will be available, or at least partially completed.

� Only detect collisions where the ray approaches the triangle from the front side. This allows

us to take a very early out on approximately half of the triangles.

The code below implements these techniques. Although it is commented in the listing, we have

chosen to perform some floating-point comparisons “backward” since this behaves better in the

presence of invalid floating-point input data (NANs).

// Ray-triangle intersection test.
//
// Algorithm from Didier Badouel, Graphics Gems I, pp 390-393

float rayTriangleIntersect(
const Vector3 &rayOrg, // origin of the ray
const Vector3 &rayDelta, // ray length and direction
const Vector3 &p0, // triangle vertices
const Vector3 &p1, // .
const Vector3 &p2, // .
float minT // closest intersection found so far. (Start with 1.0)

) {

// We'll return this huge number if no intersection is detected

const float kNoIntersection = 1e30f;

// Compute clockwise edge vectors.

Vector3 e1 = p1 – p0;
Vector3 e2 = p2 – p1;

// Compute surface normal. (Unnormalized)

Vector3 n = crossProduct(e1, e2);

// Compute gradient, which tells us how steep of an angle
// we are approaching the *front* side of the triangle

float dot = n * rayDelta;

// Check for a ray that is parallel to the triangle or not
// pointing toward the front face of the triangle.
//
// Note that this also will reject degenerate triangles and
// rays as well. We code this in a very particular
// way so that NANs will bail here. (This does not
// behave the same as "dot >= 0.0f" when NANs are involved.)

if (!(dot < 0.0f)) {
return kNoIntersection;

}

// Compute d value for the plane equation. We will
// use the plane equation with d on the right side:
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//
// Ax + By + Cz = d

float d = n * p0;

// Compute parametric point of intersection with the plane
// containing the triangle, checking at the earliest
// possible stages for trivial rejection

float t = d – n * rayOrg;

// Is ray origin on the backside of the polygon? Again,
// we phrase the check so that NANs will bail

if (!(t <= 0.0f)) {
return kNoIntersection;

}

// Closer intersection already found? (Or does
// ray not reach the plane?)
//
// since dot < 0:
//
// t/dot > minT
//
// is the same as
//
// t < dot*minT
//
// (And then we invert it for NAN checking...)

if (!(t >= dot*minT)) {
return kNoIntersection;

}

// OK, ray intersects the plane. Compute actual parametric
// point of intersection

t /= dot;
assert(t >= 0.0f);
assert(t <= minT);

// Compute 3D point of intersection

Vector3 p = rayOrg + rayDelta*t;

// Find dominant axis to select which plane
// to project onto, and compute u's and v's

float u0, u1, u2;
float v0, v1, v2;
if (fabs(n.x) > fabs(n.y)) {

if (fabs(n.x) > fabs(n.z)) {
u0 = p.y – p0.y;
u1 = p1.y – p0.y;
u2 = p2.y – p0.y;

v0 = p.z – p0.z;
v1 = p1.z – p0.z;
v2 = p2.z – p0.z;
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} else {
u0 = p.x – p0.x;
u1 = p1.x – p0.x;
u2 = p2.x – p0.x;

v0 = p.y – p0.y;
v1 = p1.y – p0.y;
v2 = p2.y – p0.y;

}
} else {

if (fabs(n.y) > fabs(n.z)) {
u0 = p.x – p0.x;
u1 = p1.x – p0.x;
u2 = p2.x – p0.x;

v0 = p.z – p0.z;
v1 = p1.z – p0.z;
v2 = p2.z – p0.z;

} else {
u0 = p.x – p0.x;
u1 = p1.x – p0.x;
u2 = p2.x – p0.x;

v0 = p.y – p0.y;
v1 = p1.y – p0.y;
v2 = p2.y – p0.y;

}
}

// Compute denominator, check for invalid

float temp = u1 * v2 – v1 * u2;
if (!(temp != 0.0f)) {

return kNoIntersection;
}
temp = 1.0f / temp;

// Compute barycentric coords, checking for out-of-range
// at each step

float alpha = (u0 * v2 – v0 * u2) * temp;
if (!(alpha >= 0.0f)) {

return kNoIntersection;
}

float beta = (u1 * v0 – v1 * u0) * temp;
if (!(beta >= 0.0f)) {

return kNoIntersection;
}

float gamma = 1.0f - alpha - beta;
if (!(gamma >= 0.0f)) {

return kNoIntersection;
}

// Return parametric point of intersection

return t;
}
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There is one more significant strategy not illustrated above for optimizing expensive calculations:

precompute their results. If values such as the polygon normal can be computed ahead of time,

then different strategies may be used.

Because of the fundamental importance of this test, programmers are always looking for ways

to make it faster. Tomas Möller has a slightly different strategy that works faster in many cases.

For links to his and others’ research, visit the web site for this book, gamemath.com.

13.17 Intersection of Ray and AABB
Computing the intersection of a ray with an AABB is an important calculation, since the result of

this test is commonly used for trivial rejection on more complicated objects. (For example, if we

wish to ray trace against multiple triangle meshes, we can first ray trace against the AABBs of the

meshes to trivially reject entire meshes at once, rather than having to check each triangle.)

In [24], Woo describes a method that first determines which side of the box will be inter-

sected, and then performs a ray-plane intersection test against the plane containing that side. If the

point of intersection with the plane is within the box, then there is an intersection. Otherwise, there

is no intersection.

Woo’s technique is applied in the definition ofAABB3::rayIntersect(). See page 307.

13.18 Intersection of Two AABBs
Detecting the intersection of two static AABBs is trivial. We simply check for overlapping extents

on each dimension independently. If there is no overlap on a particular dimension, then the two

AABBs do not intersect. This technique is used in intersectAABBs() in AABB3.cpp (see

page 312).

Dynamic intersection of AABBs is only slightly more complicated. Consider a stationary

AABB defined by extreme points smin and smax and a moving AABB defined by extreme points

mmin and mmax (in the initial position, at t = 0). The moving AABB displaces by an amount given

by the vector d, as t varies from 0…1.

Our task is to compute t, the parametric point in time where the moving box first collides with

the stationary box. (We assume that the boxes are not initially intersecting.) To do this, we will

attempt to determine the first point in time when the boxes overlap in all dimensions simulta-

neously. Since this applies in 2D or 3D, we will illustrate the problem in 2D. (Extending the

technique into 3D is straightforward.) We will analyze each coordinate separately, solving two (or

three, in 3D) separate one-dimensional problems, and then combine these results to give the

answer.

The problem is now one-dimensional. We need to know the interval of time when the two

boxes overlap on a particular dimension. Imagine projecting the problem onto the x-axis, for

example, as shown in Figure 13.15.
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As we advance in time, the black rectangle representing the moving box will slide along the num-

ber line. At t = 0 in Figure 13.15, the moving box is completely to the left of the stationary box, and

at t = 1, the moving box is completely to the right of the stationary box. There is a point tenter where

the boxes first begin to overlap and a point tleave where the boxes cease to overlap. For the dimen-

sion we are considering, let mmin(t) and mmax(t) be the minimum and maximum values of the

moving box at time t, given by:

mmin(0) and mmax(0) are the initial extents of the moving box and d is the component of the dis-

placement vector d for this axis. Let smin and smax have similar definitions for the stationary box.

(Of course, these values are independent of t since the box is stationary.) tenter is the t value for

which mmax(t) is equal to smin. Solving, we get:

Likewise, we can solve for tleave:

Three important notes:

� If the denominator d is zero, then boxes either always overlap or never overlap. We will show

how to handle these cases in our code.
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� If the moving box begins on the right side of the stationary box and moves left, then tenter will

be greater than tleave. We will handle this scenario by swapping their values to ensure that

tenter < tleave.

� The values for tenter and tleave may be outside the range of 0…1. To accommodate t values out-

side this range, we can think of the moving box as moving along an infinite trajectory parallel

to d. If tenter > 1 or tleave < 0, then there is no overlap in the period of time under consideration.

We now have a way to find the interval of time, bounded by tenter and tleave, where the two boxes

overlap on a single dimension. The intersection of these intervals on all dimensions gives the

interval of time where the boxes intersect with each other. This is illustrated in Figure 13.16 for

two time intervals in 2D. (Don’t confuse this with Figure 13.15. In Figure 13.16, the axis is the

time axis. In Figure 13.15, the axis shown is the x-axis.)

If the interval is empty, then the boxes never collide. If the interval lies completely outside the

range t = 0…1, then there is no collision over the period of time we are interested in. Actually, the

interval during which the boxes overlap is more information than we want, since we are only inter-

ested in the point in time where the boxes begin intersecting, not when they cease to intersect. Still,

we will need to maintain this interval, mainly to determine if it is empty.

For a complete implementation, see the definition of intersectMovingAABBs() on

page 313.

Unfortunately, in practice, bounding boxes for objects are rarely axially aligned in the same

coordinate space. However, because this test is relatively fast, it is useful as a preliminary trivial

rejection test to be followed by a more specific (and usually more expensive) test.

An alternative test allows one of the boxes to be arbitrarily oriented. For links to more infor-

mation on this test, visit gamemath.com.

13.19 Other Tests
There are a number of other important geometric tests that were not discussed due to time

constraints:

� Triangle-triangle intersection tests

� AABB-OBB (oriented bounding box) intersection tests

� Triangle-box intersection tests
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� Tests using more “exotic” primitives, such as cylinders, cones, and tori (that’s plural for torus,

which is the doughnut-shaped thing).

More information on these tests can be found through some of the links at gamemath.com.

13.20 Class AABB3
Previous sections have used class AABB3, which is used to represent a 3D axially aligned bound-

ing box (AABB). In this section, we give the complete class definition and implementation.

The class is declared in AABB3.h, which is listed below:

Listing 13.3: AABB3.h

/////////////////////////////////////////////////////////////////////////////
//
// 3D Math Primer for Graphics and Game Development
//
// AABB3.h - Declarations for class AABB3
//
// Visit gamemath.com for the latest version of this file.
//
// For more details, see AABB3.cpp
//
/////////////////////////////////////////////////////////////////////////////

#ifndef __AABB3_H_INCLUDED__
#define __AABB3_H_INCLUDED__

#ifndef __VECTOR3_H_INCLUDED__
#include "Vector3.h"

#endif

class Matrix4�3;

//---------------------------------------------------------------------------
// class AABB3
//
// Implement a 3D axially aligned bounding box

class AABB3 {
public:

// Public data

// Min and max values. Pretty simple.

Vector3 min;
Vector3 max;

// Query for dimentions

Vector3 size() const { return max – min; }
float xSize() { return max.x – min.x; }
float ySize() { return max.y – min.y; }
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float zSize() { return max.z – min.z; }
Vector3 center() const { return (min + max) * .5f; }

// Fetch one of the eight corner points. See the
// .cpp for numbering conventions

Vector3 corner(int i) const;

// Box operations

// "Empty" the box by setting the values to really
// large/small numbers

void empty();

// Add a point to the box

void add(const Vector3 &p);

// Add an AABB to the box

void add(const AABB3 &box);

// Transform the box and compute the new AABB

void setToTransformedBox(const AABB3 &box, const Matrix4�3 &m);

// Containment/intersection tests

// Return true if the box is empty

bool isEmpty() const;

// Return true if the box contains a point

bool contains(const Vector3 &p) const;

// Return the closest point on this box to another point

Vector3 closestPointTo(const Vector3 &p) const;

// Return true if we intersect a sphere

bool intersectsSphere(const Vector3 &center, float radius) const;

// Parametric intersection with a ray. Returns >1 if no intresection

float rayIntersect(const Vector3 &rayOrg, const Vector3 &rayDelta,
Vector3 *returnNormal = 0) const;

// Classify box as being on one side or the other of a plane

int classifyPlane(const Vector3 &n, float d) const;

// Dynamic intersection with plane

float intersectPlane(const Vector3 &n, float planeD,
const Vector3 &dir) const;

};
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// Check if two AABBs intersect, and return true if so. Optionally, return
// the AABB of their intersection if an intersection is detected.

bool intersectAABBs(const AABB3 &box1, const AABB3 &box2,
AABB3 *boxIntersect = 0);

// Return parametric point in time when a moving AABB collides
// with a stationary AABB. Returns > 1 if no intersection

float intersectMovingAABB(
const AABB3 &stationaryBox,
const AABB3 &movingBox,
const Vector3 &d

);

/////////////////////////////////////////////////////////////////////////////
#endif // #ifndef __AABB3_H_INCLUDED__

Implementation for class AABB3 is in AABB3.cpp, listed below:

Listing 13.4: AABB3.cpp

/////////////////////////////////////////////////////////////////////////////
//
// 3D Math Primer for Graphics and Game Development
//
// AABB3.cpp - Implementation for class AABB3
//
// Visit gamemath.com for the latest version of this file.
//
// For more details, see Chapter 12
//
/////////////////////////////////////////////////////////////////////////////

#include <assert.h>
#include <stdlib.h>

#include "AABB3.h"
#include "Matrix4�3.h"
#include "CommonStuff.h"

/////////////////////////////////////////////////////////////////////////////
//
// class AABB3 member functions
//
/////////////////////////////////////////////////////////////////////////////

//---------------------------------------------------------------------------
// AABB3::corner
//
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// Return one of the eight corner points. The points are numbered as follows:
//
// 6 7
// ------------------------------
// /| /|
// / | / |
// / | / |
// / | / |
// / | / |
// / | / |
// / | / |
// / | / |
// / | / |
// 2 / | 3 / |
// /----------------------------/ |
// | | | |
// | | | | +Y
// | 4 | | |
// | |-----------------|----------| |
// | / | / 5 |
// | / | / | +Z
// | / | / |
// | / | / | /
// | / | / | /
// | / | / | /
// | / | / | /
// | / | / | /
// | / | / |/
// |/ |/ ----------------- +X
// ------------------------------
// 0 1
//
// Bit 0 selects min.x vs. max.x
// Bit 1 selects min.y vs. max.y
// Bit 2 selects min.z vs. max.z

Vector3 AABB3::corner(int i) const {

// Make sure index is in range...

assert(i >= 0);
assert(i <= 7);

// Return it

return Vector3(
(i & 1) ? max.x : min.x,
(i & 2) ? max.y : min.y,
(i & 4) ? max.z : min.z

);
}

//---------------------------------------------------------------------------
// AABB3::empty
//
// "Empty" the box by setting the values to really
// large/small numbers
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void AABB3::empty() {
const float kBigNumber = 1e37f;
min.x = min.y = min.z = kBigNumber;
max.x = max.y = max.z = –kBigNumber;

}

//---------------------------------------------------------------------------
// AABB3::add
//
// Add a point to the box

void AABB3::add(const Vector3 &p) {

// Expand the box as necessary to contain the point.

if (p.x < min.x) min.x = p.x;
if (p.x > max.x) max.x = p.x;
if (p.y < min.x) min.y = p.y;
if (p.y > max.x) max.y = p.y;
if (p.z < min.x) min.z = p.z;
if (p.z > max.x) max.z = p.z;

}

//---------------------------------------------------------------------------
// AABB3::add
//
// Add an AABB to the box

void AABB3::add(const AABB3 &box) {

// Expand the box as necessary.

if (box.min.x < min.x) min.x = box.min.x;
if (box.min.x > max.x) max.x = box.min.x;
if (box.min.y < min.x) min.y = box.min.y;
if (box.min.y > max.x) max.y = box.min.y;
if (box.min.z < min.x) min.z = box.min.z;
if (box.min.z > max.x) max.z = box.min.z;

}

//---------------------------------------------------------------------------
// AABB3::setToTransformedBox
//
// Transform the box and compute the new AABB. Remember, this always
// results in an AABB that is at least as big as the origin, and it may be
// considerably bigger.
//
// See 12.4.4

void AABB3::setToTransformedBox(const AABB3 &box, const Matrix4�3 &m) {

// If we're empty, then bail

if (box.isEmpty()) {
empty();
return;

}

// Start with the translation portion
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min = max = getTranslation(m);

// Examine each of the nine matrix elements
// and compute the new AABB

if (m.m11 > 0.0f) {
min.x += m.m11 * box.min.x; max.x += m.m11 * box.max.x;

} else {
min.x += m.m11 * box.max.x; max.x += m.m11 * box.min.x;

}

if (m.m12 > 0.0f) {
min.y += m.m12 * box.min.x; max.y += m.m12 * box.max.x;

} else {
min.y += m.m12 * box.max.x; max.y += m.m12 * box.min.x;

}

if (m.m13 > 0.0f) {
min.z += m.m13 * box.min.x; max.z += m.m13 * box.max.x;

} else {
min.z += m.m13 * box.max.x; max.z += m.m13 * box.min.x;

}

if (m.m21 > 0.0f) {
min.x += m.m21 * box.min.y; max.x += m.m21 * box.max.y;

} else {
min.x += m.m21 * box.max.y; max.x += m.m21 * box.min.y;

}

if (m.m22 > 0.0f) {
min.y += m.m22 * box.min.y; max.y += m.m22 * box.max.y;

} else {
min.y += m.m22 * box.max.y; max.y += m.m22 * box.min.y;

}

if (m.m23 > 0.0f) {
min.z += m.m23 * box.min.y; max.z += m.m23 * box.max.y;

} else {
min.z += m.m23 * box.max.y; max.z += m.m23 * box.min.y;

}

if (m.m31 > 0.0f) {
min.x += m.m31 * box.min.z; max.x += m.m31 * box.max.z;

} else {
min.x += m.m31 * box.max.z; max.x += m.m31 * box.min.z;

}

if (m.m32 > 0.0f) {
min.y += m.m32 * box.min.z; max.y += m.m32 * box.max.z;

} else {
min.y += m.m32 * box.max.z; max.y += m.m32 * box.min.z;

}

if (m.m33 > 0.0f) {
min.z += m.m33 * box.min.z; max.z += m.m33 * box.max.z;

} else {
min.z += m.m33 * box.max.z; max.z += m.m33 * box.min.z;

}
}
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//---------------------------------------------------------------------------
// AABB3::isEmpty
//
// Return true if the box is empty

bool AABB3::isEmpty() const {

// Check if we're inverted on any axis

return (min.x > max.x) || (min.y > max.y) || (min.z > max.z);
}

//---------------------------------------------------------------------------
// AABB3::contains
//
// Return true if the box contains a point

bool AABB3::contains(const Vector3 &p) const {

// Check for overlap on each axis

return
(p.x >= min.x) && (p.x <= max.x) &&
(p.y >= min.y) && (p.y <= max.y) &&
(p.z >= min.z) && (p.z <= max.z);

}

//---------------------------------------------------------------------------
// AABB3::closestPointTo
//
// Return the closest point on this box to another point

Vector3 AABB3::closestPointTo(const Vector3 &p) const {

// "Push" p into the box on each dimension

Vector3 r;

if (p.x < min.x) {
r.x = min.x;

} else if (p.x > max.x) {
r.x = max.x;

} else {
r.x = p.x;

}

if (p.y < min.y) {
r.y = min.y;

} else if (p.y > max.y) {
r.y = max.y;

} else {
r.y = p.y;

}

if (p.z < min.z) {
r.z = min.z;

} else if (p.z > max.z) {
r.z = max.z;

} else {
r.z = p.z;
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}

// Return it

return r;
}

//---------------------------------------------------------------------------
// AABB3::intersectsSphere
//
// Return true if we intersect a sphere. Uses Arvo's algorithm.

bool AABB3::intersectsSphere(const Vector3 &center, float radius) const {

// Find the closest point on box to the point

Vector3 closestPoint = closestPointTo(center);

// Check if it's within range

return distanceSquared(center, closestPoint) < radius*radius;
}

//---------------------------------------------------------------------------
// AABB3::rayIntersect
//
// Parametric intersection with a ray. Returns parametric point
// of intsersection in range 0...1 or a really big number (>1) if no
// intersection.
//
// From "Fast Ray-Box Intersection," by Woo in Graphics Gems I,
// page 395.
//
// See 12.9.11

float AABB3::rayIntersect(
const Vector3 &rayOrg, // orgin of the ray
const Vector3 &rayDelta, // length and direction of the ray
Vector3 *returnNormal // optionally, the normal is returned

) const {

// We'll return this huge number if no intersection

const float kNoIntersection = 1e30f;

// Check for point inside box, trivial reject, and determine parametric
// distance to each front face

bool inside = true;

float xt, xn;
if (rayOrg.x < min.x) {

xt = min.x – rayOrg.x;
if (xt > rayDelta.x) return kNoIntersection;
xt /= rayDelta.x;
inside = false;
xn = –1.0f;

} else if (rayOrg.x > max.x) {
xt = max.x – rayOrg.x;
if (xt < rayDelta.x) return kNoIntersection;
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xt /= rayDelta.x;
inside = false;
xn = 1.0f;

} else {
xt = –1.0f;

}

float yt, yn;
if (rayOrg.y < min.y) {

yt = min.y – rayOrg.y;
if (yt > rayDelta.y) return kNoIntersection;
yt /= rayDelta.y;
inside = false;
yn = –1.0f;

} else if (rayOrg.y > max.y) {
yt = max.y – rayOrg.y;
if (yt < rayDelta.y) return kNoIntersection;
yt /= rayDelta.y;
inside = false;
yn = 1.0f;

} else {
yt = –1.0f;

}

float zt, zn;
if (rayOrg.z < min.z) {

zt = min.z – rayOrg.z;
if (zt > rayDelta.z) return kNoIntersection;
zt /= rayDelta.z;
inside = false;
zn = –1.0f;

} else if (rayOrg.z > max.z) {
zt = max.z – rayOrg.z;
if (zt < rayDelta.z) return kNoIntersection;
zt /= rayDelta.z;
inside = false;
zn = 1.0f;

} else {
zt = –1.0f;

}

// Inside box?

if (inside) {
if (returnNormal != NULL) {

*returnNormal = –rayDelta;
returnNormal–>normalize();

}
return 0.0f;

}

// Select farthest plane - this is
// the plane of intersection.

int which = 0;
float t = xt;
if (yt > t) {

which = 1;
t = yt;

}
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if (zt > t) {
which = 2;
t = zt;

}

switch (which) {

case 0: // intersect with yz plane
{

float y = rayOrg.y + rayDelta.y*t;
if (y < min.y || y > max.y) return kNoIntersection;
float z = rayOrg.z + rayDelta.z*t;
if (z < min.z || z > max.z) return kNoIntersection;

if (returnNormal != NULL) {
returnNormal–>x = xn;
returnNormal–>y = 0.0f;
returnNormal–>z = 0.0f;

}

} break;

case 1: // intersect with xz plane
{

float x = rayOrg.x + rayDelta.x*t;
if (x < min.x || x > max.x) return kNoIntersection;
float z = rayOrg.z + rayDelta.z*t;
if (z < min.z || z > max.z) return kNoIntersection;

if (returnNormal != NULL) {
returnNormal–>x = 0.0f;
returnNormal–>y = yn;
returnNormal–>z = 0.0f;

}

} break;

case 2: // intersect with xy plane
{

float x = rayOrg.x + rayDelta.x*t;
if (x < min.x || x > max.x) return kNoIntersection;
float y = rayOrg.y + rayDelta.y*t;
if (y < min.y || y > max.y) return kNoIntersection;

if (returnNormal != NULL) {
returnNormal–>x = 0.0f;
returnNormal–>y = 0.0f;
returnNormal–>z = zn;

}

} break;
}

// Return parametric point of intersection

return t;

}

//---------------------------------------------------------------------------
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// AABB3::classifyPlane
//
// Perform static AABB-plane intersection test. Returns:
//
// <0 Box is completely on the BACK side of the plane
// >0 Box is completely on the FRONT side of the plane
// 0 Box intersects the plane

int AABB3::classifyPlane(const Vector3 &n, float d) const {

// Inspect the normal and compute the minimum and maximum
// D values.

float minD, maxD;

if (n.x > 0.0f) {
minD = n.x*min.x; maxD = n.x*max.x;

} else {
minD = n.x*max.x; maxD = n.x*min.x;

}

if (n.y > 0.0f) {
minD += n.y*min.y; maxD += n.y*max.y;

} else {
minD += n.y*max.y; maxD += n.y*min.y;

}

if (n.z > 0.0f) {
minD += n.z*min.z; maxD += n.z*max.z;

} else {
minD += n.z*max.z; maxD += n.z*min.z;

}

// Check if completely on the front side of the plane

if (minD >= d) {
return +1;

}

// Check if completely on the back side of the plane

if (maxD <= d) {
return –1;

}

// We straddle the plane

return 0;
}

//---------------------------------------------------------------------------
// AABB3::intersectPlane
//
// Perform dynamic AABB-plane intersection test.
//
// n is the plane normal (assumed to be normalized)
// planeD is the D value of the plane equation p.n = d
// dir dir is the direction of movement of the AABB.
//
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// The plane is assumed to be stationary.
//
// Returns the parametric point of intersection - the distance traveled
// before an intersection occurs. If no intersection, a REALLY big
// number is returned. You must check against the length of the
// displacement.
//
// Only intersections with the front side of the plane are detected

float AABB3::intersectPlane(
const Vector3 &n,
float planeD,
const Vector3 &dir

) const {

// Make sure they are passing in normalized vectors

assert(fabs(n*n – 1.0) < .01);
assert(fabs(dir*dir – 1.0) < .01);

// We'll return this huge number if no intersection

const float kNoIntersection = 1e30f;

// Compute glancing angle. Make sure we are moving toward
// the front of the plane.

float dot = n * dir;
if (dot >= 0.0f) {

return kNoIntersection;
}

// Inspect the normal and compute the minimum and maximum
// D values. minD is the D value of the "frontmost" corner point

float minD, maxD;

if (n.x > 0.0f) {
minD = n.x*min.x; maxD = n.x*max.x;

} else {
minD = n.x*max.x; maxD = n.x*min.x;

}

if (n.y > 0.0f) {
minD += n.y*min.y; maxD += n.y*max.y;

} else {
minD += n.y*max.y; maxD += n.y*min.y;

}

if (n.z > 0.0f) {
minD += n.z*min.z; maxD += n.z*max.z;

} else {
minD += n.z*max.z; maxD += n.z*min.z;

}

// Check if we're already completely on the other
// side of the plane

if (maxD <= planeD) {
return kNoIntersection;
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}

// Perform standard ray trace equation using the
// frontmost corner point

float t = (planeD – minD) / dot;

// Were we already penetrating?

if (t < 0.0f) {
return 0.0f;

}

// Return it. If > l, then we didn't hit in time. That's
// the condition that the caller should be checking for.

return t;
}

/////////////////////////////////////////////////////////////////////////////
//
// Global nonmember code
//
/////////////////////////////////////////////////////////////////////////////

//---------------------------------------------------------------------------
// intersectAABBs
//
// Check if two AABBs intersect, and return true if so. Optionally, return
// the AABB of their intersection if an intersection is detected

bool intersectAABBs(
const AABB3 &box1,
const AABB3 &box2,
AABB3 *boxIntersect

) {

// Check for no overlap

if (box1.min.x > box2.max.x) return false;
if (box1.max.x < box2.min.x) return false;
if (box1.min.y > box2.max.y) return false;
if (box1.max.y < box2.min.y) return false;
if (box1.min.z > box2.max.z) return false;
if (box1.max.z < box2.min.z) return false;

// We have overlap. Compute AABB of intersection, if they want it

if (boxIntersect != NULL) {
boxIntersect–>min.x = max(box1.min.x, box2.min.x);
boxIntersect–>max.x = min(box1.max.x, box2.max.x);
boxIntersect–>min.y = max(box1.min.y, box2.min.y);
boxIntersect–>max.y = min(box1.max.y, box2.max.y);
boxIntersect–>min.z = max(box1.min.z, box2.min.z);
boxIntersect–>max.z = min(box1.max.z, box2.max.z);

}

// They intersected

return true;
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}

//---------------------------------------------------------------------------
// intersectMovingAABB
//
// Return parametric point in time when a moving AABB collides
// with a stationary AABB. Returns > 1 if no intersection

float intersectMovingAABB(
const AABB3 &stationaryBox,
const AABB3 &movingBox,
const Vector3 &d

) {

// We'll return this huge number if no intersection

const float kNoIntersection = 1e30f;

// Initialize interval to contain all the time under consideration

float tEnter = 0.0f;
float tLeave = 1.0f;

//
// Compute interval of overlap on each dimension, and intersect
// this interval with the interval accumulated so far. As soon as
// an empty interval is detected, return a negative result
// (no intersection). In each case, we have to be careful for
// an infinite of empty interval on each dimension.
//

// Check x-axis

if (d.x == 0.0f) {

// Empty or infinite inverval on x

if (
(stationaryBox.min.x >= movingBox.max.x) ||
(stationaryBox.max.x <= movingBox.min.x)

) {

// Empty time interval so no intersection

return kNoIntersection;
}

// Inifinite time interval - no update necessary

} else {

// Divide once

float oneOverD = 1.0f / d.x;

// Compute time value when they begin and end overlapping

float xEnter = (stationaryBox.min.x – movingBox.max.x) * oneOverD;
float xLeave = (stationaryBox.max.x – movingBox.min.x) * oneOverD;
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// Check for interval out of order

if (xEnter > xLeave) {
swap(xEnter, xLeave);

}

// Update interval

if (xEnter > tEnter) tEnter = xEnter;
if (xLeave < tLeave) tLeave = xLeave;

// Check if this resulted in empty interval

if (tEnter > tLeave) {
return kNoIntersection;

}
}

// Check y-axis

if (d.y == 0.0f) {

// Empty or infinite inverval on y

if (
(stationaryBox.min.y >= movingBox.max.y) ||
(stationaryBox.max.y <= movingBox.min.y)

) {

// Empty time interval, so no intersection

return kNoIntersection;
}

// Infinite time interval - no update necessary

} else {

// Divide once

float oneOverD = 1.0f / d.y;

// Compute time value when they begin and end overlapping

float yEnter = (stationaryBox.min.y – movingBox.max.y) * oneOverD;
float yLeave = (stationaryBox.max.y – movingBox.min.y) * oneOverD;

// Check for interval out of order

if (yEnter > yLeave) {
swap(yEnter, yLeave);

}

// Update interval

if (yEnter > tEnter) tEnter = yEnter;
if (yLeave < tLeave) tLeave = yLeave;

// Check if this resulted in empty interval
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if (tEnter > tLeave) {
return kNoIntersection;

}
}

// Check z-axis

if (d.z == 0.0f) {

// Empty or infinite inverval on z

if (
(stationaryBox.min.z >= movingBox.max.z) ||
(stationaryBox.max.z <= movingBox.min.z)

) {

// Empty time interval, so no intersection

return kNoIntersection;
}

// Infinite time interval - no update necessary

} else {

// Divide once

float oneOverD = 1.0f / d.z;

// Compute time value when they begin and end overlapping

float zEnter = (stationaryBox.min.z – movingBox.max.z) * oneOverD;
float zLeave = (stationaryBox.max.z – movingBox.min.z) * oneOverD;

// Check for interval out of order

if (zEnter > zLeave) {
swap(zEnter, zLeave);

}

// Update interval

if (zEnter > tEnter) tEnter = zEnter;
if (zLeave < tLeave) tLeave = zLeave;

// Check if this resulted in empty interval

if (tEnter > tLeave) {
return kNoIntersection;

}
}

// OK, we have an intersection. Return the parametric point in time
// where the intersection occurs

return tEnter;
}
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13.21 Exercises

Note: You may assume that all vectors that “look” like they are close to being unit vectors
are, in fact, unit vectors. (No trick questions in this section.)

1. Consider the infinite line in 2D consisting of all points p such that

Find the point on the line closest to (10,20). Find the point on the line closest to (4,3). Find the

distance from the line to both of these points.

2. Consider the parametric ray in 3D defined by

where t varies from 0 to 50. Find the value of t for the point on the ray closest to (18,7,32).

Find the value of t for the point on the ray closest to (13,52,26). Find the Cartesian coordinates

of both of these points.

3. Consider the plane formed by all points p such that

Find the point on the plane that is closest to (3,6,9). Find the point on the plane that is closest

to (7,9,42).

4. Consider a unit sphere (a sphere of radius 1) centered at (2,6,9). Find the point on the sphere

closest to (3,–17,6).

5. Consider the AABB defined by pmin=(2,4,6) and pmax=(8,14,26). Find the point in the AABB

that is closest to (23,–9,12).

6. Find the point of intersection of the two 2D lines defined parametrically by:

7. Consider the parametric rays in 3D defined by

Find the values of t1 and t2 at the point of closest approach of these lines. What are the Carte-

sian coordinates of these points?

8. Consider the infinite 3D ray through the origin given by

and the plane consisting of all points p such that
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Find the point of intersection of the infinite ray with the plane. Does it intersect with the front

or the back of the plane?

9. Consider the AABB defined by pmin=(7,–4,16) and pmax=(18,4,26) and the plane consisting of

all points p such that

Does the plane intersect the AABB, and if not, does it lie in front of or behind the plane?

10. Find the point of intersection of the planes defined by the following equations:

11. Consider a sphere of radius 10 centered at the origin. Find the points of intersection of the

sphere with the infinite ray

12. Consider a sphere S1 of radius 7 centered at (42,9,90), and a sphere S2 of radius 5 centered at

(41,80,41). The spheres start moving at time t=0. The velocity vector of S1 in units per second

is [27,38,–37]. The velocity vector of S2 in units per second is [24,–38,10]. Determine

whether the two spheres intersect, and if so, find the time t at which they first intersect.

13. Consider a sphere of radius 3 centered at (78,43,43) and a plane given by all points p such that

The sphere starts moving at time t=0 with velocity vector [9,2,1] given in units per second.

Does the sphere eventually intersect with the plane? If so, at what time does it first touch the

plane? Repeat the computation using the velocity vector [–9,–2,–1].

14. Consider the triangle given by the clockwise enumeration of the points (78,59,29),

(21,172,65), and (7,6,0). Compute the plane equation of the plane containing the triangle. For

each of the following infinite rays from the origin, compute the point at which the ray

intersects the plane of the triangle, compute the barycentric coordinates of that point, and

finally, use this information to determine whether the ray intersects the triangle:

15. Calculate AABBs for the spheres in Problem 13. Determine whether the AABBs will

eventually overlap, and if so, compute the times tenter and tleave when they first and last overlap.
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C h a p t e r 1 4

Triangle MeshesTriangle Meshes

In the previous chapters, we discussed techniques for manipulating one triangle or one polygon at

a time. In this chapter, we discuss polygon and triangle meshes. In its simplest form, a polygon

mesh is nothing more than a list of polygons. Triangle meshes, which are of special importance,

are polygon meshes made entirely of triangles. Polygon and triangle meshes are ubiquitous in

graphics and modeling; they are used to approximate the surface of arbitrarily complex objects,

such as buildings, vehicles, human beings, and of course, teapots. Figure 14.1 shows some exam-

ples of triangle meshes.
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This chapter discusses a number of issues related to storing and manipulating triangle

meshes. It is divided into five sections.

� Section 14.1 discusses a number of different ways to represent triangle meshes in a

computer.

� Section 14.2 discusses different types of data that we store with triangle meshes,

other than the basic geometric information.

� Section 14.3 introduces mesh topology.

� Section 14.4 covers a number of operations that are performed on triangle meshes.

� Section 14.5 presents the declaration for a triangle mesh class.

Figure 14.1: Examples of
triangle meshes

Mech model by Grant Gosler. Used by permission of Terminal Reality.



In this chapter, we will focus on triangle meshes specifically. Of course, any polygon mesh can be

tessellated into triangles. (See Section 12.7.4 for more information on polygon triangulation.)

Many of the concepts we will discuss are applicable to both triangle and polygon meshes. Triangle

meshes are attractive because of their simplicity. Many operations are more easily performed on

triangles than general polygons. However, polygons offer advantages in some cases. We will dis-

cuss the significant differences between triangles and polygons as they are encountered.

14.1 Representing Meshes
A triangle mesh is a list of triangles, so the most straightforward way to represent a triangle mesh

would be to use an array of triangles:

Listing 14.1: A trivial representation of a triangle mesh

struct Triangle {
Vector3 p[3];

};

struct TriangleMesh {
int triCount;
Triangle *triList;

};

For some applications, this trivial representation is adequate. However, the term “mesh” implies a

degree of connectivity between adjacent triangles, and this connectivity is not expressed in our

trivial representation above. For most triangle meshes that arise in practice, each triangle edge is

shared by another triangle from the mesh. Thus, there are three basic types of information in a tri-

angle mesh:

� Vertices. Each triangle has exactly three vertices. Each vertex may be shared by multiple

triangles.

� Edges. An edge connects two vertices. Each triangle has three edges.

� Faces. These are the surfaces of the triangles. We can store a face as either a list of three verti-

ces or a list of three edges.

There are a variety of different ways to represent this information efficiently depending on the

operations to be performed most often on the mesh. In this chapter, we will focus on a standard

storage format known as an indexed triangle mesh.

14.1.1 Indexed Triangle Mesh
In an indexed triangle mesh, we maintain two lists: a list of vertices and a list of triangles.

� Each vertex contains a position in 3D. We may also store other information at the vertex level,

such as texture mapping coordinates, surface normals, or lighting values.

� A triangle is represented using three indices in the vertex list. Often, the order that these verti-

ces are listed is significant, since we may consider faces to have “front” and “back” sides. We
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will list the vertices in a clockwise fashion when viewed from the front side. Other informa-

tion may also be stored at the triangle level, such as a precomputed normal of the plane con-

taining the triangle, surface properties (such as a texture map), etc.

Listing 14.2 shows a highly simplified example of how an indexed triangle mesh might be stored

in C++:

Listing 14.2: Indexed triangle mesh

// struct Vertex is the information we store at the vertex level

struct Vertex {

// 3D position of the vertex

Vector3 p;

// Other information could include
// texture mapping coordinates, a
// surface normal, lighting values, etc.

}

// struct Triangle is the information we store at the triangle level

struct Triangle {

// Indices into the vertex list

int vertex[3];

// Other information could include
// a normal, material information, etc.

}

// struct TriangleMesh stores an indexed triangle mesh

struct TriangleMesh {

// The vertices

int vertexCount;
Vertex *vertexList;

// The triangles

int triangleCount;
Triangle *triangleList;

};

In practice, the TriangleMesh struct would be a class with a set of operations to access and

maintain the vertex and triangle lists. In Section 14.5, we will look at such a class and offer some

design advice. Of course, to store a polygon mesh, we would define a Polygon struct that could

accommodate faces with an arbitrary number of vertices. We could impose a maximum number of

vertices per polygon for simplicity and efficiency.

Notice that the adjacency information contained in an indexed triangle list is stored implicitly.

For example, the edges are not stored explicitly, but we can locate shared edges between triangles
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by searching the triangle list. This “extra” adjacency information actually comes with a memory

savings compared with the trivial “array of triangles” format given at the beginning of this chapter.

The reason for this is that the information stored at the vertex level, which is duplicated in the triv-

ial format, is relatively large compared to a single integer index. (At the minimum, we store a 3D

vector position most.) There is typically a large degree of connectivity in triangle meshes encoun-

tered in practice, like those shown in Figure 14.1.

14.1.2 Advanced Techniques
The simple indexed triangle mesh scheme is appropriate for many basic applications. However,

some changes need to be made in order for some operations on triangle meshes to be implemented

more efficiently. The basic problem is that the adjacency between triangles is not expressed

explicitly and must be extracted by searching the triangle list. Other representation techniques

exist which make this information available in constant time.

One idea is to maintain an edge list explicitly. Each edge is defined by listing the two vertices

on the ends. We also maintain a list of triangles that share the edge. Then the triangles can be

viewed as a list of three edges rather than a list of three vertices, so that they are stored as three

indices into the edge list rather than the vertex list. An extension of this idea is known as the

winged edge model, which also stores, for each vertex, a reference to one edge that uses the vertex.

The edges and triangles may be traversed intelligently to quickly locate all edges and triangles that

use the vertex. For more information, see [8] and [9].

14.1.3 Specialized Representations for Rendering
Most graphics cards do not natively operate on indexed triangle meshes. In order to render a trian-

gle mesh, we typically submit three vertices of a triangle at a time. The shared vertices must be

submitted multiple times, once for each triangle in which they are used. Since the transfer of data

between memory and the graphics hardware is often a bottleneck, many graphics hardware and

APIs support specialized mesh formats designed to send as few vertices per triangle as possible to

the graphics accelerator. The basic idea is to order the faces and vertices in such a way that the ver-

tices for a triangle are already present in memory on the graphics processor (due to a prior triangle

that used the vertex) and therefore do not need to be transferred again.

In order of most flexible to least flexible, we will discuss these three common techniques:

� Vertex caching

� Triangle strips

� Triangle fans
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14.1.4 Vertex Caching
Vertex caching is not so much a specialized storage format as a strategy of coordination between

the API and graphics hardware to exploit the coherency between consecutive triangles. Typically,

the higher level code does not need to be aware that vertex caching is being performed in order to

function properly, although we’ll see later that steps can be taken to maximize the benefit from

vertex caching.

Just like any caching scheme, vertex caching works on the simple heuristic that recently

accessed data is likely to be needed again. The processor on the graphics card has a cache that

holds a small number (say, 16) of recently submitted vertices. When the API needs to send a vertex

to the graphics hardware, it first checks to see which vertices are in the cache. Naturally, the API

must be familiar with the size and replacement strategy of the graphics card’s cache. If the vertex

is not already on board, then a cache miss occurs and the vertex is submitted to the graphics card

(and entered in the cache). Otherwise, when the vertex is already on board, we have a cache hit and

the API dispatches a special code that says to the graphics card “use the vertex in slot x in the

cache.”

As mentioned earlier, vertex caching is not really a special mesh format but an optimization

strategy employed at the lower level. Any triangle mesh can be rendered properly without special

action by the higher level code. However, we can take maximum advantage of a vertex cache (if it

exists) simply by reordering the faces of the mesh so that triangles that share a vertex are submit-

ted reasonably close together in time. This reordering of triangles only needs to be done once, and

in fact, it can be done offline. It can only help performance, since it doesn’t slow down a system

without vertex caching. Algorithms for reordering faces to maximize vertex cache hits can be

found in [14].

With proper use of the vertex cache, it is possible to send the graphics card less than one ver-

tex per triangle on average.

14.1.5 Triangle Strips
A triangle strip is a list of triangles in which each triangle shares an edge with the previous trian-

gle. Figure 14.2 shows an example of a triangle strip. Notice that the vertices are listed in an order

that implicitly defines the triangles so that every set of three consecutive indices forms a triangle.

For example:

� Vertices 1, 2, 3 form the first triangle.

� Vertices 2, 3, 4 form the second triangle.

� Vertices 3, 4, 5 form the third triangle, etc.
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In Figure 14.2, the vertices are numbered according to the order in which they would be used to

specify the strip. No “index” information is necessary, since the order of the vertices defines the

triangles implicitly. Usually, the vertex list is preceded with the number of vertices or a special

code is used to indicate “end of list.”

Notice that the ordering of the vertices of the triangle alternates between clockwise and coun-

terclockwise (see Figure 14.3). On some platforms, we may specify the vertex ordering of the first

triangle, while on other platforms the ordering is fixed and may not be specified.

Vertex Triangle Vertex Ordering

1 (none)

2 (none)

3 1,2,3 Clockwise

4 2,3,4 Counterclockwise

5 3,4,5 Clockwise

6 4,5,6 Counterclockwise

7 5,6,7 Clockwise

8 6,7,8 Counterclockwise

Figure 14.3: The triangles in a triangle strip alternate between
clockwise and counterclockwise vertex ordering

In the best case, a triangle strip can store a mesh with n faces using n+2 vertices. As n gets large,

we send just over one vertex on average per triangle. Unfortunately, this is the best case. In prac-

tice, there are many meshes for which a single long strip cannot be found. Not only that, but

vertices shared by more than three triangles are sent to the graphics card multiple times. In other

words, at least one vertex must be sent per triangle. With a vertex caching scheme, for example, it

is actually possible to average fewer than one vertex per triangle downloaded to the graphics
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hardware. Of course, with vertex caching, there is extra bookkeeping information (the indices and

cache management data). However, since the data for one vertex may be relatively large, or the

operations performed on a vertex relatively slow, a system that attempts to minimize the number

of vertices may be fastest on that particular system.

Assuming a straightforward generation of triangle strips, the number of vertices used to repre-

sent a triangle mesh as a triangle strip is t + 2s, where t is the number of triangles and s is the

number of strips. It takes three vertices for the first triangle in each strip and one vertex per triangle

thereafter. Since we want to minimize the number of vertices downloaded to the graphics hard-

ware, we wish to have as few strips as possible. This means that they need to be as long as possible.

An efficient stripping algorithm known as STRIPE exists that produces a number of strips that is

very close to the theoretical lower bound. For more information on STRIPE, see [6].

Another reason we want to minimize the number of strips is because there is usually addi-

tional setup time associated with each strip. In other words, in many cases rendering two strips

with n vertices each may be slower than rendering one strip with 2n vertices, even if the single

strip contains more triangles than the two separate ones put together. As it turns out, we can always

turn the entire mesh into one continuous strip by “seaming” together the strips using degenerate

triangles. Degenerate means that they have zero area. Figure 14.4 shows how two triangle strips

were seamed together by repeating two vertices in the strip.

It’s not immediately apparent in Figure 14.4, but four degenerate triangles are needed to stitch

together two triangle strips in order to maintain proper alternating clockwise/counterclockwise

order. The edge between vertices 7 and 8 actually contains two degenerate triangles. Figure 14.5

shows the triangles that are created using the vertex order from Figure 14.4. The degenerate trian-

gles (whose rows have been shaded in Figure 14.5) do not usually impose much overhead since

they have zero area and do not result in anything being rendered. What actually gets sent to the

graphics card is still the first column of vertices:

1,2,3,4,5,6,7,7,8,8,9,10,11,12,13
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This follows the same convention that every set of three consecutive indices in the list forms a

triangle.

Vertex Triangle Vertex Ordering

1 (none)

2 (none)

3 1,2,3 Clockwise

4 2,3,4 Counterclockwise

5 3,4,5 Clockwise

6 4,5,6 Counterclockwise

7 5,6,7 Clockwise

7 6,7,7 Counterclockwise

8 7,7,8 Clockwise

8 7,8,8 Counterclockwise

9 8,8,9 Clockwise

10 8,9,10 Counterclockwise

11 9,10,11 Clockwise

12 10,11,12 Counterclockwise

13 11,12,13 Clockwise

Figure 14.5: The triangles obtained by stitching together two triangle strips

Some graphics hardware (such as the GS on the Playstation II) supports the ability to skip triangles

in the strip by marking certain vertices with a bit that means “don’t draw the triangle.” This gives

us a means to effectively start a new triangle strip at any point without duplicating vertices or using

degenerate triangles. For example, the two triangle strips in Figure 14.4 could have been joined as

shown in Figure 14.6. The shaded rows indicate where a vertex would be flagged as “don’t draw

the triangle.”
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Vertex Triangle Vertex Ordering

1 (none)

2 (none)

3 1,2,3 Clockwise

4 2,3,4 Counterclockwise

5 3,4,5 Clockwise

6 4,5,6 Counterclockwise

7 5,6,7 Clockwise

8 6,7,8 Counterclockwise

9 7,8,9 Clockwise

10 8,9,10 Counterclockwise

11 9,10,11 Clockwise

12 10,11,12 Counterclockwise

13 11,12,13 Clockwise

Figure 14.6: Joining two triangle strips by skipping vertices

14.1.6 Triangle Fans
Triangle fans are similar to triangle strips, but they are less flexible and thus used less often. The

simplest way to describe triangle fans is with an illustration (see Figure 14.7).
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A triangle fan stores n faces using n+2 vertices, the same as triangle strips. However, since the first

vertex must be used by every triangle, we usually cannot find many places in an arbitrary mesh

where large triangle fans can be used. Also, triangle fans can’t be stitched together like triangle

strips can. Thus, triangle fans can work well in some specialized cases, but in general, strips are

more flexible.

14.2 Additional Mesh Information
A triangle mesh may have additional information stored at the triangle or vertex level.

14.2.1 Texture Mapping Coordinates
Texture mapping is the practice of applying a bitmap image (known as a “texture map” or simply

“texture”) to the surface of a polygon mesh. We will discuss texture mapping in more detail in Sec-

tion 15.6, but a greatly simplified explanation of the idea is that we wish to “paint” from a 2D

texture onto a polygon, taking into account the polygon’s orientation in camera space. For each

pixel on the polygon to be rendered, a set of 2D texture mapping coordinates is computed, and

these 2D coordinates are used to index into the texture map and fetch the surface color to be drawn

on the pixel.

Usually, texture mapping coordinates are stored at the vertex level and then interpolated

across the face of the triangle for rendering.

14.2.2 Surface Normals
In many applications, we need a surface normal for a point on the surface of the mesh. For exam-

ple, the surface normal can be used:

� To compute proper lighting (Section 15.4).

� To perform backface culling (Section 15.9.1).

� To simulate a particle “bouncing” off the surface of the mesh.

� To speed up collision detection by only intersecting with the “front” side of a surface.

The surface normals may be stored at the triangle level, the vertex level, or both.

The surface normals for triangles can be computed easily using the techniques from Section

12.5.2. Computing normals at the vertex level is more difficult. First, it should be noted that there

is not a true surface normal at a vertex (or an edge for that matter) since these locations mark dis-

continuities in the surface of the mesh. Rather, we must remember that a triangle mesh is typically

used as an approximation for some continuous surface. So what we actually want is (an approxi-

mation of) the surface normal of the continuous surface. This information may or may not be

readily available, depending on how the triangle mesh was generated. If the mesh is generated

procedurally, such as from a parametric curved surface, then the vertex normals can be supplied at

that time.

If the surface normals are not provided, then we must approximate them by interpreting the

information available to us (the vertex positions and the triangles). One trick that works is to
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average the normals of the adjacent triangles and then renormalize the result. Of course, this

requires that we have valid triangle normals. Usually we can compute outward facing normals

using the cross product and assume a clockwise enumeration of triangle vertices. If a vertex enu-

meration order cannot be assumed, then techniques described by Glassner in [10] can be used.

Averaging triangle normals to compute vertex normals is a tried-and-true technique that

works well in most cases. However, there are a few situations worth mentioning where the results

are not desirable.

The most notable case is when two triangles with exactly opposite surface normals share a

vertex. This situation can arise with triangles in “billboard” type objects (these are exactly what

they sound like — flat objects on which to display images), which typically have two triangles

placed back to back. The two normals point in exactly opposite directions, and averaging the nor-

mals results in the zero vector which cannot be normalized. To solve this problem, these so-called

“double-sided” triangles must be detached (see Section 14.4.3).

Another problem caused by averaging vertex normals occurs with Gouraud shading. We’ll

discuss Gouraud shading in detail in Section 15.4.10, but for now it will suffice to say that a light-

ing value is computed per vertex using the vertex normal. If we compute vertex normals by

averaging the triangle normals, some areas that should have sharp edges appear to get “smoothed

out.” Take the very simple example of a box. There should be a sharp lighting discontinuity at its

edges. However, if we use vertex normals computed from the average of the face surface normals,

then there is no lighting discontinuity. This is shown in Figure 14.8.

The basic problem is that there is supposed to be a surface discontinuity at the box edges, but this

discontinuity cannot be properly represented because there is only one normal stored per vertex.

Again, the solution to this problem is to detach the faces; in other words, duplicate the vertices

where there is a true geometric discontinuity. In doing so, we create a discontinuity to prevent the

vertex normals from being averaged. This “seam” in the topology of the mesh may cause a prob-

lem for some applications. However, for many important tasks, such as rendering and ray tracing,

this is not a problem. Class EditTriMesh, which is previewed in Section 14.5, illustrates tech-

niques for handling such discontinuities.
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Figure 14.8: On the right, the box edges are not
visible because there is only one normal at each
corner



Another slight problem is that the averaging is biased toward large numbers of triangles with

the same normal. For example, suppose several triangles share a vertex, and two of them are

coplanar. The vertex normal computed by averaging the triangle normals will be biased because

the normal shared by the coplanar triangles essentially gets twice as many “votes” as the other tri-

angle normals. Thus, tessellating a triangle can cause vertex normals to change even though the

surface really doesn’t change. We could devise techniques to correct this situation, but fortunately

in practice this isn’t a big problem because the vertex normal is just an approximation to begin

with.

14.2.3 Lighting Values
Another piece of information often maintained at the vertex level is a lighting value. These light

values are then interpolated across the surface of the face, a practice known as Gouraud shading

(see Section 15.4.10).

In some situations, we may only store a surface normal per vertex and dynamically compute a

lighting value during rendering. See Section 15.8.2 for the details of this computation. In other sit-

uations, we will specify the lighting value ourselves. See Section 15.7.2 for more information on

different vertex formats.

14.3 Topology and Consistency
The topology of a triangle mesh refers to the logical connectivity of the triangles in the mesh with-

out regard to the 3D position of the vertices or other geometric properties. Thus, two meshes with

the same number of vertices and triangles connected in the same manner have identical topology,

even though they may describe completely different objects. Another way to say this is if we

“pull” the vertices of a mesh and stretch the triangles without breaking apart adjacent triangles, we

change the shape but not the topology of the mesh.

One special type of mesh is the closed mesh, also known as a manifold. Conceptually, a closed

mesh perfectly covers the surface of the object. There are no gaps in the mesh, and you cannot see

the back of any triangles from outside the object. This is a very important type of mesh. The verti-

ces and edges of a closed mesh form a planar graph. This means that if we draw vertices as points

and edges with straight line segments joining them, then a closed mesh can actually be drawn

(very distortedly) on a 2D plane without crossing edges. Planar graphs obey Euler’s equation v – e

+ f = 2, where v is the number of vertices, e is the number of edges, and f is the number of faces in

the mesh.

In practice, we frequently encounter meshes (even — or perhaps we should say particularly

— those generated by professional 3D modeling software) with abnormalities in the topology

which cause them to not be closed:

� Isolated vertices. A vertex in the vertex list is not used by any triangles.

� Duplicate vertices. Two vertices in the vertex list are identical. In this case, the triangles (and

edges) that use these vertices are geometrically adjacent, but they are not logically adjacent.
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In most cases, we do not want this seam to exist, and we will weld the vertices. (More on this

in Section 14.4.2.)

� Degenerate triangles. A triangle uses a vertex more than once. This means the triangle has

no area. Typically, these triangles should be deleted. (However, we saw an example in Section

14.1.3 where degenerate faces are intentionally created in order to stitch together triangle

strips.)

� Open edges. An edge is used by only one triangle.

� Edges used by more than two triangles. Each edge in a closed mesh must be used by exactly

two triangles.

� Duplicate faces. The mesh contains two or more identical faces. In most cases, this is unde-

sirable, and all but one of the faces should be deleted.

Depending on the application, these abnormalities may be a fundamental problem, a minor nui-

sance, or safely ignored.

For an excellent discussion on topology, see [18].

14.4 Triangle Mesh Operations
Now that we know how to store a triangle mesh, it’s time to learn what we can do to one. In this

section, we discuss a number of important operations that are performed on triangle meshes.

14.4.1 Piecewise Operations
A mesh is a list of triangles and vertices. A number of simple operations can be performed on the

mesh as a whole by performing a basic operation on each of the vertices or triangles individually.

Most notably, rendering and transformation are performed in this way. To render a triangle mesh,

we render each of the triangles. To apply a transformation to the triangle mesh, such as rotation or

scale, we transform each of the vertices.

14.4.2 Welding Vertices
When two or more vertices are coincident (within some tolerant distance), it is often beneficial to

weld them into a single vertex. More accurately, we delete all but one of the vertices. For example,

assume we wish to weld vertices A and B in Figure 14.9. Welding two vertices together is a two-

step process:

� Step 1. We scan the triangle list, replacing each reference to vertex B with a reference to ver-

tex A.

� Step 2. Now vertex B is isolated and can be removed from the vertex list.
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Vertex welding is useful for two reasons. First, it allows us to remove redundancy and use less

memory. This is an important optimization and can make operations on the mesh, such as render-

ing and transformation, faster. Second, it logically connects edges and triangles that are

geometrically adjacent.

The discussion above focused on welding two vertices. In practice, we frequently wish to

locate and weld all pairs (or groups) of coincident vertices. This is fairly straightforward, but there

are a few important details.

First, we usually remove isolated vertices before vertex welding. We don’t want any unused

vertex to influence any vertices that are used, as shown in Figure 14.10.

Second, welding vertices can create degenerate triangles when two vertices from a “sliver” trian-

gle are welded, as shown in Figure 14.11. (This is equivalent to an edge collapse, which is

discussed in Section 14.4.4.) These triangles should be deleted. Usually, the number of such trian-

gles is small. Welding vertices can frequently reduce the number of vertices significantly, while

removing only a few, if any, sliver faces.
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Figure 14.10: A vertex is welded to an isolated vertex,
causing unnecessary distortion to the mesh



Third, it would seem that when we weld two (or more) vertices, we should compute the new,

welded vertex position as the average of the original vertex positions rather than just choosing one

vertex to keep and one to discard. This way the welding is not biased toward one vertex or another.

This is probably a good idea when small groups of vertices are welded interactively. However,

when vertex welding is automated, a “domino effect” can occur, resulting in three or more vertices

that were not originally within the tolerance range to become welded together.

In Figure 14.12, vertices A and B are within the tolerance to be welded. We weld these vertices,

and being “smart,” we compute a new vertex position from the average of A and B, resulting in

vertex D. Now C and D are within tolerance and are welded, resulting in vertex E. The end result is

that vertices A and C have become welded, even though they were not originally within tolerance

of each other. Also, our attempt to be “smart” has failed because vertices A, B, and C are welded,

but the resulting vertex is not in the middle of where the three vertices were originally.

This is not even the worst-case scenario. At least in the example above, no vertex moved more

than the welding tolerance distance. Other perverse examples can be constructed using more verti-

ces and a different vertex ordering. What is unfortunate is that these examples actually do arise in

practice because of the way vertices are ordered when they are delivered from modeling packages

or generated procedurally.
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Figure 14.11: Welding two vertices of a
sliver triangle causes the triangle to become
degenerate

Figure 14.12: A domino effect created by averaging vertex
positions during welding



Actually, the same types of problems can occur even if we don’t average the vertex positions

during vertex welding. However, using a simple rule such as “always weld the higher numbered

vertex to the lower numbered vertex” solves the problem, provided that we don’t average the ver-

tex positions.

There are techniques to avoid these types of problems. For example, we might first search for

groups of vertices within tolerance and then weld all such groups in a second pass. Or, we might

disqualify a vertex from being welded a second time. Or, we might remember the original posi-

tions of the vertices that got welded and choose not to weld a vertex if any of these original

positions are out of tolerance. All of these techniques are fraught with problems and we do not

advise incurring the added complexity for a dubious payoff. The purpose of vertex welding is pri-

marily to remove redundant vertices. Vertex welding is not intended to perform mesh decimation,

that is, to drastically reduce the number of triangles and vertices while maintaining the overall

shape of the mesh as much as possible. For decent mesh decimation, you must use a more

advanced algorithm. (See Section 14.4.5 for more information.)

Another complication with vertex welding has to do with information that is stored at the ver-

tex level, such as surface normals or texture mapping coordinates. When vertices are welded, any

previous discontinuity is lost. We saw one example of this problem in Figure 14.8.

Finally, the straightforward implementation to weld all vertices is very slow. Models with

even just a few thousand vertices and faces can take more than a few seconds or so to process on

today’s hardware. Searching for pairs of vertices to weld is an O(n2) operation. (If you are unfamil-

iar with big-Oh notation, O(n2) is known as quadratic running time. It means, in this case, that if

we double the number of vertices, our algorithm could take four times as long — not twice as long,

as might be expected. If we quadruple the number of vertices, our algorithm could take sixteen

times as long. As the number of vertices increases, the time taken by our algorithm increases even

more.) Replacing vertex references after a vertex is welded requires a pass through the triangle

list. Even deleting a vertex requires a pass through the triangle list to repair the references to verti-

ces numbered higher than the deleted vertex. Luckily, with a little thought, we can devise a much

faster vertex welding algorithm. The triangle mesh class we will preview in Section 14.5 uses an

algorithm that runs in expected linear time. (This means that the running time of our algorithm will

be proportional to the number of vertices; if we quadruple the number of vertices, the time quadru-

ples, but it doesn’t increase by a factor of sixteen.) The source code for this reduction algorithm is

available at gamemath.com.

14.4.3 Detaching Faces
Detaching a face refers to the act of duplicating vertices so that an edge is no longer shared. It is

somewhat the opposite of vertex welding. Obviously, detaching faces creates topological discon-

tinuities since the faces are no longer adjacent. This is usually our exact intention, to create a

topological discontinuity where a geometric discontinuity (such as a corner or sharp edge) exists.

Figure 14.13 shows two triangles being detached from one another. Although we have separated

the edges of the two triangles to show that there are multiple edges and vertices, this is only for

illustration. No vertices have moved, and the new vertices and edges are actually coincident.
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In practice, we frequently detach all faces.

14.4.4 Edge Collapse
An edge collapse is a mesh operation that “collapses” an edge down to a single vertex. The oppo-

site operation is known as a vertex split. This is shown in Figure 14.14. Notice that an edge

collapse welds the two vertices of the edge into a single vertex, and the triangles that shared the

edge (the shaded triangles in Figure 14.4) are removed. Edge collapse is often used in mesh deci-

mation algorithms (which will be discussed in Section 14.4.5) because it reduces the number of

triangles and vertices in the mesh.

14.4.5 Mesh Decimation
Mesh decimation is the process of taking a mesh with a relatively high number of triangles and

vertices and manipulating it into another mesh with fewer vertices and triangles. Hopefully, the

basic shape of the mesh, including significant points of inflection, is retained as much as possible

during this manipulation.

Hugues Hoppe has shown that it is possible to achieve good results using only edge collapse

operations. The process of selecting which edges to collapse is usually a relatively slow one,
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depending on the complexity of the heuristic used. In [13], Hoppe gives advice for selecting the

best sequence of edges to collapse.

While the selection of edges is slow, the actual collapse operation can be implemented effi-

ciently. If we record the sequence of edge collapse operations as we decimate the mesh, we can

“replay” them quickly to generate a triangle mesh in real time with any level of detail desired, give

or take a few triangles. (We discuss LOD selection in Section 15.7.1.) Hoppe’s paper describes

how this process can be implemented in reverse by starting with a decimated mesh and applying

vertex splits in order. A mesh stored using this technique is known as a progressive mesh.

14.5 A C++ Triangle Mesh Class
In this section, we present a C++ class to store an indexed triangle mesh. A common mistake made

by beginners is to attempt to write one triangle mesh class that does everything. This is an exercise

in frustration.

For fast rendering, the mesh must often be massaged into a very specific format, depending on

the target platform. The mesh may need to be stored as a triangle strip. Or we may actually convert

our mesh into a sequence of instructions to a specialized graphics processor. (This is the case on

the PlayStation II, for example.) No matter what the platform, we usually want the data to be as

small as possible for fast memory access and downloading to the video card. For fast collision

detection, on the other hand, we may need precomputed surface normals or to have the data parti-

tioned or stored in some sort of tree structure.

These specialized requirements can make general mesh manipulations, such as adding or

deleting individual vertices or triangles, building up a triangle mesh procedurally, or welding ver-

tices, extremely cumbersome. For that reason, we do not even attempt to make “the ultimate”

triangle mesh class that does everything.

Class EditTriMesh is designed to make mesh manipulations easy, but it is not intended

for doing anything else efficiently, such as rendering or collision detection. The data is not opti-

mized in any way, although we do provide operations on the mesh that prepare it to be rendered.

To save a tree (and to save you money), we have only listed the class definition. The implementa-

tion file is available to download at gamemath.com.

Class EditTriMesh is defined in EditTriMesh.h, which is listed below. We will discuss a

few significant points about the interface after the listing.

Listing 14.3: EditTriMesh.h

/////////////////////////////////////////////////////////////////////////////
//
// 3D Math Primer for Graphics and Game Development
//
// EditTriMesh.h - Declarations for class EditTriMesh
//
// Visit gamemath.com for the latest version of this file.
//
// For more details, see EditTriMesh.cpp
//
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/////////////////////////////////////////////////////////////////////////////

#ifndef __EDITTRIMESH_H_INCLUDED__
#define __EDITTRIMESH_H_INCLUDED__

#ifndef __VECTOR3_H_INCLUDED__
#include "Vector3.h"

#endif

class Matrix4�3;

/////////////////////////////////////////////////////////////////////////////
//
// class EditTriMesh
//
// Store an indexed triangle mesh in a very flexible format that makes
// editing and mesh manipulations easy (not optimized for rendering,
// collision detection, or anything else).
//
// This class supports texture mapping coordinates and vertex normals
//
/////////////////////////////////////////////////////////////////////////////

class EditTriMesh {
public:

// Local types

// class Vertex represents the information we keep track of for
// one vertex

class Vertex {
public:

Vertex() { setDefaults(); }
void setDefaults();

// 3D vertex position;

Vector3 p;

// Vertex-level texture mapping coordinates. Notice that
// these may be invalid at various times. The "real" UVs
// are in the triangles. For rendering, we often need UVs
// at the vertex level. But for many other optimizations,
// we may need to weld vertices for faces with different
// UVs.

float u, v;

// vertex-level surface normal. Again, this is only
// valid in certain circumstances

Vector3 normal;

// Utility "mark" variable, often handy

int mark;
};

// class Tri represents the information we keep track of
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// for one triangle

class Tri {
public:

Tri() { setDefaults(); }
void setDefaults();

// Face vertices.

struct Vert {
int index; // index into the vertex list
float u,v; // mapping coords

};

Vert v[3];

// Surface normal

Vector3 normal;

// Which part does this tri belong to?

int part;

// Index into the material list

int material;

// Utility "mark" variable, often handy

int mark;

// Return true if the triangle is "degenerate" - it uses
// the same vertex more than once

bool isDegenerate() const;

// Return index of vertex (0..2), or –1, if we
// don't use that vertex.

int findVertex(int vertexIndex) const;
};

// This is the information we store for a "material."
// In our case, we're only going to store a simple
// diffuse texture map. However, more complex properties
// are often associated with materials.

class Material {
public:

Material() { setDefaults(); }
void setDefaults();

char diffuseTextureName[256];

// Utility "mark" variable, often handy

int mark;
};
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// This class contains options used to control
// optimization

class OptimationParameters {
public:

OptimationParameters() { setDefaults(); }
void setDefaults();

// A tolerance value which is used to
// determine if two vertices are coincident.

float coincidentVertexTolerance;

// Triangle angle tolerance. Vertices
// are not welded if they are on an edge
// and the angle between the normals of the
// triangles on this edge are too
// far apart. We store the cosine of this
// value since that's what's actually used.
// Use the functions to set it

float cosOfEdgeAngleTolerance;
void setEdgeAngleToleranceInDegrees(float degrees);

};

// Standard class object maintenance

EditTriMesh();
EditTriMesh(const EditTriMesh &x);
~EditTriMesh();

// Operator = makes a copy of the mesh

EditTriMesh &operator=(const EditTriMesh &src);

// Accessors to the mesh data:

int vertexCount() const { return vCount; }
int triCount() const { return tCount; }
int materialCount() const { return mCount; }

Vertex &vertex(int vertexIndex);
const Vertex &vertex(int vertexIndex) const;

Tri &tri(int triIndex);
const Tri &tri(int triIndex) const;

Material &material(int materialIndex);
const Material &material(int materialIndex) const;

// Basic mesh operations

// Reset the mesh to empty state

void empty();

// Set list counts. If the lists are grown, the new
// entries will be properly defaulted. If the lists
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// are shrunk, no check is made to ensure that a valid
// mesh remains.

void setVertexCount(int vc);
void setTriCount(int tc);
void setMaterialCount(int mc);

// Add a triangle/vertex/material. The index of the newly
// added item is returned

int addTri();
int addTri(const Tri &t);
int addVertex();
int addVertex(const Vertex &v);
int dupVertex(int srcVertexIndex);
int addMaterial(const Material &m);

// Handy functions to reset all marks at once

void markAllVertices(int mark);
void markAllTris(int mark);
void markAllMaterials(int mark);

// Deletion.

void deleteVertex(int vertexIndex);
void deleteTri(int triIndex);
void deleteMaterial(int materialIndex);
void deleteUnusedMaterials();
void deleteMarkedTris(int mark);
void deleteDegenerateTris();

// Detach all the faces from one another. This
// creates a new vertex list, with each vertex
// only used by one triangle. Simultaneously,
// unused vertices are removed.

void detachAllFaces();

// Transform all the vertices

void transformVertices(const Matrix4�3 &m);

// Computations

// Compute triangle-level surface normals

void computeOneTriNormal(int triIndex);
void computeOneTriNormal(Tri &t);
void computeTriNormals();

// Compute vertex level surface normals. This
// automatically computes the triangle level
// surface normals

void computeVertexNormals();
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// Optimization

// Re-order the vertex list in the order that they
// are used by the faces. This can improve cache
// performace and vertex caching by increasing the
// locality of reference. This function can also remove
// unused vertices simultaneously.

void optimizeVertexOrder(bool removeUnusedVertices);

// Sort triangles by material. This is VERY important
// for efficient rendering.

void sortTrisByMaterial();

// Weld coincident vertices

void weldVertices(const OptimationParameters &opt);

// Ensure that the vertex UVs are correct, possibly
// duplicating vertices if necessary.

void copyUvsIntoVertices();

// Do all of the optimizations and prepare the model
// for fast rendering under *most* rendering systems,
// with proper lighting.

void optimizeForRendering();

// Import/Export S3D format

bool importS3d(const char *filename, char *returnErrMsg);
bool exportS3d(const char *filename, char *returnErrMsg);

// Debugging

void validityCheck();
bool validityCheck(char *returnErrMsg);

// Private representation

private:

// The mesh lists

int vAlloc;
int vCount;
Vertex *vList;

int tAlloc;
int tCount;
Tri *tList;

int mCount;
Material *mList;
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// Implementation details:

void construct();
};

/////////////////////////////////////////////////////////////////////////////
#endif // #ifndef __EDITTRIMESH_H_INCLUDED__

Most of the behavior of the class is (hopefully) obvious from the function prototypes and adjacent

comments. Further comments on details of behavior and implementation are contained in the .cpp

file (available for download atgamemath.com). Several items do warrant elaboration, however.

One important question involves how to actually access individual vertices, triangles, and

materials. First of all, the class names for these items are contained within the EditTriMesh

class namespace. The idea of having a single global class Vertex would be a problem, since

there are so many different types of vertices used in different applications. Second, to access the

lists, use the vertex(), tri(), and material() functions, which return a reference to the

item you are accessing, just like an array. For example, to change the material on a particular face,

you could use something like:

int i;
EditTriMesh mesh;
int newMaterialIndex;

mesh.tri(i).material = newMaterialIndex;

There are const and non-const functions of each accessor to preserve the logical “constness” of the

mesh through which they are invoked. (You can’t modify a const object.)

A word of warning: be careful when using references and pointers to items in the lists for

more than a few statements. Avoid passing these pointers or references into function calls that

manipulate the mesh, and avoid storing a reference or pointer across such a function call. The rea-

son is that if the lists need to grow, they may need to be moved around in memory during the

realloc call, and any pointer or reference would no longer be valid. For an example of a situa-

tion where naïve coding would have fallen into this pitfall, see the comments near the definition of

EditTriMesh::dupVertex().

In the code in EditTriMesh.cpp, we have chosen to use these accessor functions whenever

possible, even from inside the class in places where we should “know” that the index is in range

and could access the list directly. (The purpose of the accessor functions is supposedly to check for

array bounds errors.) However, we do often use a shortcut pointer to a triangle, vertex, etc., when

accessing the same item multiple times in a row. This not only makes the code slightly easier to

read, but it avoids calling the accessor repeatedly.

Another potentially confusing point is the duplication of texture mapping coordinates (the u

and v members) in the triangles and vertices. The “official” copy of the texture mapping coordi-

nates is always stored at the triangle level. The texture mapping coordinates in the vertices may be

invalid at some points. The reason we allow this to happen is to make some operations easier. Most

notably, when we compute vertex normals, we need to average the normals of all triangles adja-

cent to the vertex, regardless of any discontinuity in the texture mapping. (Other types of

discontinuity may matter, though, like a sharp edge at a box corner.) So our vertex welding ignores
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mapping coordinates. The reason texture mapping coordinates are stored in the vertices at all is

because most modern rendering hardware and APIs store the texture mapping coordinates at the

vertex level. To copy the UVs from the triangles into the vertices, call copyUvsInto-

Vertices(). This may create additional vertices if multiple triangles share the same vertex but

have different texture mapping coordinates. All of these details are handled by the

optimizeForRendering() function.

The importS3D() and exportS3D() functions load and save the mesh in the .S3D file

format. S3D stands for “Simple 3D” and is a very simple text file format used for delivery of art

assets at Terminal Reality. Visit gamemath.com for complete documentation on this file format.

There you can also download tools which can be used to interface the S3D file format with model-

ing packages, such as 3D Studio Max, LightWave, and Maya. These are the same tools we use at

Terminal Reality.

The OptimizationParameters helper class is used to control tolerances and other

preferences for vertex welding.
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3D Math for Graphics

345

This chapter shows how 3D math is used for graphics. It is divided into ten main sections.

� Section 15.1 gives an overview of the graphics pipeline.

� Section 15.2 describes how to set the view parameters. The main concepts are:

� How to specify the output window

� The pixel aspect ratio

� The view frustum

� Field of view angles and zoom

� Section 15.3 returns to the subject of coordinate spaces. The main concepts are:

� Modeling and world space

� Camera space

� Clip space

� Screen space

� Section 15.4 covers lighting and fog. The main concepts are:

� Math on colors

� Light sources

� The standard lighting equation

� The specular component

� The diffuse component

� The ambient component

� Light attenuation

� Fog

� Flat shading and Gouraud shading

� Section 15.5 describes the buffers used during rendering. The main concepts are:

� The frame buffer and double buffering

� The depth buffer

� Section 15.6 covers texture mapping.



In this chapter, we will discuss a number of mathematical issues that arise when creating 3D

graphics on a computer. Of course, we cannot hope to cover a subject like computer graphics in

any amount of detail in a single chapter. Entire books are written that merely survey the topic. This

chapter will be somewhat like a condensed version of one of those books. Our aim is to survey the

basic principles, touching a bit on theory and practice, with a particular focus on the math

involved.

15.1 Graphics Pipeline Overview
In this section, we attempt to give an overview of the “typical” modern graphics pipeline. Of

course, the number of different rendering strategies is equal to the number of graphics program-

mers. Everyone has his or her own preferences, tricks, and optimizations. Still, most rendering

systems have a great deal in common.

We will attempt to describe the basic procedure for generating a single rendered image with

basic lighting. We will not consider animation or techniques for global illumination, such as shad-

ows or radiosity.

Another caveat is that this is the conceptual flow of data through the graphics pipeline. In

practice, we may perform some tasks in parallel or out of sequence for performance reasons. For

example, depending on the rendering API, we may transform and light all vertices before submit-

ting triangles on to the next stage (clipping and culling), or we may transform and light vertices as

triangles are submitted to the clipper. Or, it may be faster to defer lighting computations until after

backface culling has been performed.

Another extremely important point that we will not discuss in detail is the distribution of work

between the main CPU and specialized rendering hardware. Delegating tasks properly in order to

maximize the amount of parallel processing is crucial for high performance rendering.

With these simplifications in mind, the following is a rough outline of the flow of data through

the graphics pipeline.

� Setting up the scene. Before we can begin rendering, we must set several options that apply

to the entire scene. For example, we need to set up the camera, or more specifically, pick a

point of view in the scene to render it from, and choose where on the screen to render it to. We
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� Section 15.7 covers geometry generation and delivery. The main concepts are:

� Level of detail selection and procedural modeling

� Delivery of geometry to the API

� Section 15.8 covers transformations and lighting. The main concepts are:

� Transformation to clip space

� Vertex lighting

� Section 15.9 covers backface culling and clipping.

� Section 15.10 covers rasterization.



will discuss this process in Section 15.2. We also need to select lighting and fog options,

which are discussed in Section 15.4, and prepare the z-buffer, which is discussed in Sec-

tion 15.5.

� Visibility determination. Once we have a camera in place, we must decide which objects in

the scene are visible. This is extremely important for real-time rendering, since we don’t want

to waste time rendering anything that isn’t actually visible. We will survey a few high-level

techniques and cover a number of trivial rejection tests in Chapter 16.

� Setting object-level rendering states. Once we know that an object is potentially visible, it’s

time to actually draw the object. Each object may have its own rendering options. We must

install these options into the rendering context before rendering any primitives associated

with the object. The most common property associated with an object is its texture map. We

will discuss texture mapping in Section 15.6.

� Geometry generation/delivery. Next, the geometry is actually submitted to the rendering

API. Typically the data is delivered in the form of triangles, either as individual triangles, or

an indexed triangle mesh, triangle strip, etc., as discussed in Section 14.1. At this stage, we

may also perform LOD (level of detail) selection or generate geometry procedurally. We dis-

cuss a number of issues related to delivering geometry to the rendering API in Section 15.7.

� Transformation and lighting. Once the rendering API has the geometry in some triangu-

lated format, vertices of the triangles are transformed from modeling space into camera space

and vertex-level lighting computations are performed. These processes are discussed in Sec-

tion 15.8.

� Backface culling and clipping. Next, individual triangles that face away from the camera are

removed (“culled”), and any portion of a triangle outside the view frustum is removed in a

process known as clipping. Clipping may result in a polygon with more than three sides. We

discuss culling and clipping in Section 15.9.

� Projection to screen space. Once we have a clipped polygon in 3D clip space, we then pro-

ject the vertices of that polygon and map them to the 2D screen space coordinates of the out-

put window. The math behind this operation is explained in Section 15.3.4.

� Rasterization. Once we have a clipped polygon in screen space, it is rasterized. Rasterization

refers to the process of selecting which pixels on the screen should be drawn for a particular

triangle and delivering the appropriate interpolated parameters (such as lighting and texture

mapping coordinates) to the next stage for pixel shading. We will discuss this surprisingly

complicated operation in Section 15.10.

� Pixel shading. Finally, at the last stage of the pipeline, we compute a color for the triangle, a

process known as “shading.” We then write that color to the screen, where it might need alpha

blending and z-buffering. We will discuss this process in Section 15.10.

The following pseudocode describes the rendering pipeline. It is intended to be an overview, and

there are many details which have been left out. Also, there are many variations that arise in prac-

tice due to differences between different rendering platforms or APIs.
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Listing 15.1: Pseudocode for the graphics pipeline

// First, figure how to view the scene

setupTheCamera();

// Clear the zbuffer

clearZBuffer();

// Setup environmental lighting and fog

setGlobalLightingAndFog();

// Get a list of objects that are potentially visible

potentiallyVisibleObjectList = highLevelVisibilityDetermination(scene);

// Render everything we found to be potentially visible

for (all objects in potentiallyVisibleObjectList) {

// Perform lower-level VSD using bounding volume test

if (!object.isBoundingVolumeVisible()) continue;

// Fetch or procedurally generate the geometry

triMesh = object.getGeometry()

// Clip and render the faces

for (each triangle in the geometry) {

// Transform the vertices to clip space, and perform
// vertex-level lighting

clipSpaceTriangle = transformAndLighting(triangle);

// Is the triangle backfacing?

if (clipSpaceTriangle.isBackFacing()) continue;

// Clip the triangle to the view volume

clippedTriangle = clipToViewVolume(clipSpaceTriangle);
if (clippedTriangle.isEmpty()) continue;

// Project the triangle onto screen space and rasterize

clippedTriangle.projectToScreenSpace();
for (each pixel in the triangle) {

// Interpolate color, zbuffer value,
// and texture mapping coords

// Perform zbuffering and alpha test
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if (!zbufferTest()) continue;
if (!alphaTest()) continue;

// Shade the pixel.

color = shadePixel();

// Write to the frame buffer and zbuffer

writePixel(color, interpolatedZ);
}

}

}

15.2 Setting the View Parameters
Before we render a scene, we must pick a camera and a window. That is, we must decide where to

render it from (the view position, orientation, and zoom) and where to render it to (the rectangle on

the screen we want to render to). The output window is the simpler of the two, and so we will dis-

cuss it first.

15.2.1 Specifying the Output Window
We don’t have to render our image to the entire screen. For example, in split-screen multiplayer

games, each player is given a portion of the screen. The output window refers to the portion of the

output device where our image will be rendered. This is shown in Figure 15.1.

The position of the window is specified using the coordinates of the upper left-hand pixel,

(winPosx, winPosy). The integers winResx and winResy are the dimensions of the window in pixels.

Defining it this way, using the size of the window rather than the coordinates of the lower

right-hand corner, avoids a number of sticky issues caused by integer pixel coordinates. We are
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also careful to distinguish between the size of the window in pixels and the physical size of the

window, which we will discuss in the next section.

With that said, it is important to realize that we do not necessarily have to be rendering to the

screen at all. We could be rendering into a buffer to be saved into a .TGA file or as a frame in an

.AVI, or we may be rendering into a texture as a subprocess of the “main” render. For these rea-

sons, the term “frame buffer” is often used to mean the area of memory holding the image that we

are rendering.

15.2.2 Pixel Aspect Ratio
Regardless of whether we are rendering to the screen or an off-screen buffer, we must know the

aspect ratio of the pixels. The pixel aspect ratio basically tells us the ratio of a pixel’s height to its

width. This ratio is often 1 (i.e., we have “square” pixels), but this is not always the case. The for-

mula for computing the aspect ratio is given below:

pixPhys refers to the physical size of a pixel. Usually the units of measurement are not important

and only the ratio matters. devPhys is the physical height and width of the device on which the

image is displayed. This could be in inches, feet, picas, etc., since the actual dimensions may be

unknown and only the ratio is important. For example, standard desktop monitors come in all dif-

ferent sizes, but the viewable area on most monitors has a ratio of 4:3 — the viewing area is 33

percent wider than it is tall. Another common ratio is 16:9 on high-definition televisions and

DVDs. The integers devResx and devResy are the number of pixels in the x and y dimensions. For

example, 640x480 means that devResx = 640 and devResy = 480.

As we mentioned, we often deal with square pixels and the aspect ratio is 1. For example, on a

standard desktop monitor with a physical width:height ratio of 4:3, many common resolutions

have square pixel ratios; 320x240, 640x480, 800x600, 1024x768, and 1600x1200 are all 4:3,

resulting in square pixels.

Notice that nowhere in these calculations is the size or location of the window used. This

makes sense; the location and size of our rendering window has no bearing on the physical propor-

tions of a pixel. However, the size of the window will become important when we discuss field of

view in Section 15.2.4, and the position is important when we map from camera space to screen

space in Section 15.3.4.
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15.2.3 The View Frustum
The view frustum is the volume of space that is visible to the camera. It is shaped like a pyramid

with the tip snipped off. An example of a view frustum is shown below in Figure 15.2.

The view frustum is bounded by six planes, known as the clip planes. The first four of the planes

form the sides of the pyramid and are called the top, left, bottom, and right planes, for obvious rea-

sons. They correspond to the sides of the output window. It is often desirable to prevent objects

from getting too close to the camera. For this purpose, we have the near clip plane, which “chops

off the tip” of the view frustum. We can also add a far clip plane, which limits the distance that the

camera can “see.” Although the number of objects that the camera can see probably increases with

distance, far objects eventually get too small to render effectively and can safely be clipped

entirely.

15.2.4 Field of View and Zoom
A camera has position and orientation, just like any other object in the world. However, it also has

an additional property known as field of view. Another term you are probably more familiar with is

zoom. Intuitively, you already know what it means to zoom in and zoom out. When you zoom in,

the object you are looking at gets “bigger,” and when you zoom out, the object gets “smaller.” Of

course, this is all very general. Let’s see if we can be more precise.

The field of view is the angle that is intercepted by the view frustum. We actually need two

angles: a horizontal field of view and a vertical field of view. Let’s drop back to 2D briefly and

consider just one of these angles. Figure 15.3 shows the view frustum from above, illustrating pre-

cisely the angle that the horizontal field of view measures. The labeling of the axes is illustrative of

camera space, which will be discussed in Section 15.3.2.
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Zoom measures the ratio of the apparent size of the object relative to a 90 degree field of view. So

larger numbers zoom in, and smaller numbers zoom out. For example, a zoom of 2.0 means that

the object will appear twice as big on screen as it would if we were using a 90 degree field of view.

Zoom can be interpreted geometrically, as shown in Figure 15.4.

Using some basic trig, we can derive the conversion between field of view and zoom, as shown

below:
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Equation 15.2:
Converting
between zoom
and field of view



Field of view is a convenient measurement for us to use, but zoom is the number that a computer

usually needs.

In 3D, we need two different zoom values, one for the horizontal and one for the vertical. Of

course, we can choose any two arbitrary values, but if we do not maintain a proper relationship

between the horizontal and vertical zoom, then the rendered image will appear stretched. (If

you’ve ever watched a movie intended for the wide screen that was “squashed” to fit on a regular

TV, then you’ve seen this effect.) In order to maintain proper proportions, the zoom values must be

proportional to the physical dimensions of the output window:

Of course, you usually don’t know the ratio of the physical dimensions of your output window, but

you know the dimensions in pixels. Here’s where the pixel aspect ratio comes in:

In the above formula:

� zoom refers to the camera’s zoom values.

� winPhys refers to the physical window size.

� winRes refers to the resolution of the window, in pixels.

� pixPhys refers to the physical dimensions of a pixel.

� devPhys refers to the physical dimensions of the output device. Remember that we usually

don’t know the exact size, but we usually know the proportions.

� devRes refers to the resolution (number of pixels) of the output device.

Many rendering packages allow you to specify the camera using only one field of view angle (or

zoom value). When you do this, they automatically compute the other value for you, assuming you

want uniform display proportions. For example, you may specify the horizontal field of view, and

they compute the vertical field of view for you. Or, you specify the vertical, and they compute the

horizontal. Or, you supply the field of view for the larger of the two angles, and they compute the

smaller angle (or vice versa).
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15.3 Coordinate Spaces
The next few sections discuss a few different coordinate spaces related to 3D viewing. Unfortu-

nately, the terminology is not consistent in other literature on the subject, even though the concepts

are the same. We will discuss the coordinate spaces in the order that they are encountered as geom-

etry flows through the graphics pipeline.

15.3.1 Modeling and World Space
The geometry of an object is initially described using object space, which is a coordinate space

local to the object being described (see Section 3.2.2). The information described usually consists

of vertex positions and surface normals. Object space is also known as modeling space or local

space.

From modeling space, the vertices are transformed into world space (see Section 3.2.1). The

transformation from modeling space to world space is sometimes known as the model transform.

Typically, lighting is specified using world space, although, as we will see in Section 15.8, it

doesn’t really matter what coordinate space is used to perform the lighting, provided that the

geometry and the lights can be expressed in the same space.

15.3.2 Camera Space
From world space, vertices are transformed using the view transform into camera space (see Sec-

tion 3.2.3), also known as eye space. Camera space is 3D coordinate space with the origin at the

center of projection. One axis is parallel to the direction that the camera is facing (perpendicular to

the projection plane), one axis is the intersection of the top and bottom clip planes, and the other

axis is the intersection of the left and right clip planes. If we assume the perspective of the camera,

one axis will be “horizontal” and one will be “vertical.”

In a left-handed world, the most common convention is to point +z in the direction that the

camera is facing, with +x and +y pointing “right” and “up” (again, from the perspective of the

camera). This is fairly intuitive, and it is shown in Figure 15.5. The typical right-handed conven-

tion is to have -z point in the direction that the camera is facing. We will assume the left-handed

conventions for the remainder of this chapter.
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15.3.3 Clip Space
From camera space, vertices are transformed once again into clip space, also known as the canoni-

cal view volume space. The matrix that transforms vertices from camera space into clip space is

known as the clip matrix.

Until now, our vertex positions have been “pure” 3D vectors. That is, they only had three

coordinates, or if they had a fourth coordinate, w, then w was always equal to 1. The clip matrix

changes this and manipulates the vector, placing meaningful information into w in the process.

The clip matrix serves two primary functions:

� Prepare the vector for perspective projection, which will be done by division by w.

� Scale x, y, and z so that they can be compared against w for clipping.

Let’s examine each of these in detail. The first purpose of the clip matrix is to prepare the vector

for perspective division by w. We discussed perspective division using w in detail in Section 9.4.4,

so let’s just review the key points.

Recall from Section 9.4.1 that a 4D homogenous vector is mapped to the corresponding phys-

ical 3D vector by dividing by w:

One goal of the clip matrix is to get the right value into w so that the proper projection occurs. In

Section 9.4.6, we learned how to project onto a plane perpendicular to the z-axis and d units away

from the origin. (The plane is of the form z = d.) The rectangular portion of the projection plane

that is inside the view frustum gets mapped onto the screen. If we vary the distance d, we move the

projection plane forward or backward. Inside a real camera, varying the distance from the focal

point to the projection plane (known as the focal distance) causes the camera to zoom in or out.

However, this does not occur with the projection plane in a computer. Why not? Inside a real
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camera, the image projection gets bigger as we increase the focal distance, and the film stays the

same size. Inside a computer, the image projection also gets bigger as we increase the focal dis-

tance, but the “film” (that is, the rectangular portion of the projection plane that is inside the view

frustum) will also get bigger as we increase the focal distance d. Because the film and projection

increase by the same proportion, there is no change in the rendered image on the screen. Thus, in

computer graphics, zoom is controlled completely by the shape of the view frustum, and the value

of d is not really significant. So we can pick any value for d and always use that value. The most

convenient value for us to use is 1.

If this was the only purpose of the clip matrix, to place the correct value into w, the clip matrix

would simply be:

Multiplying a vector of the form [x, y, z, 1] by this matrix, and then performing the perspective

divide, we get:

Now we know how to use a matrix to get the correct value into w. At this point, you may think that

this seems like a lot of work for what basically amounts to dividing by z. You’re right. The simpler

“old school” way of doing things didn’t involve w and divided by z. One reason for homogenous

coordinates is that they can represent a wider range of camera specifications, including “exotic”

projections like when the projection plane is not perpendicular to the direction of the camera.

Another reason is that it makes z-clipping (to the near and far clipping planes) the same as x- and

y-clipping. This similarity is exploited on rendering hardware. In general, the use of homogenous

coordinates and 4×4 matrices makes things more compact, and (in some people’s minds) more

elegant. Regardless of whether or not using 4×4 matrices improves the process, it’s the way most

APIs want things delivered, so that’s the way it works for better or worse.

The second goal of the clip matrix is to scale the x, y, and z components so that the six clip

planes have a trivial form. Points are outside the view frustum planes according to the inequalities

below:
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So the points inside the view volume satisfy the inequalities:

Any geometry that does not satisfy these equalities must be clipped to the view frustum. Clipping

is discussed in Section 15.9.

To stretch things to put the top, left, right, and bottom clip planes in place, we scale the x and y

values by the zoom values of the camera. We discussed how to compute these values in Section

15.2.4. For the near and far clip planes, the z coordinate is biased and scaled so that at the near clip

plane, z/w = –1, and at the far clip plane, z/w = 1.

Let zoomx and zoomy be the horizontal and vertical zoom values, and let n and f be the dis-

tances to the near and far clipping planes. Then the following matrix scales x, y, and z

appropriately, while simultaneously outputting the z coordinate into w:

By “OpenGL-style,” we mean that z ranges from –w…w from the near to far clip plane. (We don’t

mean that we are using column vectors.) Other APIs, (notably, DirectX) scale z from 0…w. In

other words, a point in clip space is outside the clip plane if:

with the points inside the view frustum satisfying the inequality:

A slightly different clip matrix is used in this case:

15.3.4 Screen Space
Once we have clipped the geometry to the view frustum, it is projected into screen space, which

corresponds to actual pixels on the display device. Remember that we are rendering into an output

window that does not necessarily occupy the entire display device. However, we usually want our

screen space coordinates to be specified using coordinates that are absolute to the rendering

device.
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Screen space is a 2D space, of course. Thus, we must project the points from clip space to screen

space to generate the correct 2D coordinates. We do this using the standard homogenous division

by w. Then, the x and y coordinates must be scaled to map into the output window. This is summa-

rized below:

Notice the negation of the y component, since +y points up in clip space, and +y points down the

screen in screen space.

What about zscreen and wscreen? Since screen space is a 2D space, these don’t really exist. How-

ever, we won’t discard zclip and wclip, since they are useful for z-buffering and/or perspective

correction.

15.4 Lighting and Fog
The idea of covering a topic as complex and rich as lighting in a subsection with a number like

“15.4” is actually a bit absurd. We will not even begin to cover all the different lighting techniques

that are available; entire volumes have been written on each of these topics. We will focus on the

“standard” lighting model used by most rendering APIs, including OpenGL and DirectX. This

lighting model, despite its limitations, has become the de facto standard.

The standard lighting model is a local lighting model — that is, when we are lighting one par-

ticular object, none of the other objects in the scene matter. Objects cannot cast shadows on each

other. In fact, an object can’t even cast a shadow on itself. Shadows are generated using global

illumination models, which will not be discussed in this book.
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15.4.1 Math on Colors
A color is usually represented inside a computer using the RGB color model, where RGB stands

for red, green, blue. The precision of these components varies depending on the platform and ren-

dering stage. We will consider the RGB values to range from 0…1 and will not be concerned with

the number of bits used to represent the components.

In computer graphics, colors are frequently manipulated as mathematical entities. We will use

the same notation for colors as we do for vectors, i.e., a lowercase roman letter in boldface, such as

c. Usually the context will make it clear if a quantity is a color or vector.

We can think about colors as existing in a 3D unit cube of “color space,” as shown in Figure

15.7. Unfortunately, this book is in black and white, but we’ve indicated the colors using text.

White and black are especially important colors, represented in RGB as (1,1,1) and (0,0,0),

respectively. We use the special notation 1 and 0 to stand for these colors. All of the grays in

between are on the “line” in color space from the black corner to the white corner.

Colors can be added, subtracted, and multiplied by a scalar. These operations are performed in

the same way as they are for vectors. Two colors can also be component-wise multiplied. We will

use the  symbol for this type of multiplication.

Sometimes the mathematical operations we perform on colors may result in one or more of

the RGB values being outside the [0,1] range. (For example, when accumulating light, it is possi-

ble for the light to become too bright.) In this case, the color values are usually clamped in range.

Depending on the situation, this clamping can occur after each intermediate operation, or it may be

that we are able to allow the values to be out of range temporarily and then clamp the value at the

end of a series of computations.

Clamping colors may result in a shift in hue if only one value is out of range. For example, the

color (1,2,1), in theory, should be a brighter version of (.5,1,.5), which is a lime greenish color. By

simply clamping the colors, however, the green hue is lost and we are left with white. A smarter

solution would be to scale all of the components uniformly in order and the largest component by

one. For example, in this case, the largest component is two, so we’d multiply by .5. Of course,
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avoiding out-of-range colors to begin with (for example, by adjusting the intensity of light so that

the over-bright condition doesn’t happen) is usually the best solution.

15.4.2 Light Sources
In order to render a scene, we must describe the lighting in the scene to the graphics API. This is

simply a list of light sources. In this section, we discuss the most common types of light sources

supported by most rendering APIs:

� Point lights

� Directional lights

� Spot lights

� Ambient light

A point light source represents light that emanates from a single point outwards in all directions.

Point lights are also called omni or spherical lights. A point light has a position and color, which

controls not only the hue of the light, but also its intensity. A point light may also have a falloff

radius, which controls the size of the sphere that is illuminated by the light. Figure 15.8 shows how

one popular modeling package, 3D Studio Max, represents point lights visually.

The intensity of the light normally decreases the farther away we are from the center of the light

and is zero at the falloff distance. We will discuss attenuation in more detail in Section 15.4.7.

Point lights can be used to represent many common light sources, such as light bulbs, lamps, fires,

etc.

A directional light represents light emanating from a point in space sufficiently far away that

all the rays of light involved in lighting the scene (or at least the object we are currently consider-

ing) are effectively pointing in the same direction. Directional lights do not have a position, nor do

they attenuate. The sun is the most obvious example of a directional light. (We certainly wouldn’t

try to specify the actual position of the sun in world space in order to properly light the scene…)
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A spot light is used to represent light from a specific source in a specific direction. These are

used for lights such as flashlights, headlights, and of course, spotlights! A spotlight has a position

and an orientation and, optionally, a falloff distance. The shape of the lit area is either a cone or

pyramid.

A conical spotlight has a circular “bottom.” The width of the cone is defined by a falloff angle

(not to be confused with the falloff distance). In addition, there is an inner angle that measures the

size of the hotspot. A conical spotlight is shown in Figure 15.9.

A rectangular spotlight forms a pyramid rather than a cone. Rectangular spotlights are especially

interesting because they are used to project an image. For example, imagine walking in front of a

movie screen while a movie is being shown. An image projected in this manner is known as a pro-

jected light map.

Finally, the ambient light for the scene is simply a constant color for the entire scene repre-

senting light that isn’t coming from any of the other light sources. Without ambient light, objects

that were in shadow would be completely black, since they are not lit directly by any one light

source. In the real world, these objects are lit indirectly. Ambient lighting is a rudimentary way to

account for this indirect lighting. We will discuss ambient light in more detail in Section 15.4.6.

15.4.3 The Standard Lighting Equation — Overview
The standard lighting model that we referred to in the introduction to Section 15.4 defines a stan-

dard lighting equation to compute a color value for a single pixel. An overview of the lighting

equation is given by:
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where:

� clit is the resulting “lit” color value, as opposed to an “unlit” color value, which has full light-

ing intensity. Contrary to normal use of the verb light, in computer graphics lighting normally

refers to the process of taking an unlit color, say, from a texture, and darkening it. As the light-

ing process is explained, this will become clear.

� cspec is the specular contribution, discussed in Section 15.4.4.

� cdiff is the diffuse contribution, discussed in Section 15.4.5.

� camb is the ambient contribution, discussed in Section 15.4.6.

The appearance of an object depends primarily on four factors:

� The properties of the surface of the object itself. These properties are known as material

properties.

� The location and orientation of the surface being lit. The orientation is usually described using

a surface normal, a unit vector that is perpendicular to the surface.

� The properties of various lights that are shining on the object.

� The location of the viewer.

Each of the three components in the lighting equation takes into account a different combination

of the above factors.

Next, we will dissect each component of the lighting equation separately. In Section 15.4.8,

we will put the pieces together to derive the complete lighting equation.

15.4.4 The Specular Component
The specular component of the lighting equation models direct reflection of light from a light

source to the eye. The important vectors are labeled in Figure 15.10.

The specular component is what gives surfaces a “shiny” appearance. Rougher surfaces do not

exhibit a high degree of reflectivity, and so this component will not be very significant. The

amount of specular lighting depends on the object, the lights, and the viewer.

� n is the surface normal.

� v points toward the viewer.
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� l points toward the light source. For directional lights, l is constant.

� r is the “reflection” vector, the result of reflecting l about n.

� � is the angle between r and v, given by r·v. This angle measures how direct the reflection is.

All vectors are unit vectors. As shown in Figure 15.11, r is given by 2(n·l)n–l:

The following equation for the specular component is known as the Phong model for specular

reflection:

mgls is the glossiness of the material, also known as the Phong exponent. This controls how wide

the “hotspot” is; a smaller value results in a larger, more gradual falloff from the hotspot, and

larger exponents result in a very tight hotspot with sharp falloff. (This hotspot is not to be confused

with the hotspot of a spotlight.) Perfectly reflective surfaces, such as glass, will have a very high

value for mgls — only a perfectly reflected ray of light will enter the eye. Shiny surfaces that are not

perfect reflectors, like the surface of an apple, might have lower values, resulting in a larger

hotspot.

Another value related to the “shininess” of the material is mspec, which is the material’s specu-

lar color. Usually, this is a grayscale value that is constant for the entire material. While mgls

controls the size of the hotspot, mspec controls its intensity. Highly reflective surfaces will have a

higher value for mspec, and more matte surfaces will have a lower value. If desired, a gloss map

may be used to control the brightness of the reflections using a bitmap, much as a texture map con-

trols the color of an object.

sspec is the specular color of the light source, which controls the basic color and intensity of the

light. For rectangular spotlights, this value may come from a projected light map. sspec is often

equal to the light’s diffuse color, sdiff.
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Figure 15.12 shows how different values of mgls and mspec affect the appearance of an object with

specular reflection. In the figure, the color mspec goes from black on the leftmost column to white

on the rightmost column. The exponent mgls is very large on the top row, and it decreases with each

subsequent row. Notice that the heads in the leftmost column all look the same; since the specular

strength is zero, the specular exponent is irrelevant, and there is no specular contribution in any

case. (The lighting comes from the diffuse and ambient components, which will be discussed in

the next sections.)

If the distance to the viewer is large relative to the size of an object, then v may be computed

once and then considered constant for an entire object. The same is true for a light source and the

vector l. (In fact, for directional lights, l is always constant.) However, since n is not constant, we

must still compute r, a computation which we would like to avoid if possible. The Blinn model

does this by measuring a slightly different angle, as shown in Figure 15.13.

The Blinn model uses h, the “halfway” vector between v and l, which is computed by averaging v

and l and then normalizing the result:
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The Blinn model is similar to the Phong model, only � measures the angle between n and h:

This equation is usually easier to implement in hardware, especially if the viewer and light source

are far enough away from the object to be considered a constant, since then h is a constant and only

needs to be computed once. For a comparison of the Blinn and Phong specular models, see [7].

One slight detail that we have omitted is that cos � may be less than zero in either model. In

this case, we usually clamp the specular contribution to 0.

15.4.5 The Diffuse Component
Like the specular component, the diffuse component also models light that strikes the object

directly. However, whereas specular light accounts for light that reflects perfectly off the surface

into the eye, diffuse light models reflections that are scattered in random directions due to the

rough (“diffuse”) nature of the object’s surface. Figure 15.14 compares how rays of light reflect on

a perfectly reflective surface and on a rough surface.

Diffuse lighting does not depend on the location of the viewer because the reflections are scattered

randomly. However, the position of the light source relative to the surface is important. If we

imagine counting the photons of light that hit the surface of the object and have a chance of reflect-

ing into the eye, a surface that is perpendicular to the rays of light receives more rays per unit area

than a surface oriented at a more glancing angle. This is shown in Figure 15.15.

Notice that in both cases, the perpendicular distance between the rays is the same. (Due to an opti-

cal illusion in the diagram, the rays on the right may appear to be farther apart, but if you look

closely or measure them, they are not.) So, the perpendicular distance between the rays is the

same, but notice that on the right side of Figure 15.15, they strike the object at points that are far-

ther apart. Thus, the amount of light per unit area is smaller. The surface on the left receives nine

light rays, and the surface on the right receives only six, even though the “area” of both surfaces is

Chapter 15: 3D Math for Graphics 365

Equation 15.10:
The Blinn model
for specular
reflection

Figure 15.14: Diffuse lighting models scattered
reflections

Figure 15.15: Surfaces more perpendicular to the light
rays receive more light per unit area



the same. This same phenomenon is responsible for the fact that the climate near the equator is

warmer than near the poles. Since the earth is round, the light from the sun strikes the ground at a

more direct angle near the equator.

Diffuse lighting obeys Lambert’s law: the intensity of the reflected light is proportional to the

cosine of the angle between the surface normal and the rays of light. We will compute this cosine

using the dot product:

n is the surface normal and l is a unit vector which points toward the light source, just as in the pre-

vious section. mdiff is the material’s diffuse color. This is the value that most people think of when

they think of the “color” of an object. The diffuse material color often comes from a texture map.

sdiff is the diffuse color of the light source, and is often equal to the light’s specular color, sspec.

As with specular lighting, we must prevent the dot product term from going negative by

clamping it to zero. This prevents objects from being lit “from behind.”

15.4.6 The Ambient Component
Specular and diffuse lighting both model light rays that travel directly from the light source to the

surface of the object and are then reflected to the viewer. However, in the real world, light often

bounces off of one or more intermediate objects before hitting an object and reflecting to the eye.

This is why when you open the refrigerator door in the middle of the night, the entire kitchen will

get a bit brighter, even though the refrigerator door (and your body) block most of the direct light.

To model these reflections, we can use ambient light. The ambient portion of the lighting

equation depends on the properties of the material and a global ambient lighting value used for the

entire scene. None of the light sources are involved in the computation. (In fact, a light source is

not even necessary.) The following equation is used to compute the ambient component:

mamb is the material’s “ambient color.” This is almost always the same as the diffuse color, which

is often defined using a texture map. gamb is the global ambient light value for the entire scene.

15.4.7 Light Attenuation
Light attenuates with distance. That is, objects are illuminated less by a light as they move farther

away from the light. In the real world, the intensity of a light is inversely proportional to the square

of the distance between the light and the object:

366 Chapter 15: 3D Math for Graphics

Equation 15.11:
Calculating
the diffuse
component
using Lambert’s
law



where i is the intensity of the light, and d is the distance.

In practice, Equation 15.12 can be unwieldy. Instead, a simpler model is used based on falloff

distances. In Section 15.4.2, we mentioned that the falloff distance controls the distance beyond

which the light has no effect. Normally, a simple linear interpolation formula is used such that the

light gradually fades with the distance d:

As you can see, there are actually two falloff distances. Within dmin, the light is at full intensity

(1.0). As the distance goes from dmin to dmax, the intensity varies linearly from 1.0 down to 0.0. At

dmax and beyond, the light intensity is 0.0. Basically, dmin controls the distance at which the light

begins to falloff. dmin is frequently zero, which means that the light begins falling off immediately.

dmax is the actual falloff distance — the distance where the light has fallen off completely.

Distance attenuation can be applied to point lights and spotlights — directional lights are not

attenuated. An additional attenuation factor is used for spotlights. Hotspot falloff attenuates light

as we move closer to the edge of the cone.

Once we have computed the intensity multiplier i, it is applied to the diffuse and specular

components. Ambient light is not attenuated, obviously.

15.4.8 The Lighting Equation — Putting It All Together
We have discussed the individual components of the lighting equation in detail. Now it is time to

give the complete lighting equation:
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Figure 15.16 shows what each of the lighting components actually look like in isolation from the

others. There are several interesting points to be noted:

� The ear is lit just as bright as the nose, even though it is actually in the shadow of the head.

This is a consequence of using a local lighting model. For shadows, a more advanced tech-

nique must be used.

� In the first two images, without ambient light, the side of the head that is facing away from the

light is completely black. In order to light the “back side” of objects, you must use ambient

light. Or, you can place enough lights in your scene so that every surface is lit directly.

� With only ambient lighting, just the silhouette is visible. Lighting is an extremely powerful

visual cue that makes the object appear “3D.” The solution to this “cartoon” effect is, again, to

place a sufficient number of lights in the scene so that every surface is lit directly.

Speaking of multiple lights, how do multiple light sources work with the lighting equation? We

must sum up the lighting values for all the lights. If we let sj represent the jth light source, where j

goes from 1…n, n being the number of lights, then the lighting equation becomes:

Of course, since there is only one global ambient light value for the scene, it is not summed per

light source.

15.4.9 Fog
In the real world, rays of light are reflected and refracted by millions of tiny particles in the air. If

the particles are numerous enough per unit volume, we can actually see them. Fog, haze, and

smoke are examples of this phenomenon. In computer graphics, all of these types of effects are

approximated using a technique known as fogging.

Imagine we are looking at an object in the distance. The air between the object and our eye is

filled with particles (of moisture, smoke, etc.) that interfere with the direct transmission of light

from the object to our eye. Some rays of light that were not necessarily bound for our eye origi-

nally may bounce off these particles and wind up heading toward us. This is how we actually “see”

the particles in the air. The visual result is that the color of the object we are looking at appears to
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shift toward the color of the fog particles. The more particles that lie between us and the pixel we

are rendering, the more pronounced this effect will be.

The fog density is an arbitrary number, from 0…1, which controls how “fogged out” the

object is. A density of zero indicates that there is no fog effect. A density of one means the object is

completely fogged out, and the color of the pixel should be the same as the fog color. Values in

between are used to linearly interpolate between the color of the object and the fog color.

How do we compute this fog density? As we have mentioned, the more particles that lie

between our eye and the object, the more pronounced the fogging effect will be. How do we know

how many particles there are, and how do we convert this number into a fog density? Luckily, we

don’t have to know the actual number of particles. Instead, we use two heuristics to compute a

value that behaves as if we were counting the number of particles. The number of particles

depends on only two factors: the overall density of the fog in the scene and the distance from our

eye to the object.

The distance from the eye to the object can easily be computed. Thus, all that remains is to

derive some function of distance that takes the overall fog density into account and returns a fog

value for a single pixel. How do we specify how “dense” the fog in the scene is? What sort of units

should we use for this? Rather than actually specifying a real “density” value, we use a much sim-

pler system. The overall density of the fog is controlled by two distances, dmin and dmax. If the

distance of a pixel is less than dmin, then no fogging occurs, and the fog value is zero. As the dis-

tance increases to dmax, the fog value increases from zero to one. At dmax and beyond, the object is

completely fogged out, and the fog value is one. The following formula describes this succinctly:

Two important items to note:

� The assumption that the fog is uniformly distributed is usually, but not always, reasonable.

For example, in the real world, fog is often thicker in low-lying areas. This cannot be modeled

using a simple distance-based fog.

� The definition of distance may vary. Of course, true Euclidian distance may be used, in which

case we have spherical fog. This involves the slow square root operation. One simplification

is to use camera-space z as the distance, which gives us linear fog. Linear fog is faster, but it

has the annoying side effect that the fog density for a point can change depending on the ori-

entation of the camera, which would not happen in the real world.

Once we have a fog density value from 0…1, a pixel is fogged using the linear interpolation

equation:
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Fog value
computation
using minimum
and maximum
fog distances



Where:

� clit is the color of the surface after lighting computations have been performed.

� f is the fog density, usually computed using Equation 15.15.

� gfog is the global fog color.

� cfogged is the resulting lit and fogged color.

In order to use fog in our scene, we must communicate to the API the properties of our fog. This

usually consists of three pieces of information:

� Master fog switch. If we wish to use fogging, we must enable it.

� Fog color. This is cfog in the equations above.

� Fog distances. dmin and dmax.

15.4.10 Flat Shading and Gouraud Shading
If rendering speed were not a concern, we would apply the lighting and fog equations per pixel.

(For lighting, this technique is known as Phong shading — not to be confused with the Phong

model for specular reflection). Unfortunately, these computations often cannot be performed fast

enough, and we must make a compromise and perform them less frequently. We have two options.

We may either compute them per polygon or per vertex. These two techniques are known as flat

shading and Gouraud shading, respectively.

When using flat shading, we will compute a single lighting value for the entire triangle.

Usually, the “position” used in the computations is the centroid of the triangle, and the surface nor-

mal is the normal of the triangle. As you can see in Figure 15.17, when an object is lit using flat

shading, the faceted nature of the object becomes painfully apparent, and any illusion of smooth-

ness is lost.

Gouraud shading, also known as vertex shading or interpolated shading, is a trick whereby values

for lighting, fog, etc., are computed at the vertex level. These values are then linearly interpolated

across the face of the polygon. Figure 15.18 shows the same teapot, rendered using Gouraud

shading.
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Figure 15.17: A flat shaded teapot



As you can see, Gouraud shading does a relatively good job at restoring the smooth nature of the

object. When the values being approximated are basically linear across the triangle, then the linear

interpolation used by Gouraud shading does a good job of approximating them. The problem is

when the values are not linear, as in the case of specular highlights. Compare the specular high-

lights in the Gouraud shaded teapot with the highlights in a Phong (per-pixel) shaded teapot,

shown in Figure 15.19. Notice how much smoother the highlights are. Except for the silhouette

and areas of extreme geometric discontinuities, such as the handle and spout, the illusion of

smoothness is very convincing. With Gouraud shading, the individual facets are detectable due to

the specular highlights.

The basic problem with interpolated shading is that no value in the middle of the triangle can be

larger than the largest value at a vertex. So highlights can only occur at a vertex. Sufficient tessel-

lation can overcome this problem.

Despite its limitations, Gouraud shading is still the most common type of shading used on

today’s hardware. One question that you should ask is how the lighting can be computed at the ver-

tex level if any maps are used to control inputs to the lighting equation (most notably, a diffuse

texture map). We will discuss this issue in Section 15.8.2.
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Figure 15.18: A Gouraud shaded teapot

Figure 15.19: A Phong shaded teapot



15.5 Buffers
Rendering involves many buffers. In this context, a buffer is simply a rectangular region of mem-

ory that stores some sort of data per pixel. The most important buffers are the frame buffer and the

depth buffer.

The frame buffer stores one color per pixel; it holds the rendered image. The color for a single

pixel may be stored in a variety of formats; the variations are not significant for the current discus-

sion. The frame buffer is normally located in video RAM. The video card is constantly reading this

area of video RAM, converting the binary data into the appropriate signal to be sent to the CRT. A

technique known as double buffering is used to prevent an image from being displayed before it is

completely rendered. Under double buffering, there are actually two frame buffers. One frame

buffer holds the image currently displayed on the monitor. The other frame buffer, the off-screen

buffer, holds the image currently being rendered.

When we have finished rendering an image and are ready for it to be displayed, we “flip” the

buffers. We can do this in one of two ways:

� If we use page flipping, then we instruct the video hardware to begin reading from the buffer

that was the off-screen buffer. We then swap the roles of the two buffers; the buffer that was

being displayed now becomes the off-screen buffer.

� We may blit (copy) the off-screen buffer over the display buffer.

Double buffering is shown in Figure 15.20.

The second important buffer used for rendering is the depth buffer, also known as the z-buffer.

Rather than storing a color at each pixel, the depth buffer stores a depth value per pixel. There are

many variations in the specifics of exactly what value goes into the depth buffer, but the basic idea

is that it is related to the distance from the camera. Often, the clip-space z coordinate is used as a

depth value, which is why the depth buffer is also known as the z-buffer.

The depth buffer is used to determine which objects occlude which objects as follows. As we

are rasterizing a triangle, we compute an interpolated depth value per pixel. Before rendering a

pixel, we compare this depth value with the value already in the depth buffer for this pixel. If the

new depth is farther from the camera than the value currently in the depth buffer, then the pixel is

discarded. Otherwise, the pixel color is written to the frame buffer, and the depth buffer is updated

with the new, closer depth value.
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Figure 15.20: Double buffering



Before we can begin rendering an image, we must clear the depth buffer to some very far dis-

tance value (in clip space, this would be 1.0) so that the first pixels to be rendered will pass the

depth buffer test. We don’t normally double buffer the depth buffer like we do the frame buffer.

15.6 Texture Mapping
There is much more to the appearance of an object than its shape. Different objects are different

colors and have unique patterns on their surface. One simple yet powerful way to capture these

qualities is through texture mapping.

A texture map is a bitmap image that is applied to the surface of an object. Rather than control-

ling the color of an object per triangle or per vertex, with texture mapping we can control the color

at a much finer level — per textel. (A textel is a single pixel from a texture map.)

Although you have almost certainly seen texture-mapped images before, let’s look at an

example to see just how powerful texture mapping is at conveying surface properties. Figure

15.21 shows a 3D model of a character, “Rayne,” before and after texture mapping.

So, a texture map is just a regular bitmap that is applied to the surface of a model. Exactly how

does this work? Actually, there are many different ways in which we can “wrap” a texture map

around a mesh. Planar mapping projects the texture linearly onto the mesh. Spherical, cylindrical,

and cubic mapping are various methods of “wrapping” the texture around the object. The details

of each of these techniques are not important to us at the moment, since modeling packages such

as 3D Studio Max deal with these user interface issues. No matter how the map is placed by the

artists, eventually each vertex is assigned texture mapping coordinates, which are nothing more

than 2D Cartesian locations in the bitmap. Usually, we refer to these coordinates as u and v to

avoid confusion with the many xs and ys involved in rendering. Texture mapping coordinates are

usually normalized from 0…1 across the width and height of the texture. For example, Figure

15.22 shows one texture from the model in Figure 15.21.
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Figure 15.21: A 3D model
before and after texture
mapping

“Rayne” model by Chris DeSimone and Joe Wampole. Used by permission of Majesco.



This texture map is used for Rayne’s head. One single texture map goes all the way around one

half of her head, from her nose to the middle of the back of her head. The artist has purposefully

designed the texture so that it can be “wrapped” around the model. The other half of her head is

mapped using the same texture, only it is mirrored for the other half.

Notice that the texture doesn’t have to wrap “continuously” around the geometry in one piece.

Since each triangle can be mapped independently, different areas of the texture may be mapped

onto different portions of the model arbitrarily. For example, the “teeth” objects that you see in the

corners of the texture map are just that; Rayne has fangs, which can be seen when she opens her

mouth. Of course, if a “continuous” mapping is not used, the vertices will have to be duplicated at

the texture “seams” if the texture mapping coordinates are stored at the vertex level. (They usually

are.)

Notice that we have chosen to place the origin of texture mapping space in the upper left-hand

coordinate, which mimics the way the texture is accessed in hardware. More “academic” literature

places the origin in the lower left-hand coordinate.

As we have mentioned, each vertex is assigned a set of u,v coordinates in the texture map. In

this way, the texture is “pinned down” to the surface of the mesh. To render a pixel from the middle

of a triangle, we compute interpolated u,v mapping coordinates corresponding to the pixel (similar

to Gouraud shading) and then fetch the textel at these u,v coordinates.

15.7 Geometry Generation/Delivery
Once we have determined what objects are visible (or at least potentially visible), we can generate

or deliver the geometry for these objects to the graphics processor. Several tasks can be performed

at this stage:

� Level of detail (LOD) selection.

� Procedural generation of geometry.

� Delivery of data to the graphics API.

374 Chapter 15: 3D Math for Graphics

Figure 15.22: An example texture map



15.7.1 LOD Selection and Procedural Modeling
We normally want to draw objects using the most number of triangles possible so that we can get

the best visual appearance, but unfortunately, more triangles usually mean slower frame rate. We

must strike a balance between visual appearance and acceptable frame rate. One way to improve

both is to vary the level of detail (LOD) of the geometry, depending on the distance to the camera.

The basic idea is that objects that are farther from the camera are smaller and can therefore be ren-

dered with fewer triangles without sacrificing visual quality.

How do we obtain a mesh with fewer triangles? One easy way (from a programmer’s perspec-

tive!) is for an artist to build one by hand. Then, the object’s distance from the camera (or screen

size — which works even when the zoom of the camera varies greatly) is used to select the appro-

priate LOD. The only problem with this technique is that there is a visible “pop” when the model

switches from one LOD to the next, as the object moves closer or farther away from the camera.

Of course, we hope to minimize this visual discontinuity — good meshes can help a great deal.

One way to avoid the “pop” associated with discrete LODs is to employ a continuous LOD. In

this system, the number of different level of detail meshes are so many that they are effectively

continuous; we can generate a mesh with almost any number of triangles we want. Progressive

meshes are one such “mesh decimation” technique (see Section 14.4.5). It is important to note that

there is overhead (possibly considerable) associated with generating a continuous LOD. If we use

discrete LOD, then the mesh is already available and can be submitted for rendering immediately;

all we have to do is decide which mesh to use. Thus, discrete LODs are used in practice most fre-

quently, even if the actual meshes are generated procedurally using mesh decimation techniques.

Sometimes the geometry is not created by a human artist, but on-the-fly by the computer. This

is known as procedural modeling. Fractal terrain is a good example of procedural modeling.

Plants and “greenery” are other examples where procedural geometry gives good results. Some-

times LOD is employed within a procedural modeling algorithm, such that the geometry is

generated only to a desired LOD. A complete discussion of procedural modeling is outside the

scope of this book. One good resource is [5].

15.7.2 Delivery of Geometry to the API
Regardless of the source of the geometry data, it must at some point be delivered to the rendering

API. (API stands for application programming interface — in this case, the software that we use to

communicate with the rendering subsystem.) In this section, we will describe various formats

used for geometry by modern APIs.

As we have mentioned previously, most modern APIs want the geometry delivered in some

sort of triangle mesh format. The data may be individual triangles, an indexed triangle mesh, a tri-

angle strip, or a triangle fan. (We discussed the various methods of representing triangle meshes in

Section 14.1.) In all cases, the bulk of the data is usually contained in the vertices, and the data for

the triangles is nothing more than appropriate linkage of vertices. In other words, the API usually

doesn’t need any extra data at the triangle level. Since we have already discussed different ways

that the linkage of triangles can be represented, the remainder of this section is devoted to different

methods for representing the vertex data.
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APIs accept a number of different vertex formats, depending on what operations you want the

API to do for you. (When we say that “the API” does some bit of work, we really mean “the graph-

ics subsystem.” Whether the work is done by the API in software or processed on dedicated

rendering hardware is irrelevant to this discussion.)

Allow for a moment a gross oversimplification. The data in most of the common vertex for-

mats can be put into one of three categories:

� Position. This describes the location of the vertex. This can be a 3D vector or a 2D screen

space position with depth information. If a 3D vector is used, the position must be trans-

formed into screen space using the current modeling and view transforms. Another advanced

technique used in skeletal animation is known as skinning, where the position of a vertex is

animated using one or more bones.

� Lighting and fog. For rendering, we usually assign a color to each vertex. This color is then

interpolated across the surface of the triangle. We may specify this color ourselves, or we can

let the API compute an appropriate lighting value. If the API does the lighting, then we usu-

ally must supply a surface normal per vertex. (For more on lighting computations, see Section

15.8.) In any case, a “color” is usually an RGB triple and an alpha value. If we specify the

color directly, we may use a 32-bit ARGB value, with 8 bits for each component. Or, we may

use a separate value for each component. If we are using hardware fogging, then a “fog den-

sity” value can also be associated with each vertex. Once again, we may specify this value

manually, or we can let the API compute it for us. (For more on fogging, see Section 15.4.9.)

� Texture mapping coordinates. If we are using texture-mapped triangles, then each vertex

must be assigned a set of mapping coordinates. In the simplest case, this is a 2D location into

the texture map. We usually denote the coordinates (u, v). If we are using multi-texturing, then

we will need one set of mapping coordinates per texture map. Optionally, we can generate one

or more set of texture mapping coordinates procedurally (if we are projecting a light onto a

surface, for example). Or, we may “procedurally” copy one set of mapping coordinates to

another. In this case, we may not need to specify all (or any) of the mapping coordinates.

As mentioned before, this is a gross oversimplification, but it does cover the most common vertex

formats used in practice. In short, there is no one single format that is used to submit vertex data. In

fact, there are so many variations, DirectX has the notion of a flexible vertex format which allows

you to “roll your own” vertex format, putting in whatever information you need in whatever order

is most convenient for your application.

With all that in mind, let’s give a few examples of C++ structs that would be used to deliver

vertex data for a few of the most common vertex formats that arise in practice.

One of the most common vertex formats contains a 3D position, surface normal, and mapping

coordinates. Most static texture-mapped meshes that we wish to be lit by the API use this vertex

format.

// Untransformed, unlit vertex

struct RenderVertex {
Vector3 p; // position
Vector3 n; // normal
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float u,v; // texture mapping coordinates
};

Another common format, used for heads-up displays and other “2D” items, is a vertex with screen

space coordinates and prelit vertices. Although the data is “2D,” we often must supply some sort

of depth information.

// Transformed and lit vertex

struct RenderVertexTL {
Vector3 p; // screen space position and depth
float w; // 1/z
unsigned argb; // prelit diffuse color (8 bits per component – 0xAARRGGBB)
unsigned spec; // prelit specular color
float u,v; // texture mapping coordinates

};

One final example is a vertex that is expressed in 3D, but does not need to be lit by the graphics

API’s lighting engine. This format is often useful for special effects such as explosions, flames,

and self-illuminated objects, and for rendering “debugging objects” like bounding boxes,

waypoints, markers, etc.

// Untransformed, lit vertex

struct RenderVertexL {
Vector3 p; // position
unsigned argb; // prelit color (8 bits per component – 0xAARRGGBB)
unsigned spec; // prelit specular color
float u,v; // texture mapping coordinates

};

15.8 Transformation and Lighting
After mesh data has been submitted to the API, transformation and lighting occurs. (The abbrevi-

ation T&L is often used.) This stage of the pipeline actually refers to a wide range of vertex-level

computations. Basically, any vertex-level computation can be performed during the T&L stage,

but the most common operations are:

� Object-space vertex positions are transformed into clip space.

� Lighting values are computed using the current lighting settings and a vertex surface normal.

� Vertex-level fog density is computed from the vertex position.

� Texture mapping coordinates are generated procedurally.

� In skeletal animation, skinning is performed to compute vertex positions.

Of course, depending on the rendering context and the type of data that was submitted, one or

more of these operations may not apply.

Modern APIs allow complete flexibility in the T&L stage. Beginning with version 8, DirectX

supports vertex shaders, which are essentially small programs that run on the graphics hardware.

These microcode programs operate on a single vertex, accepting practically any number of inputs

from the geometry delivery stage and producing any number of outputs to the clipper/rasterizer
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stage. Typical input values are those discussed in Section 15.7.2 — vertex positions and surface

normals in modeling space, prelit vertex colors, texture mapping coordinates, etc. Possible out-

puts are transformed vertex positions (in camera space or clip space), lighting values for Gouraud

shading, texture coordinates, fog density, etc. Often an input value is simply passed through the

vertex shader and mapped to the appropriate output value (texture mapping coordinates or

precomputed lighting values for example). Or, the vertex shader may perform calculations on the

input values to generate entirely new output values, like transformed vertex positions, fog density,

dynamic lighting, or procedurally generated texture mapping coordinates. (For more information,

see Direct3D ShaderX: Vertex and Pixel Shader Tips and Tricks from Wordware Publishing.)

15.8.1 Transformation to Clip Space
The transformation from modeling to clip space occurs via matrix multiplication. Conceptually,

the vertices undergo a sequence of transformations as follows:

� The model transform transforms from modeling space to world space.

� The view transform transforms from world space to camera space.

� The clip matrix is used to transform from camera space to clip space.

The matrix multiplications are as follows:

If you’ve been following along from the beginning, you’ve probably already guessed that in prac-

tice, we don’t actually perform three matrix multiplications. Under the hood, the matrices are

usually concatenated so that the transformation of a single vertex doesn’t actually take three vec-

tor-matrix multiplications. Depending on the design of the hardware and the implementation of

the lighting (more on this later), we may be able to concatenate all matrices into one or two matri-

ces. If we have low-level access to the T&L stage (i.e., a vertex shader), then we can control

exactly how the transformation occurs. If not, then we must trust the API to make these

optimizations.

15.8.2 Vertex Lighting
In Section 15.4, we described the theory behind surface illumination. At that time, we alluded to

the fact that the ideal situation would be to use Phong shading, interpolating surface normals

across the face of the triangle and applying the full lighting equation on a per-pixel basis. Unfortu-

nately, in practice we are forced to use Gouraud shading, computing lighting at the vertex level

and interpolating these results across the face of the triangle.

When lighting is computed at the vertex level, we can’t use the lighting equation as given in

Equation 15.14 directly. mdiff is usually not a vertex-level material property, since a texture map

usually defines this value. In order to make Equation 15.14 more suitable for use in an interpolated

lighting scheme, it must be manipulated to isolate mdiff. As we do this, we will also make the very

reasonable assumption that mamb is equal to mdiff.

378 Chapter 15: 3D Math for Graphics

TE
AM
FL
Y

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Team-Fly® 



With the lighting equation in this format, we can see how to use interpolated lighting values com-

puted at the vertex level. At each vertex, we will compute two values, vdiff and vspec. vdiff contains

the ambient and diffuse terms in Equation 15.16, and vspec contains the specular portion:

Each of these values is computed per vertex, and interpolated across the face of the triangle. Then,

per pixel, the lighting equation is applied:

As was mentioned earlier, mspec is usually a constant color, but it also can be defined using a gloss

map.

What coordinate space should be used for lighting computations? We could perform the light-

ing computations in world space. Vertex positions and normals would be transformed into world

space, lighting would be performed, and then the vertex positions would be transformed into clip

space. Or, we may transform the lights into modeling space and perform lighting computations in

modeling space. Since there are usually fewer lights than there are vertices, this results in fewer

overall vector-matrix multiplications. A third possibility is to perform the lighting computations

in camera space. If you are not accessing the T&L pipeline directly through a vertex shader, then

the API will make these decisions for you.
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Equation 15.16:
Rearranging the
standard lighting
equation to make
it more suitable
for vertex-level
lighting
computations

Equation 15.17:
Vertex-level
diffuse and
specular lighting
values

Equation 15.18:
Shading pixels
using
interpolated
lighting values



15.9 Backface Culling and Clipping
After vertices for a triangle have been transformed into clip space, we perform two important tests

on the triangle. (The order in which we discuss these tests is not necessarily the order in which they

will occur on a particular piece of hardware.)

15.9.1 Backface Culling
The first test is known as backface culling, and the purpose of the test is to reject triangles that

don’t face the camera. In standard closed meshes, we should never see a triangle from the back

side, unless we are allowed to go “inside” the mesh. Removal of the backfacing triangles is not

necessary — we could draw them and still generate a correct image, since they will be covered up

by a closer (front-facing) triangle. However, we don’t want to waste time drawing anything that

isn’t visible, so we usually want to cull backfaces, especially since, in theory, about half of the tri-

angles will be backfacing!

In practice, less than half of the triangles can be culled, especially in static scenery, which in

many cases is created without backfaces in the first place (one obvious example is a terrain sys-

tem). Certainly, we may be able to eliminate some backfacing triangles (for example, on the

backside of a hill), but in general most triangles will be frontfacing because we are usually above

the ground. However, for dynamic objects that move around in the world freely, roughly half of

the faces will be backfacing.

There are two tests we can use to detect a backfacing triangle. The first test we will discuss is a

3D test performed in clip space (or camera space) before clipping and projection. The basic idea is

to see if the eye position is on the front side of the triangle’s plane. This is shown in Figure 15.23,

in which the backfacing triangles that could be culled are drawn in gray. Notice that backface cull-

ing doesn’t depend on if a triangle is inside or outside the view frustum. In fact, it doesn’t depend

on the orientation of the camera at all; only the position of the camera relative to the triangle is

relevant.
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To perform a backface culling operation in 3D, we need the normal of the plane containing the tri-

angle and a vector from the eye to the triangle (any point on the triangle will do — usually we just

pick one vertex arbitrarily). If these two vectors point in basically the same direction (their dot

product is greater than zero), then the triangle is backfacing.

One tempting optimization trick that doesn’t work is to only use the z-component of the nor-

mal of the triangle in camera (or clip) space. It would seem that if the z value is positive, then the

triangle faces away from the camera and could be culled. This would be a speed-up because we

could avoid computing the rest of the normal and taking the dot product. Unfortunately, this trick

doesn’t work. An example of a case where it fails is circled in Figure 15.23.

The 3D backfacing culling test previously described was primarily used in the days of soft-

ware rendering when the triangle normal could be precomputed and stored with the triangles.

Today, the delivery of geometry to the hardware is a bottleneck, so any extraneous information is

removed from the data stream. On modern graphics hardware, backface culling is performed

based on clockwise or counterclockwise enumeration of vertices in screen space.

In this book, our convention is to order the vertices in a clockwise fashion around the triangle

when viewed from the front side. Thus, we will normally remove any triangle whose vertices are

ordered in a counterclockwise fashion on the screen. The API will let you control backface cull-

ing. You may want to turn backface culling off while rendering certain geometry. Or, if geometry

has been reflected, you may need to invert the culling since reflection flips the vertex order around

the faces.

15.9.2 Clipping
Even if a triangle is facing the camera, it may be partially or completely outside the view frustum

and not visible. Before we can project the vertices onto screen space, we must ensure that they are

completely inside the view frustum. This process is known as clipping. Since clipping is normally

performed by the hardware, we will only describe the process with cursory detail.

The standard algorithm for clipping polygons is the Sutherland-Hodgman algorithm. This

algorithm tackles the difficult problem of polygon clipping by breaking it down into a sequence of

easy problems. The input polygon is clipped against one plane at a time.

To clip a polygon against one plane, we iterate around the polygon, clipping each edge against

the plane in sequence. Each of the two vertices of the edge may be inside or outside the plane, so
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Figure 15.24: Backface culling of triangles with
vertices enumerated counterclockwise in screen
space



there are four cases. Each case may generate zero, one, or two output vertices, as shown in Figure

15.25.

Figure 15.26 shows an example of how we can apply these rules to clip a polygon against the right

clipping plane. Remember that the clipper outputs vertices, not edges. In Figure 15.26, the edges

are drawn only for illustration. In particular, the final clip step appears to output two edges when

actually only one vertex was output — the last edge is implicit to complete the polygon.
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Figure 15.25: Clipping a single edge – the four
cases

Figure 15.26: Clipping a polygon against the right
clip plane



At the end of each stage, if there are fewer than three vertices remaining, then the polygon is

rejected as being invisible. (Notice that it is impossible to output only one or two vertices. The

number of vertices output by any one pass will either be zero or at least three.)

Some graphics hardware does not clip polygons to all six planes in 3D (or 4D). Instead, only

the near clip is performed, and then 2D scissoring is used to clip to the window. We will discuss

scissoring in the next section.

15.10 Rasterization
After clipping, the vertices are projected and mapped into the screen coordinates of the output

window, according to Equation 15.6. Of course, these coordinates are floating-point coordinates,

which are “continuous” (see Section 2.1). We typically render pixels, which are discrete. So how

do we know which pixels actually get drawn? Devising an algorithm to answer this technique is

surprising complicated. If we answer wrong, then gaps can appear in between triangles. If we are

blending, then any overlap of adjacent triangles is noticeable. In other words, we must make sure

that when we render a surface represented using triangles, every pixel is rendered exactly once.

Luckily, the graphics hardware takes care of this for us and we don’t have to sweat the details.

While we don’t necessarily have to understand exactly how the graphics hardware decides

which pixels to render for a given triangle, we do need to understand how it determines what to do

with a single pixel. Conceptually, there are three basic steps.

� Shade. Pixel shading refers to the process of computing a color for a pixel. Usually, the pixel

is first lit and then fogged. See Section 15.8 for details. The output of a pixel shader consists

not only of an RGB color, but also an alpha value, which is often the “opacity” of the pixel,

used for blending (see below).

� Test. The second step is to test the pixel for rejection. There are three tests that are usually per-

formed. A scissor test rejects pixels that are outside the rendering window. (This test is not

necessary if we clip to all of the planes of the view frustum.) The depth test rejects pixels using

the depth buffer (see Section 15.5). The alpha test rejects pixels based on the alpha value of

the pixel. All sorts of different alpha tests can be used, but the most common one is to reject

pixels that are “too transparent.” (We do not want such pixels writing into the depth buffer.)

� Write. If the pixel passes the depth and alpha tests, then the frame buffer and depth buffers are

updated. The depth buffer is updated simply by replacing the old depth value with the new

one. The frame buffer update is more complicated. If blending is not used, then the new pixel

color replaces the old one. Otherwise, the new pixel color is blended with the old one, with the

relative contributions of the old and new colors controlled by the alpha value. Other mathe-

matical operations, such as addition, subtraction, and multiplication, are also often available,

depending on the graphics hardware.
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C h a p t e r 1 6

Visibility

Determination

Rendering a correct image requires visible surface determination, or VSD. The purpose of VSD is

to figure out which triangles should be drawn in the final rendered image and, perhaps more

importantly, which should not.

VSD occurs on several levels. In other words, some VSD techniques are able to reject one

pixel, one triangle, one object, one room containing many objects, one floor containing many

rooms, or an entire ten-story building. This section is concerned with all types of VSD above the

triangle and pixel level. Pixel-level VSD is handled using the depth buffer, which we discussed in

Section 15.5. Triangle-level VSD is accomplished during backface culling and clipping, which

were covered in Section 15.9. This chapter is concerned with the higher level visibility determina-

tion, that is, determining which objects are potentially visible. Before diving into the algorithms

that determine at a high level what might be visible, let’s examine what might cause a single trian-

gle or pixel to not be visible. There are two basic reasons this could happen:

� Any portion of a triangle outside the viewing frustum is not visible. (It is “off screen.”) A tri-

angle that is partially outside the viewing frustum is clipped to the viewing frustum, and the

portion that lies within the frustum is processed further. A triangle that lies completely outside
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This chapter covers visible surface determination. It is divided into six sections:

� Section 16.1 is on bounding volume tests. The main concepts are:

� Testing against the view frustum

� Testing for occlusion

� Section 16.2 introduces space partitioning techniques.

� Section 16.3 covers grid systems.

� Section 16.4 covers quadtrees and octrees.

� Section 16.5 covers BSP trees, both “old school” and “new school.”

� Section 16.6 covers occlusion culling techiques. The main concepts are:

� Potentially visible sets

� Portals



the viewing frustum is rejected and not processed further. In this case, the triangle is said to be

clipped out.

� A pixel may be obscured (or occluded) by another piece of geometry that is closer to the

camera.

Our goal at this stage in the pipeline is to apply these two principles in order to pass as few objects

as possible to the remaining stages. In other words, we begin with a working set of all the objects

in the entire scene, and we wish to remove from consideration as many of those objects as possi-

ble, as quickly as possible. There are numerous techniques for doing this. The remainder of this

chapter is devoted to a number of high- and mid-level VSD techniques.

16.1 Bounding Volume Tests
When we store the geometry of the world, we don’t typically store one huge triangle mesh.

Instead, the world is broken up into pieces. One very important reason for doing this is so we can

move these pieces around dynamically. Even for static geometry, such as columns and walls, it can

be beneficial for us to have our world divided up into a list of objects. In this way, we can perform

batch operations on groups of triangles, rather than processing each triangle individually. The

details of how the world should be divided into objects will vary depending on the application.

One of the most important benefits of breaking up our world into objects is so that during

VSD we can reject entire objects at once using a bounding volume of the object. The bounding vol-

ume is usually a box (either axially aligned or oriented — see Section 12.4) or a sphere (see

Section 12.3) because these objects have simple mathematical representations and are easy to

manipulate. However, the bounding volume may itself be a triangle mesh. Of course, the bound-

ing mesh should be much simpler than the geometry it bounds; otherwise, it is just as expensive to

manipulate the bounding volume as it is to manipulate the geometry inside. Depending on the situ-

ation, it may be more important to have a tighter bounding volume or to have a bounding volume

that is more easily manipulated and tested. Spheres are the most easily manipulated, but for many

objects, spheres do not provide a very tight bounding volume. Arbitrary triangle mesh bounding

volumes can provide the tightest bounding volume, but they are the toughest to manipulate. Boxes

are the best compromise in many cases, having good worst-case performance as a tight bounding

volume but also being easy to manipulate.

Whatever type of bounding volume is used, the basic idea is that if we can determine that the

entire bounding volume is completely invisible, then all of the triangles are invisible as well and

do not need to be considered individually. For all but the most trivial scenes, using bounding vol-

umes for rejection is a great optimization compared to rendering every triangle in the scene. These

types of “mid-level” VSD techniques are also relatively easy to implement.

Recall that there are two reasons that a triangle or pixel is not visible: it is off screen or it is

occluded by closer geometry. We can apply these same principles to bounding volumes. If the

bounding volume is completely off screen, then all of the triangles are off screen as well. If the

entire bounding volume is occluded, then the triangles inside are occluded as well. Making the
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first determination is usually much easier than making the second determination — this will be a

recurring theme in the pages to come.

The next subsection discusses how to determine if a bounding volume is invisible. Notice that

if the bounding volume is invisible, then the triangles are invisible, but the converse is not neces-

sarily true. It is possible for us to determine that the bounding volume is visible, when in fact none

of the triangles inside are actually visible. So bounding volume tests either determine that the

enclosed geometry is definitely not visible or is potentially visible. We usually can’t tell conclu-

sively that the geometry inside is definitely visible.

16.1.1 Testing Against the View Frustum
Testing a bounding box (either axially aligned or oriented) against the view frustum is relatively

simple. The basic idea is to test the eight corner points of the box against the six clip planes. If all

of the points are on the “outside” of one or more of the clip planes (for example, if they are above

the top clip plane), then the box is obviously not visible and can be rejected. For example, in Fig-

ure 16.1, the box on the lower left can be rejected because it is completely outside the left clip

plane.

Notice, however, that even though the box in the upper right is completely outside the view

frustum, it is not outside any one clipping plane. These situations are more difficult to detect, but

luckily they are also far less frequent. We will discuss how to handle these situations (and if we

should even worry about them!) later in this section.

One of the easiest ways to determine if a box is completely outside a clip plane is to use the

clip matrix (see Section 15.3.3). We transform the eight corner points into clip space and then

check the points against each of the six planes. (Because of the nature of clip space, these tests are

trivial — that’s the whole purpose of having clip space!) A handy trick for keeping track of which

points are outside which planes is to use a bitfield. This practice is known as coding the points. The

basic idea is to compute, for a single point, an integer value, known as an outcode, that has certain
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bits turned on corresponding to the clip planes that the point is outside. For example, we might

assign each clip plane to a bit, as shown in Figure 16.2.

Clip Plane Point is outside if Bit Mask Value

Left x < –w 0 0x01

Right x > w 1 0x02

Bottom y < –w 2 0x04

Top y > w 3 0x08

Near z < –w 4 0x10

Far z > w 5 0x20

Notice that we are using an OpenGL-style clip matrix here, which maps the near and far clip

planes to z values from –w to w, instead of 0 to w. A Direct3D-style clip matrix would be slightly

different. Also, the assignment of planes to bits is arbitrary; it doesn’t really matter which planes

are matched up to which bits.

We compute an outcode for a particular point as follows. First, we start with zero, which

assumes that the point is inside the viewing frustum. After transforming the point into clip space,

we perform the six tests in the second column of Figure 16.2. If the point is outside a given plane,

we turn on the corresponding bit. The following code snippet illustrates the concept, although it is

not a good example of how to do this efficiently:

Listing 16.1: Computing an outcode for a point in clip space

// Compute an outcode for a point in clip space

int computeOutCode(float x, float y, float z, float w) {

// Start with an outcode of 0, assuming the point is in the frustum

int code = 0;

// Check each of the six planes, and turn on the bit
// if we detect the point is outside the plane

if (x < –w) code |= 0x01; // left
if (x > w) code |= 0x02; // right
if (y < –w) code |= 0x04; // bottom
if (y > w) code |= 0x08; // top
if (z < –w) code |= 0x10; // near
if (z > w) code |= 0x20; // far
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// Return it

return code;
}

The great thing about outcodes is that they can easily be manipulated using bit-wise AND and OR

operations. If the logical AND of all of the outcodes for the eight vertices is nonzero, then the

bounding volume is definitely off screen. Many platforms have a special instruction to compute

the outcode for a point in clip space, performing all the work in Listing 16.1 in a single assembly

instruction.

Also, if the logical OR of the outcode is zero, then all points are inside the view frustum, and

we have a trivial accept. In this case, we know that none of the triangles inside the bounding vol-

ume will need to be clipped, and so we can bypass that stage of the pipeline. This can be a

significant speed-up on many platforms. In practice, a minority of objects will need to be clipped,

as most objects will either be completely inside the view frustum or completely outside.

As we mentioned earlier, the coding procedure does not reject all bounding boxes that are

completely outside the view frustum; it only rejects those that are completely outside at least one

plane. Some boxes will be outside the view frustum, but they will not be entirely on the outside of

any given clip plane. For example, the bounding box in the upper right of Figure 16.1 crosses the

right and far clip planes.

Fortunately, situations like this occur seldomly, although in 3D it can happen more frequently

than in simplified diagrams in 2D. Still, in any given scene, there will usually only be a few patho-

logical objects like this. We can deal with these cases by clipping the individual faces of the box to

the view frustum, using the polygon clipping techniques we learned in Section 15.9. If all of the

faces are clipped, then the bounding volume is not visible. If any face of the bounding volume is

partially inside the view frustum, then the geometry inside is potentially visible.

The question becomes, should we even bother trying to detect these cases, or should we just

render it? Clipping faces in software is relatively slow, and usually it must be done on the main

CPU. Depending on the density of the geometry inside the bounding box, and the relative speed of

the CPU and graphics processor, it may actually take less time to submit the geometry to be ren-

dered, letting the API and graphics hardware deal with it, than it would be to figure out that it’s not

visible! Also, if we determine that the bounding volume is visible, we have wasted the time mak-

ing this determination. Whether it is faster to be “smart” and handle these special cases in

software, or to use the brute force of the graphics hardware, will depend on the platform and the

application.

Testing a bounding sphere against the view frustum is not as easy as it might seem because the

non-uniform scale applied for field-of-view makes the sphere become an ellipsoid when trans-

formed into clip space. To circumvent this problem, we express the six planes of the view frustum

in world space. Then, we test if the sphere is completely on the outside of these planes using tech-

niques from Section 13.15. For more on testing spheres against the view frustum, see [16].
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16.1.2 Testing for Occlusion
In general, it is very difficult to determine if a particular bounding volume is occluded by other

geometry. One technique is to “render” the bounding volume, testing it against the z-buffer. We

rasterize the faces of the bounding volume, but instead of actually rendering pixels, we merely

check to see if any of the pixels are visible. This technique is called z-checking.

Z-checking is a great idea in theory. The problem is that z-checking requires direct access to

the depth buffer. If we are hardware rendering, then this is troublesome. Different graphics cards

may store the depth information in a proprietary format. The access is often very slow — about

twice as slow as accessing main system RAM, or slower.

Some hardware is capable of performing z-checks for us. Even in this case, we still have a

problem of pipelining. The graphics processor and main CPU usually work in parallel. For best

performance, we must keep both processors as busy as possible; if either is idle for any period of

time, then we are not getting the best performance. Whenever we need to perform a z-check, the

hardware may be a bit backed up with previous requests. (Usually, this is a good thing, since it

means that both processors are busy.) Unfortunately, we need the result of this test immediately so

that we can decide whether or not to render what’s inside the bounding volume. So we must wait

for the graphics processor to catch up and finish rendering what has been submitted so far so it can

perform our test and return the result. Meanwhile, the main CPU is idle. What’s worse, we may

wind up having to render what’s inside the box anyway, in which case we have wasted this time

trying to figure out if it’s visible or not.

The bottom line is that on today’s hardware, efficiently detecting if a bounding volume is

occluded using z-checks requires extremely careful coordination between the graphics processor

and main CPU if pipeline stalls are to be avoided. The test itself is relatively expensive, and it is

difficult to even communicate the result efficiently.

Testing bounding volumes on an “ad hoc” basis to see if they are off screen is relatively easy.

Whether or not a particular object is on screen or off screen only depends on the camera and that

one object; the other objects are irrelevant. Unfortunately, occlusion testing for an object is inher-

ently more complicated, because it does depend on the other objects in the scene. For this reason,

efficient occlusion testing for real-time rendering requires a more high-level and systematic

approach to VSD. We will discuss two such techniques in Section 16.6.

16.2 Space Partitioning Techniques
We have stated that bounding volume techniques in the previous section are “mid-level” VSD

algorithms. In this section, we will discuss more “high-level” VSD algorithms, which can occlude

even larger amounts of data at once. The basic idea is to not only divide the scene into objects, but

to partition the 3D space of the world.

Before we begin, let’s first establish why we even need higher level VSD algorithms. After

all, using bounding volumes already enables us to render only a fraction of the triangles in the

world. Unfortunately, in virtual worlds of any complexity, this is not good enough. The basic prob-

lem is that even though we don’t render every object, we still have to process every object. That is,
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we still have to decide if it is visible or not. If there are many objects, then even making the deter-

mination not to render anything can be too slow. For example, let’s say we have 10,000 objects in

our scene. Depending on the speed of the main CPU and the memory architecture, we may not

even be able to traverse a list of 10,000 items fast enough to maintain our desired frame rate!

In order to deal with scenes of this magnitude, we must take the idea of “group rejection” to

the next level — we must be able to reject entire groups of objects at once. How many objects

should be in a group? If there are too many objects per group, then a group may be too big and we

may not be able to reject it often enough. If there are too few objects per group, then there will be

too many groups, and we have only reduced the problem but not eliminated it. To solve this prob-

lem, we must use “groups of groups” and “groups of groups of groups.” In other words, we must

establish a hierarchy of objects.

For example, imagine one city block. There are many buildings in this city block. Each build-

ing has several floors. Each floor has several rooms. Each room has several objects. If we can

reject an entire building at once, then we don’t have to check each floor within the building. If we

can reject an entire floor at once, then we don’t have to check each room on that floor.

This type of hierarchy is a logical one: we know there is a hierarchy because we know about

buildings and floors and rooms. However, it is difficult for a computer to deduce this type of logi-

cal hierarchy without a human’s help.

Another way to establish a hierarchy is to use a geometric partitioning rather than a logical

one. For example, we will partition the volume of 3D space using planes and boxes. Of course, it

would be best if this partitioning was also sensitive to the organization of the scene, but as we will

see, this is not strictly necessary. We will see that computers are better at this type of partitioning.

Whatever type of hierarchy is used, the idea is to determine what’s visible in logarithmic time,

rather than linear time. Without a hierarchy, if we double the number of objects, then the time

needed to determine what’s visible would double; this is linear time. Using a hierarchy, doubling

the number of objects increases the time needed for VSD by a constant.

Just for illustration, let’s say that we have two algorithms for VSD, one that runs in linear time

and the other that runs in logarithmic time. Let’s say that for a scene with 1,000 objects, it takes

both algorithms 2ms to compute VSD. If we doubled that number to 2,000 objects, then a linear

time VSD algorithm would take 4ms. A logarithmic one might take 3ms. Let’s double it again to

4,000 objects. Now the linear time algorithm takes 8ms, compared to 4 for the logarithmic algo-

rithm. When the number of objects gets very large, the logarithmic algorithm is orders of

magnitude faster than the linear one. For example, a scene with 128,000 objects would take

256ms, which means we could not possibly render them faster than four frames per second. The

logarithmic algorithm would take around 9ms, which is over 100Hz.

Of course, we are neglecting the time to actually render the scene, and these numbers are

purely fictional, but you get the idea. Also, the time needed for VSD depends on many different

factors, not just the number of objects. The algorithms in this section do have logarithmic charac-

teristics, but the example above where doubling the number of objects always increased VSD time

by the same amount was a bit oversimplified.
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16.3 Grid Systems
One of the simplest ways to partition space is to use a 2D or 3D grid. 2D grids work well for more

“outdoor” environments, and 3D grids are better suited to more “vertical” environments such as

multistory buildings. Let’s say we wish to store the city of Cartesia using a grid system. We might

decide to use one grid square per city block, with the grid lines running down the center of the

streets. Each building could be assigned to a grid square. (There may be more than one building in

the same grid square, of course.) When it came time to render the scene, we could determine which

grid squares were visible and then we would only need to render the buildings within those grid

squares.

How would we know which grid squares are visible? One trick is to compute the axially

aligned bounding box of the view frustum and then determine which grid squares intersect this

bounding box. This is shown in Figure 16.3. Notice that no matter how big our city is, or how

many objects are in it, the amount of time it takes to determine which grid cells to render is con-

stant. This is even better than logarithmic time! (Unfortunately, as we will see later, grid systems

do have their downsides.)

You might have noticed that some of the grid squares labeled “Grid squares to be rendered” in Fig-

ure 16.3 are not actually inside the frustum. We can easily reject those using the bounding volume

tests from Section 16.1.

So, a grid system gives us a very elegant way to cull the render set quickly. We know how to

determine which grid cells are visible. All we have to do is go through each grid cell and render the

objects in that cell. This works for static or dynamic geometry. Of course, each grid cell must con-

tain a list of objects that are in that cell — a technique known as pigeonholing. If we have dynamic

objects that move around in the world, then we must constantly maintain these lists, but usually

this is not a problem. Using a linked list ensures that the storage for each grid cell is constant,
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regardless of the number of objects in the cell. Only the “head” link is stored in the cell, and the

rest of the list data is contained in the objects themselves.

What do we do with objects that don’t fit entirely within a single grid cell? Obviously, in any

useful world, there will be a significant minority of objects that span grid lines. What do we do

with these objects? If the objects are static, we may cut them on grid line boundaries so that this

doesn’t happen. This cutting would obviously happen in a preprocessing step. But what about

dynamic objects? We probably can’t afford the time to cut these objects up in real time.

One solution is to allow an object to be in more than one grid cell. Then we would need to

keep track of all the grid cells that an object is in. This can be tricky and makes using linked lists

impossible, since an item in a linked list can only be in one list at a time.

Another solution is to assign the object to the nearest grid cell. If all of our objects are smaller

than one grid cell (a constraint that can be acceptable in many situations), then we just expand our

list of potential visible grid cells slightly, taking into consideration that any objects in that grid cell

may actually extend into the adjacent grid cells.

How big should we make our grid cells? This is a difficult decision. If we make our cells too

small, then the overhead of processing the grid may be too high. Storage for the grid is quadratic in

2D and cubic in 3D, so memory may be a serious consideration. If we make them too big, then we

may not be subdividing fine enough and we may not get good enough trivial rejection.

The basic problem with grid systems is that they are inflexible. The grid divides up space reg-

ularly, regardless of the complexity of the underlying geometry. Grid lines don’t necessarily

separate rooms from one another unless the walls happen to fall precisely on a grid boundary —

something that rarely happens. The number of grid cells per square foot assigned to an airport run-

way is the same as the number of grid cells per square foot assigned to the airport terminal, even

though the terminal obviously has far greater scene complexity and would benefit from finer sub-

division. In the next few sections, we will learn some techniques that are more adaptable to the

geometry of the scene.

16.4 Quadtrees and Octrees
We have seen that a simple grid system divides up space regularly, regardless of the complexity of

the underlying geometry. Choosing one single grid size is difficult because it will always be too

big for densely populated areas and too small for sparsely populated areas. In addition, dealing

with objects that span multiple grid cells is difficult.

These problems can be avoided by subdividing space adaptively, that is, by making the

subdivision only where it needs to be fine. In 2D, a quadtree is used. The 3D version is an octree.

Both are tree structures consisting of a hierarchy of nodes. We will focus on quadtrees since they

are easier to understand and make illustrations for. Octrees extend the idea into 3D in a straightfor-

ward manner.

In a quadtree, we begin with a single root node that covers the entire scene. This node is then

divided into four non-overlapping child nodes. Each of these nodes is then further subdivided into

four children, etc. This idea is shown in Figure 16.4:
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Quadtree diagrams can become confusing because each node overlaps and shares borders with its

parent node. We have made the higher level boundary lines thicker.

Once we have subdivided space with our quadtree, we can then assign the objects of the world

to nodes in the tree. Here’s where the “tree” part of quadtree really comes in. To place an object in

the quadtree, we start at the root node. If the object is wholly contained by one of the children, then

we go down into that child. We continue drilling down the tree as long as the object is contained

wholly by a child node or until we reach a leaf node. If an object spans either of the two separating

planes, then we must stop our descent and assign the object to the node at that level. Figure 16.5

shows how the buildings would be inserted into the quadtree:

In Figure 16.4, we subdivided evenly, down to the third level. In other words, we have a complete

tree; all the leaf nodes are at the same level. However, this is not necessary. (We just did it to keep

the example simple.) Sometimes one node may be sufficiently granular and does not require fur-

ther subdivision. How do we know when a node is subdivided enough? Heuristics for making this

decision vary, but generally we will not subdivide further if any of the following are true:

� The number of objects or triangles in the node is low enough that further subdivision would

not be beneficial.
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� The dimensions of the node itself are too small for further subdivision. Of course, there’s no

reason we couldn’t subdivide a small node into even smaller pieces, but we may just want to

prevent our nodes from going below a certain size.

� We have reached the maximum depth in our tree. For example, we may decide to only allow

subdivision to the fifth level. Depending on how we represent our quadtree in memory, this

may be necessary.

By only subdividing where necessary, quadtrees can be more adaptive to the underlying geometry.

This is one of its advantages over simple grid systems. Figure 16.6 shows how the quadtree in our

example might have been subdivided adaptively:

Another arbitrary simplification we have made so far is to always divide a node into four equal

pieces. This is not strictly necessary, either. We can attempt to place the dividing planes within a

node adaptively (choosing the location of the dividing planes so that roughly one-quarter of the

geometry ends up in each quadrant, for example). This tends to result in a more balanced (and pos-

sibly smaller) tree, but tree construction is significantly complicated.

Once we have assigned objects to nodes in the quadtree, we have a powerful tool for locating

objects within a certain radius of a given point, or for culling objects for rendering or collision

detection. In each case, the basic idea is that if we can reject a node at one level, then all of its chil-

dren (and their children, etc.) can be rejected at once. Let’s look at an example. Imagine we wish to

perform a ray intersection test with the world. A simple, recursive procedure will cull the set of

objects under consideration rapidly. Listing 16.2 illustrates this:

Listing 16.2: Raytracing a quadtree

// Let’s assume an object in our world has at least the following functionality

class Object {
public:

// Perform raytrace operation and update minT if a
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// closer intersection is detected

void raytrace(Vector3 rayOrg, Vector3 rayDelta, float &minT);

// Pointer to next object in the same quadtree node as me

Object *next;
};

// An oversimplified class to store a quadtree node

class Node {
public:

// Pointers to our children. Either we will have all four children,
// or we are a leaf and all four pointers are NULL

Node *nw, *ne, *sw, *se;

// To keep the examples simple, we are storing the
// 2D bounds of the node here, even though we
// could compute them during traversal.

float xMin, xMax;
float zMin, zMax;

float xCenter() const { return (xMin + xMax) * 0.5f; }
float zCenter() const { return (zMin + zMax) * 0.5f; }

// Linked list of objects in this node

Object *firstObject;
};

// We will need one global pointer to store the root

Node *root;

// Recursive procedure to raytrace a quadtree. The value of mint is the
// parametric point of the closest intersection detected so far

void Node::raytrace(Vector3 rayOrg, Vector3 rayDelta, float &minT) {

// Check if the ray intersects my bounding box. Notice that this
// takes into consideration the closest intersection already found
// so far

if (!rayIntersectsBoundingBox(rayOrg, rayDelta, minT)) {

// Trivial reject me and all my descendants

return;
}

// Raytrace all the objects in this node

for (Object *objPtr = firstObject ; objPtr != NULL ; objPtr = objPtr->next) {
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// Raytrace the object. minT is updated if a
// closer intersection is found

objPtr->rayTrace(rayOrg, rayDelta);
}

// Check if I’m a leaf, then terminate recursion

if (nw == NULL) {
return;

}

// Check which child the ray starts in.

if (rayOrg.x < xCenter()) {
if (rayOrg.z < zCenter()) {

// Start in southwest child

sw->rayTrace(rayOrg, rayDelta, minT);
se->rayTrace(rayOrg, rayDelta, minT);
nw->rayTrace(rayOrg, rayDelta, minT);
ne->rayTrace(rayOrg, rayDelta, minT);

} else {

// Start in northwest child

nw->rayTrace(rayOrg, rayDelta, minT);
ne->rayTrace(rayOrg, rayDelta, minT);
sw->rayTrace(rayOrg, rayDelta, minT);
se->rayTrace(rayOrg, rayDelta, minT);

}
} else {

if (rayOrg.z < zCenter()) {

// Start in southeast child

se->rayTrace(rayOrg, rayDelta, minT);
sw->rayTrace(rayOrg, rayDelta, minT);
ne->rayTrace(rayOrg, rayDelta, minT);
nw->rayTrace(rayOrg, rayDelta, minT);

} else {

// Start in northeast child

ne->rayTrace(rayOrg, rayDelta, minT);
nw->rayTrace(rayOrg, rayDelta, minT);
se->rayTrace(rayOrg, rayDelta, minT);
sw->rayTrace(rayOrg, rayDelta, minT);

}
}

}

// Function to raytrace the world. Returns parametric point of intersection,
// or 1.0 if no intersection detected
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float rayTraceWorld(Vector3 rayOrg, Vector3 rayDelta) {
float minT = 1.0;
root->rayTrace(rayOrg, rayDelta, minT);
return minT;

}

Notice that at each level we recurse into our children in a different order, depending on which child

contains the ray origin. The effect of this is that nodes are visited in the order that they are inter-

sected by the ray. This is an important optimization. How? When we check if the ray intersects the

bounding box of the node, we take into consideration the closest intersection found so far. In other

words, the ray must not only intersect the node, but it must intersect the node earlier than the clos-

est intersection already found. Thus, as soon as an intersection is detected, we can “chop off” the

ray and only process nodes from that point forward if they intersect the “shortened” ray. (Imagine

we are firing a gun at a wall six feet away, using a 500ft long ray to detect where the bullet will hit

the world.) For maximum benefit, we must detect intersections as early as possible, and we must

visit the nodes in the order that they are intersected by the ray.

As you have probably already guessed, quadtrees work best when we are able to push objects

as far down the tree as possible, since that will allow for the best rejection. Unfortunately, objects

near the center of nodes tend to get “stuck” higher up in the tree. Hopefully, this is a small percent-

age of the objects. If your objects are relatively large compared to the size of your world (which is

the case in our example in Figure 16.4), then this percentage will be higher.

Loose quadtrees can be used to try to avoid this problem by using expanded nodes that overlap

their neighbors, usually at the expense of having to process more nodes. We will not use loose

quadtrees or octrees, but for further reading, see [25].

It is important to note that for static geometry we can avoid this problem entirely by slicing the

geometry of the world on quadtree boundaries, and every piece of geometry will then be assigned

to a leaf node. For dynamic objects, this is not possible, however.

16.5 BSP Trees
BSP stands for binary space partition tree. As you can probably tell by the name, a BSP is a tree

structure where each node has two children. The children are separated by a dividing plane. In a

quadtree or octree, the separating planes are always axially aligned. In a BSP, this is not necessary

— we may use planes that are arbitrarily oriented. Of course, we can use axially aligned planes,

and in fact, any quadtree or octree can be represented by a corresponding BSP. Of course, a BSP

would likely take more data than a corresponding octree because there is a great deal of data that is

implicit in an octree (such as the orientation of the planes) that must be stored explicitly in a BSP.
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An example of a BSP is shown in Figure 16.7. The thicker lines represent planes that are higher in

the tree. To better illustrate this tree structure, Figure 16.8 shows the same BSP with the nodes

labeled alongside the actual tree structure.

In this figure, we do not have a way to decide which child is which. In practice, we usually keep

track of the “front” and “back” children of the dividing plane. The direction of the plane normal

decides which is which.

We have chosen to label the interior nodes with numbers and the leaf nodes with letters, but it

is important to understand that each node represents an area of space, even the interior nodes. Just

like a quadtree, a node overlaps its parent and children. For example, node 1 (the root node)
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actually represents all of the space in the scene. In Figure 16.9, the space represented by node 7 has

been shaded.

A BSP is used in much the same way that the trees were traversed in the previous section. We store

objects in the BSP tree as far down in the tree as possible. To process objects in the tree, we begin

at the root node and process all the objects in that node. Then we must decide if our area of interest

(for rendering, collision detection, etc.) lies entirely on one side of the dividing plane or the other.

If we are only interested in the volume of space on one side of the dividing plane, then we can

reject the entire branch on the other side. If our area of interest spans the dividing plane, then both

children need to be processed.

Using BPS trees once they have been constructed is relatively easy. The trick is deciding

where to place the dividing planes. We have considerably more flexibility than we did with

quadtrees or octrees.

16.5.1 “Old School” BSPs
One strategy for creating a BSP from a triangle mesh is to use the triangles themselves as dividing

planes. Each node in the BSP tree contains one triangle. (We may also store a group of triangles at

each node that all lie in the same plane, but we will not consider that technique here.) To build a

BSP from a group of triangles, we pick a triangle to be the “root.” This triangle defines the divid-

ing plane for that node. We then separate the rest of the triangles into two batches. One batch lies

entirely on the front side of the dividing plane, and the other batch lies entirely on the back side of

the dividing plane. The same algorithm is then applied to each of these two batches recursively.

What do we do with triangles that span the dividing plane? These triangles must be split along the

dividing plane. Of course, this increases the number of triangles, and so these splits are to be

avoided whenever possible. The trick to building a good BSP tree is to be smart when choosing the

root triangle. We have two goals we wish to achieve when selecting a root triangle:
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� We wish to minimize the number of split triangles.

� We wish to balance the tree as much as possible.

As it turns out, finding the optimal BSP is an extremely difficult problem. Merely selecting the

best root triangle at each level doesn’t guarantee the optimum BSP, since decisions made at one

level can affect what will happen at lower levels. In order to find the absolute best BSP, we must

basically try out every triangle as the root at every level. This requires factorial running time and is

not feasible even for very small BSPs.

In practice, however, good results can be obtained simply by selecting the best root at each

level. In fact, a reasonably good tree can be built much more quickly by selecting the root at ran-

dom. This avoids poor worst-case performance, which does occur frequently in practice because

the triangles are usually delivered in an order that has a great deal of structure.

16.5.2 Arbitrary Dividing Planes
The method of storing a triangle mesh described in the previous section can give good results for

collision detection. However, it is not advisable for rendering. The reason is that we typically sub-

mit batches of triangles to the graphics hardware. This becomes difficult, if not impossible, when

the world is broken down in a BSP to the triangle level. As we’ve seen before, there is a point of

diminishing returns where it becomes faster to just submit something to be rendered than it is to

figure out if it is visible or not. A better strategy for rendering is to use arbitrary planes (not neces-

sarily those planes defined by the triangles themselves) and construct a BSP that divides the world

down to the object level. During this process, static objects spanning the dividing plane can either

be split or placed in the BSP at a higher level. Using this approach, we get the logarithmic culling

power of the BSP, but we still are able to submit batches of triangles to the graphics hardware.

If we don’t use the triangles as dividing planes, then what do we use? A full discussion is

beyond the scope of this book, but one trick that works reasonably well in practice is as follows.

First, we generate a list of potential plane normals. (Basically, this is a list of planes, although

in this case only the orientation of the plane matters, not the position, which is determined by the d

value of the plane equation.) We will construct our BSP using only planes that have normals in this

set. We can start with all the axially aligned planes and throw in all the 45 degree variations, etc.

For many scenes, just this limited set of planes may be enough to work reasonably well. However,

we can also give ourselves more options by constructing optimal oriented bounding boxes for all

the objects in the world and adding in the normals of the faces of these bounding boxes. This will

give us a good working set of planes that is in some way influenced by the actual geometry for

which we are building a BSP.

When constructing our list of potential planes, we can throw out “duplicates.” For example, if

two normals are facing the exact opposite direction, then we only need one of them, since they will

divide the world up in the same way; it usually doesn’t matter which sides are considered the

“front” and “back.” We can also discard a normal if there is another normal in the list that points in

almost exactly the same direction.

Once we have a working set of plane normals, we select a root plane: for each normal in our

set of potential plane normals, we find the d value which “best” divides the world using that plane.

Of course, there are an infinite number of d values we could choose, but we only need to check a
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small subset of them. For any given object, there is a certain point where the object is completely

on the front side of the plane, but just touching the surface of the plane. There is another d value for

which the object is on the back side of the plane, but just touching the plane. We can find these

“event points” by scanning the vertices of the object and taking the dot product of the vertex posi-

tion with the normal, resulting in a d value. The minimum and maximum d values are the event

points. Luckily, these event points can be located in a preprocessing step before we begin building

the BSP. Once they are computed, they will not change during the BSP generation process unless

we chose to split an object on a dividing plane. To find the “best” d value for a particular normal,

we will usually use some type of scoring heuristic — a number that is bigger when the choice of d

value is “better” and smaller when the choice of d value is “worse.” Obviously, splitting objects

would lower the score, and balancing the tree would raise the score. Devising a scoring formula

that balances these two goals is a bit of an art.

Scanning all event points for all potential normals, we find the plane (normal and d value) that

has the best score. This is the plane that we use as our dividing plane. We divide the world into two

groups using this plane, and then we recursively apply the procedure to the two groups. As we

mentioned earlier, we can handle objects that span the dividing plane either by cutting the object

along the dividing plane or storing it higher up in the BSP. If we split the object, then we will need

to compute a new “event point” list for each half for each potential plane normal.

16.6 Occlusion Culling Techniques
Tree structures are effective at culling the data set in logarithmic time. However, using standard

tree traversals, we only are able to cull nodes known to be out of the view frustum. We do not get

any culling based on occlusion. In this section, we present two techniques that can be used to per-

form occlusion culling — potentially visible sets and portal rendering. Both techniques are

usually used in conjunction with some sort of space partitioning technique, and the two can be

used together.

In general, occlusion techniques work best in indoor environments where walls completely

obscure the view of what is outside the room you are in.

16.6.1 Potentially Visible Sets
It is very difficult to determine which objects occlude which other objects at run time. However,

there is a vast resource of processing power that we have available — preprocessing time. Instead

of trying to determine which objects occlude which other objects in real time, why don’t we try to

do it offline in advance? We store the results of these tests for use in real time. This is the idea of

potentially visible sets, or PVSs.

The basic idea is this. For each node in our world, we determine what could potentially be vis-

ible from anywhere in that node. By “node” we mean grid cell, quadtree node, or BSP node —

whichever space partitioning system is used. By “what is visible” we could mean which other

nodes are potentially visible and possibly even which objects are visible. The PVS for a node is the

list of all other nodes or objects that are visible from any point within the node. We don’t need to
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store the node itself (and the objects inside that node) in the PVS; those objects can be in the PVS

implicitly.

How do we create the PVS for a node? Doing this efficiently is difficult. An offline process

may take hours to determine the PVS for each node in the scene. As it turns out, creating a perfect

PVS is very difficult because different objects are visible from different positions and orienta-

tions. One kludge that works in practice is to select various vantage points in the node, perhaps at

regular intervals, and determine what is visible from those vantage points. How can we do this?

One trick is to simply render the scene without the PVS. Instead of writing colors to the frame

buffer, we can write object IDs, etc. Then we scan the frame buffer and figure out what is actually

visible. This is a simple way to perform occlusion culling. It’s slow, but it does work.

The system is not perfect because some node or object may be barely visible only from a very

specific location, and we may never test quite near enough to that specific location. In practice, it

works well enough. Other complications can arise, since not all vantage points within a node will

be used for rendering — the space between the walls for example. BSP nodes may be infinite.

Techniques for dealing with these complexities are outside the scope of this book.

16.6.2 Portal Techniques
Another technique for occlusion culling is to take advantage of the connectivity between “rooms.”

Examine Figure 16.10, which shows a floor plan of a typical apartment.

Imagine that the viewer is standing in Bedroom 1 and looking out through the bedroom doorway.

In Figure 16.10, the 3D view frustum has been outlined, and the area that is actually visible has

been shaded. Notice that from this vantage point, the viewer can see Bedroom 1 (the room in
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which he or she is standing), the hallway, and a nearby bath. Notice that these rooms are visible

through the bedroom doorway. Anything that is not visible through the doorway cannot be seen

any other way. Figure 16.11 shows what the viewer would actually see.

In computer graphics, the doorways are known as portals. We have made the portals slightly visi-

ble in Figure 16.11. To take advantage of portal visibility, we must divide our world into volumes

of space, known (not surprisingly) as rooms. We then make a graph out of the rooms. (If you don’t

remember what a graph is in computer science terms, the quick definition is that it’s a set of nodes

that are connected by edges.) In our graph, the nodes will represent the rooms, and the edges will

be the portals (doorways). Figure 16.12 shows how we could turn the apartment from Figure 16.10

into a graph.

Logically, a portal is an edge in the graph that connects two rooms. Geometrically, it is a polygon

in 3D space that fits in between the rooms. When we store our world, we take special note of the

3D coordinates of the vertices of this polygon. Notice that some rooms have portals between them

even though there isn’t a real “door” in the apartment.
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To render the scene using portal visibility, we first locate the room containing the viewpoint.

Let’s call this node V. Everything in V must be rendered. We then traverse the graph outward from

V, rendering each node as it is visited, provided it is visible through the portals corresponding to

the edges along the path to V. Likewise, we will only follow edges if the corresponding portal

polygon is visible through the portals on the path so far. Let’s see how this works for our earlier

example.

We start by rendering node V, which in this case is Bedroom 1. We then examine the edges

adjacent to V. In this case, there are two edges, one that leads into the hall and another that leads

into the closet. Let’s look at the doorway into the hall first. (We will use a depth-first graph tra-

versal, so we will completely investigate the portion of the graph accessible through the hallway

before returning to the closet. For now the closet is being “pushed onto the stack.”) We take the

polygon of the portal to the hall, clip it to the frustum and project it onto the screen, and take the 2D

bounding box of the screen space coordinates. This is illustrated in Figure 16.13.

For the rest of the traversal (except for the closet, which is still “on the stack”), anything that is to

be rendered must fall inside this bounding box in screen space. On the other side of this edge is the

hallway. We take the bounding volume of the hallway, project it onto screen space, and check if it

overlaps the box of the doorway. Yes, it does, so we render the hall.

From the hall, there are two adjacent portals (not counting the one we came from). One goes

into the living room, another into the bath. We project the portal polygon leading into the living

room onto screen space. This projection does not overlap our bounding box for the doorway

between Bedroom 1 and the hall. Thus, we do not follow the edge or traverse the graph into the liv-

ing room.

Backing up to the hall, we check the doorway to the bath. That doorway is visible, and so we

follow the edge to the bath node. This is shown in Figure 16.14.
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Next we check the bounding volume of Bath 1. It is visible, and so we render the objects in Bath 1.

Since there are no edges adjacent to the bath, we are finished with that node, and we have also

processed all edges adjacent to the hall. We now “pop the stack” all the way back up to return to the

closet. (In so doing, we remove from consideration the portal into the hallway.) The portal poly-

gon for the door into the closet is completely outside the view frustum. Thus, we do not follow the

edge or traverse the graph into the closet node.

Our graph traversal is now complete, and we have rendered a correct scene. This is the basic

idea behind portal visibility. Notice that we never even considered the living room, kitchen, dining

room, or adjacent closet, even though those rooms are partially within the view frustum. Without

occlusion culling, we would have had to render them.

There are several important items to note:

� Our example graph is a tree. In graph terms, this means that it does not contain cycles.

Another way of saying this is that for any two nodes, there is only one path between the nodes.

In other scenes, there may be some pairs of nodes for which there are multiple paths between

them. Care must be taken to process these situations correctly.

� Visibility through multiple portals is cumulative. That is, if the path from a node to V traverses

multiple edges (portals), then the node must be visible through all of the doorways. As we tra-

verse an edge, we intersect the bounding box of the doorway with the bounding box of any

previous doorway(s) to obtain the new screen space bounding box to be used for the remain-

der of the traversal in the branch.

� Portal visibility allows us to take advantage of doors that are closed. If a door is closed (and

we can’t see through it), then for purposes of visibility determination, the portal effectively

does not exist, and we can ignore the corresponding edge in the graph. Thus, we can dynami-

cally cull rooms on the other side of the door, depending on the current state of the door on any

given frame.
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C h a p t e r 1 7

Afterword

You have reached the end of the book. Where do you go from here? Well, if you’ve stayed with us

up to this point, then you probably understand enough to get started with some real code, and

you’re probably itching to put all this new knowledge to work, right? We’ve found that the best

way to learn is by doing. So don’t just sit there, start writing code!

Of course, it’s sometimes hard to begin coding from scratch, and examples are always nice.

Unfortunately, there was not room in this book for a complete working demo. However, on the

companion web page, gamemath.com, we have prepared a small graphics demo using the

methodologies and code samples from this book. Like the rest of our code, we have taken care to

provide adequate comments and to not do anything “funky” that might cause you to get side-

tracked from the meat of the material. Even if you want to write your own code from scratch,

looking at this code may help you get some ideas.

As this book is an “introductory” book, you will undoubtedly want to expand in various direc-

tions. Of course, there are many books and online resources, many of which are listed at

gamemath.com. However, the amount of information can be overwhelming. Therefore, we

have picked a few books for suggested reading.

For a survey of graphic techniques, Real-Time Rendering [17] by Möller and Haines is a

must-have. This book discusses graphics focusing on real-time rendering, updated to reflect issues

for today’s hardware. The “old school” standby, which is now a little dated but still a good refer-

ence, is Computer Graphics: Principles and Practice [8]. Another book that focuses on advanced

graphics techniques is Advanced Animation and Rendering Techniques [23].

For a “toolkit” of graphics and geometry tricks and techniques, the entire Graphics Gems

series is also an excellent choice. A newer series, Game Programming Gems, also has many tips

by numerous contributors from the industry.
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A p p e n d i x A

Math ReviewMath Review

This appendix presents a brief review of some key mathematical concepts. Other information can

be found on the web page for this book, gamemath.com.

Summation Notation
Summation notation is a shorthand way to write a sum. Summation notation is like a mathematical

for loop. Let’s look at an example:

The variable i is known as the index variable. The expressions above and below the summation

symbol tell us how many times to execute our “loop” and what values to use for i during each itera-

tion. In this case, i will count from 1…6. To “execute” our loop, we iterate the index through all the

values specified by the control conditions. For each iteration, we evaluate the expression on the

right-hand side of the summation notation (substituting in the appropriate value for the index vari-

able), and add this to our sum.

Summation notation is also known as sigma notation because that cool-looking symbol that

looks like a Z is the uppercase version of the Greek letter sigma.

Angles, Degrees, and Radians
An angle measures an amount of rotation in the plane. Variables representing angles are often

assigned to the Greek letter � (theta, pronounced “THAY-tuh”). The most important units of mea-

sure used to specify angles are degrees (°) and radians (rad).

Degrees are an arbitrary unit convenient for us to use, where 360° represents a complete

revolution.

Radians are a unit of measure based on the properties of a circle. When we specify the angle

between two rays in radians, we are actually measuring the length of the intercepted arc of a unit

circle, as shown in the following illustration:
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The circumference of a unit circle is 2�, with � approximately equal to 3.14159265359. There-

fore, 2� radians represents a complete revolution.

Since 360° = 2� rad, 180° = � rad. To convert an angle from radians to degrees, we multiply

by 180/� (57.29578) and to convert an angle from degrees to radians, we multiply by �/180

(0.01745329):

The table on page 413 lists several angles in both degree and radian format.

In this book, specific angle measurements will usually be given in degrees, since degrees are

easier for us to work with. In our code, however, we will typically store angles in radians, since the

standard C functions accept angles in radians.

Trig Functions
In 2D, if we begin with a unit ray pointing toward +x, and then rotate this ray counterclockwise by

an angle �, we have drawn the angle in the standard position. This is illustrated on the following

page:
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The values of x and y, the coordinates of the endpoint of the ray, have special properties, and are so

significant mathematically that they have been assigned special functions, known as the cosine

and sine of the angle:

You can easily remember which is which because they are in alphabetical order; x comes before y,

and cos comes before sin.

We also define several other basic trig functions which are related to the sine and cosine of the

angle, known as the tangent, secant, cosecant, and cotangent:

If we form a right triangle using the rotated ray as the hypotenuse, we see that x and y give the

lengths of the adjacent and opposite legs of the triangle, respectively. (Again, the terms opposite

and adjacent are conveniently in alphabetical order.) Let the variables hyp, adj, and opp stand for

the lengths of the hypotenuse, adjacent leg, and opposite leg, respectively:
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The primary trig functions are defined by the following ratios:

Because of the properties of similar triangles, the above equations apply even when the hypote-

nuse is not of unit length. However, they do not apply when � is obtuse, since we cannot form a

right triangle with an obtuse interior angle. We can generalize by showing the angle in standard

position and allowing the rotated ray to be of any length r and then expressing the ratios using x, y,

and r:
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The table below shows several different angles, expressed in degrees and radians, and the values

of their principal trig functions:

Trig Identities
Pythagorean identities:
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Sum and difference identities:

Double angle formulas:

Law of Sines and Law of Cosines
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1D math, 6-8

3D Studio Max, 21, 343, 360

A
AABB (axially aligned bounding box), 247-252

computing, 249

intersection tests, see intersection

representing, 248

testing against view frustum, 389

transforming, 251-252, 304-305

AABB3 class, see classes

AABB3.cpp, 302-315

AABB3.h, 300-302

absolute position, see position

accessor functions, 77

acos, 196, 197

adaptive subdivision, 393-395

addition

of complex numbers, see complex numbers

of vectors, see vector

additive identity, 47, 48

additive inverse, 48

affine transformation, 101, 122

algorithm running time, 334, 391, 401

aliasing Euler angles, see Euler angles

alpha, 376, 383

alpha blending, 383

alpha test, 383

ambient color, 366

ambient light

light source, 361

lighting contribution, 366

angle

between vectors, 59

degrees and radians, 409

angle-preserving transformation, 122

angles, 409

wrapping, 158, 196, 197

angular displacement, see orientation

API, 150

delivering geometry to, 375-377

distribution of work, 346

Archimedes, 24

area

of circle, see sphere

of parallelogram, 63, 258

of rectangle, 64

of skew box, 129

of triangle, see triangle

Aristarchus, 24

Aristotle, 24

array as vector, 36

asin, 182

aspect ratio, 350

Assembly language, 79

atan2, 183

attenuation of light, see light attenuation

axes,

possible orientations in 2D, 12

possible orientations in 3D, 19, 20

transforming, see transformations

usually perpendicular, 11, 15, 16, 31

axis

a line about which something rotates, 106,

162

third axis in 3D, 15

used to define a coordinate space, 11, 31

axis-angle pair, 162

B
backface culling, 380-381, 385

bank, 154

barycentric coordinates, 260-267 see also barycentric

space

computing in 2D, 262

computing in 3D, 263-267

correspondence with Cartesian, 260-262

tessellate the plane, 261

basis vectors, 93

rows of a matrix as, 93, 94

billboard, problems with averaging normals, 329

binary space partition, see BSP tree

bits, size of data types, 8

bivariate functions, 240
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blending, alpha, see alpha blending

Blinn specular lighting model, 364

body space, see object space

bounding box, see AABB

bounding volume, see also sphere and AABB

AABB vs. sphere, 250

occlusion of, 390

visibility tests, 386-390

brute force, 389

BSP (binary space partition) tree, 398-402

constructing, 400-402

example, 399-400

traversing, 400

buffer, depth, see depth buffer

buffer, frame, see frame buffer

buffer, z-buffer, see depth buffer

C
C++, 3

camera, specifying, see view parameters

camera space, 27-28, 351, 354

canonical Euler angles, see Euler angles

canonical view volume, see clip space

cardinal spline, 177

Cartesia, 9-14, 24, 26

Cartesian coordinate system, 5, 6, 9-20

2D, 9-14

3D, 14-20

center

of AABB, see AABB

of circle/sphere, see sphere

of projection, 141-145

center of gravity, of triangle, 267

centroid, see center of gravity

child coordinate space, see nested coordinate space

circle, 246-247 see also sphere

circumscribed about triangle, see

circumcenter

inscribed in triangle, see incenter

parametric form, 240

tangent to three lines, see incenter

through three points, see circumcenter

unit circle, 53

circumcenter, 268-269

circumference of circle/sphere, see sphere

clamping, color, see color

class, design, 73-82, 196

classes

AABB3, 249, 300-315

EditTriMesh, 336-343

EulerAngles, 199-205

Matrix4x3, 220-238

Quaternion, 205-215

RotationMatrix, 215-220

Vector3, 69-82

classical adjoint, 130

clip matrix, 355, 378, 387

clip plane, 351, 356, 381-383, 387

clip space, 355, 378

clipping, polygon, 381-383, 385

closed mesh, 330

closest point

on AABB, 280-281

on circle/sphere, 280

on parametric ray, 278-279

on plane, 279

tests, 277-281

to 2D implicit line, 277-278

to AABB, 306

cofactor (of a matrix), 127

collision detection, 281

color,

math on, 359

RGB model, 359

space, 359

color space, see color

column vector, see vector

complex numbers, 160-162 see also quaternion

addition, subtraction, and multiplication

of, 160

conjugate, 161

rotation in 2D, 161

complex polygon, see polygon

computational geometry, 1

concave, see polygon

conical spot light, see spot light

conjugate

complex, see complex numbers

quaternion, see quaternion

consistency of triangle mesh, see topology

const member functions, 75

const reference arguments, 75

constraint, see redundancy
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constructor,

avoiding redundant calls, 80

no default initialization, 77

continuous mathematics, 7

conventions,

2D axes, 11

3D axes, 15

camera space, 27

Euler angles, see Euler angles

in this book, 19-20

typeface, 46

convex, see polygon

convex partitioning, see polygon

coordinate space,

camera, see camera space

examples, 25-29

inertial, see inertial space

left vs. right-handed, 16

object, see object space

screen, see screen coordinate space

specifying, 31

transformations, see transformation

which to use for lighting, 379

world, see world space

coordinate spaces,

multiple, 23-25

nested, see nested coordinate space

coordinate system, see coordinate space

coordinates, 2D Cartesian, 13, 14

Copernicus, Nicholas, 24

counting numbers, 6

cross product

quaternion, 165, 166, 210

vector, 62, 65, 74

culling of backfacing polygons, see backface culling

D
da Vinci, Leonardo, 13

De Revolutionibus Orbium Coelestium, 24

decimation of triangle mesh, see triangle mesh

decimation

degenerate triangles,

topology problem, 331

used to seam triangle strips, 325

vertex welding sliver polygons, 332-333

degrees, 409-410

degrees of freedom, see also redundancy

AABB vs. sphere, 250

in parameterization of geometric primitive,

see geometric primitives

depth buffer, 372, 383, 385, 390

depth test, 383

Descartes, René, 5, 6

detaching faces, 329, 334-335

determinant (matrix), 125, 236

classifying transformations, 123, 129

used to compute inverse, 131

diagonal,

elements of a matrix, 84

matrix, 84

diameter of circle/sphere, see sphere

difference

between points, 57

between quaternions, see quaternion

diffuse

lighting contribution, 365-366

diffuse color, 366

dimension

of matrix, see matrix

of vector, 36

direction of vector, 37

direction vs. orientation, see orientation

directional light, 360

DirectX,

clip matrix, 357

flexible vertex format, 376

row vectors in, 91

vertex shaders, 377

discrete mathematics, 7

displacement

vectors as a sequence of, see vector

vs. distance, 36, 38

vs. position, see position

distance

between two points, 57

from point to plane, see plane

signed, 13, 14, 15, 244, 256

vs. displacement, 36, 38

division of a vector by a scalar, see vector

domino effect during vertex welding, see vertex,

welding

doorway (in portal rendering), 403, 404

dot product

quaternion, 169
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vector, 58

double (data type), 8, 73

double angle formula, see trig identities

double buffering, 372

duplicate vertices, see vertex

dynamic intersection test, see intersection

E
edge collapse, 335

EditTriMesh class, see classes

EditTriMesh.h, 336-342

Euler, Leonhard, 153, 162

Euler angles,

advantages/disadvantages, 156-158

aliasing, 156-158

canonical, 156-157, 201

class, see classes

conventions, 153, 155

converting to/from matrix, 180-185,

203-205, 218

converting to/from quaternion, 190-193,

201-203, 209-210

definition, 153

implementing, see classes

interpolation problems, 157-159

EulerAngles.cpp, 200-205

EulerAngles.h, 198-199

Euler’s equation for planar graphs, 330

eye space, see camera space

F
falloff

angle, 361, 367

distance, 360-361, 367

fanning, see polygon, triangle fan

far clip plane, 351

field of view, see zoom

first law of computer graphics, 8, 19

fixed-point math, 80

flat shading, 370

flexible vertex format, 376

float (data type), 8, 73

floating point, 8

floating-point coordinates, 383

floating-point error, see matrix creep

floating-point math, 80

focal distance, 355

fog, 368-370

color, 370

density, 369

foreshortening, perspective, see perspective projection

fractions, 7

frame buffer, 350, 372

function, mathematical, 120

G
Galilei, Galileo, 24

Gaussian elimination, 131

geocentric universe, 24

geometric primitives,

AABB, see AABB

circle, see circle

degrees of freedom in parameterization, 241

representation of, 239-241

sphere, see sphere

Gimbel lock, 157-158

Glassner, Andrew, 329

global coordinate system, see world space

gloss map, 363, 379

glossiness in specular lighting, 363-365

Gouraud shading, 330, 371, 378

problems with averaged normals, 329

Gram-Schmidt orthogonalization, 134

graph,

of rooms, 404

planar, see planar graph

graphics pipeline, 346-349

grid, partitioning space using, 392-393

grid lines, in Cartesian coordinate space, 11

GS (Graphics Synthesizer), see Playstation II

H
halfway vector used in Blinn specular model, 364

Hamilton, William, 161

handedness of coordinate system, 16-19

head of vector, see vector

heading, 153

vs. yaw, 155

heading-pitch-bank, 153

heliocentric universe, 24

Heron’s formula for triangle area, 258

hierarchy,

grouping objects for VSD, 391

of coordinate spaces, see nested coordinate

space
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homogenous coordinates, 136

homogenous matrices, general, 135

homogenous matrix

general affine transformations, 140

projection, 140

translation, 137

Hoppe, Hugues, 335-336

hotspot

falloff, 367

of specular highlight, 363

of spot light, 361

I
identities

concerning determinants, 128

concerning matrix inverse, 131

concerning matrix multiplication, 89, 90

concerning quaternions, 166, 167

concerning transposition, 86

concerning vectors, 65, 90

trig, 257-258 see also trig identities

identity matrix, 85, 88, 218, 225

identity quaternions, 163, 208

illumination, see lighting

imaginary numbers, see complex numbers

implicit form

for circle/sphere, see sphere

for representing geometric primitive,

239-240

incenter of triangle, 267-268

indexed triangle mesh, 320-322

inertial space, 28-29

infinity, 6-7

information hiding, 77

initialization, lack of default initialization, 77

inner product, see dot product

int (data type), 8

integers, 7

interpolation,

linear, see linear interpolation

of Euler angles, see Euler angles

of quaternions, see slerp

intersection,

of AABB and plane, 285, 310-312

of implicit lines in 2D, 282

of ray and AABB, 297, 307-309

of ray and circle/sphere, 287-288

of ray and plane, 284

of sphere and AABB, 291, 307

of three planes, 286

of two AABBs, 297-299, 312-315

of two circles/spheres, 288-291

of two rays in 3D, 283

static vs. dynamic, 281

tests, 281-300

with view frustum, see view frustum,

clipping

inverse matrix, 130, 151, 236-237

of orthogonal matrix, 132

invertible matrices, see inverse matrix

invertible transformations, 122

isolated vertices, see topology of triangle mesh

L
Lambert’s law for diffuse reflection, 366

latitude, 25

law of cosines, see identities, trig

law of sines, see identities, trig

left-hand rule, 17, 106

for ordering vertices, see vertex, order

left-handed coordinate space, 16

length of vector, see magnitude

lerp, see linear interpolation

Level of Detail, see LOD

light attenuation, 366-367

light sources, 360-361

ambient, see ambient light

directional, see directional light

omni, see point light

point, see point light

lighting, 358-371

stored at the vertex level, 330

lighting equation, 361, 367-368, 378-379

lighting model, see also lighting equation

local, 358, 368

standard, 358, 361, 368

line, see also ray

2D representations, 243-245

segment, see ray

linear algebra, 46

identities, see identities

linear fog, see fog

linear interpolation, 157, 173, 367, 369

linear running time, see algorithm running time
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linear transformation, 91, 121

does not contain translation, 97, 101, 121,

137, 140

location,

specifying in 2D, 13, 14

specifying in 3D, 15, 16

LOD (Level of Detail), 336, 375

logarithmic running time, see algorithm running time

longitude, 25

loose quadtrees, see quadtree

M
magnitude

of a complex number, 160

of a vector, 37

quaternion, 163, 166

vector, computing, 49

vectors with a given magnitude, 47

manifold, 330

mapping, 120

texture, see texture mapping

material, 362

math utilities, 196-198

MathUtil.cpp, 197-198

MathUtil.h, 196-197

matrix,

classical adjoint, see classical adjoint

cofactor, see cofactor

concatenation of transformations, 119

determinant, see determinant

diagonal, 84

dimensions and notation, 83

homogenous, see homogenous matrix

identity, see identity matrix

implementing, see classes

inverse, see inverse matrix

invertible, see inverse matrix

linear algebra identities, see identities

mathematical definition, 83

minor, see minor

multiplication by scalar, 86

multiplication does linear transformation,

91, 93

multiplication of two matrices, 86, 151,

235-236

multiplication of vector and matrix, 89, 235

orthogonal, 122, 132

representing angular displacement, 149-152

representing orientation using, see matrix

form

singular vs. non-singular, 122, 130

square, 84

trace, see trace

transposition, see transposition

variables, typeface used for, 46

visualizing, 93-97

matrix chain problem, 89

matrix creep, 134, 152, 179

matrix form (for orientation),

advantages/disadvantages, 150-151

converting to/from Euler angles, see

Euler angles

converting to/from quaternion, see

quaternion

malformed, 151

redundancy, 151

Matrix4×3 class, see classes

Matrix4×3.cpp, 224-238

Matrix4×3.h, 220-222

member functions vs. nonmember, 75

memory

used by Euler angles, 156

used by matrices, 151

mesh, see triangle mesh

minor (of a matrix), 127

mirroring, see reflection

model transform from object to world space, 354, 378

modeling space, see object space

Möller, Thomas, 297

multiplication

of complex numbers, see complex numbers

of matrix with scalar, see matrix

of vector and scalar, see vector

quaternion, see quaternion

N
natural numbers, 6

near clip plane, 351

negation,

quaternion, see quaternion

vector, 48, 52

negative numbers, 7

nested coordinate space, 30, 31

non-uniform scale, see scale
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norm of vector, see magnitude

normal, 53

best fit, see plane

in triangle meshes, 330

normalizing a vector, 53

to plane, see plane

to polygon, see polygon, triangulation

to triangle, see triangle

normals,

averaging, 329-330

vertex, 328-329

notation, see also conventions

color, see color

determinant, see determinant

matrices, see matrix

O(), see algorithm running time

points, 14

quaternion, see quaternion

sigma, see summation notation

summation, see summation notation

triangle, see triangle

vectors, see vector

number line, 6, 7

O
O() notation, see algorithm running time

OBB (oriented bounding box), 247

object space, 26-27, 354

occlusion

high level techniques, 402-406

of a bounding volume, 390

of a single pixel, 386

octree, 393-398

omni light, see point light

On the Heavens and Physics, 24

opacity, see alpha

open edge, 331

OpenGL,

clip matrix, 357

column vectors in, 91

operator overloading, 73, 74

operator precedence,

cross product, 62

dot product, 58, 62

optimization of vector code, 78

order of vertices, see vertex, order

orientation, 148

comparison of representation methods,

179-180

converting between representation

methods, 180-192

in 3D, 147-193

of the axes in 2D, 12

vs. angular displacement, 149, 215

vs. direction, 148

vs. rotation, 149

oriented bounding box, see OBB

origin of the universe, 24

origin, used to define a coordinate space, 11, 31

orthogonal basis, 134

orthogonal matrix, see matrix

orthogonal transformations, 122

orthogonalizing a matrix, 134

orthographic projection

by using zero scale, 112, 117

implementation, 232-233

onto arbitrary line of plane, 117

onto cardinal axis or plane, 116

orthonormal basis, 134

outcode, 387-389

outer product, see cross product

output window, 349, 358

overview of the graphics pipeline, see graphics pipeline

P
page flipping, 372

parallel

portion of vector, 61

vectors, 60, 63

parallel lines and linear transformations, 121

parallel projection, see orthographic projection

parallelepiped, 129

parallelogram, 129

area of, 63

parametric form

for representing geometric primitives, 240

for representing rays, see ray

parametric point of intersection, see intersection

parent coordinate space, see nested coordinate space

perimeter of triangle, 258

perpendicular

axis, see axis

bisector, 244
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cross product yields perpendicular vector,

63

portion of vector, 61

vectors, 60, 63

perspective projection, 141-142

from camera to screen space, 355-358

Phong exponent, see glossiness in specular lighting

Phong shading, 370, 378

Phong specular lighting model, 362-363

pi, 7, 8, 196, 247, 410

pigeonholing, 392

pinhole camera, 142-145

pitch, 154

pivoting, 131

pixel

aspect ratio, see aspect ratio

discrete, 383

shading, 383

size of, 350

tests, 383

planar graph, 330

plane, 252-256

best fit, 254-256

definition using three points, 253

distance to point, 256

front and back side, 253

implicit definition, 252-253

intersection tests, see intersection

plane equation see plane, implicit definition

Playstation II, 326, 336

point,

closest, see closest point

of concavity, see polygon

separate class for, 78

point light, 360

points,

at infinity, 136, 139

homogenous, 136

locating in 2D, 13, 14

locating in 3D, 15, 16

notation, 14

vs. vector, see vector

polar coordinates, 25, 148

polygon, 269-275

convex vs. concave, 271-274

fanning, 274-275

self-intersecting, 270

simple vs. complex, 269-270

triangulation, 274-275

portal techniques, 403-406

position, see also points, locating

relative vs. absolute, 25, 26, 38, 41

vs. displacement, 38

potentially visible set, see PVS

precedence, operator, see operator precedence

precision, floating-point, 73

primitives, geometric, see geometric primitives

private class members, 77

procedural modeling, 375

product

of scalar and vector, see vector

vector cross product, see cross product

vector dot product, see dot product

progressive mesh, 336, 375

projected light map, 361, 363

projection,

orthographic, see orthographic projection

parallel, see orthographic projection

perspective, see perspective projection

projecting one vector onto another, 61,

110, 113

projection plane, 141-145

projector, 141

proper transformation, see rigid body transformation

public class members, 77

PVS (potentially visible set), 402-403

pyramid spot light, see spot light

Pythagorean theorem, 50, 287

Q
quadratic formula, 290

quadratic running time, see algorithm running time

quadtree, 393-398

loose, 398

quaternion,

advantages/disadvantages, 178

as a complex number, 160-162

as an axis angle pair, 162

conjugate, 164, 214

converting to/from Euler angles, see Euler

angles

converting to/from matrix, 185-189,

218-219, 230

cross product, see cross product
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“difference,” 168

dot product, see dot product

exponential, 170

exponentiation, 171, 214-215

geometric interpretation, 162

identity, see identity quaternion

implementing, see classes

interpolation, see slerp

inverse, 164

logarithm, 170

magnitude, see magnitude

multiplication by scalar, 170

negation, 163

notation, 160

squad, 177-178

unit quaternion, 164

Quaternion.cpp, 207-215

Quaternion.h, 205-207

R
radians, 409-410

radius

of AABB, see AABB

of circle/sphere, see circle, sphere

rasterization, 383

rational numbers, 7

ray, 241-245

as moving point, 281

intersection, see intersection

parametric form, 242

representation methods, 242-245

skew, 283

two points form, 242

raytrace, see intersection

raytracing, quadtree, 395-398

real numbers, 6, 7

rectangular spot light, see spot light

redundancy

in barycentric coordinates, 262

in matrices, see matrix

in parameterization of geometric primitive,

see geometric primitives

reflection,

by using negative scale, 112, 118

matrix, 118, 233-235

specular, see specular lighting contribution

two reflections is same as a rotation, 118

reflection vector, used in Phong specular model,

362-363

reflex vertex, see polygon, convex vs. concave

relative position, see position

resolution, screen, 349, 350, 353, 358

retina, 142

RGB color model, see color

right-hand rule, 17, 107 see also left-hand rule

right-handed coordinate space, 16

rigid body transformation, 123

rise, see slope-intercept

roll, see bank

roll-pitch-yaw, 155

room (in portal rendering), 403, 404

root node of a tree, 393, 399-400

rotation,

between object and inertial space, 28

complex numbers in 2D, see complex

numbers

in 2D about the origin, 105

in 3D about arbitrary axis, 109

in 3D about cardinal axis, 108

vs. orientation, see orientation

which way is positive?, 106

Rotation class, see classes

row vector, see vector

run, see slope-intercept

S
S3D file format, 343

Sand-Reckoner, 24

scalar, 36

scalar variables, typeface used for, 46

scale

along cardinal axes, 112, 230

in arbitrary direction, 113, 231

transformation matrix, 112-115

uniform vs. non-uniform, 112

vector, see vector, multiplication

scissoring, 383

screen coordinate space, 12, 16

screen space mapping from clip space to, 358

self-intersecting polygon, see polygon

semiperimeter of a triangle, 258

shading,

comparison of interpolation methods,

370-371
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flat, see flat shading

Gouraud, see Gouraud shading

Phong, see Phong shading

pixel, see pixel

shearing, 118, 231-232

in 4D to translate in 3D, 137

sheep,

animating, 30, 31

dead, 6

shininess, see glossiness in specular lighting and

specular color

Shoemake, Ken, 188

short (data type), 8

sigma notation, 409

simple polygon, see polygon

singular matrix, see matrix

skew box, 96, 129

skew rays, see ray

skew transformation, see shearing

slerp, 173-177, 212-214

sliver triangles,

caused by fanning, 275

collapse after vertex welding, 332-333

slope-intercept, representation of 2D line, 243

space partitioning techniques, 390-402

specular color, 363

specular lighting contribution, 362-365

specular map, see gloss map

speed, 36, 38

sphere, 246-247 see also circle

as bounding volume, 250

implicit form, 239-240, 247

testing against view frustum, 389

unit sphere, 53

spherical fog, see fog

spherical light, see point light

spherical linear interpolation, see slerp

spline, quaternion, see quaternion, squad

spot light, 361

square matrices, see matrix

standard position, drawing an angle in, 411

static intersection test, see intersection, tests

strip, see triangle strip

STRIPE, 325

stripification, see triangle strip

subscript notation, see notation

suggested reading, 407

summation notation, 409

surface area of sphere, see sphere

surface normal, see also normal

used in lighting equation, 362

Sutherland-Hodgman polygon clipping, 381

syntax,

overloaded operators, 73

weird syntax caused by member functions,

76

T
T&L (transformation and lighting), 377-379

tail of vector, see vector

temporary variables, 75, 80

texture mapping, 373-374

coordinates, 328, 373

Theory of Relativity, 41

topology of triangle mesh, 330-331

trace (matrix), 187

transform, model, see model transform

transform, view, see view transform

transformation,

AABB, see AABB

angle preserving, see angle-preserving

transformation

classes of, 120-124

combining, 119, 151

general, 31

invertible, see invertible transformations

linear, see linear transformation

objects vs. coordinate space, 32, 102, 180

of triangle mesh, see triangle mesh

orthogonal, see orthogonal transformation

proper, see rigid body transformation

reflection, see reflection

rigid body, see rigid body transformation

rotation, see rotation

scale, see scale

shearing, see shearing

translation,

between inertial and world space, 28

not in linear transformation, see linear

transformation

translation matrix, 137, 223, 226

transposition, 85

triangle, 257-269

area, 258-260
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barycentric space, see barycentric

coordinates

fan, see triangle fan

mesh, see triangle mesh

notation and basic properties, 257-258

special points, 267-269

strip, see triangle strip

triangle fan, 327-328

triangle mesh, 319-343

decimation, 335, 375

operations on, 331-336

representing, 320-328

transformation, 331

triangle rule for vector addition/subtraction, 55

triangle strip, 323-327

stitching, 325

triangulation, see polygon

trig functions, 410-413

trig identities, 413-414

triple product, 62, 126, 127

tripod formed by 3D basis vectors, 96

trivial accept, 389

trivial rejection, see VSD

typeface conventions, see conventions

U
uniform scale, see scale

unit circle, 410 see also circle

unit quaternion, see quaternion

unit sphere, see sphere

unit vector, see normal

angle between, 60

univariate functions, 240

utilities, math, see math utilities

V
variables, 46

vector,

addition and subtraction, 54

angle between, 59

as a matrix, 85

direction, see direction

drawing, 37

from one point to another, 57

geometric interpretation, 37

head and tail, 37, 64, 65

magnitude, see magnitude

mathematical definition, 36

multiplication by matrix, see matrix

multiplication/division by scalar, 51

negation, see negation

normal, see normal

notation, 36

row vs. column, 36, 85, 89, 90

sequence of displacements, 39, 56, 92

specifying, 38

transposition, see transposition

twisting, 148

variables, typeface used for, 46

vs. point, 40, 41, 57, 78, 139, 149

vs. scalar, 36

zero, see zero vector

vector processing unit, 79

Vector3, see classes

vectors,

basis, see basis vectors

examples in 2D, 39

homogenous, 139

velocity, 36, 38

vertex,

caching, 323

duplicate, 330

formats, 376-377

isolated, 330, 332

lighting, 378-379

normal, see normals

order, 253-256, 257, 269, 271, 274,

320-321, 329, 381

reflex, see polygon, convex vs. concave

shaders, 377

split, 335

triangle mesh, 320

welding, 329, 331-334

view frustum, 351, 381

testing bounding volume against, 387-389

view parameters,

aspect ratio, see aspect ratio

field of view, see zoom

output window, see output window

zoom, see zoom

view space, see camera space

view transform from world to camera space, 354, 378

view volume, see view frustum

canonical, see clip space
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Index

virtual functions, 77

visibility, see VSD

visible surface determination, see VSD

volume of sphere, see sphere

VSD (visible surface determination), 385-406

W
web page, 2

welding vertices, see vertex

window, rendering, see view parameters

winged edge model, 322

Woo, Andrew, 297

world space, 24-26, 354

WrapPi, see angles, wrapping

wrapping angles, see angles, wrapping

Y
y-intercept, see slope-intercept

yaw, see heading

Z
z-checking, 390

zero, invention of, 6

zero vector, 47

cannot be normalized, 53

global constant variable, 78

interpreted by cross product, 64

interpreted by dot product, 60

not affected by linear transformation, 97,

121

zoom, 351

converting between field of view and, 352

inserting into the clip matrix, 357
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Additional Resources

Rather than a companion CD, this book has its own web site, gamemath.com.

Available at the web site are:

� Interactive demos illustrating concepts discussed in the book and other useful utilities

� Code presented in the book, including bug fixes

� Links to other sites related to 3D math, graphics, and programming
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