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Written for the novice Al programmer, Al for Game Devel opers introduces you to techniques such asfinite state
machines, fuzzy logic, neural networks, and many others, in straightforward, easy-to-understand language,
supported with code samples throughout the entire book (written in C/C++). From basic techniques such as
chasing and evading, pattern movement, and flocking to genetic algorithms, the book presents a mix of
deterministic (traditional) and non-deterministic (newer) Al technigues aimed squarely at beginners Al devel opers.
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Preface

Recent advancesin 3D visualization and physics-based simulation technology, at both the software and
hardware levels, have enabled game devel opers to create compelling, visually immersive gaming environments.
The next step in creating even more immersive gamesisimproved artificial intelligence (Al). Advancesin
computing power, and in hardware-accelerated graphicsin particular, are helping to free up more CPU cycles
that can be devoted to more sophisticated Al engines for games. Further, the large number of resourcesacademic
papers, books, game industry articles, and web sitesdevoted to Al are helping to put advanced Al techniques
within the grasp of every game developer, not just those professionals who devote their careersto Al.

With that said, wading through volumes of technical papers, text books, and web sites can be a daunting task for
upcoming game Al developers. This book pulls together the information novices need so that they can get a
jump-start in the field of game Al development. We present relevant theory on awide range of topics, which we
support with code samples throughout the book.

Many general game development books cover Al to some extent, however their treatment of the technology
tends to be limited. Thisis probably because such books have to cover alot of different topics and cannot go
into great depth on any particular one. Although severa very good books do focus on game Al (we list many of
them in the "Additional Resources' section of this Preface), most of them are geared toward experienced Al
developers and they focus on relatively specific and advanced topics. Therefore, novices likely would require
companion resources that cover some of the more fundamental aspects of game Al in more detail. Still other
books cover some specific game Al techniques in great detail, but are restricted to covering just those
techniques.

Our book covers awide range of game Al topics at alevel appropriate for novice developers. So, if you are new

to game programming or if you are an experienced game programmer who needs to get up to speed quickly on
Al technigues such as finite state machines, fuzzy logic, and neural networks, among others, this book is for you.
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Assumptions This Book Makes

Because this book is targeted for beginner game Al developers, we don't assume you have any Al background.
We do, however, assume you know how to program using C/C++. We also assume you have aworking

knowledge of the basic vector math used in games, but we have included a brief vector math refresher in the
Appendix in case your skills are alittle rusty.
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About This Book
We didn't hope to (nor did we attempt to) cover every aspect of game Al in this book; far too many techniques
and variations of techniques are used for an even larger variety of game types, specific game architectures, and

In-game scenarios. Instead, we present a mix of both deterministic (traditional) and nondeterministic (newer) Al
techniques amed squarely at beginner Al developers. Here's a summary of what we cover:

Chapter 1, Introduction to Game Al
Here, we define game Al and discuss the current state of the art as well as the future of this technology.
Chapter 2, Chasing and Evading

We cover basic techniques for chasing and evading as well as more advanced techniques for
intercepting. We also cover techniques applicable to both tile-based and continuous game environments.

Chapter 3, Pattern Movement
Pattern movement technigues are common to many video games and devel opers have been using them
since the early days of gaming. Y ou can use these techniques to preprogram certain behaviors such as
the patrolling of a guard or the swooping in of a spacecraft.

Chapter 4, Flocking

The flocking method we examine in this chapter is an example of an A-life agorithm. In addition to
creating cool-looking flocking behavior, A-life algorithms form the basis of more advanced group
movement.
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Chapter 5, Potential Function Based Movement

Potential-based movement isrelatively new in game Al applications. The cool thing about this method is
that it can handle chasing, evading, swarming, and collision avoidance simultaneously.

Chapter 6, Basic Pathfinding and Waypoints

Game devel opers use many techniques to find paths in and around game environments. In this chapter,
we cover several of these methods, including waypoints.

Chapter 7, A* Pathfinding

No treatment of pathfinding is complete without addressing the workhorse algorithm of pathfinding;
therefore, we devote this whole chapter to the A* algorithm.

Chapter 8, Scripted Al and Scripting Engines
Programmers today often write scripting engines and hand off the toolsto level designerswho are
responsible for creating the content and defining the Al. In this chapter, we explore some of the
techniques devel opers use to apply a scripting system in their games, and the benefits they receive.

Chapter 9, Finite State Machines

Finite state machines are the nuts and bolts of game Al. This chapter discusses the fundamentals of finite
state machines and how to implement them.

Chapter 10, Fuzzy Logic

Developers use fuzzy logic in conjunction with or as areplacement for finite state machines. In this
chapter, you'll learn the advantages fuzzy techniques offer over traditional logic techniques.

Chapter 11, Rule-Based Al

Technically, fuzzy logic and finite state machines fall under the general heading of rules-based methods.
In this chapter, we cover these methods as well as other variants.

Chapter 12, Basic Probability

Game developers commonly use basic probability to make their games less predictable. Such cheap
unpredictability enables developers to maintain substantial control over their games. Here, we cover
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basic probability for this purpose as well aslay the groundwork for more advanced methods.
Chapter 13, Decisions Under UncertaintyBayesian Techniques

Bayesian techniques are probabilistic techniques, and in this chapter we show how you can use them for
decision making and for adaptation in games.

Chapter 14, Neural Networks

Game devel opers use neural networks for learning and adaptation in gamesin fact, for anything from
making decisions to predicting the behavior of players. We cover the most widely used neural network
architecture, in detail.

Chapter 15, Genetic Algorithms

Genetic algorithms offer opportunities for evolving game Al. Although devel opers don't often use
genetic algorithms in games, their potential for specific applicationsis promising, particularly if they are
combined with other methods.

Appendix, Vector Operations

This appendix shows you how to implement a C++ class that captures all of the vector operations that
you'll need when writing 2D or 3D simulations.

All the chaptersin this book are fairly independent of each other. Therefore, you generally can read the chapters
in any order you want, without worrying about missing material in earlier chapters. The only exception to this
ruleis Chapter 12, on basic probability. If you don't have a background in probability, you should read this
chapter before reading Chapter 13, on Bayesian methods.

Also, we encourage you to try these algorithms for yourself in your own programs. If you're just getting started
in game Al, which we assume you are if you're reading this book, you might want to begin by applying some of
the techniques we present in simple arcade-style or board games. Y ou also might consider programming a bot
using extensible Al toolsthat are increasingly becoming standard for first-person shooter games. This approach
will give you the opportunity to try out your Al ideas without having to program all the other non-Al aspects of
your game.
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Conventions Used in This Book

The following typographical conventions are used in this book:

Plain text
Indicates menu titles, menu options, menu buttons, and keyboard accelerators (such as Alt and Citrl).
Italic

Indicates new terms, URL s, email addresses, filenames, file extensions, pathnames, directories, and
Unix utilities.

Constant width
Indicates commands, options, switches, variables, attributes, keys, functions, types, classes, namespaces,

methods, modules, properties, parameters, values, objects, events, event handlers, XML tags, HTML
tags, macros, the contents of files, or the output from commands.

Constant w dth bol d

Shows commands or other text that should be typed literally by the user.
Constant width italic

Shows text that should be replaced with user-supplied values.

Bold
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Variables shown in bold are vectors as opposed to scalar variables, which are shown in regular print.
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Additional Resources

Although we attempt to cover awide range of Al techniquesin this book, we realize we can't compress within
these pages everything there is to know about Al in game development. Therefore, we've compiled a short list
of useful Al web and print resources for you to explore should you decide to pursue game Al further.

Here are some popular web sites related to game development and Al that we find helpful:

. The Game Al Page at http://www.gameai.com

. Al Guru at http://www.aiguru.com

. Gamasutra at http://www.gamasutra.com

. GameDev.net at http://www.gamedev.net

. Al Depot at http://ai-depot.com

. Generation5 at http://www.generation5.org

. The American Association for Artificial Intelligence at http://www.aaai.org

Each web site contains information relevant to game Al aswell as additional links to other sources of
information on Al.

Here are several print resources that we find helpful (note that these resources include both game and nongame
Al books):

. Probabilistic Reasoning in Intelligent Systems: Networks of Plausible Inference by Judea Pearl (Morgan
Kaufmann Publishers, Inc.)

. Bayesian Artificial Intelligence by Kevin Korb and Ann Nicholson (Chapman & Hall/CRC)

. Bayesian Inference and Decision, Second Edition by Robert Winkler (Probabilistic Publishing)

. Al Game Programming Wisdom by Steve Rabin, ed. (Charles River Media)

. Al Techniques for Game Programming by Mat Buckland (Premier Press)

. Practical Neural Network Recipesin C++ by Timothy Masters (Academic Press)
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Neural Networks for Pattern Recognition by Christopher Bishop (Oxford University Press)
. Al Application Programming by M. Tim Jones (Charles River Media)
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Using Code Examples

This book is designed to help you get your job done. In general, you can use the code in this book in your
programs and documentation. Y ou do not need to contact us for permission unless you're reproducing a
significant portion of the code. For example, writing a program that uses several chunks of code from this book
does not require permission. Selling or distributing a CD-ROM of examples from O'Rellly books does require
permission. Answering a question by citing this book and quoting example code does not require permission.
Incorporating a significant amount of example code from this book into your product's documentation does
require permission.

We appreciate, but do not require, attribution. An attribution usually includes the title, author, publisher, and
ISBN. For example: "Al for Game Developers, by David M. Bourg and Glenn Seemann. Copyright 2004
O'Reilly Media, Inc., 0-596-00555-5."

If you feel your use of code examplesfalls outside fair use or the permission given here, feel free to contact us
at permissions@oreilly.com.
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How to Contact Us

Please address comments and questions concerning this book to the publisher:
O'Rellly Media, Inc.
1005 Gravenstein Highway North
Sebastopol, CA, 95472
(800) 998-9938 (in the United States or Canada)
(707) 829-0515 (international or local)
(707) 829-0104 (fax)

We have aweb page for this book, where we list errata, examples, and any additional information. Y ou can
access this page at:

http://www.oreilly.com/catal og/ai
To comment or ask technical questions about this book, send email to:
bookqguestions@oreilly.com

For more information about our books, conferences, Resource Centers, and the O'Reilly Network, see our web
Site at:

http://www.oreilly.com
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Chapter 1. Introduction to Game Al

In the broadest sense, most games incorporate some form of artificial intelligence (Al). For instance, developers
have used Al for years to give seemingly intelligent life to countless game characters, from the ghosts in the
classic arcade game Pac Man to the bots in the first-person shooter Unreal, and many others in between. The
huge variety of game genres and game characters necessitates a rather broad interpretation asto what is
considered game Al. Indeed, thisistrue of Al in more traditional scientific applications as well.

Some devel opers consider tasks such as pathfinding as part of game Al. Steven Woodcock reported in his"2003
Game Developer's Conference Al Roundtable Moderator's Report' that some devel opers even consider collision

detection to be part of game Al 1, Clearly, some wide-ranging interpretations of game Al exist.

We're going to stick with a broad interpretation of game Al, which includes everything from simple chasing and
evading, to pattern movement, to neural networks and genetic algorithms. Game Al probably best fits within the
scope of weak Al (see the sidebar "Defining Al"). However, in a sense you can think of game Al in even
broader terms.

In games, we aren't always interested in giving nonplayer characters human-level intellect. Perhaps we are
writing code to control nonhuman creatures such as dragons, robots, or even rodents. Further, who says we
aways have to make nonplayer characters smart? Making some nonplayer characters dumb adds to the variety
and richness of game content. Although it istrue that game Al is often called upon to solve fairly complex
problems, we can employ Al in attempts to give nonplayer characters the appearance of having different
personalities, or of portraying emotions or various dispositionsfor example, scared, agitated, and so on.
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Defining Al

The question "what is artificial intelligence?" is not easy to answer. If you look up artificial
intelligence in adictionary, you'll probably find a definition that reads something like this: "The
ability of acomputer or other machine to perform those activities that are normally thought to
require intelligence." This definition comes from The American Heritage Dictionary of the
English Language, Fourth Edition (Houghton Mifflin Company). Still other sources define
artificial intelligence as the process or science of creating intelligent machines.

From another perspective it's appropriate to think of Al asthe intelligent behavior exhibited by the
machine that has been created, or perhaps the artificial brains behind that intelligent behavior. But
even thisinterpretation is not complete. To some folks, the study of Al is not necessarily for the
purpose of creating intelligent machines, but for the purpose of gaining better insight into the
nature of human intelligence. Still others study Al methods to create machines that exhibit some
limited form of intelligence.

This begs the question: "what isintelligence?' To some, the litmustest for Al ishow closeitisto
human intelligence. Others argue that additional requirements must be met for a machine to be
considered intelligent. Some people say intelligence requires a conscience and that emotions are
integrally tied to intelligence, while others say the ability to solve a problem requiring intelligence
if it were to be solved by a human is not enough; Al must also learn and adapt to be considered
intelligent.

Al that satisfies al these requirementsis considered strong Al. Unlike strong Al, weak Al involves
a broader range of purposes and technologies to give machines specialized intelligent qualities.
Game Al falsinto the category of weak Al.

The bottom line is that the definition of game Al is rather broad and flexible. Anything that gives theillusion of
intelligence to an appropriate level, thus making the game more immersive, challenging, and, most importantly,
fun, can be considered game Al. Just like the use of real physicsin games, good Al adds to the immersiveness
of the game, drawing playersin and suspending their reality for atime.

[*]

("] Steven Woodcock maintains an excellent Web site devoted to game Al at http://www.gameai.com.
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1.1 Deterministic Versus Nondeterministic Al

Game Al technigues generally come in two flavors: deterministic and nondeterministic.

Deterministic

Deterministic behavior or performance is specified and predictable. There's no uncertainty. An example
of deterministic behavior isasimple chasing algorithm. Y ou can explicitly code a nonplayer character to
move toward some target point by advancing along the x and y coordinate axes until the character's x
and y coordinates coincide with the target location.

Nondeterministic

Nondeterministic behavior is the opposite of deterministic behavior. Behavior has a degree of
uncertainty and is somewhat unpredictable (the degree of uncertainty depends on the Al method
employed and how well that method is understood). An example of nondeterministic behavior isa
nonplayer character learning to adapt to the fighting tactics of a player. Such learning could use a neural
network, a Bayesian technique, or a genetic algorithm.

Deterministic Al techniques are the bread and butter of game Al. These techniques are predictable, fast, and
easy to implement, understand, test, and debug. Although they have alot going for them, deterministic methods
place the burden of anticipating all scenarios and coding all behavior explicitly on the developers' shoulders.
Further, deterministic methods do not facilitate learning or evolving. And after alittle gameplay, deterministic
behaviors tend to become predictable. Thislimits agame's play-life, so to speak.

Nondeterministic methods facilitate learning and unpredictable gameplay. Further, developers don't have to
explicitly code all behaviorsin anticipation of all possible scenarios. Nondeterministic methods also can learn
and extrapolate on their own, and they can promote so-called emergent behavior, or behavior that emerges
without explicit instructions. The flocking and neural network algorithms we'll consider in this book are good
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examples of emergent behavior.

Developers traditionally have been abit wary of Al that is nondeterministic, although thisis changing.
Unpredictability is difficult to test and debughow can you test all possible variations of player action to make
sure the game doesn't do something silly in some cases? Game devel opers face an ever-shortening devel opment
cycle that makes developing and testing new technology to production-ready standards extremely difficult. Such
short development periods make it difficult for devel opers to understand cutting-edge Al technologies fully and
to see their implications in a mass-market commercial game.

At least until recently, another factor that has limited game Al development is the fact that devel opers have been
focusing most of their attention on graphics quality. Asit turns out, such focus on devel oping better and faster
graphics techniques, including hardware acceleration, might now afford more resources to be allocated toward
developing better, more sophisticated Al. Thisfact, along with the pressure to produce the next hit game, is
encouraging game developers to more thoroughly explore nondeterministic techniques. We'll come back to this
point alittle later.
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1.2 Established Game Al

Perhaps the most widely used Al technique in gamesis cheating. For example, in awar simulation game the
computer team can have access to all information on its human opponentslocation of their base; the types,
number, and location of units, etc.without having to send out scouts to gather such intelligence the way a human
player must. Cheating in this manner is common and hel ps give the computer an edge against intelligent human
players. However, cheating can be bad. If it is obviousto the player that the computer is cheating, the player
likely will assume his efforts are futile and lose interest in the game. Also, unbalanced cheating can give
computer opponents too much power, making it impossible for the player to beat the computer. Here again, the
player islikely to lose interest if he sees his efforts are futile. Cheating must be balanced to create just enough of
achallenge for the player to keep the game interesting and fun.

Of course, cheating isn't the only well-established Al technique. Finite state machines are a ubiquitous game Al
technigue. We cover them in detail in Chapter 9, but basically the ideais to enumerate a bunch of actions or
states for computer-controlled characters and execute them or transition between them using if-then conditionals
that check various conditions and criteria.

Developers commonly use fuzzy logic in fuzzy state machines to make the resulting actions somewhat less
predictable and to reduce the burden of having to enumerate huge numbers of if-then rules. Rather than have a
rule that statesif distance = 10 and health = 100 then attack, as you might in afinite state machine, fuzzy logic
enables you to craft rules using less precise conditions, such asif close and healthy then attack aggressively. We
cover fuzzy logic in Chapter 10.

Effective and efficient pathfinding is afundamental task that nonplayer characters must accomplish in al sorts
of games. Nonplayer character unitsin awar simulation must be able to navigate over terrain and avoid barriers
to reach the enemy. Creaturesin afirst-person shooter must be able to navigate through dungeons or buildings
to reach or escape from the player. The scenarios are endless, and it's no wonder that Al developers give
pathfinding tremendous attention. We cover general pathfinding techniques in Chapter 6 and the venerable A*
agorithm in Chapter 7.
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These are only afew of the established game Al techniques; others include scripting, rules-based systems, and
some artificial life (A-life) techniques, to name afew. A-life techniques are common in robotic applications, and
developers have adapted and used them with great successin video games. Basically, an A-life systemisa
synthetic system that exhibits natural behaviors. These behaviors are emergent and develop as aresult of the

combined effect of lower-level algorithms. We'll see examples of A-life aswell as other techniques throughout
this book.

4 Previous Mext W

Top &

http://ebooks.servegame.com/oreaiforgamdev475b/ch01_sectl_002.htm (2 of 2)7/23/05 5:38:02 PM


http://ebooks.servegame.com/oreaiforgamdev475b/12041534.htm

Al for Game Developers

All Online Books

Table of Contents
View as Frames

4 Prewious Hext F

1.3 The Future of Game Al

The next big thing in game Al islearning. Rather than have al nonplayer character behavior be predestined by
the time a game ships, the game should evolve, learn, and adapt the more it's played. This results in a game that
grows with the player and is harder for the player to predict, thus extending the play-life of the game. It is
precisely this unpredictable nature of learning and evolving games that has traditionally made Al developers
approach learning techniques with a healthy dose of trepidation.

The techniques for learning and reacting to character behavior fall under the nondeterministic Al we talked
about earlier, and its difficulties apply here too. Specifically, such nondeterministic, learning Al techniques take
longer to develop and test. Further, it's more difficult to really understand what the Al is doing, which makes
debugging more difficult. These factors have proven to be serious barriers for widespread use of learning Al
techniques. All thisis changing, though.

Several mainstream games, such as Creatures, Black & White, Battlecruiser 3000AD, Dirt Track Racing, Fields
of Battle, and Heavy Gear, used nondeterministic Al methods. Their success sparked arenewed interest in
learning Al methods such as decision trees, neural networks, genetic algorithms, and probabilistic methods.

These successful games use nondeterministic methods in conjunction with more traditional deterministic
methods, and use them only where they are needed and only for problems for which they are best suited. A
neural network is not amagic pill that will solve all Al problemsin agame; however, you can use it with
impressive results for very specific Al tasks within ahybrid Al system. Thisis the approach we advocate for
using these nondeterministic methods. In this way, you can at least isolate the parts of your Al that are
unpredictable and more difficult to develop, test, and debug, while ideally keeping the majority of your Al
system in traditional form.

Throughout this book we cover both traditional game Al techniques as well asrelatively new, up-and-coming

Al techniques. We want to arm you with athorough understanding of what has worked and continues to work
for game Al. We aso want you to learn several promising new techniquesto give you a head start toward the
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Chapter 2. Chasing and Evading

In this chapter we focus on the ubiquitous problem of chasing and evading. Whether you're developing a
spaceship shooter, a strategy simulation, or a role-playing game, chances are you will be faced with trying to
make your game's nonplayer characters either chase down or run from your player character. In an action or
arcade game the situation might involve having enemy spaceships track and engage the player's ship. In an
adventure role-playing game it might involve having atroll or some other lovely creature chase down your
player's character. In first-person shooters and flight simulations you might have to make guided missiles track
and strike the player or his aircraft. In any case, you need some logic that enables nonplayer character predators
to chase, and their prey to run.

The chasing/evading problem consists of two parts. The first part involves the decision to initiate a chase or to
evade. The second part involves effecting the chase or evasionthat is, getting your predator to the prey, or
having the prey get as far from the predator as possible without getting caught. In a sense, one could argue that
the chasing/evading problem contains athird element: obstacle avoidance. Having to avoid obstacles while
chasing or evading definitely complicates matters, making the algorithms more difficult to program. Although
we don't cover obstacle avoidance in this chapter, we will come back to it in Chapters 5 and 6. In this chapter
we focus on the second part of the problem: effecting the chase or evasion. We'll discuss the first part of the
problemdecision makingin later chapters, when we explore such topics as state machines and neural networks,
among others.

The simplest, easiest-to-program, and most common method you can use to make a predator chase its prey
involves updating the predator's coordinates through each game loop such that the difference between the
predator's coordinates and the prey's coordinates gets increasingly small. This algorithm pays no attention to the
predator and prey's respective headings (the direction in which they're traveling) or their speeds. Although this
method is relentlessly effective in that the predator constantly moves toward its prey unlessit's impeded by an
obstacle, it does have its limitations, as we'll discuss shortly.

In addition to this very basic method, other methods are available to you that might better serve your needs,

http://ebooks.servegame.com/oreaiforgamdev475b/ch02.htm (1 of 2)7/23/05 5:38:19 PM


http://ebooks.servegame.com/
http://ebooks.servegame.com/oreaiforgamdev475b/content.htm
http://ebooks.servegame.com/book.htm?oreaiforgamdev475b
http://ebooks.servegame.com/oreaiforgamdev475b/12041534.htm

Al for Game Developers

depending on your game's requirements. For example, in games that incorporate real-time physics engines you
can employ methods that consider the positions and velocities of both the predator and its prey so that the
predator can try to intercept its prey instead of relentlessly chasing it. In this case the relative position and
velocity information can be used as input to an algorithm that will determine appropriate force actuationsteering
forces, for exampleto guide the predator to the target. Y et another method involves using potential functions to
influence the behavior of the predator in a manner that makes it chase its prey, or more specifically, makes the
prey attract the predator. Similarly, you can use such potential functions to cause the prey to run from or repel a
predator. We cover potential functions in Chapter 5.

In this chapter we explore several chase and evade methods, starting with the most basic method. We also give
you example code that implements these methods in the context of tile-based and continuous-movement
environments.
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2.1 Basic Chasing and Evading

Aswe said earlier, the ssmplest chase algorithm involves correcting the predator's coordinates based on the
prey's coordinates so as to reduce the distance between their positions. Thisis avery common method for
implementing basic chasing and evading. (In this method, evading is virtually the opposite of chasing, whereby
instead of trying to decrease the distance between the predator and prey coordinates, you try to increaseiit.) In
code, the method looks something like that shown in Example 2-1.

Example 2-1. Basic chase algorithm

if (predatorX > preyX)
predat or X- - ;

else if (predatorX < preyX)
pr edat or X++;

if (predatorY > preyY)
predat or Y--;

else if (predatorY < preyY)

predat or Y++;

In this example, the prey islocated at coordinates preyX and preyY, while the predator is located at coordinates
predator X and predatorY. During each cycle through the game loop the predator's coordinates are checked
against the prey's. If the predator's x-coordinate is greater than the prey's x-coordinate, the predator's x-
coordinate is decremented, moving it closer to the prey's x-position. Conversely, if the predator's x-coordinate is
less than the prey's, the predator's x-coordinate is incremented. Similar logic appliesto the predator's y-
coordinate based on the prey's y-coordinate. The end result is that the predator will move closer and closer to the
prey each cycle through the game loop.

Using this same methodol ogy, we can implement evading by ssmply reversing the logic, asweillustrate in
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Example 2-2.
Example 2-2. Basic evade algorithm

if (preyX > predatorX)
preyX++;

else if (preyX < predatorX)
preyX--?>;

if (preyY > predatorY)
preyY++,

else if (preyY < predatorY)
preyY--;

In tile-based games the game domain is divided into discrete tilessquares, hexagons, etc.and the player's
position is fixed to a discrete tile. Movement goes tile by tile, and the number of directions in which the player
can make headway is limited. In a continuous environment, position is represented by floating-point
coordinates, which can represent any location in the game domain. The player also isfree to head in any
direction.

Y ou can apply the approach illustrated in these two examples whether your game incorporates tile-based or
continuous movement. In tile-based games, the xs and ys can represent columns and rows in agrid that
encompasses the game domain. In this case, the xs and ys would be integers. In a continuous environment, the xs
and ysand zsif yoursisa 3D gamewould be real numbers representing the coordinates in a Cartesian coordinate
system encompassing the game domain.

There's no doubt that although it's ssimple, this method works. The predator will chase his prey with unrelenting
determination. The sample program AlDemo2-1, available for download from this book's web site (http://www.
oreilly.com/BOOK"), implements the basic chase algorithm in atile-based environment. The relevant codeis
shown in Example 2-3.

Example 2-3. Basic tile-based chase example

if (predatorCol > preyCol)
pr edat or Col - -;

else if (predatorCol < preyCol)
pr edat or Col ++;

i f (predator Row> preyRow)
pr edat or Row- - ;

el se i f (predat or Row<pr eyRow)
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pr edat or Row++;

Notice the similaritiesin Examples 2-3 and 2-1. The only differenceisthat in Example 2-3 rows and columns
are used instead of floating-point xs and ys.

The trouble with this basic method is that often the chasing or evading seems almost too mechanical. Figure 2-1
illustrates the path the troll in the sample program takes as he pursues the player.

Figure 2-1. Basic tile-based chase

Asyou can see, the troll first moves diagonally toward the player until one of the coordinates, the horizontal in

this case, equals that of the pl ayer's.[*] Then the troll advances toward the player straight along the other
coordinate axis, the vertical in this case. Clearly this does not look very natural. A better approach isto have the

troll move directly toward the player in a straight line. Y ou can implement such an algorithm without too much
difficulty, as we discuss in the next section.

[*]
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(T n square tile-based games, characters appear to move faster when moving along a diagonal path. Thisis because

the length of the diagonal of a square is SQRT(2) times longer than its sides. Thus, for every diagonal step, the

character appears to move SQRT(2) times faster than when it moves horizontally or vertically.
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2.2 Line-of-Sight Chasing

In this section we explain afew chasing and evading algorithms that use a line-of-sight approach. The gist of the
line-of -sight approach is to have the predator take a straight-line path toward the prey; the predator always
moves directly toward the prey's current position. If the prey is standing still, the predator will take a straight
line path. However, if the prey is moving, the path will not necessarily be a straight line. The predator still will
attempt to move directly toward the current position of the prey, but by the time he catches up with the moving
prey, the path he would have taken might be curved, asillustrated in Figure 2-2.

Figure 2-2. Line-of-sight chasing
_."IIH"""-\.

L _I.-"'
Y
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In Figure 2-2, the circles represent the predator and the diamonds represent the prey. The dashed lines and
shapes indicate starting and intermediate positions. In the scenario on the left, the prey is sitting still; thus the
predator makes a straight-line dash toward the prey. In the scenario on the right, the prey is moving along some
arbitrary path over time. At each time step, or cycle through the game loop, the predator moves toward the
current position of the prey. Asthe prey moves, the predator traces out a curved path from its starting point.

The results illustrated here look more natural than those resulting from the basic-chase agorithm. Over the
remainder of this section, we'll show you two algorithms that implement line-of-sight chasing. One algorithm is
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2.3 Line-of-Sight Chasing in Tiled Environments

Aswe stated earlier, the environment in atile-based game is divided into discrete tiles. This places certain
limitations on movement that don't necessarily apply in a continuous environment. In a continuous environment,
positions usually are represented using floating-point variables. Those positions are then mapped to the nearest
screen pixel. When changing positions in a continuous environment, you don't always have to limit movement
to adjacent screen pixels. Screen pixelstypically are small enough so that a small number of them can be
skipped between each screen redraw without sacrificing motion fluidity.

In tile-based games, however, changing positionsis more restrictive. By its very nature, tile-based movement
can appear jaggy because each tile is not mapped to a screen pixel. To minimize the jaggy and sometimes jumpy
appearance in tile-based games, it's important to move only to adjacent tiles when changing positions. For
games that use square tiles, such as the example game, this offers only eight possible directions of movement.
This limitation leads to an interesting problem when a predator, such as the troll in the example, is chasing its
target. Thetroll islimited to only eight possible directions, but mathematically speaking, none of those
directions can accurately represent the true direction of the target. Thisdilemmaisillustrated in Figure 2-3.

Figure 2-3. Tile-based eight-way movement
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Asyou can seein Figure 2-3, none of the eight possible directions leads directly to the target. What we need isa

way to determine which of the eight adjacent tiles to move to so that the troll appears to be moving toward the
player in astraight line.

Aswe showed you earlier, you can use the ssmple chasing algorithm to make the troll relentlessly chase the
player. It will even calculate the shortest possible path to the player. So, what's the disadvantage? One concerns
aesthetics. When viewed in atile-based environment, the simple chase method doesn't always appear to produce
avisually straight line. Figure 2-4 illustrates this point.

Figure 2-4. Simple chase versus line-of-sight chase
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Another reason to avoid the simple chase method is that it can have undesirable side effects when a group of
predators, such as a pack of angry trolls, are converging on the player. Using the simple method, they would all
walk diagonally to the nearest axis of their target and then walk along that axisto the target. This could lead to
them walking single file to launch their attack. A more sophisticated approach is to have them walk directly
toward the target from different directions.

It's interesting to note that both paths shown in Figure 2-4 are the same distance. The line-of-sight method,
however, appears more natural and direct, which in turn makes the troll seem more intelligent. So, the objective
for the line-of-sight approach isto calculate a path so that the troll appearsto be walking in a straight line
toward the player.

The approach wel'll take to solve this problem involves using a standard line algorithm that istypically used to
draw linesin a pixel environment. We're essentially going to treat the tile-based environment as though each tile
was in fact agiant screen pixel. However, instead of coloring the pixelsto draw aline on the screen, theline
algorithm is going to tell us which tiles the troll should follow so that it will walk in astraight lineto its target.

Although you can calculate the points of aline in several ways, in this example we're going to use Bresenham's
line algorithm. Bresenham's algorithm is one of the more efficient methods for drawing aline in a pixel-based
environment, but that's not the only reason it's useful for pathfinding calculations. Bresenham's algorithm also is
attractive because unlike some other line-drawing algorithms, it will never draw two adjacent pixels along a
line's shortest axis. For our pathfinding needs, this means the troll will walk along the shortest possible path
between the starting and ending points. Figure 2-5 shows how Bresenham's algorithm, on the left, might
compare to other line algorithms that can sometimes draw multiple pixels along the shortest axis. If an
algorithm that generated a line such as the one shown on the right is used, the troll would take unnecessary
steps. It still would still reach its target, but not in the shortest and most efficient way.

Figure 2-5. Bresenham versus alternate line algorithm
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As Figure 2-5 shows, a standard algorithm such as the one shown on the right would mark every tile for
pathfinding that mathematically intersected the line between the starting and ending points. Thisis not desirable
for a pathfinding application because it won't generate the shortest possible path. In this case, Bresenham's
algorithm produces a much more desirable result.

The Bresenham algorithm used to calculate the direction of the troll's movement takes the starting point, which
Isthe row and column of thetroll's position, and the ending point, which is the row and column of the player's
position, and calculates a series of stepsthe troll will have to take so that it will walk in astraight line to the
player. Keep in mind that this function needs to be called each time the troll's target, in this case the player,
changes position. Once the target moves, the precal culated path becomes obsolete, and therefore it becomes
necessary to calculate it again. Examples 2-4 through 2-7 show how you can use the Bresenham agorithm to
build a path to the troll's target.

Example 2-4. BuildPathToTarget function

void ai _Entity::Buil dPathToTarget (void)
{

i nt next Col =col ;

i nt next Row=r ow,

i nt del t aRow=endRow- r ow;

i nt del taCol =endCol -col ;

int stepCol, stepRow,

int currentStep, fraction;

As Example 2-4 shows, this function uses values stored in the ai_Entity class to establish the starting and ending
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points for the path. The valuesin col and row are the starting points of the path. In the case of the sample
program, col and row contain the current position of thetroll. The values in endRow and endCol contain the
position of thetroll's desired location, which in this case is the player's position.

Example 2-5. Path initialization

for (currentStep=0; current St ep<kMaxPat hLength; current St ep++)
{

pat hRow current St ep] =- 1;

pat hCol [ current St ep] =- 1;

}
current St ep=0;
pat hRowTar get =endRow,
pat hCol Tar get =endCaol ;

In Example 2-5 you can see the row and column path arrays being initialized. This function is called each time
the player's position changes, so it's necessary to clear the old path before the new oneis calculated.

Upon this function's exit, the two arrays, pathRow and pathCol, will contain the row and column positions along
each point in thetroll's path to its target. Updating the troll's position then becomes a simple matter of traversing
these arrays and assigning their values to the troll's row and column variables each time the troll is ready to take
another step.

Had this been an actual line-drawing function, the points stored in the path arrays would be the coordinates of
the pixels that make up the line.

The code in Example 2-6 determines the direction of the path by using the previously calculated deltaRow and
deltaCol values.

Example 2-6. Path direction calculation

if (deltaRow < 0) stepRow=-1; else stepRow=1;
if (deltaCol < 0) stepCol=-1; else stepCol=1;
del t aRow=abs(del t aRow* 2) ;

del t aCol =abs(del t aCol *2);

pat hRow current St ep] =next Row;,

pat hCol [ current St ep] =next Col ;

current St ep++;
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It also setsthefirst valuesin the path arrays, which in this case is the row and column position of thetroll.
Example 2-7 shows the meat of the Bresenham algorithm.

Example 2-7. Bresenham algorithm

if (deltaCol >deltaRow)
{
fraction = deltaRow *2-del t aCol ;
whi |l e (next Col !'= endCol)
{
if (fraction >=0)
{
next Row =next Row +st epRow,
fraction =fraction -deltaCol;
}
next Col =next Col +st epCol ;
fraction=fracti on +del t aRow,
pat hRow current St ep] =next Row,
pat hCol [ cur r ent St ep] =next Col ;

current St ep++;

}

el se
{
fraction =deltaCol *2-deltaRow,
whi | e (next Row ! =endRow)
{
if (fraction >=0)
{
next Col =next Col +st epCol ;
fraction=fracti on -deltaRow,
}
next Row =next Row +st epRow,
fraction=fraction +deltaCol;
pat hRow cur r ent St ep] =next Row,
pat hCol [ cur r ent St ep] =next Col ;

current St ep++;
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}
}

Theinitia if conditional usesthe valuesin deltaCol and deltaRow to determine which axisisthe longest. The

first block of code after the if statement will be executed if the column axisis the longest. The else part will be
executed if the row axisisthe longest. The algorithm will then traverse the longest axis, calculating each point
of the line along the way. Figure 2-6 shows an example of the path the troll would follow using the Bresenham

line-of-sight algorithm. In this case, the row axis is the longest, so the else part of the main if conditional would
be executed.

Figure 2-6. Bresenham tile-based chase

Figure 2-6 shows the troll's path, but of course this function doesn't actually draw the path. Instead of drawing
the line points, this function stores each row and column coordinate in the pathRow and pathCol arrays. These
stored values are then used by an outside function to guide the troll along a path that |eads to the player.
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2.4 Line-of-Sight Chasing in Continuous Environments

The Bresenham algorithm is an effective method for tiled environments. In this section we discuss a line-of -
sight chase algorithm in the context of continuous environments. Specifically, we will show you how to
implement a simple chase algorithm that you can use for games that incorporate physics engines where the
game entitiesairplanes, spaceships, hovercraft, etc.are driven by applied forces and torques.

The example welll discuss in this section uses a simple two-dimensional, rigid-body physics engine to calculate
the motion of the predator and prey vehicles. Y ou can download the complete source code for this sample
program, AlDemo2-2, from this book's web site. We'll cover as much rigid-body physics as necessary to get
through the example, but we won't go into great detail. For thorough coverage of this subject, refer to Physics
for Game Developers (O'Reilly).

Here's the scenario. The player controls his vehicle by applying thrust for forward motion and steering forces for
turning. The computer-controlled vehicle uses the same mechanics as the player's vehicle does, but the computer
controls the thrust and steering forces for its vehicle. We want the computer to chase the player wherever he
moves. The player will be the prey while the computer will be the predator. We're assuming that the only
information the predator has about the prey is the prey's current position. Knowing this, along with the
predator's current position, enables us to construct aline of sight from the predator to the prey. We will use this
line of sight to decide how to steer the predator toward the prey. (In the next section we'll show you another
method that assumes knowledge of the player's position and velocity expressed as a vector.)

Before getting to the chase algorithm, we want to explain how the predator and prey vehicles will move. The
vehicles are identical in that both are pushed about by some applied thrust force and both can turn via activation
of steering forces. To turn right, a steering force is applied that will push the nose of the vehicle to the right.
Likewise, to turn left, asteering force is applied that will push the nose of the vehicle to the left. For the
purposes of this example, we assume that the steering forces are bow thrustersfor example, they could be little
jets located on the front end of the vehicle that push the front end to either side. These forces areillustrated in
Figure 2-7.

http://ebooks.servegame.com/oreai forgamdev475b/ch02_sectl_004.htm (1 of 5)7/23/05 5:40:00 PM


http://ebooks.servegame.com/
http://ebooks.servegame.com/oreaiforgamdev475b/content.htm
http://ebooks.servegame.com/book.htm?oreaiforgamdev475b
http://ebooks.servegame.com/oreaiforgamdev475b/12041534.htm

Al for Game Developers

Figure 2-7. Vehicle forces
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The line-of-sight algorithm will control activation of the steering forces for the predator so asto keep it heading
toward the prey at all times. The maximum speed and turning rate of each vehicle are limited due to
development of linear and angular drag forces (forces that oppose motion) that are calculated and applied to
each vehicle. Also, the vehicles can't always turn on adime. Their turning radiusis afunction of their linear
speedthe higher their linear speed, the larger the turning radius. This makes the paths taken by each vehicle look
smoother and more natural. To turn on adime, they have to be traveling fairly slowly.

Example 2-8 shows the function that controls the steering for the predator. It gets called every time step through
the simulationthat is, every cycle through the physics engine loop. What's happening here is that the predator
constantly calculates the prey's location relative to itself and then adjusts its steering to keep itself pointed
directly toward the prey.

Example 2-8. Line-of-sight chase function

voi d DoLi neCr Si ght Chase (voi d)
{
Vect or u, Vv;
bool left = fal se;
bool right = fal se;
u = VRot at e2D(-Predator.fOrientation,
(Prey.vPosition - Predator.vPosition));
u. Normal i ze();
if (ux < -_TA)
left = true;
else if (u.x > _TA)
right = true;
Predat or. Set Thrusters(left, right);
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Asyou can see, the agorithm in Example 2-8 isfairly ssmple. Upon entering the function, four local variables
are defined. u and v are Vector types, where the Vector classis a custom class (see Appendix A) that handles all
the basic vector math such as vector addition, subtraction, dot products, and cross products, among other
operations. The two remaining local variables are a couple of boolean variables, left and right. These are flags
that indicate which steering force to turn on; both are set to falseinitially.

The next line of code after the local variable definitions calculates the line of sight from the predator to the prey.
Actually, thisline does more than calculate the line of site. It also calculates the relative position vector between
the predator and prey in global, earth-fixed coordinates via the code (Prey.vPosition - Predator.vPosition), and
then it passes the resulting vector to the function VRotate2D to convert it to the predator'slocal, body-fixed
coordinates. VRotate2D performs a standard coordinate-system transform given the body-fixed coordinate
system'’s orientation with respect to the earth-fixed system (see the sidebar "Global & Local Coordinate
Systems'). Theresult is stored in u, and then u is normalizedthat is, it is converted to a vector of unit length.

Global & Local Coordinate Systems

A global (earth-fixed) coordinate system is fixed and does not move, whereas a local (body-fixed)
coordinate system is locked onto objects that move around within the global, fixed coordinate
system. A local coordinate system also rotates with the object to which it is attached.

Y ou can use the following equations to convert coordinates expressed in terms of global
coordinates to an object's local coordinate system given the object’s orientation relative to the
global coordinate system:
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x=XcosB+Ysing
y=—=Xsinf+Ycos#

Here, (X, y) arethelocal, body-fixed coordinates of the global point (X, Y).

What we have now is a unit vector, u, pointing from the predator directly toward the prey. With this vector the
next few lines of code determine whether the prey isto the port side, the starboard side, or directly in front of
the predator, and steering adjustments are made accordingly. The local y-axisfixed to the predator pointsin the
positive direction from the back to the front of the vehiclethat is, the vehicle aways heads along the positive
local y-axis.

So, if the x-position of the prey, in terms of the predator's local coordinate system, is negative, the prey is
somewhere to the starboard side of the predator and the port steering force should be activated to correct the
predator's heading so that it again points directly toward the prey. Similarly, if the prey's x-coordinate is
positive, it is somewhere on the port side of the predator and the starboard steering force should be activated to
correct the predator's heading. Figure 2-8 illustrates this test to determine which bow thruster to activate. If the
prey's x-coordinate is zero, no steering action should be taken.

Figure 2-8. Steering force test
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Thelast line of code calls the SetThrusters member function of the rigid body class for the predator to apply the
steering force for the current iteration through the simulation loop. In this example we assume a constant
steering force, which can be tuned as desired.
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The results of this algorithm areillustrated in Figure 2-9.

Figure 2-9. Line-of-sight chase in continuous environment
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Figure 2-9 shows the paths taken by both the predator and the prey. At the start of the simulation, the predator
was located in the lower |eft corner of the window while the prey was located in the lower right. Over time, the
prey traveled in a straight line toward the upper left of the window. The predator's path curved as it continuously
adjusted its heading to keep pointing toward the moving prey.

Just like the basic algorithm we discussed earlier in this chapter, this line-of-sight algorithm is relentless. The
predator will aways head directly toward the prey and most likely end up right behind it, unlessit is moving so
fast that it overshoots the prey, in which case it will loop around and head toward the prey again. Y ou can
prevent overshooting the prey by implementing some sort of speed control logic to allow the predator to slow
down asit gets closer to the prey. Y ou can do this by simply calculating the distance between the two vehicles,
and if that distance is less than some predefined distance, reduce the forward thrust on the predator. Y ou can
calculate the distance between the two vehicles by taking the magnitude of the difference between their position
vectors.

If you want the computer-controlled vehicle to evade the player rather than chase him, all you havetodois
reverse the greater-than and less-than signs in Example 2-8.
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2.5 Intercepting

The line-of-sight chase algorithm we discussed in the previous section in the context of continuous movement is
effective in that the predator always will head directly toward the prey. The drawback to this algorithm is that
heading directly toward the prey is not always the shortest path in terms of range to target or, perhaps, time to
target. Further, the line-of-sight algorithm usually ends up with the predator following directly behind the prey
unless the predator is faster, in which case it will overshoot the prey. A more desirable solution in many casesfor
example, amissile being shot at an aircraftis to have the predator intercept the prey at some point along the
prey's trgjectory. This allows the predator to take a path that is potentially shorter in terms of range or time.
Further, such an algorithm could potentially alow slower predators to intercept faster prey.

To explain how the intercept algorithm works, we'll use as a basis the physics-based game scenario we
described earlier. In fact, all that's required to transform the basic- chase algorithm into an intercept algorithm is
the addition of afew lines of code within the chase function. Before getting to the code, though, we want to
explain how the intercept algorithm works in principle. (Y ou can apply the same algorithm, building on the line-
of-sight example we discussed earlier, in tile-based games too.)

The basic idea of the intercept algorithm isto be able to predict some future position of the prey and to move
toward that position so asto reach it at the same time asthe prey. Thisisillustrated in Figure 2-10.

Figure 2-10. Interception
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At first glance it might appear that the predicted interception point is simply the point along the trgjectory of the
prey that is closest to the location of the predator. Thisis the shortest-distance-to-the-line problem, whereby the
shortest distance from a point to the line is along a line segment that is perpendicular to the line. Thisis not
necessarily the interception point because the shortest-distance problem does not consider the relative velocities
between the predator and the prey. It might be that the predator will reach the shortest-distance point on the
prey's trgjectory before the prey arrives. In this case the predator will have to stop and wait for the prey to arrive
if it isto be intercepted. This obviously won't work if the predator is a projectile being fired at a moving target
such as an aircraft. If the scenario is arole-playing game, as soon as the player sees that the predator isin his
path, he'll simply turn away.

To find the point where the predator and prey will meet at the same time, you must consider their relative
velocities. So, instead of just knowing the prey's current position, the predator also must know the prey's current
velocitythat is, its speed and heading. This information will be used to predict where the prey will be at some
timein the future. Then, that predicted position will become the target toward which the predator will head to
make the interception. The predator must then continuously monitor the prey's position and velocity, along with
its own, and update the predicted interception point accordingly. This facilitates the predator changing course to
adapt to any evasive maneuvers the prey might make. This, of course, assumes that the predator has some sort
of steering capability.

At this point you should be asking how far ahead in time you should try to predict the prey's position. The

answer isthat it depends on the relative positions and vel ocities of both the predator and the prey. Let's consider
the calculations involved one step at atime.

Thefirst thing the predator must do isto calculate the relative velocity between itself and the prey. Thisis called
the closing velocity and is simply the vector difference between the prey's velocity and the predator's:

V= vplu‘}' i vl'll"l.'lali.ltl-"r

Here the relative, or closing, velocity vector is denoted V.. The second step involves calculating the range to
close. That's the relative distance between the predator and the prey, which is equal to the vector difference
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between the prey's current position and the predator's current position:
SI = 5|"I'l\.':|' o Sp-r-.-.l,ml:r

Here the relative distance, or range, between the predator and prey is denoted S;. Now there's enough
information to facilitate calculating the time to close.

Thetimeto closeisthe average time it will take to travel a distance equal to the range to close while traveling at
a speed equal to the closing speed, which is the magnitude of the closing velocity, or the relative velocity
between the predator and prey. The timeto closeis calculated as follows:

te = |S¢|/IVil

Thetimeto closg, t, isequal to the magnitude of the range vector, S;, divided by the magnitude of the closing
velocity vector, V,.

Now, knowing the time to close, you can predict where the prey will be t; in the future. The current position of
the prey is Sy, and it istraveling at V .. Because speed multiplied by time yields average distance traveled,
you can calculate how far the prey will travel over atimeinterval t; traveling at Ve, and add it to the current

position to yield the predicted position, as follows:

5[ 2 S|'|I!'1."I.' + {vl}l'r}:l{'k:l

Here, S; isthe predicted position of the prey t. in the future. It's this predicted position, S;, that now becomes the
target, or aim, point for the predator. To make the interception, the predator should head toward this point in
much the same way as it headed toward the prey using the line-of-sight chase algorithm. In fact, al you need to
doisto add afew lines of code to Example 2-8, the line-of-sight chase function, to convert it to an intercepting
function. Example 2-9 shows the new function.

Example 2-9. Intercept function

voi d Dol nt er cept (voi d)
{
Vect or u, Vv;
Bool left = fal se;
Bool right = fal se;
Vect or Vr, Sr, St; /1 added this line
Doubl e tc /] added this line

/] added these |ines:
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Vr = Prey.vVelocity - Predator.vVelocity;
Sr = Prey.vPosition - Predator.vPosition;
tc = Sr.Magnitude() / Vr.Magnitude();

St = Prey.vPosition + (Prey.vVelocity * tc);
/1 changed this line to use St instead of Prey.vPosition:
u = VRot ate2D(-Predator.fOrientation,
(St - Predator.vPosition));

/1 The remai nder of this function is identical to the |ine-of-
/1l sight chase function:
u. Normal i ze();
if (ux < -_TA)

left = true;
else if (ux > _TA)

right = true;
Predat or. Set Thrusters(left, right);

The code in Example 2-9 is commented to highlight where we made changes to adapt the line-of-sight chase
function shown in Example 2-8 to an intercept function. As you can see, we added afew lines of codeto
calculate the closing velocity, range, time to close, and predicted position of the prey, as discussed earlier. We
also modified the line of code that calculates the target point in the predator'slocal coordinates to use the
predicted position of the prey rather than its current position.

That's al thereisto it. Thisfunction should be called every time through the game loop or physics engine loop
so that the predator constantly updates the predicted interception point and its own trajectory.

The results of this algorithm as incorporated into example AlDemo2-2 are illustrated in Figures 2-11 through 2-
14.

Figure 2-11. Intercept scenario linitial trajectories

figs/ch02_figl1l.jpg

Figure 2-12. Intercept scenario linterception

figs/ch02_figl2.jpg

Figure 2-13. Intercept scenario 2corrective action
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figs/ch02_fig13.jpg

Figure 2-14. Intercept scenario 2interception
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Figure 2-11 illustrates a scenario in which the predator and prey start out from the lower left and right corners of
the window, respectively. The prey moves at constant velocity from the lower right to the upper left of the
window. At the same time the predator calculates the predicted interception point and heads toward it,
continuously updating the predicted interception point and its heading accordingly. The predicted interception
point isillustrated in this figure as the streak of dots ahead of the prey. Initially, the interception point varies as
the predator turns toward the prey; however, things settle down and the interception point becomes fixed
because the prey is moving at constant velocity.

After amoment the predator intercepts the prey, as shown in Figure 2-12.

Notice the difference between the path taken by the predator using the intercept algorithm versus that shown in
Figure 2-9 using the line-of-sight algorithm. Clearly, this approach yields a shorter path and actually allows the
predator and prey to cross the same point in space at the same time. In the line-of-sight algorithm, the predator
chases the prey in aroundabout manner, ending up behind it. If the predator was not fast enough to keep up, it
would never hit the prey and might get left behind.

Figure 2-13 shows how robust the algorithm is when the prey makes some evasive maneuvers.

Here you can see that theinitial predicted intercept point, asillustrated by the trail of dots ahead of the prey, is
identical to that shown in Figure 2-11. However, after the prey makes an evasive move to the right, the
predicted intercept point isimmediately updated and the predator takes corrective action so as to head toward
the new intercept point. Figure 2-14 shows the resulting interception.

The interception algorithm we discussed here is quite robust in that it allows the predator to continuously update
its trgjectory to effect an interception. After experimenting with the demo, you'll see that an interception is made
amost al thetime.

Sometimes interceptions are not possible, however, and you should modify the algorithm we discussed here to
deal with these cases. For example, if the predator is slower than the prey and if the predator somehow ends up
behind the prey, it will be impossible for the predator to make an interception. It will never be able to catch up
to the prey or get ahead of it to intercept it, unless the prey makes a maneuver so that the predator is no longer
behind it. Even then, depending on the proximity, the prey still might not have enough speed to effect an
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interception.

In another example, if the predator somehow gets ahead of the prey and is moving at the same speed or faster
than the prey, it will predict an interception point ahead of both the prey and the predator such that neither will
reach the interception pointthe interception point will constantly move away from both of them. In this case, the
best thing to do is to detect when the predator is ahead of the prey and have the predator loop around or take
some other action so asto get a better angle on the prey. Y ou can detect whether the prey is behind the predator
by checking the position of the prey relative to the predator in the predator's local coordinate system in a manner
similar to that shown in Examples 2-8 and 2-9. Instead of checking the x-coordinate, you check the y-
coordinate, and if it is negative, the prey is behind the predator and the preditor needs to turn around. An easy
way to make the predator turn around is to have it go back to the line-of-sight algorithm instead of the intercept
algorithm. Thiswill make the predator turn right around and head back directly toward the prey, at which point
the intercept algorithm can kick back in to effect an interception.

Earlier we told you that chasing and evading involves two, potentially three, distinct problems: deciding to
chase or evade, actually effecting the chase or evasion, and obstacle avoidance. In this chapter we discussed the
second problem of effecting the chase or evasion from afew different perspectives. These included basic
chasing, line-of-sight chasing, and intercepting in both tiled and continuous environments. The methods we
examined here are effective and give an illusion of intelligence. However, you can greatly enhance the illusions
by combining these methods with other algorithms that can deal with the other parts of the problemnamely,
deciding when and if to chase or evade, and avoiding obstacles while in pursuit or on the run. We'll explore
several such algorithmsin upcoming chapters.

Also, note that other algorithms are available for you to use to effect chasing or evading. One such method is
based on the use of potential functions, which we discussin Chapter 5.
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Chapter 3. Pattern Movement

This chapter covers the subject of pattern movement. Pattern movement is a simple way to give the
illusion of intelligent behavior. Basically, the computer-controlled characters move according to some
predefined pattern that makes it appear as though they are performing complex, thought-out maneuvers.
If you're old enough to remember the classic arcade game Galaga, you'll immediately know what
pattern movement is all about. Recall the alien ships swooping down from the top and in from the sides
of the screen, performing loops and turns, al the while shooting at your ship. The aliens, depending on
their type and the level you were on, were capable of different maneuvers. These maneuvers were
achieved using pattern movement algorithms.

Although Galagais a classic example of using pattern movement, even modern video games use some
form of pattern movement. For example, in arole-playing game or first-person shooter game, enemy
monsters might patrol areas within the game world according to some predefined pattern. In aflight
combat simulation, the enemy aircraft might perform evasive maneuvers according to some predefined
patterns. Secondary creatures and nonplayer charactersin different genres can be programmed to move
in some predefined pattern to give the impression that they are wandering, feeding, or performing some
task.

The standard method for implementing pattern movement takes the desired pattern and encodes the
control datainto an array or set of arrays. The control data consists of specific movement instructions,
such as move forward and turn, that force the computer-controlled object or character to move
according to the desired pattern. Using these algorithms, you can create a circle, square, zigzag,
curveany type of pattern that you can encode into a concise set of movement instructions.

In this chapter, we'll go over the standard pattern movement algorithm in generic terms before moving
on to two examples that implement variations of the standard algorithm. The first example is tile-based,
while the second shows how to implement pattern movement in physically simulated environmentsin
which you must consider certain caveats specific to such environments.
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3.1 Standard Algorithm

The standard pattern movement algorithm uses lists or arrays of encoded instructions, or control
Instructions, that tell the computer-controlled character how to move each step through the game loop.
The array isindexed each time through the loop so that a new set of movement instructions gets
processed each time through.

Example 3-1 shows atypical set of control instructions,

Example 3-1. Control instructions data structure

Control Data {
doubl e turnRi ght;
doubl e turnLeft;
doubl e st epForward;
doubl e st epBackwar d;

}i

In this example, turnRight and turnLeft would contain the number of degrees by which to turn right or
left. If this were atile-based game in which the number of directionsin which a character could head is
limited, turnRight and turnL eft could mean turn right or left by one increment. stepForward and
stepBackward would contain the number of distance units, or tiles, by which to step forward or
backward.

This control structure also could include other instructions, such as fire weapon, drop bomb, release
chaff, do nothing, speed up, and slow down, among many other actions appropriate to your game.

Typically you set up aglobal array or set of arrays of the control structure type to store the pattern data.
The data used to initialize these pattern arrays can be loaded in from a data file or can be hardcoded
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within the game; it really depends on your coding style and on your game's requirements.

Initialization of a pattern array, one that was hardcoded, might look something such as that shownin
Example 3-2.

Example 3-2. Pattern initialization

Pattern[0].turnRi ght = O;
Pattern[0].turnLeft = O;
Pattern[ 0] . stepForward = 2;
Pattern[ 0] . stepBackward = O;
Pattern[1l].turnRi ght = O;
Pattern[1l].turnLeft = O;
Pattern[ 1] .stepForward = 2;
Pattern[ 1l]. stepBackward = O;
Pattern[2].turnRi ght = 10;
Pattern[2].turnLeft = O;
Pattern[2].stepForward = O;
Pattern[2].stepBackward = O;
Pattern[ 3].turnRi ght = 10;
Pattern[3].turnLeft = O;
Pattern[ 3].stepForward = O;
Pattern[ 3] . stepBackward = O;
Pattern[4].turnRi ght = O;
Pattern[4].turnLeft = O;
Pattern[4].stepForward = 2;
Pattern[4].stepBackward = O;
Pattern[5].turnRi ght = O;
Pattern[5].turnLeft = O;
Pattern[5].stepForward = 2;
Pattern[5]. stepBackward = O;
Pattern[6].turnRi ght = O;
Pattern[6].turnLeft = 10;
Pattern[6].stepForward = O;
Pattern[6].stepBackward = O;

In this example, the pattern instructs the computer-controlled character to move forward 2 distance
units, move forward again 2 distance units, turn right 10 degrees, turn right again 10 degrees, move
forward 2 distance units, move forward again 2 distance units, and turn left 10 degrees. This specific
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pattern causes the computer-controlled character to move in a zigzag pattern.

To process this pattern, you need to maintain and increment an index to the pattern array each time
through the game loop. Further, each time through the loop, the control instructions corresponding to
the current index in the pattern array must be read and executed. Example 3-3 shows how such steps
might look in code.

Example 3-3. Processing the pattern array

voi d GanelLoop(voi d)
{

(bject.orientation + = Pattern[Currentl ndex].turnR ght;

(bject.orientation -- = Pattern[Currentlndex].turnLeft;
(bj ect.x + = Pattern[Currentl ndex]. st epForwar d;
(bject.x -- = Pattern[Currentl ndex]. st epBackwar d;

Current | ndex++;

Asyou can see, the basic algorithm isfairly simple. Of course, implementation details will vary
depending on the structure of your game.

It's also common practice to encode severa different patterns in different arrays and have the computer
select a pattern to execute at random or via some other decision logic within the game. Such techniques
enhance the illusion of intelligence and lend more variety to the computer-controlled character's
behavior.

4 Previous Hext F
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3.2 Pattern Movement in Tiled Environments

The approach we're going to use for tile-based pattern movement is similar to the method we used for
tile-based line-of-sight chasing in Chapter 2. In the line-of-sight example, we used Bresenham's line
algorithm to precalculate a path between a starting point and an ending point. In this chapter, we're
going to use Bresenham's line algorithm to cal culate various patterns of movement. Aswedid in
Chapter 2, welll store the row and column positions in a set of arrays. These arrays can then be

traversed to move the computer-controlled character, atroll in this example, in various patterns.

In this chapter, paths will be more complex than just a starting point and an ending point. Paths will be
made up of line segments. Each new segment will begin where the previous one ended. Y ou need to
make sure the last segment ends where the first one begins to make the troll movesin arepeating
pattern. This method is particularly useful when the troll isin a guarding or patrolling mode. For
example, you could have the troll continuously walk around the perimeter of a campsite and then break
free of the pattern only if an enemy enters the vicinity. In this case, you could use a simple rectangular
pattern.

Y ou can accomplish this rectangular pattern movement by simply calculating four line segments. In
Chapter 2, the line-of-sight function cleared the contents of the row and column path arrays each time it

was executed. In this case, however, each line is only a segment of the overall pattern. Therefore, we
don't want to initialize the path arrays each time a segment is calculated, but rather, append each new
line path to the previous one. In this example, we're going to initialize the row and column arrays
before the pattern is calculated. Example 3-4 shows the function that we used to initialize the row and

column path arrays.
Example 3-4. Initialize path arrays

voi d I nitializePathArrays(voi d)
{

int i;
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for (i=0;i<kMaxPathLength;i ++)
{

pat hRow i ]

pat hCol [ i ]

__1;
__1;

As Example 3-4 shows, we initialize each element of both arraysto avalue of -1. We use -1 because

it's not avalid coordinate in the tile-based environment. Typically, in most tile-based environments, the
upper leftmost coordinateis (0,0). From that point, the row and column coordinates increase to the size
of the tile map. Setting unused elementsin the path arraysto -1 is a simple way to indicate which
elements in the path arrays are not used. Thisis useful when appending one line segment to the next in
the path arrays. Example 3-5 shows the modified Bresenham line-of-sight algorithm that is used to

calculate line segments.
Example 3-5. Calculate line segment

void ai _Entity::Buil dPat hSegnent (voi d)
{ . .
int i;
I nt next Col =col ;
I nt next Row=r ow;
I nt del t aRow=endRow- r ow;
I nt del t aCol =endCol - col ;
I nt stepCol;
I nt stepRow,
I nt current St ep;
int fraction;
int i;
for (i=0;i<kMaxPathLength;i ++)
if ((pathRowWi]==-1) && (pathCol[i]==1))
{
current St ep=i ;
br eak;

}
I f (deltaRow < 0) stepRow=-1; else stepRow=1;
If (deltaCol < 0) stepCol=-1; else stepCol =1;
del t aRow=abs(del t aRow* 2) ;
del t aCol =abs(del t aCol *2);
pat hRow current St ep] =next Row;
pat hCol [ current St ep] =next Col ;
current St ep++;
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I f (current St ep>=kMaxPat hLengt h)

return;
I f (deltaCol > deltaRow
{
fraction = deltaRow * 2 - deltaCol ;
whil e (nextCol !'= endCol)
{
If (fraction >= 0)
{
next Row += st epRow,
fraction = fraction - deltaCol;
}

next Col = next Col + stepCol;
fraction = fraction + deltaRow,
pat hRow current St ep] =next Row;
pat hCol [ curr ent St ep] =next Col ;
current St ep++;

I f (current St ep>=kMaxPat hLengt h)

return;
}
}
el se
{
fraction = deltaCol * 2 - deltaRow
whil e (next Row ! = endRow)
{
If (fraction >= 0)
{
next Col = nextCol + stepCol;
fraction = fraction - deltaRow,
}
next Row = next Row + stepRow,
fraction = fraction + deltaCol;
pat hRow current St ep] =next Row;
pat hCol [ curr ent St ep] =next Col ;
current St ep++;
I f (current St ep>=kMaxPat hLengt h)
return;
}
}
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For the most part, this algorithm is very similar to the line-of-sight movement algorithm shown in
Example 2-7 from Chapter 2. The major difference isthat we replaced the section of code that

initializes the path arrays with a new section of code. In this case, we want each new line segment to be
appended to the previous one, so we don't want to initialize the path arrays each time this function is
called. The new section of code determines where to begin appending the line segment. Thisis where
we rely on the fact that we used avalue of -1 to initialize the path arrays. All you need to do is ssimply
traverse the arrays and check for the first occurrence of the value -1. Thisis where the new line
segment begins. Using the function in Example 3-6, we're now ready to calculate the first pattern. Here,

we're going to use a simple rectangular patrolling pattern. Figure 3-1 shows the desired pattern.

Figure 3-1. Rectangular pattern movement

figs/ch03_figO1.jpg

Asyou can seein Figure 3-1, we highlighted the vertex coordinates of the rectangular pattern, along

with the desired direction of movement. Using this information, we can establish the troll's pattern
using the BuildPathSegment function from Example 3-5. Example 3-6 shows how the rectangular

pattern isinitialized.

Example 3-6. Rectangular pattern

entityList[1].InitializePathArrays();
entityList[1].BuildPat hSegnent (10, 3, 18, 3);
entityList[1].Buil dPat hSegnent (18, 3, 18, 12);
entityList[1].BuildPat hSegnent (18, 12, 10, 12);
entityList[1].BuildPat hSegnent (10, 12, 10, 3);
entityList[1].NormalizePattern();
entityList[1l].patternRowx fset = 5;
entityList[1l].patternCol Ofset = 2;

Asyou can see in Example 3-6, you first initialize the path arrays by calling the function
InitializePathArrays. Then you use the coordinates shown in Figure 3-1 to calculate the four line

segments that make up the rectangular pattern. After each line segment is calculated and stored in the
path arrays, we make a call to NormalizePattern to adjust the resulting pattern so that it is represented
In terms of relative coordinates instead of absolute coordinates. We do this so that the pattern is not tied
to any specific starting position in the game world. Once the pattern is built and normalized, we can
execute it from anywhere. Example 3-7 shows the NormalizePattern function.

Example 3-7. NormalizePattern function
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void ai _Entity::NormalizePattern(voi d)

{ . .
int i;
I nt rowOrigi n=pat hRow 0] ;
I nt col Origi n=pat hCol [ 0] ;
for (i=0;i<kMaxPathLength;i ++)
If ((pathRowfi]==-1) && (pathCol[i]==-1))
{
pat hSi ze=i - 1;
br eak;
}
for (i=0;i<=pathSize;i++)
{
pat hRowf i ] =pat hRow i ] -rowOri gi n;
pat hCol [i]=pathCol [i]-col Oi gin;
}
}

Asyou can see, all we do to normalize a pattern is subtract the starting position from all the positions
stored in the pattern arrays. Thisyields a pattern in terms of relative coordinates so that we can execute
it from anywhere in the game world.

Now that the pattern has been constructed we can traverse the arrays to make the troll walk in the
rectangular pattern. You'll notice that the last two coordinates in the final segment are equal to the first
two coordinates of the first line segment. This ensures that the troll walks in a repeating pattern.

Y ou can construct any number of patterns using the BuildPathSegment function. Y ou simply need to
determine the vertex coordinates of the desired pattern and then cal culate each line segment. Of course,
you can use as few as two line segments or as many line segments as the program resources alow to
create a movement pattern. Example 3-8 shows how you can use just two line segments to create a

simple back-and-forth patrolling pattern.
Example 3-8. Simple patrolling pattern

entityList[1].InitializePathArrays();
entityList[1].BuildPat hSegnent (10, 3, 18, 3);
entityList[1].BuildPathSegnent (18, 3, 10, 3);
entityList[1].NormalizePattern();
entityList[1l].patternRowX f set
entityList[1l].patternCol Ofset

5;
2;
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Using the line segments shown in Example 3-8, the troll simply walks back and forth between

coordinates (10,3) and (18,3). This could be useful for such tasks as patrolling near the front gate of a
castle or protecting an area near abridge. The troll could continuously repeat the pattern until an enemy
comes within sight. The troll could then switch to a chasing or attacking state.

Of course, thereisno real limit to how many line segments you can use to generate a movement
pattern. Y ou can use large and complex patterns for such tasks as patrolling the perimeter of a castle or
continuously marching along a shoreline to guard against invaders. Example 3-9 shows amore

complex pattern. This example creates a pattern made up of eight line segments.
Example 3-9. Complex patrolling pattern

entityList[1].BuildPat hSegnent (4, 2, 4, 11);
entityList[1].BuildPat hSegnent (4, 11, 2, 24);
entityList[1].Buil dPat hSegnent (2, 24, 13, 27);
entityList[1].Buil dPat hSegnent (13, 27, 16, 24);
entityList[1].Buil dPat hSegnent (16, 24, 13, 17);
entityList[1].Buil dPat hSegnent (13, 17, 13, 13);
entityList[1].BuildPat hSegnent (13, 13, 17, 5);
entityList[1].BuildPathSegnment (17, 5, 4, 2);
entityList[1].NormalizePattern();
entityList[1]. patternRowdf set
entityList[1].patternCol Ofset

S5;
2;

Example 3-9 sets up acomplex pattern that takes terrain elements into consideration. The troll startson

the west bank of the river, crosses the north bridge, patrols to the south, crosses the south bridge, and
then returns to its starting point to the north. The troll then repeats the pattern. Figure 3-2 shows the

pattern, along with the vertex points used to construct it.

Figure 3-2. Complex tile pattern movement

figs/ch03_fig02.jpg

As Figure 3-2 shows, this method of pattern movement allows for very long and complex patterns. This
can be particularly useful when setting up long patrols around various terrain elements.

Although the pattern method used in Figure 3-2 can produce long and complex patterns, these patterns
can appear rather repetitive and predictable. The next method we'll look at adds a random factor, while
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still maintaining a movement pattern. In atile-based environment, the game world typically is
represented by atwo-dimensional array. The elements in the array indicate which object is located at
each row and column coordinate. For this next pattern movement method, we'll use a second two-
dimensional array. This pattern matrix guides the troll along a predefined track. Each element of the
pattern array contains either a0 or a 1. Thetroll isalowed to move to arow and column coordinate
only if the corresponding element in the pattern array containsa 1.

Thefirst thing you must do to implement this type of pattern movement is to set up a pattern matrix. As
Example 3-10 shows, you start by initializing the pattern matrix to all Os.

Example 3-10. Initialize pattern matrix

for (i=0;i<kMaxRows;i ++)
for (j=0;j<kMaxCols;j ++)
pattern[i][]j]=0;

After the entire pattern matrix is set to 0, you can begin setting the coordinates of the desired movement
pattern to 1s. We're going to create a pattern by using another variation of the Bresenham line-of-sight
algorithm that we used in Chapter 2. In this case, however, we're not going to save the row and column
coordinates in path arrays. We're going to set the pattern matrix to 1 at each row and column coordinate
along the line. We can then make multiple calls to the pattern line function to create complex patterns.
Example 3-11 shows away to set up one such pattern.

Example 3-11. Pattern Setup

Bui | dPat t er nSegnent (3, 2, 16, 2);
Bui | dPat t er nSegnent (16, 2, 16, 11);
Bui | dPat t er nSegnent (16, 11, 9, 11);
Bui | dPat t er nSegnent (9, 11, 9, 2);
Bui | dPat t er nSegnent (9, 6, 3, 6);
Bui | dPat t er nSegnent (3, 6, 3, 2);

Each call to the BuildPatternSegment function uses the Bresenham line algorithm to draw a new line
segment to the pattern matrix. The first two function parameters are the row and column of the starting
point, while the last two are the row and column of the ending point. Each point in the line becomesa 1
In the pattern matrix. This patternisillustrated in Figure 3-3.

Figure 3-3. Track pattern movement

figs/ch03_fig03.jpg
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Figure 3-3 highlights each point where the pattern matrix contains a 1. These are the locations where
thetroll isallowed to move. You'll notice, however, that at certain points along the track thereis more
than one valid direction for the troll. We're going to rely on this fact to make the troll movein aless
repetitive and predictable fashion.

Whenever it'stime to update the troll's position, we'll check each of the eight surrounding elementsin
the pattern array to determine which are valid moves. Thisis demonstrated in Example 3-12.

Example 3-12. Follow pattern matrix

void ai _Entity:: FollowPattern(voi d)

int i,j;

I nt possi bl eRowPat h[ 8] ={0, 0, 0, 0, 0, 0, 0, 0} ;

I nt possi bl eCol Pat h[ 8] ={0, 0, 0,0, 0,0, 0, 0};
int rowCfset[8]={-1,-1,-1, O, 0O, 1, 1, 1};
int colCfset[8]={-1, O, 1,-1, 1,-1, O, 1};
] =0;

for (i=0;i<8;i++)
I f (pattern[rowtrowCi fset[i]][col +col O fset[i]]==1)
It ('(((rowrowc fset[i])==previ ousRow) &&
((col +col O fset[i])==previousCol)))

{
possi bl eRowPat h[j ] =rowtrowO fset[i];
possi bl eCol Pat h[j ] =col +col O fset[i];
j

}

i =Rnd(0,j-1);

pr evi ousRow=r ow;

pr evi ousCol =col ;

r ow=possi bl eRowPat h[ i ];
col =possi bl eCol Pat h[i];

Y ou start by checking the pattern matrix at each of the eight points around the troll's current position.
Whenever you find avalue of 1, you save that coordinate to the possibleRowPath and possibleCol Path
arrays. After each point is checked, you randomly select a new coordinate from the array of valid points
found. The end result isthat the troll won't always turn in the same direction when it reaches an
intersection in the pattern matrix.
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Note that the purpose of the rowOffset and col Offset variables shown in Example 3-12 isto avoid
having to write eight conditional statements. Using aloop and adding these values to the row and
column position traverses the eight adjacent tiles. For example, the first two elements, when added to
the current row and column, are the tiles to the upper |€eft of the current position.

Y ou have to consider one other point when moving the troll. Thetroll's previous location always will
be in the array of valid moves. Selecting that point can lead to an abrupt back-and-forth movement
when updating the troll's position. Therefore, you should always track the troll's previous location using
the previousRow and previousCol variables. Then you can exclude that position when building the
array of valid moves.

4 Previous Mext #
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3.3 Pattern Movement in Physically Simulated Environments

So far in this chapter we discussed how to implement patterned movement in environments where you
can instruct your game characters to take discrete steps or turns; but what about physically simulated
environments? Surely you can take advantage of the utility of pattern movement in physically simulated
environments as well. The trouble is that the benefit of using physically simulated environmentsnamely,
letting the physics take control of movementisn't conducive to forcing a physically simulated object to
follow a specific pattern of movement. Forcing a physically simulated aircraft, for example, to a specific
position or orientation each time through the game loop defeats the purpose of the underlying physical
simulation. In physically simulated environments, you don't specify an object's position explicitly during
the simulation. So, to implement pattern movement in this case, you need to revise the algorithms we
discussed earlier. Specifically, rather than use patterns that set an object's position and orientation each
time through the game loop, you need to apply appropriate control forces to the object to coax it, or
essentially drive it, to where you want it to go.

Y ou saw in the second example in Chapter 2 how we used steering forces to make the predator chase his
prey. Y ou can use these same steering forces to drive your physically smulated objects so that they
follow some pattern. Thisis, in fact, an approximation to simulating an intelligent creature at the helm of
such a physically smulated vehicle. By applying control forces, you essentially are mimicking the
behavior of the driver piloting his vehicle in some pattern. The pattern can be anythingevasive
maneuvers, patrol paths, stuntsso long as you can apply the appropriate control forces, such as thrust and
steering forces.

Keep in mind, however, that you don't have absolute control in this case. The physics engine and the
model that governs the capabilitiessuch as speed and turning radius, among othersof the object being
simulated still control the object's overall behavior. Y our input in the form of steering forces and thrust
modulation, for example, is processed by the physics engine, and the resulting behavior is a function of
al inputs to the physics engine, not just yours. By letting the physics engine maintain control, we can
give the computer-controlled object some sense of intelligence without forcing the object to do
something the physics model does not allow. If you violate the physics model, you run the risk of ruining
the immersive experience realistic physics create. Remember, our goal isto enhance that immersiveness
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with the addition of intelligence.

To demonstrate how to implement path movement in the context of physically simulated environments,
we're going to use as a basis the scenario we described in Chapter 2 for chasing and intercepting in

continuous environments. Recall that this scenario included two vehicles that we ssimulated using a
simple two-dimensional rigid-body simulation. The computer controlled one vehicle, while the player
controlled the other. In this chapter, we're going to modify that example, demonstration program
AlDemo2-2, such that the computer-controlled vehicle moves according to predefined patterns. The
resulting demonstration program is entitled AlDemo3-2, and you can download it from this book's Web
site.

The approach we'll take in this example is very similar to the algorithms we discussed earlier. We'll use
an array to store the pattern information and then step through this array, giving the appropriate pattern
instructions to the computer-controlled vehicle. There are some key differences between the algorithms
we discussed earlier and the one required for physics-based smulations. In the earlier algorithms, the
pattern arrays stored discrete movement informationtake a step left, move a step forward, turn right, turn
left, and so on. Further, each time through the game loop the pattern array index was advanced so that the
next move's instructions could be fetched. In physics-based simulations, you must take a different
approach, which we discussin detail in the next section.

3.2.1 Control Structures

Aswe mentioned earlier, in physics-based simulations you can't force the computer-controlled vehicle to
make a discrete step forward or backward. Nor can you tell it explicitly to turn left or right. Instead, you
have to feed the physics engine control force information that, in effect, pilots the computer-controlled
vehicle in the pattern you desire. Further, when a control forcesay, a steering forceis applied in physics-
based simulations, it does not instantaneously change the motion of the object being simulated. These
control forces have to act over time to effect the desired motion. This means you don't have a direct
correspondence between the pattern array indices and game loop cycles; you wouldn't want that anyway.
If you have a pattern array that contains a specific set of instructions to be executed each time you step
through the simulation, the pattern arrays would be huge because the time stepstypically taken in a
physics-based ssimulation are very small.

To get around this, the control information contained in the pattern arrays we use here also contains
information so that the computer knows how long, so to speak, each set of instructions should be applied.
The agorithm works like this: the computer selects the first set of instructions from the pattern array and
applies them to the vehicle being controlled. The physics engine processes those instructions each time
step through the ssimulation until the conditions specified in the given set of instructions are met. At that
point the next set of instructions from the pattern array are selected and applied. This process repeats all
the way through the pattern array, or until the pattern is aborted for some other reason.

The code in Example 3-13 shows the pattern control data structure we set up for this example.
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Example 3-13. Pattern movement control data structure

struct Control Data {
bool PThruster Acti ve;
bool SThrust er Acti ve;

doubl e dHeadi ngLi m t;
double dPositionLimt;

bool Li m t Headi ngChange;
bool Li m t Posi ti onChange;

}i

Be aware that this control datawill vary depending on what you are simulating in your game and how its
underlying physics model works. In this case, the vehicle we're controlling is steered only by bow
thruster forces. Thus, these are the only two control forces at our disposal with which we can implement
some sort of pattern movement.

Therefore, the data structure shown in Example 3-13 contains two boolean members, PThrusterActive

and SThrusterActive, which indicate whether each thruster should be activated. The next two members,
dHeadingLimit and dPositionLimit, are used to determine how long each set of controls should be
applied. For example, dHeadingLimit specifies a desired change in the vehicle's heading. If you want a
particular instruction to turn the vehicle 45 degrees, you set this dHeadingLimit to 45. Note that thisis a
relative change in heading and not an absolute orientation. If the flag LimitHeadingChange is set to true,
dHeadingLimit is checked each time through the simulation loop while the given pattern instruction is
being applied. If the vehicle's heading has changed sufficiently relative to itslast heading before this
Instruction was applied, the next instruction should be fetched.

Similar logic applies to dPositionLimit. This member stores the desired change in positionthat is, distance
traveled relative to the position of the vehicle before the given set of instructions was applied. If
LimitPositionChange is set to true, each time through the simulation loop the relative position change of
the vehicle is checked against dPositionChange to determine if the next set of instructions should be
fetched from the pattern array.

Before proceeding further, let us stress that the pattern movement algorithm we're showing you here
works with relative changes in heading and position. The pattern instructions will be something such as
move forward 100 ft, then turn 45 degreesto the left, then move forward another 100 ft, then turn 45
degrees to the right, and so on. The instructions will be absolute: move forward until you reach position
(X, ¥)o, then turn until you are facing southeast, then move until you reach position (X, y)4, then turn until

you are facing southwest, and so on.

Using relative changes in position and heading enables you to execute the stored pattern regardless of the
location or initial orientation of the object being controlled. If you were to use absol ute coordinates and
compass directions, the patterns you use would be restricted near those coordinates. For example, you
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could patrol a specific area on a map using some form of pattern, but you would not be able to patrol any
area on a map with the specific pattern. The latter approach, using absolute coordinates, is consistent with
the algorithm we showed you in the previous tile-based example. Further, such an approach isin line
with waypoint navigation, which has its own merits, as we discuss in later chapters.

Because we're using relative changes in position and heading here, you also need some means of tracking
these changes from one set of pattern instructions to the next. To this end, we defined another structure
that stores the changes in state of the vehicle from one set of pattern instructions to the next. Example 3-

14 shows the structure.

Example 3-14. State change tracking structure

struct St at eChangeDat a {
Vect or I ni tial Headi ng;
Vect or Initial Position;
doubl e dHeadi ng;
doubl e dPosi tion;
I nt Current Control I D;
¥

The first two members, InitialHeading and Initial Position, are vectors that store the heading and position
of the vehicle being controlled at the moment a set of pattern instructions is selected from the pattern
array. Every time the pattern array index is advanced and a new set of instructions is fetched, these two
members must be updated. The next two members, dHeading and dPosition, store the changes in position
and heading as the current set of pattern instructions is being applied during the simulation. Finally,
CurrentControl 1D stores the current index in the pattern array, which indicates the current set of pattern
control instructions being executed.

3.2.2 Pattern Definition

Now, to define some patterns, you have to fill in an array of Control Data structures with appropriate
steering control instructions corresponding to the desired movement pattern. For this example, we set up
three patterns. Thefirst is a square pattern, while the second is a zigzag pattern. In an actual game, you
could use the square pattern to have the vehicle patrol an area bounded by the square. Y ou could use the
zigzag pattern to have the vehicle make evasive maneuvers, such as when Navy ships zigzag through the
ocean to make it more difficult for enemy submarines to attack them with torpedoes. Y ou can define
control inputsfor virtually any pattern you want to simulate; you can define circles, triangles, or any
arbitrary path using this method. In fact, the third pattern we included in this example is an arbitrarily
shaped pattern.

For the square and zigzag patterns, we set up two global arrays called Patrol Pattern and ZigZagPattern, as
shown in Example 3-15.
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Example 3-15. Pattern array declarations

#def i ne_PATROL_ARRAY_SI ZE 8
#defi ne _ZI GZAG ARRAY_ S| ZE 4
Cont r ol Dat a Pat r ol Patt er n[ PATROL_ARRAY Sl ZE] ;

Cont r ol Dat a
St at eChangeDat a

Zi gZagPat t er n[ _ZI GZAG_ARRAY_SI ZE] ;
Patt er nTr acki ng;

Asyou can see, we also defined a global variable called PatternTracking that tracks changes in position
and heading as these patterns get executed.

Examples 3-16 and 3-17 show how each of these two patternsisinitialized with the appropriate control
data. We hardcoded the pattern initialization in this demo; however, in an actual game you might prefer
to load in the pattern data from adata file. Further, you can optimize the data structure using a more
concise encoding, as opposed to the structure we used here for the sake of clarity.

Example 3-16. Square patrol pattern initialization

Patrol Pattern[0].
Pat rol Pattern[0].
Patrol Pattern[O].
Pat rol Pattern[0].
Pat rol Pattern[0].
Pat rol Pattern[0].
Patrol Pattern[1].
Patrol Pattern[1].
Patrol Pattern[1].
Patrol Pattern[1].
Patrol Pattern[1].
Patrol Pattern[1].
Patrol Pattern[2].
Pat rol Pattern[ 2].
Pat rol Pattern[2].
Patrol Pattern[2].
Patrol Pattern[2].
Patrol Pattern[2].
Patrol Pattern[ 3].
Patrol Pattern[ 3].
Patrol Pattern[ 3].
Patrol Pattern[ 3].
Patrol Pattern[ 3].

Li m t Posi ti onChange = true;
Li m t Headi ngChange = fal se;
dHeadi ngLimt = O;
dPositionLimt = 200;
PThrusterActive = fal se;
SThrusterActive = fal se;

Li m t Posi ti onChange = fal se;
Li m t Headi ngChange = true;

dHeadi ngLimt = 90;
dPositionLimt = O;
true;

PThruster Active =
SThrusterActive = fal se;

Li m t Posi ti onChange = true;
Li m t Headi ngChange = fal se;
dHeadi ngLimt = O;
dPositionLimt = 200;
PThruster Active = fal se;
SThrusterActive = fal se;

Li m t Posi ti onChange = fal se;
Li m t Headi ngChange = true;

dHeadi ngLimt = 90;
dPositionLimt = O;
PThruster Acti ve = true;
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Pat r ol
Pat r ol
Pat r ol
Pat r ol
Pat r ol
Pat r ol
Pat r ol
Pat r ol
Pat r ol
Pat r ol
Pat r ol
Pat r ol
Pat r ol
Pat r ol
Pat r ol
Pat r ol
Pat r ol
Pat r ol
Pat r ol
Pat r ol
Pat r ol
Pat r ol
Pat r ol
Pat r ol
Pat r ol

Zi gZagPattern[ O] .
Zi gZagPattern[0].
Zi gZagPattern[ O] .
Zi gZagPattern[0].
Zi gZagPattern[ 0] .
Zi gZagPattern[ O] .
Zi gZagPattern[1].
Zi gZagPattern[ 1].
Zi gZagPattern[1].
Zi gZagPattern[1].
Zi gZagPattern[ 1] .
Zi gZagPattern[1].
Zi gZagPattern[ 2] .
Zi gZagPattern[ 2] .
Zi gZagPattern[ 2] .

Pattern[ 3].
Pattern[4].
Pattern[4].
Pattern[4].
Pattern[4].
Pattern[4].
Pattern[4].
Pattern[ 5] .
Pattern[5].
Pattern[5].
Pattern[5].
Pattern[5].
Pattern[5].
Pattern[6].
Pattern[ 6] .
Patt ern[ 6] .
Pat t ern[ 6] .
Pattern[ 6] .
Pattern[ 6] .
Pattern[ 7] .
Pattern[ 7] .
Pattern[7].
Pattern[7].
Pattern[7].
Pattern[7].

SThrusterActive = fal se;

Li m t Posi ti onChange = true;
Li m t Headi ngChange = fal se;
dHeadi ngLimt = O;
dPositionLimt = 200;
PThrusterActive = fal se;
SThrusterActive = fal se;

Li m t Posi ti onChange = fal se;
Li m t Headi ngChange = true;

dHeadi ngLimt = 90;
dPositionLimt = O;
true;

PThruster Active =
SThrusterActive = fal se;

Li m t Posi ti onChange = true;
Li m t Headi ngChange = fal se;
dHeadi ngLimt = O;
dPositionLimt = 200;
PThruster Acti ve = fal se;
SThrusterActive = fal se;

Li m t Posi ti onChange = fal se;
Li m t Headi ngChange = true;

dHeadi ngLimt = 90;
dPositionLimt = O;
PThruster Active = true;
SThrusterActive = fal se;

Example 3-17. Zigzag pattern initialization

Li m t Posi ti onChange = true;
Li m t Headi ngChange = fal se;
dHeadi ngLimt = O;
dPositionLimt = 100;
PThrusterActive = fal se;
SThrusterActive = fal se;

Li m t Posi ti onChange = fal se;
Li m t Headi ngChange = true;
dHeadi ngLimt = 60;
dPositionLimt = O;
PThrusterActive = true;
SThrusterActive = fal se;

Li m t Posi ti onChange = true;
Li m t Headi ngChange = fal se;
dHeadi ngLimt = O;
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Zi gZagPattern[ 2] .dPositionLimt = 100;
Zi gZagPattern[ 2] . PThruster Acti ve = fal se;

Zi gZagPattern[ 2] . SThrusterActive = fal se;

Zi gZagPattern[ 3] . Li mtPositionChange = fal se;
Zi gZagPattern[ 3] . Li mt Headi ngChange = true;
Zi gZagPattern[ 3] . dHeadi ngLimt = 60;

Zi gZagPattern[ 3] .dPositionLimt = O;

Zi gZagPattern[ 3] . PThruster Acti ve = fal se;

Zi gZagPattern[ 3] . SThrusterActive = true;

The square pattern control inputs are fairly simple. The first set of instructions corresponding to array
element [O] tells the vehicle to move forward by 200 distance units. In this case no steering forces are
applied. Note here that the forward thrust acting on the vehicle already is activated and held constant.
Y ou could include thrust in the control structure for more complex patterns that include steering and
speed changes.

The next set of pattern instructions, array element [1], tells the vehicle to turn right by activating the port
bow thruster until the vehicle's heading has changed 90 degrees. Theinstructionsin element [2] are
Identical to those in element [O] and they tell the vehicle to continue straight for 200 distance units. The
remaining elements are simply arepeat of the first threeelement [ 3] makes another 90-degree right turn,
element [4] heads straight for 200 distance units, and so on. The end result is eight sets of instructionsin
the array that pilot the vehicle in a square pattern.

In practice you could get away with only two sets of instructions, the first two shown in Example 3-16,

and still achieve a square pattern. The only difference is that you'd have to repeat those two sets of
Instructions four times to form a square.

The zigzag controls are similar to the square controlsin that the vehicle first moves forward a bit, then
turns, then moves forward some more, and then turns again. However, this time the turns alternate from
right to left, and the angle through which the vehicle turnsis limited to 60 degrees rather than 90. The
end result is that the vehicle movesin a zigzag fashion.

3.2.3 Executing the Patterns

In this example, we initialize the patternsin an Initialize function that gets called when the program first
starts. Within that function, we also go ahead and initialize the PatternTracking structure by making a call
to afunction called InitializePatternTracking, which is shown in Example 3-18.

Example 3-18. InitializePatternTracking function

void InitializePatternTracki ng(void)

{
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Patt ernTracki ng. Current Control I D = O;

Patt er nTr acki ng. dPosition = O;

Pat t er nTr acki ng. dHeadi ng = O;
PatternTracking.Initial Position = Craft2.vPosition;
PatternTracking.Initial Heading = Craft2. vVel ocity;
Patt ernTracki ng. I nitial Headi ng. Normal i ze() ;

Whenever InitializePatternTracking is called, it copies the current position and velocity vectors for
Craft2, the computer-controlled vehicle, and stores them in the state change data structure. The
CurrentControlI D, which is the index to the current element in the given pattern array, is set to 0,
indicating the first element. Further, changes in position and heading are initialized to O.

Of course, nothing happens if you don't have afunction that actually processes these instructions. So, to
that end, we defined a function called DoPattern, which takes a pointer to a pattern array and the number
of elementsin the array as parameters. This function must be called every time through the ssmulation
loop to apply the pattern controls and step through the pattern array. In this example, we make the call to
DoPattern within the UpdateSimulation function as illustrated in Example 3-19.

Example 3-19. UpdateSimulation function

voi d Updat eSi mul ati on(voi d)

{

I f(Patrol)

{
I f(!DoPattern(Patrol Pattern, _PATROL_ARRAY _SI ZE))

InitializePatternTracking();

}
I f(Zi gZag)

{
I f(!DoPattern(Zi gZagPattern, _ZI GZAG ARRAY_SI ZE))

InitializePatternTracking();

Craft 2. Updat eBodyEul er (dt);
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In this case, we have two global variables, boolean flags, that indicate which pattern to execute. If Patrol
IS set to true, the square pattern is processed; whereas if ZigZag is set to true, the zigzag patternis
processed. These flags are mutually exclusive in this example.

Using such flags enables you to abort a pattern if required. For example, if in the midst of executing the
patrol pattern, other logic in the game detects an enemy vehicle in the patrol area, you can set the Patrol
flag to false and a Chase flag to true. This would make the computer-controlled craft stop patrolling and
begin chasing the enemy.

The DoPattern function must be called before the physics engine processes all the forces and torques
acting on the vehicles; otherwise, the pattern instructions will not get included in the force and torque
calculations. In this case, that happens when the Craft2.UpdateBodyEuler (dt) call is made.

Asyou can see herein theif statements, DoPattern returns a boolean value. If the return value of
DoPattern is set to false, it means the given pattern has been fully stepped through. In that case, the
pattern isreinitialized so that the vehicle continues in that pattern. In areal game, you would probably
have some other control logic to test for other conditions before deciding that the patrol pattern should be
repeated. Detecting the presence of an enemy is agood check to make. Also, checking fuel levels might
be appropriate depending on your game. Y ou really can check anything here, it just depends on your
game's requirements. This, by the way, ties into finite state machines, which we cover later.

3.2.4 DoPattern Function

Now, let's take a close look at the DoPattern function shown in Example 3-20.

Example 3-20. DoPattern function

bool DoPattern(Control Data *pPattern, int size)
{

I nt I = PatternTracking. Current Control I D

Vect or u;

I/ Check to see if the next set of instructions in the pattern

/'l array needs to be fetched.

I f( (pPattern[i].LimtPositionChange &&
(PatternTracki ng. dPosition >= pPattern[i].dPositionLimt)) |
(pPattern[i].LimtHeadi ngChange &&
(PatternTracki ng. dHeadi ng >= pPattern[i].dHeadingLimt)) )

InitializePatternTracking();
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| ++;
PatternTracki ng. CurrentControl ID = 1;
I f(PatternTracki ng. Current Control I D >= si ze)
return fal se;
}
/[l Calculate the change in heading since the tine
/[l this set of instructions was initialized.
u = Craft2.vVel ocity;
u. Normal i ze();
doubl e P
P = PatternTracking.Initial Headi ng * u;
Pat t er nTr acki ng. dHeadi ng = fabs(acos(P) * 180 / pi);
/1 Calculate the change in position since the tine
/1l this set of instructions was initialized.
u = Craft2.vPosition - PatternTracking.Initial Position;
Pat t er nTr acki ng. dPosi ti on = u. Magni tude();
/1 Determne the steering force factor.
doubl e f;
I f(pPattern[i].LimtHeadi ngChange)
f =1 - PatternTracki ng. dHeadi ng /
pPattern[i].dHeadi ngLi mt;
el se
f = 1;
if(f < 0.05) f = 0.05;
/'l Apply steering forces in accordance with the current set
/1l of instructions.
Craft2. Set Thrusters( pPattern[i].PThrusterActive,
pPattern[i].SThrusterActive, f);
return true;

The first thing DoPattern does is copy the CurrentControllD, the current index to the pattern array, to a
temporary variable, i, for use later.

Next, the function checksto seeif either the change in position or change in heading limits have been
reached for the current set of control instructions. If so, the tracking structure is reinitialized so that the
next set of instructions can be tracked. Further, the index to the pattern array is incremented and tested to
see if the end of the given pattern has been reached. If so, the function ssmply returns false at this point;
otherwise, it continues to process the pattern.

The next block of code calculates the change in the vehicle's heading since the time the current set of
instructions was initialized. The vehicle's heading is obtained from its vel ocity vector. To calculate the
change in heading as an angle, you copy the velocity vector to atemporary vector, u in this case, and
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normalize it. (Refer to the Appendix for areview of basic vector operations.) This gives the current
heading as a unit vector. Then you take the vector dot product of the initial heading stored in the pattern-
tracking structure with the unit vector, u, representing the current heading. The result is stored in the
scalar variable, P. Next, using the definition of the vector dot product and noting that both vectors
involved here are of unit length, you can calculate the angle between these two vectors by taking the
inverse cosine of P. Thisyields the angle in radians, and you must multiply it by 180 and divide by pi to
get degrees. Note that we al so take the absolute value of the resulting angle because all we're interested in
Isthe change in the heading angle.

The next block of code calculates the change in position of the vehicle since the time the current set of
instructions was initialized. Y ou find the change in position by taking the vector difference between the
vehicle's current position and the initial position stored in the pattern tracking structure. The magnitude of
the resulting vector yields the change in distance.

Next, the function determines an appropriate steering force factor to apply to the maximum available
steering thruster force for the vehicle defined by the underlying physics model. Y ou find the thrust factor
by subtracting 1 from the ratio of the change in heading to the desired change in heading, which isthe
heading limit we are shooting for given the current set of control instructions. This factor is then passed
to the SetThrusters function for the rigid-body object, Craft2, which multiplies the maximum available
steering force by the given factor and applies the thrust to either the port or starboard side of the vehicle.

We clip the minimum steering force factor to avalue of 0.05 so that some amount of steering force
awaysisavailable. Because thisis a physically smulated vehicle, it'sinappropriate to just override the
underlying physics and force the vehicle to a specific heading. Y ou could do this, of course, but it would
defeat the purpose of having the physics model in the first place. So, because we are applying steering
forces, which act over time to steer the vehicle, and because the vehicle is not fixed to aguiderail, a
certain amount of lag exists between the time we turn the steering forces on or off and the response of the
vehicle. This meansthat if we steer hard all the way through the turn, we'll overshoot the desired change
in heading. If we were targeting a 90-degree turn, we'd overshoot it afew degrees depending on the
underlying physics model. Therefore, to avoid overshooting, we want to start our turn with full force but
then gradually reduce the steering force as we get closer to our heading change target. Thisway, we turn
smoothly through the desired change in heading, gradually reaching our goal without overshooting.

Compare thisto turning acar. If you're going to make aright turn in your car, you initially turn the wheel
all the way to the right, and as you progress through the turn you start to et the wheel go back the other
way, gradually straightening your tires. Y ou wouldn't turn the wheel hard over and keep it there until you
turned 90 degrees and then suddenly release the wheel, trying not to overshoot.

Now, the reason we clip the minimum steering force is so that we actually reach our change in heading
target. Using the "1 minus the change in heading ratio" formula means that the force factor goesto 0 in
the limit as the actual change in heading goes to the desired change in heading. This means our changein
heading would asymptote to the desired change in heading but never actually get there because the
steering force would be too small or 0. The 0.05 factor is just a number we tuned for this particular
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model. You'll have to tune your own physics models appropriately for what you are modeling.
3.2.5 Results

Figures 3-4 and 3-5 show the results of this algorithm for both the square and zigzag patterns. We took
these screenshots directly from the example program available for download.

In Figure 3-4 you can see that a square pattern is indeed traced out by the computer-controlled vehicle.
Y ou should notice that the corners of the square are filleted nicelythat is, they are not hard right angles.
The turning radiusillustrated here is afunction of the physics model for this vehicle and the steering
force thrust modulation we discussed a moment ago. It will be different for your specific model, and
you'll have to tune the simulation as always to get satisfactory results.

Figure 3-4. Square path

figs/ch03_fig04.jpg

Figure 3-5 shows the zigzag pattern taken from the same example program. Again, notice the smooth

turns. This givesthe path arather natural look. If this were an aircraft being simulated, one would also
expect to see smooth turns.

Figure 3-5. Zigzag path

figs/ch03_fig05.jpg

The pattern shown in Figure 3-6 consists of 10 instructions that tell the computer-controlled vehicle to go

straight, turn 135 degrees right, go straight some more, turn 135 degrees left, and so on, until the pattern
shown hereis achieved.

Figure 3-6. Arbitrary pattern

figs/ch03_fig06.jpg

Just for fun, we included an arbitrary pattern in this example to show you that this algorithm does not
restrict you to simple patterns such as squares and zigzags. Y ou can encode any pattern you can imagine
Into a series of instructions in the same manner, enabling you to achieve seemingly intelligent movement.
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Chapter 4. Flocking

Often in video games, nonplayer characters must move in cohesive groups rather than independently. Let's
consider some examples. Say you're writing an online role-playing game, and just outside the main town isa
meadow of sheep. Y our sheep would appear more realistic if they were grazing in aflock rather than walking
around aimlessly. Perhaps in this same role-playing game is aflock of birds that prey on the game's human
inhabitants. Here again, birds that hunt in flocks rather than independently would seem more realistic and pose
the challenge to the player of dealing with somewhat cooperating groups of predators. It's not a huge leap of
faith to see that you could apply such flocking behavior to giant ants, bees, rats, or sea creatures as well.

These examples of local fauna moving, grazing, or attacking in herds or flocks might seem like obvious waysin
which you can use flocking behavior in games. With that said, you do not need to limit such flocking behavior
to faunaand can, in fact, extend it to other nonplayer characters. For example, in areal-time strategy simulation,
you can use group movement behavior for nonplayer unit movement. These units can be computer-controlled
humans, trolls, orcs, or mechanized vehicles of all sorts. In acombat flight simulation, you can apply such group
movement to computer-controlled squadrons of aircraft. In afirst-person shooter, computer-controlled enemy or
friendly squads can employ such group movement. Y ou even can use variations on basic flocking behavior to
simulate crowds of people loitering around atown square, for example.

In al these examples, the ideais to have the nonplayer characters move cohesively with theillusion of having
purpose. Thisis as opposed to a bunch of units that move about, each with their own agenda and with no
semblance of coordinated group movement whatsoever.

At the heart of such group behavior lie basic flocking algorithms such as the one presented by Craig Reynolds in
his 1987 SIGGRAPH paper, "Flocks, Herds, and Schools: A Distributed Behavioral Model.” Y ou can apply the
algorithm Reynolds presented in its original form to simulate flocks of birds, fish, or other creatures, or in
modified versions to simulate group movement of units, squads, or air squadrons. In this chapter we're going to
take aclose look at a basic flocking algorithm and show how you can modify it to handle such situations as
obstacle avoidance. For generality, we'll use the term units to refer to the individual entities comprising the
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4.1 Classic Flocking

Craig Reynolds coined the term boids when referring to his simulated flocks. The behavior he generated very
closely resembles shoals of fish or flocks of birds. All the boids can be moving in one direction at one moment,
and then the next moment the tip of the flock formation can turn and the rest of the flock will follow as awave
of turning boids propagates through the flock. Reynolds implementation is leaderless in that no one boid
actually leads the flock; in a sense they all sort of follow the group, which seems to have amind of its own. The

motion Reynolds' flocking algorithm generated is quite impressive. Even more impressive is the fact that this
behavior isthe result of three elegantly ssmple rules. These rules are summarized as follows:

Cohesion

Have each unit steer toward the average position of its neighbors.
Alignment

Have each unit steer so asto align itself to the average heading of its neighbors.
Separation

Have each unit steer to avoid hitting its neighbors.

It's clear from these three rule statements that each unit must be able to steer, for example, by application of
steering forces. Further, each unit must be aware of itslocal surroundingsit has to know where its neighbors are
located, where they're headed, and how close they areto it.

In physically simulated, continuous environments, you can steer by applying steering forces on the units being
simulated. Here you can apply the same technigue we used in the chasing, evading, and pattern movement
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examples earlier in the book. (Refer to Chapter 2 and, specifically, to Figure 2-7 and surrounding discussion to
see how you can handle steering.) We should point out that many flocking algorithms you'll find in other printed
material or on the Web use particles to represent the units, whereas here we're going to use rigid bodies such as
those we covered in Chapters 2 and 3. Although particles are easier to handle in that you don't have to worry
about rotation, it's very likely that in your games the units won't be particles. Instead, they'll be unitswith a
definite volume and awell defined front and back, which makes it important to track their orientations so that
while moving around, they rotate to face the direction in which they are heading. Treating the units asrigid
bodies enables you to take care of orientation.

For tiled environments, you can employ the line-of-sight methods we used in the tile-based chasing and evading
examples to have the units steer, or rather, head toward a specific point. For example, in the case of the cohesion
rule, you'd have the unit head toward the average location, expressed as atile coordinate, of its neighbors.

(Refer to the section "Line-of-Sight Chasing” in Chapter 2.)

To what extent is each unit aware of its neighbors? Basically, each unit is aware of itslocal surroundingsthat is,
it knows the average location, heading, and separation between it and the other unitsin the group in its
immediate vicinity. The unit does not necessarily know what the entire group is doing at any given time. Figure
4-1 illustrates a unit's local visibility.

Figure 4-1. Unit visibility

Figure 4-1 illustrates a unit (the bold one in the middle of the figure) with avisibility arc of radiusr around it.
The unit can see all other unitsthat fall within that arc. The visible units are used when applying the flocking
rules; all the other units are ignored. The visibility arc is defined by two parametersthe arc radius, r, and the
angle, 6. Both parameters affect the resulting flocking motion, and you can tune them to your needs.
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In general, alarge radius will allow the unit to see more of the group, which resultsin a more cohesive flock.
That is, the flock tends to splinter into smaller flocks less often because each unit can see where most or al of
the units are and steer accordingly. On the other hand, a smaller radius tends to increase the likelihood of the
flock to splinter, forming smaller flocks. A flock might splinter if some units temporarily lose sight of their
neighbors, which can be their link to the larger flock. When this occurs, the detached units will splinter off into
asmaller flock and could perhaps rejoin the others if they happen to come within sight again. Navigating around
obstacles also can cause aflock to break up. In this case, alarger radius will help the flock to rejoin the group.

The other parameter, 8, measures the field of view, so to speak, of each unit. The widest field of view is, of
course, 360 degrees. Some flocking algorithms use a 360-degree field of view because it is easier to implement;
however, the resulting flocking behavior might be somewhat unrealistic. A more common field of view is
similar to that illustrated in Figure 4-1, where there is a distinct blind spot behind each unit. Here, again, you
can tune this parameter to your liking. In general, awide field of view, such asthe oneillustrated in Figure 4-2
in which the view angle is approximately 270 degrees, resultsin well formed flocks. A narrow field of view,
such asthe one illustrated in Figure 4-2 in which the view angle is a narrow 45 degrees, resultsin flocks that
tend to look more like aline of ants walking along a path.

Figure 4-2. Wide versus narrow field-of-view flock formations

. l'| . |...__

Wide field-of-view formation Marrow field-of-view formation

Both results have their uses. For example, if you were simulating a squadron of fighter jets, you might use a
wide field of view. If you were simulating a squad of army units sneaking up on someone, you might use a
narrow field of view so that they follow each other in aline and, therefore, do not present a wide target as they
make their approach. If you combine this latter case with obstacle avoidance, your units would appear to follow
the point man as they sneak around obstacles.

Later, we'll build on the three flocking rules of cohesion, alignment, and separation to facilitate obstacle
avoidance and leaders. But first, let's go through some example code that implements these three rules.
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4.2 Flocking Example

The example we're going to ook at involves simulating several unitsin a continuous environment. Here, we'll
use the same rigid-body simulation algorithms we used in the chasing and pattern movement examples we
discussed earlier. This example is named AlDemo4, and it's available for download from the book's Web site
(http://www.oreilly.com/catalog/ai).

Basically, we're going to simulate about 20 units that will move around in flocks and interact with the
environment and with a player. For this simple demonstration, interaction with the environment consists of
avoiding circular objects. The flocking units interact with the player by chasing him.

4.2.1 Steering Model

For this example, we'll implement a steering model that is more or lessidentical to the one we used in the
physics-based demo in Chapter 2. Y ou can refer to Figure 2-8 and the surrounding discussion to refresh your
memory on the steering model. Basically, we're going to treat each unit asarigid body and apply a net steering
force at the front end of the unit. This net steering force will point in either the starboard or port direction
relative to the unit and will be the accumulation of steering forces determined by application of each flocking
rule. This approach enables us to implement any number or combination of flocking ruleseach rule makes a
small contribution to the total steering force and the net result is applied to the unit once all therules are
considered.

We should caution you that this approach does require some tuning to make sure no single rule dominates. That
IS, you don't want the steering force contribution from a given rule to be so strong that it always overpowers the
contributions from other rules. For example, if we make the steering force contribution from the cohesion rule
overpower the others, and say we implement an obstacle avoidance rule so that units try to steer away from
objects, if the cohesion rule dominates, the units might stay together. Therefore, they will be unable to steer
around objects and might run into or through them. To mitigate this sort of unbalance, we're going to do two
things: first, we're going to modulate the steering force contribution from each rule; and second, we're going to
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tune the steering model to make sure everything is balanced, at |east most of the time.

Tuning will require trial and error. Modulating the steering forces will require that we write the steering force
contribution from each rule in the form of an equation or response curve so that the contribution is not constant.
Instead, we want the steering force to be a function of some key parameter important to the given rule.

Consider the avoidance rule for amoment. In this case, we're trying to prevent the units from running into each
other, while at the same time enabling the unitsto get close to each other based on the alignment and cohesion
rules. We want the avoidance rule steering force contribution to be small when the units are far away from each
other, but we want the avoidance rule steering force contribution to be relatively large when the units are
dangerously close to each other. Thisway, when the units are far apart, the cohesion rule can work to get them
together and form aflock without having to fight the avoidance rule. Further, once the units are in aflock, we
want the avoidance rule to be strong enough to prevent the units from colliding in spite of their tendency to want
to stay together due to the cohesion and alignment rules. It's clear in this example that separation distance
between unitsis an important parameter. Therefore, we want to write the avoidance steering force as afunction
of separation distance. Y ou can use an infinite number of functions to accomplish this task; however, in our
experience, asimple inverse function works fine. In this case, the avoidance steering force isinversely
proportional to the separation distance. Therefore, large separation distances yield small avoidance steering
forces, while small separation distances yield larger avoidance steering forces.

We'll use asimilar approach for the other rules. For example, for alignment we'll consider the angle between a
given unit's current heading relative to the average heading of its neighbors. If that angle is small, we want to
make only a small adjustment to its heading, whereas if the angle is large, alarger adjustment is required. To
achieve such behavior, we'll make the alignment steering force contribution directly proportional to the angle
between the unit's current heading and the average heading of its neighbors. In the following sections, we'll ook
at and discuss some code that implements this steering model.

4.2.2 Neighbors

Aswe discussed earlier, each unit in aflock must be aware of its neighbors. Exactly how many neighbors each
unit is aware of isafunction of the field-of-view and view radius parameters shown in Figure 4-1. Because the
arrangement of the unitsin aflock will change constantly, each unit must update its view of the world each time
through the game loop. This means we must cycle through all the unitsin the flock collecting the required data.
Note that we have to do this for each unit to acquire each unit's unique perspective. This neighbor search can
become computationally expensive as the number of units grows large. The sample code we discuss shortly is
written for clarity and is a good place to make some optimizations.

The example program entitled AlIDemo4, which you can download from the book's web site (http://www.oreilly.
com/catalog/al"), is set up similar to the examples we discussed earlier in this book. In this example, you'll find

afunction called UpdateSmulation that is called each time through the game, or simulation, loop. This function
Is responsible for updating the positions of each unit and for drawing each unit to the display buffer. Example 4-
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1 shows the UpdateSimulation function for this example.

Example 4-1. UpdateSimulation function

voi d

{

Updat eSi mul ati on(voi d)

doubl e dt = _TI MESTEP;
i nt i
/1 Initialize the back buffer:
i f(FraneCounter >= RENDER _FRANME_COUNT)
{
Cl ear BackBuf fer();
Dr awQbst acl es() ;
}
/1 Update the player-controlled unit (Units[0]):
Units[0]. Set Thrusters(fal se, false, 1);
if (1sKeyDown(VK RI GHT))
Units[0].Set Thrusters(true, false, 0.5);
if (IsKeyDown( VK LEFT))
Units[0]. Set Thrusters(fal se, true, 0.5);
Uni t s[ 0] . Updat eBodyEul er (dt);
if(Units[0].vPosition.x > WNWDTH Units[0].vPosition.x = 0;
if(Units[0].vPosition.x < 0) Units[0].vPosition.x = W NWDTH,
if(Units[0].vPosition.y > WNHEIGHT) Units[0].vPosition.y = 0;
if(Units[0].vPosition.y < 0) Units[0].vPosition.y = W NHElI GHT;
i f(FraneCounter >= RENDER _FRANME_COUNT)
DrawCraft(Units[0], RGB(0, 255, 0));
/1 Update the conmputer-controlled units:
for(i=1; i< MAX_ NUM UNITS; i++)
{
DoUni t Al (i) ;
Units[i]. Updat eBodyEul er (dt);
if(Units[i].vPosition.x > _WNW DTH)
Units[i].vPosition.x = 0;
if(Units[i].vPosition.x < 0)
Units[i].vPosition.x = _WNWDTH;
if(Units[i].vPosition.y > W NHEI GHT)
Units[i].vPosition.y = O;
<

if(Units[i].vPosition.y 0)
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Units[i].vPosition.y = W NHEl GHT,;
i f(FraneCounter >= _RENDER _FRAME_COUNT)
{
if(Units[i].Leader)
DrawCraft(Units[i], RGB(255,0,0));
el se {
if(Units[i].Interceptor)
DrawCraft (Units[i], RGB(255,0, 255));
el se
DrawCraft(Units[i], RGB(O, 0, 255));

}

/1 Copy the back buffer to the screen:

i f (FranmeCounter >= RENDER FRAME COUNT) {
CopyBackBuf f er ToW ndow() ;
FrameCounter = O;

} else

FrameCount er ++;

UpdateS mulation performs the usual tasks. It clears the back buffer upon which the scene will be drawn; it
handles any user interaction for the player-controlled unit; it updates the computer-controlled units; it draws
everything to the back buffer; and it copies the back buffer to the screen when done. The interesting part for our
purposes is where the computer-controlled units are updated. For this task, UpdateS mulation loops through an
array of computer-controlled units and, for each one, calls another function named DoUnitAl. All the fun
happens in DoUnitAl, so we'll spend the remainder of this chapter looking at this function.

DoUnitAl handles everything with regard to the computer-controlled unit's movement. All the flocking rules are
implemented in this function. Before the rules are implemented, however, the function has to collect data on the
given unit's neighbors. Notice here that the given unit, the one currently under consideration, is passed in as a
parameter. More specifically, an array index to the current unit under consideration is passed in to DoUnitAl as
the parameter i.

Example 4-2 shows a snippet of the very beginning of DoUnitAl. This snippet contains only the local variable
list and initialization code. Normally, we just brush over this kind of code, but because this code contains a
relatively large number of local variables and because they are used often in the flocking calculations, it's
worthwhile to go through it and state exactly what each one represents.
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Example 4-2. DoUnitAl initialization

voi d DoUni t Al (int i)

{
i nt i
i nt N; /1 Nunmber of neighbors
Vect or Pave; // Average position vector
Vect or Vave; // Average velocity vector
Vect or Fs; /1 Net steering force
Vect or Pfs; /1 Point of application of Fs
Vect or d, u, v, w
doubl e m
bool I nVi ew,
bool DoFl ock = W deView | Li nitedView | Narr owi ew;
I nt Radi usFact or ;

/[l Initialize:

Fs.x = Fs.y = Fs.z = 0;

Pave.x = Pave.y = Pave.z = 0;
Vave.x = Vave.y = Vave.z =

N = 0;

Pfs.x = 0;

Pfs.y = Units[i].fLength / 2.0f;

WEe've already mentioned that the parameter, i, represents the array index to the unit currently under
consideration. Thisisthe unit for which al the neighbor data will be collected and the flocking rules will be
implemented. The variable, |, is used as the array index to all other unitsin the Units array. These are the
potential neighborsto Unitg[i]. N represents the number of neighbors that are within view of the unit currently
under consideration. Pave and Vave will hold the average position and velocity vectors, respectively, of the N
neighbors. Fs represents the net steering force to be applied to the unit under consideration. Pfs represents the
location in body-fixed coordinates at which the steering force will be applied. d, u, v, and w are used to store
various vector quantities that are calculated throughout the function. Such quantities include relative position
vectors and heading vectors in both global and local coordinates. misamultiplier variable that always will be
either +1 or -1. It's used to make the steering forces point in the directions we needthat is, to either the starboard
or port side of the unit under consideration. InView is aflag that indicates whether a particular unit is within
view of the unit under consideration. DoFlock is simply aflag that indicates whether to apply the flocking rules.
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In this demo, you can turn flocking on or off. Further, you can implement three different visibility modelsto see
how the flock behaves. These visibility models are called WideView, LimitedView, and NarrowView. Finaly,
RadiusFactor represents ther parameter shown in Figure 4-1, which is different for each visibility model. Note
the field-of-view angle is different for each model as well; we'll talk more about thisin a moment.

After all the local variables are declared, several of them are initialized explicitly. Asyou can seein Example 4-
2, they are, for the most part, initialized to 0. The variables you see listed there are the ones that are used to
accumul ate some valuefor example, to accumulate the steering force contributions from each rule, or to
accumul ate the number of neighbors within view, and so on. The only one not initialized to O is the vector Pfs,
which represents the point of application of the steering force vector on the unit under consideration. Here, Pfs
IS set to represent a point on the very front and centerline of the unit. Thiswill make the steering force line of
action offset from the unit's center of gravity so that when the steering force is applied, the unit will move in the
appropriate direction as well as turn and face the appropriate direction.

Upon completing the initialization of local variables, DoUnitAl enters aloop to gather information about the
current unit's neighbors, if there are any.

Example 4-3 contains a snippet from DoUnitAl that performs all the neighbor checks and data collection. To
thisend, aloop is entered, the j loop, whereby each unit in the Units arrayexcept for Unitg 0] (the player-
controlled unit) and Unitg[i] (the unit for which neighbors are being sought)is tested to seeif it iswithin view of

the current unit. If it is, its datais collected.

Example 4-3. Neighbors

for(j=1; j< MAX NUM UNITS; |++)

{

if(ils))

{
I nView = fal se;
d = Units[j].vPosition - Units[i].vPosition,
w = VRotatez2D(-Units[i].fOrientation, d);
i f(WdeVi ew)
{

InView = ((wy >0) ||] ((wy < 0) &&
(fabs(w x) >
fabs(w. y)*
_BACK_VI EW ANGLE_FACTOR) ) ) ;
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Radi usFact or = _W DEVI EW RADI US_FACTOR,

}
i f(LimtedView
{
InView = (w.y > 0);
Radi usFactor = _LI M TEDVI EW RADI US_FACTOR;
}
i f(NarrowVi ew)
{
InView = (((wy > 0) & (fabs(w. x) <
fabs(w. y)*
_FRONT_VI EW ANGLE_FACTOR) ) ) :
Radi usFact or = _NARROW/I EW RADI US_FACTOCR,;
}
i f(lnView
{
i f(d.Magnitude() <= (Units[i].fLength *
Radi usFact or))
{
Pave += Units[j].vPosition;
Vave += Units[j].vVelocity;
N++;
}
}

After checking to make sure that i isnot equal to jthat is, we aren't checking the current unit against itselfthe
function calculates the distance vector between the current unit, Unitg[i], and Unitg[j], which is ssimply the
difference in their position vectors. Thisresult is stored in the local variable, d. Next, d is converted from global
coordinates to local coordinates fixed to Unitg[i]. The result is stored in the vector w.

Next, the function goes on to check to seeif Unitg[j] iswithin the field of view of Unitg[i]. Thischeck isa
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function of the field-of-view angle asillustrated in Figure 4-1; we'll check the radius value later, and only if the
field-of-view check passes.

Now, because this example includes three different visibility models, three blocks of code perform field-of-view
checks. These checks correspond to the wide-field-of-view, the limited-field-of-view, and the narrow-field-of -
view models. Aswe discussed earlier, aunit's visibility influences the group's flocking behavior. Y ou can toggle
each model on or off in the example program to see their effect.

The wide-view model offers the greatest visibility and lends itself to easily formed and regrouped flocks. In this
case, each unit can see directly in front of itself, to its sides, and behind itself, with the exception of a narrow
blind spot directly behind itself. Figure 4-3 illustrates this field of view.

Figure 4-3. Wide field of view

+¥y

=y

The test to determine whether Unitg[j] falls within thisfield of view consists of two parts. First, if the relative
position of Unitg[j] interms of local coordinates fixed to the current unit, Unitg[i], is such that its y-coordinate
Is positive, we know that Unitg[j] iswithin the field of view. Second, if the y-coordinate is negative, it could be
either within the field of view or in the blind spot, so another check is required. This check looks at the x-
coordinate to determine if Unitg[j] islocated within the pie slice-shaped blind spot formed by the two straight
lines that bound the visibility arc, as shown in Figure 4-3. If the absolute value of the x-coordinate of Unitgj] is
greater than some factor times the absolute value of the y-coordinate, we know Unitg[j] islocated on the outside
of the blind spotthat is, within the field of view. That factor times the absolute value of the y-coordinate
calculation simply represents the straight lines bounding the field-of-view arc we mentioned earlier. The code
that performs this check is shown in Example 4-3, but the key part is repeated here in Example 4-4 for
convenience.
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Example 4-4. Wide-field-of-view check

i f(WdeVi ew)
{
InView = ((wy >0) || ((wy <0) &
(fabs(w. x) >
fabs(w. y)*
_BACK VI EW ANGLE_FACTOR) ) ) ;
Radi usFact or = _W DEVI EW RADI US_FACTOR;

In the code shown here, the BACK_VIEW_ANGLE_FACTOR represents afield-of-view angle factor. If it is set
to avalue of 1, the field-of-view bounding lines will be 45 degrees from the x-axis. If the factor is greater than
1, the lines will be closer to the x-axis, essentially creating alarger blind spot. Conversely, if the factor isless
than 1, the lines will be closer to the y-axis, creating a smaller blind spot.

You'll aso notice here that the RadiusFactor is set to some predefined value, WIDEVIEW_RADIUS FACTOR.
Thisfactor controls the radius parameter shown in Figure 4-1. By the way, when tuning this example, this radius

factor is one of the parameters that require adjustment to achieve the desired behavior.

The other two visibility model checks are very similar to the wide-view model; however, they each represent
smaller and smaller fields of view. These two models are illustrated in Figures 4-4 and 4-5.

Figure 4-4. Limited field of view
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Figure 4-5. Narrow field of view
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In the limited-view model, the visibility arc is restricted to the local positive y-axis of the unit. This means each
unit cannot see anything behind itself. In this case, the test isrelatively simple, as shown in Example 4-5, where
al you need to determine is whether the y-coordinate of Unitg[j], expressed in Unitg[i] local coordinates, is
positive.

Example 4-5. Limited-field-of-view check
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i f(LimtedView
{
InView = (wy > 0);
Radi usFactor = LI M TEDVI EW RADI US FACTOR,

The narrow-field-of-view model restricts each unit to seeing only what is directly in front of it, asillustrated in
Figure 4-5.

The code check in this case is very similar to that for the wide-view case, where the visibility arc can be
controlled by some factor. The calculations are shown in Example 4-6.

Example 4-6. Narrow-field-of-view check

i f(Narrowvi ew)

{
InView = (((wy > 0) & (fabs(w. x) <
fabs(w y)*
_FRONT_VI EW ANGLE_FACTOR)) ) ;
Radi usFact or = NARROWI EW RADI US FACTOR;
}

In this case, the factor, FRONT VIEW_ANGLE_FACTOR, controlsthe field of view directly in front of the
unit. If thisfactor is equal to 1, the lines bounding the view cone are 45 degrees from the x-axis. If the factor is
greater than 1, the lines move closer to the x-axis, effectively increasing the field of view. If the factor isless
than 1, the lines move closer to the y-axis, effectively reducing the field of view.
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If any of these tests pass, depending on which view model you selected for this demo, another check is made to
seeif Unitgj] is also within a specified distance from Unitg[i]. If Unitg[j] iswithin the field of view and within
the specified distance, it isvisible by Unitg[i] and will be considered a neighbor for subsequent calculations.

The last if block in Example 4-3 shows this distance test. If the magnitude of the d vector is less than the Units
[1]'s length times the RadiusFactor, Unitg[j] is close enough to Unitg[i] to be considered a neighbor. Notice how
this prescribed separation threshold is specified in terms of the unit's length times some factor. Y ou can use any
value here depending on your needs, though you'll have to tuneit for your particular game; however, we like
using the radius factor times the unit's length because it scales. If for some reason you decide to change the scale
(the dimensions) of your game world, including the units in the game, their visibility will scale proportionately
and you won't have to go back and tune some new visibility distance at the new scale.

4.2.3 Cohesion

Cohesion implies that we want al the units to stay together in a group; we don't want each unit breaking from
the group and going its separate way. As we stated earlier, to satisfy thisrule, each unit should steer toward the
average position of its neighbors. Figure 4-6 illustrates a unit surrounded by several neighbors. The small
dashed circle in the figure represents the average position of the four neighbors that are within view of the unit
shown in bold lines with the visibility arc around itself.

Figure 4-6. Average position and heading of neighbors

Average heading
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The average position of neighborsisfairly easy to calculate. Once the neighbors have been identified, their
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average position is the vector sum of their respective positions divided by the total number of neighbors (a
scalar). Theresult is avector representing their average position. Example 4-3 aready shows where the

positions of the neighbors are summed once they've been identified. The relevant code is repeated herein
Example 4-7 for convenience.

Example 4-7. Neighbor position summation

i f(InView
{
i f(d.Magnitude() <= (Units[i].fLength *
Radi usFact or))

{
Pave += Units[j].vPosition;
Vave += Units[j].vVelocity;
N++;

The line that reads Pave += Unitg[j] .vPosition; sums the position vectors of al neighbors. Remember, Pave and
vPosition are Vector types, and the overloaded operators take care of vector addition for us.

After DoUnitAl takes care of identifying and collecting information on neighbors, you can apply the flocking
rules. The first one handled is the cohesion rule, and the code in Example 4-8 shows how to do this.

Example 4-8. Cohesion rule

/] Cohesi on Rul e:
i f(DoFl ock & (N > 0))
{

Pave = Pave / N
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= Units[i].vVelocity;

< <

. Normalize();

c

= Pave - Units[i].vPosition;

c

. Normal i ze();

w = VRotate2D(-Units[i].fOrientation, u);

if(wx <0) m=-1;

if(wx >0) m=1;

if(fabs(v*u) < 1)

Fs.x += m* _STEERI NGFORCE * acos(v * u) / pi;

Notice that the first thing this block of code does is check to make sure the number of neighborsis greater than
zero. If so, we can go ahead and calculate the average position of the neighbors. Do this by taking the vector
sum of al neighbor positions, Pave, and dividing by the number of neighbors, N.

Next, the heading of the current unit under consideration, Unitgi], is stored in v and normalized. It will be used
in subsequent cal culations. Now the displacement between Unitg[i] and the average position of its neighborsis
calculated by taking the vector difference between Pave and Unitgi]'s position. The result is stored in u and
normalized. u is then rotated from global coordinatesto local coordinates fixed to Unitg[i] and theresult is
stored in w. This gives the location of the average position of Unitg[i]'s neighborsrelative to Unitg[i]'s current
position.

Next, the multiplier, m, for the steering force is determined. If the x-coordinate of w is greater than zero, the
average position of the neighbors is located to the starboard side of Unitg[i] and it has to turn left (starboard). If
the x-coordinate of w is less than zero, Unitgi] must turn right (port side).

Finally, aquick check is made to seeif the dot product between the unit vectorsv and u isless than 1 and

greater than minus -1 This must be done because the dot product will be used when calculating the angle
between these two vectors, and the arc cosine function takes an argument between +/-1.

("] Refer to the Appendix for areview of the vector dot product operation.

Thelast line shown in Example 4-8 is the one that actually calculates the steering force satisfying the cohesion
rule. In that line the steering force is accumulated in Fs.x and is equal to the direction factor, m, times the

prescribed maximum steering force times the angle between the current unit's heading and the vector from it to
the average position of its neighbors divided by pi. The angle between the current unit's heading and the vector
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to the average position of its neighbors is found by taking the arc cosine of the dot product of vectorsv and u.
This comes from the definition of dot product. Note that the two vectors, v and u, are unit vectors. Dividing the
resulting angle by pi yields a scale factor that gets applied to the maximum steering force. Basically, the steering
force being accumulated in Fs.x isalinear function of the angle between the current unit's heading and the
vector to the average position of its neighbors. This meansthat if the angle islarge, the steering force will be
relatively large, whereas if the angle is small, the steering force will be relatively small. Thisis exactly what we
want. If the current unit is heading in adirection far from the average position of its neighbors, we want it to
make a harder correctiveturn. If it is heading in adirection not too far off from the average neighbor position,
we want smaller corrections to its heading.

4.2.4 Alignment

Alignment implies that we want all the unitsin aflock to head in generally the same direction. To satisfy this
rule, each unit should steer so asto try to assume a heading equal to the average heading of its neighbors.
Referring to Figure 4-6, the bold unit in the center is moving along a given heading indicated by the bold arrow
attached to it. The light, dashed vector also attached to it represents the average heading of its neighbors.
Therefore, for this example, the bold unit needs to steer toward the right.

We can use each unit's velocity vector to determine its heading. Normalizing each unit's velocity vector yields
its heading vector. Example 4-7 shows how the heading datafor a unit's neighbors is collected. The line Vave
+= Unitg[j] .vVelocity; accumulates each neighbor's velocity vector in Vave in amanner similar to how
positions were accumulated in Pave.

Example 4-9 shows how the alignment steering force is determined for each unit. The code shown hereis
almost identical to that shown in Example 4-8 for the cohesion rule. Here, instead of dealing with the average
position of neighbors, the average heading of the current unit's neighborsisfirst calculated by dividing Vave by
the number of neighbors, N. The result is stored in u and then normalized, yielding the average heading vector.

Example 4-9. Alignment rule

/1 Alignment Rule:
i f(DoFl ock & (N > 0))
{
Vave = Vave / N
u = Vave;
u. Normal i ze();

v = Units[i].vVelocity;
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v. Normal i ze();
w = VRotate2D(-Units[i].fOrientation, u);
if(wx <0) m= -1,
if(wx >0) m=1;
i f(fabs(v*u) < 1)
Fs.x += m* _STEERI NGFORCE * acos(v * u) / pi;

Next, the heading of the current unit, Unitg[i], is determined by taking its velocity vector and normalizing it.
Theresult is stored in v. Now, the average heading of the current unit's neighbors is rotated from global
coordinates to local coordinates fixed to Unitgi] and stored in vector w. The steering direction factor, m, is then
calculated in the same manner as before. And, as in the cohesion rule, the alignment steering forceis
accumulated in Fs.x.

In this case, the steering force is alinear function of the angle between the current unit's heading and the average
heading of its neighbors. Here again, we want small steering corrections to be made when the current unit is
heading in adirection fairly close to the average of its neighbors, whereas we want large steering corrections to
be made if the current unit is heading in a direction way off from its neighbors' average heading.

4.2.5 Separation

Separation implies that we want the units to maintain some minimum distance away from each other, even
though they might be trying to get closer to each other as aresult of the cohesion and alignment rules. We don't
want the units running into each other or, worse yet, coalescing at a coincident position. Therefore, we'll enforce
separation by requiring the units to steer away from any neighbor that is within view and within a prescribed
minimum separation distance.

Figure 4-7 illustrates a unit that is too close to a given unit, the bold one. The outer arc centered on the bold unit
Isthe visibility arc we've already discussed. The inner arc represents the minimum separation distance. Any unit
that moves within this minimum separation arc will be steered clear of it by the bold unit.

Figure 4-7. Separation
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The code to handle separation isjust alittle different from that for cohesion and alignment because for
separation, we need to look at each individual neighbor when determining suitable steering corrections rather
than some average property of al the neighbors. It is convenient to include the separation code within the same |
loop shown in Example 4-3 where the neighbors are identified. The new j loop, complete with the separation
rule implementation, is shown in Example 4-10.

Example 4-10. Neighbors and separation

for(j=1; j< MAX_ NUM UNITS; | ++)
{
if(il=))
{
InView = fal se;
d = Units[j].vPosition - Units[i].vPosition;
w = VRotate2D(-Units[i].fOrientation, d);
i f(WdeVi ew)
{
InView = ((wy >0) || ((wy <0) &&
(fabs(w. x) >
fabs(w. y)*_ BACK VI EWANGLE FACTOR)));
Radi usFact or = _W DEVI EW RADI US_FACTOR;
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}
i f(LimtedView
{
InView = (w.y > 0);
Radi usFactor = _LI M TEDVI EW RADI US_FACTOR;
}
i f (Narrowi ew)
{
InView = (((wy > 0) && (fabs(w. x) <
fabs(w y)*_FRONT_VI EW ANGLE _FACTOR))) ;
Radi usFact or = _NARROWI EW RADI US_FACTCR;
}
if(lnView
{
i f(d.Magnitude() <= (Units[i].fLength *
Radi usFactor))
{
Pave += Units[j].vPosition;
Vave += Units[j].vVelocity;
N++;
}
}
i f(lnView
{
i f(d. Magni tude() <=
(Units[i].fLength * _SEPARATI ON_FACTOR))
{
if(wx <0) m=1;
if(wx >0) m= -1,
Fs.x += m* _STEERI NGFORCE *
(Units[i].fLength *
_SEPARATI ON_FACTOR) /
d. Magni tude() ;
}
}
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Thelast if block contains the new separation rule code. Basically, if thej unitisinview and if it iswithin a
distance of Unitg[i].fLength *_ SEPARATION_FACTOR from the current unit, Unitg[i], we calculate and apply
a steering correction. Notice that d is the distance separating Unitgi] and Unitg[j], and was calculated at the
beginning of the j loop.

Once it has been determined that Unitg[j] presents a potential collision, the code proceeds to calculate the
corrective steering force. First, the direction factor, m, is determined so that the resulting steering force is of
such adirection that the current unit, Unitg[i], steers away from Unitg[j]. In this case, m takes on the opposite
sense, as in the cohesion and alignment cal culations.

Asin the cases of cohesion and alignment, steering forces get accumulated in Fs.x. In this case, the corrective
steering force isinversely proportional to the actual separation distance. Thiswill make the steering correction
force greater the closer Unitg[j] getsto the current unit. Notice here again that the minimum separation distance
Is scaled as afunction of the unit's length and some prescribed separation factor. This occurs so that separation
scalesjust like visibility, as we discussed earlier.

We also should mention that even though separation forces are calculated here, units won't always avoid each
other with 100% certainty. Sometimes the sum of all steering forcesis such that one unit is forced very close to
or right over an adjacent unit. Tuning all the steering force parameters helps to mitigate, though not eliminate,
this situation. Y ou could set the separation steering force so high asto override any other forces, but you'll find
that the units' behavior when in close proximity to each other appears very erratic. Further, it will make it
difficult to keep flocks together. In the end, depending on your game's requirements, you still might have to
implement some sort of collision detection and response algorithm similar to that discussed in Physics for Game
Developers (O'Reilly) to handle cases in which two or more units run into each other.

Y ou a'so should be aware that visibility has an important effect on separation. For example, while in the wide-
view visibility model, the units maintain separation very effectively; however, in the narrow-view model the
units fail to maintain side-to-side separation. Thisis because their views are so restricted, they are unaware of
other units right alongside them. If you go with such alimited-view model in your games, you'll probably have
to use a separate view model, such as the wide-view model, for the separation rule. Y ou can easily change this
example to use such a separate model by replacing the last if block's condition to match the logic for
determining whether aunit isin view according to the wide-view model.

Once al the flocking rules are implemented and appropriate steering forces are calculated for the current unit,
DoUnitAl stores the resulting steering forces and point of application in the current unit's member variables.
Thisis shown in Example 4-11.

Example 4-11. Set Units[i] member variables
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voi d DoUnitAl (int i)

/1 Do all steering force calculations...

Units[i].Fa = Fs;
Units[i]. Pa Pfs;

Once DoUnitAl returns, UpdateS mulation becomes responsible for applying the new steering forces and
updating the positions of the units (see Example 4-1).

4 Prewious Hext F
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4.3 Obstacle Avoidance

The flocking rules we discussed so far yield impressive results. However, such flocking behavior would be far
more realistic and useful in gamesiif the units also could avoid running into objects in the game world as they
move around in aflock. Asit turns out, adding such obstacle avoidance behavior is arelatively simple matter.
All we have to do is provide some mechanism for the unitsto see ahead of them and then apply appropriate
steering forces to avoid obstacles in their paths.

In this example, we'll consider asimple idealization of an obstaclewe'll consider them as circles. This need not
be the case in your games; you can apply the same general approach we'll apply here for other obstacle shapes
aswell. The only differences will, of course, be geometry, and how you mathematically determine whether a
unit is about to run into the obstacle.

To detect whether an obstacle isin the path of a unit, we'll borrow from robotics and outfit our units with virtual
feelers. Basically, these feelers will stick out in front of the units, and if they hit something, thiswill be an
indication to the units to turn. We'll assume that each unit can see obstacles to the extent that we can calculate to
which side of the unit the obstacle is located. Thiswill tell us whether to turn right or |eft.

The model we just described isn't the only one that will work. For example, you could outfit your units with
more than one feelersay, three sticking out in three different directions to sense not only whether the obstacle is
present, but also to which side of the unit it islocated. Wide units might require more than one feeler so that you
can be sure the unit won't sideswipe an obstacle. In 3D you could use avirtual volume that extends out in front
of the unit. Y ou then could test this volume against the game-world geometry to determine an impending
collision with an obstacle. Y ou can take many approaches.

Getting back to the approach we'll discuss, take alook at Figure 4-8 to see how our single virtual feeler will
work in geometric terms. The vector, v, represents the feeler. It's of some prescribed finite length and is
collinear with the unit's heading. The large shaded circle represents an obstacle. To determine whether the feeler
Intersects the obstacle at some point, we need to apply alittle vector math.
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Figure 4-8. Obstacle avoidance

First, we calculate the vector, a. Thisis ssimply the difference between the unit's and the obstacl€e's positions.
Next, we project a onto v by taking their dot product. Thisyields vector p. Subtracting vector p from ayields
vector b. Now to test whether v intersects the circle somewhere we need to test two conditions. First, the
magnitude of p must be less than the magnitude of v. Second, the magnitude of b must be less than the radius of
the obstacle, r. If both of these tests pass, corrective steering is required; otherwise, the unit can continue on its
current heading.

The steering force to be applied in the event of an impending collision is calculated in a manner similar to the
flocking rules we discussed earlier. Basically, the required force is calculated as inversely proportional to the
distance from the unit to the center of the obstacle. More specifically, the steering force is afunction of the
prescribed maximum steering force times the ratio of the magnitude of v to the magnitude of a. Thiswill make
the steering correction greater the closer the unit isto the obstacle, where there's more urgency to get out of the

way.

Example 4-12 shows the code that you must add to DoUnitAl to perform these avoidance calculations. Y ou
insert this code just after the code that handles the three flocking rules. Notice here that all the obstaclesin the
game world are looped through and checked to see if there's an impending collision. Here again, in practice
you'll want to optimize this code. Also notice that the corrective steering force is accumulated in the same Fs.x
member variable within which the other flocking rule steering forces were accumul ated.

Example 4-12. Obstacle avoidance
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Vect or a, p, b;
for (J =0; J <_NUM OBSTACLES; ] ++)
{

u = Units[i].vVelocity;

u. Normal i ze();

v = u * _COLLISION VISIBILITY_FACTOR *
Units[i].fLength;

a = bstacles[j] - Units[i].vPosition;

p=(a*u *u

b=p- g

i f((b.Magnitude() < _OBSTACLE_RADI US) &&
(p. Magni tude() < v. Magnitude()))

{
[l 1nmpending collision...steer away
w = VRotatez2D(-Units[i].fOrientation, a);
w. Normal i ze() ;
if(wx <0) m=1;
if(wx >0) m= -1,
Fs.x += m* _STEERI NGFORCE *
(_COLLI SION_VI SI Bl LI TY_FACTOR *
Units[i].fLength)/a. Magnitude();
}

If you download and run this example, you'll see that even while the units form flocks, they'll still steer well
clear of the randomly placed circular objects. It isinteresting to experiment with the different visibility models
to see how the flocks behave as they encounter obstacles. With the wide-visibility model the flock tends to split
and go around the obstacles on either side. In some cases, they regroup quite readily while in others they don't.
With the limited- and narrow-visibility models, the units tend to form single-file lines that flow smoothly around
obstacles, without splitting.

We should point out that this obstacle avoidance algorithm will not necessarily guarantee zero collisions
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between units and obstacles. A situation could arise such that a given unit receives conflicting steering
Instructions that might force it into an obstaclefor example, if a unit happens to get too close to a neighbor on
one side while at the same time trying to avoid an obstacle on the other side. Depending on the relative distances
from the neighbor and the obstacle, one steering force might dominate the other, causing a collision. Judicious
tuning, again, can help mitigate this problem, but in practice you still might have to implement some sort of
collision detection and response mechanism to properly handle these potential collisions.
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4.4 Follow the Leader

Modifications to the basic flocking algorithm aren't strictly limited to obstacle avoidance. Because steering
forces from avariety of rules are accumulated in the same variable and then applied all at once to control unit
motion, you can effectively layer any number of rules on top of the ones we've already considered.

One such additional rule with interesting applicationsis a follow-the-leader rule. As we stated earlier, the
flocking algorithm we discussed so far is |eaderless; however, if we can combine the basic flocking algorithm
with some leader-based Al, we can open up many new possibilities for the use of flocking in games.

At the moment, the three flocking rules will yield flocks that seem to randomly navigate the game world. If we
add aleader to the mix, we could get flocks that move with greater purpose or with seemingly greater
intelligence. For example, in an air combat simulation, the computer might control a squadron of aircraft in
pursuit of the player. We could designate one of the computer-controlled aircraft as aleader and have him chase
the player, while the other computer-controlled aircraft use the basic flocking rules to tail the leader, effectively
acting as wingmen. Upon engaging the player, the flocking rules could be toggled off as appropriate as a
dogfight ensues.

In another example, you might want to simulate a squad of army units on foot patrol through the jungle. You
could designate one unit as the point man and have the other units flock behind using either awide-visibility
model or alimited one, depending on whether you want them in a bunched-up group or asingle-file line.

What we'll do now with the flocking example we've been discussing is add some sort of leader capability. In this
case, we won't explicitly designate any particular unit as aleader, but instead we'll let some simple rules sort out
who should be or could be aleader. In thisway, any unit has the potential of being aleader at any given time.
This approach has the advantage of not leaving the flock leaderless in the event the leader gets destroyed or
somehow separated from his flock.

Once aleader is established, we could implement any number of rules or techniques to have the leader do
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something meaningful. We could have the |eader execute some prescribed pattern, or chase something, or
perhaps evade. In this example, we'll have the leader chase or intercept the user-controlled unit. Further, we'll
break up the computer-controlled units into two types. regular units and interceptors. Interceptors will be
somewhat faster than regular units and will follow the intercepting algorithms we discussed earlier in this book.
The regular units will travel more slowly and will follow the chase algorithms we discussed earlier. Y ou can
define or classify units in an infinite number of ways. We chose these to illustrate some possibilities.

Example 4-13 shows afew lines of code that you must add to the block of code shown in Example 4-3; the one
that calculates all the neighbor data for a given unit.

Example 4-13. Leader check

if(((wy > 0) &&
(fabs(w x) < fabs(w y)*_FRONT_VI EW ANGLE_FACTOR)))
i f(d.Magnitude() <=
(Units[i].fLength * _NARROWI EW RADI US_FACTOR))
Nf ++;

if(InView &

(Units[i].Interceptor == Units[j].Interceptor))

Thefirst if block shown here performs a check, using the same narrow-visibility model we've already discussed,
to determine the number of units directly in front of and within view of the current unit under consideration.
Later, thisinformation will be used to determine whether the current unit should be aleader. Essentiadly, if no
other units are directly in front of a given unit, it becomes aleader and can have other units flocking around or
behind it. If at least one unit isin front of and within view of the current unit, the current unit can't become a
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leader. It must follow the flocking rules only.

The second if block shown in Example 4-13 is a simple modification to the InView test. The additional code
checks to make sure the types of the current unit and Unitg[j] are the same so that interceptor units flock with
other interceptor units and regular units flock with other regular units, without mixing the two types in aflock.
Therefore, if you download and run this example program and toggle one of the flocking modes on, you'll see at
least two flocks form: one flock of regular units and one flock of interceptor units. (Note that the player-
controlled unit will be shown in green and you can control it using the keyboard arrow keys.)

Example 4-14 shows how the leader rules are implemented for the two types of computer-controlled units.

Example 4-14. Leaders, chasing and intercepting

/[l Chase the target if the unit is a |eader
/'l Note: Nf is the nunmber of units in front
/1 of the current unit.
i f(Chase)
{

i f(Nf == 0)

Units[i].Leader

true;
el se

Units[i].Leader
if(Units[i].Leader)
{

fal se;

if('Units[i].Interceptor)
{
/'l Chase
u
d

W

Uni ts[ 0] . vPosi tion;

u- Units[i].vPosition;
VRot at e2D(-Units[i].fOrientation, d);

if(wx <0 m=-1;

if(wx >0) m= 1,

Fs. x += nmt_STEERI NGFORCE;
} else {

/'l 1ntercept

Vect or sl, s2, sl12;

doubl e t Cl ose;
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Vect or Vr12;
Vrl2 = Units[0].vVelocity -
Units[i].vVel ocity;
s12 = Units[0].vPosition -
Units[i].vPosition;
tCl ose = sl12. Magni tude() /
Vr12. Magni t ude();
sl = Units[0].vPosition +
(Units[0].vVelocity * tC ose);
Target = sl;
s2 = sl - Units[i].vPosition;
w = VRotate2D(-Units[i].fOrientation, s2);
if(wx <0 m=-1;
if(wx >0) m= 1,

Fs.x += m_STEERI NG-ORCE;

If you toggle the chase option on in the example program, the Chase variable gets set to true and the block of
code shown here will be executed. Within this block, a check of the number of units, Nf, in front of and within
view of the current unit is made to determine whether the current unit is aleader. If Nf is set to O, no other units
arein front of the current one and it thus becomes a leader.

If the current unit is not aleader, nothing else happens; however, if it isaleader, it will execute either a chase or
an intercept algorithm, depending on its type. These chase and intercept algorithms are the same as those we
discussed earlier in the book, so we won't go through the code again here.

These new leader rules add some interesting behavior to the example program. In the example program, any
leader will turn red and you'll easily see how any given unit can become aleader or flocking unit as the
simulation progresses. Further, having just the two simple types of computer-controlled units yields some
interesting tactical behavior. For example, while hunting the player unit, one flock tails the player while the
other flock seems to flank the player in an attempt to intercept him. The result resembles a pincer-type
maneuver.

Certainly, you can add other Al to the leaders to make their leading even more intelligent. Further, you can
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define and add other unit types to the mix, creating even greater variety. The possibilities are endless, and the
ones we discussed here serve only asillustrations as to what's possible.
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Chapter 5. Potential Function-Based Movement

In this chapter we're going to borrow some principles from physics and adapt them for use in game Al.
Specifically, we're going to use potential functions to control the behavior of our computer-controlled
game unitsin certain situations. For example, we can use potential functionsin games to create
swarming units, simulate crowd movement, handle chasing and evading, and avoid obstacles. The
specific potential function we focus on is called the Lenard-Jones potential function. We show you
what this function looks like and how to apply it in games.
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5.1 How Can You Use Potential Functions for Game Al?

Let'srevisit the chasing and evading problem we discussed at length in Chapter 2. If you recall, we considered a
few different techniques for having a computer-controlled unit chase down or evade a player-controlled unit.
Those techniques included the basic chase agorithm, in which the computer-controlled unit always moved
directly toward the player, and an intercept algorithm. We can use potential functions to achieve behavior
similar to what we can achieve using both of those techniques. The benefit to using potential functions hereis
that a single function handles both chasing and evading, and we don't need all the other conditionals and control
logic associated with the algorithms we presented earlier. Further, this same potential function also can handle
obstacle avoidance for us. Although thisis convenient, thereis aprice to be paid. Aswelll discuss later, the
potential function algorithms can be quite CPU-intensive for large numbers of interacting game units and
objects.

Another benefit to the potential function algorithm isthat it is very simple to implement. All you haveto dois
calculate the force between the two unitsthe computer-controlled unit and the player in this caseand then apply
that force to the front end of the computer-controlled unit, where it essentially acts as a steering force. The
steering model here is similar to those we discussed in Chapters 2 and 4; however, in this case the force will
aways point along aline of action connecting the two units under consideration. This means the force can point
in any direction relative to the computer-controlled unit, and not just to itsleft or right. By applying this force to
the front end of the unit, we can get it to turn and head in the direction in which the force is pointing. By
reversing the direction of thisforce, we can get a unit to either chase or evade as desired. Note that this steering
force contributes to the propulsive force, or the thrust, of the unit, so you might see it speed up or slow down as
it moves around.

Asyou've probably guessed, the examples we'll consider throughout the remainder of this chapter use the
physically simulated model that you saw in earlier chapters. In fact, we use the examples from Chapters 2, 3,
and 4 with some minor modifications. As before, you can find the example programs on this book's web site
(http://www.oreilly.com/catalog/ai).
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5.2.1 So, What Is a Potential Function?

Entire books have been written concerning potential theory as applied to all sorts of physical phenomena, and in
the world of physics well-established relationships exist between potentials (asin potentia energy, for
example), forces, and work. However, we need not concern oursel ves with too much theory to adapt the so-
called Lenard-Jones potential function to game Al. What's important to us is how this function behaves and how
we can take advantage of that behavior in our games.

This equation is the Lenard-Jones potential function. Figure 5-1 shows three graphs of this function for different
values of the exponents, n and m.

Figure 5-1. Lenard-Jones potential function

Palemntial

3 l'l|'|' A s ianre =
fittraction

In physics, the Lenard-Jones potential represents the potential energy of attraction and repulsion between
molecules. Here, U represents the interatomic potential energy, which isinversely proportional to the separation
distance, r, between molecules. A and B are parameters, as are the exponents mand n. If we take the derivative
of this potential function, we get a function representing aforce. The force function produces both attractive and
repulsive forces depending on the proximity of two molecules, or in our case game units, being acted upon. It's
this ability to represent both attractive and repulsive forces that will benefit us; however, instead of molecules,
we're going to deal with computer-controlled units.

So, what can we do with this ability to attract or repel computer-controlled units? Well, first off we can use the
L enard-Jones function to cause our computer-controlled unit to be attracted to the player unit so that the
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computer-controlled unit will chase the player. We aso can tweak the parameters of the potential function to
cause the computer-controlled unit to be repelled by the player, thus causing it to evade the player. Further, we
can give any number of player units various weights to cause some of them to be more attractive or repulsive to
the computer-controlled units than others. Thiswill give usameans of prioritizing targets and threats.

In addition to chasing and evading, we can apply the same potential function to cause the computer-controlled
units to avoid obstacles. Basically, the obstacles will repel the computer-controlled units when in close
proximity, causing them to essentially steer away from them. We even can have many computer-controlled units
attract one another to form a swarm. We then can apply other influences to induce the swarm to move either
toward or away from a player or some other object and to avoid obstacles along the way.

The cool thing about using the L enard-Jones potential function for these tasks is that this one ssmple function
enables usto create all sorts of seemingly intelligent behavior.

4 Previous Mext W

Top &

http://ebooks.servegame.com/oreai forgamdev475b/ch05_sectl_001.htm (3 of 3)7/23/05 5:47:04 PM


http://ebooks.servegame.com/oreaiforgamdev475b/12041534.htm

Al for Game Developers

All Online Books

Table of Contents
View as Frames

4 Prewious Hext F

5.2 Chasing/Evading

To show how to implement potential-based chasing (or evading), we need only add afew bits of code to
AlDemo2-2 (see Chapter 2 for more details). In that example program, we simulated the predator and prey units
In a continuous environment. The function UpdateS mulation was responsible for handling user interaction and
for updating the units every step through the game loop. We're going to add two lines to that function, as shown
in Example 5-1.

Lenard-Jones Potential Function

The following equation shows the L enard-Jones potential function:

A B

r.!l i il

U=-—

In solid mechanics, U represents the interatomic potential energy, which isinversely proportional
to the separation distance, r, between molecules. A and B are parameters, as are the exponents m
and n. To get the interatomic force between two molecules, we take the negative of the derivative
of this potential function, which yields:

dv _n A mB

F =

dr pr+l + pril

Here, again, A, B, m, and n are parameters that are chosen to realistically model the forces of
attraction and repulsion of the material under consideration. For example, these parameters would
differ if ascientist were trying to model asolid (e.g., steel) versus afluid (e.g., water). Note that
the potential function has two terms: one involves -A/r", while the other involves B/r™. The term
involving A and n represents the attraction force component of the total force, while the term
involving B and m represents the repul sive force component.
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The repulsive component acts over arelatively short distance, r, from the object, but it has a
relatively large magnitude when r gets small. The negative part of the curve that moves further
away from the vertical axis represents the force of attraction. Here, the magnitude of the forceis
smaller but it acts over a much greater range of separation, r.

Y ou can change the slope of the potential or force curve by adjusting the n and m parameters. This
enables you to adjust the range over which repulsion or attraction dominates and affords some
control over the point of transition. Y ou can think of A and B as the strength of the attraction and
repulsion forces, respectively, whereas the n and m represent the attenuation of these two force
components.

Example 5-1. Chase/evade demo UpdateSimulation

voi d Updat eSi mul ati on(voi d)
{
doubl e dt = _TI MESTEP;
RECT r;

/] User controls Craftl:
Craftl. Set Thrusters(fal se, false);

if (1sKeyDown(VK _UP))
Craftl. Modul ateThrust (true);

i f (IsKeyDown(VK DOM))
Craftl. Modul at eThrust (fal se);

if (IsKeyDown(VK RIGHT))
Craftl. Set Thrusters(true, false);
if (IsKeyDown(VK LEFT))
Craftl. Set Thrusters(fal se, true);
/1 Do Craft2 Al:

i f (Potential Chase)
DoAttractCraft2();
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/1l Update each craft's position:
Craftl. Updat eBodyEul er (dt);
Craft 2. Updat eBodyEul er (dt);

/1 Update the screen:

Asyou can see, we added a check to see if the Potential Chase flag is set to true. If it is, we execute the Al for
Craft2, the computer-controlled unit, which now uses the potential function. DoAttractCraft2 handles this for
us. Basically, all it doesis use the potential function to calculate the force of attraction (or repulsion) between
the two units, applying the result as a steering force to the computer-controlled unit. Example 5-2 shows
DoAttractCraft2.

Example 5-2. DoAttractCraft2

/'l Apply Lenard-Jones potential force to Craft2
voi d DoAttract Craft 2(voi d)

{

Vector r Craft2.vPosition - Craftl. vPosition;

Vector u r;
u. Normal i ze();

double U, A B, n, m d;

A = 2000;

B = 4000;

n = 2;

m= 3;

d = r.Magnitude()/ Craft2.fLength,;

U=-Apowmd, n) + B/ pow(d, nm;

Craft2.Fa = VRotate2D( -Craft2.fOrientation, U * u);
Craft2. Pa.x = 0;

Craft2.Pa.y = Craft2.fLength / 2;

Target = Craftl.vPosition;

The code within this function is afairly straightforward implementation of the L enard-Jones function. Upon
entry, the function first calcul ates the displacement vector between Craftl and Craft2. It does this by simply
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taking the vector difference between their respective positions. The result is stored in the vector r and acopy is
placed in the vector u for use later. Note that u aso is normalized.

Next, several local variables are declared corresponding to each parameter in the Lenard-Jones function. The
variable names shown here directly correspond to the parameters we discussed earlier. The only new parameter
Isd. d represents the separation distance, r, divided by the unit's length. This yields a separation distance in
terms of unit lengths rather than position units. Thisis done for scaling purposes, as we discussed in Chapter 4.

Aside from dividing r by d, al the other parameters are hardcoded with some constant values. Y ou don't have to
doit likethis, of course; you could read those valuesin from some file or other source. We did it this way for
clarity. Asfar as the actual numbers go, they were determined by tuningi.e., they all were adjusted by trial and
error until the desired results were achieved.

The line that reads U = -A/pow(d, n) + B/pow(d, m); actually calculates the steering force that will be applied to
the computer-controlled unit. We used the symbol U here, but keep in mind that what we really are calculating
iIsaforce. Also, notice that U isascalar quantity that will be either negative or positive, depending on whether
the force is an attractive or repulsive force. To get the force vector, we multiply it by u, which is a unit vector
along the line of action connecting the two units. The result is then rotated to alocal coordinate system
connected to Craft2 so that it can be used as a steering force. This steering force is applied to the front end of
Craft2 to steer it toward or away from the target, Craftl. That's all thereistoit.

Upon running this modified version of the chase program, we can see that the computer-controlled unit does
indeed chase or evade the player unit depending on the parameters we've defined. Figure 5-2 shows some of the

results we generated while tuning the parameters.

Figure 5-2. Potential chase and evade
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(A) (B)

(C) (D)

In Figure 5-2 (A), the predator heads toward the prey and then loops around as the prey passes him by. When
the predator getstoo close, it turns abruptly to maintain some separation between the two units. In Figure 5-2
(B), we reduced the strength of the attraction component (we reduced parameter A somewhat), which yielded
behavior resembling the interception algorithm we discussed in Chapter 2. In Figure 5-2 (C), we increased the
strength of attraction and the result resembles the basic line-of-sight algorithm. Finally, in Figure 5-2 (D), we
reduced the attraction force, increased the repulsion force, and adjusted the exponent parameters. This resulted
in the computer-controlled unit running from the player.

Adjusting the parameters gives you a great deal of flexibility when tuning the behavior of your computer-
controlled units. Further, you need not use the same parameters for each unit. Y ou can give different parameter
settings to different units to lend some variety to their behaviorto give each unit its own personality, so to speak.

Y ou can take this a step further by combining this potential function approach with one of the other chase
algorithms we discussed in Chapter 2. If you play around with AIDemo2-2, you'll notice that the menu
selections for Potential Chase and the other chase algorithms are not mutually exclusive. This means you could
turn on Potential Chase and Basic Chase at the same time. The results are very interesting. The predator
relentlessly chases the prey as expected, but when it gets within a certain radius of the prey, it holds that
separationi.e., it keeps its distance. The predator sort of hovers around the prey, constantly pointing toward the
prey. If the prey were to turn and head toward the predator, the predator would turn and run until the prey stops,
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in which case the predator would resume shadowing the prey. In agame, you could use this behavior to control
alien spacecraft as they pursue and shadow the player's jet or spacecraft. Y ou aso could use such an algorithm
to create awolf or lion that stalks its victim, keeping a safe distance until just the right moment. Y ou even could
use such behavior to have a defensive player cover areceiver in afootball game. Y our imagination is the only
limit here, and this example servesto illustrate the power of combining different algorithmsto add variety and,
hopefully, to yield some sort of emergent behavior.
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5.3 Obstacle Avoidance

Asyou've probably already realized, we can use the repelling nature of the L enard-Jones function to our
advantage when it comes to dealing with obstacles. In this case, we set the A parameter, the attraction strength,
to 0 to leave only the repulsion component. We then can play with the B parameter to adjust the strength of the
repulsive force and the m exponent to adjust the attenuationi.e., the radius of influence of the repulsive force.
This effectively enables us to ssmulate spherical, rigid objects. As the computer-controlled unit approaches one
of these objects, arepulsive force develops that forces the unit to steer away from or around the object. Keep in
mind that the magnitude of the repulsive force is a function of the separation distance. As the unit approaches
the object, the force might be small, causing arather gradual turn. However, if the unit isvery close, the
repulsive force will be large, which will force the unit to turn very hard.

In AIDemo5-1, we created several randomly placed circular objects in the scene. Then we created a computer-
controlled unit and set it in motion along an initially random trgjectory. The idea was to see if the unit could
avoid al the obstacles. Indeed, the unit did well in avoiding the objects, asillustrated in Figure 5-3.

Figure 5-3. Obstacle avoidance
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Here, the dark circles represent obstacles, while the swerving lines represent the trails the computer-controlled

unit left behind as it navigated the scene. It's clear from this screenshot that the unit makes some gentle turns to
avoid objects that are some distance away. Further, it takes some rather abrupt turns when it findsitself in very
close proximity to an object. This behavior isvery similar to what we achieved in the flocking examplesin the
previous chapter; however, we achieved the result here by using avery different mechanism.

How all thisworks is conceptually very simple. Each time through the game loop all the objects, stored in an
array, are cycled through, and for each object the repulsion force between it and the unit is calculated. For many
objects the forceis small, as they might be very far from the unit, whereas for others that are close to the unit the
forceis much larger. All the force contributions are summed, and the net result is applied as a steering force to
the unit. These calculations are illustrated in Example 5-3.

Example 5-3. Obstacle avoidance

voi d DoUni t Al (int i)
{
i nt i
Vect or Fs;
Vect or Pfs:
Vect or r, u;
doubl e u A B n, m d;

Fs.x = Fs.y = Fs.z = 0;
Pfs.x = 0;

http://ebooks.servegame.com/oreai forgamdev475b/ch05_sectl_003.htm (2 of 5)7/23/05 5:47:15 PM



Al for Game Developers

Pfs.y = Units[i].fLength / 2.0f;

i f (Avoi d)

{
for(j=0; j<_NUM OBSTACLES; | ++)
{
rr= Units[i].vPosition - Cbstacles[j];
u=r;
u. Normal i ze();
A= 0;
B = 13000;
n =1;
m= 2.5;
d = r.Magnitude()/Units[i].fLength;
U=-Apowd, n) + B/pow(d, m;
Fs += VRotate2D( -Units[i].fOrientation,
Uu* u);
}
}
Units[i].Fa = Fs;
Units[i].Pa = Pfs;

The force calculation shown here is essentially the same as the one we used in the chase example; however, in
this case the A parameter is set to 0. Also, the force calculation is performed once for each object, thus the force
calculation iswrapped in afor loop that traverses the Obstacles array.

Y ou need not restrict yourself to circular or spherical obstacles. Although the repulsion force does indeed have a
spherical influence, you can effectively use severa of these spheresto approximate arbitrarily shaped obstacles.
You can line up severa of them and place them close to one another to create wall boundaries, and you even
can group them using different attenuation and strength settings to approximate virtually any shape. Figure 5-4
shows an example of how to use many small, spherical obstacles to represent a box within which the unit is free
to move.

Figure 5-4. Boxed in
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In this case, we simply took example AlDemo5-1 and distributed the obstacles in aregular fashion to create a
box. We used the same agorithm shown in Example 5-3 to keep the unit from leaving the box. The trail shown
in Figure 5-4 illustrates the path the unit takes as it moves around the box.

Granted, thisis a simple example, but it doesillustrate how you can approximate nonspherical boundaries.
Theoretically, you could distribute several spherical obstacles around a racetrack to create a boundary within
which you want a computer-controlled race car to navigate. These boundaries need not be used for the player,
but would serve only to guide the computer-controlled unit. Y ou could combine such boundaries with others
that only attract, and then place these strategically to cause the computer-controlled unit to be biased toward a
certain line or track around the racecourse. This latter technique sort of gets into waypoints, which we'll address
later.
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5.4 Swarming

Let's consider group behavior as yet another illustration of how to use potential functions for game Al.
Specifically, let's consider swarming. Thisis similar to flocking, however the resulting behavior looks a bit
more chaotic. Rather than aflock of graceful birds, we're talking about something more like an angry swarm of
bees. Using potential functions, it's easy to ssimulate thiskind of behavior. No rules are required, as was the case
for flocking. All we have to do is calculate the L enard-Jones force between each unit in the swarm. The
attractive components of those forces will make the units come together (cohesion), while the repulsive
components will keep them from running over each other (avoidance).

Example 5-4 illustrates how to create a swarm using potential functions.

Example 5-4. Swarming

voi d DoUni t Al (int i)
{
i nt i
Vect or Fs;
Vect or Pfs;
Vect or r, u;
doubl e U A B n m d
/1 begin Flock Al
Fs.x = Fs.y = Fs.z = 0;

Pfs.x = 0;

Pfs.y = Units[i].fLength / 2.0f;
i f(Swarm

{

for(j=1; < MAX_ NUM UNITS; j++)
{
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if(il=j)

{
r = Units[i].vPosition -
Units[j].vPosition;
u=r;
u. Normal i ze();
A = 2000;
B = 10000;
n =1,
m= 2;
d = r.Magnitude()/
Units[i].fLength;
U=-Apowd, n) +
B/ pow(d, n);
Fs += VRot at e2D(
-Units[i].fOrientation,
U=* u);
}
}
}
Units[i].Fa = Fs;
Units[i].Pa = Pfs;

/1 end Fl ock Al

Here, again, the part of this code that cal culates the force acting between each unit with every other unit isthe
same force calculation we used in the earlier examples. The main difference here is that we have to calculate
this force between each and every unit. This means we'll have nested loops that index the Units array calculating
the forces between Unitg[i] and Unitg[j], solong asi isnot equal to j. Clearly this can result in a great many
computations as the number of unitsin the swarm gets large. Later welll discuss a few things that you can do to
optimize this code.

For now, take alook at Figure 5-5, which illustrates the resulting swarming behavior.

Figure 5-5. Swarm

figs/ch05_fig05.jpg
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It's difficult to do justice to the swarm with just a snapshot, so you should download the example program and
try it for yourself to really see what the swarm looks like. In any case, Figure 5-5 (A) illustrates how the units
have come together. Figure 5-5 (B) shows the paths each unit took. Clearly, the paths swirl and are intertwined.
Such behavior creates a rather convincing-looking swarm of bees or flies.

Y ou aso can combine the chase and obstacle avoidance algorithms we discussed earlier with the swarming
algorithm shown in Example 5-4. Thiswould allow your swarms to not only swarm, but also to chase prey and
avoid running into things along the way. Example 5-5 highlights what changes you need to make to the function
shown in Example 5-4 to achieve swarms that chase prey and avoid obstacles.

Example 5-5. Swarming with chasing and obstacle avoidance

voi d DoUni t Al (int i)
{
i nt I
Vect or Fs;
Vect or Pfs;
Vect or r, u;

doubl e U A B n, m d;
/1 begin Flock Al
Fs.x = Fs.y = Fs.z = 0;

Pfs.x = 0O;

Pfs.y = Units[i].fLength / 2.0f;
i f(Swarm

{

for(j=1; j<_MAX_NUM UNITS; j++)
{

if(il=)

{

ﬁ
1

Units[i].vPosition -

Units[j].vPosition;

u=r;
u. Normal i ze();
A = 2000;

B = 10000;
n=1;

m= 2;

d = r.Magnitude()/
Units[i].fLength;
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U=-Apowd, n) +
B/ pow(d, m;
Fs += VRot at e2)
-Units[i].fOrientation,

U* u);
}
}
}
i f(Chase)
{
r = Units[i].vPosition - Units[0].vPosition;
u=r;
u. Normal i ze();
A = 10000;
B = 10000;
n =1,
m= 2;
d = r.Magnitude()/Units[i].fLength;
U=-Apowd, n) + B/ powm(d, m;
Fs += VRotate2D( -Units[i].fOrientation, U* u);
}
i f(Avoid)
{
for(j=0; j<_NUM OBSTACLES; | ++)
{
rr=Units[i].vPosition - Cbstacles[j];
u=r;
u. Normal i ze();
A = 0;
B = 13000;
n=1;
m= 2.5;
d = r.Mgnitude()/Units[i].fLength;
U=-Apowd, n) + B/pow(d, m;
Fs += VRotate2D( -Units[i].fOrientation,
U* u);
}
}

Units[i].Fa = Fs;
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Units[i].Pa = Pfs;
/1l end Flock Al

Here, again, the actual force calculation is the same as before, and in fact we ssmply cut and pasted the
highlighted blocks of code from the earlier examples into this one.

Swarms are not the only things for which you can use this algorithm. Y ou also can use it to model crowd
behavior. In this case, you'll have to tune the parameters to make the units move around alittle more smoothly
rather than erratically, like bees or flies.

Finally, we should mention that you can combine leaders with this algorithm just as we did in the flocking
algorithmsin the previous chapter. In this case, you need only designate a particular unit as aleader and have it
attract the other units. Interestingly, in this scenario as the leader moves around, the swarm tends to organize
itself into something that resembles the more graceful flocks we saw in the previous chapter.
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5.5 Optimization Suggestions

Y ou've probably already noticed that the algorithms we discussed here can become quite
computationally intensive as the number of obstacles or unitsin a swarm increases. In the case of
swarming units, the simple algorithm shown in Examples 5-4 and 5-5 is of order N2 and would clearly
become prohibitive for larger numbers of units. Therefore, optimization is very important when
actually implementing these algorithms in real games. To that end, we'll offer several suggestions for
optimizing the algorithms we discussed in this chapter. Keep in mind that these suggestions are general
in nature and their actual implementation will vary depending on your game architecture.

The first optimization you could make to the obstacle avoidance algorithm isto simply not perform the
force calculation for objects that are too far away from the unit to have any influence on it. What you
could do hereis put in aquick check on the separation distance between the given obstacle and the unit,
and if that distance is greater than some prescribed distance, skip the force calculation. This potentially
could save many division and exponent operations.

Another approach you could take is to divide your game domain into a grid containing cells of some
prescribed size. Y ou could then assign each cell an array to store indices to each obstacle that falls
within that cell. Then, while the unit moves around, you can readily determine which cell it isin and
perform cal culations only between the unit and those obstacles contained within that cell and the
immediately adjacent cells. Now, the actual size and layout of the cells would depend on your specific
game, but generally such an approach could produce dramatic savings if your game domainislarge and
contains alarge number of obstacles. The tradeoff hereis, of course, increased memory requirements to
store all thelists, as well as some additional bookkeeping baggage.

Y ou could use this same grid-and-cell approach to optimize the swarming algorithm. Once you've set
up agrid, each cell would be associated with alinked list. Then, each time through the game loop, you
traverse the unit's array once and determine within which cell each unit lies. Y ou add areference to
each unit in acell to that particular cell's linked list. Then, instead of going through nested loops,
comparing each unit with every other unit, you need only traverse the unitsin each cell'slist, plus the
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lists for the immediately adjacent cells. Here, again, bookkeeping becomes more complicated, but the
savingsin CPU usage could be dramatic. This optimization technique is commonly applied in
computational fluid dynamics algorithms and effectively reduces order N2 algorithms to something
closeto order N.

One final suggestion we can offer is based on the observation that the force between each pair of units
Is equal in magnitude but opposite in direction. Therefore, once you've calculated the force between the
pair of unitsi and j, you need not recalculate it for the pair j and i. Instead, you apply the forceto i and
the negative of the forceto . You'll of course have to do some bookkeeping to track which unit pairs
you've already addressed so that you don't double up on the forces.

4 Previous Mext W

Top &

http://ebooks.servegame.com/oreai forgamdev475b/ch05_sectl_005.htm (2 of 2)7/23/05 5:47:21 PM


http://ebooks.servegame.com/oreaiforgamdev475b/12041534.htm

Al for Game Developers

All Online Books

Table of Contents
View as Frames

4 Prewious Hext F

Chapter 6. Basic Pathfinding and Waypoints

Many different types of pathfinding problems exist. Unfortunately, no one solution is appropriate to every type
of pathfinding problem. The solution depends on the specifics of the pathfinding requirements for any given
game. For example, is the destination moving or stationary? Are obstacles present? If so, are the obstacles
moving? What is the terrain like? | s the shortest solution always the best solution? A longer path along a road
might be quicker than a shorter path over hills or swampland. It's also possible that a pathfinding problem might
not even require reaching a specific destination. Perhaps you just want a game character to move around or
explore the game environment intelligently. Because there are so many types of pathfinding problems, it
wouldn't be appropriate to select just one solution. The A* algorithm, for example, although an ideal solution
for many pathfinding problems, isn't appropriate for every situation. This chapter explores some of the
techniques you can use for situations in which the A* agorithm might not be the best solution. We'll cover the
venerable A* algorithm in Chapter 7.
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6.1 Basic Pathfinding

At its most basic level, pathfinding is ssmply the process of moving the position of a game character from its
initial location to adesired destination. Thisis essentially the same principle we used in the basic chasing
algorithm we showed you in Chapter 2. Example 6-1 shows how you can use this algorithm for basic
pathfinding.

Example 6-1. Basic pathfinding algorithm

i f(positionX > destinationX)
posi ti onX--;

el se if(positionX < destinationX)
posi ti onX++;

i f(positionY > destinationyY)
posi tionY--;

el se if(positionY < destinationY)

posi ti onY++;

In this example, the position of the game character is specified using the positionX and positionY variables. Each
time this code is executed, the positionX and positionY coordinates are either increased or decreased so that the
game character's position moves closer to the destinationX and destinationY coordinates. Thisisasimple and
fast solution to a basic pathfinding problem. However, like its chasing algorithm counterpart from Chapter 2, it
does have some limitations. This method produces an unnatural-looking path to the destination. The game
character moves diagonally toward the goal until it reaches the point whereit is on the same x- or y-axis as the
destination position. It then movesin a straight horizontal or vertical path until it reaches its destination. Figure
6-1 illustrates how this looks.

Figure 6-1. Simple path movement
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As Figure 6-1 shows, the game character (the triangle) follows a rather unnatural path to the destination (the
circle). A better approach would be to move in amore natural line-of-sight path. Aswith the line-of-sight chase
function we showed you in Chapter 2, you can accomplish this by using the Bresenham line algorithm. Figure 6-

2 illustrates how aline-of-sight path using the Bresenham line algorithm appears relative to the basic
pathfinding algorithm shown in Example 6-1.

Figure 6-2. Line-of-sight path movement

i

Asyou can seein Figure 6-2, the line-of-sight approach produces a more natural-looking path. Although the
line-of -sight method does have some advantages, both of the previous methods produce accurate results for
basic pathfinding. They are both simple and relatively fast, so you should use them whenever possible.
However, the two previous methods aren't practical in many scenarios. For example, having obstaclesin the
game environment, such asin Figure 6-3, can require some additional considerations.

Figure 6-3. Problems with obstacles
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6.2.1 Random Movement Obstacle Avoidance

Random movement can be a simple and effective method of obstacle avoidance. Thisworks particularly well in
an environment with relatively few obstacles. A game environment with sparsely placed trees, such as the one
shown in Figure 6-4, is agood candidate for the random movement technique.

Figure 6-4. Random movement

As Figure 6-4 shows, the player is not in the troll's line of sight. However, because so few obstacles are in the
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environment, when you ssimply move the troll in almost any direction the player will enter the troll's line of
sight. In this scenario, a CPU-intensive pathfinding algorithm would be overkill. On the other hand, if the game
environment were composed of many rooms with small doorways between each room, the random movement
method probably wouldn't be an ideal solution. Example 6-2 shows the basic algorithm used for random
movement obstacle avoidance.

Example 6-2. Random movement obstacle avoidance algorithm

if Player In Line of Sight

{
Foll ow Straight Path to Pl ayer

Mbve in Random Direction

computer-controlled character is moved in arandom direction. Because so few obstacles are in the scene, it's
likely that the player will bein the line of sight the next time through the game loop.

6.2.2 Tracing Around Obstacles

Tracing around obstacles is another relatively simple method of obstacle avoidance. This method can be
effective when attempting to find a path around large obstacles, such as a mountain range in a strategy or role-
playing game. With this method, the computer-controlled character follows a simple pathfinding algorithm in an
attempt to reach its goal. It continues along its path until it reaches an obstacle. At that point it switchesto a
tracing state. In the tracing state it follows the edge of the obstacle in an attempt to work its way around it.
Figure 6-5 illustrates how a hypothetical computer-controlled character, shown as atriangle, would trace a path
around an obstacle to get to its goal, shown as a square.

Figure 6-5. Basic tracing
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Besides showing a path around the obstacle, Figure 6-5 also shows one of the problems with tracing: deciding
when to stop tracing. As Figure 6-5 shows, the outskirts of the obstacle were traced, but the tracing went too far.
In fact, it's almost back to the starting point. We need a way to determine when we should switch from the
tracing state back to a simple pathfinding state. One way of accomplishing thisisto calculate aline from the
point the tracing starts to the desired destination. The computer-controlled character will continue in the tracing
state until that line is crossed, at which point it reverts to the simple pathfinding state. Thisis shown in Figure 6-
6.

Figure 6-6. Improved tracing
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Tracing the outskirts of the obstacle until the line connecting the starting point and desired destination is crossed
ensures that the path doesn't loop back to the starting point. If another obstacle is encountered after switching
back to the ssmple pathfinding state, it once again goes into the tracing state. This continues until the destination
is reached.

Another method is to incorporate a line-of-sight algorithm with the previous tracing method. Basically, at each
step along the way, we utilize aline-of-sight algorithm to determine if a straight line-of-sight path can be
followed to reach the destination. This method isillustrated in Figure 6-7.

Figure 6-7. Tracing with line of sight
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As Figure 6-7 shows, we follow the outskirts of the obstacle, but at each step we check to seeif the destination
IS in the computer-controlled character's line of sight. If so, we switch from atracing state to a line-of-sight
pathfinding state.
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6.2 Breadcrumb Pathfinding

Breadcrumb pathfinding can make computer-controlled characters seem very intelligent because the player is
unknowingly creating the path for the computer-controlled character. Each time the player takes a step, he
unknowingly leaves an invisible marker, or breadcrumb, on the game world. When a game character comesin
contact with a breadcrumb, the breadcrumb simply begins following the trail. The game character will follow in
the footsteps of the player until the player is reached. The complexity of the path and the number of obstaclesin
the way areirrelevant. The player already has created the path, so no serious calculations are necessary.

The breadcrumb method aso is an effective and efficient way to move groups of computer-controlled
characters. Instead of having each member of a group use an expensive and time-consuming pathfinding
algorithm, you can simply have each member follow the leader's breadcrumbs.

Figure 6-8 shows how each step the player takes is marked with an integer value. In this case, a maximum of 15
steps are recorded. In areal game, the number of breadcrumbs dropped will depend on the particular game and
how smart you want the game-controlled characters to appear. In this example, atroll randomly moves about the

tile-based environment until it detects a breadcrumb on an adjacent location.

Figure 6-8. Breadcrumb trail
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Of course, in areal game, the player never sees the breadcrumb trail. It's there exclusively for the game Al.
Example 6-3 shows the class we use to track the data associated with each game character.

Example 6-3. ai_Entity class

#def i ne kMaxTrai | Length 15

cl ass ai_Entity
{

public:

i nt row,

i nt col ;

i nt type;

i nt st at e;

i nt trai | Row kMaxTrai |l Lengt h] ;
i nt trail Col [ kMaxTrai |l Lengt h];
ai _Entity();

~ai _Entity();
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The initial #define statement sets the maximum number of player steps to track. We then use the
kMaxTrailLength constant to define the bounds for the trailRow and trailCol arrays. The trailRow and trail Col
arrays store the row and column coordinates of the previous 15 steps taken by the player.

As Example 6-4 shows, we begin by setting each element of the trailRow and trailCol arraysto avalue of -1.
We use -1 because it's avalue outside of the coordinate system we are using for thistile-based demo. When the
demo first starts, the player hasn't taken any steps, so we need away to recognize that some of the elementsin
the trailRow and trail Col arrays haven't been set yet.

Example 6-4. Trail array initialization

i nt [
for (i=0;i<kMaxTrail Length;i++)
{
trail Rowi]=-1;
trail Col[i]=-1,;

Asyou can see in Example 6-4, we traverse the entire trailRow and trailCol arrays, setting each valueto -1. We
are now ready to start recording the actual footsteps. The most logical place to do thisisin the function that
changes the player's position. Here we'll use the KeyDown function. Thisis where the demo checks the four
direction keys and then changes the player's position if a key-down event is detected. The KeyDown function is
shown in Example 6-5.

Example 6-5. Recording the player positions

voi d ai _Worl d:: KeyDown(i nt key)
{
i nt [
i f (key==kUpKey)
for (i=0;i<kMaxEntities;i++)
if (entityList[i].state==kPl ayer)
if (entityList[i].row>0)
{
entityList[i].row-;
Dr opBr eadCr unb() ;
}
i f (key==kDownKey)
for (i=0;i<kMaxEntities;i++)
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if (entityList[i].state==kPl ayer)
if (entityList[i].row(kMaxRows-1))
{
entityList[i].rowt+;
Dr opBr eadCr unb() ;
}
i f (key==kLeft Key)
for (i=0;i<kMaxEntities;i++)
if (entityList[i].state==kPl ayer)
if (entityList[i].col>0)
{
entityList[i].col--;
Dr opBr eadCr unb() ;
}
i f (key==kRi ght Key)
for (i=0;i<kMaxEntities;i++)
if (entityList[i].state==kPl ayer)
if (entityList[i].col <(kMaxCol s-1))
{
entityList[i].col ++;
Dr opBr eadCr unb() ;

The KeyDown function shown in Example 6-5 determines if the player has pressed any of the four direction
keys. If so, it traverses the entityList array to search for a character being controlled by the player. If it finds one,
it makes sure the new desired position is within the bounds of the tile world. If the desired position is legitimate,
the position is updated. The next step isto actually record the position by calling the function
DropBreadCrumb. The DropBreadCrumb function is shown in Example 6-6.

Example 6-6. Dropping a breadcrumb

void ai _Worl d:: DropBreadCrunb(voi d)
{
i nt i
for (i=kMaxTrailLength-1;i>0;i--)
{
entityList[O].trailRowi]=entityList[O].trailRowi-1];
entityList[O].trailCol[i]=entityList[O].trailCol[i-1];
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}
entityList[O].trail Row 0] =entityList[O0].row,
entityList[O].trail Col[0] =entityList[O].col;

The DropBreadCrumb function adds the current player position to the trailRow and trailCol arrays. These
arrays maintain alist of the most recent player positions. In this case, the constant kMaxTrailLength sets the
number of positions that will be tracked. The longer the trail, the more likely a computer-controlled character
will discover it and pathfind its way to the player.

The DropBreadCrumb function begins by dropping the oldest position in the trailRow and trailCol arrays. We
are tracking only kMaxTrailLength positions, so each time we add a new position we must drop the oldest one.
We do thiswith theinitial for loop. In effect, thisloop shifts all the positionsin the array. It deletes the ol dest
position and makes the first array element available for the current player position. Next, we store the player's
current position in the first element of the trailRow and trailCol arrays.

The next step is to actually make the computer-controlled character detect and follow the breadcrumb trail that
the player isleaving. The demo begins by having the computer-controlled troll move randomly about the tiled
environment. Figure 6-9 illustrates how the troll moves about the tiled environment in any one of eight possible
directions.

Figure 6-9. Finding the breadcrumbs
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Example 6-7 goes on to show how the troll detects and follows the breadcrumb trail.

Example 6-7. Following the breadcrumbs

for (i=0;i<kMaxEntities;i++)
{

r=entityList[i].row,

c=entityList[i].col;

f oundCr unb=-1;

for (j=0;j<kMaxTrail Length;j++)

{

if ((r==entityList[O].trailRowWj]) &&
(c==entityList[O].trail Col[j]))

f oundCr unb=j ;

br eak;

}
if ((r-1==entityList[O].trailRowWj]) &&
(c-1l==entityList[O].trailCol[]j]))
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{
f oundCr unb=j ;

br eak;
}
((r-1==entityList[O].trailRoWj]) &&
(c==entityList[O].trailCol[]j]))

foundCr unb=j ;
br eak;

}

((r-1==entityList[O].trailRowj]) &&
(c+l==entityList[O].trail Col[j]))

f oundCr unb=j ;
br eak;

}

((r==entityList[O].trailRow[j]) &&
(c-1==entityList[O].trail Col[j]))

f oundCr unb=j ;
br eak;

}

((r==entityList[O].trailRoW|]) &&
(c+l==entityList[0].trailCol[j]))

f oundCr unmb=j ;

br eak;

}
((r+l==entityList[0].trailRoWj]) &&
(c-1==entityList[O].trail Col[j]))

f oundCr unb=j ;

br eak;

}
((r+l==entityList[O].trailRoWj]) &&
(c==entityList[O].trailCol[j]))

f oundCr unb=j ;

br eak;
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}
if ((r+l==entityList[O].trailRoW|]) &&
(c+l==entityList[O].trailCol[j]))

{
f oundCr unb=j ;
br eak;
}
}
i f (foundCrunb>=0)
{
entityList[i].row=entityList[O].trail Row foundCrunb];
entityList[i].col=entityList[O].trail Col[foundCrunb];
}
el se
{

entityList[i].row=entityList[i].row+Rnd(O, 2)-1;
entityList[i].col=entityList[i].col+Rnd(0, 2)-1;
}
if (entityList[i].row<0)
entityList[i].row=0;
if (entityList[i].col<0)
entityList[i].col =0;
if (entityList[i].row=kMaxRows)
entityList[i].row=kMaxRows- 1;
if (entityList[i].col>=kMaxCol s)
entityList[i].col =kMaxCol s- 1;

the trailRow and trail Col arrays are ordered from the most recent player position to the oldest player position.
Starting the search from the most recent player position also ensures that the troll will follow the breadcrumbs
to, rather than away from, the player. It's quite probable that the troll will first detect a breadcrumb somewhere
in the middle of the trailRow and trailCol arrays. We want to make sure the troll follows the breadcrumbs to the

player.

Once the for loop is finished executing, we check whether a breadcrumb has been found. The foundCrumb
variable stores the array index of the breadcrumb found. If no breadcrumb is found, it containsitsinitial value of
-1. If foundCrumb is greater than or equal to O, we set the troll's position to the value stored at array index
foundCrumb in the trailRow and trailCol arrays. Doing this each time the troll's position needs to be updated
resultsin the troll following atrail to the player's position.
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If foundCrumb is equal to avalue of -1 when we exit the for loop, we know that no breadcrumbs were found. In
this case, we simply select arandom direction in which to move. Hopefully, this random move will put the troll
adjacent to a breadcrumb which can be detected and followed the next time the troll's position needs to be
updated.

Thereis another benefit to storing the most recent player positions in the lower trailRow and trailCol array
elements. It is not unusual for a player to backtrack or to move in such away that his path overlaps with or is
adjacent to a previous location. Thisisillustrated in Figure 6-10.

Figure 6-10. Following the shortest path

In this case, the troll isn't going to follow the exact footsteps of the player. In fact, doing so would be rather
unnatural. It would probably be obvious to the player that the troll was simply moving in the player's footsteps
rather than finding its way to the player in an intelligent way. In this case, however, the troll will always look
for the adjacent tile containing the most recent breadcrumb. The end result is that the troll will skip over
breadcrumbs whenever possible. For example, in Figure 6-10, the troll would follow array elements
{12,11,10,9,8,7,6,2} asit movesto the player's position.
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6.3 Path Following

Pathfinding is often thought of solely as a problem of moving from a starting point to a desired
destination. Many times, however, it is necessary to move computer-controlled charactersin agame
environment in arealistic way even though they might not have an ultimate destination. For example, a
car-racing game would require the computer-controlled cars to navigate aroadway. Likewise, a
strategy or role-playing game might require troops to patrol the roads between towns. Like all
pathfinding problems, the solution depends on the type of game environment. In a car-racing game the
environment probably would be of a continuous nature. In this case the movement probably would be
lessrigid. Y ou would want the cars to stay on the road, but in some circumstances that might not be
possible. If acar triesto make aturn at an extremely high rate of speed, it likely would run off the road.
It could then attempt to slow down and steer back in the direction of the road.

Y ou can use amore rigid approach in atile-based game environment. Y ou can think of this as more of
a containment problem. In this scenario the game character is confined to a certain terrain element, such
asaroad. Figure 6-11 shows an example of this.

Figure 6-11. Following the road

figs/ch06_figll.jpg

In Figure 6-11, all the terrain elements labeled as 2s are considered to be the road. The terrain elements

labeled as 1s are considered to be out of bounds. So, this becomes a matter of containing the computer-
controlled troll to the road area of the terrain. However, we don't want the troll to ssmply move
randomly on the road. The result would look unnatural. We want the troll to appear as though it's
walking along the road. Asyou'll notice, the road is more than one tile thick, so thisisn't just a matter
of looking for the next adjacent tile containing a 2 and then moving there. We need to analyze the
surrounding terrain and decide on the best move. A tile-based environment typically offers eight
possible directions when moving. We examine all eight directions and then eliminate those that are not
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part of the road. The problem then becomes one of deciding which of the remaining directions to take.
Example 6-8 shows how we begin to analyze the surrounding terrain.

Example 6-8. Terrain analysis

I nt r;
I nt C;
I nt terrai nAnal ysi s[ 9] ;
r=entityList[i].row
c=entityList[i].col;
terrai nAnalysis[1l]=terrain[r-1][c-1];
terrai nAnalysis[2]=terrain[r-1][c];
terrai nAnalysis[3]=terrain[r-1][c+1];
terrai nAnal ysis[4]=terrain[r][c+l];
terrai nAnal ysis[5]=terrain[r+1][c+1];
terrai nAnal ysis[6]=terrain[r+1][c];
terrai nAnalysis[7]=terrain[r+1][c-1];
terrai nAnalysis[8]=terrain[r][c-1];
for (j=1;j<=8;]++)
I f (terrainAnalysis[j]==1)
terrai nAnal ysi s[j ] =0;
el se
terrai nAnal ysi s[j ] =10;

We begin defining the terrainAnalysis array. Thisis where we will store the terrain values from the
eight tiles adjacent to the computer-controlled troll. We do this by offsetting the current row and
column positions of the troll. After the eight values are stored, we enter afor loop which determines if
each valueis part of theroad. If it's not part of the road, the corresponding terrainAnalysis array
element isset to 0. If it is part of the road, the terrainAnalysis element is set to a value of 10.

Now that we know which directions are possible, we want to take the current direction of movement
into consideration. We want to keep the troll moving in the same general direction. We want to turn
only when we have to, and even then aturn to the left or right is preferable to a complete change in
direction. In this demo, we assign a number to each direction so that we can track the current direction.
Figure 6-12 shows the numbers assigned to each direction.

Figure 6-12. Possible directions

figs/ch06_figl2.jpg
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We will use the numbers shown in Figure 6-12 to record the direction of the move each time we update

the troll's position. This enables usto give added weight to the previous direction whenever it istime to
update the troll's position. Example 6-9 shows how thisis accomplished.

Example 6-9. Direction analysis

If (entityList[i].direction==1)

{
terrai nAnal ysi s[ 1] =t errai nAnal ysi s[ 1] +2;
t errai nAnal ysi s[ 2] ++;
terrai nAnal ysi s[ 5] --;
t errai nAnal ysi s[ 8] ++;
}
If (entityList[i].direction==2)
{
terrai nAnal ysi s[ 1] ++;
terrai nAnal ysi s[ 2] =t err ai nAnal ysi s[ 2] +2;
t errai nAnal ysi s[ 3] ++;
terrai nAnal ysi s[ 6] --;
}
If (entityList[i].direction==3)
{
terrai nAnal ysi s[ 2] ++;
terrai nAnal ysi s[ 3] =t errai nAnal ysi s[ 3] +2;
terrai nAnal ysi s[ 4] ++;
terrai nAnal ysis[7]--;
}
If (entityList[i].direction==4)
{
t errai nAnal ysi s[ 3] ++;
terrai nAnal ysi s[ 4] =t errai nAnal ysi s[ 4] +2;
t errai nAnal ysi s[ 5] ++;
terrai nAnal ysis[7]--;
}
If (entityList[i].direction==5)
{
terrai nAnal ysi s[ 4] ++;
terrai nAnal ysi s[ 5] =t errai nAnal ysi s[ 5] +1;
terrai nAnal ysi s[ 6] ++;
terrai nAnal ysi s[ 8] --;
}
If (entityList[i].direction==6)
{
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terrai nAnal ysi s[ 2] - -;
t errai nAnal ysi s[ 5] ++;
t errai nAnal ysi s[ 6] =t err ai nAnal ysi s[ 6] +2;
terrai nAnal ysi s[ 7] ++;

}
If (entityList[i].direction==7)
{
t errai nAnal ysi s[ 3] - -;
t errai nAnal ysi s[ 6] ++;
terrai nAnal ysi s[ 7] =t errai nAnal ysi s[ 7] +2;
t errai nAnal ysi s[ 8] ++;
}
If (entityList[i].direction==8)
{
t errai nAnal ysi s[ 1] ++;
t errai nAnal ysi s[ 4] - -;
t errai nAnal ysi s[ 7] ++;
t errai nAnal ysi s[ 8] =t errai nAnal ysi s[ 8] +2;
}

decrease the weight of that element of the terrainAnalysis array by avaue of 1. Thisexampleis
Illustrated in Figure 6-13.

Figure 6-13. Weighting directions

figs/ch06_fig13.jpg

As Figure 6-13 shows, the current direction is 1, or up and left. All things being equal, we want the troll

to continue in that direction, so the terrainAnalysis element is weighted with a+2. The two next best
possibilities are directions 2 and 8 because those are the least severe turns. Those two are weighted with
a+1. All the remaining elements are left asis, except for 5, which is the complete opposite direction.
The next step isto choose the best direction. Thisis demonstrated in Example 6-10.

Example 6-10. Choosing a direction

maxTerrai n=0;
max| ndex=0;
for (j=1;j<=8;]++)
| f (terrai nAnal ysi s[j]>maxTerrain)

{
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maxTerrai n=terrai nAnal ysis[j];
max| ndex=j ;

As Example 6-10 shows, we traverse the terrainAnalysis array in search of the most highly weighted of

the possible directions. Upon exit from the for loop, the variable maxIndex will contain the array index
to the most highly weighted direction. Example 6-11 shows how we use the value in maxIndex to

update the troll's position.

Example 6-11. Update position

I f (maxl ndex==1)

{
entityList[i].direction=1;
entityList[i].row-;
entityList[i].col--;
}
I f (maxl ndex==2)
{
entityList[i].direction=2;
entityList[i].row-;
}
I f (maxl ndex==3)
{
entityList[i].direction=3;
entityList[i].row-;
entityList[i].col ++;
}
I f (maxl ndex==4)
{
entityList[i].direction=4;
entityList[i].col ++;
}
I f (maxl ndex==5)
{
entityList[i].direction=5;
entityList[i].rowt+;
entityList[i].col ++;
}
I f (max]l ndex==6)
{

entityList[i].direction=6;
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entityList[i].rowt+;

}
I f (max| ndex==7)
{
entityList[i].direction=7;
entityList[i].rowt+;
entityList[i].col--;
}
I f (maxl ndex==8)
{
entityList[i].direction=8;
entityList[i].col--;
}

The value in maxIndex indicates the new direction of the troll. We include an if statement for each of
the possible eight directions. Once the desired direction is found, we update the value in entityList[i].
direction. This becomes the previous direction for the next time the troll's position needs to be updated.
We then update the entityList[i].row and entityList[i].col values as needed. Figure 6-14 shows the path

followed as the troll moves along the road.

Figure 6-14. Road path

figs/ch06_figl4.jpg

As Figure 6-14 shows, the troll continuously circles the road. In areal game, you could make the

computer-controlled adversaries continuously patrol the roadways, until they encounter a player. At
that point the computer-controlled character's state could switch to an attack mode.

In this example, we used the adjacent tiles to make a weighted decision about direction to move in next.
Y ou can increase the robustness of this technique by examining more than just the adjacent tiles. Y ou
can weight the directions not just on the adjacent tiles, but also on the tiles adjacent to them. This could
make the movement look even more natural and intelligent.
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6.4 Wall Tracing

Another method of pathfinding that is very useful in game development iswall tracing. Like path-
following, this method doesn't calculate a path from a starting point to an ending point. Wall tracing is
more of an exploration technique. It's most useful in game environments made of many small rooms,
although you can use it in maze-like game environments as well. Y ou aso can use the basic algorithm
for tracing around obstacles, as we described in the previous section on obstacle tracing. Games rarely
have every computer-controlled adversary simultaneoudly plotting a path to the player. Sometimesiit's
desirable for the computer-controlled characters to explore the environment in search of the player,
weapons, power-ups, treasure, or anything else a game character can interact with. Having the
computer-controlled characters randomly move about the environment is one solution that game
developers frequently implement. This offers a certain level of unpredictability, but it also can result in
the computer-controlled characters getting stuck in small rooms for long periods of time. Figure 6-15

shows a dungeon-like level that's made up of many small rooms.

Figure 6-15. Wall tracing

figs/ch06_figl5.jpg

In the example shown in Figure 6-15, we could make the troll move in random directions. However, it
would probably take it awhile just to get out of the upper-left room. A better approach would be to
make the troll systematically explore the entire environment. Fortunately, arelatively ssimple solution is
available. Basically, we are going to use alefthanded approach. If the troll always movesto its left, it
will do athorough job of exploring its environment. The trick isto remember that the troll needs to
move to its left whenever possible, and not necessarily to the left from the point of view of the player.
Thisisillustrated in Figure 6-16.

Figure 6-16. Facing player's right
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figs/ch06_figl6.jpg

At the start of the demo, the troll is facing right relative to the player's point of view. Thisis designated
as direction 4, as shown in Figure 6-16. This means direction 2 isto the troll's left, direction 6 is to the
troll's right, and direction 8 isto the troll's rear. With the lefthanded movement approach, the troll
alwayswill try to movetoitsleft first. If it can't move to itsleft, it will try to move straight ahead. If
that is blocked, it will try to move to its right next. If that also is blocked, it will reverse direction.
When the demo first starts, the troll will try to move up relative to the player's point of view. Asyou
can seein Figure 6-15, awall blocksits way, so the troll must try straight ahead next. Thisis direction
4 relative to the troll's point of view. No obstruction appears straight ahead of the troll, so it makes the
move. This lefthanded movement technigue is shown in Example 6-12.

Example 6-12. Left-handed movement

r=entityList[i].row
c=entityList[i].col;
I f (entityList[i].direction==4)

{
I f (terrain[r-1][c]==1)

{
entityList[i].row-;
entityList[i].direction=2;

}

else if (terrain[r][c+l]==1)

{
entityList[i].col ++;
entityList[i].direction=4;

}

else if (terrain[r+1][c]==1)

{
entityList[i].rowt+;
entityList[i].direction=6;

}

else if (terrain[r][c-1]==1)

{
entityList[i].col--;
entityList[i].direction=8;

}

}
else if (entityList[i].direction==6)
{
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If (terrain[r][c+l1l]==1)

{
entityList[i].col ++;
entityList[i].direction=4;
}
else if (terrain[r+1][c]==1)
{
entityList[i].rowt+;
entityList[i].direction=6;
}
else if (terrain[r][c-1]==1)
{
entityList[i].col--;
entityList[i].direction=8;
}
else if (terrain[r-1][c]==1)
{
entityList[i].row-;
entityList[i].direction=2;
}

}
else if (entityList[i].direction==8)

{
If (terrain[r+1l][c]==1)

{
entityList[i].rowt+;
entityList[i].direction=6;
}
else if (terrain[r][c-1]==1)
{
entityList[i].col--;
entityList[i].direction=8;
}
else if (terrain[r-1][c]==1)
{
entityList[i].row-;
entityList[i].direction=2;
}
else if (terrain[r][c+l]==1)
{
entityList[i].col ++;
entityList[i].direction=4;
}
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}
else if (entityList[i].direction==2)
{
If (terrain[r][c-1]==1)
{
entityList[i].col--;
entityList[i].direction=8;
}
else if (terrain[r-1][c]==1)
{
entityList[i].row-;
entityList[i].direction=2;
}
else if (terrain[r][c+l]==1)
{
entityList[i].col ++;
entityList[i].direction=4;
}
else if (terrain[r+1][c]==1)
{
entityList[i].rowt+;
entityList[i].direction=6;
}
}

Example 6-12 shows four separate if statement blocks. We need to use a different if block for each of

the four possible directionsin which the troll can face. Thisis required because thetile to the troll's left
Is dependent on the direction it's facing. Thisfact isillustrated in Figure 6-17.

Figure 6-17. Relative directions

figs/ch06_figl7.jpg

As Figure 6-17 shows, if the troll isfacing the right relative to the player's point of view, itsleft isthe

tile aboveit. If it'sfacing up, the tile to itsleft is actually the tile on the left side. If it's facing l€ft, the
tile below itistoitsleft. Finaly, if it'sfacing down, the tile to the right is the troll's | eft.

Asthefirst if block shows, if thetroll isfacing right, designated as direction 4, it first checksthetile to
its left by examining terrain[r-1][c]. If thislocation contains a 1, there is no obstruction. At this point,
the troll's position is updated, and just as important, its direction is updated to 2. This means that it's
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now facing up relative to the player's point of view. The next time this block of code is executed, a
different if block will be used because its direction has changed. The additional if statements ensure
that the same procedure is followed for each possible direction.

If the first check of terrain[r-1][c] detected an obstruction, thetilein front of the troll would have been
checked next. If that also contained an obstruction, the tile to the troll's right would have been checked,
followed by thetileto itsrear. The end result is that the troll will thoroughly explore the game
environment. Thisisillustrated in Figure 6-18.

Figure 6-18. Wall-tracing path

figs/ch06_fig18.jpg

Asyou can see, following the left-handed movement method, the troll enters every room in the game
environment. Although this approach is conceptually easy and in most cases very effective, it is not
guaranteed to work in all cases. Some geometries will prevent this method from allowing the troll to
reach every single room.
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6.5 Waypoint Navigation

Pathfinding can be a very time-consuming and CPU-intensive operation. One way to reduce this problemisto
precal culate paths whenever possible. Waypoint navigation reduces this problem by carefully placing nodesin
the game environment and then using precal culated paths or inexpensive pathfinding methods to move between
each node. Figure 6-19 illustrates how to place nodes on a simple map consisting of seven rooms.

Figure 6-19. Placing nodes

In Figure 6-19, you'll notice that every point on the map isin the line of sight of at least one node. Also, every
nodeisintheline of sight of at least one other node. With a game environment constructed in this way, agame-
controlled character always will be able to reach any position on the map using a smple line-of-sight algorithm.
The game Al simply needs to know how the nodes connect to one another. Figure 6-20 illustrates how to label

and connect each node on the map.

Figure 6-20. Labeling nodes
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Using the node labels and links shown in Figure 6-20, we can now determine a path from any room to any other
room. For example, moving from the room containing node A to the room containing node E entails moving
through nodes ABCE. The path between nodes is calculated by aline-of-sight algorithm, or it can be a series of
precal culated steps. Figure 6-21 shows how a computer-controlled character, indicated by the triangle, would
calculate a path to the player-controlled character, indicated by the square.

Figure 6-21. Building a path
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The computer-controlled character first calculates which node is nearest its current location and in its line of
sight. In this case, that isnode A. It then calculates which node is nearest the player's current location and in the
player'sline of sight. That is node E. The computer then plots a course from its current position to node A. Then
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it follows the node connections from node A to node E. In this case, that isA =% B ==+ C = E. Once it
reaches the end node, it can plot aline-of-sight path from the final node to the player.

This seems simple enough, but how does the computer know which nodes to follow? In other words, how does
the computer know that to get from node A to node E, it must first pass through nodes B and C? The answer lies
in asimple table format for the data that enables us to quickly and easily determine the shortest path between
any two nodes. Figure 6-22 shows our initial empty node connection table.

Figure 6-22. Empty node table

End
A B CDEF G
.'!'. S
E =
{ —
Start ) —_
[ —
I: —_—
C =

The purpose of thetable is to establish the connections between the nodes. Filling in the table becomes asimple
matter of determining the first node to visit when moving from any starting node to any ending node. The
starting nodes are listed along the left side of the table, while the ending notes are shown across the top. We will
determine the best path to follow by looking at the intersection on the table between the starting and ending
nodes. You'll notice that the diagonal on the table contains dashes. These table elements don't need to be filled
in because the starting and ending positions are equal. Take the upper-left table element, for example. Both the
starting and ending nodes are A. Y ou will never have to move from node A to node A, so that element is |eft
blank. The next table element in the top row, however, shows a starting node of A and an ending node of B. We
now look at Figure 6-21 to determine the first step to make when moving from node A to node B. In this case,
the next move is to node B, so wefill in B on the second element of the top row. The next table element shows a
starting node of A and an ending node of C. Again, Figure 6-21 shows us that the first step to take is to node B.
When filling in the table we aren't concerned with determining the entire path between every two nodes. We
only need to determine the first node to visit when moving from any node to any other node. Figure 6-23 shows
the first table row completed.

Figure 6-23. Filling in the node table

http://ebooks.servegame.com/oreai forgamdev475b/ch06_sectl_005.htm (3 of 6)7/23/05 5:50:47 PM



Al for Game Developers

™=

=
(=%

== e

:l:ﬂ -

[ = = W

Start

Figure 6-23 shows us that when moving from node A to any other node, we must first visit node B. Examining
Figure 6-21 confirms this fact. The only node connected to node A is node B, so we must always pass through
node B when moving from node A to any other node. Simply knowing that we must visit node B when moving
from node A to node E doesn't get us to the destination. We must finish filling in the table. Moving to the second
row in the table, we see that moving from node B to node A requires a move to node A. Moving from node B to
node C requires amove to C. We continue doing this until each element in the table is complete. Figure 6-24
shows the completed node connection table.

Figure 6-24. Completed node table
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By using the completed table shown in Figure 6-24, we can determine the path to follow to get from any node to
any other node. Figure 6-25 shows an example of adesired path. In this figure, a hypothetical computer-
controlled character, indicated by the triangle, wants to build a path to the player, indicated by the square.

Figure 6-25. Finding the path
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To build a path we simply need to refer to the completed node connection table shown in Figure 6-24. As shown
in Figure 6-25, we want to build a path from node B to node G. We start by finding the intersection on the table
between node B and node G. The table shows node C at the intersection. So, the first link to traverse when

moving from node B to node G isB ==* C. Once we arrive at node C, we refer to the table again to find the
intersection between node C and the desired destination, node G. In the case, we find node E at the intersection.

We then proceed to move from C = E. We repeat this process until the destination is reached. Figure 6-26
shows the individual path segments that are followed when building a path from node B to node G.

Figure 6-26. Finding the path
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As Figure 6-26 shows, the computer-controlled character needs to follow four path segments to reach its
destination.

Each method we discussed here has its advantages and disadvantages, and it's clear that no single method is best
suited for all possible pathfinding problems. Another method we mentioned at the beginning of this chapter, the
A* agorithm, is applicable to awide range of pathfinding problems. The A* agorithm is an extremely popular
pathfinding algorithm used in games, and we devote the entire next chapter to the method.
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Chapter 7. A* Pathfinding

In this chapter we are going to discuss the fundamentals of the A* pathfinding algorithm. Pathfinding is one of
the most basic problems of game Al. Poor pathfinding can make game characters seem very brainless and
artificial. Nothing can break the immersive effect of a game faster than seeing a game character unable to
navigate a simple set of obstacles. Handling the problem of pathfinding effectively can go along way toward
making a game more enjoyable and immersive for the player.

Fortunately, the A* algorithm provides an effective solution to the problem of pathfinding. The A* algorithmis
probably one of the most, if not the most used pathfinding algorithm in game development today. What makes
the A* algorithm so appealing is that it is guaranteed to find the best path between any starting point and any
ending point, assuming, of course, that a path exists. Also, it'sarelatively efficient algorithm, which addsto its
appedl. In fact, you should use it whenever possible, unless, of course, you are dealing with some type of special-
case scenario. For example, if aclear line of sight exists with no obstacles between the starting point and ending
point, the A* algorithm would be overkill. A faster and more efficient line-of-sight movement algorithm would
be better. It also probably wouldn't be the best alternative if CPU cycles are at aminimum. The A* algorithmis
efficient, but it still can consume quite afew CPU cycles, especially if you need to do simultaneous pathfinding
for alarge number of game characters. For most pathfinding problems, however, A* isthe best choice.
Unfortunately, understanding how the A* algorithm works can be difficult for new game developers. In this
chapter we step through the inner workings of the A* agorithm to see how it builds a path from a starting point
to an ending point. Seeing the step-by-step construction of an A* path should help make it clear how the A*
algorithm does its magic.
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7.1 Defining the Search Area

Thefirst step in pathfinding is to define the search area. We need some way to represent the game
world in amanner that allows the search algorithm to search for and find the best path. Ultimately, the
game world needs to be represented by points that both the game characters and objects can occupy. It
Is the pathfinding algorithm's job to find the best path between any two points, avoiding any obstacles.
How the actual game world will be represented depends on the type of game. In some cases, the game
world might have to be simplified. For example, a game which uses a continuous environment would
probably be made up of avery large number of points that the game characters would be able to
occupy. The A* algorithm would not be practical for this type of search space. It ssmply would be too
large. However, it might work if the search area could be ssmplified. This would involve placing nodes
throughout the game world. We then would be able to build paths between nodes, but not necessarily
between every possible point in the world. Thisisillustrated in Figure 7-1.

Figure 7-1. Simplifying the search area

figs/ch07_figOl.jpg

Thetanksin Figure 7-1 are free to occupy any point in their coordinate system, but for the purposes of
pathfinding, the game world is simplified by placing nodes throughout the game environment. These
nodes do not correspond directly to every possible tank position. That would require too many nodes.
We need to reduce the nodes to a manageable number, which is what we mean when we say we need to
simplify the search area.

Of course, we need to maintain alist of the connections between the nodes. The search algorithm needs
to know how the nodes connect. Once it knows how they link together, the A* algorithm can calculate
apath from any node to any other node. The more nodes placed in the world, the slower the pathfinding
process. If pathfinding is taking too many CPU cycles, one aternative is to simplify the search area by
using fewer nodes.
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On the other hand, a game that uses a tiled world would be a good candidate for the A* algorithm,
assuming, of course, that the world isn't unreasonably large. It would be a good candidate because
essentially the world aready would be divided into nodes. Each tile would be anode in the search area.
Thisisillustrated in Figure 7-2.

Figure 7-2. Tiled search area

figs/chO07_fig02.jpg

Tiled environments, such as the one shown in Figure 7-2, are well suited to the A* algorithm. Each tile
serves as anode in the search area. Y ou don't need to maintain alist of links between the nodes because
they are already adjacent in the game world. If necessary, you also can simplify tiled environments.

Y ou can place a single node to cover multiple tiles. In the case of very large tiled environments, you
can set up the pathfinding algorithm to search only a subset of the world. Think of it asasmaller square
within alarger square. If apath cannot be found within the confines of the smaller square, you can
assume that no reasonable path exists.
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7.2 Starting the Search

Once we have simplified the search area so that it's made up of areasonable number of nodes, we are
ready to begin the search. We will use the A* algorithm to find the shortest path between any two
nodes. In this example, we will use asmall tiled environment. Each tile will be anode in the search
area and some nodes will contain obstacles. We will use the A* algorithm to find the shortest path
while avoiding the obstacles. Example 7-1 shows the basic algorithm we will follow.

Example 7-1. Example 7-1. A* pseudo code

add the starting node to the open |i st
while the open list is not enpty

{
current node=node fromopen list with the | owest cost
I f current node = goal node then
path conpl ete
el se
nove current node to the closed Iist
exam ne each node adjacent to the current node
for each adjacent node
If it isn't on the open |ist
and isn't on the closed I|ist
and it isn't an obstacle then
nove it to open |ist and cal cul ate cost
}

Some of the particulars of the pseudo code shown in Example 7-1 might seem alittle foreign, but they
will become clear as we begin stepping through the algorithm.
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Figure 7-3 shows the tiled search area that we will use. The starting point will be the spider near the

center. The desired destination will be the human character. The solid black squares represent wall
obstacles, while the white squares represent areas the spider can walk on.

Figure 7-3. Creating atiled search area

figs/ch07_fig03.jpg

Like any pathfinding algorithm, A* will find a path between a starting node and an ending node. It
accomplishes this by starting the search at the starting node and then branching out to the surrounding
nodes. In the case of this example, it will begin at the starting tile and then spread to the adjacent tiles.
This branching out to adjacent tiles continues until we reach the destination node. However, before we
start this branching search technique, we need away to keep track of which tiles need to be searched.
Thisistypicaly called the open list when using the A* algorithm. We begin with just one node in the
open list. Thisisthe starting node. We will add more nodes to the open list later. (Note, we'll use the
terms nodes and tiles interchangeably when referring to tiled environments.)

Once we have built the open list, we traverse it and search the tiles adjacent to each tile on the list. The
ideaisto look at each adjacent tile and determineif it isavalid tile for the path. We basically are
checking to see if the adjacent tiles can be walked on by a game character. For example, aroad tile
would be valid, whereas a wall tile probably would not be valid. We proceed to check each of the eight
adjacent tiles and then add each valid tile to the open list. If atile contains an obstacle, we ssmply
ignoreit. It doesn't get added to the open list. Figure 7-4 shows the tiles adjacent to the initial location

that need to be checked.

Figure 7-4. Adjacent tiles to consider

figs/ch07_fig04.jpg

In addition to the open list, the A* agorithm also maintains a closed list. The closed list contains the
tiles that already were checked and no longer need to be examined. We essentially add atile to the
closed list once all its adjacent tiles have been checked. As Figure 7-5 shows, we have checked each

tile adjacent to the starting tile, so the starting tile can be added to the closed list.

Figure 7-5. Moving the starting tile to the closed list

figs/ch07_fig05.jpg
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S0, as Figure 7-5 shows, the end result is that we now have eight new tiles added to the open list and
one tile removed from the open list. The description so far shows the basic iteration through amain A*
loop; however, we need to track some additional information. We need some way to link thetiles
together. The open list maintains a list of adjacent tiles that a character can walk on, but we also need to
know how the adjacent tiles link together. We do this by tracking the parent tile of each tile in the open
list. A tile's parent isthe single tile that the character steps from to get to its current location. As Figure

7-6 shows, on the first iteration through the loop, each tile will point to the starting tile as its parent.

Figure 7-6. Linking to the parents

figs/ch07_fig06.jpg

Ultimately we will use the parent links to trace a path back to the starting tile once we finally reach the
destination. However, we still need to go through a series of additional iterations before we reach the
destination.

At this point we begin the process again. We now have to choose a new tile to check from the open list.
On thefirst iteration we had only a single tile on the open list. We now have eight tiles on the open list.
The trick now is to determine which member of the open list to check. We determine this by applying a
scoreto eachtile.
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7.3 Scoring

Ultimately, we will use path scoring to determine the best path from the starting tile to the destination tile. To
actually score each tile, we basically add together two components. First, we look at the cost to move from the
starting tile to any given tile. Next, we look at the cost to move from the given tile to the destination tile. The
first component isrelatively straightforward. We start our search from the initial location and branch out from
there. This makes calculating the cost of moving from the initial location to each tile that we branch out to
relatively easy. We simply take the sum of the cost of each tile that leads back to the initial location. Remember,
we are saving links to the parents of each tile. Back-stepping to theinitial location is a simple matter. However,
how do we determine the cost of moving from a given tile to the destination tile? The destination tile isthe
ultimate goal, which we haven't reached yet. So, how do we determine the cost of a path that we haven't
determined yet? Well, at this point, all we can do isguess. Thisis called the heuristic. We essentially make the
best guess we can make, given the information we have. Figure 7-7 shows the equation we use for scoring any
giventile.

Figure 7-7. Calculating the path score

Score = Cost from Start + Heuristic

So, we calculate each tile's score by adding the cost of getting there from the starting location to the heuristic
value, which is an estimate of the cost of getting from the given tile to the final destination.

We use this score when determining which tile to check next from the open list. We will first check thetiles
with the lowest cost. In this case, alower cost will equate to a shorter path. Figure 7-8 shows the score, cost, and
heuristic applied to each tile we have checked so far.

Figure 7-8. Initial tile path scores
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The svaue shown in each open tile is the cost of getting there from the starting tile. In this case, each valueis 1
because each tile isjust one step from the starting tile. The h value is the heuristic. The heuristic is an estimate
of the number of steps from the given tile to the destination tile. For example, thetile to the upper right of the
starting tile has an h value of 3. That's because that tile is three steps away from the destination tile. You'll
notice that we don't take obstacles into consideration when determining the heuristic. We haven't examined the
tiles between the current tile and the destination tile, so we don't really know yet if they contain obstacles. At
this point we simply want to determine the cost, assuming that there are no obstacles. The final valueisc, which
Isthe sum of sand h. Thisisthe cost of thetile. It represents the known cost of getting there from the starting
point and an estimate of the remaining cost to get to the destination.

Previously, we posed the question of which tile to choose first from the open list on the next iteration through
the A* algorithm. The answer is the one with the lowest ¢ value. As Figure 7-9 shows, the lowest c value is 4,
but we actually have three tiles with that value. Which one should we choose? It doesn't really matter. Let's start
with the one to the upper right of the starting tile. Assuming that we are using a (row, column) coordinate
system where the upper-left coordinate of the search areais position (1, 1), we are now looking at tile (5, 6).

Figure 7-9. Examining tile (5, 6)
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The current tile of interest in Figure 7-9 istile (5, 6), which is positioned to the upper right of the starting
location. We now repeat the algorithm we showed you previously where we examine each tile adjacent to the
current tile. In the first iteration each tile adjacent to the starting tile was available, meaning they had not yet
been examined and they didn't contain any obstacles. However, that isn't the case with thisiteration. When
looking for adjacent tiles, we will only consider tiles that haven't been examined before and that a game
character can walk on. This means we will ignore al tiles on the open list, al tiles on the closed list, or al tiles
that contain obstacles. This leaves only two tiles, the one directly to the right of the current tile and the one to
the lower right of the current tile. Both tiles are added to the open list. Asyou can seein Figure 7-9, we create a
pointer for each tile added to the open list that points back to its parent tile. We also calculate the s, h, and ¢
values of the new tiles. In this case we calculate the s values by stepping back through the parent link. Thistells
us how many steps we are from the starting point. Once again, the h value is the heuristic, which is an estimate
of the distance from the given tile to the destination. And once again the c value is the sum of sand h. The fina
step isto add our current tile, the one at position (5, 6), to the closed list. Thistileis no longer of any interest to
us. We already examined each of its adjacent tiles, so there is no need to examine it again.

We now repeat the process. We have added two new tilesto the open list and moved one to the closed list. We
once again search the open list for the tile with the lowest cost. Aswith the first iteration, the tile with the lowest
cost in the open list has avalue of 4. However, this time we have only two tilesin the open list with a cost of 4.
As before, it really doesn't matter which we examine first. For this example, we will examinetile (5, 5) next.
Thisisshown in Figure 7-10.
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Figure 7-10. Examining tile (5, 5)

O chnmed | oicesd i
i--'l..h' 111* 1.?’; u =

o1 el | ]
] Ll oo e ]

T T l-'l“

= - N4 _g-5in-4 -8
g Tijimiens o

'l..l" 1.!* 'I.1H

o __ Gl _ & ol ol

Aswith the previous cases, we examine each tile adjacent to the current tile. However, in this case no available
tiles are adjacent to the current tile. They al are either open or closed, or they contain an obstacle. So, as Figure
7-10 shows, we simply have to mark the current tile as closed and then move on.

Now we are down to one singletile in the open list that appears to be superior to the rest. It has a cost of 4,
which isthe lowest among all thetilesin the open list. It's located at position (5, 4), which is to the upper left of
the starting position. As Figure 7-11 shows, thisis the tile we will examine next.

Figure 7-11. Examining tile (5, 4)
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As Figure 7-11 shows, we once again examine all the tiles that are adjacent to the current tile. In this case, only
threetiles are available: the one to the upper |€eft, the one to the | eft, and the one to the lower left. The remaining
adjacent tiles are either on the open list, are on the closed list, or contain an obstruction. The three new tiles are
added to the open list and the current tile is moved to the closed list. We then calculate the scores for the three
new tiles and begin the process again.

We have added two new tilesto the open list and moved one to the closed list. The previous time we examined
the open list we found that the tile with the lowest cost had a value of 4. Thistime around the tile with the
lowest cost on the open list hasavalue of 5. In fact, three open tiles have avalue of 5. Their positions are (5, 7),
(6, 6), and (6, 4). Figure 7-12 shows the result of examining each of them. The actual A* agorithm would only
examine onetile at atime and then only check the additional tiles with the same value if no new tiles with lower
values were discovered. However, for purposes of this example, we'll show the results of examining all of them.

Figure 7-12. Examining all tiles with a cost of 5
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As with the previous iterations, each new available tile is added to the open list and each examined tile is moved
to the closed list. We also calculate the scores for each new tile. Traversing the open list again tellsusthat 6 is
the lowest score available, so we proceed to examine the tiles with that score. Once again, it doesn't matter
which we check first. Aswith Figure 7-12, we'll assume the worst-case scenario in which the best option is

selected last. Thiswill show the results of examining all the tiles with a score of 6. Thisisillustrated in Figure 7-
13.

Figure 7-13. Examining all tiles with a cost of 6
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As Figure 7-13 shows, we examined every tile with a cost of 6. Aswith the previous iterations, new tiles are
added to the open list and the examined tiles are moved to the closed list. Once again, the cost values are
calculated for the new tiles. Asyou can see in Figure 7-13, the value of the heuristic is becoming more apparent.
The increases in the heuristics of the tiles on the lower portion of the search area are causing noticeable
increases to the total cost values. Thetilesin the lower part of the search area are still open, so they still might
provide the best path to the destination, but for now there are better optionsto pursue. The lower heuristic
values of the open tiles at the top of the search area are making those more desirable. In fact, traversing the open
list reveals that the current lowest-cost tile now has avalue of 6. In this case, only onetile hasavalue of 6, tile
(3, 4). Figure 7-14 shows the result of examining tile (3, 4).

Figure 7-14. Examining tile (3, 4)
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Examining tile (3, 4) results in the addition of three new tilesto the open list. Of course, the current tile at
position (3, 4) isthen moved to the closed list. As Figure 7-14 shows, most of the tiles on the open list have a
cost of 8. Luckily, two of the new tiles added during the previous iteration have a cost of just 6. These are the
two tiles we will focus on next. Once again, for purposes of this example, we will assume the worst-case
scenario in which it's necessary to examine both. Figure 7-15 illustrates the results of examining these two tiles.

Figure 7-15. Examining tiles (2, 5) and (3, 5)
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As Figure 7-15 shows, we are finally nearing the destination tile. The previous iteration produced five new tiles
for the open list, three of which have a cost of 6, which is the current lowest value. As with the previous
iterations, we will now examine al threetiles with a cost value of 6. Thisis shown in Figure 7-16.

Figure 7-16. Examining tiles (1, 6), (2, 6), and (3, 6)
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AsFigure 7-16 illustrates, we finally reached the destination. However, how does the algorithm determine when
we reached it? The answer is ssimple. The path is found when the destination tile is added to the open list. At that
point it's asimple matter of following the parent links back to the starting point. The only nodes that concern us
now are the ones that lead back to the starting node. Figure 7-17 shows the nodes used to build the actual path.

Figure 7-17. The completed path
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Once the destination is placed in the open list, we know the path is complete. We then follow the parent links
back to the starting tile. In this case, that generates a path made up of the points (2, 7), (2, 6), (2, 5), (3, 4), (4,
3), (5, 4), and (6, 5). If you follow the algorithm we showed here, you'll always find the shortest possible path.
Other paths of equal length might exist, but none will be shorter.
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7.4 Finding a Dead End

It's always possible that no valid path exists between any two given points, so how do we know when we have
reached a dead end? The simple way to determine if we've reached a dead end is to monitor the open list. If we
reach the point where no members are in the open list to examine, we've reached a dead end. Figure 7-18 shows

such a scenario.

Figure 7-18. Dead end

figs/ch07_fig18.jpg

As Figure 7-18 shows, the A* algorithm has branched out to every possible adjacent tile. Each one has been
examined and moved to the closed list. Eventually, the point was reached where every tile on the open list was
examined and no new tiles were available to add. At that point we can conclude that we've reached a dead end

and that it simply isn't possible to build a path from the starting point to the desired destination.
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7.5 Terrain Cost

As the previous example shows, path scoring already plays amajor rolein the A* algorithm. The standard A*
agorithm in its most basic form simply determines path cost by the distance traveled. A longer path is
considered to be more costly, and hence, less desirable. We often think of a good pathfinding algorithm as one
that finds the shortest possible path. However, sometimes other considerations exist. For example, the shortest
path isn't aways the fastest path. A game environment can include many types of terrain, all of which can affect
the game characters differently. A long walk along aroad might be faster than a shorter walk through a swamp.
Thisiswhere terrain cost comes into play. The previous example shows how we calculate each node's cost by
adding its distance from the initial location to the heuristic value, which is the estimated distance to the
destination. It might not have been obvious, but the previous example basically did calculate terrain cost. It just
wasn't very noticeable because all the terrain was the same. Each step the game character took added a value of
1 to the path cost. Basically, every node had the same cost. However, there's no reason why we can't assign
different cost values to different nodes. It requires just a minor change to the cost equation. We can update the
cost equation by factoring in the terrain cost. Thisis shown in Figure 7-19.

Figure 7-19. Scoring with terrain cost

Total Cost from Start = Cost from Starl + Terraln Cost
Score = Total Cost from Start + Heurlstle

Thisresultsin paths that are longer, but that involve easier terrain. In an actual game this can result in agame
character getting from point A to point B in a shorter amount of time, even if the actual path islonger. For
example, Figure 7-20 shows severa hypothetical types of terrain.

Figure 7-20. Types of terrain
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Opean Terrain Cost =1
.¢. Grassland Cost=3
ﬁ Swampland Cost=35

The previous example essentially had only open terrain. The cost of moving from one node to another was
aways 1. As Figure 7-20 shows, we will now introduce two new types of terrain. The first new terrain typeis
grassland, which has a cost of 3. The second new type of terrain is swampland, which has acost of 5. In this
case, cost ultimately refers to the amount of time it takes to traverse the node. For example, if it takes a game
character one second to walk across a node of open terrain, it will take three seconds to walk across a node of
grassland, and five seconds to walk across a node of swampland. The actual physical distances might be equal,
but the time it takes to traverse them is different. The A* algorithm always searches for the lowest-cost path. If
the cost of every node is the same, the result will be the shortest path. However, if we vary the cost of the nodes,
the lowest-cost path might no longer be the shortest path. If we equate cost with time, A* will find the fastest
path rather than the shortest path. Figure 7-21 shows the same tile layout as the previous example, but with the
introduction of the terrain elements shown in Figure 7-22.

Figure 7-21. Adding different terrain elements
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Figure 7-22. Original path over terrain elements
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Asyou can seein Figure 7-21, the obstacles and game characters are in the same locations as they were in the
previous example. The only difference now is the addition of terrain cost. We are no longer looking for the
shortest physical path. We now want the fastest path. We are going to assume that grassland takes three times
longer to traverse than open terrain does, and that swampland takes five times longer. The question is, how will
the added terrain cost affect the path? Figure 7-22 shows the path derived from the previous example.

As Figure 7-22 shows, the shortest path was found. However, you'll notice that the path is now over several
high-cost terrain elements. There is no question that it's the shortest path, but is there a quicker path? We
determine this by using the same A* agorithm we stepped through in the first example, but this time we add the
terrain cost to the total cost of each node. Figure 7-23 shows the results of following the entire algorithm to its
conclusion.

Figure 7-23. Calculating the lowest-cost path
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Asyou can seein Figure 7-23, thisis very similar to how we calculated the path in the previous example. We
use the same branching technigue where we examine the adjacent tiles of the current tile. We then use the same
open and closed list to track which tiles need to be examined and which are no longer of interest. The main
difference is the s value, which is the cost of moving to any given node from the starting node. We simply used
avalue of 1 for every node in the previous example. We are now adding the terrain cost to the svalue. The
resulting lowest-cost path is shown in Figure 7-24.

Figure 7-24. The lowest-cost path
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As Figure 7-24 shows, the A* agorithm has worked its way around the higher-cost terrain elements. We no
longer have the shortest physical path, but we can be assured that no quicker path exists. Other paths might exist
that are physically shorter or longer and that would take the same amount of time to traverse, but none would be
quicker.

Terrain cost aso can be useful when applying the A* algorithm to a continuous environment. The previous
examples showed how you can apply the A* algorithm to atiled environment where all nodes are equidistant.

However, equidistant nodes are not arequirement of the A* algorithm. Figure 7-25 shows how nodes could be
placed in a continuous environment.

Figure 7-25. Continuous environment node placement
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In Figure 7-25, you'll notice that the distance between the nodes varies. This means that in a continuous
environment it will take alonger period of time to traverse the distances between the nodes that are farther
apart. This, of course, assumes an equivalent terrain between nodes. However, in this case, the cost of moving
between nodes would vary even though the terrain is equivalent. The cost would be equal to the distance
between nodes.

We've discussed several different types of costs associated with moving between nodes. Although we tend to
think of cost as being either time or distance, other possibilities exist, such as money, fuel, or other types of
resources.
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7.6 Influence Mapping

The previous section showed how different terrain elements can affect how the A* algorithm calculates a path.
Terrain cost is usually something that the game designer hardcodes into the game world. Basically, we know
beforehand where the grasslands, swamplands, hills, and rivers will be located. However, other elements can
influence path cost when calculating a path with A*. For example, nodes that pass through the line of sight of
any enemy might present a higher cost. Thisisn't acost that you could build into a game level because the
position of the game characters can change. Influence mapping is away to vary the cost of the A* nodes
depending on what is happening in the game. Thisisillustrated in Figure 7-26.

Figure 7-26. Influenced by the enemy firing zone
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As Figure 7-26 shows, we have assigned a cost to each node. Unlike the terrain cost we showed you in the
previous section, however, this cost is influenced by the position and orientation of the tank shown at position
(8, 4). Thisinfluence map will change as the tank's position and orientation change. Like the terrain cost from
the previous section, the influence map cost will be added to each node's s value when calculating possible
paths. Thiswill result in the tank's target possibly taking alonger and slower route when building a path.
However, the tilesin the line of fire still are passable, just at a higher cost. If no other path is available, or if the
aternate paths have a higher cost, the game character will pass through the line of fire.

Y ou can use influence mapping in other ways to make game characters seem smarter. Y ou can record individual
gameincidentsin an influence map. In this case, we aren't using the position and orientation of a game character
to build an influence map. We are instead using what the character does. For example, if the player repeatedly
ambushes and kills computer-controlled characters at a given doorway, that doorway might increase in cost. The
computer could then begin to build alternate paths whenever possible. To the player, this can make the
computer-controlled characters seem very intelligent. It will appear as though they are learning from their
mistakes. Thistechniqueisillustrated in Figure 7-27.

Figure 7-27. Influenced by the number of Kills
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The influence map illustrated in Figure 7-27 records the number of kills the player makes on each node. Each
time the player makes akill, that node increases in cost. For example, there might be a particular doorway
where the player has discovered an ambush technique that has led to a series of successful kills. Instead of
having the computer-controlled adversaries repeatedly pass through the same doorway, you could create
perhaps a longer, but less costly path to offset the player's tactical advantage.
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7.7 Further Information

Steven Woodcock reported in his "2003 Game Developer's Conference Al Roundtable Moderator's Report" that Al
developers essentially considered pathfinding solved. Other game Al resources all over the Web echo this
sentiment. What developers mean is that proven algorithms are available to solve pathfinding problems in a wide
variety of game scenarios and most effort these days is focused on optimizing these methods. The workhorse
pathfinding method is by far the A* algorithm. Current development effort is now focused on developing faster,
more efficient A* algorithms. Game Programming Gems (Charles River Media) and Al Game Programming Wisdom

(Charles River Media) contain several interesting articles on A* optimizations.
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Chapter 8. Scripted Al and Scripting Engines

This chapter discusses some of the techniques you can use to apply a scripting system to the problem of game
Al, and the benefits you can reap from doing this. At its most basic level, you can think of scripting asavery
simple programming language tailored to a specific task related to the game in question. Scripting can be an
integral part of the game development process, asit enables the game designers rather than the game
programmers to write and refine much of the game mechanics. Players also can use scripting to create or modify
their own game worlds or levels. Taken a step further, you can use a scripting system in a massively multiplayer
online role-playing game (MMORG) to alter the game behavior while the game is actually being played.

Y ou can take several approaches when implementing a scripting system. A sophisticated scripting system might
interface an already existing scripting language, such as Lua or Python, for example, with the actual game
engine. Some games create a proprietary scripting language designed for the needs of the individual game.
Although it's sometimes beneficial to use those methods, it's easier to have the game parse standard text files
containing the scripting commands. Employing this approach, you can create scripts using any standard text
editor. In areal game, the scripts can be read in and parsed when the game first starts, or at some other specified
time. For example, scripts that control creatures or events in a dungeon can be read in and parsed when the
player actually enters the dungeon area.

In the scope of game Al, you can use scripting to alter opponent attributes, behavior, responses, and game
events. This chapter looks at all these uses.
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8.1 Scripting Techniques

The actual scripting language used in agame is ultimately up to the game designers and programmers. It can
resemble preexisting languages such as C or C++, or it can take atotally unique approach; perhaps even a
graphical rather than a text-based approach. Deciding how the scripting system looks and works depends
primarily on who will be using the scripting system. If your target is the end player, a more natural language or
graphical approach might be beneficial. If the system is primarily for the designers and programmers, it might
not be beneficial to spend your devel opment time on a complex and time-consuming natural language parsing
system. A quick and dirty approach might be better.

Y ou a'so should consider other factors when devel oping a scripting system. Perhaps you want the script to be
easy to read and write for the game designers, but not necessarily for the game players. In this case, you might
want to use aform of encryption. Y ou also could develop a script compiler so that the end result isless readable
to humans.

In this chapter we create simple scripting commands and save them in standard text files. We want to avoid the
need for a complex language parser, but at the same time we have been careful to choose a vocabulary that
makes it relatively easy for humans to read and write the scripts. In other words, we use words that accurately
reflect the aspect of the game that the script is altering.
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8.2 Scripting Opponent Attributes

It's common and beneficial to specify all the basic attributes of each Al opponent by using some type of
scripting. This makesit easy to tweak the Al opponents throughout the devel opment and testing process. If all
the vital data were hardcoded into the program, you would have to recompile for even the most basic change.

In general, you can script opponent attributes such as intelligence, speed, strength, courage, and magical ability.
In reality, thereis no limit to the possible number or types of attributes you can script. It really comes down to
the type of game you're developing. Of course, the game engine ultimately will use these attributes whenever a
computer-controlled friend or foe interacts with the player. For example, an opponent that has a higher
intelligence attribute would be expected to behave differently from one of lower intelligence. Perhaps a more
intelligent opponent would use a more sophisticated pathfinding algorithm to track down a player, while aless
intelligent opponent might become easily confused when trying to reach the player.

Example 8-1 shows a basic script you can use to set game attributes.

Example 8-1. Basic script to set attributes

CREATURE=1,

I NTELLI GENCE=20;
STRENGTH=75;
SPEED=50;

END

In this example, our script parser has to interpret five commands. The first, CREATURE, indicates which Al
opponent is being set. The next three, INTELLIGENCE, STRENGTH, and SPEED, are the actual attributes
being set. The final command, END, tells the script parser that we are finished with that creature. Anything that
follows comprises a new and separate block of commands.
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It would be just as easy to include the numbers 1,20,75,50 in afile and thus avoid any need for parsing the script
text. That approach works and developers use it frequently, but it does have some disadvantages. First, you lose
quite a bit of readability. Second, and most important, your scripting system can increase in complexity to the
point where specifying attributes by just including their numerical valuesin afile becomes impractical.
Example 8-2 shows how a script can become more complicated by using a conditional statement.

Example 8-2. Conditional script to set attributes

CREATURE=1;
| f (LEVEL<S5)
BEG N
| NTELLI GENCE=20;
STRENGTH=75;
SPEED=50;
END
ELSE
BEG N
| NTELLI GENCE=40;
STRENGTH=150;
SPEED=100;
END
END

As shown in Example 8-2, we now have conditional statements that initialize the creature attributes to different
values depending on the current game level.
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8.3 Basic Script Parsing

Now that we've shown what a basic attribute script looks like, we're going to explore how a game reads and
parses a script. As an example, we will use abasic script to set some of the attributes for atroll. We will create a
text file called Troll Settings.txt. Example 8-3 shows the contents of the troll settingsfile.

Example 8-3. Basic script to set attributes

I NTELLI GENCE=20;
STRENGTH=75;
SPEED=50;

Example 8-3 isasimple example that sets only three creature attributes. However, we will set up our code so
that we can easily add more attributes with very little change to our script parser. Basically, we are going to set
up our parser so that it will search agiven file for a specified keyword and then return the val ue associated with
the keyword. Example 8-4 shows how this might look in an actual game.

Example 8-4. Basic script to set attributes

intelligence[kTroll]=fi_ GetData("Troll Settings.txt,
"I NTELLI GENCE") ;

strength[kTroll]= fi_GetData("Troll Settings.txt,
" STRENGTH'") ;
speed[ kTrol I ]= fi_GetData("Troll Settings.txt,
" SPEED") ;

Example 8-4 shows three hypothetical arrays that can store creature attributes. Rather than hardcoding these
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valuesinto the game, they are loaded from an external script file called Troll Settings.txt. The function
fi_GetData traverses the external file until it finds the specified keyword. It then returns the value associated
with that keyword. The game designers are free to tweak the creature setting without the need to recompile the
program code after each change.

Now that we have seen how you can use the fi_GetData function to set the attributes for atroll, let's go a step
further. Example 8-5 shows how the function accomplishes its task.

Example 8-5. Reading data from a script

int fi_GCetData(char filename[ kStringLength], char searchFor[kStringLength])
{

FILE *dataStream

char inStr[kStringLength];

char rinStr[kStringlLength];

char val ue[ kStri ngLengt h];

| ong i val ue;

i nt [

i nt i

dataStream = fopen(filename, "r" );
if (dataStream!= NULL)

{
while (!feof (dataStrean))
{
if (!'fgets(rinStr,kStringLength, dataStream)

{
fclose( dataStream);
return (0);

}

i =0;

strcepy(inStr,"");
for (i=0;i<strlen(rinStr);i++)
if (rinStr[i]!=" ")
{
inStr[jl=rinStr[i];
inStr[j+1]="\0";
j
}

if (strncnp(searchFor, inStr,
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strlen(searchFor)) == 0)

i =0:

for(i=strlen(searchFor);

<kStri ngLengt h;
i ++)
{
if (inStr[i]==";")
br eak;
value[j]=inStr[i];
val ue[j +1]="\0";
j
}
StringToNunber (val ue, & val ue);
fcl ose( dataStream);

return ((int)ivalue);

}

fcl ose( dataStream);
return (0);

}

return (0);

The function in Example 8-5 begins by accepting two string parameters. The first specifies the name of the
script file to be searched and the second is the search term. The function then opens the text file using the
specified file name. Once the file is opened, the function begins traversing the script file one text line at atime.
Each lineisread in asastring.

Notice that each lineisread into the variable rinStr, and then it's copied immediately to inStr, but without the
spaces. The spaces are eliminated to make the parsing a bit more fool proof. This prevents our script parser from
getting tripped up if the script writer adds one or more spaces before or after the search term or attributes. Once
we have a script line stored in a string, sans spaces, we can search for the search term.

Asyou recall, we passed our search term to the fi_GetData function by using the string variable searchFor. At
this point in the function, we use the C function strncmp to search inStr for the search term.

If the search term is not found, the function simply proceeds to read the next text line in the script file. However,
iIf it isfound, we enter a new loop that copies into a new string named value the part of inSr that contains the
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attribute value. The string value is converted to an integer value by calling the outside function
SringToNumber. The fi_GetData function then returns the value in ivalue.

This function iswritten in avery generic way. No search terms are hardcoded into the function. It Simply
searches the given file for a search term and then returns an integer value associated with it. This makesit easy
to add new attributes to our program code.

Also, note that thisis one area of game development where it isimportant to check for errors. Thisistrue
particularly if you want players as well as game designers to use the scripting system. Y ou should never assume
any of the scripts being parsed are valid. For example, you shouldn't rely on the script writersto keep al the
numeric values within legal bounds.
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8.4 Scripting Opponent Behavior

Directly affecting an opponent's behavior is one of the most common uses of scripting in game Al. Some of the
previous examples showed how scripting attributes can have an indirect effect on behavior. Thisincluded such
examples as modifying a creature's intelligence attribute, which presumably would alter its behavior in the game.

Scripting behavior enables usto directly manipulate the actions of an Al opponent. For this to be useful
however, we need some way for our script to see into the game world and check for conditions that might alter
our Al behavior. To accomplish this we can add predefined global variables to our scripting system. The actual
game engine, not our scripting language, will assign the values in these variables. They are used simply asa
way for the script to evaluate a particular condition in the game world. We will use these global variablesin
conditional scripting statements. For example, in our scripting system we might have a global boolean variable
called Player Armed which will direct a cowardly troll to ambush only unarmed opponents. Example 8-6 shows
how such a script might look.

Example 8-6. Basic behavior script

I f (Player Ar mned==TRUE)
BEG N
DoFl ee() ;
END
ELSE
BEG N
DoAt t ack() ;
END

In Example 8-6, the script does not assign the value Player Armed. It represents a value within the game engine.
The game engine will evaluate the script and link this behavior to the cowardly troll.
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In this example, the value Player Armed is a simple boolean value that represents nothing more than another
boolean value within the game engine. There certainly is nothing wrong with this, but scripting is more useful
when you use simple global variables which represent a more complex series of evaluations. For example, in
this sample script we checked whether the player was armed. Although that might be useful for an opponent to
know, it doesn't necessarily represent how challenging the opponent will bein afight.

Many factors could contribute to how challenging a potential opponent will be. We can make our scripting
system even more powerful if we evaluate these conditions in the game engine and then make the result
available to the script as asingle global variable. For example, we could use a Bayesian network to evaluate
how tough an opponent the player is and then make the result available in a variable such as Player Challenge.
The script shown in Example 8-7 isjust as ssimple as the one in Example 8-6, but it can have a much more
sophisticated effect on the gameplay.

Example 8-7. Behavior script

I f (PlayerChall enge ==DI FFI CULT)
BEG N
DoFl ee() ;
END
ELSE
BEG N
DoAt t ack();
END

In the case of Example 8-7, Player Challenge could represent a series of complex evaluations that rank the
player. Some of the factors could include whether the player is armed, the type of armor being worn, the current
player's health, whether any other playersin the area might come to his defense, and so on.

Another aspect of behavior that you can script is Al character movement. We can take a concept, such as pattern
movement from Chapter 3, and implement it in a scripting system. For example, it might be useful for the game
designer to establish patrol patterns for Al characters. Chapter 3 showed some examples of hardcoded pattern
movement. Of course, hardcoding behavior has many disadvantages. It's much more difficult to tweak a game's
design if arecompileis needed after every minor change. Figure 8-1 shows an example of a movement pattern
that a game designer can implement using a scripting system.

Figure 8-1. Scripted pattern movement
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Example 8-8 shows how we can construct a script to achieve the desired behavior.

Example 8-8. Pattern movement script

If (creature.state==kPatrol)
begi n
nove(0, 1);
move(0, 1);
nove(0, 1);
move(0, 1);
nove(0, 1);
move(-1, 0);
nmove(-1, 0);
nove(0, -1);
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move(0,-1);

nove(O0, -1);

nove(O0, -1);

nove(O0, -1);

nove(0, 1);

nove(0, 1);
end

pattern. Each move is shown as a single unit change from the previous position. See Chapter 3 for a detailed
explanation of pattern movement techniques.
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8.5 Scripting Verbal Interaction

The benefits of scripting go beyond just making an Al opponent more sophisticated and challenging. Many
types of games incorporate intelligent behavior in ways that aren't meant to be adirect challenge to the player. A
role-playing game, for example, might provide the player with a series of subtle hints meant to move the story
along. Scripting is an excellent way to enable the game designer to create a compelling story without the need to
ater the actual game program.

Intelligent behavior can make a game more challenging, but verbal responses that are intelligent and appropriate
to the situation can go even farther when creating an immersive environment for the player. Verbal interaction
can range from helpful hints from afriendly nonplayer character to taunts from an adversary. Verbal interaction
seems most intelligent and immersive when it relates to the current game situation. This means the game Al
needs to check a given set of game parameters and then respond to them accordingly.

For example, how a player is armed might be one parameter that can be checked. We can then have an
adversarial Al character comment on how ineffective that weapon will be once combat starts. This seems more
intelligent and immersive because it's not just arandom taunt. It applies to the current game situation. It makes it
seem as though the computer-controlled characters are aware of what's happening in the game. A quick example
of how this script might look is shown in Example 8-9.

Example 8-9. Verbal taunt script

If (Player Armed ==Dagger)
Say("Wat a cute little knife.");
If (Player Armed ==Bow)

Say("Drop the bow now and I'Il let you live.");
If (Player Armed ==Sword)
Say("That sword will fit nicely in nmy collection.");

If (PlayerArned ==Battl eAxe)
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Say("You're too weak to wield that battle axe.");

As Example 8-9 shows, knowing a bit about the current game situation can add an immersive effect to
gameplay. Thisis much more effective than simply adding random general taunts.

S0, an important aspect of a scripting system is to enable the script writer to see what's happening inside the
game engine. The more game el ements the script can see, the better. Figure 8-2 shows a hypothetical game
scenario in which an evil giant is chasing the player. In this case, the game Al is able to use unique elements of
the game state to supply ataunt appropriate to the situation. In this case, we know that the adversary is a giant,
the player is a human, and the player is armed with a staff.

Figure 8-2. Giant taunt

Example 8-10 shows how the game Al might can be an appropriate taunt during a battle between a computer-
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controlled giant and a player-controlled human. In areal game you probably would want to add multiple
responses for each given situation and then randomly select among them. This would help prevent the responses
from becoming repetitive and predictable.

Example 8-10. Giant taunt script

If (Creature==G ant) and (pl ayer ==Human)
begi n
if (playerArnmed==Staff)
Say("You will need nore than a staff, puny human!");
i f (playerArmed==Swor d)
Say("Drop your sword and | mght not crush you!")
i f (playerArmed==Dagger)
Say("Your tiny dagger is no match for ny club!");
end

Of course, thistype of scripting isn't limited to adversarial characters that are out to kill the players. Benevolent
computer-controlled characters can use the same techniques. This can help the script writer create an engaging
and immersive plot. Example 8-11 shows how a script helps construct a plot and guide the player actions toward
the game goals.

Example 8-11. Benevolent Al script

If (Creature==Friendl yW zard)
begi n
i f (playerHas==RedAnul et)
Say("l see you found the Red Anul et.
Bring it to the stone tenple
and you will be rewarded.");

end

As Example 8-11 shows, avital piece of information concerning where the amulet should be placed won't be
revealed to the player until the amulet is found and the player confronts the friendly wizard.

The previous script examples show how game Al can respond in a given situation, but it's also sometimes
necessary for game characters to have some type of verbal interaction with the player. This could be benevolent
characters meant to provide the player with helpful information, or perhaps a less-than-honest character meant
to intentionally mislead the player.
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In thistype of scenario, the player needs some mechanism to input text into the game. The game engine then
makes the text strings available to the script system, which analyzes the text and provides an appropriate
response. Figure 8-3 shows how this might appear in an actual game.

Figure 8-3. Merlin

In the case of Figure 8-3, the player would type in the text "What is your name?" and the scripting system would
return thetext "I am Merlin." Example 8-12 shows a basic script that you could use to accomplish this.

Example 8-12. Basic "What is your name?" script
If Ask("What is your nanme?")

begin
Say("l am Merlin.");

http://ebooks.servegame.com/oreaiforgamdev475b/ch08_sectl 005.htm (4 of 7)7/23/05 5:59:28 PM



Al for Game Developers

end

Of course, Example 8-12 does have one serious flaw. It works only when the player typesin the exact text of the
guestion asit appearsin the script. In reality, you can form a question in many ways. For example, what
happens if the player enters one of the lines of text shown in Example 8-13?

Example 8-13. Example player input

What's your nane?

What s your nane?

VWhat is your nane.

What is thy nane?

What is your nane, Wzard?

Hel | o, what is your nane?

Asyou can see, the script in Example 8-12 would fail for all the questions shown in Example 8-13, even though
it's quite obvious what's being asked. Not only can you ask a question in many ways, but we also have to
consider the possibility that the player might not form the question in a correct manner. In fact, you can see that
one of the example questions ends in a period rather than a question mark. We could have strict requirements
for the player-entered text, but it would have the effect of removing the player from the immersive effect of the
game whenever he made the inevitable minor error.

One alternative to checking each literal text string is to create alanguage parser to decipher each sentence to
determine exactly what is being asked. For some games a sophisticated language parser might be appropriate;
however, for most games there is a simpler approach. Asyou saw in Example 8-13, you can form the same
guestion in many ways, but if you'll notice, they all have something in common. They all contain the words
"what" and "name.” So, instead of checking for each literal text string, we can simply search for and respond to
particular keywords. In this case, the scripting engine simply checks for the presence of given keywords within
atext string.

As Example 8-14 shows, the script is checking for the presence of two keywords in the player-entered text.
Using this approach, the script responds correctly to every question in Example 8-13.

Example 8-14. Keyword scripting

If (Ask("what") and Ask("nane") )
begi n
Say("l am Merlin.");
end
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Now that we've shown you how to write atypical script to check player input for a given set of keywords, let's
look at how the actual game engine checks player input for a given keyword. Example 8-15 shows how to do
this.

Example 8-15. Searching for keywords

Bool ean FoundKeywor d(char input Text[kStringLength], char
searchFor [ kSt ringLengt h])

{
char inStr[kStringLength];
char searchStr[ kStringLength];
i nt i;
for (i=0;i<=strlen(inputText);i++)
{
inStr[i]=inputText[i];
if (((int)inStr[i]>=65) & ((int)inStr[i]<=90))
inStrli]=(char)((int)inStr[i]+32);
}
for (i=0;i<=strlen(searchFor);i ++)
{
searchStr[i]=searchFor[i];
if (((int)searchStr[i]>=65) &&
((int)searchStr[i]<=90))
searchStr[i]=(char)((int)searchStr[i]+32);
}
if (strstr(inStr,searchStr)!=NULL)
return (true);
return (false);
}

Example 8-15 shows the actual code in the game engine that is invoked whenever the "Ask" function is called
from the game designer's script. This function takes two parameters. inputText, which isthe line of text the
player entered, and searchFor, which is the keyword we want to search for. The first thing we do in this
function is to convert both strings to al lowercase. Like many programming languages, C and C++ are case-
sensitive. A string containing the text "Name" is not equal to a string containing the text "name." We can't rely
on the player always using capitalization consistently or properly. The simplest solution isto convert al strings
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to lowercase. That way, it doesn't matter if the player enters all uppercase, all lowercase, or some combination.

Once we have two lowercase strings, we call the C function strstr to compare the text strings. The strstr

function searches inSr for the first occurrence of searchStr. If searchSr is not found in inStr, anull pointer is
returned.
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8.6 Scripting Events

Now let's examine some of the other ways scripting can make gameplay more immersive. The previous sections
showed how scripts alter the behavior of Al characters. Scripting behavior goes along way toward making
games and Al characters seem more real. However, you can use scripting to make games more entertaining and
realistic in other ways as well. In this section we examine how scripts trigger in-game events that might not be
related directly to Al characters. For example, perhaps stepping on a particular location will trigger atrap.
Example 8-16 shows how this might look in atext-based scripting language.

Example 8-16. Trap event script

If (PlayerlLocation(120, 76))
Tri gger (kExposi onTr ap) ;

If (PlayerLocation(56, 16))
Tri gger (kPoi sonTrap) ;

As Example 8-16 shows, the scripting system can compare the player position to some predetermined value and
then trigger atrap if they are equal. Of course, you can make this much more sophisticated by making the
triggering mechanism more complex. Perhaps the trap is triggered only if the player is holding a certain item or
wearing a particular piece of armor.

Scripting also can be an effective way to add a sense of ambience to gameplay. For example, you can link
certain situations or objects to particular sound effects. If the player walks on a dock, a seagull sound effect

might be triggered. Y ou could use an entire scripting file solely for linking sound effects to different situations.

Figure 8-4 shows the player standing in adoorway. Thiswould be an excellent situation to link to a creaking-
door sound effect.
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Figure 8-4. Door Sound script

Example 8-17 shows how the player location or game situation, such as the game time, can trigger relevant
sound effects.

Example 8-17. Triggered sound script

I f (PlayerLocation(kDoorway))
Pl ay Sound( kCr eaki ngDoor Snd) ;
If (PlayerLocation(kDock))
Pl aySound (kSeagul | Snd);
If (PlayerlLocation(kBoat))
Pl aySound (kWavesSnd);
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I f (GaneTi me==kNi ght)

Pl aySound (kCricketsSnd);
I f (GaneTi me==kDay)

Pl aySound (kBi rdsSnd);

Although this chapter differentiated between the types of Al scripting, in areal game it can be beneficial to use
them together. For example, instead of a player action triggering an effect such as a sound effect, perhaps it
triggers a specific creature Al patrolling pattern. We also showed examples of how Al creatures can respond to
text entered by the player; however, this also can be avery useful way to trigger in-game events. For example,
the player could recite a spell that triggers some event.

4 Prewious Hext F

Top a

http://ebooks.servegame.com/oreai forgamdev475b/ch08_sectl_006.htm (3 of 3)7/23/05 6:00:28 PM


http://ebooks.servegame.com/oreaiforgamdev475b/12041534.htm

Al for Game Developers

All Online Books

Table of Contents
View as Frames

4 Prewious Hext F

8.7 Further Information

In this chapter we showed you how to implement basic scripting that enables you to alter game Al outside the
main game program. Such scripting can be very effective. Indeed, we successfully implemented these
techniquesin an MM ORG to enable game masters to change the game Al and other game parametersin rea
time. Implementing a full-fledged scripting engine can be very challenging, and it involves additional concepts
that we have not yet covered. These concepts include finite state machines and rule-based systems, which welll
get to in Chapters 9 and 11 of this book.

If you decide to pursue scripting even further than we do in this book, you might find the following resources to
be particularly helpful:

. Al Application Programming by M.Tim Jones (Charles River Media)
. Al Game Programming Wisdom by Steve Rabin, ed. (Charles River Media)

In the first reference, author Tim Jones shows how to implement a scripted rule-based system from scratch. His
approach combines concepts we covered in this chapter and those we will cover in Chapter 11. The second
reference includes seven articles written by game programming veterans focusing specifically on issues related
to implementing scripting engines for games.
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Chapter 9. Finite State Machines

A finite state machine is an abstract machine that can exist in one of several different and predefined states. A
finite state machine also can define a set of conditions that determine when the state should change. The actual
state determines how the state machine behaves.

Finite state machines date back to the earliest days of computer game programming. For example, the ghostsin
Pac Man are finite state machines. They can roam freely, chase the player, or evade the player. In each state
they behave differently, and their transitions are determined by the player's actions. For example, if the player
eats a power pill, the ghosts' state might change from chasing to evading. We'll come back to this examplein the
next section.

Although finite state machines have been around for along time, they are still quite common and useful in
modern games. The fact that they are relatively easy to understand, implement, and debug contributes to their
frequent use in game development. In this chapter, we discuss the fundamentals of finite state machines and
show you how to implement them.
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9.1 Basic State Machine Model

The diagram in Figure 9-1 illustrates how you can model a simple finite state machine.

Figure 9-1. Generic finite state machine diagram

t4

15 &

In Figure 9-1, each potential state isillustrated with acircle, and there are four possible states {S, S1, 2, S3}.
Of course, every finite state machine also needs a means to move from one state to another. In this case, the
transition functions areillustrated as {t1, t2, t3, t4, t5} . The finite state machine begins with the initial state S. It
remainsisthis state until the t1 transition function provides a stimulus. Once the stimulus is provided, the state
switchesto S1. At this point, it's easy for you to see which stimulusis needed to move from one state to another.
In some cases, such aswith S1, only the stimulus provided by t5 can change the machine's state. However,
notice that in the case of S3 and S2 two possible stimuli result in a state change.

Now that we've shown you a simple state machine model, let's look at a more practical and slightly more
complex example. Figure 9-2 shows afinite state machine that might appear in an actual game.

Figure 9-2. Ghost finite state machine diagram
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Look closely at Figure 9-2, and you can see that the behavior of the finite state machine models a behavior
similar to that of a ghost in Pac Man. Each oval represents a possible state. In this case, there are three possible
states. roam, evade, and chase. The arrows show the possible transitions. The transitions show the conditions
under which the state can change or remain the same.

Mt

[

frue

In this case, the computer-controlled Al opponent beginsin the initial rRoam state. Two conditions can cause a
change of state. The first is blue=true. In this case, the Al opponent has turned blue because the player has eaten
apower pill. Thisresults in a state change from roam to evade. The other condition that can change the stateis
see=true, which means the game Al can see the player, resulting in a state change from roam to chase. Now it is
no longer necessary to roam freely. The game Al can see and chase the player.

The figure also shows that the finite state machine stays in the evade state as long asit's blue. Otherwise, the
state changesto chase if the player can be seen. If the player can't be seen, it revertsto the roam state. Likewise,
the machine remains in the chase state unlessit's blue, in which case it changes to evade. However, if it's
chasing the player but loses sight of him or her, it once again reverts to the roam state.

Now that we've shown how you can model this behavior in afinite state machine diagram, let's see how you can
set up actual program code to implement this behavior. Example 9-1 shows the code.

Example 9-1. Ghost behavior

switch (current State)

{

case kRoam

if (imBlue==true) currentState=kEvade;
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el se if (canSeePl ayer==true) currentState=kChase;
el se if (canSeePl ayer==fal se) current St at e=ckRoam
br eak;

case kChase:
if (inBlue==true) currentState=kEvade;
else if (canSeePl ayer==fal se) current St at e=kRoam
else if (canSeePl ayer==true) currentState=kChase;
br eak;

case kEvade:
if (inmBlue==true) currentState=kEvade;
el se if (canSeePl ayer==true) currentState=kChase;
el se if (canSeePl ayer==fal se) current St at e=kRoam

br eak;

The program code in Example 9-1 is not necessarily the most efficient solution to the problem, but it does show
how you can use actual program code to model the behavior shown in Figure 9-2. In this case, the switch
statement checks for three possible states: kRoam, kChase, and kEvade. Each case in the switch statement then
checks for the possible conditions under which the state either changes or remains the same. Notice that in each
case the imBlue condition is considered to have precedence. If imBlueis true, the state automatically switches to
kEvade regardless of any other conditions. The finite state machine then remains in the kEvade state as long as
imBlueistrue.
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9.2 Finite State Machine Design

Now we will discuss some of the methods you can use to implement a finite state machine in agame. Finite
state machines actually lend themselves very well to game Al development. They present a simple and logical
way to control game Al behavior. In fact, they probably have been implemented in many games without the
developer realizing that a finite state machine model was being used.

Well start by dividing the task into two components. First, we will discuss the types of structures we will use to
store the data associated with the game Al entity. Then we will discuss how to set up the functions we will use
to transition between the machine states.

9.2.1 Finite State Machine Structures and Classes

Games that are developed using a high-level language, such as C or C++, typically store al the datarelated to
each game Al entity in asingle structure or class. Such a structure can contain values such as position, health,
strength, special abilities, and inventory, among many others. Of course, besides all these elements, the structure
also storesthe current Al state, and it's the state that ultimately determines the Al's behavior. Example 9-2
shows how atypical game might store agame Al entity's datain a single class structure.

Example 9-2. Game Al structure

class AlEntity
{
public:
int type;
int state;
int row
int colum:;
int health;
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i nt strength;
int intelligence;

i nt magi c;

In Example 9-2, the first element in the class refers to the entity type. This can be anything, such asatroll, a
human, or an interstellar battle cruiser. The next e ement in the class is the one that concerns us most in this
chapter. Thisiswhere the Al state is stored. The remaining variables in the structure show typical values that
generally are associated with agame Al entity.

The state itself typically is assigned using a global constant. Adding a new state is as simple as adding a new
global constant. Example 9-3 shows how you can define such constants.

Example 9-3. State constants

#defi ne kRoam
#def i ne kEvade
#def i ne KAt t ack
#def i ne kHi de

A W DN P

Now that we've seen how the Al state and vital statistics are grouped in a single class structure, let's ook at how
we can add transition functions to the structure.

9.2.2 Finite State Machine Behavior and Transition Functions

The next step in implementing afinite state machine is to provide functions that determine how the Al entity
should behave and when the state should be changed. Example 9-4 shows how you can add behavior and
transition functions to an Al class structure.

Example 9-4. Game Al transition functions

cl ass AlEntity
{
public:

int type;
int state;
int row
int col um,;
int health;
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i nt strength;

int intelligence;

i nt magi c;

int arned;

Bool ean pl ayer | nRange();
i nt checkHeal th();

Y ou can see that we added two functions to the AlEntity class. Of course, in areal game you probably would
use many functions to control the Al behavior and ater the Al state. In this case, however, two transition
functions suffice to demonstrate how you can alter an Al entity's state. Example 9-5 shows how you can use the
two transition functions to change the machine state.

Example 9-5. Changing states

if ((checkHeal t h()<kPoorHeal th) && (playerlnRange()==fal se))
st at e=kHi de;

el se if (checkHeal t h()<kPoor Heal t h)
st at e=kEvade;

else if (playerlnRange())
st at e=kAt t ack;

el se

st at e=kRoam

Thefirst if statement in Example 9-5 checks to seeif the Al entity's health islow and if the player is not nearby.
If these conditions are true, the creature represented by this class structure goes into a hiding state. Presumably,
it remainsin this state until its health increases. The second if simply checks for poor health. The fact that we've
reached thisif statement means the player is nearby. If that wasn't the case, the first if statement would have
been evaluated as true. Because the player is nearby, hiding might not be practical, as the player might be able
to seethe Al entity. In this case, it's more appropriate to attempt to evade the player. The third if statement
checksto seeif the player isin range. Once again, we know the Al isin good health; otherwise, one of the first
two if statements would have been evaluated as true. Because the player is nearby and the Al entity isin good
health, the state is changed to attack. The final state option is selected if none of the other options applies. In this
case, we go into adefault roam state. The creature in this example remains in the roam state until the conditions
specified by the transition function indicate that the state should change.

The previous sections showed the basics of setting up a class structure and transition functions for asimple
finite state machine. In the next section we go on to implement these concepts into a full-featured finite state
machine example.
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9.3 Ant Example

The objective in this example of our finite state machine isto create afinite state machine simulation consisting
of two teams of Al ants. The purpose of the simulation is for the ants to collect food and return it to their home
position. The ants will have to follow certain obstacles and rules in the simulation. First, the ants will move
randomly in their environment in an attempt to locate a piece of food. Once an ant finds a piece of food, it will
return to its home position. When it arrives home, it will drop its food and then start a new search for water
rather than food. The thirsty ants will roam randomly in search of water. Once an ant finds water, it will resume
its search for more food.

Returning food to the home position also will result in a new ant emerging from the home position. The ant
population will continue to grow so long as more food is returned to the home position. Of course, the ants will

encounter obstacles along the way. In addition to the randomly placed food will be randomly placed poison.
Naturally, the poison has afatal effect on the ants.

Figure 9-3 presents a finite state diagram that illustrates the behavior of each ant in the ssimulation.

Figure 9-3. Ant finite state machine diagram
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As Figure 9-3 shows, each ant beginsin theinitial forage state. From that point, the state can change in only two
ways. The state can change to go home with the found food transition function, or it can encounter the found
poison transition, which kills the ant. Once food is found, the state changes to go home. Once again, there are
only two ways out of this state. One is to meet the objective and find the home position. Thisisillustrated by the
found home transition arrow. The other possible transition is to find poison. Once the home position is found,
the state changes to thirsty. Like the previous states, there are two ways to change states. One is to meet the goal
by finding water, and the other isto find poison. If the goal is met, the ant returnsto theinitial forage state.

Asyou can see, the antswill be in one of several different states as they attempt to perform their tasks. Each
state represents a different desired behavior. So, we will now use the previously described rules for our
simulation to define the possible states for the Al ants. Thisis demonstrated in Example 9-6.

Example 9-6. Ant states

#defi ne kFor age
#def i ne kGoHone
#defi ne KThirsty
#def i ne kDead

A W DN P

Thefirst rule for the ssimulation is that the ants forage randomly for food. This is defined by the kForage state.
Any ant in the kForage state moves randomly about its environment in search of food. Once an ant finds a piece
of food, it changes to the kGoHome state. In this state, the ant returns to its home position. It no longer forages
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when in the kGoHome state. It ignores any food it finds while returning home. If the ant successfully returnsto
its home position without encountering any poison, it changesto the kThirsty state. This state is similar to the
forage state, but instead of searching for food the ant searches for water. Once it finds water, the ant changes
from the KThirsty state back to the kForage state. At that point the behavior repeats.

9.2.3 Finite State Machine Classes and Structures
Now that we have described and illustrated the basic goal of the finite state machine in our ant simulation, let's
move on to the data structure that we will use. As shown in Example 9-7, we'll use a C++ classto store all the

data related to each finite state machine ant.

Example 9-7. ai_Entity class

#defi ne kMaxEntities 200
cl ass ai_Entity
{
public:
i nt type;
i nt st at e;
i nt r ow,
i nt col ;
ai _Entity();
~al _Entity();
3
ai_Entity entityList[ kMaxEntities];

As Example 9-7 shows, we start with a C++ class containing four variables. The first variable is type, whichis
the type of Al entity the structure represents.

If you remember from the previous description, the ant simulation consists of two teams of ants. We will
differentiate between them by using the constants in Example 9-8.

Example 9-8. Team constants

#def i ne kRedAnt 1
#def i ne kBl ackAnt 2
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The second variable in ai_Entity is state. This variable stores the current state of the ant. This can be any of the
values defined in Example 9-6; namely, kForage, kGoHome, kThirsty, and kDead.

The final two variables are row and col. The ant ssimulation takes place in atiled environment. The row and col
variables contain the positions of the ants within the tiled world.

As Example 9-7 goes on to show, we create an array to store each ant's data. Each element in the array
represents a different ant. The maximum number of ants in the simulation is limited by the constant, which also
Isdefined in Example 9-7.

9.2.4 Defining the Simulation World

Aswe stated previously, the simulation takes place in atiled environment. The world is represented by atwo-
dimensional array of integers. Example 9-9 shows the constant and array declarations.

Example 9-9. Terrain array

#def i ne k Max Rows 32
#def i ne kMaxCol s 42
i nt terrai n[ kMaxRows] [ kMaxCol s] ;

Each element in the terrain array stores the value of atilein the environment. The size of the world is defined by
the kMaxRows and kMaxCols constants. A real tile-based game most likely would contain alarge number of
possible values for each tile. In this simulation, however, we are using only six possible values. Example 9-10
shows the constants.

Example 9-10. Terrain values

#def i ne kG ound
#def i ne kWat er
#defi ne kBl ackHone
#defi ne kRedHone
#defi ne kPoi son
#defi ne kFood

o O~ WODN P

The default value in the tile environment is kGround. Y ou can think of this as nothing more than an empty
location. The next constant, kWater, is the element the ants search for when in the KThirsty state. The next two
constants are kBlackhome and kRedHome. These are the home |locations the ants seek out when in the kGoHome
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state. Stepping on atile containing the kPoison element kills the ants, changing their states to kDead. The final
constant is kFood. When an ant in the kForage state steps on aterrain element containing the kFood element, it
changes states from kForage to kGoHome.

Once the variables and constants are declared, we can proceed to initialize the world using the code shown in
Example 9-11.

Example 9-11. Initializing the world

#def i ne k RedHomeRow 5
#def i ne kRedHomeCol 5
#def i ne kBl ackHomeRow 5
#def i ne kBl ackHoneCol 36

for (i=0;i<kMaxRows;i ++)
for (j=0;j<kMaxCol s;| ++)
{
terrain[i][j]=kG ound,
}
t errai n[ kRedHoneRow] [ kRedHoneCol | =kRedHon®;
t errai n[ kBl ackHoneRow] [ kBl ackHoneCol | =kBI ackHone;

for (i=0;i<kMaxWater;i ++)

terrai n[ Rnd( 2, kMaxRows) - 3] [ Rnd( 1, kMaxCol s) - 1] =kWat er ;
for (i=0;i<kMaxPoi son;i ++)

terrai n[ Rnd( 2, kMaxRows) - 3] [ Rnd( 1, kMaxCol s) - 1] =kPoi son;
for (i=0;i<kMaxFood;i ++)

terrai n[ Rnd( 2, kMaxRows) - 3] [ Rnd( 1, kMaxCol s) - 1] =kFood;

Example 9-11 starts by initializing the entire two-dimensional world array to the value in kGround. Remember,
thisis the default value. We then initialize the two home locations. The actual positions are defined in the
constants kRedHomeRow, kRedHomeCol, kBlackHomeRow, and kBlackHomeCol. These are the positions the
ants move toward when in the kGoHome state. Each ant moves to its respective color.

The final section of Example 9-11 shows three for loops that randomly place the kWater, kPoison, and kFood
tiles. The number of each type of tile is defined by its respective constant. Of course, altering these values

changes the behavior of the simulation.

Figure 9-4 shows the result of initializing the tiled world. We haven't populated the world yet with any finite
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state machine ants, but we do have the randomly placed food, water, and poison.

Figure 9-4. Ant world

Now that we've initialized the variables associated with the tile, the next step is to begin populating the world
with Al ants.

9.2.5 Populating the World

The first thing we need is some means of creating a new Al entity. To accomplish this, we are going to add a
new function to the ai_Entity class. Example 9-12 shows the addition to the ai_Entity class.

Example 9-12. ai_Entity class

cl ass ai_Entity
{
public:
i nt type;

http://ebooks.servegame.com/oreaiforgamdev475b/ch09_sectl 003.htm (6 of 20)7/23/05 6:09:50 PM



Al for Game Developers

i nt st at e;
i nt r ow,

i nt col ;
ai _Entity();
~al_Entity();

void New (int theType, int theState, int theRow, int theCol);

The New function is called whenever it is necessary to add a new ant to the world. At the beginning of the
simulation we add only two of each color ant to the world. However, we call this function again whenever an
ant successfully returns food to the home position. Example 9-13 shows how the actual function is defined.

Example 9-13. New ai_Entity

void ai _Entity::New(int theType, int theState, int theRow, int theCol)
{

t ype=t heType;
r ow=t heRow;,
col =t heCol ;

st at e=t heSt at e;

The New function israther simple. It initializes the four valuesin ai_Entity. These include the entity type, state,
row, and column. Now let'slook at Example 9-14 to see how the New function adds ants to the finite state
machine simulation.

Example 9-14. Adding ants

entityList[0].New kRedAnt, kFor age, 5, 5) ;
entityList[1].New( kRedAnt, kFor age, 8, 5) ;

entityList[2].New(kBl ackAnt, kFor age, 5, 36) ;
entityList[3].New( kBl ackAnt, kFor age, 8, 36) ;
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As Example 9-14 shows, the simulation begins by adding four ants to the world. The first parameter passed to
the New function specifies the entity type. In this simulation, we start with two red ants and two black ants. The
second parameter isthe initia state of the finite state machine ants. The final two parameters are the row and
column positions of the starting point of each ant.

As Figure 9-5 shows, we added four ants to the simulation using the New function.

Figure 9-5. Populating the world

Each ant shown in Figure 9-5 begins with itsinitial state set to kForage. From their initial starting positions they
will begin randomly moving about the tiled environment in search of food. In this case, the food is shown as
apples. However, if they step on poison, shown as a skull and crossbones, they switch to the kDead state. The
sguares containing the water pattern are the elements they search for when they are in the kThirsty state.

9.2.6 Updating the World

In the previous section we successfully populated the world with four finite state machine ants. Now we will
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show you how to run the ssmulation. Thisisacritical part of the finite state machine implementation. If you
recall, the basic premise of the finite state machineisto link individual and unique states to different types of
behavior. Thisisthe part of the code where we actually make each ant behave a certain way depending on its
state. This part of the code lends itself to the use of a switch statement, which checks for each possible state. In a
real game, this switch statement typically would be called once each time through the main loop. Example 9-15
shows how to use the switch statement.

Example 9-15. Running the simulation

for (i=0;i<kMaxEntities;i++)
{
switch (entityList[i].state)
{

case kForage:
entityList[i].Forage();
br eak;

case kGoHone
entityList[i].GoHone();
br eak;

case kThirsty:
entityList[i].Thirsty();
br eak;

case kDead:
entityList[i].Dead();
br eak;

As Example 9-15 shows, we create aloop that iterates through each element in the entityList array. Each
entityList element contains a different finite state machine ant. We use a switch statement to check the state of
each ant in entityList. Notice that we have a case statement for each possible state. We then link each state to the
desired behavior by calling the appropriate function for each behavior. Asyou can seein Example 9-16, we
need to add four new functionsto the ai_Entity class.

Example 9-16. ai_Entity class functions

cl ass ai_Entity

{
public:
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i nt type;
i nt state;
i nt row,

i nt col ;
ai_Entity();

~ai _Entity();

void New (int theType, int theState, int theRow, int theCol);
voi d Forage(void);

voi d GoHone(void);

void Thirsty(void);

voi d Dead(void);

Example 9-16 shows the updated ai_Entity class with the four new behavior functions. Each function is
associated with one of the state behaviors.

9.2.1 Forage

Thefirst new function, Forage, is associated with the kForage state. If you recall, in this state the ants randomly
move about the world in search of food. Once in the forage state, the ants can switch to a different state in only
two ways. Thefirst way isto meet the objective by randomly finding a piece of food. In this case, the state
switches to kGoHome. The other way for the ants to switch states is by stepping on poison. In this case, the state
switches to kDead. This behavior isimplemented in the Forage function, as shown in Example 9-17.

Example 9-17. Forage function

void ai _Entity:: Forage(void)
{

i nt rowwbve;

i nt col Move;

i nt newRow,

i nt newCol ;

i nt foodRow;

i nt foodCol;

i nt poi sonRow,

i nt poi sonCol ;

r owvbve=Rnd( 0, 2) - 1;
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col Move=Rnd(0, 2) - 1,

newRow=r ow+r owVbve;

newCol =col +col Move;

i f (newRow<l) return;

i f (newCol <1) return;

i f (newRow>=kMaxRows-1) return;

i f (newCol >=kMaxCol s-1) return;

if ((terrain[ newRow] [ newCol ] ==kG ound) | |
(terrai n[ newRow] [ newCol ] ==kWat er))

{
r onw=newRow,
col =newCol ;
}
if (terrain[newRow [ newCol ] ==kFood)
{
r ow=newRow,
col =newCol ;
terrain[row [ col ] =kG ound,;
st at e=kGoHone;
do {
f oodRow=Rnd( 2, kMaxRows) - 3;
f oodCol =Rnd( 2, kMaxCaol s) - 3;
} while (terrain[foodRow [foodCol]!=kG ound);
terrain[ foodRow [ f oodCol ] =kFood,;
}
if (terrain[newRow] [ newCol | ==kPoi son)
{
r ow=newRow,
col =newCol ;
terrain[row [ col ] =kG ound,;
st at e=kDead;
do {
poi sonRow=Rnd( 2, kMaxRows) - 3;
poi sonCol =Rnd( 2, kMaxCol s) - 3;
} while (terrain[poi sonRow [ poi sonCol ]! =kG ound);
terrai n[ poi sonRowj [ poi sonCol ] =kPoi son;
}
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contain the distances to move in both the row and column directions. The next two variables are newRow and
newCol. These two variables contain the new row and column positions of the ant. The final four variables,
foodRow, foodCol, poisonRow, and poisonCol, are the new positions used to replace any food or poison that
might get consumed.

We then proceed to calculate the new position. We begin by assigning a random number between -1 and +1 to
the rowMove and colMove variables. This ensures that the ant can move in any of the eight possible directions
in the tiled environment. It's also possible that both values will be 0, in which case the ant will remainin its
current position.

Once we have assigned rowMove and colMove, we proceed to add their values to the current row and column
positions and store the result in newRow and newCol. Thiswill be the new ant position, assuming, of course, it's
alegal position in the tiled environment. In fact, the next block of if statements checks to seeif the new position
iswithin the legal bounds of thetiled environment. If it'snot alegal position, we exit the function.

Now that we know the position islegal, we go on to determine what the ant will be standing on in its new
position. Thefirst if statement simply checks for kGround or kWater at the new position. Neither of these two
elements will cause a change in state, so we simply update the ant row and col with the values in newRow and
newCol. The ant is shown in its new position after the next screen update.

The next section shows a critical part of the finite state machine design. Thisif statement checksto seeif the
new position contains food. This section is critical because it contains a possible state transition. If the new
position does contain food, we update the ant's position, erase the food, and change the state of the ant. In this
case, we are changing from kForage to kGoHome. The final do-while loop in thisif statement replaces the
consumed food with another randomly placed piece of food. If we don't continuously replace the consumed
food, the ant population won't be able to grow.

The final part of the Forage function shows another possible state transition. The last if statement checks to see
If the new position contains poison. If it does contain poison, the ant's position is updated, the poison is deleted,
and the ant's state is changed from kForage to kDead. We then use the do-while loop to replenish the consumed
ppoi son.

9.2.2 GoHome

We are now going to move on to the second new behavior function that we added to the ai_Entity classin
Example 9-16. Thisone is called GoHome and it's associated with the kGoHome state. As we stated previously,
the ants switch to the kGoHome state once they randomly find a piece of food. They remain in this state until
they either successfully return to their home position or step on poison. Example 9-18 shows the GoHome
function.
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Example 9-18. GoHome function

void ai _Entity:: GoHone(voi d)
{

i nt r owbve;

i nt col Move;

i nt newRow;

i nt newCol ;
i nt honeRow,
i nt horeCol ;
i nt i ndex;

i nt poi sonRow,
i nt poi sonCaol ;
if (type==kRedAnt)

{
honeRow=k RedHoneRow;
homeCol =kRedHoneCol ;
}
el se
{
hormeRow=kBI ackHomeRow,
homeCol =kBl ackHonmeCol ;
}
i f (row<honmeRow)
rowbve=1;
el se if (rowshonmeRow)
rowlbve=-1;
el se
r owivbve=0,;
i f (col <honeCol)
col Move=1,
else if (col >honeCol)
col Move=-1;
el se
col Move=0;

newRow=r ow+r owVbve;
newCol =col +col Mve,;
if (newRow<l) return;
i f (newCol <1) return;
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i f (newRow>=kMaxRows-1) return;

i f (newCol >=kMaxCol s-1) return;
if (terrain[newRow [ newCol ]! =kPoi son)

{
r onv=newRow,
col =newCol ;
}
el se
{
r ow=newRow,
col =newCol ;
terrain[row [ col ] =kG ound,;
st at e=kDead;
do {
poi sonRow=Rnd( 2, kMaxRows) - 3;
poi sonCol =Rnd( 2, kMaxCol s) - 3;
} while (terrain[poi sonRow [ poi sonCol ]! =kG ound) ;
terrai n[ poi sonRowj [ poi sonCol ] =kPoi son;
}
i f ((newRow==honeRow) && (newCol ==honeCol))
{
r onv=newRow,
col =newCol ;
st at e=kThi rsty;
for (index=0; index <kMaxEntities; index ++)
if (entityList[index].type==0)
{
entityList[index].New(type,
kFor age,
honeRow,
honmeCol ) ;
br eak;
}
}

The variable declarations in the GoHome function are very similar to those in the Forage function. In this
function, however, we added two new variables, homeRow and homeCol. We will use these two variables to
determineif the ant has successfully reached its home position. The variable index is used when adding a new
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ant to the world. The remaining two variables, poisonRow and poisonCol, are used to replace any poison that
might be consumed.

We start by determining where the home position is located. If you recall, there are two types of ants, red ants
and black ants. Each color has a different home position. The positions of each home are set in the globally
defined constants kRedHomeRow, kRedHomeCol, kBlackHomeRow, and kBlackHomeCol. We check the entity
type to determine if it'sared ant or a black ant. We then use the global home position constants to set the local
homeRow and homeCaol variables. Now that we know where the home is located, we can move the ant toward
that position.

Asyou might recall, thisis avariation of the simple chasing algorithm from Chapter 2. If the ant's current row is
less than the home row, the row offset, rowMove, is set to 1. If the ant'srow is greater than the home row,
rowMoveis set to -1. If they are equal, there is no need to change the ant's row, so rowMove is set to 0. The
column positions are handled the same way. If the ant's column is less than the home column, colMove is set to
1. If it'sgreater, it'sset to -1. If col isequal to homeCol, colMoveis set to 0.

Once we have the row and column offsets, we can proceed to calculate the new row and column positions. We
determine the new row position by adding rowMove to the current row position. We determine the new column
position by adding colMove to the current column position.

Once we assign the values to newRow and newCol, we check to seeif the new position is within the bounds of
the tiled environment. It's good practice to always do this, but in this case, it's really not necessary. This function
aways moves the ants toward their home position, which always should be within the confines of the tiled
world. So, the ants always will be confined to the limits of the world unless the global home position constants
are changed to something outside the limits of the world.

Thefirst part of the if statement checks to see if the ant did not step on poison. If the new position does not
contain poison, the ant's position is updated. If the else portion of the if statement gets executed, we know the
ant has, in fact, stepped on poison. In this case, a state change is requiredthe ant's position is updated, the poison
is deleted, and the ant's state is changed from kGoHome to kDead. We then use the do-while loop to replace the
consumed poison.

Thefinal if statement in the GoHome function checksto see if the goal was achieved. It uses the values we
assigned to homeRow and homeCaol to determine if the new position is equal to the home position. If so, the ant's
position is updated and the state is switched from kGoHome to kKThirsty. Thiswill make the ant assume a new
behavior the next time the UpdateWor|d function is executed. The final part of the if statement is used to
generate anew ant. If you recall, whenever food is successfully returned to the home position, anew ant is
spawned. We use afor loop to traverse the entityList and check for the first unused element in the array. If an
unused array element is found, we create a new ant at the home position and initialize it to the kForage state.

9.2.3 Thirsty
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The next behavior function we added to the ai_Entity classin Example 9-16 is associated with the KThirsty state.
Asyou recall, the ants are switched to the kThirsty state after successfully returning food to their home
positions. In this state, the ants randomly move about the world in search of water. Unlike the kFForage state,
however, the ants don't return to the home position after meeting their goal. Instead, when the ants find water,
the state switches from kThirsty back to kForage. As with the previous states, stepping on poison automatically
changes the state to kDead.

The third new behavior function we added to the ai_Entity classis called Thirsty, and as the name implies, it's
executed when the ants are in the kThirsty state. As we stated previoudly, the ants switch to the kThirsty state
after successfully returning food to their home positions. They remain in the kThirsty state until they find water
or until they step on poison. If they find water, they revert to their initial kForage state. If they step on poison,
they switch to the kDead state. Example 9-19 shows the Thirsty function.

Example 9-19. Thirsty function

void ai _Entity:: Thirsty(void)
{

i nt r owlbve;

i nt col Move;

i nt newRow,

i nt newCol ;
i nt f oodRow;,
i nt f oodCol ;

i nt poi sonRow;
i nt poi sonCaol ;
rowmvbve=Rnd( 0, 2) - 1;
col Move=Rnd(0, 2) -1;
newRow=r ow+r owvbve,
newCol =col +col Move;
i f (newRow<l) return;
if (newCol <1) return;
i f (newRow>=kMaxRows-1) return;
i f (newCol >=kMaxCol s-1) return;
if ((terrain[newRow [ newCol ] ==kGround) ||
(terrai n[ newRow] [ newCol ] ==kFood))
{
r on=newRow,
col =newCol ;
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if (terrain[newRow [ newCol ] ==kWat er)
{
r on=newRow,
col =newCol ;
terrain[row [ col ] =kG ound,;
st at e=kFor age;
do {
f oodRow=Rnd( 2, kMaxRows) - 3;
f oodCol =Rnd( 2, kMaxCol s) - 3;
} while (terrain[foodRow [ foodCol]!=kG ound);
terrain[ f oodRow] [ f oodCol | =kWat er ;

}
if (terrain[newRow] [ newCol ] ==kPoi son)
{
r ow=newRow,
col =newCol ;
terrain[row [ col ] =kG ound,;
st at e=kDead;
do {
poi sonRow=Rnd( 2, kMaxRows) - 3;
poi sonCol =Rnd( 2, kMaxCol s) - 3;
} while (terrain[poi sonRow [ poi sonCol ]! =kG ound);
terrai n[ poi sonRow] [ poi sonCol ] =kPoi son;
}

Asyou can see in Example 9-19, the Thirsty function begins much like the Forage function. We declare two
position offset variables, rowMove and colMove, and two variables for the new ant position, newRow and
newCol. The remaining variables, foodRow, foodCol, poisonRow, and poisonCol, are used when replacing
consumed food and poison.

We then calculate a random offset for both the row and column positions. Both the rowMove and colMove
variables contain arandom value between -1 and + 1. We add these random values to the current positions to get
the new position. The new position is stored in newRow and newCol. The block of if statements determines if
the new position is within the bounds of the world. If it's not, we immediately exit the function.

Thisif statement checks to see if the new position is an empty tile or atile containing food. In other words, it
doesn't contain either of the two elements that would cause a change in state.
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The next if statement checksto seeif the new position contains water. If it does contain water, the ant's position
Is updated, the water is deleted, and the ant's state is changed back to theinitial kForage state. The do-while
loop then randomly places more water.

Asin the previous behavior function, the final if statement in the Thirsty function checks to seeif the ant
stepped on poison. If so, the ant's position is updated, the poison is deleted, and the ant's state is changed to
kDead. Once again, the do-while loop is used to replace the consumed poison.

9.2.4 The Results

This completes all four functions associated with the kForage, kThirsty, kGoHome, and kDead states. Y ou can
observe the different behaviors and how the finite state machine ants transition from one state to another by
running the simulation.

Asyou can see in Figure 9-6, even though we started with only four ants in the simulation, it doesn't take long
for them to overrun the world. In fact, it's interesting to watch how quickly they begin multiplying with the

given amount of food, water, and poison.

Figure 9-6. Population explosion
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It's al so interesting to watch how you can affect the population growth, or decline, by simply altering the values
shown in Example 9-20.

Example 9-20. Food, water, and poison regulation

#defi ne kMaxWat er 15
#defi ne kMaxPoi son 8
#define kMaxFood 20

As Example 9-20 shows, altering the simulation is as simple as modifying afew global constants. For example,
decreasing the poison level too much causes arapid population explosion, while lowering the food supply slows
the population growth, but doesn't necessarily cause it to decrease. By adjusting these values, along with the

possibility of adding more states and, therefore, more types of behavior, you can make the simulation even more
complex and interesting to watch.
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9.4 Further Information

Finite state machines are ubiquitous in games. It's no surprise that virtually every game development book covers

them to some degree. Further, the Internet is full of resources covering finite state machines. Here are just a few

Internet resources that discuss finite state machines:

. http://www.gamasutra.com

. http://www.gameai.com

. http://www.generation5.org

. http://www.aboutai.net

If you perform an Internet search using the keywords "finite state machine,"” you're sure to find a few hundred
more resources. Also, try performing a search using the keywords "fuzzy state machine." Fuzzy state machines are

a popular variant of finite state machines that incorporate probability in state transitions. We cover probability in

Chapter 12.
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Chapter 10. Fuzzy Logic

In 1965 Lotfi Zadeh, a professor at the University of California Berkeley, wrote his original paper laying out
fuzzy set theory. We find no better way of explaining what fuzzy logic is than by quoting the father of fuzzy
logic himself. In a 1994 interview of Zadeh conducted by Jack Woehr of Dr. Dobbs Journal, Woehr
paraphrases Zadeh when he says "fuzzy logic is a means of presenting problems to computersin away akin to
the way humans solve them." Zadeh later goes on to say that "the essence of fuzzy logic is that everythingisa
matter of degree." We'll now elaborate on these two fundamental principles of fuzzy logic.

What does the statement " problems are presented to computersin away similar to how humans solve them"
really mean? The idea hereis that humans very often analyze situations, or solve problems, in arather imprecise
manner. We might not have al the facts, the facts might be uncertain, or perhaps we can only generalize the
facts without the benefit of precise data or measurements.

For example, say you're playing afriendly game of basketball with your buddies. When sizing up an opponent
on the court to decide whether you or someone el se should guard him, you might base your decision on the
opponent's height and dexterity. Y ou might decide the opponent istall and quick, and therefore, you'd be better
off guarding someone else. Or perhaps you'd say heisvery tall but somewhat slow, so you might do fine against
him. Y ou normally wouldn't say to yourself something such as, "He's 6 feet 5.5 inches tall and can run the
length of the court in 5.7 seconds.”

Fuzzy logic enables you to pose and solve problems using linguistic terms similar to what you might use; in
theory you could have the computer, using fuzzy logic, tell you whether to guard a particular opponent given
that heisvery tall and slow, and so on. Although thisis not necessarily a practical application of fuzzy logic, it
doesillustrate a key pointfuzzy logic enables you to think as you normally do while using very precise tools
such as computers.

The second principle, that everything is a matter of degree, can be illustrated using the same basketball
opponent example. When you say the opponent istall versus average or very tall, you don't necessarily have
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fixed boundariesin mind for such distinctions or categories. Y ou can pretty much judge that the guy istall or
very tall without having to say to yourself that if he is more than 7 feet, he's very tall, whereasif heislessthan 7
feet, he'stall. What about if heis 6 feet 11.5 inchestall? Certainly you'd still consider that to be very tall, though
not to the same degree asif he were 7 feet 4 inches. The border defining your view of tall versusvery tal is
rather gray and has some overlap.

Traditional Boolean logic forces us to define a point above which we'd consider the guy very tall and below
which we'd consider the guy just tall. We'd be forced to say heis either very tall or not very tall. You can
circumvent this true or false/on or off characteristic of traditional Boolean logic using fuzzy logic. Fuzzy logic
allows gray areas, or degrees, of being very tal, for example.

In fact, you can think of everything in terms of fuzzy logic as being true, but to varying degrees. If we say that
something istrue to degree 1 in fuzzy logic, it is absolutely true. A truth to degree O is an absolute false. So, in
fuzzy logic we can have something that is either absolutely true, or absolutely false, or anything in
betweensomething with a degree between 0 and 1. We'll look at the mechanisms that enable us to quantify
degrees of truth alittle later.

Another aspect of the ability to have varying degrees of truth in fuzzy logic isthat in control applications, for
example, responses to fuzzy input are smooth. Using traditional Boolean logic forces usto switch response
states to some given input in an abrupt manner. To alleviate very abrupt state transitions, we'd have to discretize
the input into a larger number of sufficiently small ranges. We can avoid these problems using fuzzy logic
because the response will vary smoothly given the degree of truth, or strength, of the input condition.

Let's consider an example. A standard home central air conditioner is equipped with athermostat, which the
homeowner sets to a specific temperature. Given the thermostat's design, it will turn on when the temperature
rises higher than the thermostat setting and cut off when the temperature reaches or falls lower than the
thermostat setting. Where we're from in Southern Louisiana, our air conditioner units constantly are switching
on and off as the temperature rises and falls due to the warming of the summer sun and subsequent cooling by
the air conditioner. Such switching is hard on the air conditioner and often results in significant wear and tear on
the unit.

One can envision in this scenario afuzzy thermostat that modulates the cooling fan so as to keep the
temperature about ideal. Asthe temperature rises the fan speeds up, and as the temperature drops the fan slows
down, all the while maintaining some equilibrium temperature right around our prescribed ideal. This would be
done without the unit having to switch on and off constantly. Indeed, such systems do exist, and they represent
one of the early applications of fuzzy control. Other applications that have benefited from fuzzy control include
train and subway control and robot control, to name afew.

Fuzzy logic applications are not limited to control systems. Y ou can use fuzzy logic for decision-making
applications as well. One typical example includes stock portfolio analysis or management, whereby one can
use fuzzy logic to make buy or sell decisions. Pretty much any problem that involves decision making based on
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subjective, imprecise, or vague information is a candidate for fuzzy logic.

Traditional logic practitioners argue that you also can solve these problems using traditional rules-based
approaches and logic. That might be true; however, fuzzy logic affords us the use of intuitive linguistic terms
such as near, far, very far, and so on, when setting up the problem, developing rules, and assessing output. This
usually makes the system more readable and easier to understand and maintain. Further, Timothy Masters, in his
book Practical Neural Network Recipesin C++, (Morgan Kauffman) reports that fuzzy-rules systems generally
require 50% to 80% fewer rules than traditional rules systems to accomplish identical tasks. These benefits
make fuzzy logic well worth taking alook at for game Al that istypicaly replete with if-then style rules and
Boolean logic. With this motivation, let's consider afew illustrative examples of how we can use fuzzy logic in
games.
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10.1 How Can You Use Fuzzy Logic in Games?

Y ou can use fuzzy logic in games in avariety of ways. For example, you can use fuzzy logic to control bots or
other nonplayer character units. You also can use it for assessing threats posed by players. Further, you can use
fuzzy logic to classify both player and nonplayer characters. These are only afew specific examples, but they
illustrate how you can use fuzzy logic in distinctly different scenarios. Let's consider each examplein alittle
more detail.

10.2.1 Control

Fuzzy logic is used in awide variety of real-world control applications such as controlling trains, air
conditioning and heating systems, and robots, among other applications. Video games also offer many
opportunities for fuzzy control. Y ou can use fuzzy control to navigate game unitsland vehicles, aircraft, foot
units, and so onsmoothly through waypoints and around obstacles. Y ou also can accomplish as well asimprove
upon basic chasing and evading using fuzzy control.

Let's say you have a unit that is traveling along some given heading, but it needsto travel toward some specific
target that might be static or on the move. Thistarget could be awaypoint, an enemy unit, some treasure, a
home base, or anything else you can imagine in your game. We can solve this problem using deterministic
methods similar to those we've already discussed in this book; however, recall that in some cases we had to
manually modulate steering forces to achieve smooth turns. If we didn't modul ate the steering forces, the units
abruptly would change heading and their motion would appear unnatural. Fuzzy logic enables you to achieve
smooth motion without manually modulating steering forces. Y ou also can gain other improvements using fuzzy
logic. For example, recall the problem with basic chasing whereby the unit always ended up following directly
behind the target moving aong one coordinate axis only. Earlier we solved this problem using other methods,
such as line-of-sight chasing, interception, or potential functions. Fuzzy logic, in this case, would yield results
similar to interception. Basically, we'd tell our fuzzy controller that our intended target is to the far left, or to the
left, or straight ahead, or to the right, and so on, and let it calculate the proper steering force to apply to facilitate
heading toward the target in a smooth manner.
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10.2.2 Threat Assessment

Let's consider another potential application of fuzzy logic in games; one that involves a decision rather than
direct motion control.

Say in your battle simulation game the computer team often has to deploy units as defense against a potentially
threatening enemy force. We'll assume that the computer team has acquired specific knowledge of an opposing
force. For simplicity, we'll limit this knowledge to the enemy force's range from the computer team and the
force's size. Range can be specified in terms of near, close, far, and very far, while size can be specified in terms
of tiny, small, medium, large, or massive.

Given thisinformation, we can use afuzzy system to have the computer assess the threat posed by the enemy
force. For example, the threat could be considered as no threat, low threat, medium threat, or high threat, upon
determination of which the computer could decide on a suitable number of unitsto deploy in defense. This
fuzzy approach would enable us to do the following:

. Model the computer as having less-than-perfect knowledge
. Allow the size of the defensive force to vary smoothly and less predictably

10.2.3 Classification

Let's say you want to rank both player and nonplayer charactersin your game in terms of their combat prowess.
Y ou can base this rank on factors such as strength, weapon proficiency, number of hit points, and armor class,
among many other factors of your choosing. Ultimately, you want to combine these factors so asto yield a
ranking such as wimpy, easy, moderate, tough, formidable, etc. For example, a player with high hit points,
average armor class, high strength, and low weapons proficiency might get arank of moderate. Fuzzy logic
enables you to determine such arank. Further, you can use the fuzzy logic system to generate a numerical score
representing rank, or rating, which you can input to some other Al process for the game.

Of course, you can accomplish this classification by other means, such as Boolean rules, neural networks, and
others. However, afuzzy system enables you to do it in an intuitive manner with fewer rules and without the
need to train the system. Y ou still have to set up the fuzzy rules ahead of time, asin every fuzzy system;
however, you have to perform that process only once, and you have the linguistic constructs afforded by fuzzy
logic to help you. We'll come back to thislater.
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10.2 Fuzzy Logic Basics
Now that you have an idea of what fuzzy logic isall about and how you can use it in games, let's take a close

look at how fuzzy logic works and isimplemented. If the concept of fuzzy logic is still alittle, well, fuzzy to
you at this point, don't worry. The concepts will become much clearer as we go over the detailsin the next few

sections.
10.2.4 Overview

The fuzzy control or inference process comprises three basic steps. Figure 10-1 illustrates these steps.

Figure 10-1. Fuzzy process overview

Ruzzification:
Crisp INput ==e====-4= Fuzzy input

F\.E':'-_'!f r;,, ES amnzmma * :u:—::r- ﬂ'utl:l.. [

Defurzification seeee. g Crisp output

Thefirst part of the process is called the fuzzfication process. In this step, a mapping process converts crisp data
(real numbers) to fuzzy data. This mapping process involves finding the degree of membership of the crisp input
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in predefined fuzzy sets. For example, given a person's weight in pounds, we can find the degree to which the
person is underweight, overweight, or at an ideal weight.

Once you have expressed al the inputs to the system in terms of fuzzy set membership, you can combine them
using logical, fuzzy rules to determine the degree to which each rule is true. In other words, you can find the
strength of each rule or the degree of membership in an output, or action, fuzzy set. For example, given a
person’'s weight and activity level asinput variables, we can define rules that look something such as the
following:

. If overweight AND NOT active then frequent exercise
. If overweight AND active then moderate diet

These rules combine the fuzzy input variables using logical operators to yield a degree of membership, or
degree or truth, of the corresponding output action, which in this case is the recommendation to engagein
frequent exercise or go on amoderate diet.

Often, having afuzzy output such as frequent exercise is not enough. We might want to quantify the amount of
exercisefor example, three hours per week. This process of taking fuzzy output membership and producing a
corresponding crisp numerical output is called defuzzification. Let's consider each step in more detail.

10.2.5 Fuzzification

Input to afuzzy system can originate in the form of crisp numbers. These are real numbers quantifying the input
variablesfor example, a person weighs 185.3 pounds or a person is 6 feet 1 inch tall. In the fuzzification process
we want to map these crisp values to degrees of membership in qualitative fuzzy sets. For example, we might
map 185.3 pounds to slightly overweight and 6 feet 1 inch to tall. Y ou achieve this type of mapping using
membership functions, also called characteristic functions.

10.2.1 Membership Functions
Member ship functions map input variables to a degree of membership, in afuzzy set, between 0 and 1. If the
degree of membership in agiven setis 1, we can say the input for that set is absolutely true. If the degreeis 0,

we can say for that set the input is absolutely false. If the degree is somewhere between O and 1, itistrueto a
certain extentthat is, to a degree.

Before looking at fuzzy membership functions, let's consider the membership function for Boolean logic. Figure
10-2 illustrates such afunction.

Figure 10-2. Boolean logic membership function
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Here we see that input values lower than X, are mapped to false, while values higher than X, are mapped to true.
Thereis no in-between mapping. Going back to the weight example, if X5 equals 170 pounds, anyone weighing
more than 170 pounds is overweight and anyone weighing less than 170 pounds is not overweight. Even if a
person weighs 169.9 pounds, he still is considered not overweight. Fuzzy membership functions enable usto
transition gradually from false to true, or from not overweight to overweight in our example.

Y ou can use virtually any function as a membership function, and the shape usually is governed by desired
accuracy, the nature of the problem being considered, experience, and ease of implementation, among other
factors. With that said, a handful of commonly used membership functions have proven useful for awide
variety of applications. We'll discuss those common membership functionsin this chapter.

Consider the grade function illustrated in Figure 10-3.

Figure 10-3. Grade membership function

1.0

0.0

Here you can see the gradual transition from 0 to 1. The range of x-values for which this function appliesis

http://ebooks.servegame.com/oreaiforgamdev475b/ch10_sectl 002.htm (3 of 13)7/23/05 6:14:55 PM



Al for Game Developers

called its support. For values less than X, the degree of membership is O or absolutely false, while for values
greater than x4, the degreeis 1 or absolutely true. Between xg and x,, the degree of membership varies linearly.

Using the point-slope equation for a straight line, we can write the equation representing the grade membership
function asfollows:

( h:x < X
: X Xp
.r'.".." — ‘lJI s X o= X = .TE
vy — X X1 —Xp
[* \

Going back to the weight example, let's say this function represents the membership for overweight. Let X,
equal 175 and x4 equal 195. If a person weighs 170 pounds, he is overweight to a degree of Othat is, heis not
overweight. If he weighs 185 pounds, he is overweight to a degree of 0.5he's somewhat overweight.

Typicaly, we're interested in the degree to which an input variable falls within a number of qualitative sets. For
example, we might want to know the degree to which a person is overweight, underweight, or at an ideal

weight. In this case, we could set up a collection of sets, asillustrated in Figure 10-4.

Figure 10-4. Fuzzy sets

19 Underweight ideal Overweight

00
Welght
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Point-slope Equation for a Straight Line

The equation for a straight line passing through the points (Xg,yg) and (X1 y) is:

figs/ch10 _ueq02.jpg

where m is the slope of the line and is equal to:

figs/ch10 _ueq03.jpg

With this sort of collection, we can calculate a given input value's membership in each of the three
setsunderweight, ideal, and overweight. We might, for a given weight, find that a person is underweight to a
degree of 0, ideal to adegree of 0.75, and overweight to a degree of 0.15. We can infer in this case that the
person's weight is substantially idealthat is, to a degree of 75%.

The triangular membership function shown in Figure 10-4 is another common form of membership function.
Referring to Figure 10-5, you can write the equation for a triangular membership function as follows:

figs/ch10_ueq04.jpg

Figure 10-5. Triangular membership function

figs/ch10_fig05.jpg

Figure 10-4 aso shows a reverse-grade membership function for the underweight set. Referring to Figure 10-6,
you can write the equation for the reverse grade as follows:

figs/ch10_ueq05.jpg

Figure 10-6. Reverse grade membership function

figs/ch10_fig06.jpg

Another common membership function is the trapezoid function, as shown in Figure 10-7.

Figure 10-7. Trapezoid membership function
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figs/ch10_fig07.jpg

Y ou can write the trapezoid function as follows:

figs/ch10 _ueq06.jpg

Setting up collections of fuzzy sets for a given input variable, as shown in Figure 10-4, islargely a matter of
judgment and trial and error. It's not uncommon to tune the arrangement of set membership functions to achieve
desirable or optimum results. While tuning, you can try different shapes for each fuzzy set, or you can try using
more or fewer fuzzy sets. Some fuzzy logic practitioners recommend the use of seven fuzzy setsto fully define
the practical working range of any input variable. Figure 10-8 illustrates such an arrangement.

Figure 10-8. Seven fuzzy sets

figs/ch10_fig08.jpg

The seven fuzzy sets shown in Figure 10-8 are center, near right, right, far right, near left, left, and far |eft.
These categories can be anything, depending on your problem. For example, to represent the alignment of
player and nonplayer charactersin your role-playing game, you might have fuzzy sets such as neutral, neutral
good, good, chaotic good, neutral evil, evil, and chaotic evil.

Notice that each set in Figures 10-4 and 10-8 overlaps immediately adjacent sets. Thisisimportant for smooth
transitions. The generally accepted rule of thumb is that each set should overlap its neighbor by about 25%.

The membership functions we discussed so far are the most commonly used; however, other functions
sometimes are employed when higher accuracy or nonlinearity is required. For example, some applications use
Gaussian curves, while others use S-shaped curves. These are illustrated in Figure 10-9. For most applications
and games, the piecewise linear functions discussed here are sufficient.

Figure 10-9. Examples of other membership functions

figs/ch10_fig09.jpg

Example 10-1 shows how the various membership functions we've discussed might look in code.

Example 10-1. Fuzzy membership functions

doubl e FuzzyG ade(doubl e val ue, doubl e x0, double x1)
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{
doubl e result = 0;
doubl e x = val ue;
i f(x <= x0)
result = 0;
else if(x >= x1)
result = 1;
el se
result = (x/(x21-x0))-(x0/(x1-x0));
return result;
}

doubl e FuzzyReverseG ade(doubl e val ue, double x0, double x1)
{
double result = 0;
doubl e x = val ue;
i f(x <= x0)
result = 1;
el se if(x >= x1)
result = 0;
el se
result = (-x/(x1-x0))+(x1/(x1-x0));

return result;

}
doubl e FuzzyTri angl e(doubl e val ue, doubl e xO,
doubl e x1, double x2)
{
doubl e result = 0;
doubl e x = val ue;
i f(x <= x0)
result = 0;
else if(x == x1)
result = 1;
el se i f((x>x0) && (x<x1))
result = (x/(x1-x0))-(x0/(x1-x0));
el se
result = (-x/(x2-x1))+(x2/ (x2-x1));
return result,;
}
doubl e FuzzyTrapezoi d(doubl e val ue, doubl e x0, double x1,
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doubl e x2, doubl e x3)

double result = 0;
doubl e x = val ue;
i f(x <= x0)
result = 0O;
el se if((x>=x1) && (x<=x2))
result = 1;
el se i f((x>x0) && (x<x1))
result = (x/(x1-x0))-(x0/(x1-x0));
el se
result = (-x/(x3-x2))+(x3/(x3-x2));

return result;

To determine the membership of agiven input value in a particular set, you simply call one of the functionsin
Example 10-1, passing the value and parameters that define the shape of the function. For example,
FuzzyTrapezoid(value, x0, x1, X2, x3) determines the degree of membership of value in the set defined by x0, x1,
X2, x3 with a shape, as shown in Figure 10-7.

10.2.2 Hedges
Hedge functions are sometimes used to modify the degree of membership returned by a membership function.

The idea behind hedgesisto provide additional linguistic constructs that you can use in conjunction with other
logical operations. Two common hedges are VERY and NOT_VERY, which are defined as follows:

figs/ch10_ueq07.jpg

Here, Truth(A) isthe degree of membership of A in some fuzzy set. Hedges effectively change the shape of
membership functions. For example, these hedges applied to piecewise linear membership functions will result
in the linear portions of those membership functions becoming nonlinear.

Hedges are not required in fuzzy systems. Y ou can construct membership functionsto suit your needs without
the additional hedges. We mention them here for compl eteness, as they often appear in fuzzy logic literature.

10.2.6 Fuzzy Rules

After fuzzifying all input variables for a given problem, what we'd like to do next is construct a set of rules,
combining the input in some logical manner, to yield some output. In an if-then style rule such as if A then B,
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the"if A" part is called the antecedent, or the premise. The "then B" part is called the consequent, or conclusion.
We want to combine fuzzy input variablesin alogical manner to form the premise, which will yield afuzzy
conclusion. The conclusion effectively will be the degree of membership in some predefined output fuzzy set.

10.2.3 Fuzzy Axioms

If we're going to write logical rules given fuzzy input, we'll need away to apply the usual logical operators to
fuzzy input much like we would do for Boolean input. Specifically, we'd like to be able to handle conjunction
(logical AND), disunction (logical OR), and negation (logical NOT). For fuzzy variables, these logical operators
typically are defined as follows:

figs/ch10_ueq08.jpg

Here, again, Truth(A) means the degree of membership of A in some fuzzy set. Thiswill be area number
between 0 and 1. The same applies for Truth(B) aswell. Asyou can see, the logical OR operator is defined as
the maximum of the operands, the AND operator is defined as the minimum of the operands, and NOT is simply
1 minus the given degree of membership.

Let's consider an example. Given a person is overweight to a degree of 0.7 and tall to a degree of 0.3, the logical
operators defined earlier result in the following:

figs/ch10 _ueq09.jpg

In code, these logical operations are fairly trivial, as shown in Example 10-1.

Example 10-2. Fuzzy logical operator functions

doubl e FuzzyAND( doubl e A, double B) {
return M N(A, B);

}

doubl e FuzzyOR(doubl e A, double B) {
return MAX(A, B);

}

doubl e FuzzyNOT(double A) {
return 1.0 - A;

These are not the only definitions used for AND, OR, and NOT. Some specific applications use other
definitionsfor example, you can define AND as the product of two degrees of membership, and you can define
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OR as the probabilistic-OR, as follows:

figs/ch10 _ueql0.jpg

Some third-party fuzzy logic tools even facilitate user-defined logical operators, making the possibilities
endless. For most applications, however, the definitions presented here work well.

10.2.4 Rule Evaluation

In atraditional Boolean logic application, rules such asif A AND B then C evaluate to absolutely true or false 1
or 0. After reading the previous section, you can see that this clearly is not the case using fuzzy logic. A AND B
in fuzzy logic can evaluate to any number between 0 and 1, inclusive. This fact makes a fundamental difference
in how fuzzy rules are evaluated versus Boolean logic rules.

In atraditional Boolean system, each rule is evaluated in series until one evaluatesto true and it fires, so to
speakthat is, its conclusion is processed. In afuzzy rules system, al rules are evaluated in parallel. Each rule
alwaysfires; however, they fire to various degrees, or strengths. The result of the logical operationsin each
rule's premise yields the strength of the rule's conclusion. In other words, the strength of each rule represents the
degree of membership in the output fuzzy set.

Let's say you have avideo game and are using a fuzzy system to evaluate whether a creature should attack a
player. The input variables are range, creature health, and opponent ranking. The membership functions for each
variable might look something like those shown in Figure 10-10.

Figure 10-10. Input variable membership functions

figs/ch10_fig10.jpg

The output actions in this example can be flee, attack, or do nothing. We can write some rules that ook
something like the following:

figs/ch10_ueqll.jpg

Y ou can set up several more rules to handle more possibilities. In your game, all these rules would be evaluated
to yield a degree of membership for each output action. Given specific degrees for the input variables, you
might get outputs that look something like this:

figs/ch10 _ueql2.jpg
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In code, evaluation of these rules would look something like that shown in Example 10-1, where you can see a
distinct difference from traditional if-then style rules.

Example 10-3. Fuzzy rules

degreeAttack = M N(M N (degreeMel ee, degreeUninjured),
1.0 - degreeHard);
degreeDoNothing = MN ( (1.0 - degreeMel ee),
degr eeUni nj ur ed) ;
degreeFlee = MN (MN ((1.0 - degreeQut O Range),
(1.0 - degreeUninjured)),
(1.0 - degreeWnmp));

The output degrees represent the strength of each rule. The easiest way to interpret these outputsisto take the
action associated with the highest degree. In this example, the resulting action would be to flee.

In some cases, you might want to do more with the output than execute the action with the highest degree. For
example, in the threat assessment case we discussed earlier in this chapter, you might want to use the fuzzy
output to determine the number, a crisp number, of defensive unitsto deploy. To get a crisp number as an
output, you have to defuzzify the results from the fuzzy rules.

10.2.7 Defuzzification

Defuzzification is required when you want a crisp number as output from a fuzzy system. Aswe mentioned
earlier, each rule results in a degree of membership in some output fuzzy set. Let's go back to our previous
example. Say that instead of determining some finite actiondo nothing, flee, or attackyou also want to use the
output to determine the speed to which the creature should take action. For example, if the output actionisto
flee, does the creature walk away or run away, and how fast doesit go? To get a crisp number, we need to
aggregate the output strengths somehow and we need to define output membership functions.

For example, we might have output membership functions such as those shown in Figure 10-11.

Figure 10-11. Output fuzzy sets

figs/ch10_figll.jpg

With the numerical output we discussed aready0.2 degree attack, 0.4 degree do nothing, and 0.7 degree
fleewe'd end up with a composite membership function, as shown in Figure 10-12.
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Figure 10-12. Output membership function

figs/ch10_figl2.jpg

To arrive at such a composite membership function, each output set is truncated to the output degree of
membership for that set as determined by the strength of the rules. Then all output sets are combined using
disunction.

At this point, we still have only an output membership function and no single crisp number. We can arrive at a
crisp number from such an output fuzzy set in many ways. One of the more common methods involves finding
the geometric centroid of the area under the output fuzzy set and taking the corresponding horizontal axis
coordinate of that center as the crisp output. Thisyields a compromise between all the rulesthat is, the single
output number is aweighted average of all the output memberships.

To find the center of areafor such an output function, you have to integrate the area under the curve using
numerical techniques. Or you can consider it a polygon and use computational geometry methods to find the
center. There are other schemes aswell. In any case, finding the center of areais computationally expensive,
especially considering the large number of times such a calculation would be performed in a game. Fortunately,
there's an easier way that uses so-called singleton output membership functions.

A singleton output function is really just a spike and not a curve. It is essentially a predefuzzified output
function. For our example, we can assign speeds to each output action, such as -10 for flee, 1 for do nothing, and
10 for attack. Then, the resulting speed for flee, for example, would be the preset value of -10 times the degree
to which the output action flee istrue. In our example, we'd have -10 times 0.7, or -7 for the flee speed. (Here,
the negative sign simply indicates flee as opposed to attack.) Considering the aggregate of all outputs requires a
simple weighted average rather than a center of gravity calculation.

In general, let p be the degree to which an output set istrue and let x be the crisp result, singleton, associated
with the output set. The aggregate, defuzzified output would then be:

figs/ch10 _ueql3.jpg

In our example, we might have something such as:

figs/ch10_ueql4.jpg

Such an output when used to control the motion of the creature would result in the creature fleeing, but not
necessarily in earnest.

To reinforce all the concepts we've discussed so far, let's consider afew examplesin greater detail.
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10.3 Control Example

In the control example at the beginning of this chapter we wanted to use fuzzy control to steer a computer-
controlled unit toward some objective. This objective could be awaypoint, an enemy unit, and so on. To
achievethis, we'll set up several fuzzy sets that describe the relative heading between the computer-controlled
unit and its objective. The relative heading is simply the angle between the computer-controlled unit's velocity
vector and the vector connecting the positions of the computer-controlled unit and the objective. Using
techniques we've discussed in earlier examplesnamely, the chase and evade examplesyou can determine this
relative heading angle, which will be a scalar angle in degrees.

What we now aim to do is use that relative heading as input to afuzzy control system to determine the
appropriate amount of steering force to apply to guide the computer-controlled unit to the target. Thisisavery
simple example, asthereisonly one input variable and thus only one set of fuzzy membership functionsto

define. For this example, we set up the membership functions and fuzzy setsillustrated in Figure 10-13.

Figure 10-13. Relative heading fuzzy sets
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.

We have five fuzzy setsin this case. Reading from left to right, each set represents relative headings
gualitatively as Far Left, Left, Ahead, Right, and Far Right. The Far Left and Far Right membership functions
are grade functions, while the Left and Right functions are trapezoids. The Ahead function is atriangle. Given
any relative heading angle, you can use the C functions shown in Example 10-1 to cal culate membership in each
fuzzy set.

Let's say that at some given time in the game, the relative heading angle is found to be a positive 33 degrees.
Now we need to calculate the degree to which this relative heading falls within each of the five fuzzy sets.
Clearly, the degree will be O for all sets, with the exception of the Right and Far Right sets. However, we'll go
ahead and show code for all membership calculations for completeness. Example 10-1 shows the code.

Example 10-4. Relative heading membership calculations

nfFar Lef t FuzzyReverseGrade(33, -40, -30);
nmLef t = FuzzyTrapezoi d(33, -40, -25, -15, 0);

mAhead = FuzzyTriangl e(33, -10, 10);
nRi ght = FuzzyTrapezoi d(33, 0, 15, 25, 40);
nmFar Ri ght = FuzzyGrade(33, 30, 40);

In this example, the variables mFarLeft, mLeft, and so on, store the degree of membership of the relative
heading value of 33 degreesin each predefined fuzzy set. The results are summarized in Table 10-1.
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Table 10.1. Membership calculation results

Fuzzy Set Degree of Member ship
Far Left 0.0
Left 0.0
Ahead 0.0
Right 0.47
Far Right 0.3

Now, to use these resulting degrees of membership to control our unit, we're going to simply apply each degree
as acoefficient in a steering force calculation. Let's assume that the maximum left steering force is some
constant, FL, and the maximum right steering force is another constant, FR. Welll let FL - 100 pounds of force,
and FR = 100 pounds of force. Now we can calculate the total steering force to apply, as shown in Example 10-
1.

Example 10-5. Steering force calculation

Net Force= nfarLeft * FL + nLeft * FL + nRight * FR + nfFarR ght * FR;

The result of this calculation is 77 pounds of steering force. Notice that we didn't include mAhead in the
calculation. This means that any membership in Ahead does not require steering action. Technically, we could
have done away with the Ahead membership function; however, we put it in there for emphasis.

In a physics-based simulation such as the examples we saw earlier in this book, this steering force would get
applied to the unit for the cycle through the game loop within which the relative heading was calculated. The
action of the steering force would change the heading of the unit for the next cycle through the game loop and a
new relative heading would be calculated. This new relative heading would be processed in the same manner as
discussed here to yield a new steering force to apply. Eventually the resultant steering force would smoothly
decrease as the relative heading goes to 0. Or in fuzzy terms, as the degree of membership in the Ahead set goes
to 1.
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10.4 Threat Assessment Example

In the threat assessment example we discussed at the beginning of this chapter, we wanted to process two input
variables, enemy force and the size of force, to determine the level of threat posed by thisforce. Ultimately, we
want to determine the appropriate number for defensive units to deploy as protection against the threatening
force. This example requires us to set up several fuzzy rules and defuzzify the output to obtain a crisp number

for the number of defensive unitsto deploy. The first order of business, however, isto define fuzzy sets for the
two input variables. Figures 10-14 and 10-15 show what we've put together for this example.

Figure 10-14. Range fuzzy sets

L]

1] H ol i &l 10 1
e

Figure 10-15. Force size fuzzy sets
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Referring to Figure 10-14 and going from the left to the right, these three membership functions represent the
sets Close, Medium, and Far. The range can be specified in any units appropriate for your game. Let's assume
here that the range is specified in hexes.

Referring to Figure 10-15 and going from left to right, these membership functions represent the fuzzy sets Tiny,
Small, Moderate, and Large. With these fuzzy setsin hand, we're ready to perform some calculations.

L et's assume that during a given cycle through the game loop this fuzzy system is called upon to assess the
threat posed by an enemy force eight units strong at arange of 25 hexes. So, now we need to fuzzify these crisp
Input values, determining the degree to which these variables fall within each predefined fuzzy set. Example 10-
1 shows the code for this step.

Example 10-6. Fuzzification of range and force size variables

nCl ose FuzzyTri angl e(25, -30, 0, 30);
mvedi um FuzzyTrapezoi d(25, 10, 30, 50, 70);
nmFar = FuzzyG ade(25, 50, 70);

niri ny = FuzzyTriangl e(8, -10, 0, 10);

mSmal | = FuzzyTrapezoid(8, 2.5, 10, 15, 20);
mvbder at e = FuzzyTrapezoi d(8, 15, 20, 25, 30);
mLar ge = FuzzyGrade(8, 25, 30);

The results for this example are summarized in Table 10-2.

Table 10.2. Summary of fuzzification results

Fuzzy Set Degree of Member ship
Close 0.17
Medium 0.75
Far 0.0
Tiny 0.2
Small 0.73
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Moderate 0.0
Large 0.0

Before we consider any rules, let's address output actions. In this case, we want the fuzzy output to be an
indication of the threat level posed by the approaching force. We'll use singleton output functionsin this
example, and the output, or action, fuzzy sets Low, Medium, and High for the threat level. Let's define the
singleton output values for each set to be 10 units, 30 units, and 50 units to deploy for Low, Medium, and High,
respectively.

Now we can address the rules. The easiest way to visualize the rulesin this case is through the use of atable,
such as Table 10-3.

Table 10.3. Rule matrix

Close Medium Far
Tiny Medium Low Low
Small High Low Low
Moderate High Medium Low
Large High High Medium

The top row represents the range fuzzy sets, while the first column represents the force size fuzzy sets. The
remaining cellsin the table represent the threat level given the conjunction of any combination of range and
force size. For example, if the force size is Tiny and the range is Close, the threat level is Medium.

We can set up and process the rulesin this case in a number of ways. By inspecting Table 10-3, it's clear that we
can combine the input variables using various combinations of the AND and OR operators to yield one rule for
each output set. However, thiswill result in rather unwieldy code with many nested logical operations. At the
other extreme we can process one rule for each combination of input variables and pick the highest degree for
each output set; however, thisresults in a bunch of rules. Nonetheless, it's the ssmplest, most readable way to
proceed, so we'll sort of take that approach here. To simplify things further, we'll show only combinations of
input sets with nonzero degrees of membership, and we'll make at least one nested operation. These are
illustrated in Example 10-1.

Example 10-7. Nested and non-nested fuzzy rules
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nmLow = FuzzyOr ( FuzzyAND( mMvedi um nili ny), FuzzyAND(mVedi um nSmal l));
mvedi um = FuzzyAND( nCl ose, nili ny);
nmHi gh = FuzzyAND( nCl ose, nSmal |);

For our example, the results of these rule evaluations are mLow = 0.73, mMedium = 0.17, and mHigh = 0.17.
These are the degrees of membership in the respective output fuzzy sets. Now we can defuzzify the results using
the singleton output membership functions we defined earlier to get a single number representing the number of
defensive forces to deploy. This calculation is ssimply aweighted average, as discussed earlier. Example 10-1
shows the code for this example.

Example 10-8. Defuzzification

nDeploy = ( mbow * 10 + mvedium * 30 + nHigh * 50) /
(mLow + mMvedi um + nHi gh);

The resulting number of units to deploy, nDeploy, comes to 19.5 units, or 20 if you round up. This seemsfairly
reasonable given the small size of the force and their proximity. Of course, all of thisis subject to tuning. For
example, you easily can adjust the results by changing the singleton values we used in this example. Also, the
shapes of the various input membership functions are good candidates for tuningyou can try different shapes for
each fuzzy set or use more or fewer fuzzy sets. Once everything is tuned, you'll find that no matter what input
values go in, the response always will vary smoothly from one set of input variables to another. Further, the
results will be much harder for the player to predict because there are no clearly defined cutoffs, or breakpoints,
at which the number of units to deploy would change sharply. This makes for much more interesting gameplay.
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Chapter 11. Rule-Based Al

In this chapter we're going to study rule-based Al systems. Rule-based Al systems are probably the most widely
used Al systems for both real-world and game Al applications. In their simplest form, rule-based systems
consist of aset of if-then style rulesthat are used to make inferences or action decisions. Technically, we've
already looked at one form of rule-based system in Chapter 9 on finite state machines. There we used rulesto
handle state transitions. We also looked at another type of rule-based system in the previous chapter on fuzzy
logic, Chapter 10.

In this chapter, we're going to look specifically at rule-based systems that commonly are used in so-called expert
systems. Examples of real-world, rule-based expert systems include medical diagnosis, fraud protection, and
engineering fault analysis. One advantage of rule-based systemsis that they mimic the way people tend to think
and reason given a set of known facts and their knowledge about the particular problem domain. Another
advantage of this sort of rule-based system isthat it isfairly easy to program and manage because the
knowledge encoded in the rulesis modular and rules can be coded in any order. This gives some flexibility both
when coding the system and modifying the system at a later time. These advantages hopefully will become
clearer to you as we move through the material in this chapter. Before we get into the details, though, let's
discuss a couple of game examples that can use rule-based systems.

Imagine you're writing a real-time strategy simulation game involving the typical technology tree, whereby
players must train peasants, build facilities, and harvest resources. Anillustrative technology treeis shown in
Figure 11-1.

Figure 11-1. Example technology tree
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What we aim to do here is enable the computer opponent to keep track of the player's current state of technology
so that the computer opponent can plan and deploy offensive and defensive resources accordingly. Now, you
could cheat and give the computer opponent perfect knowledge of the player's state of technology. However, it
would be fair and more redlistic to have the computer gain knowledge and make inferences on the state of the
player's technology in much the same way that the player will have to so that she can assess the computer
opponent's state of technology. Both player and computer will have to send out scouts to collect information and
then make inferences given the information asit is received. We can achieve thisusing afairly smple rule-
based system, as you'll see in this chapter.

Let's consider another example. Say you're writing amartia arts fighting game and you want to give the
computer the ability to anticipate the player's next strike so that the computer opponent can make the
appropriate countermove, such as a counter strike, a dodge, or a parry. Thetrick here is to somehow keep track
of the player's strike patternscombinations of kicks and punchesand to learn which strike most likely will follow
an observed set of previous strikes. For example, if during the fight the player throws a punch, punch
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combination, what will the player most likely throw next: a punch, alow kick, or a high kick? We can use arule-
based system to achieve such anticipation. We'll come back to this example in much more detail later in this
chapter.
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11.1 Rule-Based System Basics

Rule-based systems have two main components. the working memory and the rules memory. The working
memory stores known facts and assertions made by the rules. The rules memory, or rules, for short, contains if-
then style rules that operate over the facts stored in working memory. Asrules are triggered, or fired in rule-

based system lingo, they can trigger some action or state change, such asin afinite state machine, or they can
modify the contents of the working memory by adding new information called assertions.

Example 11-1 shows how the working memory for areal-time, strategy-game technology tree might look.

Example 11-1. Example working memory

enum TMenor yVal ue{ Yes, No, Maybe, Unknown};

TMenor yVal ue
TMenor yVal ue
TMenor yVal ue
TMenor yVal ue

Peasant s;
Woodcut ter;
St onemason;

Bl acksm t h;

TMenor yVal ue Bar r acks;
TMenor yVal ue Fl et cher;
TMenor yVal ue WodWal | s;
TMenor yVal ue St oneWal | s;
TMenor yVal ue Caval ry;
TMenor yVal ue Foot Sol di er;
TMenor yVal ue Spear man;
TMenor yVal ue Ar cher ;
TMenor yVal ue Tenpl e;
TMenor yVal ue Priest;

TMenor yVal ue
TMenor yVal ue
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For this example, we made each element in working memory a TMemoryValue type that can take on any one of
four values: Yes, No, Maybe, or Unknown. The idea here isto keep track of the computer opponent's current
perception of the state of technology of the player opponent. A value of Yesimpliesthat the player has the
particular technology, whereas a value of No implies that she does not. If the player meets all the criteriato gain
or posses a certain technology, but the state has yet to be confirmed by a scout, the value of Maybe is used. If
the computer knows nothing about a particular technology capability for the player, Unknown is used.

The computer can gather facts on the player's current state of technology by sending out scouts and making
observations. For example, if the computer sends out a scout and sees that the player has built atemple, Temple
would be set to Yes. Using a set of if-then style rules, the player can infer the state of technology for the player,
before a scout confirmsit, given some known facts. For example, referring to Figure 11-1, if the player has
woodcutters and stonemasons, she is capable of having atemple. In this case, Templeis set to Maybe. A rule for
this scenario might look like that shown in Example 11-2.

Example 11-2. Example temple rule

i f(Wodcutter == Yes && Stonemason == Yes &&
Tenpl e == Unknown)
Tenpl e = Maybe;

Inference can work the other way as well. For example, if the player has been observed to have a priest, the
computer can infer that the player also must have atemple, and therefore also must have a barracks, a
woodcutter, and a stonemason. A rule for this scenario might look like that shown in Example 11-3.

Example 11-3. Example priest rule

if(Priest == Yes)

{
Tenpl e = Yes;
Barracks = Yes;
Wodcutter= Yes;

St onemason= Yes;

Y ou can have many more rules for this type of technology tree. Example 11-4 shows a handful of other rules
you can write.
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Example 11-4. More example rules

i f(Peasants == Yes && Wodcutter == Unknown)
Wbodcutter = Maybe;
i f(Peasants == Yes && Stonemason == Unknown)

St onemason = Maybe;

i f(Wbodcutter == Yes && Barracks == Unknown)
Barracks = Maybe;
i f(Wbodcutter == Yes && Stonermason == Yes &&

Tenmpl e == Unknown)
Tenpl e = Maybe;
i f(Barracks == Yes && Bl acksnith == Unknown)
Bl acksmi th = Maybe;
i f(Fletcher == Yes && Foot Sol di er == Yes &&
Archer == Unknown)
Archer = Maybe;
i f(Wodcutter == Yes & & WodWalls == Unknown)
WodWal | s = Maybe;

i f(Stonemason == Yes && StoneWalls == Unknown)
St oneWal | s = Maybe;
i f(Archer == Yes && Crossbowran == Unknown)

Cr ossbownan = Maybe;
i f(Archer == Maybe && Longbowran == Unknown)
Longbowran = Maybe;
i f (Longbowran == Yes)
{
Archer = Yes;
Fl et cher = Yes;
Foot Sol di er = Yes;
Barracks = Yes;
Wodcut t er

Yes;
}
if(Cavalry == Yes)
{

Bl acksnmith

Yes;
Foot Sol di er = Yes;
Barracks = Yes;
Wodcutter = Yes;
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i f(StoneWalls == Yes)

St onemason = Yes;

Aswe stated already, these aren't the only rules you can write for this example. Y ou can develop several more,
covering all possible technologies shown in Figure 11-1. The idea here is that you can write such rules and
execute them continuously during the gamethat is, each iteration through the game loopto maintain an up-to-
date picture of the computer opponent's view of the player's technology capabilities. In this example, the
computer can use this knowledge in other Al subsystems to decide how to deploy its attack forces and defenses.

This example should give you abasic idea of how arule-based system works. It really comes down to a set of if-
then style rules and a set of facts and assertions. Note, however, that very often developers do not build rule-
based systems using actual if-statements such as those shown in this section. We discuss aternatives alittle
later, but basically hardcoding the if-statements makes a certain type of inference hard to achieve. Further,
developers often use scripting languages or shells so that they can create and modify rules without having to
change source code and recompile.

11.2.1 Inference in Rule-Based Systems

In the previous section we took alook at the main components of rule-based systems and showed how you can
use such a system to make inferences in a real-time strategy game. In this section we're going to take a dightly
more formal ook at making inferences using rule-based systems. Our aim here is to distinguish between the two
basic algorithms for making inferences and to introduce some standard rule-based system lingo in case you
decide to dig further in the technical literature for more information on rule-based systems. (We give some
references at the end of this chapter.)

11.2.1 Forward Chaining

The most common inference algorithm for rule-based systems is called forward chaining. This algorithm
consists of three basic phases. The first phase involves matching rules to facts stored in working memory. Y ou
do this by checking the if-parts of each rule to seeif they match the given set of facts or assertions in working
memory. For example, in our technology tree example, if the working memory indicates that Peasants = Yes
and Woodcutter = Unknown, we know the first rule shown in Example 11-4 matches and potentially can be
fired. When aruleisfired, its then-part is executed. Potentially, more than one rule can match a given set of
factsin working memory. In this case, we have to figure out which ruleto fire. Thisleads to the so-called
conflict resolution phase.

In the conflict resolution phase we have to examine all the matching rules and figure out which one we want to
fire. We can make this decision in many ways. A common approach isto fire the first matching rule. Sometimes
you can pick one at random. In other cases, the rules are weighted and the one with the highest weight is
selected. We're going to take this latter approach in our fighting example.
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After the conflict resolution phase is executed and arule is selected, we fire the rule. Firing arule smply means
executing its then-part. The rule might assert some new facts in working memory, such asintherulesin
Example 11-4. It might trigger some event or call some other function that does some sort of processing.

After these three phases are executed, the whole process is repeated until no more rules can be fired. When this
happens the working memory should contain everything the rule-based system can infer given the starting facts.
Don't worry if thisisabit nebulous at this point. Things will become clearer when we get to the fighting
example.

11.2.2 Backward Chaining

Backward chaining is sort of the opposite of forward chaining. We still have working memory and rules
memory, but instead of trying to match if-parts of rulesto working memory, we try to match the then-parts. In
other words, in backward chaining we start with some outcome, or goal, and we try to figure out which rules
must be fired to arrive at that outcome or goal. Consider the technology tree example one moretime. Let's say
the outcome is that the player has cavalry unitsthat is, Cavalry = Yes. To figure out how the player arrived at
acquiring cavalry we can backward-chain to see which rules must be fired to set Cavalry to Yes.

Looking at Figure 11-1, we see that to have cavalry, the player must have had a blacksmith. A rule for this
situation might look like the code shown in Example 11-5.

Example 11-5. Cavalry rule

i f(Blacksnmith == Yes)
Caval ry =Yes

Continuing, if the player has a blacksmith, she must have had barracks. If the player had barracks, she must
have had a woodcutter, and so on. We can continue this sort of logic backward up the technology tree from the
goal, Cavalry = Yes, through all the rules and facts that are required to arrive at that goal. This is backward
chaining.

In practice, backward chaining is recursive and more difficult to implement than forward chaining. Further,
hardcoding if-statements such as those in our illustrative examples makes it difficult to match the then-parts of
rules to facts stored in working memory during backward chaining. In the fighting example, we'll ook at how to
implement rule-based systems without actually hardcoding if-then style rules.
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11.2 Fighting Game Strike Prediction

In this example, we aim to predict a human opponent's next strike in amartial arts fighting game. The basic
assumption isthat the player will try to use combinations of strikes to find the most effective combination.
These combinations can be something such as low kick, low kick, high kick; or punch, punch, power kick; and
so on. We want the computer opponent to somehow |earn to anticipate which strike the player will throw next
given the most recently thrown strikes and some history of the player's strike patterns. If the computer can
anticipate the next strike, it can throw an appropriate counter strike, or block, or take evasive action such as side-
stepping or back-stepping. Thiswill add a higher level of realism to the combat simulation and present new
challenges for the player.

To achieve this, we're going to implement a rule-based system with alearning capability. We will achieve this
learning by weighting each rule to reinforce some while suppressing others. In Chapter 13 we'll ook at an
aternative approach to this problem whereby instead of rules, we'll use conditional probabilities to help predict
the next strike.

To keep this example manageable for discussion purposes, we're going to simplify things a bit. We'll assume
that the player's strikes can be classified as punch, low kick, or high kick. And we're going to track three-strike
combinations. Even with these simplifications we still end up with 27 rulesto capture all possible three-strike
combinations of punch, low kick, and high kick. We'll ook at the rulesin a moment, but first let's take alook at
the structures and classes we need to implement the working memory and rules memory.

11.2.2 Working Memory

Example 11-6 shows how the working memory is implemented.

Example 11-6. Working memory

enum TStri kes {Punch, LowKick, Hi ghKick, Unknown};
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struct TWor ki ngMenory {

TStrikes strikeA; // previous, previous strike (data)
TStrikes strikeB; // previous strike (data)
TStri kes strikeC, // next, predicted, strike (assertion)

/'l note: can add additional elenments here for things such as which counter
to throw, etc....
¥
TWor ki ngMenory  Wor ki ngMenory; // gl obal working nenory vari abl e

TSrikesisjust an enumerated type for the possible strikes. Note that we include Unknown for the case when the
computer does not know what strike will be thrown.

TWorkingMemory is the structure defining the working memory. Here we have three elements: strikeA, strikeB,
and strikeC. strikeC will store the predicted next strike to be thrown. Thiswill be asserted by forward chaining
through the rules given the observed facts, strikeA and strikeB. strikeB represents the most recently thrown
strike while strikeA represents the strike thrown before strikeB. The three-strike combinations are strikeA, then
strikeB, then strikeC, in that order, where strikeC is predicted by the rule system.

We can add more facts or assertions to the working memory if desired. For example, we can include a counter
strike element that can be asserted given the predicted next strike. If the predicted next strike is, say, low kick,
we can have rules that assert an appropriate counter such as back step, and so on. Given the way we're
implementing the working memory and rules in this example, you easily can add new elementsin the working
memory as well as new rules.

11.2.3 Rules

Example 11-7 shows the rules class for this example. Note that we are not going to hardcode if-then rules.
Instead, we'll keep an array of TRule objects to represent the rules memory. We easily could have used if-then
constructs; however, the approach we're taking here makes it easier to add or delete rules and facilitates

backward chaining, which we're going to use to a limited extent. We'll come back to this subject alittle later.

Example 11-7. Ruleclass

class TRule {

public:

TRul e() ;

void SetRul e(TStrikes A, TStrikes B, TStrikes O ;
TStri kes ant ecedent A;

TStrikes ant ecedent B;

TStri kes consequent C;
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bool mat ched;
i nt wei ght ;

b

The TRule object contains five members. The first two are antecedentA and antecedentB. These members
correspond to the previous two strikes thrown by the player. The next member, consequentC, corresponds to the
predicted next strikethe strike that we'll assert using the rules. If we were using standard if-statements for the
rules, we'd have rules that look something like this:

if antecedentA AND antecedentd then consequentC

In anif-then style rule such asif X then 'Y, the "if X" part is the antecedent, or the premise. The "then Y" part is
the consequent, or conclusion. In our example, we're assuming that our rules consist of the conjunction (logical
AND) of two parameters. antecedentA and antecedentB. The then-part in our rules, consequentC, is the expected
strike given the two previous strikes.

The next member in TRule is matched. Thisflag is set to true if the antecedents in the rule match the facts stored
in working memory. More specifically, for agiven rule, if antecedentA equals WorkingMemory.strikeA and
antecedentB equals WorkingMemory.strikeB, the rule is matched. It's possible that more than one rule will

match a given set of facts. This matched member helps us keep track of those that do match so that we can pick
oneto fire during the conflict resolution phase.

The final member in TRuleisweight. Thisis aweighting factor that we can adjust to reinforce or inhibit rules.

In asense it represents the strength of each rule. Looking at it from a different angle, the weight represents the
computer's belief that a given ruleis more or less applicable relative to other potentially matching rules. During
the conflict resolution phase where more than one rule matches, we'll fire the one rule with the highest weight to
make a strike prediction. If after the next strike is thrown, we see that we fired the wrong rulethat is, we made a
wrong predictionwell decrement the fired rule's weight to suppress it. Further, we'll figure out which rule should
have been fired and increment its weight to reinforce it.

TRule contains only two methods, SetRule and the constructor. The constructor ssmply initializes matched to

false and weight to 0. We use SetRule to set the other membersantecedentA, antecedentB, and
consequentCtherefore defining arule. SetRuleisillustrated in Example 11-8.

Example 11-8. SetRule method

void TRule::SetRul e(TStrikes A, TStrikes B, TStrikes O
{

ant ecedent A = A;
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ant ecedent B

1
0w

consequent C

We need afew global variables for this example. Thefirst is WorkingMemory, as we showed in Example 11-6.
Example 11-9 shows the others.

Example 11-9. Global variables

TRul e Rul es[ NUM_RULES]

i nt Previ ousRul eFi r ed;
TStri kes Prediction
TStrikes RandonPr edi cti on

i nt N;

i nt NSuccess;

i nt NRandonfSuccess;

Here, Rulesis an array of TRule objects. The size of the Rules array is set to NUM_RULES, which is defined as
27 for this example. PreviousRuleFired is an integer type that we'll use to store the index to the rule fired during
the previous game cycle. Prediction keeps track of the strike prediction the rule system makes. Technically we
don't need this because the prediction also is stored in working memory.

We're going to use RandomPrediction to store arandomly generated prediction to compare with our rule-based
prediction. What we'll really compare is the success rate for our rule-based predictions versus the success rate
for random guesses. The global variable N will store the number of predictions made. NSuccess will store the
number of successful predictions made by our rule-based systems, while NRandomSuccess will store the
number of successes for the random guesses. We calcul ate the success rates by dividing the number of successes
by the total number of predictions.

11.2.4 Initialization

At the start of this simulation, or at the start of the game, we need to initialize al the rules and working memory.
The Initialize function shown in Example 11-10 takes care of thisfor us.

Example 11-10. Initialize function
void TRormil::Initialize(void)

{
Rul es[ 0] . Set Rul e( Punch, Punch, Punch);
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Rul es[ 1] .
Rul es[ 2] .

Set Rul e( Punch,
Set Rul e( Punch,

Punch, LowKi ck);

Punch, Hi ghKi ck);

Rul es[ 3] .
Rul es[ 4] .
Rul es[ 5] .
Rul es[ 6] .
Rul es[ 7] .
Rul es[ 8] .
Rul es[ 9] .
Rul es[ 10]
Rul es[ 11]

Rul es[ 12] .
Rul es[ 13] .
Rul es[ 14] .
Rul es[ 15] .
Rul es[ 16] .
Rul es[ 17] .
Rul es[ 18] .
Rul es[ 19] .
Rul es[ 20] .
Rul es[ 21] .
Rul es[ 22] .
Rul es[ 23] .
Rul es[ 24] .
Rul es[ 25] .
Rul es[ 26] .

Set Rul e( Punch,
Set Rul e( Punch,
Set Rul e( Punch,
Set Rul e( Punch,
Set Rul e( Punch,
Set Rul e( Punch,

LowKi ck,
LowKi ck,
LowKi ck,
Hi ghKi ck
Hi ghKi ck
Hi ghKi ck

Set Rul e( LowKi ck, Punch,

. Set Rul e( LowKi
. Set Rul e( LowKi
Set Rul e( LowKi
Set Rul e( LowKi
Set Rul e( LowKi
Set Rul e( LowKi
Set Rul e( LowKi
Set Rul e( LowKi

Set Rul e( H ghKi ck,

Set Rul e( Hi ghKi
Set Rul e( Hi ghK
Set Rul e( Hi ghKi
Set Rul e( Hi ghK
Set Rul e( Hi ghKi
Set Rul e( Hi ghKi
Set Rul e( Hi ghK
Set Rul e( Hi ghKi

ck,
ck,
ck,
ck,
ck,
ck,
ck,
ck,

Punch,

Punch,

ck,
ck,
ck,
ck,
ck,

Punch,

Punch,

Punch,

Punch) ;
LowKi ck) ;
Hi ghKi ck) ;
Punch) ;
LowKi ck) ;
Hi ghKi ck) ;
Punch) ;
LowKi ck) ;
Hi ghKi ck) ;

LowKi ck, Punch);
LowKi ck,
LowKi ck, Hi ghKi ck);
H ghKi ck,
Hi ghKi ck, LowKi ck);
Hi ghKi ck, Hi ghKi ck);

LowkKi ck) ;

Punch) ;

Punch) ;

LowKi ck) ;
Hi ghKi ck) ;

LowKi ck, Punch);
LowKi ck,
LowKi ck, Hi ghKi ck);

LowKi ck) ;

ck,
ck,
ck,

Hi ghKi ck,
H ghKi ck,
Hi ghKi ck,

Punch) ;
LowKi ck) ;
Hi ghKi ck) ;

Wor ki ngMenory. stri keA = sUnknown;
Wor ki ngMenory. stri keB = sUnknown;
Wor ki ngMenory. stri keC = sUnknown;
Previ ousRul eFired = -1;
N = 0;
NSuccess = O;
NRandonfSuccess =

Updat eFor m() ;

0;

Here we have 27 rules corresponding to all possible three-strike combinations of punch, low kick, and high
kick. For example, the first rule, Rules[ 0], can be read as follows:
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if WorkingMemory.strikeA = AND WorkingMemory.strikeB=Punch
then WorkingMemory.strikeC=Punch

Examining these rules, it's clear that more than one can match the facts stored in working memory at any given
time. For example, if strikes A and B are punch, punch, respectively, the first three rules will match and the
prediction could be punch, or low kick, or high kick. Thisis where the weight factor comes into play to help
select which matching rule to fire. We ssimply select the rule with the highest weight. We pick the first rule
encountered in the event that two or more rules have the same weight.

After all the rules are set, the working memory isinitialized. Basically, everything in working memory is
initialized to Unknown.

11.2.5 Strike Prediction
While the game is running we need to make a strike prediction after every strike the player throws. Thiswill
allow the computer opponent to anticipate the next strike the player will throw, as we've already discussed. In

our example, we have one function, ProcessMove, to process each strike the player throws and to predict the
next strike. Example 11-11 shows the ProcessMove function.

Example 11-11. ProcessMove function

TStri kes TForml: : ProcessMove(TStri kes nove)

{
i nt i;
i nt Rul eToFire = -1;
/[l Part 1:

i f (Worki ngMenory. stri keA == sUnknown)

{
Wor ki ngMenory. stri keA = nove
return sUnknown;

}

i f(Wor ki ngMenory. stri keB == sUnknown)

{
Wor ki ngMenory. stri keB = nove
return sUnknown;

}

/] Part 2:

/1 Process previous prediction first

/1 Tally and adjust weights
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N++;
i f(nmove == Prediction)
{
NSuccess++;
if(PreviousRuleFired !'= -1)
Rul es[ Previ ousRul eFi red] . wei ght ++;
} else {
if(PreviousRuleFired I'= -1)
Rul es[ Previ ousRul eFi red] . wei ght - -;
/'l Backward chain to increment the rule that
/'l shoul d have been fired:
for(i=0; i<NUMRULES; i++)
{
if(Rules[i].mtched & (Rul es[i].consequentC == nove))
{
Rul es[i].wei ght ++;
br eak;
}
}
}
i f(nmove == RandonPredi ction)
NRandonSuccess++;
/'l Roll back

Wor ki ngMenory. stri keA
Wor ki ngMenory. stri keB
/1 Part 3:
/1 Now nake new prediction
for(i=0; i<NUMRULES; i++)

Wor ki ngMenory. stri keB

nove;

{
if(Rules[i].antecedent A == Worki ngMenory. stri keA &&
Rul es[i].antecedent B == Wor ki ngMenory. stri keB)
Rul es[i].matched = true;
el se
Rul es[i].matched = fal se;
}

/1 Pick the matched rule with the highest weight..
Rul eToFire = -1;

for(i=0; i<NUMRULES; i++)

{
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i f(Rules[i].matched)
{
if(RuleToFire == -1)
Rul eToFire = i;

else if(Rules[i].weight > Rul es[Rul eToFire].weight)

Rul eToFire = i;
}
}
/'l Fire the rule
if(Rul eToFire !'= -1) {
Wor ki ngMenory. stri keC = Rul es[ Rul eToFi re]. consequent C,
Previ ousRul eFired = Rul eToFi re;
} else {
Wor ki ngMenory. stri keC = sUnknown;
Previ ousRul eFired = -1;
}

return Wor ki ngMenory. strikeC;

Y ou can break this function into three distinctive parts, as indicated by the comments// Part 1, // Part 2, and //
Part 3. Let's consider each part in turn.

11.2.3 Part 1

Thefirst part populates the working memory. At the start of the game, after working memory isinitialized and
before any strikes are thrown, the working memory contains only Unknown values. Thisis insufficient to make
aprediction, so we want to collect some data from the player as he begins to throw strikes. Thefirst strike
thrown is stored in WorkingMemory.strikeA and ProcessMoves simply returns Unknown without attempting a
prediction. After the second strike is thrown, ProcessMoves is called again and this time the second strike is
stored in WorkingMemory.strikeB. ProcessMoves returns Unknown one more time.

11.2.4 Part 2

The second part in ProcessMoves takes care of processing the previous predictionthat is, the prediction returned
the previous time ProcessMoves was called. The first task in part 2 is to determine whether the previous
prediction was accurate. ProcessMoves takes move as a parameter. move is the strike the player threw most
recently. Therefore, if move equals the previous prediction stored in Prediction, we have a success. In this case,
we increment NSuccess so that we can update our success rate. Then we reinforce the previously fired rule
because it was the correct one to fire given the strike history stored in working memory. To reinforce arule we
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simply increment the rule's weight.

If the previous prediction was wrongthat is, if move does not equal Predictionwe need to inhibit the previously
fired rule. To do thiswe simply decrement the previously fired rule's weight. At the same time we want to
reinforce the rule that should have been fired. To do this we have to figure out which rule should have been
fired the last time ProcessMoves was called. To this end, we need to backward-chain a bit. Essentially, we know
the move; therefore, we know what consequent should have been returned for the previous prediction. So, all we
have to do is cycle through the last set of matched rules and pick the one who's consequentC equals move. Once
we find the rule, we increment its weight and we're done.

The remaining tasksin part 2 of ProcessMoves are relatively simple. The next task isto seeif the previous
random prediction was correct and, if so, to increment the number of successful random predictions,
NRandomSuccess.

Finally, we need to update the strikes in working memory in preparation for making a new prediction. To this
end, we simply shift the strikes in working memory and add the most recent move. Specifically,
WorkingMemory.strikeB becomes WorkingMemory.strikeA and move becomes WorkingMemory.strikeB. Now
we're ready to make a new prediction for the new series of strikes stored in working memory.

11.2.5 Part 3

Referring to // Part 3 in Example 11-11, the first task in the prediction processisto find the rules that match the
facts stored in working memory. We take care of thisin the first for loop under the // Part 3 comment. Note that
thisis the so-called match phase of the forward chaining algorithm. Matching occurs when arule's antecedentA
and antecedentB equal WorkingMemory.strikeA and WorkingMemory.strikeB, respectively.

After the match phase, we need to pick one rule to fire from those that were matched during the matching phase.
Thisisthe conflict resolution phase. Basically, al we do is cycle through the matched rules and pick the one
with the highest weight. We take care of thisin the second for loop after the // Part 3 comment in Example 11-
11. After thisloop doesits thing, the index to the selected ruleis stored in RuleToFire. To actualy firetherule
we simply copy consequentC of Ruleq RuleToFire] to WorkingMemory.strikeC.

ProcessMoves stores the index to the fired rule, RuleToFire, in PreviousRuleFired, which will be used in part 2
the next time ProcessMoves is called. Finally, ProcessMoves returns the predicted strike.

That's pretty much all there is to this example. Upon running the example and simulating thrown strikes, by
pressing buttons corresponding to punch, low kick, and high kick, we see that the rule-based system is pretty
good at predicting the next strike. Our experiments saw success rates from 65% up to 80%. Comparing thisto
the roughly 30% success rate we achieved by guessing randomly, it's clear that such arule-based system works
very well.
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11.4 Further Information

We've only scratched the surface of rule-based systemsin this chapter. Although we covered al the fundamental
concepts and showed how effective rule-based systems are, other aspects to rule-based systems are worthwhile
investigating if you plan to implement them for large-scale systems.

Optimization is one area that deserves attention. For small rule sets, forward chaining does not take much
processing time; however, for larger sets of rules where many rules can match a given set of facts, it'swiseto
optimize the conflict resolution phase. The most common algorithm for thisis the so-called Rete algorithm.
(Check out the article "Rete: A Fast Algorithm for the Many Pattern/Many Object Pattern Match Problem,” by
C. L. Forgy, Artificial Intelligence, 1982.) Most textbooks on rule-based, or expert, systems cover the Rete
algorithm.

Asyou saw with our fighting example, you don't have to use if-then statements in a rule-based system. Y ou
don't even have to use the sort of enumerated types or other types, such asintegers, Booleans, and so on. Y ou
can use strings to represent facts in working memory and string matching routines to determine if the
antecedents of arule (also, strings) match facts stored in working memory. This approach opens the door to
scripting rules outside of the compiled program, which paves the way for designers to script Al rules. Indeed,
devel opers have been using scripting languages, such as the well-known Prolog, Lisp, and CLIPS languages, for
scripting rule-based systems for decades now. (There's even arelatively new Java-based language called JESS.)
Another advantage to using a scripting language to implement rule-based systemsisthat it's easy to change,
delete, or expand upon the rules without having to modify the compiled game code.

Instead of using athird-party scripting language, you can write your own; however, caution isin order here.
Writing a scripted rule system to handle facts that can take on arange of values, along with rules with
compound antecedents and consequents that might even trigger other events, is far more complicated than
writing arule system with only Boolean facts and simple rule structures. If you'd like to see how you might go
about such atask, check out Chapter 8 of Al Application Programming by M. Tim Jones (Charles River Media).
Note that the author's example is not a general-purpose scripting language such as Prolog and the others
mentioned earlier, but it does show how to implement a simple rules-scripting algorithm from scratch. Recall
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that we covered basic scripting in Chapter 8 of this book. Y ou can apply those same techniques to writing rule-
based systems, as we discussed in this chapter.

Asfor other sources of information, the Internet is replete with web pages on rule-based systems and scripting
shells. If you conduct an Internet search on rule-based systems, often abbreviated RBS, you're sure to find tons
of links to pages that discuss rule-based systems in some context or another. Here are some Web sites that we
find helpful for beginners:

. http://www.aaai.org/Al Topics/html/expert.html
. http://ai-depot.com/Tutorial/RuleBased.html
. http://www.igda.org/ai/
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Chapter 12. Basic Probability

Developers use probability in games for such things as hit probabilities, damage probabilities, and personality (e.
g., propensity to attack, run, etc.). Games use probabilitiesto add a little uncertainty. In this chapter, we review
elementary principles of probability and discuss how you can apply these basic principlesto give the game Al
some level of unpredictability. A further aim of this chapter isto serve asa primer for the next chapter, which
covers decisions under uncertainty and Bayesian analysis.
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12.1 How Do You Use Probability in Games?

Bayesian analysis for decision making under uncertainty is fundamentally tied to probability. Genetic
algorithms also use probability to some extentfor example, to determine mutation rates. Even neural networks
can be coupled with probabilistic methods. We cover these rather involved methods to various extents later in
this book.

12.2.1 Randomness

Because the examples we discuss rely heavily on generating random numbers, let's look at some code to
generate random numbers. The standard C function to generate a random number is rand(), which generates a
random integer in the range from 0 to RAND_MAX. Typicaly RAND_MAX is set to 32727. To get arandom
integer between 0 and 99, use rand() % 100. Similarly, to get arandom number between 0 and any integer N-1,
userand() % N. Don't forget to seed the random number generator once at the start of your program by calling
srand (seed). Note that srand takes a single unsigned int parameter as the random seed with which to initialize
the random number generator.

In avery simple example, say you decide to program alittle randomness to unit movement in your game. In this
case, you can say the unit, when confronted, will move left with a 25% probability or will move right with a
25% probability or will back up with a 50% probability. Given these probabilities, you need only generate a
random number between 0 and 99 and perform afew tests to determine in which direction to move the unit. To
perform these tests, we'll assign the range 0 to 24 as the possible range of values for the move-left event.
Similarly, well assign the range of values 75 to 99 as the possible range of values for the move-right event. Any
other value between 25 and 74 (inclusive) indicates the backup event. Once a random number is selected, we
need only test within which range it falls and then make the appropriate move. Admittedly, thisisavery simple
example, and one can argue that thisis not intelligent movement; however, devel opers commonly use this
technique to present some uncertainty to the player, making it more difficult to predict where the unit will move
when confronted.
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12.2.2 Hit Probabilities

Another common use of probabilitiesin games involves representing a creature or player's chances to hit an
opponent in combat. Typically, the game developer defines several probabilities, given certain characteristics of
the player and his opponent. For example, in arole-playing game you can say that a player with amoderate
dexterity ranking has a 60% probability of striking his opponent with a knife in melee combat. If the player's
dexterity ranking is high, you might give him better odds of successfully striking with a knife; for example, you
can say he has a 90% chance of striking his opponent. Notice that these are essentially conditional probabilities.
We're saying that the player's probability of successis 90% given that he is highly dexterous, whereas his
probability of successis 60% given that he is moderately dexterous. In a sense, all probabilities are conditional
on some other event or events, even though we might not explicitly state the condition or assign a probability to
it, aswe did formally in the previous section. In fact, it's common in games to make adjustments to such hit
probabilities given other factors. For example, you can say that the player's probability of successfully striking
his opponent is increased to 95% given that he possesses a "dagger of speed.” Or, you can say the player's
chances of success are reduced to 85% given his opponent's magic armor. Y ou can come up with any number of
these and list them in what commonly are called hit probability tables to calculate the appropriate probability
given the occurrence or nonoccurrence of any number of enumerated events.

12.2.3 Character Abilities

Y et another example of using probabilities in gamesisto define abilities of character classes or creature types.
For example, say you have arole-playing game in which the player can take on the persona of awizard, fighter,
rouge, or ranger. Each class has its own strengths and weaknesses relative to the other classes, which you can
enumerate in atable of skillswith probabilities assigned so as to define each class's characteristics. Table 12-1
gives asimple example of such a character class ability table.

Table 12.1. Character class ability

Ability Wizard Fighter Rouge Ranger
Use magic 0.9 0.05 0.2 0.1
Wield sword 0.1 0.9 0.7 0.75
Harvest wood 0.3 0.5 0.6 0.8
Pick locks 0.15 0.1 0.05 0.5
Find traps 0.13 0.05 0.2 0.7
Read map 04 0.2 0.1 0.8
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Typically such character class tables are far more expansive than the few skills we show here. However, these
serveto illustrate that each skill is assigned a probability of success, which is conditional on the character class.
For example, awizard has a 90% chance of successfully using magic, afighter has a mere 5% chance, and so
on. In practice these probabilities are further conditioned on the overall class level for each individual player.
For example, afirst-level wizard might have only a 10% chance of using magic. Here, the ideais that asthe
player earns levels, his proficiency in his craft will increase and the probabilities assigned to each skill will
reflect this progress.

On the computer side of such agame's Al, al creaturesin the world will have similar sets of probability tables
defining their abilities given their type. For example, dragons would have a different set of proficiencies than
would giant apes, and so on.

12.2.4 State Transitions

Y ou can take creature abilities a step further by combining probabilities with state transitions in the finite state
machine that you can use to manage the various creature states. (See Chapter 9 for adiscussion of finite state

machines.) For example, Figure 12-1 illustrates a few states that a creature can assume.

Figure 12-1. Creature states

---rs-%-h- Attack
Iﬂ'?&h Flea
Conditions...
e Ml Hid
--.*

L et's assume that this is one branch within afinite state machine that will be executed when the computer-
controlled creature encounters the player. In the figure, Conditions are the necessary conditions that are checked
in the finite state machine that would cause this set of statesAttack, Flee, Hide, etc.to be considered. A condition
could be something such as "the player is within range and has aweapon drawn.” Instead of deterministically
selecting a state for the creature, we can assign certain probabilities to each applicable state. For illustration
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purposes we show that there's a 50% chance the creature will attack the player. However, there's a 20% chance
the creature will flee the scene, and there's a 10% chance it will try to hide. For even more variability, you can
assign different probabilities to different types of creatures, making some more or less aggressive than others,
and so on. Furthermore, within each creature type you can assign individual creatures different probabilities,
giving each one their own distinct personality.

To select a state given probabilities such as these, you pick arandom number between, say, 0 and 99, and check
to seeif it falls within specific ranges corresponding to each probability. Alternatively, you can take alottery-
type approach. In this case, you enumerate each statefor example, O for attack, 1 for flee, 2 for hide, and so
onand fill an array with these valuesin proportion to their probability. For example, for the attack state you'd fill
half of the array with Os. Once the array is populated, you simply pick a random number from 0 to the maximum
size of the array minus 1, and you use that as an index to the array to get the chosen state.

12.2.5 Adaptability

A somewhat more compelling use of probability in games involves updating certain probabilities as the gameis
played in an effort to facilitate computer-controlled unit learning or adapting. For example, during a game you
can collect statistics on the number and outcomes of confrontations between a certain type of creature and a
certain class of playerfor example, awizard, fighter, and so on. Then you can calculate in real time the
probability that the encounter results in the creature's death. Thisis essentially the relative frequency approach
to determining probabilities. Once you have this probability, you can use itrather, the creature canwhen deciding
whether to engage players of this class in combat. If the probability is high that a certain class of player will kill
thistype of creature, you can have creatures of this type start to avoid that particular class. On the other hand, if
the probability suggests that the creature might do well against a particular type of player class, you can have
the creature seek out players of that class.

Welook at thistype of analysisin the next chapter, where we show you how to calculate such things as given
the probability that the player is of a certain class and the probability that death results from encounters with this
class, what is the probability that death will result? Y ou could take this a step further by not assuming that the
creature knows in what class the player belongs. Instead, the creature's knowledge of the player can be
uncertain, and it will have to infer what class he isfacing to make a decision. Being able to collect statistics
during gameplay and use probabilities for decisions clearly offers some interesting possibilities.

So far we discussed probability without actually giving it aformal definition. We need to do so before we move
on to the next chapter on Bayesian methods. Further, we need to establish several fundamental rules of
probability that you must know to fully appreciate the material in the next chapter. Therefore, in the remainder
of this chapter we cover fundamental aspects of probability theory. If you're already up to speed on this
material, you can skip right to the next chapter.
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12.2 What is Probability?

The question posed herewhat is probability?s deceptively simple to answer in that there's no single definition of
probability. One can interpret probability in several different ways, depending on the situation being considered
and who's doing the considering. In the following sections, we consider three common interpretations of
probability, all of which have a place in gamesin some form or another. We keep these discussions general in
nature to keep them easy to understand.

12.2.6 Classical Probability

Classical probability is an interpretation of probability that refers to events and possibilities, or possible
outcomes. Given an event, E, which can occur in n ways out of atotal of N possible outcomes, the probability,
p, of occurrence of the event is:

p = FlE) = n/N

Here, P(E) isthe probability of event E, which is equal to the number of ways E occurs out of N possible ways.
P(E) usually is called the probability of success of the event. The probability of failure of the event is 1-P(E). In
summary:

Probability ot success, p, = n/N
Probability of failure, py =1 — ps

Note that probabilities range in value from 0 to 1 and the sum of the probabilities of success and failure, ps + py,
must equal 1.

Let's consider asimple example. Say you roll asix-sided die; the probability that afour will show up is 1/6
because there's only one way in which afour can show up out of six possible outcomesin asinglerall. In this
example, the event, E, isthe event that afour will show up. For theroll of asingle die, afour can show up in
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only one way; therefore, n = 1. The total number of possible outcomes, N, issix in this case; therefore, P(E = 4)
= 1/6. Clearly, in this case the probability of any given number showing up is 1/6 because each number can
show up in only one possible way out of six ways.

Now, consider two six-sided dice, both rolled at the same time. What is the probability that the sum of the
numbers that show up is equal to, say, five? Here, the event we're interested in isasum of five being rolled. In

this case, there are four possible ways in which the sum of five can result. These are illustrated in Figure 12-2.

Figure 12-2. Sums of five in roll of two dice

Note that the outcome of the first die showing atwo and the second showing athreeis distinctly different from
the outcome of the first die showing athree and the second showing atwo. In this case, N = 36that is, there are
36 possible outcomes of the roll of two dice. The probability, then, that the sum of five will appear is four
divided by 36, with 36 being the total number of possible outcomes for two six-sided dice. Thisresultsin a
probability of 4/36 or 1/9.

Y ou can find the probability that any sum can show up in asimilar manner. For example, the possible waysin
which the sum of seven can occur are summarized in Table 12-2.

Table 12.2. Sums of seven in roll of two dice

Diel Die?2
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In this case, the probability of asum of seven is 6/36 or 1/6. Stated another way, the probability of a sum of
seven is 16.7%. We can express probability as percentages by taking the probability value, which will be
between 0 and 1, and multiplying it by 100.

12.2.7 Frequency Interpretation

The frequency inter pretation of probability, also known as relative frequency or objective probability, considers
events and samples or experiments. If an experiment is conducted N times and some event, E, occurs n times,
the probability of E occurringis:

P(E) = n/N, as N—o0

Note here the caveat that P(E) isn/N as the number of experiments conducted gets very large. For afinite
number of experiments, the resulting probability will be approximate, or empirical, because it is derived
statistically. Empirical probability can be dlightly different from theoretical probability if it can, indeed, be
calculated for agiven event. Additionally, we're assuming the experiments are independentthat is, the outcome
of one experiment does not affect the outcome of any other experiment.

Consider a simple experiment in which acoin istossed 1000 times. The results of this experiment show that
heads came up 510 times. Therefore, the probability of getting heads is 510/1000, which yields:

P(heads) = (.51, or 51%

Of course, in this example we know that P(heads) is 0.5 or 50% and were we to continue with these
experiments for a larger number of tosses we would expect our empirically derived P(heads) to approach 0.5.

12.2.8 Subjective Interpretation
Subjective probability is a measure, on a scale from zero to one, of a person's degree of belief that a particular

event will occur given their knowledge, experience, or judgment. This interpretation is useful when the event, or
experiment, in question is not repeatablethat is, we can't use a frequency measure to calculate a probability.

http://ebooks.servegame.com/oreaiforgamdev475b/ch12_sectl_002.htm (3 of 8)7/24/05 1:23:17 AM



Al for Game Developers

Subjective probabilities are found everywherewe can say "it probably will rain tomorrow" or "l have a good
chance of passing thistest" or "the Saints probably will win tomorrow." In each case, we base our belief in the
outcome of these events on our knowledge of the events, whether it is complete or incomplete knowledge, and
on our judgment considering a potential variety of relevant factors. For example, the fact that it is raining today
might lead us to believe that it probably will rain tomorrow. We believe the Saints might win tomorrow's
football game with a better-than-usual probability because we know the other team's star quarterback is
suffering from an injury.

Consider this example: let's assume you're up for the lead game designer promotion in your company. Y ou
might say, "I have a 50% chance of getting the promotion,” knowing that someone else in your group with
identical qualifications also is being considered for the job. One the other hand, you might say, "I have about a
75% chance of getting the promotion,” knowing that you've been with this company longer than your colleague
who also is being considered. If in this case you also learn that the other candidate has notoriously missed
milestone deadlines on various game projects, you might be inclined to revise your belief that you'll get the
promotion to something like a 90% chance. Formally, Bayesian analysis enables us to update our belief of some
event given such new information. We discuss this in much greater detail in the next chapter.

Subjective probabilities very often are difficult to pin down, even when one has afairly good intuitive feeling
about a particular event. For example, if you say you probably will pass that test, what would you say isthe
actual probability: 60%, 80%, or 90%? Y ou can employ some techniques to help pin down subjective
probabilities, and we go over two of them shortly. Before we do that, however, we need to cover two other
fundamental topics: odds and expectation.

12.2.1 Odds

Odds show up commonly in betting scenarios. For example, Sunflower Petals might be the long shot to win next
week's horse race, and the odds against her winning are 20 to 1; afootball fan might take 3to 1 oddson abet in
favor of the Giants winning Sunday's game; and so on. For many, it's easier or more intuitive to think of
probabilities in terms of odds rather than in terms of some number between 0 and 1, or in terms of percentages.
Odds reflect probabilities, and you can convert between them using afew simple relations.

If we say the odds in favor of the success of some event, E, are ato b, the probability of success of that event, P
(B),is

P(E) =a/(a + b)

We can work in the other direction from probability to odds too. If you are given the probability of success of
some event, P(E), the odds in favor of the event succeeding are P(E) to (1-P(E)). For example, if the odds are 9
to 1 that you'll pass atest, the probability that you'll passis 0.9 or 90%. If, however, the probability you'll passis
only 0.6, or 60%, because you didn't study as much as you would have liked, the odds in favor of you passing
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ae60to40or 1.5to0 1.
12.2.2 Expectation

Often it isuseful in probability problems to think in terms of expectation. Mathematical expectation isthe
expected value of some discrete random variable, X, that can take on any values, Xg, X1, Xo, ..., Xn, With
corresponding probabilities, pg, Py, P2, ---, Py Y OU calculate the expectation for such a distribution of outcomes
asfollows:

E(X) = xgpp + X1p1 + X2P2 + Xap3 + +++ + XpPn

For distributions such as this, you can think of the expectation as an average value. Statisticians think of
expectation as a measure of central tendency. Decision theorists think of expectation as some measure of payoff.

Asavery simple example, if you stand to win $100 with a probability of 0.12, your expectation is $12that is,
$100 times 0.12.

As another example, say you have a perpetual online role-playing game in which you monitor the number of
players who gather at the local tavern each evening. Let's assume from this monitoring you establish the
probabilities shown in Table 12-3 for the number of playersin the tavern each evening. Let's further assume that
the samples you used to cal cul ate these frequency-based probabilities were all taken at about the same time of
day; for example, you might have a spy casing the tavern every night collecting intelligence for an upcoming
invasion.

Table 12.3. Probabilities of number of players in tavern each evening

# Players Probability

0.02
0.08
0.20
0.24

o o ~ N O

0.17
10 0.13
12 0.10
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14 0.05
16 0.01

Note that this distribution forms a mutually exclusive, exhaustive set. That is, there can't be, say, zero and eight
players there at the same timeit has to be one or the otherand the sum of probabilities for al these outcomes
must be equal to 1. In this case, the expectation, the expected number of playersin the tavern in the evening, is
equal to 7.1. You can calculate this by taking the sum of the products of each pair of numbers appearing in each
row of the table. Therefore, in any given evening, one can expect to find about seven playersin the tavern, on
average. Note that using thiskind of analysis, an invading force could estimate how many units to send toward
the tavern to take control of it.

12.2.3 Techniques for Assigning Subjective Probability

Aswe stated earlier, it is often very difficult to pin subjective probabilities to a specific number. Although you
might have a good feel for the probability of some event, you might find it difficult to actually assign asingle
number to the probability of that event. To help in thisregard, several commonly used metaphors are available
to assist you in assigning numbers to subjective probabilities. We briefly discuss two of them here.

The first technique we can use to assign subjective probabilities is a betting metaphor. Let's return to the
promotion example we discussed earlier. Let's say that another co-worker asked if you're willing to make a
wager on whether you'll get the promotion. If the co-worker takes the side that you won't get the promotion and
iswilling to put up $1 on the bet, but then asksfor 9 to 1 odds, you'll have to pay $9 if you lose and you'll gain
$1if you win. Would you accept this bet? If you would, you consider thisafair bet and you essentially are
saying you believe you'll get the promotion with a probability of 90%. Y ou can calculate this by considering the
odds to which you agreed and using the relationship between odds and probability we discussed earlier. If you
rejected these odds but instead offered 4 to 1 odds in favor of you getting the promotion, you essentially are
saying you believe the probability that you'll get the promotion is 4/5 or 80%.

Underlying this approach is the premise that you believe that the agreed-upon odds constitute afair bet.
Subjectively, afair bet is onein which the expected gain is 0 and it does not matter to you which side of the bet
you choose. Let's say you took the 9 to 1 odds and you thought thiswas afair bet. In this case, you expect to
win ($1)(0.9) or 90 cents. Thisis simply the amount you will win times the probability that you will win. At the
same time you expect to lose ($9)(0.1) or 90 centsthe amount you are wagering times the probability that you
will lose. Therefore, the net gain you expect is your expected winnings minus your expected loss, which is
clearly 0. Now, if you took this bet with 9 to 1 odds, but you really felt that your probability of successfully
getting the promotion was only 80% as compared to 90%, your expected gain would be:

($1)(0.8) — ($9)(0.2) = =51
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In this case you'd expect to lose $1, which indicates that this would not be afair bet.

The betting metaphor we described here is the so-called put up or shut up approach in which you're required to
really think about the probability in terms of what you'd be willing to wager on the outcome. The idea is that
you should get a pretty good sense of your true belief about a particular outcome.

There's a problem with this approach, however, that is due to individual tolerances for risk. When we're talking
about $1 versus $9, the idea of losing $9 might not be that significant to you and you might have a greater
propensity to take these odds. However, what if the bets were $100 and $900, or perhaps even $1000 and
$9000? Certainly, most rational people who don't own amoney tree would think alittle harder about their belief
in some outcome occurring when larger sums of money are at stake. In some cases, the risk of losing so much
money would override their belief in a certain outcome occurring, even if their subjective probability were well
founded. And therein lies the problem in using this technique when perceived risk becomes significant: a
person's subjective probability could be biased by the risk they perceive.

An aternative to the betting metaphor is the so-called fair price metaphor whereby instead of betting on the
outcome of an event, you ask yourself to put afair price on some event. For example, let's consider an author of
abook who stands to earn $30,000 in royalties if the book he wrote is successful. Further, suppose that he will
get nothing if the book fails. Now suppose the author is given the option by his publisher of taking an upfront,
guaranteed payment of $10,000, but if he accepts he forfeits any further royalty rights. The question now is,
what is the author's subjective probability, his belief, that the book will be successful ?

If the author accepts the deal, we can infer that $10,000 is greater than his expectationthat is, $10,000 =
($30,000)(p), where p is his assigned subjective probability of the book's success. Therefore, in this case his

belief that the book will be successful as expressed by pislessthan 0.33 or 33%. To get thiswe ssimply solve

for pthat is, p = $10,000/$30,000. If the author rejects the deal, he evidently feels the book has greater than a
33% chance of successthat is, his expectation is greater than $10,000.

To narrow down what the author feels the probability of success of the book actually is, we can simply ask him
what he would take up frontwe ask him what he thinksis afair price for the rights to the book. From his reply
we can calcul ate the subjective probability that he has assigned for the book's success using the formula for
expectation as before. If U isthe amount he would accept up front, the subjective probability of the book's
success, p, is simply U/$30,000.

Y ou can come up with various versions of this fair-price metaphor yourself depending on for what it isyou're
trying to estimate a subjective probability. The idea here is to eliminate any bias that might be introduced when
considering scenarios in which your own money is at risk, as in the betting technique.
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12.3 Probability Rules

Formal probability theory includes several rules that govern how probabilities are calculated. We'll go over
these rules here to lay some groundwork for the next chapter. Although we've already discussed afew of these
rules, we'll restate them again here for completeness. In the discussion that follows, we state the rules in general
terms and don't provide specific examples. We will, however, see these rules in action in the next chapter. If
you're interested in seeing specific examples of each rule, you can refer to any introductory-level book on
probability.

12.29 Rule 1
Thisrule states the probability of an event, P(A), must be areal number between 0 and 1, inclusive. Thisrule
serves to constrain the range of values assigned to probabilities. On one end of the scale we can't have a

negative probability, while on the other end the probability of an event can't be greater than 1, which implies
absolute certainty that the event will occur.

12.2.10 Rule 2

As sort of an extension of rule 1, if Srepresents the entire sample space for the event, the probability of Sequals
1. This says that because the sample space includes all possible outcomes, there is a 100% probability that one
of the outcomes therein will occur. Here, it helps to visualize the sample space and events using Venn diagrams.
Figure 12-3illustrates aVenn diagram for the sample space Sand events A and B within that sample space.

Figure 12-3. Venn diagram
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The dots represent samples taken within the space, and the relative sizes of the circlesfor A and B indicate their
relative probabilitiesmore specifically, their areas indicate their probabilities.

12.2.11 Rule 3

If the probability that an event, A, will occur is P(A) and the event that A will not occur is designated A', the
probability of the event not occurring, P(A'), is 1- P(A). Thisrule ssmply states that an event either occurs or
does not occur and the probability of this event either occurring or not occurring is 1that is, we can say with
certainty the event either will occur or will not occur. Figure 12-4 illustrates events A and Aapos, on aVenn
diagram.

Figure 12-4. P(A) versus P(A")

figs/ch12 _fig04.jpg

Clearly, event Aapos, coversall of the area within the sample space Sthat falls outside of event A.

12.2.12 Rule 4

Thisrule states that if two events A and B are mutually exclusive, only one of them can occur at a given time.
For example, in agame, the events creature is dead and creature is alive are mutually exclusive. The creature

cannot be both dead and alive at the same time. Figure 12-5 illustrates two mutually exclusive events A and B.

Figure 12-5. Mutually exclusive events

figs/ch12_fig05.jpg

Note that the areas representing these two events do not overlap. For two mutually exclusive events, A and B,
the probability of event A or event B occurring is as follows:
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figs/ch12 _ueq08.jpg

where P(A D B) isthe probability of event A or event B, the probability that one or the other occurs, and P(A)
and P(B) are the probabilities of events A and B, respectively.

Y ou can generalize this rule for more than two mutually exclusive events. For example, if A, B, C, and D are
four mutually exclusive events, the probability that A or B or C or D occursis:

figs/ch12 _ueq09.jpg

Theoretically you can generalize this to any number of mutually exclusive events.
12.2.13 Rule 5

Thisrule states that if the events under consideration are not mutually exclusive, we need to revise the formulas
discussed in rule 4. For example, in agame agiven creature can be alive, dead, or injured. Although alive and
dead are mutually exclusive, alive and injured are not. The creature can be alive and injured at the same time.
Figure 12-6 shows two nonmutually exclusive events.

Figure 12-6. Nonmutually exclusive events

figs/ch12_fig06.jpg

In this case, the areas for events A and B overlap. This means that event A can occur or event B can occur or
both events A and B can occur simultaneously. The shaded areain Figure 12-5 indicates the probability that both
A and B occur together. Therefore, to calculate the probability of event A or event B occurring in this case, we
use the following formula:

figs/ch12 ueql0.jpg

In thisformula, P(AD B) isthe probability that both A and B occur.

Y ou a'so can generalize this formula to more than two nonmutually exclusive events. Figure 12-7 illustrates
three events, A, B, and C, that are not mutually exclusive.

Figure 12-7. Three nonmutually exclusive events

figs/ch12_fig07.jpg
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To calculate the probability of A or B or C we need to calculate the probability corresponding to the shaded
region in Figure 12-7. The formulathat achievesthisis asfollows:

figs/ch12 ueqll.jpg

12.2.14 Rule 6

Thisrule states that if two events, A and B, are independentthat is, the occurrence of one event does not depend
on the occurrence or nonoccurrence of the other eventthe probability of events A and B both occurring is as
follows:

figs/ch12 ueql2.jpg

For example, two independent events in a game can be player encounters a wandering monster and player is
building a fire. The occurrence of either of these eventsisindependent of the occurrence of the other event.
Now consider another event, player is chopping wood. In this case, the event player encounters a wandering
monster might very well depend on whether the player is chopping wood. These events are not independent. By
chopping wood, the player presumably isin aforest, which increases the likelihood of him encountering a
wandering monster.

Referring to Figurel2-6, this probability corresponds to the shaded region shared by events A and B.

If events A and B are not independent, we must deal with the so-called conditional probability of these events.
The preceding formula does not apply in the conditional case. The rule governing conditional probabilitiesis so
important, especially in the context of Bayesian analysis, we're going to discussit next in its own section.
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12.4 Conditional Probability

When events are not independent, they are said to be conditional. For example, if you arrive home one
day to find your lawn wet, what is the probability that it rained while you were at work? It is possible
that someone turned on your sprinkler system while you were at work, so the outcome of your grass
being wet is conditional upon whether it rained or whether someone turned on your sprinkler. Y ou can
best solve this sort of scenario using Bayesian analysis, which we cover in the next chapter. But as
you'll seein amoment, Bayesian analysisis grounded in conditional probability.

In generd, if event A depends on whether event B occurred, we can't use the formula shown earlier in
rule 6 for independent events. Given these two dependent events, we denote the probability of A
occurring given that B has occurred as P(A[B). Likewise, the probability of B occurring given that A
has occurred is denoted as P(B|A). Note that P(A|B) is not necessarily equal to P(B|A).

To find the compound probability of both A and B occurring, we use the following formula:

figs/ch12 ueql3.jpg

Thisformula states that the probability of both dependant events A and B occurring at the sametimeis
equal to the probability of event A occurring times the probability of event B occurring given that event
A has occurred.

We can extend this to three dependent events, A, B, and C, asfollows:

figs/chl12_ueql4.jpg

Thisformula states that the probability of events A, B, and C all occurring at once is equal to the
probability of event A occurring times the probability of event B occurring given that A has occurred
times the probability of event C occurring given that both events A and B have occurred.
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Often we are more interested in the probability of an event given that some other condition or event has
occurred. Therefore, we'll often write:

figs/ch12_ueql5.jpg

Thisformula states that the conditional probability of event B occurring given that A has occurred is
equal to the probability of both A and B occurring divided by the probability of event A occurring. We

note that P(A D B) alsoisequal to P(B) P(A|B), and we can make a substitution for P(A D B) inthe
formulafor P(B|A) asfollows:

figs/ch12 ueql6.jpg

Thisisknown as Bayes rule. We'll generalize Bayes rule in the next chapter, where we'll also see some
examples.
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Chapter 13. Decisions Under UncertaintyBayesian Techniques

This chapter introduces Bayesian inference and Bayesian networks and shows how you can use these
techniquesin games. Specifically, we'll show you how to use these techniques to enable nonplayer
characters (NPCs) to make decisions when the states of the game world are uncertain. We'll also show
you how simple Bayesian models enable your computer-controlled characters to adapt to changing
situations. We'll make heavy use of probability, so if that subject is not fresh in your mind, you might
want to read Chapter 12 first and then come back to this chapter.

Before getting into the details of Bayesian networks, let's discuss a hypothetical example. Suppose
you're writing a role-playing game in which you enable players to store valuables in chests located
around the game world. Players can use these chests to store whatever they want, but they run the risk
of NPCs looting the chests. To deter looting, players can trap the chestsif they have the skill and
materials to set such traps. Now, as a game developer, you're faced with the issue of how to code NPC
thieves for them to decide whether to open a given chest that they discover.

One option isto have NPCs always attempt to open any given chest. Although ssimple to implement,
this option is not so interesting and has some undesirable consequences. First, having the NPCs always
open the chest defeats the purpose of players trapping chests as a deterrent. Second, if players catch on
that NPCs always will attempt to open a chest no matter what, they might try to exploit this fact by
trapping empty chests for the sole purpose of weakening or even killing NPCs without having to
engage them in direct combat.

Y our other option is to cheat and give NPCs absolute knowledge that any given chest is trapped (or not)
and have them avoid trapped chests. Although this might render traps adequate deterrents, it can be
viewed as unfair. Further, there's no variety, which can get boring after awhile.

A potentially better aternative is to give NPCs some knowledge, though not perfect, and to enable
them to reason given that knowledge. Further, if we enable NPCs to have some sort of memory, they
potentially can learn or adapt, thus avoiding such exploits as the trapped empty chest we discussed a
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moment ago. Welll take a closer look at this example later in this chapter. When we do, we'll use
probabilities and statistical data collected in-game as NPC memory and Bayesian models as the
inference or decision-making mechanism for NPCs.

Note that in this example, we actually can give NPCs perfect knowledge, but we introduce uncertainty
to make things more interesting. In other game scenarios, you might not be able to give NPCs perfect
knowledge because you yourself might not have it to give! For example, in afighting game you can't
know for sure what strike a player will throw next. Therefore, NPC opponents can't know either.
However, you can use Bayesian techniques and probabilities to give NPC opponents the ability to
predict the next strikethat is, to anticipate the next strikeat a success rate more than twice what
otherwise can be achieved by just guessing. We'll take a closer look at this example, and others, later in
this chapter. First, let's go over the fundamentals of Bayesian analysis.
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13.1 What is a Bayesian Network?

Bayesian networks are graphs that compactly represent the relationship between random variables for a
given problem. These graphs aid in performing reasoning or decision making in the face of uncertainty.
Such reasoning relies heavily on Bayes' rule, which we discussed in Chapter 12. In this chapter, we use

simple Bayesian networks to model specific game scenarios that require NPCs to make decisions given
uncertain information about the game world. Before looking at some specific examples, let's go over
the details of Bayesian networks.

13.2.1 Structure

Bayesian networks consist of nodes representing random variables and arcs or links representing the
causal relationship between variables. Figure 13-1 shows an example Bayesian network. Imagine a
game in which an NPC can encounter a chest that can be locked or unlocked. Whether it islocked
depends on whether it contains treasure or whether it is trapped.

Figure 13-1. Example Bayesian network

[Apped @
.‘_‘l
..";'
[easiim @
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In this example, the nodes labeled T, Tr, and L represent random variables (often referred to as events
in the probabilistic sense). The arrows connecting each node represent causal relationships. Y ou can
think of nodes at the tail of the arrows as parents and nodes at the head of the arrows as children. Here,
parents cause children. For example, Figure 13-1 shows that Locked is caused by Trapped or Treasure
or both Trapped and Treasure. Y ou should be aware that this causal relationship is probabilistic and not
certain. For example, the chest being Trapped does not necessarily always cause the chest to be
Locked. There's acertain probability that Trapped might cause Locked, but it's possible that Trapped
might not cause L ocked.

Y ou measure the strength of the connections between events in terms of probabilities. Each node has an
associated conditional probability table that gives the probability of any outcome of the child event
given all possible combinations of outcomes of its parents. For our purposes, we're going to consider
discrete events only. What we mean here is that any event, any variable, can take on any one of a set of
discrete values. These values are assumed to be mutually exclusive and exhaustive. For example,

L ocked can take on values of TRUE or FALSE.

L et's assume that Trapped can be either TRUE or FALSE. Let's also assume Treasure can be either
TRUE or FALSE. If Locked can take on the values TRUE or FAL SE, we need a conditional
probability table for Locked that gives the probability of Locked being TRUE given every combination
of values for Trapped and Treasure, and the probability of Locked being false given every combination
of values for Trapped and Treasure. Table 13-1 summarizes the conditional probability table for

Locked in this case.

Table 13.1. Example conditional probability table

Probability of L ocked

Valueof Trapped Valueof Treasure L =TRUE L =FALSE
T T pL ) p(~L(T )
T F pLr -Tr) p(~L T ~Tr)
F T pL~T ) p(~L |~ )
F F PLT =T P(~L T ~Tr)

In thistable, the first two columns show all combinations of values for Trapped and Treasure. The third
column shows the probability that Locked=TRUE given each combination of values for Trapped and
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Treasure, while the last column shows the probability that L ocked=FAL SE given each combination of
values for Trapped and Treasure. The tilde symbol, ~, as used here indicates the conjugate of a binary
event. If P(T) isthe probability of Trapped being equal to TRUE, P(~T) is the probability of Trapped
being equal to FALSE. Note that each of the three events considered here are binary in that they each
can take on only one of two values. Thisyieldsthe 2 x 4 set of conditional probabilities for Locked, as
shownin Table 13-1.

As the number of possible values for these events gets larger, or as the number of parent nodes for a
given child node goes up, the number of entriesin the conditional probability table for the child node
increases exponentially. Thisis one of the biggest deterrents for using Bayesian methods in games. Not
only does it become difficult to determine all of these conditional probabilities, but also as the size of
the network increases, the computational requirements become prohibitive for real-time games.
(Technically Bayesian networks are considered NP-hard, which means they are computationally too
expensive for large numbers of nodes.)

Keep in mind that every child node will require a conditional probability table. So-called root nodes,
nodes that don't have parentsevents Trapped and Treasure in this exampledon't have conditional
probability tables. Instead, they have what are called prior probability tables which contain the
probabilities of these events taking on each of their possible values. The term prior used here means
that these are probabilities for root nodes before we make adjustments to the probabilities given new
information somewhere else in the network. Updated probabilities given new information are called
posterior probabilities. We'll see examples of this sort of calculation |ater.

The complexity we discussed hereis amgor incentive for keeping Bayesian networks for use in games
simple and specific. For example, theoretically you could construct a Bayesian network to control every
aspect of an NPC unit. Y ou could have nodes in the network representing decisions to chase or evade,
and still other nodes to represent turn left, turn right, and so on. The trouble with this approach is that
the networks become incredibly complex and difficult to set up, solve, and test. Further, the required
conditional probability tables become so large that you'd have to resort to some form of training to
figure them out rather than specify them. We don't advocate this approach.

Aswe mentioned in Chapter 1, and as welll discussin Chapter 14 on neural networks, we recommend
that you use Bayesian methods for very specific decision-making problems and leave the other Al tasks
to other methods that are better suited for them. Why use a Bayesian network to steer a chasing unit
when reliable, easy, and robust deterministic methods are available for that task? Use the Bayesian
network to decide whether to chase or evade and let other algorithms take over to handle the actual
chasing or evading.

13.2.2 Inference

Y ou can make three basic types of reasoning or inference using Bayesian networks. For this discussion,
we'll refer to the simple networks shown in Figure 13-2.
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Figure 13-2. Simple networks
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The network on the left is called a causal chain, in this case a three-node chain. The network on the
upper right is called acommon cause network. It's also more commonly referred to as a naive Bayesian
network or Bayesian classifier. The network on the lower right is called a common effect network. The
three basic types of reasoning are as follows:

©
wellc

Diagnostic reasoning

Diagnostic reasoning is probably the most common type of reasoning using Bayesian networks.
This sort of reasoning, along with Bayesian classifier networks, is used heavily in medical
diagnostics. For example, referring to the network on the upper right in Figure 13-2, A would be

adisease and B and C symptoms. Given the symptoms presented, the doctor could make
inferences as to the probability of the disease being present.

Predictive reasoning
Predictive reasoning involves making inferences about effects given information on causes. For
example, referring to the network on the left in Figure 13-2, if we know something about A,

which causes B, we can make some inferences about the probability of B occurring.

Explaining away
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Explaining away involves common cause networks, as shown on the lower right in Figure 13-2.
Let's assume the nodes are all binarythat is, true or false. If we know C is true and we know A
and B cause C, given that C istrue we would raise the probability that A and B also aretrue.
However, say we later learn that B is true; this implies that the probability of A occurring
actually decreases. This brings up some interesting characteristics of Bayesian networksnamely,
independence and conditional dependence.

The structure on the lower right in Figure 13-2 implies that events A and B are independent of each

other. There's no causal link between A and B. However, if we learn something about C and then
something about A or B, we do affect the probability of A or B. In our example, learning that C istrue
and that B also istrue lowers the probability that A istrue even though A and B are independent events.

Now consider the network shown on the left in Figure 13-2. In this case, we see that A causes B which

in turn causes C. If we learn the state of B, we can make inferences on the state of C irrespective of the
state of A. A has no influence on our belief of event C if we know the state of B. In Bayesian lingo,
node B blocks A from affecting C.

Another form of independence present in Bayesian networks is d-separation. Look back at the network
shown in Figure 13-1. Instead of one node blocking another node, as in the previous discussion, you

could have a situation in which a node blocks clusters of nodes. In Figure 13-1, C causes D and D

causes E and F, but A and B cause C. However, if we learn the state of C, A and B have no effect on D
and thus no effect on E and F. Likewise, if we learn something about the state of D, nodes A, B, and C
become irrelevant to E and F. Identifying these independence situationsis helpful when trying to solve
Bayesian networks because we can treat parts of a network separately, simplifying some computations.

Actually solving, or making inferences, using Bayesian networks involves calculating probabilities
using the rules we discussed in Chapter 12. We're going to show you how to do thisfor simple

networks in the examples that follow. We should point out, though, that some general -purpose methods
for solving complex Bayesian networks we aren't going to cover. These networks include the popular
message passing algorithm (see the second reference cited at the end of this chapter) aswell as other
approximate stochastic methods. Many of these methods don't seem appropriate for real-time games
because computation requirements are large. Here, again, we recommend that you keep Bayesian
networks simple if you're going to use them in games. Of course, you don't have to listen to us, but by
keeping them simple, you can use them where they are best suited for specific tasks and let other
methods do their job. Thiswill make your testing and debugging job easier because you can isolate the
complicated Al code from the rest of your Al code.
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13.2 Trapped?

Let's say you're writing a game in which NPCs can loot chests potentialy filled with players' treasure and other
valuables. Players can put their valuables in these chests for storage and they have the option of trapping the
chests (if they have the skill) along with the option of locking the chests. NPCs can attempt to oot such chests
as they find them. An NPC can observe the chest and determine whether it islocked, but he can't make a direct
observation as to whether any given chest is trapped. The NPC must decide whether to attempt to loot the chest.
If successful, he keeps the loot. If the chest is trapped, he incurs damage, which could kill him. We'll use a
simple Bayesian network along with some fuzzy rules to make the decision for the NPC.

The Bayesian network for thisis among the simplest possible. The network is atwo-node chain, asillustrated in
Figure 13-3.

Figure 13-3. Two-node chain

@

Each event, Trapped and Locked, can take on one of two discrete states: true or false. Therefore, we have the
following probability tables, shown in Tables 13-2 and 13-3, associated with each event node.

Table 13.2. Trapped probabilities

P(Trapped)
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True False

pT (1' pT)

Table 13.3. Locked conditional probabilities

P(Locked | Trapped)
Trapped True False

True Pt (I-p.0)

False P f (1-p,1)

In Table 13-2, Pr isthe probability that the chest is trapped, while (1-pT) is the probability that the chest is not

trapped. Table 13-3 shows the conditional probabilities that the chest islocked given each possible state of the
chest being trapped. In Table 13-3, Pt represents the probability that the chest islocked given that it is trapped,;

p, £ represents the probability that the chest islocked given that it is not trapped; (1-th) represents the
probability that the chest is not locked given that it is trapped; and (1—po) represents the probability that the
chest is not locked given that it is not trapped.

13.2.3 Tree Diagram

Sometimes it's helpful to look at problemsin the form of tree diagrams as well. The tree diagram for this
problem isvery simple, as shown in Figure 13-4.

Figure 13-4. Tree diagram
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Looking at thistree diagram, it is clear that a chest can be locked in two possible ways and can be unlocked in
two possible ways. Each branch in the tree has a corresponding probability associated with it. These are the
same probabilities shown in Tables 13-2 and 13-3. This diagram illustrates the compactness of Bayesian
network-style graphs as opposed to tree diagrams for visualizing causal relationships. Thisisimportant for more
complicated problems with greater numbers of events and possible states for each event. In such cases, tree
diagrams can become unwieldy in terms of visualizing the relationships between each event.

13.2.4 Determining Probabilities

We can determine the probabilities we needthose shown in Tables 13-2 and 13-3by gathering statistics during
the game. For example, every time an NPC encounters a chest and opens it, the frequencies of the chest being
trapped versus not trapped can be updated. The NPC effectively learns these probabilities through experience.

Y ou can have each NPC learn based on its own experience, or you can have groups of NPCs learn collectively.
Y ou aso can collect statistics on the frequencies of chests being locked given they are trapped and locked given
they are not trapped to determine the conditional probabilities. Because we are using discrete probabilities and
because each event has two states, you'll have to develop a four-element conditional probability table aswe
discussed earlier. In agame, it is plausible that any given chest can exist in any one of the four states we
illustrated in Figure 13-4. For example, a player can put his valuablesin a chest and lock it without trapping it
because he might not have the skill or materials required to set traps. Or a player can possess skill and materials
to trap the chest as well aslock it, and so on. Therefore, we can't assume that a chest always will be trapped or
aways will be locked, and so forth.

13.2.5 Making Inferences

In this example, we're going to use diagnostic inference. What we aim to do is answer the question, given an
NPC encounters a chest what is the probability that the chest is trapped? If the NPC does not observe that the
chest islocked, the probability that the chest istrapped is simply py. However, if the NPC observes the state of
the chest being locked, we can revise the probability of the chest being trapped given this new information.
We'll use Bayes ruleto make this revision. Bayes rule yields the following:
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P(T|L) = P(L|T) P(T)/P(L)

Here P(T) represents the probability that Trapped=TRUE, P(L) represents the probability of Locked=TRUE, and
P(L|T) represents the probability that Locked=TRUE given that Trapped=TRUE. In English, Bayes rule for this
problem says that the probability that the chest is trapped given that the chest islocked is equal to the
probability that the chest islocked given that it is trapped times the probability that the chest is trapped divided
by the probability that the chest islocked. P(L|T) is taken from the conditional probability table. P(T) alsois
known from the probability table. However, we must calculate P(L)the probability that the chest is locked.
Looking at the tree diagram in Figure 13-4, we see that the chest can be locked in two ways: 1) given the chest
istrapped; or 2) given the chest is not trapped. We can use probability rule 4 from Chapter 12 to determine P(L).
In thiscase, P(L) isasfollows:

P(L) = P(L|T) P(T) + P(L|~T) P(~T)

Again, in words, this says that the probability of the chest being locked is equal to the probability of the chest
being locked given that it is trapped times the probability of the chest being trapped plus the probability of the
chest being locked given that it is not trapped times the probability of the chest being not trapped. Here the tilde
symbol, ~, indicates the conjugate state. For example, if P(T) represents the probability that the event
Trapped=TRUE, P(~T) represents the probability that the event Trapped=FALSE.

Notice that we use rule 6 from Chapter 12 to determine the probability of Locked=TRUE and
Trapped=TRUEthat is, P(L|T) P(T). The same rule applies when determining the probability of Locked=TRUE
and Trapped=FALSEthat is, P(L|~T) P(~T). Thisaso is the conditional probability formulawe saw in Chapter
12 in the section "Conditional Probability."

Let's consider some real numbers now. Say a given NPC in your game has experience opening 100 chests and of
those 100 chests 37 were trapped. Of the 37 trapped chests, 29 were locked. Of the 63 chests that were not
trapped, 18 were locked. With this information we can calculate the following probabilities:

P(T) = 37/100 = 037
P(~T) = 63/100 = 063
P(LIT) = 29/37 = 0./8
P(L|~T) = 18/63 = (.29
Given these probabilities, we can see that there's a 37% chance that a given chest is trapped. Now, if the NPC

also notices that the chest islockedthat is, Locked=TRUEthe probability that the chest is trapped isrevised as
follows:

P(T|L) = (0.78) (0.37) /{(0.78) (0.37) + (0.29) (0.63)} = 0.61
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Thus, the observation that the chest isindeed locked increases the NPC's belief that the chest is trapped. In this
case, P(T) goes from 37% to 61%. In Bayesian network lingo, the 37% probability is the prior probability, while
the revised probability of 61% is the posterior probability.

Now suppose the NPC observes that the chest was not locked. In this case, we have:

P(T|~L) = P(~L|T) P(T)/P(~L)

where;

P(~LIT)=1-078 =022
P(T) = 037 (as before)
P(~L)=1—P(L) =053

therefore:
P(T|~L) = (0.22) (037)/{0.53) = 015
Thisimplies that the chest isless likely to be trapped because the NPC was able to observe that it was unlocked.

Now that you have these probabilities, how can your NPC use them to decide whether to open the chest? Let's
go back to the first scenario in which the NPC observed that the chest was locked and the posterior probability
of the chest being trapped was determined to be 0.61. Does 61% imply a high probability that the chest is
trapped, or perhaps a moderate probability, or maybe even alow probability? We could set up some Boolean
logic if-then rules to decide, but clearly thisis agood job for fuzzy rules, as we discussed in detail in Chapter 10.

13.2.6 Using Fuzzy Logic

We can set up fuzzy membership functions such as the ones shown in Figure 13-5 for the probability that the
chest is trapped.

Figure 13-5. Trapped membership functions
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Low Medium High

Probability trpped= TRUE

Then we can use fuzzy rules to determine what to do. For example, we can have rules to account for conditions
and actions such as the following:

. If High Probability Trapped then don't open chest.
. If Low Probability Trapped then open chest.

Even better, however, isto consider other relevant information as well. For example, presumably atrapped
chest causes some damage to the NPC if it istriggered; therefore, it seems reasonable to consider the NPC's
health in his decision as to whether to open the chest given his belief that it is trapped. Taking this approach, we
can set up rules such as the following:

. If High Probability Trapped and Low Health then don't open.

. If Low Probability Trapped and High Health then open.

. If Medium Probability Trapped and High Health then open.

. If Medium Probability Trapped and Moderate Health then don't open.

These are just afew examples of the sort of rules you can set up. The benefit of using this Bayesian approach in
conjunction with fuzzy rulesisthat you can give the NPCs the ability to make rational decisions without having
to cheat. Further, you give them the ability to make decisions in the face of uncertainty. Moreover, NPCs can
adapt to players actions using this approach. For example, initially players can lock their chests without
trapping them. However, proficient thief NPCs might learn to loot aggressively given the low risk of being hurt
while opening a chest. If players start trapping their chests, NPCs can adapt to be less aggressive at looting and
more selective as to which chests they open. Further, players might attempt to bluff NPCs by locking chests but
not trapping them, or vice versa, and the NPC will adapt accordingly. This brings up another possibility: what if
playerstry to fool NPCs by locking and trapping chests without putting anything of value in the chests? Players
might do this to weaken NPCs before attacking them. Because stealing loot is the incentive for opening a chest,
it would be cool to allow NPCsto assess the likelihood of the chest being trapped and it containing loot. NPCs
could take both factors into account before deciding to open a chest. We'll consider this case in the next example.
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13.3 Treasure?

In this next example, we're going to build on the simple Bayesian network we used in the previous example.
Specifically, we want to allow the NPC to consider the likelihood of a chest containing treasure in addition to
the likelihood of it being trapped before deciding whether to open it. To thisend, let's add a new event node to

the network from the previous problem to yield a three-node chain. The new event node is the Treasure
eventthat is, Treasure is TRUE if the chest contains treasure and Treasure is FALSE if it does not. Figure 13-6

shows the new network.

Figure 13-6. Three-node chain

o —)—

In this case, we're assuming that whether a chest islocked is an indication of the state of the chest being trapped
and the state of the chest being trapped is an indication of whether the chest contains treasure.

Each eventTreasure, Trapped, and Lockedcan take on one of two discrete states. true or false. Therefore, we
have the following probability tables, Tables 13-4, 13-5 and 13-6, associated with each event node.

Table 13.4. Treasure probabilities

P(Treasure)

http://ebooks.servegame.com/oreaiforgamdev475b/ch13_sectl_003.htm (1 of 5)7/24/05 1:25:58 AM


http://ebooks.servegame.com/
http://ebooks.servegame.com/oreaiforgamdev475b/content.htm
http://ebooks.servegame.com/book.htm?oreaiforgamdev475b

Al for Game Developers

True False

pTr (1- pTI’)

Table 13.5. Trapped conditional probabilities

P(Trapped | Treasure)
Treasure True False

True Prt (1-pp0)

False P (1-py)

Table 13.6. Locked conditional probabilities

P(Locked | Trapped)
Trapped True False

True Pt (I-p.v)

False P f (1-p,1)

Notice that in this case, the table for the probabilities of the chest being trapped is a conditional probability table
dependent on the states of the chest containing treasure. For the Locked event, the table is basically the same as

In the previous example.

13.2.7 Alternative Model

We should point out that the model shown in Figure 13-6 isasimplified model. It is plausible that a chest can be
locked given that it contains treasure independent of whether the chest istrapped. Thisimplies acausal link

from the Treasure node to the Locked node aswell. Thisisillustrated in Figure 13-7.
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Figure 13-7. Alternative model

In this alternative case, you also have to set up conditional probabilities of the chest being locked given the
various states of it containing treasure. Although you easily can do this and still solve the network by hand
calculations, we're going to stick with the simple model in our discussion.

13.2.8 Making Inferences

We're going to stick with the model shown in Figure 13-6 for the remainder of this example. To determine the
probability that the chest istrapped given it islocked, we proceed in a manner similar to the previous example.
However, now we have conditional probabilities for the Trapped eventnamely, the probabilities that the chest is
trapped given that it contains treasure and that it does not contain treasure. With thisin mind, we apply Bayes
rule asfollows:

P(TIL) = P(L|T) P(T)/P(L)

P(L|T), the probability that the chest islocked given it is trapped, comes from the conditional probability table
for the Locked event. Thistime, however, P(T) is not given, but we can calculate it as follows:

P(T) = P(T|Tr) P(Tr) + P(T| ~ Tr)} P {~ Tr)

In words, the probability of the chest being trapped is equal to the probability of it being trapped given it
contains treasure plus the probability it is trapped given it does not contain treasure. Now, P(L) isasfollows:

P(L) = P(L|T) P(T) 4+ P(L|~T) P(~T)

We've already calculated P(T), and P(~T) issimply 1-P(T), so all we need to do now islook up P(L|T) and P(L|
~T) in the conditional probability table for Locked to determine P(L). Then we can substitute these valuesin
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Bayes rule to determine P(T |L).
To find the probability of treasure given that the chest is locked, we need to apply Bayes rule again asfollows:
P(Tr|L) = P{L|Tr) P(Tr)/P(L)

Notice, however, that Locked is blocked from Treasure given Trapped. Therefore, we can write P(L|Tr) as
follows:

P(L|Tr) = P(L|T) P(T|Tr} + P(L| ~T) Pt~ T|Tr)
Thisisthe case because our simple model assumes that a trapped chest causes a locked chest.

WEe've already calculated P(L) from the previous step, and P(Tr) is given, so we have everything we need to
determine P(Tr |L).

13.2.9 Numerical Example

Let's consider some numbers now. Say agiven NPC in your game has experience opening 100 chests, and of
those, 50 of them contained treasure. Out of these 50, 40 of them were trapped and of these 40 trapped chests,
28 were locked. Now, of the 10 untrapped chests, three were locked. Further, of the 50 chests containing no
treasure, 20 were trapped. With thisinformation, we can calculate the following probabilities:

bl

P(Tr) = 350/100 = 0.
Pé~Tr) = 50/100 = (.
P({T|Tr) = 40/50 = (0.8

P(T|~Tr) = 20/50 = 0.4
Pi~T|Tr) = 10/50 = 0.2
Pi~T|~Tr) = 30/50 = 0.6
P{L|T) = 28/40 = 0.7
P(L|~T)=3/10=0.3
P~L|T) = 12/40 = 0.3
PL|~T)=7/10=0.3

i

Let's assume your NPC approaches a chest. Without observing whether the chest is locked, the NPC would
believe that there's a 50% chance that the chest contained treasure. Now let's assume the NPC observes that the
chest islocked. What is the probability that the chest is trapped and what is the probability that it contains
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treasure? We can use the formulas shown earlier to determine these probabilities. In this case, we have:

figs/ch13 ueql4.jpg

Now we can find P(Tr |L) asfollows:

figs/ch13_ueql5.jpg

In this example, we see that the observation of the chest being locked raises the probability of the chest being
trapped from 60% to 78%. Further, the probability of the chest containing treasure is raised from 50% to 57%.

With thisinformation, you can use fuzzy logic in amanner similar to the previous example to decide for the
NPC whether to open the chest. For example, you can set up fuzzy membership functions for the events that the
chest istrapped and has treasure and then construct a set of rules along these lines:

. If High Probability Trapped and High Probability Treasure and Low Health then don't open.
. If Low Probability Trapped and High Probability Treasure and not Low Health then open.

These are just a couple of the cases you'd probably want to include in your rules set. Using this approach, your
NPC can make decisions considering several factors, even in the face of uncertainty.
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13.4 By Air or Land

For this next example, let's assume you're writing awar simulation in which the player can attack the computer-
controlled army by land, by air, or by land and air. Our goal here isto estimate the chances of the player
winning a battle given how he chooses to attack. We then can use the probabilities of the player winning to
determine what sort of targets and defense should be given higher priority by the computer-controlled army. For
example, say that after every game played you have the computer keep track of who won, the player or
computer, along with how the player attackedthat is, by air, land, or both air and land. Y ou then can keep a
running count of these statistics to determine the conditional probability of the player winning given his attack
mode. Suppose your game finds that the player is most likely to win if he attacks by air. Perhaps he found a
weakness in the computer's air defenses or has come up with some other winning tactic. If thisisthe case, it
would be wise for the computer to make construction of air defenses a higher priority. Further, the computer
might give enemy aircraft production facilities higher target priority. Such an approach would allow the
computer to adjust its defensive and offensive strategies as it learns from past battles.

13.2.10 The Model
The Bayesian network for this simple example looks like that shown in Figure 13-8.

Figure 13-8. Attack mode network

figs/ch13 _fig08.jpg

Notice that we have two causes for the player-winning result: air and land attacks. We assume these events are
not mutually exclusivethat is, the player can make aland attack, or an air attack, or both. Each event node can
take on one of two values: true or false. For example, Air Attack could be true or false,Land Attack could be true
or false, and so on.
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If instead we allowed only aland or air attack but not both, the network would look like that shown in Figure 13-
9.

Figure 13-9. Alternative attack network

figs/ch13 _fig09.jpg

In this case, Attack Mode could take on values such as Air Attack or Land Attack. Here, the values are mutually
exclusive. For this discussion, welll stick with the more general case shown earlier.

13.2.11 Calculating Probabilities

Aswe mentioned earlier, we'll have to collect some statistics to estimate the probabilities we're going to need
for our inference calculations. The statistics we need to collect as the gameis played over and over are as
follows:

. Total number of games played, N

. Total number of games won by player, Nw

. Number of games won by player in which he launched an air attack only, Npa

. Number of games won by player in which he launched aland attack only, Npl

. Number of games played in which the player launched an air attack, Na

. Number of games played in which the player launched aland attack, NI

. Number of games won by player in which he launched an attack by air and land, Npla

We can use this data to calculate the following probabilities:

figs/ch13_ueql6.jpg

The first two probabilities are the probabilities that the player launches an air attack and the player launches a
land attack, respectively. The last four probabilities are conditional probabilities that the player wins the game
given al combinations of the Air Attack and Land Attack events. In these formulas, L represents Land Attack, A
represents Air Attack, and Pw represents Player Wins. Note also that we assume the probability of the player
winning agameis0 if he does not launch any attack.

With this information, we can determine the probability of the player winning a new game. To do this, we sum
the probabilities of al the waysin which aplayer can win. In this case, the player can win in any of four
different ways. These calculations use the joint probability formulafor each scenario. The formulais as follows:

figs/ch13_ueql7.jpg
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The possible ways in which the player can win are summarized in Table 13-7, along with all relevant probability
data.

Table 13.7. Conditional probability table for Player Wins

Air Attack Land Attack  ppw| AlL) P(Pw) Normalized P(Pw)
P(A) = N/N P(L) = N/N N1/ Nw NN N/ Ny N2 P(Pw)/=P(Pw)
P(A) = N/N P(~L)=1-P(L)  Npg/Nw (NaNpa/NyN)(1-Ni/N) P(Pw)/ZP(Pw)
P(~A) = 1-P(A)  P(L)=N/N Npi/Nw (N|Np/NyN)(1-Na/N) P(PW)/=P(PW)
P-A)=1-PA)  P(-L)=L-PL) O 0 0
>P(Pw) 10

Thistable looks alittle complicated, but it's redly fairly straightforward. The first two columns represent the
possible combinations of state for Air Attack and Land Attack. The first column contains the probabilities for
each state of Air Attacktrue or falsewhile the second column contains the probabilities for each state of Land
Attacktrue or false. The third column shows the conditional probability that Player Wins = TRUE given each
combination of statesfor Air Attack and Land Attack. The fourth column, P(Pw), represents the joint probability
of the events Air Attack, Land Attack, and Player Wins. Y ou find each entry in this column by simply
multiplying the values contained in the first three columns and placing the product in the fourth column.
Summing the entries in the fourth column yields the marginal probability of the player winning.

Take alook at the fifth column. The fifth column contains the normalized probabilities for Player Wins. Y ou
find the entriesin this column by dividing each entry in the fourth column by the sum of the entriesin the fourth
column. This makes the sum of all the entriesin the fifth column add up to 1. (It's like normalizing a vector to
make a vector of unit length.) The results contained in the fifth column basically tell us which combination of
states of Air Attack and Land Attack is most likely given that the player wins.

13.2.12 Numerical Example

Let's consider some numbers. We'll assume we have enough statistics to generate the probabilities shown in the

first three columns of Table 13-8.

Table 13.8. Example conditional probability table for Player Wins
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Air Attack Land Attack pewial L) P(Pw) Normalized P(Pw)
P(A) = 0.6 P(L) = 0.4 0.167 0.04 0.15
P(A) = 0.6 P(~L) = 0.6 05 0.18 0.66
P(~A) = 0.4 P(L) = 0.4 0.33 0.05 0.2
P(~A) = 0.4 P(-L) = 0.6 0 0 0
0.27 1.0

These numbers indicate that the player wins about 27% of the games played. (Thisis taken from the sum of the
fourth column.) Also, inspection of the fifth column indicates that if the player wins, the most probable mode of
attack isan air attack without aland attack. Thus, it would be prudent in this example for the computer to give
priority to its air defense systems and to target the player's aircraft construction resources.

Now let's assume that for a new game, the player will attack by air and we want to find the probability that he
will win in this case. Our probability table now looks like that shown in Table 13-9.

Table 13.9. Revised probability table

Air Attack Land Attack p(pwlAnL) P(Pw) Normalized P(Pw)
P(A)=1.0 P(L) =04 0.167 0.07 0.18
P(A)=1.0 P(~L) =0.6 0.5 0.3 0.82
P(~A) =0.0 P(L) =04 0.33 0.00 0.0
P(~A) =0.0 P(~L) =0.6 0 0 0
0.37 1.0

All we've done hereis replace P(A) by 1.0 and P(~A) by 0.0 and recalculate the fourth and fifth columns. In this
case, we get anew marginal probability that the player wins reflecting our assumption that the player attacks by
air. Here, we see the probability that the player wins increases to 37%. Moreover, we see that if the player wins,
there's an 82% chance he won by launching an air attack. This further reinforces our conclusion earlier that the
computer should give priority to air defenses and target the player's air offensive resources. We can make
further what-if scenariosif we want. We can, for example, set P(L) to 1.0 and get a new P(Pw) corresponding to
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an assumed |and attack, and so on.
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13.5 Kung Fu Fighting

For our final example we're going to assume we're writing a fighting game and we want to try to predict
the next strike the player will throw. This way, we can have the computer-controlled opponentstry to
anticipate the strike and defend or counter accordingly. To keep things simple, we're going to assume
the player can throw one of three types of strikes: punch, low kick, or high kick. Further, we're going to
keep track of three-strike combinations. For every strike thrown we're going to calculate a probability
for that strike given the previous two strikes. This will enable us to capture three-strike combinations.

Y ou easily can keep track of more, but you will incur higher memory and cal culation costs because
you'll end up with larger conditional probability tables.

13.2.13 The Model

The Bayesian network we're going to use for this example is shown in Figure 13-10.

Figure 13-10. Strike network

figs/ch13_figl0jpg

In this model, we call the first strike in the combination event A, the second strike event B, and the
third strike event C. We assume that the second strike thrown, event B, in any combination is
dependent on the first strike thrown, event A. Further, we assume that the third strike thrown, event C,
Is dependant on both the first and second strikes thrown, events A and B. Combinations can be
anythingpunch, punch, high kick; or low kick, low kick, high kick; and so on.

13.2.14 Calculating Probabilities

Ordinarily we would need to calculate probabilities for A and conditional probabilitiesfor B given A,
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and conditional probabilities for C given A and B. However, in this example we're always going to
observe A and B rendering their prior probabilitiesirrelevant. Therefore, we need only calculate
conditional probabilities for C given every combination of A and B. Because three states exist for each
strike event A and B, we'll have to track nine possible combinations of A and B.

WEe'll again take afrequency approach to determining these conditional probabilities. After every strike
thrown by the player, we'll increment a counter for that strike given the two prior strikes thrown. Well
end up with a conditional probability table that looks like the one shown in Table 13-10.

Table 13.10. Conditional probability table for strikes thrown

Probability of Strike C being:

Strike A Strike B Punch Low Kick High Kick
Punch Punch Poo Po1 Po2
Punch Low Kick P10 P11 P12
Punch High Kick P20 P21 P22
Low Kick Punch P30 P31 P32
Low Kick Low Kick Pao Pa1 P
Low Kick High Kick Pso P51 Ps2
High Kick Punch Pso Pe1 Ps2
High Kick Low Kick P70 P71 P72
High Kick High Kick Pso Pg1 Ps2

This table shows the probability of strike C taking on each of the three valuespunch, low kick, or high
kickgiven every combination of strikesthrown in A and B. The probabilities shown here are
subscripted with indices indicating rows and columns to alookup matrix. We're going to use these
indices in the example code we'll present shortly.

To calculate these probabilities, we need to keep track of the total number of strikes thrown. We then

can calculate probabilities such as these:
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These are just afew examples; we can calculate all the conditional probabilitiesin this manner. In these
equations, N represents the number of strikes thrown and N with a subscript represents the number of a
particular strike thrown given previously thrown strikes. For example, Nynch-punch-punch IS the number

of times A, B, and C all equal punch.

In practice you don't have to store probabilities; the frequencies are sufficient to use to calculate
probabilities when required. In this case, welll store the frequencies of strike combinationsina9x 3
matrix. This matrix will represent counters for all outcomes of C corresponding to al nine
combinations of A and B. W€l also need a nine-element array to store countersfor all nine
combinations of A and B.

13.2.15 Strike Prediction

Now, to make a prediction for the next strike, C, look at which two strikes, A and B, were thrown most
recently and then look up the combination in the conditional probability table for C. Basically, use A
and B to establish which row to consider in the conditional probability matrix, and then ssimply pick the
strike for C that has the highest probability. That is, pick the column with the highest conditional
probability.

We've put together a little example program to test this approach. We have a window with three buttons
on it corresponding to punch, low kick, and high kick. The user can press these in any order to simulate
fighting moves. As he throws these strikes, the conditional probabilities we discussed earlier are
updated and a prediction for the next strike to be thrown is made. Example 13-1 shows the core

function that performs the calculations for this program.

Example 13-1. Strike prediction

TStri kes ProcessMove(TStri kes nove)

i nt I

N++;

I f(nove == Prediction) NSuccess++;

i f((AB[ 0] == Punch) && (AB[1l] == Punch)) i = 0;

i f((AB[0] == Punch) && (AB[1l] == LowKick)) i = 1;

i f((AB[ 0] == Punch) && (AB[1l] == HighKick)) i = 2;

i f((AB[0] == LowKick) && (AB[1l] == Punch)) i = 3;

i f((AB[0] == LowKick) && (AB[1l] == LowKick)) i = 4;
i f((AB[0] == LowKick) && (AB[1l] == HighKick)) i = b5;
i f((AB[ 0] == HighKick) && (AB[1l] == Punch)) i = 6;

i f((AB[0] == HighKick) && (AB[1l] == LowKick)) i = 7;
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i f((AB[0] == HighKick) && (AB[1l] == HighKick)) i = 8;
I f(nmove == Punch) | = 0;

I f(nmove == LowKi ck) | = 1;

I f(nmove == HighKick) | = 2;

NAB[ i ]| ++;

NCAB[i][]] ++;
AB[ 0] = AB[1];
AB[ 1] = nove;

i f((AB[0] == Punch) && (AB[1] == Punch)) i = 0;

i f ((AB[0] == Punch) && (AB[1] == LowkKick)) i = 1;

i f ((AB[0] == Punch) && (AB[1] == HighKick)) i = 2;

i f((AB[0] == LowkKick) & (AB[1l] == Punch)) i = 3;

i f ((AB[0] == LowKi ck) && (AB[1] == LowKick)) i = 4;

i f ((AB[0] == LowKick) && (AB[1] == HighKick)) i = 5;
i f ((AB[0] == Hi ghKi ck) && (AB[1] == Punch)) i = 6;

i f ((AB[0] == HighKick) & (AB[1] == LowKick)) i = 7;
i f ((AB[0] == HighKick) & (AB[1] == HighKick)) i = 8;

ProbPunch = (double) NCAB[i][0] / (double) NAB[i];
ProbLowKi ck = (double) NCAB[i][1l] / (double) NAB[i];
Pr obHi ghKi ck = (double) NCAB[i][2] / (double) NAB[i];
I f ((ProbPunch > ProbLowKi ck) &&
(ProbPunch > ProbHi ghKi ck))
return Punch;
I f ((ProbLowKi ck > ProbPunch) &&
(ProbLowKi ck > ProbHi ghKi ck))
return LowKi ck;
I f ((ProbH ghKick > ProbPunch) &&
(ProbH ghKi ck > ProbLowKi ck))
return Hi ghKi ck;
return (TStrikes) rand() % 3; // Last resort

This function takes a TStrikes variable called move as asingle parameter. TStrikesis simply an
enumerated type defined as shown in Example 13-2.

Example 13-2. TStrikes

enum TStri kes {Punch, LowKick, Hi ghKick};

The move parameter represents the most recent strike thrown by the player. The ProcessMove function
also returns a value of type TStrikes representing the predicted next strike to be thrown by the player.
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13.2.1 Bookkeeping

Upon entering ProcessMove, the global variable, N, isincremented. N represents the total number of
strikes thrown by the player. Further, if the most recently thrown strike, move, is equal to the
previoudly predicted strike, Prediction, the number of successful predictions, NSuccess, gets
Incremented.

The next task performed in ProcessMove is to update the conditional probability table given the most
recently thrown strike, move, and the two preceding strikes stored in the two-element array AB. AB is
defined as shown in Example 13-3.

Example 13-3. Global variables

i nt NAB[ 9] ;

i nt NCABI[ 9] [ 3] ;
TStrikes AB[ 2] ;

doubl e Pr obPunch;

doubl e Pr obLowKi ck;
doubl e Pr obHi ghKi ck;
TStri kes Pr edi cti on;

TStri kes RandonPr edi cti on;
i nt N;

i nt NSuccess;

Because the conditional probability tableis stored in a9 x 3 array, NCAB, we need to find the
appropriate row and column for the entry with which we'll increment given the most recent strike and
the previous two strikes. Calling NCAB a conditional probability table is not exactly correct. We don't
store probabilities. Instead we store frequencies and then use these frequencies to calculate probabilities
when we need to do so.

At any rate, the first set of nine if-statements in ProcessM ove checks all possible combinations of the
strikes stored in AB to determine which row in the NCAB matrix we need to update. The next set of
three if-statements determines which column in NCAB we need to update. Now we can increment the
element in NCAB corresponding to the row and column just determined. We also increment the
element in NAB corresponding to the row we just determined. NAB stores the number of times any
given combination of A and B strikes was thrown.

The next step is to shift the entries in the AB array. We want to shift the strike stored in the B position
(array index 1) to the A position (array index 0), bumping off the value that was previously stored in
the A position. Then we put the most recently thrown strike, move, in the B position to make our
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prediction and for the next go around through this function.
13.2.2 Making the Prediction

At this point, we're ready to make a prediction for the next strike to be thrown. The next set of nine if-
statements determines which row in the NCAB matrix we need to consider given the new pattern of
strikes stored in AB. We use the row thus determined to look up the frequencies in the NCAB matrix
corresponding to each of the three possible strikes that can be thrown. Keep in mind these frequencies
are conditional given the pattern of strikes stored in AB.

The next step isto calculate the actual probabilities, ProbPunch, ProbL owKick, and ProbHighKick, by
simply dividing the retrieved frequency for each particular strike by the total number of timesthe
combination of strikes stored in AB have been thrown. Finally, the function makes its prediction of the
next strike by returning the strike with the highest probability. For the unlikely case in which all the
probabilities are equal, we ssmply return arandom guess. Technically speaking, we probably should
have put afew more checks in place to capture cases in which two of the three strikes had equal
probabilities that were higher than the third. In this case, a random guess between the two strikes with
equal probability could be made.

Through repeated testing we found that the computer, using this method, achieves a success rate for
predicting the next strike to be thrown of 60% to 80%. Thisis as opposed to a 30% success rate if the
computer just makes random guesses every time a strike is thrown. Also, if the player happensto find a
favorite combination and uses it frequently, the computer will catch on fairly quickly and its success
rate will increase. Asthe player adjusts his combinationsin light of the computer getting better at
defending his other combinations, the success rate will drop initially and then pick up again asthe
player continues to use the new combinations. This cycle will continue, forcing the player to keep
changing his techniques as the computer opponent adapts.
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13.6 Further Information

Hopefully we've achieved our objective in this chapter of introducing Bayesian techniques and showing
you how you can use simple Bayesian modelsin game Al for making decisions under uncertainty and
for achieving some level of adaptation using probabilities. We've really only scratched the surface of
these powerful methods and a wealth of additional information is available to you should you decide to
learn more about these techniques. To set you on your way, we've compiled a short list of references
that we find to be very useful. They are as follows:

. Bayesian Inference and Decision, Second Edition by Robert Winkler (Probabilistic Publishing)

. Probabilistic Reasoning in Intelligent Systems: Networks of Plausible Inference by Judea Pearl
(Morgan Kaufmann Publishers, Inc.)

. Bayesian Artificial Intelligence by Kevin Korb and Ann Nicholson (Chapman & Hall/CRC)

Thefirst reference shown hereis particularly exceptional in that it covers probability, Bayesian
inference, and decision making under uncertainty thoroughly and in plain English. If you decide to
pursue complex Bayesian models that are not easily solved using simple calculations, you'll definitely
want to check out the second reference, as it presents methods for solving more complicated Bayesian
networks for general inference.

Numerous Bayesian resources also are available on the Internet. Here are some links to resources that
we find useful:

. http://bndev.sourceforge.net/

. http://www.niedermayer.ca/papers/bayesian/

. http://www.cs.ual berta.ca/~greiner/bn.html

. http://www.research.microsoft.com/research/dtg/

Thefirst link points to the "Bayesian Network Toolsin Java' web site that contains tools and
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information on the open source Javatoolkit for Bayesian analysis (for more information on the Open
Source Initiative, visit http://www.opensource.org). The second link points to a page that contains a

brief introduction to Bayesian networks for nongame applications. This page also contains links to
other Internet resources on Bayesian networks. The third link points to a page containing several
tutorials and many online links to other resources. The fourth link points to Microsoft's Decision
Theory and Adaptive Systems research page, which contains many links to resources on uncertainty
and decision support technologies including, but not limited to, Bayesian networks. Y ou can find many
other resources on the Internet aside from these four links. Y ou need only perform a search using the
keywords "Bayesian networks" to find hundreds of additional links.
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Chapter 14. Neural Networks

Our brains are composed of billions of neurons, each one connected to thousands of other neurons to
form a complex network of extraordinary processing power. Artificial neural networks, hereinafter
referred to simply as neural networks or networks, attempt to mimic our brain's processing capability,
albeit on afar smaller scale.

Information, so to speak, is transmitted from one neuron to another via the axon and dendrites. The
axon carries the voltage potential, or action potential, from an activated neuron to other connected
neurons. The action potential is picked up from receptorsin the dendrites. The synaptic gap is where
chemical reactions take place, either to excite or inhibit the action potential input to the given neuron.
Figure 14-1 illustrates a neuron.

Figure 14-1. Neuron

figs/ch14 figOl.jpg

The adult human brain contains about 101, neurons and each neuron receives synaptic input from about
10, other neurons. If the combined effect of all theseinputsis of sufficient strength, the neuron will
fire, transmitting its action potential to other neurons.

The artificial networks we use in games are quite ssmple by comparison. For many applications
artificial neural networks are composed of only a handful, a dozen or so, neurons. Thisisfar smpler
than our brains. Some specific applications use networks composed of perhaps thousands of neurons,
yet even these are simple in comparison to our brains. At this time we can't hope to approach the
processing power of the human brain using our artificial networks; however, for specific problems our
simple networks can be quite powerful.
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Thisis the biological metaphor for neural networks. Sometimesit's helpful to think of neural networks
inaless biological sense. Specifically, you can think of a neural network as a mathematical function
approximator. Input to the network represents independent variables, while output represents the
dependant variable(s). The network itself isafunction giving one unique set of output for the given
input. The function in this case is difficult to write in equation form and fortunately we don't need to do
so. Further, the function is highly nonlinear. We'll come back to thisway of thinking alittle |ater.

For games, neural networks offer some key advantages over more traditional Al techniques. First, using
aneural network enables game developers to simplify coding of complex state machines or rules-based
systems by relegating key decision-making processes to one or more trained neural networks. Second,
neural networks offer the potential for the game's Al to adapt as the gameis played. Thisisarather
compelling possibility and is avery popular subject in the game Al community at the time of this
writing.

In spite of these advantages, neural networks have not gained widespread use in video games. Game
developers have used neural networks in some popular games; but by and large, their use in gamesis
limited. This probably is due to several factors, of which we describe two key factors next.

First, neural networks are great at handling highly nonlinear problems; ones you cannot tackle easily
using traditional methods. This sometimes makes understanding exactly what the network is doing and
how it isarriving at its results difficult to follow, which can be disconcerting for the would-be tester.
Second, it's difficult at times to predict what a neural network will generate as output, especially if the
network is programmed to learn or adapt within a game. These two factors make testing and debugging
aneural network relatively difficult compared to testing and debugging afinite state machine, for
example.

Further, some early attempts at the use of neural networks in games have tried to tackle complete Al
systemsthat is, massive neural networks were assembled to handle the most general Al tasks that a
given game creature or character could encounter. The neural network acted as the entire Al systemthe
whole brain, so to speak. We don't advocate this approach, as it compounds the problems associated
with predictability, testing, and debugging. Instead, just like our own brains have many areas that
specialize in specific tasks, we suggest that you use neural networks to handle specific game Al tasks as
part of an integrated Al system that uses traditional Al techniques as well. In thisway, the mgority of
the Al system will be relatively predictable, and the hard Al tasks or the ones which you want to take
advantage of learning and adapting will use specific neural networks that were trained strictly for that
one task.

The Al community uses many different kinds of neural networks to solve all sorts of problems, from
financial to engineering problems and many in between. Neural networks often are combined with
other techniques such as fuzzy systems, genetic algorithms, and probabilistic methods, to name afew.
This subject isfar too vast to treat in a single chapter, so we're going to narrow our focus on a
particularly useful class of neural networks. We're going to concentrate our attention on atype of neural

http://ebooks.servegame.com/oreaiforgamdev475b/ch14.htm (2 of 3)7/24/05 1:26:33 AM



Al for Game Developers
network called a multilayer, feed-forward network. This type of network is quite versatileand is
capable of handling awide variety of problems. Before getting into the details of such a network, let's
first explore in general terms how you can apply neural networks in games.
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14.0
14.2.1 Control

Neural networks often are used as neural controllers for robotics applications. In these cases, the robot's
sensory system provides relevant inputs to the neural controller, and the neural controller's output,
which can consist of one or more output nodes, sends the proper responses to the robot's motor control
system. For example, aneural controller for a robot tank might take three inputs, each indicating
whether an obstacle is sensed in front of or to either side of the robot. (The range to each sensed
obstacle also can be input.) The neural controller can have two outputs that control the direction of
motion of its left and right tracks. One output node can set the left track to move forward or backward,
while the other can set the right track to move forward or backward. The combination of the resulting
outputs has the robot either move forward, move backward, turn left, or turn right. The neural network
might look something such as that illustrated in Figure 14-2.

Figure 14-2. Example robot control neural network

figs/ch14 fig02.jpg

Very similar situations arise in games. Y ou can, in fact, have a computer-controlled, half-track
mechanized unit in your game. Or perhaps you want to use a neural network to handle the flight
controls for a spaceship or aircraft. In each case, you'll have one or more input neurons and one or more
output neurons that will control the unit's thrust, wheels, tracks, or whatever means of locomotion
you're simulating.

14.2.2 Threat Assessment

As another example, say you're writing a strategy simulation-type game in which the player hasto build
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technology and train unitsto fend off or attack the computer-controlled base. Let's say you decide to
use a neural network to give the computer-controlled army some means of predicting the type of threat
presented by the player at any given time during gameplay. One possible neural network isillustrated

in Figure 14-3.

Figure 14-3. Example threat-level assessment neural network

figs/ch14 fig03.jpg

The inputs to this network include the number of enemy (the player) ground units, the number of
enemy aerial units, an indication as to whether the ground units are on the move, an indication asto
whether the aerial units are on the move, the range to the ground units, and the range to the aerial units.
The outputs consist of neurons that indicate one of four possible threats, including an aerial threat, a
ground threat, both an aerial and a ground threat, or no threat. Given appropriate data during gameplay
and ameans of assessing the performance of the network (we'll talk about training later), you can use
such a network to predict what, if any, sort of attack isimminent. Once the threat is assessed, the
computer can take the appropriate action. This can include deployment of ground or aerial forces,
shoring up defenses, putting foot soldiers on high aert, or carrying on as usual, assuming no threat.

This approach requires in-game training and validation of the network, but potentially can tune itself to
the playing style of the player. Further, you are alleviated of the task of figuring out all the possible
scenarios and thresholds if you were to use arules-based or finite state machine-type architecture for
this task.

14.2.3 Attack or Flee

Asafinal example, let's say you have a persistent role-playing game and you decide to use a neural
network to control how certain creatures in the game behave. Now let's assume you're going to use a
neural network to handle the creature's decision-making processthat is, whether the creature will attack,
evade, or wander, depending on whether an enemy (a player) isin the creature's proximity. Figure 14-4
shows how such a neural network might look. Note that you would use this network only to decide
whether to attack, evade, or wander. Y ou would use other game logic, such as the chasing and evading
techniques we discussed earlier, to execute the desired action.

Figure 14-4. Example attack decision neural network

figs/chl14 fig04.jpg

We have four inputs in this example: the number of like creaturesin proximity to the creature who's
making the decision (thisis an indication of whether the creature is traveling in agroup or alone); a
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measure of the creature's hit points or health; an indication as to whether the enemy is engaged in
combat with another creature; and finally, the range to the enemy.

We can make this example alittle more sophisticated by adding more inputs, such as the class of the
enemy, whether the enemy is amage or afighter, and so on. Such a consideration would be important
to a creature whose attack strategies and defenses are better suited against one type of class or another.
Y ou could determine the enemy's class by "cheating," or better yet, you could predict the enemy's class
by using another neural network or Bayesian analysis, adding a bit more uncertainty to the whole
process.
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14.1 Dissecting Neural Networks

In this section we're going to dissect athree-layer feed-forward neural network, looking at each of its
components to see what they do, why they are important, and how they work. The am hereisto clearly
and concisely take the mystery out of neural networks. We'll take arather practical approach to this
task and leave some of the more academic aspects to other books on the subject. We will give
references to several such books throughout this chapter.

14.2.4 Structure

We focus on three-layer feed-forward networks in this chapter. Figure 14-5 illustrates the basic
structure of such a network.

Figure 14-5. Three-layer feed-forward neural network

figs/ch14 fig05.jpg

A three-layer network consists of one input layer, one hidden layer, and one output layer. There's no
restriction on the number of neurons within each layer. Every neuron from the input layer is connected
to every neuron in the hidden layer. Further, every neuron in the hidden layer is connected to every
neuron in the output layer. Also, every neuron, with the exception of the input layer, has an additional
input called the bias. The numbers shown in Figure 14-5 serve to identify each node in the three layers.
WEe'll use this numbering system later when we write the formulas for calculating the value of each
neuron.

Calculating the output value(s) for a network starts with some input provided to each input neuron.
Then these inputs are weighted and passed along to the hidden-layer neurons. This process repeats,
going from the hidden layer to the output layer, where the output of the hidden-layer neurons serves as
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input to the output layer. This process of going from input to hidden to output layer is the feed-forward
process. Welll look at each component of this type of network in more detail in the following sections.

14.2.5 Input

Inputs to a neural network obviously are very important; without them there's nothing for the neural
network to process. Clearly we need them, but what should you choose as inputs? How many do you
need? And what form should they take?

14.2.1 Input: What and How Many?

The question of what to choose as input is very problem-specific. Y ou have to look at the problem
you're trying to solve and select what game parameters, data, and environment characteristics are
important to the task at hand. For example, say you're designing a neural network to classify player
charactersin arole-playing game so that the computer-controlled creatures can decide whether they
want to engage the player. Some inputs you might consider include some indication of the player's
attire, his drawn weapon if present, and perhaps any witnessed actionsfor example, whether hisjust cast
aspell.

Y our job of training the neural network, which we'll discuss later, will be easier if you keep the number
of input neurons to a minimum. However, in some situations the inputs to select won't always be
obviousto you. In such cases, the general ruleisto include what inputs you think might be important
and let the neural network sort out for itself which ones are important. Neural networks excel at sorting
out the relative importance of inputs to the desired output. Keep in mind, however, that the more inputs
you throw in, the more data you're going to have to prepare to train the network, and the more
computations you'll have to make in the game.

Often you can reduce the number of inputs by combining or transforming important information into
some other, more compact form. As asimple example, let's say you're trying to use a neural network to
control a spacecraft landing on a planet in your game. The mass of the spacecraft, which could be
variable, and the accel eration due to gravity on the planet clearly are important factors, among others,
that you should provide as input to the neural network. Y ou could, in fact, create one input neuron for
each parameterone for the mass and another for the acceleration due to gravity. However, this approach
forces the neural network to perform extrawork in figuring out a relationship between the spacecraft's
mass and the acceleration due to gravity. A better input capturing these two important parametersisa
single neuron that takes the weight of the spacecraftthe product of its mass times the acceleration due to
gravityas an input to a single neuron. There would, of course, be other input neurons besides this one,
for example, you probably would have altitude and speed inputs as well.

14.2.2 Input: What Form?

Y ou can use avariety of forms of data as inputs to a neural network. In games, such input generally
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consists of three types: boolean, enumerated, and continuous types. Neural networks work with real
numbers, so whatever the type of data you have, it must be converted to a suitable real number for use
asinput.

Consider the example shown in Figure 14-4. The "enemy engaged” input is clearly a boolean typetrue

iIf the enemy is engaged and fal se otherwise. However, we can't pass true or false to a neural network
Input node. Instead, we input a 1.0 for true and a 0.0 for false.

Sometimes your input data might be enumerated. For example, say you have a network designed to
classify an enemy, and one consideration is the kind of weapon he is wielding. The choices might be
something such as dagger, bastard sword, long sword, katana, crossbow, short bow, or longbow. The
order does not matter here, and we assume that these possibilities are mutually exclusive. Typically you
handle such data in neural networks using the so-called one-of-n encoding method. Basically, you
create an input for each possibility and set the input value to 1.0 or 0.0 corresponding to whether each
specific possibility istrue. If, for example, the enemy was wielding a katana, the input vector would be
{0,0,0, 1, 0,0, 0} wherethe 1 is set for the katana input node and the Os are set for all other
possibilities.

Very often your datawill, in fact, be afloating-point number or an integer. In either case this type of
data generally can take on any number of values between some practical upper and lower bounds. Y ou
simply can input these values directly into the neural network (which game devel opers often do).

This can cause some problems, however. If you have input values that vary widely in terms of order of
magnitude, the neural network might give more weight to the larger-magnitude input. For example, if
one input ranges from 0 to 20 while another ranges from 0 to 20,000, the latter likely will swamp out
the influence of the former. Thus, in these casesiit isimportant to scale such input data to ranges that
are comparable in terms of order of magnitude. Commonly, you can scale such data in terms of
percentage values ranging from 0 to 100, or to values ranging from O to 1. Scaling in this way levelsthe
playing field for the various inputs. Y ou must be careful how you scale, however. Y ou need to make
sure the data used to train your network is scaled in the exact same way as the data the network will see
in the field. For example, if you scale a distance input value by the screen width for your training data,
you must use the same screen width to scale your input data when the network is functioning in your
game.

14.2.6 Weights

Weightsin a neural network are analogous to the synaptic connection in a biological neural network.
The weights affect the strength of a given input and can be either inhibitory or excitatory. It isthe
weights that truly define the behavior of a neural network. Further, the task of determining the value of
these weights is the subject of training or evolving a neural network.

Every connection from one neuron to another has an associated weight. Thisisillustrated in Figure 14-
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5. Theinput to a neuron is then the sum of the products of each input's weight connecting that neuron
timesits input value plus a bias term, which we'll discuss later. The net result is called the net input to a
neuron. The following equation shows how the net input to a given neuron, neuron j, is calculated from
aset of input, i, neurons,

figs/ch14_ueqOl.jpg

Referring to Figure 14-5, you can see that every input to a neuron is multiplied by the weight of the

connection between those two neurons plus the bias. Let'slook at a simple example (we'll take alook at
source code for these calculations later).

L et's say we want to calculate the net input to the Ot neuron in the hidden layer shown in Figure 14-5.

Applying the previous equation, we get the following formula for the net input to the Oth neuron in the
hidden layer:

figs/chl14 _ueq02.jpg

In this formulathe ns represents the value of the neuron. In the case of the input neurons, these are the
input values. In the case of the hidden neurons, they are the net input values. The superscriptsh and i
represent to which layer the neuron belongsh for the hidden layer and i for the input layer. The
subscripts indicate the node within each layer.

Notice here that the net input to a given neuron is simply alinear combination of weighted inputs from
other neurons. If thisis so, how does a neural network approximate highly nonlinear functions such as
those we mentioned earlier? The key liesin how the net input is transformed to an output value for a
neuron. Specifically, activation functions map the net input to a corresponding output in a nonlinear

way.
14.2.7 Activation Functions

An activation function takes the net input to a neuron and operates on it to produce an output for the
neuron. Activation functions should be nonlinear (except in one case, which we'll discuss shortly). If
they are not, the neural network is reduced to alinear combination of linear functions and is rendered
incapable of approximating nonlinear functions and relationships.

The most commonly used activation function is the logistic function or sigmoid function. Figure 14-6
Illustrates this S-shaped function.

Figure 14-6. Logistic activation function
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The formulafor the logistic function is as follows:

figs/ch14 ueq03.jpg

Sometimes this functions is written in thes form:

figs/chl4 ueq04.jpg

In this case, the c term is used to alter the shape of the functionthat is, either stretching or compressing
the function along the horizontal axis.

Note that the input lies along the horizontal axis and the output from this function rangesfrom 0 to 1
for al values of x. In practice the working range is more like 0.1 to 0.9, where a value of around 0.1
implies the neuron is unactivated and a value of around 0.9 implies the neuron is activated. It is
important to note that no matter how large (positive or negative) x gets, the logistic function will never
actually reach 1.0 or 0.0; it asymptotes to these values. Y ou must keep thisin mind when training. If
you attempt to train your network so that it outputs a value of 1 for a given output neuron, you'll never
get there. A more reasonable value is 0.9, and shooting for this value will speed up training immensely.
The same appliesif you are trying to train a network to output a value of 0. Use something such as 0.1
instead.

Other activation functions are at your disposal as well. Figures 14-7 and 14-8 show two other well-
known activation functions: the step function and the hyperbolic tangent function.

Figure 14-7. Step activation function

figs/ch14 fig07.jpg

Figure 14-8. Hyperbolic activation tangent function

figs/ch14 fig08.jpg

The formulafor the step function is as follows:

figs/chl4 ueq05.jpg
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Step functions were used in early neural network development, but their lack of a derivative made
training tough. Note that the logistic function has an easy-to-eval uate derivative, which is needed for
training the network, as we'll see shortly.

The formulafor the hyperbolic tangent function is as follows:

figs/ch14 ueq06.jpg

The hyperbolic tangent function is sometimes used and is said to speed up training. Other activation
functions are used in neural networks for various applications; however, we won't get into those here.
In general, the logistic function seems to be the most widely used and is applicable to alarge variety of
applications.

Figure 14-9 shows yet another activation function that sometimes is useda linear activation function.

Figure 14-9. Linear activation function

figs/ch14 _fig09.jpg

The formulafor the linear activation function is simply:

figs/ch14 _ueq07.jpg

This means that the output of a neuron is simply the net inputthat is, the sum of the weighted inputs
from all connected input neurons plus the bias term.

Linear activation functions sometimes are used as the activation functions for output neurons. Note that
nonlinear activation functions must be used for the hidden neuronsif the network is not to be reduced
to alinear combination of linear functions. Employing such alinear output neuron is sometimes useful
when you don't want the output confined to an interval between 0 and 1. In such cases, you still can use
alogistic output activation function, so long as you scale the output to the full range of values for which
you're interested.

14.2.8 Bias

When we discussed how to calculate the net input to a neuron earlier, we mentioned that each neuron
has a bias associated with it. Thisis represented as a bias value and a bias weight for each neuron and
shows up in the net input formula we showed earlier and are showing again here for convenience:
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bj Isthe bias value and Wj IS the bias weight.

To understand what the bias does, you have to look at the activation functions used to generate output
for aneuron given the net input. Basically, the bias term shifts the net input along the horizontal axis of
the activation function, which effectively changes the threshold at which a neuron activates. The bias
value awaysisset to 1 or -1 and its weight is adjusted through training, just like all other weights. This
essentially allows the neural network to learn the appropriate thresholds for each neuron's activation.

Some practitioners always set the bias value to 1, while others always use -1. In our experience it really
doesn't matter whether you use 1 or -1 because, through training, the network will adjust its bias
weightsto suit your choice. Weights can be either positive or negative, so if the neural network thinks
the bias should be negative, it will adjust the weight to achieve that, regardless of your choice of 1 or -
1. If you choose 1, it will find a suitable negative weight, whereas if you choose -1, it will find a
suitable positive weight. Of course, you achieve all of thisthrough training or evolving the network, as
we'll discuss later in this chapter.

14.2.9 Output

Just like input, your choice of output neurons for a given network is problem-specific. In generd, it's
best to keep the number of output neurons to a minimum to reduce computation and training time.

Consider a network in which, given certain input, you desire output that classifies that input. Perhaps
you want to determine whether a given set of input falls within a certain class. In this case, you would
use one output neuron. If it is activated, the result istrue, whereas if it is not activated, the result is
falsethe input does not fall within the class under consideration. If you were using alogistic function as
your output activation, an output of around 0.9 would indicate activated, or true, whereas an output of
around 0.1 would indicate not activated, or false. In practice, you might not actually get output values
of exactly 0.9 or 0.1; you might get 0.78 or 0.31, for example. Therefore, you have to define a threshold
that will enable you to assess whether a given output value indicates activation. Generally, you ssmply
choose an output threshold midway between the two extremes. For the logistic function, you can use
0.5. If the output is greater than 0.5, the result is activated or true, otherwise it's false.

When you're interested in whether certain input falls within more than a single class, you have to use
more than a single output neuron. Consider the network shown in Figure 14-3. Here, essentially we
want to classify the threat posed by an enemy; the classes are aerial threat, ground threat, both aerial
and ground threats, or no threat. We have one output neuron for each class. For this type of output we
assume that high output values imply activated, while low output values imply not activated. The actual
output values for each node can cover arange of values, depending on how the network was trained
and on the kind of output activation function used. Given a set of input values and the resulting value at
each output node, one way to figure out which output is activated is to take the neuron with the highest
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output value. Thisis the so-called winner-take-all approach. The neuron with highest activation
indicates the resulting class. We'll see an example of this approach later in this chapter.

Often, you want a neural network that will generate a single value given a set of input. Time-series
prediction, whereby you try to predict the next value given historical values over time, is one such
situation in which you'll use a single output neuron. In this case, the value of the output neuron
corresponds to the predicted value of interest. Keep in mind, however, you might have to scale the
result if you're using an output activation function that generates bounded values, such asthe logistic
function, and if the value of the quantity you're trying to predict falls within some other range.

In other cases, such asthat illustrated in Figure 14-2, you might have more than one output neuron
that's used to directly control some other system. In the case of the example shown in Figure 14-2, the

output values control the motion of each track for a half-track robot. In that example, it might be useful
to use the hyperbolic tangent function for the output neurons so that the output value will range
between -1 and +1. Then, negative values could indicate backward motion while positive values could
indicate forward motion.

Sometimes you might require a network with as many output neurons as input neurons. Such networks
commonly are used for autoassociation (pattern recognition) and data compression. Here, theaimis
that the output neurons should echo the input values. For pattern recognition, such a network would be
trained to output itsinput. The training set would consist of many sample patterns of interest. The idea
here is that when presented with a pattern that's either degraded somewhat or does not exactly match a
pattern that was included in the training set, the network should produce output that represents the
pattern included in its training set that most closely matches the one being input.

14.2.10 The Hidden Layer

So far we've discussed input neurons, output neurons, and how to calculate net inputs for any neuron,
but we've yet to discuss the hidden layer specifically. In our three-layer feed-forward network, we have
one hidden layer of neurons sandwiched between the input and output layers.

Asillustrated in Figure 14-5, every input is connected to every hidden neuron. Further, every hidden

neuron sends its output to every output neuron. By the way, thisisn't the only neural network structure
at your disposal; there are all sortssome with more than one hidden layer, some with feedback, and
some with no hidden layer at al, among others. However, it is one of the most commonly used
configurations. At any rate, the hidden layer is crucial for giving the network facility to process features
in the input data. The more hidden neurons, the more features the network can handle; conversely, the
fewer hidden neurons, the fewer features the network can handle.

So, what do we mean by features? To understand what we mean here, it's helpful to think of a neural
network as a function approximator. Say you have a function that |ooks very noisy, asillustrated in
Figure 14-10.
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Figure 14-10. Noisy function

figs/ch14 figl0.jpg

If you were to train a neural network to approximate such a function using too few hidden neurons, you
might get something such as that shown in Figure 14-11.

Figure 14-11. Approximation of noisy function using too few neurons

figs/ch14 figll.jpg

Here, you can see that the approximated function captures the trend of the input data but misses the
local noisy features. In some cases, such as for signal noise reduction applications, thisis exactly what
you want; however, you might not want this for other problems. If you go the other route and choose
too many hidden neurons, the approximated function likely will pick up the local noisy featuresin
addition to the overall trend of the function. In some cases, this might be what you want; however, in
other cases, you might end up with a network that is overtrained and unable to generalize given new
Input data that was not part of the training set.

Exactly how many hidden neurons to use for a given application is hard to say with certainty.
Generally, you go about it by trial and error. However, here's arule of thumb that you might find
useful. For three-layer networks in which you're not interested in autoassociation, the appropriate
number of hidden neurons is approximately equal to the square root of the product of the number of
input and output neurons. Thisis just an approximation, but it's as good a place to start asany. The
thing to keep in mind, particularly for gamesin which CPU usageiscritical, isthat the larger the
number of hidden neurons, the more time it will take to compute the output of the network. Therefore,
it's beneficial to try to minimize the number of hidden neurons.
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14.2 Training

So far, we've repeatedly mentioned training a neural network without actually giving you the details as to how
to do this. We'll tackle that now in this section.

The aim of training isto find the values for the weights that connect all the neurons such that the input data
generates the desired output values. As you might expect, there's more to training than just picking some weight
values. Essentially, training a neural network is an optimization process in which you are trying to find optimal
weights that will alow the network to produce the right outpui.

Training can fall under two categories: supervised training and unsupervised training. Covering al or even some
of the popular training approaches is well beyond a single chapter, so we'll focus on one of the most commonly
used supervised training methods. back-propagation.

14.2.11 Back-Propagation Training

Again, the aim of training isto find the values for the weights that connect all the neurons such that the input
data generates the desired output values. To do this, you need atraining set, which consists of both input data
and the desired output values corresponding to that input. The next step isto iteratively, using any of a number
of techniques, find a set of weights for the entire network that causes the network to produce output matching
the desired output for each set of datain the training set. Once you do this, you can put the network to work and
present it with new data, not included in the training set, to produce output that is reasonable.

Because training is an optimization process, we need some measure of merit to optimize. In the case of back-
propagation, we use a measure of error and try to minimize the error. Given some input and the generated
output, we need to compare the generated output with the known, desired output and quantify how well the
results matchi.e., calculate the error. Many error measures are available for you to use, and we'll use one of the
most common ones here: the mean square error, which is simply the average of the square of the differences
between the calculated output and the desired output.
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If you've studied calculus you might recall that to minimize or maximize afunction you need to be able to
calculate the function's derivative. Because we're trying to optimize weights by minimizing the error measure,
it's no surprise that we need to calculate a derivative somewhere. Specifically, we need the derivative of the
activation function, and thisis why the logistic function is so nicewe easily can determine its derivative
analytically.

Aswe mentioned earlier, finding the optimum weights is an iterative process, and it goes something like this:

1. Start with atraining set consisting of input data and corresponding desired outputs.

2. Initidlize the weights in the neural network to some small random values.

3. With each set of input data, feed the network and cal culate the output.

4. Compare the calculated output with the desired output and compute the error.

5. Adjust the weights to reduce the error, and repeat the process.
Y ou can execute the process in two ways. One way isto calculate the error measure, adjust the weights for each
set of input and desired output data, and then move on to the next set of input/output data. The other way isto
calculate the cumulative error for al sets of input and desired output data in the training set, then adjust the

weights, and then repeat the process. Each iteration is known as an epoch.

Steps 1 through 3 are relatively straightforward and we'll see an example implementation alittle later. Now,
though, let's examine steps 4 and 5 more closely.

14.2.3 Computing Error

To train a neural network, you feed it a set of input, which generates some output. To compare this calcul ated
output to the desired output for a given set of input, you need to calculate the error. This enables you to not only
determine whether the calculated output is right or wrong, but also to determine the degree to which it isright or
wrong. The most common error to use is the mean-square error, which is the average of the square of the
difference between the desired and calculated output:

In this equation, € is the mean square error for the training set. n. and ny are the calculated and desired output
values, respectively, for al output neurons, while misthe number of output neurons for each epoch.
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The goal isto get this error value as small asis practical by iteratively adjusting the weight values connecting all
the neurons in the network. To know how much the weights need adjusting, each iteration requires that we also
calculate the error associated with each neuron in the output and hidden layers. We calcul ate the error for output
neurons as follows:

8 = An’ f' (n?))

Here, ;° isthe error for the ith output neuron, An;© is the difference between the calculated and desired output
for the ith output neuron, and f'(n.°) is the derivative of the activation function for the ith output neuron. Earlier
we told you that we'd need to calcul ate a derivative somewhere, and thisiswhere to do it. Thisiswhy the
logistic function is so useful; its derivative is quite ssmplein form, and it's easy to calculate it analytically.
Rewriting this equation using the derivative of the logistic function yields the following equation for output
neuron error:

8 = (na® — ng”)ng’ {] —n.")

In this equation, n iO is the desired output value for the ith neuron, and n;° is the calculated output value for the

d
ith neuron.

For hidden-layer neurons, the error equation is somewhat different. In this case, the error associated with each
hidden neuron is as follows:

5 = (Y- 85w;) £ (nd")

Notice here that the error for each hidden-layer neuron is afunction of the error associated with each output-
layer neuron to which the hidden neuron connects times the weight for each connection. This means that to
calculate the error and, subsequently, to adjust weight, you need to work backward from the output layer toward
the input layer.

Also notice that the activation function derivative is required again. Assuming the logistic activation function
yields the following:

5" = (Zﬁ*’”w”) Pai” (1- ”mh}

Lastly, no error is associated with input layer neurons because those neuron values are given.
14.2.4 Adjusting Weights
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With calculated errors in hand, you can proceed to cal cul ate suitable adjustments for each weight in the
network. The adjustment to each weight is as follows:

AW = ﬂi’if?if

In this equation, p isthe learning rate, d; isthe error associated with the neurons being considered, and nj; is the
value of the neuron being considered. The new weight is simply the old weight plus Aw.

Keep in mind that the weight adjustments will be made for each weight and the adjustment will be different for
each weight. When updating the weights connecting output to hidden-layer neurons, the errors and values for
the output neurons cal culate the weight adjustment. When updating the weights connecting the hidden- to-input-
layer neurons, the errors and values for the hidden-layer neurons are used.

Thelearning rate isamultiplier that affects how much each weight is adjusted. It's usually set to some small
value such as 0.25 or 0.5. Thisis one of those parameters that you'll have to tune. If you set it too high, you
might overshoot the optimum weights; if you set it too low, training might take longer.

14.2.5 Momentum

Many back-propagation practitioners use a slight modification to the weight adjustments we just discussed. This
modified technique is called adding momentum. Before showing you how to add momentum, let's first discuss
why you might want to add momentum.

In any general optimization process the goal is to either minimize or maximize some function. More
specifically, we're interested in finding the global minimum or maximum of the given function over some range
of input parameters. The trouble is that many functions exhibit what are called local minima or maxima. These

are basically hollows and humps in the function, asillustrated in Figure 14-12.

Figure 14-12. Local extrema
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In this example, the function has a global minimum and maximum over the range shown; but it also has several
local minima and maxima, characterized by the smaller bumps and hollows.

In our case, we're interested in minimizing the error of our network. Specifically we're interested in finding the
optimum weights that yield the global minimum error; however, we might run into alocal minimum instead of a
global minimum.

When network training begins, we initialize the weights to some small random values. We have no idea at that
point how close those values are to the optimum weights; thus, we might have initialized the network near a
local minimum rather than a global minimum. Without going into calculus, the technique by which we update
the weightsis called a gradient descent type of technique, whereby we use the derivative of the function in an
attempt to steer toward a minimum value, which in our case is a minimum error value. The troubleis that we
don't know if we get to aglobal minimum or alocal minimum, and typically the error-space, asit's called for
neural networks, isfull of local minima.

This sort of problem is common among all optimization techniques and many different methods attempt to
aleviate it. The momentum technique is one such technique used for neural networks. It does not eliminate the
possibility of converging on alocal minimum, but it is thought to help get out of them and head toward the
global minimum, which iswhere it derivesits name. Basically, we add a small additional fraction to the weight
adjustment that is a function of the previous iteration's weight adjustment. This gives the weight adjustments a
little push so that if alocal minimum is being approached, the algorithm will, hopefully, overshoot the local
minimum and proceed on toward the global minimum.

So, using momentum, the new formulathat calculates the weight adjustment is as follows:
Aw = pfn; +alAw’)

In this equation, Aw' is the weight adjustment from the previous iteration, and a is the momentum factor. The
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momentum factor is yet another factor that you'll have to tune. It typicaly is set to some small fractional number
between 0.0 and 1.0.

4 Previous Mext #
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14.3 Neural Network Source Code

At last it'stime to look at some actual source code that implements a three-layer feed-forward neural network.
The following sections present two C++ classes that implement such a network. Later in this chapter, we'll ook
at an example implementation of these classes. Feel free to skip to the section entitled "Chasing and Evading
with Brains' if you prefer to see how the neural network is used before looking at its internal details.

We need to implement two classes in the three-layer feed-forward neural network. The first class represents a
generic layer. You can use it for input, hidden, and output layers. The second class represents the entire neural
network composed of three layers. The following sections present the complete source code for each class.

14.2.12 The Layer Class

The class Neural NetworkLayer implements a generic layer in amultilayer feed-forward network. It is
responsible for handling the neurons contained within the layer. The tasks it performs include allocating and
freeing memory to store neuron values, errors, and weights; initializing weights; calculating neuron values; and
adjusting weights. Example 14-1 shows the header for this class.

Example 14-1. NeuralNetworkLayer class

cl ass Neural Net wor kLayer

{

public:
i nt Number OF Nodes;
i nt Nunber OF Chi | dNodes;
i nt Number OF Par ent Nodes;
doubl e** Wei ght s;
doubl e** Wei ght Changes;
doubl e* Neur onVal ues;
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doubl e* Desi r edVal ues;
doubl e* Errors;

doubl e* Bi as\Wei ght s;
doubl e* Bi asVal ues;

doubl e Lear ni ngRat e;
bool Li near Qut put ;
bool UseMoment um
doubl e Monent unfact or ;
Neur al Net wor kLayer * Par ent Layer
Neur al Net wor kLayer * Chi | dLayer ;
Neur al Net wor kLayer () ;

voi d Initialize(int NumNodes,

Neur al Net wor kLayer* parent,
Neur al Net wor kLayer* child);

voi d Cl eanUp(voi d);

voi d Randomi zeWei ght s(voi d) ;

voi d Cal cul ateErrors(void);

voi d Adj ust Wi ght s(voi d);

voi d Cal cul at eNeur onVal ues(voi d);

Layers are connected to each other in a parent-child relationship. For example, the input layer isthe parent layer
for the hidden layer, and the hidden layer is the parent layer for the output layer. Also, the output layer isachild
layer to the hidden layer, and the hidden layer is a child layer to the input layer. Note that the input layer has no
parent and the output layer has no child.

The members of this class primarily consist of arrays to store neuron weights, values, errors, and bias terms.
Also, afew members store certain settings governing the behavior of the layer. The members are as follows:

Number OfNodes
This member stores the number of neurons, or nodes, in a given instance of the layer class.
Number OfChildNodes

This member stores the number of neurons in the child layer connected to a given instance of the layer
class.
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Number Of ParentNodes

This member stores the number of neurons in the parent layer connected to a given instance of the layer
class.

Weights

This member is a pointer to a pointer to a double value. Basically, this represents a two-dimensional
array of weight values connecting nodes between parent and child layers.

WeightChanges

This member also is a pointer to a pointer to a double value, which accesses a dynamically allocated two-
dimensional array. In this case, the values stored in the array are the adjustments made to the weight
values. We need these to implement momentum, as we discussed earlier.

NeuronValues

This member is apointer to a double value, which accesses a dynamically allocated array storing the
calculated values, or activations, for the neuronsin the layer.

DesiredValues

This member is apointer to a double value, which accesses a dynamically allocated array storing the
desired, or target, values for the neurons in the layer. We use this for the output array where we calculate
errors given the calculated outputs and the target outputs from the training set.

Errors

This member is apointer to a double value, which accesses a dynamically allocated array storing the
errors associated with each neuron in the layer.

BiasWeights

This member is a pointer to a double value, which accesses a dynamically allocated array storing the
bias weights connected to each neuron in the layer.

BiasValues

This member is a pointer to a double value, which accesses a dynamically allocated array storing the
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bias values connected to each neuron in the layer. Note that this member is not really required because
we usually set the bias valuesto either +1 or -1 and leave them alone.

LearningRate
This member stores the learning rate, which calculates weight adjustments.
Linear Output

This member stores aflag indicating whether to use alinear activation function for the neuronsin the
layer. You use thisonly if the layer is an output layer. If thisflag is false, use the logistic activation
function instead. The default value is false.

UseMomentum

This member stores a flag indicating whether to use momentum when adjusting weights. The default
valueisfalse.

MomentumFactor

This member stores the momentum factor, as we discussed earlier. Useit only if the UseMomentum flag
istrue.

ParentLayer

This member stores a pointer to an instance of a Neural NetworkLayer representing the parent layer
connected to the given layer instance. This pointer is set to NULL for input layers.

ChildLayer

This member stores a pointer to an instance of a Neural NetworkLayer representing the child layer
connected to the given layer instance. This pointer is set to NULL for output layers.

The NeuralNetworkLayer class contains seven methods. Let's go through each one in detail, starting with the
constructor shown in Example 14-2.

Example 14-2. NeuralNetworkLayer constructor

Neur al Net wor kLayer : : Neur al Net wor kLayer ()
{
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Parent Layer = NULL;
Chi | dLayer = NULL,;
Li near Qut put = fal se;
UseMonmentum = fal se;
Moment unfactor = 0.9;

The constructor isvery simple. All it doesisinitialize afew settings that we've already discussed. The Initialize
method, shown in Example 14-3, is somewhat more involved.

Example 14-3. Initialize method

voi d Neural NetworkLayer::Initialize(int NunNodes,
Neur al Net wor kLayer * parent,
Neur al Net wor kLayer* chil d)

i nt i, J;
/1 Allocate nmenory
Neur onVal ues = (doubl e*) nall oc(si zeof (doubl e) *

Nunmber O Nodes) ;
Desi redVal ues = (doubl e*) nall oc(sizeof (double) *

Nunber O Nodes) ;
Errors = (doubl e*) nall oc(sizeof (double) * Nunber O Nodes);

i f(parent !'= NULL)
{
Par ent Layer = parent;
}
if(child !'= NULL)
{

Chi | dLayer = chil d;
Wei ghts = (doubl e**) mal | oc(si zeof (doubl e*) *
Nunber Of Nodes) ;
Wei ght Changes = (doubl e**) nall oc(sizeof (doubl e*) *
Nunber Of Nodes) ;
for(i = 0; i<NunmberOf Nodes; i ++)
{
Wei ghts[i] = (double*) mall oc(sizeof(double) *
Nunmber OF Chi | dNodes) ;
Wei ght Changes[i] = (doubl e*) rmall oc(sizeof (double) *
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Nunber OF Chi | dNodes) ;
}
Bi asVal ues = (doubl e*) mall oc(si zeof (doubl e) *
Nunmber OF Chi | dNodes) ;
Bi asWei ghts = (doubl e*) nall oc(sizeof (double) *
Nunber OF Chi | dNodes) ;

} else {

Wi ghts = NULL;

Bi asVal ues = NULL;

Bi asWei ght s = NULL;

Wei ght Changes = NULL;
}
/1 NMake sure everything contains Os
for(i=0; i<Nunber O Nodes; i++)
{

Neur onVal ues[i] = 0;

DesiredVal ues[i] = 0;

Errors[i] = 0;

i f(ChildLayer != NULL)

for(j=0; j<Nunmber O Chil dNodes; | ++)
{
Weights[i][j] = O;
Wei ght Changes[i][j] = O;

}

/1 Initialize the bias values and wei ghts
i f(ChildLayer != NULL)
for(j=0; j<NunmberOf Chil dNodes; | ++)
{
Bi asVal ues[j] = -1;
Bi asWei ghts[j] = 0;

The Initialize method is responsible for allocating all memory for the dynamic arrays used to store weights,
values, errors, and bias values and weights for the neuronsin the layer. It aso handles initiaizing al these
arrays.
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The method takes three parameters. the number of nodes, or neurons, in the layer; a pointer to the parent layer;
and a pointer to the child layer. If the layer isan input layer, NULL should be passed in for the parent layer
pointer. If the layer is an output layer, NULL should be passed in for the child layer pointer.

Upon entering the method, memory for the NeuronValues, DesiredValues, and Errors arraysis allocated. All of
these arrays are one-dimensional, with the number of entries defined by the number of nodesin the layer.

Next, the parent and child layer pointers are set. If the child layer pointer is not NULL, we have either an input
layer or a hidden layer and memory for connection weights must be allocated. Because Weights and
WeightChanges are two-dimensional arrays, we need to allocate the memory in steps. The first step involves
allocated memory to hold pointers to double arrays. The number of entries here corresponds to the number of
nodesin the layer. Next, for each entry we allocate another chunk of memory to store the actual array values.
The size of these additional chunks corresponds to the number of nodes in the child layer. Every neuron in an
Input or hidden layer connects to every neuron in the associated child layer; therefore, the total size of the
weight and weight adjustment arrays is equal to the number of neurons in the layer times the number of neurons
in the child layer.

We a'so go ahead and allocate memory for the bias values and weights arrays. The sizes of these arrays are
equal to the number of neurons in the connected child layer.

After all the memory is allocated, the arrays are initialized. For the most part we want everything to contain 0s,
with the exception of the bias values, where we set all the bias value entries to -1. Note that you can set these all
to +1, aswe discussed earlier.

Example 14-4 shows the CleanUp method, which is responsible for freeing all memory allocated in the
Initialization method.

Example 14-4. CleanUp method

voi d Neur al Net wor kLayer:: Cl eanUp(voi d)
{
i nt i
f ree( Neur onVal ues) ;
free(DesiredVal ues);
free(Errors);
i f(Weights !'= NULL)
{
for(i = 0; i<NunmberOf Nodes; i++)

{
free(Weights[i]);
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free( Wi ght Changes[i]);

}
free(Wei ghts);
free( Vi ght Changes) ;

}
i f(BiasValues !'= NULL) free(Bi asVal ues);

i f(Bi asWeights !'= NULL) free(Bi as\Wi ghts);

The code hereis pretty self-explanatory. It smply frees all dynamically allocated memory using free.

Earlier we mentioned that neural network weights areinitialized to some small random numbers before training
begins. The RandomizeWeights method, shown in Example 14-5, handles this task for us.

Example 14-5. RandomizeWeights method

voi d Neur al Net wor kLayer : : Random zeWi ght s(voi d)

{
i nt i,
i nt mn = O;
i nt max = 200;
i nt nunber ;

srand( (unsigned)time( NULL ) );
for(i=0; i<Nunmber O Nodes; i ++)

{
for(j=0; j<NunmberO Chil dNodes; | ++)
{
nunber = (((abs(rand()) % max-m n+l))+min));
i f (nunber >max)
number = nmax;
i f (number <m n)
number = mn;
Weights[i][j] = nunber / 100.0f - 1;
}
}
for(j=0; j<Nunmber O Chil dNodes; | ++)
{

nunmber = (((abs(rand()) % max-m n+l))+nin));

i f(number >max)
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number = nmax;
i f (nunber <m n)
nunmber = mn;
Bi asWei ghts[j] = nunmber / 100.0f - 1

All this method does is simply calculate a random number between -1 and +1 for each weight in the Weights
array. It does the same for the bias weights stored in the BiasWeights array. Y ou should call this method at the
start of training only.

The next method, CalculateNeuronValues, is responsible for calculating the activation or value of each neuron
in the layer using the formulas we showed you earlier for net input to a neuron and the activation functions.
Example 14-6 shows this method.

Example 14-6. CalculateNeuronValues method

voi d Neural Net wor kLayer : : Cal cul at eNeur onVal ues(voi d)

{
i nt s
doubl e X;
i f(ParentlLayer != NULL)
{
for(j=0; j<Nunmber O Nodes; | ++)
{
x = 0;
for(i=0; i<NunmberO Parent Nodes; i ++)
{
x += Parent Layer - >NeuronVal ues[i] *
Par ent Layer->Wei ghts[i][j];
}
X += Parent Layer->Bi asVal ues[j] *
Par ent Layer - >Bi asWei ghts[j ];
i f((ChildLayer == NULL) && Li near Qut put)
Neur onVal ues[j] = Xx;
el se
NeuronVal ues[j] = 1.0f/(1l+exp(-x));
}
}
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}

In this method, all the weights are cycled through using the nested for statements. The j loop cycles through the
layer nodes (the child layer), while the i loop cycles through the parent layer nodes. Within these nested loops,
the net input is calculated and stored in the x variable. The net input for each node in the layer is the weighted
sum of all connections from the parent layer (the i loop) feeding into each node, the jth node, plus the weighted
bias for the jth node.

After you have calculated the net input for each node, you calculate the value for each neuron by applying an
activation function. Y ou use the logistic activation function for all layers, except for the output layer, in which

case you use the linear activation function depending on the Linear Output flag.

The CalculateErrors method shown in Example 14-7 isresponsible for calculating the errors associated with
each neuron using the formulas we discussed earlier.

Example 14-7. CalculateErrors method

voi d Neural Net wor kLayer: : Cal cul at eErrors(voi d)

{
i nt A
doubl e sum
i f(ChildLayer == NULL) // output |ayer
{
for(i=0; i<NunberOf Nodes; i++)
{
Errors[i] = (DesiredValues[i] - NeuronValues[i]) *
Neur onVal ues[i] *
(1.0f - NeuronValues[i]);
}
} else if(ParentlLayer == NULL) { // input |ayer
for(i=0; i<NunberOf Nodes; i++)
{
Errors[i] = 0.O0f;
}

} else { // hidden |ayer
for(i=0; i<NunberOf Nodes; i ++)
{
sum = 0;
for(j=0; j<Number O Chil dNodes; | ++)
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{
sum += Chil dLayer->Errors[j] * Weights[i][j];
}
Errors[i] = sum™* NeuronVal ues[i] *
(1.0f - NeuronValues[i]);

If the layer has no child layer, which happens only if the layer is an output layer, the formulafor output layer
errorsisused. If the layer has no parent, which happens only if the layer isan input layer, the errors are set to 0.
If the layer has both a parent layer and achild layer, it is a hidden layer and the formulafor hidden-layer errors

is applied.

The AdjustWeights method, shown in Example 14-8, is responsible for cal culating the adjustments to be made to
each connection weight.

Example 14-8. AdjustWeights method

voi d Neural Net wor kLayer : : Adj ust Wi ght s(voi d)
{
i nt b0
doubl e dw;
i f(ChildLayer != NULL)
{
for(i=0; i<NunmberCOf Nodes; i ++)
{
for(j=0; j<NurmberOf Chil dNodes; | ++)
{
dw = LearningRate * ChildLayer->Errors[j] *
Neur onVal ues[i];
i f (UseMonment um

{
Weights[i][j] += dw + Monentunfactor *
Wei ght Changes[i][j];
Wi ght Changes[i][j] = dw
} else {
Weights[i][j] += dw;
}
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}
}
for(j=0; j<NunmberOf Chil dNodes; | ++)
{
Bi asWei ghts[j] += LearningRate *
Chi | dLayer->Errors[j] *
Bi asVal ues[j];

Weights are adjusted only if the layer has a child layerthat is, if the layer isan input layer or a hidden layer.
Output layers have no child layer and therefore no connections and associated weights to adjust. The nested for
loops cycle through the nodes in the layer and the nodes in the child layer. Remember that each neuronina
layer is connected to every node in a child layer. Within these nested loops, the weight adjustment is calculated
using the formula shown earlier. If momentum isto be applied, the momentum factor times the previous epoch's
weight changes also are added to the weight change. The weight change for this epoch is then stored in the
WeightChanges array for the next epoch. If momentum is not used, the weight change is applied without
momentum and there's no need to store the weight changes.

Finally, the bias weights are adjusted in a manner similar to the connection weights. For each bias connected to
the child nodes, the adjustment is equal to the learning rate times the child neuron error times the bias value.

14.2.13 The Neural Network Class

The NeuralNetwork class encapsul ates three instances of the Neural NetworkLayer class, one for each layer in
the network: the input layer, the hidden layer, and the output layer. Example 14-9 shows the class header.

Example 14-9. NeuralNetwork class

cl ass Neur al Net wor k

{

public:
Neur al Net wor kLayer | nput Layer;
Neur al Net wor kLayer Hi ddenLayer
Neur al Net wor kLayer Cut put Layer
voi d Initialize(int nNodeslnput, int nNodesHi dden
i nt nNodesQut put) ;
voi d d eanUp();
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voi d Setlnput(int i, double value);

double GetCQutput(int i);

voi d Set Desi redQut put (i nt i, double val ue);
voi d FeedFor war d(voi d) ;

voi d BackPr opagat e(voi d);

i nt Get MaxQut put | D(voi d) ;

doubl e Cal cul ateError(void);

voi d Set Lear ni ngRat e(doubl e rate);

voi d Set Li near Qut put (bool uselLi near);

voi d Set Morrent um( bool useMonmentum doubl e factor);
voi d DunpDat a(char* fil enane);

Only three membersin this class correspond to the layers comprising the class. However, this class contains 13
methods, which we'll go through next.

Example 14-10 shows the Initialize method.
Example 14-10. Initialize method
voi d Neural Network::Initialize(int nNodesl nput,

i nt nNodesHi dden,
i nt nNodesCQut put)

{

| nput Layer. Nunber Of Nodes = nNodesl nput ;

I nput Layer . Nunber O Chi | dNodes = nNodesHi dden;

| nput Layer . Nunber O Par ent Nodes = O0;

| nput Layer. I nitialize(nNodesl nput, NULL, &Hi ddenLayer);

| nput Layer . Random zeWi ghts() ;

Hi ddenLayer. Number Of Nodes = nNodesH dden;

H ddenLayer . Nunmber O Chi | dNodes = nNodesCut put ;

Hi ddenLayer . Nurmber Of Par ent Nodes = nNodesl nput ;

Hi ddenLayer.Initialize(nNodesHi dden, & nput Layer, &ut put Layer);

Hi ddenLayer. Random zeWei ght s();

Qut put Layer. Nunber Of Nodes = nNodesQut put ;

CQut put Layer . Number Of Chi | dNodes = 0;

Qut put Layer . Nunber Of Par ent Nodes = nNodesHi dden;

Qut put Layer.Initialize(nNodesCQutput, &H ddenLayer, NULL);
}
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Initialize takes three parameters corresponding to the number of neurons contained in each of the three layers
comprising the network. These parametersinitialize the instances of the layer class corresponding to the input,
hidden, and output layers. Initialize also handles making the proper parent-child connections between layers.
Further, it goes ahead and randomizes the connection weights.

The CleanUp method, shown in Example 14-11, simply calls the CleanUp methods for each layer instance.

Example 14-11. CleanUp method

voi d Neural Net work: : Cl eanUp()

{
| nput Layer . d eanUp() ;

H ddenLayer. C eanUp();
Qut put Layer . C eanUp() ;

Setlnput is used to set the input value for a specific input neuron. Example 14-12 shows the Setlnput method.

Example 14-12. Setinput method

voi d Neur al Net wor k: : Set I nput (i nt i, double val ue)

{
i f((i>=0) && (i<InputlLayer. Nunber O Nodes))

{

I nput Layer. Neur onVal ues[i] = val ue;

SetInput takes two parameters corresponding to the index to the neuron for which the input will be set and the
input value itself. Thisinformation is then used to set the specific input. Y ou use this method both during
training to set the training set input, and during field use of the network to set the input data for which outputs
will be calculated.

Once a network generates some output, we need away to get at it. The GetOutput method is provided for that
purpose. Example 14-13 shows the GetOutput method.

Example 14-13. GetOutput method
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doubl e Neur al Net wor k: : Get Qut put (i nt i)
{
i f((i>=0) && (i<CQutputLayer. Nunber O Nodes))
{
return Qut put Layer. NeuronVal ues[i];
}

return (double) INT_MAX; // to indicate an error

GetOutput takes one parameter, the index to the output neuron for which we desire the output value. The
method returns the value, or activation, for the specified output neuron. Note that if you specify an index that
falls outside of the range of valid output neurons, INT_MAX will be returned to indicate an error.

During training we need to compare cal culated output to desired output. The layer class facilitates the
calculations along with storage of the desired output values. The SetDesiredOutput method, shown in Example
14-14, is provided to facilitate setting the desired output to the values corresponding to a given set of input.

Example 14-14. SetDesiredOutput method

voi d Neural Net wor k: : Set Desi redQut put (int i, double val ue)
{
i f((i>=0) && (i<CutputlLayer.Nunber Cf Nodes))
{
Qut put Layer . Desi redVal ues[i] = val ue;
}

SetDesiredOutput takes two parameters corresponding to the index of the output neuron for which the desired
output is being set and the value of the desired output itself.

To actually have the network generate output given a set of input, we need to call the FeedForward method
shown in Example 14-15.

Example 14-15. FeedForward method

voi d Neural Net wor k: : FeedFor war d( voi d)
{
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I nput Layer . Cal cul at eNeur onVal ues();
H ddenLayer. Cal cul at eNeur onVal ues() ;
Qut put Layer . Cal cul at eNeur onVal ues();

This method simply calls the CalculateNeuronValues method for the input, hidden, and output layersin
succession. Once these calls are complete, the output layer will contain the calculated output, which then can be
inspected via calls to the GetOutput method.

During training, once output has been calculated, we need to adjust the connection weights using the back-
propagation technique. The BackPropagate method handles this task. Example 14-16 shows the BackPropagate
method.

Example 14-16. BackPropagate method

voi d Neur al Net wor k: : BackPr opagat e( voi d)
{

Qut put Layer. Cal cul at eErrors();

Hi ddenLayer. Cal cul ateErrors();

H ddenLayer. Adj ust Wi ght s();

| nput Layer . Adj ust Wi ght s() ;

BackPropagate first calls the CalculateErrors method for the output and hidden layers, in that order. Then it
goes on to call the AdjustWeights method for the hidden and input layers, in that order. The order is important
here and it must be the order shown in Example 14-16that is, we work backward through the network rather
than forward, asin the FeedForward case.

When using a network with multiple output neurons and the winner-takes-all approach to determine which
output is activated, you need to figure out which output neuron has the highest output value. GetMaxOutputl D,
shown in Example 14-17, is provided for that purpose.

Example 14-17. GetMaxOutputlD method

i nt Neur al Net wor k: : Get MaxQut put | D( voi d)
{

i nt i, id;

doubl e maxval ;

maxval = Qut putLayer. NeuronVal ues[ 0] ;
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id = 0;
for(i=1; i<CQutputlLayer.Nunber O Nodes; i ++)
{

i f(QutputlLayer. NeuronVal ues[i] > maxval)

{

maxval = Qut put Layer. NeuronVal ues[i];
id=1i;

}

return id;

GetMaxOutputl D simply iterates through all the output-layer neurons to determine which one has the highest
output value. The index to the neuron with the highest value is returned.

Earlier we discussed the need to calculate the error associated with a given set of output. We need to do thisfor
training purposes. The CalculateError method takes care of the error calculation for us. Example 14-18 shows

the CalculateError method.

Example 14-18. CalculateError method

doubl e Neur al Net wor k: : Cal cul at eError (voi d)

{
i nt [
doubl e error = 0;
for(i=0; i<CQutputlLayer.NunberOf Nodes; i ++)
{
error += pow( CQut put Layer. NeuronVal ues[i] --
Qut put Layer. Desi redVal ues[i], 2);
}
error = error / QutputlLayer. Nunber O Nodes;
return error;
}

CalculateError returns the error value associated with the calculated output values and the given set of desired
output values using the mean-square error formula we discussed earlier.

For convenience, we provide the SetLearningRate method, shown in Example 14-19. Y ou can use it to set the
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learning rate for each layer comprising the network.

Example 14-19. SetLearningRate method

voi d Neural Net wor k: : Set Lear ni ngRat e(doubl e rate)

{
| nput Layer. Learni ngRate = rate;
Hi ddenLayer. Learni ngRate = rate;
CQut put Layer. Learni ngRate = rate;
}

SetLinear Output, shown in Example 14-20, is another convenience method. Y ou can use it to set the
LinearOutput flag for each layer in the network. Note, however, that only the output layer will use linear
activations in this implementation.

Example 14-20. SetLinearOutput method

voi d Neur al Net wor k: : Set Li near Qut put (bool useLi near)
{

| nput Layer. Li near Qut put = useli near;

H ddenLayer. Li near Qut put = useli near;

CQut put Layer. Li near Qut put = useli near;

Y ou use SetMomentum, shown in Example 14-21, to set the UseMomentum flag and the momentum factor for
each layer in the network.

Example 14-21. SetMomentum method

voi d Neur al Net wor k: : Set Monent um( bool useMonentum doubl e factor)
{

I nput Layer . UseMoment um = useMonment um
H ddenLayer. UseMbnent um = useMonent um

CQut put Layer . UseMoment um = useMonent um
| nput Layer . Monent unfact or = factor;

H ddenLayer. Monment unfact or = factor;

Qut put Layer . Monent unfact or factor;
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DumpData is a convenience method that ssimply streams some important data for the network to an output file.
Example 14-22 shows the DumpData method.

Example 14-22. DumpData method

voi d Neural Net wor k: : DunpbDat a(char* fil enane)

{
FI LE* f;
i nt R
f = fopen(filename, "wW');
fprintf(f, "-----comomm e \n");
fprintf(f, "Input Layer\n");
fprintf(f, M----ommmm i \n");

fprintf(f, "\n");
fprintf(f, "Node Values:\n");
fprintf(f, "\n");
for(i=0; i<lnputlLayer.Nunber O Nodes; i ++)

fprintf(f, "(%) = %\n", i, |nputlLayer.NeuronValues[i]);
fprintf(f, "\n");
fprintf(f, "Weights:\n");
fprintf(f, "\n");
for(i=0; i<InputlLayer.Nunber O Nodes; i ++)

for(j=0; j<InputLayer.NunberCf Chil dNodes; | ++)

fprintf(f, "(%, %) = %\n", i, j,
I nput Layer. Weights[i][j]);

fprintf(f, "\n");
fprintf(f, "Bias Wights:\n");
fprintf(f, "\n");
for(j=0; j<InputLayer. Nunber O Chil| dNodes; | ++)

fprintf(f, "(%) = %\n", j, |nputLayer.BiasWights[j]);
fprintf(f, "\n");
fprintf(f, "\n");

fprintf(f, Me-ommmm o e e \n");
fprintf(f, "H dden Layer\n");
fprintf(f, M- oo e \n");

fprintf(f, "\n");
fprintf(f, "Weights:\n");
fprintf(f, "\n");
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for(i=0; i<Hi ddenLayer. Nunber Of Nodes; i ++)
for(j=0; j<H ddenLayer. Nunber O Chi | dNodes; | ++)
fprintf(f, "(%d, %) = %\n", i, j,
Hi ddenLayer. Weights[i][j]);
fprintf(f, "\n");
fprintf(f, "Bias Wights:\n");
fprintf(f, "\n");
for(j=0; j<H ddenLayer.Nunber O Chi | dNodes; | ++)
fprintf(f, "(%) = %\n", j, H ddenLayer.Bi asWights[j]);
fprintf(f, "\n");
fprintf(f, "\n");

fprintf(f, Me-ommmm e e \n");
fprintf(f, "Qutput Layer\n");
fprintf(f, M---mmm o \n");

fprintf(f, "\'n");

fprintf(f, "Node Values:\n");

fprintf(f, "\n");

for(i=0; i<QutputlLayer.Nunber O Nodes; i ++)

fprintf(f, "(%) = %\n", i, QutputlLayer.NeuronValues[i]);
fprintf(f, "\n");
fclose(f);

The data that is sent to the given output file consists of weights, values, and bias weights for the layers
comprising the network. Thisis useful when you want to examine the internals of a given network. Thisis
helpful when debugging and in cases in which you might train a network using a utility program and want to

hardcode the trained weightsin an actual game instead of spending the time in-game performing initial training.
For this latter purpose, you'll have to revise the Neural Network class shown here to facilitate |oading weights

from an external source.
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14.4 Chasing and Evading with Brains

The example we're going to discuss in this section is a modification of the flocking and chasing example we
discussed in Chapter 4. In that chapter we discussed an example in which aflock of units chased the player-
controlled unit. In this modified example, the computer-controlled units will use a neural network to decide
whether to chase the player, evade him, or flock with other computer-controlled units. This exampleisan
idealization or approximation of a game scenario in which you have creatures or units within the game that can
engage the player in battle. Instead of having the creatures always attack the player and instead of using afinite
state machine "brain," you want to use a neural network to not only make decisions for the creatures, but also to
adapt their behavior given their experience with attacking the player.

Here's how our simple example will work. About 20 computer-controlled units will move around the screen.
They will attack the player, run from the player, or flock with other computer-controlled units. All of these
behaviors will be handled using the deterministic algorithms we presented in earlier chapters, however, here the
decision as to what behavior to perform is up to the neural network. The player can move around the screen as
he wishes. When the player and computer-controlled units come within a specified radius of one another, we're
going to assume they are engaged in combat. We won't actually simulate combat here and will instead use a
rudimentary system whereby the computer-controlled units will lose a certain number of hit points every turn
through the game loop when in combat range of the player. The player will lose a certain number of hit points
proportional to the number of computer-controlled units within combat range. When a unit's hit points reach
zero, he dies and is respawned automatically.

All computer-controlled units share an identical brainthe neural network. We're also going to have this brain
evolve as the computer-controlled units gain experience with the player. We'll achieve this by implementing the
back-propagation agorithm in the game itself so that we can adjust the network's weightsin real time. We're
assuming that the computer-controlled units evolve collectively.

We hope to see the computer-controlled units learn to avoid the player if the player is overwhelming them in
combat. Conversely, we hope to see the computer-controlled units become more aggressive as they learn they
have aweak player on their hands. Another possibility is that the computer-controlled units will learn to stay in
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groups, or flock, where they stand a better chance of defeating the player.
14.2.14 Initialization and Training

Using the flocking example from Chapter 4 as a starting point, the first thing we have to do is add a new global
variable, called TheBrain, to represent the neural network, as shown in Example 14-23.

Example 14-23. New global variable

Neur al Net wor k TheBr ai n;

We must initialize the neural network at the start of the program. Here, initialization includes configuring and
training the neural network. The Initialize function taken from the earlier example is an obvious place to handle
initializing the neural network, as shown in Example 14-24.

Example 14-24. Initialization
voi d Initialize(void)

{

int i;

for(i=0; i< MAX NUM UNITS; i ++)

{
Units[i].H tPoints = MAXH TPO NTS;
Units[i].Chase = fal se;
Units[i].Flock = fal se;
Units[i].Evade = fal se;

}

Units[O0].Hi tPoints = _MAXH TPO NTS;
TheBrain.Initialize(4, 3, 3);
TheBr ai n. Set Lear ni ngRat e( 0. 2);
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TheBr ai n. Set Monentum(true, 0.9);
Trai nTheBrain();

Most of the code in this version of Initialize isthe same as in the earlier example, so we omitted it from the code
listing in Example 14-24. The remaining code is what we added to handle incorporating the neural network into
the example.

Notice we had to add a few new membersto the rigid body structure, as shown in Example 14-25. These new
members include the number of hit points, and flags to indicate whether the unit is chasing, evading, or flocking.

Example 14-25. RigidBody2D class

cl ass Ri gi dBody2D {
public:

doubl e Hi t Poi nt s;

i nt Nunfri ends;
i nt Conmand;
bool Chase;

bool FI ock;

bool Evade;

doubl e I nput s[ 4] ;

Notice also that we added an Inputs vector. Thisis used to store the input values to the neural network wheniitis
used to determine what action the unit should take.

Getting back to the Initialize method in Example 14-24, after the units are initialized it's time to deal with
TheBrain. Thefirst thing we do is call the Initialize method for the neural network, passing it values
representing the number of neurons in each layer. In this case, we have four input neurons, three hidden
neurons, and three output neurons. This network is similar to that illustrated in Figure 14-4.

The next thing we do is set the learning rate to avalue of 0.2. We tuned this value by trial and error, with the
aim of keeping the training time down while maintaining accuracy. Next we call the SetMomentum method to
indicate that we want to use momentum during training, and we set the momentum factor to 0.9.
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Now that the network isinitialized, we can train it by calling the function TrainTheBrain. Example 14-26 shows
the TrainTheBrain function.

Example 14-26. TrainTheBrain function

voi d Trai nTheBr ai n(voi d)
{
i nt s
doubl e error = 1;
i nt c =0;

TheBr ai n. DunpDat a(" PreTrai ni ng. t xt");
whil e((error > 0.05) && (c<50000))

{
error = 0O;
C++;
for(i=0; i<14; i++)
{
TheBrai n. Set I nput (0, TrainingSet[i][O0]);
TheBrain. Setlnput (1, TrainingSet[i][1]);
TheBrain. Setlnput (2, TrainingSet[i][2]);
TheBrain. Set I nput (3, TrainingSet[i][3]);
TheBr ai n. Set Desi redQut put (0, TrainingSet[i][4]);
TheBr ai n. Set Desi redQut put (1, TrainingSet[i][5]);
TheBr ai n. Set Desi redQut put (2, TrainingSet[i][6]);
TheBr ai n. FeedForwar d() ;
error += TheBrain. Cal cul ateError();
TheBr ai n. BackPr opagat e() ;
}
error = error / 14.0f;
}

TheBr ai n. DunpDat a( " Post Trai ni ng. t xt");

Before we begin training the network, we dump its data to atext file so that we can refer to it during debugging.
Next, we enter awhile loop that trains the network using the back-propagation algorithm. The whileloop is
cycled through until the calculated error is less than some specified value, or until the number of iterations
reaches a specified maximum threshold. This latter condition is there to prevent the while loop from cycling
forever in the event the error threshold is never reached.
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Before taking a closer ook at what's going on within the while loop, let's look at the training data used to train
this network. The global array called TrainingSet is used to store the training data. Example 14-27 shows the
training data.

Example 14-27. Training data

double TrainingSet[14][7] = {
/1 #Friends, Hit points, Eneny Engaged, Range, Chase, Flock, Evade

0, 1, 0, 0.2, 0.9, 0.1, 0.1,
0 1, 1, 0. 2, 0.9 0.1 0.1,
0, 1, 0, 0. 8, 0.1 0.1 0.1,
0.1, 0. 5, 0, 0. 2, 0.9, 0.1, 0.1,
0 0. 25, 1, 0.5, 0.1 0.9 0.1,
0, 0. 2, 1, 0. 2, 0.1, 0.1, 0.9,
0.3 0.2 0, 0. 2, 0.9 0.1 0.1,
0, 0. 2, 0, 0. 3, 0.1, 0.9, 0.1,
0 1, 0, 0. 2, 0.1 0.9 0.1,
0 1, 1, 0. 6, 0.1 0.1 0.1,
0, 1, 0, 0. 8, 0.1, 0.9, 0.1,
0.1 0. 2, 0, 0. 2, 0.1 0.1 0.9,
0, 0. 25, 1, 0.5, 0.1, 0.1, 0.9,
0 0. 6, 0, 0. 2, 0.1 0.1 0.9

The training data consists of 14 sets of input and output values. Each set consists of values for the four input
nodes representing the number of friends for a unit, its hit points, whether the enemy is engaged already, and the
range to the enemy. Each set also contains data for three output nodes corresponding to the behaviors chase,
flock, and evade.

Notice that all the data values are within the range from 0.0 to 1.0. All the input data is scaled to the range 0.0 to
1.0, aswe discussed earlier, and because the logistic output function is used, each output value will range from
0.0to 1.0. We'll see how the input datais scaled alittle later. Asfor the output, it's impractical to achieve 0.0 or
1.0 for output, so we use 0.1 to indicate an inactive output and 0.9 to indicate an active output. Also note that
these output values represent the desired output for the corresponding set of input data.

We chose the training data rather empirically. Basically, we assumed afew arbitrary input conditions and then
specified what a reasonable response would be to that input and set the output values accordingly. In practice
you'll probably give this more thought and likely will use more training sets than we did here for thissimple
example.
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Now, let's get back to that while loop that handles back-propagation training shown in Example 14-26. Upon
entering the while loop, the error isinitialized to 0. We're going to calculate the error for each epoch, which
consists of all 14 sets of input and output values. For each set of data, we set the input neuron values and desired
output neuron values and then call the FeedForward method for the network. After that, we can calculate the
error. To do thiswe call the CalculateError method for the network and accumulate the result in the error
variable. We then proceed to adjust the connection weights by calling the BackPropagate method. After these
steps are complete for an epoch, we calculate the average error for the epoch by dividing the error by 14the
number of data sets in the epoch. At the end of training, the network's data is dumped to atext file for later
Inspection.

At this point, the neural network is ready to go. Y ou can use it with the trained connection weights, asis. This
will save you the trouble of having to code afinite state machine, or the like, to handle all the possible input
conditions. A more compelling application of the network isto allow it to learn on the fly. If the units are
performing well given the decisions made by the network, we can reinforce that behavior. On the other hand, if
the units are performing poorly, we can retrain the network to suppress poor decisions.

14.2.0 Learning

In this section we're going to continue looking at code that implements the neural network, including the ability
to learn in-game using the back-propagation algorithm. Take alook at the UpdateS mulation function shown in
Example 14-28. Thisis amodified version of the UpdateS mulation function we discussed in Chapter 4. For
clarity, Example 14-28 shows only the modifications to the function.

Example 14-28. Modified UpdateSimulation function

voi d Updat eSi nul ati on(voi d)

{

i nt [
Vect or u;

bool kill = fal se;

/1 cal c nunber of eneny units currently engaging the target
Vector d;
Units[0].NunFriends = 0;
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for(i=1; i< MAX_NUM UNITS; i++)

{

}

d = Units[i].vPosition -- Units[0].vPosition;
i f(d.Magnitude() <= (Units[0].fLength *
_CRITI CAL_RADI US_FACTOR) )
Uni ts[ 0] . Nunfri ends++;

/1 deduct hit points fromtarget
i f(Units[0].Nunfriends > 0)

{

}

Units[O].H tPoints --= 0.2 * Units[0].Nunfriends;
if(Units[0].H tPoints < 0)
{
Units[0].vPosition.x = _WNWDTH 2;
Units[0].vPosition.y = _W NHElI GHT/ 2;

Units[0].H tPoints
kill = true;

_MAXH TPO NTS;

/1 update conputer-controlled units:
for(i=1;, i<_MAX_NUMUNTS; i++)

{

u = Units[0].vPosition -- Units[i].vPosition;
if(kill)
{
i f((u.Magnitude() <= (Units[O].fLength *
_CRITI CAL_RADI US FACTOR)))

ReTrai nTheBrain(i, 0.9, 0.1, 0.1);

}

/1 handl e eneny hit points, and learning if required
i f(u. Magnitude() <= (Units[O].fLength *
_CRITI CAL_RADI US_FACTOR) )

Units[i].H tPoints --= DamageRat e;
if((Units[i].H tPoints < 0))
{
Units[i].vPosition.x=CGet Random\unber (_W NW DTH 2
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-- _SPAWN _AREA R,
_W NW DTH 2+_SPAWN_AREA R,
fal se);
Units[i].vPosition.y=CGet RandomNunber (_W NHEI GHT/ 2
-- _SPAVWN_AREA R,
W NHEI GHT/ 2+_SPAWN AREA R,
fal se);
Units[i].H tPoints = _MAXH TPO NTS/ 2. 0;
ReTrai nTheBrain(i, 0.1, 0.1, 0.9);
}
} else {
Units[i].H tPoints+=0.01;
if(Units[i].H tPoints > NMAXH TPO NTS)
Units[i].H tPoints = MAXH TPO NTS;
}
/1l get a new conmmand
Units[i].Ilnputs[O]
Units[i].Ilnputs[1]

Units[i].NunfFriends/ _MAX_NUM UNI TS;

(doubl e) (Units[i].HtPoints/
_MAXHI TPOI NTS) ;

Units[i].lnputs|2] (Units[0]. Nunfriends>0 ? 1:0);

Units[i].lnputs][3] (u. Magni tude()/800. 0f);

TheBrai n. Set I nput (0, Units[i].Inputs[0]);

TheBrain. Setlnput (1, Units[i].lnputs[1]);

TheBrain. Setlnput (2, Units[i].Inputs[2]);

TheBrain. Setlnput (3, Units[i].Inputs[3]);

TheBr ai n. FeedFor war d() ;

Units[i].Conmmand = TheBrain. Get MaxQut put | I() ;

switch(Units[i].Comrand)

{

case O:
Units[i].Chase = true;
Units[i].Flock = fal se;
Units[i].Evade = fal se;
Units[i].Wander = fal se;
br eak;

case 1:

Units[i]. Chase
Units[i].Flock = true;
Units[i]. Evade

fal se;

fal se;
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Units[i].Wander = fal se;

br eak;

case 2:
Units[i].Chase = fal se;
Units[i].Flock = fal se;
Units[i].Evade = true;

Units[i].Wander = fal se;
br eak;

}
DoUni t Al (i );

} // end i-loop

kill = fal se;

Thefirst new thing we do in the modified UpdateS mulation function is to calculate the number of computer-
controlled units currently engaging the target. In our simple example, a unit is considered to be engaging the
target if it iswithin a specified distance from the target.

Once we determine the number of engaging units, we deduct a number of hit points from the target proportional
to the number of engaging units. If the number of target hit points reaches zero, the target is considered killed
and it is respawned in the middle of the screen. Also, thekill flag is set to true.

The next step is to handle the computer-controlled units. For this task, we enter afor loop to cycle through all
the computer-controlled units. Upon entering the loop, we calcul ate the distance from the current unit to the
target. Next we check to seeif the target waskilled. If it was, we check to see where the current unit wasin
relation to the targetthat is, whether it was in engagement range. If it was, we retrain the neural network to
reinforce the chase behavior. Essentially, if the unit was engaging the target and the target died, we assume the
unit is doing something right and we reinforce the chase behavior to make it more aggressive.

Example 14-29 shows the function that handles retraining the network.

Example 14-29. ReTrainTheBrain function
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voi d ReTrai nTheBrain(int i, double dO, double dl, double d2)
{
doubl e error =1
i nt c =0;
while((error > 0.1) && (¢c<5000))
{
C++;
TheBrai n. Set I nput (0, Units[i].lnputs[0]);
TheBrai n. Setlnput (1, Units[i].lnputs[1]);
TheBrai n. Setl nput (2, Units[i].lnputs[2]);
TheBrai n. Setl nput (3, Units[i].lnputs[3]);

TheBr ai n. Set Desi redQut put (0, dO);
TheBr ai n. Set Desi redQut put (1, di);
TheBr ai n. Set Desi redQut put (2, d2);
[/ TheBrai n. Set Desi redQut put (3, d3);
TheBr ai n. FeedForwar d() ;

error = TheBrain. Cal cul ateError();

TheBr ai n. BackPr opagat e() ;

ReTrainTheBrain simply implements the back-propagation training algorithm again, but this time the stored
inputs for the given unit and specified target outputs are used as training data. Note here that you don't want to
set the maximum iteration threshold for the while loop too high. If you do, a noticeable pause could occur in the
action as the retraining process takes place. Also, if you try to retrain the network to achieve avery small error,
it will adapt too rapidly. You can control somewhat the rate at which the network adapts by varying the error
and maximum iteration thresholds.

The next step in the UpdateS mulation function is to handle the current unit's hit points. If the current unitisin
engagement range of the target, we deduct a prescribed number of hit points from the unit. If the unit's hit points
reach zero, we assume it died in combat, in which case we respawn it at some random location. We aso assume
that the unit was doing something wrong, so we retrain the unit to evade rather than chase.

Now we go ahead and use the neural network to make adecision for the unitthat is, under the current set of
conditions, should the unit chase, flock, or evade. To do thiswe first set the input to the neural network. The
first input value is the number of friends for the current unit. We scale the number of friends by dividing the
maximum number of units constant into the number of friends for the unit. The second input is the number of hit
points for the unit, which is scaled by dividing the maximum number of hit points into the unit's hit point count.
Thethird input is an indication as to whether the target is engaged. Thisvalueisset to 1.0 if thetarget is
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engaged or 0.0 if it is not engaged. Finally, the fourth input is the range to the target. In this case, the distance
from the current unit to the target is scaled by dividing the screen width (assumed to be 800 pixels) into the
range.

Once al the inputs are set, the network is propagated by calling the FeedForward method. After this call, the
output values of the network can be examined to derive the proper behavior. For this, we select the output with
the highest activation, which is determined by making a call to the GetmaxOutputlD method. ThisID isthen
used in the switch statement to set the appropriate behavior flag for the unit. If the ID is O, the unit should chase.
If the ID is 1, the unit should flock. If the ID is 2, the unit should evade.

That takes care of the modified UpdateS mulation function. If you run this example program, which is available
from this book's Web site (http://www.orellly.com/catal og/ai), you'll see that the computer-controlled unit's
behavior does indeed adapt as the ssmulation runs. Y ou can use the number keys to control how much damage
the target inflicts on the units. The 1 key correspondsto little or no damage, while the 8 key corresponds to
massive damage. If you let the target die without inflicting damage on the units, you'll see that they soon adapt
to attack more often. If you set the target so that it inflicts massive damage, you'll see that the units start
adapting to avoid the target more. They also start engaging in groups more often as opposed to engaging as
individuals. Eventually, they adapt to avoid the target at all costs. An interesting emergent behavior resulting
from this exampleisthat the units tend to form flocks and |eaders tend to emerge. Often aflock will form, and
the leading units might chase or evade while the intermediate and trailing units follow their lead.
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14.5 Further Information

Aswe stated at the beginning of this chapter, the subject of neural networksis far too vast to treat in one
chapter. Therefore, we've compiled a short list of pretty good references that you might find useful should you
decide to pursue this subject further. Thelist isasfollows:

. Practical Neural Network Recipesin C++ (Academic Press)
. Neural Networks for Pattern Recognition (Oxford University Press)
. Al Application Programming (Charles River Media)

Many other books on neural networks also are available; however, the ones we list above proved very useful to
us, especialy thefirst one, Practical Neural Network Recipesin C++. This book provides awealth of practical
tips and advice on the programming and use of neural networks for a variety of applications.
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Chapter 15. Genetic Algorithms

It isthe game designer's job to create a challenging game environment for the player. In fact, alarge part of
game development involves balancing the game world. It needs to be challenging enough for the players, or the
game will seem too easy and they will lose interest. On the other hand, if it's too difficult, the players will
become frustrated. Sometimes players can discover loopholes, or exploits, with which they essentially can
cheat. This can be aresult of a game design issue that the devel opers simply overlooked. Another game design
problem stems from the fact that the skill levels of different players can vary greatly. Creating atruly balanced
and challenging game for players of different skill levels can be a daunting task. Fortunately, genetic algorithms
can help.

In this chapter, we are not going to attempt to model atrue genetic system. A true genetic model probably
wouldn't be practical or beneficial in areal computer game. Instead, the system we are going to discussis
merely inspired by abiological genetic system. In some waysit will be similar, but we won't hesitate to bend the
rulesif it benefits the game design process.

In the real world, species constantly evolve in an attempt to better adapt to their environments. Those that are
most fit continue to survive. Charles Darwin proposed this phenomenon in 1859 in his famous work entitled
"On the Origin of Species." Those that are most able to survive in their environments are able to pass on their
traits to the next generation. The individual traits are encoded in chromosomes. In the next generation, these
chromosomes are combined in a process called crossover. Crossover is arecombination of the chromosomesin
the offspring. Figure 15-1 illustrates this process.

Figure 15-1. Crossover

figs/ch15_figOl.jpg

In Figure 15-1 we used random letters to represent chromosomes. As you can see, each parent passes half of its
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genetic material on to the child. However, in the real world this crossover process might not be exact. Random
mutations also can take place. Thisisillustrated in Figure 15-2.

Figure 15-2. Random mutations

figs/chl5 fig02.jpg

Random mutations are nature's way of trying new things. If arandom mutation improves the species, it gets
passed on to future generations. If not, it doesn't get passed on.

This constant recombination of chromosomes from the most successful members of the previous generation,
combined with random mutations, creates future generations that are better adapted to survive and flourishin
their environments. Y ou can apply this same concept in games. Just as in the biologica world, the elementsin a
game world can be made to evolve and adapt to changing situations.
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15.1 Evolutionary Process

Y ou can break down the implementation of genetic algorithms in gamesinto four steps. Figure 15-3 illustrates
this four-step process.

Figure 15-3. Evolutionary process

Hrst Qg neration

l
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As Figure 15-3 shows, the first step involves creating the first generation. The entire population is seeded with a
set of starting traits. Once the population starts interacting with its environment, we need away to rank the
individual members. Thisis the process of ranking fitness. This tells us which members of the population are
the most successful. The process of ranking fitness aids us in the next step, which is selection. In the selection
process we choose certain members of the population to create the next generation. We essentially use the most
successful traits of the previous generation to create the next generation. The actual step of combining these
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traits to create a new, and hopefully fitter, generation is referred to as evolution. Genetic algorithms are
essentially optimization processes in which we're trying to find the fittest set of traitswe're looking for the
optimum solution to a specific problem.

15.2.1 First Generation

Each individual in the first generation represents a possible solution to the problem at hand. One way to
approach the creation of the first generation is to arrange the chromosomes randomly. In a game environment,
however, randomly arranging chromosomes might not always be the best solution. If the game designer already
knows which combinations of chromosomes are likely to produce afit individual, a true random combination
probably won't be necessary. However, it is still important to create an initial diverse population. If the
individuals are too much alike, the genetic process will be less effective.

Encoding is the process of storing the chromosomes in a structure that can be stored in a computer. This, of
course, can be any type of structure the programmer chooses to use. Genetic algorithms frequently use strings of
bits, but arrays, lists, and trees also commonly are used.

Figure 15-4 shows an example of afirst generation of flowers. These hypothetical flowerswould include
random chromosomes that would affect how well they thrive in their environments.

Figure 15-4. First generation

tted

This step in the evolutionary process involves evaluating each member of the population. Thisis where we
attempt to identify the most successful members of the population, and typically we accomplish thisusing a
fitness function. The purpose of the fitness function is to rank the individuals in the population. Thistells us
which individuals are best at solving the problem at hand.

15.2.2 Ranking Fitness
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Figure 15-5 shows how the flowers would be ranked. We assume the flowers that grow the tallest are the fittest.

Figure 15-5. Ranking fitness

tte?

In the selection step we choose the individuals whose traits we want to instill in the next generation. In the
selection process typically we call the fitness function to identify the individuals that we use to create the next
generation. In the biological world, usualy two parents contribute chromosomes to the offspring. Of course, in
game development, we are free to use any combination of parents. For example, we are free to combine the
traits of the top two, five, 10, or any other number of individuals.

15.2.3 Selection

Figure 15-6 shows how we use rankings calculated by the fitness function to determine which individualsto use
when creating the next generation. In this case, we selected the two tallest flowers.

Figure 15-6. Flower selection
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15.2.4 Evolution

In the final step we create new individuals to place into the game environment. We do this by using individuals
from the selection process. We take the individual chromosomes from the fittest members of the population and
begin combining their chromosomes. At this point it is also important to introduce random mutations. Once the
evolutionary process is complete, we return to the fitness ranking step.

The evolutionary step is where crossover occurs. Thisiswhere we combine the chromosomes of the fittest
individuals. In this case, we combine the chromosomes of the two tallest flowersto create a new flower. We

also introduce two random mutations. Thisisillustrated in Figure 15-7.

Figure 15-7. Flower evolution
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15.2 Evolving Plant Life

Thisfirst example shows how to apply a genetic algorithm to successive generations of flowers as they attempt
to thrive in their environment. We define a series of hypothetical environmental conditions in which the flowers
must grow. Each flower then contains genetic information that indicatesitsideal growing environment. Flowers
whose ideal growing environments most closely match the actual conditions grow the tallest. The tallest flowers
will be considered the most fit and have their genetic information passed on to successive generations. This
should result in ageneral increase in flower height as generations progress.

15.2.5 Encoding the Flower Data

We start by defining the six hypothetical environmental conditions, which we consider to be the actual
conditions of the flower world. These are shown in Example 15-1.

Example 15-1. Encoding

Class ai_Wrld

{

public:
int current Tenper at ur e;
int currentWter;
int currentSunlight;
int currentNutrient;
int currentBeneficiallnsect;
i nt currentHarnfull nsect;
ai_World();
~ai_World();
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As Example 15-1 shows, the six conditions are currentTemperature, currentWater, currentSunlight,
currentNutrient, currentBeneficiallnsect, and currentHar mful | nsect.

Encoding is the process of storing the chromosomesin a structure that can be stored in a computer. This, of
course, can be any type of structure of the programmer's choosing. Example 15-2 shows the structure that we
use in the flower evolution example.

Example 15-2. Conditions

#defi ne kiaxFl owers 11
Class ai_Wrld
{
publi c:
i nt tenperature[ kMaxFl ower s] ;
i nt wat er [ kMaxFl ower s] ;
i nt sunlight[ kMaxFl owers];
i nt nutrient[kMaxFl owners];
i nt beneficiall nsect[ kMaxFl ower s] ;
i nt harnfull nsect [ kMaxFl ower s] ;
int current Tenper at ur e;
int currentWater;
int currentSunlight;
int currentNutrient;
int currentBeneficiallnsect;
i nt currentHarnfullnsect;
ai_World();
~ai _World();

As Example 15-2 shows, we use six arrays to represent the six environmental conditions. These include
temperature, water, sunlight, nutrient, beneficial I nsect, and har mfullnsect. Each contains a chromosome that
indicates the ideal conditions for each flower.

15.2.6 First Flower Generation
Aswith al genetic algorithms, first we must populate the world with theinitial generation. If we consider the

genetic process as searching for the optimum solution to a problem, the first generation consists of a group of
our best guesses at a solution. We also need to ensure that we have a diverse set of possible solutions. Example
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15-3 shows the creation of the first generation.

Example 15-3. First flower generation

voi d ai _Worl d:: Encode(voi d)
{
int i;
for (i=1;i<kMaxFl owers;i ++)
{
tenperature[i]=Rnd(1, 75);
water[i]=Rnd(1, 75);
sunlight[i]=Rnd(1, 75);
nutrient[i]=Rnd(1, 75);
beneficial Insect[i]=Rnd(1, 75);
harnful I nsect[i]=Rnd(1, 75);
}
current Tenper at ure=Rnd( 1, 75);
current Wat er=Rnd( 1, 75) ;
current Sunl i ght=Rnd(1, 75);
current Nutri ent=Rnd(1, 75);
current Beneficial Il nsect=Rnd(1, 75);
current Har nf ul I nsect =Rnd( 1, 75) ;

As Example 15-3 shows, we begin by randomly encoding the chromosomes of the flowers. We use six arraysto
indicate the ideal growing conditions for each member of the flower population. The arrays include
temperature, water, sunlight, nutrient, beneficial Insect, and harmfullnsect. Each array contains avalue from 1
to 75. Thisrange was tuned for this example. A number smaller than 75 makes evolution occur more quickly.
However, if evolution takes place over just afew generations, there won't be much to observe. Likewise, using a
higher number slows the evolution process, requiring more generations before an optimum solution is found.

The flowers grow best when the actual conditions closely match the ideal growing conditions encoded in their
chromosomes. We use afor loop to set the values randomly in each array. Thiswill ensure a diverse population
of flowers. Once the for loop has executed, we assign the values of the current conditions; these include
currentTemperature, currentWater, currentSunlight, currentNutrient, currentBeneficiallnsect, and
currentHar mful I nsect.

15.2.7 Ranking Flower Fitness
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For the purpose of this genetic simulation, we assume the fittest flowers are those that are most capable of
flourishing in the current environmental conditions. The chromosomes in each individual flower are encoded
with their own ideal growing conditions. We essentially measure how close each flower'sideal conditions are to
the actual conditions. Those that are closest grow the tallest. Thisis shown in Figure 15-8.

Figure 15-8. Initial flower population
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Figure 15-8 shows theinitia deviation among the flower population. Those that are best suited to grow in the
current conditions are the tallest. As the figure shows, some are noticeably better at flourishing in their
environment. Next we look at how we actually determine the fittest members of the population. Thisis shownin

Example 15-4.
Example 15-4. Flower fitness function

int ai_World::Fitness(int flower)
{
int theFitness=0;
theFitness = fabs(tenperature[flower] - currentTenperature);

t heFi tness = theFitness+fabs(water[flower] - currentWter);

http://ebooks.servegame.com/oreaiforgamdev475b/ch15_sectl 002.htm (4 of 8)7/24/05 1:39:50 AM



Al for Game Developers

t heFi t ness t heFi t ness+fabs(sunlight[flower] -

current Sunli ght);

t heFi t ness t heFi t ness+fabs(nutrient[flower] -

currentNutrient);

t heFi t ness t heFi t ness+f abs(beneficial | nsect[fl ower]

current Beneficial I nsect);

t heFi t ness t heFi t ness+fabs(harnful I nsect[fl ower] -
current Har nful | nsect);

return (theFitness);

As Example 15-4 shows, we use the Fitness function to calculate the total deviation between the current
environmental conditions and theideal conditions needed for each individual flower to flourish. We begin by
initializing the variable theFitness to 0. We then increase the value in theFitness by the absolute value of the
difference between each flower'sideal condition and the current condition. This gives us a sum of the total
deviation of all the growing conditions.

15.2.8 Evolving the Flowers

The ultimate goal of any genetic algorithm isto produce offspring that are more fit than their parents. Our first
step wasto create the initial population and then determine the fitness of each individual. The fitness ranking
process enabled us to select the best members of the population. The final step is the actual creation of the new
generation using the traits of the most successful members of the previous generation. Besides crossing over the
traits of the fittest flowers, we also introduce random mutations. The Evolve function in Example 15-5 shows
both the crossover step and the introduction of random mutations.

Example 15-5. Flower evolution

void ai _Worl d:: Evol ve(voi d)

{
int fitTenperature[ kMaxFl owers];
int fitWater[kMaxFl owers];
int fitSunlight[kMaxFl owers];
int fitNutrient[ kMaxFl owers];
int fitBeneficiallnsect[kMaxFl owers];
int fitHarnfullnsect[kMaxFl owers];
int fitness[kMaxFl owers];
int i;
int | eastFit=0;
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int | eastFitlndex;
for (i=1;i<kMaxFl owers;i ++)
if (Fitness(i)>leastFit)
{
| east Fit=Fitness(i);
| east Fi t | ndex=i
}
tenmperature[l east Fitl ndex]=tenperature[Rnd(1, 10)];
wat er [ | east Fi t | ndex] =wat er [ Rnd( 1, 10) ] ;
sunlight[leastFitlndex]=sunlight[Rnd(1,10)];
nutrient[leastFitlndex]=nutrient[Rnd(1, 10)];
beneficial | nsect[| east Fi t | ndex] =benefi ci al | nsect[ Rnd(1, 10)];
har nf ul I nsect [ | east Fi t 1 ndex] =harnful I nsect[ Rnd(1, 10)];
for (i=1;i<kMaxFl owers;i ++)

{
fitTenperature[i]=tenperature[Rnd(1, 10)];
fitWater[i]=water[Rnd(1,10)];
fitSunlight[i]=sunlight[Rnd(1,10)];
fitNutrient[i]=nutrient[Rnd(1,10)];
fitBeneficiallnsect[i]=beneficiallnsect[Rnd(1, 10)];
fitHarnful I nsect[i]=harnful Il nsect[Rnd(1, 10)];
}
for (i=1;i<kMaxFl owers;i ++)
{
tenperature[i]=fitTenperature[i];
water[i]=fitWater[i];
sunlight[i]=fitSunlight[i];
nutrient[i]=fitNutrient[i];
beneficiallnsect[i]=fitBeneficiallnsect[i];
harnful I nsect[i]=fitHarnfullnsect[i];
}
for (i=1;i<kMaxFl owers;i ++)
{

if (tb_Rnd(1,100)==1)
tenperature[i]=Rnd(1, 75);

if (tb_Rnd(1,100)==1)
wat er[i]=Rnd(1, 75);

if (tb_Rnd(1,100)==1)
sunlight[i]=Rnd(1, 75);
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if (tb_Rnd(1,100)==1)
nutrient[i]=Rnd(1, 75);
if (tb_Rnd(1,100)==1)
beneficial Insect[i]=Rnd(1, 75);
if (tb_Rnd(1,100)==1)
harnful I nsect[i]=Rnd(1, 75);

Y ou can implement a crossover function in many ways. Game developers are not burdened by the limits of the
biological world. In the biologica world the crossover would involve the chromosomes to two fit parents. In
game development, crossover can involve any number of parents. In the case of this flower evolution example,
we are going to identify the least fit member of the population. The first for loop calls the Fitness function to
identify the least fit member of the population. We then reassign the traits of the least fit flower to those of
random members of the flower population. The next two for loop blocks randomly mix up the traits of the
flower population. Essentially we aready reassigned the traits of the least fit flower, so at this point the flower
population as a whole should be an improvement over the previous generation. Unfortunately, no individual trait
can be any better than it was in the previous generation because the same traits were passed on. We now need a
way to try to surpass the previous generation. We accomplish this through random mutations. In the last for loop
block, each trait of each flower has a 1% chance of randomly mutating. If the mutation is a success, the trait
probably will be passed on to the next generation. If the mutation results in aflower being the least fit member
of the population, it will be dropped. Figure 15-9 shows the end result of multiple generations.

Figure 15-9. Resulting flower population
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AsFigure 15-9 shows, all the flowers are at or near their maximum heights. The area beneath the flowers also
graphs the fitness of each generation. As the graph shows, there is a general upward trend in the fitness of each
generation. However, not every generation was an improvement over the one before it. The graph does show
some downturns. Thisis due to the random mutations introduced into the population. However, as the graph
shows, the genetic process eventually will find the best solution to the problem.
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15.3 Genetics in Game Development

In games, genetic algorithms are ssmply a method of finding an optimum solution to a problem. Of course, there
are lots of problemsto be solved in game Al, and not all of them are good candidates for a genetic algorithm.
Pathfinding, for example, can be solved with a genetic algorithm, however it's usually a problem better suited to
something such asthe A* algorithm. Genetic algorithms work best when the elements of the problem are
somewhat unpredictable. This allows the game Al to adapt to a situation the game designer might not have been
able to predict. In game design, the most unpredictable element of the game environment is the player. To some
degree, the game designer must be able to predict the player's behavior to create a chalenging adversary.
Unfortunately, it can be difficult to predict and account for every possible player behavior.

Genetic algorithms basically involve atrial-and-error approach. Y ou essentially populate the game world with
many possible solutions and then determine which solutions work the best. Of course, the solutions won't
always be the same for every player. That's the beauty of genetic algorithms. The game Al will adapt to
individual players.

15.2.9 Role-Playing Example

Genetic algorithms are useful in any scenario in which a computer-controlled adversary must respond and
change due to player behavior. For example, consider a hypothetical multiplayer role-playing game. In this
game the players would be able to choose from many different types of character classes and abilities. This
means the computer-controlled characters would have to be able to present a challenge to many types of player-
controlled characters. A player could choose to play awarrior character that would fight mainly with brute
force. Of course, with this class the player would be able to choose from a multitude of weapons. The player
could attack with a sword, axe, or any number of other weapons. The fighter class also would be able to wear an
assortment of armor. On the other hand, the player might choose atotally different class. A magical class would
produce atotally different player behavior. The various combinations of class and weapon types would make it
difficult for a game designer to create a single type of computer-controlled individual that would be a challenge
to every type of player-controlled character. It could be even more complicated in a multiplayer game. In this
type of game the computer will have to be a challenge to a group of diverse players working in combination.
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The number of possible combinations quickly would become more than a game designer could account for.
15.2.10 Encoding the Data

We are searching for atype of computer-controlled character that will be a challenge to a player or group of
players. Thisisn't asearch that you can precalculate. Each player or group of players would behave differently.
We need to determine the situations and responses that will either increase or decrease the level of fitnessin the
population. For example, one possible situation could be when the player attacks a computer-controlled
character with a magic weapon. We can create severa possible responses to this player action. The computer-
controlled character could attack the player in response, attempt to flee, or attempt to hide. We could assign this
situation and response to a chromosome. If this chromosome is set to create an attack response in this situation,
the player will be attacked when using a magic weapon. However, what if this scenario aways leads to the
defeat of the computer-controlled character? In that case, the computer-controlled character would be deemed
less fit, and therefore, less likely to pass on that trait. In successive generations this scenario would lead to a
different behavior, such as aretreat whenever the player wields a magic weapon. Example 15-6 lists some of the
possible scenarios we address in our hypothetical example.

Example 15-6. Possible scenarios

#defi ne kAttackedbyFi ghter

#define kAttackedbyW zard

#define kAttackedbyG oup

#def i ne kHeal er Present

#define kAttackedByBl ade

#defi ne kAttackedByBl unt

#define kAttackedByProjectile
#defi ne kAttackedByMagi c

#define kAttackerWari ngMet al Ar nor
#defi ne kAttackerWari ngLeat her Ar nor
#define kAttackerWari nghVagi cAr nor
#define klm nG oup

© 00 N oo o0~ WO N+, O

e
R O

Figure 15-5 shows the possible situations in which members of the population will behave differently. We use a
different chromosome to store the response to each situation. We begin with the kAttackedbyFighter constant.
This chromosome will store the response whenever the computer-controlled character is attacked by a player-
controlled fighter character. Some creature types might be more or less effective when doing battle against
fighter characters. Similarly, the kAttackedbyWizard chromosome will store the response to being attacked by a
player-controlled wizard character. The kAttackedbyGroup chromosome will indicate the behavioral response to
being attacked by a group of player characters. The kHeal er Present chromosome indicates which behavior
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should be used when a player healer is present. If the players can be healed repeatedly, it might be afutile
situation in which retreat would be most appropriate.

The next four chromosomes, kAttackedByBlade, kAttackedByBlunt, kAttackedByProjectile, and
kAttackedByMagic, determine which response to give for each type of weapon the player can wield. The next
three, kAttacker WearingMetal Armor, kAttacker WearingLeather Armor, and kAttacker WearingMagicArmor,
determine the best response to the various types of protective armor the player can wear. Some computer-
controlled characters can choose from a selection of weapons. For example, a blade weapon might be more
effective against leather armor. The final chromosome, kiminGroup, is used to determine the best response
when the computer-controlled character isfighting in a group. Some types of creatures, such as wolves, can be
more effective when fighting in a pack.

A real game probably would have a much more thorough list of possible scenarios, but for this example our list
should suffice. Example 15-7 shows the possible responses to each scenario.

Example 15-7. Possible behaviors

#defi ne kRetreat

#define kHi de

#def i ne kWear Met al Ar nor
#defi ne kWear Magi cAr nor
#defi ne kWear Leat her Ar nor
#defi ne kAttackWthBl ade
#define kAttackWthBl unt
#define kAttackWthMagic

~N o 0o~ WN - O

Each constant shown in Example 15-7 defines a possible character behavior; they each assign a behavior to one
scenario shown in Example 15-6, and we start with the kRetreat constant. As the name implies, this behavior
causes the computer-controlled character to run from player characters. The second constant, kHide, makes the
computer-controlled character enter a state in which it will attempt to elude detection. The next three constants,
KWear Metal Armor, kWear MagicArmor, and kWear Leather Armor, make the computer-controlled character
switch to each respective type of armor. The final three constants, kAttackWithBlade, kAttackWithBlunt, and
kAttackWithMagic, define the type of attack the computer-controlled character should use against the player.

Now we create an array that contains a behavioral response for each possible scenario shown in Example 15-6.
We will use one array element for each possible scenario. We accomplish this with a simple C++ class structure,

as shown in Example 15-8.

Example 15-8. Encoding structure
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#defi ne kChr onobsones 12

Class ai _Creature

{
publ i c:
i nt chronosones[ kChr onbsones] ;
ai _ Creature ();

~ai _ Creature ();

As Example 15-8 shows, we create an ai_Creature class that contains an array of chromosomes. Each element
of the array represents atrait, or behavior, for the computer-controlled character. We define each possible
behavior and then we link each chromosome to each behavior. We use an array size of 12 because Example 15-
6 shows 12 possible situations.

15.2.1 The First Generation

So far we have defined the possible scenarios that we use for the genetic tests, defined the possible behaviors
associated with each scenario, and created a structure to store the genetic data. The next step isto create the
population. We start by expanding on the code shown in Example 15-8. Example 15-9 shows the modifications.

Example 15-9. Defining the population

#def i ne kChr onbsones 12

#defi ne kPopul ati onSi ze 100

Class ai _Creature

{

public:
i nt chronosones[ kChr onbsones] ;
ai_ Creature ();
~ai _ Creature ();

3

ai_Creature popul ati on[ kPopul ati onSi ze] ;

As Example 15-9 shows, we added the constant kPopulationS ze to define the size of the creature population.
We aso added an array of ai_Creature whose bounds are set to the values assigned to kPopulationSze. The
next step isto begin linking individual behaviors to each possible situation shown in Example 15-6. We start by
adding anew function to the ai_Creature class. Example 15-10 shows the modified ai_Creature class.
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Example 15-10. Defining createlndividual

#defi ne kChr onosones 12
#defi ne kPopul ati onSi ze 100
Class ai _Creature

{

public:
i nt chronosones|[ kChr onosones] ;
void createlndividual (int i);
ai _ Creature ();
~ai _ Creature ();

1

ai_Creature popul ati on[ kPopul ati onSi ze] ;

The new function, ai_createlndividual, initializes a new member of the population. However, we don't want to
initialize each individual using a set of predefined constants. We want the population to be as diverse as
possible. A population that isn't diverse won't be as effective at finding the best solution. The best way to create
adiverse population is to assign the behaviors in arandom fashion. However, we can't simply randomly assign
the behaviors shown in Example 15-7 to the situations shown in Example 15-6. Some of the behaviors don't
apply to the listed situations. We solve this problem by using a block of conditional statements, as shownin
Example 15-11.

Example 15-11. Randomly assigning chromosomes

void ai _ Creature::createlndividual (int i)
{
switch (Rnd(1,5)) {
case 1:
ai_Creature[i].chronosones|[ kAttackedbyG oup] =kRetreat ;
br eak;
case 2:
ai_Creature[i].chronposones| kAttackedbyG oup] =kHi de;
br eak;
case 3:
ai_Creature[i].chronpsones|[ kAttackedbyG oup] =
kAtt ackW t hBIl ade;
br eak;
case 4:

ai _Creature[i].chronmosones|[ kAttackedbyG oup] =
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kAt t ackW t hBl unt ;
br eak;
case 5:
ai_Creature[i].chronpsones| kAttackedbyG oup] =
kAt t ackW t hMagi c;
br eak;
}
switch (Rnd(1,5)) {
case 1:
ai_Creature[i].chronosones| kHeal er Present ] =kRet r eat ;
br eak;
case 2:
ai_Creature[i].chronpsones|[ kHeal er Present] =kHi de;
br eak;
case 3:
ai_Creature[i].chronosones[ kHeal er Present] =
kAt t ackW t hBl ade;
br eak;
case 4:
ai_Creature[i].chronposones|[ kHeal er Present] =
kAt t ackW t hBl unt ;
br eak;
case 5:
ai _Creature[i].chronmosones|[ kHeal er Present] =
kAt t ackW t hMagi c;
br eak;

}

The first case statement assigns a random behavior to the kAttackedbyGroup chromosome. For this chromosome
we choose from five possible behaviors (kRetreat, kHide, kAttackWithBlade, kAttackwWithBlunt, and
kAttackWithMagic). Theideaisto try to determine if any of these actions provide a noticeable advantage or
disadvantage when a group of player characters attacks the computer-controlled character. For example, the
process of evolution might show that retreating is the best course of action when attacked by a group of players.

The second case statement sets the value in the kHeal er Present chromosome. Again, we want to determine if
creating a diverse population, in which the response to this situation varies among the members, will give some
individuals an advantage or disadvantage. Asin the case of the kAttackedbyGroup chromosome, we use the
following five responses. kRetreat, kHide, kAttackWithBlade, kAttackWithBlunt, and kAttackWithMagic.

http://ebooks.servegame.com/oreaiforgamdev475b/chl15_sectl 003.htm (6 of 23)7/24/05 1:42:10 AM



Al for Game Developers

Now we consider the possible behaviors to link to the various types of attacks the player could use. Again, we
randomly assign appropriate behaviors to each possible attack method. Thisis shown in Example 15-12.

Example 15-12. Attack responses

switch (Rnd(1,5)) {
case 1:
ai_Creature[i].chronpsones| kAttackedByBl ade] =kRetreat;
br eak;
case 2:
ai_Creature[i].chronosones|[ kAttackedByBl ade] =kHi de;
br eak;
case 3:
ai_Creature[i].chronpsones| kAttackedByBl ade] =
kWear Met al Ar nor
br eak;
case 4:
ai_Creature[i].chronosones|[ kAttackedByBl ade] =
kWear Magi cAr nor ;
br eak;
case 5:
ai_Creature[i].chronpsones|[ kAttackedByBIl ade] =
kWear Leat her Ar nor ;

br eak;

}

switch (Rnd(1,5)) {
case 1:

ai_Creature[i].chronposones| kAttackedByBl unt ] =kRet r eat ;
br eak;
case 2:
ai_Creature[i].chronpsones|[ kAttackedByBl unt] =kHi de;
br eak;
case 3:
ai _Creature[i].chronpsones[ kAttackedByBl unt] =
kWear Met al Ar nor ;
br eak;
case 4:
ai_Creature[i].chronpsones[ kAttackedByBl unt] =
kWear Magi cAr nor ;
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br eak;
case 5:
ai _Creature[i].chronpsones[ kAttackedByBl unt] =
kWear Leat her Ar nor ;

br eak;
}
switch (Rnd(1,5)) {
case 1:
ai_Creature[i].chronposones|[ kAttackedByProjectile]=
kRetr eat ;
br eak;
case 2:
ai_Creature[i].chronpsones|[ kAttackedByProjectile]=kHi de;
br eak;
case 3:
ai_Creature[i].chronposones[ kAttackedByProjectile]=
kWear Met al Ar nor ;
br eak;
case 4:
ai_Creature[i].chronpsones[ kAttackedByProjectile]=
kWear Magi cAr nor ;
br eak;
case 5:
ai _Creature[i].chronosones[ kAttackedByProjectile]=
kWear Leat her Ar nor ;
br eak;
}
switch (Rnd(1,5)) {
case 1:

ai_Creature[i].chronposones|[ kAttackedByMagi c] =kRetreat;
br eak;
case 2:

ai _Creature[i].chronosones|[ kAttackedByMagi c] =kHi de;
br eak;
case 3:

ai_Creature[i].chronpsones[ kAttackedByMagic] =

kWear Met al Ar nor ;

br eak;
case 4:
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ai_Creature[i].chronposones| kAttackedByMagi c] =
kWear Magi cAr nor ;
br eak;
case 5:
ai_Creature[i].chronosones|[ kAttackedByMagic] =
kWear Leat her Ar nor ;
br eak;

As Example 15-12 shows, we consider four possible attack methods by the player (kAttackedByBlade,
kAttackedByBlunt, kAttackedByProjectile, and kAttackedByMagic). Each possible attack is linked to its own
chromosome and is assigned in a separate case statement. Each will be randomly assigned one of five possible
responses. kRetreat, kHide, kWear Metal Armor, kWear MagicArmor, and kWear Leather Armor .

These chromosomes will help us determine which types of armor are better suited for each possible player
attack. They also will tell usif retreating or hiding is the best response to some attacks. For example, if members
of the population are repeatedly defeated when attacked by magic, retreat might end up being the best response.

Now we consider the possible effects resulting from the various types of armor the player might be wearing. We
follow asimilar case statement structure, as shown in Example 15-13.

Example 15-13. Armor responses

switch (Rnd(1,5)) {
case 1:
ai _Creature[i].chronpsones|[ kAttacker Weari ngMet al Arnor] =
kRet r eat ;
br eak;
case 2:
ai_Creature[i].chronposones| kAttacker Weari nghet al Arnor ] =
kHi de;
br eak;
case 3:
ai _Creature[i].chronpsones|[ kAttackerWari ngMet al Arnor] =
kAtt ackWt hBl ade;
br eak;
case 4:
ai_Creature[i].chronposones|[ kAttacker Weari ngMet al Arnor] =

kAt t ackW t hBIl unt ;
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br eak;
case 5:
ai _Creature[i].chronosones|[ kAttackerWari ngMet al Arnor ] =
kAt t ackW t hMagi c;

br eak;
}
switch (Rnd(1,5)) {
case 1:
ai _Creature[i].chronosones|[ kAttacker Weari nglLeat her Arnor] =
kRetreat;
br eak;
case 2:
ai_Creature[i].chronpsones|[ kAttackerWeari nglLeat her Arnor] =
kHi de;
br eak;
case 3:
ai _Creature[i].chronmosones|[ kAttacker Weari nglLeat her Arnor ] =
kAt t ackW t hBl ade;
br eak;
case 4:
ai _Creature[i].chronposones|[ kAttacker Weari nglLeat her Arnor] =
kAt t ackW t hBl unt ;
br eak;
case 5:
ai_Creature[i].chronosones|[ kAttacker Weari nglLeat her Arnor] =
kAt t ackW t hMagi c;
br eak;
}
switch (Rnd(1,5)) {
case 1:

ai_Creature[i].chronposones| kAttacker Wear i nghvagi cAr nor ] =
kRetreat;
br eak;
case 2:
ai _Creature[i].chronosones|[ kAttacker Weari ngMagi cArnor ] =
kHi de;
br eak;
case 3:

ai _Creature[i].chronpsones|[ kAttackerWari ngMagi cArnor] =
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kAt t ackW t hBl ade;

br eak;
case 4:
ai _Creature[i].chronpsones|[ kAttackerWari ngMagi cArnor] =
kAt t ackW t hBl unt ;
br eak;
case 5:
ai_Creature[i].chronpsones| kAttackerWari ngMagi cArnor] =
kAt t ackW t hMagi c;
br eak;

Example 15-13 uses three case statements to assign responses randomly to the various types of armor the player
can wear. Hopefully, thiswill help us determine the best type of attack to use against the various types of armor.
The type of armor we consider includes kAttackerWearingMetal Armor, kAttackerWearingLeather Armor, and
kAttacker WearingMagicArmor. Each will be randomly assigned one of five possible responses, including
kRetreat, kHide, kAttackWithBlade, kAttackWithBlunt, and kAttackWithMagic.

15.2.2 Ranking Fitness

At some point we need to try to determine which members of the population are the fittest. Remember, we are
searching for members of the population that are the greatest challenge to the players. We need some way to
guantify and measure the level of challenge. We can consider several different approaches. Role-playing games
typically assign hit points to each character. These hit points are reduced as the character isinjured during
battle. The character dies once the hit points reach zero. So, one way to quantify the level of challenge isto keep
acumulative total of the amount of hit-point damage done to the players. Each member of the population would
track itstotal damage inflicted. Conversely, we also could track the amount of damage done by the playersto
the members of the population. Example 15-14 shows how we would expand the ai_Creature class to include
variables to track the damage done and damage received.

Example 15-14. Tracking hit-point damage

#defi ne kChronosones 12
#def i ne kPopul ati onSi ze 100

Class ai _Creature

{
public:
i nt chronosones[ kChr onbsones] ;
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fl oat total DamageDone;
fl oat total DamageRecei ved;
voi d createl ndividual (int i);
ai_ Creature ();
~ai _ Creature ();
3

ai_Creature popul ati on[ kPopul ati onSi ze] ;

As Example 15-14 shows, we added two new variablesto the ai_CreatureClass. The first, total DamageDone,
will be increased each time the computer-controlled character inflicts damage to a player; it will be increased by
the amount of the hit-point damage done. Conversely, the total DamageReceived variable would be increased
whenever the player injured the computer-controlled character. Asin the case of totalDamageDone, the amount
of the increase would be equal to the hit-point damage done.

Of course, you should consider other game elements when determining the fitness of the individualsin the
population. For example, the total player kills would be another good indicator.

15.2.3 Selection

The next step in the evolutionary processis to search for the fittest members of the population. These
individuals will exhibit traits we want to pass on to the next generation. Once again we expand on the
ai_Creature class. We calculate the ratio of damage done to damage received. We keep a running total of
damage done and damage received in the total DamageDone and total DamageReceived variables. The fitness
variable will contain the ratio of damage done to damage received. Example 15-15 shows the updated class.

Example 15-15. Adding fitness tracking

#defi ne kChr onbsones 12

#defi ne kPopul ati onSi ze 100

Class ai _Creature

{

public:
i nt chronosones[ kChr onbsones] ;
fl oat total DamageDone;
fl oat total DamageRecei ved;
float fitness;
voi d createlndividual (int i);
voi d sortFitness (void);

ai_ Creature ();
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~ai _ Creature ();
};

ai_Creature popul ati on[ kPopul ati onSi ze] ;

As Example 15-15 shows, now we have a variable to quantify the actual fitness of each individual. We use the
fitness variable to calculate the fitness of each individual and then sort the population from most successful to
least successful. We also added the sortFitness function to the ai_Creature class. This calculation and sorting
are shown in Example 15-16.

Example 15-16. Sorting fitness

void ai _ Creature:: sortFitness (void)

{

i nt i int i
i nt k;

float tenp;

for (i=0;i<kPopul ationSize;i++)
ai_Creature[i].fitness = ai_Creature[i].total DanageDone /

ai _Creature[i].total DamageRecei ved,;

for (i = (kPopulationSize -- 1); i >=0; i--)
{
for (j =1; j <=1i; j++)
{

if (ai _Creature[j-1].fitness < ai_Creature[j].fitness)
{

tenp = ai _Creature[j-1].fitness;

ai_Creature[j-1].fitness=ai _Creature[j].fitness;

ai_Creature[j].fitness = tenp;

tenp = ai _Creature[j-1].total DanmageDone;

ai _Creature[]-1].total DamageDone =

ai_Creature[]j].total DamageDone;

ai_Creature[j].total DamageDone = tenp;

tenp = ai _Creature[j-1].total DamageRecei ved;

ai _Creature[j-1].total DamageRecei ved =
ai_Creature[]j].total DamageRecei ved;

ai_Creature[j].total DanageRecei ved = tenp;

for (k=0; k<kChr onposones; k++)

{

tenp = ai _Creature[j-1].chronosones[K];
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ai_Creature[j-1].chronpsones[k] =
ai _Creature[j].chronpbsones|Kk];

ai_Creature[j].chronpsones[k] = tenp;

The sortFitness function begins by calculating the damage done to damage received ratio for each individual in
the population. Thisis accomplished in the first for loop. The actual ratio is stored in the fitness variable. Once
we have calculated the fitness ratio for each individual, we can sort the entire population array. The sort is
handled by the nested for loops. Thisisjust a standard bubble sort algorithm. The end result is that we sort the
entire population array by the fitness variable, from most fit to least fit.

15.2.4 Evolution

Now we have an easy way to identify the most successful individualsin the population. Calling the sortFitness
function will ensure that the lower positionsin the ai_Creature array will be the fittest individuals. We then can
use the traits of the individualsin the lower array elements to create the next generation. Figure 15-10 shows
how the chromosomes in each array will be combined to create a new individual.

Figure 15-10. Crossover
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As Figure 15-10 shows, we use the crossover process when creating the new individual. Now we update the
ai_Creature class to include a new crossover function. Example 15-17 shows the updated ai_Creature class.

Example 15-17. Adding the crossover function

#defi ne kChr onosones 12

#def i ne kPopul ati onSi ze 100

Class ai _Creature

{

public:
i nt chronosones[ kChr onbsones] ;
fl oat total DanageDone;
fl oat total DamageRecei ved;
float fitness;
voi d createlndividual (int i);
void sortFitness (void);
void crossover(int i, int j, int k);
ai _ Creature ();

~ai _ Creature ();
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ai_Creature popul ati on[ kPopul ati onSi ze] ;

The new crossover function will take the traits of two individuals and combine them to create a third. Example
15-18 shows this function.

Example 15-18. Crossover

void ai _ Creature:: crossover (int i, int j, int k)
{

ai_Creature[i].chronosones[0]=ai _Creature[j].chronosones[0];
ai_Creature[i].chronosones|[ 1] =ai _Creature[k].chronosones|[1];
ai_Creature[i].chronosones[2]=ai _Creature[j].chronosones|?2];
ai_Creature[i].chronosones|[3]=ai _Creature[k].chronosones| 3];
ai _Creature[i].chronposones[4]=ai _Creature[j].chronpsones|4];
ai_Creature[i].chronbsones|[5]=ai _Creature[k].chronpsones|5];
ai _Creature[i].chronpbsones|[6]=ai_Creature[j].chronpsones|6];
ai_Creature[i].chronosones|[7]=ai _Creature[k].chronosones|[7];
ai_Creature[i].chronposones|[8]=ai _Creature[j].chronpsones|8];
ai_Creature[i].chronosones[9]=ai Creature[k].chronosones[9];
ai_Creature[i].chronposones|[10]=ai _Creature[j].chronpsones[ 10];
ai _Creature[i].chronpsones|[11] =ai _Creature[Kk].chronmosones[11];
ai_Creature[i].total DanageDone=0;
ai _Creature[i].total DamageRecei ved=0;

ai_Creature[i].fitness=0;

As Example 15-18 shows, three variables are passed into the crossover function. There are three array indexes.
Thefirst two are the parents whose chromosomes will be combined to create a new individual. The third
variable is the array index of the new individual. On each line we alternate between the j and k array indexes.
This essentially mixes the chromosome of the parents when creating the offspring.

Although mixing the chromosomes of two fit parents should create a new fit individual, we also want to try to
improve on the previous generation. We do this by introducing random mutations. We start by updating the
ai_Creature class to include a random mutation function. Thisis shown in Example 15-19.

Example 15-19. Adding the random mutation function

#def i ne kChr onbsones 12
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#define kPopul ati onSi ze 100

Class ai _Creature

{

public:
i nt chronosones[ kChr onosones] ;
fl oat total DamageDone;
fl oat total DamageRecei ved;
float fitness;
voi d createlndividual (int i);
voi d sortFitness (void);
void crossover(int i, int j, int k);
voi d randomMut ati on(int i);
ai_ Creature ();
~ai _ Creature ();

3

ai_Creature popul ati on[ kPopul ati onSi ze] ;

Asthe updated ai_Creature class in Example 15-19 shows, now we need to add a random mutation function.
random mutation enables us to build afit individual with what is essentially a guess at what might make it a
little bit better. Example 15-20 shows the random mutation function.

Example 15-20. Random mutations

void ai _ Creature::randomVutation(int i)
{
if (Rnd(1,20)==1)
switch (Rnd(1,5)) {
case 1:
ai _Creature[i].chronmpsones[ kAttackedbyG oup] =kRetr eat ;
br eak;
case 2:
ai_Creature[i].chronposones| kAttackedbyG oup] =kHi de;
br eak;
case 3:
ai_Creature[i].chronpsones|[kAttackedbyG oup] =
kAtt ackWt hBl ade;
br eak;
case 4:

ai_Creature[i].chronposones| kAttackedbyG oup] =
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kAt t ackW t hBl unt ;
br eak;
case 5:
ai_Creature[i].chronpsones|[ kAttackedbyG oup] =
kAtt ackW t hiMagi c;
br eak;
}
if (Rnd(1,20)==1)
switch (Rnd(1,5)) {
case 1:
ai _Creature[i].chronpsones|[ kHeal er Present] =kRetreat;
br eak;
case 2:
ai _Creature[i].chronposones| kHeal er Present] =kHi de;
br eak;
case 3:
ai_Creature[i].chronpsones|[ kHeal erPresent] =
kAtt ackWt hBI ade;
br eak;
case 4:
ai _Creature[i].chronmosones| kHeal erPresent] =
kAt t ackW t hBl unt ;
br eak;
case 5:
ai_Creature[i].chronposones|[ kHeal er Present] =
kAt t ackW t hMagi c;
br eak;
}
if (Rnd(1,20)==1)
switch (Rnd(1,5)) {
case 1:
ai _Creature[i].chronmpsones|[ kAttackedByBl ade] =kRet r eat ;
br eak;
case 2:
ai _Creature[i].chronpsones| kAttackedByBl ade] =kHi de;
br eak;
case 3:
ai_Creature[i].chronpsones|[ kAttackedByBl ade] =
kWear Met al Ar nor ;

http://ebooks.servegame.com/oreaiforgamdev475b/ch15_sectl 003.htm (18 of 23)7/24/05 1:42:10 AM



Al for Game Developers

br eak;
case 4:
ai _Creature[i].chronmpsones|[ kAttackedByBl ade] =
kWear Magi cAr nor ;
br eak;
case 5:
ai_Creature[i].chronpsones|[ kAttackedByBl ade] =
kWear Leat her Ar nor ;
br eak;
}
if (Rnd(1,20)==1)
switch (Rnd(1,5)) {
case 1:
ai_Creature[i].chronpsones[ kAttackedByBl unt] =kRetreat;
br eak;
case 2:
ai _Creature[i].chronmpsones| kAttackedByBIl unt] =kHi de;
br eak;
case 3:
ai_Creature[i].chronpsones|[ kAttackedByBl unt] =
kWear Met al Ar nor ;
br eak;
case 4:
ai _Creature[i].chronmpsones|[ kAttackedByBl unt] =
kWear Magi cAr nor ;
br eak;
case 5:
ai _Creature[i].chronpsones[ kAttackedByBl unt] =
kWear Leat her Ar nor ;
br eak;
}
if (Rnd(1,20)==1)
switch (Rnd(1,5)) {
case 1:
ai _Creature[i].chronpsones|[ kAttackedByProjectile]=
kRet r eat ;
br eak;
case 2:
ai _Creature[i].chronpsones|[ kAttackedByProjectile]=
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}

kHi de;
br eak;
case 3:
ai_Creature[i].chronpbsones|[ kAttackedByProjectile]=
kWear Met al Ar nor ;
br eak;
case 4:
ai_Creature[i].chronposones| kAttackedByProjectile]=
kWear Magi cAr nor ;
br eak;
case 5:
ai _Creature[i].chronpsones|[ kAttackedByProjectile]=
kWear Leat her Ar nor ;

br eak;

i f (Rnd(1,20)==1)
switch (Rnd(1,5)) {

}

case 1:
ai _Creature[i].chronmpsones[ kAttackedByMagic] =
kRetr eat ;
br eak;
case 2:
ai_Creature[i].chronpsones|[ kAttackedByMagi c] =kHi de;
br eak;
case 3:
ai_Creature[i].chronmpsones|[ kAttackedByMagic] =
kWear Met al Ar nor ;
br eak;
case 4:
ai_Creature[i].chronpsones|[ kAttackedByMagic] =
kWear Magi cAr nor ;
br eak;
case 5:
ai_Creature[i].chronpsones|[ kAttackedByMagic] =
kWear Leat her Ar nor ;

br eak;

i f (Rnd(1,20)==1)
switch (Rnd(1,5)) {
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case 1:

ai_Creature[i].

br eak;
case 2:

ai_Creature[i].

br eak;
case 3:

ai_Creature[i].

br eak;
case 4:

ai_Creature[i].

br eak;
case b5:

ai_Creature[i].

br eak;
}
if (Rnd(1,20)==1)
switch (Rnd(1,5)) {
case 1:

ai_Creature[i].

br eak;
case 2:

ai_Creature[i].

br eak;
case 3:

ai_Creature[i].
br eak;
case 4:

ai_Creatureli].

br eak;

chronosones[ kAt t acker Wear i

chr onbsones[ kAt t acker Wear i

chronosones[ kAt t acker Wear i

chr onosones[ kAt t acker Wear i

chr onosones[ kAt t acker Wear i

chronosones[ kAt t acker Wear i

chronbsones[ kAt t acker Wear i

chronmosones[ kAt t acker Wear i

chronosones[ kAt t acker Wear i

ngMet al Arnor] =
kRet r eat ;

ngMet al Arnor] =
kHi de;

nghMet al Arnor] =
kAt t ackW t hBl ade;

ngMet al Arnor] =
kAttackWt hBl unt ;

ngMet al Arnor] =
kAt t ackW t hMagi c;

ngLeat her Arnor] =
kRetr eat ;

ngLeat her Arnor] =
kHi de;

nglLeat her Arnor ] =
kAt t ackW t hBl ade;

ngLeat her Arnor] =
kAttackWt hBl unt ;
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case 5:
ai _Creature[i].chronpsones|[ kAttackerWari ngLeat her Arnor] =
kAt t ackW t hMagi c;
br eak;

}
if (Rnd(1,20)==1)
switch (Rnd(1,5)) {

case 1:
ai _Creature[i].chronpsones|[ kAttacker Wari ngMagi cArnor] =
kRetreat ;
br eak;
case 2:
ai _Creature[i].chronpsones|[ kAttacker\Wari ngMagi cArnor] =
kH de;
br eak;
case 3:
ai_Creature[i].chronpsones[ kAttacker Wari ngMagi cArnor] =
kAtt ackWt hBl ade;
br eak;
case 4:
ai _Creature[i].chronpsones|[ kAttacker Wari ngMagi cArmnor] =
kAt t ackW t hBl unt ;
br eak;
case 5:
ai _Creature[i].chronpsones|[ kAttacker Wari ngMagi cArnor] =
kAt t ackW t hMagi c;
br eak;

Example 15-20 will reassign chromosomes randomly. Each trait has a 5% chance of randomly mutating. Thisis
accomplished with each conditional line if (Rnd(1,20)==1). Like the createlndividual function, there are limits
to the values we can assign to each trait. We use the switch statements to ensure that only legitimate values are
assigned to each trait.

Y ou can incorporate genetic algorithms into a multiplayer role-playing game in other ways aswell. The
previous example focused mainly on changing behavior in response to player actions; however, other areas of
game design can benefit from genetic algorithms. For example, role-playing games typically categorize
character abilities and assign a point level to each. A troll might have 100 opportunity points to divide over

http://ebooks.servegame.com/oreaiforgamdev475b/chl15_sectl 003.htm (22 of 23)7/24/05 1:42:10 AM



Al for Game Developers

severa attributes, such as strength, magical ability, dexterity, and a magic resistance. Instead of assigning the
same values to each troll in the population, it might be better to use some diversity. For example, some would be
physically stronger while others would have a greater resistance to magic. Varying the point distribution and
then ranking the fitness of the population would help determine the best balance of point distribution.
Successive generations of trolls then could evolve into more challenging adversaries for the players.

4 Prewious Hext F

Top a

http://ebooks.servegame.com/oreaiforgamdev475b/chl15_sectl 003.htm (23 of 23)7/24/05 1:42:10 AM


http://ebooks.servegame.com/oreaiforgamdev475b/12041534.htm

Al for Game Developers

All Online Books

Table of Contents
View as Frames

4 Prewious Hext F

15.4 Further Information

Aswe stated earlier, many strategies are available for implementing crossover and mutation. Further, many
other game problems besides the ones we've discussed could use genetic algorithms effectively. If you're
interested in pursuing genetic algorithms further and would like alternative strategies and additional examples,

we encourage you to check out the following references:

. Al Application Programming (Charles River Media)
. Al Techniques for Game Programming (Premier Press)
. Al Game Programming Wisdom (Charles River Media)

Mat Buckland's book, Al Techniques for Game Programming, covers both genetic algorithms and neural
networks and even shows how to use genetic algorithmsto evolve, or train, neural networks. Thisisan
Interesting alternative to the back-propagation training method we discussed in Chapter 14.
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Vector Operations

This appendix implements a class called Vector that encapsulates all of the vector operations that you need
when writing 2D or 3D rigid body simulations. Although, Vector represents 3D vectors, you can easily reduce it
to handle 2D vectors by eliminating all of the z-terms or simply constraining the z-terms to zero where
appropriate in your implementation.
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Vector Class

The Vector classis defined with three components, x, y, and z, along with several methods and operators that
implement basic vector operations. The class has two constructors, one of which initializes the vector components to
zero and the other of which initializes the vector components to those passed to the constructor.

/1 Vector C ass and vector functions
/1 T T
cl ass Vector {
public:
float x;
float vy;
float z;
Vect or (voi d) ;
Vector(float xi, float yi, float zi);
fl oat Magnitude(void);
void Normalize(void);
void Reverse(void);
Vect or & oper at or +=(Vector u);
Vect or & operator-=(Vector u);
Vect or & operator*=(float s);
Vect or & operator/=(fl oat s);

Vect or operator-(void);

/'l Constructor
i nline Vector:: Vector(void)

{
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}
/] Constructor

inline Vector::Vector(float xi, float yi, float zi)

{
X = Xl
y =vyi;
= Zi;
}

14 F'rexri-:-usl MHext I*!
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Magnitude

The Magnitude method simply calculates the scalar magnitude of the vector according to the formula

vl = Vx2 + y2 + 22

Thisisfor azero-based vector in which the components are specified relative to the origin. The magnitude of a
vector isequal toitslength, asillustrated in Figure A-1.

Figure A-1. Vector Length (Magnitude)

figs/app_fig0l.jpg

Here's the code that cal culates the vector magnitude for our Vector class:

inline fl oat Vector::Magnitude(void)

{

return (float) sqgrt(x*x + y*y + z*z);

Note that you can cal culate the components of avector if you know its length and direction angles. Direction
angles are the angles between each coordinate axis and the vector, as shown in Figure A-2.

Figure A-2. Direction Angles

http://ebooks.servegame.com/oreaiforgamdev475b/app_sectl 002.htm (1 of 6)7/24/05 1:43:02 AM


http://ebooks.servegame.com/
http://ebooks.servegame.com/oreaiforgamdev475b/content.htm
http://ebooks.servegame.com/book.htm?oreaiforgamdev475b
http://ebooks.servegame.com/oreaiforgamdev475b/12041534.htm

Al for Game Developers

zZ

The components of the vector shown in thisfigure are as follows:

figs/app_ueq02.jpg

The cosines of the direction angles seen in these equations are known as direction cosines. The sum of the
squares of the direction cosinesis always equal to 1:

figs/app_ueq03.jpg

Normalize

The Normalize method normalizes the vector, or convertsit to a unit vector satisfying the following equation:

figs/app_ueq04.jpg

In other words, the length of the normalized vector is 1 unit. If v isanonunit vector with components x, y, and z,
then the unit vector u can be calculated from v as follows:

figs/app_ueq05.jpg

Here, |v| is simply the magnitude, or length, of vector v as described earlier.

Here's the code that converts our Vector class vector to a unit vector:
inline voi d Vect or:: Nornalize(void)
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{
float m= (float) sqrt(x*x + y*y + z*z);
if(m<=tol) m= 1,
X /=m
y I=m
z /=m
if (fabs(x) < tol) x = 0.0
if (fabs(y) <tol) y = 0.0
if (fabs(z) <tol) z = 0.0
}

In this function tol is afloat type tolerance, for example,

fl oat const tol = O OQQ f;

Reverse

The Rever se method reverses the direction of the vector, which is accomplished by simply taking the negative
of each component. After calling Reverse, the vector will point in a direction opposite to the direction in which
it was pointing before Reverse was called.

inline voi d Vector:: Reverse(void)
{
X = -X;
y = -y
= -Z,
}

This operation isillustrated in Figure A-3.

Figure A-3. Vector Reversal

figs/app _fig03.jpg

Vector Addition: The += Operator
This summation operator is used for vector addition, whereby the passed vector is added to the current vector
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component by component. Graphically, vectors are added in tip-to-tail fashion asillustrated in Figure A-4.

Figure A-4. Vector Addition

figs/app _fig04.jpg

Here's the code that adds the vector u to our Vector class vector:

inline Vector& Vector::operator+= (Vector u)

{
X += U.X;
Y += u.vy,;
zZ += Uu.z;
return *this;
}

Vector Subtraction: The -= Operator
This subtraction operator is used to subtract the passed vector from the current one, which is performed on a
component-by-component basis. Vector subtraction is very similar to vector addition except that you take the

reverse of the second vector and add it to the first asillustrated in Figure A-5.

Figure A-5. Vector Subtraction

figs/app _fig05.jpg

Here's the code that subtracts vector u from our Vector class vector:

inline Vect or & Vector: : operator-=(Vector u)

{
X -= U.X;
y -= u.y,
Z -= U.Zz
return *this;
}

Scalar Multiplication: The *= Operator
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Thisisthe scalar multiplication operator that's used to multiply avector by a scalar, effectively scaling the
vector's length. When you multiply a vector by a scalar, you simply multiply each vector component by the
scalar quantity to obtain the new vector. The new vector pointsin the same direction as the unsealed one, but its
length will be different (unless the scale factor is 1). Thisisillustrated in Figure A-6.

Figure A-6. Scalar Multiplication

figs/app _fig06.jpg

Here's the code that scales our Vector class vector:

inline Vector & Vector::operator*=(float s)
{

X *=s;

y *=s;

zZ *=s;

return *this;

Scalar Division: The /= Operator

This scalar division operator is similar to the scalar multiplication operator except that each vector component is
divided by the passed scalar quantity.

inline Vector & Vector::operator/=(float s)
{

X [ =s;

y /=s;

z | =s;

return *this;

Conjugate: The - Operator

The conjugate operator ssimply takes the negative of each vector component and can be used when subtracting
one vector from another or for reversing the direction of the vector. Applying the conjugate operator is the same
as reversing a vector, as discussed earlier.
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inline Vector Vector::operator-(void)

{

return Vector(-x, -y, -2);

4 Prewious Hext F
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Vector Functions and Operators

The functions and overloaded operators that follow are useful in performing operations with two vectors, or with a
vector and a scalar, where the vector is based on the Vector class.

Vector Addition: The + Operator

This addition operator adds vector v to vector u according to the formula

[figs/app_ueq06.jpg]

Here's the code:

inline Vect or operator+ (Vector u, Vector v)

{
}

return Vector(u.x + v.Xx, Uy + VvV.y, U.Z + V.Z);

Vector Subtraction: The - Operator

This subtraction operator subtracts vector v from vector u according to the formula

figs/app_ueq07.jpg|

Here's the code:

inline Vect or operator-(Vector u, Vector v)

{
}

return Vector(u.x - v.X, Uy - V.y, U.Z - V.Z);

Vector Cross Product: The DOperator
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This cross product operator takes the vector cross product between vectorsu and v, u X v, and returns a vector
perpendicular to both u and v according to the formula

Ifigs/app_ueq08.jpg

The resulting vector is perpendicular to the plane that contains vectors u and v. The direction in which this resulting
vector points can be determined by the righthand rule. If you place the two vectors, u and v, tail to tail as shown in
Figure A-7 and curl your fingers (of your right hand) in the direction from u to v, your thumb will point in the

direction of the resulting vector.

Figure A-7. Vector Cross Product

[figs/app_fig07.ipg]

In this case the resulting vector points out of the page along the z-axis, since the vectorsu and v lie in the plane
formed by the x- and y-axes.

If two vectors are paralel, then their cross product will be zero. Thisis useful when you need to determine whether
or not two vector are indeed parallel.

The cross product operation is distributive; however, it is not commutative:

[figs/app_ueq09.jpg]

Here's the code that takes the cross product of vectors u and v:

inline Vector operator”™ (Vector u, Vector v)
{
return Vector( u.y*v.z - Uu.z*v.y,
-U.X*V.Z + U.Z*V. X,
U.X*v.y - u.y*v.x );
}

Vector cross products are handy when you need to find normal (perpendicular) vectors. For example, when
performing collision detection, you often need to find the vector normal to the face of a polygon. Y ou can construct
two vectorsin the plane of the polygon using the polygon's vertices and then take the cross product of these two
vectors to get normal vector.

Vector Dot Product: The * Operator

This operator takes the vector dot product between the vectors u and v, according to the formula

[figs/app_ueq10.jpg]
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The dot product represents the projection of the vector u onto the vector v asillustrated in Figure A-8.

Figure A-8. Vector Dot Product

figs/app_fig08.jpg

In thisfigure, Pistheresult of the dot product, and it isascalar. Y ou can also calculate the dot product if you the
know the angle between the vectors:

figs/app_uegll.jpg

Here's the code that takes the dot product of u and v:

/'l Vector dot product
inline fl oat operator*(Vector u, Vector v)

{
}

return (u.x*v.x + u.y*v.y + U.z*v.2z);

Vector dot products are handy when you need to find the magnitude of a vector projected onto another one. Going
back to collision detection as an example, you often have to determine the closest distance from a point, which may
be a polygon vertex on one body (body 1), to a polygon face on another body (body 2). If you construct a vector from
the face under consideration on body 2, using any of its vertices, to the point under consideration from body 1, then
you can find the closest distance of that point from the plane of body 2's face by taking the dot product of that point
with the normal vector to the plane. (If the normal vector is not of unit length, you'll have to divide the result by the
magnitude of the normal vector.)

Scalar Multiplication: The * Operator

This operator multiplies the vector u by the scalar s on a component-by-component basis. There are two versions of
this overloaded operator depending on the order in which the vector and scalar are encountered:

i nline Vector operator*(float s, Vector u)
{ return Vector(u.x*s, uU.y*s, u.z*s);
;fnline Vect or operator*(Vector u, float s)

{ return Vector(u.x*s, u.y*s, u.z*s);

}

Scalar Division: The / Operator

This operator divides the vector u by the scalar s on a component-by-component basis:
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inline Vector operator/(Vector u, float s)

{
}

return Vector(u.x/s, u.y/s, u.zl/s),;

Triple Scalar Product

This function takes the triple scalar product of the vectors u, v, and w according to the formula

[figs/app_ueg12,jpg]

Here, theresult, s, isascalar. The codeis as follows:

inline float TripleScal arProduct (Vector u, Vector v, Vector w)
{
return fl oat( (u.x * (v.y*w.z - v.z*wy)) +
(uy * (-v.x*w.z + v.z*w. x)) +
(u.z * (V.x*wW.y - Vv.y*w.Xx)) );
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Colophon

Our look isthe result of reader comments, our own experimentation, and feedback from distribution channels.
Distinctive covers complement our distinctive approach to technical topics, breathing personality and life into
potentially dry subjects.

The animal on the cover of Al for Game Developersis a Ring-tailed lemur. Ring-tailed lemurs (Lemur catta) are
found solely in Madagascar, an island off the coast of southeast Africa.

Ring-tailed lemurs have a distinctive bushy tail with alternating bands of black and white rings. Their tails can
reach lengths of up to 25 inches. They also have a black, pointed muzzle, which istypical among the various
species of lemur. These lemurs prefer relatively open areas, such as rocky plains and desert areas, and typically
travel on the ground, although they will sometimes walk on large limbsin trees. This differentiates them from
other lemur species, which usually prefer forested areas and travel almost exclusively in trees.

Similar to cats, Ring-tailed lemurs have areflective layer in the back of their eyes. This allows them to have
excellent night vision. Their tails are highly scented, and are used to warn other lemurs of approaching danger.
Thetallsare also an integral part of the mating process. The males will use their scent to try and attract the
females, and vicious "stink fights' can often erupt within the group.

Ring-tailed lemurslive in groups of between five and thirty members. They have distinct hierarchies that are
enforced by frequent, aggressive confrontations between members. Females, who stay in the group for their

entire lives, dominate the group. Maes will often change groups at least once during their lifetimes.

Living in arid habitats, Ring-tailed lemurs quench their thirst with juicy fruits. They will also eat |eaves,
flowers, insects, and tree gum.

Like most lemurs, Ring-tails have only one baby in any given year, although twins or even triplets are common
when food is plentiful. Newborns are quite helpless and are carried around by the mother in her mouth until they
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can hold on to her fur by themselves. They will then ride around on the mother's back. They first begin to climb
after about three weeks and are usually independent after six months. They can live for up to 27 yearsin the
wild.

Darren Kelly was the production editor, Audrey Doyle was the copyeditor, and Kathryn Geddie was the
proofreader for Al for Game Developers. Matt Hutchinson provided production assistance. Claire Cloutier
provided quality control. TechBooks, Inc. provided production services and Ronald Prottsman wrote the index.

Ellie Volckhausen designed the cover of this book, based on a series design by Edie Freedman. The cover image
is a 19th-century engraving from Royal Natural History. Emma Colby produced the cover layout with
QuarkXPress 4.1 using Adobe's ITC Garamond font.

David Futato designed the interior layout. Techbooks, Inc. implemented the design. The illustrations that appear
in the book were produced by Robert Romano and Jessamyn Read using Macromedia FreeHand 9 and Adobe
Photoshop 6. This colophon was written by Darren Kelly.
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Academic
Al for Game Developers
By David M. Bourg, Glenn Seeman
Start Reading #
Publisher: O'Reilly
Pub Date: July 2004
ISBN: 0-596-00555-5
Pages: 400

Written for the novice Al programmer, Al for Game Developers introduces you to techniques such asfinite state
machines, fuzzy logic, neural networks, and many others, in straightforward, easy-to-understand language,
supported with code samples throughout the entire book (written in C/C++). From basic techniques such as
chasing and evading, pattern movement, and flocking to genetic algorithms, the book presents a mix of
deterministic (traditional) and non-deterministic (newer) Al techniques aimed squarely at beginners Al developers.
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