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Preface

Overview

Computer graphics has come a long way from the early days of line drawings and
light pens. Today anyone can run interactive and realistic graphics applications on the
hardware available on an affordable personal computer. While hardware progress has
been impressive, widespread gains in software expertise has been more elusive. There
are many computer graphics professionals and enthusiasts out there, but a compre-
hensive understanding of the accelerated graphics pipeline and how to exploit it is less
widespread.

This book attempts to bring the computer graphics enthusiast, whether professional
or amateur, beyond the basics covered in computer graphics texts, and introduce them to
a mix of more intense practical and theoretical discussion that is hard to obtain outside
of a professional computer graphics environment.

We emphasize the algorithmic side of computer graphics, with a practical appli-
cation focus. We try to strike a balance between useful examples and approachable
theory. We present usable techniques for real world problems, but support them
with enough theory and background so the reader can extend and modify the ideas
presented here.

This book is about graphics techniques, techniques that don’t require esoteric hard-
ware or custom graphics libraries, that are written in a comprehensible style, and do
useful things. This book will teach you some graphics, especially areas that are some-
times underrepresented in graphics texts. But it also goes further, showing you how to
apply those techniques in real world applications, filling real world needs.

Since there are already a number of excellent books that provide an introduction
to computer graphics (Foley, 1994; Watt, 1989; Rogers, 1997; Angel, 1997; Newman,
1973) and to OpenGL programming (Neider, 1997; Angel, 1997) we have been necessar-
ily brief in these areas. We assume that the reader is comfortable with these fundamentals;
however, we have included extra introductory material where we thought it would
improve understanding of later sections.

We also note that the computer graphics field has a lot of competing notation
and vocabulary. We have tried to be consistent with terminology and notation used
in the OpenGL specification and the “standard” OpenGL books while at the same time
providing some mention of alternative terminology when it is relevent.

TERAM LING
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Xxiv Preface

OpenGL

We chose OpenGL as our base graphics language for a number of reasons. It is designed
to be full featured, to run efficiently on a wide range of graphics architectures, and is clean
and straightforward to use. It also dictates very little policy. It is easy to mix and match
graphics features in OpenGL to get new effects that may not have even been considered
when the language was designed. Its clear specification gives the application programmer
confidence that applications written in OpenGL will act predictably on many different
graphics hardware and driver implementations.

OpenGL is also widely available. It can be obtained for free on all the impor-
tant architectures today: Apple Machintosh, all flavors of Microsoft Windows, nearly
all Unix variants including Linux, and OS/2. Most commercial system and graphics
hardware vendors support OpenGL as well, and support for hardware accelerated imple-
mentations has grown rapidly, especially in the personal computer space. OpenGL runs
on a wide range of graphics hardware; from “big iron” compute clusters, to OpenGL ES,
which is designed to provide 3D graphics on embedded devices as small as a cell phone.

Given the broad applicability, scalability, and wide availability, OpenGL is an easy
choice as the basis for describing graphics algorithms. However, even if you don’t use
OpenGL, the graphics APIs in common use are conceptually similar enough that you
will still find this book useful. OpenGL remains an evolving specification. Through-
out the book we make references to various revisions of the specification (versions
1.0-1.5) and discuss both OpenGL architecture review board (ARB) extensions and
various vendor-specific extensions when we believe they enhance the discussion of a
particular subject. Rather than focus on the feature set of the most advanced versions
of OpenGL, we have included a broad range of algorithms with varying requirements.
For many techniques we describe algorithm variations that cover a range of earlier and
more advanced versions of OpenGL. We have followed this path since a wide range of
OpenGL versions are deployed across various environments including the burgeoning
embedded space.

Book Organization

This book is divided into three parts. We start with a conceptual overview of com-
puter graphics, emphasizing areas important to the techniques in this book, with extra
attention in some overlooked areas. Hand in hand with our introduction to computer
graphics, we’ll describe the OpenGL pipeline, with extra detail on the parts of the pipeline
most techniques rely on heavily: lighting, texture mapping, rasterization, and depth
buffering. We also use this opportunity to describe OpenGL system deployment, includ-
ing the platform embedding layer and an overview of common hardware acceleration
techniques for the pipeline.

TEAM LING



Preface XXV

With this foundation in place, Part II introduces a set of important basic tech-
niques. Useful by themselves, they help re-enforce the insights gleaned from the overview.
These sequences are also used as building blocks for more complex and sophisticated
techniques. To help tie them more tightly to the graphics concepts described in the pre-
vious part, these techniques are presented and organized with respect to the OpenGL
architecture.

The third and final part covers more sophisticated and complex techniques. These
techniques are categorized into application areas to help organize the material. The start
of each application section has an introduction to the problems and issues important for
that area, making these sections more interesting and useful to readers not well versed in
that particular field.

The book is heavily cross-referenced. Complex techniques reference the simple
ones they build upon, and both levels of technique reference the conceptual overview.
This allows the reader to use the book as a self-guided tutorial, learning more about
techniques and concepts of interest in greater depth.

Example Code

To avoid cluttering the text with large fragments of example code, code fragments are
used sparingly. Algorithms are usually described as a sequence of steps. However, since
details are often the difference between a working program and a black screen, we have
tried to include full blown example programs for most algorithms. This example code is
available for internet download from www.mkp.com/openg].

Conventions

We use conventions and terminology similar to that found in the OpenGL specification
and in the “red-blue-green-white” series of OpenGL books. In addition, we use the
following conventions:

*  Equations involving matrices, vectors, and points use single uppercase letters for
most variables. Vectors are emboldened (V), whereas points and matrices are not
(M, P). In rare occasions vectors or points are in lower case.

®  Occasionally symbols are context specific, but generally the following meanings

hold:

— N - normal vector

— L - light vector
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R - reflection vector

T - tangent vector

B - binormal vector

s, t, 1, q - texture coordinates

X, Y, 2, w - vertex coordinates

6, ¢ - spherical coordinate angles

RGBA - red, green, blue, and alpha components

I - intensity

C - color (usually RGB or RGBA)

IV - length of vector V

[, m] a number between 7 and m including the end points
A - B - inner product of vectors A and B

A © B - max{0, A - B} — the clamped inner product

A x B - cross product of vectors A and B
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Geometry Representation
and Modeling

Two principal tasks are required to create an image of a three-dimensional scene: mod-
eling and rendering. The modeling task generates a model, which is the description of an
object that is going to be used by the graphics system. Models must be created for every
object in a scene; they should accurately capture the geometric shape and appearance
of the object. Some or all of this task commonly occurs when the application is being
developed, by creating and storing model descriptions as part of the application’s data.

The second task, rendering, takes models as input and generates pixel values for
the final image. OpenGL is principally concerned with object rendering; it does not
provide explicit support for creating object models. The model input data is left to
the application to provide. The OpenGL architecture is focused primarily on render-
ing polygonal models; it doesn’t directly support more complex object descriptions, such
as implicit surfaces. Because polygonal models are the central manner in which to define
an object with OpenGL, it is useful to review the basic ideas behind polygonal modeling
and how they relate to it.

1.1 Polygonal Representation

OpenGL supports a handful of primitive types for modeling two-dimensional (2D)
and three-dimensional (3D) objects: points, lines, triangles, quadrilaterals, and
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4 Geometry Representation and Modeling

(convex) polygons. In addition, OpenGL includes support for rendering higher-order
surface patches using evaluators. A simple object, such as a box, can be represented using
a polygon for each face in the object. Part of the modeling task consists of determining
the 3D coordinates of each vertex in each polygon that makes up a model. To provide
accurate rendering of a model’s appearance or surface shading, the modeler may also
have to determine color values, shading normals, and texture coordinates for the model’s
vertices and faces.

Complex objects with curved surfaces can also be modeled using polygons. A curved
surface is represented by a gridwork or mesh of polygons in which each polygon vertex
is placed on a location on the surface. Even if its vertices closely follow the shape of the
curved surface, the interior of the polygon won’t necessarily lie on the surface. If a larger
number of smaller polygons are used, the disparity between the true surface and the polyg-
onal representation will be reduced. As the number of polygons increases, the approxi-
mation improves, leading to a trade-off between model accuracy and rendering overhead.

When an object is modeled using polygons, adjacent polygons may share edges. To
ensure that shared edges are rendered without creating gaps between them, polygons that
share an edge should use identical coordinate values at the edge’s endpoints. The limited
precision arithmetic used during rendering means edges will not necessarily stay aligned
when their vertex coordinates are transformed unless their initial values are identical.
Many data structures used in modeling ensure this (and save space) by using the same
data structure to represent the coincident vertices defining the shared edges.

1.2 Decomposition and Tessellation

Tessellation refers to the process of decomposing a complex surface, such as a sphere,
into simpler primitives such as triangles or quadrilaterals. Most OpenGL implementations
are tuned to process triangles (strips, fans, and independents) efficiently. Triangles are
desirable because they are planar and easy to rasterize unambiguously. When an OpenGL
implementation is optimized for processing triangles, more complex primitives such as
quad strips, quads, and polygons are decomposed into triangles early in the pipeline.

If the underlying implementation is performing this decomposition, there is a per-
formance benefit in performing it a priori, either when the database is created or at
application initialization time, rather than each time the primitive is issued. Another
advantage of having the application decompose primitives is that it can be done consis-
tently and independently of the OpenGL implementation. OpenGL does not specify a
decomposition algorithm, so different implementations may decompose a given quadri-
lateral or polygon differently. This can result in an image that is shaded differently and has
different silhouette edges when drawn on two different OpenGL implementations. Most
OpenGL implementations have simple decomposition algorithms. Polygons are trivially
converted to triangle fans using the same vertex order and quadrilaterals are divided into
two triangles; one triangle using the first three vertices and the second using the first plus

he 1 ices.
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These simple decomposition algorithms are chosen to minimize computation over-
head. An alternative is to choose decompositions that improve the rendering quality.
Since shading computations assume that a primitive is flat, choosing a decomposition
that creates triangles with the best match of the surface curvature may result in better
shading. Decomposing a quad to two triangles requires introducing a new edge along one
of the two diagonals.

A method to find the diagonal that results in more faithful curvature is to compare the
angles formed between the surface normals at diagonally opposing vertices. The angle
measures the change in surface normal from one corner to its opposite. The pair of
opposites forming the smallest angle between them (closest to flat) is the best candidate
diagonal; it will produce the flattest possible edge between the resulting triangles, as
shown in Figure 1.1. This algorithm may be implemented by computing the dot product
between normal pairs, then choosing the pair with the largest dot product (smallest angle).
If surface normals are not available, then normals for a vertex may be computed by taking
the cross products of the two vectors with origins at that vertex. Surface curvature isn’t the
only quality metric to use when decomposing quads. Another one splits the quadrilateral
into triangles that are closest to equal in size.

Tessellation of simple surfaces such as spheres and cylinders is not difficult.
Most implementations of the OpenGL Utility (GLU) library use a straightforward
latitude-longitude tessellation for a sphere. While this algorithm is easy to implement,
it has the disadvantage that the quads produced from the tessellation have widely

U=AXB

V=CXD

Figure 1.1 Quadrilateral decomposition.
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Figure 1.2 latitude-longitude tessellation of a sphere.

Figure 1.3 Triangle subdivision: starting octahedron.

varying sizes, as shown in Figure 1.2. The different sized quads can cause noticeable
artifacts, particularly if the object is lighted and rotating.

A better algorithm generates triangles with sizes that are more consistent. Octahedral
and icosahedral tessellations work well and are not very difficult to implement. An octahe-
dral tessellation starts by approximating a sphere with a single octahedron whose vertices
are all on the unit sphere, as shown in Figure 1.3. Since each face of the octahedron is a

triangle, they can each be easily split into four new triangles. TEAM LING
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Starting octahedron Find midpoints of Connect points to Normalize points to
each edge form new triangles coincide with surface
of unit sphere

Figure 1.4 Octahedron with each triangle being subdivided into four.

Figure 1.5 Triangle subdivision: starting icosahedron.

Each triangle is split by creating a new vertex in the middle of each of the triangle’s
existing edges, then connecting them, forming three new edges. The result is that four
new triangles are created from the original one; the process is shown in Figure 1.4. The
coordinates of each new vertex are divided by the vertex’s distance from the origin,
normalizing them. This process scales the new vertex so that it lies on the surface of the
unit sphere. These two steps can be repeated as desired, recursively dividing all of the
triangles generated in each iteration.

The same algorithm can be used with an icosahedron as the base object, as shown
in Figure 1.5, by recursively dividing all 20 sides. With either algorithm, it may not be
optimal to split the triangle edges in half when tesselating. Splitting the triangle by other
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amounts, such as by thirds, or even an arbitrary number, may be necessary to produce a
uniform triangle size when the tessellation is complete. Both the icosahedral and octahe-
dral algorithms can be coded so that triangle strips are generated instead of independent
triangles, maximizing rendering performance. Alternatively, indexed independent trian-
gle lists can be generated instead. This type of primitive may be processed more efficiently
on some graphics hardware.

1.3 Shading Normals

OpenGL computes surface shading by evaluating lighting equations at polygon vertices.
The most general form of the lighting equation uses both the vertex position and a vector
that is normal to the object’s surface at that position; this is called the normal vector.
Ideally, these normal vectors are captured or computed with the original model data, but
in practice there are many models that do not include normal vectors.

Given an arbitrary polygonal model without precomputed normals, it is easy to
generate polygon normals for faceted shading, but a bit more difficult to create correct
vertex normals when smooth shading is desired. Computing the cross-product of two
edges,

U=Vy—-V;
V=V, —-V;
Uy Ve — U,V
N=UxV=|U,V,—-U\V,
Uy Vy — Uy Vs
then normalizing the result,
. N N

N /
IN]] N%+N)%+Nz2

yields a unit-length vector, N’, called a facet normal. Figure 1.6 shows the vectors to
use for generating a triangle’s cross product (assuming counterclockwise winding for a
front-facing surface).

Computing the facet normal of a polygon with more than three vertices is more
difficult. Often such polygons are not perfectly planar, so the result may vary depending
on which three vertices are used. If the polygon is a quadrilateral, one good method is to
take the cross product of the vectors between opposing vertices. The two diagonal vectors
U=V0-V2andV = V3 — V1 used for the cross product are shown in Figure 1.7.
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Vi
M

Figure 1.6 Computing a surface normal from edge cross-product.

Vi

V3

Vo

Figure 1.7 Computing quadrilateral surface normal from vertex cross-product.

For polygons with more than four vertices it can be difficult to choose the best vertices
to use for the cross product. One method is to to choose vertices that are the furthest
apart from each other, or to average the result of several vertex cross products.

13.1

To smoothly shade an object, a given vertex normal should be used by all polygons
that share that vertex. Ideally, this vertex normal is the same as the surface normal at
the corresponding point on the original surface. However, if the true surface normal
isn’t available, the simplest way to approximate one is to add all (normalized) normals
from the common facets then renormalize the result (Gouraud, 1971). This provides
reasonable results for surfaces that are fairly smooth, but does not look good for surfaces
with sharp edges.

In general, the polygonal nature of models can be hidden by smoothing the transition
between adjacent polygons. However, an object that should have hard edges, such as a
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Figure 1.8 Splitting normals for hard edges.

cube, should not have its edges smoothed. If the model doesn’t specify which edges are
hard, the angle between polygons defining an edge, called the crease angle, may be used
to distinguish hard edges from soft ones.

The value of the angle that distinguishes hard edges from soft can vary from model
to model. It is fairly clear that a 90-degree angle nearly always defines a hard edge, but
the best edge type for a 45-degree crease angle is less clear. The transition angle can be
defined by the application for tuning to a particular model; using 45 degrees as a default
value usually produces good results.

The angle between polygons is determined using the dot product of the unit-length
facet normals. The value of the dot product is equal to the cosine of the angle between
the vectors. If the dot product of the two normals is greater than the cosine of the desired
crease angle, the edge is considered soft, otherwise it is considered hard. A hard edge
is created by generating separate normals for each side of the edge. Models commonly
have a mixture of both hard and soft edges, and a single edge may transition from hard
to soft. The remaining normals common to soft edges should not be split to ensure that
those soft edges retain their smoothness.

Figure 1.8 shows an example of a mesh with two hard edges in it. The three vertices
making up these hard edges, v, v3, and v4, need to be split using two separate normals.
In the case of vertex v4, one normal would be applied to poly02 and poly03 while a
different normal would apply to poly12 and poly13. This ensures that the edge between
poly02 and poly03 looks smooth while the edge between poly03 and poly13 has a distinct
crease. Since vs is not split, the edge between poly04 and poly14 will look sharper near
v4 and will become smoother as it gets closer to vs. The edge between vs and vg would
then be completely smooth. This is the desired effect.
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Figure 1.9 Properwinding for shared edge of adjoining facets.

For an object such as a cube, three hard edges will share one common vertex. In this
case the edge-splitting algorithm needs to be repeated for the third edge to achieve the
correct results.

1.3.2

Some 3D models come with polygons that are not all wound in a clockwise or counter-
clockwise direction, but are a mixture of both. Since the polygon winding may be used
to cull back or front-facing triangles, for performance reasons it is important that models
are made consistent; a polygon wound inconsistently with its neighbors should have its
vertex order reversed. A good way to accomplish this is to find all common edges and
verify that neighboring polygon edges are drawn in the opposite order (Figure 1.9).

To rewind an entire model, one polygon is chosen as the seed. All neighbor-
ing polygons are then found and made consistent with it. This process is repeated
recursively for each reoriented polygon until no more neighboring polygons are found.
If the model is a single closed object, all polygons will now be consistent. However, if
the model has multiple unconnected pieces, another polygon that has not yet been
tested is chosen and the process repeats until all polygons are tested and made
consistent.

To ensure that the rewound model is oriented properly (i.e., all polygons are wound
so that their front faces are on the outside surface of the object), the algorithm begins
by choosing and properly orienting the seed polygon. One way to do this is to find the
geometric center of the object: compute the object’s bounding box, then compute its
mid-point. Next, select a vertex that is the maximum distance from the center point
and compute a (normalized) out vector from the center point to this vertex. One of the
polygons using that vertex is chosen as the seed. Compute the normal of the seed polygon,
then compute the dot product of the normal with the out vector. A positive result indicates
that seed is oriented correctly. A negative result indicates the polygon’s normal is facing
inward. If the seed polygon is backward, reverse its winding before using it to rewind the
rest of the model.
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1.4 Triangle Stripping

One of the simplest ways to speed up an OpenGL program while simultaneously saving
storage space is to convert independent triangles or polygons into triangle strips. If the
model is generated directly from NURBS data or from some other regular geometry, it
is straightforward to connect the triangles together into longer strips. Decide whether
the first triangle should have a clockwise or counterclockwise winding, then ensure all
subsequent triangles in the list alternate windings (as shown in Figure 1.10). Triangle fans
must also be started with the correct winding, but all subsequent triangles are wound in
the same direction (Figure 1.11).

Since OpenGL does not have a way to specify generalized triangle strips, the user
must choose between GL_TRIANGLE_STRIP and GL_TRIANGLE_FAN. In general, the
triangle strip is the more versatile primitive. While triangle fans are ideal for large convex
polygons that need to be converted to triangles or for triangulating geometry that is
cone-shaped, most other cases are best converted to triangle strips.

Figure 1.10 Triangle strip winding.

Figure 1.11 Triangle fan winding.
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Start of first strip
Start of second strip

Start of third strip

Figure 1.12 A mesh made up of multiple triangle strips.

For regular meshes, triangle strips should be lined up side by side as shown in
Figure 1.12. The goal here is to minimize the number of total strips and try to avoid
“orphan” triangles (also known as singleton strips) that cannot be made part of a longer
strip. It is possible to turn a corner in a triangle strip by using redundant vertices and
degenerate triangles, as described in Evans et al. (1996).

14.1

A fairly simple method of converting a model into triangle strips is often known as
greedy tri-stripping. One of the early greedy algorithms, developed for IRIS GL,! allowed
swapping of vertices to create direction changes to the facet with the least neighbors.
In OpenGL, however, the only way to get behavior equivalent to swapping vertices is to
repeat a vertex and create a degenerate triangle, which is more expensive than the original
vertex swap operation was.

For OpenGL, a better algorithm is to choose a polygon, convert it to triangles, then
move to the polygon which has an edge that is shared with the last edge of the previous
polygon. A given starting polygon and starting edge determines the strip path. The strip
grows until it runs off the edge of the model or reaches a polygon that is already part
of another strip (Figure 1.13). To maximize the number of triangles per strip, grow the
strip in both directions from starting polygon and edge as far as possible.

A triangle strip should not cross a hard edge, since the vertices on that edge must
be repeated redundantly. A hard edge requires different normals for the two triangles
on either side of that edge. Once one strip is complete, the best polygon to choose for
the next strip is often a neighbor to the polygon at one end or the other of the previous
strip. More advanced triangulation methods do not try to keep all triangles of a polygon
together. For more information on such a method refer to Evans et al. (1996).

1. Silicon Graphics’ predecessor to OpenGL.
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0

Figure 1.13 "Greedy" triangle strip generation.

1.5 Vertices and Vertex Arrays

In addition to providing several different modeling primitives, OpenGL provides multi-
ple ways to specify the vertices and vertex attributes for each of the primitive types. There
are two reasons for this. The first is to provide flexibility, making it easier to match the
way the model data is transferred to the OpenGL pipeline with the application’s repre-
sentation of the model (data structure). The second reason is to create a more compact
representation, reducing the amount of data sent to the graphics accelerator to generate
the image — less data means better performance.

For example, an application can render a sphere tessellated into individual (inde-
pendent) triangles. For each triangle vertex, the application can specify a vertex position,
color, normal vector, and one or more texture coordinates. Furthermore, for each of these
attributes, the application chooses how many components to send (2 (x, y), 3 (x,y,z), or 4
(x,y,z,w) positions, 3 (r,g,b), or 4 (r,g, b, a) colors, and so on) and the representation for
each component: short integer, integer, single-precision floating-point, double-precision
floating-point.

If the application writer is not concerned about performance, they may always
specify all attributes, using the largest number of components (3 component vertices,
4 component colors, 3 component texture coordinates, etc.), and the most general com-
ponent representation. Excess vertex data is not a problem; in OpenGL it is relatively
straightforward to ignore unnecessary attributes and components. For example, if light-
ing is disabled (and texture generation isn’t using normals), then the normal vectors are
ignored. If three component texture coordinates are specified, but only two component
texture maps are enabled, then the 7 coordinate is effectively ignored. Similarly, effects
such as faceted shading can be achieved by enabling flat shading mode, effectively ignoring
the extra vertex normals.

However, such a strategy hurts performance in several ways. First, it increases the
amount of memory needed to store the model data, since the application may be storing

TEAM LING



Vertices and Vertex Arrays 15

attributes that are never used. Second, it can limit the efficiency of the pipeline, since the
application must send these unused attributes and some amount of processing must be
performed on them, if only to ultimately discard them. As a result, well written and tuned
applications try to eliminate any unused or redundant data.

In the 1.1 release of the OpenGL specification, an additional mechanism for speci-
fying vertices and vertex attributes, called vertex arrays, was introduced. The reason for
adding this additional mechanism was to improve performance; vertex arrays reduce the
number of function calls required by an application to specify a vertex and its attributes.
Instead of calling a function to issue each vertex and attribute in a primitive, the applica-
tion specifies a pointer to an array of attributes for each attribute type (position, color,
normal, etc.). It can then issue a single function call to send the attributes to the pipeline.
To render a cube as 12 triangles (2 triangles x 6 faces) with a position, color, and nor-
mal vector requires 108 (12 triangles x 3 vertices/triangle x 3 attributes/vertex) function
calls. Using vertex arrays, only 4 function calls are needed, 3 to set the vertex, color,
and normal array addresses and 1 to draw the array (2 more if calls to enable the color
and normal arrays are also included). Alternatively, the cube can be drawn as 6 triangle
strips, reducing the number of function calls to 72 for the separate attribute commands,
while increasing the number of calls to 6 for vertex arrays.

There is a catch, however. Vertex arrays require all attributes to be specified for each
vertex. For the cube example, if each face of the cube is a different color, using the the
function-per-attribute style (called the fine grain calls) results in 6 calls to the color func-
tion (one for each face). For vertex arrays, 36 color values must be specified, since color
must be specified for each vertex. Furthermore, if the number of vertices in the primitive is
small, the overhead in setting up the array pointers and enabling and disabling individual
arrays may outweigh the savings in the individual function calls (for example, if four
vertex billboards are being drawn). For this reason, some applications go to great lengths
to pack multiple objects into a single large array to minimize the number of array pointer
changes. While such an approach may be reasonable for applications that simply draw
the data, it may be unreasonable for applications that make frequent changes to it. For
example, inserting or removing vertices from an object may require extra operations to
shuffle data within the array.

15.1

The mechanisms for moving geometry and texture data to the rendering pipeline
continue to be an area of active development. One of the perennial difficulties in
achieving good performance on modern accelerators is moving geometry data into the
accelerator. Usually the accelerator is attached to the host system via a high speed
bus. Each time a vertex array is drawn, the vertex data is retrieved from application
memory and processed by the pipeline. Display lists offer an advantage in that the
opaque representation allows the data to be moved closer to the accelerator, includ-
ing into memory that is on the same side of the bus as the accelerator itself. This allows
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implementations to achieve high-performance display list processing by exploiting this
advantage.

Unfortunately with vertex arrays it is nearly impossible to use the same technique,
since the vertex data is created and managed in memory in the application’s address
space (client memory). In OpenGL 1.5, vertex buffer objects were added to the speci-
fication to enable the same server placement optimizations that are used with display
lists. Vertex buffer objects allow the application to allocate vertex data storage that
is managed by the OpenGL implementation and can be allocated from accelerator
memory. The application can store vertex data to the buffer using an explicit transfer
command (g1BufferData), or by mapping the buffer (g1MapBuffer). The vertex
buffer data can also be examined by the application allowing dynamic modification
of the data, though it may be slower if the buffer storage is now in the accelerator.
Having dynamic read-write access allows geometric data to be modified each frame,
without requiring the application to maintain a separate copy of the data or explicitly
copy it to and from the accelerator. Vertex buffer objects are used with the vertex array
drawing commands by binding a vertex buffer object to the appropriate array bind-
ing point (vertex, color, normal, texture coordinate) using the array point commands
(for example, glNormalPointer). When an array has a bound buffer object, the
array pointer is interpreted relative to the buffer object storage rather than application
memory addresses.

Vertex buffer objects do create additional complexity for applications, but they
are needed in order to achieve maximum rendering performance on very fast hard-
ware accelerators. Chapter 21 discusses additional techniques and issues in achieving
maximum rendering performance from an OpenGL implementation.

1.5.2

Most of this chapter has emphasized triangle strips and fans as the optimal perform-
ing primitive. It is worth noting that in some OpenGL implementations there are other
triangle-based representations that perform well and have their own distinct advan-
tages. Using the g1DrawElements command with independent triangle primitives
(GL_TRTIANGLES), an application can define lists of triangles in which vertices are
shared. A vertex is shared by reusing the index that refers to it. Triangle lists have the
advantage that they are simple to use and promote the sharing of vertex data; the index
is duplicated in the index list, rather than the actual triangle.

In the past, hardware accelerators did not process triangle lists well. They often
transformed and lit a vertex each time it was encountered in the index list, even if it
had been processed earlier. Modern desktop accelerators can cache transformed ver-
tices and reuse them if the indices that refer to them are “close together” in the array.
More details of the underlying implementation are described in Section 8.2. With these
improvements in implementations, triangle lists are a viable high-performance represen-
tation. It is often still advantageous to use strip and fan structures, however, to provide
more optimization opportunities to the accelerator.
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1.6 Modeling vs. Rendering Revisited

This chapter began by asserting that OpenGL is primarily concerned with rendering, not
modeling. The interactivity of an application, however, can range from displaying a single
static image, to interactively creating objects and changing their attributes dynamically.
The characteristics of the application have a fundamental influence on how their geo-
metric data is represented, and how OpenGL is used to render the data. When speed is
paramount, the application writer may go to extreme lengths to optimize the data repre-
sentation for efficient rendering. Such optimizations may include the use of display lists
and vertex arrays, pre-computing the lighted color values at each vertex, and so forth.
However, a modeling application, such as a mechanical design program, may use a more
general representation of the model data: double-precision coordinate representation,
full sets of colors and normals for each vertex. Furthermore, the application may re-use
the model representation for non-rendering purposes, such as collision detection or finite
element computations.

There are other possibilities. Many applications use multiple representations: they
start with a single “master” representation, then generate subordinate representations
tuned for other purposes, including rendering, collision detection, and physical model
simulations. The creation of these subordinate representations may be scheduled using
a number of different techniques. They may be generated on demand then cached,
incrementally rebuilt as needed, or constructed over time as a background task. The
method chosen depends on the needs of the application.

The key point is that there isn’t a “one size fits all” recipe for representing model
data in an application. One must have a thorough understanding of all of the require-
ments of the application to find the representation and rendering strategy that best
suits it.
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OpenGL has a simple and powerful transformation model. Vertices can be created with
position, normal direction, and sets of texture coordinates. These values are manipu-
lated by a series of affine transformations (a linear combinations of translation, rotation,
scaling, and shearing) that are set by the application. The fundamental transformation
representation in OpenGL is the 4 x 4 matrix. Application-controlled transforms, along
with the perspective division functionality available in both positional and texture coordi-
nate pipelines, offer substantial control to the application program. This chapter describes
the OpenGL transformation pipeline, providing insights needed to use it effectively, and
discusses the transformation issues that can affect visual accuracy.

2.1 Data Representation

Before describing the transformation mechanisms, it is helpful to discuss some details
about representations of the transformed data. OpenGL represents vertex coordinates,
texture coordinates, normal vectors, and colors generically as fuples. Tuples can be
thought of as 4-component vectors. When working with the 1D, 2D, and 3D forms
of commands the tuples are implicitly expanded to fill in unspecified components (e.g.,
for vertex coordinates, an unspecified z coordinate is set to 0 and an unspecified w
is set to 1, etc.). OpenGL represents transforms as 4 x 4 matrices, plane equations as
4-component tuples, etc. When thinking about matrix and vector operations on these
tuples, it’s helpful to treat them as column vectors, so a point p is transformed by a
matrix M by writing it as Mp.
TERM LING
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Figure 2.1 OpenGL transformation pipeline.

2.2 Overview of the Transformation Pipeline

The OpenGL transformation pipeline can be thought of as a series of cartesian coor-
dinate spaces connected by transformations that can be directly set by the application
(Figure 2.1). Five spaces are used: object space, which starts with the application’s coor-
dinates, eye space, where the scene is assembled, clip space, which defines the geometry
that will be visible in the scene, NDC space, the canonical space resulting from per-
spective division, and window space, which maps to the framebuffer’s pixel locations.
The following sections describe each space in the pipeline, along with its controlling
transform, in the order in which they appear in the pipeline.

2.2.1

The pipeline begins with texture, vertex, and light position coordinates, along with nor-
mal vectors, sent down from the application. These untransformed values are said to
be in object space. If the application has enabled the generation of object space texture
coordinates, they are created here from untransformed vertex positions.

Object space coordinates are transformed into eye space by transforming them with
the current contents of the modelview matrix; it is typically used to assemble a series of
objects into a coherent scene viewed from a particular vantage. As suggested by its name,
the modelview matrix performs both viewing and modeling transformations.

A modeling transform positions and orients objects in the scene. It transforms all of
the primitives comprising an object as a group. In general, each object in the scene may
require a different modeling transform to correctly position it. This is done, object by
object, by setting the transform then drawing the corresponding objects. To animate an
object, its modeling transformation is updated each time the scene is redrawn.

A viewing transform positions and orients the entire collection of objects as a single
entity with respect to the “camera position” of the scene. The transformed scene is said
to be in eye space. The viewing part of the transformation only changes when the camera
position does, typically once per frame.

Since the modelview matrix contains both a viewing transform and a modeling
transform, it must be updated when either transform needs to be changed. The mod-
elview matrix is created by multiplying the modeling transform (M) by the viewing
transform (V), yielding VM. Typically the application uses OpenGL to do the multi-
plication of transforms by first loading the viewing transform, then multiplying by a
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modeling transform. To avoid reloading the viewing transform each time the composite
transform needs to be computed, the application can use OpenGL matrix stack opera-
tions. The stack can be used to push a copy of the current model matrix or to remove it.
To avoid reloading the viewing matrix, the application can load it onto the stack, then
duplicate it with a push stack operation before issuing any modeling transforms.

The net result is that modeling transforms are being applied to a copy of the viewing
transform. After drawing the corresponding geometry, the composite matrix is popped
from the stack, leaving the original viewing matrix on the stack ready for another push,
transform, draw, pop sequence.

An important use of the modelview matrix is modifying the parameters of OpenGL
light sources. When a light position is issued using the g1L1ight command, the position
or direction of the light is transformed by the current modelview matrix before being
stored. The transformed position is used in the lighting computations until it’s updated
with a new call to g1L1ght. If the position of the light is fixed in the scene (a lamp in a
room, for example) then its position must be re-specified each time the viewing transform
changes. On the other hand, the light may be fixed relative to the viewpoint (a car’s
headlights as seen from the driver’s viewpoint, for example). In this case, the position of
the light is specified before a viewing transform is loaded (i.e., while the current transform
is the identity matrix).

2.2.2

The eye space coordinate system is where object lighting is applied and eye-space tex-
ture coordinate generation occurs. OpenGL makes certain assumptions about eye space.
The viewer position is defined to be at the origin of the eye-space coordinate system.
The direction of view is assumed to be the negative z-axis, and the viewer’s up position
is the y-axis (Figure 2.2).

X Viewing direction

Viewer

—Z

Figure 2.2 Eye space orientation.
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Normals are consumed by the pipeline in eye space. If lighting is enabled, they are
used by the lighting equation —along with eye position and light positions —to modify
the current vertex color. The projection transform transforms the remaining vertex and
texture coordinates into clip space. If the projection transform has perspective elements
in it, the w values of the transformed vertices are modified.

223

Clip space is where all objects or parts of objects that are outside the view volume are
clipped away, such that

—Welip = Xelip = Welip
—Wclip = Vclip = Welip

—Wlip = Zclip = Welip

If new vertices are generated as a result of clipping, the new vertices will have
texture coordinates and colors interpolated to match the new vertex positions. The exact
shape of the view volume depends on the type of projection transform; a perspective trans-
formation results in a frustum (a pyramid with the tip cut off), while an orthographic
projection will create a parallelepiped volume.

A perspective divide —dividing the clip space x, y, and z coordinate of each point
by its w value —is used to transform the clipped primitives into normalized device coor-
dinate (NDC) space. The effect of a perspective divide on a point depends on whether
the clip space w component is 1 or not. If the untransformed positions have a w of one
(the common case), the value of w depends on the projection transform. An orthographic
transform leaves the w value unmodified; typically the incoming w coordinate is one, so
the post-transform w is also one. In this case, the perspective divide has no effect.

A perspective transform scales the w value as a function of the position’s z value;
a perspective divide on the resulting point will scale, x y, and z as a function of the
untransformed z. This produces the perspective foreshortening effect, where objects
become smaller with increasing distance from the viewer. This transform can also pro-
duce an undesirable non-linear mapping of z values. The effects of perspective divide
on depth buffering and texture coordinate interpolation are discussed in Section 2.8 and
Section 6.1.4, respectively.

224

Normalized device coordinate or NDC space is a screen independent display coordinate
system; it encompasses a cube where the x, y, and ¢ components range from —1 to 1.
Although clipping to the view volume is specified to happen in clip space, NDC space can
be thought of as the space that defines the view volume. The view volume is effectively
the result of reversing the divide by wj;, operation on the corners of the NDC cube.
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The current viewport transform is applied to each vertex coordinate to generate
window space coordinates. The viewport transform scales and biases x,,4. and y,,4. com-
ponents to fit within the currently defined viewport, while the z,,5. component is scaled
and biased to the currently defined depth range. By convention, this transformed z value
is referred to as depth rather than z. The viewport is defined by integral origin, width,
and height values measured in pixels.

2.25

Window coordinates map primitives to pixel positions in the framebuffer. The integral
x and y coordinates correspond to the lower left corner of a corresponding pixel in the
window; the z coordinate corresponds to the distance from the viewer into the screen.
All z values are retained for visibility testing. Each z coordinate is scaled to fall within
the range 0 (closest to the viewer) to 1 (farthest from the viewer), abstracting away the
details of depth buffer resolution. The application can modify the z scale and bias so that
z values fall within a subset of this range, or reverse the mapping between increasing z
distance and increasing depth.

The term screen coordinates is also used to describe this space. The distinction is
that screen coordinates are pixel coordinates relative to the entire display screen, while
window coordinates are pixel coordinates relative to a window on the screen (assuming
a window system is present on the host computer).

2.3 Normal Transformation

OpenGL uses normal vectors for lighting computations and to generate texture coor-
dinates when environment mapping is enabled. Like vertices, normal vectors are
transformed from object space to eye space before being used. However, normal vectors
are different from vertex positions; they are covectors and are transformed differently
(Figure 2.3). Vertex positions are specified in OpenGL as column vectors; normals and
some other direction tuples are row vectors. Mathematically, the first is left-multiplied

90 degrees ji > 90 degrees
B L e e e e e e e e e

Non-Uniform Scaling affects vectors and vertices differently; normal
vectors are no longer normal to surface after scaling by Sx =2, Sy =1

Figure 2.3 Preserving vector and vertex orientation.
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Figure 2.4 Generatinginverse transpose.

by a matrix, the other has the matrix on the right. If they are both to be transformed
the same way (which is commonly done to simplify the implementation code), the matrix
must be transposed before being used to transform normals.

T
mi1 mi2 mi3 Mmi4\ (V1 mi1 M1y M3 M4
my1 mpy mp3 mo4 | |2 my1 M) M3 M4

= (U1 VU3 z/4)
m31 m3y m33 m34 | | U3 m31 M3y M33  1M34
ma1 may M43 mas) \va mM41 M4y M43 44

When transforming normals, it’s not enough to simply transpose the matrix. The
transform that preserves the relationship between a normal and its surface is created by
taking the transpose of the inverse of the modelview matrix (M—1)T, sometimes called
the adjoint transpose of M (Figure 2.4). That is, the transformed normal N’ is:

N =NM-! = <(M71)TNT)T

For a “well-behaved” set of transforms consisting of rotations and translations, the

resulting modelview matrix is orthonormal.! In this case, the adjoint transpose of M
is M and no work needs to be done.

However, if the modelview matrix contains scaling transforms then more is required.

If a single uniform scale s is included in the transform, then M = sI. Therefore

M~1 = (1/s)I and the transformed normal vector will be scaled by 1/s, losing its impor-

tant unit length property (N - N = 1). If the scale factor is non-uniform, then the

scale factor computation becomes more complicated (figure 2.3). If the scaling factor

1. Orthnormal means that MMT = I.
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is uniform, and the incoming normals started out with unit lengths, then they can be
restored to unit length by enabling GL_RESCALE_NORMAL. This option instructs the
OpenGL transformation pipeline to compute s and scale the transformed normal. This
is opposed to GL_NORMALIZE, which has OpenGL compute the length of each trans-
formed normal in order to normalize them to unit length. Normalize is more costly, but
can handle incoming vectors that aren’t of length one.

2.4 Texture Coordinate Generation
and Transformation

Texture coordinates have their own transformation pipeline (Figure 2.5), simpler than the
one used for geometry transformations. Coordinates are either provided by the applica-
tion directly, or generated from vertex coordinates or normal vectors. In either case,
the texture coordinates are transformed by a 4 x 4 texture transform matrix. Like
vertex coordinates, texture coordinates always have four components, even if only one,
two, or three components are specified by the application. The missing components are
assigned default values; O for s, ¢, and r values (these coordinates can be thought of as
x, y, and z equivalents in texture coordinate space) while the g coordinate (the equivalent
of w) is assigned the default value of 1.

24.1

After being transformed by the texture matrix, the transformed coordinates undergo
their own perspective divide, using g to divide the other components. Since texture maps
may use anywhere from one to four components, texture coordinate components that
aren’t needed to index a texture map are discarded at this stage. The remaining com-
ponents are scaled and wrapped (or clamped) appropriately before being used to index
the texture map. This full 4 x 4 transform with perspective divide applied to the coordi-
nates for 1D or 2D textures will be used as the basis of a number of techniques, such as
projected textures (Section 14.9) and volume texturing (Section 20.5.8), described later
in the book.

2.4.2

The texture coordinate pipeline can generate texture coordinates that are a function
of vertex attributes. This functionality, called texture coordinate generation (texgen),
is useful for establishing a relationship between geometry and its associated textures.
It can also be used to improve an application’s triangle rate performance, since explicit
texture coordinates don’t have to be sent with each vertex. The source (x, y, z, w) values
can be untransformed vertices (object space), or vertices transformed by the modelview
matrix (eye space).
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Figure 2.5 Texture coordinate transformation pipeline.
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A great deal of flexibility is available for choosing how vertex coordinates are
mapped into texture coordinates. There are several categories of mapping functions in
core OpenGL; two forms of linear mapping, a version based on vertex normals, and
two based on reflection vectors (the last two are used in environment mapping). Linear
mapping generates each texture coordinate from the dot product of the vertex and an
application-supplied coefficient vector (which can be thought of as a plane equation).
Normal mapping copies the vertex normal vector components to s, ¢, and 7. Reflection
mapping computes the reflection vector based on the eye position and the vertex and its
normal, assigning the vector components to texture coordinates. Sphere mapping also
calculates the reflection vector, but then projects it into two dimensions, assigning the
result to texture coordinates s and ¢.

There are two flavors of linear texgen; they differ on where the texture coordinates
are computed. Object space linear texgen uses the x, y, z, and w components of untrans-
formed vertices in object space as its source. Eye-space linear texgen uses the positional
components of vertices as its source also, but doesn’t use them until after they have been
transformed by the modelview matrix.

Textures mapped with object-space linear texgen appear fixed to their objects; eye-
space linear textures are fixed relative to the viewpoint and appear fixed in the scene.
Object space mappings are typically used to apply textures to the surface of an object
to create a specific surface appearance, whereas eye-space mappings are used to apply
texturing effects to all or part of the environment containing the object.

One of OpenGL’s more important texture generation modes is environment
mapping. Environment mapping derives texture coordinate values from vectors (such
as normals or reflection vectors) rather than points. The applied textures simulate effects
that are a function of one or more vectors. Examples include specular and diffuse reflec-
tions, and specular lighting effects. OpenGL directly supports two forms of environment
mapping; sphere mapping and cube mapping. Details on these features and their use are
found in Section 5.4.

2.5 Modeling Transforms

Modeling transforms are used to place objects within the scene. Modeling trans-
forms can position objects, orient them, change their size and shape through scaling
and shearing, assemble complex objects by proper placement and orientation of their
components, and animate objects by changing these attributes from frame to frame.
Modeling transforms can be thought of as part of an object’s description (Figure 2.6).
When an application defines a geometric primitive, it can include modeling transforms
to modify the coordinates of the primitive’s vertices. This is useful since it allows re-use
of objects. The same object can be used in another part of the scene, with a different size,
shape, position, or orientation. This technique can reduce the amount of geometry that
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Figure 2.6 Modeling transform as part of model description.

the application has to store and send to the graphics pipeline, and can make the modeling
process simpler.

Modeling transforms are even more important if an object needs to be animated.
A modeling transform can be updated each frame to change the position, orientation,
and other properties of an object, animating it without requiring the application to
compute and generate new vertex positions each frame. The application can describe
a modeling transform parametrically (for example, the angle through which a wheel
should be rotated), update the parameter appropriately each frame, then generate a new
transform from the parametric description. Note that generating a new transform each
frame is generally better than incrementally updating a particular transformation, since
the latter approach can lead to large accumulation of arithmetic errors over time.

2.6 Visualizing Transform Sequences

Using transformations to build complex objects from simpler ones, then placing and
orienting them in the scene can result in long sequences of transformations concate-
nated together. Taking full advantage of transform functionality requires being able to
understand and accurately visualize the effect of transform combinations.

There are a number of ways to visualize a transformation sequence. The most basic
paradigm is the mathematical one. Each transformation is represented as a 4 x 4 matrix.
A vertex is represented as a 4 x 1 column vector. When a vertex is sent through the

TEAM LING



Visualizing Transform Sequences 29

transformation pipeline, the vertex components are transformed by multiplying the col-
umn vector v by the current transformation M, resulting in a modified vector ¢/ that is
equal to Mv. An OpenGL command stream is composed of updates to the transformation
matrix, followed by a sequence of vertices that are modified by the current transform.
This process alternates back and forth until the entire scene is rendered.

Instead of applying a single transformation to each vertex, a sequence of transforma-
tions can be created and combined into a single 4 x 4 matrix. An ordered set of matrices,
representing the desired transform sequence, is multiplied together, and the result is mul-
tiplied with the vertices to be transformed. OpenGL provides applications with the means
to multiply a new matrix into the current one, growing a sequence of transformations
one by one.

In OpenGL, adding a matrix to a sequence means right multiplying the new matrix
with the current transformation. If the current transformation is matrix C, and the new
matrix is N, the result of applying the matrix will be a new matrix containing CN. The
matrices can be thought of acting from right to left: matrix N can be thought of as acting
on the vertex before matrix C. If the sequence of transforms should act in the order A,
then B, then C, they should be concatenated together as CBA, and issued to OpenGL in
the order C, then B, then A (Figure 2.7).

draw object

glRotate(45,0,0,1);
7 draw object

glRotate(45,0,0,1);
glTranslatef(3,3,0);
draw object

Figure 2.7 Transform concatenation order.
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Perspective Parallel

Figure 2.8 Perspective and parallel projections.

2.7 Projection Transform

The projection transform establishes which part of the modeled scene will be visible,
and what sort of projection will be applied. Although any transformation that can be
represented with a 4 x4 matrix and a perspective divide can be modeled, most applications
will use either a parallel (orthographic) or a perspective projection (Figure 2.8).

The view volume of a parallel projection is parallelepiped (box shape). The viewer
position establishes the front and back of the viewing volume by setting the front and
back clipping planes. Objects both in front of and behind the viewer will be visible, as
long as they are within the view volume. The g10rtho command establishes a parallel
projection, or alternatively, a sequence of translations and scales can be concatenated
directly by the application.

A perspective projection changes the value of vertex coordinates being transformed,
so the perspective divide step will modify the vertex x, y, and z values. As mentioned
in the viewing section, the view volume is now a frustum (truncated pyramid), and
the view position relative to the objects in the scene is very important. The degree to
which the sides of the frustum diverge will determine how quickly objects change in
size as a function of their z coordinate. This translates into a more “wide angle” or
“telephoto” view.

2.8 The I Coordinate and Perspective Projection

The depth buffer is used to determine which portions of objects are visible within the
scene. When two objects cover the same x and y positions but have different z values, the
depth buffer ensures that only the closer object is visible.

Depth buffering can fail to resolve objects whose z values are nearly the same value.
Since the depth buffer stores z values with limited precision, z values are rounded as
they are stored. The z values may round to the same number, causing depth buffering
artifacts.

Since the application can exactly specify the desired perspective transformation,
it can specify transforms that maximize the performance of the depth buffer. This can
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Figure 2.9 Window z to eye z relationship for near/far ratios.

reduce the chance of depth buffer artifacts. For example, if the g1 Frustum call is used
to set the perspective transform, the properties of the z values can be tuned by changing
the ratio of the near and far clipping planes. This is done by adjusting the near and far
parameters of the function. The same can be done with the gTuPerspective command,
by changing the values of zNear and zFar.

To set these values correctly, it is important to understand the characteristics of
the window z coordinate. The z value specifies the distance from the fragment to the
plane of the eye. The relationship between distance and z is linear in an orthographic
projection, but not in a perspective one. Figure 2.9 plots the window coordinate z value
vs. the eye-to-pixel distance for several ratios of far to near. The non-linearity increases
the resolution of the z values when they are close to the near clipping plane, increasing
the resolving power of the depth buffer, but decreasing the precision throughout the rest
of the viewing frustum. As a result, the accuracy of the depth buffer in the back part of
the viewing volume is decreased.

For an object a given distance from the eye, however, the depth precision is not as
bad as it looks in Figure 2.9. No matter how distant the far clip plane is, at least half
of the available depth range is present in the first “unit” of distance. In other words, if
the distance from the eye to the near clip plane is one unit, at least half of the z range is
used up traveling the same distance from the near clip plane toward the far clip plane.
Figure 2.10 plots the z range for the first unit distance for various ranges. With a million
to one ratio, the z value is approximately 0.5 at one unit of distance. As long as the data
is mostly drawn close to the near plane, the z precision is good. The far plane could be set
to infinity without significantly changing the accuracy of the depth buffer near the viewer.

To achieve the best depth buffer precision, the near plane should be moved as far
from the eye as possible without touching the object of interest (which would cause part
or all of it to be clipped away). The position of the near clipping plane has no effect
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Figure 2.10 Available window z depth values near/far ratios.

on the projection of the x and y coordinates, so moving it has only a minimal effect on
the image. As a result, readjusting the near plane dynamically shouldn’t cause noticeable
artifacts while animating. On the other hand, allowing the near clip plane to be closer to
the eye than to the object will result in loss of depth buffer precision.

2.8.1

In addition to depth buffering, the z coordinate is also used for fog computations.
Some implementations may perform the fog computation on a per-vertex basis, using
the eye-space z value at each vertex, then interpolate the resulting vertex colors.
Other implementations may perform fog computations per fragment. In the latter case,
the implementation may choose to use the window z coordinate to perform the fog
computation. Implementations may also choose to convert the fog computations into
a table lookup operation to save computation overhead. This shortcut can lead to
difficulties due to the non-linear nature of window z under perspective projections.
For example, if the implementation uses a linearly indexed table, large far to near ratios
will leave few table entries for the large eye z values. This can cause noticeable Mach
bands in fogged scenes.

2.9 Vertex Programs

Vertex programs, sometimes known as “Vertex Shaders”? provide additional flexibility
and programmability to per-vertex operations. OpenGL provides a fixed sequence of

2. The name comes from the “shader” construct used in the RenderMan shading language.
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operations to perform transform, coordinate generation, lighting and clipping operations
on vertex data. This fixed sequence of operations is called the fixed-function pipeline.
The OpenGL 1.4 specification includes the ARB_vertex_program extension which
provides a restricted programming language for performing these operations and varia-
tions on them, sending the results as vertex components to the rest of the pipeline. This
programmable functionality is called the programmable pipeline. While vertex programs
provide an assembly language like interface, there are also a number of more “C”-like
languages. The OpenGL Shading Language® (GLSL) [KBR03] and Cg [NVI04] are two
examples. Vertex programs not only provide much more control and generality when
generating vertex position, normal, texture, and color components per-vertex, but also
allow micropass sequences to be defined to implement per-vertex shading algorithms.

In implementations that support vertex programs, part of the transformation
pipeline can be switched between conventional transform mode and vertex program
mode. Switching between the two modes is controlled by enabling or disabling the
GL_VERTEX_PROGRAM_ARB state value. When enabled, vertex programs bypass the
traditional vertex and normal transform functionality, texture coordinate generation and
transformation, normal processing (such as renormalization) and lighting, clipping by
user-defined clip planes, and per-vertex fog computations. Transform and light exten-
sions, such as vertex weighting and separate specular color, are also replaced by vertex
program functionality when it is enabled. Figure 2.11 shows how the two modes are
related.

The vertex programming language capabilities are limited to allow efficient hardware
implementations: for example, there is no ability to control the flow of the vertex program;
it is a linear sequence of commands. The number and type of intermediate results and
input and output parameters are also strictly defined and limited. Nevertheless, vertex
programming provides a powerful tool further augmenting OpenGL’s use as a graphics
assembly language.

model
clip
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xform
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texgen
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>
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Figure 2.11 Vertex program and conventional transform modes.

3. An ARB extension in OpenGL 1.5.
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2.10 Summary

This chapter only provides an overview of vertex, normal, and texture coordinate trans-
formations and related OpenGL functionality. There are a number of texts that go into
these topics in significantly more depth. Beyond the classic computer graphics texts such
as that by Foley et al. (1990), there a number of more specialized texts that focus on
transformation topics, as well as many excellent linear algebra texts.
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Color, Shading,
and Lighting

In this chapter we cover the basics of color representation, lighting models, and shading
objects. Geometric modeling operations are responsible for accurately reproducing shape,
size, position, and orientation. Knowledge of the basics of color, lighting, and shading
are the next step in reproducing the visual appearance of an object.

3.1 Representing Color

To produce more realistic images, objects being rendered must be shaded with accurate
colors. Modern graphics accelerators can faithfully generate colors from a large, but
finite palette. In OpenGL, color values are specified to be represented with a triple of
floating-point numbers in the range [0, 1]. These values specify the amount of red, green,
and blue (RGB) primaries in the color. RGB triples are also used to store pixel colors in
the framebuffer, and are used by the video display hardware to drive a cathode ray tube
(CRT) or liquid crystal display (LCD) display.

A given color representation scheme is referred to as a color space. The RGB
space used by OpenGL is a cartesian space well suited for describing colors for dis-
play devices that emit light, such as color monitors. The addition of the three primary
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colors mimics the mixing of three light sources. Other examples of color spaces
include:

Hue Saturation Value (HSV) model is a polar color space that is often used by artists
and designers to describe colors in a more intuitive fashion. Hue specifies the
spectral wavelength, saturation the proportion of the color present (higher
saturation means the color is more vivid and less gray), while value specifies the
overall brightness of the color.

Cyan Magenta Yellow blacK (CMYK) is a subtractive color space which mimics the
process of mixing paints. Subtractive color spaces are used in publishing, since the
production of colors on a printed medium involves applying ink to a substrate,
which is a subtractive process. Printing colors using a mixture of four inks is called
process color. In contrast, printing tasks that involve a small number of different
colors may use a separate ink for each color. These are referred to as spot colors.
Spot colors are frequently specified using individual codes from a color matching
system such as Pantone (2003).

YCDbCr is an additive color space that models colors using a brightness (Y) component
and two chrominance components (Cb and Cr). Often the luminance signal is
encoded with more precision than the chrominance components. YCbCr! is used
in digital video processing [Jac96].

sRGB is a non-linear color space that better matches the visual perception of brightness.
sRGB serves as a standard for displaying colors on monitors (CRT and LCD) with
the goal of having the same image display identically on different devices [Pac01].
Since it also matches human sensitivity to intensity, it allows colors to be more
compactly or efficiently represented without introducing perceptual errors.
For example, 8-bit SRGB values require 12-bit linear values to preserve accuracy
across the full range of values.

The choice of an RGB color space is not critical to the functioning of the OpenGL
pipeline; an application can use the rendering pipeline to perform processing on data
from other color spaces if done carefully.

3.1.1

The number of colors that can be represented, or palette size, is determined by the number
of bits used to represent each of the R, G, and B color components. An accelerator that
uses 8 bits per component can represent 224 (about 16 million) different colors. Color
components are typically normalized to the range [0, 1], so an 8-bit color component

1. The term YCrCb is also used and means the same thing except the order of the two color difference
signals Cb and Cr is exchanged. The name may or may not imply something about the order of the
components in a pixel stream.
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can represent or resolve changes in [0, 1] colors by as little as 1/256. For some types of
rendering algorithms it is useful to represent colors beyond the normal [0, 1] range. In
particular, colors in the range [—1, 1] are useful for subtractive operations. Natively rep-
resenting color values beyond the [—1, 1] range is becoming increasingly useful to support
algorithms that use high dynamic range intermediate results. Such algorithms are used to
achieve more realistic lighting and for algorithms that go beyond traditional rendering.

An OpenGL implementation may represent color components with different num-
bers of bits in different parts of the pipeline, varying both the resolution and the range. For
example, the colorbuffer may store 8 bits of data per component, but for performance rea-
sons, a texture map might store only 4 bits per component. Over time, the bit resolution
has increased; ultimately most computations may well be performed with the equivalent
of standard IEEE-754 32-bit floating-point arithmetic. Today, however, contemporary
consumer graphics accelerators typically support 32-bit float values when operating on
vertex colors and use 8 bits per component while operating on fragment (pixel) col-
ors. Higher end hardware increases the resolution (and range) to 10, 12, or 16 bits per
component for framebuffer and texture storage and as much as 32-bit floating-point for
intermediate fragment computations.

Opinions vary on the subject of how much resolution is necessary, but the human
eye can resolve somewhere between 10 and 14 bits per component. The sRGB represen-
tation provides a means to use fewer bits per component without adding visual artifacts.
It accomplishes this using a non-linear representation related to the concept of gamma.

3.1.2

Gamma describes the relationship between a color value and its brightness on a particular
device. For images described in an RGB color space to appear visually correct, the display
device should generate an output brightness directly proportional (linearly related) to the
input color value. Most display devices do not have this property. Gamma correction is
a technique used to compensate for the non-linear display characteristics of a device.

Gamma correction is achieved by mapping the input values through a correction
function, tailored to the characteristics of the display device, before sending them to the
display device. The mapping function is often implemented using a lookup table, typically
using a separate table for each of the RGB color components. For a CRT display, the
relationship between the input and displayed signal is approximately* D = I?, as shown
in Figure 3.1. Gamma correction is accomplished by sending the signal through the inverse
function I'/? as shown in Figure 3.2.

The gamma value for a CRT display is somewhat dependent on the exact character-
istics of the device, but the nominal value is 2.5. The story is somewhat more complicated
though, as there is a subjective aspect to the human perception of brightness (actually
lightness), that is influenced by the viewing environment. CRTs are frequently used for

2. More correctly, the relationship is D = (I + €)?, where € is a black level offset. The black level is
adjusted using the brightness control on a CRT. The gamma value is adjusted using the contrast control.
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Figure 3.2 Displayed ramp intensity with gamma correction.

viewing video in a dim environment. To provide a correct subjective response in this
environment, video signals are typically precompensated, treating the CRT as if it has a
gamma value of 2.2. Thus, the well-known 2.2 gamma value has a built-in dim view-
ing environment assumption [Poy98]. The sRGB space represents color values in an
approximate gamma 2.2 space.

Other types of display devices have non-linear display characteristics as well, but
the manufacturers typically include compensation circuits so that they appear to have a
gamma of 2.5. Printers and other devices also have non-linear characteristics and these
may or may not include compensation circuitry to make them compatible with moni-
tor displays. Color management systems (CMS) attempt to solve problems with variation
using transfer functions. They are controlled by a system of profiles that describes the char-
acteristics of a device. Application or driver software uses these profiles to appropriately
adjust image color values as part of the display process.

Gamma correction is not directly addressed by the OpenGL specification; it is usually
part of the native windowing system in which OpenGL is embedded. Even though gamma
correction isn’t part of OpenGL, it is essential to understand that the OpenGL pipeline
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computations work best in a linear color space, and that gamma correction typically
takes place between the framebuffer and the display device. Care must be taken when
importing image data into OpenGL applications, such as texture maps. If the image
data has already been gamma corrected for a particular display device, then the linear
computations performed in the pipeline and a second application of gamma correction
may result in poorer quality images.

There are two problems that typically arise with gamma correction: not enough cor-
rection and too much correction. The first occurs when working with older graphics
cards that do not provide gamma correction on framebuffer display. Uncorrected scenes
will appear dark on such displays. To address this, many applications perform gamma
correction themselves in an ad hoc fashion; brightening the input colors and using com-
pensated texture maps. If the application does not compensate, then the only recourse
for the user is to adjust the monitor brightness and contrast controls to brighten the
image. Both of these lead to examples of the second problem, too much gamma correc-
tion. If the application has pre-compensated its colors, then the subsequent application of
gamma correction by graphics hardware with gamma correction support results in overly
bright images. The same problem occurs if the user has previously increased the monitor
brightness to compensate for a non-gamma-aware application. This can be corrected by
disabling the gamma correction in the graphics display hardware, but of course, there are
still errors resulting from computations such as blending and texture filtering that assume
a linear space.

In either case, the mixture of gamma-aware and unaware hardware has given rise
to a set of applications and texture maps that are mismatched to hardware and leads to
a great deal of confusion. While not all graphics accelerators contain gamma correction
hardware, for the purposes of this book we shall assume that input colors are in a linear
space and gamma correction is provided in the display subsystem.

3.13

In addition to the red, green, and blue color components, OpenGL uses a fourth com-
ponent called alpha in many of its color computations. Alpha is mainly used to perform
blending operations between two different colors (for example, a foreground and a back-
ground color) or for modeling transparency. The role of alpha in those computations is
described in Section 11.8 . The alpha component also shares most of the computations
of the RGB color components, so when advantageous, alpha can also be treated as an
additional color component.

3.14

In addition to operating on colors as RGBA tuples (usually referred to as RGB mode),
OpenGL also allows applications to operate in color index mode (also called pseudo-color
mode, or ramp mode). In index mode, the application supplies index values instead of
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RGBA tuples to OpenGL. The indexes represent colors as references into a color lookup
table (also called a color map or palette). These index values are operated on by the
OpenGL pipeline and stored in the framebuffer. The conversion from index to RGB color
values is performed as part of display processing. Color index mode is principally used to
support legacy applications written for older graphics hardware. Older hardware avoided
a substantial cost burden by performing computations on and saving in framebuffer
memory a single index value rather than three color components per-pixel. Of course,
the savings comes at the cost of a greatly reduced color palette.

Today there are a very few reasons for applications to use color index mode. There
are a few performance tricks that can be achieved by manipulating the color map rather
than redrawing the scene, but for the most part the functionality of color index mode can
be emulated by texture mapping with 1D texture maps. The main reason index mode is
still present on modern hardware is that the native window system traditionally required
it and the incremental work necessary to support it in an OpenGL implementation is
usually minor.

3.2 Shading

Shading is the term used to describe the assignment of a color value to a pixel. For photo-
realistic applications —applications that strive to generate images that look as good as
photographs of a real scene — the goal is to choose a color value that most accurately cap-
tures the color of the light reflected from the object to the viewer. Photorealistic rendering
attempts to take into account the real world interactions between objects, light sources,
and the environment. It describes the interactions as a set of equations that can be eval-
uated at each surface point on the object. For some applications, photorealistic shading
is not the objective. For instance, technical illustration, cartoon rendering, and image
processing all have different objectives, but still need to perform shading computations
at each pixel and arrive at a color value.

The shading computation is by definition a per-pixel-fragment operation, but
portions of the computation may not be performed per-pixel. Avoiding per-pixel com-
putations is done to reduce the amount of processing power required to render a scene.
Figure 3.3 illustrates schematically the places in the OpenGL pipeline where the color for
a pixel fragment may be modified by parts of the shading computation.

There are five fundamental places where the fragment color can be affected: input
color, vertex lighting, texturing, fog, and blending. OpenGL maintains the concept of a
current color (with the caveat that it is undefined after a vertex array drawing command
has been issued), so if a new color is not issued with the vertex primitive, then the current
color is used. If lighting is enabled, then the vertex color is replaced with the result of the
vertex lighting computation.

There is some subtlety in the vertex lighting computation. While lighting uses
the current material definition to provide the color attributes for the vertex, if
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Figure 3.3 Color-processing path.

GL_COLOR_MATERTAL is enabled, then the current color updates the current material
definition before being used in the lighting computation.’

After vertex lighting, the primitive is rasterized. Depending on the shading model
(GL_FLAT or GL_SMOQTH), the resulting pixel fragments will have the color associated
with the vertex or a color interpolated from multiple vertex colors. If texturing is enabled,
then the color value is further modified, or even replaced altogether by texture environ-
ment processing. If fog is enabled, then the fragment color is mixed with the fog color,
where the proportions of the mix are controlled by the distance of the fragment from the
viewer. Finally, if blending is enabled, then the fragment color value is modified according
to the enabled blending mode.

By controlling which parts of the pipeline are enabled and disabled, some simple
shading models can be implemented:

Constant Shading If the OpenGL shading model is set to GL_FLAT and all other parts
of the shading pipeline disabled, then each generated pixel of a primitive has the
color of the provoking vertex of the primitive. The provoking vertex is a term that
describes which vertex is used to define a primitive, or to delineate the individual
triangles, quads, or lines within a compound primitive. In general it is the last
vertex of a line, triangle, or quadrilateral (for strips and fans, the last vertex to

3. Note that when color material is enabled, the current color updates the material definition.
In hindsight, it would have been cleaner and less confusing to simply use the current color in the lighting
computation, but not replace the current material definition as a side effect.
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define each line, triangle or quadrilateral within the primitive). For polygons it
is the first vertex. Constant shading is also called flat or faceted shading.

Smooth Shading If the shading model is set to GL_SMOQOTH, then the colors of each
vertex are interpolated to produce the fragment color. This results in smooth
transitions between polygons of different colors. If all of the vertex colors are the
same, then smooth shading produces the same result as constant shading. If vertex
lighting is combined with smooth shading, then the polygons are Gouraud shaded
[Gou71].

Texture Shading If the input color and vertex lighting calculations are ignored or
disabled, and the pixel color comes from simply replacing the vertex color with
a color determined from a texture map, we have texture shading. With texture
shading, the appearance of a polygon is determined entirely by the texture map
applied to the polygon including the effects from light sources. It is quite common
to decouple lighting from the texture map, for example, by combining vertex
lighting with texture shading by using a GL_MODULATE texture environment with
the result of computing lighting values for white vertices. In effect, the lighting
computation is used to perform intensity or Lambertian shading that modulates the
color from the texture map.

Phong Shading Early computer graphics papers and books have occasionally confused
the definition of the lighting model (lighting) from how the lighting model is
evaluated (shading). The original description of Gouraud shading applies a
particular lighting model to each vertex and linearly interpolates the colors
computed for each vertex to produce fragment colors. We prefer to generalize that
idea to two orthogonal concepts per-vertex lighting and smooth shading. Similarly,
Phong describes a more advanced lighting model that includes the effects of
specular reflection. This model is evaluated at each pixel fragment to avoid artifacts
that can result from evaluating the model at vertices and interpolating the colors.
Again, we separate the concept of per-pixel lighting from the Phong lighting
model.

In general, when Phong shading is discussed, it often means per-pixel lighting, or,
for OpenGL, it is more correctly termed per-fragment lighting. The OpenGL specifi-
cation does not define support for per-fragment lighting in the fixed-function pipeline,
but provides several features and OpenGL Architectural Review Board (ARB) exten-
sions, notably fragment programs, that can be used to evaluate lighting equations at each
fragment. Lighting techniques using these features are described in Chapter 15.

In principle, an arbitrary computation may be performed at each pixel to find the
pixel value. Later chapters will show that it is possible to use OpenGL to efficiently
perform a wide range of computations at each pixel. It is still useful, at least for the
photorealistic rendering case, to separate the concept of a light source and lighting model
as distinct classes of shading computation.
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Figure 3.4 Lighting model components.

3.3 Lighting

In real-world environments, the appearance of objects is affected by light sources. These
effects can be simulated using a lighting model. A lighting model is a set of equations that
approximates (models) the effect of light sources on an object. The lighting model may
include reflection, absorption, and transmission of a light source. The lighting model
computes the color at one point on the surface of an object, using information about
the light sources, the object position and surface characteristics, and perhaps information
about the location of the viewer and the rest of the environment containing the object (such
as other reflective objects in the scene, atmospheric properties, and so on) (Figure 3.4).

Computer graphics and physics research have resulted in a number of lighting models
(Cook and Torrance, 1981; Phong, 1975; Blinn, 1977; Ward, 1994; Ashikhmin et al.,
2000). These models typically differ in how well they approximate reality, how much
information is required to evaluate the model, and the amount of computational power
required to evaluate the model. Some models may make very simple assumptions about
the surface characteristics of the object, for example, whether the object is smooth or
rough, while others may require much more detailed information, such as the index of
refraction or spectral response curves.

OpenGL provides direct support for a relatively simple lighting model called Phong
lighting [Pho75].* This lighting model separates the contributions from the light sources
reflecting off the object into four intensity contributions—ambient, diffuse, specular,
and emissive (I;or = Lum + 14; + Isp + Iems) — that are combined with surface properties to
produce the shaded color.

The ambient term models directionless illumination coming from inter-object reflec-
tions in the environment. The ambient term is typically expressed as a constant value for

4. The name Phong lighting is a misnomer, the equations used in the OpenGL specification are from
Blinn [Bli77].
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the scene, independent of the number of light sources, though OpenGL provides both
scene ambient and light source ambient contributions.

The diffuse term models the reflection of a light source from a rough surface. The
intensity at a point on the object’s surface is proportional to the cosine of the angle made
by a unit vector from the point to the light source, L, and the surface normal vector at
that point, N,

I;=N-L.

If the surface normal is pointing away from the light source, then the dot product is
negative. To avoid including a negative intensity contribution, the dot product is clamped
to zero. In the OpenGL specification, the clamped dot product expression max(N - L, 0)
is written as N © L. This notation is used throughout the text.

As the discussion of a clamped dot product illustrates, considering lighting equations
brings up the notion of sideness to a surface. If the object is a closed surface (a sphere,
for example), then it seems clear that a light shining onto the top of the sphere should
not illuminate the bottom of the sphere. However, if the object is not a closed surface (a
hemisphere, for example), then the exterior should be illuminated when the light source
points at it, and the interior should be illuminated when the light source points inside. If
the hemisphere is modeled as a single layer of polygons tiling the surface of the hemisphere,
then the normal vector at each vertex can either be directed inward or outward, with the
consequence that only one side of the surface is lighted regardless of the location of the
light source.

Arguably, the solution to the problem is to not model objects with open surfaces, but
rather to force everything to be a closed surface as in Figure 3.5. This is, in fact, the rule
used by CAD programs to solve this and a number of related problems. However, since
this may adversely complicate modeling for some applications, OpenGL also includes
the notion of two-sided lighting. With two-sided lighting, different surface properties are
used and the direction of the surface normal is flipped during the lighting computation
depending on which side of a polygon is visible. To determine which side is visible, the
signed area of the polygon is computed using the polygon’s window coordinates. The
orientation of the polygon is give by the sign of the area computation.

Closed Open Closed
Figure 3.5 Closed and open surface cross-sections.
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Figure 3.6 Diffuse and specular reflection patterns.

The specular term models the reflection of a light source from a smooth surface,
producing a highlight focused in the direction of the reflection vector. This behavior is
much different than the diffuse term, which reflects light equally in all directions, as shown
in Figure 3.6. Things get a little more complicated when light isn’t equally reflected in all
directions; the location of the viewer needs to be included in the equation. In the original
Phong formulation, the angle between the reflection of the light vector, R;, and viewing
vector (a unit vector between the surface point and the viewer position, V) determines
amount of specular reflection in the direction of the viewer.’

In the Blinn formulation used in OpenGL, however, the angle between the surface
normal, and the unit bisector, H, of the light vector L, and the view vector V, is used.
This bisector is also called the half-angle vector. It produces an effect similar to V-R, but
Blinn argues that it more closely matches observed behavior, and in some circumstances
is less expensive to compute.

To model surfaces of differing smoothness, this cosine term is raised to a power:

(V+L) )”
Iyy=| ——ON
v <||V+L|| ©

The larger this shininess exponent, n, the more polished the surface appears, and the
more rapidly the contribution falls off as the reflection angle diverges from the reflection
of the light vector. In OpenGL the exponent is limited to the range [0, 128], but there is
least one vendor extension to allow a larger range.®

The specular term is also called the power function. OpenGL supports two different
positions for the viewer: at the origin of eye space and infinitely far away along the positive

5. V-R; can equivalently be written as L - Ry, where Ry, is the reflection of the view vector V.

6. NV_Tlight_max_exponent
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z-axis. If the viewer is at infinity, (0,0, 1)T is used for the view vector. These two viewing
variations are referred to as local viewer and infinite viewer. The latter model makes the
specular computation independent of the position of the surface point, thereby making
it more efficient to compute. Note that this approximation is not really correct for large
objects in the foreground of the scene.

To ensure that the specular contribution is zero when the surface normal is pointing
away from the light source, the specular term is gated (multiplied) by a function derived
from the inner product of the surface normal and light vector: fgze = (0if NOL =051
otherwise).

The specular term is an example of a bidirectional reflectance distribution function
or BRDF —a function that is described by both the angle of incidence (the light direction)
and angle of reflection (the view direction) p(8;, ¢;, 0;, ¢;). The angles are typically defined
using spherical coordinates with 6, the angle with the normal vector, and ¢, the angle in
the plane tangent to the normal vector. The function is also written as p(w;, w,). The BRDF
represents the amount of light (in inverse steradians) that is scattered in each outgoing
angle, for each incoming angle.

The emissive term models the emission of light from an object in cases where the
object itself acts as a light source. An example is an object that fluoresces. In OpenGL,
emission is a property of the object being shaded and does not depend on any light
source. Since neither the emissive or ambient terms are dependent on the location of the
light source, they don’t use a gating function the way the diffuse and specular terms do
(note that the diffuse term gates itself).

33.1

So far, we have described the lighting model in terms of producing intensity values for
each contribution. These intensity values are used to scale color values to produce a set
of color contributions. In OpenGL, both the object and light have an RGBA color, which
are multiplied together to get the final color value:

Chnat = Materialyy, * Scenean
Materialyy, * Light g * Ly
Material g; % Lighty; * 14
Materialg, * Lights, * I

+ + 4+ +

Material,,,

The colors associated with the object are referred to as reflectance values or reflectance
coefficients. They represent the amount of light reflected (rather than absorbed or trans-
mitted) from the surface. The set of reflectance values and the specular exponent are
collectively called material properties. The color values associated with light sources are
intensity values for each of the R, G, and B components. OpenGL also stores alpha com-
ponent values for reflectances and intensities, though they aren’t really used in the lighting
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computation. They are stored largely to keep the application programming interface (API)
simple and regular, and perhaps so they are available in case there’s a use for them in
the future. The alpha component may seem odd, since one doesn’t normally think of
objects reflecting alpha, but the alpha component of the diffuse reflectance is used as the
alpha value of the final color. Here alpha is typically used to model transparency of the
surface. For conciseness, the abbreviations a,;,, d;,, s, aj, dj, and s; are used to represent
the ambient, diffuse, specular material reflectances and light intensities; e,, represents the
emissive reflectance (intensity), while as. represents the scene ambient intensity.

The interaction of up to 8 different light sources with the object’s material are
evaluated and combined (by summing them) to produce a final color.

3.3.2

In addition to intensity values, OpenGL also defines additional properties of the light
sources. Both directional (infinite lights) and positional (local lights) light sources can
be emulated. The directional model simulates light sources, such as the sun, that are so
distant that the lighting vector doesn’t change direction over the surface of the primitive.
Since the light vector doesn’t change, directional lights are the simplest to compute.
If both an infinite light source and an infinite viewer model are set, the half-angle vector
used in the specular computation is constant for each light source.

Positional light sources can show two effects not seen with directional lights. The first
derives from the fact that a vector drawn from each point on the surface to the light source
changes as lighting is computed across the surface. This leads to changes in intensity that
depend on light source position. For example, a light source located between two objects
will illuminate the areas that face the light source. A directional light, on the other hand,
illuminates the same regions on both objects (Figure 3.7). Positional lights also include
an attenuation factor, modeling the falloff in intensity for objects that are further away
from the light source:

. 1
attenuation = R Rl
OpenGL distinguishes between directional and positional lights with the w coordi-
nate of the light position. If w is 0, then then the light source is at infinity, if it is non-zero
then it is not. Typically, only values of 0 and 1 are used. Since the light position is
transformed from object space to eye space before the lighting computation is performed
(when a light position is specified), applications can easily specify the positions of light
sources relative to other objects in the scene.

In addition to omnidirectional lights radiating uniformly in all directions (sometimes
called point lights), OpenGL also models spotlight sources. Spotlights are light sources
that have a cone-shaped radiation pattern: the illumination is brightest along the the axis
of the cone, decreases from the center to the edge of the cone, and drops to zero outside

TERAM LING



48 CHAPTER 3 Color, Shading, and Lighting

Directional
light source Positional
(infinitely far away) N | !/ light source
~ -~

~

| /74\\

Figure 3.7 Directional and positional light sources.

Figure 3.8 Spotlight sources.

the cone (as shown in Figure 3.8). This radiation pattern is parameterized by the spotlight
direction (sd), cutoff angle (co), and spotlight exponent (se), controlling how rapidly the
illumination falls off between the center and the edge of the cone:

spot = (L © sd)*®
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If the angle between the light vector and spot direction is greater than the cutoff angle
(dot product is less than the cosine of the cutoff angle), then the spot attenuation is set
to zero.

333

OpenGL provides great flexibility for setting material reflectance coefficients, light inten-
sities, and other lighting mode parameters, but doesn’t specify how to choose the proper
values for these parameters.

Material properties are modeled with four groups of reflectance coefficients (ambient,
diffuse, specular, and emissive) and a specular exponent. In practice, the emissive term
doesn’t play a significant role in modeling normal materials, so it will be ignored in this
discussion.

For lighting purposes, materials can be described by the type of material, and the
smoothness of its surface. Surface smoothness is simulated by the overall magnitude of
the three reflectances, and the value of the specular exponent. As the magnitude of the
reflectances get closer to one, and the specular exponent value increases, the material
appears to have a smoother surface.

Material type is simulated by the relationship between three of the reflectances (ambi-
ent, diffuse, and specular). For classification purposes, simulated materials can be divided
into four categories: dielectrics, metals, composites, and other materials.

Dielectrics This is the most common category. Dielectrics are non-conductive materials,
such as plastic or wood, which don’t have free electrons. As a result, dielectrics
have relatively low reflectivity; what reflectivity they do have is independent of
light color. Because they don’t strongly interact with light, some dielectrics are
transparent. The ambient, diffuse, and specular colors tend to have similar values
in dielectric materials.

Powdered dielectrics tend to look white because of the high surface area between
the powdered dielectric and the surrounding air. Because of this high surface area,
they also tend to reflect diffusely.

Metals Metals are conductive and have free electrons. As a result, metals are opaque
and tend to be very reflective, and their ambient, diffuse, and specular colors tend
to be the same. The way free electrons react to light can be a function of the light’s
wavelength, determining the color of the metal. Materials like steel and nickel have
nearly the same response over all visible wavelengths, resulting in a grayish
reflection. Copper and gold, on the other hand, reflect long wavelengths more
strongly than short ones, giving them their reddish and yellowish colors.

The color of light reflected from metals is also a function angle between the
incident or reflected light directions and the surface normal. This effect can’t be
modeled accurately with the OpenGL lighting model, compromising the
appearance of metallic objects. However, a modified form of environment mapping
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(such as the OpenGL sphere mapping) can be used to approximate the angle
dependency. Additional details are described in Section 15.9.1.

Composite Materials Common composites, like plastic and paint, are composed of a
dielectric binder with metal pigments suspended in them. As a result, they combine
the reflective properties of metals and dielectrics. Their specular reflection is
dielectric, while their diffuse reflection is like metal.

Other Materials Other materials that don’t fit into the above categories are materials
such as thin films and other exotics. These materials are described further in
Chapter 15.

As mentioned previously, the apparent smoothness of a material is a function of how
strongly it reflects and the size of the specular highlight. This is affected by the overall
magnitude of the GL_AMBIENT, GL_DIFFUSE, and GL_SPECULAR parameters, and the
value of GL_SHININESS. Here are some heuristics that describe useful relationships
between the magnitudes of these parameters:

1. The spectral color of the ambient and diffuse reflectance parameters should be the
same.

2. The magnitudes of diffuse and specular reflectance should sum to a value close
to 1. This helps prevent color value overflow.

3. The value of the specular exponent should increase as the magnitude of specular
reflectance approaches 1.

Using these relationships, or the values in Table 3.1, will not result in a perfect imita-
tion of a given material. The empirical model used by OpenGL emphasizes performance,
not physical exactness. Improving material accuracy requires going beyond the OpenGL
lighting model to more sophisticated multipass techniques or use of the programmable
pipeline. For an excellent description of material properties see Hall (1989).

3.34

Ideally the lighting model should be evaluated at each point on the object’s surface.
When rendering to a framebuffer, the computation should be recalculated at each
pixel. At the time the OpenGL specification was written, however, the amount of pro-
cessing power required to perform these computations at each pixel was deemed too
expensive to be widely available. Instead the specification uses a basic vertex lighting
model.

This lighting model can provide visually appealing results with modest computation
requirements, but it does suffer from a number of drawbacks. One drawback related to
color representation occurs when combining lighting with texture mapping. To texture
a lighted surface, the intent is to use texture samples as reflectances for the surface.
This can be done by using vertex lighting to compute an intensity value at the vertex
color (by setting all of the material reflectance values to 1.0) then multiplying by the
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Material

Brass

Bronze

Polished Bronze

Chrome

Polished Copper

Polished Gold

GL_AMBIENT

0.329412
0.223529
0.027451
1.0

0.2125
0.1275
0.054
1.0

0.25
0.148
0.06475
1.0

0.25
0.25
0.25
1.0

0.19125
0.0735
0.0225
1.0

0.2295
0.08825
0.0275
1.0

0.24725
0.1995
0.0745
1.0

0.24725
0.2245
0.0645
1.0

0.105882
0.058824
0.113725
1.0

GL_DIFFUSE

0.780392
0.568627
0.113725
1.0

0.714
0.4284
0.18144
1.0

0.4
0.2368
0.1036
1.0

0.4
0.4
0.4
1.0

0.7038
0.27048
0.0828
1.0

0.5508
0.2118
0.066
1.0

0.75164
0.60648
0.22648
1.0

0.34615
0.3143
0.0903
1.0

0.427451
0.470588
0.541176
1.0

GL_SPECULAR

0.992157
0.941176
0.807843
1.0

0.393548
0.271906
0.166721
1.0

0.774597
0.458561
0.200621
1.0

0.774597
0.774597
0.774597
1.0

0.256777
0.137622
0.086014
1.0

0.580594
0.223257
0.0695701
1.0

0.628281
0.555802
0.366065
1.0

0.797357
0.723991
0.208006
1.0

0.333333
0.333333
0.521569
1.0
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GL_SHININESS

27.8974

25.6

76.8

76.8

12.8

51.2

51.2

83.2

9.84615

continued
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Table 3.1 Parameters for Common Materials (Continued)

Material

Silver

Polished Silver

Emerald

Obsidian

Turquoise

Black Plastic

Black Rubber

GL_AMBIENT

0.19225
0.19225
0.19225
1.0

0.23125
0.23125
0.23125
1.0

0.0215
0.1745
0.0215
0.55

0.135
0.2225
0.1575
0.95

0.05375
0.05
0.06625
0.82

0.25
0.20725
0.20725
0.922

0.1745
0.01175
0.01175
0.55

0.1
0.18725
0.1745
0.8

0.0
0.0
0.0
1.0

0.02
0.02
0.02
1.0

GL_DIFFUSE

0.50754
0.50754
0.50754
1.0

0.2775
0.2775
0.2775
1.0

0.07568
0.61424
0.07568
0.55

0.54
0.89
0.63
0.95

0.18275
0.17
0.22525
0.82

1.0

0.829
0.829
0.922

0.61424
0.04136
0.04136
0.55

0.396
0.74151
0.69102
0.8

0.01
0.01
0.01
1.0

0.01
0.01
0.01
1.0

GL_SPECULAR

0.508273
0.508273
0.508273
1.0

0.773911
0.773911
0.773911
1.0

0.633
0.727811
0.633
0.55

0.316228
0.316228
0.316228
0.95

0.332741
0.328634
0.346435
0.82

0.296648
0.296648
0.296648
0.922

0.727811
0.626959
0.626959
0.55

0.297254
0.30829
0.306678
0.8

0.50
0.50
0.50
1.0

0.4
0.4
0.4
1.0

GL_SHININESS

51.2

89.6

76.8

12.8

38.4

11.264

76.8

12.8

32
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reflectance value from the texture map, using the GL_MODULATE texture environment.
This approach can have problems with specular surfaces, however. Only a single intensity
and reflectance value can be simulated, since texturing is applied only after the lighting
equation has been evaluated to a single intensity. Texture should be applied separately
to compute diffuse and specular terms.

To work around this problem, OpenGL 1.2 adds a mode to the vertex lighting model,
GL_SEPARATE_SPECULAR_COLOR, to generate two final color values — primary and
secondary. The first color contains the sum of all of the terms except for the specular
term, the second contains just the specular color. These two colors are passed into the
rasterization stage, but only the primary color is modified by texturing. The secondary
color is added to the primary after the texturing stage. This allows the application to use
the texture as the diffuse reflectance and to use the material’s specular reflectance settings
to define the object’s specular properties.

This mode and other enhancements to the lighting model are described in detail in

Chapter 15.

3.4 Fixed-Point and Floating-Point Arithmetic

There is more to color representation than the number of bits per color component.
Typically the transformation pipeline represents colors using some form of floating-point,
often a streamlined IEEE single-precision representation. This isn’t much of a burden since
the need for floating-point representation already exists for vertex, normal, and texture
coordinate processing. In the transformation pipeline, RGB colors can be represented
in the range [—1,1]. The negative part of the range can be used to perform a limited
amount of subtractive processing in the lighting stage, but as the colors are passed to
the rasterization pipeline, toward their framebuffer destination (usually composed of
unsigned integers), they are clamped to the [0, 1] range.

Traditionally, the rasterization pipeline uses a fixed-point representation with the
requisite reduction in range and precision. The fixed-point representation requires care-
ful implementation of arithmetic operations to avoid artifacts. The principal complexity
comes from the difficulty in representing the number 1.0. A traditional fixed-point rep-
resentation using 8 bits might use the most significant bit as the integer part and the
remaining 7 bits as fraction. This straightforward interpretation can represent numbers
in the range [0, 1.9921875], which is [0, 1 + %].

This representation wastes 1 bit, since it represents numbers almost up to 2, when
only 1 is required. Most rasterization implementations don’t use any integer bits, instead
they use a somewhat more complicated representation in which 1.0 is represented with
the “all ones” bit pattern. This means that an 8-bit number x in the range [0, 1] con-
verts to this representation using the formula f = x255. The complexity enters when
implementing multiplication. For example, the identity a * 1 = a should be preserved,
but the naive implementation, using a multiplication and a shift, will not do so.
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For example multiplying (255 % 255) and shifting right produces 254. The correct
operation is (255 % 255)/255, but the expensive division operation is often replaced with
a faster, but less accurate approximation.

Later revisions to OpenGL added the ability to perform subtractions at various stages
of rasterization and framebuffer processing (subtractive blend”, subtractive texture envi-
ronment®) using fixed-point signed values. Accurate fixed-point representation of signed
values is difficult. A signed representation should preserve three identities: a * 1 = a4,
a*0=0,and a*—1 = —a. Fixed step sizes in value should result in equal step sizes in
the representation, and resolution should be maximized.

One approach is to divide the set of fixed-point values into three pieces: a 0 value,
positive values increasing to 1, and negative values decreasing to negative one. Unfor-
tunately, this can’t be done symmetrically for a representation with 2” bits. OpenGL
compromises, using the representation (2” x value — 1)/2. This provides a 0, 1, and
negative one value, but does so asymmetrically; there is an extra value in the negative
range.

3.4.1

Although the accumulation buffer is the only part of the OpenGL framebuffer that
directly represents negative colors, it is possible for an application to subtract color val-
ues in the framebuffer by scaling and biasing the colors and using subtractive operations.
For example, numbers in the range [—1, 1] can be mapped to the [0, 1] range by scaling
by 0.5 and biasing by 0.5. This effectively converts the fixed-point representation into
a sign and magnitude representation.’

Working with biased numbers requires modifying the arithmetic rules (Figure 3.9).
Assume g and b are numbers in the original representation and @ and b are in the biased

4
\
4
\

Figure 3.9 Biased representation.

7. In the OpenGL 1.2 ARB imaging subset.
8. OpenGL 1.3.
9. In traditional sign and magnitude representation, the sign bit is 1 for a negative number; in ours a

sign bit of 0 represents a negative number.
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representation. The two representations can be converted back and forth with the
following equations:

G=al2+12
a=2G-1/2)

When converting between representations, the order of operations must be controlled
to avoid losing information when OpenGL clamps colors to [0, 1]. For example, when
converting from a to a, the value of 1/2 should be subtracted first, then the result should
be scaled by 2, rather than rewriting the equation as 2a — 1. Biased arithmetic can
be derived from these equations using substitution. Note that biased arithmetic values
require special treatment before they can be operated on with regular (2’s complement)
computer arithmetic; they can’t just be added and subtracted:

a+b=a+(b—172)

—

a—b=a—(b—1/2)

-~

The equation @ + (b — 1/2) is supported directly by the GL_COMBINE texture function
GL_ ADD_SIGNED.X

The following equations add or subtract a regular number with a biased number,
reducing the computational overhead of converting both numbers first:

—

a+b=a+b/2
a—b=a—bl2

This representation allows us to represent numbers in the range [—1,1]. We can
extend the technique to allow us to increase the range. For example, to represent
a number in the range [—#, ], we use the equations:

a
a=—+1/2
a 2n+/
a=2n(a—1/2)

10. OpenGL 1.3.
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and alter the arithmetic as above. The extended range need not be symmetric. We can
represent a number in the range [—m1, n] with the formula:

a m

a=

n—+m n—+m

. m
a:(n+m)<a— )
n—+m

and modify the the equations for addition and subtraction as before.

With appropriate choices of scale and bias, the dynamic range can be increased,
but this comes at the cost of precision. For each factor of 2 increase in range, 1 bit of
precision is lost. In addition, some error is introduced when converting back and forth
between representations. For an 8-bit framebuffer it isn’t really practical to go beyond
[—1, 1] before losing too much precision. With higher precision framebuffers, a little more
range can be obtained, but the extent to which the lost precision is tolerable depends on
the application. As the rendering pipeline evolves and becomes more programmable and
floating-point computation becomes pervasive in the rasterization stage of the pipeline,
many of these problems will disappear. However, the expansion of OpenGL implemen-
tations to an ever-increasing set of devices means that these same problems will remain
on smaller, less costly devices for some time.

3.5 Summary

This chapter provided an overview of the representation and manipulation of color values
in the OpenGL pipeline. It also described some of the computational models used to shade
an object, focusing on the vertex lighting model built into OpenGL. The next chapter
covers some of the principles and complications involved in representing an image as an
array of discrete color values.
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Manipulation

Geometric rendering is, at best, half of a good graphics library. Modern rendering tech-
niques combine both geometric and image-based rendering. Texture mapping is only the
simplest example of this concept; later chapters in this book cover more sophisticated tech-
niques that rely both on geometry rendering and image processing. This chapter reviews
the characteristics of a digital image and outlines OpenGL’s image manipulation capa-
bilities. These capabilities are traditionally encompassed by the pipeline’s “pixel path”,
and the blend functionality in the “fragment operations” part of the OpenGL pipeline.
Even if an application doesn’t make use of sophisticated image processing, familiarity
with the basics of image representation and sampling theory guides the crafting of good
quality images and helps when fixing many problems encountered when rendering and

texture mapping.

4.1 Image Representation

The output of the rendering process is a digital image stored as a rectangular array of
pixels in the color buffer. These pixels may be displayed on a CRT or LCD display device,
copied to application memory to be stored or further manipulated, or re-used as a texture
map in another rendering task. Each pixel value may be a single scalar component, or a
vector containing a separate scalar value for each color component.
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58 Digital Images and Image Manipulation

Details on how a geometric primitive is converted to pixels are given in Chapter 6;
for now assume that each pixel accurately represents the average color value of the
geometric primitives that cover it. The process of converting a continuous function into
a series of discrete values is called sampling. A geometric primitive, projected into 2D,
can be thought of as defining a continuous function of its spatial coordinates x and y.

For example, a triangle can be represented by a function f,ousinmous(x,y). It returns
the color of the triangle when evaluated within the triangle’s extent, then drops to zero
if evaluated outside of the triangle. Note that an ideal function has an abrupt change of
value at the triangle boundaries. This instantaneous drop-off is what leads to problems
when representing geometry as a sampled image. The output of the function isn’t limited
to a color; it can be any of the primitive attributes: intensity (color), depth, or texture
coordinates; these values may also vary across the primitive. To avoid overcomplicating
matters, we can limit the discussion to intensity values without losing any generality.

A straightforward approach to sampling the geometric function is to evaluate the
function at the center of each pixel in window coordinates. The result of this process is a
pixel image; a rectangular array of intensity samples taken uniformly across the projected
geometry, with the sample grid aligned to the x and y axes. The number of samples per
unit length in each direction defines the sample rate.

When the pixel values are used to display the image, a reproduction of the original
function is reconstructed from the set of sample values. The reconstruction process pro-
duces a new continuous function. The reconstruction function may vary in complexity;
for example, it may simply repeat the sample value across the sample period

freconstructed(xa y) = pixEI[ L 10Ly]]

or compute a weighted sum of pixel values that bracket the reconstruction point.
Figure 4.1 shows an example of image reconstruction.

When displaying a graphics image, the reconstruction phase is often implicit; the
reconstruction is part of the video display circuitry and the physics of the pixel display.
For example, in a CRT display, the display circuitry uses each pixel intensity value to
adjust the intensity of the electron beam striking a set of phosphors on the screen. This
reconstruction function is complex, involving not only properties of the video circuitry,
but also the shape, pattern, and physics of the phosphor on the screen. The accuracy of a

Ideal Sampled Filtered Filtered/resampled
Figure 4.1 Example of image reconstruction.
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P1 P2 P3

Figure 4.2 Undersampling: Intensity varies wildly between sample points P and P;.

reconstructed triangle may depend on the alignment of phosphors to pixels, how abruptly
the electron beam can change intensity, the linearity of the analog control circuitry, and
the design of the digital to analog circuitry. Each type of output device has a different
reconstruction process. However, the objective is always the same, to faithfully reproduce
the original image from a set of samples.

The fidelity of the reproduction is a critical aspect of using digital images. A fun-
damental concern of sampling is ensuring that there are enough samples to accurately
reproduce the desired function. The problem is that a set of discrete sample points cannot
capture arbitrarily complicated detail, even if we use the most sophisticated reconstruc-
tion function. This is illustrated by considering an intensity function that has the similar
values at two sample points P and P3, but between these points P, the intensity varies
significantly, as shown in Figure 4.2. The result is that the reconstructed function doesn’t
reproduce the original function very well. Using too few sample points is called under-
sampling; the effects on a rendered image can be severe, so it is useful to understand the
issue in more detail.

To understand sampling, it helps to rely on some signal processing theory, in partic-
ular, Fourier analysis (Heidrich and Seidel, 1998; Gonzalez and Wintz, 1987). In signal
processing, the continuous intensity function is called a signal. This signal is traditionally
represented in the spatial domain as a function of spatial coordinates. Fourier analysis
states that the signal can be equivalently represented as a weighted sum of sine waves
of different frequencies and phase offsets. This is a bit of an oversimplification, but it
doesn’t affect the result. The corresponding frequency domain representation of a signal
describes the magnitude and phase offset of each sine wave component. The frequency
domain representation describes the spectral composition of the signal.
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Frequency domain Spatial domain

Figure 4.3 Ideal reconstruction function.

The sine wave decomposition and frequency domain representation are tools that
help simplify the characterization of the sampling process. From sine wave decomposition,
it becomes clear that the number of samples required to reproduce a sine wave must be
twice its frequency, assuming ideal reconstruction. This requirement is called the Nyquist
limit. Generalizing from this result, to accurately reconstruct a signal, the sample rate must
be at least twice the rate of the maximum frequency in the original signal. Reconstructing
an undersampled sine wave results in a different sine wave of a lower frequency. This
low-frequency version is called an alias. An aliased signal stands in for the original, since
at the lower sampling frequency, the original signal and its aliases are indistinguishable.
Aliased signals in digital images give rise to the familiar artifacts of jaggies, or staircasing
at object boundaries. Techniques for avoiding aliasing artifacts during rasterization are
described in Chapter 10.

Frequency domain analysis also points to a technique for building a reconstruction
function. The desired function can be found by converting its frequency domain repre-
sentation to one in the spatial domain. In the frequency domain, the ideal function is
straightforward; the function that captures the frequency spectrum of the original image
is a comb function. Each “tooth” of the comb encloses the frequencies in the original
spectrum; in the interests of simplicity, the comb is usually replaced with a single “wide
tooth” or box that encloses all of the original frequencies (Figure 4.3). Converting this
box function to the spatial domain results in the sizc function. Signal processing theory
provides a framework for evaluating the fidelity of sampling and reconstruction in both
the spatial and frequency domain. Often it is more useful to look at the frequency domain
analysis since it determines how individual spectral components (frequencies) are affected
by the reconstruction function.

4.2 Digital Filtering

Consider again the original continuous function representing a primitive. The function
drops to zero abruptly at the edge of the polyon, representing a step function at the
polygon boundaries. Representing a step function in the frequency domain results in
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frequency components with non-zero values at infinite frequencies. Avoiding creating
undersampling artifacts when reconstructing a sampled step function requires changing
the input function, or the way it is sampled. In essence, the boundaries of the polygon
must be “smoothed” so that the transition can be represented by a bounded frequency
representation. The frequency bound is chosen so that it can be captured by the samples.
This process is an application of filtering.

As alluded to in the discussion above, filtering goes hand in hand with the concept of
sampling and reconstruction. Conceptually, filtering applies a function to an input signal
to produce a new one. The filter modifies some of the properties of the original signal, such
as removing frequency components above or below some threshold (low- and high-pass
filters). With digital images, filtering is often combined with reconstruction followed by
resampling. Reconstruction produces a continuous signal for the filter to operate on and
resampling produces a set of sample values from the filtered signal, possibly at a different
sample rate. The term filter is frequently used to mean all three parts: reconstruction,
filtering, and resampling. The objective of applying the filter is most often to transform
the spectral composition of the signal.

As an example, consider the steps to produce a new version of an image that is half the
size in the x and y dimensions. One way to generate the new image is to copy every second
pixel into the new image. This process can be viewed as a reconstruction and resampling
process. By skipping every other pixel (which represents a sample of the original image),
we are sampling at half the rate used to capture the original image. Reducing the rate is
a form of undersampling, and will introduces new signal aliases.

These aliased signals can be avoided by eliminating the frequency components that
cannot be represented at the new, lower sampling rate. This is done by applying a low-
pass filter during signal reconstruction, before the new samples are computed. There are
many useful low-pass filter functions; one of the simplest is the box filter. The 2x2-box
filter computes a new sample by taking an equally weighted average of four adjacent
samples. The effect of the box filter on the spectrum of the signal can be evaluated by
converting it to the frequency domain. Although simple, the box filter isn’t a terrific low-
pass filter, it corresponds to multiplying the spectrum by a sinc function in the frequency
domain (Figure 4.4). This function doesn’t cut off the high frequencies very cleanly, and
leads to its own set of artifacts.

Spatial domain Frequency domain

Figure 4.4 Box filterin spatial and frequency domain.
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4.3 Convolution

Both the reconstruction and spectrum-shaping filter functions compute weighted sums
of surrounding sample values. These weights are values from a second function and the
computation of the weighted sum is called convolution. In one dimension, the convolution
of two continuous functions f(x) and g(x) produces a third function:

+00

h(x) = flx) ® glx) = / Flr)glx — v)dr (41)

—0o0

g(x) is referred to as the filter. The integral only needs to be evaluated over the range
where g(x — t) is non-zero, called the support of the filter.

The discrete form of convolution operates on two arrays, the discretized signal F[x]
and the convolution kernel G[0...(width — 1)]. The value of width defines the support of
the filter and Equation 4.1 becomes:

width—1
Hix]= Y Flx+ilGli] (4.2)
i=0

The 1D discrete form is extended to two dimensions as:

height—1 width—1
Hixllyl= ) > Flx+illy +/1GLlj] (43)

j=0 i=0

As shown in Figure 4.5, a convolution kernel is positioned over each pixel in an
image to be convolved, and an output pixel is generated. The kernel can be thought of as
an array of data values; these values are applied to the input pixels that the convolution
kernel covers. Multiplying and summing the kernel against its footprint in the image
creates a new pixel value, which is used to update the convolved image. Note that the

Filter covers area,
writes a pixel

Filter Input image o .
Kernel utput image

I:' Input
D Input/output T

Image is smaller,
reduce mode

Kernel here sets this pixel
Figure 4.5 Convolution.
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results of a previous convolution step don’t affect any subsequent steps; each output pixel
is independent of the surrounding output pixels.

The formalization and use of the convolution operation isn’t accidental; it relates
back to Fourier analysis. The significance of convolution in the spatial domain is that it
is equivalent to multiplying the frequency domain representations of the two functions.
This means that a filter with some desired properties can be constructed in the frequency
domain and then converted to the spatial domain to perform the filtering. In some cases it
is more efficient to transform the signal to the frequency domain, perform the multiplica-
tion, and convert back to the spatial domain. Discussion of techniques for implementing
filters and of different types of filters is in Chapter 12. For the rest of this chapter we shall
describe the basic mechanisms OpenGL provides for operating on images.

4.4 Imagesin OpenGL

The OpenGL API contains a pixel pipeline for performing many traditional image process-
ing operations, such as scaling or rotating an image. The use of hybrid 3D rasterization
and image processing techniques has increased over recent years, giving rise to the term
image-based rendering [MB95, LH96, GGSC96] . More recent versions of OpenGL have
increased the power and sophistication of the pixel pipeline to match the demand for
these capabilities.

Image processing operations can be applied while loading pixel images and textures
into OpenGL, reading them back to the host, or copying them. The ability to modify
textures during loading operations and to modify framebuffer contents during copy opera-
tions provides high-performance paths for image processing operations. These operations
may be performed entirely within the graphics accelerator, so they can be independent of
the performance of the host.

OpenGL distinguishes between several types of images. Pixel images, or pixmaps are
transferred using the g1DrawPixels command. Pixmaps can represent index or RGB
color values, depth values, or stencil values. Bitmap images are a special case of pixmaps
consisting of single-bit per-pixel images. When bitmaps are drawn they are expanded into
constant index or RGB colors. The g1Bitmap command is used to draw bitmaps and
includes extra support for adjusting the current drawing position so that text strings can be
efficiently rendered and positioned as bitmap glyphs. A third image type is texture images.
Texture images are virtually identical to pixmap images, but special commands are used
to transfer texture image data to texture objects. Texture maps are specialized to support
1D, 2D and 3D images as well as 6-sided cube maps. Texture maps also include support
for image pyramids (also called mipmaps), used to provide additional filtering support.

Figure 4.6 shows a block diagram of the base OpenGL pixel pipeline. The pipeline
is divided into two major blocks of operations: pixel storage operations that control
how pixels are read or written to application memory, and pixel transfer operations that
operate on streams of pixels in a uniform format inside the pipeline. At the end of the
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Figure 4.6 Basic pixel pipeline.
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pixel pipeline is a pixel zoom operation that allow simple (unfiltered) scaling of images.
After the zoom operation, pixel images are converted into individual fragments, where the
fragments are processed in exactly the same way as fragments generated from geometry.

4.5 Positioning Images

Each of the image types (pixmaps, bitmaps, and textures) has slight variations in how they
are specified to the pipeline. Both pixmaps and bitmaps share the notion of the current
raster position defining the window coordinates of the bottom left corner of the image.
The raster position is specified and transformed as a 3D homogeneous point similar to
the vertices of other geometric primitives. The raster position also undergoes frustum clip
testing and the entire primitive is discarded if the raster position is outside the frustum. The
window coordinate raster position can be manipulated directly using the gTWindowPos!
or g1Bitmap commands. Neither the absolute position of the window position command
or the result of adding the relative adjustment from the bitmap command are clip tested,
so they can be used to position images partially outside the viewport.

The texture image commands have undergone some evolution since OpenGL 1.0 to
allow incremental update to individual images. The necessary changes include commands
that include offsets within the texture map and the ability to use a null image to initialize
texture map with a size but no actual data.

4.6 Pixel Store Operations

OpenGL can read and write images with varying numbers, sizes, packings, and orderings
of pixel components into system memory. This diversity in storage formats provides a
great deal of control, allowing applications to fine tune storage formats to match external
representations and maximize performance or compactness. Inside the pipeline, images
are converted to a stream of RGBA pixels at an implementation-specific component res-
olution. There are few exceptions: depth, stencil, color index, and bitmap images are
treated differently since they don’t represent RGBA color values. OpenGL also distin-
guishes intensity and luminance images from RGBA ones. Intensity images are single
component images that are expanded to RGBA images by copying the intensity to each
of the R, G, B, and A components.? Luminance images are also single component images,
but are expanded to RGB in the pipeline by copying the luminance to the R component
while setting the G and B components to zero.

1. OpenGL 1.4.

2. Intensity images are only used during texture mapping.
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Figure 4.7 2Dimage memory layout.

Pixel storage operations process an image as it is read or written into host memory,
converting to and from OpenGL’s internal representation and the application’s memory
format. The storage operations do not affect how the image is stored in the framebuffer;
that information is implementation-dependent. Pixel storage operations are divided into
two symmetric groups: the pack group, controlling how data is stored to host memory,
and the unpack group, controlling how image data is read from host memory.

2D images are stored in application memory as regularly spaced arrays, ordered so
they can be transfered one row at a time to form rectangular regions. The first row starts
at the lowest memory address and the first pixel corresponds to the bottom left pixel of
the image when rendered (assuming no geometric transforms). A 3D image is stored as
a series of these rectangles, stacked together to form a block of image data starting with
the slice nearest to the image pointer, progressively moving to the furthest.

In addition to component ordering and size, the pixel storage modes provide some
additional control over the layout of images in memory, including the ability to address a
subrectangle within a memory image. Figure 4.7 shows the layout of an image in memory
and the effect of the alignment and spacing parameters. Additional parameters facili-
tate portability between different platforms: byte swapping within individual component
representations and bit ordering for bitmaps.

From an application writer’s point of view, the pixel store operations provide an
opportunity for the OpenGL pipeline to efficiently accelerate common conversion oper-
ations, rather than performing the operations on the host. For example, if a storage
format operates with 16-bit (unsigned short) components, OpenGL can read and write
those directly. Similarly, if a very large image is to be operated on in pieces, OpenGL’s
ability to transfer a subrectangle can be exploited, avoiding the need to extract and
transfer individual rows of the subrectangle.

One feature that OpenGL does not provide is support for reading images directly

from files. There are several reasons for this: it would be difficult to support Ea'g hﬁhISII'IE
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existing image file formats, and keep up with their changes. Providing a simple file access
format for all PC architectures would probably not result in the maximum performance
implementation. It is also generally better for an application to control the I/O operations
themselves. Having no file format also keeps OpenGL cleanly separated from operating
system dependencies such as file I/O.

Even if a file interface was implemented, it wouldn’t be sufficient for some applica-
tions. In some cases, it can be advantageous to stream image data directly to the graphics
pipeline without first transferring the data into application memory. An example is
streaming live video from a video capture device. Some vendors have supported this by cre-
ating an additional window-like resource that acts as a proxy for the video stream as part
of the OpenGL embedding layer. The video source is bound as a read-only window and
pixel copy operations are used to read from the video source and push the stream through
the pixel pipeline. More details on the platform embedding layer are covered in Chapter 7.

For these reasons OpenGL has no native texture image format, external display list
format, or any entrenched dependency on platform capabilities beyond display resource
management.

4.7 Pixel Transfer Operations

Pixel transfer operations provide ways of operating on pixel values as they are moved
to, read from, or copied within the framebuffer; or as pixels are moved to texture maps.
In the base pipeline there are two types of transfer operations: scale and bias and pixel

mapping.

417.1

Scale operations multiply each pixel component by a constant scale factor. The bias
operation follows the scale and adds a constant value. RGBA and depth components
are operated on with floating-point scales and biases. Analogous operations for indexed
components (color index and stencil) use signed integer shift and offset values. Scale and
bias operations allow simple affine remapping of pixel components. One example of scale
and bias is changing the range of pixel values from [0, 1] to [0.5, 1] for later computations
using biased arithmetic. Pixel operations are performed using signed arithmetic and the
pixel storage modes support signed component representations; however, at the end of
the transfer pipeline component values are clamped to the [0, 1] range.

41.2

Pixel mapping operations apply a set of one-dimensional lookup tables to each pixel,
making it possible to remap its color components. There are multiple lookup tables, each
handling a specific color component. For RGBA colors, there are four maps for converting
each color component independently. For indexed colors, there is only one map. Four
maps are available for converting indexed colors to RGBA.
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A lookup table group applies an application-defined, non-linear transform to image
pixels at a specific point in the pixel pipeline. The contents of the lookup tables describe
the function; the size of the tables, also application-specified, sets the resolution of the
transform operation. Some useful lookup table transforms are: gamma correction, image
thresholding, and color inversion. Unfortunately, this feature has an important limitation:
a lookup applied to one component cannot change the value of any other component in
the pixel.

4.8 ARB Imaging Subset

The OpenGL ARB has defined an additional set of features to significantly enhance
OpenGL’s basic image processing capabilities. To preserve OpenGL’s role as an API
that can run well on a wide range of graphics hardware, these resource-intensive imaging
features are not part of core OpenGL, but grouped into an imaging extension, with the
label GL_ARB_imaging.

The imaging subset adds convolution, color matrix transform, histogram, and min-
max statistics to the pixel transfer block, connecting them with additional color lookup
tables. It also adds some additional color buffer blending functionality. Figure 4.8 shows
a block diagram of the extended pixel processing pipeline.

48.1

The imaging subset defines 1D and 2D convolution operations, applied individually to
each color component. The maximum kernel width is implementation-dependent but is
typically in the range of 7 to 11 pixels. Convolution support includes additional modes for
separable 2D filters allowing the filter to be processed as two 1D filters. It also provides
different border modes allowing the application different ways of handling the image
boundary. Convolution operations, including methods for implementing them without
using the imaging subset, are described in more detail in Chapter 12.

A convolution filter is treated similarly to an OpenGL pixel image, except for
implementation-specific limitations on the maximum filter dimensions. A filter is loaded
by transferring an image to a special OpenGL target. Only pixel storage operations are
available to process a filter image while it is being loaded.

4.8.2

OpenGL’s color matrix provides a 4x4 matrix transform that operates on pixel color
components. Each color component can be modified as a linear function of the other
components in the pixel. This can’t be done with color lookup tables, since they operate
independently on each color component. The matrix is manipulated using the same
commands available for manipulating the modelview, texture, and projection matrices.
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Figure 4.8 Pixel pipeline with imaging extensions.

483 Histogram

The histogram operation divides each RGBA pixel in the image into four separate color
components. Each color component is categorized by its intensity and a counter in the
corresponding bin for that component is incremented. The results are kept in four arrays,
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one for each color component. Effectively, the arrays record the number of occurrences
of each intensity range. The size of each range or bin is determined by the length of
the application-specified array. For example, a 2-element array stores separate counts
for intensity ranges 0 < i < 0.5 and 0.5 < ¢ < 1. The maximum size of the array is
implementation-dependent and can be determined using the proxy mechanism.

Histogram operations are useful for analyzing an image by measuring the distribution
of its component intensity values. The results can also be used as parameters for other
pixel operations. The image may be discarded after the histogram operation is performed,
if the image itself is not of interest.

484

The minmax operation looks through all the pixels in an image, finding the largest and
smallest intensity value for each color component. The results are saved in a set of two-
element arrays, each array corresponding to a different color component. The application
can also specify that the image be discarded after minmax information is generated.

4.8.5

Color tables provide additional lookup tables in the OpenGL pixel transfer pipeline.
Although the capabilities of color tables and pixel maps are similar, color tables reflect
an evolutionary improvement over pixel maps, making them easier to use. Color tables
only operate on color components, including luminance and intensity (not color indices,
stencil, or depth). Color tables can be defined that affect only a subset of the color
components, leaving the rest unmodified.

Color tables are specified as images (like convolution filters). Specifying the complete
table at once enables better performance when updating tables often, compared to spec-
ifying pixel maps one component at a time. The capability to leave selected components
unchanged parallels a similar capability in texturing; this design is simpler than the cor-
responding functionality in pixel maps, which requires loading an identity map to leave
a component unmodified. Color tables don’t operate on depth, stencil, or color index
values since those operations don’t occur frequently in applications; the existing pixel
map functionality is adequate for these cases.

The additional tables are defined at places in the pipeline where a component nor-
malization operation is likely to be required: before convolution (GL_COLOR_TABLE),
after convolution (GL_POST_CONVOLUTION_COLOR_TABLE), and after the color
matrix operations (GL_POST_COLOR_MATRIX_COLOR_TABLE). Sometimes normaliza-
tion operation can be implemented more efficiently using scale and bias operations. To
support this, the latter two color tables are preceded by scale and bias operators which
may be used in conjunction with, or instead of, the corresponding color tables.

TEAM LING



ARB Imaging Subset n

Destination
Source weight weight

Incoming fragment Pixel

Blend function

Framebuffer
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4.8.6

Beyond the pixel path, OpenGL provides an opportunity for the application to manipu-
late the image in the fragment operations path. OpenGL’s blending function supports
additive operations, where scaled versions of the source and destination pixel are added
together:

In the equation above, S and D are the source and destination scale factors. Figure 4.9
shows the relationships between the source fragment, target pixel, and source and desti-
nation weighting factors. If the g1BlendEquation command is supported,®> OpenGL
defines additional equations for generating the final pixel value from the source and
destination pixels. The new equations are:

subtract C=CS - CyD
reverse subtract C=CyD — C,S
min C=min(Cs, Cy)
max C=max(Cs, Cy)

The ARB imaging extension includes an additional blending feature, constant color
blending, providing more ways to manipulate the image being blended. Constant color
blending adds an additional constant blending factor specified by the application. It
is usable as either a source or destination blending factor. This functionality makes it
possible for the application to introduce an additional color, set by g1BTendColor,
that can be used to scale the source or destination image during blending.

Both the blend equation and constant color blending functionality were promoted to
the base standard in OpenGL 1.4, since they are useful in many other algorithms besides
those for image processing. As with texture mapping (see Section 5.14), OpenGL provides

3. gIBlendEquation is an extension in OpenGL implementations before version 1.4.
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proxy support on convolution filters and lookup tables in the pixel pipeline. These are
needed to help applications work within the limits an implementation may impose for
these images.

4.9 0ff-Screen Processing

Image processing or rendering operations don’t always have to produce a transient image
for display as part of an application. Some applications may generate images and save
them to secondary storage for later use. Batches of images may be efficiently processed
without need for operator intervention, for example, filtering an image sequence captured
from some other source. Also, some image processing operations may use multiple images
to generate the final one. For situations such as these, off-screen storage is useful for
holding intermediate images or for accumulating the final result. Support for off-screen
rendering is part of the platform embedding layer and is described in Section 7.4.

4.10 Summary

The OpenGL image pipeline is still undergoing evolution. With the transition to a more
programmable pipeline, some image manipulation operations can be readily expressed in
fragment processing, but many sophisticated operations still require specialized support
or more complex algorithms that will be described in Chapter 12.

Image representation and manipulation are essential to the rendering pipeline, not
only for generating the final image for viewing, but as part of the rendering process itself.
In the next chapter, we will describe the role of images in the texture mapping process.
All of the representation issues and the pipeline mechanisms for manipulating images play
an important part in the correct application of texture mapping.
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Texture mapping is a fundamental method for controlling the appearance of rendered
objects. A common use of texturing is to provide surface detail to geometry by modifying
surface color on a per-pixel basis. A digital image is used as a source of surface color
information. Texture mapping can do much more than this, however. It is a powerful
and general technique for combining images and geometry. To take advantage of its
capabilities, the application designer should understand texturing in depth. This chapter
reviews OpenGL’s texture mapping abilities with an emphasis on features important to
more complex rendering techniques.

5.1 Loading Texture Images

At the heart of a texture map are the map images, each an n-dimensional array of color
values. The individual elements of the array are called texels. The texture image array has
one, two, or three dimensions. Core OpenGL requires that the texture image have power-
of-two dimensions. The main reason for this is to simplify the computations required to
map texture coordinates to addresses of individual texels. This simplification comes at
a cost; non-power-of-two sized images need to be padded to a power-of-two size before
they can be used as a texture map. There are OpenGL extensions that remove this limit,
usually at the expense of some functionality; for example, there is an extension that allows
the creation of textures with arbitrary sizes, but restricts the parameter values that can
be bound to it, and prohibits mipmapped versions of the texture.!

1. ARB_texture_non_power_of_two. TEAM LING
3
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The glTexImagelD, glTexImage2D, and glTexImage3D commands load
a complete texture image, referencing the data in system memory that should be used
to create it. These commands copy the texture image data from the application’s address
space into texture memory. OpenGL pixel store unpack state describes how the texture
image is arranged in memory. Other OpenGL commands update rectangular subregions
of an existing texture image (subimage loads). These are useful for dynamically updat-
ing an existing texture; in many implementations re-using an existing texture instead of
creating a new one can save significant overhead.

The OpenGL pixel transfer pipeline processes the texture image data when texture
images are specified. Operations such as color space conversions can be performed dur-
ing texture image load. If optimized by the OpenGL implementation, the pixel transfer
operations can significantly accelerate common image processing operations applied to
texture data. Image processing operations are described in Chapter 12.

Texture images are referenced using texture coordinates. The coordinates of a texture
map, no matter what the image resolution, range from 0 to 1. Individual texels are
referenced by scaling the coordinate values by the texture dimensions. When a texture
coordinate is outside the [0, 1] range, OpenGL can be set to wrap the coordinate (use
the fractional part of the number), or clamp to the boundaries, based on the value of the
texture wrap mode.

5.1.1

A useful (and sometimes misunderstood) feature of OpenGL is the texture border
(Figure 5.1). The border is used by certain wrapping modes to compute texel colors

—— Border textels

Interior textels

T:1->0

N\

Y Sample point

) Nt

S:0—>1

A
\

Textels used for nearest filtering

8 x 8 with 1 textel border 7 Textels used for linear filtering
Figure 5.1 Texture borders.
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needed by linear filtering when the edge of a texture image is sampled. By definition, the
texture border is outside the texture coordinate range of [0, 1]. Texture borders come
into play when a texture is sampled near the boundaries of the [0,1] range and the tex-
ture wrap mode is set to GL_CLAMP. Textures using GL_NEAREST filtering never sample
the border, since this filtering method always uses the nearest texel to the sample point,
which is always in the range of [0,1].

When the texture filter is GL_LINEAR, however, texture coordinates near the
extremes of 0 or 1 will generate texture colors which are a mix of the border and edge
texels of the texture image. This is because linear filtering samples the four texels closest
to the sample point. Depending on sample position, up to 3 of these texels may be in the
texture border.

The texture border can be specified as a one texel-wide ring of texels surrounding the
texture image or as a single color. Individual texels are supplied as part of a slightly bigger
texture image; the g1 TexImage command provides a border parameter to indicate that a
border is being supplied. If a border consisting of a single constant color is needed, no bor-
der is specified with g1 TexImage, instead GL_TEXTURE_BORDER_COLOR is specified
with the g1 TexParameter command.

Texture borders are very useful if multiple textures are being tiled together to form a
larger one. Without borders, the texture color at the edge of textures using GL_LINEAR
filtering would be improperly sampled, forming visible edges. This problem is solved by
using edge texels from adjacent textures in the border; each texture is then seamlessly
sampling its neighbor’s texels at the edges.

The texture border is one way of ensuring that there are no filtering artifacts at texture
boundaries. Another way to avoid filtering artifacts at the tile edges is to use a different
clamping mode, called clamp to edge. This mode, added in OpenGL 1.2 and set using
the texture parameter GL_CLAMP_TO_EDGE, restricts the sampled texture coordinates
so that the texture border is never sampled. The sample is displaced away from the edge
so that linear filtering only uses texels that are part of the texture image.

Unlike OpenGL’s standard texture clamping, the clamp to edge behavior is unable
to guarantee a consistent border appearance when used with mipmapping, because the
clamping range changes with each mipmap level. The clamping range is defined in terms
of the texture’s dimensions, which are different at each mipmap level. The clamp to edge
behavior is easier to implement in hardware than texture borders because the texture
dimensions are not augmented by additional border texels, so the dimensions are always
efficient powers of two. As a result, there are OpenGL implementations that support
clamp to edge well, but texture border poorly.

5.1.2

An application can make trade-offs between texel resolution, texture size, and load band-
width requirements by choosing the appropriate texture format. For example, choosing a
GL_LUMINANCE format instead of GL_RGB reduces texture memory usage to one third.
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A size-specific internal format such as GL_RGBA8 or GL_RGBA4 directs the OpenGL
implementation to store the texture with the specified resolution, if it’s supported. The
more general internal formats, such as GL_RGBA, leave the implementation free to pick the
“most appropriate” format for the particular implementation. If maintaining a particular
level of format resolution is important, select a size-specific internal format.

Not all OpenGL implementations support all the available internal texture formats.
Requesting GL_LUMINANCE12_ALPHAA4, for example, does not guarantee that the tex-
ture will be stored in this format. The size-specific internal texture formats are merely
hints. The application can exercise more control by querying the OpenGL implementation
for supported formats using proxy textures, and picking the most appropriate one.

When choosing lower resolution color formats, some reduction in image quality
is unavoidable. Choosing the right trade-off between color resolution and size is not a
simple matter. Since textures are applied to particular surfaces, there is more flexibility
trading quality for size and load speed than when choosing framebuffer resolutions. For
example, a surface texture on an object that will never be close to the viewer, or whose
image is composed of similar, low contrast colors, will suffer less if the texture uses a
compact texel format. Even texture size is not the dominant issue when and how often
the texture will be loaded are also factors to consider. If the texture is static, and its load
time doesn’t affect overall performance, then there’s little motivation to improve load
bandwidth performance by going to a smaller texel format.

All of these trade-offs are necessarily highly dependent on the details of the appli-
cation. The best approach is to carefully analyze the use of texture in the application,
and use more texel resolution where it has the most impact and the fewest drawbacks.
In come cases, re-designing the layout of textures on the objects in the scene makes it
possible to get more leverage out of compact texel formats.

5.13

As another way to reduce the size of texture images, OpenGL includes infrastructure
to load texture images using more elaborate compression schemes.> Reducing the res-
olution of components can be thought of as one type of compression technique, but
other image compression algorithms also exist. The characteristics of a good texture
compression algorithm are that it does not reduce the fidelity of an image too much and
that individual texels can be easily retrieved from the compressed representation. The
glCompressedTexImage commands allow other forms of compressed images to be
loaded as texture maps. The core OpenGL specification doesn’t actually define or require
any specific compression formats, largely because there isn’t a suitable publicly-available
standard format. However, there are some popular vendor-specific formats available as
extensions, for example, EXT_texture_compression_s3tc.

2. Added in OpenGL 1.3.
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5.14

Texture memory is a limited resource on most graphics hardware; it is possible to run out
of it. It is not a trivial task for the application to manage it; the amount of texture memory
a particular texture will use is hard to predict and very implementation-dependent. Many
graphics applications are also very sensitive to texture load performance; there may be
an unacceptable performance penalty if the application simply tries to load the textures
that it needs, and executes a recovery scheme when the load fails.

To make it possible for an application to see if a texture will fit before it is loaded,
OpenGL provides a proxy texture scheme. The same texture load commands are used,
the difference is in the texture target: GL_PROXY_TEXTURE_1D is used in place of
GL_TEXTURE_1D, GL_PROXY_TEXTURE_2D in place of GL_TEXTURE_2D, and so on.
If these targets are used, the implementation doesn’t load any texture data. Instead it
does a “dry run”, indicating to the application whether the texture load would have
been successful. This approach may appear awkward, but upon close examination it is
actually a superior approach. It works well because of its flexibility; it can accurately
report back whether space is available for the texture specified regardless of the number
of texture loads that have already happened, what internal texture format the OpenGL
implementation has chosen, or details of the underlying graphics hardware.

If the load would not have succeeded, OpenGL doesn’t signal an error, but instead
sets all the texture state to zero. The application can read back any element of this state
to determine the success of the load request. A simple way to check for success is to
callglGetTexlLevelParameter, again using the proxy texture target, the appropriate
level, and a state parameter that shouldn’t be zero, such as GL_TEXTURE_WIDTH. If the
width is zero, the texture load would have failed.

Determining whether there is space for a full mipmap array requires a subtle change.
Rather than loading the base image level, normally zero, a level greater than the base
level is loaded. This indicates to the proxy mechanism whether to calculate space for just
the base level or to compute it for the entire array, starting from the base level and ending
at the maximum array level.

Proxy texture requests don’t simply check for available space; they check the entire
texture state. A proxy texture command will fail if an invalid state is specified, even if
there is enough room for the texture. However, this type of failure shouldn’t occur for
debugged production programs.

5.2 Texture Coordinates

Texture coordinates associate positions on the texture image to the textured primitive’s
vertices. The per-vertex assignment of texture coordinates provide an overall mapping of
a texture image to rendered geometry. During rasterization, the texture coordinates of a
primitive’s vertices are interpolated over the primitive, assigning each rasterized fragment
its own texture coordinates.
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Texture coordinates Object coordinates

Figure 5.2 Vertices with texture coordinates. Texture coordinates determine how a texture maps to the triangle.

In OpenGL, a vertex of any primitive (and the raster position of pixel images) can
have texture coordinates associated with it. Figure 5.2 shows how a primitive’s position
and texture coordinate values at each vertex establish a relationship between a texture
image and the primitive.

OpenGL generalizes the notion of a two-component texture coordinate (s,t) into a
four-component homogeneous texture coordinate (s,,7,q). The g coordinate is analogous
to the w component found in vertex coordinates, making texture coordinates homoge-
neous. Homogeneous coordinates make correct texturing possible even if the texture
coordinates are perspectively projected. The 7 coordinate allows for 3D texturing in
implementations that support it.> The r coordinate is interpolated in a manner similar to
s and . OpenGL provides default values for both 7 (0) and g (1).

A primitive being rasterized may have w values that aren’t unity. This commonly
occurs when the projection matrix is loaded with a perspective projection. To apply a
texture map on such a primitive without perspective artifacts, the texture coordinates
must be interpolated with a method that works correctly with perspective projection.
A well-known method is to divide the texture coordinates at each vertex by the vertex’s
w component, interpolate the resulting values for each fragment, then divide the resulting
values by a 1/w component that has also been interpolated from 1/w values computed
at the vertices (Blinn, 1992). For a more detailed discussion of perspective correct vertex
interpolation see Section 6.1.4.

Since OpenGL supports a texture transform matrix, the texture coordinates them-
selves can be projected through a perspective transform. To avoid artifacts created by
projected texture coordinates, the texture values should also be scaled by the interpo-
lated g value. So rather than interpolating (s/w,t/w,r/w) at each fragment, then dividing
by 1/w, the division step becomes a division by q/w, where q/w is also interpolated to

3. 3D textures were available as an extension and later became part of the core standard in OpenGL 1.2.
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the fragment position. Thus, in implementations that perform perspective correction,
there is no extra rasterization burden associated with processing g (Segal and Akeley,
2003).

OpenGL can apply a general 4x4 transformation matrix followed by a perspective
divide to texture coordinates before using them to apply the texture map. This transform
capability allows textures to be rotated, scaled, and translated on the geometry. It also
allows texture coordinates to be projected onto an arbitrary plane before being used
to map texture to geometry. Although the texture pipeline only has a single transform
matrix compared to the geometry pipeline’s two, the distinction can still be made between
modelview and projective transforms. The difference is now conceptual, however, since
all transforms must share a single matrix.

5.2.1

An alternative to assigning texture coordinates explicitly is to have OpenGL generate
them. OpenGL texture coordinate generation (called texgen for short) generates texture
coordinates from other components in the vertex. Sources include position, normal vector,
or reflection vector (computed from the texture position and its normal). Texture coor-
dinates computed from vertex positions are created from a linear function of eye-space
or object-space coordinates. Texture coordinates computed from reflection vectors can
have three components, or be two-component coordinates produced from a projection
formula.

OpenGL provides a 4x4 texture matrix used to transform the texture coordinates,
whether supplied explicitly with each vertex, or implicitly through texture coordinate
generation. The texture matrix provides a means to rescale, translate, or even project
texture coordinates before the texture is applied during rasterization.

Figure 5.3 shows where texture coordinates are generated in the transforma-
tion pipeline and how they are processed by the texture transform matrix. Only
GL_OBJECT_LINEAR and GL_EYE_LINEAR modes are shown here. Note that the tex-
ture transformation matrix transforms the results, just like it does if texture coordinates
are sent explicitly.

5.3 Loading Texture Images from the Frame Buffer

Texture map images are created by storing bitmaps into a texture. The direct approach
is for the application to supply the image, then load it with g1 TexImage2D. A less
obvious but powerful approach is to create the texture dynamically instead; rendering
an image into the framebuffer, then copying it into a texture. Transferring an image from
the color buffer to a texture is a simple procedure in OpenGL. The image is rendered,
then the resulting image is read back into system memory buffer using g1ReadPixels.
The application can then use the buffer to load a texture with g1 TexImage?2D.
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Figure 5.3 Linear texture coordinate generation.

In later versions of OpenGL,* the process was streamlined. A region of a framebuffer
image can now be copied directly into a texture using g1CopyTexImage, bypassing the
glReadPixels step and improving performance. This technique is so useful thata WGL
extension, ARB_render_texture, makes the method even more efficient. It does away
with the copy step entirely, making it possible to render an image directly into a texture.
The new feature is not an extension of core OpenGL. It is an extension of the OpenGL
embedding layer (described in Chapter 7), adding the ability to configure a texture map
as a rendering target. OpenGL can be used to render to it, just as if it was a color
buffer. See Section 14.1 for more information on transferring images between textures
and framebuffers, and how it can be a useful building block for graphics techniques.

5.4 Environment Mapping

Scene realism can be improved by modeling the lighting effects that result from inter-
object reflections. OpenGL provides an ambient light term in its lighting equation, but
this is only the crudest approximation to the lighting environment that results from light
reflecting off of other objects. A more sophisticated approach is available through the use
of OpenGL texturing functionality. The term environment mapping describes a texturing
technique used to model some of the influences of the surrounding environment on an
object’s appearance.

4. Introduced in OpenGL 1.1.

TEAM LING



Environment Mapping 81

Environment mapping, like regular surface texturing, changes an object’s appearance
by applying a texture map to its surface. An environment texture map, however, takes
into account the surrounding view of the object’s environment. If the object’s surface has
high specularity, the texture map shows surrounding objects reflected off of the surface.
Objects with low specularity can be textured with an image approximating the radiance
coming from the surrounding environment.

The environment map, once created, must be properly applied to an object’s surface.
Since it is simulating a lighting effect, texels are selected as a function of the normal
vector or reflection vector at each point on the surface. These vectors are converted into
texture coordinates at each vertex, then interpolated to each point on the surface, as
they would for a regular surface texture. Using these vectors as inputs to the texture
generation function makes it possible to simulate the behavior of diffuse and specular
lighting artifacts.

54.1

The OpenGL environment mapping functionality is divided into two parts: a set of texture
coordinate generation functions, and an additional texture map type called a cube map.
To maximize flexibility, the two groups are orthogonal; texture generation functions can
be used with any type of texture map, and cube map textures can be indexed normally
with three texture coordinates. There are three texture generation functions designed for
environment mapping; normal mapping, reflection vector mapping, and sphere mapping.
A function can be selected by setting the appropriate parameter to g1 TexGen command:
GL_NORMAL_MAP, GL_REFLECTION_MAP, or GL_SPHERE_MAP.

Normal vector texture generation makes it possible to apply a texture map onto a
surface based on the direction of the surface normals. It uses the three component vertex
normals as texture coordinates, mapping Ny, Ny, and N; into s, ¢, and 7, respectively.
Normal vectors are assumed to be unit length, so the generated texture coordinates range
from —1 to 1. This technique is useful for environment mapping an object’s diffuse
reflections; the surface color becomes a function of the surface’s orientation relative to
the light sources of its surroundings.

Reflection texture generation indexes a surface texture based on the component val-
ues of the reflection vector. The reflection vector is computed using the vertex normal
and an eye vector. The eye vector is of unit length, pointing from the eye position toward
the vertex. Both the eye vector U, and the reflection vector R, are computed in eye space.
The reflection vector is generated by applying the equation R = U — 2NT(U - N), where
N is the vertex normal transformed into eye space. The reflection equation used is the
standard for computing the reflection vector given a surface normal and incident vector.’

5. Many texts (Foley et al., 1990; Foley et al., 1994; Rogers, 1997) present this reflection vector formula
with a sign reversed, but it is the same fundamental formula. The difference is simply one of convention:
the OpenGL U vector points from the eye to the surface vertex (an eye-space position), while many texts
use a light vector pointing from the surface to the light.
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Figure 5.4 Sphere map coordinate generation.

Once the reflection vector is computed, its components are converted to texture
coordinates, mapping Ry, Ry, and R; to s, ¢, and r, respectively. Because N and U
are normalized, the resulting R is normalized as well, so the texture coordinates will
range from —1 to 1. This function is useful for modeling specular objects, whose lighting
depends on both object and viewer position.

Sphere map texture generation has been supported by OpenGL since version 1.0.
While the other two texture generation modes create three texture coordinates, sphere
map generation only produces twoj; s and ¢. It does this by generating a reflection vector,
as defined previously, then scaling the Ry and R, components by a modified reflection

vector length, called m. The m length is computed as 2\/R§ + R} + (R, + 1)?. Dividing

the Ry and R,, by this 72 length projects the two components into a vector describing a unit
circle in the R; = 0 plane. When these scaled Ry and Ry, vectors are scaled by % and biased

by %, they are bounded to a [0,1] range and can be used as s and ¢ coordinates. While
the other texture generation modes create three texture coordinates, requiring a texture
map that can index them (usually a cube map), the sphere map generation function can
be used with a normal 2D texture (Figure 5.4).

5.4.2

The following sections describe the two basic OpenGL environment mapping techniques:
sphere mapping and cube mapping (for a description of another environment mapping
method, dual paraboloid mapping, see Section 14.8).

We’ll consider the creation and application of environment textures, as well as the
limitations associated with their usage. In both cases, sampling issues are paramount. Any
functionality that converts normal vectors into texture coordinates will have sampling
issues. Since texture maps themselves are not spherical, any coordinate generation method
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will produce sampling rates that vary across the texture. Another important consideration
when evaluating environment maps is the effort required to create an environment map
texture. This issue looms larger when environment maps must be created dynamically,
or if the environment mapping technique is not view-independent.

543

From its first specification, OpenGL supported environment mapping, but only through
sphere map texture generation. With OpenGL 1.3, cube map textures, partnered with nor-
mal and reflection texture coordinate generation, have been added to augment OpenGL’s
environment mapping capabilities. A cube map texture is composed of six 2D texture
maps, which can be thought of as covering the six faces of an axis-aligned cube. The
s, t, and 7 texture coordinates form the components of a normalized vector emanating
from the cube’s center. Each component of the vector is bound to the range [—1, 1]. The
vector’s major axis, the axis of the vector’s largest magnitude component, is used to select
the texture map (cube face). The remaining two components index the texels used for
filtering. Since the components range from —1 to 1, the filtering step scales and biases the
values into the normal 0 to 1 range so they can be used to index into the cube face’s 2D
texture.

Cube map functionality has been added to the OpenGL in a very orthogonal manner,
so the OpenGL commands and methodology needed to use them should be familiar.
To use a cube map, the cube map textures must be loaded, configured, and enabled.
The appropriate texture coordinates must be set or generated (the latter is the more
common case) for each vertex. A cube map texture can be loaded with the usual OpenGL
functions, including g1 TexImage2D and g1CopyTexImage2D. The target must be set
to one of the six cube map faces, listed in Table 5.1.

The OpenGL enumeration values are consecutive, and increase from the top to the
bottom of the table. This enumerant ordering makes it easier to load the images using a
loop construct in the application code. Cube map texturing is enabled using g1Enable
with an argument of GL_TEXTURE_CUBE_MAP.

Each cube map face can be a single 2D texture level or a mipmap. The usual pro-
cedures apply; the only difference is in the texture target name. The appropriate texture

Tahle 5.1 Cube Map Texture Targets

GL_TEXTURE_CUBE_MAP_POSITIVE_X
GL_TEXTURE_CUBE_MAP_NEGATIVE_X
GL_TEXTURE_CUBE_MAP_POSITIVE_Y
GL_TEXTURE_CUBE_MAP_NEGATIVE_Y
GL_TEXTURE_CUBE_MAP_POSITIVE_Z
GL_TEXTURE_CUBE_MAP_NEGATIVE_Z
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target shown in Table 5.1 must be used in the place of GL_TEXTURE_2D. The same
caveats and limitations also apply; if the cube map does not have mipmapped faces, its
minification filter must be set to an appropriate type, such as GL_LINEAR. The minifica-
tion filter of GL_LINEAR_MIPMAP_LINEAR is the default minification value, just as it is
for 2D textures.

If the application enables multiple texture maps at the same time, cube map textures
take precedence over 1D, 2D, or 3D texture maps. If multitexturing is used, cube map
textures can be bound to one or more texture units. Multiple cube maps can also be
managed with texture objects.

As noted previously, a cube map can be indexed directly using texture coordinates.
A 3D set of texture coordinates must be applied to each vertex, using a command such as
glTexCoord3f. Although setting texture coordinates directly can be useful, especially
for debugging, the most common way to index cube map textures is with a texture
generation function. In this case, the texture generation function should create s, #, and
7 components. To set the s coordinate to reflection texture generation, the g1 TexGen
function is set with the GL_S coordinate, the GL_TEXTURE_GEN_MODE parameter, and
the GL_REFLECTION_MAP value.

The combination of a texture generation function and a cube map can be thought of
as a programmable function that can take as input one of two types of 3D vectors.; the
texture map provides the filtered table lookup, while the texture coordinate generation
provides the input vector. The GL_EYE_LINEAR texgen provides the eye vector to the
vertex, GL_NORMAL_MAP provides the vertex’s normal, and GL_REFLECTION_MAP
provides its reflection vector.

Cube Map Texture Limitations

Although very powerful, cube map texturing has a number of important limitations.
Since the textures aren’t spherical, the sampling rate varies across each texture face.
The sample rate is best at the center of each texture face; a fixed angular change in
direction cuts through the smallest number of texels at this point. The ratio between the
best and worst sampling rates is signficant; although better than sphere maps, it is worse
than dual paraboloid maps.

Sampling across cube face boundaries can also be an issue. Since a cube texture
is composed of six non-overlapping pieces, creating textures that provide good border
sampling isn’t trivial. Cube map textures with borders must correctly sample texel values
from their neighbors; because of the cube geometry, simply using a strip of texels from
adjacent textures will result in slightly inaccurate sampling. The border texels must be
projected back along the line to the cube center to find the adjacent cube samples that
provide their colors.

Things get more complex if mipmapped textures with borders are used. Border texels
cover different areas, depending on the coarseness of the mipmap level. Mipmap textures
with borders handle texture coordinates generated from rapidly changing vertex vectors.
An example is a small triangle, covering only a few pixels on the screen, containing
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Figure 5.5 Cube map texture border calculations.

three highly divergent vertex normals. Normal or reflection vector interpolation leads to
adjacent pixels sampled from different faces of the cube map; only good texture generation
will avoid aliasing artifacts in these conditions.

If a geometry primitive with antiparallel vectors is interpolated, the interpolated
vector may become degenerate. In this case, the sampled texel will be arbitrary. A cube
map with mipmapped face textures will reduce the chance of aliasing in this case. Such
interpolations have a large derivative value, and the coarse mipmap levels of the cube
faces tend to have similar texel colors. Cube map textures also consume lots of texture
memory. For any given texture resolution (which because of the sampling rate variations,
tend to be large to maintain quality), the texture memory usage must be multipled by six
to take into account all of the cube faces.

5.4.4

Sphere mapping is the original environment mapping method for OpenGL; it has been a
core feature since OpenGL 1.0. A sphere map texture is a normal 2D texture with a spe-
cially distorted image on it. The sphere map image is inscribed in the interior of a circle in
the texture map with radius % centered at (%, %) in texture coordinates. The image within

TERAM LING



86 Texture Mapping

the circle can be visualized as the image of a chrome sphere reflecting its surroundings.
The silhouette edge of the sphere is seen as an extreme grazing reflection of whatever
is directly behind the sphere. Visualize the sphere as infinitely small; it doesn’t obscure
any objects, and its grazing reflection is of only one point behind it. This implies that,
ignoring sampling issues, every point on the circle’s edge of a properly generated sphere
map should be the same color. Properly normalized reflection vectors are guaranteed to
fall within the sphere map’s circle, so texels outside the circle will never be filtered.

Since sphere mapping requires only a single texture, configuring OpenGL for sphere
mapping is straightforward. The desired sphere map texture is made current, then tex-
turing is done in the usual manner. The sphere map texture image is designed to map
texture coordinates derived from reflection vectors at each vertex. Although regular tex-
ture coordinates can be used, OpenGL provides a special texture coordinate generation
mode that can be used to map texture coordinates from reflection vectors. Since a sphere
map texture is 2D, only the s and ¢ coordinates need to be generated:

glTexGeni(GL_S, GL_TEXTURE_GEN_MODE, GL_SPHERE_MAP);
glTexGeni(GL_T, GL_TEXTURE_GEN_MODE, GL_SPHERE_MAP);

glEnable(GL_TEXTURE_GEN_S);
glEnable(GL_TEXTURE_GEN_T);

As with any environment mapping technique, the combination of sphere map texture
and sphere map texture coordinate generation can be thought of as a 2D mapping function
converting reflection vector directions into color values.

Sphere Map Limitations

Although sphere mapping can be used to create convincing environment mapped objects,
sphere-mapped reflections are not physically correct. Most of the artifacts come from
the discrepancy between a sphere map image generation and its application onto tex-
tured geometry. A sphere map image is mapped as if its reflection vectors originate from
a single location. On the other hand, a sphere map texture is often applied over the
extended area of an object’s surface. As a result, sphere-mapped objects can’t accu-
rately reproduce the optical effect of reflecting a nearby object, or represent a reflective
object that is self-reflecting. Sphere mapping results are only completely accurate when
the assumption is made that all of the reflected surroundings are infinitely far from the
reflective object.

The variable sampling rate of sphere map can also lead to sampling artifacts. The
computed texture coordinates are perspective correct at the vertices, but linearly inter-
polated across each polygon. Unfortunately, a sphere map image is highly non-linear,
so this interpolation is not correct. This can lead to poor sampling rates for the parts of
the textured primitive that sample near the edge of the sphere map circle, with the usual
aliasing artifacts.
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Figure 5.6 The source of sphere mapping sparkles.

Additionally, the points at the edge of the sphere-map circle all map to the same
location. This can lead to multiple valid but varying interpolations for the same set of
vertex texture coordinates; interpolating within the sphere map circle, or interpolating
the “long way around,” across the sphere-map circle boundary. This type of interpolation
is necessary when the reflecting primitive is nearly edge on to the viewer. In these cases,
sphere map coordinates will be interpolated incorrectly, since they always interpolate
within the sphere map circle. Figure 5.6 illustrates this ambiguity.

The failure to wrap around the sphere map edge is responsible for an unsightly artifact
that appears as random “sparkles” or “dirt” at the silhouette edge of a sphere-mapped
object. The wrong texels are used to texture the polygons, causing the object to have
miscolored regions. Generally the incorrectly sampled polygons are small, causing the
artifacts to look like “dirt”. Because these grazing polygons are small in screen space,
the number of affected pixels is usually small. Still the effectively random sparkling can
be objectionable, particularly in animated scenes. Figure 5.7 shows a scene with sparkle
artifacts, a zoomed in section of the scene sparkles at the silhouette edge of the sphere-
mapped object.

This problem can be solved by careful splitting of silhouette polygons, forcing the
correct texels to be sampled in the resulting polygons. The polygons should be split
along the boundary of the polygon where the interpolated reflection vector is parallel to
the direction of view (and maps to the the sphere map edge). This can be an expensive
operation, however. It may be better to use a more robust technique such as cube mapping.

The final major limitation of sphere maps is that their construction assumes that the
center of the sphere map reflects directly back at the viewer. When constructing sphere
maps, the construction is based on a particular view orientation. The sphere map image is
view-dependent. This means unless the sphere map is regenerated for different views, the
sphere map will be incorrect as the viewer’s relationship to the textured object changes.
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Figure 5.7 Example showing sparkle artifacts.

To avoid artifacts, new sphere map texture images must be created and loaded as
the viewer/object relationship changes. If the environment mapped object is reflecting a
dynamic environment, this continuous updating may be required anyway. This require-
ment is a major limitation for using sphere maps in dynamic scenes with a moving
viewer.

5.5 3D Texture

An important point to note about 3D textures in OpenGL is how similar they are to
their 1D and 2D relatives. From the beginning, OpenGL texturing was designed to be
extensible. As a result, 3D textures are implemented as a straightforward extension of 2D
and 1D textures. Texture command parameters are similar; a GL_TEXTURE_3D target
is used in place of GL_TEXTURE_2D or GL_TEXTURE_1D.® The texture environment
remains unchanged. 3D texture internal and external formats and types are the same,
although a particular OpenGL implementation may limit the availability of 3D texture
formats.

A 3D texture is indexed with s, ¢, and r texture coordinates instead of just s and ¢.
The additional texture coordinate complexity, combined with the common uses for 3D
textures, means texture coordinate generation is used more commonly for 3D textures

6. 3D textures were added to OpenGL 1.2; prior to 1.2 they are available as an extension.
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Figure 5.8 3D Texture Maps.

than for 1D and 2D. Figure 5.8 shows a 3D texture, its 2D image components, and how
it is indexed with s, ¢, and 7.

3D texture maps take up a large amount of texture memory, and are expensive to
change dynamically. This can affect the performance of multipass algorithms that require
multiple passes with different textures.

The texture matrix operates on 3D texture coordinates in the same way that it does
for 1D and 2D textures. A 3D texture volume can be translated, rotated, scaled, or
have any other combination of affine and perspective transforms applied to it. Applying
a transformation to the texture matrix is a convenient and high-performance way to
manipulate a 3D texture, especially when it is too expensive to alter the texel values
directly.

A clear distinction should be made between 3D textures and mipmapped 2D textures.
3D textures can be thought of as a solid block of texture, requiring a third texture
coordinate 7, to access any given texel. A 2D mipmap is a series of 2D texture maps,
each filtered to a different resolution. Texels from the appropriate level(s) are chosen and
filtered, based on the relationship between texel and pixel size on the primitive being
textured.

Like 2D textures, 3D texture maps may be mipmapped. Instead of resampling a
2D image, at each level the entire texture volume is resampled down to an eighth of its
volume. This is done by averaging a group of eight adjacent texels on one level down
to a single texel on the next. Mipmapping serves the same purpose in both 2D and 3D
texture maps; it provides a means of accurately filtering when the projected texel size is
small relative to the pixels being rendered.

5.5.1

A straightforward 3D texture application renders solid objects composed of heteroge-
neous material. A good example would be rendering an object made of solid marble
or wood. The object itself is composed of polygons or non-uniform rational B-splines
(NURBS) surfaces bounding the solid. Combined with proper texgen values, rendering
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the surface using a 3D texture of the material makes the object appear cut out of the mate-
rial. In contrast, with 2D textures, objects often appear to have the material laminated
on the surface. The difference can be striking when there are obvious 3D coherencies in
the material texture, especially if the object has sharp angles between its surfaces.

Creating a solid 3D texture starts with material data. The material color data
is organized as a three dimensional array. If mipmap filtering is desired, use
g1Build3DMipmaps to create the mipmap levels. Since 3D textures can use up a lot of
texture memory, many implementations limit their maximum allowed size. Verify that the
size of the texture to be created is supported by the system and there is sufficient texture
memory available for it by calling g1 TexImage3D with GL_PROXY_TEXTURE_3D to
find a supported size. Alternatively, g1Get with GL_MAX_3D_TEXTURE_SIZE retrieves
the maximum allowed size of any dimension in a 3D t