

Multi-Threaded
Game Engine

Design

Jonathan S. Harbour

Course Technology PTR
A part of Cengage Learning

Australia . Brazil . Japan . Korea . Mexico . Singapore . Spain . United Kingdom . United States

Multi-Threaded Game Engine Design
Jonathan S. Harbour

Publisher and General Manager,
Course Technology PTR: Stacy L. Hiquet

Associate Director of Marketing: Sarah Panella

Manager of Editorial Services: Heather Talbot

Marketing Manager: Jordan Castellani

Senior Acquisitions Editor: Emi Smith

Project Editor: Jenny Davidson

Technical Reviewer: Joshua Smith

Interior Layout Tech: MPS Limited, a Macmillan
Company

Cover Designer: Mike Tanamachi

Indexer: Larry Sweazy

Proofreader: Michael Beady

© 2011 Course Technology, a part of Cengage Learning.

ALL RIGHTS RESERVED. No part of this work covered by the copyright
herein may be reproduced, transmitted, stored, or used in any form or
by any means graphic, electronic, or mechanical, including but not
limited to photocopying, recording, scanning, digitizing, taping, Web
distribution, information networks, or information storage and retrieval
systems, except as permitted under Section 107 or 108 of the 1976
United States Copyright Act, without the prior written permission of the
publisher.

For product information and technology assistance, contact us at
Cengage Learning Customer & Sales Support, 1-800-354-9706

For permission to use material from this text or product,
submit all requests online at www.cengage.com/permissions

Further permissions questions can be emailed to
permissionrequest@cengage.com

All trademarks are the property of their respective owners.

All images �C Cengage Learning unless otherwise noted.

Library of Congress Control Number: 2010922087

ISBN-13: 978-1-4354-5417-0

ISBN-10: 1-4354-5417-0

Course Technology, a part of Cengage Learning
20 Channel Center Street
Boston, MA 02210
USA

Cengage Learning is a leading provider of customized learning solutions
with office locations around the globe, including Singapore, the United
Kingdom, Australia, Mexico, Brazil, and Japan. Locate your local office at:
international.cengage.com/region

Cengage Learning products are represented in Canada by Nelson
Education, Ltd.

For your lifelong learning solutions, visit courseptr.com

Visit our corporate website at cengage.com

Printed in the United States of America
1 2 3 4 5 6 7 12 11 10

eISBN- 10:1-4354-5598-3

To the talented faculty at UAT—and especially those in Game Studies—with
whom I shared five arduous but rewarding years: Michael Eilers, Ken Adams,

Arnaud Ehgner, Justin Selgrad, Dave Wessman, and Bill Fox.

Thank you to Emi Smith, Jenny Davidson, and Joshua Smith, for your efforts to
get this long-overdue book into publishable condition. Thanks to Dave Wessman
for many diversionary hours playing Twilight Struggle andMemoir 44. Thanks to
my favorite game studios Bungie, Obsidian Entertainment, Firaxis Games, and
BioWare, for their inspiring works of creativity. Thanks to Misriah Armory for
their SRS99D 14.5mm and M6G 12.7mm semi-automatic weapons, which are a
lot of fun to shoot (only at the range, of course!).

Jonathan S. Harbour is a freelance writer, teacher, and indie game developer,
whose first experience with a computer was with a cassette-based Commodore
PET, and first video game system, an Atari 2600. His website at www.jharbour.
com includes a forum for book support and game development discussions.

He has been involved in two recent indie games: Starflight—The Lost Colony
(www.starflightgame.com) and (with Dave Wessman) Aquaphobia: Mutant
Brain Sponge Madness (www.aquaphobiagame.com). He loves to read science
fiction and comic books and to play video games with his four kids, and even after
“growing up,” he is still an unapologetic Trekkie. When virtual reality technology
progresses to the full holodeck experience, he will still spend time playing shoot-
em-ups, role-playing games, and turn-based strategy games. There’s always a new
story waiting to be told.

He has studied many programming languages and SDKs for his courses and
books, primarily: Cþþ, C#, Visual Basic, Java, DirectX, Allegro, Python, LUA,
DarkBasic, Java Wireless Toolkit, and XNA Game Studio. He is also the author of
Visual C# Game Programming for Teens; Beginning Java Game Programming,
Third Edition; Visual Basic Game Programming for Teens, Third Edition; Begin-
ning Game Programming, Third Edition; and Advanced 2D Game Development.
He lives in Arizona with his wife, Jennifer, and kids Jeremiah, Kayleigh, Kaitlyn,
and Kourtney.

Acknowledgments

Author Bio

Introduction . xi

PART I AN INTRODUCTION TO SYMMETRIC MULTI-PROCESSING 1

Chapter 1 Overview of Symmetric Multi-processing Technologies . . . 3
Digging In to SMP . 4

Avoid Threading for the Sake of Threading 5

Design First, Optimize Later . 6

Peeking Under the Hood . 7

Overview of Multi-threading Technology . 10

Serial Processing (Single Thread) . 10

Parallel Processing (Multiple Threads) . 11

An Example Using Windows Threads . 13

SMP Libraries . 16

OpenMP . 16

Boost Threads . 19

Windows Threads . 24

Summary . 29

References . 29

Chapter 2 Working with Boost Threads . 31
Punishing a Single Core . 31

Calculating Prime Numbers . 32

Prime Number Test 1 . 33

Contents

iv

Optimizing the Primality Test: Prime Divisors 36

Optimizing the Primality Test: Odd Candidates 40

Spreading Out the Workload . 44

Threaded Primality Test . 44

Getting to Know boost::thread . 50

Summary . 51

References . 51

Chapter 3 Working with OpenMP . 53
Say Hello To OpenMP . 54

What Is OpenMP and How Does It Work? 54

Advantages of OpenMP . 55

What Is Shared Memory? . 56

Threading a Loop . 57

Configuring Visual Cþþ . 58

Exploring OpenMP . 59

Specifying the Number of Threads . 59

Sequential Ordering . 62

Controlling Thread Execution . 65

Data Synchronization . 66

Prime Numbers Revisited . 67

Summary . 71

References . 72

Chapter 4 Working with POSIX Threads . 73
Introducing the POSIX Threads Library . 74

Thread Theory in a Nutshell . 74

Putting POSIX Threads to Work . 76

Installing The Pthreads Library . 79

Programming with Pthreads . 80

ThreadDemo Program . 83

Summary . 92

References . 93

Chapter 5 Working with Windows Threads 95
Exploring Windows Threads . 95

Quick Example . 96

Creating a Thread . 96

Controlling Thread Execution . 97

Contents v

vi Contents

The Thread Function . 98

Thread Function Parameters . 98

Summary . 101

PART II CREATING AN ENGINE FOR SMP EXPERIMENTATION 103

Chapter 6 Engine Startup . 105
Why Build an Engine Yourself? . 106

Valid Arguments in Favor . 106

Valid Arguments Against . 108

Creating the Engine Project . 109

Engine Core System . 111

Engine Rendering System . 139

Engine Support System . 142

First Engine Demo . 145

Enumerating Video Modes . 149

Enumerating Multi-sampling Support . 150

Verifying Framerates with FRAPS . 152

Summary . 153

References . 153

Chapter 7 Vectors and Matrices . 155
Vectors and Points . 156

Understanding Vectors . 157

Direct3D Vectors . 158

Vector2 Class . 158

Vector3 Class . 162

Math Functions . 165

Linear Velocity . 166

Angle to Target . 167

Math Class Header . 168

Math Class Implementation . 169

Math Vector Demo . 174

Matrices . 179

Zero and Identity Matrices . 179

Matrix Operations . 182

Direct3D Matrices . 184

Matrix Transforms . 186

Matrix Struct . 188

Math Matrix Demo . 194

Summary . 198

References . 198

Chapter 8 Rendering the Scene . 199
The Camera (View and Projection Matrices) 200

The View Matrix . 201

The Projection Matrix . 201

Camera Class . 202

The Scene (World Matrix) . 206

Rendering a Basic Scene . 206

Loading an Effect File . 208

Rendering a Stock Mesh . 218

Diffuse Lighting . 223

Directional Light . 224

Directional Light Demo . 228

Summary . 239

References . 239

Chapter 9 Mesh Loading and Rendering . 241
Mesh Loading and Rendering . 241

.X Files . 242

Mesh Class . 251

Textured Ambient Light Rendering . 261

Texture Class . 267

Lighting Texture-Mapped Meshes . 272

Textured Directional Light Shader . 275

Summary . 284

Chapter 10 Advanced Lighting Effects . 285
Textured Point Light Shader . 285

Point Lights . 286

Textured Point Light Shader Demo . 289

Specular Reflection Shader . 295

Specular Light Demo . 298

Textured Specular Reflection . 300

Summary . 303

Chapter 11 Wrapping the Sky in a Box . 305
Building a Skybox . 305

Skybox or Skysphere? . 306

Creating a Custom Skybox . 308

Skybox Class . 310

Skybox Shader . 315

Contents vii

Mountain Skybox Demo . 317

Space Skybox Demo . 322

Summary . 328

Chapter 12 Environmental Concerns: Recycling Terrain Polygons . . . 329
Outer Space Environments . 330

Indoor/Outdoor Environments . 332

Creating Terrain . 332

Perlin Noise . 334

Terrain Generation . 341

Terrain Class . 343

Terrain Demo . 353

Walking on Terrain . 357

Calculating Height . 357

Terrain Following Demo . 359

Summary . 363

References . 364

Chapter 13 Skeletal Mesh Animation . 365
Hierarchical Mesh Structure . 366

Asset Pipeline . 367

The Bone Structure . 368

Loading a Skeletal Mesh . 370

Mesh File Differences . 371

Loading the Hierarchy . 375

Rendering a Skeletal Mesh . 389

Animating a Skeletal Mesh . 391

Updating the Frame Matrices . 392

Changing the Animation Set . 393

The Bone Mesh Demo . 394

Summary . 399

References . 399

Chapter 14 Sprite Animation and Rasterization 401
Sprite Rasterization . 402

ID3DXSprite . 403

Vectors . 404

Rectangles . 404

viii Contents

The Sprite Class . 407

Drawing with Transparency . 414

Sprite Transformations . 415

Calculating Transforms . 416

Sprite Transform Demo . 417

Sprite Animation . 420

Animation with a Touch of Class . 421

Animation Demo . 422

Sprite-Based Particles . 426

Sprite-Based Fonts . 433

Creating a Font . 434

Loading and Rendering a Font . 437

Using the BitmapFont Class . 439

Loading Assets from a Zip File . 441

Reading from a Zip File . 442

Zip Asset Demo . 446

Summary . 449

References . 449

Chapter 15 Rendering to a Texture . 451
Rendering to a Texture . 451

Creating a Render Target . 452

Rendering to the Alternate Target . 453

Drawing Vector Shapes . 454

VectorShape Class . 455

Vector Shape Demo . 458

Scrolling Background Layers . 462

Bitmap Layers . 462

Tiled Layers . 475

Summary . 483

Chapter 16 Entity Management . 485
Building an Entity Manager . 486

The Entity Class . 488

Modifying the Engine . 491

Managed AutoTimer—Non-Rendering 498

Entity-fying the Engine Classes . 500

Contents ix

Managing Sprites . 501

Managing Meshes . 503

Freeing Memory . 504

Entity Demo . 505

Summary . 508

Chapter 17 Picking and Collision Detection 509
Picking . 510

Casting Rays . 510

Ray-Mesh Intersection . 511

Converting Object Space to Screen Space 513

Point-Rectangle Intersection . 513

The Picking Demo . 514

Collision Detection . 522

Automated Collision Detection . 522

The Collision Demo . 527

Mesh Collision . 532

Summary . 534

PART III SMP EXPERIMENTS . 535

Chapter 18 Threading the Engine . 537
OpenMP Experimentation . 537

OpenMP External Experiment . 539

OpenMP Engine Improvements . 552

OpenMP Internal Experiment . 556

Gravity Experiment . 561

Threaded Sprite Collision Experiment . 562

Distributing Your Game . 563

References . 564

Index . 565

x Contents

Introduction

Today’s modern processors come with multiple cores, each of which runs
independently to run programs and significantly increase the throughput
compared to a single-core processor. The clock speed is no longer the most
important factor, because a quad-core processor will outperform most dual-core
processors even if there is a clock speed discrepancy.

The purpose of this book is not to teach game engine development in depth, but
to teach multi-threading in the context of Direct3D rendering. While we do
build a decent Direct3D-based game engine with most of the modern conven-
iences one would expect, the goal is not to try to build a commercial game
engine. The engine architecture is simple, with one library project consisting of a
class for each component and limited inheritance. I believe that complex designs
lead to expensive code (that is, code that consumes more processor cycles than
necessary). While a professional engine might have an interface for each module
(input, networking, rendering, etc.), with each implemented as a DLL, we only
need a single engine project that compiles to a static library.

This book does not attempt to present a cutting-edge game engine that is
competitive with commercial offerings or even with open-source engines such as
OGRE and Illricht, but only as a platform for demonstrating multi-core
threading concepts. We could implement numerous optimizations into the
renderer (such as a BSP tree with frustum-based leaf rejection and terrain
splitting), but the goal is not to build an exemplary engine, only a usable one for

xi

this stated purpose: to explore multi-core game programming. In the interest of
exploring multi-threaded optimizations, over and above algorithms, we really do
want to approach the subject from the brute force point of view in order to see
how multiple processors and threads help to improve performance. Therefore, I
will not attempt to offer creative algorithms to optimize the engine.

There are many components of the engine that are not discussed in the pages of
this book. Engine building is covered, but not line by line, function by function,
class by class. In the interest of time and space considerations, some pieces have
been purposely left out even though the code does exist and these features are
part of the completed engine.

Visit www.jharbour.com/forum for details on the entire engine, which is located
on a subversion code repository as an open source project. Here are some
components not covered in the book:

n Scripting. This extremely important subject was left out due to space
considerations. A fully featured script system is available for the Octane
engine.

n Audio. A fully featured audio system based on the award-winning
FMOD library is also present in the Octane engine, waiting to be plugged
in to your projects.

n Command console. A drop-down console is a helpful feature in a
scripted engine such as this one, but not extremely important to the
discussion of multi-core programming. This feature too is available.

n GUI system. A GUI is an important part of an engine, especially when
game editors are planned. A rudimentary GUI system is available for the
engine, and we are experimenting with third-party options such as
CEGUI and GWEN as well.

SDKs and Libraries
This book primarily uses DirectX 9 for rendering, and all source code is in C++.
If you want to focus entirely on 10 or 11 for rendering, you will face the
challenge of replacing the utility code from D3DX9 (such as .X file loading) that
is no longer available. The PC game industry is still in a transition period today

xii Introduction

with regard to DirectX 9, 10, and 11. Unless you are writing Geometry Shader
code, there is no other compelling reason to limit your game’s audience to PCs
equipped with DirectX 11-capable video cards. So, we might expect to see a mix
of library versions in a project, with DirectInput 8, Direct3D 9, DirectCompute
11, and so on (and yes, this works fine).

The “Indie” market is most certainly a consumer for the type of engine
developed in these pages, with good performance and features, without com-
plexity or high cost. Suffice it to say, we will not try to compete, but only to show
what multi-core programming brings to a “sample engine” in terms of perform-
ance. Neither is the goal of this book to provide extensive theory on symmetric
multi-processing (SMP) technology for use in a computer science classroom,
since there are already many excellent resources devoted solely to the topic. In
the first five chapters, we do explore threading libraries in detail. I have striven
to give this book a unique place on your game development bookshelf by
covering the most significant thread libraries in an applied approach that any
intermediate Cþþ programmer should be able to immediately use without
difficulty. We will use the OpenMP and Boost.Thread libraries, while examining
and tinkering with Windows Threads.

Adv i c e

The Cþþ Boost library (an extension of the STL) is required to build the source code in this book.
Since the Cþþ0x standard is not ratified yet, it is not part of the STL and must be installed. Please
see Chapter 1 for details on how to install Boost and configure Visual Cþþ to use it.

CPUs and GPUs
This book will explore the current applied techniques available to do multi-
threaded programming, with a multi-threaded game engine developed as an
example of the technology. A strong early emphasis on software engineering will
fully describe the design of a multi-threaded architecture with the goal of
improving game performance. The game engine is based on Direct3D and Cþþ,
and is constructed step by step with threading built in—and based on the engine
developed in Advanced 2D Game Development (published in 2008), but
significantly upgraded with shader-based rendering. Many examples will

Introduction xiii

demonstrate the concepts in each chapter, while a simulation is developed in the
last chapter to show the overall benefits of multi-core programming—a trend
that will only continue to evolve, as evidenced by NVIDIA’s custom processing
“supercomputer” expansion card, the TESLA.

Massive multi-processing has traditionally been limited to expensive, custom-
built supercomputers, like IBM’s Deep Blue (which defeated chess master Garry
Kasparov), and IBM’s BlueGene series, which are used to simulate nuclear
explosions, global weather patterns, and earthquakes. This level of performance
will soon be in the hands of consumers, because PCs are already equipped with
multi-core processors, and the trend today is to increase the cores rather than
just to increase clock speed. Intel’s newest architecture is the Core i7 (http://
www.intel.com/products/processor/corei7), which features 8 hardware threads.
Intel and AMD are both working on massively multi-core processors with at
least 80 cores, which are expected to be available to consumers within five years
(see story: http://news.cnet.com/Intel-shows-off-80-core-processor/2100-1006_
3-6158181.html). This is a cutting-edge trend that will continue, and game
developers need to learn about the tools already available to add multi-threading
support to their game engines.

To show that massively multi-core processing is available even today, it is now
possible for a hobbyist to build a personal supercomputer for under $3,000 using
a typical “gamer” motherboard (equipped with two or more PCI-Express video
card slots) and one or more NVIDIA TESLA processing cards. The TESLA is
based on an NVIDIA multi-core GPU that can be programmed using NVIDIA’s
CORE compiler and device driver. A four-card setup on a quad-SLI mother-
board is capable of teraflop performance, and some studios have replaced render
farm clusters with single TESLA PCs. At under $2,000 for each TESLA card, a
quad-TESLA machine can be built for only about $8,000. This demonstrates that
affordable massive multi-processing is now available, and we are at the forefront
of this technology today. Over the next two years, consumers will be able to buy
this caliber of processor at retail for the same price as current chips, and the
performance will continue to increase according to Moore’s Law, which shows
no inkling of slowing down.

Hardware discussions aside, this book is about game programming. This is a
very important subject that is prevalent in most game engines today, but has

xiv Introduction

received very little attention because it is such a challenging subject: multi-
threading, symmetric multi-processing (SMP), parallel processing. Several
presentations at GDC 2008 touched on this topic, directly or indirectly, but
there is still very little information about threaded game engines in print or on
the web. We feel that this is the most important topic in game engine
development for the upcoming decade, because massively multi-threaded
processors will soon be the norm, and we will look back on the days of dual
and quad chips as a novelty, the way we look back today at archaic single-core
processors. This topic is absolutely hot right now, and will continue to be in the
news and in industry presentations for the next decade.

Compiler Support
The code in this book follows the Cþþ standard and makes extensive use of the
Standard Template Library and the Boost library. The projects were developed
with Visual Cþþ 2008. Your best bet is to use the Professional (or Enterprise)
edition. If you are using the Express edition of Visual Cþþ 2008, then there is
one key disadvantage: OpenMP is not supported in the Express edition. I will
suggest a legal workaround using Microsoft’s own download packages, but be
aware of this limitation.

The threaded game engine will be modular, comprised of Cþþ classes, and will
be simple in design (so we can focus more attention on threads, less on
Direct3D). The reader will be able to create a new project, write a few lines of
code, and try out a simple thread example without knowing anything about our
engine. This I am adamant about, because so many game dev books feature an
incomprehensible engine that is all but impossible to use in a simple context
(where a quick demo is desired). For instance, I will be able to create a new
project, connect to the engine API, and load up several objects and render them,
and print out details of the engine’s performance. This will be possible due to the
engine’s loosely coupled components. The engine developed in this book is
simple and to the point. I have made huge improvements to the engine over the
past two years, so this is not a fly-by-night book engine. We will be able to
expand upon it without starting from scratch and enjoy the benefit of the work
already put into it, thus reducing mistakes and coding problems.

Introduction xv

Academic Adoption
If you are considering this book for a course, I can tell you that I have used this
material successfully in both an advanced rendering course and a game engine
course. There are no course materials (exercises, test bank, etc.) officially
available at this time, and the chapters herein include no quizzes or exercises.
However, I believe this book could be used for a rendering or hardware course
on threaded multi-core programming, or as a supplemental resource for such a
course. If you are pioneering such a course, please do contact me so we can
discuss your needs, and I will be happy to share what materials I do have on
hand.

DirectX SDK Support
Microsoft’s official DirectX SDK can be downloaded from http://msdn.micro-
soft.com/directx/sdk. The current version at the time of this writing is dated
June 2010. However, we are not using Direct3D 10 or 11—this book does not
venture beyond Direct3D 9.

Adv i c e

Direct3D is the only DirectX component that has been updated to version 11. None of the other
components (DirectSound, DirectInput, and so on) has changed much (if at all) since around 2004.
All this means is that DirectInput does what it needs to do just fine and needs no new updates, just
as DirectSound supports high-definition audio systems and 3D positional sound without needing to
be updated further. However, Direct3D is updated regularly to keep up with the latest graphics
hardware.

This may sound strange, but I often recommend using an older version of
DirectX, even when using the latest version of Visual Cþþ. Although the June
2010 and future releases may work with source code in print, there is no
guarantee of this since Microsoft is not dedicated to preserving backward-
compatibility (as an historical fact). For instance, the October 2006 release is a
good one that I use often, and the code compiles and runs just as well as it does
with the latest version (when code is based on DirectX 9). Just remember this
advice when it comes to game development—the latest and greatest tools are not
always preferable for every game project.

xvi Introduction

Adv i c e

We do not study the basics of DirectX in this advanced book. If you have never written a line of
DirectX code in your life, then you will need a crash course first. I recommend Beginning Game
Programming, Third Edition (Course Technology, 2009), which will teach you all of the basics at a
very slow pace. The first four chapters cover Windows programming before even getting into
DirectX, and only ambient lighting is covered to keep the examples simple for beginners. We go
quite a bit further beyond the basics in this book! If you are already familiar with my work, then I
might recommend Advanced 2D Game Development as a follow-up. Those two lead up to the
material covered in this book, in a sort of trilogy. Those familiar with the Beginning book will feel at
home here.

Hardware Requirements
The example programs presented in this book were tested on several Windows
systems to ensure compatibility on a wide range of hardware configurations.
Although a single-core CPU will run all of the code presented in this book, there
will be negligible performance gains from threaded code. Even a fast dual-core
CPU will have a hard time keeping up with an average quad-core CPU as far as
threading goes. Obviously, a dual-core 3.2GHz Intel i5 will outpace a 2.66GHz
Core2Quad when running a game, but not a threaded prime number algorithm.
I’ll leave system performance comparisons to the hot rod gamer magazines and
only suggest using a quad- or hexa-core processor over a high-end dual if
possible. (Yes, even an Atom CPU in a netbook will run our code!)

Minimum System Requirements
n Dual-core 2GHz processor

n 2GB system memory

n Windows XP SP3 or later

The following operating systems should run the code in this book.

n Windows XP SP3

n Windows Vista 32-bit and 64-bit

n Windows 7 32-bit and 64-bit

Introduction xvii

Test Systems
The following systems were used to test the examples in this book:

CPU System RAM GPU Video RAM

Intel Q6600 4GB NVIDIA 8800 GT 512MB GDDR3
Intel E6850 2GB NVIDIA 8600 GT 512MB GDDR3
Intel P4 3.2GHz 2GB NVIDIA 8500 GT 512MB GDDR3
AMD Turion X2 4GB ATI Radeon HD 3200 2GB DDR2 (shared)

Conventions Used in This Book
This book was written for intermediate-level programmers, so many of the
beginning-level callouts are omitted in the interest of simplicity. We want to
focus more on detailed explanations of concepts and source code with as little
distraction as possible.

Adv i c e

This is an Advice callout, which will highlight any important piece of information or supplemental
issue related to the main thread of a chapter.

Source code is presented in fixed-width font for easy readability.

/**
This is a sample of what source code will look like in the text of this book.
**/
#include <iostream>
#include <string>
int main(int argc, char argv[])
{

std::string helloWorldVariable = "Hello World";
std::cout � helloWorldVariable � std::endl;
return 0;

}

The coding convention followed in this book may be described as “camel case,”
as the example above illustrates with the helloWorldVariable. All properties and

xviii Introduction

methods within a class follow the camel case format, except where only a single
word is needed (such as Update()), in which the first character will be
capitalized. Class “methods” are often referred to as functions, for this word
offers more clarity and I have never been fond of the term method, the root
word of methodology—please consider the words “method” and “function” as
synonymous in this book.

In game development, and software engineering in particular, not every function
processes data in a methodological manner or produces a clearly object-oriented
result. All source code in this book is Cþþ, with no holdovers from the
C language (such as printf). The reader is encouraged to brush up on the
standard library, which is used extensively within these pages (I recommend
Reese’s Cþþ Standard Library Practical Tips, published by Charles River).

Introduction xix

This page intentionally left blank

An Introduction to
Symmetric Multi-
processing

To get started, we will begin with an introduction to parallel programming by
exploring symmetric multi-processing technologies that are readily available
today as open source software, APIs, or included with Visual Cþþ. These
libraries are fairly easy to use, but as with most software, taking that first step
can be a bit intimidating. The chapters in Part I will give you an overview of
these libraries, with ample examples, to bring you up to speed on multi-threaded
programming.

n Chapter 1: Overview of Symmetric Multi-processing Technologies

n Chapter 2: Working with Boost Threads

n Chapter 3: Working with OpenMP

n Chapter 4: Working with Posix Threads

n Chapter 5: Working with Windows Threads

part I

1

This page intentionally left blank

Overview of Symmetric
Multi-processing
Technologies

In this chapter, we begin our study of the overall subject of symmetric multi-
processing, or SMP. This technology includes multi-threading, which we will use
to improve game engine performance—which is the primary goal of this book.
SMP has deep roots going back two decades or more, and it has only been in
recent years that multi-purpose libraries have become available to take advant-
age of industry-standard SMP hardware, such as multi-core processors, multi-
processor motherboards, and networked clusters of machines (also called
“farms”). Until libraries such as OpenMP and boost::thread came along, SMP
was largely a proprietary affair limited to rendering studios (such as Pixar
Animation Studios, which created Toy Story, Wall-E, and UP; Pixar pioneered
the development of shaders for graphics rendering technology needed to render
their films1) and users of custom-built supercomputers (see www.top500.org).
The approach we take, beginning with this chapter, is a low-impact approach
with regard to the threading code, by working with usable libraries and steering
clear of threading implementations.

This chapter covers the following topics:

n Digging in to symmetric multi-processing

n Serial processing with a single thread

n Parallel processing with multiple threads

n OpenMP

chapter 1

3

n Boost threads

n Windows threads

Digging In to SMP
What are perhaps the three most important issues to consider in a game’s
performance as far as the consumer or player is concerned? Think about the
question for a minute and consider, from your own experience, what makes or
breaks a game? Let’s lay down some assumptions in order to narrow down the
issue a bit.

First of all, let’s assume the rendering performance of your engine is already
excellent. This is due primarily to largely over-powered GPU hardware in
relation to the actual gameplay—which is terrific for a game programmer, but
not so great for the video card industry which keeps trying to come up with new
and compelling reasons for enthusiasts to buy new silicon. If your game engine’s
rendering is subpar, then threading will not make significant improvements; you
need to consider the design of your rendering pipeline. We will certainly address
threading issues within the rendering pipeline, but since there is only one frame
buffer we cannot—for instance—draw each game entity in a separate thread.
However, updating entities in the game loop is another matter!

Secondly, let’s assume the gameplay is already established and initial play testing
confirms that the game is fun to play, compelling, and meets the design goals.
So, in addition to rendering, we’re also not overly concerned about gameplay
and can count on consumers to buy our game on that point. Where we will
focus our attention with regard to threads is responsiveness to player input and
on load times. The example programs in the next few chapters should give you
all the information you need to add a threaded resource to your engine, for
example. We will not spend much time exploring inter-process communication,
thread lock scenarios, or message-passing schemes within a threaded frame-
work. Instead, we will study threading technologies with the intent to improve
known gameplay patterns. That is, the issues likely to annoy players or otherwise
cause them to stop playing. We ultimately want to attract players to our games,
keep them playing, and get them to come back for more! Load times and user
input are of paramount importance.

4 Chapter 1 n Overview of Symmetric Multi-processing Technologies

Thirdly, let’s assume the visual style and graphical quality of our game is
attractive and compelling, meeting on par or exceeding consumer expectations
for the genre, so we can count on sales due to the graphics. Like the previous two
points, if graphics are not up to snuff, then the framerate is highly irrelevant.

Now, there are certainly many other aspects of a game that influence a
consumer’s decision to buy or not, such as the genre, the subject matter (such
as a movie adaptation), market share, and studio fame. But, all things being equal,
these are the three important issues with regard to sales: Performance, Gameplay,
and Graphics.

Avoid Threading for the Sake of Threading
What, then, should we focus our attention on with regard to multi-threading a
game engine? What is the first thing you see when a game starts up—regardless
of whether it’s a console game or PC game? Usually, you will see some
introductory videos from the publisher and studio, and then the title screen.
What about the load time when a level is being prepared? Before the player can
jump in to the game, there is always a waiting period while the level loads. I
submit that this issue is the most notorious killer of even a potentially great
game! Without citing any games as case examples, suffice it to say that many a
game has been returned to the shelf, never to be played again (or worse, traded
in for another)—entirely due to excessive load times.

What does the game industry have to say about load times? Some industry
pundits call it a four-letter word, in an obvious but appropriate reference to
player frustration.2 Comparing the Sony PSP with the industry-leading Nintendo
DS, the average load times are 103 seconds and 25 seconds, respectively. What is
the most likely cause for this huge difference? I do not intend to address the
technical differences in any detail, but suffice it to say, the PSP reads data from an
optical disc while the DS reads data from a memory chip. Reminding myself that
Performance, Gameplay, and Graphics are all equal for the purpose of this
discussion, I submit that the load times alone dramatically affect player opinion,
with a direct effect on sales.

The next significant area of concern regarding performance, and our ability to
increase its efficiency, is arguably game scene and entity management. Thread-
ing the update() function in any engine is likely to be where most programmers

Digging In to SMP 5

focus their attention, because rendering cannot be threaded—the frame buffer
must be monothreaded because the entire buffer memory is used by the video
card to light pixels on the display screen.

Design First, Optimize Later
If you have a goal to develop a polythreaded renderer, it can be done, but special
care must be made to ensure writes to the frame buffer occur only during a
retrace period when the screen is not reading video memory. In my opinion, that
situation will be almost impossible to work out with multiple threads that need
to synchronize their work. For instance, what if we were to use a thread to write
pixels on the left side of the screen, and a second thread to write pixels to the
right side? That really might work with a raster display, but absolutely will not
work within an accelerated 3D system based on shaders or fragment programs.
And let’s suppose it is possible to synchronize two threads within a renderer: will
that dramatically improve performance compared to a GPU with 400, 500, or
more cores? I think not!

The goal of this book is to explore several approaches to CPU-based threading
while developing a mid-range game engine, with about equal coverage of both
subjects. We will not be building anything like a binary space partition (BSP)
optimization system for a first-person shooter (FPS) game engine in this book,
but we will explore threaded scene and entity management with examples from
which you can learn and use for your own engine.

n An entry-level game engine will basically wrap an SDK such as DirectX,
providing rudumentary mesh and sprite loading and rendering and a basic
while loop with all of the initialization, rendering, and gameplay
code together in one project.

n An advanced engine will abstract the renderer so that it can be
implemented with any rendering SDK (usually Direct3D or OpenGL),
provide scene and entity management, user input, networking (perhaps),
GUI features, and often an editor, to name a few things.

With these differences in mind, the mid-range game engine developed in this
book falls in somewhere between the two, but leans much closer toward the
advanced. Our engine will support features such as managed entities, random

6 Chapter 1 n Overview of Symmetric Multi-processing Technologies

textured terrain, and hierarchical mesh animation, but not an abstracted
renderer—we’re focusing on Direct3D. I will not attempt to build a highly
threaded engine from the start, since I’m aware that each reader will have his or
her own ideas for an engine, and most readers will simply want to learn the
technology in order to implement threading into existing code bases.

Peeking Under the Hood
Let’s take a look at the latest multi-core hardware at the time of this writing. The
competitive race between semiconductor rivals Intel and AMD continues
unabated. Although Intel seems to have the current lead in terms of perform-
ance, the two companies tend to leapfrog each other every year or two. Similarly,
two companies continue to vie for your hard-earned money in the GPU
department, with NVIDIA and ATI duking it out for the highest rendering
benchmarks. In this race, the two rivals seem to be leapfrogging each other as
well, with NVIDIA having released its next-generation silicon and likely soon to
be followed again by ATI.

Flagship Processor Comparison: Intel and AMD

The leader of the CPU performance charts is currently the Intel Core i7 980X, a
6-core screamer at 3.33 GHz, shown in Figure 1.1. Close on its heels, however, is
the AMD Phenom II X6, also a 6-core CPU, shown in Figure 1.2.

Figure 1.1
Intel Core i7 980X at 3.33 GHz (6 cores).

Im
ag

e
co
ur
te
sy

of
In
te
l,
In
c.

Figure 1.2
AMD Phenom II X6 1090T at 3.2 GHz
(6 cores).

Im
ag

e
co
ur
te
sy

of
A
M
D
,
In
c.

Digging In to SMP 7

Hexa-core Intel 980X versus AMD 1090T

Although both chips have six cores, they are quite different in architecture. The
Intel chip uses a 32nm process technology that squeezes six cores into the same
silicon space previously occupied by four cores, while using the same voltage
(a very crucial issue!). Figure 1.3 shows the internal structure of the Intel chip.
The AMD chip uses a 45nm process technology that makes its die size 44%
larger than Intel’s flagship. Figure 1.4 shows the internal structure of the AMD
chip. The second significant difference—which sets Intel over the top
(for now)—is the memory bandwidth. The 980X uses triple-channel DDR3
memory, while the 1090T uses dual-channel DDR2.

Hexa-core Architectures

The structure of each microprocessor is somewhat discernible in these photos,
but the components will be difficult to make out on a low-resolution printed
page, so Figures 1.5 and 1.6 show the two chips with diagram overlays (called a
block diagram) to highlight the architecture of each chip. When AMD upgrades
its architecture to 32nm, that will make room on the die for DDR3, which will
bring its performance up to the level of the Intel 980X.

The One-thousand-dollar Question

I want to point out that, at the time of this writing, the Intel 980X ($999) is over
three times (3�) the price of the AMD 1090T ($285). Of course these prices are
variable and somewhat meaningless a year hence, but they are important right
now—and the same holds true of any generation of technology.

Figure 1.3
Photo of the transistors in the Intel 980X.

Im
ag

e
co
ur
te
sy

of
In
te
l,
In
c.

Figure 1.4
Photo of the transistors in the AMD 1090T.

Im
ag

e
co
ur
te
sy

of
A
M
D
,
In
c.

8 Chapter 1 n Overview of Symmetric Multi-processing Technologies

Futurist Ray Kurzweil, whose works include The Age of Spiritual Machines, uses
a value of $1,000 when evaluating and writing about computer performance.
What Kurzweil argues is that vast supercomputers costing tens of millions of
dollars cannot be compared with the average home PC, so he breaks down
performance into $1,000 pieces for comparative use: in other words, how much
computing power does $1,000 produce?

Table 1.1 shows a comparison between our two leading microprocessors, with
figures adjusted for cost according to Kurzweil’s standard. The goal is not to
suggest one processor over another at the consumer level, but only to compare
apples to apples at the same price point for these two flagship processors. Since
the Intel chip is 3.5 times more expensive than the AMD chip, we use that as an
adjustment figure to arrive at some intriguing numbers.

What’s the outcome? For $1,000, AMD’s processors will produce over twice the
computational power of Intel’s processors.

Graphics Processing Units (GPUs)

We are not focusing too much attention on GPU computing in this book since
that is a huge and complex subject on its own (visit www.jharbour.com/forum
for details about an upcoming book covering CUDA, OpenCL, and Direct-
Compute in early 2011).

Figure 1.5
Block diagram of the Intel 980X.

Im
ag

e
co
ur
te
sy

of
In
te
l,
In
c.

Figure 1.6
Block diagram of the AMD 1090T.

Im
ag

e
co
ur
te
sy

of
A
M
D
,
In
c.

Digging In to SMP 9

Overview of Multi-threading Technology
You do not need a special library to begin exploring multi-processing on your
own. Odds are, in fact, that you have been writing multi-processing code for a
long time already, but without a formal term for it. Asymmetric multi-processing
(AMP) is the process of running multiple tasks sequentially, or in a time-slicing
manner where each process gets some processor time before being put on hold
for the next process. This is how older operating systems (such as Windows 95)
functioned. Symmetric multi-processing (SMP) is the technology we’re striving
to tap into to improve the performance of our game code. Let’s look at these
technologies in more detail.

Serial Processing (Single Thread)
In a non-threaded program, which we can describe as a serial processing
program because only one process at a time can run, there will still be a
while loop with various function calls—because a program that runs once and
does not repeat is not only rare, but never used in a game; however, a run-once
thread is fairly common, as you will see in the next chapter. A single-threaded
loop is the most common way to write code today in any language. We can call a
serial program an asynchronous program, which derives the term asynchronous
multi-processing, or AMP. Here’s an example:

#include <iostream>
int value = 2;
void process1()
{

value *= 5;
}
void process2()
{

Table 1.1 Intel/AMD Processor Comparison: Kurzweil’s $1,000 Standard

Cost Processor Quantity Cores Transistors Benchmark*

$1,000 Intel 980X 1 6 1.17 B 54,508
$1,000 AMD 1090T 3.5 6 (21) 904M (3.164 B) 31,612 (110,642)

*Lavalys Everest 5.5 CPU Benchmark reported by benchmarkreviews.com3.

10 Chapter 1 n Overview of Symmetric Multi-processing Technologies

value /= 2;
}
void process3()
{

std::cout � value � std::endl;
}

int main(int argc, char* argv[])
{

while (value < 100)
{

process1();
process2();
process3();

}

system("pause");
return 0;

}

Here is the output produced by this program:

5
12
30
75
187

In this example, a global variable is modified by three different processes
(process1, process2, and process3). The order of these processes is known
ahead of time, so the programmer can predict how the value will be changed by
the three processes.

Parallel Processing (Multiple Threads)
In a threaded program, which we can describe as a parallel processing program
because many processes will run simultaneously (in parallel), there is still a while
loop with various function calls. A multi-threaded loop is becoming more
common today as programmers learn about the benefits of a threaded process.
We can call a parallel program a synchronous program. Here’s a non-functional
example of a program with parallel processes (in order for this to actually run as

Overview of Multi-threading Technology 11

intended, we would need to add a threading library, so consider this just pseudo-
code for now):

#include <iostream>
int value = 2;
void process1()
{

while (value < 100)
{
value *= 5;

}
}
void process2()
{

while (value < 100)
{
value /= 2;

}
}
int main(int argc, char* argv[])
{

process1();
process2();
while (value < 100)
{

std::cout � value � std::endl;
}

system("pause");
return 0;

}

Note how the first two processes are launched before the main while loop, and
they each have their own loop as well, and how the previous process3 is now
running directly inside the main loop. This illustrates how a typical parallel
threaded program can be written (although the logic here is nonsensical, as I
mentioned earlier, so treat this as pseudo-code). If process1 and process2 were
threaded functions, then they would run in parallel with the main loop, and the
state of the global variable would be totally unpredictable!

12 Chapter 1 n Overview of Symmetric Multi-processing Technologies

In other words, you cannot share a global variable with more than one thread if
the program must rely on the state of that value falling within known limits,
because threads will be competing for the variable’s state. If a single global
variable must be used, then we need a way to safely share it among the threads in
a way that produces predictable results.

An Example Using Windows Threads
Let’s look at a real-world example that calculates distance with a parallel
approach. First, distance is calculated serially with a function called serial_

distance; then a parallel approach is used with a second function called
parallel_distance, which calls on a helper function, square. This square

function should be launched in a thread so that the two calculations (for delta
X and delta Y) are done in parallel:

#include <iostream>
#include <cmath>

double serial_distance(double x1,double y1,double x2,double y2)
{

double deltaX = (x2-x1);
double deltaY = (y2-y1);
return sqrt(deltaX*deltaX + deltaY*deltaY);

}

double square(double base, double exp)
{

double var = pow(base,exp);
return var;

}

double parallel_distance(double x1,double y1,double x2,double y2)
{

double deltaX = (x2-x1);
double deltaY = (y2-y1);
double Xsquared = square(deltaX,2);
double Ysquared = square(deltaY,2);
return sqrt(Xsquared + Ysquared);

}

Overview of Multi-threading Technology 13

int main(int argc, char* argv[])
{

double dist;
double x1=100,y1=100,x2=200,y2=200;

std::cout � "Serial version of distance" � std::endl;
dist = serial_distance(x1, y1, x2, y2);
std::cout � dist � std::endl;

std::cout � "Parallel version of distance" � std::endl;
dist = parallel_distance(x1, y1, x2, y2);
std::cout � dist � std::endl;

system("pause");
return 0;

}

The square root function, sqrt(), is one of the slowest processor instructions
because it does not produce an exact result; instead, the processor creates a table
of results and chooses the closest approximation of the root. Obviously, if the
base number is evenly divisible then the result is easy to calculate, but the square
root of a floating-point number is problematic. As a result, it’s marvelous for
performance benchmarking! Since calculating distance between two points
involves adding the square of two numbers before the square root, and since
distance is used often in game code, it’s especially relevant as a test function.

It’s important to note that parallel processing does not have to run with parallel
threads running in independent loops to take advantage of multiple processor
cores. Instead, consider that two fairly simple calculations are performed in
parallel, and the results of both calculations are used in a third calculation that
must wait for the first two to complete before proceeding. Here’s the output;
granted it’s not very useful yet without timing data, nor would we notice any
improvement with just a single function call—you must call a function
thousands of times in a timed loop to get real performance results.

Serial version of distance
141.421
Parallel version of distance
141.421

14 Chapter 1 n Overview of Symmetric Multi-processing Technologies

Adv i c e

Always use a temporary variable when performing calculations rather than embedding the
calculation in the "return" statement. This not only improves the pipelining optimization within
the processor (a debatable point depending on your processor model), but it also vastly improves
your debugging ability while stepping through a program.

Let’s look at a new program that actually creates a thread to demonstrate
concurrent or parallel execution, using the Windows threads approach (the
multi-threading library in the Windows SDK). This program is called First
Threaded Demo and it has two threads—the main program thread and the
worker thread that runs in a function called thread_function, both of which
have a while loop. Inside the loop a variable is incremented one billion times—
which is a cinch for any modern processor and should complete in only a few
seconds. Don’t be surprised if std::cout is interrupted with both vying for
output at the same time! I’ve used a low-frequency timer function called
GetTickCount(), which has millisecond granularity; it’s enough to get a ballpark
figure and does not require an extra library to compile (just windows.h).

#include <iostream>
#include <windows.h>

const long MIL = 1000000;
const long MAX = 1000 * MIL;
long main_counter = 0;
long thread_counter = 0;

DWORD WINAPI thread_function(LPVOID lpParm)
{

DWORD start = GetTickCount();
while (thread_counter < MAX)
{

thread_counter++;
}
DWORD finish = GetTickCount() - start;
std::cout � "Thread time = " � finish � std::endl;
return 0;

}

int main(int argc, char* argv[])

Overview of Multi-threading Technology 15

{
HANDLE handle;
DWORD id;

//launch the thread function
handle = CreateThread(NULL, 0, thread_function, NULL, 0, &id);

//run main counter
DWORD start = GetTickCount();
while (main_counter < MAX)
{

main_counter++;
}
DWORD finish = GetTickCount() - start;
std::cout � "Main time = " � finish � std::endl;

//wait for thread
WaitForSingleObject(handle, INFINITE);
CloseHandle(handle);

system("pause");
return 0;

}

Here is an example of the output from this program (it will be different on every PC):

Main time = 3604
Thread time = 3604

SMP Libraries
We’re going to use several libraries to write test programs while exploring the
topic of SMP in order to find not just a library to satisfy the goals of this book,
but to provide you with information about what’s available for your own uses,
since there is never a generic solution that meets every need equally.

OpenMP
OpenMP is an open-source multi-processing API specification. Its home page is
at www.openmp.org. OpenMP is not an SDK; you will not find a downloadable
library for OpenMP at its website. Instead, OpenMP is a specification that

16 Chapter 1 n Overview of Symmetric Multi-processing Technologies

vendors can adopt when implementing an OpenMP library on their platform.
What this means is that OpenMP is either supported on a certain platform
(Windows, Linux, etc.) or it is not—and there’s no way to add it if it is not
available on a given platform. On the Windows platform, Visual Cþþ 2008 and
2010 support OpenMP 2.0 (see http://msdn.microsoft.com/en-us/library/
tt15eb9t.aspx for details); OpenMP is a high-level threading library that
functions through a compiler’s pre-processor #pragma hooks to work seamlessly
with little impact on the source code. It automatically manages its own thread
pool and launches threads as needed, and OpenMP is commonly used to
optimize for loops.

Visual Cþþ has built-in support for OpenMP 2.0 via a project configuration
flag. Look in Project Properties, Configuration Properties, C/Cþþ, Language,
“OpenMP Support,” as shown in Figure 1.7. Below is a short test program that

Figure 1.7
Enabling OpenMP support in Visual Cþþ.

SMP Libraries 17

demonstrates OpenMP with a timing comparison versus a serial process. The
goal here is not to launch a parallel process but to note the improvement when
crunching numbers in a dense loop.

#include <iostream>
#include <cmath>
#include <windows.h>
#include <omp.h>

int main(int argc, char* argv[])
{

const long MIL = 1000000;
const long MAX = 100 * MIL;

//run serial test
long counter = 0;
DWORD start = GetTickCount();
for (counter=0; counter<MAX; counter++)
{

double deltaX = counter/2.0;
double deltaY = counter*2.0;
double root = sqrt(pow(deltaX,2) + pow(deltaY,2));

}
DWORD finish = GetTickCount() - start;
std::cout � "Serial time = " � finish � std::endl;

//run parallel test with OpenMP
counter = 0;
start = GetTickCount();

#pragma omp parallel for
for (counter=0; counter<MAX; counter++)
{

double deltaX = counter/2.0;
double deltaY = counter*2.0;
double root = sqrt(pow(deltaX,2) + pow(deltaY,2));

}

finish = GetTickCount() - start;
std::cout � "OpenMP time = " � finish � std::endl;

18 Chapter 1 n Overview of Symmetric Multi-processing Technologies

system("pause");
return 0;

}

The output from this test program reveals a significant improvement in the
performance of the OpenMP-enabled loop, which crunched the numbers about
300% faster.

Serial time = 17472
OpenMP time = 5491

Boost Threads
Boost is a portable Cþþ extension library that, like the Cþþ Standard Library,
will become part of the Cþþ standard in the next version of the standard (called
Cþþ 0x). What this means is that you can safely invest time to study the
admittedly huge Boost library without getting tangled up in an uncertain open-
source project. Boost is a modern library of advanced features that gives the
Cþþ language a huge boost in functionality, covering a diversity of subjects,
such as threads, socket networking, accumulators, foreach functionality (to
simplify iteration), a generic image library, quaternions, statistical distributions,
Python scripting, timers, typeof functionality (to determine object type), regular
expression parsing, and much more. The entire Boost library, compiled and with
all documentation, weighs in at over a gigabyte. Fortunately, the compiler will
only link the specific libraries that you use in your code.

Installing Boost

Before you can use Boost, you’ll need to install the library and configure Visual
Cþþwith the .\include and .\library folders inside the Boost folder. Download
the latest version of Boost from www.boost.org. (The current version at the time
of this writing is 1.41.0.) Open the Boost archive file and extract it to the root of
your hard drive in a folder such as C:\boost_1_41_0 (depending on the version).

Next, bring up a Command Prompt and change to the Boost folder (such as
C:\boost_1_41_0) using the CD command. For instance, type

CD \boost_1_41_0

From this folder, type

bootstrap

SMP Libraries 19

After the bootstrap script runs, which builds some of the tools needed to create
the Boost libraries, then type

.\bjam

These two commands are all that’s required to build the Boost library, and due
to environment variables, the process is completely automated. Let’s review the
steps again just for reference:

1. Download the Boost zip file from www.boost.org.

2. Extract the Boost library to a folder on the root of your hard drive, such
as C:\boost_1_41_0.

3. Open a Command Prompt, and change to that directory using the
CD command.

4. Run boostrap.

5. Run .\bjam.

Now that the Boost library has been built, you need to configure Visual Cþþ so
that it knows where to find the Boost files. Open Visual Cþþ and open the Tools,
Options dialog, then Projects and Solutions, VCþþDirectories. Choose “Include
files” from the drop-down list, and add C:\boost_1_41_0 to the list (note: this
folder will depend on the version you’re using), as shown in Figure 1.8. Next,
choose “Library files” and add C:\boost_1_41_0\stage\lib to the list, as shown in
Figure 1.9.

Adv i c e

Boost is required for nearly all of the projects in the book, so it’s important that you take this first
step to build the Boost library on your system. Optionally, there are pre-built versions for Windows
available (see the Boost website for details—www.boost.org). If you are somewhat inexperienced
with Visual C++ and cannot get Boost to work on your system, please visit www.jharbour.com/
forum for assistance.

Testing the boost::thread Library

With all of the technical issues out of the way, you should be able to compile a
Boost-enabled Cþþ project now. The boost::thread library is wonderfully non-
convoluted (i.e., simple) compared to Windows threads and Posix threads! First

20 Chapter 1 n Overview of Symmetric Multi-processing Technologies

Figure 1.8
Adding the Boost include folder to the list of includes in Visual Cþþ.

Figure 1.9
Adding the Boost library folder to the list of libraries in Visual Cþþ.

SMP Libraries 21

of all, you don’t need to use a specific function definition for a thread function
when using boost::thread. Instead, you can simply turn a normal-looking
function into a threaded function (with any desired return value).

In addition, now that we have Boost available, we can use boost::timer, which is
a much more robust and useful means of profiling our code than the old
Windows API GetTickCount() function, which was used previously.

Adv i c e

We will not be using the low-level thread libraries Windows threads or Posix threads extensively.
I’ve made this decision primarily due to the complexity involved in protecting shared data and
running into mutex locking problems (which I acknowledge is an arguable point), and due to the
fact that every programmer has his or her own engine goals that will differ from my own. Far better
to let a well-designed library handle such issues instead of getting bogged down in such a
quagmire of code ourselves. If you do want to write your own thread code from the low-level
libraries, you will learn enough information from the examples later in this chapter and in the
chapters to come to help meet your goals.

Here is an example program that demonstrates the boost::thread library:

#include <boost/thread/mutex.hpp>
#include <boost/thread/thread.hpp>
#include <boost/timer.hpp>
#include <iostream>

boost::mutex mutex;
boost::timer timer;

const long MIL = 1000000;
long MAX = 2 * MIL;
int counter = 0;
long iter = 0;

int compute()
{

boost::mutex::scoped_lock lock(mutex);
int max = MAX;
for (int n=0; n<max; n++)

22 Chapter 1 n Overview of Symmetric Multi-processing Technologies

{
double deltaX = n/2.0;
double deltaY = n*2.0;
double root = sqrt(pow(deltaX,2) + pow(deltaY,2));
iter++;

}
int c = ++counter;
std::cout � "# " � c � ": iter = " � iter � std::endl;
return 0;

}

int main()
{

//run parallel test with boost::thread
std::cout � "boost::thread test" � std::endl;
timer.restart();
boost::thread_group thrds;
for (int n=0; n<10; n++)

thrds.create_thread(&compute);
thrds.join_all();
double finish = timer.elapsed();
std::cout � "time = " � finish � std::endl;

//run serial test
std::cout � std::endl � "serial test" � std::endl;
timer.restart();
iter = 0;
compute();
finish = timer.elapsed();
std::cout � "time = " � finish � std::endl;

return 0;
}

Here is the output from the program. As you can see, these worker threads do not
overlap, and thus, do not interrupt each other, so the specific boost::thread
example used here is not a great choice for a specifically multi-threaded approach
to crunching numbers (or polygons, as the case may be), but it is simple and
elegant for launching worker threads.

SMP Libraries 23

Adv i c e

For a console application, the window may close before you are able to see its output. Try running
the program without debugging (CtrlþF5), which will keep the window open until you press a key.
Another option is to use system("pause") at the end of the program to pause before exiting.

boost::thread test
1: iter = 2000000
2: iter = 4000000
3: iter = 6000000
4: iter = 8000000
5: iter = 10000000
6: iter = 12000000
7: iter = 14000000
8: iter = 16000000
9: iter = 18000000
10: iter = 20000000
time = 3.799

serial test
11: iter = 2000000
time = 0.37

Windows Threads
We saw an example of threading with the native Windows thread functions such
as CreateThread earlier in the chapter. This is a low-level thread library used by
Windows itself, and as a result, can be very difficult to use. It’s not especially
hard to create a thread the Windows way, but it is a challenge to manage
threads, once created, unless you are careful not to allow any two threads to
share data. Since that restriction usually renders “worker threads” as almost
useless—without the ability to synchronize data with the main program
thread—the use of a mutex is usually required. (A mutex is a trigger mechanism
that locks a variable or other data construct while a thread is using it.)

Second Windows Thread Demo

Let’s take a look at an example to illustrate these difficulties first hand.

#include <iostream>
#include <windows.h>

24 Chapter 1 n Overview of Symmetric Multi-processing Technologies

const unsigned long MAX = 1000000;
unsigned long counter = 0;
const int THREADS = 10;
HANDLE handles[THREADS];
DWORD ids[THREADS];

DWORD WINAPI thread_counter(LPVOID lpParm)
{

for (int n=0; n<MAX; n++)
counter++;

return 0;
}

int main(int argc, char* argv[])
{

//launch the threads
for (int n=0; n<THREADS; n++)

handles[n] = CreateThread(NULL, 0, thread_counter, NULL, 0, &ids[n]);

//wait for threads to finish
WaitForMultipleObjects(THREADS, handles, TRUE, INFINITE);
for (int n=0; n<THREADS; n++)

CloseHandle(handles[n]);

//print results
std::cout � "Counter = " � counter � std::endl;

return 0;
}

The result will be slightly different on every PC, but on mine the result was:

Counter = 4005582

Since the thread functionwas supposed to increment the counter variable 1million
times, and we launched 10 threads, one would expect the result to be 10,000,000,
not a value of around 4million. Sowhat’s wrongwith this code? The problem is, the
threads are fighting over the counter variable and in the fraction of a second that
this code is running, wars are waged over who owns the variable at any given
nanosecond. Some compilers might even cause this code to crash due to thread
conflicts.

SMP Libraries 25

Third Windows Thread Demo

Without getting too deep into the details of how this will work this early on, let’s
examine a modification that makes use of a mutex lock that will protect the
counter variable from thread entanglements.

#include <iostream>
#include <windows.h>
const int MAX = 1000000;
unsigned long counter = 0;
const unsigned long THREADS = 10;
HANDLE handles[THREADS];
DWORD ids[THREADS];
HANDLE mutex;

DWORD WINAPI thread_counter(LPVOID lpParm)
{

std::cout � "Thread " � GetCurrentThreadId() � " start." � std::endl;
for (int n=0; n<MAX; n++)
{

//acquire mutex lock
WaitForSingleObject(mutex, INFINITE);

//update shared data
counter++;

//release mutex
ReleaseMutex(mutex);

}
std::cout � "Thread " � GetCurrentThreadId() � " done." � std::endl;
return 0;

}

int main(int argc, char* argv[])
{

//create mutex
mutex = CreateMutex(NULL, FALSE, NULL);

//launch the threads
for (int n=0; n<THREADS; n++)

handles[n] = CreateThread(NULL, 0, thread_counter, NULL, 0, &ids[n]);

26 Chapter 1 n Overview of Symmetric Multi-processing Technologies

//wait for threads to finish
WaitForMultipleObjects(THREADS, handles, TRUE, INFINITE);

//cleanup
for (int n=0; n<THREADS; n++)

CloseHandle(handles[n]);
CloseHandle(mutex);

//print results
std::cout � "Counter = " � counter � std::endl;

return 0;
}

This new version of the program, which uses a mutex to protect the counter

variable, does produce the desired output of exactly 1,000,000 for the counter,
but it takes far too long to run (due to the lock), eliminating the whole benefit of
threading—which is to increase performance through the use of multiple
processor cores.

Fourth Windows Thread Demo

Here’s a new and final version of the function that eliminates the mutex locking
problem while still protecting the shared data, through the use of a helper
variable.

DWORD WINAPI thread_counter(LPVOID lpParm)
{

std::cout � "Thread " � GetCurrentThreadId() � " start." � std::endl;
unsigned long local_counter = 0;
for (int n=0; n<MAX; n++) {

local_counter++;
}
//update shared variable
WaitForSingleObject(mutex, INFINITE);
counter += local_counter;
ReleaseMutex(mutex);

std::cout � "Thread " � GetCurrentThreadId() � " done." � std::endl;
return 0;

}

SMP Libraries 27

This new version accomplishes the same task, and runs so quickly that the
counter reaches its target immediately—a sign that all 10 threads are running
without conflict.

Thread Thread 2724 start.
Thread 5772 start.
4488 start.
Thread 2724 done.
Thread 1988 start.
Thread 1376 start.
Thread 4488 done.
Thread 1988 done.
Thread 6040 start.
Thread 2772 start.
Thread 6084 start.
Thread 5772 done.
Thread 1376 done.
Thread 6116 start.
Thread 5428 start.
Thread 2772 done.
Thread 6040 done.
Thread 6084 done.
Thread 5428 done.
Thread 6116 done.
Counter = 10000000

Is it cheating to use a local variable as the accumulator and then just “tack it on”
to the shared variable at the end in one quick step? Not at all! Passing data
around is the single-most effective way to avoid thread locking problems in
parallel code. The whole point of this series of examples has not been to see how
fast the processor cores can increment a variable—that’s a ludicrous test of
processor power! The point was to demonstrate how threads can increase
performance without running into conflicts. Just replace the local_counter++

line with real-world calculations, and—well, you get the idea.

Final Comments on Windows Threading

Just out of curiosity, try increasing the MAX constant to something larger—much
larger—and watch what happens. As far as that goes, try experimenting with the
THREADS constant as well. Another change you might try is using MAX as the target

28 Chapter 1 n Overview of Symmetric Multi-processing Technologies

value to reach with all threads contributing, rather than using MAX for each
thread (in which case the ultimate target is MAX * THREADS). Try using this for the
for loop conditional:

unsigned long max = MAX / THREADS;
for (int n=0; n < max; n++) {

local_counter++;
}

Now set MAX to any desired maximum and note how fast the threads reach that
level, and experiment with different numbers of threads. The goal is to become
familiar with the capabilities afforded your code with the addition of threads!

Summary
In this chapter we have covered a lot of ground in preparation for the chapters
to come in an attempt to provide a general overview of the entire book. The
threading examples were terse but did convey how to use each of the thread
libraries in simple terms. The next few chapters will dig into those thread
libraries in more detail to show you how to solve bigger problems with threads.
Later, in Part II, we will be building a single-threaded Direct3D-based game
engine that you can study and use for your own game projects, including multi-
threaded games.

References
1. “Pixar”; Wikipedia; Jan. 5, 2010. http://en.wikipedia.org/wiki/Pixar.

2. “Under the Hood: PSP Load Times”; Jan. 5, 2010. GameSpot; http://www.
gamespot.com/features/6159832/index.html.

3. “AMD Phenom-II X6-1090T Black Edition Processor Review”; June 5,
2010. http://benchmarkreviews.com/index.php?option=com_content&task=
view&id=508&Itemid=63&limit=1&limitstart=8.

References 29

This page intentionally left blank

Working with Boost
Threads

In this chapter, we will study the boost::thread library in order to add multi-
threading capability to our code. The boost::thread component is part of the
overall Cþþ Boost library (introduced in the previous chapter) that provides a
standard interface for using multiple threads. Until Boost is fully adopted into
the Cþþ standard, it will need to be installed on your development PC prior to
use. Boost is a modern Cþþ extension library with features that greatly increase
the capability of the Cþþ language. Refer to the previous chapter under the
section titled “Boost Threads” for instructions on installing Boost and configur-
ing Visual Cþþ in order to use it.

This chapter covers the following topics:

n Calculating prime numbers

n Prime divisors optimization

n Odd candidates optimization

n Threaded primality test

Punishing a Single Core
The previous chapter gave an overview—a bit of a snapshot—of the thread
libraries we will be examining in the coming chapters. The boost::thread library
is a good choice since it is platform independent, and therefore likely to be

chapter 2

31

compatible with more compilers, as well as more reliable than proprietary
libraries (such as Windows threads—see Chapter 5, “Working with Windows
Threads” for more details).

Adv i c e

We’ll assume here that you have already installed the Boost library, built it, and added the .\include
and .\library folders to your Visual Cþþ configuration. For instructions on how to install
Boost (required), please refer back to Chapter 1.

Let’s begin an experiment. This approach will be used repeatedly as we explore
the multi-threading libraries in upcoming chapters. There are many ways to
“punish” a single-core processor, or one of the cores of a multi-core processor,
which is the more likely scenario today. For this experiment to be statistically
useful, we need to make sure the same parameters are used in each situation.

Adv i c e

The game engine developed in this book will function first with a non-threaded update loop so that
a base line of performance can be determined. Then, each of the thread libraries and multi-core
techniques, using both the CPU and GPU, will be tested to see how we can improve performance
by tapping into multiple cores.

Calculating Prime Numbers
A prime number is an indivisible whole number. More specifically, a prime can
be divided only by 1 or by itself.1 For the purpose of testing the performance of
code, we do not need to concern ourselves with the most efficient method of
calculating primes (and there are many ways to do it!). What we need, really, is
just a good algorithm that does something useful for the purpose of bench-
marking our multi-core code. The actual implementation is not as interesting as
the execution time on different types of hardware with the various thread and
multi-core libraries we’ll be examining in this and later chapters. At the time of
this writing in early 2010, the largest prime number ever found has 13 million
decimal digits.2

To calculate a prime number, you must determine whether a candidate number
is divisible by any other number (besides 1 or itself). The program will test
divisors from 2 up to the target number’s square root. If none of the divisors

32 Chapter 2 n Working with Boost Threads

evenly divide, then the candidate is indeed a prime number. This means it is
indivisible. Here now is the source code for the brute force approach:

long findPrimes(biglong rangeFirst, biglong rangeLast)
{

long count = 0;
biglong candidate = rangeFirst;
while(candidate <= rangeLast)
{

biglong testDivisor = 2;
bool prime = true;

//test divisors up through the root of rangeLast
while(testDivisor * testDivisor <= candidate)
{

//test with modulus
if(candidate % testDivisor == 0)
{

prime = false;
break;

}
//next divisor
testDivisor++;

}
//is this candidate prime?
if (prime)
{

count++;
primes.push_back(candidate);

}
//next candidate
candidate++;

}
return count;

}

Prime Number Test 1
The Prime Number Test 1 project uses the findPrimes() function above to
calculate primes up through the first one million candidates. We can’t say that
we’re calculating “the first one million primes” because that is not the case; we’re

Punishing a Single Core 33

testing the first one million whole number candidates to see if they’re prime, and
only a small number of them will be.

Add to the function above this declaration code at the top of the code listing.
Whenever a prime is found, it is added to the primes list for storage until later.

#include <string.h>
#include <iostream>
#include <list>
#include <boost/format.hpp>
#include <boost/timer.hpp>
#include <boost/foreach.hpp>

//declare a 64-bit long integer type
typedef unsigned long long biglong;
biglong highestPrime = 1000000;

boost::timer timer1;
std::list<biglong> primes;

And add the main() function shown here to finish the program. The primes list
is printed out, but limited to only the first 100 and last 100 primes in the list as a
quick reference and verification that the prime calculation is functioning
correctly. To quickly iterate the list, the BOOST_FOREACH #define macro is used
(via the boost/foreach.hpp definition).

int main(int argc, char *argv[])
{

biglong first = 0;
biglong last = highestPrime;
std::cout � boost::str(boost::format(

"Calculating primes in range [%i,%i]\n") % first % last);

timer1.restart();
long primeCount = findPrimes(0, last);
double finish = timer1.elapsed();

std::cout � boost::str(
boost::format("Found %i primes\n") % primeCount);

std::cout � boost::str(
boost::format("Run time = %.8f\n\n") % finish);

34 Chapter 2 n Working with Boost Threads

std::cout � "First 100 primes:\n";
int count=0;
BOOST_FOREACH(biglong prime, primes)
{

count++;
if (count < 100)

std::cout � prime � ",";
else if (count == primeCount-100)

std::cout � "\n\nLast 100 primes:\n";
else if (count > primeCount-100)

std::cout � prime � ",";
}
std::cout � "\n";

system("pause");
return 0;

}

Figure 2.1 shows the output of the program, with a result of 78,500 primes in the
range of 0 to 1,000,000, calculated in just under one second (0.998).

This time frame is too small for an effective demonstration, so let’s bump up the
upper range to 10,000,000.

biglong highestPrime = 10000000; // 10 million

Figure 2.1
The first prime number test project uses the brute force approach.

Punishing a Single Core 35

Figure 2.2 shows the output of the primality test with 10 million candidate tests.
These numbers will vary widely from one system to another. These results
were computed with an Intel Core2Quad Q6600 quad-core processor running at
2.6 GHz (slightly overclocked) with 4GB of DDR2 memory. The number of
primes found in the new range is approximately ten times greater than the
previous result, which is expected when we increase the range ten-fold. (Note,
however, that this will not be a logarithmic increase as you explore larger and
larger ranges into the billions and beyond.)

664,579 prime numbers exist in the range of the first ten million candidates. Our
code calculated these primes in 22.512 seconds, for a throughput of 29,521 primes
per second.

Figure 2.3 shows Windows Task Manager’s results while the primality test program
was running. There were quite a few other tasks running, which accounts for the
slightly higher percentage; the prime number crunching was running entirely on
one processor core, which is approximately 25% of the “CPU usage.”

Optimizing the Primality Test: Prime Divisors
There are faster ways to calculate prime numbers. I mentioned before that we
aren’t as interested in calculating primes as we are in studying performance
differences with different numbers of CPU cores and threads, but a few minor

Figure 2.2
The primality test project again with 10 million candidates.

36 Chapter 2 n Working with Boost Threads

optimizations to the prime number algorithm will at least make the projects in this
chapter somewhat more realistic and “real world” in nature. The Lucas-Lehmer test3

uses fast fourier transforms (FFTs) to calculate Mersenne prime numbers very
quickly. But, there are simpler techniques we can use to improve performance in
our current code. The best code optimization you can make is to prevent code from
running at all. In other words, eliminating test cases from a sequential calculation—
such as a primality test—improves performance better than any fancy algorithm.

Again, we are not trying to compete to calculate the largest prime number, or to
come up with an innovative new primality test, only to benchmark our loops
with various combinations of hardware and multi-threading libraries.

The brute force approach above does work, but it will be somewhat insulting
to even the earliest of math majors, so let’s at least do the most obvious

Figure 2.3
Windows Task Manager showing the CPU utilization while the Prime Number Test program is running.

Punishing a Single Core 37

optimization: eliminating factors that have already been calculated before. A
more thorough explanation of primality test optimization can be found in Steve
Litt’s article entitled “Fun With Prime Numbers.”4 This optimization simply
uses the existing list of primes as the divisors rather than going through the
whole range of divisors (up to the root) every time. We do not need to consider
candidates over and over again, just the primes. Here’s a new version with an
optimized findPrimes() function that uses only primes for the divisors. In the
chapter resources, this project is called Prime Number Test 2.

#include <string.h>
#include <iostream>
#include <list>
#include <boost/format.hpp>
#include <boost/timer.hpp>
#include <boost/foreach.hpp>

//declare a 64-bit long integer type
typedef unsigned long long biglong;
const long MILLION = 1000000;
biglong highestPrime = 10*MILLION;
boost::timer timer1;
std::list<biglong> primes;

long findPrimes(biglong rangeFirst, biglong rangeLast)
{

long count = 0;
biglong candidate = rangeFirst;
if (candidate < 2) candidate = 2;

while(candidate <= rangeLast)
{

bool prime = true;

//get divisor from the list of primes
BOOST_FOREACH(biglong testDivisor, primes)
{

//test divisors up through the root of rangeLast
if (testDivisor * testDivisor <= candidate)
{

38 Chapter 2 n Working with Boost Threads

//test primality with modulus
if(candidate % testDivisor == 0)
{

prime = false;
break;

}
if (!prime) break;

}
else break;

}
//is this candidate prime?
if (prime)
{

count++;
primes.push_back(candidate);

}
//next candidate
candidate++;

}
return count;

}

int main(int argc, char *argv[])
{

biglong first = 0;
biglong last = highestPrime;
std::cout � boost::str(

boost::format("Calculating primes in range [%i,%i]\n")
% first % last);

timer1.restart();
long primeCount = findPrimes(0, last);
double finish = timer1.elapsed();

std::cout � boost::str(
boost::format("Found %i primes\n") % primeCount);

std::cout � boost::str(
boost::format("Run time = %.8f\n\n") % finish);

std::cout � "First 100 primes:\n";
int count=0;

Punishing a Single Core 39

BOOST_FOREACH(biglong prime, primes)
{

if (count < 100)
std::cout � prime � ",";

else if (count == primeCount-100)
std::cout � "\n\nLast 100 primes:\n";

else if (count > primeCount-100)
std::cout � prime � ",";

count++;
}
std::cout � "\n";
system("pause");
return 0;

}

This new version of the primality test replaces the core loop of the findPrimes()

function. Previously, variable testDivisor was incremented until the root of a
candidate was reached, to test for primality. Now, testDivisor is the increment
variable in a BOOST_FOREACH loop which pulls previously stored primes out of the
list. This is a significant improvement over testing every divisor from 2 up to the
root of a candidate (blindly).

What about the results? As Figure 2.4 shows, the runtime for a 10 million
candidate test is down from 22 seconds to 4.7 seconds! This is a new throughput
of 141,369 primes per second—nearly five times faster.

Optimizing the Primality Test: Odd Candidates
There is no need to test even candidates because they will never be prime
anyway! We can start testing divisors and candidates at 3, rather than 2, and
then increment candidates by 2 so that the evens are skipped entirely. We will
just have to print out “2” first since it is no longer being tested, but that’s no
big deal. Here is the improved version. This project is called Prime Number
Test 3.

#include <string.h>
#include <iostream>
#include <list>
#include <boost/format.hpp>

40 Chapter 2 n Working with Boost Threads

Figure 2.4
Using primes as divisors improves performance nearly five-fold.

#include <boost/timer.hpp>
#include <boost/foreach.hpp>

//declare a 64-bit long integer type
typedef unsigned long long biglong;
const long MILLION = 1000000;
biglong highestPrime = 10*MILLION;
boost::timer timer1;
std::list<biglong> primes;

long findPrimes(biglong rangeFirst, biglong rangeLast)
{

long count = 0;
biglong candidate = rangeFirst;
if (candidate < 3) candidate = 3;
primes.push_back(2);
while(candidate <= rangeLast)
{

bool prime = true;

//get divisor from the list of primes
BOOST_FOREACH(biglong testDivisor, primes)
{

Punishing a Single Core 41

//test divisors up through the root of rangeLast
if (testDivisor * testDivisor <= candidate)
{

//test primality with modulus
if(candidate % testDivisor == 0)
{

prime = false;
break;

}
if (!prime) break;

}
else break;

}
//is this candidate prime?
if (prime)
{

count++;
primes.push_back(candidate);

}
//next ODD candidate
candidate += 2;

}
return count;

}

int main(int argc, char *argv[])
{

biglong first = 0;
biglong last = highestPrime;
std::cout � boost::str(

boost::format("Calculating primes in range [%i,%i]\n") % first % last);

timer1.restart();
long primeCount = findPrimes(0, last);
double finish = timer1.elapsed();

std::cout � boost::str(boost::format("Found %i primes\n")
% primeCount);

std::cout � boost::str(boost::format("Run time = %.8f\n\n")
% finish);

42 Chapter 2 n Working with Boost Threads

//print last 100 primes
std::cout � "First 100 primes:\n";
int count=0;
BOOST_FOREACH(biglong prime, primes)
{

if (count < 100)
std::cout � prime � ",";

else if (count == primeCount-100)
std::cout � "\n\nLast 100 primes:\n";

else if (count > primeCount-100)
std::cout � prime � ",";

count++;
}
std::cout � "\n";
system("pause");
return 0;

}

This new version of our primality test program, which tests only odd divisors
and candidates, does run slightly faster than the previous one, but not as
significantly as the previous optimization. As you can see in Figure 2.5, the run-
time is 4.484 seconds, down from 4.701, for an improvement of an additional
two-tenths of a second. It’s not much now, but it would be magnified many-fold

Figure 2.5
New primality test with “odd number” optimization.

Punishing a Single Core 43

when you get into billions of candidates. (Note: Results will differ based on
processor performance.)

Table 2.1 shows the overall results using the final optimized version of the
primality test program. Note the candidates per second (C/Sec) and primes per
second (P/Sec) values, which are not at all predictable. This is due to memory
consumption. The higher the target prime number, the larger the memory
footprint. The 1 billion candidate test consumed over a gigabyte of memory by
the time it completed (in 39 minutes). If your system does not have enough
memory to handle a huge candidate test, then your system may begin swapping
memory out to disk which will destroy any chance of obtaining an accurate
timing result.

Spreading Out the Workload
We can improve these numbers by adding multi-core support to the primality
test code with the use of a thread library such as boost::thread. We will compare
results with the single-core figures already recorded.

Threaded Primality Test
Using the single-core primality test program as a starting point, I would like to
demonstrate a threaded version of the program that takes advantage of the
boost::thread library. We won’t go overboard yet with a huge group, but just

Table 2.1 Primality Test Results (1 Core*)

Candidates Primes Time (sec) C/Sec P/Sec

1,000,000 78,497 0.241 4,166,666 327,070
5,000,000 348,512 1.837 2,721,829 189,718
10,000,000 664,578 4.484 2,230,151 148,211
25,000,000 1,565,926 15.494 1,613,527 101,066
50,000,000 3,001,133 40.244 1,242,421 74,573
100,000,000 5,761,454 102.792 972,838 56,049

1,000,000,000 50,847,533 2,347.162 426,046 21,663

*Intel Q6600 Core 2 Quad CPU, 4GB DDR2 RAM

44 Chapter 2 n Working with Boost Threads

spread the work over two cores instead of one, and then note the difference in
performance.

New Boost Headers

We’ll need two new header files to work with Boost threads:

#include <string.h>
#include <iostream>
#include <list>
#include <boost/format.hpp>
#include <boost/timer.hpp>
#include <boost/foreach.hpp>
#include <boost/thread/mutex.hpp>
#include <boost/thread/thread.hpp>

New Boost Variables

In addition to the variable declarations in the previous program, we now need a
boost::mutex to protect threads from corrupting shared data (such as the list of
primes).

//declare a 64-bit long integer type
typedef unsigned long long biglong;
const long MILLION = 1000000;

biglong highestPrime = 10*MILLION;
std::list<biglong> primes;

//this mutex will protect threads from corrupting data
boost::mutex mutex1;

boost::timer timer1;
int thread_counter = 0;

Next up in the program listing are two functions that are a derivation of the
previous findPrimes() function used to find prime numbers. The new pair of
functions accomplish the same task but with thread support. Any variable that
will be accessed by a thread must be protected with a mutex lock. If two threads
access the same variable at the same time, it could segfault or crash the program.
To prevent this possibility, we’ll use a boost::mutex::scoped_lock before any code

Spreading Out the Workload 45

that touches a shared variable. In our case here, the most notable example is the
global linked list of prime numbers called primes:

std::list<biglong> primes;

Both the testPrime() and findPrimes() functions must use the primes list: the
former to locate divisors, and the latter to add newly identified prime numbers
to the list. If one thread finds a prime number, while the other thread is scanning
the list of primes, then that first thread must wait for the second thread to finish
using the primes list before adding the new number to it.

Are you thinking what I’m thinking? That statement gives me an idea for a
future optimization. Rather than requiring threads to wait while the primes list
is being used, we could create a new list of primes and then add the new
numbers to the main list later.

While that idea does have merit, there is one huge flaw: later prime number tests
actually rely on there being root numbers already in the list, so we can’t test
higher candidates as long as the list is not being populated with new primes as
they are discovered.

New Prime Number Crunching Functions

Below are the two prime number sniffing functions. You’ll note that testPrime()
is just a subset of code from the previously larger findPrimes() function, which
is now leaner and threaded. This example is not 100% foolproof thread code,
though. The testPrime() function, in particular, does not use a mutex lock, so
it’s very possible that a conflict could occur that would crash the program. We’re
only using two threads at this point, so conflicts will be rare, but increasing that
to 4, 10, 20, or more threads, it could be a problem. We’ll deal with that
contingency when the time comes, if necessary.

bool testPrime(biglong candidate)
{

bool prime = true;

//get divisor from the list of primes
BOOST_FOREACH(biglong testDivisor, primes)
{

biglong threadsafe_divisor = testDivisor;

46 Chapter 2 n Working with Boost Threads

//test divisors up through the root of rangeLast
if (threadsafe_divisor * threadsafe_divisor <= candidate)
{

//test primality with modulus
if(candidate % threadsafe_divisor == 0)
{

prime = false;
break;

}
if (!prime) break;

}
else break;

}
return prime;

}

void findPrimes(biglong rangeFirst, biglong rangeLast)
{

thread_counter++;
std::cout � " thread function " � thread_counter � "\n";

biglong candidate = rangeFirst;
if (candidate < 3) candidate = 3;

while(candidate <= rangeLast)
{

bool prime = true;
prime = testPrime(candidate);
if (prime)
{

boost::mutex::scoped_lock lock(mutex1);
primes.push_back(candidate);

}

//next ODD candidate
candidate += 2;

}
}

Spreading Out the Workload 47

New Main Function

Next up is the main function with quite a bit of new code over the previous
Prime Number Test 3 program.

int main(int argc, char *argv[])
{

biglong first = 0;
biglong last = highestPrime;
std::cout�boost::str(boost::format("Calculatingprimesinrange[%i,%i]\n")

% first % last);

timer1.restart();
primes.push_back(2);

std::cout � "creating thread 1\n";
biglong range1 = highestPrime/2;
boost::thread thread1(findPrimes, 0, range1);

std::cout � "creating thread 2\n";
biglong range2 = highestPrime;
boost::thread thread2(findPrimes, range1+1, range2);

std::cout � "waiting for threads\n";
thread1.join();
thread2.join();

double finish = timer1.elapsed();

long primeCount = primes.size();

std::cout � boost::str(boost::format("\nFound %i primes\n")
% primeCount);

std::cout � boost::str(boost::format("Run time = %.8f\n")
% finish);

std::cout � boost::str(boost::format("Candidates/sec = %.2f\n")
% ((double)last / finish));

std::cout � boost::str(boost::format("Primes/sec = %.2f\n")
% ((double)primeCount / finish));

48 Chapter 2 n Working with Boost Threads

//print sampling for verification
std::cout � "\nFirst 100 primes:\n";
int count=0;
BOOST_FOREACH(biglong prime, primes)
{

count++;
if (count < 100)

std::cout � prime � ",";
else if (count == primeCount-100)

std::cout � "\n\nLast 100 primes:\n";
else if (count > primeCount-100)

std::cout � prime � ",";
}
std::cout � "\n";
system("pause");
return 0;

}

Taking It for a Spin

Figure 2.6 shows the output of the new and improved primality test program
with thread support. The results are very impressive. The previous best time for

Figure 2.6
New primality test taking advantage of multiple threads.

Spreading Out the Workload 49

the 10 million candidate primality test was 4.484 seconds, which is a rate of
2,230,151 candidates per second.

The threaded version of this program crunched through the same 10 million
candidates in only 2.869 seconds, a rate of 3,485,535 candidates per second. This
is an improvement of 37% with the addition of just one extra worker thread (for
a total of two). Assuming the cores are available, a processor should be able to
crunch primes even faster with four or more threads.

Getting to Know boost::thread
Let’s go over this program in order to understand how the boost::thread library
works. First of all, you can create a new thread in several ways with boost::thread,
but we’ll focus on just two of them right now. The first way to create a thread is
with a simple thread function parameter:

boost::thread T(threadFunc);

where the threadFunc() function is defined like so:

void threadFunc()
{

. . .

}

As soon as the thread is created, the thread function is called—you do not have
to call any additional function to get it started, it just takes off.

The second way to create a thread (among many) is to create a thread definition
with optional thread function parameters, as we have seen in the threaded prime
number test program.

boost::thread T(threadFunc, 100, 234.5);

By adding the parameters you wish to the thread constructor, boost::thread will
pass those parameters on to the thread function for you—which is obviously
very handy. Here’s an example function:

void threadFunc(int i, double d)
{

. . .

}

50 Chapter 2 n Working with Boost Threads

In this example, you may use the int i and double d parameters however you
wish in the function. However, if you need to return a value by way of a
reference parameter, the value must be passed with the boost reference wrapper,
boost::ref, to properly make the “pass by reference” variable thread safe (the
threaded function cannot return a value directly). Here is an example:

int count = 0;
boost::thread T(threadFunc, boost::ref(&count));
void threadFunc(int &count)
{

. . .

}

Summary
Boost::thread is just the first of four thread libraries we will be examining with
the remaining three covered in the next three chapters: OpenMP, Posix threads,
and Windows threads. These four are the most common/popular thread
libraries in use today in applications as well as games. The prime number
calculations explored in this chapter are meant to inspire your imagination!
Where will you choose to go in your own multi-threaded coding experiments?
Primes can be a lot of fun to explore, and can be very powerful as well—primes
are used extensively in cryptography!

References
1. “Prime number”; http://en.wikipedia.org/wiki/Prime_number.

2. “Largest known prime number”; http://en.wikipedia.org/wiki/Largest_known_
prime_number.

3. “Lucas-Lehmer primality test”; http://en.wikipedia.org/wiki/Lucas%E2%80%
93Lehmer_primality_test.

4. Litt, Steve. “Fun With Prime Numbers”; http://www.troubleshooters.com/
codecorn/primenumbers/primenumbers.htm.

References 51

This page intentionally left blank

Working with OpenMP

This chapter will give you an overview of the OpenMP multi-threading library
for general-purpose multi-core computing. OpenMP is one of the most widely
adopted threading “libraries” in use today, due to its simple requirements and
automated code generation (through the use of #pragma statements). We will
learn how to use OpenMP in this chapter, culminating in a revisiting of our
prime number generator to see how well this new threading capability works.
OpenMP will not be used yet in a game engine context, because frankly we have
not yet built the engine (see Chapter 6). In Chapter 18, we will use OpenMP to
test engine optimizations with OpenMP and other techniques.

This chapter covers the following topics:

n Overview of the OpenMP API

n Advantages of OpenMP

n What is shared memory?

n Threading a loop

n Configuring Visual Cþþ
n Specifying the number of threads

n Sequential ordering

chapter 3

53

n Controlling thread execution

n Prime numbers revisited

Say Hello To OpenMP
In keeping with the tradition set forth by Kernighan & Ritchie, we will begin this
chapter on OpenMP programming with an appropriate “Hello World”–style
program.

#include <omp.h>
int main(int argc, char* argv[])
{

#pragma omp parallel num_threads(4)
printf("Hello World\n");
return 0;

}

Our threaded program produces this output:

HelHelo llWoorWlordl
HdeHellllooWo Wrorld
ld

That’s not at all what one would expect the code to do! We’ll learn why this
happens in this chapter.

What Is OpenMP and How Does It Work?
“Let’s play a game: Who is your daddy and what does he do?”

—Arnold Schwarzeneggar

OpenMP is a multi-platform shared-memory parallel programming API for
CPU-based threading that is portable, scalable, and simple to use.1 Unlike
Windows threads and Boost threads, OpenMP does not give you any functions
for working with individual worker threads. Instead, OpenMP uses pre-processor
directives to provide a higher level of functionality to the parallel programmer
without requiring a large investment of time to handle thread management issues
such as mutexes. The OpenMP API standard was initially developed by Silicon
Graphics and Kuck & Associates in order to allow programmers the ability to write
a single version of their source code that will run on single- and multi-core
systems.2 OpenMP is an application programming interface or API, not an SDK or

54 Chapter 3 n Working with OpenMP

library. There is no way to download and install or build the OpenMP API, just as
it is not possible to install OpenGL on your system—it is built by the video card
vendors and distributed with the video drivers. An API is nothing more than a
specification or a standard that everyone should follow so that all code based on the
API is compatible. Implementation is entirely dependent on vendors. (DirectX, on
the other hand, is an SDK, and can be downloaded and installed.)

OpenMP is an open standard, which means that an implementation is not
provided at the www.openmp.org website (just as you will not find a down-
loadable SDK at the www.opengl.com website, since OpenGL is also an open
standard). An open standard is basically a bunch of header files that describe
how a library should function. It is then up to someone else to implement the
library by actually writing the .cpp files suggested by the headers. In the case of
OpenMP, the single omp.h header file is needed.

Adv i c e

The Express Edition of Visual Studio does not come with OpenMP support! OpenMP was
implemented on the Windows platform by Microsoft and distributed with Visual Studio Professional
and other purchasable versions. If you want to use OpenMP in your Visual Cþþ game projects, you
will need to purchase a licensed version of Visual Studio. It is possible to copy the OpenMP library
into the VC folder of your Visual Cþþ Express Edition (sourced from the Platform SDK), but that
will only allow you to compile the OpenMP code without errors—it will not actually create multiple
threads.

Since we’re focusing on the Windows platform and Visual Cþþ in this book, we
must use the version of OpenMP supported by Visual Cþþ. Both the 2008 and
2010 versions support the OpenMP 2.0 specification—version 3.0 is not supported.

Advantages of OpenMP
OpenMP offers these key advantages over a custom-programmed lower-level
threading library such as Windows threads and Boost threads:3

n Good performance and scalability (if done right).

n De facto and mature standard.

n Portability due to wide compiler adoption.

n Requires little extra programming effort.

What Is OpenMP and How Does It Work? 55

n Allows incremental parallelization of existing or new programs.

n Ideally suited for multi-core processors.

n Natural memory and threading model mapping.

n Lightweight.

n Mature.

What Is Shared Memory?
When working with variables and objects in a program using a thread library,
you must be careful to write code so that your threads do not try to access the
same data at the same time, or a crash will occur. The way to protect shared data
is with a mutex (mutual context) locking mechanism. When using a mutex, a
function or block of code is “locked” until that thread “releases” it, and no other
thread may proceed beyond the mutex lock statement until it is unlocked. If
coded incorrectly, a mutex lock could result in a situation known as deadlock, in
which, due to a logic error, the thread locks are never released in the right order
so that processing can continue, and the program will appear to freeze up (quite
literally since threads cannot continue).

OpenMP handles shared data seamlessly as far as the programmer is concerned.
While it is possible to designate data as privately owned by a specific thread,
generally, OpenMP code is written in such a way that OpenMP handles the
details, while the programmer focuses on solving problems with the support of
many threads. A seamless shared-memory system means the mutex locking and
unlocking mechanism is automatically handled “behind the scenes,” freeing the
programmer from writing such code.

How does OpenMP do this so well? Basically, by making a copy of data that is
being used by a particular thread, and synchronizing each thread’s copy of data
(such as a string variable) at regular intervals. At any given time, two or more
threads may have a different copy of a shared data item that no other thread can
access. Each thread is given a time slot wherein it “owns” the shared data, and
can make changes to it.3 While we will make use of similar techniques when
writing our own thread code in upcoming chapters, the details behind
OpenMP’s internal handling of shared data need not be a concern in a normal
application (or game engine, as the case may be).

56 Chapter 3 n Working with OpenMP

Threading a Loop
A normal loop will iterate through a range from the starting value to the
maximum value, usually one item at a time. This for loop is reliable. We can
count on a sequential processing of all array elements from item 0 to 999 based
on this loop, and know for certain that all 1,000 items will be processed.

for (int n = 0; n < 1000; n++)
c[n] = a[n] + b[n];

When writing threaded code to handle the same loop, you might need to break
up the loop into several, like we did in the previous chapter to calculate prime
numbers with two different threads. Recall that this code:

std::cout � "creating thread 1\n";
biglong range1 = highestPrime/2;
boost::thread thread1(findPrimes, 0, range1);
std::cout � "creating thread 2\n";
biglong range2 = highestPrime;
boost::thread thread2(findPrimes, range1+1, range2);
std::cout � "waiting for threads\n";
thread1.join();
thread2.join();

sends the first half of the prime number candidate range to one worker thread,
while the second half was sent to a second worker thread. There are problems
with this approach that may or may not present themselves. One serious
problem is that prime numbers from both ranges, deposited into the list in
both thread loops, may fill the prime divisor list with unsorted primes, and this
actually breaks the program because it relies on those early primes to test later
candidates. One might find 2, 3, 5, 9999991, 7, 11, 13, and so on. While these are
all still valid prime numbers, the ordering is broken. While some hooks might be
used to sort the numbers as they arrive, we really can’t use the same list when
using primes themselves as divisors (which, as you’ll recall, was a significant
optimization). Going with the brute force approach with just the odd number
optimization is our best option.

Let us now examine the loop with OpenMP support:

#pragma omp parallel for
for (int n = 0; n < 1000; n++)

c[n] = a[n] + b[n];

What Is OpenMP and How Does It Work? 57

The OpenMP pragma is a pre-processor “flag,” which the compiler will use to
thread the loop. This is the simplest form of OpenMP usage, but even this
produces surprisingly robust multi-threaded code. We will look at additional
OpenMP features in a bit.

Configuring Visual Cþþ
An OpenMP implementation is automatically installed with Visual Cþþ 2008
and 2010 (Professional edition), so all you will need to do is enable it within
project properties. With your Visual Cþþ project loaded, open the Project
menu, and select Properties at the bottom. Then open Configuration Properties,
C/Cþþ, and Language. You should see the “OpenMP Support” property at the
bottom of the list, as shown in Figure 3.1. Set this property to Yes, which will
add the /openmp compile option to turn on OpenMP support. Be sure to always
include the omp.h header file as well to avoid compile errors:

#include <omp.h>

Figure 3.1
Turning on OpenMP Support in the project’s properties.

58 Chapter 3 n Working with OpenMP

The compiler you choose to use must support OpenMP. There is no OpenMP
software development kit (SDK) that can be downloaded and installed. The OpenMP
API standard requires a platform vendor to supply an implementation of OpenMP
for that platform via the compiler. Microsoft Visual Cþþ supports OpenMP 2.0.

Adv i c e

For performance testing and optimization work, be sure to enable OpenMP for both the Debug and
Release build configurations in Visual Cþþ.

Exploring OpenMP
Beyond the basic #pragma omp parallel for that we’ve used, there are many
additional options that can be specified in the #pragma statement. We will
examine the most interesting features, but will by no means exhaust them all in
this single chapter.

Adv i c e

For additional books and articles that go into much more depth, see the References section at the
end of the chapter.

Specifying the Number of Threads
By default, OpenMP will detect the number of cores in your processor and
create the same number of threads. In most cases, you should just let OpenMP
choose the thread pool size on its own and not interfere. This should work
correctly with technologies such as Intel’s HyperThreading, which logically
doubles the number of hardware threads in a multi-core processor, essentially
handling two or more threads per core in the chip itself. The simple #pragma

directive we’ve seen so far is just the beginning. But there may be cases where
you do want to specify how many threads to use for a process. Let’s take a look
at an option to set the number of threads.

#pragma omp parallel num_threads(4)
{
}

Note the block brackets. This statement instructs the compiler to attempt to
create four threads for use in that block of code (not for the rest of the program,

Exploring OpenMP 59

just the block). Within the block, you must use additional OpenMP #pragmas to
actually use those threads that have been reserved.

Adv i c e

Absolutely every OpenMP #pragma directive must include omp as the first parameter: #pragma
omp. That tells the compiler what type of pre-processor module to use to process the remaining
parameters of the directive. If you omit it, the compiler will churn out an error message.

Within the #pragma omp parallel block, additional directives can be specified.
Since “parallel” was already specified in the parent block, we cannot use
“parallel” in code blocks nested within or below the #pragma omp parallel level,
but we can use additional #pragma omp options.

Let’s try it first with just one thread to start as a baseline for comparison:

#include <iostream>
#include <omp.h>
using namespace std;
int main(int argc, char* argv[])
{

#pragma omp parallel num_threads(1)
{

#pragma omp for
for (int n = 0; n < 10; n++)
{

cout � "threaded for loop iteration # " � n � endl;
}

}
system("pause");
return 0;

}

Here is the output, which is nice and orderly:

threaded for loop iteration # 0
threaded for loop iteration # 1
threaded for loop iteration # 2
threaded for loop iteration # 3
threaded for loop iteration # 4
threaded for loop iteration # 5
threaded for loop iteration # 6

60 Chapter 3 n Working with OpenMP

threaded for loop iteration # 7
threaded for loop iteration # 8
threaded for loop iteration # 9

Now, change the num_threads property to 2, like this:

#pragma omp parallel num_threads(2)

and watch the program run again, now with a threaded for loop using two
threads:

threaded for loop iteration # threaded for loop iteration # 5
0
threaded for loop iteration # 1
threaded for loop iteration # 2
threaded for loop iteration # 3
threaded for loop iteration # 4
threaded for loop iteration # 6
threaded for loop iteration # 7
threaded for loop iteration # 8
threaded for loop iteration # 9

The first line of output with two strings interrupting each other is not an error;
that is what the program produces now that two threads are sharing the console.
(A similar result was shown at the start of the chapter to help set the reader’s
expectations!) Let’s get a little more bold by switching to four threads:

#pragma omp parallel num_threads(4)

This produces the following output (which will differ on each PC):

threaded for loop iteration # 3
threaded for loop iteration # 0
threaded for loop iteration # 4
threaded for loop iteration # 5
threaded for loop iteration # 1
threaded for loop iteration # threaded for loop iteration # 6
threaded for loop iteration # 8
threaded for loop iteration # 9
threaded for loop iteration # 7
2

Notice the ordering of the output, which is even more out of order than before,
but there are basically pairs of numbers being output by each thread in some
cases (4-5, 8-9). The point is, beyond a certain point, which is quite soon, we lose

Exploring OpenMP 61

the ability to predict the order at which items in the loop are processed by the
threads. Certainly, this code is running much faster with parallel iteration, but
you can’t expect ordered output because the for loop cannot be processed
sequentially. Or can it?

Sequential Ordering
Fortunately, there is a way to guarantee the ordering of sequentially processed
items in a for loop. This is done with the “ordered” directive option. However,
ordering the processing of the loop requires a different approach in the
directives. Now, instead of prefacing a block of code with a directive, it is
moved directly above the for loop and a second directive is added inside the loop
block itself. There is, of course, a loss of performance when enforcing the order
of processing: depending on the data, using the ordered clause may eliminate all
but one thread for a certain block of code.

#include <iostream>
#include <omp.h>
using namespace std;
int main(int argc, char* argv[])
{

#pragma omp parallel for ordered
for (int n = 0; n < 10; n++)
{

#pragma omp ordered
{

cout � "threaded for loop iteration # " � n � endl;
}

}
return 0;

}

This code produces the following output, which is identical to the output
generated when num_threads(1) was used to force the use of only one thread.
Now we’re taking advantage of many cores and still getting ordered output!

threaded for loop iteration # 0
threaded for loop iteration # 1
threaded for loop iteration # 2
threaded for loop iteration # 3
threaded for loop iteration # 4

62 Chapter 3 n Working with OpenMP

threaded for loop iteration # 5
threaded for loop iteration # 6
threaded for loop iteration # 7
threaded for loop iteration # 8
threaded for loop iteration # 9

But, this result begs the question: how many threads are being used? The best
way to find out is to look up an OpenMP function that will provide the thread
count in use. According to the API reference, the OpenMP function omp_get_

num_threads() provides this answer. Optionally, we could open up Task
Manager and note which processor cores are being used. For the imprecise
but gratifying Task Manager test, you will want to set the iteration to a very large
number so that it will run for a few seconds—our current 10 iterations returns
immediately with no discernible runtime. Here’s a new version of the program
that displays the thread count:

#include <iostream>
#include <omp.h>
using namespace std;
int main(int argc, char* argv[])
{

int t = omp_get_num_threads();
cout � "threads at start = " � t � endl;

#pragma omp parallel for ordered
for (int n = 0; n < 10; n++)
{

t = omp_get_num_threads();
#pragma omp ordered
{

cout � t � " threads, loop iteration # " � n � endl;
}

}
return 0;

}

Here is the output:

threads at start = 1
4 threads, loop iteration # 0
4 threads, loop iteration # 1
4 threads, loop iteration # 2

Exploring OpenMP 63

4 threads, loop iteration # 3
4 threads, loop iteration # 4
4 threads, loop iteration # 5
4 threads, loop iteration # 6
4 threads, loop iteration # 7
4 threads, loop iteration # 8
4 threads, loop iteration # 9

Adv i c e

See the References at the end of the chapter for a link to the OpenMP C and Cþþ API, which lists
all of the directives and functions available for use.

Bumping the loop count to 10,000 allows you to watch the CPU utilization in
Task Manager. In Figure 3.2, you can see that all four cores are in use, which
corresponds to the program’s output that showed that four threads were in use.
Each core is only being partially utilized, though, because printing text is a trivial

Figure 3.2
Observing the program running with four threads in Task Manager.

64 Chapter 3 n Working with OpenMP

thing to do, so the total CPU utilization is hovering at just over 50%. The
important thing, though, is that the loop is being processed with multiple
threads and the output is ordered—and therefore predictable!

Controlling Thread Execution
The ordered clause does help to clean up the normal thread chaos that often
occurs, making the result of a for loop predictable. In addition to ordered, there
are other directive options we can use to help guide OpenMP through difficult
parts of our code.

Critical

The critical clause restricts a block of code to a single thread at a time. This
directive would be used inside a parallel block of code when you want certain data
to be protected from unexpected thread mutation, especially when performance
in that particular block of code is not paramount.

#pragma omp critical

Barrier

The barrier clause forces all threads to synchronize their data before code
execution continues beyond the directive line. When all threads have encoun-
tered the barrier, then parallel execution continues.

#pragma omp barrier

Atomic

The atomic clause protects data from thread update conflicts, which can cause a
race (or deadlock) condition. This functionality is similar to what we’ve already
seen in thread mutex behavior, where a mutex lock prevents any other thread
from running the code in the following block until the mutex lock has been
released.

double counter = 0.0;
#pragma omp parallel
{

#pragma omp atomic
counter += 1.0;

}

Exploring OpenMP 65

Data Synchronization
The reduction clause causes each thread to get a copy of a shared variable,
which each thread then uses for processing, and afterward, the copies used by
the threads are merged back into the shared variable again. This technique
completely avoids any conflicts because the shared variable is named in the
reduction clause.

int main(int argc, char* argv[])
{

int count = 0;
omp_set_num_threads(8);
#pragma omp parallel reduction(+:count)
{

count++;
}
cout � "count = " � count � endl;
return 0;

}

This code prints out the following (based on the specified thread count):

count = 8

Try not to be confused by the term “reduction,” as this refers not to a variable
being reduced in value but rather that it is being modified by multiple threads. It
is up to the programmer to be certain the reduction operator (�, in this case)
matches the operation being made to the variable (which was count++). The �
operator simply means that the variable is being increased, or is the result of a
summation, not that it must be incremented by just one. When more than one
variable is being increased, all may be included in the � reduction clause, such as:

#pragma omp parallel reduction(+:a,b,c)

When a different operator is being used on another variable, then additional
reduction clauses may be added to the same #pragma line. For example, the
following code:

int main(int argc, char* argv[])
{

int count = 0;
int neg = 0;
omp_set_num_threads(8);
#pragma omp parallel reduction(+:count) reduction(-:neg)

66 Chapter 3 n Working with OpenMP

{
count++;
neg--;

}
cout � "count = " � count � endl;
cout � "neg = " � neg � endl;
return 0;

}

produces this output:

count = 8
neg = -8

Prime Numbers Revisited
As a comparison, we’re going to revisit our prime number code from the
previous chapter and tune it for use with OpenMP. For reference, Figure 3.3
shows the output of the original project from the previous chapter—which
included no optimizations—not algorithmic or threaded, just simple primality
testing. The resulting output of the 10 million–candidate test was 664,579
primes found in 22.5 seconds.

Now we will modify this program to use OpenMP, replacing the BOOST_FOREACH

statements with simpler for loops that OpenMP requires.

Figure 3.3
The original prime number program with no thread support.

Prime Numbers Revisited 67

#include <string.h>
#include <iostream>
#include <list>
#include <boost/format.hpp>
#include <boost/timer.hpp>
#include <boost/foreach.hpp>
#include <omp.h>

//declare a 64-bit long integer type
typedef unsigned long long biglong;
biglong highestPrime = 10000000;

boost::timer timer1;

std::list<biglong> primes;

int numThreads=0;

long findPrimes(biglong rangeFirst, biglong rangeLast)
{

long count = 0;
biglong candidate = rangeFirst;
if (candidate < 2) candidate = 2;

//while(candidate <= rangeLast)
#pragma omp parallel
{

#pragma omp for
for (long n = candidate; n <= rangeLast; n++)
{

biglong testDivisor = 2;
bool prime = true;

//test divisors up through the root of rangeLast
while(testDivisor * testDivisor <= n)
{

//test with modulus
if (n % testDivisor == 0)
{

68 Chapter 3 n Working with OpenMP

prime = false;
break;

}
//next divisor
testDivisor++;

}

//is this candidate prime?
#pragma omp critical
if (prime)
{

count++;
primes.push_back(n);

}

//count the threads in use
numThreads = omp_get_num_threads();

}
}
return count;

}

int main(int argc, char *argv[])
{

long first = 0;
long last = highestPrime;
std::cout� boost::str(boost::format("Calculating primes in range [%i,%i]\n")

% first % last);

timer1.restart();
long primeCount = findPrimes(0, last);
double finish = timer1.elapsed();

primes.sort();

std::cout � boost::str(boost::format("Found %i primes\n") % primeCount);
std::cout � boost::str(boost::format("Used %i threads\n") % numThreads);
std::cout � boost::str(boost::format("Run time = %.8f\n\n") % finish);

Prime Numbers Revisited 69

std::cout � "First 100 primes:\n";
int count=0;
BOOST_FOREACH(biglong prime, primes)
{

count++;
if (count < 100)

std::cout � prime � ",";

else if (count == primeCount-100)
std::cout � "\n\nLast 100 primes:\n";

else if (count > primeCount-100)
std::cout � prime � ",";

}
std::cout � "\n";

system("pause");
return 0;

}

We can now compare the two results with the original time and the time for the
OpenMP version shown in Figure 3.4. Despite having no optimizations, our

Figure 3.4
Multi-threaded OpenMP version of the unoptimized prime number program.

70 Chapter 3 n Working with OpenMP

multi-threaded OpenMP version of the brute force, unoptimized prime number
program runs three times faster, shaving the time from 22.5 seconds down to
just 8.3! This is due to the number of threads being created automatically by
OpenMP. Task Manager is shown in Figure 3.5, showing all four processor cores
maxed out by OpenMP while the program is crunching prime numbers.

Summary
OpenMP is a powerful tool for parallel programming, and this chapter has
provided a useful introduction to the subject. We will certainly be using
OpenMP and its many directives and clauses to optimize game engine code
in upcoming chapters. More specifically, a threaded version of the game engine
developed in Part II will be threaded with OpenMP in Chapter 18.

Figure 3.5
OpenMP automatically detects the number of hardware threads available in the CPU and makes use of
them.

Summary 71

References
1. “About OpenMP and OpenMP.org”; Feb. 27, 2010. http://openmp.org/wp/

about-openmp/.

2. Chapman, B.; Jost, G.; and van der Pas, R. Using OpenMP: Portable Shared
Memory Parallel Programming. Cambridge: The MIT Press 2007.

3. van der Pas, R. An Overview of OpenMP 3.0 [PowerPoint slides] 2009.
Retrieved from the 2009 International Workshop on OpenMP website:
https://iwomp.zih.tu-dresden.de/downloads/2.Overview_OpenMP.pdf.

“32 OpenMP Traps For Cþþ Developers”; March 6, 2010. http://www.
viva64.com/content/articles/parallel-programming/?f=32_OpenMP_traps.
html&lang=en&content=parallel-programming.

“OpenMP C and Cþþ Application Program Interface”; March 2002. http://
www.openmp.org/mp-documents/cspec20.pdf.

72 Chapter 3 n Working with OpenMP

Working with POSIX
Threads

In this chapter, you will learn how to create threads using the POSIX threads
(“Pthreads”) library—a popular cross-platform thread library that is part of the
core Linux operating system and available for other platforms such as Win-
dows1. A thread is a set of instructions—usually running in a while loop within a
special thread function—that runs in parallel with other sets of instructions (or
threads) in a program. In a multi-core system with a multi-tasking operating
system, every program has at least one thread, and it is the job of the operating
system to assign each process to one of the processor cores. Unless the operating
system—and the processor—has this capability, no amount of threading will
improve performance. In the case of a simple processor, such as the Atom found
in many netbook PCs, there is only one core available. While a single-core
processor may run fast enough, and have enough bandwidth, to handle many
threads, the time slicing will cause a greater degradation of system performance
as more and more threads are launched. In the case of a single core system, a
multi-threaded game engine will possibly run more slowly due to time slicing.
We have covered a lot of ground so far, so in this chapter we will take it a bit
slower and cover more of the theory behind multi-threaded programming.

This chapter will cover the following topics:

n Thread theory in a nutshell

n Putting POSIX threads to work

chapter 4

73

n Installing the Pthreads library

n Creating a new thread

n The thread function

n Killing a thread

n Mutexes: making data threads safe

Introducing the POSIX Threads Library
Every modern operating system uses threads for essential and basic operation
and would not even function without thread support. I will not go into the
specific details of POSIX thread programming because we covered general-
purpose thread theory in the previous two chapters. The goal of this chapter is to
provide a solid overview of the most important features with enough detail to
effectively use POSIX threads in a program. Most Linux and UNIX operating
system flavors will already have the Pthreads library installed because it is a core
feature of the kernel. Windows uses its own multi-threading library, but we will
be able to use Pthreads via the SDK files (available in this chapter’s resources–
www.courseptr.com/downloads). An important thing you should know about
the Windows implementation of Pthreads is that it uses Windows threading
behind the scenes, so to speak, with function wrappers to make the Windows
threading function like POSIX threads. Fortunately, the two are already similar.

Thread Theory in a Nutshell
To be multi-threaded, a program will create at least one thread (running in a
unique thread function) that will run in parallel with that program’s main loop.
Any time a program uses more than one thread, you must take extreme caution
when working with data that is potentially shared between threads. It is
generally safe for a program to share data with a single thread (although it is
not recommended), but when more than one thread is in use, you must use a
protection scheme to protect the data from being manipulated by two or more
threads at the same time.

To protect data, you can make use of a mutex (a mutual exclusion construct)
that will lock data inside a single thread until it is safe to unlock the data again.
By “lock,” what I mean is, no other thread can proceed beyond the mutex lock

74 Chapter 4 n Working with POSIX Threads

source code line until that lock is released. Think of it as a roadblock on an
interstate highway—and imagine how much the traffic can become backed up if
not used wisely! The locking and unlocking is usually done inside a while loop
that runs continuously inside the thread function. Note that if you do not have a
loop inside your thread function, it will run once and terminate with the
function. The idea is to keep the thread running—doing something—while the
main program is doing the delegating work. You should think of a thread as a
new employee who has been hired to alleviate the amount of work done by the
program (or rather, by the main thread).

We can easily discuss the subject today as if it’s just another SDK, but threading
was at one time an extraordinary achievement that was every bit as exciting as
the first connection in ARPAnet in 1969 or the first working version of UNIX.
In the 1980s, parallel programming was as hip as virtual reality, but like the
latter, it was not to be a true reality until the early 1990s. Multi-core program-
ming with threads is a form of parallel processing that has been effective in
modern operating systems. The breakthrough in parallel processing theory came
when software engineers realized that the processor is not the focus; rather,
software design is.

A single-processor system should be able to run multiple threads. Once that goal
was realized, adding two or more processors to a system provided the ability to
delegate those threads, and this was a job for the operating system. No longer
tasked with designing a parallel-processing architecture in the hardware,
engineers in both the electronics and software fields abstracted the problem
so the two were not reliant upon each other. A single program can run on a
motherboard with four CPUs or a single CPU with four or six or more cores,
and push all of those cores to the limit—if that single program invokes multiple
threads. As such, the programs themselves were treated as single threads. And
yet, there can be many single-threaded programs running on our hypothetical
multi-core system, and it might not be taxed at all. It depends on what each
program is doing. As far as the operating system is concerned, though, there is
no difference between a four-processor motherboard and a four-core pro-
cessor—threads are still delegated to available cores.

Math-intensive processes, such as 3D rendering, can eat a single processor core
for breakfast. But with hardware threads and thread support in modern

Introducing the POSIX Threads Library 75

operating systems, programs such as 3D Studio Max, Maya, LightWave, and
Photoshop can invoke threads to handle intense processes, such as scene
rendering and image manipulation. Suddenly, that hexa-core Mac is able to
process a Photoshop image in four seconds, while it might have taken 40
seconds on an old single-core Mac! Why? Threads and multiple processor cores
are not limited to just the CPU side of a computer—we can also take advantage
of massive threading capabilities in modern GPUs as well (to a much greater
extent!) with SDKs like CUDA and Direct Compute.

However, just because a single program is able to share four cores, that doesn’t
mean each thread is an independent entity. Any global variables in the program
(main thread) can be used by the invoked threads as long as care is taken that
data is not damaged. Imagine 10 children grasping for an ice cream cone at the
same time and you get the picture. What your threaded program must do is
isolate the ice cream cone for each child, and only make the ice cream cone
available to the others after that child has released it. Massively parallel
computing tends to work best on sequential streams of data, which is why
GPU computing is based around stream processing2.

How does this concept of threading relate to processes? Modern operating
systems treat each program as a separate process, allocating a certain number of
microseconds to each process. This is where we get the term multi-tasking; many
processes can be run at the same time using a time-slicing mechanism. A process
owns a heap (the thing used for global variables and dynamically allocated
memory via new or malloc). The process heap is shared by all the threads in the
process. Each thread in the process (the main thread and any additional worker
threads you start) gets its own stack (used for local variables). Even though we
have multi-core computers today, the operating systems still perform pre-
emptive time slicing on all processes.

Putting POSIX Threads to Work
There are two ways to use threads to offload processing from your game loop.
The first method is to write a thread function that runs once and then returns.
The second method is to write a thread function with its own while loop that
runs continually in parallel with your game loop. There are advantages and
drawbacks to both methods. The single-run function method uses more

76 Chapter 4 n Working with POSIX Threads

processor cycles because the thread function is being called many times per
second, but it will result in fewer mutex waits (which happens when the thread is
locked by another process). The continually running function with its own while
loop is more efficient because it is only called once in order to run in parallel, but
the drawbacks are less versatility and more instances of mutex waits. Neither
method is better than the other, as both types of thread function will be useful in
a game. I tend to favor the single-run thread functions over the embedded loop
function method, if only because it allows for smaller, more mission-specific
functions. There’s no reason why you cannot write many single-purpose thread
functions that run once depending on the conditions in the game.

Let me give you some examples to help you visualize both scenarios. First, you
have a game that creates a thread before launching its own main loop. Inside the
thread function, you have programmed it to update all of the sprites in the entity
manager. Since the entities are created on the heap with new, each entity in the
list is really just a pointer. Thus, iterating through the entity list means we go
through a list of pointers to gain access to each mesh or sprite object in the list.
The thread function runs in a tight loop with no timing whatsoever, so it runs
really fast. In your game loop, however, each time an entity is updated, there is a
call to the update function in your game’s source code, and a pointer to the
entity is passed to this function each time. Now, if your tightly written thread
loop tried to read data in a specific sprite while the function was writing data to
the same entity, that would crash the program—or lock the thread due to the
mutex, which would cause the game to freeze.

Let’s take a look at this scenario from the single-run thread function point of
view. Let’s say we have a list of entities (which can contain sprites, meshes, etc.),
which is iterated and a thread function is called to update each entity (with
movement, animation, collision detection, and so forth). But now, most of that
processing is being called from the game loop, not from the thread loop.
Whenever we need to update an entity, a thread function is called, and when
that update is finished, the thread is terminated. Our game experiences quite a
bit of overhead with all of the function calls, but the advantage is that now we
can update an entity in the update function without causing a mutex lock. How?
If, inside one of the single-run thread functions, we experience a thread lock,
that thread will wait until the lock is released, and it will then finish its
processing and kill the thread. However, in a tight thread loop, the mutex in

Introducing the POSIX Threads Library 77

the main program could be locked instead! This could potentially lock up the
game loop. Although the engine’s threads would continue to run just fine
(hogging the system, so to speak), the game loop that communicates by way of
our event function would be interrupted. We can predict this because the game
loop has timing code in it. That timing code means the game loop can be easily
interrupted. The thread loop will have no such timing code, because it is
designed to run as fast as possible.

As you can imagine, a lot of thought must be put into a multi-threaded game
engine before we just haphazardly create a tight thread function at engine
startup and then assume that, with our newfound threading power, the engine
will run faster. In reality, the thread locks are probably slowing it down!

Returning to the subject of single-run thread functions, there is another draw-
back that I have not mentioned yet. When you create a new thread, the point in
the program where the thread was created continues to the next statement. The
program doesn’t need to wait until the thread function returns before it executes
the next line. This means we can actually create many threads simultaneously,
with each one updating a single object in memory without conflict. This is
inevitably faster than a monolithic thread function if we have a multi-core
processor, since a looping thread will only utilize a single core. Our multiple-
thread function call theory would utilize multiple cores, since the operating
system decides where threads are run and balances them among all available
processor cores.

The drawbacks seem to outweigh the advantages to the single-run threads. Since
the threads are being created and destroyed thousands of times per second, the
overhead will be high, outweighing any advantages we would otherwise gain by
supporting any number of processor cores. In addition, creating and destroying
threads repeatedly can cause some instability in the framerate of the game loop,
making it difficult to maintain a smooth and reliable core. One alternative is to
pre-allocate a thread pool and recycle threads when they have completed, so that
the overhead of creating and destroying threads is minimized. Another approach is
to use thread functions containing while loops to handle updates—one function for
rendering, another for collision detection, another for physics, and so on. In any
event, experimentation is needed to find the best solution for a given game, as there
is no “one size fits all” solution to threading in a game engine.

78 Chapter 4 n Working with POSIX Threads

Installing The Pthreads Library
The Pthreads library is open source, and the current version at the time of this
writing is 2.8.0. I have chosen not to distribute the complete sources for Pthreads
and have only included the SDK (libs, dlls, and headers). You can download the
Pthreads library and find documentation at http://sources.redhat.com/pthreads-
win32. I encourage you to browse the site and get the latest version of Pthreads-
Win32 from Red Hat. The Pthreads library is composed of three header files, a
library file, and a DLL runtime file (which must be distributed with the
program’s executable). The Pthreads SDK includes these files:

n pthread.h

n sched.h

n semaphore.h

n pthreadVC2.lib

n pthreadVC2.dll

These files can be copied to your compiler’s .\include folder, or you can add a
folder to your compiler’s include path so that it can find the Pthreads headers
(wherever you have copied them to your hard drive).

Adv i c e

Due to the way the Pthreads headers are defined (sched.h and semaphore.h are included with
< > brackets instead of “” quotes), you cannot simply copy the files into your project locally—they
must be referenced by your compiler. That means you must add the pthreads-w32-2-8-0-release
\Pre-built.2\include and pthreads-w32-2-8-0-releasePre-built.2\lib folders to your compiler’s include
and library search paths. In Visual C++, that is found under Tools, Options, Projects and Solutions,
VC++ Directories.

Second, you must copy the Pthreads library file into your compiler’s .\lib folder,
or add a library path to your compiler. For Visual C++, the library file is called
pthreadVC2.lib. You can add it to the list of additional dependencies by its
filename or just copy the file into your project’s folder.

Third, to run a program compiled with the Pthreads library, you must include
the runtime library file pthreadVC2.dll with your program’s exe file.

Introducing the POSIX Threads Library 79

Adv i c e

In the book’s resource folder (www.jharbour.com/forums or www.courseptr.com/downloads) you
will find a folder called .\libraries\pthreads-w32-2-8-0-release that includes ready-to-use headers,
libs, and DLLs for Visual C++.

Programming with Pthreads
Because this chapter is covering Pthreads with a hands-on or applied approach,
and is not intended to be a comprehensive Pthreads reference, I am going to
cover the key functions in this section and let you pursue the full extent of
Pthreads on your own using additional references. You will learn enough here to
create and destroy threads using Pthreads and to use mutexes, but we will not go
into advanced features.

Creating a New Thread

First of all, how do you create a new thread using Pthreads? New threads are
created with the pthread_create function.

int pthread_create (
pthread_t *tid,
const pthread_attr_t *attr,
void *(*start) (void *),
void *arg);

The first parameter is a pthread_t struct variable. This struct is large and
complex, and you really don’t need to know about the internals to use it.

Adv i c e

“Ignorance is bliss,” to quote Cipher from The Matrix. If you want more information about
Pthreads, I encourage you to pick up Butenhof’s book Programming with POSIX Threads as a
reference.

The second parameter is a pthread_attr_t struct variable that usually contains
attributes for the new thread. This is not usually used, so you can pass NULL to it.

The third parameter is a pointer to the thread function used by this thread for
processing. This function should contain its own loop, but should have exit logic
for the loop when it’s time to kill the thread.

80 Chapter 4 n Working with POSIX Threads

The fourth parameter is a pointer to a numeric value for this thread to uniquely
identify it. You can just create an int variable and set it to a value before passing
it to pthread_create.

Here’s an example of how to create a new thread:

int id;
pthread_t pthread0;
int threadid0 = 0;
id = pthread_create(&pthread0, NULL, thread0, (void*)&threadid0);

The Thread Function

So you’ve created this thread, but what about the thread function? Oh, right.
Here’s an example:

void* thread_function(void* data)
{

int my_thread_id = *((int*)data);
while(!done)
{

//do something!
}
return 0;

}

Killing a Thread

This brings us to the pthread_exit function, which terminates the thread.
Normally, you’ll want to call this function only if you need to kill a thread
forcefully, since a thread will end automatically when its function returns. Here’s
the definition for the function:

void pthread_exit (void *value_ptr);

You can get away with just passing NULL to this function because value_ptr is
an advanced topic for gaining more control over the thread.

Mutexes: Making Data Threads Safe

At this point, you can write a multi-threaded program with only pthread_

create and a thread function, knowing how to create the function and use it.
That is enough if you only want to create worker threads to run inside the
process with your program’s main thread. But more often than not, you will

Introducing the POSIX Threads Library 81

want to share data with two or more threads. Recall the ice cream cone analogy.
Are you sure that new thread won’t interfere with any global variables? Have you
considered timing? What if you are using a thread for rendering while another
thread is writing to the back buffer? Most memory chips cannot read and write
data at the same time. It is very likely that you’ll update a small portion of
the buffer (by drawing a sprite, for instance) while the buffer is being blitted to
the screen. The result is some unwanted flicker—yes, even when using a double
buffer. That’s the best-case scenario—most likely, accessing the same memory
will cause the program to crash (i.e., to segfault). What you have here is a
situation that is similar to a vertical refresh conflict, only it is occurring in
memory rather than directly on the screen. What I am trying to point out is that
threads can step on each other’s toes, so to speak, if you aren’t careful to use a
mutex. And, in any event, we can’t use multiple threads for rendering with
Direct3D so it’s a moot point!

A mutex is a block used in a thread function to prevent other threads from
running until that block is released. Assuming, of course, that all threads use the
same mutex, it is possible to use more than one mutex in your program. The
easiest way is to create a single mutex, and then block the mutex at the start of
each thread’s loop, unblocking at the end of the loop. Creating a mutex doesn’t
require a function; rather, it requires a struct variable. In our simplistic approach
here, I’m using only a single mutex for the entire program, but in practice you
would want to use many mutexes.

//create a new thread mutex to protect variables
pthread_mutex_t threadsafe = PTHREAD_MUTEX_INITIALIZER;

This line of code will create a new mutex called threadsafe that, when used by all
the thread functions, will prevent data read/write conflicts. You must destroy the
mutex before your program ends; you can do so using the pthread_mutex_destroy

function.

int pthread_mutex_destroy (pthread_mutex_t *mutex);

Here is an example of how it would be used:

pthread_mutex_destroy(&threadsafe);

Next, you need to know how to lock and unlock a mutex inside a thread
function. The pthread_mutex_lock function is used to lock a mutex.

int pthread_mutex_lock (pthread_mutex_t * mutex);

82 Chapter 4 n Working with POSIX Threads

This has the effect of preventing any other threads from locking the same mutex,
so any variables or functions you use or call (respectively) while the mutex is
locked will be safe from manipulation by any other threads. Basically, when a
thread encounters a locked mutex, it waits until the mutex is available before
proceeding. (It uses no processor time; it simply waits.)

Here is the unlock function:

int pthread_mutex_unlock (pthread_mutex_t * mutex);

The two functions just shown will normally return zero if the lock or unlock
succeeded immediately; otherwise, a non-zero value will be returned to indicate
that the thread is waiting for the mutex. This should not happen for unlocking,
only for locking. If you have a problem with pthread_mutex_unlock returning non-
zero, it means the mutex was locked while that thread was supposedly in control
over the mutex—a bad situation that should never happen. But when it comes to
game programming, bad things do often happen while you are developing a new
game, so it’s helpful to print an error message for any non-zero return.

ThreadDemo Program
We need an example to see how threading works and to see how the Pthreads
library is used. The ThreadDemo program is a simple example of Pthreads so
you can learn from it.

There are two ways to handle thread synchronization and completion. First, the
Pthreads way, is to call pthread_join for every thread we’ve created, which will
cause the main program to pause until all threads have finished and returned
from their functions.

for (int n = 0; n < THREADS; n++)
pthread_join(threads[n], 0);

When we use this technique, there is no need to keep track of the thread count or
wait for the “done” variable to be changed (an imprecise approach to the problem).

Another way to handle thread synchronization with our main program is to
keep track of the thread count. Increment a variable when the thread function
begins, and decrement it when the thread function is about to end.

In our thread function:

thread_counter++;
while(!done)

Introducing the POSIX Threads Library 83

{
. . .

}
thread_counter--;

In the main function of our program, we can then wait for the thread counter to
reach zero before proceeding, as this will mean all worker threads have finished
their work.

while (thread_counter > 0)
{

// idle time for any use
}

I have left both techniques in the source code listing so you can experiment with
them. Using pthread_join is the safest approach, but then your main program is
basically in a locked state until all threads complete. That might be exactly how
you want the program to behave, but it depends on the situation, so knowing
about both techniques is helpful.

Figure 4.1 shows the Task Manager while the ThreadDemo program is running.

Figure 4.1
Processor core usage in Task Manager while ThreadDemo is running.

84 Chapter 4 n Working with POSIX Threads

ThreadDemo Source Code
#include <pthread.h>
#pragma comment(lib,"pthreadVC2.lib")

#include <iostream>
#include <string>
using namespace std;

#include <boost/timer.hpp>

const long MAX = 100 * 1000000;
long counter = 0;

const int THREADS = 8;
pthread_t threads[THREADS];

//create a thread mutex variable
pthread_mutex_t mutex = PTHREAD_MUTEX_INITIALIZER;

bool done = false;
//int thread_counter = 0; //optional use

void* thread_function(void* data)
{

boost::timer t;
//thread_counter++; //optional use
int id = *((int*)data);
while(!done)
{

//lock the mutex
pthread_mutex_lock(&mutex);

counter++;
if (counter > MAX)

done = true;

//unlock the mutex
pthread_mutex_unlock(&mutex);

}
//thread_counter--; //optional use

Introducing the POSIX Threads Library 85

cout � "thread " � id � " time = " � t.elapsed() � endl;
return 0;

}

int main(int argc, char argv[])
{

cout � "Thread Demo" � endl;
boost::timer timer1;

//create the thread(s)
for (int n = 0; n < THREADS; n++)
{

cout � "Creating thread " � n � endl;
int mythread_id = n;
pthread_create(&threads[n], NULL, thread_function, (void*)&mythread_id);

}

cout � "Done creating threads" � endl;

//now we wait for threads to finish
cout � "Waiting for threads." � endl;

//wait for all threads to complete //first option
for (int n = 0; n < THREADS; n++)

pthread_join(threads[n], 0);

// Now in a wait state until all thread functions return

//while (thread_counter > 0) //second option
//{

//use the idle time
//}
pthread_mutex_destroy(&mutex);

cout � "Counter = " � counter � endl;
cout � "Run time = " � timer1.elapsed() � endl;
system("pause");
return 0;

}

86 Chapter 4 n Working with POSIX Threads

Here is the output from the ThreadDemo program with 8 threads. Note that
each thread reports about the same runtime, because each thread continues to
increment the counter until the threshold is reached. As a result, the final
counter value will be a bit higher than the target value while the rest of the
threads finish one last loop.

Thread Demo
Creating thread 0
Creating thread 1
Creating thread 2
Creating thread 3
Creating thread 4
Creating thread 5
Creating thread 6
Creating thread 7
Done creating threads
Waiting for threads.
thread 3 time = 17.993
thread 7 time = 17.96
thread 6 time = 17.977
thread 2 time = 17.995
thread 1 time = 17.997
thread 5 time = 17.984
thread 0 time = 18
thread 4 time = 17.986
Counter = 100000007
Run time = 18.021

Here is the output from the program using only 4 threads. This version is a bit
more effective since the PC being used in this example is a quad-core Intel
Q6600. If you have a CPU with eight or more hardware threads, such as an Intel
Core i7, then you will see an improvement to the 8-thread version of the
program.

Thread Demo
Creating thread 0
Creating thread 1
Creating thread 2
Creating thread 3
Done creating threads
Waiting for threads.

Introducing the POSIX Threads Library 87

thread 0 time = 13.029
thread 2 time = 13.025
thread 1 time = 13.027
thread 3 time = 13.024
Counter = 100000004
Run time = 13.04

Comparing Single-thread Results

Now that we have some good data representing multi-threaded results, let’s take
a look at the output from a single-thread run of the program.

Thread Demo
Creating thread 0
Done creating threads
Waiting for threads.
thread 0 time = 4.174
Counter = 100000001
Run time = 4.178

Oh no! This result is about two to three times faster than the more highly
threaded versions of the ThreadDemo program! And I was feeling pretty
confident about the results. This just goes to show that you must test your
results several ways before deciding on a technique to use. So, why were the
threaded results so much slower than a single-core version? The slowdown
occurs inside the thread function due to the mutex locks. The while loop running
inside that thread function is very tight and fast, meaning there are a lot of
mutex roadblocks preventing threads from processing the counter variable.

What alternatives are there to this problem? We ran into a similar problem back
in the boost::thread chapter, as you may recall. First of all, we are leaving all of
the “thinking” in this program to the thread function: counting to 100 million
with the conditional logic inside the while loop. It’s better if a thread is allowed
to run without having to “think” very much. So, what we need to do is split up
the problem so that each thread can crunch the numbers exclusively, without
sharing or mutex problems. There will be just one time when the mutex is
used—to update our global counter variable with the local counter used in the
function (without any concern for conflicts). Let’s update the code.

#include <pthread.h>
#pragma comment(lib,"pthreadVC2.lib")

88 Chapter 4 n Working with POSIX Threads

#include <iostream>
#include <string>
using namespace std;
#include <boost/timer.hpp>

const long MAX = 100 * 1000000;
long counter = 0;
const int THREADS = 4;
pthread_t threads[THREADS];
pthread_mutex_t mutex = PTHREAD_MUTEX_INITIALIZER;
bool done = false;

void* thread_function(void* data)
{

boost::timer t;
int id = *((int*)data);
long local_counter = 0;

long range = MAX / THREADS;
for (long n = 0; n < range; n++)
{

local_counter++;
}

pthread_mutex_lock(&mutex);

//update global counter
counter += local_counter;
if (counter > MAX) done = true;
cout � "counter = " � counter � endl;

pthread_mutex_unlock(&mutex);

cout � "thread " � id � " time = " � t.elapsed() � endl;
return 0;

}

int main(int argc, char argv[])
{

cout � "Thread Demo 2" � endl;

Introducing the POSIX Threads Library 89

boost::timer timer1;

//create the thread(s)
for (int id = 0; id < THREADS; id++)
{

cout � "Creating thread " � id � endl;
pthread_create(&threads[id], NULL, thread_function, (void*)&id);

}

cout � "Done creating threads" � endl;
cout � "Waiting for threads." � endl;

//wait for all threads to complete
for (int n = 0; n < THREADS; n++)

pthread_join(threads[n], 0);

pthread_mutex_destroy(&mutex);

cout � "Counter = " � counter � endl;
cout � "Run time = " � timer1.elapsed() � endl;
system("pause");
return 0;

}

This new version, called ThreadDemo 2, produces slightly improved results (to
put it mildly!). Here is a new 4-thread result that’s more realistic since thread
lock is not hampering performance. The runtime is 0.077 seconds (77 ms).

Thread Demo 2
Creating thread 0
Creating thread 1
Creating thread 2
Creating thread 3
Done creating threads
Waiting for threads.
counter = 25000000
thread 1 time = 0.06
counter = 50000000
thread 2 time = 0.062
counter = 75000000
thread 4 time = 0.058
counter = 100000000

90 Chapter 4 n Working with POSIX Threads

thread 3 time = 0.065
Counter = 100000000
Run time = 0.077

And, for comparison, let’s run the 8-thread version with a counter target of 10
billion (up from 100 million). The result is only 1.094 seconds! In this new
example, having more threads actually helped, because, as you can see, the first
few threads finished before the main program had a chance to create all of the
threads! What we’re seeing here is pipeline optimizations occurring inside the
CPU, thanks to an optimizing compiler. Be sure to run your performance code
with Release build.

Thread Demo 2
Creating thread 0
Creating thread 1
Creating thread 2
Creating thread 3
Creating thread 4
Creating thread 5
Creating thread 6
Creating thread 7
Done creating threads
Waiting for threads.
counter = 176258176
thread 5 time = 0.566
counter = 352516352
thread 8 time = 0.754
counter = 528774528
thread 3 time = 0.791
counter = 705032704
thread 2 time = 0.874
counter = 881290880
thread 8 time = 0.863
counter = 1057549056
thread 8 time = 0.972
counter = 1233807232
thread 1 time = 1.064
counter = 1410065408
thread 8 time = 1.002
Counter = 1410065408

Runtime = 1.094

Introducing the POSIX Threads Library 91

Table 4.1 shows the results of the program running with various MAX and
THREADS values. Included in the table are results for much higher MAX ranges
just for a general comparison.

Summary
Writing a multi-threaded game is now even closer to reality with the new
knowledge gained in this chapter about Pthreads. Performing a mere accumu-
lation on a variable is hardly a test worthy of benchmark comparison, but the
examples were meant to be simple to understand rather than technically
intriguing. I recommend performing some real calculations in the thread worker
function to put the CPU cores and Pthreads code to the test more effectively.
Next, it’s up to you to ultimately decide which of the four threading libraries is
most effective: Boost threads, OpenMP, Windows threads, or Pthreads? We have
yet to cover Windows threads in any detail, so that is the topic for the next
chapter.

Table 4.1 ThreadDemo Results (Intel Q6600 CPU*)

VERSION MAX THREADS TIME (sec)

global counter 100,000,000 4 13.04

global counter 100,000,000 8 18.021

global counter 100,000,000 1 4.178

local counter 100,000,000 4 0.077

local counter 100,000,000 8 0.092

local counter 100,000,000 1 0.275

local counter 1,000,000,000 4 0.822

local counter 1,000,000,000 8 0.741

local counter 1,000,000,000 1 2.635

local counter 10,000,000,000 4 1.028

local counter 10,000,000,000 8 1.094

local counter 10,000,000,000 1 3.73

*Note: For a precise comparison with other systems, this Core2Quad
Q6600 CPU has been overclocked from the base 2.4 to 2.6 GHz.

92 Chapter 4 n Working with POSIX Threads

References
1. “Pthreads-Win32”; http://sourceware.org/pthreads-win32/.

2. “Stream processing”; http://en.wikipedia.org/wiki/Stream_processing.

Butenhof, David R. Programming with POSIX Threads. Unknown City:
Addison-Wesley 1997.

“Pthreads Tutorial”; http://students.cs.byu.edu/~cs460ta/cs460/labs/pthreads
.html.

References 93

This page intentionally left blank

Working with Windows
Threads

This chapter explores the threading library built into Windows. Using Windows
threads is a bit easier than either POSIX threads or Boost threads because
Windows threading is already installed with Visual Cþþ and available via
windows.h, so there is no extra effort needed on our part to use Windows
threads. We’ll see how to create and control a thread in this chapter, which will
be familiar to you by now after covering both POSIX threads and Boost threads
previously. The differences in the thread support built into Windows is minimal
as the same concepts are found here.

Topics covered in this chapter include:

n Exploring Windows threads

n Creating a thread

n Controlling thread execution

n The thread function

n Thread function parameters

Exploring Windows Threads
The Windows Platform SDK and the other support files installed with Visual Cþþ
provide support for threads via just the windows.h header file. We will learn how
to invoke a new thread, via a thread function, and control it to a limited degree.

chapter 5

95

First, let’s begin with a simple example to give you a feel for the overall process
of using Windows threads.

Quick Example
The simplest example of using a Windows thread involves creating a new thread
with the CreateThread() function and then calling the WaitForSingleObject()

function to pause execution of the main program until the thread has finished
running (when the thread function returns). I always like to see a quick, simple
example of a new library or algorithm, so here is one such example for you.
We’ll go over Windows threads in more detail and cover additional features in
the next section.

#include <windows.h>
#include <iostream>
DWORD WINAPI threadFunction1(void* data)
{

std::cout � "threadFunction1 running\n";
return 0;

}
int main(int argc, char argv[])
{

HANDLE thread1 = NULL;
std::cout � "creating thread\n";
thread1 = CreateThread(NULL,0,&threadFunction1,NULL,0,NULL);
WaitForSingleObject(thread1,0);
return 0;

}

That quick example produces the following output. However, if the thread starts
running before the console finishes printing the text passed to std::cout, it’s
possible that the two lines could be garbled together—this happens frequently
when working with threads.

creating thread
threadFunction1 running

Creating a Thread
The CreateThread() function is used to create a thread:

CreateThread(
LPSECURITY_ATTRIBUTES lpThreadAttributes,

96 Chapter 5 n Working with Windows Threads

SIZE_T dwStackSize,
LPTHREAD_START_ROUTINE lpStartAddress,
LPVOID lpParameter,
DWORD dwCreationFlags,
LPDWORD lpThreadId

);

The parameters of CreateThread() are explained in the following table.

lpThreadAttributes Security attributes (usually NULL)
dwStackSize Initial stack size (0 for default)
lpStartAddress Address to thread function
lpParameter Pointer to parameter variable passed to function
dwCreationFlags Thread creation flags (usually 0)
lpThreadId Pointer to a variable for the thread id

Every thread needs a HANDLE variable (a renamed void* pointer), so this variable
must be global or managed by a class.

HANDLE thread1 = NULL;

If you want to know the identifier value assigned to a new thread, that value is
passed back in the last parameter—threadid. The data type is LPDWORD, which is
defined as a DWORD*, or unsigned long*.

LPDWORD threadid = NULL;

Sample usage:

thread1 = CreateThread(NULL,0,&threadFunction1,NULL,0,threadid);

If the return value (thread1) is NULL, then an error occurred during the thread
creation process. This is rare. About the only thing that could cause an error is a
bad memory location specified for the thread function, thread parameter, or
thread identifier.

Controlling Thread Execution
The dwCreationFlags parameter is of particular interest, since we can use the
constant CREATE_SUSPENDED to create a thread that starts off in a suspended state,
waiting for us to call ResumeThread() to allow it to launch. This can be helpful if
we want to do any housekeeping before the thread function begins running.

Exploring Windows Threads 97

DWORD WINAPI ResumeThread(
HANDLE hThread

);

We can control the execution of a thread by using the CREATE_SUSPENDED flag as a
parameter when calling CreateThread(). First, we create the new thread:

thread1=CreateThread(NULL,0,&threadFunction1,NULL,CREATE_SUSPENDED,threadid);

Then we start it running by calling ResumeThread():

ResumeThread(thread1);

The Thread Function
The thread function starts executing when the thread is created. Normally, a
thread function will have some distinct process to run, such as sorting data in a
list or reading a file. But often a thread function will contain a while loop and it
will continue to run for a longer period in parallel with the main program.
When this is the case, we get into difficulties with sharing global variables, which
is not permitted—no two threads can access the same memory location at the
same time without causing a serious crash (a page fault on most systems).

Here is the definition of a thread function with the correct return type and
parameter type. Use the address of your thread function name when creating a
new thread. The LPVOID parameter is defined as void*.

DWORD WINAPI function(LPVOID data);

Thread Function Parameters
We have been passing NULL for the thread function parameter when creating a new
thread, but this parameter can be a variable declared as a simple data type or a struct.
There are many reasons why you might need to pass data into a thread function: to
specify how many items to process, or a pointer to a buffer in memory, for instance.
The only real drawback to using parameters with Windows threads is the ugly way
in which the parameter data must be created (on the heap), maintained via pointers,
and destroyed (from the heap) afterward. In this respect, Windows thread
programming is not as convenient as either POSIX or Boost. Here is an example:

typedef struct MyParam
{

98 Chapter 5 n Working with Windows Threads

int value1;
int value2;

} MYPARAM, *PMYPARAM;

We can create a variable using this custom struct and pass it to CreateThread(),
which will make the values available to the thread function (as a void* buffer).
We must allocate the parameter struct variable on the heap and pass it to the
thread function as a pointer. This is handled by the HeapAlloc() and HeapFree()

functions.

PMYPARAM param;
param=(PMYPARAM)HeapAlloc(GetProcessHeap(),HEAP_ZERO_MEMORY,sizeof(PMYPARAM));

When finished with the parameter data, free it with HeapFree():

HeapFree(GetProcessHeap(), 0, param);

Let’s see a complete example:

#include <windows.h>
#include <iostream>
#include <string>
#include <iomanip>
using namespace std;

typedef struct MyParam
{

int value1;
int value2;

} MYPARAM, *PMYPARAM;

DWORD WINAPI threadFunction1(void* data)
{

cout � "thread function running\n";

PMYPARAM param = (PMYPARAM)data;
cout � "parameter: " � param->value1 � "," � param->value2 � endl;

cout � "thread function end\n";
return 0;

}

Exploring Windows Threads 99

int main(int argc, char argv[])
{

LPDWORD threadid = NULL;
HANDLE thread1 = NULL;
PMYPARAM param = NULL;

param = (PMYPARAM) HeapAlloc(GetProcessHeap(),
HEAP_ZERO_MEMORY,
sizeof(MyParam));

param->value1 = 9;
param->value2 = 800;

//create thread in suspended state
thread1 = CreateThread(NULL,0,&threadFunction1,param,CREATE_SUSPENDED,

threadid);
if (!thread1)
{

cout � "Error creating thread\n";
return 1;

}
cout � "thread created: " � &threadid � endl;

//launch thread
ResumeThread(thread1);

WaitForSingleObject(thread1, 500);

CloseHandle(thread1);
HeapFree(GetProcessHeap(), 0, param);

cout � "done\n";
system("pause");
return 0;

}

The output of this program looks like this:

thread created: 0012FE8C
thread function running
parameter: 9,800
thread function end
done

100 Chapter 5 n Working with Windows Threads

Although we aren’t doing anything magnificent like solving the largest prime
number known to mankind or testing out threaded engine code on an 80-core
experimental computer, this chapter does do one thing well—we learned how to
create a thread function for Windows threads with support for parameters.
Now, you may take any of the previous examples and adapt them to Windows
threads fairly easily.

Programming Windows threads is a relatively straightforward process since the
functions covered in this chapter are part of the Windows SDK and already
available in Visual Cþþ by default. Making use of the Windows threads is not a
problem, but we have not covered any of the advanced topics like mutex locking
to protect data, as the concept is the same here as it is with POSIX and Boost
threads.

Summary
That wraps up Part I and our tour of the four key multi-threading libraries:
Boost threads, OpenMP, POSIX threads, and finally, Windows threads. I think
it’s time to get started working on some very serious game engine code!

Summary 101

This page intentionally left blank

Creating an Engine for
SMP Experimentation

The second part of this book is dedicated to the development of a game engine.
The engine will feature 3D shader-based rendering, 2D sprite animation, static
meshes, hierarchical meshes, mesh rendering, shader-based dynamic lighting,
entity management, picking (selecting an object in the scene), and collision
detection. We will build each component of the engine one at a time while
learning about these advanced topics in Direct3D.

n Chapter 6: Engine Startup

n Chapter 7: Vectors and Matrices

n Chapter 8: Rendering the Scene

n Chapter 9: Mesh Loading and Rendering

n Chapter 10: Advanced Lighting Effects

n Chapter 11: Wrapping the Sky in a Box

n Chapter 12: Environmental Concerns: Recycling Terrain Polygons

n Chapter 13: Skeletal Mesh Animation

part II

103

n Chapter 14: Sprite Animation and Rasterization

n Chapter 15: Rendering to a Texture

n Chapter 16: Entity Management

n Chapter 17: Picking and Collision Detection

104 Part II n Creating an Engine for SMP Experimentation

Engine Startup

Building a game engine from scratch is a lofty goal with the potential to be a
great learning experience. Like restoring a car from the frame and body work
to the engine and interior, which lends insights into how the car will drive
beyond the “road feel” in the steering wheel, designing a game engine from
WinMain to the entity manager to the animated hierarchical mesh renderer lends
the programmer a unique insight into how his or her games work at a deeply
intimate level. Since the engine will be in development for many chapters, we
will take the simpler approach by just adding engine source files into each
chapter demo individually and forego the process of creating the engine library
project (static or DLL) until the last chapter. Having developed all of the demos
with a separation of the game engine and gameplay code in separate but
dependent projects, I can vouch for the positive advantages to using a single
project approach to the demos for the time being. For one thing, the engine will
be in a state of flux as it is developed over the coming chapters, so at no point
will the engine be “finished” until we have covered every topic and built every
Cþþ class needed. In the final chapter, we’ll have a final engine project available
for further use.

This chapter covers the following topics:

n Why build an engine yourself?

n Creating the engine project

n Engine core system

chapter 6

105

n Engine rendering system

n Engine support system

n Verifying framerates with FRAPS

Why Build an Engine Yourself?
What is the purpose or advantage of a game engine, as opposed to, say, just writing
all the code for a game as needed? Why invest all the time in creating a game
engine when you could spend that time just writing the game? That is essentially
the question we’ll try to answer in the pages of this book, beginning in this first
chapter in which we’ll be building the core code and classes for a new engine.

The simple answer is: You don’t need an engine to write a game. But that is
a loaded answer because it implies that either 1) The game is very simple, or
2) You already have a lot of code from past projects. The first implication is that
you can just write a simple game with DirectX or OpenGL code. The second
assumes that you have some code already available, perhaps in a game library—
filled with functions you’ve written and reused. A game library saves a lot of
time. For instance, it’s a given that you will load bitmap files for use in 2D
artwork or 3D textures, and once you’ve written such a function, you do not
want to have to touch it again, because it serves a good purpose. Anytime you
have to open up a function and modify it, that’s a good sign that it was poorly
written in the first place (unless changes were made to underlying functions in
an SDK beyond one’s control—or perhaps you have gained new knowledge and
want to improve your functions).

Adv i c e

It is helpful to decide whether one is interested primarily in engine or gameplay programming, in
order to devote effort into either direction (but not often both). An engine programmer focuses
primarily on rendering and optimizations, while a gameplay programmer focuses on artificial
intelligence, scripting, event/animation synchronization, user input, and fulfilling design goals.

Valid Arguments in Favor
In my opinion, there are three key reasons why a game engine will help a game
development project: teamwork, development tools, and logistics. Let’s examine
each issue.

106 Chapter 6 n Engine Startup

n Teamwork is much easier when the programmers in a team use a game
engine rather than writing their own core game code, because the engine
code facilitates standardization across the project. While each programmer
has his or her own preferences about how timing should be handled, or
how rendering should be done, a game engine with a single high-speed
game loop forces everyone on the team to work with the features of the
engine. And what of features that are lacking? Usually, one or two team
members will be the “engine gurus” who maintain the engine based on the
team’s needs.

n Development tools include the compiler(s) used to build the game code,
asset converters and exporters, asset and game level editors, and packaging
tools. These types of tools are essential in any game project, and not
practical without the use of a game engine. Although many programmers
are adept at writing standard Cþþ code that will build on multiple
platforms and compilers, game code usually does not fall into that realm
due to its unique requirements (namely, rendering). Cross-compiler sup-
port is the ability to compile your game with two or more compilers, rather
than just your favorite (such as Visual Cþþ). Supporting multiple render
targets (such as Direct3D and OpenGL) is a larger-scale endeavor that is
not recommended unless there is a significant market for Mac and Linux
systems. Direct3D is the primary renderer used by most game studios today
for the Windows platform.

Adv i c e

Writing code that builds on compilers from more than one vendor teaches you to write good,
standards-compliant code, without ties to a specific platform.

n Logistics in a large game project can be a nightmare without some
coordinated way to organize the entities, processes, and behaviors in
your game. Logistics is the problem of organizing and supporting a large
system, and is often used to describe military operations (for example, the
logistics of war—equipping, supplying, and supporting troops). The logis-
tics of a game involves managing the characters, vehicles, crafts, enemies,
projectiles, and scenery—in other words, the “stuff” in a game. Without a
system in place to assist with organizing all of these things, the game’s
source code and assets can become an unmanageable mess.

Why Build an Engine Yourself? 107

Let’s summarize all of these points in a simple sentence: A game engine (and all
that comes with it) makes it easier to manage the development process of a game
project. Contrast that with the problems associated with creating a game from
scratch using your favorite APIs, such as Direct3D or OpenGL for graphics,
DirectInput or SDL for user input, a networking library such as RakNet, an
audio library such as FMOD, and so forth. The logistics of keeping up with the
latest updates to all of these libraries alone can be a challenge for an engine
programmer. But by wrapping all of these libraries and all of your own custom
game code into a game engine, you eliminate the headache of maintaining all of
those libraries (including their initialization and shutdown) in each game. The best
analogy I can come up with is this: “Rolling your own” game code for each game
project is like fabricating your own bricks, forging your own nails, and cutting
down your own trees in order to build a single house. Why would you do that?

But perhaps the most significant benefit to wrapping an SDK (such as DirectX)
into your own game engine classes is to provide a buffer around unpredictable
revisions. Whenever a change occurs in a library (such as Direct3D) that you
regularly use in your games, you can accommodate those changes in your engine
classes without having to revise any actual gameplay code in the process.

Valid Arguments Against
There are many game engines available that a developer can freely (or
affordably, at least) put to good use for a game, rather than re-inventing the
wheel, so to speak. These engines usually support multiple renderers (OpenGL,
Direct3D 9, Direct3D 10, etc.). Examples include:

n Irrlicht—“Free Open Source 3D Engine” (http://irrlicht.sourceforge.net)

n OGRE—“Open Source 3D Graphics Engine” (http://www.ogre3d.org)

n Torque by Garage Games (http://www.torquepowered.com)

Any of these three engines would be a good choice for any aspiring indie game
studio, so why would someone want to try to create their own engine and try to
compete with these well-rounded, feature rich, strongly supported engines with
large communities of users? Touché.

It’s about the learning experience, not about trying to compete with others and
outdo them in a foolhardy attempt to gain market share with a new engine. That’s

108 Chapter 6 n Engine Startup

not the purpose of building your own engine at all! It’s about the journey, the
experience gained, the new skills developed, and improving your marketability.

Adv i c e

Building your own game engine is like a car enthusiast building or restoring his own hot rod show
car. There is some kinship with professionals like Chip Foose and Jack Roush, but a great chasm of
experience and expertise separates a hobbyist from the pros. Do not try to compete. Rather, learn
new skills, do your best, and try to enjoy the learning experience!

Creating the Engine Project
We are going to create the core game engine project in this chapter and then
expand it over the next dozen or so chapters to include all of the features we
need to build advanced demos, simulations, and games—with the goal of later
improving the engine with the threading techniques covered in Part I. Threading
will not be weaved into the fabric of the engine from the start—our first goal is
to build a stable engine and make it as efficient as possible before implementing
any thread code. The starting point is the core engine developed in this chapter,
which will include WinMain, Direct3D initialization, D3DXSprite initialization, basic
game events, timing, and, of course, a game loop. The great thing about doing all of
this right now at the beginning is that we will not have to duplicate any of this code
in future chapters—it will already be embedded in the game engine. The engine
project will remain a standard Win32 executable project, as opposed to a
combination library/executable pair, for the sake of simplicity—I want to make
the material easy for the reader to get into without logistical issues like solution/
project files getting in the way early on. But, all of the source files will easily build
inside a Win32 library project just as well (static or DLL, it doesn’t matter).

Adv i c e

Most of the source code printed in the book is free of comments to save space (since much of the
code is explained in the text), but the comments are in the source code files in the chapter resource
files (www.jharbour.com/forum or www.courseptr.com/downloads).

Let’s get started creating the engine project so that we’ll have a foundation with
which to discuss the future design of a multi-threaded engine. The Engine class
is embedded in a namespace called Octane. This namespace will contain all
engine classes, so there will not be any conflicts with other libraries you may

Creating the Engine Project 109

need to use in a game. I will go over the project creation for Visual Cþþ now for
anyone who isn’t quite up to the book’s recommended reading level, and show
which libraries you will need to include in the project, so that you may refer to
this chapter again when configuring future projects. We will continue to build
on the Engine project in later chapters and the engine will grow.

Adv i c e

Why the namespace “Octane”? Why not? It’s just a name without any particular meaning, other
than being catchy. Go ahead and give your own engine any name you wish. If you are interested in
following the development of the engine beyond this book, visit the Google Code website: http://
code.google.com/p/octane-engine. Note that the SVN repository for this open source project will
not conform completely to the code in this book, because the repository is an evolving code base.

Figure 6.1 shows a diagram of the initial design of the engine with each sub-
system identified with its component classes. This diagram will be updated as
the engine is developed in later chapters.

Adv i c e

I would not expect the reader to type in all of the code for the engine, although there is merit to
doing so, as a good learning experience (if one is a bit new to the subject matter). All of the code
for every class and program is included in the text, but the reader is encouraged to use the
chapter’s resource files found at www.jharbour.com/forum or www.courseptr.com/downloads.

Figure 6.1
Diagram of the engine’s design at an early stage of development.

110 Chapter 6 n Engine Startup

Engine Core System
The engine’s core system includes the program entry point (the WinMain function)
and core classes not related to rendering. Those classes include the following:

n The Engine class itself, which connects everything together.

n A Timer class, based on boost::timer, used for all timing in the engine core.

n An Input class, based on DirectInput, which provides a clean interface to
input devices.

n A base IEvent class and numerous event sub-classes used to generate event
messages for user input, pre-set timers, and any custom events.

Adv i c e

This chapter’s resource files can be downloaded from www.jharbour.com/forum or www.courseptr.
com/downloads. Please note that not every line of code will be in print due to space considerations:
only the most important sections of code are covered in each chapter.

The core system makes calls to the following functions, which are declared as
extern in Engine.h. Since they are extern, they must be implemented somewhere
in the game project (usually that will be the main source code file, main.cpp):

bool game_preload();
bool game_init(HWND hwnd);
void game_update(float deltaTime);
void game_render3d();
void game_render2d();
void game_event(IEvent* e);
void game_end();

You are welcome to rename them to better suit your own preferences: I offer these
function names as merely logical names for their uses. Note that we have no
rendering functions defined yet. Though, technically, rendering occurs during the
update process, the function calls are made from inside the while loop in WinMain

to both the update and rendering functions (which we will go over shortly).

Adv i c e

Since this engine is based on DirectX 9, it goes without saying that the DirectX SDK is required. It
can be downloaded from http://msdn.microsoft.com/directx. The latest version at the time of this

Creating the Engine Project 111

writing is the June 2010 SDK, which adds support for Visual Studio 2010. The latest version is not
needed at all—the code in this book will build with any version of the SDK from 2006 or later.

Entry Point: WinMain

There is quite a bit of dependent code in our first engine source code listing!
Herein you will find references from Engine.h (as yet undefined) to Octane::

Timer, Octane::Engine, and the extern-defined functions game_preload(),
game_init(), and game_end(). (The update function calls take place inside
Engine::Update(), which we’ll be covering shortly.) In the chapter project, the
following source code may be found in winmain.cpp.

#include "stdafx.h"
#include "Engine.h"
using namespace std;

//declare global engine object
std::auto_ptr<Octane::Engine> g_engine(new Octane::Engine);

/**
WndProc - message handler (req’d when user closes window with "X" button)
**/
LRESULT CALLBACK WndProc(HWND hwnd, UINT msg, WPARAM wParam, LPARAM lParam)
{

if (msg == WM_DESTROY) PostQuitMessage(0);
return DefWindowProc(hwnd, msg, wParam, lParam);

}

/**
WinMain - entry point of the program
**/
int WINAPI WinMain(HINSTANCE hInstance,HINSTANCE hPrevInstance,LPSTR lpCmdLine,
int nCmdShow)
{

debug � "WinMain running" � endl;
srand((unsigned int)time(0));

//check command line
debug � "Checking parameters" � endl;
if (strlen(lpCmdLine) > 0)
{

g_engine->setCommandLineParams(lpCmdLine);

112 Chapter 6 n Engine Startup

debug � "Params: " � g_engine->getCommandLineParams() � std::endl;
}

//let main program set screen dimensions
debug � "Calling game_preload" � endl;
if (!game_preload())
{

debug � "Error in game_preload" � endl;
return 0;

}

//initialize the engine
debug � "Initializing engine" � endl;
bool res = g_engine->Init(

hInstance,
g_engine->getScreenWidth(), //screen width
g_engine->getScreenHeight(), //screen height
g_engine->getColorDepth(), //screen depth
g_engine->getFullscreen()); //screen mode

if (!res)
{

debug � "Error initializing the engine" � endl;
return 0;

}

MSG msg;
memset(&msg, 0, sizeof(MSG));
Octane::Timer timer;
double startTime = timer.getElapsed();

debug � "Core timer started: " � timer.getElapsed() � endl;
debug � "Entering while loop" � endl;

// main message loop
while (msg.message != WM_QUIT)
{

if (PeekMessage(&msg, NULL, 0, 0, PM_REMOVE))
{

TranslateMessage(&msg);
DispatchMessage(&msg);

}

Creating the Engine Project 113

else
{

double t = timer.getElapsed();
float deltaTime = (t - startTime) * 0.001f;
g_engine->Update(deltaTime);
startTime = t;

}
}

debug � "Exiting while loop" � endl;
debug � "Total run time: " � timer.getElapsed() � endl;
debug � "Freeing game resources" � endl;
game_end();

debug � "Shutting down engine" � endl;
ShowCursor(true);
return 1;

}

Engine Class

One thing that might stand out in the core Engine class files is the large list of
header #include statements. Depending on your Cþþ programming back-
ground, this is either a great idea—or a terrible programming practice. There are
two reasons for including all of the needed includes inside the main engine
header file.

n It greatly simplifies the task of tracking down the right include file for each
engine class, and keeps the code base fairly clean since only the single
#include “Engine.h” line is needed in all of the support classes in the
engine project.

n It has the potential to greatly speed up compile time when using the
precompiled header feature of Visual Cþþ. When you have built the engine
with your latest game project for the thousandth time and had to wait
30–60 seconds for each build, you will welcome the speed boost that this
compiler feature provides.

Below is the Engine.h class interface. There are quite a few dependencies—not
to worry, they are all provided later in this chapter. You’ll note that some Boost

114 Chapter 6 n Engine Startup

headers are included, and that WIN32_LEAN_AND_MEAN has been defined. This
define eliminates many of the standard Windows headers and libraries used for
application development, including the mmsystem.h file, which contains the
reference to an oft-used function called timeGetTime(). If you want to use
that instead of boost::timer (see the Timer class later in this chapter), then you
can just include mmsystem.h. Personally, though, I recommend using Boost
whenever possible, since the Cþþ standard committee is more reliable than
Microsoft.

#pragma once

#define WIN32_LEAN_AND_MEAN
#include <windows.h>
#include <iostream>
#include <map>
#include <list>
#include <vector>
#include <string>
#include <sstream>
#include <fstream>
#include <iomanip>
#include <ctime>
#include <cstdio>
#include <cstdlib>
#include <ctime>
#include <cmath>
#include <io.h>
#include <algorithm>
#include <boost/timer.hpp>
#include <boost/foreach.hpp>
#include <boost/format.hpp>

//DirectX headers
#define DIRECTINPUT_VERSION 0x0800
#include <d3d9.h>
#include <d3dx9.h>
#include <dinput.h>

//engine class headers
#include "Timer.h"

Creating the Engine Project 115

#include "Input.h"
#include "Event.h"
#include "Font.h"
#include "LogFile.h"

//required libraries
#pragma comment(lib,"d3d9.lib")
#pragma comment(lib,"d3dx9.lib")
#pragma comment(lib,"dinput8.lib")
#pragma comment(lib,"xinput.lib")
#pragma comment(lib,"dxguid.lib")
#pragma comment(lib,"winmm.lib")
#pragma comment(lib,"user32.lib")
#pragma comment(lib,"gdi32.lib")

#define VERSION_MAJOR 1
#define VERSION_MINOR 0
#define REVISION 0

//end-user functions
extern bool game_preload();
extern bool game_init(HWND hwnd);
extern void game_update(float deltaTime);
extern void game_render3d();
extern void game_render2d();
extern void game_event(Octane::IEvent* e);
extern void game_end();

LRESULT CALLBACK WndProc(HWND hwnd, UINT msg, WPARAM wParam, LPARAM lParam);

namespace Octane
{

//helper function to convert values to string format
template <class T>std::string static ToString(const T & t, int places = 2)
{

std::ostringstream oss;
oss.precision(places);
oss.setf(std::ios_base::fixed);
oss � t;
return oss.str();

}

116 Chapter 6 n Engine Startup

class Engine
{
private:

std::string p_commandLineParams;
int p_versionMajor, p_versionMinor, p_revision;
HWND p_windowHandle;
LPDIRECT3D9 p_d3d;
LPDIRECT3DDEVICE9 p_device;
LPD3DXSPRITE p_spriteObj;
std::string p_apptitle;
bool p_fullscreen;
int p_screenwidth;
int p_screenheight;
int p_colordepth;
bool p_pauseMode;
Timer p_coreTimer;
long p_coreFrameCount;
long p_coreFrameRate;
Timer p_screenTimer;
long p_screenFrameCount;
long p_screenFrameRate;
Timer timedUpdate;
D3DCOLOR p_backdropColor;

//primary surface pointers used when restoring render target
LPDIRECT3DSURFACE9 p_MainSurface;
LPDIRECT3DSURFACE9 p_MainDepthStencilSurface;

Input *p_input;
void updateKeyboard();
void updateMouse();

public:
Engine();
virtual ~Engine();
bool Init(HINSTANCE hInstance, int width, int height,

int colordepth, bool fullscreen);
void Update(float deltaTime);
void Message(std::string message, std::string title = "Engine");
void fatalError(std::string message, std::string title = "FATAL ERROR");
void Shutdown();

Creating the Engine Project 117

void clearScene(D3DCOLOR color);
void setIdentity();
void setSpriteIdentity();
int Release();
void savePrimaryRenderTarget();
void restorePrimaryRenderTarget();

//accessor/mutator functions expose the private variables
bool isPaused() { return p_pauseMode; }
void setPaused(bool value) { p_pauseMode = value; }

LPDIRECT3D9 getObject() { return p_d3d; }
LPDIRECT3DDEVICE9 getDevice() { return p_device; }
LPD3DXSPRITE getSpriteObj() { return p_spriteObj; }

void setWindowHandle(HWND hwnd) { p_windowHandle = hwnd; }
HWND getWindowHandle() { return p_windowHandle; }

std::string getAppTitle() { return p_apptitle; }
void setAppTitle(std::string value) { p_apptitle = value; }

int getVersionMajor() { return p_versionMajor; }
int getVersionMinor() { return p_versionMinor; }
int getRevision() { return p_revision; }
std::string getVersionText();

long getCoreFrameRate() { return p_coreFrameRate; };
long getScreenFrameRate() { return p_screenFrameRate; };

void setScreen(int w,int h,int d,bool full);
int getScreenWidth() { return p_screenwidth; }
void setScreenWidth(int value) { p_screenwidth = value; }
int getScreenHeight() { return p_screenheight; }
void setScreenHeight(int value) { p_screenheight = value; }
int getColorDepth() { return p_colordepth; }
void setColorDepth(int value) { p_colordepth = value; }
bool getFullscreen() { return p_fullscreen; }
void setFullscreen(bool value) { p_fullscreen = value; }

D3DCOLOR getBackdropColor() { return p_backdropColor; }
void setBackdropColor(D3DCOLOR value) { p_backdropColor = value; }

118 Chapter 6 n Engine Startup

//command line params
std::string getCommandLineParams() { return p_commandLineParams; }
void setCommandLineParams(std::string value) { p_commandLineParams =

value; }

//event system
void raiseEvent(IEvent*);

}; //class
}; //namespace

//define the global engine object (visible everywhere!)
//extern Octane::Engine* g_engine;
extern std::auto_ptr<Octane::Engine> g_engine;

Following is the Engine.cpp class implementation, with all of the engine
initialization, updating, and rendering code.

#include "stdafx.h"
#include "Engine.h"
using namespace std;

namespace Octane
{

Engine::Engine()
{

p_apptitle = "Octane Engine";
p_screenwidth = 640;
p_screenheight = 480;
p_colordepth = 32;
p_fullscreen = false;
p_device = NULL;
p_coreFrameCount = 0;
p_coreFrameRate = 0;
p_screenFrameCount = 0;
p_screenFrameRate = 0;
p_backdropColor = D3DCOLOR_XRGB(0,0,80);
p_windowHandle = 0;
p_pauseMode = false;

Creating the Engine Project 119

p_versionMajor = VERSION_MAJOR;
p_versionMinor = VERSION_MINOR;
p_revision = REVISION;
p_commandLineParams = "";

//null render target variables
p_MainSurface = 0;
p_MainDepthStencilSurface = 0;

//window handle must be set later on for DirectX
p_windowHandle = 0;

}

Engine::~Engine()
{

delete p_input;
if (p_device) p_device->Release();
if (p_d3d) p_d3d->Release();

}

std::string Engine::getVersionText()
{

std::ostringstream s;
s � "Octane Engine v" � p_versionMajor � "."

� p_versionMinor � "." � p_revision;
return s.str();

}

void Engine::Message(std::string message, std::string title)
{

MessageBox(0, message.c_str(), title.c_str(), 0);
}

void Engine::setScreen(int w,int h,int d,bool full)
{

setScreenWidth(w);
setScreenHeight(h);
setColorDepth(d);
setFullscreen(full);

}

120 Chapter 6 n Engine Startup

bool Engine::Init(HINSTANCE hInstance, int width, int height,
int colordepth, bool fullscreen)

{
//get window caption string from engine
string title;
title = g_engine->getAppTitle();

//set window dimensions
RECT windowRect;
windowRect.left = 0;
windowRect.right = g_engine->getScreenWidth();
windowRect.top = 0;
windowRect.bottom = g_engine->getScreenHeight();

//create the window class structure
WNDCLASSEX wc;
memset(&wc, 0, sizeof(WNDCLASS));
wc.cbSize = sizeof(WNDCLASSEX);
wc.style = CS_HREDRAW | CS_VREDRAW;
wc.lpfnWndProc = (WNDPROC)WndProc;
wc.hInstance = hInstance;
wc.lpszClassName = title.c_str();

wc.hCursor = LoadCursor(NULL, IDC_ARROW);
wc.cbClsExtra = 0;
wc.cbWndExtra = 0;
wc.hIcon = 0;
wc.hIconSm = 0;
wc.hbrBackground = 0;
wc.lpszMenuName = 0;

//set up the window with the class info
RegisterClassEx(&wc);

//set up the screen in windowed or fullscreen mode?
DWORD dwStyle, dwExStyle;
if (g_engine->getFullscreen())
{

DEVMODE dm;
memset(&dm, 0, sizeof(dm));
dm.dmSize = sizeof(dm);
dm.dmPelsWidth = g_engine->getScreenWidth();

Creating the Engine Project 121

dm.dmPelsHeight = g_engine->getScreenHeight();
dm.dmBitsPerPel = g_engine->getColorDepth();
dm.dmFields = DM_BITSPERPEL | DM_PELSWIDTH | DM_PELSHEIGHT;

if (ChangeDisplaySettings(&dm,CDS_FULLSCREEN)!=DISP_CHANGE_
SUCCESSFUL)

{
debug � "Display mode change failed" � std::endl;
g_engine->setFullscreen(false);

}
dwStyle = WS_POPUP;
dwExStyle = WS_EX_APPWINDOW;

}
else {

dwStyle = WS_OVERLAPPEDWINDOW | WS_VISIBLE;
dwExStyle = WS_EX_APPWINDOW | WS_EX_WINDOWEDGE;

}

//adjust window to true requested size
AdjustWindowRectEx(&windowRect, dwStyle, FALSE, dwExStyle);

//create the program window
int wwidth = windowRect.right - windowRect.left;
int wheight = windowRect.bottom - windowRect.top;

debug � "Screen size: " � width � "," � height � endl;
debug � "Creating program window" � endl;

HWND hWnd = CreateWindowEx(0,
title.c_str(), //window class
title.c_str(), //title bar
dwStyle |
WS_CLIPCHILDREN |
WS_CLIPSIBLINGS, //window styles
0, 0, //x,y coordinate
wwidth, //width of the window
wheight, //height of the window
0, //parent window
0, //menu
hInstance, //application instance
0); //window parameters

122 Chapter 6 n Engine Startup

//was there an error creating the window?
if (!hWnd)
{

debug � "Error creating program window" � endl;
return 0;

}

//display the window
ShowWindow(hWnd, SW_SHOW);
UpdateWindow(hWnd);

//save window handle in engine
g_engine->setWindowHandle(hWnd);

debug � "Creating Direct3D object" � endl;

//initialize Direct3D
p_d3d = Direct3DCreate9(D3D_SDK_VERSION);
if (p_d3d == NULL) {

return 0;
}

//get system desktop color depth
D3DDISPLAYMODE dm;
p_d3d->GetAdapterDisplayMode(D3DADAPTER_DEFAULT, &dm);

//set configuration options for Direct3D
D3DPRESENT_PARAMETERS d3dpp;
ZeroMemory(&d3dpp, sizeof(d3dpp));
d3dpp.Windowed = (!fullscreen);
d3dpp.SwapEffect = D3DSWAPEFFECT_DISCARD;
d3dpp.EnableAutoDepthStencil = 1;
d3dpp.AutoDepthStencilFormat = D3DFMT_D24S8;
d3dpp.Flags = D3DPRESENTFLAG_DISCARD_DEPTHSTENCIL;
d3dpp.PresentationInterval = D3DPRESENT_INTERVAL_IMMEDIATE;
d3dpp.BackBufferFormat = dm.Format;
d3dpp.BackBufferCount = 1;
d3dpp.BackBufferWidth = width;
d3dpp.BackBufferHeight = height;
d3dpp.hDeviceWindow = p_windowHandle;
d3dpp.MultiSampleType = D3DMULTISAMPLE_NONE;

Creating the Engine Project 123

debug � "Creating Direct3D device" � endl;

//create Direct3D device (hardware T&L)
p_d3d->CreateDevice(

D3DADAPTER_DEFAULT,
D3DDEVTYPE_HAL,
p_windowHandle,
D3DCREATE_HARDWARE_VERTEXPROCESSING,
&d3dpp,
&p_device);

//if hardware T&L failed, try software
if (p_device == NULL)
{

debug � "Hardware vertex option failed! Trying software. . ." � endl;

p_d3d->CreateDevice(
D3DADAPTER_DEFAULT,
D3DDEVTYPE_HAL,
p_windowHandle,
D3DCREATE_SOFTWARE_VERTEXPROCESSING,
&d3dpp,
&p_device

);
if (p_device == NULL)
{

debug� "Software vertex option failed; shutting down."� endl;
return 0;

}
else {

debug � "Software vertex processing" � endl;
}

}
else {

debug � "Hardware vertex processing" � endl;
}

debug � "Creating 2D renderer" � endl;

124 Chapter 6 n Engine Startup

//initialize 2D renderer
HRESULT result = D3DXCreateSprite(p_device, &p_spriteObj);
if (result != D3D_OK)
{

debug � "D3DXCreateSprite failed" � endl;
return 0;

}

//initialize directinput
debug � "Init input system" � endl;
p_input = new Input(getWindowHandle());

debug � "Calling game_init(" � getWindowHandle() � ")" � endl;

//call game initialization extern function
if (!game_init(getWindowHandle())) return 0;

debug � "Engine init succeeded" � endl;

return 1;
}

/**
Resets 3D transforms by setting the identity matrix
**/
void Engine::setIdentity()
{

D3DXMATRIX identity;
D3DXMatrixIdentity(&identity);
g_engine->getDevice()->SetTransform(D3DTS_WORLD, &identity);

}

/**
Resets sprite transforms by setting the identity matrix
**/
void Engine::setSpriteIdentity()
{

D3DXMATRIX identity;
D3DXMatrixIdentity(&identity);
g_engine->getSpriteObj()->SetTransform(&identity);

}

Creating the Engine Project 125

/**
Saving and restoring the render target is used when rendering to a texture
**/
void Engine::savePrimaryRenderTarget()
{

//save primary rendering & depth stencil surfaces
p_device->GetRenderTarget(0, &p_MainSurface);
p_device->GetDepthStencilSurface(&p_MainDepthStencilSurface);

}
void Engine::restorePrimaryRenderTarget()
{

//restore normal render target
p_device->SetRenderTarget(0, p_MainSurface);
p_device->SetDepthStencilSurface(p_MainDepthStencilSurface);

}

void Engine::clearScene(D3DCOLOR color)
{

p_device->Clear(0, NULL,
D3DCLEAR_TARGET | D3DCLEAR_ZBUFFER,
color, 1.0f, 0);

}

void Engine::Update(float elapsedTime)
{

static float accumTime=0;

//calculate core framerate
p_coreFrameCount++;
if (p_coreTimer.Stopwatch(1000))
{

p_coreFrameRate = p_coreFrameCount;
p_coreFrameCount = 0;

}

//fast update
game_update(elapsedTime);

//60fps = ~16 ms per frame
if (!timedUpdate.Stopwatch(16))

126 Chapter 6 n Engine Startup

{
//free the CPU for 1 ms
timedUpdate.Rest(1);

}
else
{

//calculate real framerate
p_screenFrameCount++;
if (p_screenTimer.Stopwatch(1000))
{

p_screenFrameRate = p_screenFrameCount;
p_screenFrameCount = 0;

}

//update input devices
p_input->Update();
updateKeyboard();
updateMouse();

//begin rendering
if (p_device->BeginScene() == D3D_OK)
{

g_engine->clearScene(p_backdropColor);

game_render3d();

//2d rendering
p_spriteObj->Begin(D3DXSPRITE_ALPHABLEND);

game_render2d();

p_spriteObj->End();

p_device->EndScene();
p_device->Present(0,0,0,0);

}
}

}

void Engine::updateMouse()

Creating the Engine Project 127

{
static int oldPosX = 0;
static int oldPosY = 0;

//check mouse buttons
for (int n=0; n<4; n++)
{

if (p_input->GetMouseButton(n))
{

//launch event
raiseEvent(new MouseClickEvent(n));

}
}

//check mouse position
int posx = p_input->GetMousePosX();
int posy = p_input->GetMousePosY();
if (posx != oldPosX || posy != oldPosY)
{

oldPosX = p_input->GetMousePosX();
oldPosY = p_input->GetMousePosY();
//launch event
raiseEvent(new MouseMoveEvent(posx, posy));

}

//check mouse motion
int deltax = p_input->GetMouseDeltaX();
int deltay = p_input->GetMouseDeltaY();
if (deltax != 0 || deltay != 0)
{

//launch event
raiseEvent(new MouseMotionEvent(deltax, deltay));

}

//check mouse wheel
int wheel = p_input->GetMouseDeltaWheel();
if (wheel != 0)
{

//launch event
raiseEvent(new MouseWheelEvent(wheel));

}

}

128 Chapter 6 n Engine Startup

void Engine::updateKeyboard()
{

static char old_keys[256];

for (int n=0; n<255; n++) {
//check for key press
if (p_input->GetKeyState(n) & 0x80)
{

old_keys[n] = p_input->GetKeyState(n);
//launch event
raiseEvent(new KeyPressEvent(n));

}
//check for release
else if (old_keys[n] & 0x80)
{

old_keys[n] = p_input->GetKeyState(n);
//launch event
raiseEvent(new KeyReleaseEvent(n));

}
}

}

void Engine::Shutdown()
{

PostQuitMessage(0);
}

void Engine::raiseEvent(IEvent* e)
{

game_event(e);
delete e;

}

} //namespace

Timer Class

Timing in the engine core is handled by the Timer class, which is based on
boost::timer, part of the standard Cþþ Boost library (or, perhaps I should say,

Creating the Engine Project 129

soon to be standard, since Cþþ0x has not been formally adopted yet). The
current standard is still Cþþ03, but the new standard is expected to be voted on
by the SC22-WG21 committee during 20101.

Adv i c e

It’s always a dicey proposition to begin using a new language feature before it has been officially
recognized, as is the case with Boost. It is possible that boost::timer will become std::
timer, and that similar Boost features that we’ve used in this book (such as boost::thread)
will be similarly changed. However, the C++0x standard has been in the works for several years
already and is quite reliable at this point. As usual, if any changes impact the source code, an
errata with code updates will be available at http://www.jharbour.com/forum.

Fortunately, as we have already learned, there is a great advantage to writing
wrapper classes around key engine core and rendering SDKs and APIs (such as
Direct3D and Boost). There is very little pure Boost code used in the engine.
Rather, what you will find are classes such as Timer, which wraps boost::timer

into a nicely managed package. Thus, if anything changes in boost::timer, only
the Timer class will need to be modified, while the rest of the engine (and game
code) will be unaffected.

Timing in the core engine is based on some assumptions (which you are
welcome to change to suit your own engine goals). Here are the assumptions I
made when designing the core timing of the engine:

n Frame “updates” should not be time limited in any way, to provide
maximum performance for time-critical processes like collision detection
and physics.

n A “delta time” millisecond timer, maintained by the core engine, is passed
to the update function so that individual processes and entities can handle
timing independently without needing a timer function.

n Rendering always takes place at a fixed 60 fps. Trying to render at any
higher rate is just a waste of CPU cycles (which has the detrimental effect
of bogging down the core update). Although some monitors can operate at
70 Hz or higher frequencies, 60 Hz is the standard for game rendering.

130 Chapter 6 n Engine Startup

Here is the Timer.h class interface:

#pragma once
#include "Engine.h"
#include <boost/timer.hpp>
namespace Octane
{

class Timer
{
private:

boost::timer p_timer;
double timer_start;
double stopwatch_start;

public:
Timer(void);
~Timer(void);
double getElapsed();
void Rest(double ms);
void Reset();
bool Stopwatch(double ms);

};
};

Below is the Timer.cpp class implementation. The most important function is
getElapsed(). Although boost::timer returns a floating-point value (where the
decimal part represents milliseconds), our getElapsed() function multiplies this
by 1,000 to arrive at a straight millisecond timer (returned as a double). This
timer starts at zero when the class instantiates. To retrieve the elapsed seconds,
just divide by 1,000.

#include "stdafx.h"
#include "Engine.h"
#include <boost/timer.hpp>

namespace Octane
{

Timer::Timer(void)
{

Reset();
}

Creating the Engine Project 131

Timer::~Timer(void) {}

double Timer::getElapsed()
{

double elapsed = p_timer.elapsed() * 1000;
return elapsed;

}

void Timer::Rest(double ms)
{

double start = getElapsed();
while (start + ms > getElapsed())
{

Sleep(1);
}

}

void Timer::Reset()
{

stopwatch_start = getElapsed();
}

bool Timer::Stopwatch(double ms)
{

if (getElapsed() > stopwatch_start + (double)ms)
{

Reset();
return true;

}
else return false;

}
};

Input Class

Getting input from the user is as important as rendering (as far as gameplay is
concerned), but this subject does not often get as much attention because,
frankly, it just doesn’t change very often. We’re going to use DirectInput to get
input from the keyboard and the mouse in this chapter. DirectInput hasn’t
changed in many years and is still at version 8.1. Contrast that with the huge
changes taking place with Direct3D every year! Although we can use a joystick,
it’s such a non-standard device for the PC that it’s not worth the effort—unless

132 Chapter 6 n Engine Startup

you are a flight sim fan, in which case, you might want to support a joystick!
Just note that most PC gamers prefer a keyboard and mouse. If you want
to support an Xbox 360 controller, you can look into the XInput library, which
is now packaged with the DirectX SDK (as well as included with XNA
Game Studio).

The keyboard is the standard input device, even for games that don’t specifically
use it, so it is a given that your games must support a keyboard one way or
another. If nothing else, you should allow the user to exit your game or at least
bring up an in-game menu by pressing the Escape key (that’s the standard). The
DirectInput library file is called dinput8.lib.

Once you have created a DirectInput keyboard device, you can then initialize the
keyboard handler to prepare it for input. The next step is to set the keyboard’s
data format, which instructs DirectInput how to pass the data back to your
program. It is abstracted in this way because there are hundreds of input devices
on the market with myriad features, so there has to be a uniform way to read
them all.

After you have written a handler for the keyboard, the mouse is a bit easier to
deal with because the DirectInput object will already exist. The code to initialize
and poll the mouse is very similar to the keyboard code. Below is an Input class,
which handles both the keyboard and mouse. First is the Input.h class interface:

#pragma once

#include "Engine.h"

namespace Octane
{

class Input
{
private:

HWND window;
IDirectInput8 *di;
IDirectInputDevice8 *keyboard;
char keyState[256];
IDirectInputDevice8 *mouse;
DIMOUSESTATE mouseState;
POINT position;

Creating the Engine Project 133

public:
Input(HWND window);
virtual ~Input();
void Update();
char GetKeyState(int key) { return keyState[key]; }
long GetMousePosX() { return position.x; }
long GetMousePosY() { return position.y; }
int GetMouseButton(char button);
long GetMouseDeltaX() { return mouseState.lX; }
long GetMouseDeltaY() { return mouseState.lY; }
long GetMouseDeltaWheel() { return mouseState.lZ; }

};
};

Next is the Input.cpp class implementation. The keyboard and mouse devices
are created and initialized, and polling functions are provided. Since the mouse
events supplied to us by DirectInput only produce mouse motion (“mickeys”)
rather than an actual X,Y position on the screen, we need to use a couple of
helper functions to actually get the mouse position on the screen—or, more
accurately, in the bounds of the window. That is done with the GetCursorPos()

and ScreenToClient() functions, which you will see in the code listing.

#include "Engine.h"

namespace Octane
{

Input::Input(HWND hwnd)
{

//save window handle
window = hwnd;

//create DirectInput object
DirectInput8Create(GetModuleHandle(NULL),

DIRECTINPUT_VERSION, IID_IDirectInput8, (void**)&di, NULL);

//initialize keyboard
di->CreateDevice(GUID_SysKeyboard, &keyboard, NULL);
keyboard->SetDataFormat(&c_dfDIKeyboard);
keyboard->SetCooperativeLevel(window,

DISCL_FOREGROUND | DISCL_NONEXCLUSIVE);
keyboard->Acquire();

134 Chapter 6 n Engine Startup

//clear key array
memset(keyState, 0, 256);

//initialize mouse
di->CreateDevice(GUID_SysMouse, &mouse, NULL);
mouse->SetDataFormat(&c_dfDIMouse);
mouse->SetCooperativeLevel(window,

DISCL_FOREGROUND | DISCL_NONEXCLUSIVE);
mouse->Acquire();

}

Input::~Input()
{

di->Release();
keyboard->Release();
mouse->Release();

}

void Input::Update()
{

//poll state of the keyboard
keyboard->Poll();
if (!SUCCEEDED(keyboard->GetDeviceState(256,(LPVOID)&keyState)))
{

//keyboard device lost, try to re-acquire
keyboard->Acquire();

}

//poll state of the mouse
mouse->Poll();
if (!SUCCEEDED(mouse->GetDeviceState(

sizeof(DIMOUSESTATE),&mouseState)))
{

//mouse device lost, try to re-acquire
mouse->Acquire();

}

//get mouse position on screen (not DirectInput)
GetCursorPos(&position);
ScreenToClient(window, &position);

}

Creating the Engine Project 135

int Input::GetMouseButton(char button)
{

return (mouseState.rgbButtons[button] & 0x80);
}

};

Handling Engine Events

The IEvent class defines an interface for the event system in the engine, which is
used for all user input and other purposes (such as automatic timing). In the
past I have used individual event functions for every type of event (such as
mouse_click, key_down, and so on). A single event handler function and support
classes is a much cleaner way to process events in the engine. And, as an added
bonus, event classes and functions are more thread friendly, since we can queue
events and make the handler thread safe (if needed).

We’ll start with an abstract class called IEvent. This class is used to create small
sub-classed event classes for each type of event. At this point, all we’re using the
event system for are user input events (key presses, mouse movement, etc.). Here
is the Event.h base class interface:

#pragma once

#include "Engine.h"

namespace Octane
{

class IEvent {
protected:

int id;
public:

IEvent();
virtual ~IEvent(){}
int getID() { return id; }

};

The base IEvent class provides only the event identifier; it is up to the sub-
classes to define additional data needed for each unique event. Here is an
enumeration that describes the events currently in use:

enum eventtype {
EVENT_TIMER = 10,

136 Chapter 6 n Engine Startup

EVENT_KEYPRESS = 20,
EVENT_KEYRELEASE = 30,
EVENT_MOUSECLICK = 40,
EVENT_MOUSEMOTION = 50,
EVENT_MOUSEWHEEL = 60,
EVENT_MOUSEMOVE = 70,

};

Each event sub-class is derived from IEvent, and identified by one of the above
EVENT_ enumerated constant values. Below are the event sub-classes currently
defined to handle the user input events (and you will expect to see this grow as
new engine events are needed).

class KeyPressEvent : public IEvent {
public:

int keycode;
KeyPressEvent(int key);

};

class KeyReleaseEvent : public IEvent {
public:

int keycode;
KeyReleaseEvent(int key);

};

class MouseClickEvent : public IEvent {
public:

int button;
MouseClickEvent(int btn);

};

class MouseMotionEvent : public IEvent {
public:

int deltax,deltay;
MouseMotionEvent(int dx, int dy);

};

class MouseWheelEvent : public IEvent {
public:

int wheel;
MouseWheelEvent(int wheel);

};

Creating the Engine Project 137

class MouseMoveEvent : public IEvent {
public:

int posx, posy;
MouseMoveEvent(int px, int py);

};
};

Here is the Event.cpp class implementation. The various event classes are much
easier to use as individual classes rather than as a single large class with support
for any type of event using properties and methods. Also, we must be mindful
that these events will be fired off frequently from user input alone, not to
mention future events like automatic timers and entity events like collisions.

#include "Engine.h"

namespace Octane
{

IEvent::IEvent()
{

id = 0;
}

KeyPressEvent::KeyPressEvent(int key)
{

id = EVENT_KEYPRESS;
keycode = key;

}

KeyReleaseEvent::KeyReleaseEvent(int key)
{

id = EVENT_KEYRELEASE;
keycode = key;

}

MouseClickEvent::MouseClickEvent(int btn)
{

id = EVENT_MOUSECLICK;
button = btn;

}

MouseMotionEvent::MouseMotionEvent(int dx, int dy)

138 Chapter 6 n Engine Startup

{
id = EVENT_MOUSEMOTION;
deltax = dx;
deltay = dy;

}

MouseWheelEvent::MouseWheelEvent(int whl)
{

id = EVENT_MOUSEWHEEL;
wheel = whl;

}

MouseMoveEvent::MouseMoveEvent(int px, int py)
{

id = EVENT_MOUSEMOVE;
posx = px;
posy = py;

}
};

Engine Rendering System
The engine’s rendering system is centered around the Direct3D functions
BeginScene() and EndScene(), plus Present(). All rendering takes place within
the block of code bounded by these function calls, and no rendering can occur
anywhere else in the code. Between the BeginScene() and EndScene() function
calls, you will perform all 3D rendering of the scene and all entity meshes. In
addition, all 2D rendering takes place within an inner block of code bounded by
ID3DXSprite::Begin() and ID3DXSprite::End(). Over time, the rendering sys-
tem will expand to include 2D components such as sprites and GUI controls,
and 3D components such as terrain, environments, and animated characters.
This rendering code has already been implemented, and we’ll be creating new
things to render in upcoming chapters.

Font Class

One of the most crucial features of a game engine is the ability to display text on
the screen, also called text output. This is important because this font system is
used in most games for the graphical user interface (GUI), so it needs to be

Creating the Engine Project 139

functional and fast. The Font class provides an interface to the ID3DXFont class in
the Direct3DX library for basic font-based text output using any standard
Windows TrueType font and point size.

We will use a function called D3DXCreateFontIndirect() to create the font and
prepare it for printing out text. But before doing that, we must first set up the
properties desired for the font using the D3DXFONT_DESC structure. Printing text is
done with the ID3DXFont::DrawText() function.

#pragma once
#include "Engine.h"
namespace Octane
{

class Font {
private:

LPD3DXFONT fontObj;

public:
Font(std::string name, int size);
~Font();
void Print(int x, int y, std::string text, D3DCOLOR color=0xffffffff);
int getTextWidth(std::string text);
int getTextHeight(std::string text);

};
};

ID3DXFont has the ability to render text into a rectangle with word wrapping,
which could be very useful in a GUI textbox or label control. Normally, the
rectangle is defined with a width and height of zero, so no boundary is used at
all. But if you specify a width and height, and use the DT_CALCRECT option, then
DrawText will do automatic word wrapping! Below is the Font.cpp class
implementation.

#include "stdafx.h"
#include "Engine.h"
using namespace std;

namespace Octane
{

Font::Font(string name, int pointsize)
{

140 Chapter 6 n Engine Startup

fontObj = NULL;
D3DXFONT_DESC fontDesc = {

pointsize, //height
0, //width
0, //weight
0, //miplevels
false, //italic
DEFAULT_CHARSET, //charset
OUT_TT_PRECIS, //output precision
CLIP_DEFAULT_PRECIS, //quality
DEFAULT_PITCH, //pitch and family
""

};
strcpy(fontDesc.FaceName, name.c_str());

D3DXCreateFontIndirect(g_engine->getDevice(), &fontDesc, &fontObj);
}

Font::~Font()
{

fontObj->Release();
}

void Font::Print(int x, int y, string text, D3DCOLOR color)
{

//figure out the text boundary
RECT rect = { x, y, 0, 0 };
fontObj->DrawText(NULL, text.c_str(), text.length(),

&rect, DT_CALCRECT, color);

//print the text
fontObj->DrawText(g_engine->getSpriteObj(), text.c_str(),

text.length(), &rect, DT_LEFT, color);
}

int Font::getTextWidth(std::string text)
{

RECT rect = { 0, 0, 0, 0 };
fontObj->DrawText(NULL, text.c_str(), text.length(), &rect,

DT_CALCRECT, 0xffffffff);

Creating the Engine Project 141

return rect.right;
}

int Font::getTextHeight(std::string text)
{

RECT rect = { 0, 0, 0, 0 };
fontObj->DrawText(NULL, text.c_str(), text.length(), &rect,

DT_CALCRECT, 0xffffffff);
return rect.bottom;

}

};

Engine Support System
The engine support system will start by including a debugging tool that no
programmer should be able to go without—a log file with basic std::cout-style
functionality for quickly and effortlessly sending debug data out to a text file.

Logging the engine’s processes is a helpful feature for debugging the engine
components once it reaches a certain high level of complexity. It is also helpful
to log output to assist when tracking down the cause of an unexpected game
crash, so the ability to send output to a log file goes beyond mere engine
debugging: it becomes a valuable aid for developers when a user reports a
problem. Here is an example of what the log produces during a typical run of the
engine (from the First Engine Demo project coming up). Any time something
goes wrong, just take a look at the output.txt log file to see quickly where to go in
the code to resolve it. By all means, add more debugging output to increase the
amount of information, but you do not want to log anything from inside the
game loop—just startup and shutdown processes.

WinMain running
Checking parameters
Calling game_preload
Initializing engine
Screen size: 800,600
Creating program window
Creating Direct3D object
Creating Direct3D device
Hardware vertex processing

142 Chapter 6 n Engine Startup

Creating 2D renderer
Init input system
Calling game_init(00D50846)
Engine init succeeded
Core timer started: 0
Entering while loop
Exiting while loop
Total run time: 2594
Freeing game resources
Shutting down engine

The LogFile class is not complete at present. At any time that you would like to
see more custom data sent out to the log file, go ahead and add new overloads to
the operator�() function, as the current crop of overloads support only a
handful of simple data types. I would expect the log to support vectors, perhaps
even matrices, if the need to debug such information is deemed necessary.
However, you would not want to send any log output from inside the while
loop—including inside any of the updating or rendering functions; not only
would that kill the game’s framerate, but it would fill the file very quickly with
millions of lines of text.

Adv i c e

Most runtime errors occur during program startup (including asset loading) and program
shutdown.

The LogFile.h class interface follows.

#pragma once
#include "Engine.h"
namespace Octane
{

class LogFile
{
public:

LogFile();
~LogFile();
void Print(std::string s);
void Print(char c[]);
std::ofstream& operator�(char c[]);

Creating the Engine Project 143

std::ofstream& operator�(std::string s);
std::ofstream& operator�(double d);
std::ofstream& operator�(float f);
std::ofstream& operator�(int i);
std::ofstream& operator�(bool b);

};
};
static Octane::LogFile debug;

Here is the LogFile.cpp class implementation:

#include "Engine.h"
using namespace std;

std::ofstream out("output.txt");

namespace Octane
{

LogFile::LogFile() {}
LogFile::~LogFile()
{

if (out.good()) out.close();
}
void LogFile::Print(string s)
{

out � s � endl;
}
void LogFile::Print(char c[])
{

out � c � endl;
}
std::ofstream& LogFile::operator�(char c[])
{

out � c;
return out;

}
std::ofstream& LogFile::operator�(string s)
{

out � s;
return out;

}
std::ofstream& LogFile::operator�(double d)

144 Chapter 6 n Engine Startup

{
out � d;
return out;

}
std::ofstream& LogFile::operator�(float f)
{

out � f;
return out;

}
std::ofstream& LogFile::operator�(int i)
{

out � i;
return out;

}
std::ofstream& LogFile::operator�(bool b)
{

if (b) out � "True";
else out � "False";
return out;

}
};

First Engine Demo
To illustrate the functionality of the initial version of this new engine, we’ll write
a short program that uses all of the new classes, including the event system, to
print user input events to the screen. Figure 6.2 shows the output of this
program.

#include "Engine.h"
using namespace std;
using namespace Octane;

Font *font=NULL;
int keypresscode=0;
int keyreleasecode=0;
int mousebutton=0;
int movex=0,movey=0;
int posx=0,posy=0;
int wheel=0;
float delta=0;

Creating the Engine Project 145

//these functions are not used at this time
void game_render3d() {}
void game_end() {}

bool game_preload()
{

g_engine->setAppTitle("First Engine Demo");
g_engine->setScreen(800,600,32,false);
return true;

}

bool game_init(HWND hwnd)
{

font = new Font("Arial Bold",30);
if (!font)

Figure 6.2
The First Engine Demo program.

146 Chapter 6 n Engine Startup

{
debug � "Error creating font" � endl;
return false;

}
return true;

}

void game_update(float deltaTime)
{

delta = deltaTime;
}

void game_render2d()
{

ostringstream os;
os.imbue(std::locale("english-us"));
os � "DELTA: " � Octane::ToString(delta,4) � endl;
os � "CORE FPS: " � g_engine->getCoreFrameRate() � endl;
os � "SCREEN FPS: " � g_engine->getScreenFrameRate() � endl;
os � "KEY PRESS: " � keypresscode � endl;
os � "KEY RELEASE: " � keyreleasecode � endl;
os � "MOUSE MOVE: " � posx � "," � posy � endl;
os � "MOUSE CLICK: " � mousebutton � endl;
os � "MOUSE MOTION: " � movex � "," � movey � endl;
os � "MOUSE WHEEL: " � wheel � endl;
font->Print(100,20,os.str());

mousebutton = 0;
wheel = 0;

}

void game_event(IEvent* e)
{

switch(e->getID())
{

case EVENT_KEYPRESS:
{

KeyPressEvent* kpe = (KeyPressEvent*) e;
keypresscode = kpe->keycode;
if (keypresscode == DIK_ESCAPE)

Creating the Engine Project 147

g_engine->Shutdown();
break;

}
case EVENT_KEYRELEASE:
{

KeyReleaseEvent* kre = (KeyReleaseEvent*) e;
keyreleasecode = kre->keycode;
break;

}
case EVENT_MOUSEMOVE:
{

MouseMoveEvent* mme = (MouseMoveEvent*) e;
posx = mme->posx;
posy = mme->posy;
break;

}
case EVENT_MOUSECLICK:
{

MouseClickEvent* mce = (MouseClickEvent*) e;
mousebutton = mce->button + 1;
break;

}
case EVENT_MOUSEMOTION:
{

MouseMotionEvent* mme = (MouseMotionEvent*) e;
movex = mme->deltax;
movey = mme->deltay;
break;

}
case EVENT_MOUSEWHEEL:
{

MouseWheelEvent* mwe = (MouseWheelEvent*) e;
wheel = mwe->wheel;
break;

}
}

}

Not bad for a complete Windows program with a Direct3D device, text output, a
core update timer, a screen refresh timer, a real-time loop, user input support, an
event handler, and logging! This is definitely not your usual “Hello World” example.

148 Chapter 6 n Engine Startup

Enumerating Video Modes
Although not built into the engine core at this point, it may be helpful to have a
list of known video modes that are supported on any given PC. For instance, if
you want to run your code in high-definition widescreen format (1920�1080),
it’s foolhardy to just hard code the resolution because it simply won’t run on a
PC that does not support such exotic video hardware. However, there is a way to
determine whether a desired video mode is supported—by having the Direct3D
device enumerate the video modes. Figure 6.3 shows an example of an
enumerated list of modes being printed out.

D3DDISPLAYMODE mode;
int adapters = g_engine->getObject()->GetAdapterCount();
for (int i=0; i < adapters; ++i)

Figure 6.3
Supported video modes are enumerated by Direct3D.

Enumerating Video Modes 149

{
UINT modes = g_engine->getObject()->GetAdapterModeCount(i, D3DFMT_X8R8G8B8);

for (int n=0; n < modes; ++n)
{

g_engine->getObject()->EnumAdapterModes(i, D3DFMT_X8R8G8B8, n, &mode);
//these properties represent a supported mode:
// mode.Width
// mode.Height
// mode.Format
// mode.RefreshRate

}
}

Enumerating Multi-sampling Support
Direct3D can detect the multi-sampling modes supported by the video
hardware in a PC with the help of a function called CheckDeviceMultiSample-

Type(). By iterating from D3DMULTISAMPLE_2_SAMPLES (the first one) through
D3DMULTISAMPLE_16_SAMPLES (the last one), we can determine whether
each multi-sample type is supported in the system. First, we can check for
full 32-bit support with the option D3DFMT_X8R8G8B8; if that fails, we’ll try
D3DFMT_D24S8 (which should be supported on all video cards). Figure 6.4 shows
the output of enumerated modes reported by Direct3D on a GeForce 8800GT
video card.

int start = D3DMULTISAMPLE_2_SAMPLES;
int end = D3DMULTISAMPLE_16_SAMPLES;

for (int n=start; n < end; n++)
{

D3DMULTISAMPLE_TYPE mst = (D3DMULTISAMPLE_TYPE)n;
DWORD quality=0;

if(SUCCEEDED(
g_engine->getObject()->CheckDeviceMultiSampleType(

D3DADAPTER_DEFAULT,
D3DDEVTYPE_HAL,
D3DFMT_X8R8G8B8,
true,
mst,

150 Chapter 6 n Engine Startup

&quality)))
{

if (SUCCEEDED(
g_engine->getObject()->CheckDeviceMultiSampleType(

D3DADAPTER_DEFAULT,
D3DDEVTYPE_HAL,
D3DFMT_D24S8,
true,
mst,
&quality)))

{
//Set Direct3D presentation parameters:
// params.MultiSampleType = mst;
// params.MultiSampleQuality = quality-1;

// n = valid multi-sample rate
}

}
}

Figure 6.4
Supported multi-sampling modes are enumerated by Direct3D.

Enumerating Multi-sampling Support 151

Verifying Framerates with FRAPS
There is a great little tool available called FRAPS that can calculate and display
the framerate of a Direct3D program running, as well as capture video and
screenshots. The trial version of FRAPS can be downloaded for free from http://
www.fraps.com. Registering the software will eliminate a watermark embedded
in captured videos as well as support video captures of more than 30 seconds in
length. ManyWorld of Warcraft players use FRAPS to record their best dungeon
raids to put up on YouTube, but we can use it to capture our awesome Direct3D
demos running in all their glory.

As shown in Figure 6.5, the FPS settings in FRAPS provides a way to customize
the position of the framerate overlay and optionally output statistical informa-
tion into CSV formatted files (readable by Excel, but basically just text).
Figure 6.6 shows the FRAPS framerate overlay displayed on the First Engine
Demo program. If you are concerned about FRAPS slowing down the perform-
ance of your demo, you can set FRAPS to only update the display once per
second rather than every frame.

Figure 6.5
The framerate overlay options in FRAPS.

152 Chapter 6 n Engine Startup

Summary
We’ve made huge progress in this chapter! This wraps up the initial function-
ality of the new engine. Although it has meager rendering capabilities at this
stage, all of the important core features are present in the engine already,
including an event handler, timing, and text output. The rendering code is
already present, as is the sprite renderer, and these components are simply
waiting for something to render. In the chapters to come, we will fill in asset
loading, mesh and sprite rendering and animation, texture manipulation, shader
effects, and all of the features one would expect in a serious engine.

References
1. Stroustrup, Bjarne. Cþþ0x FAQ. 2010. Retrieved March 13, 2010, from

Cþþ0x FAQ website: http://www2.research.att.com/~bs/Cþþ0xFAQ.html.

Figure 6.6
Our First Engine Demo with FRAPS framerate overlay displayed in the upper-right.

References 153

This page intentionally left blank

Vectors and Matrices

The most useful thing we will need in order to manipulate game objects
effectively is a vector. A vector is a mathematical construct that can represent
two different things—a point or a direction. A vector is not merely a point, nor
is it merely a direction; otherwise, we would use one term or the other to
describe it. However, we can use a vector to represent simple points, or
positions, for game entities such as sprites and meshes, and another vector to
represent a direction. A vector with its own properties that work with common
math functions will be incredibly helpful. We will be able to give a game entity
important properties such as position, direction, and velocity, as well as calculate
the trajectory to a target, the normal angle of a polygon, and other helpful
functions (some of which we may not need but which are available nonetheless).
We will use the vector classes (listed in the following section) and a new math
class to do the “heavy lifting” for upcoming game entity classes (namely, objects
based on sprites and meshes).

This chapter covers some basic math functions that will improve the support
library within the game engine. First, we will look at linear velocity, then we’ll
examine a more advanced technique for calculating the angle between two
points (which is helpful when targeting an enemy in a game or for moving a
sprite along a path set by waypoints). Note that this chapter is not about the
theory behind any of these math functions, nor does this text attempt to derive
any of the math functions—we are simply coding some of the more common
math functions into our game engine.

chapter 7

155

This chapter covers the following topics:

n Understanding vectors

n Direct3D vectors

n Vector classes

n Linear velocity

n Angle to target

n Math class

n Math vector demo

n Zero and identity matrices

n Matrix operations

n Direct3D matrices

n Matrix transforms

n Math matrix demo

Vectors and Points
First, let’s discuss what a vector is and what it is used for. A vector is a
geometrical object that has two properties: length and direction. The length of
a vector represents its strength or power depending on the context. If we treat a
ray of sunlight as a vector, then the length of the vector represents the brightness
of the light. If we treat wind as a vector, then the length of the vector may
represent the speed of the wind. Technically, or rather, mathematically, a vector
does not have a position. But from a game development perspective, we sort of
abuse a vector by also using it for position, which is technically an incorrect
usage. It is more accurate to refer to position with a point, not a vector.
Futhermore, a math major will identify a vector as a single-column matrix as
shown in Figure 7.1. We could treat a vector as a one-column matrix and just
derive a vector and a matrix from a base matrix column, but the goal in graphics
programming is not always to represent things in mathematical terms, but in
terms that work better in the context of rendering. For our purposes, a 1� 3
matrix is a vector with properties X, Y, Z.

156 Chapter 7 n Vectors and Matrices

Adv i c e

We will not be using correct math terminology and formulas to represent equations and concepts in
this chapter, because most non-math majors tend to gloss over formal math representations. I
recommend a good math tutorial website in the References at the end of the chapter that will bring
you up to speed on these concepts in short order.

Understanding Vectors
A point, or position, will never have a length or direction—it is simply a location
in Cartesian space. A point may be represented with either two axes (X, Y) or
three axes (X, Y, Z). It takes two points to produce one vector. The difference
between the two points—also called the displacement—is the vector. Another
common concept in computer graphics is the transformation, usually in
reference to a matrix. A transform is the resulting point from adding a vector

Figure 7.1
A vector is a single-column matrix.

Vectors and Points 157

to a starting point, which can be either 2D or 3D. So, for a simple demon-
stration, take the point P(1,1) and vector V(5,3): adding them together, the
translation = P þ V, or (1,1) þ (5,3). The translation for X is 1 þ 5 ¼ 6, and for Y
is 1 þ 3 ¼ 4, for a target point of (6,4). That’s all there is to translation, and you
can see that it is closely tied to both points and vectors. The other common
transforms (rotation and scaling) are variations of this familiar theme with points
and vectors.

Adv i c e

This chapter’s resource files can be downloaded from www.jharbour.com/forum or www.courseptr.
com/downloads. Please note that not every line of code will be in print due to space considerations:
the most important sections of code are covered in each chapter while the logistical code is found
in the chapter resource files.

Direct3D Vectors
The DirectX SDK defines two primary vector structures, each with many
manipulation functions (which we will mostly ignore): D3DXVECTOR2 and
D3DXVECTOR3. You may use either the custom vector classes or DirectX vectors,
but it is better to abstract an engine’s classes to protect them from future changes
in an SDK (such as DirectX).

We will be creating a pair of versatile vector classes with inherent properties and
functions to make it easy to copy, multiply, add, and perform other basic
operations to vectors (and points). Since most of the DirectX matrix and vector
classes and related functions treat vectors interchangeably with points, we will
just do the same to be consistent.

Vector2 Class
Both the Vector2 and Vector3 classes are found in the Vector.h interface and
Vector.cpp implementation files. Both vector classes can copy from a D3DXVECTOR2
or a D3DXVECTOR3, as well as convert to those DirectX classes. Following is the class
interface definition for Vector2 :

class Vector2
{
public:

double x, y;

158 Chapter 7 n Vectors and Matrices

virtual ~Vector2() {}
Vector2();
Vector2(const Vector2& V);
Vector2(double x, double y);
Vector2(int x, int y);
Vector2(const D3DXVECTOR2& dv);
Vector2(const D3DXVECTOR3& dv);
Vector2& operator=(const Vector2& V);

//manipulation functions
void Set(double x1,double y1);
void Set(const Vector2& V);
double getX() { return x; }
void setX(double value) { x = value; }
double getY() { return y; }
void setY(double value) { y = value; }
void Move(double mx,double my);
void operator+=(const Vector2& V);
void operator-=(const Vector2& V);
void operator*=(const Vector2& V);
void operator/=(const Vector2& V);
Vector2 operator/(const double& d);
bool operator==(const Vector2& V) const;
bool operator!=(const Vector2& V) const;

//exporters to Direct3D vectors
D3DXVECTOR3 ToD3DXVECTOR3();
D3DXVECTOR2 ToD3DXVECTOR2();

};

Here is the Vector2 class implementation, which is also found in the Vector.cpp

file (with the Vector3 class):

Vector2::Vector2()
{

x = y = 0;
}

Vector2::Vector2(const Vector2& V)
{

*this = V;
}

Vectors and Points 159

Vector2::Vector2(double x, double y)
{

Set(x, y);
}

Vector2::Vector2(int x, int y)
{

Set((double)x,(double)y);
}

Vector2::Vector2(const D3DXVECTOR2& dv)
{

x=dv.x; y=dv.y;
}

Vector2::Vector2(const D3DXVECTOR3& dv)
{

x=dv.x; y=dv.y;
}

Vector2& Vector2::operator=(const Vector2& V)
{

Set(V);
return *this;

}

void Vector2::Set(double x1,double y1)
{

x=x1; y=y1;
}

void Vector2::Set(const Vector2& V)
{

x=V.x; y=V.y;
}

void Vector2::Move(double mx,double my)
{

x+=mx; y+=my;
}

160 Chapter 7 n Vectors and Matrices

void Vector2::operator+=(const Vector2& V)
{

x+=V.x; y+=V.y;
}

void Vector2::operator-=(const Vector2& V)
{

x-=V.x; y-=V.y;
}

void Vector2::operator*=(const Vector2& V)
{

x*=V.x; y*=V.y;
}

void Vector2::operator/=(const Vector2& V)
{

x/=V.x; y/=V.y;
}

Vector2 Vector2::operator/(const double& d)
{

Vector2 v(x/d, y/d);
return v;

}

//equality operator comparison includes double rounding
bool Vector2::operator==(const Vector2& V) const
{

return (
(((V.x - 0.0001f) < x) && (x < (V.x + 0.0001f))) &&
(((V.y - 0.0001f) < y) && (y < (V.y + 0.0001f))));

}

//inequality operator
bool Vector2::operator!=(const Vector2& V) const
{

return (!(*this == V));
}

Vectors and Points 161

D3DXVECTOR3 Vector2::ToD3DXVECTOR3()
{

return D3DXVECTOR3((float)x, (float)y, 0.0f);
}

D3DXVECTOR2 Vector2::ToD3DXVECTOR2()
{

return D3DXVECTOR2((float)x, (float)y);
}

Vector3 Class
Also found in the Vector.h file is the Vector3 class interface:

class Vector3
{
public:

double x, y, z;

virtual ~Vector3() {}
Vector3();
Vector3(const Vector3& V);
Vector3(double x, double y, double z);
Vector3(int x, int y, int z);
Vector3(const D3DXVECTOR2& dv);
Vector3(const D3DXVECTOR3& dv);
Vector3& operator=(const Vector3& V);

//manipulation functions
void Set(double x1,double y1,double z1);
void Set(const Vector3& V);
double getX() { return x; }
void setX(double value) { x = value; }
double getY() { return y; }
void setY(double value) { y = value; }
double getZ() { return z; }
void setZ(double value) { z = value; }
void Move(double mx,double my,double mz);
void operator+=(const Vector3& V);
void operator-=(const Vector3& V);
void operator*=(const Vector3& V);

162 Chapter 7 n Vectors and Matrices

void operator/=(const Vector3& V);
Vector3 operator/(const double& d);
bool operator==(const Vector3& V) const;
bool operator!=(const Vector3& V) const;

//exporters to Direct3D vectors
D3DXVECTOR3 ToD3DXVECTOR3();
D3DXVECTOR2 ToD3DXVECTOR2();

};

Also in the Vector.cpp source code file is the Vector3 class implementation:

Vector3::Vector3()
{

x = y = z = 0;
}

Vector3::Vector3(const Vector3& V)
{

*this = V;
}

Vector3::Vector3(double x, double y, double z)
{

Set(x, y, z);
}

Vector3::Vector3(int x, int y, int z)
{

Set((double)x,(double)y,(double)z);
}

Vector3::Vector3(const D3DXVECTOR2& dv)
{

x=dv.x; y=dv.y; z=0.0;
}

Vector3::Vector3(const D3DXVECTOR3& dv)
{

x=dv.x; y=dv.y; z=dv.z;
}

Vectors and Points 163

//assignment operator
Vector3& Vector3::operator=(const Vector3& V)
{

Set(V);
return *this;

}

void Vector3::Set(double x1,double y1,double z1)
{

x=x1; y=y1; z=z1;
}

void Vector3::Set(const Vector3& V)
{

x=V.x; y=V.y; z=V.z;
}

void Vector3::Move(double mx,double my,double mz)
{

x+=mx; y+=my; z+=mz;
}

void Vector3::operator+=(const Vector3& V)
{

x+=V.x; y+=V.y; z+=V.z;
}

void Vector3::operator-=(const Vector3& V)
{

x-=V.x; y-=V.y; z-=V.z;
}

void Vector3::operator*=(const Vector3& V)
{

x*=V.x; y*=V.y; z*=V.z;
}

void Vector3::operator/=(const Vector3& V)
{

x/=V.x; y/=V.y; z/=V.z;
}

164 Chapter 7 n Vectors and Matrices

Vector3 Vector3::operator/(const double& d)
{

Vector3 v(x/d, y/d, z/d);
return v;

}

//equality operator comparison includes rounding
bool Vector3::operator==(const Vector3& V) const
{

return (
(((V.x - 0.0001f) < x) && (x < (V.x + 0.0001f))) &&
(((V.y - 0.0001f) < y) && (y < (V.y + 0.0001f))) &&
(((V.z - 0.0001f) < z) && (z < (V.z + 0.0001f))));

}

//inequality operator
bool Vector3::operator!=(const Vector3& V) const

{
return (!(*this == V));

}

D3DXVECTOR3 Vector3::ToD3DXVECTOR3()
{

return D3DXVECTOR3((float)x, (float)y, (float)z);
}

D3DXVECTOR2 Vector3::ToD3DXVECTOR2()
{

return D3DXVECTOR2((float)x, (float)y);
}

Math Functions
We’re going to create a new Math class to provide reusable functions for vectors
and matrices. The Math class provides reusable functions that could be imple-
mented in the other classes (Vector2, etc.), but we want to define these functions
as static and keep the data types as lightweight as possible. The math functions
will be overloaded in some cases with various parameters to support both the

Math Functions 165

Vector2 and Vector3 classes and some intrinsic data types. Here are some of the
calculations the new Math class will provide:

n Distance

n Length

n Dot product

n Cross product

n Normal

n Radian conversion

n Degree conversion

n Linear velocity

n Angle-to-target vector

We’ll gloss over the more mundane (but still very important) functions and
jump right into an explanation of the two more valuable ones: linear velocity
and angle-to-target vector.

Adv i c e

I found the following website to be a helpful reference for the math behind computer graphics
concepts such as points, lines, vectors, and matrices: http://programmedlessons.org/VectorLessons/
vectorIndex.html.

Linear Velocity
Have you ever wondered how some shooter-style games are able to fire projectiles
(be they bullets, missiles, plasma bolts, phaser beams, or what have you) at any
odd angle away from the player’s ship, as well as at any angle from enemy sprites?
These projectiles are moving using velocity values (for X and Y) that are based on
the object’s direction (or angle) of movement. Given any angle, we can calculate
the velocity needed to move in precisely that direction. This applies to aircraft, sea
vessels, spacecraft, as well as projectiles, missiles, lasers, plasma bolts, or any other
object that needs to move at a given angle (presumably toward a target).

166 Chapter 7 n Vectors and Matrices

The X velocity of a game entity can be calculated for any angle, and that value is
then multiplied by the speed at which you want the object to move in the given
direction. The LinearVelocityX function (below) automatically orients the angle
to quadrant four of the Cartesian coordinate system and converts the angle from
degrees to radians. Since the cosine function gives us the horizontal value of a
point on a circle, we use cosine to calculate the X velocity as if we were drawing a
circle based on a small radius.

double Math::linearVelocityX(double angle)
{

angle -= 90;
if (angle < 0) angle = 360 + angle;
return cos(toRadians(angle));

}

Likewise for the Y velocity value, we use the Y position on the edge of a circle
(based on radius) for the calculation using the sine function.

double Math::linearVelocityY(double angle)
{

angle -= 90;
if (angle < 0) angle = 360 + angle;
return sin(toRadians(angle));

}

As it turns out, the “velocity” of an object based on an angle—that is, its linear
velocity—is simply the same pair of X,Y values that would be calculated when
tracing the boundary of a circle (based on a radius).

Angle to Target
Calculating the angle from one point to another (as in the case where one sprite
is targeting another) is extremely useful (if not crucial) in most games. Imagine
you are working on a real-time strategy game. You must program the game so
that the player can select units with the mouse and right-click a target location
where the unit must move to. Even a simple process like that requires a
calculation—between the unit’s location and the selected target location in the
game. In the space shooter genre, in order to fire at the player’s ship, enemies
must be able to face the player to fire in the correct direction. I could provide
you with many more examples, but I suspect you get the point. The key to this
important need is a calculation that I like to call angle to target.

Math Functions 167

The calculation is very simple—about as simple as calculating angular velocity,
which is much simpler than the Distance function. We need to use another
trigonometry function this time: atan2(). This is a standard C math library
function that calculates the arctangent of two deltas—first the Y delta, then the
X delta. A delta is the difference between two values. For our purposes here, we
need to get the delta of both X and Y for two points. For instance, if Point A is
located at X1,Y1, and Point B is located at X2,Y2, then we can calculate the delta
of the two points like so:

deltaX = X2 - X1
deltaY = Y2 - Y1

The atan2() function requires the deltaY first, then the deltaX parameter. Here
is the AngleToTarget method as it appears in the Math class:

double Math::angleToTarget(double x1, double y1, double x2, double y2)
{

double deltaX = (x2-x1);
double deltaY = (y2-y1);
return atan2(deltaY,deltaX);

}

I have coded an overloaded version of this function so you can pass Vector3

values:

double Math::angleToTarget(Vector3& A,Vector3& B)
{

return angleToTarget(A.getX(),A.getY(),B.getX(),B.getY());
}

Math Class Header
Here is the header for the Math class with some constants pre-defined for
convenience:

#pragma once
#include "stdafx.h"
#include "Vector.h"
namespace Octane
{

const double PI = 3.1415926535;
const double PI_over_180 = PI / 180.0f;
const double PI_under_180 = 180.0f / PI;

168 Chapter 7 n Vectors and Matrices

class Math
{
public:

static double toDegrees(double radian);
static double toRadians(double degree);
static double wrapAngleDegs(double degs);
static double wrapAngleRads(double rads);
static double wrapValue(double value, double min, double max);
static double Limit(double value, double min, double max); //***addition
static double linearVelocityX(double angle);
static double linearVelocityY(double angle);
static Vector2 linearVelocity(double angle);
static double angleToTarget(double x1,double y1,double x2,double y2);
static double angleToTarget(Vector3& source,Vector3& target);
static double angleToTarget(Vector2& source,Vector2& target);
static double Distance(double x1,double y1,double z1, double x2,double

y2,double z2);
static double Distance(double x1,double y1,double x2,double y2);
static double Distance(Vector3& A, Vector3& B);
static double Distance(Vector2& A, Vector2& B);
static double Length(double x,double y,double z);
static double Length(double x,double y);
static double Length(Vector3& V);
static double Length(Vector2& V);
static double dotProduct(double x1,double y1,double z1,double x2,

double y2,double z2);
static double dotProduct(double x1,double y1,double x2,double y2);
static double dotProduct(Vector3& A, Vector3& B);
static double dotProduct(Vector2& A, Vector2& B);
static Vector3 crossProduct(double x1,double y1,double z1,double x2,

double y2,double z2);
static Vector3 crossProduct(Vector3& A, Vector3& B);
static Vector3 Normal(double x,double y,double z);
static Vector3 Normal(Vector3& V);

};
};

Math Class Implementation
Now we can go over the code for the Math implementation file. The Math class
includes the angular velocity and angle-to-target functions, which I will explain
in detail in subsequent sections of the chapter.

Math Functions 169

#include "stdafx.h"
#include "Engine.h"
namespace Octane
{

double Math::toDegrees(double radians)
{

return radians * PI_under_180;
}

double Math::toRadians(double degrees)
{

return degrees * PI_over_180;
}

double Math::wrapAngleDegs(double degs)
{

double result = fmod(degs, 360.0);
if (result < 0) result += 360.0f;
return result;

}

double Math::wrapAngleRads(double rads)
{

double result = fmod(rads, PI);
if (result < 0) result += PI;
return result;

}

double Math::wrapValue(double value, double min, double max)
{

if (value < min) value = max;
else if (value > max) value = min;
return value;

}

double Math::Limit(double value, double min, double max)
{

if (value < min) value = min;
else if (value > max) value = max;
return value;

}

170 Chapter 7 n Vectors and Matrices

/**
Calculate X velocity based on degree angle
**/
double Math::linearVelocityX(double angle)
{

angle -= 90;
if (angle < 0) angle = 360 + angle;
return cos(toRadians(angle));

}

/**
Calculate Y velocity based on degree angle
**/
double Math::linearVelocityY(double angle)
{

angle -= 90;
if (angle < 0) angle = 360 + angle;
return sin(toRadians(angle));

}

/**
Calculate Vector velocity based on degree angle
**/
Vector2 Math::linearVelocity(double angle)
{

double vx = linearVelocityX(angle);
double vy = linearVelocityY(angle);
return Vector2(vx,vy);

}

double Math::angleToTarget(double x1,double y1,double x2,double y2)
{

double deltaX = (x2-x1);
double deltaY = (y2-y1);
return atan2(deltaY,deltaX);

}

double Math::angleToTarget(Vector3& A, Vector3& B)
{

return angleToTarget(A.getX(),A.getY(),B.getX(),B.getY());
}

Math Functions 171

double Math::angleToTarget(Vector2& A, Vector2& B)
{

return angleToTarget(A.getX(),A.getY(),B.getX(),B.getY());
}

double Math::Distance(double x1,double y1,double z1,
double x2,double y2,double z2)

{
double deltaX = (x2-x1);
double deltaY = (y2-y1);
double deltaZ = (z2-z1);
return sqrt(deltaX*deltaX + deltaY*deltaY + deltaZ*deltaZ);

}

double Math::Distance(double x1,double y1,double x2,double y2)
{

double deltaX = (x2-x1);
double deltaY = (y2-y1);
return sqrt(deltaX*deltaX + deltaY*deltaY);

}

double Math::Distance(Vector3& A, Vector3& B)
{

return Distance(A.getX(),A.getY(),A.getZ(),
B.getX(),B.getY(),B.getZ());

}

double Math::Distance(Vector2& A, Vector2& B)
{

return Distance(A.getX(),A.getY(), B.getX(),B.getY());
}

double Math::Length(double x,double y,double z)
{

return sqrt(x*x + y*y + z*z);
}

double Math::Length(double x,double y)
{

return sqrt(x*x + y*y);
}

172 Chapter 7 n Vectors and Matrices

double Math::Length(Vector3& V)
{

return Length(V.getX(),V.getY(),V.getZ());
}

double Math::Length(Vector2& V)
{

return Length(V.getX(),V.getY());
}

double Math::dotProduct(double x1,double y1,double z1,
double x2,double y2,double z2)

{
return (x1*x2 + y1*y2 + z1*z2);

}

double Math::dotProduct(double x1,double y1,double x2,double y2)
{

return (x1*x2 + y1*y2);
}

double Math::dotProduct(Vector3& A, Vector3& B)
{

return dotProduct(A.getX(),A.getY(),A.getZ(),
B.getX(),B.getY(),B.getZ());

}

double Math::dotProduct(Vector2& A, Vector2& B)
{

return dotProduct(A.getX(),A.getY(),B.getX(),B.getY());
}

Vector3 Math::crossProduct(double x1,double y1,double z1,
double x2,double y2,double z2)

{
double nx = (y1*z2)-(z1*y2);
double ny = (z1*y2)-(x1*z2);
double nz = (x1*y2)-(y1*x2);
return Vector3(nx,ny,nz);

}

Math Functions 173

Vector3 Math::crossProduct(Vector3& A, Vector3& B)
{

return crossProduct(A.getX(),A.getY(),A.getZ(),B.getX(),B.getY(),
B.getZ());

}

Vector3 Math::Normal(double x,double y,double z)
{

double length = Length(x,y,z);
if (length != 0) length = 1 / length;
double nx = x*length;
double ny = y*length;
double nz = z*length;
return Vector3(nx,ny,nz);

}

Vector3 Math::Normal(Vector3& V)
{

return Normal(V.getX(),V.getY(),V.getZ());
}

};

Now that you have the Math class available, you can begin exploring its features
in a more convenient way (as opposed to writing examples with Cþþ functions,
and then porting them to the class afterward—you can now just defer to the
class directly).

Math Vector Demo
Let’s run the new Math and Vector classes through a few tests to make sure
they’re working as expected. This is always a good idea before plugging a
new module or class into the engine (and assuming it works without testing).
Figure 7.2 shows the output of the Math Vector Demo program. Toward the end
of the code listing, I have retained the unused events for reference, since we have
not used the event system since it was created in the previous chapter.

#include "Engine.h"
#include "Vector.h"
#include "Math.h"
using namespace std;
using namespace Octane;

174 Chapter 7 n Vectors and Matrices

Font *font=NULL;
float elapsed=0.0f;

//unused functions
void game_render3d() {}

bool game_preload()
{

g_engine->setAppTitle("Math Vector Demo");
g_engine->setScreen(800,600,32,false);
return true;

}

bool game_init(HWND hwnd)
{

font = new Font("Arial Bold",18);
if (!font)
{

debug � "Error creating font" � endl;

Figure 7.2
This program demonstrates the Math and Vector classes.

Math Functions 175

return false;
}
return true;

}

void game_end()
{

if (font) delete font;
}

void game_update(float elapsedTime)
{

elapsed = elapsedTime;
}

void game_render2d()
{

std::ostringstream out;
out.setf(ios::fixed);
out � setprecision(2);

out � "VECTORS" � endl;
Vector3 A(5,5,1);

out � "Vector A : " �
A.getX() � ", " � A.getY() � ", " � A.getZ() � endl;

Vector3 B(90,80,1);
out � "Vector B : " �

B.getX() � ", " � B.getY() � ", " � B.getZ() � endl;

out � endl � "DISTANCE" � endl;
out � "Distance A to B : " � Math::Distance(A, B) � endl;

out � endl � "LENGTH" � endl;
out � "Length of A : " � Math::Length(A) � endl;
out � "Length of B : " � Math::Length(B) � endl;

out � endl � "COPYING" � endl;
A.Move(5, 0, 0);

176 Chapter 7 n Vectors and Matrices

out � "A moved : " �
A.getX() � ", " � A.getY() � ", " � A.getZ() � endl;

Vector3 C = A;
out � "Vector C : " �

C.getX() � " ," � C.getY() � ", " � C.getZ() � endl;

out � endl � "DOT PRODUCT" � endl;
out � "Dot Product A,B : " � Math::dotProduct(A,B) � endl;

out � endl � "CROSS PRODUCT" � endl;
Vector3 D = Math::crossProduct(A,B);
out � "Cross Product A,B : " �

D.getX() � ", " � D.getY() � "," � D.getZ() � endl;

out � endl � "NORMALIZING" � endl;
D = Math::Normal(A);
out � "Normal of A : " �

D.getX() � "," � D.getY() � ", " � D.getZ() � endl;

font->Print(0, 0, out.str());

//start second column
out.str("");
out � "MATH OPERATORS" � endl;

A.Set(2.1,2.2,2.3);
B.Set(3.1,3.2,3.3);

out � "New A : " �
A.getX() � ", " � A.getY() � ", " � A.getZ() � endl;

out � "New B : " �
B.getX() � ", " � B.getY() � ", " � B.getZ() � endl;

A += B;
out � "A += B : " �

A.getX() � ", " � A.getY() � ", " � A.getZ() � endl;

A -= B;
out � "A -= B : " �

A.getX() � ", " � A.getY() � ", " � A.getZ() � endl;

Math Functions 177

A *= B;
out � "A *= B : " �

A.getX() � ", " � A.getY() � ", " � A.getZ() � endl;

A /= B;
out � "A /= B : " �

A.getX() � ", " � A.getY() � ", " � A.getZ() � endl;

out � "A == B : " � (A == B) � endl;

out � endl � "TARGETING" � endl;
double angle = Math::angleToTarget(A, B);

out � "Angle A to B: " � angle � " rad ("
� Math::toDegrees(angle) � " deg)" � endl;

out � endl � "LINEAR VELOCITY" � endl;
for (angle=0; angle<360; angle+=45)

{
double x = Math::linearVelocityX(angle);
double y = Math::linearVelocityY(angle);

out � "Velocity of " � angle �
" deg = " � x � "," � y � endl;

}

font->Print(400, 0, out.str());
}

void game_event(IEvent* e)
{

switch(e->getID())
{

case EVENT_KEYPRESS:
{

KeyPressEvent* evt = (KeyPressEvent*) e;
if (evt->keycode == DIK_ESCAPE)

g_engine->Shutdown();
break;

}
}

}

178 Chapter 7 n Vectors and Matrices

Matrices
All 3D graphics calculations can be done with trigonometry, but using sine and
cosine functions to calculate angles is very slow compared to matrix math. In
simple terms, a matrix is a rectangular (that is, 2D) array of numbers.1

According to Wolfram, a matrix is “a concise and useful way of uniquely
representing and working with linear transformations.” The matrix is an
important concept in linear algebra, first formulated by mathematicians
Sylvester and Cayley in the nineteenth century. A game programmer who has
never benefitted from a linear algebra course might have assumed that matrices
were a recent invention!

A matrix represents a system of equations, where each system (or sequence) is
represented by a row in the matrix. If we use a one-dimensional matrix row
such as:

[10, 18, 47, 12]

and perform the same calculation on each matrix element (say, multiplying by
2), that might be represented as:

[10�2, 18�2, 47�2, 12�2] = [20, 36, 94, 24]

Figure 7.3 shows a typical 4� 4 matrix. Most math references will refer to a
3� 3 matrix, and this is indeed the type of matrix needed to perform a single
transform (such as translation or rotation). But in 3D graphics programming we
use a 4� 4 matrix because it can represent more than one transform at a time:
translation and rotation and scaling, if desired. Each value within the matrix is
called a matrix element.

A matrix is composed of any number of columns and rows (Figure 7.4), but we
most commonly use a 3� 3 or 4� 4matrix for 3D graphics transforms. To get the
orientation correct: AnmX nmatrix consists ofm rows and n columns. Figure 7.5
shows a 3� 4 matrix.

Zero and Identity Matrices
Addition and subtraction of matrices is done with the help of a zero matrix. Just
like adding zero to any real number results in an unchanged number, so to does
adding or subtracting a matrix from a zero matrix result in the original unchanged

Matrices 179

Figure 7.3
A 4� 4 matrix is used for fast 3D transform calculations.

Figure 7.4
A matrix is described in terms of rows X columns.

180 Chapter 7 n Vectors and Matrices

matrix. Think of this as a starting point when performing addition or subtraction
operations on a matrix. Remember, a matrix represents a system, or sequence, of
equations. Figure 7.6 shows an illustration of a zero matrix.

An identity matrix (Figure 7.7) is used for multiplication and division oper-
ations, representing a value of 1 for such calculations (similar to the zero matrix

Figure 7.5
This 3� 4 matrix has 3 rows and 4 columns.

Figure 7.6
A zero matrix is a matrix with all elements set to zero.

Matrices 181

when performing addition and subtraction of matrices). An identity matrix is
filled with zeroes, except for the diagonal from upper left to lower right,
represented by matrix elements 11, 22, 33, 44. We use an identity matrix to
reset any existing transformations back to the origin (0, 0, 0). Every 3D transform
must start with the identity matrix, otherwise transforms become additive!

For example, imagine you are rendering a mesh at position (10, 10, 0) in 3D
space. From a default camera in a left-handed coordinate system, the object
would be located near the upper-left part of the camera’s viewport. Now, suppose
you render another object at (�10, 10, 0), without using an identity matrix to
reset the transforms currently in place. Instead of actually moving to (�10, 10, 0)
in the scene, the object will be positioned relative to the last transform, which
was at (10, 10, 0), where the first mesh is located. That results in a position of:

(10, 10, 0) þ (�10, 10, 0) ¼ (10 þ �10, 10 þ 10, 0 þ 0) ¼ (0, 20, 0)

which is not at all what one might have expected!

Matrix Operations
A matrix can be modified by any mathematical operation with any real number
or any other matrix. To be consistent, be sure to only perform operations on

Figure 7.7
An identity matrix is used to reset transformations.

182 Chapter 7 n Vectors and Matrices

matrices with the same dimensions, or you may get unexpected results. Think of
a 4� 4 matrix as an encoded transform containing (potentially) the translation,
rotation, and scaling matrices. We could use a 4� 4 matrix to represent the
transforms of anything—a mesh, an entire environment, or a light, or even a
camera. All operations involving a real number are performed on all of the
elements inside the matrix. For example:

[2.0, 5.0, 9.0, 3.0] � 0.5 ¼ [1.0, 2.5, 4.5, 1.5]

The same process occurs for all of the matrix elements, although this example
only illustrates one row.

Operations can also be performed between two matrices. One of the most
common is matrix multiplication. We multiply two matrices together to combine
them. For instance, when passing a matrix to an effect for rendering (i.e., the
vertex and pixel shaders), the world, view, and projection matrices are often
passed together in one combined matrix. (Granted, for best performance, all
three are passed so the GPU can combine them, but bear with me for this fixed
function pipeline illustration.)

MatrixWVP = WorldMatrix * ViewMatrix * ProjectionMatrix;

Another typical use for matrix multiplication is combining the transforms of an
object before it is transformed and rendered:

WorldMatrix = RotationMatrix * ScalingMatrix * TranslateMatrix;

If RotationMatrix ¼ [2, 3, 1, 5] (simplified for illustration—assume there are
4 rows), and ScalingMatrix = [8, 3, 9, 4], then:

[2, 3, 1, 5] � [8, 3, 9, 4] ¼ [2�8, 3�3, 1�9, 5�4] ¼ [16, 9, 9, 20]

This combined matrix is then multiplied by the next matrix in the calculation. If
TranslateMatrix ¼ [0, 10, 10, �5], then:

[16, 9, 9, 20] � [0, 10, 10,�5]¼ [16�0, 9�10, 9�10, 20��5]¼ [0, 90, 90,�100]

The resulting combined matrix for a mesh, or camera, or any other use in the 3D
scene, is called the “world matrix.” The “world matrix” just represents the
current transformation. In this example:

WorldMatrix ¼ [0, 90, 90, �100]

The same premise for matrix multiplication holds true for addition, subtraction,
division, and any other mathematical operation performed between two matrices.

Matrices 183

Direct3D Matrices
If you want to write your own matrix code, you can still work within D3D by
passing a D3DXMATRIX to any Direct3D functions that need it (like an effect). The
DirectX SDK defines a D3DMATRIX struct in the d3dx9math.h header file like so:

typedef struct _D3DMATRIX {
union {

struct {
float _11, _12, _13, _14;
float _21, _22, _23, _24;
float _31, _32, _33, _34;
float _41, _42, _43, _44;

};
float m[4][4];

};
} D3DMATRIX;

This is the base struct for handling matrices in Direct3D. Another data type
called D3DXMATRIX extends D3DMATRIX by adding calculations with overloaded
math operators and other conveniences. By inheriting these features from
D3DXMATRIX, we do not need to code them on our own, but doing so would be
a good learning experience! (Especially considering that D3DX no longer exists
in DirectX 10 and 11.)

typedef struct D3DXMATRIX : public D3DMATRIX
{
public:

D3DXMATRIX() {};
D3DXMATRIX(CONST FLOAT *);
D3DXMATRIX(CONST D3DMATRIX&);
D3DXMATRIX(CONST D3DXFLOAT16 *);
D3DXMATRIX(FLOAT _11, FLOAT _12, FLOAT _13, FLOAT _14,

FLOAT _21, FLOAT _22, FLOAT _23, FLOAT _24,
FLOAT _31, FLOAT _32, FLOAT _33, FLOAT _34,
FLOAT _41, FLOAT _42, FLOAT _43, FLOAT _44);

// access grants
FLOAT& operator () (UINT Row, UINT Col);
FLOAT operator () (UINT Row, UINT Col) const;

184 Chapter 7 n Vectors and Matrices

// casting operators
operator FLOAT* ();
operator CONST FLOAT* () const;

// assignment operators
D3DXMATRIX& operator *= (CONST D3DXMATRIX&);
D3DXMATRIX& operator += (CONST D3DXMATRIX&);
D3DXMATRIX& operator -= (CONST D3DXMATRIX&);
D3DXMATRIX& operator *= (FLOAT);
D3DXMATRIX& operator /= (FLOAT);

// unary operators
D3DXMATRIX operator + () const;
D3DXMATRIX operator - () const;

// binary operators
D3DXMATRIX operator * (CONST D3DXMATRIX&) const;
D3DXMATRIX operator + (CONST D3DXMATRIX&) const;
D3DXMATRIX operator - (CONST D3DXMATRIX&) const;
D3DXMATRIX operator * (FLOAT) const;
D3DXMATRIX operator / (FLOAT) const;

friend D3DXMATRIX operator * (FLOAT, CONST D3DXMATRIX&);

BOOL operator == (CONST D3DXMATRIX&) const;
BOOL operator != (CONST D3DXMATRIX&) const;

} D3DXMATRIX, *LPD3DXMATRIX;

Of particular interest are the overloaded constructors, including this one:

D3DXMATRIX(FLOAT _11, FLOAT _12, FLOAT _13, FLOAT _14,
FLOAT _21, FLOAT _22, FLOAT _23, FLOAT _24,
FLOAT _31, FLOAT _32, FLOAT _33, FLOAT _34,
FLOAT _41, FLOAT _42, FLOAT _43, FLOAT _44);

Using this D3DXMATRIX constructor with your own Matrix class, as well as the
float m[4][4] array and the individual float properties _11, _12, _13, etc., it’s
entirely possible to write your own matrix code and then just convert to and
from the Direct3D matrix data types (preferably with inline code for best
performance).

Matrices 185

Matrix Transforms
When we have a way to easily print out the values in a matrix, things get really
interesting (from a learning point of view). We can actually see what all of the
values are after performing various transformations!

When a translation transformation is calculated, and the results stored in a
matrix, the X,Y,Z values for the new position are stored in matrix elements 14,
24, and 34 (see Figure 7.8).

For a scaling transformation, the result is stored in matrix elements 11, 22, and
33 (see Figure 7.9).

A rotation transformation affects more than just three matrix elements. Rotating
on the X-axis affects elements 22, 23, 32, and 33. Rotating on the Y-axis affects
elements 11, 13, 31, and 33. Rotating on the Z-axis affects elements 22, 23, 32,
and 33. (See Figure 7.10.) While we can derive which matrix elements are being
modifed by observing the element values after performing transformations on
the matrix, we really do not know from this exactly what’s happening. Tables 7.1,
7.2, and 7.3 show the actual content of a matrix after each transformation is

Figure 7.8
A translation transformation affects matrix elements 14, 24, 34.

186 Chapter 7 n Vectors and Matrices

Figure 7.9
A scaling transformation affects matrix elements 11, 22, 33.

Figure 7.10
A rotation transformation affects matrix elements 11, 13, 22, 23, 31, 32, and 33.

Matrices 187

calculated (for rotations X, Y, and Z, respectively). You’ll note that all three
would fit inside a 3� 3 matrix, but by using a 4� 4 we can combine rotation with
the other transformations2.

Matrix Struct
We’re going to start with a meager Matrix struct and then expand it in the future
as needed. For now, all we need to do is extend the base D3DXMATRIX and our own
Matrix struct can then be passed to Direct3D functions without the need for

Table 7.1 X rotation matrix

C1 C2 C3 C4

R1 1 0 0 0
R2 0 cos(y) �sin(y) 0
R3 0 sin(y) cos(y) 0
R4 0 0 0 1

Table 7.2 Y rotation matrix

C1 C2 C3 C4

R1 cos(y) 0 �sin(y) 0
R2 0 1 0 0
R3 sin(y) 0 cos(y) 0
R4 0 0 0 1

Table 7.3 Z rotation matrix

C1 C2 C3 C4

R1 cos(y) �sin(y) 0 0
R2 sin(y) cos(y) 0 0
R3 0 0 1 0
R4 0 0 0 1

188 Chapter 7 n Vectors and Matrices

typecasting or conversion functions. We don’t necessarily want to replicate all of
the functionality in D3DXMATRIX immediately, because that could lead to bugs in
our rendering code later. We will probably want to replace all of the D3DX
functions with our own eventually. What we do want is to learn, and as long as
performance is not impaired, it’s okay to replace some of the basic D3DX matrix
code with our own right now.

You might be wondering, why use a struct, instead of a class? Good question!
The reason is, D3DXMATRIX is a struct, and we want to just inherit its properties
and functions without reinventing the wheel all at once. Later on, perhaps this
will evolve into a full class.

Adv i c e

If you want to examine the code for most of the calculations performed on Direct3D matrices,
take a look at the d3dx9math.inl file from the downloads found at www.jharbour.com/forum or
www.courseptr.com/downloads.

Identity Matrix

Let’s start with an identity matrix function. Since D3DX exposes functions such
as D3DXMatrixIdentity, we can code it into our class internally and bypass the
D3DX function. Here is the D3DX version:

D3DXINLINE D3DXMATRIX* D3DXMatrixIdentity(D3DXMATRIX *pOut)
{

pOut->m[0][1] = pOut->m[0][2] = pOut->m[0][3] =
pOut->m[1][0] = pOut->m[1][2] = pOut->m[1][3] =
pOut->m[2][0] = pOut->m[2][1] = pOut->m[2][3] =
pOut->m[3][0] = pOut->m[3][1] = pOut->m[3][2] = 0.0f;
pOut->m[0][0] = pOut->m[1][1] = pOut->m[2][2] = pOut->m[3][3] = 1.0f;
return pOut;

}

Our own version looks almost identical (because the float m[][] array is
shared):

void Matrix::setIdentity()
{

//set most elements to zero
m[0][1] = m[0][2] = m[0][3] =
m[1][0] = m[1][2] = m[1][3] =

Matrices 189

m[2][0] = m[2][1] = m[2][3] =
m[3][0] = m[3][1] = m[3][2] = 0.0f;

//set diagonals 11,22,33,44 to one
m[0][0] = m[1][1] = m[2][2] = m[3][3] = 1.0f;

}

Zero Matrix

The zero matrix can be easily set by just setting all of the matrix elements to
zero, like so:

void Matrix::setZero()
{

Fill(0.0f);
}
void Matrix::Fill(float value)
{

m[0][0] = m[0][1] = m[0][2] = m[0][3] =
m[1][0] = m[1][1] = m[1][2] = m[1][3] =
m[2][0] = m[2][1] = m[2][2] = m[2][3] =
m[3][0] = m[3][1] = m[3][2] = m[3][3] = value;

}

Matrix Struct Interface

We can now create a fairly well-balanced Matrix structure with quite a bit of
added functionality beyond its parent, D3DXMATRIX. I have included rudimentary
copy constructors and assignment operators for various data types and rudi-
mentary transformation functions. The idea is to reduce calls to D3DX functions
from inside the engine code and roll at least the most commonly used ones into
struct functions.

Adv i c e

When building a struct or class that will see frequent but short lifetimes, it’s recommended that you
not write any code as inline inside the interface/header file because that code is allocated with the
struct or class definition every time it is instantiated. On the other hand, functions implemented in a
separate .cpp file are called, not actually stored inside the instantiated object. This struct definition
below has quite a few functions but it is still extremely lightweight.

190 Chapter 7 n Vectors and Matrices

struct Matrix : public D3DXMATRIX
{
public:

Matrix();
Matrix(const Matrix&);
Matrix(const D3DXMATRIX&);
Matrix& operator=(const Matrix&);
Matrix& operator=(const D3DXMATRIX&);
void setZero();
void setIdentity();
void Fill(int);
void Fill(float);
void Fill(double);
void Translate(float x, float y, float z);
void Translate(Vector3&);
void rotateYawPitchRoll(float x, float y, float z);
void rotateYawPitchRoll(Vector3&);
void rotateX(float);
void rotateY(float);
void rotateZ(float);
void Scale(float x, float y, float z);
void Scale(Vector3&);

};

Matrix Struct Implementation

The implementation is found in the source code file Matrix.cpp, which will
belong in the engine’s support module. As you can see from the code, we’re still
highly coupled with D3DX, but that’s to be expected (and desired) during the
early stages of the engine’s development. Let’s not reinvent the wheel just for the
sake of doing everything on our own! There are some things we simply do not
have time (let alone knowledge and experience) to implement on our own—and
to try is wasteful.

Matrix::Matrix() : D3DXMATRIX() { }

Matrix::Matrix(const Matrix& M) : D3DXMATRIX(M)
{

*this = M;
}

Matrices 191

Matrix::Matrix(const D3DXMATRIX& M) : D3DXMATRIX(M)
{

*this = M;
}

Matrix& Matrix::operator=(const Matrix& M)
{

memcpy(m, &M.m, sizeof(float)*16);
return *this;

}

Matrix& Matrix::operator=(const D3DXMATRIX& M)
{

memcpy(m, &M.m, sizeof(float)*16);
return *this;

}

void Matrix::setZero()
{

Fill(0.0f);
}

void Matrix::setIdentity()
{

//set most elements to zero
m[0][1] = m[0][2] = m[0][3] =
m[1][0] = m[1][2] = m[1][3] =
m[2][0] = m[2][1] = m[2][3] =
m[3][0] = m[3][1] = m[3][2] = 0.0f;

//set diagonals 11,22,33,44 to one
m[0][0] = m[1][1] = m[2][2] = m[3][3] = 1.0f;

}

void Matrix::Fill(int value)
{

Fill((float) value);
}

192 Chapter 7 n Vectors and Matrices

void Matrix::Fill(float value)
{

m[0][0] = m[0][1] = m[0][2] = m[0][3] =
m[1][0] = m[1][1] = m[1][2] = m[1][3] =
m[2][0] = m[2][1] = m[2][2] = m[2][3] =
m[3][0] = m[3][1] = m[3][2] = m[3][3] = value;

}

void Matrix::Fill(double value)
{

Fill ((float) value);
}

void Matrix::Translate(float x, float y, float z)
{

D3DXMatrixTranslation((D3DXMATRIX*) this, x, y, z);
}

void Matrix::Translate(Vector3& V)
{

Translate((float)V.x, (float)V.y, (float)V.z);
}

void Matrix::rotateYawPitchRoll(float x, float y, float z)
{

D3DXMatrixRotationYawPitchRoll((D3DXMATRIX*) this, x, y, z);
}

void Matrix::rotateYawPitchRoll(Vector3& V)
{

rotateYawPitchRoll((float)V.x, (float)V.y, (float)V.z);
}

void Matrix::rotateX(float x)
{

D3DXMatrixRotationX((D3DXMATRIX*) this, x);
}

void Matrix::rotateY(float y)
{

D3DXMatrixRotationY((D3DXMATRIX*) this, y);
}

Matrices 193

void Matrix::rotateZ(float z)
{

D3DXMatrixRotationX((D3DXMATRIX*) this, z);
}

void Matrix::Scale(float x, float y, float z)
{

D3DXMatrixScaling((D3DXMATRIX*) this, x, y, z);
}

void Matrix::Scale(Vector3& V)
{

Scale((float)V.x, (float)V.y, (float)V.z);
}

Math Matrix Demo
The Math Matrix Demo (see Figure 7.11) shows how to use the new Matrix

struct. As discussed earlier, Matrix extends D3DXMATRIX, so we’ll be able to make
use of any intrinsic helper functions inside D3DXMATRIX, as well as the grand-
parent D3DMATRIX struct’s matrix elements (_11, _12, etc.).

#include "stdafx.h"
#include "Engine.h"
#include "Vector.h"
#include "Matrix.h"
using namespace std;
using namespace Octane;

Font *font=NULL;

bool game_preload()
{

g_engine->setAppTitle("Math Matrix Demo");
g_engine->setScreen(1024,768,32,false);
return true;

}

bool game_init(HWND hwnd)
{

font = new Font("Arial Bold",18);

194 Chapter 7 n Vectors and Matrices

if (!font)
{

debug � "Error creating font" � endl;
return false;

}
return true;

}

void game_end()
{

if (font) delete font;
}

void game_update(float elapsedTime) { }
void game_render3d() {}

Figure 7.11
The Math Matrix Demo demonstrates our new custom Matrix code.

Matrices 195

std::string Vector2ToString(Vector2& V)
{

ostringstream out;
out � V.getX() � ", " � V.getY();
return out.str();

}

std::string Vector3ToString(Vector3& V)
{

ostringstream out;
out � V.getX() � ", " � V.getY() � ", " � V.getZ();
return out.str();

}

std::string MatrixToString(D3DXMATRIX& M)
{

ostringstream out;
out � M._11 � ", " � M._12 � ", " � M._13 � ", "

� M._14 � endl;
out � M._21 � ", " � M._22 � ", " � M._23 � ", "

� M._24 � endl;
out � M._31 � ", " � M._32 � ", " � M._33 � ", "

� M._34 � endl;
out � M._41 � ", " � M._42 � ", " � M._43 � ", "

� M._44;
return out.str();

}

void game_render2d()
{

std::ostringstream out;
out.setf(ios::fixed);
out � setprecision(2);

Matrix A;
A.setIdentity();
A *= 1.25f;
out � "Matrix A * 1.25 = " � endl �

MatrixToString(A) � endl � endl;

Matrix B;

196 Chapter 7 n Vectors and Matrices

B.Fill(12.875);
out � "Matrix B = " � endl � MatrixToString(B) �

endl � endl;

A += B;
out � "Matrix A + B = " � endl � MatrixToString(A) �

endl � endl;

Matrix C = B * 2.75;
out � "Matrix C = B * 2.75 : " � endl � MatrixToString(C) �

endl � endl;

D3DXMATRIX D;
D3DXMatrixRotationX(&D, 3.14f);

//instantiating a Matrix on the heap
Matrix *E = new Matrix(D);
out � "Matrix E = D (D3DXMATRIX copy) : " � endl �

MatrixToString(*E) � endl � endl;

E->setIdentity();
E->Translate(1, -2, 3);
out � "E->Translate(1,-2,3) = " � endl �

MatrixToString(*E) � endl � endl;

font->Print(0, 0, out.str());

//start second column
out.str("");

E->Scale(1, -2, 3);
out � "E->Scale(1,-2,3) = " � endl � MatrixToString(*E) �

endl � endl;

E->rotateX(1);
out � "E->RotateX(1) = " � endl � MatrixToString(*E) �

endl � endl;

E->rotateY(-2);
out � "E->RotateY(-2) = " � endl � MatrixToString(*E) �

endl � endl;

Matrices 197

E->rotateZ(3);
out � "E->RotateZ(3) = " � endl � MatrixToString(*E) �

endl � endl;

E->rotateYawPitchRoll(1, -2, 3);
out � "E->RotateYawPitchRoll(1,-2,3) = " � endl �

MatrixToString(*E) � endl � endl;

delete E;

font->Print(400, 0, out.str());
}

void game_event(IEvent* e)
{

switch(e->getID())
{

case EVENT_KEYPRESS:
{

KeyPressEvent* evt = (KeyPressEvent*) e;
if (evt->keycode == DIK_ESCAPE)

g_engine->Shutdown();
break;

}
}

}

Summary
That wraps up our math chapter! Does it seem like we’ve been learning just
about everything there is to learn about 3D graphics and rendering without
actually rendering anything? I concur! But these are all important topics or
prerequisites to an effective knowledge base about rendering techniques, so that
when we do start working with animated bone meshes and environmental
collision, we’ll understand at least some of the math behind it all.

References
1. Pipho, Evan. Focus On 3D Models. Cincinnati: Premier Press. 2003.

“Wolfram MathWorld”; http://mathworld.wolfram.com/.

198 Chapter 7 n Vectors and Matrices

Rendering the Scene

The two most important considerations when writing a renderer for the first
time are the camera and the light source. If either of these is set improperly, you
might see nothing on the screen and incorrectly assume that nothing is being
rendered. In fact, something is often being rendered even when you don’t see
anything, but due to the camera’s orientation or the lighting conditions of
the scene, you might not see anything. Remember those two issues while you
peruse the code in this chapter.

The camera determines what you see on the screen. The camera may be
positioned anywhere in 3D space, as well as pointed in any direction in 3D
space. The camera defines the viewport of a 3D environment—what the player
can see. A lot of settings go into the setup of the camera’s view to determine how
the scene will be rendered on the screen. The viewport itself is set up in a matrix
that represents the view. The projection of that viewport onto the screen is also
a matrix, which represents the projection. These two matrices—view and
projection—determine what appears in the scene and how it is presented on
the screen.

Rendering is the process of transforming an entity’s transformation data into a
visual representation. I hesitate to use the terms “two-dimensional” or “three-
dimensional” explicitly, because it’s possible to render in more ways than what is
viewed through a computer monitor.

chapter 8

199

This chapter will cover the following topics:

n View matrix

n Projection matrix

n World matrix

n Rendering a basic scene

n Loading an effect file

n Ambient wireframe shader

n Matrix inverse/transpose

n Directional lighting

The Camera (View and Projection Matrices)
There are 360 degrees in a circle, which is equivalent to 2 * π radians (not to be
confused with the very similar calculation for the circumference of a circle, which
is C = 2πr). You can calculate the number of degrees in one radian with 360/(2π),
which is approximately 57.2958. Likewise, we can calculate the number of
radians in a degree with (2π)/360.

1 radian = 57.2958 degrees

1 degree = 0.0175 radians

But if you want to be as accurate as possible (albeit with a slight loss of
performance), calculating the conversions with as much precision as possible
will net better results:

degrees = radians * (360 / (2 * 3.1415926535))

radians = degrees * ((2 * 3.1415926535) / 360)

This problem can be simplified without losing any precision. A quicker (and
easier to remember) solution for converting from radians to degrees is to
multiply the radian value by 180 / π. Conversely, to convert from degrees to
radians, multiply degrees by π / 180. In the Math class, these were pre-calculated
into static variables called PI_UNDER_180 and PI_OVER_180, respectively.

degrees = radians * (180 / 3.1415926535)

radians = degrees * (3.1415926535 / 180)

200 Chapter 8 n Rendering the Scene

The View Matrix
You may be wondering: what’s the relation between this discussion of degree and
radian conversions and the camera in a 3D renderer? Believe it or not, they are
related. The field of view is the angle size for the viewport that is “seen” by the
camera and sent to the projection matrix. We start with a new matrix, which is
then filled by the function D3DXMatrixLookAtLH, which creates a view based on
the left-handed coordinate viewpoint (where the Z-axis increases toward the
camera, decreases away from it). There are three properties needed: the position
of the camera as a vector, the target or “look at” position, and the “up direction,”
which is constant. If you want to see what values this function fills into the
matrix, use the MatrixToString() function presented in the previous chapter
with some traceable values, such as 5.55, 6.66, and 7.77, for some of the vector
properties to see where they end up in the matrix. If you can figure this out, then
you can replace the D3DX function with one of your own and embed it inside the
Matrix class. Finally, since the updir property never changes, it is declared
directly as a D3DXVECTOR3 so no conversion is needed from our own Vector3 class.

Matrix matrixView;
matrixView.setIdentity();
Vector3 position = Vector3(0.0f, 0.0f, 10.0f);
Vector3 target = Vector3(0.0f, 0.0f, 0.0f);
updir = D3DXVECTOR3(0.0f, 1.0f, 0.0f);
D3DXMatrixLookAtLH(&matrixView, &pos, &target, &updir);

Any time the position or target of the camera changes, this matrix will need to
be re-created by calling D3DXMatrixLookAtLH() again, which is why this code will
be found inside the Camera::Update() function in the Camera class.

The Projection Matrix
The projection (also referred to as perspective) matrix determines how the scene
is transferred from the camera to the frame buffer and ultimately to the screen.
To be more specific, the projection matrix determines how the viewport is
rasterized onto a 2D monitor, based on properties such as the field of view,
aspect ratio (width to height), and the camera’s near and far clipping ranges
Hence, the term “projection,” an analogy for the way a film projector displays a
film onto a theater screen (an apt comparison because that is essentially what is
happening). While your game might have many cameras, it will usually have
only one “projector” or projection matrix.

The Camera (View and Projection Matrices) 201

The ratio property should reflect the horizontal and vertical scaling you wish to
see in the viewport, which is usually a width-to-height ratio of 1.33 (which is
nominal for the standard resolutions of 640x480, etc.). You will want to change
this assumption if targeting a widescreen display.

The field of view property determines how wide of an angle the camera should
have when rendering a snapshot of the scene (which is then passed to the
projection matrix). Since 2π radians is one complete circle, it is common to use
one-fourth π or 45 degrees, but I encourage you to experiment.

float ratio = 640 / 480;
float fieldOfView = PI / 4.0f;

As mentioned earlier, unless these properties change there is no reason to
recalculate the projection matrix. There are some cases where you will want a
different projection, such as with a sniper rifle scope or fisheye view. In those
cases, I recommend just using multiple projection matrices, like multiple
cameras, to handle those situations without needing to recalculate. Granted, a
matrix is only a 4x4 array, so these calculations are not going to slow down the
framerate much, but every little optimization over the long run does add up.

Camera Class
The Camera class incorporates the view and projection matrices as its primary
function, but it also needs to provide basic camera positioning and orientation
functions. At minimum, you will want to move the camera to track an object
and cause the target position to move along with the camera’s position. These
features are not difficult to implement at all, but we aren’t quite ready to build a
first-person camera just yet—see the section on that topic later in this chapter.

Adv i c e

This chapter’s resource files can be downloaded from www.jharbour.com/forum or www.courseptr.
com/downloads. Please note that not every line of code will be in print due to space considerations:
only the most important sections of code are covered in each chapter.

class Camera
{
private:

Matrix p_matrixProj;

202 Chapter 8 n Rendering the Scene

Matrix p_matrixView;
Matrix p_matrixRot;
D3DXVECTOR3 p_updir;

Vector3 p_position;
Vector3 p_rotation;
Vector3 p_target;

double p_nearRange;
double p_farRange;
double p_aspectRatio;
double p_fov;

public:
Camera(void);
~Camera(void);
void setPerspective(double fov, double aspectRatio, double nearRange,

double farRange);
Matrix getProjMatrix() { return p_matrixProj; }
Matrix getViewMatrix() { return p_matrixView; }

//camera position helpers
Vector3 getPosition() { return p_position; }
void setPosition(double x, double y, double z);
void setPosition(Vector3 vector) { p_position = vector; }

void setRotation(double x,double y,double z);
void setRotation(Vector3 vector) { p_rotation = vector; }

//camera lookat helpers
Vector3 getTarget() { return p_target; }
void setTarget(Vector3 value) { p_target = value; }
void setTarget(double x, double y, double z)
{

p_target.x = (float)x;
p_target.y = (float)y;
p_target.z = (float)z;

}

void Update();
void Rotate(double x, double y, double z);

The Camera (View and Projection Matrices) 203

void Look(double x, double y, double z);
void Move(double x, double y, double z);

};

The Camera class’s implementation adds helper functions to assist with camera
movement in addition to the projection matrix and view matrix code already
covered. As usual, the peripheral code (headers, namespace definitions, etc.) has
been omitted to save space—these are just the class methods found in the
Camera.cpp file.

Camera::Camera(void)
{

//create default perspective matrix
p_position = Vector3(0.0f,0.0f,10.0f);
p_updir = D3DXVECTOR3(0.0f,1.0f,0.0f);
double ratio = 640 / 480;
setPerspective(Octane::PI / 4.0f, ratio, 1.0f, 10000.0f);

//create default view matrix
this->Update();

}

Camera::~Camera(void){}

void Camera::setPerspective(double fov, double aspectRatio,
double nearRange, double farRange)

{
p_fov = fov;
p_aspectRatio = aspectRatio;
p_nearRange = nearRange;
p_farRange = farRange;

//set the camera’s perspective matrix
D3DXMatrixPerspectiveFovLH(&this->p_matrixProj, (float)p_fov,

(float)p_aspectRatio, (float)p_nearRange, (float)p_farRange);
}

void Camera::Update()
{

//create the view matrix
D3DXVECTOR3 pos = p_position.ToD3DXVECTOR3();

204 Chapter 8 n Rendering the Scene

D3DXVECTOR3 target = p_target.ToD3DXVECTOR3();
D3DXMatrixLookAtLH(&p_matrixView, &pos, &target, &p_updir);

}

//set specific position values
void Camera::setPosition(double x, double y, double z)
{

p_position.x = (float)x;
p_position.y = (float)y;
p_position.z = (float)z;

}

//set specific rotation values
void Camera::setRotation(double x, double y, double z)
{

p_rotation.x = (float)x;
p_rotation.y = (float)y;
p_rotation.z = (float)z;

//update rotation matrix
D3DXMatrixRotationYawPitchRoll(&p_matrixRot, (float)p_rotation.x,

(float)p_rotation.y, (float)p_rotation.z);
}

//adjust rotation relative to current rotation values
void Camera::Rotate(double x, double y, double z)
{

p_rotation.x += (float)x;
p_rotation.y += (float)y;
p_rotation.z += (float)z;

}

//relative adjustment to lookat target
void Camera::Look(double x, double y, double z)
{

p_target.x += (float)x;
p_target.y += (float)y;
p_target.z += (float)z;

}

The Camera (View and Projection Matrices) 205

//relative adjustment to both position and target
void Camera::Move(double x, double y, double z)
{

p_position.x += (float)x;
p_position.y += (float)y;
p_position.z += (float)z;

p_target.x += (float)x;
p_target.y += (float)y;
p_target.z += (float)z;

}

The Scene (World Matrix)
We have already learned to use the view and projection matrices in order to
create a camera viewport in the scene. The third matrix that completes this trio
is the world matrix. So called because it represents transformations that take
place in the game world, or 3D world, or 3D scene—depending on the narrator.
The world matrix is a reusable matrix for rendering every object in the scene,
one at a time. This matrix does not represent the whole “world” (that is, the
whole scene), but rather is used to fill in the “world” or scene with all of the
objects with which it is comprised. Individual game objects—terrain, trees,
buildings, vehicles, people, alien characters, spaceships, planets, and so on—may
or may not have their own internal matrices to represent the transformation of
each object. More often, the object has properties such as position, rotation, and
scaling, which are then used to create the matrix as that entity is being rendered.

Rendering a Basic Scene
Back in Chapter 6, we wrote the basic Direct3D rendering code in the Octane
engine’s primary source code file (Engine.cpp) in a function called Engine::

Update(). Here it is again for reference:

void Engine::Update(float elapsedTime)
{

static float accumTime=0;

p_coreFrameCount++;
if (p_coreTimer.Stopwatch(1000))
{

206 Chapter 8 n Rendering the Scene

p_coreFrameRate = p_coreFrameCount;
p_coreFrameCount = 0;

}

game_update(elapsedTime);

if (!timedUpdate.Stopwatch(16))
{

timedUpdate.Rest(1);
}
else
{

p_screenFrameCount++;
if (p_screenTimer.Stopwatch(1000))
{

p_screenFrameRate = p_screenFrameCount;
p_screenFrameCount = 0;

}

p_input->Update();
updateKeyboard();
updateMouse();

if (p_device->BeginScene() == D3D_OK)
{

g_engine->clearScene(p_backdropColor);
game_render3d();
p_spriteObj->Begin(D3DXSPRITE_ALPHABLEND);
game_render2d();
p_spriteObj->End();
p_device->EndScene();
p_device->Present(0,0,0,0);

}
}

}

There are three important function calls in the Engine::Update function:

n game_update(float deltaTime)

n game_render3d()

n game_render2d()

The Scene (World Matrix) 207

These three functions bring our game code to life by allowing us to update
everything in each frame (running at the core clock speed of the CPU), and to
render the 3D scene, and then to do any 2D sprite drawing (such as text output)
as needed. There is no facility here for effect/shader-based rendering, so we’ll
address that issue now.

We need to add shader-based rendering to the Engine::Update function via the
game_render3d() function. Since the Direct3D rendering block is already being
handled for us in the Engine::Update() function, all we need to do on the “front
end,” so to speak, is invoke the effect’s own functions and perform rendering of
a mesh. To start an effect, we first use the ID3DXEffect::Begin() function, and
then finish rendering with ID3DXEffect::End(). Within the Begin/End block is a
call to BeginPass() and EndPass().

This example assumes that there is only one pass in the current technique, and
that is how it’s coded in the Effect class later in this chapter. If you have any
effects that do render with multiple passes, then it will be a rather simple matter
to modify the class to take into account multiple passes as this code suggests:

UINT passes;
effect->Begin(&passes, 0);
effect->BeginPass(0);
. . .

effect->EndPass();
effect->End();

This effect rendering pipeline is repeated for every mesh in the scene, with each
mesh being rendered individually with the appropriate effect, and all taking
place within the Direct3D rendering pipeline. But, since each mesh will need to
be rendered with its own textures, we will have to embed the effect code inside the
mesh rendering function. (More on this in Chapter 9, “Mesh Loading and
Rendering.”)

Loading an Effect File
An effect file has an extension of .fx and contains one or more rendering
techniques, each of which will have a vertex shader function and usually a pixel
shader function as well. While it’s possible to render a mesh entirely with vertex
lighting, the result is never going to be as good as the quality achieved with a pixel
shader—or fragment program. In order to load an effect file, we’ll use another

208 Chapter 8 n Rendering the Scene

D3DX structure called ID3DXEffect, or the pointer version, LPD3DXEFFECT. An
ID3DXBuffer variable is also used to detect error messages generated while the
effect file is being compiled. These errors are quite detailed, specifying the line
number and position in the effect file where an error occurred! Figure 8.1 shows a
sample shader compile error message.

ID3DXEffect* effect = 0;
ID3DXBuffer *errors = 0;

The D3DXCreateEffectFromFile function is used to load an effect file. Of all the
parameters in this function definition, we need concern ourselves with only
four—the Direct3D device, the effect filename, the effect object pointer, and the
errors object pointer.

D3DXCreateEffectFromFile(
g_engine->getDevice(), //Direct3D device
filename.c_str(), //effect filename
0, //macros
0, //includes
D3DXSHADER_DEBUG, //flags
0, //pool
&p_effect, //effect pointer
&errors); //error text

Effect File Structure

Every effect file will have at least three global variables or properties that
must be set in Cþþ code for the effect to render anything: a View matrix, a

Figure 8.1
Shader errors are quite detailed and helpful to the developer.

The Scene (World Matrix) 209

Projection matrix, and a World matrix. For every mesh rendered in a scene, the
transformation of that mesh, along with the camera’s view and projection
matrices, are passed as parameters to the effect. A matrix is defined in an effect
with the float4x4 data type:

float4x4 World;
float4x4 View;
float4x4 Projection;

Parameters such as these are used to communicate information from the CPU to
the GPU (i.e., from your Cþþ code to the shader functions in the effect file). See
Figure 8.2.

An effect file may define more than one technique, but at least one must be
defined. The technique specifies the vertex shader and pixel shader functions
that are to be used for the technique, along with any special rendering
parameters. It is entirely possible to use just one effect file with many dozens
of techniques and vertex/pixel shader functions within, but since that combined
code would be a bit difficult to maintain I recommend using one effect file per
technique until you are fully confident in your shader programming skill.

technique Ambient
{

pass P0
{

VertexShader = compile vs_2_0 VertexShaderFunction();

Figure 8.2
Parameters define how shader functions will manipulate vertices and render pixels.

210 Chapter 8 n Rendering the Scene

PixelShader = compile ps_2_0 PixelShaderFunction();
CullMode = none;
FillMode = wireframe;

}
}

Our simple ambient color effect is about as pathetic as a renderer can get!
But it’s a step in the learning process and demonstrates basic shader program-
ming in its simplest form. The “Ambient” technique defined two functions:
VertexShaderFunction and PixelShaderFunction. Normally, a technique will
specify vertex and pixel shader functions that are named according to their
function, like a diffuse light shader or a normal mapping shader.

Within the GPU, the vertex shader is always invoked first, which is why it’s
possible to render a mesh with just vertex lighting and no pixel lighting. Figure 8.3
shows the relationship between vertex shader and pixel shader. As the illustration
suggests, the output from the vertex shader becomes the input to the pixel shader,
defined as a custom struct created by the programmer.

Microsoft introduced the concept of a geometry shader in DirectX 10 (with
obvious collaboration with NVIDIA and ATI). A geometry shader receives input
from the vertex shader, and has the ability to add new vertices and entire meshes to
the scene before passing the rendering task on to the pixel shader. See Figure 8.4.

The vertex shader can receive individual parameters, but it’s far more conven-
ient to use a custom struct with those parameters defined within, because this

Figure 8.3
A custom struct is the glue between the vertex shader and pixel shader.

The Scene (World Matrix) 211

struct is often used for the output of the vertex shader (which becomes the input
parameter of the pixel shader).

struct MyVertexStruct
{

float4 position : POSITION0;
float4 color : COLOR0;

};

The job of the vertex shader is to manipulate vertices—not to render, which is
solely the job of the pixel shader (or fragment program as it is often called). The
vertex shader function takes as input the incoming position of a vertex as a
vector (with an X,Y,Z component). This vector is combined through multi-
plication with the World, View, and Projection matrices, all of which are
similarly multiplied together to arrive at a combined matrix used to transform
the vertex. Any vertex color value is simply passed on to the pixel shader
unchanged. Likewise, when applying a texture to a mesh, the pixels of the texture
that are mapped onto the mesh are passed straight through the vertex shader on
to the pixel shader where each pixel of the texture is combined with the lighting
to arrive at a combined color value.

MyVertexStruct VertexShaderFunction(MyVertexStruct input_param)
{

MyVertexStruct output = (MyVertexStruct)0;

//combine world + view + projection matrices

Figure 8.4
A GPU that supports DirectX 10 and later will also have a geometry shader.

212 Chapter 8 n Rendering the Scene

float4x4 WorldViewProj = mul(World,mul(View,Projection));

//translate the current vertex
output.position = mul(input_param.position, WorldViewProj);

output.color.rgb = AmbientColor * AmbientIntensity;
output.color.a = AmbientColor.a;

return output;
}

This pixel shader function simply renders the vertex color passed to it as a
passthrough, without performing any processing on the pixels itself. The result is
a rendered mesh with only vertex coloring and lighting.

float4 PixelShaderFunction(float4 c : COLOR0) : COLOR
{

return c;
}

Sample Effect File

The following code listing belongs to the ambient.fx file included in the project
for this chapter. This effect only defines an ambient color and ambient intensity
for rendering, which will cause any mesh rendered with it to appear washed out
in whatever ambient color it is set to. Since the full ambient has no discernable
faces, with no light source, the mesh is poorly defined, so the FillMode property
in this effect’s technique has been set to wireframe. This basic effect source code
is a good starting point if you’re new to shader programming since the addition
of lighting code tends to increase its complexity very quickly.

// Basic ambient light shader with no texture support
float4x4 World;
float4x4 View;
float4x4 Projection;
float4 AmbientColor : AMBIENT = float4(1.0,1.0,1.0,1.0);
float AmbientIntensity = 1.0;

struct MyVertexStruct
{

float4 position : POSITION0;

The Scene (World Matrix) 213

float4 color : COLOR0;
};

MyVertexStruct VertexShaderFunction(MyVertexStruct input_param)
{

MyVertexStruct output = (MyVertexStruct)0;

//combine world + view + projection matrices
float4x4 WorldViewProj = mul(World,mul(View,Projection));

//translate the current vertex
output.position = mul(input_param.position, WorldViewProj);

output.color.rgb = AmbientColor * AmbientIntensity;
output.color.a = AmbientColor.a;

return output;
}

float4 PixelShaderFunction(float4 c : COLOR0) : COLOR
{

return c;
}

technique Ambient
{

pass P0
{

VertexShader = compile vs_2_0 VertexShaderFunction();
PixelShader = compile ps_2_0 PixelShaderFunction();
FillMode = wireframe;

}
}

Effect Class

We need a wrapper class to handle all of the effect file loading and rendering
functions with the use of properties to centralize all of the shader processing in
one place. We can also take advantage of function overloading to support many
types of parameters. The three main matrices that must be passed to every effect
(World, View, Projection) are supported with their own custom functions with
optional parameter names. Depending on the effect file, these names are likely to

214 Chapter 8 n Rendering the Scene

never be the same unless one programmer is writing them (which we can’t just
assume). To change the defaults from “World,” “View,” and “Projection,” you
can pass the necessary string to the setWorldMatrix(), setViewMatrix(), and
setProjectionMatrix() functions, respectively. Below is the header file for a new
Effect class that will encapsulate ID3DXEffect.

class Effect
{
private:

LPD3DXEFFECT p_effect;

public:
Effect();
~Effect();
LPD3DXEFFECT getObject() { return p_effect; }
bool Load(std::string filename);
void setTechnique(std::string technique);
void setViewMatrix(D3DXMATRIX matrix,

std::string fxViewParam = "View");
void setProjectionMatrix(D3DXMATRIX matrix,

std::string fxProjParam = "Projection");
void setWorldMatrix(D3DXMATRIX matrix,

std::string fxWorldParam = "World");

void setParam(std::string name, D3DXMATRIX matrix);
void setParam(std::string name, LPDIRECT3DTEXTURE9 texture);
void setParam(std::string name, LPDIRECT3DCUBETEXTURE9 cubeTexture);
void setParam(std::string name, D3DXVECTOR4 vector);
void setParam(std::string name, D3DXVECTOR3 vector);
void setParam(std::string name, Vector3 vector);
void setParam(std::string name, float f);

bool Begin();
void End();

};

The implementation of the Effect class follows next.

Effect::Effect()
{

p_effect = NULL;
}

The Scene (World Matrix) 215

Effect::~Effect()
{

if (p_effect) p_effect->Release();
}

bool Effect::Load(std::string filename)
{

ID3DXBuffer *errors = 0;
D3DXCreateEffectFromFile(g_engine->getDevice(), filename.c_str(),

0, 0, D3DXSHADER_DEBUG, 0, &p_effect, &errors);
if (errors) {

MessageBox(0, (char*)errors->GetBufferPointer(), 0, 0);
return false;

}
return true;

}

void Effect::setTechnique(std::string technique)
{

p_effect->SetTechnique(technique.c_str());
}

void Effect::setViewMatrix(D3DXMATRIX matrix, std::string fxViewParam)
{

p_effect->SetMatrix(fxViewParam.c_str(), &matrix);
}

void Effect::setProjectionMatrix(D3DXMATRIX matrix, std::string fxProjParam)
{

p_effect->SetMatrix(fxProjParam.c_str(), &matrix);
}

void Effect::setWorldMatrix(D3DXMATRIX matrix, std::string fxWorldParam)
{

p_effect->SetMatrix(fxWorldParam.c_str(), &matrix);
}

bool Effect::Begin()
{

if (!p_effect) return false;

216 Chapter 8 n Rendering the Scene

UINT passes;
p_effect->Begin(&passes, 0);
if (passes == 0) return false;
p_effect->BeginPass(0);
return true;

}

void Effect::End()
{

if (!p_effect) return;
p_effect->EndPass();
p_effect->End();

}

void Effect::setParam(std::string name, D3DXMATRIX matrix)
{

p_effect->SetMatrix(name.c_str(), &matrix);
}

void Effect::setParam(std::string name, LPDIRECT3DTEXTURE9 texture)
{

p_effect->SetTexture(name.c_str(), texture);
}

void Effect::setParam(std::string name, LPDIRECT3DCUBETEXTURE9 cubeTexture)
{

p_effect->SetTexture(name.c_str(), cubeTexture);
}

void Effect::setParam(std::string name, D3DXVECTOR4 vector)
{

p_effect->SetVector(name.c_str(), &vector);
}

void Effect::setParam(std::string name, D3DXVECTOR3 vector)
{

D3DXVECTOR4 v;
v.x = vector.x;
v.y = vector.y;
v.z = vector.z;

The Scene (World Matrix) 217

v.w = 0;
p_effect->SetVector(name.c_str(), &v);

}

void Effect::setParam(std::string name, Vector3 vector)
{

D3DXVECTOR4 v;
v.x = (float) vector.x;
v.y = (float) vector.y;
v.z = (float) vector.z;
v.w = 0;
p_effect->SetVector(name.c_str(), &v);

}

void Effect::setParam(std::string name, float f)
{

p_effect->SetFloat(name.c_str(), f);
}

Rendering a Stock Mesh
The D3DX library provides us with six stock meshes for experimentation and
testing purposes, although you could use them in a game if that would fulfill a
gameplay design goal. The stock meshes are:

Stock Shape D3DX Function

Torus D3DXCreateTorus

Sphere D3DXCreateSphere

Cube D3DXCreateBox

Teapot D3DXCreateTeapot

Cylinder D3DXCreateCylinder

Text D3DXCreateText

The parameters for each function are self-explanatory. In some cases, we are
given the option of specifying how detailed a shape will be based on the number
of rows, columns, sides, etc. One of my favorites is the torus, which looks like a
large donut or ring (see Figure 8.5).

218 Chapter 8 n Rendering the Scene

Adv i c e

There’s one unusual mesh that you can create with the D3DX library—D3DXCreateText. Specify
the TrueType font name and a mesh will be created containing a representation of the text you
wish to render in 3D. The only drawback is that this function requires a GDIþ device context that
must be created beforehand, and after the mesh has been created this device context must be
freed, which is a very slow process. But for special-purpose rendering needs, such as a high-score
screen or custom effects rendered on the title screen of a game, this may provide some intriguing
possibilities.

HDC hdc = CreateCompatibleDC(0);
HFONT hfont;
hfont=CreateFont(0,0,0,0,FW_NORMAL, false, false, false, DEFAULT_CHARSET,

OUT_DEFAULT_PRECIS, CLIP_DEFAULT_PRECIS, DEFAULT_QUALITY,

VARIABLE_PITCH|FF_MODERN, "Tahoma");
SelectObject(hdc,hfont);
D3DXCreateText(g_engine->getDevice(),hdc,"3D Text",0,1.0f,&text,0,0);
DeleteObject(hfont);
DeleteDC(hdc);

Figure 8.5
Wireframe render of the stock torus mesh.

The Scene (World Matrix) 219

Ambient Wireframe Shader Demo

The following program demonstrates the Ambient.fx effect with the FillMode

property set to wireframe. You may selectively swap one type of mesh for
another to see the sphere, teapot, cylinder, cube, or torus by making minor
changes to the code.

#include "stdafx.h"
#include "Engine.h"
using namespace std;
using namespace Octane;

LPD3DXMESH torus;
LPD3DXMESH sphere;
LPD3DXMESH cube;
LPD3DXMESH teapot;
LPD3DXMESH cylinder;
Matrix matWorld;
Font* font=NULL;
Camera* camera=NULL;
Effect* effect=NULL;
float deltaTime=0;

bool game_preload()
{

g_engine->setAppTitle("Ambient Wireframe Shader Demo");
g_engine->setScreen(800,600,32,false);
return true;

}

bool game_init(HWND hwnd)
{

font = new Font("Arial Bold",18);
if (!font)
{

debug � "Error creating font" � endl;
return false;

}

//g_engine->setBackdropColor(D3DCOLOR_XRGB(0,250,250));

//create a camera

220 Chapter 8 n Rendering the Scene

camera = new Camera();
camera->setPosition(0, 0.0, 10.0);
camera->setTarget(0,0,0);

//load the ambient.fx effect
effect = new Effect();
if (!effect->Load("ambient.fx"))
{

MessageBox(hwnd, "Error loading ambient.fx", "Error",0);
return false;

}

matWorld.setIdentity();

//create stock meshes
D3DXCreateTorus(g_engine->getDevice(), 2.0f, 4.0f, 20, 20, &torus, NULL);
D3DXCreateTeapot(g_engine->getDevice(), &teapot, NULL);
D3DXCreateSphere(g_engine->getDevice(), 2.0f, 10, 10, &sphere, NULL);
D3DXCreateBox(g_engine->getDevice(), 2.0f, 2.0f, 2.0f, &cube, NULL);
D3DXCreateCylinder(g_engine->getDevice(), 2.0f, 2.0f, 3.0f, 10, 10,

&cylinder, NULL);

return true;
}

void game_render3d()
{

//effect->setTechnique("Ambient");
effect->setViewMatrix(camera->getViewMatrix(), "View");
effect->setProjectionMatrix(camera->getProjMatrix(), "Projection");

//draw the cube
{

static float rot = 0;
rot += 0.01f;
matWorld.rotateX(rot);
effect->Begin();
effect->setWorldMatrix((D3DXMATRIX) matWorld , "World");

The Scene (World Matrix) 221

//choose which mesh to render here
torus->DrawSubset(0);
//cube->DrawSubset(0);
//sphere->DrawSubset(0);
//teapot->DrawSubset(0);
//cylinder->DrawSubset(0);
effect->End();

}
}

void game_end()
{

if (font) delete font;
if (effect) delete effect;
if (camera) delete camera;
torus->Release();
teapot->Release();
cube->Release();
sphere->Release();
cylinder->Release();

}

void game_update(float dltTime)
{

deltaTime = dltTime;

camera->Update();

//move the torus mesh in a circular pattern
static float x = 0.0f;
static float y = 0.0f;
static float z = 0.0f;
static float angle = 0.0f;

}

void game_render2d()
{

std::ostringstream out;
out.setf(ios::fixed);
out � setprecision(4);

222 Chapter 8 n Rendering the Scene

out � "Delta time = " � deltaTime � endl;
out � "Update = " � g_engine->getCoreFrameRate() � " fps" � endl;
out � "Draw = " � g_engine->getScreenFrameRate() � " fps";

font->Print(0,0,out.str());

}

void game_event(IEvent* e)
{

switch(e->getID())
{

case EVENT_KEYPRESS:
{

KeyPressEvent* evt = (KeyPressEvent*) e;
if (evt->keycode == DIK_ESCAPE) g_engine->Shutdown();
break;

}
case EVENT_MOUSEMOTION:
{

MouseMotionEvent* evt = (MouseMotionEvent*)e;
camera->Look(evt->deltax/100.0f, evt->deltay/100.0f, 0);
break;

}
case EVENT_MOUSEWHEEL:
{

MouseWheelEvent* evt = (MouseWheelEvent*) e;
camera->Move(0, 0, (float)(-evt->wheel/200.0f));
break;

}
}

}

Diffuse Lighting
The ambient light shader in the previous example of this chapter was designed
for illustration, meant to be easy to understand, but it is not very useful for a
game. To correctly render a mesh we need to add a light source so that the mesh
can reflect light realistically (while our ambient demo did no such reflection and
could only really be seen in wireframe mode).

Diffuse Lighting 223

Diffuse light is light that is spread out or scattered over an area (such as the faces
of a mesh), or light that is dim or bright depending on the type of surface it is
shining on. While ambient light appears to reflect evenly from all surfaces,
diffuse light lacks that perfect conciseness, which is precisely why it is a superior
form of lighting. In a sense, all light other than ambient may be considered
diffuse, but it is most often referred to as light from a directional light source.

Directional Light
A directional light mimics sunlight, in that rays appear to come from an
infinitely far light source, are emitted parallel to each other, and strike an object
or scene uniformly from that direction without any apparent radiant source
(such as a light bulb or spotlight). Directional light will, therefore, appear to
reflect on all objects in a scene uniformly (as long as every object is rendered
with the directional light applied).

To render a mesh with a directional light, in addition to the usual World/View/
Projection matrices, we must also supply a vector to the light source, the light’s
color and intensity, and an inverse/transposed matrix. When calculating the
lighting on the faces of a mesh we must calculate the normal and the light
intensity. The normal is calculated from an inverse/transposed version of the
World matrix. The light intensity is calculated by taking the dot product of the
normal.

Matrix Inverse/Transpose

Calculating the inverse of a matrix is rather complex, involving some derivation
that is beyond the scope of this book. In brief, the inverse of a matrix is such that
when matrix A is inverted to B, both A times B and B times A will equal the
identity matrix. As a result of the theory required to explain inverting a matrix,
this is a calculation we cannot easily detach from the D3DX library at this time
without further research. What we can do, however, is make use of the
D3DXMatrixInverse function to perform this calculation.

Transposing a matrix involves shifting the rows 90 degrees into the columns as
illustrated in Figure 8.6. We can calculate the transposed matrix with the
function D3DXMatrixTranspose.

224 Chapter 8 n Rendering the Scene

Both the matrix inverse and transpose are needed to calculate how light will
affect the faces of a mesh, taking into account the position of a light source.
Assuming your world matrix represents the transforms for a given mesh, then
this code will perform the calculation:

D3DXMATRIX inverse, wit;
D3DXMatrixInverse(&inverse, 0, &world);
D3DXMatrixTranspose(&wit, &inverse);

Both of these functions return the calculated matrix as a return value as well as
passing the result back through the reference parameter, so the result can be
carried on to a calling function. If you wish, you may combine the function calls
like so:

D3DXMatrixTranspose(&wit,D3DXMatrixInverse(&inverse,0,&world));

And, finally, assuming our effect has a global property so named, we can pass
the inverted/transposed World matrix to the effect via our setParam() function:

effect->setParam("WorldInverseTranspose", wit);

Adv i c e

You will probably not want to calculate inverse/transpose inside your shader because those
calculations will be repeated for every vertex and potentially every pixel being rendered. Instead,
calculate the inverse/transpose once in the CPU and pass that calculation on to the effect for an
entire mesh.

Figure 8.6
Transposing a matrix.

Diffuse Lighting 225

Dot Product

To calculate a dot product, the X,Y,Z properties of two vectors are multiplied by
each other, and those products are then added together. The name “dot product”
comes from the dot that is used to represent the calculation. Figure 8.7 shows an
example of calculating using dot product.

Directional Light Shader

This effect source code adds a few more global properties compared to the
previous ambient effect, to take into account directional lighting. Now we have
these globals:

Data Type Global Name

float4x4 World

float4x4 View

float4x4 Projection

float4x4 WorldInverseTranspose

float3 LightVector

float4 LightColor

float LightPower

Figure 8.7
Calculating the dot product of two vectors.

226 Chapter 8 n Rendering the Scene

It’s important to take note of these global properties because they must be set
correctly in our source code—and case sensitivity must be observed.

float4x4 World;
float4x4 View;
float4x4 Projection;
float4x4 WorldInverseTranspose;

float3 LightVector = float3(0, 0, 1);
float4 LightColor = float4(1,1,1,1);
float LightPower = 0.6;

struct MyVertexInput
{

float4 position : POSITION;
float2 texcoord : TEXCOORD0;
float4 normal : NORMAL;

};
struct MyVertexOutput
{

float4 position : POSITION;
float2 texcoord : TEXCOORD0;
float4 color : COLOR0;

};

MyVertexOutput VertexShaderFunction(MyVertexInput input_param)
{

MyVertexOutput output = (MyVertexOutput)0;

//transform
float4x4 viewProj = mul(View,Projection);
float4x4 WorldViewProj = mul(World,viewProj);
output.position = mul(input_param.position, WorldViewProj);

//lighting
float4 normal = mul(input_param.normal, WorldInverseTranspose);
float intensity = dot(normal, LightVector);
output.color = saturate(LightColor * LightPower * intensity);

return output;
}

Diffuse Lighting 227

float4 PixelShaderFunction(MyVertexOutput input_param) : COLOR0
{

float4 light = saturate(input_param.color + LightColor * LightPower);
return light;

}

technique DirectionalLight
{

pass P0
{

vertexShader = compile vs_2_0 VertexShaderFunction();
pixelShader = compile ps_2_0 PixelShaderFunction();

}
}

Directional Light Demo
We have covered quite a bit of new material on diffuse lighting, and our first
experiment is with a directional light source (the most common form of lighting
after ambient). This example required quite a bit more work beyond the ambient
light demo presented earlier in the chapter, including an inverse/transposed
World matrix and properties for the directional light source (position vector,
intensity value, and color value). Figure 8.8 shows the somewhat overused teapot
mesh with a green directional light illuminating it.

This program has some interactivity programmed in. By pressing the up/down
arrows, you can rotate the mesh. The left/right arrows will rotate the light source
around the scene (or more accurately, rotate the normalized vector pointing at
the directional light). The þ/� keys on the numeric keypad increase and
decrease the light intensity, respectively. The R, G, B, and A keys on the
keyboard adjust the color values used for the directional light’s color. Figure 8.9
shows another stock mesh being rendered.

Engine Enhancement: Color Class

We’re going to need a new feature in the engine to make working with colored
lighting more effective. The Direct3D color macros and functions could not be
much more confusing to the uninitiated. At best you are likely to get the integer
and floating-point color macros confused; at worst, nothing but a black scene
will reward you for your hard work. A new Color class will alleviate these

228 Chapter 8 n Rendering the Scene

difficulties by abstracting color at a more basic level—just dealing with the basic
four color components: Red, Green, Blue, Alpha. Here is the class definition:

class Color
{
public:

float r,g,b,a;
virtual ~Color();
Color();
Color(const Color& color);
Color(int R,int G,int B,int A);
Color(float R,float G,float B,float A);
Color& Color::operator=(const Color& c);

void Set(int R,int G,int B,int A);
void Set(float R,float G,float B,float A);

Figure 8.8
Directional lighting on a stock mesh with interactive controls.

Diffuse Lighting 229

//D3D compatibility
D3DCOLOR ToD3DCOLOR();
//shader compatibility
D3DXVECTOR4 ToD3DXVECTOR4();

};

The class implementation will be a good starting point for what will eventually
become a robust Color class that will replace all direct-coded Direct3D color
macros (such as the ubiquitous D3DCOLOR_ARGB macro—yes, it’s a macro, not a
function, declared with a #define). In addition to providing a conversion to a
D3DCOLOR value, also included is a conversion to a D3DXVECTOR4, which is used to
pass the color to a shader. Once again, this is the code solely for the Color class,
not the complete listing from the file, so headers and namespaces are omitted.

Color::~Color() { }

Color::Color()

Figure 8.9
The familiar torus mesh is rendered with a directional light shader.

230 Chapter 8 n Rendering the Scene

{
r=g=b=a=1.0f;

}

Color::Color(const Color& color)
{

*this = color;
}

Color::Color(int R,int G,int B,int A)
{

Set(R,G,B,A);
}

Color::Color(float R,float G,float B,float A)
{

Set(R,G,B,A);
}

Color& Color::operator=(const Color& color)
{

Set(color.r,color.g,color.b,color.a);
return *this;

}

/**
Convert 0-255 color values to 0.0-1.0 range
**/
void Color::Set(int R,int G,int B,int A)
{

r = (float)R/256.f;
g = (float)G/256.f;
b = (float)B/256.f;
a = (float)A/256.f;

}

void Color::Set(float R,float G,float B,float A)
{

r=R; g=G; b=B; a=A;
}

Diffuse Lighting 231

/**
Convert from our 0.f-1.f color values to 0-255 based D3DCOLOR
**/
D3DCOLOR Color::ToD3DCOLOR()
{

D3DCOLOR color = D3DCOLOR_COLORVALUE(r,g,b,a);
return color;

}

/**
Convert to a D3DXVECTOR4 for use by shader code
**/
D3DXVECTOR4 Color::ToD3DXVECTOR4()
{

D3DXVECTOR4 v4(r,g,b,a);
return v4;

}

Now that we have a useful Color class available, we can begin overloading
functions that previously supported only D3DCOLOR. For instance, in Engine.h, we
can overload setBackdropColor() to support a Color parameter:

void setBackdropColor(Color value)
{

p_backdropColor = value.ToD3DCOLOR();
}

Another change we can make is to the Font class. Previously, the Print function
had a D3DCOLOR parameter with a default value. We’ll remove the default and add
an overloaded function with a default Color parameter instead:

void Font::Print(int x, int y, string text, D3DCOLOR color)
{

RECT rect = { x, y, 0, 0 };
fontObj->DrawText(NULL, text.c_str(), text.length(), &rect,

DT_CALCRECT, color);
fontObj->DrawText(g_engine->getSpriteObj(), text.c_str(),

text.length(), &rect, DT_LEFT, color);
}

void Font::Print(int x, int y, std::string text, Color color)
{

232 Chapter 8 n Rendering the Scene

Print(x, y, text, color.ToD3DCOLOR());
}

Directional Light Demo Source

Let’s now go over the source code for this slightly more complex example. Since
we now have quite a few new shader parameters to pass, a detailed analysis of
the source code is needed at this stage. Later examples might gloss over these
details once they have been sufficiently explained. First, we’ll begin with the
program’s header code which contains the global variables. Of particular interest
here is the use of many high-level engine classes with fewer and fewer Direct3D-
specific constructs in use. Our examples will become even more abstracted with
each new chapter.

#include "Engine.h"
using namespace std;
using namespace Octane;

LPD3DXMESH torus;
LPD3DXMESH sphere;
LPD3DXMESH cube;
LPD3DXMESH teapot;
LPD3DXMESH cylinder;
Matrix matWorld;
Font* font=NULL;
Camera* camera=NULL;
Effect* effect=NULL;

Vector3 lightVector;
Color lightColor;
float lightAngle=0;
float lightPower=0.1f;
float objectAngle=0;
float deltaTime=0;

bool game_preload()
{

g_engine->setAppTitle("Directional Light Shader Demo");
g_engine->setScreen(800,600,32,false);
return true;

}

Diffuse Lighting 233

There’s quite a bit of new code in the initialization function that demands an
explanation. First, we create a font like usual, but now we’re also creating a
camera using the new Camera class. The camera is very easy to initilaize since
only the position and target (or look at point) are needed here. Next, an effect
file is loaded (directional_light.fx), and then the sample meshes are created.
You may render any of these meshes you wish, as all are created and destroyed
by the program but not all are used.

bool game_init(HWND hwnd)
{

font = new Font("Arial Bold",18);
if (!font)
{

debug � "Error creating font" � endl;
return false;

}

//create a camera
camera = new Camera();
camera->setPosition(0, 0.0, 5.0);
camera->setTarget(0,0,0);

//load the ambient.fx effect
effect = new Effect();
if (!effect->Load("directional_light.fx"))
{

MessageBox(hwnd, "Error loading directional_light.fx", "Error",0);
return false;

}

matWorld.setIdentity();
lightColor.Set(0,255,0,255);

//create stock meshes
D3DXCreateTorus(g_engine->getDevice(), 0.3f, 1.0f, 80, 80, &torus, 0);
D3DXCreateTeapot(g_engine->getDevice(), &teapot, 0);
D3DXCreateSphere(g_engine->getDevice(), 1.0f, 80, 80, &sphere, 0);
D3DXCreateBox(g_engine->getDevice(), 1.0f, 1.0f, 1.0f, &cube, 0);
D3DXCreateCylinder(g_engine->getDevice(),1.0f,1.0f,3.0f,80,80,&cylinder,0);

234 Chapter 8 n Rendering the Scene

return true;
}

Rendering is slightly more complex than the ambient light demo covered earlier.
We’ve already gone over the new shader globals that are required for directional
lighting, and now those parameters are actually used as the mesh is being
rendered. Although you can render two or more of the meshes with this
example, since we are only modifying the world matrix once—to represent
transforms—the shapes will all draw over each other. If you want to see more
than one shape in the scene, you will have to create a new transform and render
them separately, each in a new effect rendering block.

void game_render3d()
{

effect->setTechnique("DirectionalLight");
effect->setViewMatrix(camera->getViewMatrix(), "View");
effect->setProjectionMatrix(camera->getProjMatrix(), "Projection");

//draw the mesh
{

matWorld.rotateX(objectAngle);
effect->Begin();
effect->setWorldMatrix((D3DXMATRIX) matWorld , "World");

//calculate combined inverse transpose matrix
D3DXMATRIX inverse, wit;
D3DXMatrixInverse(&inverse, 0, &matWorld);
D3DXMatrixTranspose(&wit, &inverse);
effect->setParam("WorldInverseTranspose", wit);

//move the light source
lightVector.x = cosf(lightAngle) * 10.0f;
lightVector.y = 0.0f;
lightVector.z = sinf(lightAngle) * 10.0f;
effect->setParam("LightVector", lightVector);

//set the light intensity
lightPower = Math::Limit(lightPower, 0.0, 1.0);
effect->setParam("LightPower", lightPower);

Diffuse Lighting 235

//set the light color
lightColor.r = Math::wrapValue(lightColor.r, 0.0, 1.0);
lightColor.g = Math::wrapValue(lightColor.g, 0.0, 1.0);
lightColor.b = Math::wrapValue(lightColor.b, 0.0, 1.0);
lightColor.a = Math::wrapValue(lightColor.a, 0.0, 1.0);
effect->setParam("LightColor", lightColor.ToD3DXVECTOR4());

//choose one mesh to render here
torus->DrawSubset(0);
//cube->DrawSubset(0);
//sphere->DrawSubset(0);
//teapot->DrawSubset(0);
//cylinder->DrawSubset(0);
effect->End();

}
}

void game_end()
{

if (font) delete font;
if (effect) delete effect;
if (camera) delete camera;
torus->Release();
teapot->Release();
cube->Release();
sphere->Release();
cylinder->Release();

}

void game_update(float dltTime)
{

deltaTime = dltTime;
camera->Update();

}

void game_render2d()
{

std::ostringstream out;
out.setf(ios::fixed);

236 Chapter 8 n Rendering the Scene

out � setprecision(4);

out � "Delta time = " � deltaTime;
font->Print(0,0,out.str());

out.str("");
out � "Update = " � g_engine->getCoreFrameRate() � " fps";
font->Print(0,20,out.str());

out.str("");
out � "Draw = " � g_engine->getScreenFrameRate() � " fps";
font->Print(0,40,out.str());

out.str("");
out � "Light pos = " � lightVector.x � "," � lightVector.y

� "," � lightVector.z;
font->Print(0,60,out.str());

font->Print(0,80,"Light angle = " + Octane::ToString(lightAngle));

out.str("");
out � "Light RGBA = " � lightColor.r � "," � lightColor.g

� "," � lightColor.b � "," � lightColor.a;
font->Print(0,100,out.str());

font->Print(0,120,"Light intensity = "+Octane::ToString(lightPower));

int w = g_engine->getScreenWidth();
font->Print(w-200,0,"left/right : light angle");
font->Print(w-200,20,"up/down : mesh angle");
font->Print(w-200,40,"+/- : light intensity");
font->Print(w-200,60,"rgba : cycle color values");

}

void game_event(IEvent* e)
{

switch(e->getID())
{

case EVENT_KEYPRESS:
{

Diffuse Lighting 237

KeyPressEvent* evt = (KeyPressEvent*) e;
switch(evt->keycode)
{

case DIK_ESCAPE: g_engine->Shutdown(); break;

//left/right arrow keys rotate light source
case DIK_LEFT: lightAngle -= 0.1f; break;
case DIK_RIGHT: lightAngle += 0.1f; break;

//up/down arrow keys rotate the mesh
case DIK_UP: objectAngle -= 0.02f; break;
case DIK_DOWN: objectAngle += 0.02f; break;

//+/- keys change light power
case DIK_NUMPADPLUS: lightPower += 0.01f; break;
case DIK_NUMPADMINUS: lightPower -= 0.01f; break;

//rgba keys cycle color values
case DIK_R: lightColor.r += 0.01f; break;
case DIK_G: lightColor.g += 0.01f; break;
case DIK_B: lightColor.b += 0.01f; break;
case DIK_A: lightColor.a += 0.01f; break;

}
break;

}
case EVENT_MOUSEMOTION:
{

MouseMotionEvent* evt = (MouseMotionEvent*)e;
camera->Look(evt->deltax/100.0f, evt->deltay/100.0f, 0);
break;

}
case EVENT_MOUSEWHEEL:
{

MouseWheelEvent* evt = (MouseWheelEvent*) e;
camera->Move(0, 0, (float)(-evt->wheel/200.0f));
break;

}
}

}

238 Chapter 8 n Rendering the Scene

Summary
This hefty chapter covered a lot of ground, as a full-blown effect-based renderer
was added to the engine! While ambient wireframe and colored directional light
shaders are nothing to jump up and down with excitement over, they do have
their uses, and it has been extremely helpful to start with these very basic
examples for anyone who is new to shader programming. One of the most
important components of rendering is missing, though—textured meshes. I did
not get into texture mapping in this chapter because it requires a loaded mesh
with defined textures, which we’ll get into in the next chapter.

References
“Dot product”; http://en.wikipedia.org/wiki/Dot_product.

“Inverse”; http://en.wiktionary.org/wiki/inverse_matrix.

“Transpose”; http://en.wikipedia.org/wiki/Transpose.

Gilbert Strang; MIT; Video lecture on matrix multiplication: http://ocw.mit.edu/
OcwWeb/Mathematics/18-06Spring-2005/VideoLectures/detail/lecture03.htm.

References 239

This page intentionally left blank

Mesh Loading and
Rendering

This chapter adds to the code base begun in the previous chapter on shader-
based lighting with some new techniques, such as texture-mapped lighting
shaders, while exploring basic mesh loading and rendering.

The following topics are covered in this chapter:

n .X Files

n Mesh class

n Textured ambient light rendering

n Lighting texture-mapped meshes

n Textured directional light shader

Mesh Loading and Rendering
Now we need to write the code for a new class that will load up a mesh from a .X
file, because in order to explore texturing we cannot use the stock meshes
generated by the D3DXCreate? functions. There are two ways to load a mesh with
Direct3D—either as a hierarchical mesh with bone data and animation or as a
simple static mesh without these features. We’ll begin by writing a simple mesh
loader that will not handle bone or animation data, and then return to these
subjects in Chapter 13 and go over them with the full treatment. At this point,

chapter 9

241

I’m more concerned with shader code to light the scene, and we just need
meshes to test our lighting effects.

.X Files
The primary way to get a mesh asset into the Direct3D rendering pipeline is by
way of the .X file format. This is the standard Direct3D mesh file format, but it is
not widely supported among the popular modeling and animation software
packages (3DS Max and Maya being the most popular). There are exceptions,
however. The Game Creators (www.thegamecreators.com) sell a number of
products that work well with the native .X mesh file format, including
Cartography Shop (Figure 9.1) and 3D World Studio.

Figure 9.1
Cartography Shop is a freeware modeling package that can export directly to the .X format.

242 Chapter 9 n Mesh Loading and Rendering

3D World Studio (http://leadwerks.com) is a great little environment modeling
package. With a price tag of only $50, it will import and export files in the
.X format, as well as other popular formats such as Half-Life and Quake 3 files.
See Figure 9.2 for a screenshot.

Whether you create your own game level and character mesh assets or use free
assets from one of the many resources on the web that share Half-Life, Quake
III, 3DS, or DirectX mesh files, you will need to ultimately convert them to the
.X format for use in a Direct3D-based engine such as Octane (until such time
that you are willing and/or able to write reader code to support those file formats
internally). Later in this chapter is an example that renders a crate mesh,
which is just a cube and a wooden crate texture that is repeated on all six sides.
Figure 9.3 shows the crate mesh in the DirectX Viewer.

Figure 9.2
3D World Studio is an affordable modeling program with terrific features.

Mesh Loading and Rendering 243

Some .X files contain ASCII text, which is readable and editable, while some .X
mesh files are binary and cannot be edited by hand, only with a modeling
package that supports it (such as 3D World Studio).

Crate Mesh Internals

Below are the contents of the crate.x file, which I have renamed to crate_text.x

in the upcoming textured directional light demo. After the templates, you
will see the first Material definition, which contains vertex colors and a texture
filename. Beyond that is a single-frame animation set containing the crate vertex
and face definitions. Take note of the Mesh section itself, which contains the

Figure 9.3
A wooden crate mesh rendered by the DirectX Viewer utility.

244 Chapter 9 n Mesh Loading and Rendering

vertices. The values, or extents, in this mesh are quite large, in the range of �25 to
50. This tells me that the scenes this crate were designed for are also quite large in
scale. It is perfectly acceptable to use dimensions for the crate in 3D space on the
order of �1 to þ1, if the environment is similarly scaled. When you have a really
huge mesh like this, however, be sure to scale back your camera’s position to take it
into account or you may assume that the mesh is not being rendered—when, in
fact, it is just not showing up because the camera resides inside it!

xof 0303txt 0032
template FVFData {
<b6e70a0e-8ef9-4e83-94ad-ecc8b0c04897>
DWORD dwFVF;
DWORD nDWords;
array DWORD data[nDWords];

}
template EffectInstance {
<e331f7e4-0559-4cc2-8e99-1cec1657928f>
STRING EffectFilename;
[. . .]

}
template EffectParamFloats {
<3014b9a0-62f5-478c-9b86-e4ac9f4e418b>
STRING ParamName;
DWORD nFloats;
array FLOAT Floats[nFloats];

}
template EffectParamString {
<1dbc4c88-94c1-46ee-9076-2c28818c9481>
STRING ParamName;
STRING Value;

}
template EffectParamDWord {
<e13963bc-ae51-4c5d-b00f-cfa3a9d97ce5>
STRING ParamName;
DWORD Value;

}

Material PDX01_-_Default {
1.000000;1.000000;1.000000;1.000000;;
3.200000;

Mesh Loading and Rendering 245

0.000000;0.000000;0.000000;;
0.000000;0.000000;0.000000;;
TextureFilename {

"crate.tga";
}

}

Frame Box01 {
FrameTransformMatrix {
1.000000,0.000000,0.000000,0.000000,
0.000000,1.000000,0.000000,0.000000,
0.000000,0.000000,1.000000,0.000000,
0.000000,0.000000,0.000000,1.000000;;

}

Mesh {
20;
-25.000000;-25.000000;0.000000;,
25.000000;-25.000000;0.000000;,
-25.000000;25.000000;0.000000;,
25.000000;25.000000;0.000000;,
-25.000000;-25.000000;50.000000;,
25.000000;-25.000000;50.000000;,
-25.000000;25.000000;50.000000;,
25.000000;25.000000;50.000000;,
-25.000000;-25.000000;0.000000;,
25.000000;-25.000000;0.000000;,
25.000000;-25.000000;50.000000;,
-25.000000;-25.000000;50.000000;,
25.000000;25.000000;0.000000;,
25.000000;-25.000000;50.000000;,
25.000000;25.000000;0.000000;,
-25.000000;25.000000;0.000000;,
-25.000000;25.000000;50.000000;,
25.000000;25.000000;50.000000;,
-25.000000;25.000000;0.000000;,
-25.000000;-25.000000;50.000000;;
12;
3;0,2,3;,
3;3,1,0;,

246 Chapter 9 n Mesh Loading and Rendering

3;4,5,7;,
3;7,6,4;,
3;8,9,10;,
3;10,11,8;,
3;1,12,7;,
3;7,13,1;,
3;14,15,16;,
3;16,17,14;,
3;18,0,19;,
3;19,6,18;;

MeshNormals {
6;
0.000000;0.000000;-1.000000;,
0.000000;0.000000;1.000000;,
0.000000;-1.000000;0.000000;,
1.000000;0.000000;0.000000;,
0.000000;1.000000;0.000000;,
-1.000000;0.000000;0.000000;;
12;
3;0,0,0;,
3;0,0,0;,
3;1,1,1;,
3;1,1,1;,
3;2,2,2;,
3;2,2,2;,
3;3,3,3;,
3;3,3,3;,
3;4,4,4;,
3;4,4,4;,
3;5,5,5;,
3;5,5,5;;
}

MeshMaterialList {
1;
12;
0,0,0,0,0,0,
0,0,0,0,0,0;
{ PDX01_-_Default }
}

Mesh Loading and Rendering 247

MeshTextureCoords {
20;
1.000000;1.000000;,
0.000000;1.000000;,
1.000000;0.000000;,
0.000000;0.000000;,
0.000000;1.000000;,
1.000000;1.000000;,
0.000000;0.000000;,
1.000000;0.000000;,
0.000000;1.000000;,
1.000000;1.000000;,
1.000000;0.000000;,
0.000000;0.000000;,
1.000000;1.000000;,
0.000000;0.000000;,
0.000000;1.000000;,
1.000000;1.000000;,
1.000000;0.000000;,
0.000000;0.000000;,
0.000000;1.000000;,
1.000000;0.000000;;
}

}
}

Why would one want to manually edit a mesh file such as this? There are some
advantages to knowing what the internal structure of a .X file looks like. Since all
.X files have this basic structure, it should be possible to write your own function
to read in a .X file, in either text mode or binary. Note that each structure begins
with a counter to tell you how many values are following in the file; this counter
value will make loading a .X file that much easier, as long as your loading
function looks for blocks without expecting them in any particular order, since
the .X format does not define a rigid, sequential format. Seeing the file laid out
on the page like this also helps to visualize how you might work with mesh data
in your own game engine, perhaps with the use of your own custom data format
(along with a converter for .X, of course!).

248 Chapter 9 n Mesh Loading and Rendering

Asteroid Mesh Internals

Now let’s look at a less uniform mesh that is not quite as clean-cut as a boxy
crate—an asteroid with a lot of jagged edges. Figure 9.4 shows the asteroid mesh
in the DirectX Viewer utility. I’ll skip most of the definitions for the mesh since
it’s quite lengthy, and I just want you to see what the mesh’s internal
composition looks like.

Figure 9.4
An asteroid mesh rendered by the DirectX Viewer utility.

Mesh Loading and Rendering 249

xof 0303txt 0032

Frame asteroidFrame
{

FrameTransformMatrix
{

1.000000,0.000000,0.000000,0.000000,
0.000000,1.000000,0.000000,0.000000,
0.000000,0.000000,1.000000,0.000000,
0.000000,0.000000,0.000000,1.000000;;

}

Mesh asteroidMesh
{

42;
-1.390577;0.143709;-0.362994;,
-0.422214;0.193709;-2.100000;,
-1.743692;2.443709;-1.771478;,
-0.422214;4.056703;-2.418363;,
1.099265;2.443709;-1.771478;,
.
.
.

MeshNormals
{

42;
-0.188146;0.299602;-0.935328;,
-0.530179;0.069419;-0.845039;,
-0.143705;-0.158832;-0.976791;,
0.292207;0.687314;-0.664991;,
0.058945;0.370537;-0.926945;,
.
.
.

}

MeshTextureCoords
{

42;

250 Chapter 9 n Mesh Loading and Rendering

0.375672;0.480374;,
0.489480;0.474513;,
0.334171;0.210774;,
0.489480;0.021703;,
0.668293;0.210774;,
.
.
.

}

MeshMaterialList
{

1;
80;
0,0,0,0,
.
.
.

Material Material01
{

0.800000;0.800000;0.800000;1.000000;;
0.000000;
0.000000;0.000000;0.000000;;
0.000000;0.000000;0.000000;;

TextureFileName
{

"asteroidTex.dds";
}

}
}

}
}

Mesh Class
We’re going to quickly go over a Mesh class that encapsulates the best Direct3D
can give us with regard to mesh loading and rendering support at this point. I will
assume that either you are already familiar with this code or you have another

Mesh Loading and Rendering 251

reference available, because we aren’t going to discuss every line of code. We’ll be
exploring hierarchical mesh rendering and animation later (see Chapter 13), so
that subject is deferred until then. At this point, all we need is basic mesh loading
and rendering without support for bones or animation frames.

Adv i c e

This chapter’s resource files can be downloaded from www.jharbour.com/forum or www.courseptr.
com/downloads. Please note that not every line of code will be in print due to space considerations:
only the most important sections of code are covered in each chapter.

class Mesh
{
private:

LPD3DXMESH mesh;
D3DMATERIAL9* materials;
DWORD material_count;
LPDIRECT3DTEXTURE9* textures;

Vector3 position;
Vector3 rotation;
Vector3 scale;

Matrix matWorld;
Matrix matTranslate;
Matrix matRotate;
Matrix matScale;

Effect *p_effect;

public:
Mesh(void);
virtual ~Mesh(void);

bool Load(char *filename, bool computeNormals=false);
bool findFile(std::string *filename);
bool doesFileExist(std::string &filename);
void splitPath(std::string& inputPath, std::string* pathOnly,

std::string* filenameOnly);

252 Chapter 9 n Mesh Loading and Rendering

void Update(float deltaTime);
void Render();
void Render(Effect *effect, std::string fxTextureParam="Texture");
void setEffect(Effect* effect) { p_effect = effect; }

Matrix getMatrix() { return matWorld; }
void setMatrix(Matrix matrix) { matWorld = matrix; }
void setMatrix(D3DXMATRIX matrix) { matWorld = (Matrix) matrix; }
LPD3DXMESH getMesh() { return mesh; }
virtual int getFaceCount();
virtual int getVertexCount();

void createTorus(float innerRadius = 0.5f, float outerRadius = 1.0f,
int sides = 20, int rings = 20);

void createCylinder(float radius1, float radius2, float length,
int slices, int stacks);

void createSphere(double radius = 0.1f, int slices = 10, int stacks = 10);
void createCube(double width = 1.0f, double height = 1.0f,

double depth = 1.0f);
void createTeapot();

void Transform();
void Rotate(Vector3 rot);
void Rotate(double x,double y,double z);
void setPosition(Vector3 pos) { position = pos; }
void setPosition(double x,double y,double z);
Vector3 getPosition() { return position; }
void setRotation(Vector3 rot) { rotation = rot; }
void setRotation(double x,double y,double z);
Vector3 getRotation() { return rotation; }
void setScale(Vector3 value) { scale = value; }
void setScale(double x,double y,double z);
void setScale(double value);
Vector3 getScale() { return scale; }};

Here is the source code for the Mesh class’s implementation, found in the Mesh

.cpp file. The basic mesh at this point pretty much just handles loading,
transforms, and rendering, so the code is on the short side. It’s a good idea to
keep basic mesh and complex hierarchical mesh code separate, because the latter

Mesh Loading and Rendering 253

requires a lot more memory and you may not want that complexity for
rendering simple meshes like rocks or grass on a hillside.

Mesh::Mesh()
{

mesh = 0;
materials = 0;
material_count = 0;
textures = 0;
position = Vector3(0.0f,0.0f,0.0f);
rotation = Vector3(0.0f,0.0f,0.0f);
scale = Vector3(1.0f,1.0f,1.0f);

}

Mesh::~Mesh(void)
{

if (materials != NULL) delete[] materials;

//remove textures from memory
if (textures != NULL) {

for(DWORD i = 0; i < material_count; i++)
{

if (textures[i] != NULL)
textures[i]->Release();

}
delete[] textures;

}

if (mesh != NULL) mesh->Release();
}

int Mesh::getFaceCount()
{

return mesh->GetNumFaces();
}

int Mesh::getVertexCount()
{

return mesh->GetNumVertices();
}

254 Chapter 9 n Mesh Loading and Rendering

void Mesh::createTorus(float innerRadius, float outerRadius,
int sides, int rings)

{
D3DXCreateTorus(g_engine->getDevice(), innerRadius, outerRadius,

sides, rings, &mesh, NULL);
}

void Mesh::createCylinder(float radius1, float radius2, float length,
int slices, int stacks)

{
D3DXCreateCylinder(g_engine->getDevice(), radius1, radius2,

length, slices, stacks, &mesh, NULL);
}

void Mesh::createSphere(double radius, int slices, int stacks)
{

D3DXCreateSphere(g_engine->getDevice(), (float)radius, slices,
stacks, &mesh, NULL);

}

void Mesh::createCube(double width, double height, double depth)
{

D3DXCreateBox(g_engine->getDevice(), (float)width, (float)height,
(float)depth, &mesh, NULL);

}

void Mesh::createTeapot()
{

D3DXCreateTeapot(g_engine->getDevice(), &mesh, NULL);
}

void Mesh::splitPath(string& inputPath, string* pathOnly,
string* filenameOnly)

{
string fullPath(inputPath);
replace(fullPath.begin(), fullPath.end(), ’\\’, ’/’);
string::size_type lastSlashPos = fullPath.find_last_of(’/’);

// check for there being no path element in the input

Mesh Loading and Rendering 255

if (lastSlashPos == string::npos)
{

*pathOnly="";
*filenameOnly = fullPath;

}
else {

if (pathOnly) {
*pathOnly = fullPath.substr(0, lastSlashPos);

}
if (filenameOnly)
{

*filenameOnly = fullPath.substr(
lastSlashPos + 1,
fullPath.size() - lastSlashPos - 1);

}
}

}

bool Mesh::doesFileExist(string &filename)
{

return (_access(filename.c_str(), 0) != -1);
}

bool Mesh::findFile(string *filename)
{

if (!filename) return false;

//since the file was not found, try removing the path
string pathOnly;
string filenameOnly;
splitPath(*filename,&pathOnly,&filenameOnly);

//is file found in current folder, without the path?
if (doesFileExist(filenameOnly))
{

*filename=filenameOnly;
return true;

}

//not found

256 Chapter 9 n Mesh Loading and Rendering

return false;
}

bool Mesh::Load(char* filename, bool computeNormals)
{

HRESULT result;
LPD3DXBUFFER matbuffer;
LPD3DXMATERIAL d3dxMaterials;

//load mesh from the specified file
result = D3DXLoadMeshFromX(

filename, //filename
D3DXMESH_SYSTEMMEM, //mesh options
g_engine->getDevice(), //Direct3D device
NULL, //adjacency buffer
&matbuffer, //material buffer
NULL, //special effects
&material_count, //number of materials
&mesh); //resulting mesh

if (result != D3D_OK) {
return false;

}

//extract material properties and texture names from material buffer
d3dxMaterials = (LPD3DXMATERIAL)matbuffer->GetBufferPointer();
materials = new D3DMATERIAL9[material_count];
textures = new LPDIRECT3DTEXTURE9[material_count];

//create the materials and textures
for(DWORD i=0; i < material_count; i++)
{

//grab the material
materials[i] = d3dxMaterials[i].MatD3D;

//load texture(s)
textures[i] = NULL;
if (d3dxMaterials[i].pTextureFilename != NULL)
{

string filename = d3dxMaterials[i].pTextureFilename;

Mesh Loading and Rendering 257

if(findFile(&filename))
{

//load texture file specified in .x file
result = D3DXCreateTextureFromFile(g_engine->getDevice(),

filename.c_str(), &textures[i]);
if (result != D3D_OK) return false;

//verify texture header
if (textures[i]->GetType() != D3DRTYPE_TEXTURE)

return false;
}

}
}

//done using material buffer
matbuffer->Release();

if (computeNormals)
{

HRESULT res = D3DXComputeNormals(mesh, NULL);
if (res != S_OK)
{

debug � "Mesh::CreateSphere: Error computing normals\n";
}

}

return true;
}

void Mesh::Update(float deltaTime)
{

Transform();}

Now we come to the Mesh::Render function. Although we are not doing
anything as fancy as hierarchical rendering or animation yet, our mesh still
requires an effect for rendering. While there are many ways to go about this,
from passing the mesh to the effect to using a global effect pointer, this function
uses an effect passed as a parameter to render the mesh. Note the calls to
effect->Begin() and effect->End()—this means that you should not call these
functions when calling Mesh::Draw() since they are already being called. (Again,

258 Chapter 9 n Mesh Loading and Rendering

please note that this is not the complete source code from the Mesh.cpp file, just
the class methods.)

void Mesh::Render()
{

Render(p_effect, "Texture");
}

void Mesh::Render(Effect *effect, std::string fxTextureParam)
{

p_effect = effect;
p_effect->setWorldMatrix(matWorld);
p_effect->Begin();

if (material_count == 0)
{

mesh->DrawSubset(0);
}
else {

//draw each mesh subset
for(DWORD i=0; i < material_count; i++)
{

// set the texture used by this face
if (textures[i])
{

p_effect->setParam(fxTextureParam, (textures[i]));
}

// Draw the mesh subset
mesh->DrawSubset(i);

}
}

p_effect->End();
}

void Mesh::Transform()
{

//set rotation matrix
double x = D3DXToRadian(rotation.x);
double y = D3DXToRadian(rotation.y);

Mesh Loading and Rendering 259

double z = D3DXToRadian(rotation.z);
D3DXMatrixRotationYawPitchRoll(&matRotate, (float)x, (float)y,

(float)z);

//set scaling matrix
D3DXMatrixScaling(&matScale, (float)scale.x, (float)scale.y,

(float)scale.z);

//set translation matrix
D3DXMatrixTranslation(&matTranslate, (float)position.x,

(float)position.y, (float)position.z);

//transform the mesh
matWorld = matRotate * matScale * matTranslate;

}

void Mesh::setPosition(double x,double y,double z)
{

position = Vector3((float)x,(float)y,(float)z);
}

void Mesh::Rotate(Vector3 rot)
{

Rotate(rot.x,rot.y,rot.z);
}

void Mesh::Rotate(double x,double y,double z)
{

rotation.x += (float)x;
rotation.y += (float)y;
rotation.z += (float)z;

}

void Mesh::setRotation(double x,double y,double z)
{

rotation = Vector3((float)x,(float)y,(float)z);
}

260 Chapter 9 n Mesh Loading and Rendering

void Mesh::setScale(double x,double y,double z)
{

scale = Vector3((float)x,(float)y,(float)z);
}

void Mesh::setScale(double value)
{

scale.x = scale.y = scale.z = value;
}

Textured Ambient Light Rendering
Now that we have the crucial building blocks ready, let’s do some texture-
mapped rendering with a shader! The basic ambient light shader from the
previous chapter was about as crude a renderer as they come, resulting in a
totally washed out mesh. By using a texture-mapped mesh, you can actually use
an ambient-lit object for something useful in a scene, although with obvious lack
of true lighting support.

Textured Ambient Light Shader

The new ambient.fx effect will now support a texture map, and therefore it will
need a sampler struct. Also, the technique has been renamed to “Ambient
Textured,” so be sure to use that technique name when using this effect file.
Since texture mapping and the sampler are described below in the section on
textured directional light rendering, I’ll forego an explanation of how it works
until then. In the meantime, note the differences in bold text.

float4x4 World;
float4x4 View;
float4x4 Projection;
float4 AmbientColor : AMBIENT = float4(1,1,1,1);
float AmbientIntensity = 1;
texture Texture;

struct MyVertexStruct
{

float4 position : POSITION0;
float4 texcoord : TEXCOORD0;

};

Mesh Loading and Rendering 261

MyVertexStruct VertexShaderFunction(MyVertexStruct input_param)
{

//create struct variable to return
MyVertexStruct output = (MyVertexStruct)0;

//combine world + view + projection matrices
float4x4 viewProj = mul(View,Projection);
float4x4 WorldViewProj = mul(World,viewProj);

//translate the current vertex
output.position = mul(input_param.position, WorldViewProj);

//set texture coordinates
output.texcoord = input_param.texcoord;

return output;
}

sampler MySampler = sampler_state
{

texture = <Texture>;
};

float4 PixelShaderFunction(float2 texcoord : TEXCOORD0) : COLOR
{

return (tex2D(MySampler,texcoord) * AmbientColor * AmbientIntensity);
}

technique AmbientTextured
{

pass P0
{

vertexShader = compile vs_2_0 VertexShaderFunction();
pixelShader = compile ps_2_0 PixelShaderFunction();

}
}

Testing the Textured Ambient Shader

To put the new textured ambient effect to the test, we need a real mesh file since
the stock meshes will no longer work. As you may recall, the meshes generated

262 Chapter 9 n Mesh Loading and Rendering

by the D3DXCreate functions do not have texture coordinates in their vertex
format definitions. Instead, we’ll start using meshes loaded from .X files,
starting with our first real-world example: a U.S. Army AH-64 Apache
helicopter. Figure 9.5 shows the output of this demo.

#include "stdafx.h"
#include "Engine.h"
#include "Mesh.h"
#include "Effect.h"

using namespace std;
using namespace Octane;

Figure 9.5
Apache helicopter rendered with the ambient_textured.fx effect. Mesh courtesy of www.
geo-metricks.com.

Mesh Loading and Rendering 263

Font* font=NULL;
Camera* camera=NULL;
Effect* effect=NULL;
Mesh* mesh;

float objectAngle=0;
float deltaTime=0;

bool game_preload()
{

g_engine->setAppTitle("Ambient Textured Shader Demo");
g_engine->setScreen(800,600,32,false);
return true;

}

bool game_init(HWND hwnd)
{

font = new Font("Arial Bold",18);
if (!font)
{

debug � "Error creating font" � endl;
return false;

}

//create a camera
camera = new Camera();
camera->setPosition(0, 2.0, 10.0);
camera->setTarget(0,0,0);

//load the ambient.fx effect
effect = new Effect();
if (!effect->Load("ambient_textured.fx"))
{

MessageBox(hwnd, "Error loading ambient_textured.fx", "Error",0);
return false;

}

//create sphere
mesh = new Mesh();
mesh->Load("apache.x");

264 Chapter 9 n Mesh Loading and Rendering

mesh->setScale(0.01f);
mesh->setRotation(0, -90, 0);

return true;
}

void game_render3d()
{

effect->setTechnique("AmbientTextured");
effect->setViewMatrix(camera->getViewMatrix(), "View");
effect->setProjectionMatrix(camera->getProjMatrix(), "Projection");
effect->setWorldMatrix((D3DXMATRIX) mesh->getMatrix(), "World");
mesh->Render(effect, "Texture");

}

void game_end()
{

if (font) delete font;
if (effect) delete effect;
if (camera) delete camera;
if (mesh) delete mesh;

}

void game_update(float dltTime)
{

deltaTime = dltTime;
camera->Update();
mesh->Rotate(20.0 * deltaTime, 0, 0);
mesh->Transform();

}

void game_render2d()
{

std::ostringstream out;
out.setf(ios::fixed);
out � setprecision(4);

out � "Delta time = " � deltaTime;
font->Print(0,0,out.str());

Mesh Loading and Rendering 265

out.str("");
out � "Update = " � g_engine->getCoreFrameRate() � " fps";
font->Print(0,20,out.str());

out.str("");
out � "Draw = " � g_engine->getScreenFrameRate() � " fps";
font->Print(0,40,out.str());

}

void game_event(IEvent* e)
{

switch(e->getID())
{

case EVENT_KEYPRESS:
{

KeyPressEvent* evt = (KeyPressEvent*) e;
switch(evt->keycode)
{

case DIK_ESCAPE: g_engine->Shutdown(); break;
}
break;

}
case EVENT_MOUSEMOTION:
{

MouseMotionEvent* evt = (MouseMotionEvent*)e;
camera->Look(evt->deltax/100.0f, evt->deltay/100.0f, 0);
break;

}
case EVENT_MOUSEWHEEL:
{

MouseWheelEvent* evt = (MouseWheelEvent*) e;
camera->Move(0, 0, (float)(-evt->wheel/200.0f));
break;

}

}

}

266 Chapter 9 n Mesh Loading and Rendering

Texture Class
Having now used a texture to render a mesh, we come upon the need for a new
class to help with texture management, as far as allocating and freeing memory,
loading a bitmap into a texture, or even creating a texture in memory for various
rendering effects (such as mirrors and rendering of vector shapes). Our Texture

class will, at minimum, load a bitmap and make the IDirect3DTexture9 object
visible to any other class or engine resource that needs it. Let’s begin with the class’s
definition. Note the two private surface objects—renderDepthStencilSurface and
renderSurface. These are needed when we want to create a texture in memory and
use it as a render target (which will be covered later).

class Texture
{
private:

LPDIRECT3DSURFACE9 renderDepthStencilSurface;
LPDIRECT3DSURFACE9 renderSurface;

public:
Texture();
~Texture();
bool Create(int width,int height);
bool Load(std::string filename, Color transcolor = Color(255,0,255,0));
bool Save(std::string filename, _

D3DXIMAGE_FILEFORMAT format = D3DXIFF_BMP);
void Release();

bool createRenderTarget(int width,int height);
bool renderStart(bool clear = true, bool sprite = true,

Color clearColor = Color(255,0,255,0));
bool renderStop(bool sprite = true);

LPDIRECT3DTEXTURE9 getTexture() { return texture; }
int getWidth();
int getHeight();
RECT getBounds();

LPDIRECT3DTEXTURE9 texture;
D3DXIMAGE_INFO info;

};

Mesh Loading and Rendering 267

Now we’ll go over the implementation for the Texture class. There are some
functions in the class that will not be used immediately—namely, the render
target code—but we will be using these features soon enough, and it’s handy to
keep the code for working with textures as render targets all inside the Texture

class.

Texture::Texture()
{

texture = NULL;
renderDepthStencilSurface = NULL;
renderSurface = NULL;

}

Texture::~Texture()
{

Release();
}

int Texture::getWidth()
{

return info.Width;
};

int Texture::getHeight()
{

return info.Height;
};

RECT Texture::getBounds()
{

RECT rect = {0, 0, getWidth()-1, getHeight()-1};
return rect;

}

bool Texture::Load(std::string filename, Color transcolor)
{

//standard Windows return value
HRESULT result;

268 Chapter 9 n Mesh Loading and Rendering

//get width and height from bitmap file
result = D3DXGetImageInfoFromFile(filename.c_str(), &info);
if (result != D3D_OK)
{

texture = NULL;
return false;

}

//create the new texture by loading a bitmap image file
D3DXCreateTextureFromFileEx(

g_engine->getDevice(), //Direct3D device object
filename.c_str(), //bitmap filename
info.Width, //bitmap image width
info.Height, //bitmap image height
1, //mip-map levels (1 for no chain)
D3DPOOL_DEFAULT, //the type of surface (standard)
D3DFMT_UNKNOWN, //surface format (default)
D3DPOOL_DEFAULT, //memory class for the texture
D3DX_DEFAULT, //image filter
D3DX_DEFAULT, //mip filter
transcolor.ToD3DCOLOR(), //color key for transparency
&info, //bitmap file info (from loaded file)
NULL, //color palette
&texture); //destination texture

//make sure the bitmap textre was loaded correctly
if (result != D3D_OK)
{

texture = NULL;
return false;

}

return true;
}

void Texture::Release()
{

if (texture) texture->Release();
if (renderDepthStencilSurface)

renderDepthStencilSurface->Release();

Mesh Loading and Rendering 269

if (renderSurface) renderSurface->Release();
}

bool Texture::Create(int width,int height)
{

//if texture is already in use, first deallocate memory
if (texture)
{

texture->Release();
texture = NULL;

}

HRESULT r;
r = D3DXCreateTexture(g_engine->getDevice(), width, height, 1,

D3DUSAGE_DYNAMIC, D3DFMT_A8R8G8B8, D3DPOOL_DEFAULT, &texture);
if (r != D3D_OK)
{

texture = NULL;
return false;

}

//save texture info
info.Width = width;
info.Height = height;
info.Format = D3DFMT_A8R8G8B8;

return true;
}

bool Texture::createRenderTarget(int width,int height)
{

//if texture is already in use, first deallocate memory
if (texture)
{

texture->Release();
texture = NULL;

}

//create the render target surface, depth stencil
g_engine->getDevice()->CreateTexture(width, height, 1,

270 Chapter 9 n Mesh Loading and Rendering

D3DUSAGE_RENDERTARGET, D3DFMT_A8R8G8B8, D3DPOOL_DEFAULT,
&texture, NULL);

g_engine->getDevice()->CreateDepthStencilSurface(width, height,
D3DFMT_D16, D3DMULTISAMPLE_NONE, 0, false,
&renderDepthStencilSurface, NULL);

texture->GetSurfaceLevel(0, &renderSurface);

//save texture info
info.Width = width;
info.Height = height;
info.Format = D3DFMT_A8R8G8B8;

return true;
}

/**
Used only when texture is a render target
and never when the primary device is rendering!

**/
bool Texture::renderStart(bool clear, bool sprite, Color clearColor)
{

g_engine->getDevice()->SetRenderTarget(0, renderSurface);
g_engine->getDevice()->SetDepthStencilSurface(renderDepthStencilSurface);
if (clear)
{

g_engine->getDevice()->Clear(0, NULL, D3DCLEAR_TARGET,
clearColor.ToD3DCOLOR(), 1.0f, 0);

}
g_engine->getDevice()->BeginScene();

if (sprite)
g_engine->getSpriteObj()->Begin(D3DXSPRITE_ALPHABLEND);

D3DXMATRIX identity;
D3DXMatrixIdentity(&identity);
g_engine->getSpriteObj()->SetTransform(&identity);

return true;
}

Mesh Loading and Rendering 271

/**
Used only when texture is a render target
and never when the primary device is rendering!

**/
bool Texture::renderStop(bool sprite)
{

if (sprite)
g_engine->getSpriteObj()->End();

g_engine->getDevice()->EndScene();
return true;

}

/**
Saves a texture in memory to a file.
Supports TGA, JPG, PNG, DDS, BMP (default).

**/
bool Texture::Save(std::string filename, _D3DXIMAGE_FILEFORMAT format)
{

if (texture)
{

D3DXSaveTextureToFile(filename.c_str(),format,texture,NULL);
return true;

}
else

return false;
}

Lighting Texture-Mapped Meshes
A mesh must have a vertex format that supports the UV coordinates of a texture
map, without which the texture cannot be rendered or wrapped around the
vertices of a mesh. The D3DXCreate-based meshes do not have UV-mapped
vertices so the best we can do with them is basic lighting, as you learned in the
previous chapter. You can do a lot with just materials, but a texture adds a
serious dose of realism to a scene, without which a scene will look like an old
virtual reality game from the early ’90s, the likes of which were popularized in
many “VR” movies of the time: Stephen King’s Lawnmower Man; Keanu Reaves
as Johnny Mnemonic; Denzel Washington in Virtuosity; and let us not forget the

272 Chapter 9 n Mesh Loading and Rendering

mother of all VR movies, TRON (released in 1982 and quite revolutionary for its
time). Figure 9.6 shows a screenshot of TRON 2.0, the video game released to
favorable review in 2003 by developer Monolith Productions.

Although the environment in this screenshot shows multiple levels above and
below the translucent floor, the light cycle and its barrier were rendered with
vertex coloring only, and little or no vertex color shading, with hard-edged
shadows. The film was remarkable for the time period—remember, this was
1976, close to the time IBM released the first IBM PC (4 MHz, 64KB of RAM,
4-color CGA graphics, and a floppy drive). The Cray-1 supercomputer (see
Figure 9.7) used to render portions of the film cost about $8 million, had a
single-core microprocessor with an operating clock frequency of 80 MHz,
containing 200,000 transistors, achieved 100 million operations per second

Figure 9.6
Light cycles in TRON 2.0.

Lighting Texture-Mapped Meshes 273

through supercooling. (It was, therefore, not unlike the overclocked PCs built by
game PC hobbyists.) In comparison, an Apple iPhone (or the similarly equipped
iPod Touch and iPad) has far superior performance today with several hundred
million transistors in its 1 GHz CPU and 200 MHz PowerVR SGX 53 GPU.
These specifications are actually meager today, and yet an iPad is more than
capable of rendering a film like TRON in real time (see Figure 9.8).

Adv i c e

Ken Perlin, creator of the Perlin noise library (libnoise) widely used to generate realistic textures,
won an academy award for his revolutionary texturing code, which resulted from his work on the
first TRON film while he was with MAGI (Mathematics Application Group, Inc.). My team used
Perlin to generate planet textures for the real-time rotating planets in Starflight—The Lost Colony
(www.starflightgame.com), so I can vouch for how incredibly useful it is.

Figure 9.7
Cray-1 supercomputer, circa 1976–1980.

274 Chapter 9 n Mesh Loading and Rendering

High-performance, real-time textured rendering has really only been around
for the last decade, since around 1999 when NVIDIA released the GeForce 256,
the world’s first GPU with full transform and lighting built into the hardware.
(Of course, there were competitors, such as 3Dfx and ATI, who some may claim
produced the first true “GPU,” but NVIDIA is credited with coining the term
and revolutionizing the PC graphics industry through new technology, such as
shaders.) I find that reminiscing a bit, delving into nostalgia, fosters an
enormous amount of enthusiasm within me for any game or simulation I
may be working on!

Textured Directional Light Shader
Now we are going to revisit the directional light shader introduced in the previous
chapter, but with the new addition of texture support. Directional lights are
peculiar in that you specify the direction of the light, but not its source position.
The directional light emits parallel light rays from a distant source that you need

Figure 9.8
Apple iPad, circa 2010.

Lighting Texture-Mapped Meshes 275

not specify. This vector is referred to as a normal vector because it points in the
desired direction and has a length of 1.0. You can create a normal vector using the
Normalize function on an existing vector with length, which results in a vector
pointing in the desired direction but with a length of 1.0. Why must the length of
a normalized vector be 1.0? Because when that vector is multiplied by another
vector or matrix, the product results in only a direction vector.

Texture mapping is done by the pixel shader, which receives the color value for
each pixel of each face (i.e., polygon) that is rendered by the GPU. When a
vertex color comes into the pixel shader via the input parameter (see the
MyVertexInput struct), the pixel shader must then combine the incoming vertex
color with the directional light color and combine those with the pixel color
from the supplied texture. The pixels of a texture are retrieved with a sampler,
which returns the pixel color of the texture at each point as the face is being lit
and rendered, pixel by pixel. The sampler just forwards the texture to be used,
while the GPU does the work of

sampler MySampler = sampler_state
{

texture = <Texture>;
};

The pixel shader function uses the sampler when calculating the per-pixel
lighting for a face as it is being rendered. The tex2D function has two
parameters—the name of the sampler, and the texture coordinate for each
point. We need only tell the GPU how to render each pixel, while the actual
processing of each pixel on each face is handled automatically.

float4 PixelShaderFunction(MyVertexOutput input) : COLOR0
{

float4 light = saturate(input.color + LightColor * LightPower);
return (tex2D(MySampler, input.texcoord) * light);

}

Our directional light shader now needs to support texture mapping, which raises
an important concern: If the shader tries to render a mesh with a null texture
(i.e., your code does not pass the texture properly), then the mesh will render in
black. Why? Because, in the pixel shader, the texture sampler is multiplied with
the incoming vertex color in addition to the light color and intensity; if the
texture sampler is null or zero, it will wipe out all lighting for the mesh.

276 Chapter 9 n Mesh Loading and Rendering

Although this issue could be resolved with intelligent code in our Mesh class, it
would be better to add some error-handling code or, better yet, an optional
technique in the effect file that will handle both material-based meshes and
texture-mapped meshes. Let’s focus on just the textured version for now, to
eliminate confusion since you can refer to the previous chapter for the materials-
only directional light shader. We’ll revisit the combined effect later. The
differences between this version and the one presented in the previous chapter
are highlighted in bold text.

float4x4 World;
float4x4 View;
float4x4 Projection;
float4x4 WorldInverseTranspose;
texture Texture;

float3 LightVector = float3(0, 0, 1);
float4 LightColor = float4(1,1,1,1);
float LightPower = 0.1;

struct MyVertexInput
{

float4 position : POSITION;
float2 texcoord : TEXCOORD0;
float4 normal : NORMAL;

};
struct MyVertexOutput
{

float4 position : POSITION;
float2 texcoord : TEXCOORD0;
float4 color : COLOR0;

};

MyVertexOutput VertexShaderFunction(MyVertexInput input)
{

MyVertexOutput output = (MyVertexOutput)0;

//transform
float4x4 viewProj = mul(View,Projection);
float4x4 WorldViewProj = mul(World,viewProj);
output.position = mul(input.position, WorldViewProj);

Lighting Texture-Mapped Meshes 277

//lighting
float4 normal = mul(input.normal, WorldInverseTranspose);
float intensity = dot(normal, LightVector);
output.color = saturate(LightColor * LightPower * intensity);
output.texcoord = input.texcoord;

return output;
}

sampler MySampler = sampler_state
{

texture = <Texture>;
};

float4 PixelShaderFunction(MyVertexOutput input) : COLOR0
{

float4 light = saturate(input.color + LightColor * LightPower);
return (tex2D(MySampler, input.texcoord) * light);

}

technique DirectionalTextured
{

pass P0
{

vertexShader = compile vs_2_0 VertexShaderFunction();
pixelShader = compile ps_2_0 PixelShaderFunction();

}
}

Now let’s test this new effect with an example program that demonstrates a
texture-mapped mesh with a directional light shining on it. This program is a bit
different from the directional light demo in the previous chapter. In addition to
texture support, this version loads a mesh from a .X file rather than using a stock
mesh created in memory. Figure 9.9 shows the output of the textured directional
light shader demo. Like the example in the previous chapter, the mesh can be
rotated with the up/down keys, while the light source can be moved with the
left/right keys, and there are some other controls for the light color and intensity
as well.

278 Chapter 9 n Mesh Loading and Rendering

#include "Engine.h"
#include "Mesh.h"
#include "Effect.h"
using namespace std;
using namespace Octane;

Font* font=NULL;
Camera* camera=NULL;
Effect* effect=NULL;
Mesh* mesh;

Vector3 lightVector;
Color lightColor;

Figure 9.9
Wooden crate mesh lit with a textured directional light shader.

Lighting Texture-Mapped Meshes 279

float lightAngle=90;
float lightPower=0.1f;
float objectAngle=0;
float deltaTime=0;

void game_end()
{

if (font) delete font;
if (effect) delete effect;
if (camera) delete camera;
if (mesh) delete mesh;

}

bool game_preload()
{

g_engine->setAppTitle("Textured Directional Light Shader Demo");
g_engine->setScreen(800,600,32,false);
return true;

}

bool game_init(HWND hwnd)
{

font = new Font("Arial Bold",18);
if (!font)
{

debug � "Error creating font" � endl;
return false;

}

//create a camera
camera = new Camera();
camera->setPosition(0, 5.0, 10.0);
camera->setTarget(0,3.0,0);

//load the ambient.fx effect
effect = new Effect();
if (!effect->Load("directional_textured.fx"))
{

debug � "Error loading effect file\n";

280 Chapter 9 n Mesh Loading and Rendering

return false;
}
effect->setTechnique("DirectionalTextured");

lightColor.Set(255,255,255,255);

//create sphere
mesh = new Mesh();
mesh->Load("crate_text.x");
mesh->setRotation(0, -90, 0);
mesh->setScale(0.08);

return true;
}

void game_render3d()
{

effect->setViewMatrix(camera->getViewMatrix(), "View");
effect->setProjectionMatrix(camera->getProjMatrix(), "Projection");
effect->setWorldMatrix((D3DXMATRIX) mesh->getMatrix(), "World");
//mesh->Render(effect, "Texture");

//calculate combined inverse transpose matrix
D3DXMATRIX inverse, wit;
D3DXMatrixInverse(&inverse, 0, (D3DXMATRIX*) &mesh->getMatrix());
D3DXMatrixTranspose(&wit, &inverse);
effect->setParam("WorldInverseTranspose", wit);

//move the light source
lightVector.x = cosf(lightAngle) * 10.0f;
lightVector.y = 0.0f;
lightVector.z = sinf(lightAngle) * 10.0f;
effect->setParam("LightVector", lightVector);

//set the light intensity
lightPower = Math::Limit(lightPower, 0.0, 1.0);
effect->setParam("LightPower", lightPower);

Lighting Texture-Mapped Meshes 281

//set the light color
lightColor.r = Math::wrapValue(lightColor.r, 0.0, 1.0);
lightColor.g = Math::wrapValue(lightColor.g, 0.0, 1.0);
lightColor.b = Math::wrapValue(lightColor.b, 0.0, 1.0);
lightColor.a = Math::wrapValue(lightColor.a, 0.0, 1.0);
effect->setParam("LightColor", lightColor.ToD3DXVECTOR4());

mesh->Render(effect, "Texture");
}

void game_update(float dltTime)
{

deltaTime = dltTime;
camera->Update();

mesh->Rotate(objectAngle, 0, 0);
mesh->Transform();

}

//
void game_render2d()
{

std::ostringstream out;
out.setf(ios::fixed);
out � setprecision(4);

out � "Delta time = " � deltaTime � endl;
out � "Update = " � g_engine->getCoreFrameRate() � " fps\n";
out � "Draw = " � g_engine->getScreenFrameRate() � " fps\n";
out � "Light pos = " � lightVector.x � "," � lightVector.y � ","

� lightVector.z � endl;
out � "Light angle = " � lightAngle � endl;
out � "Light RGBA = " � lightColor.r � "," � lightColor.g � ","

� lightColor.b � "," � lightColor.a � endl;
out � "Light intensity = " � lightPower � endl;
font->Print(0,0,out.str());

282 Chapter 9 n Mesh Loading and Rendering

int w = g_engine->getScreenWidth();
font->Print(w-200,0,"left/right : light angle");
font->Print(w-200,20,"up/down : mesh angle");
font->Print(w-200,40,"+/- : light intensity");
font->Print(w-200,60,"rgba : cycle color values");

}

void game_event(IEvent* e)
{

switch(e->getID())
{

case EVENT_KEYPRESS:
{

KeyPressEvent* evt = (KeyPressEvent*) e;
switch(evt->keycode)
{

case DIK_ESCAPE: g_engine->Shutdown(); break;

//left/right arrow keys rotate light source
case DIK_LEFT: lightAngle -= 0.1f; break;
case DIK_RIGHT: lightAngle += 0.1f; break;

//up/down arrow keys rotate the mesh
case DIK_UP: objectAngle -= 0.02f; break;
case DIK_DOWN: objectAngle += 0.02f; break;

//+/- keys change light power
case DIK_NUMPADPLUS: lightPower += 0.01f; break;
case DIK_NUMPADMINUS: lightPower -= 0.01f; break;

//rgba keys cycle color values
case DIK_R: lightColor.r += 0.01f; break;
case DIK_G: lightColor.g += 0.01f; break;
case DIK_B: lightColor.b += 0.01f; break;
case DIK_A: lightColor.a += 0.01f; break;

}
break;

}

Lighting Texture-Mapped Meshes 283

case EVENT_MOUSEMOTION:
{

MouseMotionEvent* evt = (MouseMotionEvent*)e;
camera->Look(evt->deltax/100.0f, evt->deltay/100.0f, 0);
break;

}
case EVENT_MOUSEWHEEL:
{

MouseWheelEvent* evt = (MouseWheelEvent*) e;
camera->Move(0, 0, (float)(-evt->wheel/200.0f));
break;

}
}

}

Summary
We now have the ability to load and render a simple mesh with several types of
lighting, which is a good addition to our engine’s rendering system that was
started in the previous chapter (with materials-based effects). The next chapter
goes into more detail by describing how to render with point lights and spot-
lights, which are quite a bit more difficult than a directional light, but extremely
important for any renderer! Following that, we have two more chapters on
rendering to address terrain and hierarchical (i.e., “skeleton”) mesh animation.

284 Chapter 9 n Mesh Loading and Rendering

Advanced Lighting
Effects

This chapter continues the study of shader-based lighting with some new,
advanced lighting effects such as point lights, spotlights, and specular reflection,
which dramatically improves the appearance and realism of a mesh.

The following topics are covered in this chapter:

n Textured point light shader

n Textured spotlight shader

n Specular reflection shader

n Textured specular reflection shader

Textured Point Light Shader
When transitioning from a somewhat mundane (and common) directional light
to a more exotic light source such as a point light, a shift to per-pixel lighting is
essential in order for the light source to illuminate a mesh properly. Since the
lighting can be subtle, the next two examples will use a white background so that
the lighting on the mesh can be seen on the printed page. The point light source
shader will take a few steps beyond the directional light shader, adding light
properties that will be used more commonly, such as the ambient lighting level,
as well as specular (reflectivity).

chapter 10

285

Point Lights
A point light is a single light source that emits in all directions like a light bulb.
You set the position, color, and attenuation, which is the amount of a decrease in
light over distance. The range is the maximum distance that the light will
illuminate your 3D objects. Positioning the light source (as a vector), setting its
light range, and setting its light strength or power is all there is to a point light—
it will light up every mesh within range.

Adv i c e

This chapter’s resource files can be downloaded from www.jharbour.com/forum or www.courseptr.
com/downloads. Please note that not every line of code will be in print due to space considerations:
only the most important sections of code are covered in each chapter.

We begin with the global variable definitions in the effect file. The usual
float4x4 matrices are found here: World, View, Projection, and WorldInverse-

Transpose, as well as the usual Texture variable. For the specific variables needed
for the point light, we have float3 LightPosition and float LightRadius. Those
are the most important variables in the point light shader. The remaining ones
will differ based on the type of rendering desired. In the case of our example
here, we’ll be rendering with specular highlights added to the diffuse and
ambient values.

float4x4 World;
float4x4 View;
float4x4 Projection;
float4x4 WorldInverseTranspose;
texture Texture;

float3 LightPosition;
float LightRadius;

float4 GlobalAmbient;
float4 AmbientMaterial;
float4 AmbientLightColor;

float4 DiffuseMaterial;
float4 DiffuseLight;

286 Chapter 10 n Advanced Lighting Effects

float4 SpecularMaterial;
float4 SpecularLight;

float MaterialSheen;

The texture sampler now has some additional quality-setting properties, which
are part of the HLSL sampler feature set, and include the magfilter, minfilter,
and mipfilter—all of which define how anti-aliasing of lines is performed—as
well as texture coordinate options.

//Texture sampler
sampler2D TextureSampler = sampler_state
{

texture = <Texture>;
magfilter = LINEAR;
minfilter = LINEAR;
mipfilter = LINEAR;
addressU = mirror;
addressV = mirror;

};

Our shader calculates quite a few variables internally, so there will be more
properties in the output struct than the input struct—which needs to supply
only the position, surface normal, and texture coordinate. Output adds diffuse
and specular light levels, view direction (which determines the specular highlight
angle), and source light direction.

struct VS_INPUT
{

float3 Position : POSITION0;
float3 Normal : NORMAL;
float2 TexCoord : TEXCOORD0;

};

struct VS_OUTPUT
{

float4 Position : POSITION0;
float2 TexCoord : TEXCOORD0;
float3 Normal : TEXCOORD2;
float3 ViewDir : TEXCOORD3;
float3 LightDirection : TEXCOORD4;

Textured Point Light Shader 287

float4 Diffuse : COLOR0;
float4 Specular : COLOR1;

};

Now we come to the vertex shader function, which accepts the input struct as a
parameter and returns the output struct (which is passed on to the pixel shader
as input). The usual calculations are performed on the World, View, Projection,
and inverse/transform matrices, and the light source and specular highlight
calculations are done to the output variable.

VS_OUTPUT vertexShader(VS_INPUT IN)
{

VS_OUTPUT OUT;
float4x4 worldViewProjection = mul(mul(World, View), Projection);
float3 WorldPosition = mul(float4(IN.Position, 1.0f), World).xyz;
OUT.Position = mul(float4(IN.Position, 1.0f), worldViewProjection);
OUT.TexCoord = IN.TexCoord;
OUT.ViewDir = LightPosition - WorldPosition;
OUT.LightDirection = (LightPosition - WorldPosition) / LightRadius;
OUT.Normal = mul(IN.Normal, (float3x3)WorldInverseTranspose);
OUT.Diffuse = DiffuseMaterial * DiffuseLight;
OUT.Specular = SpecularMaterial * SpecularLight;
return OUT;

}

The pixel shader function is up next. We have quite a bit more code in the pixel
shader this time around because we want a smooth transition from the center of
the specular highlight to its outer edges, while the vertex shader produces only
face-level lighting without smooth gradients. The pixel shader function accepts
the output struct from the vertex shader and calculates normals—for the vertex,
light direction, view direction, and combined result. Next, dot product is used to
produce that gradient blend around the specular highlight to produce a high-
quality light reflection based on the light position and view direction (which
comes from the camera). Finally, each pixel is lit using the Phong method by
adding the ambient, light attenuation, and specular values to arrive at a final
color value. This is passed to the part of the GPU that draws pixels.

float4 pixelShader(VS_OUTPUT IN) : COLOR
{

288 Chapter 10 n Advanced Lighting Effects

float Attenuation = saturate(1.0f -
dot(IN.LightDirection, IN.LightDirection));

//Finds normals of the vertex normal, light direction,
//view direction, and combined light and view direction.
float3 N = normalize(IN.Normal);
float3 L = normalize(IN.LightDirection);
float3 V = normalize(IN.ViewDir);
float3 H = normalize(L + V);

//find saturated dot product of the light direction
//normal and the combined light and view direction normal
float NDotL = saturate(dot(N, L));
float NDotH = saturate(dot(N, H));

//find the gloss factor of the specular property
float Power = (NDotL == 0.0f) ? 0.0f : pow(NDotH, MaterialSheen);

//calculates the color and amount of the vertexes pixels
//lighting by using a modified Phong method
float4 color = (AmbientMaterial * (GlobalAmbient +

(Attenuation * AmbientLightColor))) +
(IN.Diffuse * NDotL * Attenuation) +
(IN.Specular * Power * Attenuation);

//Returns pixel color modified by lighting color and amount.
return color * tex2D(TextureSampler, IN.TexCoord);

}

technique TexturedPointLight
{

pass P0
{

VertexShader = compile vs_2_0 vertexShader();
PixelShader = compile ps_2_0 pixelShader();

}
}

Textured Point Light Shader Demo
The Textured Point Light Shader Demo has quite a few more new parameters to
contend with than any previous program, but the end result is a much higher

Textured Point Light Shader 289

quality render. Figure 10.1 shows the output from the program. Use the left and
right arrow keys to rotate the light source around the barrel mesh to see how the
dynamic lighting looks!

#include "Engine.h"
using namespace std;
using namespace Octane;

Mesh* barrel;
Font* font=NULL;
Camera* camera=NULL;

Figure 10.1
The Textured Point Light Shader Demo.

290 Chapter 10 n Advanced Lighting Effects

Effect* effect=NULL;

Vector3 lightVector;
Color globalAmbient = Color(0.1f,0.1f,0.1f,1.0f);
Color ambientMaterial = Color(0.1f,0.1f,0.1f,1.0f);
Color ambientLightColor = Color(1.0f,1.0f,1.0f,1.0f);
Color diffuseMaterial = Color(1.0f,1.0f,1.0f,1.0f);
Color diffuseLight = Color(1.0f,1.0f,1.0f,1.0f);
Color specularMaterial = Color(0.1f,0.1f,0.1f,1.0f);
Color specularLight = Color(1,1,1,1);

D3DCOLOR BLACK = D3DCOLOR_XRGB(0,0,0);
float lightAngle=90;
float objectAngle=90;
float deltaTime=0;

bool game_preload()
{

g_engine->setAppTitle("Textured Point Light Shader Demo");
g_engine->setScreen(800,600,32,false);
return true;

}

bool game_init(HWND hwnd)
{

g_engine->setBackdropColor(D3DCOLOR_RGBA(255,255,255,255));
font = new Font("Arial Bold",20);
if (!font)
{

debug � "Error creating font" � endl;
return false;

}

//create a camera
camera = new Camera();
camera->setPosition(0, 0, 100.0);
camera->setTarget(0,0,0);

//load the ambient.fx effect
effect = new Effect();

Textured Point Light Shader 291

if (!effect->Load("point_light.fx"))
{

debug � "Error loading point_light.fx" � endl;
return false;

}
effect->setTechnique("TexturedPointLight");

//load the mesh
barrel = new Mesh();
barrel->Load("barrel.x");

return true;
}

void game_render3d()
{

effect->setViewMatrix(camera->getViewMatrix());
effect->setProjectionMatrix(camera->getProjMatrix());

//draw the mesh
{

barrel->setRotation(0,objectAngle,0);
barrel->Transform();
effect->setWorldMatrix((D3DXMATRIX) barrel->getMatrix());

//calculate combined inverse transpose matrix
D3DXMATRIX inverse, wit;
D3DXMatrixInverse(&inverse, 0, (D3DXMATRIX*)&barrel->getMatrix());

D3DXMatrixTranspose(&wit, &inverse);
effect->setParam("WorldInverseTranspose", wit);

//move the light source
lightVector.x = cosf(lightAngle) * 100.0f;
lightVector.y = 50.0f;
lightVector.z = sinf(lightAngle) * 100.0f;
effect->setParam("LightPosition", lightVector);

effect->setParam("LightRadius", 200);
effect->setParam("GlobalAmbient", globalAmbient.ToD3DXVECTOR4());

292 Chapter 10 n Advanced Lighting Effects

effect->setParam("AmbientMaterial", ambientMaterial.ToD3DXVECTOR4());
effect->setParam("AmbientLightColor",ambientLightColor.ToD3DXVECTOR4());

effect->setParam("DiffuseMaterial",diffuseMaterial.ToD3DXVECTOR4());

effect->setParam("DiffuseLight",diffuseLight.ToD3DXVECTOR4());
effect->setParam("SpecularMaterial",specularMaterial.ToD3DXVECTOR4());

effect->setParam("SpecularLight",specularLight.ToD3DXVECTOR4());
effect->setParam("MaterialSheen", 50.0f);

barrel->Render(effect);
}

}

void game_end()
{

if (font) delete font;
if (effect) delete effect;
if (camera) delete camera;
if (barrel) delete barrel;

}

void game_update(float dltTime)
{

deltaTime = dltTime;
camera->Update();

}

void game_render2d()
{

std::ostringstream out;
out.setf(ios::fixed);
out � setprecision(4);
out � "Delta time = " � deltaTime � endl;
out � "Update = " � g_engine->getCoreFrameRate() � " fps\n";
out � "Draw = " � g_engine->getScreenFrameRate() � " fps\n";
out � "Light pos = " � lightVector.x � "," � lightVector.y

� "," � lightVector.z � endl;
out � "Light angle = " � lightAngle � endl;
font->Print(0,0,out.str(),BLACK);

Textured Point Light Shader 293

int w = g_engine->getScreenWidth();
font->Print(w-200,0,"left/right : light angle",BLACK);
font->Print(w-200,20,"up/down : mesh angle",BLACK);

}

void game_event(IEvent* e)
{

switch(e->getID())
{

case EVENT_KEYPRESS:
{

KeyPressEvent* evt = (KeyPressEvent*) e;
switch(evt->keycode)
{

case DIK_ESCAPE: g_engine->Shutdown(); break;

//left/right arrow keys rotate light source
case DIK_LEFT: lightAngle -= 0.1f; break;
case DIK_RIGHT: lightAngle += 0.1f; break;

//up/down arrow keys rotate the mesh
case DIK_UP: objectAngle -= 1.0f; break;
case DIK_DOWN: objectAngle += 1.0f; break;

}
break;

}
case EVENT_MOUSEMOTION:
{

MouseMotionEvent* evt = (MouseMotionEvent*)e;
camera->Look(evt->deltax/100.0f, evt->deltay/100.0f, 0);
break;

}
case EVENT_MOUSEWHEEL:
{

MouseWheelEvent* evt = (MouseWheelEvent*) e;
camera->Move(0, 0, (float)(-evt->wheel/200.0f));
break;

}

294 Chapter 10 n Advanced Lighting Effects

Specular Reflection Shader
We have been using a specular effect in the last two examples to improve the
appearance of the point light and spotlight, but with all of the other types of
lighting also being used in those examples, it’s not clear what exactly the
specular effect adds to the render on its own, so we’ll go over specular reflection
now with a pair of smaller demos. The first one renders a high-poly asteroid
mesh without its texture, since the first specular.fx file ignores the texture map,
resulting in a chrome-like effect. The second example renders the same mesh
with its texture for a brightly polished look that is quite remarkable. Figure 10.2
shows the first example that renders a material-only mesh.

Figure 10.2
This mesh is being rendered with a specular shader that gives it a reflective quality.

Specular Reflection Shader 295

There are so few parameters needed this time, illustrating the value of setting
initial values for the global properties in an effect file, since that allows the effect
to function with minimal input from the Cþþ side (in the event that you forget
to pass a particular parameter). The specular reflection shader uses a dot product
calculation to create a reflective highlight based on the light source and the view
position.

Some of the globals in the effect file will be familiar to you by now, such as the
usual world, view, projection, world inverse transform, ambient, and so on.
Where the specular effect comes in is with the shininess, specular color, and
specular intensity properties. I encourage you to tweak these values to see what
interesting changes you can create in the rendered mesh. The shininess property,
for instance:

float4x4 World:
float4x4 View;
float4x4 Projection;
float4x4 WorldInverseTranspose;

float4 AmbientColor = float4(1, 1, 1, 1);
float AmbientIntensity = 0.01;

float3 DiffuseLightDirection = float3(0, 0, 1);
float4 DiffuseColor = float4(1, 1, 1, 1);
float DiffuseIntensity = 1;

float Shininess = 100;
float4 SpecularColor = float4(1, 1, 1, 1);
float SpecularIntensity = 1;
float3 ViewVector = float3(1, 0, 0);

struct VertexShaderInput
{

float4 Position : POSITION0;
float4 Normal : NORMAL0;

};

struct VertexShaderOutput
{

float4 Position : POSITION0;

296 Chapter 10 n Advanced Lighting Effects

float4 Color : COLOR0;
float3 Normal : TEXCOORD0;

};

VertexShaderOutput VertexShaderFunction(VertexShaderInput input)
{

VertexShaderOutput output;

float4 worldPosition = mul(input.Position, World);
float4 viewPosition = mul(worldPosition, View);
output.Position = mul(viewPosition, Projection);

float4 normal = normalize(mul(input.Normal, WorldInverseTranspose));
float lightIntensity = dot(normal, DiffuseLightDirection);
output.Color = saturate(DiffuseColor * DiffuseIntensity *

lightIntensity);

output.Normal = normal;

return output;
}

float4 PixelShaderFunction(VertexShaderOutput input) : COLOR0
{

float3 light = normalize(DiffuseLightDirection);
float3 normal = normalize(input.Normal);
float3 r = normalize(2 * dot(light, normal) * normal - light);
float3 v = normalize(mul(normalize(ViewVector), World));
float dotProduct = abs(dot(r, v));

float4 specular = SpecularIntensity * SpecularColor
* max(pow(dotProduct, Shininess), 0) * length(input.Color);

return saturate(input.Color + AmbientColor *
AmbientIntensity + specular);

}

technique Specular
{

pass Pass1

Specular Reflection Shader 297

{
VertexShader = compile vs_2_0 VertexShaderFunction();
PixelShader = compile ps_2_0 PixelShaderFunction();

}
}

Specular Light Demo
The source code for this program is similar to the previous program but with the
addition of the texture property, which is now actually used by the effect.

#include "Engine.h"
using namespace Octane;

//game objects
Effect* effect=NULL;
Camera* camera=NULL;
Mesh* mesh=NULL;

bool game_preload()
{

g_engine->setAppTitle("Specular Shader Demo");
g_engine->setScreen(800,600,32,false);
g_engine->setBackdropColor(D3DCOLOR_XRGB(255,255,255));
return true;

}

bool game_init(HWND)
{

srand(time(NULL));

//set the camera and perspective
camera = new Camera();
camera->setPosition(0.0f, 3.0f, 6.0f);
camera->setTarget(0.0f, 0.0f, 0.0f);
camera->Update();

//create effect object
effect = new Effect();
if (!effect->Load("specular.fx"))
{

298 Chapter 10 n Advanced Lighting Effects

debug � "Error loading effect\n";
return false;

}

//load the mesh
mesh = new Mesh();
if (!mesh->Load("AST_02.x"))
{

debug � "Error loading mesh file\n";
return false;

}
mesh->setScale(0.05f,0.05f,0.05f);
mesh->Rotate(0, -90.0f, 0);

return true;
}

void game_render3d()
{

mesh->Rotate(1.0f,0.0f,0.0f);
mesh->Transform();

effect->setProjectionMatrix(camera->getProjMatrix());
effect->setViewMatrix(camera->getViewMatrix());
effect->setWorldMatrix(mesh->getMatrix());

D3DXMATRIX wit;
D3DXMatrixInverse(&wit, 0, &mesh->getMatrix());
D3DXMatrixTranspose(&wit, &wit);
effect->setParam("WorldInverseTranspose", wit);

mesh->Render(effect);
}

void game_update(float deltaTime) { }

void game_end()
{

if (camera) delete camera;
if (mesh) delete mesh;

Specular Reflection Shader 299

if (effect) delete effect;
}

void game_keyRelease (int key)
{

if (key == DIK_ESCAPE) g_engine->Shutdown();
}
void game_render2d(){}

void game_event(IEvent* e)
{

switch(e->getID())
{

case EVENT_KEYPRESS:
{

KeyPressEvent* evt = (KeyPressEvent*) e;
switch(evt->keycode)
{

case DIK_ESCAPE: g_engine->Shutdown(); break;
}
break;

}
case EVENT_MOUSEMOTION:
{

MouseMotionEvent* evt = (MouseMotionEvent*)e;
camera->Look(evt->deltax/100.0f, evt->deltay/100.0f, 0);
break;

}
case EVENT_MOUSEWHEEL:
{

MouseWheelEvent* evt = (MouseWheelEvent*) e;
camera->Move(0, 0, (float)(-evt->wheel/200.0f));
break;

}
}}

Textured Specular Reflection
Now, comparing the material-based specular shader with the textured version
(see below), we can see that very little change is needed: just the addition of the
texture sampler, one new property in the input and output structs. Figure 10.3

300 Chapter 10 n Advanced Lighting Effects

shows the textured version. The source code for the textured specular demo is
unchanged from the non-textured version, so we’ll forego a duplication of the
code here and just present the textured specular reflection shader.

float4x4 World;
float4x4 View;
float4x4 Projection;
float4x4 WorldInverseTranspose;
texture Texture;

float4 AmbientColor = float4(1, 1, 1, 1);
float AmbientIntensity = 0.01;
float3 DiffuseLightDirection = float3(1, 1, 1);

Figure 10.3
The textured version.

Specular Reflection Shader 301

float4 DiffuseColor = float4(1, 1, 1, 1);
float DiffuseIntensity = 0.9f;
float Shininess = 10;
float4 SpecularColor = float4(1, 1, 1, 1);
float SpecularIntensity = 1;
float3 ViewVector = float3(1, 1, 1);

sampler2D textureSampler =
sampler_state {

Texture = (Texture);
MagFilter = Linear;
MinFilter = Linear;
AddressU = Clamp;
AddressV = Clamp;

};

struct VertexShaderInput
{

float4 Position : POSITION0;
float4 Normal : NORMAL0;
float2 TextureCoordinate : TEXCOORD0;

};

struct VertexShaderOutput
{

float4 Position : POSITION0;
float4 Color : COLOR0;
float3 Normal : TEXCOORD0;
float2 TextureCoordinate : TEXCOORD1;

};

VertexShaderOutput VertexShaderFunction(VertexShaderInput input)
{

VertexShaderOutput output;

float4 worldPosition = mul(input.Position, World);
float4 viewPosition = mul(worldPosition, View);
output.Position = mul(viewPosition, Projection);

float4 normal = normalize(mul(input.Normal, WorldInverseTranspose));

302 Chapter 10 n Advanced Lighting Effects

float lightIntensity = dot(normal, DiffuseLightDirection);
output.Color = saturate(DiffuseColor * DiffuseIntensity * lightIntensity);

output.Normal = normal;
output.TextureCoordinate = input.TextureCoordinate;

return output;
}

float4 PixelShaderFunction(VertexShaderOutput input) : COLOR0
{

float3 light = normalize(DiffuseLightDirection);
float3 normal = normalize(input.Normal);
float3 r = normalize(2 * dot(light, normal) * normal - light);
float3 v = normalize(mul(normalize(ViewVector), World));
float dotProduct = abs(dot(r, v));

float4 specular = max(pow(dotProduct, Shininess), 0) *
length(input.Color) * SpecularIntensity * SpecularColor;

float4 textureColor = tex2D(textureSampler, input.TextureCoordinate);
textureColor.a = 1;

return saturate(textureColor * (input.Color) +
AmbientColor * AmbientIntensity + specular);

}

technique Specular
{

pass Pass1
{

VertexShader = compile vs_2_0 VertexShaderFunction();
PixelShader = compile ps_2_0 PixelShaderFunction();

}
}

Summary
Lighting is a monumental challenge when we’re considering the features for a
game engine’s rendering system, as you have seen in the pages of this chapter!
While the concepts behind lighting are not complex, implementing a directional

Summary 303

light, spotlight, and point light in GPU code can be complicated. What often
surprises many engine or renderer programmers is how unique (and uniquely
demanding) each game’s shader requirements are. While there are some
concepts that do see re-use, such as the usual diffuse/directional light shader,
most techniques will change to meet the needs of each scene in a game, because
an innovative designer does not want his or her game to look like all the rest,
and everyone knows that whiz-bang glowing fireballs alone do not sell! (On the
contrary, such is now assumed as a baseline.)

304 Chapter 10 n Advanced Lighting Effects

Wrapping the Sky in a Box

The environment of a game can vary widely from one game genre to the next, from
an outer space environment (like in the phenomenally uber-classic Homeworld),
which is usually just a large sky sphere with a space scene texture and various
asteroids and planets in the vicinity, to the typical outdoor game world comprised
of heightmap terrain (like the world in World of Warcraft), to a common indoor
theme for first-person shooters (like Doom III). In this chapter, we will see how to
create a skybox and how to apply it to an outer space scene, while relegating the
indoor and outdoor environment demos for upcoming chapters.

This chapter covers the following topics:

n Skybox or skysphere?

n Creating a custom skybox

n Skybox class

n Skybox shader

n Mountain skybox demo

n Space skybox demo

Building a Skybox
The first step toward creating an environment that grabs the player with a strong
suspension of disbelief (where one forgets he or she is actually playing a game
and becomes engrossed in the story, much like the experience while reading a

chapter 11

305

great novel) is to add a skybox. A skybox is a cube mesh (or a sphere in the case
of a sky sphere) that surrounds the camera at all times. But, rather than
rendering a skybox within the scene, it wraps around the entire scene. Therefore,
the surface normals for a skybox must be directed inward from the inside of the
cube, rather than pointing outward on the outer faces of the cube as is normally
done to light a normal mesh. A skybox moves with the camera to create the
illusion of distance. This is crucial! To fool the player’s eyes into believing they
are really in a larger environment surrounded by stars, or mountains (as are
typical for most games), the skybox must move with the camera, giving the
impression that it does not move at all.

Skybox or Skysphere?

Adv i c e

Although it may seem that a sphere map would produce better results due to its higher number of
faces, a cube map is actually preferred because it works better with lower-resolution textures and
renders a higher quality surface when using algorithmically generated textures.

The preferred way to professionally render a skybox or skysphere is with a cube
texture, a self-contained texture file that must be generated with a custom tool
such as the DirectX Texture Tool (look in the DirectX SDK in your Start Menu).
This is one of the least user-friendly utilities ever created, so don’t expect to get
much practical use out of it. Think of a cube texture as a paper cube with the
sides unfolded to make a cross shape, like the one in Figure 11.1.

The reason why I dislike the cube texture approach to rendering a skybox is
because I have no control over the cube texture (or at least not without much
effort), while a simpler mesh of a cube with six texture files is more easily
modifiable, giving us more control over exactly which mesh is being rendered on
which side. After loading the mesh and the six textures, we can also modify each
individual texture in memory if needed—or replace the textures on the fly. One
nice effect is to adjust the ambient light intensity when rendering the skybox to
reflect daytime or nighttime in the scene.

One thing to note about a skybox: it will never encompass the entire scene.
That’s right; the skybox does not need to be larger than all of the geometry in the
scene! But, won’t the geometry intersect with the skybox unless it is really large?

306 Chapter 11 n Wrapping the Sky in a Box

Yes, quite simply. The trick is not to make the skybox really huge, but instead to
screw with the Z-buffer. Strangely enough, we can just turn off the Z-buffer for
the skybox and turn it back on for everything else. Therefore, even if you have a
scene that stretches from virtual horizon to virtual horizon, encompassing
thousands of units in 3D space, while the skybox is only 10� 10� 10 units, it
will still appear to be a vast distance away.

Adv i c e

Due to the advanced render states needed to render a skybox or skysphere with a shader, our
skybox will render around the origin with only trivial geometry in the scene. The skybox developed
in this chapter can be transformed to move with the camera. When rendering a small skybox
“around” a normal scene in a game, be sure to disable z-buffering before rendering the skybox,
and then re-enable z-buffering again afterward.

Another way to create a skybox is with a mesh already modeled with the
normals correctly set on the inside of the faces and the texture filenames
specified inside the .X file. This is certainly the easiest type of skybox to create—
just load the mesh, increase its scale, and render with any fixed function or

Figure 11.1
A cube texture is a single texture that wraps a cube with a different image on each of the six sides.

Building a Skybox 307

programmable pipeline code. Figure 11.2 shows a sample skybox mesh rendered
by the DirectX Viewer.

There is a third approach to creating a skybox: generating our own vertex buffer
for a cube mesh and applying textures manually. This is the most educational
way to create a skybox, but certainly not the easiest or even necessarily the best
method. Doing something from scratch does afford a learning experience, but
often at the expense of performance and quality. In this case, there’s no harm in
generating your own vertex buffer for a skybox.

Creating a Custom Skybox
Skybox meshes are fairly easy to come by, and that is the approach you may
want to take with your own engine—by just loading a mesh with the internal
normals and textures already built in. However, we don’t want to rely entirely on
someone else’s skybox mesh, so we’ll also see how to create a skybox vertex
buffer with texture coordinates in the FVF so we can generate a mesh with

Figure 11.2
Note how the inverse normals cause the faces to reflect light from inside the skybox.

308 Chapter 11 n Wrapping the Sky in a Box

desired dimensions as needed. Why? Because I just like to torture myself with
more work than is actually necessary, with the goal of achieving awesomeness.
(Oh, gee, I made a cube!)

Our generated cube mesh will have four vertices per side, arranged as shown in
Figure 11.3. We will need six sides for the cube, each comprised of four vertices
containing position and texture coordinate values. The upper-left corner of a
side will have a UV texture coordinate of (0,0), while the lower-right corner will
have a UV of (1,1), as shown in Figure 11.4.

Adv i c e

This chapter’s resource files can be downloaded from www.jharbour.com/forum or www.courseptr.
com/downloads. Please note that not every line of code will be in print due to space considerations:
only the most important sections of code are covered in each chapter.

Figure 11.3
Each side of the skybox cube is made of a quad with two faces and four vertices in this counter-
clockwise order.

Building a Skybox 309

Skybox Class
This Skybox class should meet our needs:

class Skybox
{

private:
Texture* textures[6];
ID3DXMesh *mesh;

public:
Skybox(void);
virtual ~Skybox(void);
bool Create(std::string sharedFilename);
void Render();

};

The Skybox class maintains its own internal vertex buffer via ID3DXMesh. The
vertex buffer is filled with vertices that describe the shape of a cube with position
and texture coordinate properties. Here is the code listing for the Skybox class
and its supporting code. Note that, as usual, the headers and namespaces have
been omitted to save space.

Figure 11.4
The UV texture coordinates for the quad wrap one entire texture to cover one side of the cube mesh.

310 Chapter 11 n Wrapping the Sky in a Box

const int SKYBOX_FVF = D3DFVF_XYZ | D3DFVF_TEX1;

struct SkyboxVertex
{

float x, y, z;
float u, v;
SkyboxVertex(float _x, float _y, float _z, float _u, float _v)
{

x = _x;
y = _y;
z = _z;
u = _u;
v = _v;

}
};

Skybox::Skybox(void)
{

mesh = NULL;

for (int n=0; n<6; n++)
textures[n] = NULL;

}

Skybox::~Skybox(void)
{

//delete the textures
for (int n = 0; n < 6; n++)
{

if (textures[n])
{

delete textures[n];
textures[n] = NULL;

}
}

//delete mesh
if(mesh) mesh->Release();

}

bool Skybox::Create(std::string sharedFilename)
{

Building a Skybox 311

std::string prefix[] = {"U_", "F_", "B_", "R_", "L_", "D_"};

//set texture mapping sampler states
for(int i=0; i<4; i++)
{

g_engine->getDevice()->SetSamplerState(
i, D3DSAMP_MAGFILTER, D3DTEXF_LINEAR);

g_engine->getDevice()->SetSamplerState(
i, D3DSAMP_MINFILTER, D3DTEXF_LINEAR);

g_engine->getDevice()->SetSamplerState(
i, D3DSAMP_MIPFILTER, D3DTEXF_POINT);

}

//release textures if already in memory
for (int n=0; n<6; n++)
{

if (textures[n])
{

delete textures[n];
textures[n] = NULL;

}
}
//re-create any null texture
for (int n=0; n<6; n++)
{

if (!textures[n])
textures[n] = new Texture();

}

//load skybox textures
bool res = true;
for(int n=0; n<6; n++)
{

string fn = prefix[n] + sharedFilename;
if (!textures[n]->Load(fn.c_str()))
{

debug � "Skybox: Error loading " � fn � endl;
return false;

}
}

312 Chapter 11 n Wrapping the Sky in a Box

//create mesh
D3DXCreateMeshFVF(12, 24, D3DXMESH_MANAGED, SKYBOX_FVF,

g_engine->getDevice(), &mesh);

//create vertices
SkyboxVertex* v = 0;
mesh->LockVertexBuffer(0,(void**)&v);

{
float size = 4000.0f;

//up face
v[0] = SkyboxVertex(size, size, size, 0.f, 0.f);
v[1] = SkyboxVertex(-size, size, size, 1.f, 0.f);
v[2] = SkyboxVertex(size, size, -size, 0.f, 1.f);
v[3] = SkyboxVertex(-size, size, -size, 1.f, 1.f);

//front face
v[4] = SkyboxVertex(-size, size, size, 0.f, 0.f);
v[5] = SkyboxVertex(size, size, size, 1.f, 0.f);
v[6] = SkyboxVertex(-size, -size, size, 0.f, 1.f);
v[7] = SkyboxVertex(size, -size, size, 1.f, 1.f);

//back face
v[8] = SkyboxVertex(size, size, -size, 0.f, 0.f);
v[9] = SkyboxVertex(-size, size, -size, 1.f, 0.f);
v[10] = SkyboxVertex(size, -size, -size, 0.f, 1.f);
v[11] = SkyboxVertex(-size, -size, -size, 1.f, 1.f);

//right face
v[12] = SkyboxVertex(-size, size, -size, 0.f, 0.f);
v[13] = SkyboxVertex(-size, size, size, 1.f, 0.f);
v[14] = SkyboxVertex(-size, -size, -size, 0.f, 1.f);
v[15] = SkyboxVertex(-size, -size, size, 1.f, 1.f);

//left face
v[16] = SkyboxVertex(size, size, size, 0.f, 0.f);
v[17] = SkyboxVertex(size, size, -size, 1.f, 0.f);
v[18] = SkyboxVertex(size, -size, size, 0.f, 1.f);
v[19] = SkyboxVertex(size, -size, -size, 1.f, 1.f);

Building a Skybox 313

//down face
v[20] = SkyboxVertex(size, -size, -size, 0.f, 0.f);
v[21] = SkyboxVertex(-size, -size, -size, 1.f, 0.f);
v[22] = SkyboxVertex(size, -size, size, 0.f, 1.f);
v[23] = SkyboxVertex(-size, -size, size, 1.f, 1.f);

}

mesh->UnlockVertexBuffer();

//calculate indices
unsigned short* indices = 0;
mesh->LockIndexBuffer(0,(void**)&indices);

int index = 0;
for(int quad=0;quad<6;quad++)
{

//first face
indices[index++] = quad * 4;
indices[index++] = quad * 4 + 1;
indices[index++] = quad * 4 + 2;

//second Face
indices[index++] = quad * 4 + 1;
indices[index++] = quad * 4 + 3;
indices[index++] = quad * 4 + 2;

}

mesh->UnlockIndexBuffer();

//set each quad to its sub mesh
unsigned long *att = 0;
mesh->LockAttributeBuffer(0,&att);
for(int i=0;i<12;i++)

att[i] = i / 2;
mesh->UnlockAttributeBuffer();

return true;
}

void Skybox::Draw()
{

//save render states

314 Chapter 11 n Wrapping the Sky in a Box

g_engine->getDevice()->SetRenderState(D3DRS_LIGHTING, false);
g_engine->getDevice()->SetRenderState(D3DRS_ZWRITEENABLE, false);
g_engine->getDevice()->SetRenderState(D3DRS_ZENABLE, false);
g_engine->getDevice()->SetSamplerState(

0, D3DSAMP_ADDRESSU, D3DTADDRESS_CLAMP);
g_engine->getDevice()->SetSamplerState(

0, D3DSAMP_ADDRESSV, D3DTADDRESS_CLAMP);

//render the skybox
for (int n = 0; n < 6; n++)
{

g_engine->getDevice()->SetTexture(0,textures[n]->getTexture());
mesh->DrawSubset(n);

}

//restore render states
g_engine->getDevice()->SetRenderState(D3DRS_LIGHTING, true);
g_engine->getDevice()->SetRenderState(D3DRS_ZWRITEENABLE, true);
g_engine->getDevice()->SetRenderState(D3DRS_ZENABLE, true);
g_engine->getDevice()->SetSamplerState(

0, D3DSAMP_ADDRESSU, D3DTADDRESS_WRAP);
g_engine->getDevice()->SetSamplerState(

0, D3DSAMP_ADDRESSV, D3DTADDRESS_WRAP);
}

Skybox Shader
The shader we’ll use to render a skybox is not a “skybox shader,” but really just
an improved version of the old ambient.fx file we’ve been using for the last few
chapters. The improvements include support for a texture and, of course, a
sampler. It’s the sampler that is of particular interest (which we’ll address in the
next section).

float4x4 World;
float4x4 View;
float4x4 Projection;
float4 AmbientColor = float4(1.0,1.0,1.0,1);
float AmbientIntensity = 1;
texture Texture;

Building a Skybox 315

struct MyVertexStruct
{

float4 position : POSITION0;
float4 texcoord : TEXCOORD0;

};

MyVertexStruct VertexShaderFunction(MyVertexStruct input)
{

//create struct variable to return
MyVertexStruct output = (MyVertexStruct)0;

//combine world + view + projection matrices
float4x4 viewProj = mul(View,Projection);
float4x4 WorldViewProj = mul(World,viewProj);

//translate the current vertex
output.position = mul(input.position, WorldViewProj);

//set texture coordinates
output.texcoord = input.texcoord;

return output;
}

sampler TextureSampler =
sampler_state
{

texture = <Texture>;
minfilter = linear;
magfilter = linear;
mipfilter = point;
addressu = clamp;
addressv = clamp;

};

float4 PixelShaderFunction(float2 texcoord : TEXCOORD0) : COLOR
{

return (tex2D(TextureSampler,texcoord) * AmbientColor * AmbientIntensity);
}

technique Ambient

316 Chapter 11 n Wrapping the Sky in a Box

{
pass P0
{

vertexShader = compile vs_2_0 VertexShaderFunction();
pixelShader = compile ps_2_0 PixelShaderFunction();

}
}

Adv i c e

When rendering the skybox, it may be helpful to create a separate Camera object since the
projection matrix has to be changed a bit for the skybox—specifically, the field of view (FOV) is
changed from the usual π * 0.25f to π * 0.4f (or roughly twice the normal value). Also, when
rendering a skybox, the Z-buffer needs to be disabled so that the skybox will be rendered behind all
other geometry in the scene.

Mountain Skybox Demo
When building your own skybox by creating a cube at runtime, it’s important to
pay attention to the ordering of the cube face textures, as they must be named
correctly as well as put into the correct order. You may change the default
prefixes used by modifying the prefix array in Skybox::Create:

std::string prefix[] = {"U_", "F_", "B_", "R_", "L_", "D_"};

Here is the order of the skybox textures:

1. Up (or top) (U_)

2. Forward (F_)

3. Backward (B_)

4. Right (R_)

5. Left (L_)

6. Down (or bottom) (D_)

Our sample program to demonstrate the Skybox class is shown in Figure 11.5
with the provided skybox textures for this project. You may purchase a huge
assortment of skyboxes and skyspheres for a very affordable price from The
Game Creators (www.thegamecreators.com).

Building a Skybox 317

Now, this is a very nice-looking skybox, thanks to the use of high-quality,
1024� 1024, seamless textures (courtesy of The Game Creators). But with a
simple change to the sampler, we can seriously screw up the skybox. What we
need to happen is for the seams to blend together nicely so that no line is visible
between the seams, which reveals our secret—that the skybox is not a true scene
of distant mountains but just a sort of magic trick with z-buffering and a cube
with some nice textures applied to its inner surface. No, we don’t want to reveal
that to the player at all! But that is what will happen without proper sampler
settings. Here again is the sample for reference, which renders the skybox with
nice, clean, blended edges.

sampler TextureSampler = sampler_state
{

texture = <Texture>;
minfilter = linear;
magfilter = linear;
mipfilter = point;

Figure 11.5
Realistic-looking environments like this can be created with TerraGen (www.planetside.co.uk).

Te
xt
ur
es

co
ur
te
sy

of
w
w
w
.T
he

G
am

eC
re
at
or
s.
co
m
.

318 Chapter 11 n Wrapping the Sky in a Box

addressu = clamp;
addressv = clamp;

};

Figure 11.6 shows the textures used in the Mountain Skybox Demo program.

Here is the source code for the Mountain Skybox Demo, which just renders a
simple skybox with mouse look: support. There is still a small amount of skybox
camera code in the main program, but since this is likely to change in every
game based on preferences, it is best left out of the Skybox class.

#include "Engine.h"
#include "Skybox.h"
using namespace Octane;
using namespace std;

//game objects
Font* font=NULL;
Effect* effect=NULL;
Skybox* skybox=NULL;
Camera* camera=NULL;

Figure 11.6
Seamless textures used to render the mountain skybox.

Building a Skybox 319

Matrix matWorld;
Vector3 mouseRotate;
D3DXVECTOR3 focus;

void game_end()
{

if (camera) delete camera;
if (effect) delete effect;
if (skybox) delete skybox;
if (font) delete font;

}

bool game_preload()
{

g_engine->setAppTitle("Mountain Skybox Demo");
g_engine->setScreen(1024,768,32,false);
g_engine->setBackdropColor(D3DCOLOR_XRGB(10,10,20));
return true;

}

bool game_init(HWND hwnd)
{

//create a font
font = new Font("Arial",14);

//create the skybox camera
camera = new Camera();

//create effect object
effect = new Effect();
if (!effect->Load("ambient.fx"))
{

debug � "Error loading effect\n";
return false;

}

//create a skybox
skybox = new Skybox();
if (!skybox->Create("mtns.jpg"))
{

debug � "Error creating skybox\n";

320 Chapter 11 n Wrapping the Sky in a Box

return false;
}

matWorld.setIdentity();
mouseRotate = Vector3(0,0,0);

return true;
}

void game_render3d()
{

//calculate normalized lookat vector for the skybox
D3DXMATRIX r;
D3DXMatrixRotationYawPitchRoll(&r, mouseRotate.y, mouseRotate.x,

mouseRotate.z);
focus = D3DXVECTOR3(1.0f, 0.0f, 0.0f);
D3DXVec3TransformNormal(&focus, &focus, &r);
D3DXVec3Normalize(&focus, &focus);

//set camera perspective to render skybox
camera->setPosition(0,0,0);
camera->setTarget(focus.x, focus.y, focus.z);
camera->setPerspective(Octane::PI * 0.4f, 1.33333f, 0.01f, 10000.0f);
camera->Update();

//send transforms to shader
matWorld.setIdentity();
effect->setWorldMatrix(matWorld);
effect->setViewMatrix(camera->getViewMatrix());
effect->setProjectionMatrix(camera->getProjMatrix());

//render the skybox
effect->Begin();
skybox->Render();
effect->End();

//restore normal camera perspective
camera->setPerspective(Octane::PI / 4.0f, 1.33333f, 0.01f, 10000.0f);
camera->setPosition(0,0,-200);
camera->setTarget(0,0,0);

Building a Skybox 321

camera->Update();
}

void game_update(float deltaTime) { }

void game_render2d()
{

ostringstream out;
out � "Core: " � g_engine->getCoreFrameRate() � endl;
out � "Camera: " � focus.x � "," � focus.y � ","

� focus.z � endl;
font->Print(0,0, out.str());

}

void game_event(IEvent* e)
{

switch(e->getID())
{

case EVENT_KEYPRESS:
{

KeyPressEvent* evt = (KeyPressEvent*) e;
switch(evt->keycode)
{

case DIK_ESCAPE: g_engine->Shutdown(); break;
}
break;

}
case EVENT_MOUSEMOTION:
{

MouseMotionEvent* evt = (MouseMotionEvent*)e;
mouseRotate.y += (evt->deltax) * 0.001f;
mouseRotate.z -= (evt->deltay) * 0.001f;
break;

}
}

}

Space Skybox Demo
Lets try a different skybox, this time with a seamless space texture, shown in Figure
11.7. Unfortunately, our Skybox class does not have the ability to create an entire

322 Chapter 11 n Wrapping the Sky in a Box

skybox with just a single texture—at present, that is. It seems fairly useful to add
this as a feature to the class so that there is not a waste of memory as is currently the
case. Even though we’re using just one texture for all six sides of the skybox, that
one texture file has been copied into six filenames with the appropriate prefixes for
all of the sides. May be a future feature to consider adding!

The Space Skybox Demo is a step beyond the previous example, as we now have
an example of how to render geometry in addition to the skybox. In this
example, shown in Figure 11.8, an asteroid mesh is being transformed and
rendered in addition to the skybox, both using an ambient shader—although
you are welcome to try different effect files! As this example illustrates, we can
add any number of meshes to the scene after rendering the skybox. However, in
this simplistic example, if the scene is too large then z-buffering will need to be
disabled when rendering the skybox mesh. The code related to the asteroid is
highlighted in bold in the following listing.

Figure 11.7
A seamless texture containing a space scene.

Building a Skybox 323

#include "Engine.h"
#include "Skybox.h"
using namespace Octane;
using namespace std;

//game objects
Skybox* skybox=NULL;
Font* font=NULL;
Effect* effect=NULL;
Camera* camera=NULL;
Mesh* asteroid=NULL;
Matrix matWorld;
Vector3 mouseRotate;
D3DXVECTOR3 focus;

void game_end()
{

if (skybox) delete skybox;
if (font) delete font;

Figure 11.8
The Space Skybox Demo features some geometry in the scene along with the skybox.

324 Chapter 11 n Wrapping the Sky in a Box

if (effect) delete effect;
if (camera) delete camera;
if (asteroid) delete asteroid;

}

bool game_preload()
{

g_engine->setAppTitle("Outer Space Skybox Demo");
g_engine->setScreen(1024,768,32,false);
g_engine->setBackdropColor(D3DCOLOR_XRGB(10,10,20));
return true;

}

bool game_init(HWND hwnd)
{

//create a font
font = new Font("Arial",14);

//create the skybox camera
camera = new Camera();

//create effect object
effect = new Effect();
if (!effect->Load("ambient.fx"))
{

debug � "Error loading effect\n";
return false;

}

asteroid = new Mesh();
if (!asteroid->Load("AST_02.x"))
{

debug � "Error loading asteroid\n";
return false;

}
asteroid->setScale(0.1);

//create a skybox
skybox = new Skybox();
if (!skybox->Create("space.bmp"))

Building a Skybox 325

{
debug � "Error creating skybox\n";
return false;

}

matWorld.setIdentity();
mouseRotate = Vector3(0,0,0);

return true;
}

void game_render3d()
{

//calculate normalized lookat vector for the skybox
D3DXMATRIX r;
D3DXMatrixRotationYawPitchRoll(&r,

mouseRotate.y, mouseRotate.x, mouseRotate.z);
focus = D3DXVECTOR3(1.0f, 0.0f, 0.0f);
D3DXVec3TransformNormal(&focus, &focus, &r);
D3DXVec3Normalize(&focus, &focus);

//set camera for skybox rendering
camera->setPosition(0,0,0);
camera->setTarget(focus.x, focus.y, focus.z);
camera->setPerspective(Octane::PI * 0.4f,1.33333f,0.01f,10000.0f);
camera->Update();

//send matrices to shader
matWorld.setIdentity();
effect->setWorldMatrix(matWorld);
effect->setViewMatrix(camera->getViewMatrix());
effect->setProjectionMatrix(camera->getProjMatrix());

//render the skybox
effect->Begin();
skybox->Render();
effect->End();

//set perspective to normal
camera->setPerspective(Octane::PI / 4.0f,1.33333f,0.01f,10000.0f);

326 Chapter 11 n Wrapping the Sky in a Box

camera->setPosition(0,0,-20);
camera->setTarget(0,0,0);
camera->Update();

//rotate the asteroid
asteroid->setPosition(0,0,0);
asteroid->Rotate(0.1f,0,0);
asteroid->Transform();

//send matrices to shader
effect->setWorldMatrix(matWorld);
effect->setViewMatrix(camera->getViewMatrix());
effect->setProjectionMatrix(camera->getProjMatrix());

//render the asteroid
asteroid->Render(effect);

}

void game_update(float deltaTime) { }

void game_render2d()
{

ostringstream out;
out � "Core: " � g_engine->getCoreFrameRate() � endl;
out � "Camera: " � focus.x � "," � focus.y � ","

� focus.z � endl;

font->Print(0,0, out.str());

}

void game_event(IEvent* e)
{

switch(e->getID())
{

case EVENT_KEYPRESS:
{

KeyPressEvent* evt = (KeyPressEvent*) e;
switch(evt->keycode)
{

Building a Skybox 327

case DIK_ESCAPE: g_engine->Shutdown(); break;
}
break;

}
case EVENT_MOUSEMOTION:
{

MouseMotionEvent* evt = (MouseMotionEvent*)e;
mouseRotate.y += (evt->deltax) * 0.001f;
mouseRotate.z -= (evt->deltay) * 0.001f;
break;

}
}

}

Summary
As you can see from the example code here, a skybox is not at all difficult to
implement, but it sure does produce awe-inspiring results and improve realism
in the scene! The skybox is an important part of the suspension of disbelief that
you always want to give the players of your games. Give them that treat of an
alternate reality from the difficulties of life for a few minutes or hours and they
will come to love your game (without perhaps quite knowing exactly why). An
immersive environment is only part of a great game; of course, great gameplay is
the most important consideration, but a great game is made up of many smaller
parts, each of which must be just right to grab the players and suck them in to
your alternate world.

328 Chapter 11 n Wrapping the Sky in a Box

Environmental Concerns:
Recycling Terrain
Polygons

A terrain system is a crucial component of any would-be game engine when the
designer has a goal of being taken seriously. Nearly every game genre (in 3D at
least) will require a game world of some type, even if the gameplay takes place
primarily indoors. In this chapter, we’ll study the fundamentals of heightmap-
based terrain rendering with height data being procedurally generated with the
Perlin noise library (libnoise). As it turns out, Perlin has applications far beyond
terrain texture and height data generation—Perlin can be used to generate
realistic textures for many different types of scenes, which greatly expands on an
engine’s capabilities. But an outdoor terrain is not always relevant for some
game genres, particularly games set in outer space! So, we’ll explore some of the
environments likely to be rendered by our engine with a consideration for what
types of objects we’ll need for such environments.

This chapter will cover the following topics:

n Outer space environments

n Indoor/outdoor environments

n Creating terrain

n Heightmap terrain generation

n Walking on terrain

chapter 12

329

Outer Space Environments
An outer space environment is perhaps the most difficult type to define because
each game will be different, and so there is never a definable “outer space” scene
that will be reusable enough to be shared by several games, unless they are all
from the same game series. One of the earliest successful games set in outer
space is Wing Commander: collectively, the original game, the many sequels, the
film, and several spin-offs (including Privateer and Armada—see Figure 12.1).
These games were created by Richard Garriott’s studio, Origin Systems, founded
primarily around his Ultima series with some great successes and innovations in
the early 1990s, as well as the highly successful Ultima Online MMORPG in the
late 1990s. For the Wing Commander universe, the team developed a game
engine called RealSpace, and it was used successfully for many more games over
the years, such as Strike Commander and Pacific Strike.1

A completely new engine was created for Wing Commander: Prophesy
(Figure 12.2), released in 1997 to rave reviews for its engaging story, the return
of some beloved characters, and a quality 3D engine with high-resolution
graphics. Prophesy was slated to be a new spin-off series in the Wing
Commander universe, but instead it was a one-off. Despite the successes of
Origin Systems (later acquired by Electronic Arts and renamed to ORIGIN),

Figure 12.1
Wing Commander Armada by Origin Systems.

330 Chapter 12 n Environmental Concerns: Recycling Terrain Polygons

sales for its games declined in the early 2000s and the studio was closed by EA in
2004, ending a two-decade long success story for a studio that invented many of
the game genres we still enjoy today.

Another well-loved and recognized game that takes place entirely in outer space
is Homeworld (Figure 12.3), published by Sierra in 1999, developed by Relic
Entertainment. This classic also fostered its own series with an expansion called
Cataclysm, and then a much more complex and less enjoyable Homeworld 2 was
released in 2003 by THQ, Inc. At its core, Homeworld is an RTS game, with a
compelling story wrapped around its RTS gameplay. Fans of science fiction are
drawn to the gameplay because of its “tried and true” but cliché plot: “You are
lost in space and need to find your way home,” or the more sanguine “Your
home has been destroyed by aliens, so you must seek out a new home world.”
However, the gameplay is so intense that an all-too-familiar premise for the plot
actually does work quite well.

An outer space environment will usually be a wide-open area bounded by a
skybox with a texture depicting a starfield or other stellar bodies, with view
frustum clipping as an optimization in the scene manager.

Figure 12.2
Wing Commander: Prophesy by ORIGIN.

Outer Space Environments 331

Indoor/Outdoor Environments
An indoor environment usually takes place entirely inside the walls of a building
or castle or other structure, often with windows showing an outdoor scene the
player usually cannot reach. A good example of this comes from the genre-
defining Quake by id Software, and more so in Quake II, shown in Figure 12.4
(although Quake II did have some hybrid indoor/outdoor scenes). Another
genre-perfecting game, Unreal Tournament by Epic Games, and the many new
versions up to the current Unreal Tournament 3, may be considered a hybrid
since it supports seamless indoor and outdoor environments. Figure 12.5 shows
a “mod” of Unreal Tournament 2004 called COR (Counter Organic Revolution),
created by UAT students (see www.corproject.com).

Creating Terrain
While game engines were once designed to function in a limited gameplay area,
such as inside an indoor level, and optimized for that type of gameplay due to
slow processors and limited video cards, most engines today make no such
distinction and are able to render a scene for any genre with stable performance.

Figure 12.3
The epic sci-fi outer space game of Homeworld received stellar reviews for its gorgeous scenes.

332 Chapter 12 n Environmental Concerns: Recycling Terrain Polygons

Figure 12.5
Counter Organic Revolution (COR) is a UT 2004 mod created by UAT students.

Figure 12.4
Quake II perfected the networked indoor deathmatch genre at the time.

Creating Terrain 333

Indeed, game developers today can even write lazy code without optimization
(the “brute force” approach), with decent results thanks to high-performance
chips in even the most average PC. (Of course, neither you nor I would ever
write sloppy code just because the CPU and GPU are fast, as there are always
new polygons eager to be rendered!)

Nearly every technology in game development today was built in pyramidal style
on the work of those who have come before, which means almost every
algorithm and function used to render something was developed and used
and improved by many people. For a young technology like game development,
the earliest pioneers are almost all still alive today, which means they are aware
of how game development has evolved after having been there at the start—
indeed, for having been part of that beginning. The terrain code in this chapter is
largely credited to the work of Carl Granberg, who himself borrowed code from
others and improved upon it. (See Programming an RTS Game with Direct3D,
published by Charles River Media in 2006—and be sure to get the author’s latest
sources that support Visual Cþþ 2008.) Likewise, I have improved upon
Granberg’s work by incorporating a new random generation system (based on
Perlin noise) to replace his custom random terrain generator.

Adv i c e

This chapter’s resource files (including the Perlin library) can be downloaded from www.jharbour.
com/forum or www.courseptr.com/downloads. Please note that not every line of code will be in
print due to space considerations: only the most important sections of code are covered in each
chapter.

Perlin Noise
Perlin is the name of a world-famous noise generation library used to produce
unique patterns of random number sequences. This library was named for its
creator, Ken Perlin, who won an Academy Award for his work on texture
generation for Disney’s movie, TRON. We’ll be using this open source library—
which is called “libnoise” (http://libnoise.sourceforge.net)—to generate our
random terrain. The Perlin noise library (see Table 12.1) is comprised of a
number of header files, but we need only be concerned with two: noise.h and
noiseutils.h. To use libnoise, we will add libnoise.lib to our project’s linker
options (via a #pragma) and add noiseutils.cpp to the project as well.

334 Chapter 12 n Environmental Concerns: Recycling Terrain Polygons

The Perlin noise library is very easy to use (fortunately for us!) and can generate
just a simple, basic array of float values for a heightmap, which can then be
copied over to our terrain’s heightmap. Or, the height data can be saved as a
bitmap and written out to a file. Figure 12.6 shows an example heightmap
texture generated procedurally by libnoise.

Table 12.1 Perlin Noise SDK

libnoise.lib Compiled noise library (add to project folder)
libnoise.dll Compiled noise dll (add to output folder)
noiseutils.h Support header (add to sources folder)
noiseutils.cpp Support code (add to sources folder)
noise.h Primary noise header (add the whole .\noise folder to sources folder)

Figure 12.6
Heightmap terrain texture generated by Perlin noise library.

Creating Terrain 335

Heightmap and Texture Generation

This versatile library can also generate seamless textures for use in a scene, such
as wood, stone, marble, and clouds. Imagine generating all of the textures you
need for a game based entirely on script descriptions of the type of textures
needed for each mesh! Suppose you have a mesh of a picnic table for an outdoor
scene: perhaps you might describe the texture used for the picnic table in script
code, and then have Perlin generate that texture based on its name. Suppose
your engine also knows how to generate a great number of textures on the fly
from pre-programmed Perlin noise configurations. Another feature of Perlin is
the ability to generate tiled texture maps, allowing for seamless and potentially
endless random textures in a certain direction, with the same textures produced
again if your game characters move back in the way they came. Imagine
generating millions of square miles of terrain to simulate a truly gigantic
game world, all without requiring a level designer to create the data by hand.
These ideas are all entirely possible—and are done in many engines already.

First, assuming we have included the libnoise support files needed to compile
with the library, we start by creating a noise::module::Perlin variable and
initializing it with the desired texture generation properties:

module::Perlin perlin;
perlin.SetSeed(seed);
perlin.SetFrequency(frequency);
perlin.SetOctaveCount(octaves);
perlin.SetPersistence(persistence);

There are three key properties used to customize the random numbers generated
by Perlin:

n Frequency

n Persistence

n Octaves

Frequency The first property, frequency, is the most important one to consider
as it determines what the overall texture will look like. Frequency determines the
number of “bumps” in the texture, with 0.0 being perfectly smooth and 10.0
looking almost like white noise. Most of the time you will want to use a value in
the range of 0.2 to 3.0 for terrain, depending on the size of the game world.

336 Chapter 12 n Environmental Concerns: Recycling Terrain Polygons

Figure 12.7 shows the textures generated with different frequency values, while
Figure 12.8 shows the scene view.

Persistence The second property, persistence, also contributes to how smooth
or bumpy the terrain will look, as it affects the way bumps in the terrain flow
together. Or, looking at it from a different perspective, persistence determines
how much one hill or valley flows into or out of those nearest to it. A very low
persistence of 0.1 has almost no effect, while a value of 0.9 causes the image to
scatter toward white noise—which may be exactly what you want, depending on
the desired scene for a game world. Figure 12.9 shows results for several
persistence values, while Figure 12.10 shows the output at two extremes.

Figure 12.7
Frequency determines the bumpiness of the generated texture.

Figure 12.8
Comparison of heightmap textures generated with low and high frequencies.

Creating Terrain 337

Octaves The third property, octaves, determines how many passes or levels of
randomness a texture is given during its construction. An octave setting of
1.0 results in a texture with just the raw frequency and persistence properties
determining how it turns out. An octave setting of 10.0 results in highly complex
randomness added to the base frequency- and persistence-defined shape of the
texture. Think of the octave passes as a way to add more detail to the existing
shape of the terrain or texture, without changing the overall shape of the hills
and valleys. Figure 12.11 shows the textures generated by two different octaves,

Figure 12.9
Persistence determines how well the bumps in the texture flow together.

Figure 12.10
Comparison of heightmap textures generated with low and high persistence.

338 Chapter 12 n Environmental Concerns: Recycling Terrain Polygons

while Figure 12.12 shows the rendered scene with terrain reflecting those
heightmaps.

Now that we have the Perlin object initialized properly with the desired
properties, the next step is to create a NoiseMap object that will contain the
texture data that will ultimately be used as the height data for our terrain.

noise::utils::NoiseMap noiseMap;

Figure 12.12
The rendered scene with terrain reflecting the heightmaps.

Figure 12.11
The number of Octaves represents the number of detail passes used to add more complexity.

Creating Terrain 339

The type of texture we need is for a regular plane. Perlin has support for
seamless texture generation and can even generate sphere textures with
the correct stretching applied to the poles so the texture looks correct wrapped
on a sphere. (We used this technique in Starflight—The Lost Colony [www
.starflightgame.com] to generate random planets.)

noise::utils::NoiseMapBuilderPlane heightMapBuilder;

Next, we tell our heightmap object to use the Perlin object for it’s random
algorithms, set the destination to the noise map object, and set the width and
height of the data set.

heightMapBuilder.SetSourceModule(perlin);
heightMapBuilder.SetDestNoiseMap(noiseMap);
heightMapBuilder.SetDestSize(width, length);

Finally, we have to tell the heightmap object where on the Cartesian coordinate
system it should base its calculations for tiling purposes. Tiling is an advanced
feature that I won’t get into here because we just don’t need it, but I encourage
you to look into it if you want to generate a huge game world without
consuming huge amounts of memory. After setting the bounds to the upper-
right quadrant, we can then build the random data.

heightMapBuilder.SetBounds(0.0, 5.0, 0.0, 5.0);
heightMapBuilder.Build();

At this point, we have the data needed to apply height data to a terrain vertex
buffer. To get at the data, access the GetValue() function in NoiseMap.

float value = noiseMap.GetValue(x,z);

The value coming from Perlin will be fairly small, so it’s normally multiplied by
the desired height value to bring the terrain up from the sub-1.0 range into a
tangible height.

Finally, if you would like to save the height data to a texture, libnoise can do that
as well. Just to be clear, it’s normal to add the “noise” namespace to simplify
variable declarations, so I’ll include it here for reference.

using namespace noise;
utils::RendererImage renderer;
utils::Image image;
renderer.SetSourceNoiseMap(noiseMap);

340 Chapter 12 n Environmental Concerns: Recycling Terrain Polygons

renderer.SetDestImage(image);
renderer.Render();
utils::WriterBMP writer;
writer.SetSourceImage (image);
writer.SetDestFilename("texture.bmp");
writer.WriteDestFile();

Terrain Generation
A terrain system is basically a vertex buffer filled with two-triangle quads that
share four vertices. The vertex buffer has a defined flexible vertex format (FVF)
with vertex position, texture coordinates, and lighting normal angles supported.

TERRAIN_FVF = D3DFVF_XYZ | D3DFVF_NORMAL | D3DFVF_TEX1;

The texture coordinate property tells me that the terrain requires at least one
texture to render properly. We could generate the ground textures needed here
with Perlin very easily, but texture theory is a bit beyond the goals for this
chapter so I have just selected three interesting textures that will make the
terrain look vaguely like an alien world with a curious pattern in greens and
browns. We will supply the terrain system with three textures to accommodate
three height levels (water, grass, and hills).

Our height data is nothing more complex than an array of floats initialized to
zero:

heightMap = new float[width * length];
memset(heightMap, 0, sizeof(float)*width*length);

What you do with heightMap after this point will be based on the type of
environment needed for the game’s genre! We’ve seen how to generate height
data from Perlin, but the real question is this: how do you go from a bunch of
floats to a rendered terrain mesh?

First, to build the terrain system’s vertex buffer we will use patches that will
simplify texture mapping and also divide the terrain system into a grid, which
will also be helpful for gameplay code. Assuming width and length represent the
dimensions of the terrain (oriented “flat” on the Z-axis, out and away from the
origin), we can divide up the terrain system into a series of patches, each
represented by a rectangle or quad.

Creating Terrain 341

for (int y=0;y<numPatches;y++)
{

for (int x=0;x<numPatches;x++)
{

RECT r = {
(int)(x * (width - 1) / (float)numPatches),
(int)(y * (length - 1) / (float)numPatches),
(int)((x+1) * (width - 1) / (float)numPatches),
(int)((y+1) * (length - 1) / (float)numPatches)

};
Patch *p = new Patch();
p->CreateMesh(*heightMap, r);
patches.push_back(p);

}
}

For each patch, a mesh is created with the D3DXCreateMeshFVF function, which
generates a mesh based on a defined FVF format (in this case, we’ll be using
TERRAIN_FVF, previously defined). The heightmap data is then used to build the
vertex buffer.

TerrainVertex* ver = 0;
mesh->LockVertexBuffer(0,(void**)&ver);
for(int z=source.top,z0=0; z<=source.bottom; z++,z0++)

for(int x=source.left,x0=0; x<=source.right; x++,x0++)
{

D3DXVECTOR3 pos = D3DXVECTOR3(
(float)x,
hm.heightMap[x + z * hm.width],
(float)-z);

D3DXVECTOR2 uv = D3DXVECTOR2(x * 0.2f, z * 0.2f);
ver[z0 * (width + 1) + x0] = TerrainVertex(pos, uv);

}
mesh->UnlockVertexBuffer();

Afterward, an index buffer and attributes are added to improve rendering
performance. After the vertex buffer has been filled with height data, and the
vertices positioned correctly into patch-based quads, then the whole thing is
normalized with D3DXComputeNormals. Regarding the attributes, this is an
important section of the code because it determines which texture is used on
the terrain based on height. Take a look at the if statement, currently with
hard-coded ranges. The water level is at a height of 0.0, while the grass level goes

342 Chapter 12 n Environmental Concerns: Recycling Terrain Polygons

up to 60% of the height, and the final 40% of the terrain is set to the final texture
(normally granite or other rocky-looking texture). A good improvement to this
code will be to make those ranges definable, and perhaps even add in support for
more than just three.

for(int z = source.top; z < source.bottom; z++)
for(int x = source.left; x < source.right; x++)
{

//calculate vertices based on height
int subset;
if (hm.heightMap[x + z * hm.width] == 0.0f)

subset = 0;
else if (hm.heightMap[x+z*hm.width] <= hm.maxHeight*0.6f)

subset = 1;
else subset = 2;

att[a++] = subset;
att[a++] = subset;

}

Terrain Class
The snippets of code presented thus far will be easier to re-use in the form of a
class—namely, the Terrain class, which is now part of the Octane engine if you
peruse the projects included with this chapter. This Terrain class makes use of
two helper structs (Heightmap and Patch) to help manage heightmap and mesh
generation for the terrain.

#include "..\Engine\Engine.h"
struct TerrainVertex
{

D3DXVECTOR3 position, normal;
D3DXVECTOR2 uv;

TerrainVertex(){}
TerrainVertex(D3DXVECTOR3 pos, D3DXVECTOR2 texuv)
{

position = pos;
uv = texuv;
normal = D3DXVECTOR3(0.0f, 1.0f, 0.0f);

}
};

Creating Terrain 343

struct Heightmap
{

int width,length;
float maxHeight;
float *heightMap;

Heightmap(int _width, int _length, float _depth);
~Heightmap();
void Release();
bool CreateRandom(int seed, float frequency, float persistence,

int octaves, bool water=false);
};

struct Patch
{

ID3DXMesh *mesh;

Patch();
~Patch();
void Release();
bool CreateMesh(Heightmap &hm, RECT source);
void Render(int texture);

};

class Terrain
{

private:
int p_width,p_length;
int p_numPatches;
int p_maxHeight;
Heightmap *p_heightMap;
std::vector<Patch*> p_patches;
std::vector<IDirect3DTexture9*> p_textures;

public:
Terrain();
virtual ~Terrain();
void Init(int width,int length,int depth,std::string tex1,

std::string tex2,std::string tex3);
void Flatten(float height);
void CreateRandom(float freq=0.8f, float persist=0.5f,

344 Chapter 12 n Environmental Concerns: Recycling Terrain Polygons

int octaves=5, bool water=false);
void Render(Octane::Effect *effect);
void BuildHeightmap();
int getWidth() { return p_width; }
int getLength() { return p_length; }
float getHeight(int x,int z);
void Release();

};

The terrain system is actually comprised of three components, as you saw in the
header listing: the Heightmap and Patch structs and the Terrain class. It is
possible to combine all into just the Terrain class but the functionality of the
terrain system is cleaner in these separate parts (using helper structs for each
component of the terrain system). First, let’s see how the Heightmap struct works.

const DWORD TERRAIN_FVF = D3DFVF_XYZ | D3DFVF_NORMAL | D3DFVF_TEX1;

Heightmap::Heightmap(int _width, int _length, float _depth)
{

try
{

width = _width;
length = _length;
maxHeight = _depth;

heightMap = new float[width * length];
memset(heightMap, 0, sizeof(float)*width*length);

}
catch(. . .)
{

debug � "Error creating Heightmap";
}

}

Heightmap::~Heightmap()
{

Release();
}

void Heightmap::Release()
{

Creating Terrain 345

if (heightMap != NULL) delete [] heightMap;
heightMap = NULL;

}

bool Heightmap::CreateRandom(int seed, float frequency, float persistence, int
octaves, bool water)
{

//init perlin noise library
module::Perlin perlin;
perlin.SetSeed(seed);
perlin.SetFrequency(frequency);
perlin.SetOctaveCount(octaves);
perlin.SetPersistence(persistence);

//build the heightmap
utils::NoiseMap noiseMap;
utils::NoiseMapBuilderPlane heightMapBuilder;
heightMapBuilder.SetSourceModule(perlin);
heightMapBuilder.SetDestNoiseMap(noiseMap);
heightMapBuilder.SetDestSize(width, length);
heightMapBuilder.SetBounds(0.0, 5.0, 0.0, 5.0);
heightMapBuilder.Build();

//copy Perlin generated height data to our heightmap
for(int z=0; z<length; z++)
{

for(int x=0; x<width; x++)
{

//get height value from perlin
float value = noiseMap.GetValue(x,z) * maxHeight;

//cap negatives to 0 for water
if (water)
{

if (value < 0.0f) value = 0.0f;
}

//copy height data to our terrain
heightMap[x + z * width] = value;

}
}

346 Chapter 12 n Environmental Concerns: Recycling Terrain Polygons

return true;
}

Now we have the Patch struct with its primary purpose of housing the mesh data
for the terrain system. The entire terrain system is made up of these patches, and
this is the object actually drawing when the terrain is rendered.

Patch::Patch()
{

mesh = NULL;
}
Patch::~Patch()
{

Release();
}

void Patch::Release()
{

if(mesh != NULL)
mesh->Release();

mesh = NULL;
}

bool Patch::CreateMesh(Heightmap &hm, RECT source)
{

if(mesh != NULL)
{

mesh->Release();
mesh = NULL;

}

try
{

int width = source.right - source.left;
int height = source.bottom - source.top;
int nrVert = (width + 1) * (height + 1);
int nrTri = width * height * 2;

if(FAILED(D3DXCreateMeshFVF(nrTri, nrVert, D3DXMESH_MANAGED,
TERRAIN_FVF, g_engine->getDevice(), &mesh)))

{

Creating Terrain 347

debug � "Error creating patch mesh\n";
return false;

}

//create terrain vertices
TerrainVertex* ver = 0;
mesh->LockVertexBuffer(0,(void**)&ver);
for(int z=source.top, z0 = 0;z<=source.bottom;z++, z0++)

for(int x=source.left, x0 = 0;x<=source.right;x++, x0++)
{

D3DXVECTOR3 pos = D3DXVECTOR3(
(float)x,
hm.heightMap[x + z * hm.width],
(float)-z);

D3DXVECTOR2 uv = D3DXVECTOR2(x * 0.2f, z * 0.2f);
ver[z0 * (width + 1) + x0] = TerrainVertex(pos, uv);

}
mesh->UnlockVertexBuffer();

//calculate terrain indices
WORD* ind = 0;
mesh->LockIndexBuffer(0,(void**)&ind);
int index = 0;

for(int z=source.top, z0 = 0;z<source.bottom;z++, z0++)
for(int x=source.left, x0 = 0;x<source.right;x++, x0++)
{

//triangle 1
ind[index++] = z0 * (width + 1) + x0;
ind[index++] = z0 * (width + 1) + x0 + 1;
ind[index++] = (z0+1) * (width + 1) + x0;

//triangle 2
ind[index++] = (z0+1) * (width + 1) + x0;
ind[index++] = z0 * (width + 1) + x0 + 1;
ind[index++] = (z0+1) * (width + 1) + x0 + 1;

}

mesh->UnlockIndexBuffer();

348 Chapter 12 n Environmental Concerns: Recycling Terrain Polygons

//set attributes
DWORD *att = 0, a = 0;
mesh->LockAttributeBuffer(0,&att);

for(int z=source.top;z<source.bottom;z++)
for(int x=source.left;x<source.right;x++)
{

//calculate vertices based on height
int subset;
if (hm.heightMap[x + z * hm.width] == 0.0f)

subset = 0;
else if (hm.heightMap[x + z * hm.width]

<= hm.maxHeight * 0.6f)
subset = 1;

else subset = 2;

att[a++] = subset;
att[a++] = subset;

}

mesh->UnlockAttributeBuffer();

//compute normal for the terrain
D3DXComputeNormals(mesh, NULL);

}
catch(. . .)
{

debug � "Error creating patch mesh\n";
return false;

}

return true;
}

void Patch::Render(int texture)
{

if (mesh != NULL)
mesh->DrawSubset(texture);

}

Creating Terrain 349

Finally, we have the Terrain class, which wraps up the Heightmap and Patch data
with some high-level functions to make terrain initialization and configuration
relatively easy from the calling code.

Terrain::Terrain()
{

p_heightMap = NULL;
}

Terrain::~Terrain()
{

Release();
}

void Terrain::Init(int width,int length,int depth,std::string tex1,
std::string tex2,std::string tex3)

{
p_width = width;
p_length = length;
p_maxHeight = depth;
p_numPatches = 3;
p_heightMap = NULL;
CreateRandom(0.8f, 0.5f, 5, false);

//load terrain textures
IDirect3DTexture9* levels[3];
for (int n=0; n<3; n++)

levels[n] = NULL;

D3DXCreateTextureFromFile(g_engine->getDevice(),tex1.c_str(),&levels[0]);
D3DXCreateTextureFromFile(g_engine->getDevice(),tex2.c_str(),&levels[1]);
D3DXCreateTextureFromFile(g_engine->getDevice(),tex3.c_str(),&levels[2]);

for (int n=0; n<3; n++)
p_textures.push_back(levels[n]);

}

void Terrain::Release()
{

for(int i=0;i<(int)p_patches.size();i++)

350 Chapter 12 n Environmental Concerns: Recycling Terrain Polygons

if(p_patches[i] != NULL)
p_patches[i]->Release();

p_patches.clear();

if(p_heightMap != NULL)
{

p_heightMap->Release();
delete p_heightMap;
p_heightMap = NULL;

}
}

void Terrain::Flatten(float height)
{

float* hm = p_heightMap->heightMap;
for(int y=0;y<p_length;y++)
{

for(int x=0;x<p_width;x++)
{

hm[x + y * p_width] = height;
}

}
BuildHeightmap();

}

void Terrain::CreateRandom(float freq,float persist,int octaves,bool water)
{

try
{

//recreate heightmap array
Release();
p_heightMap = new Heightmap(p_width,p_length,(float)p_maxHeight);

//fill heightmap with generated data
p_heightMap->CreateRandom(rand()%1000, freq, persist, octaves, water);
BuildHeightmap();

}
catch(. . .)
{

Creating Terrain 351

debug � "Error creating random terrain\n";
}

}

void Terrain::BuildHeightmap()
{

try
{

//free any old patches
for(int i=0;i<(int)p_patches.size();i++)

if(p_patches[i] != NULL)
p_patches[i]->Release();

p_patches.clear();

if (p_heightMap == NULL) return;

//(re)create patch meshes
for (int y=0;y<p_numPatches;y++)
{

for (int x=0;x<p_numPatches;x++)
{

RECT r = {
(int)(x * (p_width - 1) / (float)p_numPatches),
(int)(y * (p_length - 1) / (float)p_numPatches),
(int)((x+1) * (p_width - 1) / (float)p_numPatches),
(int)((y+1) * (p_length - 1) / (float)p_numPatches)

};

Patch *p = new Patch();
p->CreateMesh(*p_heightMap, r);
p_patches.push_back(p);

}
}

}
catch(. . .)
{

debug � "Error creating terrain grid\n";
}

}

352 Chapter 12 n Environmental Concerns: Recycling Terrain Polygons

void Terrain::Render(Octane::Effect *effect)
{

for(int t=0;t<3;t++)
{

effect->setParam("Texture", p_textures[t]);

effect->Begin();

for(int i=0;i<(int)p_patches.size();i++)
p_patches[i]->Render(t);

effect->End();
}

}

float Terrain::getHeight(int x,int z)
{

float* hm = p_heightMap->heightMap;

if (x < 0 || x > p_width) return 0;
if (z < 0 || z > p_length) return 0;

try
{

float height = hm[x + z * p_width];
return height;

}
catch(. . .)
{

return 0.0f;
}

}

Terrain Demo
The Terrain Demo program will show how easy it is to use the Terrain class to
generate and render a terrain system using either all default properties or with
custom-defined properties. Figure 12.13 shows a view of the program running. If
you want to render the terrain with water (or at least using the first texture—you

Creating Terrain 353

may pass a different texture if you wish), you will want to set the parameters to
Terrain::CreateRandom() rather than just leaving them to their defaults.

#include "Engine.h"
#include "Terrain.h"
using namespace Octane;
using namespace std;

Font* font=NULL;
Effect* effect=NULL;
Camera* camera=NULL;
Matrix matWorld;
Vector3 mouseRotate;
Terrain* terrain;

void game_end()
{

if (terrain) delete terrain;
if (camera) delete camera;
if (effect) delete effect;

Figure 12.13
The Terrain Demo shows how to use the new Terrain class with Perlin-based heightmap generation.

354 Chapter 12 n Environmental Concerns: Recycling Terrain Polygons

if (font) delete font;
}

bool game_preload()
{

g_engine->setAppTitle("Terrain Demo");
g_engine->setScreen(1024,768,32,false);
g_engine->setBackdropColor(D3DCOLOR_XRGB(30,0,30));
return true;

}

bool game_init(HWND hwnd)
{

font = new Font("Arial",14);

camera = new Camera();
camera->setPosition(0,10,10);
camera->setTarget(0,10,0);

effect = new Effect();
if (!effect->Load("ambient.fx"))
{

debug � "Error loading effect\n";
return false;

}

//create terrain
terrain = new Terrain();
terrain->Init(512, 512, 40, "water.bmp","slime2.bmp","slime1.bmp");

return true;
}

void game_render3d()
{

effect->setTechnique("Ambient");
effect->setViewMatrix(camera->getViewMatrix());
effect->setProjectionMatrix(camera->getProjMatrix());

//set shader world matrix to terrain position
matWorld.setIdentity();

Creating Terrain 355

matWorld.Translate(-terrain->getWidth()/2,0,0);
effect->setWorldMatrix(matWorld);

//render the terrain
terrain->Render(effect);

}

void game_update(float deltaTime)
{

camera->Update();
}

void game_render2d()
{

ostringstream out;
out � "Core: " � g_engine->getCoreFrameRate() � endl;
out � "Camera: " � camera->getTarget().x � ","

� camera->getTarget().y � ","
� camera->getTarget().z � endl;

out � "SPACE to randomize" � endl;
out � "F to flatten" � endl;
out � "WASD to move camera" � endl;
out � "Q/E to raise/lower" � endl;

font->Print(0,0, out.str());

}

void game_event(IEvent* e)
{

switch(e->getID())
{

case EVENT_KEYPRESS:
{

KeyPressEvent* evt = (KeyPressEvent*) e;
switch(evt->keycode)
{

case DIK_ESCAPE: g_engine->Shutdown(); break;
case DIK_SPACE:

terrain->CreateRandom(0.8f,0.5f,5,true);
break;

356 Chapter 12 n Environmental Concerns: Recycling Terrain Polygons

case DIK_F: terrain->Flatten(1); break;
case DIK_W: camera->Move(0,0,-1.0); break;
case DIK_S: camera->Move(0,0,1.0); break;
case DIK_A: camera->Move(1.0,0,0); break;
case DIK_D: camera->Move(-1.0,0,0); break;
case DIK_Q: camera->Move(0,1.0,0); break;
case DIK_E: camera->Move(0,-1.0,0); break;

}
break;

}
case EVENT_MOUSEMOTION:
{

MouseMotionEvent* evt = (MouseMotionEvent*)e;
double dx = -evt->deltax / 100.0;
double dy = -evt->deltay / 100.0;
camera->Look(dx, dy, 0);
break;

}
}}

Walking on Terrain
Generating and rendering terrain is one thing (and it looks nice!), but it’s useless
if we don’t have the capability to actually walk on it. That is already built into
the Terrain class by way of its internal heightmap array, but we need to get at
that array data and determine the height of the terrain at any given X,Z position
over it. Getting that data is simply a matter of retrieving the heightmap value,
but the real trick is aligning our game’s meshes with the terrain’s position in the
scene. If you position the terrain at its default location, with it positioned in the
first quadrant (of an X,Z Cartesian coordinate system), then Z decreases away
from the camera, while X decreases to the right. So, positive X will move objects
into the terrain, while negative X would move objects in the wrong direction.
Likewise, transforming an object into the negative Z will move it deeper into the
terrain.

Calculating Height
Therefore, to transform an object onto the terrain and calculate its height at that
given value, it’s best to leave the terrain at its original position, focused on the

Walking on Terrain 357

origin and expanding forward and to the left (see Figure 12.14). The Terrain::

getHeight() function retrieves the height value at a given X,Z position in the
terrain’s heightmap. Following is a simplified version of the function as it
appears in the Terrain class code listing.

float Terrain::getHeight(int x,int z)
{

float* hm = p_heightMap->heightMap;
if (x < 0 || x > p_width) return 0;
if (z < 0 || z > p_length) return 0;
try
{

float height = hm[x + z * p_width];
return height;

}
catch(. . .)
{

return 0.0f;
}

}

Figure 12.14
The terrain mesh is positioned into Z-, X+, in quadrant one by default.

358 Chapter 12 n Environmental Concerns: Recycling Terrain Polygons

Terrain Following Demo
The Terrain Following Demo project helps to illustrate terrain following in a
very simple way, but the simplicity of this demo helps greatly to understand how
the terrain system is oriented and how objects may follow the heightmap
correctly. Figure 12.15 shows the program. Note that a string of spheres is
moving in sync on the Z-axis, forward and backward across the terrain, and
adjusting their heights to match the heightmap value in the terrain at each
sphere’s X,Z position over the terrain.

#include "Engine.h"
#include "Terrain.h"
using namespace Octane;
using namespace std;

Font* font=NULL;
Effect* effect=NULL;
Camera* camera=NULL;
Matrix matWorld;
Vector3 mouseRotate;
Terrain* terrain=NULL;

Figure 12.15
The sphere meshes are “walking” the terrain as a line to demonstrate heightmap following.

Walking on Terrain 359

Mesh* ball=NULL;
Texture* fire=NULL;
float ballVel = -6.0f;
Vector3 balls[100];

void game_end()
{

if (fire) delete fire;
if (ball) delete ball;
if (terrain) delete terrain;
if (camera) delete camera;
if (effect) delete effect;
if (font) delete font;

}

bool game_preload()
{

g_engine->setAppTitle("Terrain Following Demo");
g_engine->setScreen(1024,768,32,false);
g_engine->setBackdropColor(D3DCOLOR_XRGB(30,30,0));
return true;

}

bool game_init(HWND hwnd)
{

font = new Font("Arial",14);

effect = new Effect();
if (!effect->Load("ambient.fx"))
{

debug � "Error loading effect\n";
return false;

}

//create terrain
terrain = new Terrain();
terrain->Init(100, 100, 5, "slime2.bmp","slime2.bmp","slime2.bmp");

//create ball mesh
ball = new Mesh();
ball->Load("ball.x");

360 Chapter 12 n Environmental Concerns: Recycling Terrain Polygons

ball->setPosition(50,0,0);
ball->setScale(0.5);

fire = new Texture();
fire->Load("fire.jpg");

for (int n=0; n<100; n++)
{

balls[n].x = n;
balls[n].y = 0;
balls[n].z = 0;

}

camera = new Camera();
camera->setPosition(50,10,10);
camera->setTarget(50,10,0);

return true;
}

void game_render3d()
{

effect->setTechnique("Ambient");
effect->setViewMatrix(camera->getViewMatrix());
effect->setProjectionMatrix(camera->getProjMatrix());

//render the terrain
matWorld.setIdentity();
effect->setWorldMatrix(matWorld);
terrain->Render(effect);

//render the balls
for (int n=0; n<100; n++)
{

ball->setPosition(balls[n]);
ball->Transform();
effect->setWorldMatrix(ball->getMatrix());
effect->setParam("Texture", fire->getTexture());
ball->Draw(effect);

}
}

Walking on Terrain 361

void game_update(float deltaTime)
{

camera->Update();

//move the balls
for (int n=0; n<100; n++)
{

balls[n].z += ballVel * deltaTime;

int size = terrain->getLength();
if (balls[n].z < -size || balls[n].z > 0)
{

ballVel *= -1;
balls[n].z += ballVel * deltaTime;

}

int actualx = balls[n].x;
int actualz = -balls[n].z;
balls[n].y = terrain->getHeight(actualx,actualz) + 1.0f;

}
}

void game_render2d()
{

ostringstream out;
out � "Core: " � g_engine->getCoreFrameRate() � endl;
out � "Camera: " � camera->getTarget().x � ","

� camera->getTarget().y � ","
� camera->getTarget().z � endl;

out � "Ball: " � ball->getPosition().x � ","
� ball->getPosition().y � ","
� ball->getPosition().z � endl;

out � "SPACE to randomize" � endl;
out � "F to flatten" � endl;
out � "WASD to move camera" � endl;
out � "Q/E to raise/lower" � endl;

font->Print(0,0, out.str());
}

362 Chapter 12 n Environmental Concerns: Recycling Terrain Polygons

void game_event(IEvent* e)
{

switch(e->getID())
{

case EVENT_KEYPRESS:
{

KeyPressEvent* evt = (KeyPressEvent*) e;
switch(evt->keycode)
{

case DIK_ESCAPE: g_engine->Shutdown(); break;
case DIK_SPACE:

terrain->CreateRandom(0.5f,0.5f,5,false);
break;

case DIK_F: terrain->Flatten(1); break;
case DIK_W: camera->Move(0,0,-1.0); break;
case DIK_S: camera->Move(0,0,1.0); break;
case DIK_A: camera->Move(1.0,0,0); break;
case DIK_D: camera->Move(-1.0,0,0); break;
case DIK_Q: camera->Move(0,1.0,0); break;
case DIK_E: camera->Move(0,-1.0,0); break;

}
break;

}
case EVENT_MOUSEMOTION:
{

MouseMotionEvent* evt = (MouseMotionEvent*)e;
double dx = -evt->deltax / 100.0;
double dy = -evt->deltay / 100.0;
camera->Look(dx, dy, 0);
break;

}
}

}

Summary
This chapter has been one of the most productive as far as contributing toward
actually creating a game environment, while all prior chapters have been
building block chapters in nature, providing services needed up to this point
just to get a rudimentary scene to render. One limitation of this terrain system is

Summary 363

the use of square textured patches with no multi-texturing to smooth over the
sharp edges. From a certain vantage point, it looks okay, but up close it might
resemble a checkerboard. Applying blended textures over the seams would solve
the problem and dramatically improve the appearance of the terrain. Another
way to improve quality is to use a shader other than ambient—specular, for
instance, would look really nice. I encourage you to explore these possibilities.
Although we can’t do all of these things in a single chapter, they are being
explored as the engine continues to evolve beyond the version shared here. Visit
the forum at www.jharbour.com/forum to learn about new things happening.

References
1. “Graphics Engine: RealSpace”; Moby Games. http://www.mobygames.com/

game-group/graphics-engine-realspace.

2. Granberg, Carl. Programming an RTS Game with Direct3D. Charles River
Media, 2006.

364 Chapter 12 n Environmental Concerns: Recycling Terrain Polygons

Skeletal Mesh Animation

This chapter builds upon the material covered previously on simple mesh
loading and rendering (see Chapter 9, “Mesh Loading and Rendering,” for more
information), extending into full hierarchical mesh loading, rendering, and
animating. We will build a new Cþþ class for the engine called BoneMesh, a sub-
class of Mesh, taking advantage of the existing transforms already supported in
the parent class. There’s a lot of code required to load a hierarchical mesh, which
is far more complicated than dealing with simple meshes, so we will need to
cover this subject thoroughly. A helper class is required when loading a
hierarchical mesh, which does all of the memory allocation and deallocation
of data in memory, but once we have written that code it will be highly reusable.

This chapter covers the following topics:

n Hierarchical mesh structure

n Asset pipeline

n Bone structure

n Loading a skeletal mesh

n Mesh file differences

n Allocating the hierarchy

n Rendering a skeletal mesh

n Animating a skeletal mesh

chapter 13

365

Hierarchical Mesh Structure
The .X mesh format supports both simple, fixed meshes—already seen—as well
as the more modern hierarchical, animated meshes, which we learn to use in this
chapter. We will use a different means to load the two different types of mesh
even though the same .X file type continues to be used.

A static mesh (like a rock) is loaded with the function D3DXLoadMeshFromX(). If
you pass a .X file to this function containing a bone hierarchy and animation
frames, it will still be able to load the more complex mesh but will only “see” the
starting vertex positions and the first frame. Figure 13.1 shows just such an
example—a skeleton mesh with a sword and shield (sub-meshes), and vertex
animation frames, none of which can be rendered when loaded with the simple
D3DXLoadMeshFromX() function.

An animated mesh (like a biped human or quadruped creature) is loaded with a
different function: D3DXLoadHierarchyFromX(). While the previous function still

Figure 13.1
The default positions of the sub-meshes in a hierarchical .X model file.

366 Chapter 13 n Skeletal Mesh Animation

required that we post-process the mesh information in order to parse the
materials and texture filenames, it was a straightforward process with a
reasonable amount of code. Unfortunately, the same cannot be said of hier-
archical mesh loading. The hierarchy consists of frames with matrix and mesh
data for different parts of the model and a bone or skeleton structure that is not
rendered but still found inside the mesh hierarchy, with each node in the
hierarchy called a “frame.” Skinning the model involves transforming the matrix
for each subsequent part of the model relative to its parent frame, which causes
the “body parts” to move with the bones.

Asset Pipeline
A hierarchical mesh contains a bone structure with a root bone. Moving a root
bone will cause all attached frames to move with it. You can move the entire
mesh by moving the root. The bone hierarchy is also used to animate the mesh
with baked-in animation frames. A bone structure is also required when using a
physics system (for the so-called “ragdoll physics” often applied to game
characters). The way animation is created is usually with live motion capture.
Motion capture (“mo-cap”) data is usually shared by many meshes in a game,
and generic libraries of mo-cap animations are recycled. Some game engines will
dynamically use mo-cap data to animate characters. Other game engines will
“bake” the mo-cap animation directly into the mesh as key frame data—the
most common technique, and the one we will use.

Adv i c e

Baking animation data into a mesh is a job for a modeling/animation professional, where mo-cap
data is applied to a model. The process is called “rigging,” and seems to bring the model to life. In
a native model file, with the two most common software packages being 3ds Max and Maya, the
rigged character and animation are stored in their raw formats for later editing and any additional
tweaking as needed. When the animations are approved by a project lead, then the animated
model is “baked"—that is, the animation frames with the animation are saved to an output file,
such as our familiar .X file format. This overall process—modeling, motion capture, rigging,
baking, exporting—is called the “asset pipeline.” In a professional game development environ-
ment, tools are built to automate the asset pipeline as much as possible, since it is otherwise a very
manual, time-consuming process. Exporters are written for the modeling software, and tools are
written to convert the assets into a format used by the game engine.

The animation system of a game engine will usually “interpolate” from one
frame to the next to produce quality animations. Although the asset pipeline

Hierarchical Mesh Structure 367

should streamline the process of getting assets to the renderer as quickly and
easily as possible, that doesn’t change the fact that an animator is working with
digital data. But, the world is an analog place, so if you want characters to have
realistic behaviors, they cannot be animated and rendered purely from the
digital files they are stored in—the precision of the digital data is too perfect to
simulate a real world. That precision must be smoothed out into an analog form
that is more lifelike than the typical robot movements of a non-interpolated
character. (No matter how skillful a modeler/animator is, it’s impossible to make
a digital animation look perfect; to do so would require tens of thousands of
frames and huge asset files.)

In other words, even a hierarchical mesh has baked-in animation data, which
makes it somewhat similar to the structure of a non-bone (but animated) mesh.
The main advantage of a hierarchical mesh is the ability to manipulate it with a
physics system and transform the bone structure with a vertex shader. In
contrast, the vertex data in a non-bone mesh cannot be manipulated in the GPU
with a shader because each frame is an individual static mesh—the faces of such
a mesh are simply rendered.

The Bone Structure
Figure 13.2 shows the bone hierarchy of a human skeleton with the outline of
skin, which is comparable to the structure of a skeletal mesh. Like this human
skeleton, the bones of a model are not just figurative, but located inside the model.

You can iterate the hierarchy when transforming and rendering the mesh
without knowing the bone names. Also, any one mesh can be attached to any
other mesh at its pivot point. These child meshes will be treated as a part of the
parent mesh, but can still be identified by name. You could, for instance, swap
weapons in a game character from a spear to a sword by locating the name of the
character’s hand and first detaching the old weapon, then attaching the new one.
The weapon, once attached to the character’s hand, can be removed since it too
can be identified by name.

If we had a 3D model of the human body, it might be divided into head, body,
arms, and legs. The body might be the top frame with each part in frames below
defining their own matrix and mesh data. The frame matrix provides the offset
position and orientation from the body matrix. When the object is transformed

368 Chapter 13 n Skeletal Mesh Animation

(that is, positioned in the scene) the first frame (known as the root) is moved to
the desired position. This is where you want the whole object to be located. By
transforming the entire model from the root first, all of the child and sibling
objects in the hierarchy will move too—literally with a transformed matrix for
each frame.

When rendering the mesh, a similar process takes place—the root frame is
rendered, and all children and siblings of every node under the root are
recursively rendered (if they have an associated mesh—and not every node
does). In other words, we need to move the hand with the forearm, the forearm
with the shoulder, and the shoulder with the neck. To do that, we have to

Figure 13.2
The skeletal structure of a hierarchical mesh has “skin” parts attached to the “bone” parts, like this
illustration of a human body.

Im
ag

e
co
ur
te
sy

of
W
ik
ip
ed

ia

Hierarchical Mesh Structure 369

multiply the matrix of a node by its parent so that it will “follow along.” This
combining of matrices is already common fare due to the previous chapter that
manipulated matrices extensively in order to build a terrain system.

Loading a Skeletal Mesh
Ideally, we would like to have the following features for a mesh rendering and
animation system, but a practical approach will likely skip some of the more
challenging features in order to first get an animated bone mesh up on the
screen, with advanced features to come later.

n Load a hierarchical mesh file

n Maintain the bone hierarchy

n Perform animation

n Interpolate between frames

n Transition between animations

n Render the mesh with skinning

The .X file format supports both simple, static meshes, and the more complex
hierarchical “bone/skeletal” type meshes. Previously, we used D3DXLoadMeshFromX

to load a simple mesh from a .X file. Now we will use a more complex function to
load a hierarchical mesh: D3DXLoadMeshHierarchyFromX. In either case, the mesh
data inside a .X file can be loaded by either function, but transforming,
animating, and rendering a hierarchical mesh requires new functions and classes
beyond the single function call needed for a simple mesh. Figure 13.3 shows a
diagram of the hierarchical structure of a biped character. In this figure, the
pelvis is the root of the hierarchy, with Neck, Left Hip, and Right Hip being the
highest-level child nodes of Pelvis, and siblings with each other. Head is a child of
Neck. However, Left Upper Arm is the parent of Left Lower Arm, not a sibling.

Adv i c e

The importance of child and sibling nodes to the structure will be obvious when we go over the
source code that recursively parses the hierarchy.

Next, in Figure 13.4, the nodes are arranged in the order they are processed when
the model is being transformed and rendered. This view makes it easier to see the

370 Chapter 13 n Skeletal Mesh Animation

hierarchical structure in a top-down fashion. Although Neck is higher than Head,
it is not more important; this hierarchy simply reflects the position of each node,
while “importance” is only a matter of how many child nodes any given node
has. If a high-level node is removed, all child nodes go with it, but not siblings.

Mesh File Differences
Let’s look at the result when a non-hierarchical mesh is loaded into a hierarchical
mesh structure. Figure 13.5 shows an aircraft mesh with the frame names
displayed on the screen. Since the left column is empty, that means there was no
skeletal structure making up the aircraft’s components, but there are individual
frames.

In the following column, you can see the name of every item in this non-
hierarchical model file. Under each named frame (the name being up to the 3D

Figure 13.3
An illustration of the hierarchical structure of a biped character, showing the root and first three high-
level nodes (Neck, Left Hip, Right Hip).

Loading a Skeletal Mesh 371

modeler who created it) is an unnamed frame and unnamed mesh. A modeler
will usually only give names to important structures in the model file.

frame: Scene_Root
frame: thndbolt

frame: unnamed
mesh: unnamed

frame: FIRE01
frame: Stinger01

frame: unnamed
mesh: unnamed

frame: Stinger02
frame: unnamed
mesh: unnamed

. . .
frame: Stinger08

frame: unnamed
mesh: unnamed

Figure 13.4
The hierarchical structure of a biped character in top-down view, prioritized by sibling and child nodes.

372 Chapter 13 n Skeletal Mesh Animation

Let’s look at another example. Figure 13.6 shows the rendering of an M-113
armored personnel carrier, which is a vehicle used by mechanized infantry units.
The list shows that this model has only two parts—the “m113” mesh and the
“Gun” mesh, with supporting frames. Since the small machine gun on top of the
tank can be identified separately (as a frame called “Gun”), it is possible to affect
transforms upon the mesh associated with that frame. We could search for the
frame by name and apply an additional relative transform to cause the gun to
swivel in place (via rotations), while continuing to remain “attached” to the
vehicle. In that case, we would first identify the individual frames (“m113” and
“Gun”), and render them individually using the same world matrix, with the
additional changes to the gun as needed. (Note: the “FIRE01” frame is an
unknown—it has no attached mesh so it is likely just a placeholder or an
embedded code that a certain game is programmed to recognize.)

Figure 13.5
A non-hierarchical mesh may still have many frames containing sub-meshes, such as the detachable
missiles on this “USAF A-10 Thunderbolt II” aircraft.

Loading a Skeletal Mesh 373

Added frame: Scene_Root
Added frame: m113

Added frame: unnamed
Added mesh: unnamed

Added frame: Gun
Added frame: unnamed
Added mesh: unnamed

Added frame: FIRE01

Adv i c e

This chapter’s resource files can be downloaded from www.jharbour.com/forum or www.courseptr.
com/downloads. Not every line of code will be in print due to space considerations, only the most
important sections of code.

Figure 13.6
Another non-hierarchical mesh with even fewer parts than the previous model.

374 Chapter 13 n Skeletal Mesh Animation

Loading the Hierarchy
The function for loading animation data, skin info, and hierarchy is D3DXLoad-

MeshHierarchyFromX(), which has this definition:

HRESULT D3DXLoadMeshHierarchyFromX(
LPCTSTR Filename,
DWORD MeshOptions,
LPDIRECT3DDEVICE9 pDevice,
LPD3DXALLOCATEHIERARCHY pAlloc,
LPD3DXLOADUSERDATA pUserDataLoader,
LPD3DXFRAME* ppFrameHeirarchy,
LPD3DXANIMATIONCONTROLLER* ppAnimController

);

This is a very complicated function that requires us to create a Cþþ class to
parse the hierarchical data inside the .X file. Fortunately, the DirectX SDK
samples provide enough information to do this and we’ll simply recycle the code
without being too concerned about it needing to change. Here is a quick
summary of the parameters:

Filename File name of the .x file to be loaded.
MeshOptions Mesh loading options.
pDevice Pointer to the Direct3D device.
pAlloc Required callback class used to allocate and deallocate memory and load the

frames contained in the hierarchy.
pUserDataLoader Used to load custom user data stored in a .X file.
ppFrameHeirarchy Pointer to the root—the most important node.
ppAnimController Pointer to the animation controller object.

We put this function to use in a general-purpose function called BoneMesh::Load.

bool BoneMesh::Load(std::string filename)
{

MeshLoaderCallback *memoryAllocator=new MeshLoaderCallback;

std::string currentDirectory = getTheCurrentDirectory();
std::string xfilePath;
splitPath(filename, &xfilePath, &filename);
SetCurrentDirectory(xfilePath.c_str());
HRESULT hr = D3DXLoadMeshHierarchyFromX(

Loading a Skeletal Mesh 375

filename.c_str(),
D3DXMESH_MANAGED,
g_engine->getDevice(),
memoryAllocator,
NULL,
&p_frameRoot,
&p_animController);

delete memoryAllocator;
memoryAllocator=0;

SetCurrentDirectory(currentDirectory.c_str());
if (hr != D3D_OK) {

debug << "Error loading bone mesh" << endl;
return false;

}

if(p_animController)
p_numAnimationSets = p_animController->GetMaxNumAnimationSets();

if (p_frameRoot) {
createBoneMatrices((D3DXFRAME_NEW*)p_frameRoot, NULL);
p_boneMatrices = new D3DXMATRIX[p_maxBones];
ZeroMemory(p_boneMatrices, sizeof(D3DXMATRIX)*p_maxBones);

}
return true;

}

BoneMesh::Load() calls on a helper function called createBoneMatrices() to fill
the skeletal structure from the incoming data from the .X file.

void BoneMesh::createBoneMatrices(D3DXFRAME_NEW *pFrame,
LPD3DXMATRIX pParentMatrix)

{
D3DXMESHCONTAINER_NEW* pMesh = (D3DXMESHCONTAINER_NEW*)

pFrame->pMeshContainer;
if (pMesh) {

p_vertexCount += (int)pMesh->MeshData.pMesh->GetNumVertices();
p_faceCount += (int)pMesh->MeshData.pMesh->GetNumFaces();
if(!p_firstMesh) p_firstMesh = pMesh;

376 Chapter 13 n Skeletal Mesh Animation

//skinning info? then setup the bone matrices
if(pMesh->pSkinInfo && pMesh->MeshData.pMesh) {

D3DVERTEXELEMENT9 Declaration[MAX_FVF_DECL_SIZE];
if (FAILED(pMesh->MeshData.pMesh->GetDeclaration(Declaration)))

return;

pMesh->MeshData.pMesh->CloneMesh(
D3DXMESH_MANAGED,
Declaration,
g_engine->getDevice(),
&pMesh->skinMesh);

//total bones determines size of bone matrix array
p_maxBones=max(p_maxBones,(int)pMesh->pSkinInfo->GetNumBones());

//for each bone calculate its matrix
for (unsigned int i=0; i<pMesh->pSkinInfo->GetNumBones(); i++)
{

D3DXFRAME_NEW* pTempFrame = (D3DXFRAME_NEW*)D3DXFrameFind(
p_frameRoot, pMesh->pSkinInfo->GetBoneName(i));

p_boneNames.push_back((std::string)
pMesh->pSkinInfo->GetBoneName(i));

pMesh->frameCombinedMatrix[i] = &pTempFrame->combinedMatrix;
}

}
}

if(pFrame->pFrameSibling)
{

createBoneMatrices((D3DXFRAME_NEW*)pFrame->pFrameSibling,
pParentMatrix);

}

if(pFrame->pFrameFirstChild)
{

createBoneMatrices((D3DXFRAME_NEW*)pFrame->pFrameFirstChild,
&pFrame->combinedMatrix);

}
}

Loading a Skeletal Mesh 377

Adv i c e

The complete source code for the BoneMesh class and the MeshLoaderCallback class can be
found in the project files for this chapter. Not every line of code is being put into print in the
interest of conserving some space—the engine is too large to list it entirely in the pages of this
book. We do cover the most important functions and structures, but not any of the minutia.
Furthermore, some code listings will omit some comments and optional sections.

Allocating the Hierarchy

Before calling D3DXLoadMeshHierarchyFromX(), we need to derive a class based on
ID3DXAllocateHierarchy (provided in the DirectX SDK). This new class will
handle the mesh data, and it must implement the functions declared in the
ID3DXAllocateHierarchy interface:

1. CreateFrame: requests memory allocation for one frame object

2. CreateMeshContainer: requests memory allocation for a mesh container
object

3. DestroyFrame: de-allocates one frame object

4. DestroyMeshContainer: de-allocates one mesh container object

These four class methods are called during the internal processing of the .X file
when you call the D3DXLoadMeshHierarchyFromX() function. The header for
our loader class (derived from the ID3DXAllocateHierarchy interface) is
shown below. We will look at the implementation of each of these four functions
next.

class MeshLoaderCallback : public ID3DXAllocateHierarchy
{
public:

STDMETHOD(CreateFrame)(LPCSTR Name, LPD3DXFRAME *retNewFrame);
STDMETHOD(CreateMeshContainer)

(LPCSTR Name,
const D3DXMESHDATA * meshData,
const D3DXMATERIAL * materials,
const D3DXEFFECTINSTANCE * effectInstances,
DWORD numMaterials,
const DWORD * adjacency,
LPD3DXSKININFO skinInfo,
LPD3DXMESHCONTAINER * retNewMeshContainer);

378 Chapter 13 n Skeletal Mesh Animation

STDMETHOD(DestroyFrame)(LPD3DXFRAME frameToFree);
STDMETHOD(DestroyMeshContainer)(LPD3DXMESHCONTAINER meshContainerToFree);

bool findFile(std::string *filename);
bool doesFileExist(std::string &filename);
void splitPath(std::string& inputPath, std::string* pathOnly,

std::string* filenameOnly);
};

Adv i c e

The functions implemented in the MeshLoaderCallback function are required, and their
parameters and return values cannot be changed because the functions are declared as pure virtual
functions in ID3DXAllocateHierarchy. The source code listed in the text of this chapter is not
meant to be typed in and compiled, but rather studied and discussed—some portions have been
left out for the sake of brevity.

CreateFrame

The CreateFrame() method is called during processing of the mesh file when a
new frame is encountered. A frame can contain pointers to additional frames
(children or siblings) and/or the mesh data itself. By parsing the hierarchy, we
can carry out animation and other functions on our mesh data. A child frame is
one that is attached below, while a sibling frame is at the same level, attached
above to the same parent. Processing all of the child and sibling nodes of the root
will transform and render the whole model.

In Figure 13.7, note the “PELVIS (ROOT)” node. It has a mesh associated with it
(namely, the body’s torso), but some nodes (such as NECK) have no mesh data,
even though such nodes may still have sibling and child nodes. As we have seen
earlier, some modelers will insert tags into a model for future reference. Even
though the NECK node is not rendered, it is still transformed, because both
shoulders and all of their child nodes depend on the neck node to move with the
pelvis. This flexibility in the model format makes it possible to create any kind of
character, vehicle, or creature imaginable!

This function is called with a frame name and requires us to create a frame in
memory. This memory is returned to the caller via the retNewFrame parameter.
Therefore, we will need a new structure: D3DXFRAME. This is a structure provided

Loading a Skeletal Mesh 379

by Direct3D to hold information for a frame in a hierarchy. It contains
properties representing the node’s name (if it has one) and its matrix, a pointer
to its mesh container, and pointers to any sibling or child nodes (which will be
null if there are none). The code below is found in d3dx9anim.h within the
DirectX SDK.

typedef struct _D3DXFRAME
{

LPSTR Name;
D3DXMATRIX TransformationMatrix;

Figure 13.7
While bone data is purely mathematical (i.e., matrices), the embedded skinning data is tangible, as the
mesh items in this diagram illustrate.

380 Chapter 13 n Skeletal Mesh Animation

LPD3DXMESHCONTAINER pMeshContainer;
struct _D3DXFRAME *pFrameSibling;
struct _D3DXFRAME *pFrameFirstChild;

} D3DXFRAME, *LPD3DXFRAME;

To render a mesh hierarchy, traverse the frame tree applying each frame
transformation matrix and rendering the mesh, then combine the transforma-
tion matrix as we go down the hierarchy. For this we need one more property in
the struct—to keep track of the current combined matrix transform. If the
transform for every node is not retained as we go through the hierarchy, then
every node’s matrix must be multiplied by every child and sibling’s node matrix
over and over again for each new child! The calculations would be a huge waste
of time, and only slow down the performance of the game.

Instead, we want to keep track of the current combined matrix in order to
perform just one multiplication—with the current combined matrix and the
child’s matrix. This will let us animate the character and have all child nodes
follow along with the least amount of number crunching. The key to this
working is by combining the matrices as we go along. Now, we aren’t talking
about skin data (which includes polygons, textures, etc.), but the bone data
calculations can be quite a bottleneck, especially if you have a lot of objects in
a scene.

A helpful optimization for these matrix calculations involves using a combined
transformation matrix per frame (updated during the BoneMesh::Animate

function coming up—stay tuned!). This combined matrix is not part of the
frame structure, so we have to extend the structure a bit:

struct D3DXFRAME_NEW: public D3DXFRAME
{

D3DXMATRIX combinedMatrix;
};

Adv i c e

Direct3D provides a number of functions for working with frame hierarchies such as D3DXFra-
meDestroy, D3DXFrameFind, and D3DXFrameCalculateBoundingSphere. Since it
takes quite a bit of work just to get a hierarchical mesh loaded, rendering, and animating, and
because the gameplay coding requirements will vary from one project to the next, I will leave the
higher-level functionality provided by functions such as these up to the reader.

Loading a Skeletal Mesh 381

Here’s the code for CreateFrame. Remember, this is called once for every frame
in the file.

HRESULT MeshLoaderCallback::CreateFrame(LPCSTR Name, LPD3DXFRAME *retNewFrame)
{

*retNewFrame = 0;
D3DXFRAME_NEW *newFrame = new D3DXFRAME_NEW;
ZeroMemory(newFrame,sizeof(D3DXFRAME_NEW));
D3DXMatrixIdentity(&newFrame->TransformationMatrix);
D3DXMatrixIdentity(&newFrame->combinedMatrix);
newFrame->pMeshContainer = 0;
newFrame->pFrameSibling = 0;
newFrame->pFrameFirstChild = 0;
*retNewFrame = newFrame;
if (Name && strlen(Name))

newFrame->Name = duplicateCharString(Name);
return S_OK;

}

CreateMeshContainer

The CreateMeshContainer() function is called during processing of the .X file by
D3DXLoadMeshHierarchyFromX(), any time mesh data is encountered in the file.
The function has this set of parameters:

HRESULT CreateMeshContainer(
LPCSTR Name,
const D3DXMESHDATA *pMeshData,
const D3DXMATERIAL *pMaterials,
const D3DXEFFECTINSTANCE *pEffectInstances,
DWORD NumMaterials,
const DWORD *pAdjacency,
LPD3DXSKININFO pSkinInfo,
LPD3DXMESHCONTAINER *ppNewMeshContainer

);

382 Chapter 13 n Skeletal Mesh Animation

Here is a brief explanation for each of the parameters:

Name The name of the mesh
pMeshData A pointer to a mesh data structure
pMaterials An array of materials
pEffectInstances An array of effect instances
NumMaterials The number of materials
pAdjacency An array of adjacency information
pSkinInfo Points to a struct containing skinning data
ppNewMeshContainer A pointer to the new mesh container

All but the last parameter are input data defining the mesh. The function needs
to use this data to create a new mesh container, provided by Direct3D. The
D3DXMESHCONTAINER structure, which mimicks the parameters almost precisely,
has these properties:

Name The name of this mesh container
MeshData A structure containing the mesh data as an

ID3DXMesh, ID3DXPMesh, or ID3DXPatchMesh
pMaterials An array of mesh materials
pEffects An array of effect instances
NumMaterials The number of materials
pAdjacency The adjacency information
pSkinInfo The skinning information
pNextMeshContainer A pointer to a sibling mesh structure

As with the D3DXFRAME structure, we will extend the base D3DXMESHCONTAINER in
order to add more properties, and call our new structure D3DXMESHCONTAINER_NEW. I
was tempted to call this just “MeshContainer,” but that may be confusing in the
mesh loading code since our engine classes typically have that sort of code naming.
We will normally load any textures specified in the mesh, so a texture array is
needed, as well as skinning data. The structure used in the demo is shown below:

struct D3DXMESHCONTAINER_NEW: public D3DXMESHCONTAINER
{

IDirect3DTexture9** textures;
D3DMATERIAL9* materials;
ID3DXMesh* skinMesh;

Loading a Skeletal Mesh 383

D3DXMATRIX* boneOffsets;
D3DXMATRIX** frameCombinedMatrix;

};

The base D3DXMESHCONTAINER has a pMaterials property, which is a D3DXMATERIAL

structure that contains the texture filename and material data. It is easier to
instead store the data in arrays of created textures and materials in our derived
structure (IDirect3DTexture9** textures and D3DMATERIAL9* materials). Here’s
the code for CreateMeshContainer:

HRESULT MeshLoaderCallback::CreateMeshContainer(
LPCSTR Name,
CONST D3DXMESHDATA *meshData,
CONST D3DXMATERIAL *materials,
CONST D3DXEFFECTINSTANCE *effectInstances,
DWORD numMaterials,
CONST DWORD *adjacency,
LPD3DXSKININFO pSkinInfo,
LPD3DXMESHCONTAINER* retNewMeshContainer)

{
D3DXMESHCONTAINER_NEW *newMeshContainer=new D3DXMESHCONTAINER_NEW;
ZeroMemory(newMeshContainer, sizeof(D3DXMESHCONTAINER_NEW));
*retNewMeshContainer = 0;
if (Name && strlen(Name)) {

newMeshContainer->Name = duplicateCharString(Name);
debug << "Added mesh: " << Name << endl;

} else {
debug << "Added mesh: unnamed" << endl;

}
if (meshData->Type!=D3DXMESHTYPE_MESH) {

DestroyMeshContainer(newMeshContainer);
return E_FAIL;

}
newMeshContainer->MeshData.Type = D3DXMESHTYPE_MESH;

//create adjacency data, required by ID3DMESH object
DWORD dwFaces = meshData->pMesh->GetNumFaces();
newMeshContainer->pAdjacency = new DWORD[dwFaces*3];
memcpy(newMeshContainer->pAdjacency,

adjacency, sizeof(DWORD) * dwFaces*3);

384 Chapter 13 n Skeletal Mesh Animation

//get pointer to the Direct3D device
IDirect3DDevice9* device = g_engine->getDevice();
meshData->pMesh->GetDevice(&device);
newMeshContainer->MeshData.pMesh=meshData->pMesh;
newMeshContainer->MeshData.pMesh->AddRef();

//create material and texture arrays
newMeshContainer->NumMaterials = max(numMaterials,1);
newMeshContainer->materials = new

D3DMATERIAL9[newMeshContainer->NumMaterials];
newMeshContainer->textures = new

LPDIRECT3DTEXTURE9[newMeshContainer->NumMaterials];
ZeroMemory(newMeshContainer->textures,

sizeof(LPDIRECT3DTEXTURE9) * newMeshContainer->NumMaterials);
if (numMaterials>0) {

// Load all the textures and copy the materials over
for(DWORD i = 0; i < numMaterials; ++i)
{

newMeshContainer->textures[i] = 0;
newMeshContainer->materials[i]=materials[i].MatD3D;
if(materials[i].pTextureFilename)
{

string texturePath(materials[i].pTextureFilename);
if (findFile(&texturePath))
{

if(FAILED(D3DXCreateTextureFromFile(
g_engine->getDevice(), texturePath.c_str(),
&newMeshContainer->textures[i])))

{
debug << "Could not load texture: "

<< texturePath << endl;
}

}
else {

debug << "Could not find texture: "
<< materials[i].pTextureFilename << endl;

}
}

}
}

Loading a Skeletal Mesh 385

else {
// make a default material in the case where the mesh did not provide one

ZeroMemory(&newMeshContainer->materials[0], sizeof(D3DMATERIAL9));
newMeshContainer->materials[0].Diffuse.r = 0.5f;
newMeshContainer->materials[0].Diffuse.g = 0.5f;
newMeshContainer->materials[0].Diffuse.b = 0.5f;
newMeshContainer->materials[0].Specular =

newMeshContainer->materials[0].Diffuse;
newMeshContainer->textures[0]=0;

}

//save skin data
if (pSkinInfo) {

newMeshContainer->pSkinInfo = pSkinInfo;
pSkinInfo->AddRef();
//save offset matrices
UINT numBones = pSkinInfo->GetNumBones();
newMeshContainer->boneOffsets = new D3DXMATRIX[numBones];
//create the arrays for the bones and the frame matrices
newMeshContainer->frameCombinedMatrix = new D3DXMATRIX*[numBones];
//save each of the offset matrices
for (UINT i = 0; i < numBones; i++)

newMeshContainer->boneOffsets[i] =
*(newMeshContainer->pSkinInfo->GetBoneOffsetMatrix(i));

debug << "Mesh has skin: bone count: " << numBones << endl;
}
else {

newMeshContainer->pSkinInfo = 0;
newMeshContainer->boneOffsets = 0;
newMeshContainer->skinMesh = 0;
newMeshContainer->frameCombinedMatrix = 0;

}
//reduce device reference count
g_engine->getDevice()->Release();
//does mesh reference an effect file?
if (effectInstances) {

if (effectInstances->pEffectFilename)
debug << "Warning: mesh references an effect file" << endl;

}

386 Chapter 13 n Skeletal Mesh Animation

// Set the output mesh container pointer to our newly created one
*retNewMeshContainer = newMeshContainer;
return S_OK;

}

DestroyFrame

The DestroyFrame() function frees memory used by each frame/node in the
hierarchy as it is being de-allocated.

HRESULT MeshLoaderCallback::DestroyFrame(LPD3DXFRAME frameToFree)
{

//create pointer to this frame
D3DXFRAME_NEW *frame = (D3DXFRAME_NEW*)frameToFree;
if (frame->Name) delete []frame->Name;
delete frame;
return S_OK;

}

DestroyMeshContainer

The DestroyMeshContainer() function removes a mesh contained within a
hierarchy node from memory. This includes the name, material array and all
materials, texture array and all textures, adjacency data, bone parts, the array of
combined matrices (our optimization matrix for each frame), the skin mesh, the
main mesh, and the container itself.

HRESULT MeshLoaderCallback::DestroyMeshContainer(
LPD3DXMESHCONTAINER meshContainerBase)

{
//create pointer to mesh container
D3DXMESHCONTAINER_NEW* meshContainer =
(D3DXMESHCONTAINER_NEW*)meshContainerBase;
if (!meshContainer) return S_OK;
//delete name
if (meshContainer->Name) {

delete []meshContainer->Name;
meshContainer->Name=0;

}
//delete material array
if (meshContainer->materials) {

delete []meshContainer->materials;
meshContainer->materials=0;

Loading a Skeletal Mesh 387

}
//release the textures before deleting the array
if(meshContainer->textures) {

for(UINT i = 0; i < meshContainer->NumMaterials; ++i)
{

if (meshContainer->textures[i])
meshContainer->textures[i]->Release();

}
}
//delete texture array
if (meshContainer->textures)

delete []meshContainer->textures;
//delete adjacency data
if (meshContainer->pAdjacency)

delete []meshContainer->pAdjacency;
//delete bone parts
if (meshContainer->boneOffsets) {

delete []meshContainer->boneOffsets;
meshContainer->boneOffsets=0;

}
//delete frame matrices
if (meshContainer->frameCombinedMatrix)
{

delete []meshContainer->frameCombinedMatrix;
meshContainer->frameCombinedMatrix=0;

}
//release skin mesh
if (meshContainer->skinMesh) {

meshContainer->skinMesh->Release();
meshContainer->skinMesh=0;

}
//release the main mesh
if (meshContainer->MeshData.pMesh) {

meshContainer->MeshData.pMesh->Release();
meshContainer->MeshData.pMesh=0;

}
//release skin information
if (meshContainer->pSkinInfo) {

meshContainer->pSkinInfo->Release();
meshContainer->pSkinInfo=0;

388 Chapter 13 n Skeletal Mesh Animation

}
//delete the mesh container
delete meshContainer;
meshContainer=0;
return S_OK;

}

Rendering a Skeletal Mesh
We are going to learn how to render a skeletal mesh using a very rudimentary
hardware skinning system. A professional hardware (that is, shader-based)
skinned mesh renderer would pass the bone, skin, material, and texture data
to the effect for rendering with the desired light sources all being managed inside
the shader. We’ll take a simpler approach by passing the texture and rendering
each subset of the hierarchy within a skeletal mesh using a shader. This approach
is not as elegant as a fully streamed skinning system, and there are a lot of GPU
state changes, but it is still superior to the old software (i.e., fixed function)
approach.

After having loaded a mesh from a .X file, we have the hierarchy loaded into a
tree of frames and mesh data. We have a pointer to the root of the frame
hierarchy (returned by D3DXLoadMeshHierarchyFromX() as ppFrameHeirarchy). In
addition, if the .X file contained animation, there’s a pointer to an animation
controller (ppAnimController).

To render the hierarchical mesh, we have to traverse the tree and handle each
node’s transforms and rendering individually. There is no single function like
“RenderHierarchy”—like the loading of a hierarchy, rendering is a very tedious,
manual process! Why do you suppose Microsoft didn’t just include a rudimen-
tary rendering function? For one very good reason: a game engine programmer
will optimize this process with a texture cache and other techniques. And that
would not be possible unless Microsoft left these data structures and functions
exposed. It’s a lot more work up front, but once you have written the code to
load, render, and animate a hierarchical mesh, you need not write that code
again a second time.

At each limb or node of the tree, we have to calculate the new combined matrix
for each frame in the tree. This could be done in the render function, but we will
also want to handle animation so it’s better to do this outside of rendering in an

Rendering a Skeletal Mesh 389

update function that’s guaranteed to run as fast as possible. To render the tree, we
call a recursive function, drawFrame(), passing it the root frame. This will render
any mesh that it sees as a sibling or child via a call to drawMeshContainer().

void BoneMesh::Render(Octane::Effect* effect)
{

if (p_frameRoot) drawFrame(p_frameRoot, effect);
}

If the frame has any siblings it recursively calls drawFrame with them (these calls
will only return once that branch has been completed), and then child frames
are subsequently rendered recursively. Here is our drawFrame() function:

void BoneMesh::drawFrame(LPD3DXFRAME frame) const
{

// draw all mesh containers in this frame
LPD3DXMESHCONTAINER meshContainer = frame->pMeshContainer;
while (meshContainer)
{

//draw this node/limb
drawMeshContainer(meshContainer, frame, effect);
//go to the next node/limb in the tree
meshContainer = meshContainer->pNextMeshContainer;

}
// recursively draw siblings
if (frame->pFrameSibling != NULL)

drawFrame(frame->pFrameSibling, effect);
// recursively draw children
if (frame->pFrameFirstChild != NULL)

drawFrame(frame->pFrameFirstChild, effect);
}

DrawMeshContainer is similar to our old static mesh rendering function, in that it
goes through the materials, sets the texture, and calls DrawSubset for each one.

void BoneMesh::drawMeshContainer(LPD3DXMESHCONTAINER meshContainerBase,
LPD3DXFRAME frameBase, Octane::Effect* effect)

{
D3DXFRAME_NEW *frame = (D3DXFRAME_NEW*)frameBase;
D3DXMESHCONTAINER_NEW *meshContainer =

(D3DXMESHCONTAINER_NEW*)meshContainerBase;
//send the world transform to the shader
effect->setWorldMatrix(frame->combinedMatrix);

390 Chapter 13 n Skeletal Mesh Animation

//iterate through the materials, rendering each subset
for (unsigned int i = 0; i < meshContainer->NumMaterials; i++)
{

//set shader’s ambient color to the current material
D3DXVECTOR4 material;
material.x = meshContainer->materials[i].Diffuse.r;
material.y = meshContainer->materials[i].Diffuse.g;
material.z = meshContainer->materials[i].Diffuse.b;
material.w = meshContainer->materials[i].Diffuse.a;
effect->setParam("AmbientColor", material);
//send the texture to the shader
effect->setParam("Texture", meshContainer->textures[i]);
//use either the skinned mesh or the normal one
LPD3DXMESH mesh=NULL;
if (meshContainer->pSkinInfo)

mesh = meshContainer->skinMesh;
else

mesh = meshContainer->MeshData.pMesh;
//draw the subset with passed shader
effect->Begin();
mesh->DrawSubset(i);
effect->End();

}}

Animating a Skeletal Mesh
Animating a hierarchical mesh is surprisingly easy thanks to the animation
controller object, which will advance the vertices in the mesh according to a time
value. Most of the code in this Animate() function is for updating the matrices
after the animation frame changes the vertices—the actual animating is just a
few lines of code!

void BoneMesh::Animate(float elapsedTime, D3DXMATRIX *matWorld)
{

//adjust animation speed
elapsedTime /= p_speedAdjust;
//advance the time and set in the controller
if (p_animController != NULL)

p_animController->AdvanceTime(elapsedTime, NULL);
p_currentTime += elapsedTime;

Animating a Skeletal Mesh 391

//update the model matrices in the hierarchy
updateFrameMatrices(p_frameRoot, matWorld);
//if there’s a skinned mesh, update the vertices
D3DXMESHCONTAINER_NEW* pMesh = p_firstMesh;
if(pMesh {

unsigned int Bones = pMesh->pSkinInfo->GetNumBones();
//transform each bone from bone space into character space
for (unsigned int i = 0; i < Bones; ++i)

D3DXMatrixMultiply(&p_boneMatrices[i],
&pMesh->boneOffsets[i], pMesh->frameCombinedMatrix[i]);

//lock the vertex buffers
void *srcPtr=0, *destPtr=0;
pMesh->MeshData.pMesh->LockVertexBuffer(D3DLOCK_READONLY,

(void**)&srcPtr);
pMesh->skinMesh->LockVertexBuffer(0, (void**)&destPtr);
//update the skinned mesh via software skinning
pMesh->pSkinInfo->UpdateSkinnedMesh(p_boneMatrices,

NULL, srcPtr, destPtr);
//unlock the vertex buffers
pMesh->skinMesh->UnlockVertexBuffer();
pMesh->MeshData.pMesh->UnlockVertexBuffer();

}}

Updating the Frame Matrices
The updateFrameMatrices() function is called whenever the animation frame
changes. When animation occurs, the vertices in the mesh will change to reflect
the new animation frame. When this occurs (in the skeletal structure), we need
to recalculate the matrices with the transform changes as a result of the new
vertex positions. This function calls itself recursively as it goes through all of the
nodes of the hierarchy to update the combined matrix for each node.

void BoneMesh::updateFrameMatrices(D3DXFRAME *frameBase, D3DXMATRIX *parentMatrix)
{

D3DXFRAME_NEW *currentFrame = (D3DXFRAME_NEW*)frameBase;
//if parent matrix exists multiply with new frame matrix
if (parentMatrix != NULL)

D3DXMatrixMultiply(¤tFrame->combinedMatrix,
¤tFrame->TransformationMatrix, parentMatrix);

else

392 Chapter 13 n Skeletal Mesh Animation

currentFrame->combinedMatrix=currentFrame->TransformationMatrix;
//recursively update siblings
if (currentFrame->pFrameSibling != NULL)

updateFrameMatrices(currentFrame->pFrameSibling, parentMatrix);
//recursively update children
if (currentFrame->pFrameFirstChild != NULL) {

updateFrameMatrices(currentFrame->pFrameFirstChild,
¤tFrame->combinedMatrix);

}
}

Changing the Animation Set
If there is more than one set of animation in the mesh, then we can change the
animation from one set to another with interpolation. The setAnimationSet()

function transitions animation from one set to another, performing a slight
blending of the frames. If you want the transition to move quickly from one
animation set to the next, then reduce the TransitionTime variable; likewise,
increasing it will slow the transition, which looks cleaner but may not be
responsive enough. It depends on the game, and this may be a value you will
want to move into a script file so that it can be custom-set for each character in
your game individually.

void BoneMesh::setAnimationSet(unsigned int index)
{

//the timing with which to merge animations
//(increasing slows down transition time)
static float TransitionTime = 0.25f;
if (index==p_currentAnimationSet) return;
if (index>=p_numAnimationSets) index=0;
//remember current animation
p_currentAnimationSet=index;
//get the animation set from the controller
LPD3DXANIMATIONSET set;
p_animController->GetAnimationSet(p_currentAnimationSet, &set);
//alternate tracks for transitions
DWORD newTrack = (p_currentTrack == 0 ? 1 : 0);
//assign to the correct track
p_animController->SetTrackAnimationSet(newTrack, set);
set->Release();

Animating a Skeletal Mesh 393

//clear any track events currently assigned
p_animController->UnkeyAllTrackEvents(p_currentTrack);
p_animController->UnkeyAllTrackEvents(newTrack);
//disable the currently playing track
p_animController->KeyTrackEnable(p_currentTrack, FALSE,

p_currentTime + TransitionTime);
//change the speed right away so the animation completes
p_animController->KeyTrackSpeed(p_currentTrack, 0.0f, p_currentTime,

TransitionTime, D3DXTRANSITION_LINEAR);
//change the weighting (blending) of the current track
p_animController->KeyTrackWeight(p_currentTrack, 0.0f, p_currentTime,

TransitionTime, D3DXTRANSITION_LINEAR);
//enable the new track
p_animController->SetTrackEnable(newTrack, TRUE);
//set the speed of the new track
p_animController->KeyTrackSpeed(newTrack, 1.0f, p_currentTime,

TransitionTime, D3DXTRANSITION_LINEAR);
//change the weighting of the current track (0.0 to 1.0)
p_animController->KeyTrackWeight(newTrack, 1.0f, p_currentTime,

TransitionTime, D3DXTRANSITION_LINEAR);
//save current track
p_currentTrack = newTrack;

}

The Bone Mesh Demo
There are several mesh files included with this chapter’s sample project, called
Bone Mesh Demo. One is the Viking spearman mesh shown in Figure 13.8.

Adv i c e

This Viking character is one of the many characters included in the FPS Creator Model Pack 25, and
is provided courtesy of The Game Creators (www.thegamecreators.com). There are buildings,
animals, and other scenery objects included in this model pack, plus there are many more model
packs available (43 at the time of this writing!) for a great price. This is a great resource for any
aspiring or even experienced indie game developer—avail yourself of it!

Following is the core source code for the Bone Mesh Demo program (with some
redundant portions omitted—open the project for the complete source code).
This is a fairly useful program as far as using it to view various mesh files,
because it has automatic camera control. When a mesh is loaded, a bounding

394 Chapter 13 n Skeletal Mesh Animation

sphere is calculated with D3DXFrameCalculateBoundingSphere() to get the radius
of the mesh. Then, the camera is moved away from the mesh based on that
radius distance, and its “look at” angle is set to the center of the mesh so it
appears, roughly, in the center of the screen regardless of its size.

const int BLACK = D3DCOLOR_XRGB(0,0,0);
Font* font;
BoneMesh* mesh;
Camera* camera;
Effect* effect;
vector<string> names;

bool game_init(HWND hwnd)
{

g_engine->setBackdropColor(D3DCOLOR_XRGB(250,250,250));
font = new Font("Arial",12);

mesh = new BoneMesh();
mesh->Load("viking3.x");

Figure 13.8
This Viking spearman mesh has 26 bones and 1 animation set.

C
ou

rt
es
y
of

Th
e
G
am

e
C
re
at
or
s

The Bone Mesh Demo 395

mesh->Rotate(0, 0, 0);
mesh->setScale(1.0);
names = mesh->getAllBoneNames();
//get a bounding sphere for this model
D3DXVECTOR3 center;
float radius;
D3DXFrameCalculateBoundingSphere(mesh->getRootFrame(),¢er,&radius);

camera = new Camera();
camera->setPosition(0.0f, radius*0.6f, -radius*1.5f);
camera->setTarget(0.0f, radius*0.6f, 0.0f);
camera->Update();

effect = new Effect();
effect->Load("ambient.fx");

return true;
}

void game_update(float deltaTime)
{

mesh->Transform();
mesh->Animate(deltaTime, &mesh->getMatrix());

}

void game_render3d()
{

effect->setTechnique("Ambient");
effect->setProjectionMatrix(camera->getProjMatrix());
effect->setViewMatrix(camera->getViewMatrix());
effect->setWorldMatrix(mesh->getMatrix());
mesh->Render(effect);

}

void game_render2d()
{

//print out mesh properties
std::ostringstream ostr;
ostr << "Mesh has " << mesh->getFaceCount() << " faces, ";
ostr << mesh->getVertexCount() << " vertices, ";
ostr << mesh->getAnimationSetIndex() << " animation sets, ";
ostr << mesh->getBoneCount() << " bones." << endl;

396 Chapter 13 n Skeletal Mesh Animation

//print out bone names
for(int i = 0; i < mesh->getBoneCount(); i++)

ostr << "Bone[" << i << "] " << mesh->getBoneName(i) << endl;
font->Print(0, 0, ostr.str(),BLACK);
int x=180,y=12;
for (int n=0; n< names.size(); n++) {

ostr.str("");
ostr << "[" << n << "] " << names[n] << endl;
font->Print(x,y,ostr.str(),BLACK);
y += 12;
//add another column if we reach the bottom
if (y > 750) {

x += 180; y = 12;
}

}
}

void game_event(Octane::IEvent* e)
{

float speed = 1.0f;
switch(e->getID()) {

case EVENT_KEYRELEASE: {
KeyReleaseEvent *evt = (KeyReleaseEvent*) e;
switch(evt->keycode) {
case DIK_ESCAPE:

g_engine->Shutdown();
break;

}
}
break;
case EVENT_KEYPRESS: {

KeyPressEvent *evt = (KeyPressEvent*) e;
switch(evt->keycode) {

case DIK_LEFT: {
Vector3 pos = camera->getPosition();
pos.x -= speed;
camera->setPosition(pos);
camera->Update();

}

The Bone Mesh Demo 397

break;
case DIK_RIGHT: {

Vector3 pos = camera->getPosition();
pos.x += speed;
camera->setPosition(pos);
camera->Update();

}
break;
case DIK_UP: {

Vector3 pos = camera->getPosition();
pos.z -= speed;
camera->setPosition(pos);
camera->Update();

}
break;
case DIK_DOWN: {

Vector3 pos = camera->getPosition();
pos.z += speed;
camera->setPosition(pos);
camera->Update();

}
break;
case DIK_HOME: {

Vector3 pos = camera->getPosition();
pos.y -= speed;
camera->setPosition(pos);
camera->Update();

}
break;
case DIK_END: {

Vector3 pos = camera->getPosition();
pos.y += speed;
camera->setPosition(pos);
camera->Update();

}
break;

}
}
break;

}}

398 Chapter 13 n Skeletal Mesh Animation

Summary
We now have added to the engine support for one of the most crucial features of
any 3D game—animated, hierarchical models. Combined with the other classes,
our new BoneMesh class affords us with almost enough features to build a very
decent 3D game, perhaps even a first-person shooter (although a scene
optimization manager and texture cache would be needed for that).

References
Ditchburn, Keith; http://www.toymaker.info.

Granberg, Carl; http://www.cjgraphic.com.

References 399

This page intentionally left blank

Sprite Animation
and Rasterization

This chapter covers the subject of sprite animation. We will learn how to render
sprites with 2D transformation matrices with full support for translation,
rotation, and scaling. That process is called rasterization, which describes the
rendering of an object onto a 2D screen. Technically, the video card rasterizes all
rendered output based on our projection matrix settings. But in the context of
this chapter, sprite rasterization is an appropriate term because ID3DXSprite

renders rectangular shapes using orthogonal projection. This new functionality,
combined with our existing vector code, will produce a truly robust, highly
usable sprite engine. Not merely for 2D games, a sprite engine is used quite often
to render particles and bitmapped fonts—two supplemental topics covered later
in the chapter.

There are two ways to render 2D objects in Direct3D. First, you can create a
quad (or rectangle) comprised of two triangles with a texture representing the
2D image you wish to draw. This technique works and even supports trans-
parency, responds to lighting, and can be moved in the Z direction. The second
method available in Direct3D for rendering 2D objects is with sprites—and this
is the method we will focus on in this chapter. A sprite is a 2D representation of
a game entity that usually must interact with the player in some way. A tree or
rock might be rendered in 2D and interact with the player by simply getting in
the way, stopping the player by way of collision physics. We must also deal with
game characters that interact with the player’s character, whether it’s an arrow
fired from a bow or a missile fired from a spaceship.

chapter 14

401

This chapter will cover the following:

n Sprite rasterization

n Rectangles

n Drawing with transparency

n Sprite transformations

n Sprite animation

n Sprite-based particles

n Sprite-based fonts

n Zip file asset loading

Sprite Rasterization
It’s one thing to know how to render a sprite—even a complex sprite with
transparency and animation—but it’s quite another matter to do something useful
with it. Some software engineers cannot see beyond the specifications, are unable
to design creative gameplay, and, as a result, focus their time on the mechanics of
the game.What we’re doing now is managing the logistics of 2D games by building
this game engine and providing support facilities within the engine to simplify the
engineering side of 2D game development. There are literally hundreds of game
engines at repositories such as SourceForge, but they are mostly the result of failed
game projects. When you design an engine from the outset with reuse and multi-
genre support in mind, then you will more likely finish the game you have
planned, as well as end up with a useful engine out of the deal.

We need to build a sprite engine that is powerful enough to support myriad
game genres—from fixed-screen arcade-style games, to scrolling shooters, to
board games, and so on. In other words, our 2D rendering system must be
robust, fully featured, and versatile. That calls for some iterative programming!

Adv i c e

Iterative game programming is a development methodology in which a game is built in small
stages and is more like the growth of a life-form than the construction of a building (a common
analogy in software engineering theory). The term “iterative” comes from the edit-compile-test
process that is repeated over and over until the code functions as desired. Speeding up the iterative
process results in more robust code and less propensity for bugs.

402 Chapter 14 n Sprite Animation and Rasterization

ID3DXSprite
We use the ID3DXSprite object to perform transformed 2D rendering (in which
2D bitmapped graphics are drawn in a process called rasterization). The core
engine already initializes this object at startup, and we can access it via
g_engine->getSpriteObj(). So, we’re good to go there already, and just need
to learn what to do with this object. There really is just one important function:
Draw(), and two logistical functions: Begin() and End(). ID3DXSprite will batch
all of the rendered output at once when the End() function is called. The Octane
engine core calls game_render2D() inside these two function calls, so our game
entities can then draw themselves from within this function.

The Draw() function has these parameters:

LPDIRECT3DTEXTURE9 pTexture The source texture to be rendered
RECT *pSrcRect The source rectangle on the texture
D3DXVECTOR3 *pCenter The pivot point on the image for rotation purposes
D3DXVECTOR3 *pPosition The target location for output
D3DCOLOR Color The color used to draw the sprite (usually white) with support for alpha

It is possible to draw a sprite from a source texture using just this Draw()

function alone, and we can even get animation by manipulating the source
rectangle corresponding with timing. But, what’s even more powerful is the
ability for ID3DXSprite to render our sprites with full 2D matrix-based trans-
formations: translation, rotation, and scaling—via the SetTransform() function.
We’ll see how that works later in the chapter.

Adv i c e

This chapter’s resource files can be downloaded from www.jharbour.com/forum or www.courseptr
.com/downloads. Not every line of code will be in print due to space considerations, only the most
important sections of code.

At its most basic usage, we can just load up a texture and draw it with
ID3DXSprite. But to what end? We need the ability to manipulate game entities
that will move on the screen in interesting ways and interact with each other, not
to mention animate themselves. A complete entity manager would be nice

Sprite Rasterization 403

(a topic addressed in more detail in Chapter 16). Here is an example usage of
Render() for a non-animated image and the rotation pivot set to the upper left:

D3DXVECTOR3 pivot(0.0f, 0.0f, 0.0f);
D3DXVECTOR3 position(sprite_x, sprite_y, 0.0f);
g_engine->getSpriteObj()->Draw(image->getTexture(),

NULL, &pivot, &position, color);

This is the simplest way to call Draw(). Assuming there are no animation frames,
the NULL second parameter will cause the entire source image to be rasterized.
We will look at transformed rendering and animation later in the chapter.

Vectors
Transforms will require position, rotation, and scaling data, which is facilitated
most effectively with vectors (covered previously in Chapter 7). A vector is a
mathematical construct that can represent two things—a point or a direction. A
vector is not merely a point, nor is it merely a direction; otherwise, we would use
one term or the other to describe it. However, we can use a vector to represent
simple points or positions for game entities such as sprites and models. Since we
already studied vectors, a detailed review is not needed now—we’ll just put them
to good use.

Our Vector2 and Vector3 classes will help provide some solid functionality to a
new sprite class with very little new code required. We will be able to give a
sprite some properties such as position, direction, and velocity, calculate the
trajectory to a target, calculate normals, length, distance, and other helpful
functions. The Vector2 class will assist with the heavy lifting for advanced sprite
rendering.

Rectangles
The Windows SDK provides a RECT structure with rudimentary properties but
no functionality on its own, we we’ll build our own Rect class with all of the
modern comforts. This class will also facilitate 2D collision detection.

Following is the Rectangle class interface. Note that the class has only public
properties and functions—and as such, it is similar to just a simple struct. I did
not want to hide the four properties (left, top, right, and bottom) because they

404 Chapter 14 n Sprite Animation and Rasterization

may be needed elsewhere in the engine and sometimes accessor/mutator
functions, while enforcing good OOP structure, just get in the way.

class Rect {
public:

double left;
double top;
double right;
double bottom;
Rect();
Rect(const Rect& rect);
Rect(const RECT& rect);
Rect(int l,int t,int r,int b);
Rect(double l,double t,double r,double b);
virtual ~Rect(){}
Rect& operator=(const Rect& R);
Rect& operator=(const RECT& R);
void Set(const Rect& R);
void Set(const RECT& R);
void Set(int l,int t,int r,int b);
void Set(double l,double t,double r,double b);
double getLeft() { return left; }
double getTop() { return top; }
double getRight() { return right; }
double getBottom() { return bottom; }
double getWidth() { return right-left; }
double getHeight() { return bottom-top; }
bool Contains(Vector3 point);
bool Contains(int x,int y);
bool Contains(double x,double y);
bool Intersects(Rect rect);
bool operator==(const Rect& R) const;
bool operator!=(const Rect& R) const;

};

Here is the Rectangle class implementation:

Rect::Rect() {
left = top = right = bottom = 0;

}
Rect::Rect(const Rect& R) {

Set(R);

Sprite Rasterization 405

}
Rect::Rect(const RECT& R) {

Set(R);
}
Rect::Rect(int l,int t,int r,int b) {

Set(l,t,r,b);
}
Rect::Rect(double l,double t,double r,double b) {

Set(l,t,r,b);
}
//assignment operator
Rect& Rect::operator=(const Rect& R) {

Set(R); return *this;
}
Rect& Rect::operator=(const RECT& R) {

Set(R); return *this;
}
void Rect::Set(const Rect& R) {

left = R.left; top = R.top;
right = R.right; bottom = R.bottom;

}
void Rect::Set(const RECT& R) {

left=R.left; top=R.top;
right=R.right; bottom=R.bottom;

}
void Rect::Set(int l,int t,int r,int b) {

left = (double)l;
top = (double)t;
right = (double)r;
bottom = (double)b;

}
void Rect::Set(double l,double t,double r,double b) {

left = l;
top = t;
right = r;
bottom = b;

}
bool Rect::Contains(Vector3 point) {

return Contains(point.getX(), point.getY());
}

406 Chapter 14 n Sprite Animation and Rasterization

bool Rect::Contains(int x,int y) {
return Contains((double)x, (double)y);

}
bool Rect::Contains(double x,double y) {

return (x > left && x < right && y > top && y < bottom);
}
bool Rect::Intersects(Rect rect) {

//check four corners of incoming Rect
if (Contains(rect.getLeft(),rect.getTop()) ||

Contains(rect.getLeft(),rect.getBottom()) ||
Contains(rect.getRight(),rect.getTop()) ||
Contains(rect.getRight(),rect.getBottom()))
return true;

//check four corners of self
if (rect.Contains(getLeft(),getTop()) ||

rect.Contains(getLeft(),getBottom()) ||
rect.Contains(getRight(),getTop()) ||
rect.Contains(getRight(),getBottom()))
return true;

return false;
}

//equality operator comparison includes double rounding
bool Rect::operator==(const Rect& R) const {

return (left == R.left && top == R.top &&
right == R.right && bottom == R.bottom);

}
//inequality operator
bool Rect::operator!=(const Rect& V) const {

return (!(*this == V));
}

The Sprite Class
We’re going to create a C++ class to encapsulate all of the properties and
methods needed to effectively use sprites in a game, as well as to support more
advanced features like bitmapped fonts and particles (coming up later in the
chapter). The Vector2 class will greatly simplify the code in the Sprite class,
which otherwise would have to calculate things such as velocity on its own. In
some cases, we’ll use Vector2 just for a simple X-Y position.

Sprite Rasterization 407

Adv i c e

As far as this Sprite class is concerned, and regarding object-oriented programming in C++ in
general, there is such a thing as too much of a good thing. An overzealous OOP programmer tends
to hide every property and make an accessor (for retrieving the property) and a mutator (for
changing the property) for every single property in the class. This is generally a good thing, as it
isolates potentially volatile data from manipulation. But a strong OOP design can also get in the
way of getting things done.

For instance, updating a sprite’s position will require several lines of code using a strong OOP
implementation, while just exposing the position property would greatly simplify the code, not to
mention result in higher productivity for anyone using the class.

I have a tendency toward simplicity when it comes to game programming, as long as the potential for
harm is minimal. For instance, a simple position variable should be exposed as public, while a volatile
texture pointer should be hidden and protected. I usually follow this rule: if the class allocates memory
for something, then the class should also de-allocate it as well as hide the variable or pointer from
outside manipulation, and instead provide it via an accessor (i.e., “get”) function.

In a large studio environment, there will usually be coding standards that every programmer has to
follow, so that everyone is not rewriting each other’s code due to one or another preference for
variable or function naming, or accessor/mutator usage. Let us keep it simple for the sake of learning.

What do we want to do with sprites? When it comes right down to it, the answer is
almost everything involving 2D graphics. Sprites are at the very core of 2D games.
We need to load and draw simple sprites (with no animation, just a single image),
as well as the more complex animated sprites (with frames of animation). There is
a need for both static and animated sprites in every game. In fact, most game
objects are animated, which begs the questions how do we create an animation,
and how do we draw the animation? We’ll get to the first question later with
several example programs, and we’ll get to the second question in just a moment.

To answer the second question requires a bit of work. Let’s take a look at the
Sprite class header first. This class is feature rich, meaning that it is loaded with
features we haven’t even gone over yet, and will not go over until we use some of
these features in future chapters (for instance, collision detection, which is not
covered until Chapter 17).

class Sprite {
protected:

Texture *image;
bool imageLoaded;
D3DXMATRIX matTransforms;

public:
Sprite();

408 Chapter 14 n Sprite Animation and Rasterization

virtual ~Sprite();
bool Load(std::string filename, Color transcolor=Color(255,0,255,0));
void setImage(Texture *);
//managed functions
void Update(float deltaTime);
void Render();
void RenderFast(); //fast draw with no animation
void Render(bool autoPivot); //draw with animation
//center-pivot property
Vector2 pivotPoint;
Vector2 getPivot() { return pivotPoint; }
void setPivot(Vector2 pivot) { pivotPoint = pivot; }
//position on screen
Vector2 position;
Vector2 getPosition() { return position; }
void setPosition(Vector2 value) { position = value; }
void setPosition(double x, double y) { position.Set(x,y); }
double getX() { return position.x; }
double getY() { return position.y; }
void setX(double x) { position.x=x; }
void setY(double y) { position.y=y; }
//movement velocity
Vector2 velocity;
Vector2 getVelocity() { return velocity; }
void setVelocity(Vector2 value) { velocity = value; }
void setVelocity(double x, double y) {

velocity.x=x; velocity.y=y;
}
//image dimensions
Vector2 size;
void setSize(Vector2 dim) { size = dim; }
void setSize(int width, int height) {

size.x=width; size.y=height;
}
int getWidth() { return (int)size.x; }
int getHeight() { return (int)size.y; }
//multi-use sprite state
int state;
int getState() { return state; }
void setState(int value) { state = value; }
//animation columns
int animationColumns;

Sprite Rasterization 409

int getColumns() { return animationColumns; }
void setColumns(int value) { animationColumns = value; }
//current animation frame
float currentFrame;
int getCurrentFrame() { return (int)currentFrame; }
void setCurrentFrame(int value) { currentFrame = (float)value; }
//animation range
int firstFrame;
int lastFrame;
int getFirstFrame() { return firstFrame; }
int getLastFrame() { return lastFrame; }
void setAnimationRange(int first,int last) {

firstFrame=first; lastFrame=last;
}
//animation direction property
int animationDirection;
int getAnimationDirection() { return animationDirection; }
void setAnimationDirection(int value) {

animationDirection = value;
}
//rotation transform
double rotation;
double getRotation() { return rotation; }
void setRotation(double value) { rotation = value; }
//scale transform
Vector2 scale;
double getScaleHoriz() { return scale.x; }
double getScaleVert() { return scale.y; }
void setScale(double horiz,double vert) {

scale.x = horiz; scale.y = vert;
}
void setScale(double scale) { setScale(scale,scale); }
//rendering color
Color color;
Color getColor() { return color; }
void setColor(Color col) { color = col; }
//returns boundary of sprite
Rect getBounds();
//use to adjust location of source rectangle
Vector2 sourcePosition;

410 Chapter 14 n Sprite Animation and Rasterization

//facing and moving angles are helpful for targeting
double facingAngle;
double getFacingAngle() { return facingAngle; }
void setFacingAngle(double angle) { facingAngle = angle; }
double movingAngle;
double getMovingAngle() { return movingAngle; }
void setMovingAngle(double angle) { movingAngle = angle; }

};

That was a large header file, I’ll admit, but it was jam-packed with features that
we’ll need later, and—as I mentioned back at the Vector3 listing—I prefer to give
you the complete listing for a reusable class rather than modifying it when
possible. There are some features built in to the Sprite class now that we will need
in the next three chapters. Here is the Sprite class implementation (note that
some comments and error handling code is left out for space considerations):

Sprite::Sprite() {
image = NULL;
imageLoaded = false;
velocity = Vector2(0,0);
state = 0;
facingAngle = 0;
movingAngle = 0;
color = Color(255,255,255,255);
pivotPoint = Vector2(0,0);
//animation properties
sourcePosition = Vector2(0,0);
currentFrame = 0;
firstFrame = 0;
lastFrame = 0;
animationDirection = 1;
animationColumns = 1;
//transformation properties
position = Vector2(0,0);
rotation = 0;
scale = Vector2(1,1);
size = Vector2(1,1);

}
Sprite::~Sprite() {

if (imageLoaded) delete image;
}

Sprite Rasterization 411

bool Sprite::Load(std::string filename, Color transcolor) {
//de-allocated existing texture
if (!image) {

delete image;
image = NULL;

}
//create new texture
image = new Texture();
if (image->Load(filename,transcolor)) {

size.x = image->getWidth();
size.y = image->getHeight();
imageLoaded = true;
return true;

} else
return false;

}
void Sprite::setImage(Texture *img) {

if (!img) {
debug << "Sprite::setImage: texture is null\n";
return;

} else {
if (imageLoaded) {

delete image;
image = NULL;

}
}
//set new image
image = img;
size.x = image->getWidth();
size.y = image->getHeight();
imageLoaded = false;

}
//optimized rendering without animation
void Sprite::RenderFast() {

D3DXVECTOR3 pivot(0.0f, 0.0f, 0.0f);
g_engine->getSpriteObj()->Draw(image->getTexture(),

NULL, &pivot, &position.ToD3DXVECTOR3(), color.ToD3DCOLOR());
}
//Entity::Render implementation
void Sprite::Render() {

412 Chapter 14 n Sprite Animation and Rasterization

Render(false);
}
//full animation frame rendering
void Sprite::Render(bool autoPivot) {

if (autoPivot) {
pivotPoint.x = (float)((size.x*scale.x)/2);
pivotPoint.y = (float)((size.y*scale.y)/2);

}
D3DXVECTOR2 center((float)pivotPoint.x, (float)pivotPoint.y);
D3DXVECTOR2 trans((float)position.x, (float)position.y);
D3DXVECTOR2 scale((float)scale.x,(float)scale.y);
D3DXMatrixTransformation2D(&matTransforms,NULL,0,&scale,¢er,

(float)rotation,&trans);
g_engine->getSpriteObj()->SetTransform(&matTransforms);
//draw animation frame
int fx = (int)(((int)currentFrame % animationColumns) * size.x);
int fy = (int)(((int)currentFrame / animationColumns) * size.y);
RECT srcRect = {fx,fy, (int)(fx+size.x), (int)(fy+size.y)};
g_engine->getSpriteObj()->Draw(image->getTexture(),

&srcRect,NULL,NULL,color.ToD3DCOLOR());
//set identity
g_engine->setSpriteIdentity();

}
void Sprite::Update(float deltaTime) {

//move sprite by velocity amount
position.x += velocity.x * deltaTime;
position.y += velocity.y * deltaTime;
//increment animation frame
currentFrame += (float)((float)animationDirection * deltaTime);
//keep current frame within bounds
if ((int)currentFrame < firstFrame) currentFrame = (float)lastFrame;
if ((int)currentFrame > lastFrame) currentFrame = (float)firstFrame;

}
Rect Sprite::getBounds() {

Rect rect;
rect.left = position.x; rect.top = position.y;
rect.right = position.x + size.x * scale.x;
rect.bottom = position.y + size.y * scale.y;
return rect;

}

Sprite Rasterization 413

This is a very effective implementation of a sprite class. We have here the ability
to render a sprite to any desired scale, at any angle of rotation, with timed
animation, using alpha channel transparency, and timed animation and move-
ment. The Sprite class has some functionality that we’re not using yet, but
which will be needed in the next three chapters.

Drawing with Transparency
ID3DXSprite doesn’t care whether your sprite’s source image uses a color key or
an alpha channel for transparency—it just renders the image as requested. If
you have an image with an alpha channel—for instance, a 32-bit targa—then it
will be rendered with alpha, including translucent blending with the back-
ground. But if your image has no alpha because you are using a background
color key for transparency—for instance, a 24-bit bitmap—then it will be
drawn by simply not drawing the color-keyed pixels. Looking at the sprite
functionality at a lower level, you can tell the sprite renderer (ID3DXSprite)
what color you want to use for the color key; our Sprite class defines magenta
(with an RGB of 255, 0, 255) as the default transparent color key. Figure 14.1
shows just such an image.

A better approach is to use alpha channel transparency. The image file itself can
have an alpha channel—and most artists will prefer to define their own
translucent pixels for best results (rather than leaving it to chance in the
hands of a programmer). The main reason to use alpha rather than color-key
transparency is the limitation on quality when using the latter technique. An
alpha channel can define pixels with shades of translucency, while a color key is
an all-or-nothing, on/off setting with solid edges and pixelization—because such
an image will have discrete pixels. We can do alpha blending at runtime to
produce some awesome special effects (such as the particle emitters discussed
later in the chapter), but for best quality it’s best to prepare artwork in advance.

The preferred method for rendering with transparency (especially among artists)
is using an alpha channel. One great advantage to alpha-blended images is
support for partial transparency—that is, translucent blending. Rather than
using a black border around a color-keyed sprite (the old-school way of
highlighting a sprite), an artist will blend a border around a sprite’s edges
using an alpha level for partial translucency (which looks fantastic in

414 Chapter 14 n Sprite Animation and Rasterization

comparison!). To do that, you must use a file format that supports 32-bit RGBA
images. Truevision Targa (TGA) is a good choice, and Portable Network
Graphics (PNG) files work well, too. Let’s take a look at the spaceship sprite
again—this time with an alpha channel rather than a color-keyed background.
Note the checkerboard pattern in the background; this is a common way of
showing the alpha channel in graphic editors. Figure 14.2 shows an example
image with an alpha channel.

Sprite Transformations
Rendering a sprite at any desired location is fairly easy, as you have seen. But we
have the ability to use a full matrix transformation to apply the translation,
rotation, and scaling to a sprite, which obviously will be far more useful. We can
rotate and scale a sprite with relative ease due to D3DX library functions. If we

Figure 14.1
A sprite animation sheet with color key transparency.

Sprite Transformations 415

want to draw a single-frame sprite or draw a single frame from an animation sheet,
we can use the same multi-purpose drawing function from our new Sprite class.

We can apply this functionality to animation as well. Since ID3DXSprite is used
to draw single- or multi-frame sprites, you can use the same transformation to
rotate and scale a sprite regardless of whether it’s animated.

Calculating Transforms
The transformed matrix is created with a function called D3DXMatrixTransfor-

mation2D(). Here is how it looks:

D3DXVECTOR2 pivot((float)pivotPoint.x, (float)pivotPoint.y);
D3DXVECTOR2 trans((float)position.x, (float)position.y);
D3DXVECTOR2 scale((float)scale.x,(float)scale.y);
D3DXMATRIX matrix;

Figure 14.2
A sprite animation sheet with an alpha channel (shown as a checkerboard pattern in GIMP).

416 Chapter 14 n Sprite Animation and Rasterization

D3DXMatrixTransformation2D (
&matrix, //output matrix
NULL, //scaling center
0, //scaling rotation
&scale, //scaling factor
&pivot, //rotation center
(float)rotation, //rotation angle
&trans //translation

);

g_engine->getSpriteObj()->SetTransform(&matrix);

The Render() function performs the transformations internally based on the
sprite’s properties—position, rotation, and scale—and it is therefore a self-
contained function. This function creates a matrix with scaling, rotation, and
translation all combined. We use the same D3DXMATRIX to transform a sprite as
we do for a mesh. Let me show you what you can do with sprite transformations.
Note that only the important code is listed, while redundant code (such as
game_preload) has been omitted for space.

Sprite Transform Demo
Let’s see how transforms work within the engine with a little test program. The
Sprite Transform Demo is shown in Figure 14.3.

Sprite *backgrnd;
Font* font;
float delta;
Texture* phat;
const int NUMSPRITES = 1000;
std::vector<Sprite*> sprites;

bool game_init(HWND hwnd) {
g_engine->setBackdropColor(D3DCOLOR_XRGB(0,50,50));
font = new Font("Arial Bold",18);

backgrnd = new Sprite();
backgrnd->Load("pinkgeometry.bmp");
backgrnd->scale.x = ((float)g_engine->getScreenWidth() /

(float)backgrnd->getWidth());

Sprite Transformations 417

backgrnd->scale.y = ((float)g_engine->getScreenHeight() /
(float)backgrnd->getHeight());

phat = new Texture();
phat->Load("fatship256.tga");

Vector2 res = Vector2(g_engine->getScreenWidth(),
g_engine->getScreenHeight());

//create a group of sprites using std::vector
for (int n=0; n<NUMSPRITES; n++) {

Sprite* S = new Sprite();
S->setImage(phat);
S->setScale(0.1f + (rand() % 10) / 50.0f);
int sx = (int)(S->size.x*S->scale.x/2);
int sy = (int)(S->size.y*S->scale.y/2);
int cx = rand() % (int)res.x - sx;

Figure 14.3
The Sprite Transform Demo program draws many sprites with full matrix transforms.

418 Chapter 14 n Sprite Animation and Rasterization

int cy = rand() % (int)res.y - sy;
S->setPosition(cx,cy);
S->setRotation((double)(rand()%360));
sprites.push_back(S);

}
return true;

}

void game_end() {
delete font;
delete backgrnd;
delete phat;
BOOST_FOREACH(Sprite* S, sprites)

delete S;
sprites.clear();

}

void game_update(float deltaTime) {
delta = deltaTime;
BOOST_FOREACH(Sprite* S, sprites) {

double r = S->getRotation();
r += deltaTime;
S->setRotation(r);

}
}

void game_render2d() {
backgrnd->Render();
BOOST_FOREACH(Sprite* S, sprites)

S->Render();
std::ostringstream ostr;
ostr << "Core fps: " << g_engine->getCoreFrameRate() << endl;
ostr << "Delta time: " << delta << endl;
ostr << "Sprites: " << sprites.size() << endl;
font->Print(0, 0, ostr.str());

}

void game_event(Octane::IEvent* e) {
switch(e->getID()) {

case EVENT_KEYRELEASE:

Sprite Transformations 419

g_engine->Shutdown();
break;

}}

We will only see very basic sprite example programs in this chapter with no real
intelligence or behavior behind any of the objects being rendered. We have just
added some quite advanced vector and sprite support to the game engine and
verified that 2D rendering is working (with both color-keyed and alpha trans-
parency). So let’s move into animation next.

Sprite Animation
Let’s talk about sprite animation. A sprite animation sheet is an image containing
many frames for an animation sequence laid out in tiles that are arranged
into rows and columns, as shown in Figure 14.4. In this sprite sheet there are
6 columns across and 30 total frames of animation.

Figure 14.4
Animated explosion sprite stored on a sheet of rows and columns.

420 Chapter 14 n Sprite Animation and Rasterization

Animation with a Touch of Class
Using the Sprite class we could create an explosion sprite with code like this:

Sprite *explosion = new Sprite();
explosion->loadImage("explosion.tga");

Each sprite can have its own individual properties for animation, such as the
total frames, number of columns (in the sprite sheet), and animation timing.
Let’s see how those might be set for the sample explosion sprite. First, we have to
tell the Sprite class how large each frame is, because it sets the width and height
to the full size of the image by default. The image size is the size of the whole
sprite sheet, while the frame size is the size of each cell of animation.

explosion->setSize(128, 128);

The number of frames of animation (called the animation range) must be set as
well. When we’re doing animation, the range of valid frame numbers (which are
zero based) will be 0 to the total frames minus one. The following line of code
will cause the animation system to animate the sprite based on frames 0 to 29,
and then auto-wrap around to 0.

explosion->setAnimationRange(0, 29);

Once a sprite is configured with the desired properties, you can animate and
draw a sprite using the Sprite::Update() and Sprite::Render() functions. The
Update() function will do two basic tasks automatically: move the sprite (if
velocity is set), and animate the sprite (if appropriate). Animation is based on
the delta time passed from the engine core to the game_update() function
(usually found in main.cpp of a project). The deltaTime will usually be about
4 microseconds, but of course it’s totally dependent on processor speed.

void Sprite::Update(float deltaTime)
{

//move sprite by velocity amount
position.x += velocity.x * deltaTime;
position.y += velocity.y * deltaTime;
//increment animation frame
currentFrame += (float)((float)animationDirection * deltaTime);
//keep current frame within bounds
if ((int)currentFrame < firstFrame) currentFrame = (float)lastFrame;
if ((int)currentFrame > lastFrame) currentFrame = (float)firstFrame;

}

Sprite Animation 421

Animation speed should be based on the delta time multiplied by any modifier
you wish to use to slow down the animation rate. The Sprite class uses a float
for the frame counter so it will accurately keep track of partial frames and
perform the animation at sub-framerates as a result. (Without this capability,
animation would be forced into a discrete minimum framerate.) Since the time
is specified in floating-point milliseconds, the value you use will be based on
the desired framerate for the sprite. The average rate for animation is usually
30 frames per second (at 33 milliseconds per frame).

Animation Demo
Now we will create an example program to demonstrate a single animated sprite.
By keeping the demos short and simple, it’s my belief that the code is easier to
understand and learn. This short program will animate a single explosion,
rendering an alpha-transparent targa image at random locations around the
screen, as shown in Figure 14.5.

Figure 14.5
The Sprite Animation Demo program draws a large number of animated explosion sprites.

422 Chapter 14 n Sprite Animation and Rasterization

The explosion is composed of thirty 128� 128 sprite frames in a sheet with six
columns. Note the effective use of alpha to produce transparent regions as the
explosion dissipates. This shows just how much better alpha is versus the older
color-key technology. You can also very easily cause sprites to fade in or out to
produce effects like cloaking or shielding (in the case of a spaceship, for
instance). Another popular trick with alpha is to cause a sprite to flicker on
and off repeatedly after a collision. One of my favorite tricks is to cycle a sprite’s
alpha through the red color component when the object “dies.”

This sort of demo is interesting because it affords an opportunity to resume
exploring multi-threaded programming—which has admittedly been put on
hold for a while as the engine has been developed. Let’s observe the same
program running with 10,000 animated sprites. Figure 14.6 shows a screenshot
with a reported 45 core fps and delta time of 0.021 ms (or 21 microseconds).
This delta time should be producing hundreds of frames per second at such a
low value, so that’s good—we know that the timing system is functioning as
expected. This is a good candidate for a thread test, so we’ll revisit this program

Figure 14.6
Animating 10,000 sprites (single core version) slows the engine core to 45 fps.

Sprite Animation 423

again in a later chapter to see how well it runs with more cores available. (For
the complete source code to this project, see the complete project included in
this chapter’s resource files.)

Adv i c e

The explosion animation was provided courtesy of Reiner Prokein and is available at www
.reinerstileset.de.

Sprite *backgrnd;
Font* font;
float delta;
Texture* explosion;
const int NUMSPRITES = 1000;
std::vector<Sprite*> sprites;

bool game_init(HWND hwnd) {
g_engine->setBackdropColor(D3DCOLOR_XRGB(0,50,50));
font = new Font("Arial Bold",18);

backgrnd = new Sprite();
backgrnd->Load("pinkgeometry.bmp");
backgrnd->scale.x = ((float)g_engine->getScreenWidth() /

(float)backgrnd->getWidth());
backgrnd->scale.y = ((float)g_engine->getScreenHeight() /

(float)backgrnd->getHeight());

explosion = new Texture();
explosion->Load("explosion_30_128.tga");

//create a group of sprites using std::vector
for (int n=0; n<NUMSPRITES; n++) {

Sprite* spr = new Sprite();
spr->setImage(explosion);
spr->setPosition(rand()%g_engine->getScreenWidth(),

rand()%g_engine->getScreenHeight());
spr->setAnimationRange(0,29);
spr->setCurrentFrame(rand()%30);
spr->setColumns(6);
spr->setSize(128,128);

424 Chapter 14 n Sprite Animation and Rasterization

sprites.push_back(spr);
}
return true;

}

void game_update(float deltaTime) {
static float factor = 0;
delta = deltaTime;
factor += deltaTime * 0.5f;
//adjust sprite scale with delta time
if(factor > 3.0f) factor = 0.01f;
//update sprites
BOOST_FOREACH(Sprite* S, sprites) {

S->Update(deltaTime*30.0f);
if (S->getCurrentFrame() == S->getLastFrame()-1) {

//adjust scaling
S->scale.x = factor;
S->scale.y = factor;
//set random location
int sx = (int)(S->size.x*S->scale.x/2);
int sy = (int)(S->size.y*S->scale.y/2);
int cx = rand() % g_engine->getScreenWidth() - sx;
int cy = rand() % g_engine->getScreenHeight() - sy;
S->setPosition(cx,cy);

}
}

}

void game_render2d() {
backgrnd->Render();
BOOST_FOREACH(Sprite* S, sprites)

S->Render();
std::ostringstream ostr;
ostr << "Core fps: " << g_engine->getCoreFrameRate() << endl;
ostr << "Delta time: " << delta << endl;
ostr << "Sprites: " << sprites.size() << endl;
font->Print(0, 0, ostr.str());

}

void game_event(Octane::IEvent* e) {

Sprite Animation 425

switch(e->getID()) {
case EVENT_KEYRELEASE:

g_engine->Shutdown();
break;

}
}

Sprite-Based Particles
Particles are tiny sprites that are rendered with about 50 percent alpha trans-
parency so that they seem to glow. The key to creating a particle system—that is,
an emitter or other special effect—is to start with a good source particle image.
Figure 14.7 shows an enlarged view of a 16� 16 particle sprite. Note the amount
of alpha transparency in the image—only the central white portion is fully
opaque, while the rest will blend with whatever background the particle is
rendered over.

Sprite-based particles differ significantly from shader-based particles rendered by
the 3D hardware (known as point sprites and used to optimize the rendering of
objects in the far distance). Three-dimensional particles can emit light (emissive)

Figure 14.7
The source particle image is 16� 16 pixels with alpha channel.

426 Chapter 14 n Sprite Animation and Rasterization

or reflect light (reflective) and can be used to simulate real smoke and fog. Sprite-
based particles can be used to generate smoke trails behind missiles and
spaceships, among other things.

A so-called particle system is a managed list of particles that are rendered in
creative ways. That list is based on either a std::vector or std::list. A std::

vector will work slightly faster than a std::list when your list does not need to
change very often. Our particle emitter will create particles but not remove any
(until the object is destroyed, that is). A std::list would be preferred if you
needed to add and remove items regularly, but it’s not quite as fast as a std::

vector when it comes to sequential iteration1.

To make working with particles as reasonable and practical as possible, we’ll
code up the most obvious functionality into a class. Following is the definition
for a ParticleEmitter class. This class uses a std::vector filled with Sprite

objects to represent the entities in the emitter. The class is otherwise completely
self-contained and can handle most types of particle systems that I have seen
over the years. Basically, a great particle system works in such a way that the
player shouldn’t notice that it’s a particle at all. When a spaceship is cruising
through space, it can emit a flame and smoke with the use of two particle
emitters, for example. Here is the interface:

class ParticleEmitter {
private:

typedef std::vector<Octane::Sprite*>::iterator p_iter;
std::vector<Octane::Sprite*> p_particles;
Texture *p_image;
Vector2 p_position;
double p_direction;
double p_length;
int p_max;
int p_alphaMin,p_alphaMax;
int p_minR,p_minG,p_minB,p_maxR,p_maxG,p_maxB;
int p_spread;
double p_velocity;
double p_scale;

public:
ParticleEmitter();
virtual ~ParticleEmitter();

Sprite-Based Particles 427

bool Load(std::string imageFile);
void Render();
void Update(float deltaTime);
void Add();
void setPosition(double x, double y) { p_position.Set(x,y); }
void setPosition(Vector2 vec) { p_position = vec; }
Vector2 getPosition() { return p_position; }
void setDirection(double angle) { p_direction = angle; }
double getDirection() { return p_direction; }
int getCount() { return (int)p_particles.size(); }
void setMax(int num) { p_max = num; }
void setAlphaRange(int min,int max);
void setColorRange(int r1,int g1,int b1,int r2,int g2,int b2);
void setSpread(int value) { p_spread = value; }
void setLength(double value) { p_length = value; }
void setVelocity(double value) { p_velocity = value; }
void setScale(double value) { p_scale = value; }

};

Following is the implementation file for the ParticleEmitter class. We’ll go over
an example to fully illustrate how it works shortly.

ParticleEmitter::ParticleEmitter() {
p_image = NULL;
p_max = 100;
p_length = 200;
p_direction = 0;
p_alphaMin = 254; p_alphaMax = 255;
p_minR = 0; p_maxR = 255;
p_minG = 0; p_maxG = 255;
p_minB = 0; p_maxB = 255;
p_spread = 10;
p_velocity = 1.0f;
p_scale = 1.0f;

}
bool ParticleEmitter::Load(std::string imageFile) {

if (p_image) {
delete p_image;
p_image = NULL;

}
p_image = new Texture();

428 Chapter 14 n Sprite Animation and Rasterization

if (!p_image->Load(imageFile)) {
debug << "Error loading particle image\n";
return false;

}
return true;

}
ParticleEmitter::~ParticleEmitter() {

delete p_image;
BOOST_FOREACH(Sprite* sprite, p_particles) {

delete sprite;
sprite = NULL;

}
p_particles.clear();

}
void ParticleEmitter::Add() {

double vx,vy;
Sprite *p = new Sprite();
p->setImage(p_image);
p->setPosition(p_position.getX(), p_position.getY());
//add some randomness to the spread
double variation = (rand() % p_spread - p_spread/2) / 100.0f;
//set linear velocity
double dir = Math::wrapAngleDegs(p_direction-90.0f);
dir = Math::toRadians(dir);
vx = cos(dir) + variation;
vy = sin(dir) + variation;
p->setVelocity(vx * p_velocity,vy * p_velocity);
//set random color based on ranges
int r = rand()%(p_maxR-p_minR)+p_minR;
int g = rand()%(p_maxG-p_minG)+p_minG;
int b = rand()%(p_maxB-p_minB)+p_minB;
int a = rand()%(p_alphaMax-p_alphaMin)+p_alphaMin;
Color col(r,g,b,a);
p->setColor(col);
//set the scale
p->setScale(p_scale,p_scale);
//add particle to the emitter
p_particles.push_back(p);

}
void ParticleEmitter::Render() {

Sprite-Based Particles 429

BOOST_FOREACH(Sprite* sprite, p_particles)
sprite->Render();

}
void ParticleEmitter::Update(float deltaTime) {

static Timer timer;
//do we need to add a new particle?
if ((int)p_particles.size() < p_max) {

//trivial but necessary slowdown
if (timer.Stopwatch(100)) Add();

}

BOOST_FOREACH(Sprite* sprite, p_particles) {
//update particle’s position
sprite->Update(deltaTime * 50.0f);
//is particle beyond the emitter’s range?
double dist = Math::Distance(sprite->getPosition(), p_position);
if (dist > p_length) {

//reset particle to the origin
sprite->setX(p_position.getX());
sprite->setY(p_position.getY());

}
}

}
void ParticleEmitter::setAlphaRange(int min,int max) {

p_alphaMin=min; p_alphaMax=max;
}
void ParticleEmitter::setColorRange(int r1,int g1,int b1,int r2,int g2,int b2)
{

p_minR = r1; p_maxR = r2;
p_minG = g1; p_maxG = g2;
p_minB = b1; p_maxB = b2;

}

Using the ParticleEmitter class is very easy if you don’t need to change any of
the default properties—just supply the source image and destination position.
That image can be any reasonably nice-looking circle on a bitmap, or perhaps a
simple square image if you want to produce a blocky effect. I have created a
circle on a 16� 16 bitmap with several shades of alpha built into the image.
Combined with the color and alpha effects we’ll apply when drawing the image,

430 Chapter 14 n Sprite Animation and Rasterization

this will produce the particles in our emitter. However, you can produce quite
different particles using a different source image—something to keep in mind!

Here is how you can create a simple emitter. This example code creates a new
particle emitter using the particle16.tga image; sets it at screen location
400,300; sets the angle to 45 degrees; sets a maximum of 200 particles; sets an
alpha range of 0 to 100 (which is faint); sets the random spread from the given
angle to 30 pixels; and sets the length to 250 pixels.

ParticleEmitter *p new ParticleEmitter();
p->loadImage("particle16.tga");
p->setPosition(400,300);
p->setDirection(45);
p->setMax(200);
p->setAlphaRange(0,100);
p->setSpread(30);
p->setLength(250);

After creating the emitter, you need to give it a chance to update its particles and
draw itself. The ParticleEmitter::Update() function should be called from
game_update() since it will need the deltaTime parameter. ParticleEmitter::
Render() should be called from the game_render2d() function.

Following is an example program called Sprite Particle Demo that demonstrates
one of the most common uses for particles—chimney smoke! This example
draws a house with a chimney and uses a particle emitter to simulate smoke.
Figure 14.8 shows the output. (Note: the complete project includes error
handling and comment code omitted from this listing.)

Sprite* backgrnd;
Font* font;
float delta;
Sprite* house;
ParticleEmitter *part;

bool game_init(HWND hwnd) {
g_engine->setBackdropColor(D3DCOLOR_XRGB(0,50,50));
font = new Font("Arial Bold",18);
backgrnd = new Sprite();
backgrnd->Load("selection_highlight.png");

Sprite-Based Particles 431

backgrnd->scale.x = ((float)g_engine->getScreenWidth() /
(float)backgrnd->getWidth());

backgrnd->scale.y = ((float)g_engine->getScreenHeight() /
(float)backgrnd->getHeight());

//load the house
house = new Sprite();
house->Load("house.tga");
house->setPosition(400,300);
//create particle emitter
part = new ParticleEmitter();
part->Load("particle16.tga");
part->setPosition(440,310);
part->setDirection(0);
part->setMax(200);
part->setAlphaRange(30,40);
part->setColorRange(240,240,240, 255,255,255);
part->setScale(4.0);

Figure 14.8
Particle demonstration simulating smoke coming out of a chimney.

432 Chapter 14 n Sprite Animation and Rasterization

part->setSpread(50);
part->setVelocity(0.5);
part->setLength(400);
return true;

}

void game_update(float deltaTime) {
delta = deltaTime;
part->Update(deltaTime);

}

void game_render2d() {
backgrnd->Render();
house->RenderFast();
part->Render();
std::ostringstream ostr;
ostr << "Core fps: " << g_engine->getCoreFrameRate() << endl;
ostr << "Delta time: " << delta << endl;
ostr << "Particles: " << part->getCount() << endl;
font->Print(0, 0, ostr.str());

}

void game_event(Octane::IEvent* e) {
switch(e->getID()) {

case EVENT_KEYRELEASE:
g_engine->Shutdown();
break;

}
}

Sprite-Based Fonts
One of the most crucial features of a game engine is the ability to display text on
the screen using font output. This is a challenging problem because font output
has the potential to bring a game engine to its knees if it is not implemented
properly. The font system included with DirectX (ID3DXFont) does a fair job of
rendering text, and this is the technique we have used up to this point to do so.
But it can become slow, especially if the font size is changed often (which is one
reason why we have used only one type of font in the examples). Why is it slow?
ID3DXFont renders text with Windows GDI functions rather than Direct3D. In

Sprite-Based Fonts 433

contrast, professional game engines use bitmapped fonts. A bitmapped font is an
image containing characters stored in rows and columns—like a sprite anima-
tion sheet. Figure 14.9 shows a bitmapped font. Note that some characters are
illegible or just not available in this low-resolution bitmapped font. Rendering a
bitmapped font is extremely fast because we use the Sprite class and render text
with ID3DXSprite—which, as you’ll recall, batches sprites into a group for
efficiency.

Creating a Font
I’ve included several bitmapped fonts in the project folder for your use. These
fonts were created with a very useful tool called Bitmap Font Builder by Thom
Wetzel, Jr. (www.lmnopc.com), which is also included in this chapter’s files. You
can use Bitmap Font Builder (shown in Figure 14.10) to create a bitmapped font
from any TrueType font installed on your Windows system. The font shown in
the figure is 10-point Verdana.

The settings are important. I recommend setting the Texture Size field to Auto
with 0-pixel spacing for best results. If the Character Set is configured to render

Figure 14.9
System 12 font represented as a bitmap reminiscent of an animated sprite sheet.

434 Chapter 14 n Sprite Animation and Rasterization

two fonts, change it using the menu to a single ASCII font, as shown in the
figure. Although you will never use most of those unusual ASCII characters,
the source code for rendering the font is simpler when using a font with
characters numbered 0–255 (which are simply treated as sequential animation
frames).

After configuring the font to produce, open the File menu, choose Save 32-bit
TGA (RGBA), and enter a filename. This will save a new Targa file—and most
importantly, it will have an alpha channel. Saving the 10-point Verdana font
produces a Targa file shown in Figure 14.11. You can experiment with different
fonts to come up with one you like for your games. When you are setting up a
font, note that it will look sharper in your game than it looks in the BFB
preview; although you may be tempted to output a font in bold, that usually is
not needed.

Figure 14.10
Bitmap Font Builder is used to render a TrueType font onto a bitmap.

Sprite-Based Fonts 435

The bitmapped font could be used as is for text output in a game, but we’re
actually only half done. The next step is to output the width data for the font, in
order to render the text proportionally. This is extremely important for producing
attractive-looking text. After saving the font to a Targa image, you will need to
export the font width data in order to render the font proportionally. BFB makes
this very easy by exporting the width data into a simple binary data file that can
be read and used when rendering characters as an animated sprite.

Open the File menu in BFB and choose “Save Font Widths (Byte Format)” and
enter a filename at the prompt. I find it makes sense to use the same filename
that I used for the font, but append a .dat extension. This data file will be
composed of 256 font width values stored in binary format for a total of
512 bytes (two bytes per ASCII character width).

Figure 14.11
Bitmap Font Builder automatically generates an alpha channel for transparency.

436 Chapter 14 n Sprite Animation and Rasterization

Adv i c e

If you aren’t crazy about the idea of distributing two files with your game just for each font, there is
a way to combine the two files into one—or all of your game’s assets into one, for that matter. A
zip library is available that makes it possible to read your game’s assets from a single zip data
file—it’s called zlib. See the final section of this chapter for an example.

We can read the proportional width data from this 512-byte file with an
ifstream reader.

unsigned char buffer[512];
std::ifstream infile;
infile.open(filename.c_str(), std::ios::binary);
infile.read((char *)(&buffer), 512);
infile.close();
for (int n=0; n<256; n++)

widths[n] = (int)buffer[n*2];

Loading and Rendering a Font
We could load a bitmapped font into a Sprite object and render it by treating
each character as a frame in the font “animation” sheet. In fact, this is exactly
what we will do. But there is too much configuration and custom code to be
duplicated that way. Instead, a new subclass of Sprite will do nicely. The new
class will be called Font and will inherit its basic functionality from Sprite and
add some of its own new features.

BitmapFont Header

Let’s take a look at the new BitmapFont class, which is now available in the
Engine project. Here’s the header file:

class BitmapFont : public Sprite {
private:

int p_widths[256];
public:

BitmapFont();
virtual ~BitmapFont(void) { }
void Print(int x, int y, std::string text,

Color color = Color(255,255,255,255));
int getCharWidth() { return (int)size.x; }
int getCharHeight() { return (int)size.y; }

Sprite-Based Fonts 437

void setCharWidth(int width) { size.x = width; }
void setCharSize(int width, int height) {

setCharWidth(width);
size.y = height;

}
bool loadWidthData(std::string filename);

};

BitmapFont Implementation

Now let’s take a look at the implementation file BitmapFont.cpp. There are just
two methods in the implementation file, with the most important method being
Print, which actually displays text on the screen. The Print method accepts four
parameters that are self-explanatory: x, y, text, and color. The code in Print goes
through each character of the string and prints out a character from the font
image based on the ASCII code of the character (from 0 to 255). This is done
very easily by just setting the sprite’s current frame to the ASCII code! When
that’s done, presto—the character corresponding to that “animation frame” will
be rendered. Furthermore, because BFB saved the Targa with an alpha channel,
we have automatic transparency support built in.

The second method, aside from the constructor, loads the proportional font width
data. A std::ifstream reads 512 bytes at once and then copies out the width data
from every other byte in the buffer. The end result is an array called widths that
contains custom proportional values for each character in the bitmapped font.

BitmapFont::BitmapFont() : Sprite() {
//set character widths to default
memset(&p_widths, 0, sizeof(p_widths));

}
void BitmapFont::Print(int x,int y,std::string text,Color color) {

float fx = (float)x;
float fy = (float)y;
setColor(color);
//draw each character of the string
for (unsigned int n=0; n<text.length(); n++) {

int frame = (int)text[n];
setCurrentFrame(frame);
setX(fx);
setY(fy);

438 Chapter 14 n Sprite Animation and Rasterization

Render();
//use proportional width if available
if (p_widths[frame] == 0) p_widths[frame] = (int)size.x;
fx += (float)(p_widths[frame] * scale.x);

}
}
bool BitmapFont::loadWidthData(std::string filename) {

unsigned char buffer[512];
//open font width data file
std::ifstream infile;
infile.open(filename.c_str(), std::ios::binary);
if (!infile) return false;
//read 512 bytes (2 bytes per character)
infile.read((char *)(&buffer), 512);
if (infile.bad()) return false;
infile.close();
//convert raw data to proportional width data
for (int n=0; n<256; n++)

p_widths[n] = (int)buffer[n*2];
return true;

}

Using the BitmapFont Class
We now have a multipurpose bitmapped font class that can load and render
proportional fonts, so let’s put it to the test. Figure 14.12 shows the Bitmapped
Font Demo program.Without the font width data, we would have to condense the
font by hard-coding the width data inside the program because non-proportioned
text just looks too unprofessional. As you can see from the figure, we can display
any TrueType font once it has been converted using a tool such as BFB. As a
bonus, we have all of the features of the sprite renderer available, too. That means
you can print text in any color with rotation and scaling support. See the complete
project for detailed code with comments and error handling.

BitmapFont *bmpfont;
std::string text;
Color white(255,255,255,255);
Color black(0,0,0,255);

bool game_init(HWND hwnd) {
g_engine->setBackdropColor(white);

Sprite-Based Fonts 439

//load sample text
string line;
ifstream file("hgwells2.txt");
if (!file.is_open()) {

debug << "Error loading text file\n";
return false;

}
while (!file.eof()) {

getline(file,line);
text += line + ’\n’;

}
file.close();
//load the bitmapped font
bmpfont = new BitmapFont();
bmpfont->Load("system12.tga");
bmpfont->setColumns(16);
bmpfont->setCharSize(14,16);
bmpfont->loadWidthData("system12.dat");
return true;

}

Figure 14.12
The Bitmapped Font Demo program demonstrates proportional bitmapped font rendering.

440 Chapter 14 n Sprite Animation and Rasterization

void game_render2d() {
int y=0;
string line;
istringstream iss(text);
while (getline(iss, line, ’\n’)) {

bmpfont->setScale(1.0f);
bmpfont->Print(0,y,line,black);
y+=20;

}
}

void game_event(Octane::IEvent* e) {
switch(e->getID()) {

case EVENT_KEYRELEASE:
g_engine->Shutdown();
break;

}
}

Loading Assets from a Zip File
As was mentioned earlier in the chapter, it can be annoying to distribute assets and
data files with a game with their individual files exposed to snooping by fans or
just creative programmers wanting to borrow your game’s assets. The easiest
solution is to rename all data files to a generic extension—this alone will throw off
the casual asset hacker, but not a more determined (i.e., experienced) person who
knows better. The best solution is to embed all of your game’s data and assets
inside a password encrypted zip file. That’s extremely easy with all of the free zip
archive programs available (such as 7Zip, a multi-format archiver available from
www.7-zip.org). The hard part is this: how do we get assets out of the zip file?

There is a zip archive library available that can do this for us with a minimum of
fuss—zlib, available from www.zlib.net and is included in the book’s support files.

A good asset manager will initialize the zip data file, repeatedly read from it
while open, and then close the data file when done. The drawback to
encapsulating an asset manager into a class is that every game has different
needs, and every engine programmer will want to do this in a different way—
implementing a texture cache, mesh cache, audio cache, etc. So, we will instead

Loading Assets from a Zip File 441

just look at an example using global zlib variables and leave it up to the reader to
implement an asset or content manager.

At a minimum, these files need to be added to the project:

n ioapi.c

n iowin32.c

n unzip.c

These files must be available in the project folder:

n zdll.lib

n iowin32.h

n unzip.h

n zconf.h

n zlib.h

n crypt.h

And this file must be added to the output folder:

n zlib1.dll

Reading from a Zip File
We need to create variables from unzFile (the main object) and unz_file_info

(the zip info struct):

unzFile zip=NULL;
unz_file_info info;

The zlib library will return a data file out of the zip archive as a void*, so we
need only typecast it to our desired structure or buffer, or use the void* buffer
directly when reading binary data (as is the case when converting the buffer into
a Direct3D texture) or copying the buffer into a new data structure such as an
array. The helper functions to follow will assume the use of these two global
variables, on the assumption that this code will soon find itself in a C++ class.

442 Chapter 14 n Sprite Animation and Rasterization

To open the zip file, first use the unzOpen() function like so:

zip = unzOpen("assets.zip");

If the zip object is NULL, then you may assume the file was not found or was
corrupted. Otherwise, it’s now ready to be used. When finished with the zip file,
it should be closed with unzClose():

unzClose(zip);

Reading Raw Data

We’ll write a function to read the raw data of a file stored inside the zip file and
then use that void* buffer as a data source for the various file types needed for a
game. The first step is to try to locate the filename inside the zip archive using a
function called unzLocateFile(); if found, then this function will return UNZ_OK.

HRESULT rez = unzLocateFile(zip, "cursor.tga", 1);

Next, we can use the unzOpenCurrentFile() function to open the file that was
located.

rez = unzOpenCurrentFile(zip);

Again, if the function returns UNZ_OK, then we can proceed; otherwise, a problem
should be reported—the most common being that the filename supplied was not
found in the zip archive.

rez = unzGetCurrentFileInfo(zip, &zipinfo, NULL, 0, NULL, 0, NULL, 0);

If we reach this step, then the file has been loaded and opened, and is ready to be
pulled out of the zip archive and into memory. We do that with unzReadCur-

rentFile(), but the memory must first be created:

void *buffer = malloc(zipinfo.uncompressed_size + 1);
rez = unzReadCurrentFile(zip, buffer, zipinfo.uncompressed_size);

At this point, if the function returns UNZ_OK, then we have our data in memory
and the file may be closed (the current data file, not the zip archive—which
should stay open for repeated file reading).

unzCloseCurrentFile(zip);

So, what do we do with the void* buffer now that it contains the file read into
memory? This pointer to the data buffer can contain absolutely anything—a
mesh, a texture, an audio sample, an XML file, a LUA script, anything! If you

Loading Assets from a Zip File 443

know that the file was a simple binary, then it can be typecast into an array or
struct of your own design. Following is a reusable function that encapsulates the
loading process:

void* LoadAsset(std::string filename) {
// locate the file (1 = case sensitive)
HRESULT rez = unzLocateFile(zip, filename.c_str(), 1);
if(rez != UNZ_OK) return NULL;
//try to open the file
rez = unzOpenCurrentFile(zip);
if(rez != UNZ_OK) return NULL;
// find current file info (uncompressed file size)
rez = unzGetCurrentFileInfo(zip, &zipinfo, NULL, 0, NULL, 0, NULL, 0);
if(rez != UNZ_OK) return NULL;
//create a buffer big enough to hold uncompressed file in memory
void *buffer = malloc(zipinfo.uncompressed_size + 1);
if (!buffer) return NULL;
memset(buffer, 0, zipinfo.uncompressed_size + 1);
// load into memory
rez = unzReadCurrentFile(zip, buffer, zipinfo.uncompressed_size);
if(rez < 0) {

free(buffer); return NULL;
}
//close the read file
unzCloseCurrentFile(zip);
return buffer;

}

Reading a Texture

Reading an image out of the zip file in memory and converting it to a Direct3D
texture is not as easy as just typecasting the void* buffer into an LPDIRECT3D-

TEXTURE9. That would be nice, but it won’t work. Instead, we’ll use a function
called D3DXCreateTextureFromFileInMemoryEx() to convert the void* buffer into
a texture. After that, the texture can be used normally for any purpose—to skin a
mesh or fill in the frames of an animated sprite. For some strange reason this
process feels like cloning to me. We’ll use the LoadAsset() function above to
read in the raw data for a texture, and then convert the data into a fully mature
Direct3D texture.

444 Chapter 14 n Sprite Animation and Rasterization

Texture* LoadTextureFromZip(std::string filename) {
//load the raw data file
void* buffer = NULL;
buffer = LoadAsset(filename);
if (!buffer) return NULL;
//create new texture
Texture *texture = new Texture();
//get image info from memory buffer
D3DXGetImageInfoFromFileInMemory(

buffer, zipinfo.uncompressed_size, &texture->info);
//load texture from memory buffer
D3DXCreateTextureFromFileInMemoryEx(g_engine->getDevice(),

buffer, zipinfo.uncompressed_size, texture->info.Width,
texture->info.Height, 1, D3DUSAGE_DYNAMIC, texture->info.Format,
D3DPOOL_DEFAULT, D3DX_FILTER_NONE, D3DX_FILTER_NONE,
0xFF000000, NULL, NULL, &texture->texture);

//free the buffer memory
free(buffer);
return texture;

}

Reading a Text File

Imagine storing all of your game’s effect (.FX) files in a password-encrypted zip
archive, and then pulling them out of the data file when the game starts up,
rather than storing them as raw text in the game’s runtime folder? Yes, that is
entirely possible and extremely easy to do now that we have working code
around zlib. What other uses are there for a text data file reader? Besides an
effect file, how about XML data and LUA scripts?

std::string LoadTextFromZip(std::string filename) {
//load the raw data file
void* buffer=NULL;
buffer = LoadAsset(filename);
if (!buffer) return NULL;
//convert raw buffer into text
char* data = (char*) buffer;
std::string text = data;
return text;

}

Loading Assets from a Zip File 445

Zip Asset Demo
The Zip Asset Demo program shows how to use zlib in a very practical way by
loading the image for an animated sprite and drawing it, and loading a text file and
printing out its contents on the screen. The program is shown in Figure 14.13.

This project (included with the chapter files) has the zlib files integrated only
within the gameplay project, not the game engine project—to avoid messing up
the earlier projects in this chapter. In the very next chapter, the zlib code will be
embedded inside the engine. There is an added benefit to keeping zlib on the
front lines at this point, since you can learn from it and use the zlib code for
other purposes beyond this engine if you have the need. Due to the zlib
requirements, this is the complete source code listing, not just a subset.

Adv i c e

The zlib-specific source code has been added to the gameplay source code file (main.cpp), not to
the engine. Since this code will need to be wrapped into specific classes or (better yet) an asset
manager, it makes no sense to add the zip code to the engine at this time—although it could be
just added to the Engine class.

Figure 14.13
The sprite's animated image and text data displayed here were read from a zip file.

446 Chapter 14 n Sprite Animation and Rasterization

#include "Engine.h"
using namespace std;
using namespace Octane;
#include "zlib/unzip.h"
#pragma comment(lib,"../zlib/zdll.lib")
Font* font=NULL;
Texture* imgExpl=NULL;
Sprite* explosion=NULL;
std::string textData="";
//zlib variables
unzFile zip=NULL;
unz_file_info zipinfo;

void* LoadAsset(std::string filename);
Texture* LoadTextureFromZip(std::string filename);
std::string LoadTextFromZip(std::string filename);

bool game_preload() {
g_engine->setScreen(1024,768,32,false);
g_engine->setAppTitle("Zip Asset Demo");
return true;

}

bool game_init(HWND hwnd) {
g_engine->setBackdropColor(D3DCOLOR_XRGB(0,50,50));
font = new Font("Arial Bold",18);

//open zip file
zip = unzOpen("assets.zip");
if(!zip) {

debug << "Zip file not found\n";
return false;

}

//load explosion image from zip data file
imgExpl = LoadTextureFromZip("explosion_30_128.tga");
//create sprite using zip asset image
explosion = new Sprite();
explosion->setImage(imgExpl);
explosion->setPosition(600, 30);

Loading Assets from a Zip File 447

explosion->setAnimationRange(0,29);
explosion->setColumns(6);
explosion->setSize(128,128);

//load text data file from zip archive
textData = LoadTextFromZip("data.txt");

unzClose(zip);
zip = NULL;
return true;

}

void game_end() {
delete font;
delete imgExpl;
delete explosion;

}

void game_update(float deltaTime) {
explosion->Update(deltaTime*20);

}

void game_render2d() {
std::ostringstream ostr;
ostr << "Text data read from zip:\n\n";
ostr << textData << endl;
font->Print(0, 0, ostr.str());
font->Print(600, 0, "Sprite texture loaded from zip:");
explosion->Render();

}

void game_render3d(){}
void game_event(Octane::IEvent* e) {

switch(e->getID()) {
case EVENT_KEYRELEASE:

g_engine->Shutdown();
break;

}
}

448 Chapter 14 n Sprite Animation and Rasterization

Adv i c e

Be sure to add the three zip asset functions (LoadAsset, LoadTextureFromZip, and
LoadTextFromZip) covered previously to complete the Zip Asset Demo program. For the
sake of brevity, and since they were already provided in their entirety above, the source code for
these functions will be omitted from the program listing.

Summary
This has been one of the most productive chapters as far as adding new features
to the engine—extremely vital, core features at that! The Sprite class and
associated features that were made available as a result of the sprite code greatly
enhances the engine with very strong 2D rendering support. All of these topics
are based on the Sprite class, and it was quite a bit to cover all at once, but there
are several examples that go with this chapter and each topic has its own
example.

References
1. Reese, Greg; C++ Standard Library Practical Tips; Charles River Media.

References 449

This page intentionally left blank

Rendering to a Texture

In this chapter we will explore some of the unusual things we can do with vector
(line-based) shapes after gaining the capability to render to an off-screen texture.
The texture that receives the rendered output from Direct3D is a normal texture,
capable of being used for a sprite or the skin of a mesh. This technique is often
used to create an environment map for the special effect called cube mapping,
where the environment around a mesh is mapped onto the mesh in a mirror-like
manner. By adding this functionality to the engine, we gain some impressive
new capabilities such as drawing shapes out of vector lines and points, and
scrolling background layers (i.e., platformer games).

The following topics will be covered:

n Rendering to a Texture

n Drawing vector shapes

n Comparing ID3DXLine and VectorShape

n Drawing scrolling bitmap layers

n Drawing tiled layers

Rendering to a Texture
Off-screen rendering is a powerful technique that we will use in this chapter to
create vector lines, scrolling layered backgrounds, and graphical user interface

chapter 15

451

elements. There are further uses for this capability, such as camera viewports,
environmental cube mapping, mirroring, and texture animation (i.e., security
camera monitors). We’ll start by reviewing the existing rendering capability built
into our old Texture class. It’s been a while since we wrote the code for Texture,
but it has harbored this capability from the beginning. Our Texture class has
three functions that can be used to render onto the texture’s surface (rather than
to the screen like usual):

n createRenderTarget()

n renderStart()

n renderStop()

Adv i c e

This chapter’s resource files can be downloaded from www.jharbour.com/forum or www.courseptr.
com/downloads. Not every line of code will be in print due to space considerations, only the most
important sections of code.

Creating a Render Target
To create an off-screen render target, first create a normal Texture. But, instead
of using Load to load an image file, or Create to create the new texture in
memory, use the createRenderTarget() function instead, passing the desired
resolution when calling the function. These features were included in the Texture

class first presented back in Chapter 11. Here is the createRenderTarget() function
again for reference:

bool Texture::createRenderTarget(int width,int height) {
if (texture) {

texture->Release();
texture = NULL;

}
g_engine->getDevice()->CreateTexture(width, height,

1, D3DUSAGE_RENDERTARGET, D3DFMT_A8R8G8B8,
D3DPOOL_DEFAULT, &texture, NULL);

g_engine->getDevice()->CreateDepthStencilSurface(width, height,
D3DFMT_D16, D3DMULTISAMPLE_NONE, 0, false,
&renderDepthStencilSurface, NULL);

texture->GetSurfaceLevel(0, &renderSurface);

452 Chapter 15 n Rendering to a Texture

//save texture info
info.Width = width;
info.Height = height;
info.Format = D3DFMT_A8R8G8B8;
return true;

}

Rendering to the Alternate Target
As we have seen, a texture created as a render target requires a special-purpose
texture surface created with the D3DUSAGE_RENDERTARGET parameter, as well as a
special-purpose depth stencil buffer surface. These are heavy objects, so you
would not want to haphazardly create a large number of render targets for
normal textures that might be used as such—a normal Texture object is a
lightweight in comparison. Think of a render target as another frame buffer,
capable of representing the entire screen for rendering purposes.

The key to rendering onto this special-purpose texture is to have our Direct3D
device set it as the new render target (and likewise, set the new depth stencil
surface). When that is done, then rendering proceeds like normal with all the
usual function calls: Clear(), BeginScene(), EndScene(), as well as sprite
drawing. Our renderStart() function sets up the render target so that any
rendering will be sent to the texture. After rendering is complete, then render-

Stop().

bool Texture::renderStart(bool clear, bool sprite, Color clearColor) {
g_engine->getDevice()->SetRenderTarget(0, renderSurface);
g_engine->getDevice()->SetDepthStencilSurface(renderDepthStencilSurface);
if (clear) {

g_engine->getDevice()->Clear(0, NULL, D3DCLEAR_TARGET,
clearColor.ToD3DCOLOR(), 1.0f, 0);

}
g_engine->getDevice()->BeginScene();
if (sprite) g_engine->getSpriteObj()->Begin(D3DXSPRITE_ALPHABLEND);
D3DXMATRIX identity;
D3DXMatrixIdentity(&identity);
g_engine->getSpriteObj()->SetTransform(&identity);
return true;

}

Rendering to a Texture 453

bool Texture::renderStop(bool sprite) {
if (sprite) g_engine->getSpriteObj()->End();
g_engine->getDevice()->EndScene();
return true;

}

One thing we must be very careful to do when changing the render target is to
restore the primary render surface and depth stencil surface when finished. In the
core engine class is a pair of functions to facilitate this: SavePrimaryRenderTarget()
and RestorePrimaryRenderTarget(). These functions were included in the core
engine code in Chapter 1 but not used until now.

void Engine::savePrimaryRenderTarget()
{

//save primary rendering & depth stencil surfaces
p_device->GetRenderTarget(0, &p_MainSurface);
p_device->GetDepthStencilSurface(&p_MainDepthStencilSurface);

}

void Engine::restorePrimaryRenderTarget()
{

//restore normal render target
p_device->SetRenderTarget(0, p_MainSurface);
p_device->SetDepthStencilSurface(p_MainDepthStencilSurface);

}

Drawing Vector Shapes
Direct3D has the ability to render 2D lines using 3D hardware with a class called
ID3DXLine. This is an efficient way to draw lines because they are rendered as a
line list with shared vertices, but if you only need to draw one line at a time then
no performance improvement will be found with the two points of a single line.
We will also create our own line-drawing mechanism as an alternative to
ID3DXLine, and it will be called VectorShape. This class will be the basis for
potentially many vector shapes that could be rendered from the basic point- and
line-drawing functions we’ll develop. For example, you could use the Bresenham
circle-drawing algorithm to draw circles from the basic line code in the
VectorShape class.

454 Chapter 15 n Rendering to a Texture

VectorShape Class
The VectorShape class basically just draws lines, but it has the ability to draw
points as well, and these two building blocks could be used to draw other shapes
such as circles, boxes, triangles, and so on. Consider it a multi-purpose class for
vector graphics.

class VectorShape {
private:

Texture *texture;
Sprite *sprite;
int size;
ID3DXLine* d3dxline;

public:
VectorShape(void);
~VectorShape(void);
void MakeTexture();
void drawPoint(Vector2 point, int linesize, Color color = Color(255,

255,255,255));
void drawPoint(double x, double y, int linesize,

Color color = Color(255,255,255,255));
void drawLine(Vector2 point1, Vector2 point2, int linesize,

Color color = Color(255,255,255,255));
void drawLine(double x1, double y1, double x2, double y2, int linesize,

Color color = Color(255,255,255,255));
void drawBox(Vector2 point1, Vector2 point2, int linesize,

Color color = Color(255,255,255,255));
void drawBox(double x1, double y1, double x2, double y2, int linesize,

Color color = Color(255,255,255,255));
void drawBox(Rect rect, int linesize, Color color = Color(255,255,

255,255));
void drawFilledBox(Rect rect, Color color = Color(255,255,255,255));
void drawD3DXLine(Vector2 start, Vector2 end, float size, Color color);

};

The implementation for VectorShape includes support for ID3DXLine as well as
the Sprite-based points, lines, and rectangles. The Vector Shape Demo project
coming up compares the performance of the two.

VectorShape::VectorShape(void) {
texture = NULL;
sprite = NULL;

Drawing Vector Shapes 455

size = -1;
d3dxline = NULL;
D3DXCreateLine(g_engine->getDevice(), &d3dxline);

}
void VectorShape::MakeTexture() {

//validate VectorShape size
if (size < 1) return;
//create the texture
if (texture) delete texture;
texture = new Texture();
if (!texture->Create(128,size,true))

debug << "VectorShape: Error creating texture\n";
//create the sprite
if (sprite) delete sprite;
sprite = new Sprite();
sprite->setImage(texture);

}
VectorShape::~VectorShape(void) {

if (texture) delete texture;
if (sprite) delete sprite;
d3dxline->Release();
d3dxline = NULL;

}
void VectorShape::drawLine(Vector2 point1, Vector2 point2,

int linesize, Color color) {
//if VectorShape size changed, texture must be recreated
if (size != linesize) {

size = linesize;
MakeTexture();

}
//position start of line at startpos
sprite->setPosition(point1);
//set scale so line reaches point2
double dist = Math::Distance(point1, point2);
double w = (double)sprite->getWidth();
double scale = dist / w;
sprite->setScale(scale, 1.0);
//rotate VectorShape to aim it at endpos
double angle = Math::angleToTarget(point1, point2);
sprite->setRotation(angle);

456 Chapter 15 n Rendering to a Texture

//line will be drawn from upper-left corner at
//point1 with pivot at 0,0 and rotated toward point2
sprite->setColor(color);
Vector2 pivot(0,0);
sprite->setPivot(pivot);
sprite->Render(false);

}
void VectorShape::drawLine(double x1, double y1, double x2, double y2,

int linesize, Color color) {
Vector2 p1(x1,y1);
Vector2 p2(x2,y2);
drawLine(p1, p2, linesize, color);

}
void VectorShape::drawPoint(Vector2 point, int linesize, Color color) {

Vector2 stretch(point.x+linesize, point.y);
drawLine(point, stretch, linesize, color);

}
void VectorShape::drawPoint(double x, double y, int linesize, Color color) {

Vector2 point(x,y);
drawPoint(point, linesize, color);

}
void VectorShape::drawBox(Vector2 point1, Vector2 point2,

int linesize, Color color) {
//top line
Vector2 upperRight(point2.x, point1.y);
drawLine(point1, upperRight, linesize, color);
//left line
Vector2 lowerLeft(point1.x, point2.y);
drawLine(lowerLeft, point1, linesize, color);
//right line
drawLine(upperRight, point2, linesize, color);
//bottom line
drawLine(point2, lowerLeft, linesize, color);

}
void VectorShape::drawBox(double x1, double y1, double x2, double y2,

int linesize, Color color) {
Vector2 p1(x1,y1);
Vector2 p2(x2,y2);
drawBox(p1, p2, linesize, color);

}

Drawing Vector Shapes 457

void VectorShape::drawBox(Rect rect, int linesize, Color color) {
Vector2 p1(rect.left, rect.top);
Vector2 p2(rect.right, rect.bottom);
drawBox(p1, p2, linesize, color);

}
void VectorShape::drawFilledBox(Rect rect, Color color) {

Vector2 p1(rect.left, rect.top);
Vector2 p2(rect.right, rect.top);
drawLine(p1, p2, rect.bottom-rect.top, color);

}
void VectorShape::drawD3DXLine(Vector2 start, Vector2 end,

float size, Color color) {
D3DXVECTOR2 lineList[] = { start.ToD3DXVECTOR2(),

end.ToD3DXVECTOR2() };
d3dxline->SetWidth(size);
d3dxline->Begin();
d3dxline->Draw(lineList, 2, color.ToD3DCOLOR());
d3dxline->End();

}

Vector Shape Demo
The Vector Shape Demo program is shown in Figure 15.1. The results are
intriguing if not unsurprising: ID3DXLine outperforms VectorShape by 600%,
with 42,000 shapes per second and 7,000 shapes per second, respectively.
D3DXLine is rendering lines in the GPU while VectorShape is rendering lines
using ID3DXSprite. Performance might have been closer if VectorShape did not
have to call two very slow math functions—Distance() and AngleToTarget(). I
don’t need a profiler to prove that these two function calls are the bottleneck,
knowing that ID3DXLine is using Direct3D’s basic line list rendering capability in
the GPU which requires no trigonometric calculations. The important thing is
that we get similar results with both line-drawing tools, meaning they are
interchangeable. Where VectorShape may come in handy is when we need to
render lines in the midst of a sprite batch update, while ID3DXSprite is in the
middle of rendering a bunch of game objects, where it would be inconvenient to
switch out of 2D mode, back into 3D mode, just to render the line(s). Knowing
about the performance bottleneck with VectorShape should not affect a game-
play decision, since it does fine at rendering a few hundred lines without any

458 Chapter 15 n Rendering to a Texture

noticeable performance degradation—it’s only up in the thousands of lines that
the frequent trig function calls started slowing things down.

However, there is one very easy optimization that could be made here—the calls
to Distance() and AngleToTarget() could be moved into the update function,
separating these calculations from the actual rendering. That would go a long
way toward closing the performance gap between ID3DXSprite and VectorShape,
and worth trying out if the need arises for extra performance. Note that this is a
subset of the source code—see the project in this chapter’s resource files for full
commenting and error handling code.

Adv i c e

Note: The line-drawing performance in this program does not represent absolute performance, just
performance of a comparative nature in which 10 lines at a time are drawn by each method
(ID3DXLine and VectorShape) repeatedly for one full second at a time. The hardware is
capable of much higher line counts, of course.

Figure 15.1
The Vector Shape Demo is a performance comparison between our VectorShape class and
D3DXLine.

Drawing Vector Shapes 459

Following is the source code.

Texture* renderTarget1=NULL;
Texture* renderTarget2=NULL;
Font* font=NULL;
VectorShape* shape=NULL;
Timer timer;
bool flip=false;
int seconds=0;
int counter1=0,counter2=0;
int rate1=0,rate2=0;

bool game_init(HWND window) {
font = new Font("System",12);
renderTarget1 = new Texture();
renderTarget1->createRenderTarget(400,400);
renderTarget2 = new Texture();
renderTarget2->createRenderTarget(400,400);
shape = new VectorShape();
return true;

}

void game_update(float deltaTime) {
if (flip) {

g_engine->savePrimaryRenderTarget();
renderTarget1->renderStart(false, true);
for (int n=0; n<100; n++) {

Vector2 start(rand()%400, rand()%400);
Vector2 end(rand()%400, rand()%400);
float size = (float)(rand()%10);
Color color(rand()%255,rand()%255,rand()%255,rand()%255);
shape->drawD3DXLine(start,end,size,color);
counter1++;

}
renderTarget1->renderStop();
g_engine->restorePrimaryRenderTarget();

} else {
g_engine->savePrimaryRenderTarget();
renderTarget2->renderStart(false, true);
for (int n=0; n<100; n++) {

460 Chapter 15 n Rendering to a Texture

Color color(rand()%255,rand()%255,rand()%255,rand()%255);
Vector2 start(rand()%400, rand()%400);
Vector2 end(rand()%400, rand()%400);
int size = rand()%10;
shape->drawLine(start, end, size, color);
counter2++;

}
renderTarget2->renderStop();
g_engine->restorePrimaryRenderTarget();

}
}

void game_render2d() {
static ostringstream ostr;
ostr.str("");
ostr << "D3DXLine: " << rate1 << " lines/sec";
font->Print(0,0,ostr.str());
//draw render target 1
{

Sprite* target = new Sprite();
target->setPosition(0,20);
target->setImage(renderTarget1);
target->RenderFast();
delete target;

}
ostr.str("");
ostr << "VectorShape: " << rate2 << " lines/sec";
font->Print(450,0,ostr.str());
//draw render target 2
{

Sprite* target = new Sprite();
target->setPosition(450,20);
target->setImage(renderTarget2);
target->RenderFast();
delete target;

}
font->Print(900,0, Octane::ToString(seconds) + " SECS");
if (timer.Stopwatch(1000)) {

flip = !flip;

Drawing Vector Shapes 461

rate1=counter1;
counter1=0;
rate2=counter2;
counter2=0;
seconds++;

}
}

void game_event(Octane::IEvent* e) {
switch (e->getID()) {
case EVENT_KEYRELEASE:

KeyReleaseEvent* evt = (KeyReleaseEvent*) e;
switch (evt->keycode) {

case DIK_ESCAPE:
g_engine->Shutdown();
break;

}
break;

}
}

Scrolling Background Layers
There are quite a few game genres that are based on scrolling backgrounds.
There are the vertical scrollers, usually shoot-em-up games, and the sideways
scrollers. Of the latter, there are two main categories of games—side-scrolling
platformer games, and side-scrolling shoot-em-ups. But there’s also a third type
of game that can be made when a background scroller is available—a top-down
view game such as the traditional RPG (role-playing game) popularized by
games such as Zelda and Ultima.

Bitmap Layers
We’ll start by learning how to create a scroll buffer in memory using our Texture
class, and then render something onto that memory texture—and presto, we’ll
have a scrolling layer. Beyond that, the ability to render the layer at any location,
to any target rectangle size, and with any alpha level, provides for some very
advanced gameplay capabilities for the aforementioned genres. Our Layer class
will function at a high level, taking care of most of the lower-level details like
creating the scroll buffer, filling in the scroll buffer with a bitmap, and making it

462 Chapter 15 n Rendering to a Texture

possible to render anything onto the scroll buffer (such as tiles from a tile sheet).
We’ll see how to use the Layer class shortly.

Layer Class Header

Here is the interface definition for the Layer class. Of particular note is the
createBounded() and createWrapping() functions. These two functions will
create a scrollable layer buffer (as a Texture) that is suited for rendering a
scrolling level with distinct boundaries, as well as being suited for rendering a
seamless texture repeatedly so that the appearance of endless scrolling is
achieved. An endless scrolling layer is helpful in a game when you want the
background to appear to go on for a long time without actually consuming huge
amounts of memory in the process—so we fake it with a repeating or seamless
texture and just wrap it around the edges. For this to work, we have to create a
scroll buffer that is four times larger than the source image, and then paste the
source image into the four corners of the buffer. This makes it possible to wrap
the texture endlessly, as long as the scroll buffer is twice the resolution of the
viewport (which might be the entire screen or just a small window).

class Layer {
private:

int bufferw,bufferh;
int windoww,windowh;

public:
Texture *texture;
double scrollx,scrolly;
Layer();
virtual ~Layer();
int createBounded(int bufferw, int bufferh, int windoww, int windowh);
int createWrapping(Texture *seamlessTex);
//these are just passed on to Texture
bool renderStart(bool clear = true, Color color = Color(0,0,0,0));
bool renderStop();
//updating the scroller
void updateBounded(double scrollx,double scrolly);
void updateBounded(Vector3 scroll);
void updateWrapping(double scrollx,double scrolly);
void updateWrapping(Vector3 scroll);
//drawing

Scrolling Background Layers 463

void drawBounded(int x,int y, Color color = Color(255,255,255,255));
void drawWrapping(int x,int y, Color color = Color(255,255,255,255));

};

Layer Class Implementation

The Layer class does a lot of work for us, making it actually quite easy to build a
scrolling game out of it. Note the two update functions, updateBounded() and
updateWrapping()—these functions must be called from the game’s update()

function, as they will refresh the scroll buffer based on the current scroll
position. Note secondly the two rendering functions—drawBounded() and draw-

Wrapping(). You can’t draw a bounded scroll buffer with the drawWrapping()

function, and vice versa, because they are not interchangeable. It might be
interesting to abstract the two forms of scrolling with a property and have
the Layer class decide how to update and render its buffer based on the
programmer’s preference. But the class does a good job as is, and that might
be suitable for a subclass suited for a specific game genre.

Layer::Layer() {
bufferw = bufferh = 0;
windoww = windowh = 0;
texture = NULL;
scrollx = scrolly = 0.0;

}
Layer::~Layer() {

if (texture) {
delete texture;
texture = NULL;

}
}

/** Creates a layer; dimensions must be within 256 to 4096 for
the primary window output used for all rendering **/

int Layer::createBounded(int bufferw, int bufferh, int windoww, int windowh) {
this->bufferw = bufferw;
this->bufferh = bufferh;
this->windoww = windoww;
this->windowh = windowh;
//these are arbitrary, just chosen to prevent huge memory
if (bufferw < 256) return 1;

464 Chapter 15 n Rendering to a Texture

else if (bufferw > 4096) return 2;
if (bufferh < 256) return 3;
else if (bufferh > 4096) return 4;
texture = new Texture();
texture->createRenderTarget(bufferw,bufferh);
return 0;

}

// A seamless image can be wrapped top/bottom or left/right
int Layer::createWrapping(Texture *seamlessTex) {

windoww = seamlessTex->getWidth();
windowh = seamlessTex->getHeight();
bufferw = windoww*2;
bufferh = windowh*2;
texture = new Texture();
texture->createRenderTarget(bufferw,bufferh);
texture->renderStart(true, true, Color(0,0,0,0));
RECT source = seamlessTex->getBounds();
D3DXVECTOR3 center(0.0f, 0.0f, 0.0f);
//upper left quadrant of scroll buffer
D3DXVECTOR3 position(0.0f, 0.0f, 0.0f);
g_engine->getSpriteObj()->Draw(seamlessTex->texture,

&source, ¢er, &position, 0xffffffff);
//upper right quadrant of scroll buffer
position.x = (float) source.right;
g_engine->getSpriteObj()->Draw(seamlessTex->texture,

&source, ¢er, &position, 0xffffffff);
//lower left quadrant of scroll buffer
position.x = 0;
position.y = (float)source.bottom;
g_engine->getSpriteObj()->Draw(seamlessTex->texture,

&source, ¢er, &position, 0xffffffff);
//lower right quadrant of scroll buffer
position.x = (float)source.right;
g_engine->getSpriteObj()->Draw(seamlessTex->texture,

&source, ¢er, &position, 0xffffffff);
texture->renderStop(true);
return 0;

}
// Pass thru to Texture: begin rendering to texture

Scrolling Background Layers 465

bool Layer::renderStart(bool clear, Color color) {
return (texture->renderStart(clear, true, color));

}
// Pass thru to Texture: done rendering to texture
bool Layer::renderStop() {

return (texture->renderStop(true));
}
void Layer::updateBounded(double vx,double vy) {

scrollx += vx;
scrolly += vy;
if (scrollx < 0) scrollx = 0;
if (scrollx > bufferw - windoww - 1)

scrollx = bufferw - windoww - 1;
if (scrolly < 0) scrolly = 0;
if (scrolly > bufferh - windowh - 1)

scrolly = bufferh - windowh - 1;
}
void Layer::updateBounded(Vector3 vel) {

updateBounded(vel.x,vel.y);
}
void Layer::updateWrapping(double vx,double vy) {

scrollx += vx;
scrolly += vy;
if (scrolly < 0)

scrolly = bufferh - windowh - 1;
if (scrolly > bufferh - windowh - 1)

scrolly = 0;
if (scrollx < 0)

scrollx = bufferw - windoww - 1;
if (scrollx > bufferw - windoww - 1)

scrollx = 0;
}
void Layer::updateWrapping(Vector3 vel) {

updateWrapping(vel.x,vel.y);
}
void Layer::drawBounded(int x,int y, Color color) {

RECT srect = { (long)scrollx, (long)scrolly,
(long)scrollx+windoww, (long)scrolly+windowh };

D3DXVECTOR3 pos((float)x, (float)y, 0.0f);
g_engine->getSpriteObj()->Draw(texture->texture,

&srect, NULL, &pos, color.ToD3DCOLOR());

466 Chapter 15 n Rendering to a Texture

}
void Layer::drawWrapping(int x,int y, Color color) {

RECT srect = { (long)scrollx, (long)scrolly,
(long)scrollx+windoww, (long)scrolly+windowh };

D3DXVECTOR3 pos((float)x, (float)y, 0.0f);
g_engine->getSpriteObj()->Draw(texture->texture,

srect, NULL, &pos, color.ToD3DCOLOR());
}

Scrolling Layer Demo

To demonstrate the Layer class, I present you with a program called the
Scrolling Layer Demo. This demo creates four layers, each with random shapes
rendered onto them so you can clearly discern each one. Figure 15.2 shows the
deepest layer that is behind the other three. This layer scrolls at the slowest speed
to simulate parallax distance. These layer images are quite large—1800� 1800—
because that is the size of the scroll buffer.

Figure 15.2
The fourth background layer does not scroll so it is only the size of the viewport (900� 600).

Scrolling Background Layers 467

The next figure shown in Figure 15.3 shows the third layer, drawn over the top
of the fourth layer, and containing similar box shapes in a different color. This
layer will also scroll more slowly than the two in front of it, but slightly faster
than the fourth one behind it.

The second layer is shown in Figure 15.4. This layer moves slightly faster than
the previous one, and is filled with random boxes.

Finally, the first and final layer, shown in Figure 15.5, is drawn over all of the
others with alpha transparency making it possible to see each successive layer
below, all the way to the fourth layer at the bottom (or back, depending on how
you visualize it).

Figure 15.3
The third background layer is the size of the bounded scroll buffer (1800� 1800) and filled with random
yellow boxes.

468 Chapter 15 n Rendering to a Texture

The Scrolling Layer Demo is shown with all four layers moving together at
different speeds to produce a parallax effect. See Figure 15.6. In the code listing
for this program, note that redundant code (including most of the comment and
error handling lines) has been omitted for space. Please see the complete project
for these details.

Font* font = NULL;
Font* font2 = NULL;
Layer *layer1 = NULL;
Layer *layer2 = NULL;
Layer *layer3 = NULL;
Layer *layer4 = NULL;
VectorShape *shape = NULL;

Figure 15.4
The second background layer is the size of the bounded scroll buffer (1800� 1800) and filled with
random green boxes.

Scrolling Background Layers 469

const int WINDOWW = 900;
const int WINDOWH = 600;
const int BUFFERW = WINDOWW * 2;
const int BUFFERH = WINDOWH * 3;
double scrollx=0, scrolly=0;
double basevel = 4.0;
double velx=basevel, vely=0.0;
int direction = 1;

void createlayer4() {
//create non-moving layer that is rendered first
layer4 = new Layer();
layer4->createBounded(WINDOWW, WINDOWH, WINDOWW, WINDOWH);

Figure 15.5
The first background layer is the size of the bounded scroll buffer (1800� 1800) and filled with random
red boxes.

470 Chapter 15 n Rendering to a Texture

layer4->renderStart();
int sizew = WINDOWW/10;
int sizeh = WINDOWH/10;
for (int y=0; y<sizeh; y++) {

for (int x=0; x<sizew; x++) {
Vector2 p1(x*sizew, y*sizeh);
Vector2 p2(p1.x+sizew-1, p1.y);
shape->drawLine(p1, p2, sizeh-1, Color(60,60,200,255));

}
}
font2->Print(0,0,"LAYER 4");
layer4->renderStop();

}

void createlayer3() {

Figure 15.6
The Scrolling Layer Demo program.

Scrolling Background Layers 471

//create slow scrolling layer filled with random dark red boxes
layer3 = new Layer();
layer3->createBounded(BUFFERW, BUFFERH, WINDOWW, WINDOWH);
layer3->renderStart();
Vector2 p1(0.0, 0.0);
Vector2 p2(BUFFERW-1, BUFFERH-1);
shape->drawBox(p1, p2, 2, Color(100,255,0,255));
for (int n=0; n<50; n++) {

int x = rand() % BUFFERW-60;
int y = rand() % BUFFERH-60;
shape->drawPoint((double) x, (double) y, 60, Color(255,255,0,255));

}
font2->Print(100,100,"LAYER 3");
layer3->renderStop();

}

void createlayer2() {
//create medium scrolling layer filled with random green boxes
layer2 = new Layer();
layer2->createBounded(BUFFERW, BUFFERH, WINDOWW, WINDOWH);
layer2->renderStart(true, Color(0,0,0,0));
for (int n=0; n<100; n++) {

int x = rand() % BUFFERW-40;
int y = rand() % BUFFERH-40;
shape->drawPoint((double) x, (double) y, 40, Color(0,200,0,255));

}
font2->Print(200,200,"LAYER 2");
layer2->renderStop();

}

void createlayer1() {
//create medium scrolling layer filled with random green boxes
layer1 = new Layer();
layer1->createBounded(BUFFERW, BUFFERH, WINDOWW, WINDOWH);
layer1->renderStart();
for (int n=0; n<200; n++) {

double x = (double)(rand() % BUFFERW-20);
double y = (double)(rand() % BUFFERH-20);
shape->drawPoint(x, y, 20, Color(250,0,0,255));

472 Chapter 15 n Rendering to a Texture

}
font2->Print(300,300,"LAYER 1");
layer1->renderStop();

}

bool game_init(HWND window) {
font = new Font("Arial Bold",18);
font2 = new Font("Arial Bold",24);
shape = new VectorShape();
g_engine->savePrimaryRenderTarget();
createlayer4();
createlayer3();
createlayer2();
createlayer1();
g_engine->restorePrimaryRenderTarget();
g_engine->setSpriteIdentity();
return true;

}

void game_update(float deltaTime) {
switch (direction) {
case 1: //right

velx = basevel; vely = 0.0; break;
case 2: //down

velx = 0.0; vely = basevel; break;
case 3: //left

velx = -basevel; vely = 0.0; break;
case 4: //up

velx = 0.0; vely = -basevel; break;
}
//update scroll position
scrollx += deltaTime*velx*50.0;
scrolly += deltaTime*vely*50.0;
if (scrollx <0) {

scrollx = 0; direction = 4;
}
if (scrollx > BUFFERW - WINDOWW - 1) {

scrollx = BUFFERW - WINDOWW - 1;
direction = 2;

}

Scrolling Background Layers 473

if (scrolly < 0) {
scrolly = 0; direction = 1;

}
if (scrolly > BUFFERH - WINDOWH - 1) {

scrolly = BUFFERH - WINDOWH - 1;
direction = 3;

}
}

void game_render2d() {
ostringstream os;
//draw layers
layer4->scrollx = 0;
layer4->scrolly = 0;
layer4->drawBounded(50,100);
layer3->scrollx = scrollx/3;
layer3->scrolly = scrolly/3;
layer3->drawBounded(50,100);
layer2->scrollx = scrollx/2;
layer2->scrolly = scrolly/2;
layer2->drawBounded(50,100);
layer1->scrollx = scrollx;
layer1->scrolly = scrolly;
layer1->drawBounded(50,100);

//print debugging info
font->Print(50,80,

"Buffer " + ToString(BUFFERW) + "," + ToString(BUFFERH) +
" Window " + ToString(WINDOWW) + "," + ToString(WINDOWH) +
" Scroll " + ToString(scrollx) + "," + ToString(scrolly));

long core = g_engine->getCoreFrameRate();
font->Print(0,0, "Core: " + ToString((double)(1000.0f/core)) +

" ms (" + ToString(core) + " fps)");
long fps = g_engine->getScreenFrameRate();
font->Print(200,0, "Screen: " + ToString(fps) + " fps");

}

void game_event(Octane::IEvent* e) {
switch (e->getID()) {
case EVENT_KEYRELEASE:

474 Chapter 15 n Rendering to a Texture

KeyReleaseEvent* evt = (KeyReleaseEvent*) e;
switch (evt->keycode) {

case DIK_ESCAPE:
g_engine->Shutdown();
break;

}
break;

}
}

Tiled Layers
The Layer class already has the capability to render a layer suitable for a side-
scrolling platformer game (Mario, Sonic, Mega Man, Contra, etc.). Rendering
the tile blocks onto an empty layer texture is the key to making this type of
game. When the tiled layer has been created, then the process is to open it up for
rendering with Layer::renderStart(), then draw the tiles onto the layer’s
internal texture just as if we’re drawing them onto the screen (with Sprite

animation code used to process the tilemap numbers as animation frames).
Once rendered onto the layer, we do not need the tile sheet any longer so it can
be disposed. In the drawTilemap() function below you can see that it is self-
contained, loading its tile block assets, rendering them onto a render target layer,
and then cleaning up afterward. The LEVELW and LEVELH constants are global, so
a more reusable function would use parameters.

void drawTilemap() {
Sprite* blocks = new Sprite();
blocks->Load("blocks.bmp", Color(0,0,0,0));
blocks->setColumns(4);
blocks->setSize(32,32);
blocks->setAnimationRange(0,3);
for (int y=0; y<LEVELH; y++) {

for (int x=0; x<LEVELW; x++) {
double xp = x * 32;
double yp = y * 32;
blocks->setPosition(xp, yp);
int frame = level[y][x];
if (frame>0) {

blocks->setCurrentFrame(frame);
blocks->Render();

Scrolling Background Layers 475

}
}

}
delete blocks;

}

The gameplay code for a tile scroller would involve calculating the position of
the player, loot, and enemy sprites and rendering them with collision among the
tiles. Calculating the position of each tile is similar to the process used to render
them onto the layer, by going through each tile and noting its value (0 to 3 in
this example). Tile number 0 is empty, while anything else would be a collision.
There are four layers in the example.

Layer 1 is shown in Figure 15.7, and is the layer rendered first so it appears in
the back behind the other three.

Figure 15.7
The first layer of the tiled layer demo is in the far background.

476 Chapter 15 n Rendering to a Texture

The second layer (Figure 15.8) is similar to the first one, but it is rendered with a
bit of alpha so that the layer beneath it is discernible.

The third layer (Figure 15.9) is our gameplay layer, which the player’s sprite and
other game objects would use to determine how to behave—using the tile blocks
as walking platforms. This layer is rendered with 100% opacity (zero alpha) so it
stands out when rendered on the screen.

The fourth and final layer (Figure 15.10) is rendered over the top of the
gameplay layer with a high amount of alpha, so it is only barely visible, but it is
enough to obstruct some of the third layer and those below. Depending on a
game’s design goals, this may be desired to increase the difficulty of the game. In
a real game, this fourth layer would represent a foreground wall in a building or
it may reveal the gameplay through windows as if the camera is outside a
building looking in (reminiscent of the Castlevania series).

Figure 15.8
The second layer of the tiled layer demo is drawn over the first one.

Scrolling Background Layers 477

It will be almost impossible to discern any detail in the screenshot of this project,
shown in Figure 15.11, but you can make out the platformer tiles showing
through more clearly in the fully transparent regions of the fourth layer. The
alpha blending of the four layers looks remarkable on the screen, but it is
impossible to appreciate it in print. Granted, the fourth layer is vanity, but I
wanted to show how a fully opaque tile layer looks behind one of the translucent
bitmap layers. Note that include lines, comments, and error handling code has
been omitted for space.

Font *font = NULL;
int mouse_x, mouse_y, mouse_b;
VectorShape *shape = NULL;
Texture* texBackgrnd=NULL;
Layer* layer1 = NULL;
Layer* layer2 = NULL;

Figure 15.9
The third layer of the tiled layer demo is filled with platformer gameplay tiles.

478 Chapter 15 n Rendering to a Texture

Layer* layer3 = NULL;
Layer* layer4 = NULL;
const int WINDOWW = 800;
const int WINDOWH = 600;
const int BUFFERW = WINDOWW * 3;
const int BUFFERH = WINDOWH * 1;
double basevel = 4.0;
double velx=basevel, vely=0.0;
int direction = 1;

const int LEVELW = 60;
const int LEVELH = 36;
const int level[LEVELH][LEVELW] = {
{1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0,0,3,3,3,3,3,3,3,3,0,0,0,0,0,0,0,0,1,1,1,1,1,1,0,0,0,0,0,0,1,1,1,1,1},

{1,1,1,1,1,0,0,0,0,0,0,0,0,0,0,0,0,3,3,3,3,3,3,3,3,0,0,0,0,0,0,0,0,0,0,1,1,1,0,0,0,0,0,0,0,0,0,0,1,1},

Figure 15.10
The fourth layer of the tiled layer demo is drawn over the tiled layer.

Scrolling Background Layers 479

{1,1,1,0,1},

. . . //portion omitted to save space–see complete project for details
{0,0,1,1,1,1,0,0,0,1,1,1,1,0,1,0,0,1,0,0,0,1,1,1,0,0,0,1,1,1,1,0,0,1,1,1,1,0,0,1,1,1,1,0,1,0,0,1,0,0},

{0,0},

{0,0},

};

void drawTilemap() {
Sprite* blocks = new Sprite();
blocks->Load("blocks.bmp", Color(0,0,0,0));
blocks->setColumns(4);
blocks->setSize(32,32);
blocks->setAnimationRange(0,3);
for (int y=0; y<LEVELH; y++) {

Figure 15.11
The Tiled Layer Demo program shows the output of all four layers being rendered together.

480 Chapter 15 n Rendering to a Texture

for (int x=0; x<LEVELW; x++) {
double xp = x * 32;
double yp = y * 32;
blocks->setPosition(xp, yp);
int frame = level[y][x];
if (frame>0) {

blocks->setCurrentFrame(frame);
blocks->Render();

}
}

}
delete blocks;

}

void createlayer4() {
Texture* image = new Texture();
image->Load("steel.tga");
layer4 = new Layer();
layer4->createWrapping(image);
delete image;

}

void createlayer3() {
Texture* image = new Texture();
image->Create(800,600);
layer3 = new Layer();
layer3->createWrapping(image);
layer3->renderStart();
drawTilemap();
layer3->renderStop();
delete image;

}

void createlayer2() {
Texture* image = new Texture();
image->Load("plastic.bmp");
layer2 = new Layer();
layer2->createWrapping(image);
delete image;

}

Scrolling Background Layers 481

void createlayer1() {
Texture* image = new Texture();
image->Load("alloy.bmp");
layer1 = new Layer();
layer1->createWrapping(image);
delete image;
layer1->renderStart(false);
font->Print(0,0,"LAYER 1");
layer1->renderStop();

}

bool game_init(HWND window) {
font = new Font("Arial Bold",18);
shape = new VectorShape();
g_engine->savePrimaryRenderTarget();
createlayer1();
createlayer2();
createlayer3();
createlayer4();
g_engine->restorePrimaryRenderTarget();
g_engine->setSpriteIdentity();
return true;

}

void game_update(float deltaTime) {
float vx = deltaTime*velx*20.0;
float vy = deltaTime*vely*20.0;
layer1->updateWrapping(vx/4, vy/4);
layer2->updateWrapping(vx/3, vy/3);
layer3->updateWrapping(vx/2, vy/2);
layer4->updateWrapping(vx, vy);

}

void game_render2d() {
ostringstream os;
//draw layers
layer1->drawWrapping(50,100, Color(255,255,255,255));
layer2->drawWrapping(50,100, Color(255,255,255,120));
layer3->drawWrapping(50,100, Color(255,255,255,255));
layer4->drawWrapping(50,100, Color(255,255,255,150));

482 Chapter 15 n Rendering to a Texture

//print debugging info
long core = g_engine->getCoreFrameRate();
long fps = g_engine->getScreenFrameRate();
os << "Core: " << (double)(1000.0f/core) << " ms (" << core << " fps)";
os << " Screen: " << fps << " fps";
font->Print(0,0,os.str());
os.str("");
os << "Buffer " << BUFFERW << "," << BUFFERH;
os << " Window " << WINDOWW << "," << WINDOWH;
os << " Scroll " << layer1->scrollx << "," << layer1->scrolly;
font->Print(50,80,os.str());

}

void game_event(Octane::IEvent* e) {
switch (e->getID()) {
case EVENT_KEYRELEASE:

KeyReleaseEvent* evt = (KeyReleaseEvent*) e;
switch (evt->keycode) {

case DIK_ESCAPE:
g_engine->Shutdown();
break;

}
break;

}
}

Summary
This was a challenging chapter because we did some rather unusual things in 2D
with a technique often used solely for environmental cube mapping—rendering
to a different target texture. There are more uses for this advanced technique
than those presented here. For instance, it’s possible to use the VectorShape class
to draw GUI components such as a label and a button, using our existing Font

class, and the Event system, and without any extra GUI management code, build
a very decent graphical user interface.

Summary 483

This page intentionally left blank

Entity Management

An entity is usually an instance of an encapsulated object that fulfills some
aspect of gameplay. For instance, you might think of a sound effect as an entity,
and that might be a valid description, but it doesn’t quite fit. I think of a sound
effect as a result of some action performed by an entity, not as an entity itself.
What types of objects in a game are likely to perform actions or interact in some
way? Most likely, only a mesh or a sprite is likely to interact in a game. So, let’s
imagine that mesh and sprite objects share at least one behavior—they are both
entities in a game. By sharing basic properties, such as position and velocity, we
can manipulate both sprites and meshes using a single call to shared function
names. This takes the form of virtual functions in the class definition. Pure
virtuals are functions declared with ¼ 0 in the definition, which is equivalent to
setting the function pointer to null. On the technical side of Cþþ, class function
names are actually pointers to the shared function code in memory, and a pure
virtual means that the subclasses override the base class’ function pointer. (I’m
using the word “function” to describe the work performed by an entity, which is
interchangeable with the word “method.”) From these entities we should drive
the gameplay objects required by a game’s design.

Topics covered in this chapter include:

n Building an entity manager

n Updating entities

n Rendering 3D entities

chapter 16

485

n Rendering 2D entities

n Adding and removing entities

n Managed timer

n Managed sprites

n Managed meshes

Building an Entity Manager
The entity management system in a game engine shouldn’t care what type of
object you add to it, as long as that object is derived from a base entity. You
should be able to subclass an entity into as many different entity types as you
want to use in your game! For our game engine, we’ll support the Sprite, Mesh,
and BoneMesh classes (created in previous chapters) so they can be used as
entities and add one or more new entity types as needed. You could even treat
things such as lights and cameras as entities. It is also essential to support objects
in the entity manager that you want to control with script code down the road.

Up to this point, we have been adding new features to the game engine via new
Cþþ classes for such things as meshes, sprites, terrain, and so forth. Those
classes do not make a game engine; they are merely tools. A true engine must do
something other than just offer up classes! Imagine it this way: You have a block,
crankshaft, heads, camshafts, pistons, spark plugs, a fuel injection intake, and a
throttle body; do these parts individually produce power? An engine performs
work. Every component is crucial to the correct running of the engine, but the
engine is far more than just the sum of its parts. Let’s follow the same analogy
when thinking about our game engine, and then work on putting the components
together, from individual pieces to a whole machine that can produce work. An
entity manager is one such means to producing work within the engine. Rather
than just consuming the classes provided by the engine, we will have the engine
itself actually perform some gameplay processing internally. Up to this point, we
have been manually cranking our engine, but now it’s time to start it up!

An entity class should provide base properties and functions that will be shared
by all entities (regardless of gameplay functionality). We want to be able to add
an entity by name or identifier number, among other things, and the entity class
should provide these facilities.

486 Chapter 16 n Entity Management

An entity manager will automatically process the entities and then report the
results to the game (or rather, to you, the programmer). This will only work if
the entities are properly initialized before they are added. The properties will
affect how each entity is drawn, moved, animated, and so forth. If we set an
entity’s properties a certain way, it should automatically move and animate. In
the future, we may want to add behavior to game entities so they interact with
their environment in an even higher level of automation (which is the subject of
A.I.). Before that will be possible, however, the entity manager must be
programmed with the basic logistics of managing entities.

The entity manager should make it easy to manipulate entities once they’re in
the system. We need functionality that makes it possible to add, find, and delete
entities from the game code. In the engine itself, we need to automatically move,
animate, and draw entities based on their properties. This is the part where game
programming really starts to get fun, because at this point we’re working at a
higher level, more in the realm of designing gameplay than doing low-level stuff
like rendering. This automated functionality is possible through the use of the
Standard Template Library; specifically, a std::list or a std::vector. While a
std::list is better at adding and deleting items, a std::vector is better at
processing data in sequences. To simplify iteration, we’ll use BOOST_FOREACH

from the boost/foreach.hpp library and avoid using iterators.

Adv i c e

If your standard library knowledge is a bit rusty, I recommend Cþþ Standard Library Practical Tips
(Course PTR, 2005) by Greg Reese—it was a good reference while I was working on the code in
this book.

The entity list will be defined as a std::vector of type Entity*, and it will
manage all entities in the engine. We will revisit the entity manager again to add
multi-threaded optimizations in Chapter 18.

std::vector<Entity*> p_entities;

Adv i c e

This chapter’s resource files can be downloaded from www.jharbour.com/forum or www.courseptr.
com/downloads. Not every line of code will be in print due to space considerations, only the most
important sections of code.

Building an Entity Manager 487

The Entity Class
Let’s start with a new class called Entity. This simple class is more of a
placeholder with a few minor properties used to identify the type of entity being
subclassed. Some of the functions in Entity are declared as pure virtual,
meaning you must subclass Entity into a new class; you cannot use an Entity

alone. The properties are all important and are used by the entity manager to
process the entities. Actually, the manager doesn’t really care whether your
entity is a sprite, a mesh, or a timer; it will just process the virtual methods and
use the properties you provide it. Properties will determine whether an entity is
used for processing (such as a timer), for 3D rendering (such as a mesh), or for
2D rendering (such as a GUI control).

Although a strongly typed engine might define specific entity types with an
enumeration or some constant values (such as EntityType), I did not want to
regulate the engine too much—it’s up to you to set the properties when you
create your entity objects and add them to the manager, and then write the
code to respond to the events based on object type. One very interesting
property is lifetime (composed of two variables—lifetimeStart and life-

timeLength). Using this property, you can set an entity to auto-expire after a
fixed amount of time (measured in milliseconds). If you want an entity to
participate in the game for only 10 seconds, you can set its lifetime to 10000,
and it will be automatically removed when the time expires. This can be
extremely handy for many types of games in which you would otherwise have
to add logic to terminate things such as bullets and explosions manually. After
adding a bullet to the game with a specified lifetime, you will not need to keep
track of it as it will be removed from the game automatically when its time
is up!

There is one property that we must set in order to perform the correct type of
rendering: NONE (for a process), 2D, or 3D—so this property will be a
constructor parameter to make sure it is set. You cannot render 2D and 3D
objects together because 2D sprites must be rendered by ID3DXSprite within the
3D rendering pipeline. The Entity class, defined in a moment, includes an
enumeration called RenderType that also falls inside the overall Octane name-
space (so it’s visible to the Entity class). We need to use this simple enumeration
to determine whether an entity should be rendered, and whether it falls into the
2D or 3D category. It’s automatic once the various classes are revised.

488 Chapter 16 n Entity Management

First, our managed entities must be identifiable, and by more means than one.
Internally, the manager should be able to (if we desire) sort the entity list by
identifier (ID), by entity type (sprite, mesh, etc.), or by rendering type (2D, 3D,
etc.). The entity type will grow in time as new classes are added to the manager.

enum EntityType {
ENTITY_UNKNOWN=-1,ENTITY_TIMER=0,ENTITY_MESH,ENTITY_SPRITE };

Next we have the rendering type. While EntityType will grow to add new types
of entities in time, the RenderType enumeration will most likely not change since
it is of a simpler type of state.

enum RenderType { RENDER_NONE = 0, RENDER_2D, RENDER_3D };

Below is the Entity class implementation. All we need here is the constructor to
initialize the property variables; otherwise, the Entity class is mostly made up of
accessors and mutators in the header. Note that Entity does not have a default
constructor, only one with the RenderType parameter. You must tell an entity
whether it should be rendered in 2D or 3D or NONE, and this takes care of that
requirement.

class Entity {
protected:

int id;
std::string name;
bool alive;
bool visible;
enum RenderType renderType;
enum EntityType entityType;
float lifetimeStart;
float lifetimeCounter;
float lifetimeLength;

public:
Entity(enum RenderType renderType);
virtual ~Entity() { };

//pure virtuals required in sub-classes
virtual void Update(float deltaTime) = 0;
virtual void Render() = 0;

void setID(int value) { id = value; }
int getID() { return id; }

Building an Entity Manager 489

void setRenderType(enum RenderType type) {renderType=type;}
enum RenderType getRenderType() { return renderType; }
std::string getName() { return name; }
void setName(std::string value) { name = value; }
bool getVisible() { return visible; }
void setVisible(bool value) { visible = value; }
bool getAlive() { return alive; }
void setAlive(bool value) { alive = value; }
float getLifetime() { return lifetimeLength; }
void setLifetime(float value) { lifetimeLength = value; }
bool lifetimeExpired() {

return (lifetimeStart + lifetimeCounter > lifetimeLength);
}
EntityType getEntityType() { return entityType; }
void setEntityType(enum EntityType value) { entityType = value; }

};

Implementation of the Entity class will be short and simple because most of the
class is interface and the real functionality will be found in subclasses like Sprite.

Entity::Entity(enum RenderType type) {
renderType = type;
id = -1;
name = "";
visible = true;
alive = true;
entityType = ENTITY_UNKNOWN;
lifetimeStart = 0;
lifetimeCounter = 0;
lifetimeLength = 0;

}

The two pure virtual functions defined in the Entity class are Entity::Update()

and Entity::Render(), which means these two functions must be implemented
in a subclass. We’ll get to that in a bit, with modifications to some of the classes.
First, we need to make some changes to the core engine.

Adv i c e

There are too many modifications and additions taking place in the engine project to point them all
out and list every line of code. This chapter will present the most important changes but gloss over
the many smaller details that would become too tedious to cover line by line. Please refer to the
Engine project in this chapter’s resource files.

490 Chapter 16 n Entity Management

Modifying the Engine
The engine will need to be modified to support entity management. This is the
part where we begin to take the components (Entity, Sprite, Mesh, and so on)
and assemble them into a functional engine. We’ll begin with some changes to
the Engine class. When a managed entity is being updated or rendered, there are
times when we will want to make changes to it. For instance, if we want to
render a force field around a spaceship without incurring a large amount of
memory for new artwork, then it may be more desirable to add the force field
over the ship as it is being rendered. When the spaceship is being updated—
moved based on velocity, tested for collisions, etc.—we may want to apply
behaviors to the object to influence it according to the requirements of the
gameplay. These two events are fired off through the engine’s event system and
received by the gameplay code’s game_event() function.

Event Changes

We have need for two new events in the engine to accommodate entity update
and render notifications.

enum eventtype {
EVENT_TIMER = 10,
EVENT_KEYPRESS = 20,
EVENT_KEYRELEASE = 30,
EVENT_MOUSECLICK = 40,
EVENT_MOUSEMOTION = 50,
EVENT_MOUSEWHEEL = 60,
EVENT_MOUSEMOVE = 70,
EVENT_ENTITYUPDATE = 80,
EVENT_ENTITYRENDER = 90,

};

Adv i c e

Does it seem wasteful to send a notice (like a “delivery confirmation”) every time an entity is
updated and rendered? Imagine how many function calls and Event objects that will generate in a
game with a couple thousand entities! The performance impact will be less important than
something like scene management (eliminating objects in the scene that are not visible, i.e., those
behind the camera), but it is still noticeable. This most certainly would benefit from an additional
property that would specify whether an entity needs to generate the update and render events—
perhaps an EventToggle property?

Building an Entity Manager 491

The new event classes (which subclass from IEvent) are EntityRenderEvent and
EntityUpdateEvent. These two events are generated in the engine core (i.e.,
Engine::Update()) as the entity manager is iterating through the list to update
and render each entity—if its properties allow.

class EntityRenderEvent : public IEvent {
public:

Octane::Entity* entity;
EntityRenderEvent(Entity* e);

};
class EntityUpdateEvent : public IEvent {
public:

Octane::Entity* entity;
EntityUpdateEvent(Entity* e);

};

We already added timing support to the event system back in Chapter 6, but
here it is again for reference. We will be using the TimerEvent event with the
AutoTimer class shortly as an example of non-rendering event handling.

class TimerEvent : public IEvent {
public:

int timerid;
TimerEvent(int tid);

};

The implementation of these class interfaces is also fairly simple—remember,
these classes will be generated and destroyed quickly and repeatedly while the
engine is running, so they should be lightweight.

EntityRenderEvent::EntityRenderEvent(Entity* e) {
id = EVENT_ENTITYRENDER;
entity = e;

}
EntityUpdateEvent::EntityUpdateEvent(Entity* e) {

id = EVENT_ENTITYUPDATE;
entity = e;

}
TimerEvent::TimerEvent(int tid) {

id = EVENT_TIMER;
timerid = tid;

}

492 Chapter 16 n Entity Management

We’ve been exploring a new “entity manager” quite a bit in the chapter so far,
but have not yet really explained what it is. The manager is not a class (although
it uses the Entity class); rather, it is new functionality in the engine, in the form
of new code that automatically updates and renders the managed entities. Again,
we define the entity list in the Engine.h private section:

std::vector<Entity*> p_entities;

This is template-based code. When the std::vector class is used to create the
instance called p_entities, we must tell the container what type of object it will
contain. The std::vector is a container for other objects. When this code is
compiled, the Cþþ compiler creates a new class based on a container of Entity
objects. When a class like Sprite is defined as a subclass of Entity, it can be
added to the list as well (the Cþþ compiler handles the differences in memory
size needed by each object, even when they are different).

Also in the private section of the Engine class are several new management
functions used internally by the engine to update, draw, and delete entities.
These functions are internal and not accessible outside of the engine core.

void updateEntities(float deltaTime);
void entitiesRender3D();
void entitiesRender2D();
void drawEntities();
void buryEntities();

There is also one new public function needed to add entities to the manager:

void addEntity(Entity* entity);

That odd-sounding buryEntities() function is actually quite descriptive,
because its job is to remove all “expired” entities from the list. But how does
an entity expire? Very simply: by setting its “alive” property to false.

Adv i c e

The magnificent thing about the entity manager (from a gameplay perspective) is that we can
dynamically add new entities to a game, and they are automatically updated and rendered. And, if
the lifetime property is used, the entity manager will even terminate an entity when its lifetime
is reached and remove it from memory. This functionality makes it possible to build a fully scripted
game engine using a script language such as LUA or Python.

Building an Entity Manager 493

Engine::Update

Located in the Engine.cpp file, the Engine::Update() function is the engine core,
called directly from the WinMain while loop, and residing at the lowest level of the
engine. Here is the complete source code for the function with the new entity
manager code highlighted in bold:

void Engine::Update(float deltaTime) {
static float accumTime=0;
//calculate core framerate
p_coreFrameCount++;
if (p_coreTimer.Stopwatch(1000)) {

p_coreFrameRate = p_coreFrameCount;
p_coreFrameCount = 0;

}

//fast update
game_update(deltaTime);

//update entities
if (!p_pauseMode) updateEntities(deltaTime);

//60fps = ~16 ms per frame
if (!timedUpdate.Stopwatch(16)) {

timedUpdate.Rest(1);
} else {

//calculate screen framerate
p_screenFrameCount++;
if (p_screenTimer.Stopwatch(1000)) {

p_screenFrameRate = p_screenFrameCount;
p_screenFrameCount = 0;

}

//update input devices
p_input->Update();
updateKeyboard();
updateMouse();

//begin rendering
if (p_device->BeginScene() == D3D_OK) {

g_engine->clearScene(p_backdropColor);

494 Chapter 16 n Entity Management

entitiesRender3D();
game_render3d();
p_spriteObj->Begin(D3DXSPRITE_ALPHABLEND);
entitiesRender2D();
game_render2d();
p_spriteObj->End();
p_device->EndScene();
p_device->Present(0,0,0,0);

}
}
//clean up expired entities
buryEntities();}

Updating Entities

The updateEntities() function is called from Engine::Update to process every-
thing in the entity list. “Process” here means to move, animate, and check the
lifetime of each entity, and call the game event functions for each entity that is
updated (but rendering is done elsewhere). If you want to add additional
functionality to the entity manager, this is where you will want to do that
because this code runs at the core clock speed—not the slow framerate speed.
This is where we will add some physics code in the near future.

void Engine::updateEntities(float deltaTime) {
BOOST_FOREACH(Entity* entity, p_entities) {

if (entity->getAlive()) {
//move/animate entity
entity->Update(deltaTime);

//tell game that this entity has been updated
raiseEvent(new EntityUpdateEvent(entity));

//see if this entity will auto-expire
if (entity->getLifetime() > 0) {

if (entity->lifetimeExpired())
entity->setAlive(false);

}
}

}
}

Building an Entity Manager 495

Rendering 3D Entities

The Engine:: entitiesRender3D() function is called from Engine::Update() to
process all 3D entities (if any). The entire entity list is iterated through; any
entities with a RenderType of RENDER_3D have their Render() method called. Any
other entities are ignored. If the gameplay design of a game requires that
something is rendered over the top of an entity (such as clothing, or a force field,
or a glowing effect), then that should be handled with a state variable when the
EntityUpdateEvent event is received—always be careful to preserve the render
stage framerate and use the untimed updated stage for logic.

void Engine::entitiesRender3D()
{

BOOST_FOREACH(Entity* entity, p_entities) {
if (entity->getRenderType() == RENDER_3D) {

if (entity->getAlive() && entity->getVisible()) {
entity->Render();
raiseEvent(new EntityRenderEvent(entity));

}
}

}
}

Adv i c e

Do your instincts tell you that it’s wasteful to iterate through the entire entity list twice to process
the 3D and 2D entities separately? That means you are anticipating how the entity manager can be
optimized, which is a good thing. However, processors are extremely good at doing loops today,
with their multiple pipeline architectures and cache memory, so don’t worry about duplicating
loops for different processes. In the end, the only code that takes clock cycles is the code in called
functions, while the code in the loop is pipelined and probably would not even show up in profiling.
As it turns out, we cannot combine these loops anyway because the 2D and 3D rendering must be
done at different times. One possible enhancement is a std::map—worth looking into!

Rendering 2D Entities

Like the entitiesRender2D() function, entitiesRender2D() also iterates through
the entity list and picks out objects with a RenderType of RENDER_2D and calls the
Render() method for each one. If it turns out during the development of a game
that you need to respond to an entity’s render event before rather than after it
takes place, you might consider adding another event or, better yet, handle such
things in the update event instead.

496 Chapter 16 n Entity Management

void Engine::entitiesRender2D()
{

BOOST_FOREACH(Entity* entity, p_entities) {
if (entity->getRenderType() == RENDER_2D) {

if (entity->getAlive() && entity->getVisible()) {
entity->Render();
raiseEvent(new EntityRenderEvent(entity));

}
}

}
}

Adv i c e

Don’t worry about slowing down your game by drawing too many sprites, because Direct3D
batches sprite rendering and does it extremely quickly in the 3D hardware. What you should be
concerned with is code that performs updates such as collision detection (covered in the next
chapter).

Removing “Dead” Entities

The last of the private entity manager support methods is BuryEntities. This
method iterates through the entity list (p_entities), looking for any objects that
are “dead” (where the alive property is false). Thus, to delete an object from the
entity manger, just call setAlive(false), and it will be removed at the end of the
frame update loop. Although you will create a new entity on the heap (with new)
and then add it to the entity manager, you will not need to remove entities
because the list::erase method automatically calls delete for each object as it is
destroyed. As a result, we can use a “fire and forget” policy with our entities and
trust that the container is cleaning up afterward.

void Engine::buryEntities()
{

std::vector<Entity*>::iterator iter = p_entities.begin();
while (iter != p_entities.end()) {

if ((*iter)->getAlive() == false) {
iter = p_entities.erase(iter);

}
else iter++;

}
}

Building an Entity Manager 497

Adding Entities

Now that the entity manager has been added to the engine for internal
processing, we need to add a public access method to give the gameplay code
access to the entity manager. The Engine::addEntity() function is used by the
game to add an entity to the manager (that is, any object derived from Entity—
which includes Sprite, Mesh, and any of their subclasses. First, you must create a
new object from a class derived from Entity, instantiate the class, set its
properties, and then add it to the list.

void Engine::addEntity(Entity *entity)
{

static int id = 0;
entity->setID(id);
p_entities.push_back(entity);
id++;

}

Managed AutoTimer—Non-Rendering
To test whether the engine’s new entity manager is working, we’ll write a test
program that uses a new class that does not require any rendering—AutoTimer.
This class has a couple of properties that determine how often it will fire (as a
timer) and how long it will last. The AutoTimer can be added to the entity
manager to generate regular timing events at any specified interval (in seconds
with fractional second support—such as 2.5 or 0.005).

AutoTimer.h
class AutoTimer : public Entity {
private:

float elapsedTime;
float repeatTime;
float repeatStart;
int id;

public:
AutoTimer(int timerid, float cycletime, float lifetime=0);
~AutoTimer(void);
int getID() { return id; }
//entity functions

498 Chapter 16 n Entity Management

void Update(float deltaTime);
void Render();

};

AutoTimer.cpp
AutoTimer::AutoTimer(int timerid, float cycletime, float lifetime)
: Entity(RENDER_NONE) {

setEntityType(ENTITY_TIMER);
id = timerid;
elapsedTime = 0;
repeatStart = 0;
repeatTime = cycletime;
setLifetime(lifetime);
setVisible(false);

}
AutoTimer::~AutoTimer() {}
void AutoTimer::Update(float deltaTime) {

if (repeatTime > 0) {
elapsedTime += deltaTime;
if (elapsedTime > repeatStart + repeatTime) {

repeatStart = elapsedTime;
g_engine->raiseEvent(new TimerEvent(id));

}
}

}

void AutoTimer::Render() { /* not used */ }

Testing AutoTimer

Here is an example of how to create an AutoTimer object and add it to the entity
manager, then watch for AutoTimer events coming in:

AutoTimer* timer = new AutoTimer(1, 1.0);
timer->setName("TIMER");
g_engine->addEntity(timer);

Now for the timer events. The game_event function receives all events, and the
one we want to watch for in this case is called EVENT_TIMER. Note that TimerEvent
does not maintain an elapsed running time or a delta time between events;
because those properties were used to create the timer it’s assumed that the firing
time occurs at the desired interval and we need only respond to it as needed.

Building an Entity Manager 499

void game_event(Octane::IEvent* e) {
switch (e->getID()) {
case EVENT_TIMER: {

TimerEvent* t = (TimerEvent*) e;
debug � "Timer: " � t->getID() � endl;
timerFired = true;

}
break;

}
}

Entity-fying the Engine Classes
Any type of object in a game can be added to the entity manager if you want it to
be managed (and as a result, made available to scripting). Our first example
added a new class called AutoTimer with a RenderState setting of RENDER_NONE,
which means this object should be updated (via it’s Update() function) but not
rendered. While we could have modified Timer to work in this manner, it is used
by the engine core and is best left alone at this point. Some of our existing classes
that might be given support for managed rendering include:

n Sprite (RENDER_2D)

n Mesh (RENDER_3D)

n BoneMesh (RENDER_3D)

n VectorShape (RENDER_2D)

n Camera (RENDER_NONE)

n Particles (RENDER_2D)

n Layer (RENDER_2D)

n Skybox (RENDER_3D)

n Terrain (RENDER_3D)

Some of these examples are more intuitive than others. For instance, how would
a Camera object work from within the managed environment? Well, for one
thing, we probably will want to manipulate one or more cameras from script
code so this is a good idea in general. But what about rendering the scene with a
Camera’s view and projection matrices? These are all maintained in the Camera

class, so perhaps every Camera object found in the managed list will be used for

500 Chapter 16 n Entity Management

rendering. Furthermore, perhaps a Texture render target can be associated with
a Camera so that views of the scene from various angles can be rendered onto a
texture automatically?

Do not hesitate to create a new class to suit your needs, as you can’t have too
many (although it may be confusing for a new programmer to make sense of
your engine’s architecture). It is perfectly normal to create a new class that
encapsulates both a Camera and a Texture. Or, imagine combining a Sprite and
a ParticleEmitter together in a new subclass of Entity (with a RenderType of
RENDER_2D), so that when this new entity is rendered, the particles will automati-
cally move with the spaceship sprite and appear to come out of the engine as fire
or smoke. Such a class might find use in many a game, and could be configured
with script code (i.e., setting the position and angle of the particle emitter
relative to the sprite).

For the sake of clarity, we will only convert Sprite and Mesh to a subclass of
Entity, but I encourage you to use this example on some or all of the classes
listed, as well as your own new classes. The whole purpose of a class like Sprite

and Mesh is to be the foundation for new gameplay classes such as Ship, Person,
Dragon, Bullet, Cloud, Boulder, Tree, House, and so forth.

Managing Sprites
Let’s see what must be changed in the Sprite class to support the entity
manager. As it turns out, we only need to change the class name definition by
adding Entity as the parent class, and no other changes are needed to either the
definition or the implementation file.

class Sprite : public Entity
{

. . .

};

Now that Sprite is a subclass of Entity, we need to make sure it implements any
pure virtual functions required by the base class. As you’ll recall, Entity::Update()
and Entity::Render() are the two pure virtuals that we must implement. This
works out fine for the existing Sprite::Update function, which was declared with
the same definition so it needn’t change.

void Update(float deltaTime);

Entity-fying the Engine Classes 501

The Render() function is a bit of a problem though. It was defined back in
Chapter 14 with a parameter (bool autoPivot=true):

void Render(bool autoPivot=true);

Our Entity class requires a Render() function with no parameters, but the
default value in the existing Render() will confuse the compiler. So we will have
to remove the default value (=true) and add the void parameter version of
Render():

void Render();
void Render(bool autoPivot);

We can handle the autoPivot parameter in Render() manually. Since we have no
way of knowing whether the sprite should have an automatically centered pivot
point or not, we can’t make the assumption and will have to call Render(false)
in this new function. When creating a new managed sprite, we must be careful to
set the properties correctly.

The Sprite constructor needs some modification as well.

Sprite::Sprite() : Entity(RENDER_2D){
setEntityType(ENTITY_SPRITE);
image = NULL;
imageLoaded = false;
velocity = Vector2(0,0);
state = 0;
facingAngle = 0;
movingAngle = 0;
color = Color(255,255,255,255);
collidable = false;
pivotPoint = Vector2(0,0);
//animation properties
sourcePosition = Vector2(0,0);
currentFrame = 0;
firstFrame = 0;
lastFrame = 0;
animationDirection = 1;
animationColumns = 1;
//transformation properties
position = Vector2(0,0);
rotation = 0;

502 Chapter 16 n Entity Management

scale = Vector2(1,1);
size = Vector2(1,1);

}

Managing Meshes
The Mesh class was first introduced way back in Chapter 9 and provided basic
3D rendering support to the engine (a feature that will get little use in actual
practice, since we’re focusing our attention on 2D games). Here is the only
change that is needed to bring the Mesh class into the Entity family.

class Mesh : public Entity{
. . .

};

One immediate problem we have with Mesh is the Render() function which has
parameters, while our Entity::Render() function definition has none. A Mesh

object is rendered with an Effect object, so this is a problem. Instead of passing
the Effect as a parameter, we need to make it a property in the class. Also, the
Texture effect parameter will need to be assumed. While the existing two-
parameter Render() function will be retained, it is not possible to use it from
within the entity manager without a lot of custom code that would slow down
the engine—it’s better to use properties with a single Render() function instead.
Here is the new Mesh class constructor:

Mesh::Mesh() : Entity(RENDER_3D) {
entityType = ENTITY_MESH;
mesh = 0;
materials = 0;
material_count = 0;
textures = 0;
position = Vector3(0.0f,0.0f,0.0f);
rotation = Vector3(0.0f,0.0f,0.0f);
scale = Vector3(1.0f,1.0f,1.0f);

}

We’ll add this property to the Mesh class interface and a mutator function for it:

Effect *p_effect;
void setEffect(Effect* effect) { p_effect = effect; }

The Mesh::Update() function will need to call Mesh::Transform() to set up the
matrices for rendering.

Entity-fying the Engine Classes 503

void Mesh::Update(float deltaTime) {
Transform();

}

The Mesh::Render() function (which now has one overload) will be modified a
bit to work with the entity managed function variation.

void Mesh::Render() {
Render(p_effect, "Texture");

}

void Mesh::Render(Effect *effect,std::string fxTextureParam) {
//save the effect object
p_effect = effect;
p_effect->setWorldMatrix(matWorld);
p_effect->Begin();
if (material_count == 0) {

mesh->DrawSubset(0);
} else {

//draw each mesh subset
for(DWORD i=0; i < material_count; i++) {

// set the texture used by this face
if (textures[i]) {

p_effect->setParam(fxTextureParam,(textures[i]));
}
// Draw the mesh subset
mesh->DrawSubset(i);

}
}
p_effect->End();

}

Adv i c e

If you see a linker warning that refers to “uuid.lib,” you may ignore it. This is an unavoidable
warning caused by a “#pragma comment” statement in one of the DirectX header files.

Freeing Memory
Only one thing remains—freeing memory used by the entity manager when the
engine is shutting down.

Engine::~Engine() {
delete p_input;

504 Chapter 16 n Entity Management

if (p_device) p_device->Release();
if (p_d3d) p_d3d->Release();
//destroy entities
BOOST_FOREACH(Entity* entity, p_entities) {

delete entity;
entity = NULL;

}
p_entities.clear();

}

Entity Demo
The Entity Demo program (shown in Figure 16.1) shows how the entity
manager can handle sprites, timers, and meshes already (and more entity
types can be added in time). Most of the functionality in this program occurs
in the event handler—note, in particular, that both the game_render3d() and

Figure 16.1
The Entity Demo program demonstrates the entity manager.

Entity Demo 505

game_update() functions are empty! All of the updating and rendering is taking
place in the engine core’s new entity manager. This is a simple example with just
one sprite, one mesh, and one timer, but it’s fascinating to think that our
familiar old gameplay functions are now empty and most of the code is in the
event handler. Now we have a real engine running. (As is usually the case, only
the most relevant code is included in the listing—see the complete project for
more details.)

Font *font = NULL;
Camera* camera = NULL;
Effect* effect = NULL;
bool timerFired = false;

bool game_init(HWND window) {
font = new Font("Arial Bold",36);

camera = new Camera();
camera->setPosition(0,0,50);
camera->Update();

//add a managed timer
AutoTimer* timer = new AutoTimer(1, 1.0);
timer->setName("TIMER");

//add a managed mesh
Mesh* mesh = new Mesh();
//mesh = new Mesh();
mesh->setName("OILDRUM");
mesh->Load("oil-drum.x");
mesh->setScale(0.25);
mesh->setPosition(-12,15,0);
mesh->setRotation(0,45,0);
mesh->Transform();

//create an effect
effect = new Effect();
effect->Load("directional.fx");
effect->setTechnique("TexturedDirectionalLight");
effect->setViewMatrix(camera->getViewMatrix());

506 Chapter 16 n Entity Management

effect->setProjectionMatrix(camera->getProjMatrix());
effect->setWorldMatrix((D3DXMATRIX) mesh->getMatrix());

//calculate inverse transpose matrix
D3DXMATRIX inverse, wit;
D3DXMatrixInverse(&inverse, 0, &(mesh->getMatrix()));
D3DXMatrixTranspose(&wit, &inverse);
effect->setParam("WorldInverseTranspose", wit);

//use this effect to render the mesh
mesh->setEffect(effect);

//add a managed sprite
Sprite* sprite = new Sprite();
sprite->Load("fatship256.tga");
sprite->setName("FATSHIP");

//add objects to entity manager
g_engine->addEntity(timer);
g_engine->addEntity(sprite);
g_engine->addEntity(mesh);

return true;
}

void game_render2d() {
if (timerFired) {

Color color(rand()%256,rand()%256,rand()%256,255);
font->Print(450,350,"TIMER FIRED!",color);
timerFired = false;

}
}

void game_event(Octane::IEvent* e) {
switch (e->getID()) {
case EVENT_TIMER: {

TimerEvent* t = (TimerEvent*) e;
//WARNING: this slows down the game!
debug � "Timer: " � t->getID() � endl;
timerFired = true;

}

Entity Demo 507

break;
case EVENT_ENTITYUPDATE: {

EntityUpdateEvent* evt = (EntityUpdateEvent*) e;
//WARNING: this slows down the game!
debug � "EntityUpdateEvent: "

� evt->entity->getName() � endl;
if (evt->entity->getEntityType() == ENTITY_SPRITE) {

Sprite* sprite = (Sprite*) evt->entity;
if (sprite->getName() == "FATSHIP") {

//set the pivot
sprite->setPivot(Vector2(127,127));
//rotate the sprite
float angle = sprite->getRotation();
sprite->setRotation(angle + 0.01);

}
}

}
break;
case EVENT_ENTITYRENDER: {

EntityRenderEvent* evt = (EntityRenderEvent*) e;
//WARNING: this slows down the game!
debug � "EntityRenderEvent: "�evt->entity->getName()�endl;

}
break;
case EVENT_KEYRELEASE:

KeyReleaseEvent* evt = (KeyReleaseEvent*) e;
switch (evt->keycode) {

case DIK_ESCAPE:
g_engine->Shutdown();
break;

}
break;

}}

Summary
That wraps up entity management, at least for the time being. We’ll be using this
new capability of the engine for the remaining chapters and will be making
modifications soon to thread the entity manager!

508 Chapter 16 n Entity Management

Picking and Collision
Detection

This chapter covers one of the most common and basic “physics” features of any
game engine—collision detection. We will explore two different ways to detect
collisions between entities with support for both sprite and mesh collision. Most
games have entities that interact, such as bullets and missiles that hit enemy
ships and cause them to explode; characters that must navigate a maze without
going through walls; or avatars that can run and jump over crates and land on
top of enemy characters (such as how Mario jumps onto turtles in Super Mario
World to knock them out). All of these situations require the ability to detect
when two objects have collided, or intersected each other. The ability to detect a
collision between two gameplay objects brings a real-world capability to a game
engine that is otherwise just a graphics renderer. The key to collision testing is to
identify where two objects are located and then compare their radii or bounding
rectangles to see if an intersection occurs. In this chapter we will study how to
detect collisions between sprites and meshes (a crossover of 2D and 3D
collision) and how to perform picking.

This chapter covers the following topics:

n Casting rays

n Ray-mesh intersection

n Converting object space to screen space

n Point-rectangle intersection

n Automated collision detection

chapter 17

509

Picking
Any 3D object in the viewport (the projected camera view) can be “picked” by
converting its transformed position in the scene (i.e., its matrix) to screen
coordinates. We can use this technique to select 3D objects with a mouse click
(by transforming the mouse coordinates into a ray) or to test for collisions
between 2D and 3D objects (such as a sprite and mesh).

Casting Rays
To pick an object in the viewport with the mouse, we have to create a ray from
the mouse cursor’s position into the Z-axis (into the depth of the screen). This
requires the camera’s current projection and view matrices, obviously, because
what we’re looking at in the scene represents the view projected by the camera’s
position and orientation. It’s actually rather challenging to “grab” an object in the
scene based solely on the mouse’s position. This might work if your camera is
oriented so that the origin (0,0,0) is at the upper-left corner of the viewport, which
will probably never happen (and even if it does, the camera is rarely fixed!).

Adv i c e

This chapter’s resource files can be downloaded from www.jharbour.com/forum or www.courseptr.
com/downloads. Not every line of code will be in print due to space considerations, only the most
important sections of code.

Let’s learn how to cast a ray from the mouse cursor into the scene to select an
object. First, we’ll need a vector to represent the ray:

Vector3 ray;

Next, we need the screen dimensions:

int w = g_engine->getScreenWidth();
int h = g_engine->getScreenHeight();

Next, the camera’s projection matrix is used to calculate the projected mouse
coordinates using the matrices diagonal positions for X and Y, and a fixed length
of 1.0 for Z.

Matrix matProj = camera->getProjMatrix();
ray.x = (((2.0f * vec.x) / w) - 1) / matProj._11;
ray.y = -(((2.0f * vec.y) / h) - 1) / matProj._22;
ray.z = 1.0f;

510 Chapter 17 n Picking and Collision Detection

Next, we have to transform the screen space (representing the mouse cursor’s
position) into 3D space using an inverse matrix of the camera’s view matrix
(with the D3DXMatrixInverse() function). We’ll need both the origin and
direction for the ray, with the origin set to the camera’s position. So, if your
camera is at coordinates (10,20,�50) then that is precisely what the ray’s origin
will be as well. This vector represents the ray with a normalized direction (and
length of 1.0). You could use this code almost without change to fire the weapon
in a first-person shooter game (using the center of the viewport as the
coordinate with “mouse look” for aiming the weapon).

D3DXMATRIX m;
D3DXMatrixInverse(&m, NULL, &camera->getViewMatrix());
D3DXVECTOR3 rayOrigin,rayDir;
rayDir.x = ray.x*m._11 + ray.y*m._21 + ray.z*m._31;
rayDir.y = ray.x*m._12 + ray.y*m._22 + ray.z*m._32;
rayDir.z = ray.x*m._13 + ray.y*m._23 + ray.z*m._33;
rayOrigin.x = m._41;
rayOrigin.y = m._42;
rayOrigin.z = m._43;

We now have a ray that can be used to test for collisions with transformed
geometry in the scene, which will usually be the mesh objects transformed and
rendered in a game. This ray extends into the scene from the mouse cursor’s
position, or from the position of a sprite!

Ray-Mesh Intersection
Using the calculated ray (from the mouse or a game sprite or any other screen
space entity), we can determine whether the ray extending from that screen
position intersects with any geometry in the scene, determined by the camera’s
projection and view matrices. In other words, the ray will extend in the same
direction that the camera is looking (recall the “look at” property). We can use a
Direct3D helper function called D3DXIntersect() to find out if a ray is
intersecting with any mesh in the scene (using its matrix transform). In other
words, we perform the ray-mesh collision test using model space rather than
global space (the camera’s matrices).

One incredibly helpful calculation that D3DXIntersect() gives us, in addition to
a collision flag, is the distance to the collision—that is, the distance from the

Picking 511

mouse cursor to the face of the mesh that was intersected. I like to think of this
as a laser targeting system, and visualize a laser’s red dot hitting the object.

Next, to create a normalized direction vector for the ray, we use the D3DXMa-

trixInverse() function to get an inverse matrix of the current world transform.

D3DXMATRIX matInverse;
D3DXMatrixInverse(&matInverse, NULL, &mesh->getMatrix());
D3DXVECTOR3 rayObjOrigin,rayObjDir;
D3DXVec3TransformCoord(&rayObjOrigin, &rayOrigin, &matInverse);
D3DXVec3TransformNormal(&rayObjDir, &rayDir, &matInverse);
D3DXVec3Normalize(&rayObjDir, &rayObjDir);

There are two additional ways to detect ray-mesh intersection. The former
method just covered checks the mesh faces for an intersection, which can be
time consuming. An optimization is to use a bounding cube or sphere as a
container for the collision test, and then use that simpler shape for the ray
intersection test. Direct3D provides two helper functions to facilitate this:
D3DXBoxBoundProbe() and D3DXSphereBoundProbe(). This culminates in a reus-
able function:

float intersectsCoordsToMesh(Mesh* mesh, Vector2 vec) {
//convert coords to projection space
Vector3 ray;
int w = g_engine->getScreenWidth();
int h = g_engine->getScreenHeight();
Matrix matProj = camera->getProjMatrix();
ray.x = (((2.0f * vec.x) / w) - 1) / matProj._11;
ray.y = -(((2.0f * vec.y) / h) - 1) / matProj._22;
ray.z = 1.0f;
//transform screen space pick ray into 3D space
D3DXMATRIX m;
D3DXMatrixInverse(&m, NULL, &camera->getViewMatrix());
D3DXVECTOR3 rayOrigin,rayDir;
rayDir.x = ray.x*m._11 + ray.y*m._21 + ray.z*m._31;
rayDir.y = ray.x*m._12 + ray.y*m._22 + ray.z*m._32;
rayDir.z = ray.x*m._13 + ray.y*m._23 + ray.z*m._33;
rayOrigin.x = m._41;
rayOrigin.y = m._42;
rayOrigin.z = m._43;
//create normalized ray

512 Chapter 17 n Picking and Collision Detection

D3DXMATRIX matInverse;
D3DXMatrixInverse(&matInverse,NULL,&mesh->getMatrix());
D3DXVECTOR3 rayObjOrigin,rayObjDir;
D3DXVec3TransformCoord(&rayObjOrigin,&rayOrigin,&matInverse);
D3DXVec3TransformNormal(&rayObjDir,&rayDir,&matInverse);
D3DXVec3Normalize(&rayObjDir,&rayObjDir);
//ray-mesh intersection test
int hasHit;
float distanceToCollision;
D3DXIntersect(mesh->getMesh(), &rayObjOrigin, &rayObjDir, &hasHit,

NULL, NULL, NULL, &distanceToCollision, NULL, &hits);
if (hasHit) return distanceToCollision;
else return -1.0f;

}

Converting Object Space to Screen Space
We can get the screen position of any 3D object (such as a mesh) by using a
Direct3D helper function called D3DXVec3Project(). This function projects the
vector from 3D object space to screen space as a 2D position.

Vector2 getScreenPos(Vector3 pos) {
D3DXVECTOR3 screenPos;
D3DVIEWPORT9 viewport;
g_engine->getDevice()->GetViewport(&viewport);
D3DXMATRIX world;
D3DXMatrixIdentity(&world);
D3DXVec3Project(&screenPos, &pos.ToD3DXVECTOR3(), &viewport,

&camera->getProjMatrix(), &camera->getViewMatrix(), &world);
return Vector2((int)screenPos.x, (int)screenPos.y);

}

Point-Rectangle Intersection
One fairly easy way to test for collisions in the 2D realm is with point-rectangle
intersection, where we test to see if a point falls within the boundary of a
rectangle. Our Rect class already has a Contains() function that reports true if a
passed vector falls within its boundary. We can use this function to make a
simple collision function suitable for a sprite-based game. The version of
intersectsCoordsToRect() can be overloaded to work directly with a Sprite

object or the result of Sprite::getBounds() can be passed to this function. In the

Picking 513

case of a sprite-to-sprite collision, either the center of the sprite or each corner of
the sprite’s bounding Rect can be used for the intersection test. The Picking
Demo program shows how it works.

bool intersectsCoordsToRect(Rect rect, Vector2 vec) {
return rect.Contains(vec.x, vec.y);

}

The Picking Demo
The Picking Demo program demonstrates how to perform ray-mesh intersec-
tion as a form of 2D-to-3D collision detection. Since this example uses the
mouse cursor position to test for a ray-mesh collision, this process could be used
to simulate collisions between sprites and meshes as well. Figure 17.1 shows a
positive collision between the ray projected by the mouse cursor over a mesh.

Figure 17.1
A ray is fired from the mouse cursor position to test for mesh collisions.

514 Chapter 17 n Picking and Collision Detection

To demonstrate how precise the ray-mesh collision technique is, take a look at
Figure 17.2. In this case, the mouse cursor is clearly within the same range of the
crate mesh as it was before, but due to the rotation of the crate there are no faces
intersecting the mouse cursor’s ray so no collision is reported.

This program also tests point-rectangle intersection testing, which is a form of
sprite collision detection (see Figure 17.3).

Custom Mouse Cursor

Since we’ll be using a custom mouse cursor in this program, we need the ability
to selectively hide and show the default mouse cursor over our program window.
These new functions are added to the Engine.h file to handle it. Or, if you prefer,
just use the ShowCursor function directly, but I prefer to abstract both the
Windows SDK and DirectX SDK as much as possible.

Figure 17.2
No collision occurs this time because the crate mesh has rotated away from the ray.

Picking 515

//mouse cursor
void showCursor() { ShowCursor(true); }
void hideCursor() { ShowCursor(false); }

Picking Demo Source

Here is the source code for the Picking Demo. Note that some #include

statements, comments, and error handling lines have been omitted to conserve
space.

Font *font = NULL;
Camera* camera = NULL;
Effect* effect1 = NULL;
Effect* effect2 = NULL;
VectorShape* shape = NULL;

Figure 17.3
"Picking" with the mouse cursor and a sprite is a much simpler affair because no ray is needed, just a
simple point-rectangle intersection test will suffice.

516 Chapter 17 n Picking and Collision Detection

Sprite* cursor = NULL;
ID3DXLine* line = NULL;
Vector2 mouse;
D3DXVECTOR3 mouseVec;
int hasHit=0;
int hitDistance=0;
std::string objectName="";
DWORD hits;
ostringstream os;
Vector3 objectPos(0.0,0.0,0.0);
Vector2 p1(0.0,0.0);
Vector2 p2(0.0,0.0);
int spriteCollision=0;

//picking function prototypes
Vector2 getScreenPos(Vector3 pos);
bool intersectsCoordsToRect(Rect rect, Vector2 vec);
float intersectsCoordsToMesh(Mesh* mesh, Vector2 vec);

bool game_init(HWND window) {
font = new Font("Arial Bold",18);
shape = new VectorShape();
shape->MakeTexture();
D3DXCreateLine(g_engine->getDevice(), &line);
line->SetAntialias(true);
line->SetWidth(2.0f);

camera = new Camera();
camera->setPosition(0,0,50);
camera->Update();

cursor = new Sprite();
cursor->Load("cursor.tga");
g_engine->hideCursor();

effect1 = new Effect();
effect1->Load("ambient.fx");
effect1->setTechnique("Ambient");
effect1->setViewMatrix(camera->getViewMatrix());
effect1->setProjectionMatrix(camera->getProjMatrix());

Picking 517

effect2 = new Effect();
effect2->Load("ambient.fx");
effect2->setTechnique("Ambient");
effect2->setViewMatrix(camera->getViewMatrix());
effect2->setProjectionMatrix(camera->getProjMatrix());

//add a managed oildrum mesh
{

Mesh* mesh = new Mesh();
mesh->setName("OILDRUM");
mesh->Load("oil-drum.x");
mesh->setScale(0.15);
mesh->setPosition(-10,10,0);
mesh->setEffect(effect1);
g_engine->addEntity(mesh);

}

//add a managed crate mesh
{

Mesh* mesh = new Mesh();
mesh->setName("CRATE");
mesh->Load("crate.x");
mesh->setScale(0.1);
mesh->setPosition(-10,-10,0);
mesh->setEffect(effect2);
g_engine->addEntity(mesh);

}

//add a managed sprite
Sprite* sprite = new Sprite();
sprite->Load("fatship256.tga");
sprite->setName("FATSHIP");
sprite->setPosition(100,250);
sprite->setScale(0.75);
sprite->setPivot(Vector2(128*0.75,128*0.75));
g_engine->addEntity(sprite);

return true;
}

void draw3DBox(Vector2 p1, Vector2 p2, Color color)
D3DXVECTOR2 lines[] = {

518 Chapter 17 n Picking and Collision Detection

D3DXVECTOR2((float)p1.x, (float)p1.y),
D3DXVECTOR2((float)p2.x, (float)p1.y),
D3DXVECTOR2((float)p2.x, (float)p2.y),
D3DXVECTOR2((float)p1.x, (float)p2.y),
D3DXVECTOR2((float)p1.x, (float)p1.y) };

line->Begin();
line->Draw(lines, 5, color.ToD3DCOLOR());
line->End();

}

void game_render3d() {
Color color = Color(255,0,0,255);
//mesh translation is at center
if (hasHit) {

p1 = getScreenPos(objectPos);
p1.x -= 100; p1.y -= 100;
p2 = p1;
p2.x += 240; p2.y += 200;
draw3DBox(p1, p2, color);

}

//sprite translation is at upper-left
if (spriteCollision) {

p1 = objectPos.ToD3DXVECTOR2();
p2 = p1;
p2.x += 200; p2.y += 200;
draw3DBox(p1, p2, color);

}
}

void game_render2d() {
font->Print(0,0, os.str());
//ray-mesh collision
if (hasHit) {

Vector2 pos = getScreenPos(objectPos);
font->Print((int)pos.x, (int)pos.y, objectName);

}
hasHit = 0;
hitDistance = 0;

Picking 519

//coord-sprite collision
if (spriteCollision) {

Vector2 pos = objectPos.ToD3DXVECTOR2();
font->Print((int)pos.x, (int)pos.y, objectName);

}

//draw cursor
cursor->setPosition(mouse);
cursor->RenderFast();

}

//helper function for game_event
void sprite_update(Sprite* sprite) {

if (sprite->getName() == "FATSHIP") {
//rotate the sprite
float angle = (float) sprite->getRotation();
sprite->setRotation(angle + 0.005);

}
spriteCollision = 0;
Rect b = sprite->getBounds();
if (intersectsCoordsToRect(b,mouse)) {

spriteCollision = 1;
objectName = sprite->getName();
objectPos = sprite->getPosition().ToD3DXVECTOR3();

}
os � "Sprite Collision: " � spriteCollision � endl;

}

//helper function for game_event
void mesh_update(Mesh* mesh) {

string name = mesh->getName();
if (name == "OILDRUM" || name == "CRATE") {

//rotate the mesh
Vector3 rot = mesh->getRotation();
rot.z += 0.1;
mesh->setRotation(rot);

}
os.str("");
os � "Mouse " � mouse.x � "," � mouse.y � endl;
//create a ray based on mouse coords, test for collision
if (!hasHit) {

hitDistance = (int) intersectsCoordsToMesh(mesh, mouse);

520 Chapter 17 n Picking and Collision Detection

hasHit = (hitDistance != -1.0f);
objectName = mesh->getName();
objectPos = mesh->getPosition();

}
os � "Mesh Intersection: " � hasHit;
if (hasHit) {

os � ", distance: " � hitDistance;
os � ", hits: " � hits;

}
os � endl;

}

void game_event(Octane::IEvent* e) {
switch (e->getID()) {

case EVENT_ENTITYUPDATE: {
EntityUpdateEvent* evt = (EntityUpdateEvent*) e;
switch(evt->entity->getEntityType()) {

case ENTITY_SPRITE: {
Sprite* sprite = (Sprite*) evt->entity;
sprite_update(sprite);

}
break;
case ENTITY_MESH: {

Mesh* mesh = (Mesh*) evt->entity;
mesh_update(mesh);

}
break;

}
}
break;
case EVENT_ENTITYRENDER:

EntityRenderEvent* evt = (EntityRenderEvent*) e;
break;

case EVENT_KEYRELEASE: {
KeyReleaseEvent* evt = (KeyReleaseEvent*) e;
switch (evt->keycode) {

case DIK_ESCAPE:
g_engine->Shutdown();
break;

}
}

Picking 521

break;
case EVENT_TIMER:

TimerEvent* t = (TimerEvent*) e;
break;

case EVENT_MOUSEMOVE: {
MouseMoveEvent* evt = (MouseMoveEvent*) e;
mouse.x = evt->posx;
mouse.y = evt->posy;

}
break;

}
}

Collision Detection
The two types of collision testing we will utilize are bounding rectangle and
distance (or bounding circle). If you know the location of two sprites and you
know the width and height of each, then it is possible to determine whether the
two sprites are intersecting. Likewise, if you know the position and size of two
meshes, you can determine whether they are intersecting as well. Bounding
rectangle collision detection describes the use of a sprite’s image or animation
frame boundary for collision testing. You can get the upper-left corner of a sprite
by merely looking at its X and Y values. To get the lower-right corner, add the
width and height to the position. Collectively, these values may be represented as
left, top, right, and bottom of a rectangle.

Automated Collision Detection
The game engine should be capable of calculating and reporting collision events
automatically using its entity list. What we want the engine to do is automati-
cally perform collision detection, but then notify the game when a collision
occurs in a pull or polled manner. We could fire off an event when a collision
occurs, but collisions are highly dependent on the gameplay—we simply do not
need to test for collisions among all entities, since that does not reflect realistic
gameplay. For instance, it’s a waste of processing to test for collisions between
the player’s ship and its own missiles, while we do want to test for collisions
between those same missiles and enemy ships. So, instead of firing off an event,
we’ll set a flag within each entity (collided) and reset the flags every frame. The
flag approach also has the added performance benefit of allowing us to skip any
entities that already have the flag set.

522 Chapter 17 n Picking and Collision Detection

First, we need a new global collision property in the engine so that it is possible
to globally enable or disable collisions (for game states or conditions where we
do not want collision to take place, possibly for performance reasons).

bool p_globalCollision;
void enableGlobalCollisions(){ p_globalCollision = true; }
void disableGlobalCollisions(){ p_globalCollision = false; }
void setGlobalCollisions(bool value) { p_globalCollision = value; }
bool getGlobalCollisions() { return p_globalCollision; }

We want support for collision testing for sprite-to-sprite and sprite-to-mesh via
these new engine functions. The Entity-to-Entity function is called from the
main Engine::testForCollisions() function and selectively calls one of the
other two based on the EntityType property of each entity.

bool Collision(Entity* entity1, Entity* entity2);
bool Collision(Sprite* sprite1, Sprite* sprite2);
bool Collision(Sprite* sprite, Mesh* mesh);

Adv i c e

The collidable property for entities is set to false by default. When creating a new managed
entity, be sure to manually enable its collision property.

These three overload functions should be expanded if new entity types are added
to the entity manager. The first Collision() function (with Entity parameters)
will call on the other three to perform specific collision tests between the entity
types. Testing for a collision or intersection between a sprite and a mesh calls for
a special technique called ray casting. What we need to do is calculate the sprite’s
position in 3D space (based on our camera’s projection and view matrices) and
cast a ray in the direction of that position on the screen parallel to the camera’s
orientation, and then see if the ray intersects with any geometry in the scene at
that location.

In order to perform sprite-to-mesh collision testing, we have to make use of the
“picking” function developed earlier, called intersectsCoordsToMesh(). But that
leads to a problem: this function requires the projection and view matrices, and
those are found in the Camera class, which has nothing at all to do with collision
testing, and is a gameplay object not managed in the engine. We have to come
up with a rather ugly workaround, unfortunately, but one that will be easy to

Collision Detection 523

use. In the Mesh class, which is therefore available to BoneMesh as well, is a pair of
new properties to handle the projection and view matrices: p_collision_proj
and p_collision_view. There are helper functions to assist:

* void setCollisionMatrices(Matrix proj, Matrix view)
* Matrix getCollisionProjMatrix()
* Matrix getCollisionViewMatrix()

If the camera does not move, then it’s easy enough to call Mesh::setCollision-
Matrices() when creating the new Mesh object. But if the camera changes its
position or target then this function will need to be called again while the game
is running. With these new properties available, then sprite-to-mesh collision
testing can be done with a newly modified version of intersectsCoordsToMesh(),
which is now integrated into the Engine class.

float Engine::intersectsCoordsToMesh(Mesh* mesh, Vector2 vec) {
D3DXMATRIX projection = mesh->getCollisionProjMatrix();
D3DXMATRIX view = mesh->getCollisionViewMatrix();
//convert coords to projection space
Vector3 ray;
int w = g_engine->getScreenWidth();
int h = g_engine->getScreenHeight();
ray.x = (((2.0f * vec.x) / w) - 1) / projection._11;
ray.y = -(((2.0f * vec.y) / h) - 1) / projection._22;
ray.z = 1.0f;
//transform screen space pick ray into 3D space
D3DXMATRIX m;
D3DXMatrixInverse(&m, NULL, &view);
D3DXVECTOR3 rayOrigin,rayDir;
rayDir.x = (float) (ray.x*m._11 + ray.y*m._21 + ray.z*m._31);
rayDir.y = (float) (ray.x*m._12 + ray.y*m._22 + ray.z*m._32);
rayDir.z = (float) (ray.x*m._13 + ray.y*m._23 + ray.z*m._33);
rayOrigin.x = m._41;
rayOrigin.y = m._42;
rayOrigin.z = m._43;
//create normalized ray
D3DXMATRIX matInverse;
D3DXMatrixInverse(&matInverse,NULL,&mesh->getMatrix());
D3DXVECTOR3 rayObjOrigin,rayObjDir;

D3DXVec3TransformCoord(&rayObjOrigin,&rayOrigin,&matInverse);

524 Chapter 17 n Picking and Collision Detection

D3DXVec3TransformNormal(&rayObjDir,&rayDir,&matInverse);

D3DXVec3Normalize(&rayObjDir,&rayObjDir);
//ray-mesh intersection test
int hasHit;
float distanceToCollision;
D3DXIntersect(mesh->getMesh(), &rayObjOrigin, &rayObjDir, &hasHit,

NULL, NULL, NULL, &distanceToCollision, NULL, NULL);
if (hasHit) return distanceToCollision;
else return -1.0f;

}

Adv i c e

Although we have an opportunity to support collision with other types of objects, the code here is
written specifically for Sprite and Mesh classes (and through inheritance, BoneMesh as well). If
you want to support collision detection with other types of objects (for instance, VectorShape),
you can duplicate this code and adapt them to subclass Entity in a similar manner.

The testForCollisions() function goes through the entities and performs
several conditional tests before actually calling on the collision support function
to perform a collision test. First, the RenderType of the entity is tested because we
are currently only concerned with collisions between like objects. When the
entity has been verified to be collidable—its alive and collidable properties are
true—then it becomes the focus of attention for collision testing. For every other
like object in the list, the same set of comparisons is made.

void Engine::testForCollisions() {
//reset all collided properties
BOOST_FOREACH(Entity* entity, p_entities)
entity->setCollided(false);
//escape if global collisions are disabled
if (!p_globalCollision) return;
BOOST_FOREACH(Entity* first, p_entities)
{

if (first->getAlive() && first->isCollidable() && !first->isCollided())
{

//test all other entities for collision
BOOST_FOREACH(Entity* second, p_entities) {

//do not test object with itself
if (second->getID() != first->getID()) {

Collision Detection 525

if (second->getAlive() && second->isCollidable() &&
!second->isCollided()) {
//test for collision
if (Collision(first, second)) {

//set collision flags
first->setCollided(true);
second->setCollided(true);

}
}//if

}//if
}//foreach

}//if
}//foreach

}

Now let’s check out the collision methods that do all the real work of performing
a collision test.

bool Engine::Collision(Entity* entity1, Entity* entity2) {
switch (entity1->getEntityType()) {
case ENTITY_SPRITE:

switch (entity2->getEntityType()) {
case ENTITY_SPRITE:

//sprite-to-sprite
return Collision((Sprite*)entity1, (Sprite*)entity2);
break;

case ENTITY_MESH:
//sprite-to-mesh
return Collision((Sprite*)entity1, (Mesh*)entity2);
break;

}
break;

case ENTITY_MESH:
switch (entity2->getEntityType()) {

case ENTITY_SPRITE:
//sprite-to-mesh
return Collision((Sprite*)entity2, (Mesh*)entity1);
break;

}
break;

}

526 Chapter 17 n Picking and Collision Detection

return false;
}
bool Engine::Collision(Sprite* sprite1, Sprite* sprite2) {

Rect r1 = sprite1->getBounds();
Rect r2 = sprite2->getBounds();
if (r1.Intersects(r2)) return true;
else return false;

}
bool Engine::Collision(Sprite* sprite, Mesh* mesh) {

//get sprite position
Vector2 pos = sprite->getPosition();
//adjust for sprite center
pos.x += sprite->getWidth()/2;
pos.y += sprite->getHeight()/2;
//test for ray-to-mesh intersection
float dist = intersectsCoordsToMesh(mesh, pos);
if (dist > -1.0) return true;
else return false;

}

Bounding rectangle collision testing makes use of the Rect class (introduced in
Chapter 14). While we could have expanded the existing RECT struct, the
problem with RECT is that it uses integers while we need floating-point precision.
Refer back to Chapter 14 for the sources for the Rect class.

The Collision Demo
We will put the new automated collision detection features to the test with a
program called Collision Demo, included with this chapter’s resource files. In
Figure 17.4, you can see the result of a sprite-to-sprite collision reported (see
message at upper left). The mouse is actually in control of the large “lightning
ball” sprite, which you can use to move on the screen to test for collisions with
an example sprite and example mesh. The next screenshot shown in Figure 17.5
shows the collision report when the mouse cursor sprite is moved over the mesh.
Only the most relevant portions of this program are included in the code
listing—refer to the complete project for the complete source listing with
comments and error handling intact.

Font *font = NULL;
Camera* camera = NULL;
Effect* effect = NULL;

Collision Detection 527

Vector2 mouse;
ostringstream os;
string collisionMessage="";

bool game_init(HWND window) {
g_engine->hideCursor();
font = new Font("Arial Bold",18);
camera = new Camera();
camera->setPosition(0,0,50);
camera->Update();

effect = new Effect();
effect->Load("ambient.fx");
effect->setTechnique("Ambient");

Figure 17.4
The engine now supports automatic sprite-to-sprite collision detection.

528 Chapter 17 n Picking and Collision Detection

effect->setViewMatrix(camera->getViewMatrix());
effect->setProjectionMatrix(camera->getProjMatrix());

//add a managed mesh
{

Mesh* mesh = new Mesh();
mesh->setName("CRATE");
mesh->Load("crate.x");
mesh->setScale(0.15);
mesh->setPosition(-10,10,0);
mesh->setRotation(rand()%360, rand()%360, rand()%360);
mesh->setEffect(effect);
mesh->setCollidable(true);

Figure 17.5
The engine also supports automatic sprite-to-mesh collision detection.

Collision Detection 529

mesh->setCollisionMatrices(camera->getProjMatrix(),
camera->getViewMatrix());

g_engine->addEntity(mesh);
}
//add a managed sprite
{

Sprite* sprite = new Sprite();
sprite->Load("fatship256.tga");
sprite->setName("FATSHIP");
sprite->setPosition(100,250);
sprite->setScale(0.75);
sprite->setPivot(Vector2(128*0.75,128*0.75));
sprite->setCollidable(true);
g_engine->addEntity(sprite);

}
//add a managed cursor
{

Sprite* cursor = new Sprite();
cursor->Load("lightningball.tga");
cursor->setPivot(Vector2(32,32));
cursor->setName("CURSOR");
cursor->setCollidable(true);
g_engine->addEntity(cursor);

}
return true;

}

void game_render2d() {
os.str("");
os � "Core: " � g_engine->getCoreFrameRate();
os � ", Screen: "�g_engine->getScreenFrameRate()�endl;
os � collisionMessage � endl;
font->Print(0,0, os.str());
collisionMessage = "";

}

//helper function for game_event
void sprite_update(Sprite* sprite) {

string name = sprite->getName();

530 Chapter 17 n Picking and Collision Detection

if (name == "CURSOR") {
sprite->setPosition(mouse);
return;

}
if (sprite->isCollided())

collisionMessage = "SPRITE COLLISION: " + name;
}

Vector2 getScreenPos(Vector3 pos) {
D3DXVECTOR3 screenPos;
D3DVIEWPORT9 viewport;
g_engine->getDevice()->GetViewport(&viewport);
D3DXMATRIX world;
D3DXMatrixIdentity(&world);
D3DXVec3Project(&screenPos, &pos.ToD3DXVECTOR3(),

&viewport, &camera->getProjMatrix(),
&camera->getViewMatrix(), &world);

return Vector2((int)screenPos.x, (int)screenPos.y);
}

//helper function for game_event
void mesh_update(Mesh* mesh) {

string name = mesh->getName();
Vector2 pos = getScreenPos(mesh->getPosition());
if (mesh->isCollided())

collisionMessage = "MESH COLLISION: " + name;
}

void game_event(Octane::IEvent* e) {
switch (e->getID()) {

case EVENT_ENTITYUPDATE: {
EntityUpdateEvent* evt = (EntityUpdateEvent*) e;
switch(evt->entity->getEntityType()) {

case ENTITY_SPRITE: {
Sprite* sprite = (Sprite*) evt->entity;
sprite_update(sprite);

}
break;
case ENTITY_MESH: {

Collision Detection 531

Mesh* mesh = (Mesh*) evt->entity;
mesh_update(mesh);

}
break;

}
}
break;
case EVENT_ENTITYRENDER:

EntityRenderEvent* evt = (EntityRenderEvent*) e;
break;

case EVENT_KEYRELEASE: {
KeyReleaseEvent* evt = (KeyReleaseEvent*) e;
switch (evt->keycode) {

case DIK_ESCAPE:
g_engine->Shutdown(); break;

}
}
break;
case EVENT_MOUSEMOVE: {

MouseMoveEvent* evt = (MouseMoveEvent*) e;
mouse.x = evt->posx;
mouse.y = evt->posy;

}
break;

}
}

Mesh Collision
Mesh-to-mesh collision detection can be done with bounding boxes (cubes) or
bounding spheres. To calculate a bounding cube around a mesh, we can use the
Direct3D function D3DXComputeBoundingBox, and for a bounding sphere, the
function D3DXComputeBoundingSphere. Using a bounding cube, we can use simple
conditional code to determine whether any corner of one cube-bound mesh is
within the bounds of any other cube-bound mesh. The following code will help
generate the bounding cube. Once you have the BBOX.min and BBOX.max

properties filled in, then the BBOX struct can be used in a conditional statement
to test for mesh collisions (without a ray-casting scheme).

532 Chapter 17 n Picking and Collision Detection

struct BBOX {
Vector3 min;
Vector3 max;

};
BBOX Mesh::getBoundingBox() {

BYTE* pVertices=NULL;
mesh->LockVertexBuffer(D3DLOCK_READONLY, (LPVOID*)&pVertices);
D3DXVECTOR3 minBounds,maxBounds;
D3DXComputeBoundingBox((D3DXVECTOR3*)pVertices, mesh->GetNumVertices(),

D3DXGetFVFVertexSize(mesh->GetFVF()), &minBounds, &maxBounds);
mesh->UnlockVertexBuffer();
BBOX box;
box.min = Vector3(minBounds);
box.max = Vector3(maxBounds);
return box;

}

Calculating a bounding sphere is a similar process, and we’ll make use of a
custom struct called BSPHERE. When the bounding sphere is calculated from the
vertices of a mesh, it can then be used in a much simpler manner to perform
distance-based collision detection between two bounding spheres. Basically, you
have the center of each mesh to use for the distance calculation. If the distance
between two centers is less than the sum of their radii, then they are intersecting.

struct BSPHERE {
Vector3 center;
float radius;

};
BSPHERE Mesh::getBoundingSphere() {

BYTE* pVertices=NULL;
mesh->LockVertexBuffer(D3DLOCK_READONLY, (LPVOID*)&pVertices);
D3DXVECTOR3 center;
float radius;
D3DXComputeBoundingSphere((D3DXVECTOR3*)pVertices, mesh->GetNumVertices(),

D3DXGetFVFVertexSize(mesh->GetFVF()), ¢er, &radius);
mesh->UnlockVertexBuffer();
BSPHERE sphere;
sphere.center = Vector3(center);
sphere.radius = radius;
return sphere;

}

Collision Detection 533

Summary
That wraps up collision detection for our game engine. As with any solution to a
programming problem, there are alternatives, and even better ways of doing
things. As we discussed in this chapter, there are ways to optimize collision
algorithms. You should consider optimizing the collision system to work best
with the type of game you’re building at any particular time, as the code
presented here is meant to be a foundation for a gameplay collision handler.

534 Chapter 17 n Picking and Collision Detection

SMP Experiments

In this final part of the book we have one heavy-hitting chapter to address a
most important issue—adding threading technology studied back in Part I to the
game engine developed in the chapters of Part II. The rudimentary threading
techniques will be tested first before we explore more complex threading code,
such as running engine modules in separate threads. The goal is to explore
optimization techniques, including threading.

n Chapter 18: Threading the Engine

part III

535

This page intentionally left blank

Threading the Engine

We now have a competent game engine with which to use as a test environment
for symmetric multi-processing experiments. Without digging into too much
detail, this final chapter explores some possibilities with threaded code and
encourages the reader to take it to the next level. We will be studying
optimization techniques to improve framerates by hitting the CPU with a
large population count and the GPU with high-quality shaders to push the
hardware in a way that reflects actual gameplay (without an environment).

This chapter covers the following topics:

n OpenMP external experiment

n OpenMP engine improvements

n OpenMP internal experiment

n Gravity experiment

n Sprite collision experiment

OpenMP Experimentation
There’s one important fact that I want to convey again before we get started:
Direct3D is not thread safe! It would be great if we could do something like this
in our engine’s core while loop:

chapter 18

537

#pragma omp parallel
while (msg.message != WM_QUIT) {

if (PeekMessage(&msg, NULL, 0, 0, PM_REMOVE)) {
TranslateMessage(&msg);
DispatchMessage(&msg);

} else {
long t = timer.getElapsed();
float deltaTime = (t - startTime) / 1000.0f;
g_engine->Update(deltaTime);
startTime = t;

}
}

No, of course this will not work, because we need to run updating code
separately from rendering code, which run at different speeds, and such an
over-arching approach to threading the engine would prevent us from synchro-
nizing objects that need to interact in a game.

However, we can thread the Engine::Update() function and others in the Engine

class!

The performance of the two or three experiments we’ll be conducting is not as
important as the comparisons that will be observed using the different threading
techniques. There are painfully obvious optimizations that we could make to this
code to improve the framerates, but that’s a given—the threaded code will scale
with any optimizations made to the code (such as a scene manager). In other
words, the experiments should not be judged in comparison to other engines or
demos, which will be using totally different techniques.

Adv i c e

If you are sensitive to the performance of this code and want to see how much you can improve it,
be sure to set your DirectX runtime to Retail mode rather than Debug mode using the DirectX
Control Panel.

The first thing we need to do is experiment within the gameplay side of the engine—
that is, in our engine consumer project, and our main.cpp to be specific. The first
experiment with OpenMP will use the existing engine as a renderer and event
manager while all entities will be managed outside the engine in our gameplay code.
The second experiment will use the engine’s entity manager and OpenMP internally.

538 Chapter 18 n Threading the Engine

Adv i c e

Visual Cþþ Express Edition (which is free) does not support OpenMP, a feature of the Professional
and more expensive versions of Visual Studio. If an error comes up when you try to run a program
using OpenMP referring to a missing file called VCOMP90D.DLL, that’s a sign that your version of
Visual Cþþ does not support OpenMP. Or, it could mean that OpenMP support is just not turned
on!

OpenMP External Experiment
This project (including a copy of the engine) is found in the “OpenMP External”
folder in the book’s resource files. “External” refers to the fact that this project
does not have any threading code embedded in the engine—it’s all in the
gameplay project (main.cpp). The “OpenMP Internal” project in the chapter’s
resource files is the version with OpenMP integrated into the engine. Figure 18.1
shows the first test run of the first thread experiment using the new engine.
Figure 18.2 shows a similar test but with more objects—note the difference in
performance.

Figure 18.1
The first thread demo with 1000 low-resolution spheres.

OpenMP Experimentation 539

Adv i c e

This chapter’s resource files can be downloaded from www.jharbour.com/forum or www.courseptr.
com/downloads. Not every line of code will be in print due to space considerations, only the most
important sections of code.

Object Class

This project makes use of a helper class called Object. The purpose of the Object

class is to represent one mesh entity but with additional “actor” properties and
functions that make it a bit higher-level in functionality than a traditional entity
such as a Sprite or Mesh.

//these two are bound––keep zeros balanced
const double STARTMASS = 0.00000001;
const double SCALE_MULTIPLIER = 10000000.0;
class Object {
public:

double mass;

Figure 18.2
The second thread demo with 5000 low-resolution spheres.

540 Chapter 18 n Threading the Engine

double ax, ay, az;
double vx, vy, vz;
Octane::Matrix matrix,wit;
Octane::Matrix matPosition,matRotation,matScale;
Octane::Vector3 position, rotation, scale;
float radius,angle,angVel;
Object();
virtual ~Object(){};
void Reset();
void Update();

};

Next up is the source code for the Object class. Included in this code is a
function called Attract(), which simulates attraction between two objects of
mass (i.e., gravity).

Object::Object() {
Reset();

}
void Object::Reset() {

mass = STARTMASS * (double) (rand() % 6);
ax = ay = az = 0;
position.x = cos((double)(rand()%6));
position.y = sin((double)(rand()%6));
position.z = 0;
vx = (double)((rand() % 10) / 100);
vy = (double)((rand() % 10) / 100);
vz = (double)((rand() % 10) / 100);
radius = (float)(rand()%20)+1;
angle = (float)(rand()%360);
angVel = (float)(rand()%5) / radius + 0.1f;
scale = Vector3(1.0f, 1.0f, 1.0f);
rotation = Vector3(0.0f, 0.0f, 0.0f);

}
void Object::Update() {

//see if object has gone too far out of bounds
if (position.x < -100000 || position.x > 100000) position.x *= -1;
if (position.y < -100000 || position.y > 100000) position.y *= -1;
if (position.z < -100000 || position.z > 100000) position.z *= -1;
//copy mass values into mesh scaling
scale.x = mass * SCALE_MULTIPLIER;
if (scale.x > 2.0) scale.x = 2.0;

OpenMP Experimentation 541

scale.z = scale.y = scale.x;
//slight rotation
rotation.x += 0.001f;
//transforms
matPosition.Translate(position);
matRotation.rotateYawPitchRoll(rotation);
matScale.Scale(scale);
matrix = matRotation * matScale * matPosition;

}

OpenMP Experiment Source Code

Here is the source code for the OpenMP experiment using threaded code in the
gameplay (main.cpp) file—outside of the actual engine. This is to differentiate it
from the other project in this chapter which incorporates the threading code
inside the engine. Only the most relevant code is included here—see the complete
project for additional details such as comment lines and error handling code.

const double SPHERE_RADIUS = 0.75;
const int SPHERE_QUALITY = 16;
const int NUM_OBJECTS = 1000;
std::vector<Object*> objects;
Mesh *sphere=NULL;
float cameraAngle = 0.0f;
Camera* camera = NULL;
Font *font = NULL;
Effect* effect = NULL;
string modes[]={"NORMAL ROTATION","TANGENT ROTATION","ARCTANGENT ROTATION"};
int mode = 0;
bool idle=false;
int numThreads = 0;

void addObject() {
Object* object = new Object();
object->position.x = (float) (rand() % 30 - 15);
object->position.y = (float) (rand() % 30 - 15);
object->position.z = (float) (rand() % 30 - 15);
object->scale.x = object->mass * SCALE_MULTIPLIER;
object->scale.z = object->scale.y = object->scale.x;
objects.push_back(object);

}

542 Chapter 18 n Threading the Engine

bool game_init(HWND) {
camera = new Camera();
camera->setPosition(0.0f, -32.0f, -12.0f);
camera->setTarget(0.0f, 0.0f, 0.0f);
camera->Update();
font = new Font("System", 12);
effect = new Effect();
effect->Load("specular.fx");
effect->setTechnique("Specular");
//light the meshes from the camera’s direction
Vector3 lightDir = Vector3(0.0, 0.0, -1.0);
effect->setParam("DiffuseLightDirection", lightDir);
//set diffuse color
Color diffuse(150,255,255,255);
effect->setParam("DiffuseColor", diffuse.ToD3DXVECTOR4());
//create sphere mesh
sphere = new Mesh();
sphere->createSphere(SPHERE_RADIUS, SPHERE_QUALITY, SPHERE_QUALITY);
//create list of objects
for (int n=0; n<NUM_OBJECTS; n++) addObject();
return true;

}

void game_update(float deltaTime) {
if (idle) return;
#pragma omp parallel for
for (int n=0; n < (int)objects.size(); n++) {

numThreads = omp_get_num_threads();
//calculate world/inverse/transpose for lighting
D3DXMatrixInverse(&objects[n]->wit, 0, &objects[n]->matrix);
D3DXMatrixTranspose(&objects[n]->wit, &objects[n]->wit);
//update object angle
objects[n]->angle += objects[n]->angVel;
float rad = (float)Math::toRadians((double)objects[n]->angle);
//calculate new position based on radius
objects[n]->position.x = cosf(rad) * objects[n]->radius;
objects[n]->position.y = sinf(rad) * objects[n]->radius;
//tweak z based on mode
if (mode == 0)

objects[n]->position.z = objects[n]->position.x / objects[n]->
radius;

OpenMP Experimentation 543

else if (mode == 1)
objects[n]->position.z = tanf(rad) * objects[n]->radius;

else if (mode == 2)
objects[n]->position.z = atanf(rad) * objects[n]->radius;

objects[n]->Update();
}

}

void game_render3d() {
effect->setProjectionMatrix(camera->getProjMatrix());
effect->setViewMatrix(camera->getViewMatrix());
for (int n=0; n < (int)objects.size(); n++) {

effect->setParam("WorldInverseTranspose", objects[n]->wit);
sphere->setMatrix(objects[n]->matrix);
sphere->Render(effect);

}
}

void game_render2d() {
ostringstream os;
os.imbue(std::locale("english-us"));
os � "Core rate: " � g_engine->getCoreFrameRate() � endl;
os � "Render rate: " � g_engine->getScreenFrameRate() � endl;
os � "Objects: " � (int)objects.size() � endl;
os � "Verts: " � sphere->getVertexCount() � ", Faces: "

� sphere->getFaceCount() � endl;
font->Print(0,0, os.str());
os.str("");
os � "Threads: " � numThreads � endl;
long vertices = sphere->getVertexCount() * (int)objects.size();
long faces = sphere->getFaceCount() * (int)objects.size();
os � "Total verts: " � vertices � ", faces: " � faces � endl;
unsigned long vps = (unsigned long)(vertices *

g_engine->getCoreFrameRate());
unsigned long fps = (unsigned long)(faces *

g_engine->getCoreFrameRate());
os � "Verts/Sec: " � vps � endl;
os � "Faces/Sec: " � fps � endl;
font->Print(300,0, os.str());
os.str("");
os � "Mode: " � modes[mode] � endl;
Vector3 pos = camera->getPosition();

544 Chapter 18 n Threading the Engine

os � "Camera: " � pos.x � "," � pos.y � "," � pos.z � endl;
font->Print(600,0,os.str());
int y = g_engine->getScreenHeight()-25;
os.str("");
os � "[Space] Toggle Mode ";
os � "[Enter] Toggle Idle ";
os � "[UP] +Y ";
os � "[DOWN] -Y";
font->Print(0,y,os.str());

}

void game_event(Octane::IEvent* e) {
switch (e->getID()) {

case EVENT_KEYRELEASE: {
KeyReleaseEvent* evt = (KeyReleaseEvent*) e;
switch (evt->keycode) {

case DIK_ESCAPE: g_engine->Shutdown(); break;
case DIK_SPACE: if (++mode > 2) mode = 0; break;
case DIK_RETURN: idle = !idle; break;

}
} break;
case EVENT_KEYPRESS: {

KeyPressEvent* evt = (KeyPressEvent*) e;
switch(evt->keycode) {

case DIK_UP: {
Vector3 cameraPos = camera->getPosition();
cameraPos.y += 1.0f;
camera->setPosition(cameraPos);
camera->Update();

}
break;
case DIK_DOWN: {

Vector3 cameraPos = camera->getPosition();
cameraPos.y -= 1.0f;
camera->setPosition(cameraPos);
camera->Update();

}
break;

}
}
break;

OpenMP Experimentation 545

case EVENT_MOUSEWHEEL: {
MouseWheelEvent* evt = (MouseWheelEvent*) e;
float zoom = 2.0f;
Vector3 cameraPos = camera->getPosition();
if (evt->wheel > 0) {

cameraPos.z += zoom;
if (evt->wheel > 200)

cameraPos.z += zoom*10.0f;
}
else if (evt->wheel < 0) {

cameraPos.z -= zoom;
if (evt->wheel < -200)

cameraPos.z -= zoom*10.0f;
}
if (cameraPos.z > 0.0) cameraPos.z = 0.0;
camera->setPosition(cameraPos);
camera->Update();

}
break;

}
}

Reviewing the Results

Table 18.1 shows the results of the experimental program with 1000 objects with
various face counts (which determines the quality of the sphere used in the
demo). Table 18.2 shows similar data for 5000 objects with various sphere
quality values. Note that results will vary widely from one system to the next.

Table 18.1 OpenMP Experiment Results: 1000 Objects

Objects Faces Threads Update Render

1000 24 4 3,400 M 90 M

1000 112 4 1,600 M 430 M

1000 480 4 3,000 M 1,700 M

1000 1984 4 2,400 M 2,100 M

1000 4512 4 3,200 M 2,300 M

1000 8064 4 3,600 M 2,500 M

546 Chapter 18 n Threading the Engine

Let’s see where some of these numbers came from by viewing the screenshots of
the project running. Figure 18.3 shows a new run of the program with 1000
higher-quality spheres, while Figure 18.4 shows the same version but without the
calculations (just transform and rendering)—note the difference in the faces-
per-second value!

Table 18.2 OpenMP Experiment Results: 5000 Objects

Objects Faces Threads Update Render

5000 24 4 2,800 M 25 M

5000 112 4 1,700 M 156 M

5000 480 4 1,900 M 208 M

5000 1984 4 228 M 228 M

5000 4512 4 338 M 338 M

5000 8064 4 403 M 403 M

Figure 18.3
The OpenMP external experiment project rendering 1000 high-quality spheres.

OpenMP Experimentation 547

The next pair of figures show an alternate version of the program logic that
produces quite interesting results with just a single line change (affecting the
Z-axis position of each object). Figure 18.5 shows the result of object positioning
when Z is set to the arc-tangent of the object’s angle around the center of the
scene, while Figure 18.6 shows the tangent.

Adv i c e

The resource folder for this chapter has separated versions of the Engine folder since changes are
being made to the engine in different ways that cannot be merged together (without making a
mess of the code).

Removing the Rev Limiter

In automotive terms, the rev limiter is a device or computer setting that limits
the engine to a maximum crankshaft RPM (revolutions per minute). This is used
in NASCAR to balance the playing field so that racing is more of a driver-
versus-driver sport rather than a competition among car builders. NASCAR also

Figure 18.4
The same project running in render-only mode.

548 Chapter 18 n Threading the Engine

applies other limits such as intake restrictions and fuel octane to keep racing
more predictable. Older cars, especially muscle cars, equipped with a carburetor
intake (rather than a modern fuel injection intake) will “open up” the carburetor
when the throttle is mashed.

In hot rod terms, we call this “opening the butterflies” or “opening the
secondaries.” This refers to the fact that most older muscle cars were equipped
with four-barrel carburetors, which would run two barrels while cruising to
achieve better gas mileage, reserving the other two for when more power is
needed. Flooring the gas pedal had the effect of not just down-shifting the
transmission (if it is an automatic) but also opening up the second pair of
barrels, which is what gives classic muscle cars such a “growl.”

In terms of our engine, we have been playing up to this point with a framerate-
hobbling limitation in order to run the CPU at a reasonable rate, without
pushing it. Time to take the rev limiter off our engine to let it run fast and

Figure 18.5
Dramatic difference in the scene when the Z-axis is calculated using arc-tangent (using the atanf()
function).

OpenMP Experimentation 549

furious without concern for longevity! The best game engine developers in the
business run their benchmarks with the limiters turned off, so we will do
the same now that we’re in the experimentation chapter. Let’s take a look at the
OpenMP External project again—and this time, we’ll run it at maximum
processor usage. To do this, we’ll need to open up Engine.cpp and comment
out the limiter line. Here is the code, found in Engine::Update. Commenting out
that line turns off processor throttling.

//60fps = ~16 ms per frame
if (!timedUpdate.Stopwatch(16)) {

//free the CPU for 1 ms
//timedUpdate.Rest(1);

}

Figure 18.7 shows the result. Just to show that this is not a flip of a switch just to
make threading look good (here at the end), I’ll run the program with and
without threading so we can note the difference. With threading disabled, the

Figure 18.6
The Z-axis is calculated with tangent (using the tanf() function).

550 Chapter 18 n Threading the Engine

unlimited engine build cranks out about 570 million faces per second—single
threaded. That’s about the performance we saw with the limited engine running
in multiple threads. Running it again with the full power of the CPU enabled
and OpenMP turned back on, we get 1.6 billion faces per second (1000 objects)!
Suffice it to say, we will leave the rev limiter off for the remainder of the chapter.

DirectX Runtime—Retail Version

The next optimization we can make is kind of a no-brainer, but it is worth
mentioning here because it has such an impact on performance. Open up the
DirectX Control Panel application, shown in Figure 18.8. We really do want to
run our Direct3D projects using the debug setting for Direct3D, as this will cause
detailed output to appear in Visual Studio when a program is running. But when
performance is important, we should turn this off. Having done so, the new run
of the program has an additional 13% better performance at 1.855 billion faces
per second!

Figure 18.7
Removing the "rev limiter" in the engine results in 300% framerate improvement.

OpenMP Experimentation 551

OpenMP Engine Improvements
We can take advantage of OpenMP within the engine to a certain degree, but
must be cautious that no shared data is exposed to more than one thread at a
time. I’m not going to list the entire source code listing here, because the
complete project is available in the chapter resources. I will go over the key code
improvements. You may recall the Engine::Update() function, which was first
created back in Chapter 6, “Engine Startup.” Here is the function again for
review since we haven’t looked at it in quite some time:

void Engine::Update(float deltaTime) {
p_coreFrameCount++;
if (p_coreTimer.stopwatch(1000)) {

Figure 18.8
Setting DirectX runtime to retail (rather than debug) to improve performance.

552 Chapter 18 n Threading the Engine

p_coreFrameRate = p_coreFrameCount;
p_coreFrameCount = 0;

}
game_update(deltaTime);
if (!p_pauseMode) {

updateEntities(deltaTime);
testForCollisions();

}
if (!timedUpdate.stopwatch(16)) {

//timedUpdate.Rest(1);
} else {

p_screenFrameCount++;
if (p_screenTimer.stopwatch(1000)) {

p_screenFrameRate = p_screenFrameCount;
p_screenFrameCount = 0;

}
//update input devices
p_input->Update();
updateKeyboard();
updateMouse();
//begin rendering
if (p_device->BeginScene() == D3D_OK) {

g_engine->clearScene(p_backdropColor);
entitiesRender3D();
game_render3d();
p_spriteObj->Begin(D3DXSPRITE_ALPHABLEND);
entitiesRender2D();
game_render2d();
p_spriteObj->End();
p_device->EndScene();
p_device->Present(0,0,0,0);

}
}
buryEntities();

}

Since we can’t interrupt Direct3D’s rendering with threads without crashing the
program, there is not a lot we can do inside the rendering section of code inside
Engine::Update(), butwe can address thehelper functions suchas updateEntities()
and testForCollisions(). The original versionof updateEntities() is shownbelow

OpenMP Experimentation 553

(with comments removed for clarity). Note the efficient use of BOOST_FOREACH to
iterate the container of entities.

void Engine::updateEntities(float deltaTime) {
BOOST_FOREACH(Entity* entity, p_entities) {

if (entity->getAlive()) {
entity->Update(deltaTime);
raiseEvent(new EntityUpdateEvent(entity));
if (entity->getLifetime() > 0) {

if (entity->lifetimeExpired())
entity->setAlive(false);

}
}

}
}

I will suggest a possible change to updateEntities() here for your perusal. First,
we must do away with the Boost iterator and revert to a for loop since OpenMP
does not like iterators (at least not in version 2.0, although 3.0 is supposed to
support them). Not only will we switch to a for loop, but we will also break up
the update code into three distinct blocks of threaded code so that OpenMP can
attack it more efficiently. This threaded function will only really show its
strength if there are a large number of entities in the managed list.

void Engine::updateEntities(float deltaTime) {
#pragma omp parallel {

//get thread count
p_numThreads = omp_get_num_threads();
int size = p_entities.size();
#pragma omp for
for (int n=0; n < size; n++) {

if (p_entities[n]->getAlive()) {
if (p_entities[n]->getLifetime() > 0) {

if (p_entities[n]->lifetimeExpired())
p_entities[n]->setAlive(false);

}else {
//move/animate entity
p_entities[n]->Update(deltaTime);
//tell game that this entity has been updated
raiseEvent(new EntityUpdateEvent(p_entities[n]));

554 Chapter 18 n Threading the Engine

}
}

}
}

}

Since there are nested for loops in the testForCollisions() function, each
coded with a BOOST_FOREACH, we would write similar code to convert this
function to an OpenMP implementation. Another possibility is using a Boost.

Thread for the Collision function call (refer to the collision code covered in the
previous chapter and the Boost.Thread code covered in Chapter 2).

void Engine::testForCollisions() {
if (!p_globalCollision) return;
//reset all collided properties
int size = p_entities.size();
#pragma omp parallel for
for (int n=0; n < size; n++)

p_entities[n]->setCollided(false);
#pragma omp parallel for
for (int n=0; n < size; n++) {

if (p_entities[n]->getAlive() &&
p_entities[n]->isCollidable() &&
!p_entities[n]->isCollided()) {
//test all other entities for collision
#pragma omp parallel for
for (int m=0; m < size; m++)
{

//do not test object with itself
if (n != m &&

p_entities[n]->getID() != p_entities[m]->getID())
{

if (p_entities[m]->getAlive() &&
p_entities[m]->isCollidable() &&
!p_entities[m]->isCollided())

{
//test for collision
if (Collision(p_entities[n], p_entities[m])) {

p_entities[n]->setCollided(true);
p_entities[m]->setCollided(true);

}

OpenMP Experimentation 555

}//if
}//if

}//for
}//if

}//for
}

OpenMP Internal Experiment
Using a threaded updateEntities() function and a slightly modified version of
the Object class to support the entity manager, we can simplify the code of our
project quite a bit (which is the goal of our engine code). The Object class now
looks like this:

class Object : public Octane::Entity {
public:

double mass;
double ax, ay, az;
double vx, vy, vz;
Octane::Matrix matrix,wit;
Octane::Matrix matPosition,matRotation,matScale;
Octane::Vector3 position, rotation, scale;
float radius,angle,angVel;
Octane::Mesh *mesh;
Octane::Effect* effect;
Object();
virtual ~Object(){ }
void Reset();
void Update(float deltaTime);
void Render();
static void Attract(Object* A, Object* B);

};

Moving along to the implementation, here is the new Object.cpp code. First,
there is a new entity type used by this program, requiring an addition to the
Entity.h file:

enum EntityType {ENTITY_UNKNOWN=-1,ENTITY_TIMER=0,ENTITY_MESH,
ENTITY_SPRITE, ENTITY_OBJECT, };

Note the changes made to the constructor in particular, which now calls on the
base Entity constructor as well. We’ll come to use the as-yet-unknown Object::

Attract() function shortly. Only the relevant code is provided, while functions

556 Chapter 18 n Threading the Engine

that have not changed or are not important at this point are left out to conserve
space—see the full project for the complete code.

Object::Object() : Entity(RENDER_3D) {
effect=NULL;
mesh = NULL;
entityType = ENTITY_OBJECT;
Reset();

}
void Object::Reset() {

mass = STARTMASS * (double) (rand() % 6);
ax = ay = az = 0;
position.x = cos((double)(rand()%6));
position.y = sin((double)(rand()%6));
position.z = 0;
vx = (double)((rand() % 10) / 100);
vy = (double)((rand() % 10) / 100);

vz = (double)((rand() % 10) / 100);
radius = (float)(rand()%20)+1;
angle = (float)(rand()%360);
angVel = (float)(rand()%5) / radius + 0.1f;
scale = Vector3(1.0f, 1.0f, 1.0f);
rotation = Vector3(0.0f, 0.0f, 0.0f);

}
void Object::Render() {

effect->setParam("WorldInverseTranspose", wit);
mesh->setMatrix(matrix);
mesh->setEffect(effect);
mesh->Render(effect);

}
void Object::Update(float deltaTime) {

//update object angle
angle += angVel;
float rad = (float)Math::toRadians((double)angle);
//calculate new position based on radius
position.x = cosf(rad) * radius;
position.y = sinf(rad) * radius;
position.z = position.x / radius;
//see if object has gone too far out of bounds
if (position.x < -100000 || position.x > 100000) position.x *= -1;
if (position.y < -100000 || position.y > 100000) position.y *= -1;

OpenMP Experimentation 557

if (position.z < -100000 || position.z > 100000) position.z *= -1;
//copy mass values into mesh scaling
scale.x = mass * SCALE_MULTIPLIER;
if (scale.x > 2.0) scale.x = 2.0;
scale.z = scale.y = scale.x;
//slight rotation
rotation.x += 0.001f;
//transforms
matPosition.Translate(position);
matRotation.RotateYawPitchRoll(rotation);
matScale.Scale(scale);
matrix = matRotation * matScale * matPosition;
mesh->setMatrix(matrix);
//calculate world/inverse/transpose for lighting
D3DXMatrixInverse(&wit, 0, &matrix);
D3DXMatrixTranspose(&wit, &wit);

}
void Object::Attract(Object* A, Object* B) {

double distance=0;
//calculate distance between particles
double distX = A->position.x - B->position.x;
double distY = A->position.y - B->position.y;
double distZ = A->position.z - B->position.z;
double dist = distX*distX + distY*distY + distZ*distZ;
if (dist != 0) distance = 1 / dist;
//adjust position by velocity value
A->position.x += A->vx;
A->position.y += A->vy;
A->position.z += A->vz;
//translation
double transX = distX * distance;
double transY = distY * distance;
double transZ = distZ * distance;
//acceleration = mass * distance
A->ax = -1 * B->mass * transX;
A->ay = -1 * B->mass * transY;
A->az = -1 * B->mass * transZ;
//increase velocity by acceleration value
A->vx += A->ax;
A->vy += A->ay;

558 Chapter 18 n Threading the Engine

A->vz += A->az;
}

Now for the OpenMP Internal project source code. Note the more complex
game_init(), but empty game_update() and game_render3d() functions as a
result of switching to managed entities! Portions of duplicated code have been
removed due to redundancy so refer to the chapter’s resource files for the
complete project. Again, only relevant code is provided here—see the complete
project for the full source code.

const double SPHERE_RADIUS = 0.75;
const int SPHERE_QUALITY = 32;
const int NUM_OBJECTS = 1000;
float cameraAngle = 0.0f;
Camera* camera = NULL;
Font *font = NULL;
Effect* effect=NULL;
Mesh *sphere=NULL;
int numVerts=0;
int numFaces=0;

bool game_init(HWND) {
g_engine->disableGlobalCollisions();
camera = new Camera();
camera->setPosition(0.0f, -32.0f, -12.0f);
camera->setTarget(0.0f, 0.0f, 0.0f);
camera->Update();
font = new Font("System", 12);

effect = new Effect();
effect->Load("specular.fx");
effect->setTechnique("Specular");

//light the meshes from the camera’s direction
Vector3 lightDir = Vector3(0.0, 0.0, -1.0);
effect->setParam("DiffuseLightDirection", lightDir);
//set diffuse color
Color diffuse(150,255,255,255);
effect->setParam("DiffuseColor", diffuse.ToD3DXVECTOR4());
//create the object’s mesh
sphere = new Mesh();

OpenMP Experimentation 559

sphere->createSphere(SPHERE_RADIUS, SPHERE_QUALITY, SPHERE_QUALITY);
numVerts = sphere->getVertexCount();
numFaces = sphere->getFaceCount();
//create objects
#pragma omp parallel for
for (int n=0; n<NUM_OBJECTS; n++) {

Object* object = new Object();
object->mesh = sphere;
object->effect = effect;
object->setCollidable(false);
object->position.x = (float) (rand() % 30 - 15);
object->position.y = (float) (rand() % 30 - 15);
object->position.z = (float) (rand() % 30 - 15);
object->scale.x = object->mass * SCALE_MULTIPLIER;
object->scale.z = object->scale.y = object->scale.x;
g_engine->addEntity(object);

}
return true;

}

void game_update(float deltaTime) {
effect->setProjectionMatrix(camera->getProjMatrix());
effect->setViewMatrix(camera->getViewMatrix());

}

Adv i c e

The OpenMP Internal project, with several sections of the core engine now supporting multiple
threads, sphere quality of 32, and 1000 objects, we easily see over 4.0 billion faces per second
running at 1,900 FPS. In terms of faces per frame, to give us a basic idea of our rendering
capability, that’s well over 65 million faces per frame. That is a very high quality scene, and that’s
with just an old 8800GT video card and Intel Q6600 running at 2.6GHz—which is quite obsolete
hardware by 2010 standards. We also have not even addressed scene management optimizations
such as removing objects not in the view frustum. These are very encouraging stats to say the least.

The result of these changes to internalize the sphere entities is a faces per second
rate of over 4.0 billion, up from the high mark of 1.8 billion when all of the
updating and rendering was taking place in the gameplay code rather than in the
engine. This gain in performance is seen even with the engine’s overhead—
events are generated for every entity as it is updated and rendered. By

560 Chapter 18 n Threading the Engine

commenting out the calls to Engine::raiseEvent(), performance would be
improved even more.

Another factor to consider is the size of each entity and the quality settings used
to render it. I have kept to a standard sphere quality (band size) of 16 and radius
of 0.75 for all of these experiments, but by making small changes to these
variables, huge changes can be seen in the output. A sphere quality of 16 to 24
seems to produce the best results in this project, but a typical production-quality
mesh will have 10,000 or more faces.

Gravity Experiment
This so-called “Gravity Experiment” is a simulation I’ve enjoyed tweaking and
experimenting with for many years. It started life in 1997 in Visual Basic 5.0. It
was then revived and upgraded to the C language and the Allegro SDK in 2004,
still functioning entirely in 2D. Now, at last, the old particle/gravity/star system
demo is running in full 3D with the advantage of having true 3D motion and
rendering with DirectX, thanks to the Octane engine! Figure 18.9 shows the

Figure 18.9
The Gravity Demo is an intriguing test bed.

Gravity Experiment 561

program running. This is probably the least functional version of the simulation
compared to the earlier ones, which featured sliders and buttons to configure the
simulation and re-run it without making changes to the code. By simply
tweaking some of the values you will get quite different results. Now all we
can really do here is add new entities (A key) and reset the simulation (R key), as
well as move the camera around. Go ahead, carry on the torch and see what you
can come up with—I would love to hear from you if you do anything interesting
with it! Of course, the screenshot (Figure 18.9) does not do this or any other
project in this chapter justice, so be sure to open up the sources and watch it run.

Threaded Sprite Collision Experiment
One of the last things we’ll try out is threaded sprite collision testing. The results
will not be as impressive as our earlier mesh examples because screen space
limits the number of sprites that can be moved independently in order to track
collision rates—a too-crowded screen renders the demo useless because of non-
stop collisions taking place. Since the original collision code dealt only with
bounding rectangles, I’ve decided to add distance-based (i.e., “circular” or
“spherical”) collision testing to improve the accuracy of the sprites being used
in this example. For reference, here is one of the previously undocumented
functions in the Engine class that is used for this example:

Entity* Engine::getEntity(int index) {
if (index >= 0 && index < p_entities.size())

return p_entities[index];
else

return NULL;
}

We will need this function to retrieve information about sprites that have
collided. As you may recall, the Engine::testForCollisions() function per-
forms collision testing among all managed entities that have the collision enable
property set—which includes both sprites and meshes. We’ll fill the entity
manager with sprites and enable collision among them all, then observe
performance with collision testing being done in multiple threads. When
running this program, observe the CPU in Task Manager and you should see
all cores running at maximum potential. See Figure 18.10. See the complete
project for the entire code listing.

562 Chapter 18 n Threading the Engine

Distributing Your Game
The runtime file requirements for a Visual Cþþ binary file can be quite a
challenge to sort out, so here are some suggestions to help when you wish to
distribute or share your game with others. To see an example for yourself, just
open up the folder for any installed game and note which runtime files the
studio has included with the game! You may be surprised to find older runtimes,
which means some games are still being built with Visual Studio 2003 or 2005! A
lot of this depends on the engine a studio uses for their game (if not an in-house
engine).

For instance, Firaxis has used the Gamebryo engine for many of their products,
including Civilization IV, and it was built with Visual Cþþ 2003 (including
more recent expansions that used the same engine).

Another good example is Blizzard’s World of Warcraft. Perusing the install
folder reveals many files including, notably, Microsoft.VC80.CRT.manifest and
msvcr80.dll. What these files tell us is that World of Warcraft was built with

Figure 18.10
Testing for sprite collisions using multiple threads.

Distributing Your Game 563

Visual Cþþ 2005. Since even the latest expansion (at the time of this writing,
that would be Lich King) still requires the same runtime file means that Blizzard
has not upgraded to Visual Cþþ 2008. That, I have found, is a fairly common
practice in the industry—as long as a compiler works, there’s no compelling
reason to upgrade in the middle of a product’s life cycle and potentially
introduce new bugs (a project manager’s worst nightmare).

For a Debug build of a project, these files are required (located in \Program Files
\Microsoft Visual Studio 9.0\VC\redist) and should be copied into the bin or
output folder where the .exe file is located.

n Microsoft.VC90.DebugCRT.manifest

n msvcr90d.dll

For a Release build, include these files:

n Microsoft.VC90.CRT.manifest

n msvcr90.dll

When using OpenMP (as we are) we also need to include the OpenMP runtime
files:

n Microsoft.VC90.DebugOpenMP.manifest

n vcomp90d.dll

and the release build version:

n Microsoft.VC90.OpenMP.manifest

n vcomp90.dll

References
Isensee, Pete; “Utilizing Multicore Processors with OpenMP”; Game Program-
ming Gems 6. 2006. pp: 17–23.

Jones, Toby; “Lock-Free Algorithms”; Game Programming Gems 6. Charles
River Media. 2006. pp: 5–15.

564 Chapter 18 n Threading the Engine

A
accelerated 3D systems, 6
advanced game engines, 6
advantages of OpenMP,

55–56
Age of Spiritual Machines, The, 9
aircraft, 373
algorithms, Bresenham

circle-drawing, 454
alpha channels, 435
Ambient technique, 211
ambient wireframe shader demo,

220–223
AMD processors, 7–10
AMP (asymmetric

multiprocessing), 10
angle to targets, 167–168
anifstream reader, 437
animation

interpolation, 367
meshes, 365–366
ranges, 421
sets, modifying, 393–394
skeletal meshes, 391–392
Sprite Animation Demo,

422–426
sprites, 420–426. See also sprites
textures, 452

APIs (application programming
interfaces)
engine startup, 108
OpenMP. See OpenMP

Apple iPad, 275
Apple iPhone, 274
applying

BitmapFont class, 439–441
POSIX threads, 76–78
Windows Threads, 13–16

architectures, hexa-core, 8

assets
pipelines, 367–368
Zip Asset Demo, 446–449
zip files, loading from, 441–446

asteroid mesh intervals,
249–252

asymmetric multi-processing.
See AMP

atomic clause, 65
automated collision detection,

522–527
automatic word wrapping, 140
AutoTimer, 498–500
avoiding threading, 5–6

B
backgrounds

layers, scrolling, 462–483
seamless, 463

baking animation data, 367
barrier clause, 65
binary space partition

(BSP), 6
biped character hierarchies, 372
Bitmap Font Builder, 435
bitmaps

fonts, 434. See also fonts
layers, 462–475

blocks, mutexes. See mutexes
Bone Mesh Demo, 394–398
bones, 368–370. See also skeletons
Boost

headers, 45, 115, 116
threads, 19–24

adding multi-core support,
44–50

calculating prime numbers,
32–33

prime divisors, 36–40

Prime Number Test 1
project, 33–36

single cores, 31–32
testing odd candidates, 40–44

Timer class, 129
variables, 45

boost::thread, 3, 50
testing, 20

bounding rectangles, 522
Bresenham circle-drawing

algorithm, 454
BSP (binary space partition), 6
buffers

memory, 6
vertices, 342

building
Bitmap Font Builder, 435
engines, 106–109
entity managers, 486–487
skyboxes, 305–306
vertex buffers, 342

bumps
persistence, 338
in textures, 336

C
calculating

angles to targets, 167–168
height, 357–363
inverse/transpose matrices, 225
Math class, 166
matrix elements, 179
prime numbers, 32–33
transforms, 416–417

cameras
creating, 234
scenes, rendering, 200
viewports, 452

Cartography Shop, 242

565

INDEX

casting rays, 510–511
Cataclysm, 331
changes, events, 491
channels, alpha, 435
classes

BitmapFont, 437–441
Camera, 202–206
Effect, 214–218
Engine, 111, 114–129
Entity, 488–490
Event, 136
Font, 139–142
Input, 111, 132–136
Layer, implementation, 464
LogFile, 143
Math, 165–166

demos, 174–178, 194–198
headers, 168–169
implementation, 169–174

Mesh, 252–261
Object, 540–542
ParticleEmitter, 47
Skybox, 310–315
Sprite, 407–414
Terrain, 343–353
Texture, 267–272, 452
Timer, 111, 129–132
Vector2, 158–162
Vector3, 162–165
VectorShape, 455–458

code
game engines, reasons for

building, 107
keyboards, 133
mouse, 134
OpenMP, 542–546
source code. See source code
Thread Demo program, 85
threading, 3
timing, 78
writing, 107

Collision Demo, 527–532
collision detection, 509,

522–533
automated, 522–527
meshes, 532–533
sprites, 515
threaded sprite experiments,

567–570
columns, matrices, 156
compilers, 107
components, engine rendering

systems, 139–142

configuring
Boost, 19–24
Visual Cþþ, 58–59

constants, CREATE_SUSPENDED, 97
controlling Windows thread

execution, 97–98
COR (Counter Organic

Revolution), 332–333
cores

detecting, 59
engines, 111–139
sharing, 76
single, Boost threads, 31–32

crate mesh intervals, 244–248
Cray-1 supercomputers, 273
CreateFrame() method, 379
CREATE_SUSPENDED constant, 97
critical clause, 65
cubes

mapping, 451
textures, 306

Cube stock mesh, 218
CUDA, 9
cursors, customizing mouse, 515
Cylinder stock mesh, 218

D
D3DCOLOR_ARGB macro, 230
D3DXComputerNormals, 342
dead entities, removing, 497
deadlock conditions, 65
debugging, 143
Debug mode, 538
delta time, 130
demos

ambient wireframe shader,
220–223

Collision Demo, 527–532
directional light, 228–238
engines, 145–148
Entity Demo, 505–508
Math class, 174–178
matrices, 194–198
mountain skybox, 317–322
Picking Demo, 514–522
point lights, 289–294
Scrolling Layer Demo, 467–475
space skybox, 322–328
specular light, 298–300
Sprite Animation Demo,

422–426
Sprite TransformDemo, 417–420

Terrain Demo, 353–357
Terrain Following Demo,

359–364
Vector Shape, 458–462
Zip Asset Demo, 446–449

design, threading, 6–7
detecting

collisions. See collision detection
cores, 59
hardware thread availability, 71

development
game engines, 103
tools, 106–107

diffuse lighting, 223–224
DirectCompute, 9
Direct3D, 6, 108

matrices, 184–185
vectors, 158

DirectInput, 108, 111
libraries, 133

directional light, 224–228
demos, 228–238
shaders, 226
textured shaders, 275–284

DirectX, 111
retail versions, 551–552
Texture Tool, 306
Viewer, 243

disabling
threading, 550
z-buffering, 307

displacement, 158
distance, 156, 522
distributing games, 571–572
done variables, 83
dot products, 226
drawing

Bresenham circle-drawing
algorithm, 454

lines, performance, 459
sprites with transparency,

414–415
vector shapes, 454–462

E
EA (Electronic Arts), 330
editing meshes, 248
effects, lighting, 285

files, loading, 208–218
point lights, 286–294
specular reflection shaders,

295–300

566 Index

textured point light shaders, 285
textured specular reflection,

300–303
enabling

OpenMP support in Visual
C++, 17

z-buffering, 307
encryption, zip files, 441
enemy ships, 522
engines

building, 106–109
core systems, 111–139
creating, 103
demos, 145–148
development tools, 106–107
enhancement, 228
entities, 500–501
events, 136–139
framerates, verifying, 152–153
games, 6
logistics, 106–107
modifying, 491–498
multi-sampling support, 150–151
OpenMP optimization, 552–556
projects, creating, 109–110
rendering, 139–142
startup, 105–106
support, 142–145
teamwork, 106–107
threading, 537

entities, 485
adding, 498
AutoTimer, 498–500
dead, removing, 497
engines, 500–501
managing, building managers,

486–487
modifying, 403
rendering

2D, 496
3D, 496

updating, 4, 495
Entity Demo, 505–508
entry-level game engines, 6
Epic Games, 332
errors, shaders, 209
Event class, 136
events

changes, 491
engines, 136–139

EventToggle property, 491
examples, Windows Threads, 96
explosions, sprites, 421

F
fast fourier transforms (FFTs), 37
FFTS (fast fourier transforms), 37
field of view property, 202
File menu, 436
files

assets, 368
DirectInput, 133
effect, loading, 208–218
headers, 114
POSIX threads, 79
text, reading, 445–446
.X, 242–251
zip, loading assets from,

441–446
first-person shooter (FPS) games, 6
flags, 58
flagship processors, 9
floating-point numbers, 14
float values, generating

heightmaps for, 335
fog, 427
fonts

formatting, 434–437
loading, 437–439
rendering, 437–439
sprites, 433–439

for loops, sequential ordering, 62
formatting

emitters, 431
engines, 103
fonts, 434–437
FVF formats, 342
projects, engines, 109–110
sprite explosions, 421
terrain, 332–357
.X mesh, 366

FPS (first-person shooter) games, 6
fragment programs, 208
framerates, verifying, 152–153
frames

hierarchies, 381
matrices, updating, 392–393
memory, 379
siblings, 379
updating, 130

FRAPS, 152–153
frequency, Perlin noise, 336–337
functions

AngleToTarget(), 459
Begin(), 403
BeginPass(), 208
BoneMesh::Load(), 376

Collision(), 523
createBounded(), 463
CreateMeshContainer(),

382–387
CreateThread(), 96
createWrapping(), 463
crunching prime numbers, 46
D3DCreateEffectFromFile,

209
D3DXLoadMeshFromX(), 366
D3DXLoadMeshHierarchy-

FromX(), 374
D3DXMatrixInverse, 224
D3DXMatrixLookAtLH, 201
DestroyFrame(), 387
DestroyMeshContainer(),

387–389
Distance(), 459
Draw(), 403
drawFrames(), 390
drawMeshContainer(), 390
End(), 403
EndPass(), 208
Engine::addEntity(), 498
Engine::Update, 207, 208
Engine::UPdate(), 538
Engine::Update(), 494
Entity::Render(), 490
Entity::Update(), 490
findPrimes(), 33, 46
game engine core system, 111
game_render2D(), 403
game_render3d(), 208
GetCursorPos(), 134
GetTickCount(), 15, 22
helper, Camera class, 204
intersectsCoordsToMesh(),

523
main(), 34
MatrixToString(), 201
MeshLoaderCallBack, 379
omp_get_num_threads(), 63
operator55, 143
parallel_distance, 13
pthread_create, 80
pthread_join, 84
Render(), 403
renderStart(), 453
RestorePrimaryRender-

Target(), 454
ResumeThread(), 97
SavePrimaryRenderTarget(),

454

Index 567

functions (continued)
ScreenToClient(), 134
serial_distance, 13
setAnimationSet(), 393
setBackdropColor(), 232
SetTransform(), 403
Sprite::Render(), 421
Sprite::Update(), 421
sqrt(), 14
square, 13
Terrain::getHeight(), 358
testForCollisions(), 525
testPrime(), 46
thread, 98
unzLocateFile(), 443
unzOPen(), 443
update(), 5
update, rendering, 390
updateEntities(), 556
updateFrameMatrices(),

392–393
WaitForSingleObject(), 96
WinMain, 111, 112–114

FVF formats, 342

G
Game Creators, 242
gameplay, 4
games

2D, managing, 402
distributing, 571–572
engines, 6, 103. See also

engines
entities, modifying, 403
FPS (first-person shooter), 6
iterative programming, 402

Garriott, Richard, 330
generating heightmaps, textures,

336–341
geometry shaders, 211
global space, 511
GPUs (graphics processing units),

9–10
Granberg, Carl, 334
graphic transformation, 158
Gravity Experiment, 561–567
GUIs (graphical user interfaces),

139

H
handling events, engines, 136–139
hardware, processors, 7–10

headers
Boost, 45, 115–116
files, 114
Math class, 168–169
POSIX threads, 79

heaps, 76
height, calculating, 357–363
heightmaps, generating textures,

336–341
Hello World programs, 54
helper functions, Camera class, 204
hexa-core architectures, 8
hierarchies

allocating, 378
biped characters, 372
bones, 368–370
frames, 381
loading, 375–378
meshes, 366–370, 381

hills, 337. See also environments;
terrain

hips, 370
Homeworld, 331

I
ID3DXSprite object, 403–404
identity matrices, 179–182, 189
#include statements, 114, 516
indexes, buffers, 342
indoor environments, 332
Input class, 111, 132–136
installing

Boost, 19–24
POSIX threads, 79–80

Intel processors, 7–10
interfaces

Engine.h class, 114
fonts, 140
GUIs (graphical user

interfaces), 139
implementation, 492
matrix struct, 190

internal experiments, OpenMP,
556–561

interpolation, 367
intersections

point-rectangle, 513–514
ray-mesh, 511–513

intervals
asteroid mesh, 249–252
crate mesh, 244–248

inverse matrices, 224, 512
iPad (Apple), 275

iPhone (Apple), 274
Irrlicht, 108
iterative game programming, 402

J
joysticks, 133

K
keyboards, 133
killing threads, 81
Kurzweil, Ray, 9

L
Layer class, implementation, 464
layers

backgrounds, scrolling,
462–483

bitmap, 462–475
Scrolling Layer Demo, 467–475
tiled, 475–483

Left Hip, 370
Left Lower Arm, 370
Left Upper Arm, 370
length of vectors, 156.

See also vectors
libraries

Boost, 19–24
boost::thread, testing, 20
changes in, 108
DirectInput, 133
Perlin noise, 334
POSIX threads, 74, 79–80
SMP, 16
Standard Template Library,

487
XInput, 133
zip archives, 441

lighting
diffuse, 223–224
directional, 224–238
effects, 285

point lights, 286–294
specular reflection shaders,

295–300
textured point light

shaders, 285
textured specular reflection,

300–303
textures

ambient light rendering,
261–266

568 Index

directional light shaders,
275–284

mapped meshes, 272–275
linear transformations, 179
linear velocity, 166–167
lines

2D, rendering, 454
performance, 459

loading
effect files, 208–218
fonts, 437–439
hierarchies, 375–378
meshes, 241–242
skeletal meshes, 370–389

load times, 4–5
locking mutexes, 83, 88
loops

for sequential ordering, 62
threading

creating, 80–81
OpenMP, 57–58

M
macros

BOOST_FOREACH #define, 34
D3DCOLOR_ARGB, 230

manipulating vertices, 210
mapping

cubes, 451
lighting texture meshes, 272
textures, 276

matrices, 155–156, 179
2D, transforming, 403
columns, 156
demos, 194–198
Direct3D, 184–185
elements, 179
frames, updating, 392–393
identity, 179–182, 189
inverse, 224, 512
operations, 182–183
projection, 201–202
structs, 188–194
transforms, 186–188
transposing, 224
views, 201
world, 206
zero, 179–182, 190

Maya, 242
memory

buffers, 6
frames, 379

heaps, 76
shared, OpenMP, 56

menus, File, 436
meshes

animation, 365–366
asteroid intervals, 249–252
Bone Mesh Demo, 394–398
collision detection, 532–533
crate intervals, 244–248
directional lighting, 229
editing, 248
hierarchies, 366–370, 381
lighting texture mapped,

272–275
loading, 241–242
managing, 503–504
patches, creating, 342
rays, intersections, 511–513
rendering, 218–224, 241–242
skeletons

animation, 391–392
loading, 370–389
rendering, 389–391

terrain, 358. See also terrain
wooden crate, 279
.X files, 242–251
.X mesh, 366

methods, CreateFrame(), 379
mirroring, 452
model space, 511
modes, enumerating video,

149–150
modifying

animation sets, 393–394
engines, 491–498
entities, 403

monitors, 2D, 201
motion capture (mo-cap), 367
mountain skybox demo,

317–322
mouse

code, 134
customizing, 515
objects, picking, 510–511

multi-core support, adding,
44–50

multiple threads, 11–13
multi-sampling support,

enumerating, 150–151
multi-tasking, 76
multi-threading

parallel processing, 11–13
serial processing, 10–11

technologies, 10–29
Windows Threads, applying,

13–16
mutexes

behaviors, 65
locking, 88
POSIX threads, 74
threads, 81–83

N
navigatingWindow Threads, 95–96
Neck, 370
noise

Perlin, 334–341
white, 336

normalizing,
D3DXComputerNormals, 342

numbers, floating-point, 14

O
objects

3D, picking, 510–511
heightmaps, 340.

See also heightmaps
ID3DXSprite, 403–404
space, converting to screen

space, 513
terrain, transforming, 357

octaves, Perlin noise, 338–341
odd candidates, testing, 40–44
OGRE, 108
OpenCL, 9
OpenGL, 6, 108
OpenMP, 3, 16–19, 53–54

advantages of, 55–56
data synchronization, 66–67
engine optimization, 552–556
experiments, 537–552, 556–561
loops, threading, 57–58
overview of, 54–55
prime numbers, 67–71
SDKs (software development

kits), 59
sequential ordering, 62–65
shared memory, 56
source code, 542–546
threads

controlling execution, 65
specifying number of, 59–62

Visual C++, configuring, 58–59
operations, matrices, 182–183

Index 569

optimization
OpenMP engines, 552–556
pipelining, 15

options, DT_CALCRECT, 140
ordering sequential, 62–65
ORIGIN, 330
Origin Systems, 330
outdoor environments, 332
output

fonts, 433. See also fonts
text, 139

P
Pacific Strike, 330
parallel processing, 11–13, 75
parameters

adding, 50
D3DCOLOR, 232
dwCreationFlags, 97
omp, 60
shaders, 210
thread function, 98–101

particles, sprites, 426–433
passwords, zip files, 441
patterns, gameplay, 4
pelvis, 370
performance

load times, 5. See also load times
VectorShape class, 459

Perlin, Ken, 274, 334
Perlin noise, 334–341
persistence, Perlin noise, 337–338
perspective, 201
Picking Demo, 514–522
picking 3D objects, 510–511
pipelines

assets, 367–368
optimization, 15

Pixar Animation Studios, 3
pixel shaders, 276
point lights, 286–294
point-rectangle intersections,

513–514
points

sprites, 426
vectors and, 156–157

polygons, recycling terrain, 329
polythreaded renderers, 6
pools, threads, 78
POSIX threads, 73–74

applying, 76–78
installing, 79–80

libraries, 74
programming, 80–83
theories, 74–76
ThreadDemo program, 83–91

#pragma statements, 59
primality tests, 36–40

threaded, 44–50
prime divisors, 36–40
prime numbers

calculating, 32–33
crunching functions, 46
OpenMP, 67–71

Prime Number Test program, 37
Prime Number Test 1 project,

33–36
primes per second (P/Sec), 44
processing

parallel, 11–13, 75
serial, 10–11
SMP (symmetric multi-

processing)
overview of, 1

processors, 7–10
throttling, 550

programming
iterative game, 402
POSIX threads, 80–83

programs, fragment, 208.
See also demos

projection matrix, 201–202
projects

engines, creating, 109–110
Prime Number Test 1, 33–36

properties, projection matrices,
202

Prophesy, 330
P/Sec (primes per second), 44

Q
Quake, 332
Quake II, 332–333

R
ragdoll physics, 367
rasterization, 401

sprites, 402–415
ratio property, 202
raw data, reading, 443–444
rays

casting, 510–511, 523
mesh intersections, 511–513

rectangles, 404–407
bounding, 522
point-rectangle intersections,

513–514
recycling terrain polygons, 329
reflection

specular shaders, 295–300
textured specular, 300–303

Relic Entertainment, 331
removing dead entities, 497
renaming functions, 111
rendering, 107. See also building

2D
entities, 496
lines, 454

3D entities, 496
alternate targets, 453–454
assets, 368
engines, 139–142
fonts, 437–439
functions, 143
hierarchy meshes, 389
meshes, 241–242
mesh hierarchies, 381
pixel shaders, 211
scenes, 199–200, 206–208

cameras, 200
projection matrix, 201–202
view matrix, 201

skeletal meshes, 389–391
skyboxes, 306, 317
sprites, 415
stock meshes, 218–224
text, 436
textures, 451–454

ambient light, 261–266
creating targets, 452–453

responsiveness, 4
retail versions, DirectX, 551–552
revolutions per minute. See RPM
rigging, 367
Right Hip, 370
rotating, 179
RPM (revolutions per minute),

548

S
sample effect files, 213–214
scaling, 179
scenes

rendering, 199–200, 206–208
cameras, 200

570 Index

projection matrix, 201–202
view matrix, 201

skyboxes, 307
scrolling background layers,

462–483
Scrolling Layer Demo, 467–475
SDKs (software development kits),

6, 59
engine startup, 108
Perlin noise, 335
POSIX threads, 79

seamless backgrounds, 463
security, zip files, 441
sequential ordering, 62–65
serial processing, 10–11
sets,modifying animation, 393–394
shaders

ambient wireframe shader
demo, 220–223

directional light, 226
errors, 209
geometry, 211
parameters, 210
pixel, 276
skyboxes, 307, 315–317
specular reflection, 295–300
textures

ambient, testing, 262
directional light, 275–284
point light, 285

shapes
vectors, drawing, 454–462
Vector Shape demo, 458–462

sharing
cores, 76
memory, OpenMP, 56

sheets, sprite animation, 420
shutdown, 142
siblings, frames, 379
single cores

Boost threads, 31–32
processors, 273

single threads
processing, 10–11
results, comparing, 88

skeletons
Bone Mesh Demo, 394–398
meshes

animation, 391–392
loading, 370–389
rendering, 389–391

meshes animation, 365–366
skinning, 380

skyboxes
building, 305–306
customizing, 308–310
mountain demo, 317–322
shaders, 315–317
skyspheres, choosing between,

306–308
space demo, 322–328

SMP (symmetric multi-
processing), 10
engines, creating for

experimentation, 103
experiments, 535
libraries, 16
overview of, 1
technologies, 3–10

software development kits.
See SDKs

source code
OpenMP, 542–546
Thread Demo program, 85

space skybox demo, 322–328
specular reflection shaders,

295–300
Sphere stock mesh, 218
Sprite Animation Demo, 422–426
sprites, 401

animation, 420–426
calculating, 416–417
collision detection, 515
experiments, threading,

567–570
explosions, 421
fonts, 433–439
managing, 501–503
particles, 426–433
rasterization, 402–415
rendering, 415
transforming, 415–416
transparency, drawing with,

414–415
Sprite Transform Demo, 417–420
Standard Template Library,

487
startup, engines, 105–106
statements

#include, 114, 516
#pragma, 59

std::cout-style, 142
stock meshes

directional lighting, 229
rendering, 218–224

Strike Commander, 330

structs
matrices, 188–194
variables, creating mutexes, 82

structures, effect files, 209–213
sub-meshes

aircraft, 373
default positions, 366

support
engines, 142–45
multi-core, adding, 44–50
multi-sampling, enumerating,

150–151
OpenMP, 17, 55
Visual C++, 17

symmetric multi-processing.
See SMP

synchronization, OpenMP, 66–67

T
targets

angle to, 167–168
rendering

alternate targets, 453–454
creating, 452–453

Task Manager
ThreadDemo program, 84
threads, viewing running, 64

temporary variables, 15
terrain. See also environments

creating, 332–357
height, calculating, 357–363
objects, transforming, 357
Perlin noise, 334–341
polygons, recycling, 329
walking on, 357

Terrain Demo program, 353–357
Terrain Following Demo project,

359–364
testing

boost::thread, 20
odd candidates, 40–44
Prime Number Test program, 37
textured ambient shaders, 262
threads, 88

text
output, 139
reading, 445–446
rendering, 436

Text stock mesh, 218
textures. See also environments

ambient light rendering,
261–266

Index 571

textures (continued)
animation, 452
bumps in, 336
cubes, 306
directional light shaders,

275–284
heightmaps, 335–341
lighting mapped meshes,

272–275
mapping, 276
point light shaders, 285
reading, 444–445
rendering, 451–454
specular reflection, 300–303
targets, 452–453

ThreadDemo program,
83–91

threads
avoiding, 5–6
Boost, 19–24

adding multi-core support,
44–50

calculating prime numbers,
32–33

prime divisors, 36–40
single cores, 31–32
testing odd candidates,

40–44
code, 3
creating, 80
design, 6–7
disabling, 550
engines, 537
killing, 81
mutex behavior, 65
mutexes, 81–83
pools, 78
single-thread results, comparing,

88
sprite experiments, 567–570
Windows, 95–101

controlling execution,
97–98

creating, 96–97
examples, 96
navigating, 95–96

Windows Threads, 24–29
tiled layers, 475–483
timing code, 78

tools
debugging, 143
development, 106–107
DirectX Texture Tool, 306

Torque (Garage Games), 108
Torus stock mesh, 218
Toy Story, 3
transforming, 158

2D matrices, 403
calculating, 416–417
linear, 179
matrices, 186–188
objects, terrain, 357
screen space into 3D space, 511
skeletal meshes, 379
sprites, 415–416
Sprite Transform Demo,

417–420
transparency, drawing sprites

with, 414–415
transposing matrices, 224
TRON, 334
troubleshooting shaders, 209
TrueType fonts, 140

U
Ultima series, 330
unlocking mutexes, 83
Unreal Tournament, 332
Up, 3
updating, 78

emitters, 43
entities, 4, 495
frames, 130
functions, 5, 390
matrices, 392–393

V
values, generating float for

heightmaps, 335
variables

Boost, 45
done, 83
temporary, 15

vectors, 155–156, 404
Direct3D, 158
overview of, 157–158
and points, 156–157

rays, casting, 510–511
shapes, drawing, 454–462

Vector Shape demo,
458–462

velocity, linear, 166–167
verifying framerates, 152–153
vertices

buffers, 342
manipulating, 210

video modes, enumerating,
149–150

viewports, cameras, 452
views, matrices, 201
Visual C++

configuring, 58–59
OpenMP, 55
support, 17

W
walking on terrain, 357
Wall-E, 3
white noise, 336
Windows Threads, 24–29,

95–101
applying, 13–16
controlling execution,

97–98
Wing Commander, 330
wireframes, 219

ambient wireframe shader
demo, 220–223

wooden crate mesh, 279
word wrapping, 140
world matrix, 206

X
.X files, 242–251
XInput library, 133
.X mesh formats, 366

Z
z-buffering, disabling, 307
zero matrices, 179–182, 190
zip files

assets, loading from, 441–446
reading from, 442–446
Zip Asset Demo, 446–449

572 Index

	Contents
	Introduction
	PART I: AN INTRODUCTION TO SYMMETRIC MULTI-PROCESSING
	Chapter 1 Overview of Symmetric Multi-processing Technologies
	Digging In to SMP
	Overview of Multi-threading Technology
	SMP Libraries
	Summary
	References

	Chapter 2 Working with Boost Threads
	Punishing a Single Core
	Spreading Out the Workload
	Summary
	References

	Chapter 3 Working with OpenMP
	Say Hello To OpenMP
	What Is OpenMP and How Does It Work?
	Configuring Visual C++
	Exploring OpenMP
	Prime Numbers Revisited
	Summary
	References

	Chapter 4 Working with POSIX Threads
	Introducing the POSIX Threads Library
	Summary
	References

	Chapter 5 Working with Windows Threads
	Exploring Windows Threads
	Summary

	PART II: CREATING AN ENGINE FOR SMP EXPERIMENTATION
	Chapter 6 Engine Startup
	Why Build an Engine Yourself?
	Creating the Engine Project
	Enumerating Video Modes
	Enumerating Multi-sampling Support
	Verifying Framerates with FRAPS
	Summary
	References

	Chapter 7 Vectors and Matrices
	Vectors and Points
	Math Functions
	Matrices
	Summary
	References

	Chapter 8 Rendering the Scene
	The Camera (View and Projection Matrices)
	The Scene (World Matrix)
	Diffuse Lighting
	Summary
	References

	Chapter 9 Mesh Loading and Rendering
	Mesh Loading and Rendering
	Lighting Texture-Mapped Meshes
	Summary

	Chapter 10 Advanced Lighting Effects
	Textured Point Light Shader
	Specular Reflection Shader
	Summary

	Chapter 11 Wrapping the Sky in a Box
	Building a Skybox
	Summary

	Chapter 12 Environmental Concerns: Recycling Terrain Polygons
	Outer Space Environments
	Indoor/Outdoor Environments
	Creating Terrain
	Walking on Terrain
	Summary
	References

	Chapter 13 Skeletal Mesh Animation
	Hierarchical Mesh Structure
	Loading a Skeletal Mesh
	Rendering a Skeletal Mesh
	Animating a Skeletal Mesh
	The Bone Mesh Demo
	Summary
	References

	Chapter 14 Sprite Animation and Rasterization
	Sprite Rasterization
	Sprite Transformations
	Sprite Animation
	Sprite-Based Particles
	Sprite-Based Fonts
	Loading Assets from a Zip File
	Summary
	References

	Chapter 15 Rendering to a Texture
	Rendering to a Texture
	Drawing Vector Shapes
	Scrolling Background Layers
	Summary

	Chapter 16 Entity Management
	Building an Entity Manager
	Entity-fying the Engine Classes
	Entity Demo
	Summary

	Chapter 17 Picking and Collision Detection
	Picking
	Collision Detection
	Summary

	PART III: SMP EXPERIMENTS
	Chapter 18 Threading the Engine
	OpenMP Experimentation
	Gravity Experiment
	Threaded Sprite Collision Experiment
	Distributing Your Game
	References

	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Z

