& Ll

ELSEVIER

COLLISION DETECTION : ENVIRONMENTS

IN INTERACTIVE =

R

Praise for Gino van den Bergen's Collision Detection in Interactive 3D
Environments:

“Having read this book from cover to cover, I can summarize my opinion
in two words from a mathematician’s lexicon: elegant and beautiful. There
is very little to criticize in this exquisite work.”

—Ian Ashdown, byHeart Consultants, Inc.

“Building a real-time collision detection system is by no means a trivial
task. A firm understanding is required of the geometry and mathemat-
ics for intersection testing, especially when the objects are in motion.
The skilled use of convexity is essential for distance calculations. The
system must be designed carefully to support high-performance physical
simulations. In particular, spatial partitioning and tight-fitting bounding
volumes must play a role in minimizing the computational requirements
of the system. The system is sufficiently large that the principles of soft-
ware engineering apply to its development. Moreover, collision detection
is notoriously difficult to implement robustly when using floating-point
arithmetic. The challenges of architecting and implementing a collision
detection system are formidable!

Collision Detection in Interactive 3D Environments is an elegantly writ-
ten treatise on this topic. Gino guides you through the basic concepts,
provides insightful discussions on how to cope with the problems inherent
in floating-point arithmetic, covers the all-important topic of computing
distance between convex objects, and presents an informative summary
of the spatial data structures that are commonly encountered in practice.
And as an artisan of the field, Gino finishes the story with a case study—
the design and implementation of his own working collision detection
system, SOLID.

This is the first book to provide all the details necessary to build a
collision detection system that really works. I hope you will find, as I
did, that the amount of material in this book is incredible, making it an
extremely valuable resource.”

—Dave Eberly, president, Magic Software, Inc., and author of 3D Game
Engine Design, co-author with Philip Schneider of Geometric Tools for
Computer Graphics, and author of Game Physics.

Collision Detection
in Interactive 3D
Environments

The Morgan Kaufmann Series in Interactive 3D Technology
Series Editor: David H. Eberly, Magic Software

The game industry is a powerful and driving force in the evolution of
computer technology. As the capabilities of personal computers, periph-
eral hardware, and game consoles have grown, so has the demand for
quality information about the algorithms, tools, and descriptions needed
to take advantage of this new technology. We plan to satisfy this demand
and establish a new level of professional reference for the game devel-
oper with the Morgan Kaufmann Series in Interactive 3D Technology.
Books in the series are written for developers by leading industry pro-
fessionals and academic researchers, and cover the state of the art in
real-time 3D. The series emphasizes practical, working solutions and solid
software-engineering principles. The goal is for the developer to be able
to implement real systems from the fundamental ideas, whether it be for
games or for other applications.

3D Game Engine Design: A Practical Approach to Real-Time Computer
Graphics
David H. Eberly

Collision Detection in Interactive 3D Environments
Gino van den Bergen

Forthcoming Titles
Essential Mathematics for Games and Interactive Applications: A Program-
mers Guide

Jim Van Verth and Lars Bishop

Real-Time Collision Detection
Christer Ericson

Al for Synthetic Characters: Behavior, Learning, and Motor Control
Bruce Blumberg

Collision Detection
in Interactive 3D
Environments

Gino van den Bergen

AMSTERDAM « BOSTON ¢ HEIDELBERG ¢« LONDON ®
NEW YORK ¢ OXFORD * PARIS » SAN DIEGO '
SAN FRANCISCO ¢ SINGAPORE ¢ SYDNEY « TOKYO k

Morgan Kaufmann Publishers is an imprint of Elsevier MORGAN KAUFMANN PUBLISHERS

Morgan Kaufmann Publishers

Senior Editor Tim Cox

Publishing Services Manager Simon Crump

Editorial Coordinators Stacie Pierce, Richard Camp

Project Manager Sarah Manchester

Cover Design Chen Design

Copyeditor Ken DellaPenta

Full Service Provider Keyword Publishing Services Ltd

Interior Printer The Maple-Vail Book Manufacturing Group
Cover Printer Phoenix Color

Designations used by companies to distinguish their products are often claimed as
trademarks or registered trademarks. In all instances in which Morgan Kaufmann
Publishers is aware of a claim, the product names appear in initial capital or all
capital letters. Readers, however, should contact the appropriate companies for
more complete information regarding trademarks and registration.

Morgan Kaufmann Publishers
An Imprint of Elsevier

500 Sansome Street, Suite 400
San Francisco, CA 94111
www.mkp.com

© 2004 by Elsevier, Inc. All rights reserved.
Printed in the United States of America
07 06 05 04 03 54321

No part of this publication may be reproduced, stored in a retrieval system,
or transmitted in any form or by any means—electronic, mechanical, photocopy-
ing, or otherwise—without the prior written permission of the publisher.

Library of Congress Control Number: 2003059350
ISBN: 1-55860-801-X

This book is printed on acid-free paper.

To Jeanne

Chapter

1

Chapter

Figures, Algorithms, Theorems, and Lemmas

Contents

xiii

Preface Xix
Introduction 1
1.1 Problem Domain 2
1.2 Historical Background 5
1.3 Organization 7
Concepts 11
2.1 Geometry 11
2.1.1 Notational Conventions 11
2.1.2 Vector Spaces 12
2.1.3 Affine Spaces 14
2.1.4 Euclidean Spaces 17
2.1.5 Affine Transformations 19
2.1.6 Three-Dimensional Space 21
2.2 Objects 22
2.2.1 Polytopes 23
2.2.2 Polygons 29
2.2.3 Quadrics 32
2.2.4 Minkowski Addition 33
2.2.5 Complex Shapes and Scenes 38
2.3 Animation 41
2.4 Time 46
2.5 Response 49

ix

X Contents

Chapter

3

Chapter

4

2.6 Performance 53
2.6.1 Frame Coherence 54
2.6.2 Geometric Coherence 54
2.6.3 Average Time 56

2.7 Robustness 57
2.7.1 Floating-Point Numbers 57
2.7.2 Stability 60
2.7.3 Coping with Numerical Problems 62

Basic Primitives 67

3.1 Spheres 67
3.1.1 Sphere-Sphere Test 67
3.1.2 Ray-Sphere Test 68
3.1.3 Line Segment-Sphere Test 71

3.2 Axis-Aligned Boxes 72
3.2.1 Ray-Box Test 73
3.2.2 Sphere-Box Test 76

3.3 Separating Axes 77
3.3.1 Line Segment-Box Test 80
3.3.2 Triangle-Box Test 81
3.3.3 Box-Box Test 82

3.4 Polygons 84
3.4.1 Ray-Triangle Test 84
3.4.2 Line Segment-Triangle Test 87
3.4.3 Ray-Polygon Test 88
3.4.4 Triangle-Triangle Test 90
3.4.5 Polygon-Polygon Test 92
3.4.6 Triangle-Sphere Test 97
3.4.7 Polygon-Volume Tests 101

Convex Objects 105

4.1 Proximity Queries 105

4.2 Overview of Algorithms for Polytopes 108
4.2.1 Finding a Common Point 108

Chapter

5

Chapter

6

Contents

xi

4.2.2 Finding a Separating Plane 110
4.2.3 Distance and Penetration Depth Computation 115
4.3 The Gilbert-Johnson-Keerthi Algorithm 121
4.3.1 Overview 121
4.3.2 Convergence and Termination 123
4.3.3 Johnson’s Distance Algorithm 126
4.3.4 Support Mappings 130
4.3.5 Implementing the GJK Algorithm 139
4.3.6 Numerical Aspects of the GJK Algorithm 141
4.3.7 Testing for Intersections 145
4.3.8 Penetration Depth 147
Spatial Data Structures 171
5.1 Nonconvex Polyhedra 172
5.1.1 Convex Decomposition 172
5.1.2 Polyhedral Surfaces 173
5.1.3 Point in Nonconvex Polyhedron 174
5.2 Space Partitioning 175
5.2.1 Voxel Grids 175
5.2.2 Octrees and k-d Trees 177
5.2.3 Binary Space Partitioning Trees 180
5.2.4 Discussion 190
5.3 Model Partitioning 192
5.3.1 Bounding Volumes 193
5.3.2 Bounding-Volume Hierarchies 199
5.3.3 AABB Trees versus OBB Trees 201
5.3.4 AABB Trees and Deformable Models 206
5.4 Broad Phase 209
5.4.1 Sweep and Prune 210
5.4.2 Implementing the Sweep-and-Prune Algorithm 212
5.4.3 Ray Casting and AABBs 215
Design of SOLID 219
6.1 Requirements 219

xii Contents

Chapter

6.2 Overview of SOLID 222
6.3 Design Decisions 228
6.3.1 Shape Representation 228
6.3.2 Motion Specification 233
6.3.3 Response Handling 235
6.3.4 Algorithms 237
6.4 Evaluation 242
6.5 Implementation Notes 244
6.5.1 Generic Data Types and Algorithms 244
6.5.2 Fundamental 3D Classes 247
Conclusion 251
7.1 State of the Art 251
7.2 Future Work 253
Bibliography 257
Index 267
About the CD-ROM 277
Trademarks 278

Figures, Algorithms,
Theorems, and Lemmas

Figures

1.1
2.1
2.2

2.3

2.4
2.5
2.6

2.7
2.8

9

.10
A1
12

NNDNDN

N

13
2.14

2.15

2.16
2.17

2.18

Elite, the first 3D game on a home computer.

An affine transformation in R?.

The group of affine transformations.

An object is convex if it contains all the line segments
connecting any pair of its points.

A taxonomy of primitive types.

The linkage of edge nodes in a winged-edge structure.

The Dobkin-Kirkpatrick hierarchical representation of a
polytope.

Fixing a hole in a polygon.

The three quadric primitives: (a) sphere, (b) cone,

and (c) cylinder.

The Minkowski sum of a box and a sphere.

A pair of convex objects and the corresponding CSO.
The conventional use of yaw, pitch, and roll.

Problems when detecting collisions at discrete time steps:
(a) too late; (b) missed.

Solutions for simplified four-dimensional intersection
tests on rotating objects.

The contact region described by a contact point p and

a contact normal n.

Computing a contact point and contact normal

of fixed-orientation objects by performing a ray

test on the CSO of the objects.

For a pair of closest points p and q at = 0, the difference
P — q is a good approximation of a contact normal.
Using the penetration depth vector for approximating a
contact normal: (a) fairly accurate and (b) inaccurate.
The amount of geometric coherence in a collection of
triangles: (a) little coherence and (b) much coherence.

16
20

23

24
26

28
30

33
33
38
43
47
49

50

50

51

53

55

X111

xiv Figures, Algorithms, Theorems, and Lemmas

3.1
3.2
3.3

3.4
3.5
3.6
3.7

3.8
3.9

3.10

3.11

3.12
3.13

4.1
4.2
4.3
4.4
4.5

4.7

The distance « of the origin to the line st is found using
the Pythagorean theorem, o2 + 2 = y2.

A ray cast for axis-aligned boxes using techniques from
Cohen-Sutherland and Liang-Barsky line clipping.
Computing the penetration depth of a sphere A and a

box B for the case where the sphere’s center ¢ is
contained by the box.

The vector x is a separating axis of A and B, whereas y is
not a separating axis.

The projection of a box with center ¢ and extent h onto an
axis v is the interval [v-¢ — p,v - ¢ + p], where p = |v| - h.
A separating-axis test for two relatively oriented boxes A
and B on an axis v.

The line segment st intersects the triangle if the bases
{vi,Vig1, r} are either all right-handed or are all
left-handed, and the endpoints s and t of the line segment
are located on different sides of the triangle’s supporting
plane.

Computing the point of intersection of a ray and a
polygon’s supporting plane.

The edge pop1 is almost parallel to triangle B’s plane, and
thus is regarded as nonintersecting by the finite-precision
ray-triangle test.

A pair of nonconvex polygons intersect iff the
intersections of each polygon with the other polygon’s
supporting plane overlap.

When computing the intersection of a nonconvex polygon
and a plane, the intersection points of the edges are found
in the order in which they appear along the boundary of
the polygon.

The intersection of two line segment sequences.
Computing a point x common to a sphere and a plane
H(n, 8). The point X = ¢ + An, where A = —(n - ¢ + 8)/||n||2.
The line segment vw contains a vector u for which

|l < v|l only if [v]|* —v-w > 0.

For a weakly separating axis v, we have

v sp(—v) > v . sp(v).

Four iterations of the CW algorithm.

Voronoi regions of the features of a box.

A local minimum condition.

Four iterations of the GJK algorithm.
Vertex p has a very high degree and slows down hill
climbing on this polytope.

70

74

77

77

79

82

87

89

91

93

93
96

103
107
111

112
117

119
123

133

Figures, Algorithms, Theorems, and Lemmas XV

4.8 Computing a support point for a cone. 136
4.9 A support mapping for the convex hull of spheres A
and B. 139

4.10 Two types of oscillations in GJK when the termination
conditions are not met due to an ill-conditioned error

bound. 145
4.11 Incremental separating-axis computation using
ISA-GIK. 147

4.12 For a convex polytope that contains the origin, a point v
on the affine hull of an edge closest to the origin is an

internal point of the edge. 148
4.13 A sequence of iterations of the expanding-polytope

algorithm. 149
4.14 A naive split of the triangle {yo,y1,y2} by adding the

support point w = s4_p(v) as a vertex. 153
4.15 Splitting triangle {yo, y1,y2} by adding support point w

causes the polytope to become concave. 154
4.16 The silhouette of the polytope as seen from support point

w is marked by thick lines. 154
4.17 Adjoining triangles are stored in the order given by the

vertices. 156

4.18 Constructing an initial polytope for the EPA, in the case

where GIK returns a line segment ypy; containing the

origin. 159
4.19 In the case where GJK returns a triangle yo, y1,y2

containing the origin, we also construct a hexahedron as

the initial polytope for the EPA, but this time we need to

add only two vertices, y3 and y4. 161
4.20 A hybrid technique for a faster penetration depth
computation when interpenetrations are small. 167

4.21 If the lower bound § = v - w/||v| for the distance
between the original objects is greater than ug + ug,
the sum of the margins, then the enlarged CSO does
not contain the origin, and thus the enlarged objects

do not intersect. 168
5.1 Convex decomposition methods. 173
5.2 Two hierarchical structures for partitioning space into

rectangular cells: (a) octree and (b) k-d tree. 178
5.3 A query object can overlap fewer fat cells than thin cells:

(a) octree vs. (b) k-d tree. 179
5.4 A taxonomy of recursive hierarchical space partitioning

structures. 181

5.5 A polygon and its BSP tree representation. 181

xvi Figures, Algorithms, Theorems, and Lemmas

5.6
5.7

5.8

59

5.10
5.11
5.12
5.13
5.14
5.15

5.16
5.17

6.1
6.2
6.3

6.4
6.5

6.6

6.7
6.8

Choosing a partitioning plane.

Using offset surfaces for approximating the CSO of a
polyhedron and a sphere.

Two spatial data structures used in GIS: (a) quadtree and
(b) fieldtree.

The primitive is classified as positive, since its midpoint
on the coordinate axis is greater than §.

Two models that were used in our experiments:

(a) Utah Teapot and (b) Stanford Bunny.

Distribution of axes on which the SAT exits in the case of
the boxes being disjoint.

The smallest AABB of a set of primitives encloses the
smallest AABBs of subsets of the set.

(a) Refitting versus (b) rebuilding a model after a
deformation.

Incrementally sorting a sequence of endpoints; (a) t = 0
and(b)r=1.

Each endpoint maintains a counter containing its
stabbing number: (a) t =0 and (b) t = 1.

Indexing endpoints in box structures.

Ray casting AABBs using 3D-DDA on a nonuniform
grid.

A pyramid relative to its local coordinate system.

A diagram of the SOLID framework.

Two environment simulation architectures:

(a) monolithic architecture and (b) networked
architecture.

Vertex arrays are maintained by the client.

The closest points of a pair of objects in a

given coordinate system may not be the closest

points after scaling the coordinate system
nonuniformly.

Although it is usually larger in size, we use the
world-axes-aligned bounding box of the AABB tree’s
root box rather than the smallest world-axes-aligned
bounding box of a complex shape, since it can be
computed much faster.

An OMT diagram of the class hierarchy of shape types
used in SOLID.

Both Minkowski addition and convex hulls can be used
for detecting in-between-frames collisions.

183

185

191

202

204

205

207

208

211

214
215

216

223
225

230
231

234

238

241

243

Figures, Algorithms, Theorems, and Lemmas

xvii

Algorithms
2.1 Computing an independent set S of vertices of polytope P. 27
3.1 Aray cast for a ray st and a sphere centered at the origin

having radius p. 70
3.2 Anintersection test for a line segment st and a sphere

centered at the origin having radius p. 72
3.3 Aray cast for a ray st, where s = (01,02, 03) and

t = (1, 72, 13), and a box centered at the origin having

extent (n1, 12, n3). 75
3.4 Aray cast for a ray st and a triangle with vertices py, p1,

and p;. 85
3.5 The crossings test for testing the containment of a point

(Bx, By) in a polygon with vertices @, o:}(f)), where

i=0,...,n—-1. 90
3.6 Detecting overlap in two sorted sequences of intervals. 95
3.7 Computing the intersection of two sequences of collinear

line segments. 96
4.1 The theoretical GJK distance algorithm. 125
4.2 Computing a support point p = sp(v) using hill climbing

on the polytope’s vertex adjacency graph. 132
4.3 Computing a support point p = sp(v) using hill climbing

on a multilayered vertex adjacency graph. 134
4.4 The numerical GJK distance algorithm. 145
4.5 The GJK separating-axis algorithm. 146
4.6 The theoretical expanding-polytope algorithm in 2D. 151
4.7 Recursive flood-fill algorithm for retrieving the silhouette

as seen from w. 156
4.8 The theoretical expanding-polytope algorithm in 3D. 157
4.9 Testing a tetrahedron {po, p1, P2, p3} for containment of

the origin. 161
4.10 The numerical expanding-polytope algorithm in 3D. 165
4.11 Penetration depth of objects that are enlarged by a

margin. 169
5.1 Recursive algorithm for constructing a solid-leaf BSP

tree of a set of boundary facets P. 182
5.2 Testing a point p for inclusion in a polyhedron

represented by a BSP tree. 184
5.3 Dynamic plane-shifting BSP traversal for testing a

convex object B + {p} for intersection with an

environment represented by a BSP tree. 186
5.4 Determining the first time of impact of a moving convex

object B + {p;} and a static environment represented by a

BSP tree. 188

Xviil Figures, Algorithms, Theorems, and Lemmas

Theorems
2.1 Let A and B be convex objects. Then, A + B is also convex. 34
2.2 Let A and B be polytopes. 34
3.1 For a pair of nonintersecting polytopes, there exists a

separating axis that is orthogonal to a facet of either

polytope, or orthogonal to an edge from each polytope. 78
4.1 Let A and B be convex objects and a € A and b € B, a pair

of closest points. 107
4.2 Suppose that unit vector u is a weakly separating axis of

A and B, and that vy, is not a weakly separating axis. 113
4.3 LetX and Y be features of disjoint convex polyhedra A

and B, and letx € X and y € Y be the closest points of X

and Y. 118
4.4 |IVig1ll < |lvell, with equality only if v, = v(A — B). 124
4.5 vk —v(A=B)|I?> < |Ivell> = v - wy. 125
4.6 Let sy be a support mapping of object A, and

T(x) = Bx + ¢ an affine transformation. 137
4.7 For each kth iteration, if vy # v(A — B), then wy, € W . 141
4.8 Let P be a d-dimensional polytope that contains the

origin, and, for each (d — 1)-dimensional boundary

feature X of P, let vy = v(aff(X)), the point closest to the

origin on the affine hull of X. 149
Lemmas
4.1 Letvand w be vectors. 107
4.2 ||v]|? - vi - wy > 0, with equality only if v, = v(A — B). 124

Preface

Beauty is our Business.
—Edsger W. Dijkstra

Over the past decade, I have devoted varying portions of my time to the
study of geometric algorithms, specifically, algorithms for detecting col-
lisions between 3D objects. The reason for doing so was, and remains,
partly academic interest and partly professional necessity. It is easy to
become intrigued by the quest for the “ultimate” algorithm for solving
a geometric problem, especially if the reward is a real-life application,
such as a 3D game, that is able to meet the given timing and memory
constraints.

This book is the accumulation of my findings in the field of collision
detection of 3D objects. Most of the algorithms found in this book were
discovered and written down by other people. I felt it was time to collect
and categorize these algorithms into a single publication. This is by no
means a complete compilation of all the solutions that have been proposed
in this field. It probably would take over a thousand pages more to cover
everything. What is collected here is what I found to be useful in practical
applications, and, of course, I am totally biased towards my own work ;-).

The solutions offered in this book are presented as abstract algorithms
rather than compilable source code in some programming language. 1 feel
that in order to explain a geometric algorithm in a concise and clear way, it
is often helpful to keep the focus on mathematics rather than to elaborate
on programming issues. Surely, I do not dismiss the task of implementing
these algorithms on a computer as trivial. Isimply question the usefulness
of current programming languages for describing geometry. Algorithms
should in the first place be human-readable, and what better language for
describing geomeitric entities than common mathematical notation?

Challenging as it may be, contriving beautiful algorithms is not a goal
unto itself. In the end what counts is how well an algorithm performs
on the target computer. 1 discovered that the main effort in imple-
menting a geometric algorithm is not to make it run fast but to make
it run reliable. Finite-precision arithmetic contaminates the otherwise
immaculate mathematical predicates of our proofs. In order to warrant
reliability, we have to allow for rounding errors in the computed values.

xXix

XX Preface

Fixing algorithms for finite-precision arithmetic can be messy, but with
the proper understanding of the source of the errors it does not have to
be black magic.

Although this book as well as the SOLID library have up until now
been solo projects for me, they would not have seen the light of day
without the help of others. Firstly, T would like to thank Dave Eberly
for allowing me to make an addition to his series. Many thanks to Tim
Cox, Stacie Pierce, and Richard Camp, at Morgan Kaufmann Publishers,
Sarah Manchester at Elsevier, and Sue Nicholls at Keyword Publishing
Services for support, as well as all the anonymous people who helped out
with this book. I thank the reviewers for the book: Ian Ashdown from
byHeart Consultants Ltd., Neil Kirby from Lucent Technologies, Stephen
Cameron from Oxford University, and the three reviewers who chose to
remain anonymous. Furthermore, I would like to thank Ton Roosendaal
at Not a Number, Bas Vermeer and Ton Veth at Cebra, and Rogier Smit at
Playlogic for enabling me to work on SOLID in my professional time. And
last but not least, I thank the people in the field that feed me with ideas and
provide me with the necessary feedback: Erwin “Coockie” Coumans, Jan
Paul “Mr. Elusive” van Waveren, Stan Melax, Pierre Terdiman, Gabriel
Zachmann, Brian Mirtich, Chris Hecker, Jeff Lander, and all the peo-
ple who frequently share their ideas on the comp.graphics.algorithms
newsgroup.

Gino van den Bergen
June 24, 2003

Chapter
Introduction

One never notices what has been done.
One can only see what remains to be done.

—Marie Curie

Current state of the art in computer graphics enables us to interactively
explore three-dimensional data, such as architecture and scientific visu-
alizations. In many applications, these data represent environments with
behavior, for instance, in games and simulators. Often, the goal of such
applications is to simulate some aspects of the real world as accurately
as possible. A term often used for this type of application is virtual
reality, although this term typically refers to immersively experienced
environments that utilize devices such as head-mounted displays and data
gloves.

One aspect of the real world that greatly affects the manner in which
we experience an environment is the constraint that two material objects
cannot occupy the same point in space at the same time. Occasionally,
we regard this constraint as undesired, since it restricts our motions.
However, impenetrability enables manipulations, such as pushing and
stacking objects. Also the fact that we can stand and walk depends on the
ground being impenetrable.

In general, object representations in simulated environments do not
impose impenetrability. If we want a simulated environment to behave
according to the real world with respect to the impenetrability of material
objects, we need to incorporate a mechanism that enforces this constraint.
An important task of such a mechanism is detecting configurations of
interpenetrating objects, which are called collisions.

This book focuses on the problem of detecting collisions in computer-
simulated interactive 3D environments. At first glance, the problem
of determining whether or not two geometric objects interpenetrate
seems purely mathematical. As might be expected, this book offers the
mathematical background and algorithms for performing geometric
queries on a variety of shape types currently used for modeling 3D environ-
ments. However, the constraints imposed by current computer platforms

2 Chapter 1 Introduction

complicate matters tremendously. First of all, interactive applications
require that these queries are performed within a given time frame. In
order to meet this real-time requirement, we have to use the limited
amount of processing power as efficiently as possible. Second, the lim-
ited precision imposed by floating-point number formats causes rounding
errors in the results of arithmetic operations. Numerical precision is par-
ticularly tight in the context of collision detection, since an incorrect
answer 1o a collision query can result in a significantly different behav-
ior of the environment. The final constraint that we have to deal with
is the amount of available memory. The memory usage of certain colli-
sion detection methods can be quite large in comparison to other tasks
performed by the application, and should be taken into consideration.

Of course, the reason for performing collision detection is to have some
form of response to collisions. Often, additional data pertaining to the
configuration of the colliding objects is needed for handling collisions. The
problem of computing these so-called response data is closely related to
the collision detection problem. So obviously, we also devote some space
to methods for computing response data. Without delving too deeply into
the subject of physics-based simulation, this book explains how to com-
pute the response data necessary for resolving collisions in a physically
convincing way.

1.1 Problem Domain

In this book, we address the problem of detecting collisions between
three-dimensional objects. A collision is a configuration of two objects
occupying the same point in space. We are interested, in particular,
in configurations that change over time; that is, at least one of the
objects is moving. The motion may be the result of a change of posi-
tion and orientation or of deformation. A proper definition of what is
understood by “a configuration of objects” follows in Chapter 2, which
makes distinguishing between different types of motion a little more
meaningful.

We experience motion as a continuous flow of object configurations.
Computer animation systems simulate this continuous flow by updat-
ing object configurations at discrete time steps. Although collisions may
not occur for these discrete time steps, we can often tell that a col-
lision must have occurred, based on the trajectories of the objects.
For instance, a bullet fired inside a closed room should at some point
in time hit some part of the room before leaving it, even though the
generated sequence of object configurations may not show a collision.

1.1 Problem Domain 3

Detecting these in-between collisions accurately for all types of objects
and motions is a daunting task, especially with the limited amount of
processing time we are given in interactive applications. However, by
trading some accuracy for performance, we are able to detect in-between
collisions with sufficient accuracy to render faithful behavior for most
applications. This book discusses a few “tricks” for detecting in-between
collisions.

The meat of this book deals with performance issues. With the proper
background in mathematics, designing algorithms for collision detection
between a variety of object types is, in itself, not that hard. The real chal-
lenge is to perform collision detection for complex environments with
lots of moving objects at interactive rates. Whether the rate at which
object configurations are updated is considered “interactive” depends on
the application. The human eye can be fooled into experiencing smooth
motion by displaying a sufficient number of frames per second. Currently,
interactive 3D applications typically shoot for frame rates between 30
and 60 frames per second. Our sense of touch is even more responsive.
Haptic feedback should be updated at rates over 500 Hz. In order to
meet the real-time requirements of interactive applications, we exploit
two fundamentals:

m Spatial coherence: An object usually spans only a relatively small portion
of the space, and collisions between objects are fairly rare. In general,
collisions are resolved rather than maintained.

m Temporal coherence: Configurations change relatively little in between
consecutive updates. Motions are usually smooth.

Spatial coherence assures us that the number of (possibly) colliding object
pairs is far less than the actual number of object pairs. Temporal coher-
ence suggests that we can avoid a lot of unnecessary computations by
saving and reusing data from previous configurations.

Further speedups can be obtained by reducing the complexity of the
used shapes. Simple shapes generally take less time to query for col-
lisions than complex shapes. So, by substituting simpler shapes for
more complex shapes in collision queries, the computational load of col-
lision queries can be reduced substantially. Whether this trade-off of
accuracy against performance is acceptable depends of course on the
application.

We do not treat static objects any differently than moving objects. It
turns out that there is no added benefit to be had by special treatment
of static objects, other than the fact that collisions between static objects
are generally not very interesting and can thus be ignored. Whether or
not two objects collide depends solely on the relative configuration of

4 Chapter 1 Introduction

the objects. The knowledge that one of the objects is static does not give
us an extra clue for optimizing the collision test. Ignoring certain colli-
sions is simply motivated by the choice not to respond to them. However,
this choice does not rely purely on the fact that objects are static, since
there are collisions between moving objects we do not wish to respond to
either.

The amount of processing is not the only constraint we have to deal
with. On most computer platforms, the amount of available storage and
the numerical precision are also limited. These issues are addressed as
well in the discussion of the presented collision detection algorithms.
Numerical problems that arise from finite-precision arithmetic can have
a severe impact on the correctness of an algorithm and thus demand a
comprehensive look at the way floating-point numbers are processed. This
book tries to point out the potential problems that may arise from using
finite-precision number formats and presents possible solutions to meet
these problems.

This book discusses methods for detecting collisions and computing
response data for objects represented by shape types that are commonly
used for modeling interactive 3D environments. The shape types that we
consider are

s basic primitives, such as boxes, spheres, ellipsoids, cones, and cylingers

® convex polytopes, such as line segments, triangles, and convex
polyhedra

= complex shapes, such as polygonal and tetrahedral meshes.

Furthermore, we look at two compound shape types that are not very
common in interactive visualization, but are quite useful for collision
detection. These compound shapes are constructed using the following
construction methods:

m Minkowski sum: The convex shape that is the result of “adding” two
convex shapes, that is, sweeping one shape along the point set of
another.

m Convex hull: The smallest convex shape that contains a given collection
of convex shapes.

Convexity plays an important role in this book, as might be deduced
from the list of shape types presented above. We will discover that a single
algorithm, the Gilbert-Johnson-Keerthi (GJK) algorithm, can be used for
testing collisions between any two objects represented by shapes from this
large family of convex shape types.

1.2 Historical Background §

1.2 Historical Background

The earliest applications of 3D collision detection are found in robotics
and automation [12]. Here, product assembly or test facilities are simu-
lated on a computer in order to verify interference problems. The different
objects to be checked for interference are usually represented by poly-
hedra. Interference checking in robotics simulations is often performed
on a continuous rather than a discrete time axis; that is, the objects
are checked for interference in continuous four-dimensional space-time
[13, 14, 17]. This approach is applicable only for a limited class of
objects and motions. Even on current computer hardware, exact space-
time interference checking is still not quite feasible for interactive 3D
applications.

A lot of techniques used for collision detection have been borrowed
from 3D visualization. In the early years of computer graphics, innova-
tions were mainly pushed by the need to render lifelike images of 3D
content. The problem of determining the visible objects in a scene has
a lot of common ground with the problem of detecting collisions, in the
sense that in both cases large collections of objects need to be queried for
intersections. So, not surprisingly, similar algorithms and spatial data
structures, such as voxel grids, octrees, and binary space-partitioning
(BSP) trees, pop up as solutions in both areas [46, 53, 122].

Almost in parallel to the early developments in computer graphics,
which were mainly triggered by innovations in computer hardware, the
interest in geometric algorithms from a mathematical viewpoint evolved
into a new research area called computational geometry [104]. This area
spawned numerous publications on algorithms and data structures for
problems such as convex hull computation, intersection detection and
computation, distance computation, and linear programming. Many solu-
tions for collision detection problems are drawn from this wealth of
literature. However, contrary to the common practice in computational
geometry of analyzing algorithms for their theoretical worst-case time
complexity, we stay a little closer to the hardware in our performance
analysis and choose algorithms based on run-time measurements.

Interactive 3D applications did not show up until the early 1980s. At
that time, video games started to become popular with the arrival of the
first game consoles and home computers. The first video game to feature
interactive 3D content on a home computer was Elite, a space combat
game written in 1984 by Ian Bell and David Braben for the BBC Microcom-
puter (see Figure 1.1). Although this game shows spaceships and space
stations modeled by polyhedra, collisions between game objects are deter-
mined based on simpler shapes, such as spheres and boxes. This practice
was very common at the time since computers simply did not have enough
processing power to perform exact collision detection in real time.

6 Chapter 1 Introduction

Figure 1.1

Front Uiew

Elite, the first 3D game on a home computer.

In computer animation, the first uses of collision detection are found in
physics-based simulation [4, 63, 91]. Traditionally, animation sequences
are created by defining key frames that describe predetermined trajecto-
ries of the moving objects. The animator has full control over the motion,
and thus can avoid undesired collisions by carefully crafting the motion
curves of the objects. However, with the use of physics-based simulation
techniques, the animator loses this control. Hence it became necessary
to resolve collisions automatically, preferably in a physically convinc-
ing manner. Although these early attempts to handle collisions were not
directly aimed at interactive applications, it was observed that collision
detection was a complex matter and that special techniques were needed
to reduce the computational cost. Baraff was the first to exploit coherence
in between frames in order to improve the performance of collision detec-
tion [5]. As computers became more powerful, many of Baraff’s solutions
found their use in interactive applications.

Exploiting temporal coherence is the key to reduce the cost of collision
detection to a level such that it can be used in interactive applications. A
typical example of a technique that applies this principle is the feature-
walking algorithm by Lin and Canny for computing the distance between
convex polyhedra [79]. Here, the closest features (vertices, edges, facets)
of a pair of polyhedra are cached and incrementally updated in each new
frame. Without prior knowledge, finding the closest features of a pair of
polyhedra takes time that is linear in the number of features. However, an
update of the closest feature pair takes roughly constant time when frame

1.3 Organization 7

coherence is high. The Lin-Canny algorithm is applied in I-COLLIDE,
which is the first collision detection library for interactive applications to
become publicly available [24]. After Lin-Canny, other incremental algo-
rithms for convex polyhedra that have the same time complexity followed
[15, 23, 40, 88, 128].

Current state of the art in interactive 3D graphics allows the use of
shapes composed of thousands of primitives. In order to reduce the num-
ber of pairwise primitive intersection tests in collision detection of objects
represented by such shapes, spatial data structures are often applied.
Spatial data structures are a means to capture and exploit spatial coher-
ence. They are used to quickly reject a large number of primitives from
intersection testing based on the region of space they occupy. In the last
few years, spatial data structures that are used for this purpose have
received a lot of attention. Probably the best-known space-partitioning
technique used in 3D games is the BSP tree. In Quake, a classic 3D
game for the PC developed by Id Software, BSP trees are used both for
visible-surfaces determination and collision detection.

Currently, model-partitioning techniques incorporating bounding-
volume hierarchies are most often used. Bounding-volume types that
have been used in tree structures for model partitioning include spheres
[73, 102], axis-aligned boxes [127], oriented boxes [59], and discrete-
orientation polytopes [76, 135]. Most of these structures are static and are
thus applicable only to rigid objects. However, applications of bounding-
volume trees for collision detection of deformable objects are found as
well [127].

Hierarchical data structures are expensive in terms of memory usage.
The storage cost of, for instance, a bounding-volume hierarchy for a tri-
angle mesh is many times higher than the storage cost of the plain mesh.
Since advances in rendering hardware enable the use of more complex
environments, the memory usage of these data structures has become a
bottleneck, most notably on game consoles. Compression techniques for
bounding-volume hierarchies are currently a hot topic [57, 124].

Other challenges that remain are improving the robustness and perfor-
mance of exact intersection tests and response computation algorithms.
With the growing interest in interactive physics in the last few years, most
of the innovations in 3D collision detection are aimed at improving these
two qualities; however, further research is still necessary.

1.3 Organization

The rest of this book is organized as follows. In Chapter 2, we define the
concepts used in this book. Here, notational conventions, as well as a

8 Chapter 1 Introduction

number of geometric concepts, are briefly explained. We discuss differ-
ent types of shape representations and methods for constructing complex
shapes from primitives. Furthermore, we briefly discuss methods for posi-
tioning and moving objects in three-dimensional space. We look at the
different types of response data needed for resolving collisions. Finally, we
provide some background on performance considerations and numerical
stability.

In Chapter 3, we discuss algorithms for collision detection of a number
of commonly used primitive shapes. The primitive shapes that are consid-
ered are spheres, axis-aligned boxes, line segments (rays), triangles, and
general nonconvex polygons.

Chapter 4 describes algorithms for collision detection of convex objects,
mostly algorithms for convex polyhedra. We discuss algorithms for find-
ing a common point, for finding a separating axis, for computing the
distance, and for computing the penetration depth. In particular, we
look into incremental algorithms that exploit frame coherence. The main
part of this chapter is dedicated to the Gilbert-Johnson-Keerthi algo-
rithm (GJK) and related algorithms. We will show how to use GJK for
distance computation and collision detection of general convex objects.
We conclude with a discussion of the expanding-polytope algorithm
(EPA), which is used for computing the penetration depth of an inter-
secting pair of convex objects.

In Chapter 5 we discuss spatial data structures that are used for speed-
ing up collision detection of models composed of a large number of
objects. We cover space-partitioning techniques, such as voxel grids,
octrees, k-d trees, and BSP trees, and model partitioning techniques, such
as AABB trees and OBB trees. We conclude this chapter with a discussion
of Baralif’s incremental sweep and prune scheme [6] for maintaining a set
of pairs of overlapping AABBs, and we show how this scheme can be used
for ray casting.

In Chapter 6 we describe the design of SOLID, a collision detection
library for interactive 3D computer animation. SOLID incorporates the
following innovative features:

s Models composed of a mix of shape types, including boxes, cones,
cylinders, spheres, simplices, convex polygons, and convex polyhedra.

® Deformations of complex shapes.

a Object placement using position, orientation, and nonuniform scaling.

s Extruded and spherically expanded objects by means of Minkowski
addition.

s Convex hulls of arbitrary objects.

1.3 Organization 9

m Penetration depth computation. The penetration depth can be used
for approximating the contact points and contact plane of a pair of
colliding objects in physics-based simulations.

The accompanying CD-ROM contains the complete C++ source code and
API documentation of SOLID version 3.

Finally, Chapter 7 summarizes the results in the field and presents some
pointers to interesting topics for future work.

Chapter
Concepts

Don't reinvent the wheel. Just realign it.
—Anthony J. D’Angelo

In this chapter, we first will define the concepts that are relevant within
the context of this book and discuss a number of commonly used methods
for representing objects. We will also describe different types of motion
used in computer animation and discuss the problems with sampled
motion. Then, we will look into the computation of response data for
physics-based simulations. We will cover some efficiency considerations,
such as coherence and memory, and discuss the difficulties in measur-
ing performance. Finally, we will explain the problems that may arise
when using finite-precision number representations and arithmetics in
geometric algorithms.

2.1 Geometry

2.1.1

Most of the geometric properties and algorithms are described in a math-
ematical language. The language we use is based on what is commonly
used in geometry literature, so a reader who is familiar with the basics
of geometry should have little trouble understanding the notation used
in this book. This section is presented as a mini-primer in geometry.
Although the content of this section is explained similarly, and often more
thoroughly, in the bulk of the geometry literature, for instance in [107],
we still find it useful to include it since it serves as an easy reference and
an introduction to the notation used in this book.

Notational Conventions

In this section we establish the notational conventions used throughout
this text. The reader is assumed to have a basic grasp of linear algebra
and set theory; it is not our objective to provide all the formalities of the
mathematical concepts used in this book.

11

12 Chapter 2 Concepts

2.1.2

The set of real numbers is denoted by IR. In the context of vector spaces,
real numbers are referred to as scalars and denoted by lowercase Greek let-
ters, suchasa, 8, y. The vector space of d-(dimensional) tuples (a4, ..., ay)
is denoted by IRZ. Elements of R? are referred to as vectors and denoted
by lowercase boldface letters, such as a, b, ¢. The zero vector is denoted
by 0.

Matrices over IR are denoted by uppercase boldface letters, such as
A, B, C. The matrix A = [«;j] denotes the matrix with number «;; in the
ith row and jth column. The transpose of a matrix A is denoted by AT.
In matrix notation, vectors are regarded as columns, which are m x 1
matrices. For a set of vectors vy, ..., v, € IR™, we denote the »1 x » matrix
with columns v; as [vy - - v,,].

A square matrix is a matrix with an equal number of columns and rows.
The determinant of a square matrix A is denoted by det(A). A matrix is
called singular if its determinant is zero, and nonsingular otherwise. The
set of nonsingular # x n matrices forms an algebraic group, with matrix
multiplication as operator. The identity is the matrix I = [5;], where §;,
referred to as the Kronecker symbol, is defined as

5 — 1 ifi=j
710 otherwise.

The inverse of a nonsingular matrix A is denoted by A~1,

A set is defined either by enumeration, such as {xy, ..., x,}, or condi-
tionally, such as {x € IR" : P(x)}, which is the set of x € R"” for which
predicate P(x) holds. Closed scalar intervals are denoted as [«, 8], where
[@, 81 = {y e R:a <y < 8). Sets are denoted by uppercase italics, such
as A, B, C. The empty set is denoted by @. The union, intersection, and
set difference of A and B are denoted respectively by A UB, AN B, and
A\ B. The relation A € B expresses that A is a subset of B, and that A
and B are possibly equal. The power-set of a set X, denoted by P(X), is
the set of all subsets of X. We will adopt the convention that functions
f : X — Y are silently lifted to P(X) — P(Y) according to f(A) = {f(a) :
a e A}

Finally, the term iff should be read as an abbreviation for “if and only

it”. We use “=" as the mathematical symbol for iff.
Vector Spaces
A linear combination of n vectors vy, ...,V is a vector of the form

V=0o1V] 4+ -+ a,vy.

2.1 Geometry 173

The span of a set of vectors is the set of linear combinations of vectors in
the set. A set of vectors {v1, ..., vy} is said to be linearly independent if the
equation

avi+ -+ apv, =0

vields a1 = -+ = a = 0 as the sole solution. A basis of a vector space is
a linearly independent set of vectors whose span is the whole space. The
number of vectors in the basis is referred to as the dimension of the space.
For a basis {by,...,b,} the equation

v=aibi +..-+a,by

has exactly one solution for a given vector v. Hence, v is uniquely identified
by the n-tuple (a1, ..., a,) € IR" with respect to the given basis. The scalars
«; are called the vector components of v relative to {b;}. In particular, the
components of the basis vectors b; are

b; = (i1, ..., 8in).

A linear transformation is a function T that maps vectors to vectors
according to

T(av + w) = aT(V) + ST(w).

Consequently, a linear transformation is determined solely by the map-
pings of the basis vectors. We consider only linear transformations from a
vector space onto itself. For these transformations, the image of the basis
is itself a basis. Let B' = {b]} be the image of a basis B, where b; = T(b;)
are the mappings of the basis vectors given relative to B. The mapping of
avector x = (a1, ..., ay,) given relative to B is

T(x)=aib] + - +ayb,.
We introduce a matrix B = [b] - - - b}], and write this equation as
T(x) = Bx.
Here, B’ is indeed a basis iff B is nonsingular. We will often use the same
symbol to denote a matrix and the corresponding linear transformation.

Given a square matrix A = [a; - - - a,] and a vector b, the equation Ax =
b can be solved using Cramer’s rule. Of course, a unique solution exists

14 Chapter 2 Concepts

2.1.3

only if A is nonsingular. The components y; of the solution x are

~_det[a;---ai_1 bajg---ay]
n= det(A)

Thus, the ith column of A is replaced by b to get the matrix that is used
for computing the numerator. Determinants can be computed using the
following recursively defined rule:

detfo] =«

n
det(A) = Y (-1)"aj;det(Ay), foranyi=1,...,n,
j=1

where Ajj is the (n — 1) x (n — 1) matrix we get by removing the ith row
and the jth column from A. The value (—1)/*/ det(A;) is called the cofactor
of element «;;, and the recursive method for computing the determinant
is called cofactor expansion about the ith row.

The determinant function has the following properties:

1. det(AT) = det(A).
2. det(A~1) = 1/det(A).
3. det(AB) = det(A) det(B).

Cramer’s rule can be used for computing the inverse of a matrix A. The
inverse A~ is the matrix [ozlf]-], where

, (=1 det(Ap)
%= T det(A)

Since computing determinants for higher dimensions is computationally
expensive, Cramer’s rule is useful for low-dimensional spaces only.

Affine Spaces

An affine space consists of a set of points, an associated vector space, and
two operations: the addition of a point and a vector, and the subtraction of
two points. Points are denoted, like vectors, by lowercase boldface letters.
The addition of a point and a vector yields a point according to the rules
p+0=pand(p+v)+w=p+ (v+w). Conversely, the subtraction of
two points yields a vector according to the rule p + (q — p) = q. Although
addition and scalar multiplication are not defined for points, we define an

2.1 Geometry 15

affine combination of points py, ..., pn as
P=caopo+aoip1+---+aupn foreg+---+a,=1.

This expression makes sense if we are allowed to formally eliminate «g
and write

p =po+ai1(p1 —Ppo) + - + an(pPrn — Po),

which is obviously a point. The affine hull of a set of points A, denoted by
aff(A), is the set of affine combinations of points in A. An affine set is a set
of points that is closed under affine combinations. Examples of affine sets
are points, lines, and planes. A set of points {po, ..., px} is called affinely
independent if the set {p1 — po, .- ., P» — Po} is linearly independent. The
dimension of an affine set is the dimension of the associated vector space.
As a result of this, the number of points in an affinely independent set is
the dimension of its affine hull plus 1.

A coordinate system is a tuple of a point and a basis. The point is called
the origin of the coordinate system. For a given coordinate system with
origin ¢ and basis {by, ..., b,}, the equation

p=c+aibi 4+ +auby

has exactly one solution for a given point p. The point p is uniquely identi-
fied by the vector (a1, ..., o) € IR” with respect to the coordinate system.
The components «; are called the coordinates of p. Thus, a coordinate
system defines an affine space in which we identify each point uniquely
by a vector of coordinates.

We often use multiple coordinate systems for the same space. The same
point can be identified by different coordinate vectors relative to different
coordinate systems. A coordinate system itself can be defined relative to
a parent coordinate system. We transform coordinates from a coordinate
system to its parent coordinate system and vice versa by means of an affine
transformation.

An affine transformation is a function T that maps coordinates to
coordinates according to

T(ap + Bq) = o«T(p) + BT(q) fora+p=1.

Consequently, an affine transformation is determined by the images of the
basis and the origin of the given coordinate system. Let B represent the
image of the basis, and let ¢ be the image of the origin. The corresponding

16 Chapter 2 Concepts

Figure 2.1

€

s b,

o €

An affine transformation in IR2. Point p is given in coordinates relative to the
coordinate system (c, {bq, b2}). The coordinate vector of p relative to the world
coordinate system (o, {€1,€3}) is Bp + ¢, where B = [by, b>].

affine transformation T is given by
T(x) = Bx +c.

A coordinate system is defined relative to a parent coordinate system by
giving the coordinates of its origin in parent coordinates and its basis vec-
tors relative to the parent basis. Let B = [by - - - b,], where b; are the basis
vectors in parent coordinates, and ¢, the origin in parent coordinates.
The affine transformation T(x) = Bx + ¢ maps child coordinates to parent
coordinates, as illustrated in Figure 2.1. We can (and usually do) iden-
tify a coordinate system given relative to a parent coordinate system with
the corresponding affine transformation. We refer to the primal ancestor
of all coordinate systems as the world coordinate system. We denote the
world origin by o, and the world basis vectors by e;.

The set of affine transformations from R” onto IR* forms an algebraic
group with function composition as operator

T 0oTi(x) =By(Bi1x+c¢1)+¢c2 =B:B1x+Bseg +¢2
and inverse
T !(x) =B !(x-c¢)=B x-Blc.

The identity of the group of affine transformations is I.

Composition of affine transformations can be interpreted as follows.
Suppose we have three coordinate systems for which Ty represents the
first coordinate system relative to the second, and T represents the second

2.1.4

2.1 Geometry 17

coordinate system relative to the third. Then, T; o T represents the first
coordinate system relative to the third.

Euclidean Spaces

A Euclidean space is an affine space with a notion of length and distance,
defined by means of the dot product. The dot product of vectors v and w,
denoted by v - w, yields a scalar according to the following rules:

1. Commutative: v-w =w . v.
2. Bilinear: u - (av + fw) = au - v + fu - w.

3. Positive definite: v-v > 0 forv # 0.

Note that these rules do not uniquely determine the dot product. In order
to establish a unique dot product, we take {e;} as the standard basis and
define

€ - € = §j.
Within the scope of this book we choose the world basis to be the standard

basis.!
The length of a vector v, denoted by |jv|, is defined as

il = v'v-v.

The distance between two points p and q, denoted by d(p, q) is the length
of the vector p — q:

dip,q)=Ilp—aql.

The angle 6 between two nonzero vectors v and w is defined by

- W
cos(f) = v

Ivilliwil

A pair of vectors v and w are said to be orthogonal, denoted by v 1 w,
if v.w = 0. It can be proven that a set of mutually orthogonal nonzero
vectors is linearly independent. A basis {b;} for which b; - b; = §;;, as for

1. Although it is possible to conceive of applications, for instance in crystallography, for
which this is not an obvious choice.

18 Chapter 2 Concepts

the standard basis, is called orthonormal. For vectors v and w relative to
an orthonormal basis we find that the dot product is given by

V-W=VTW.

A Cartesian system is a coordinate system that has an orthonormal basis.

When we do not care about the length of a nonzero vector, we refer to
the vector as a direction, an axis, or a normal. Since the length of such a
vector v does not carry any information, it is allowed and often useful to
scale the vector to unit length:

\'%

u= .
vl

This operation is called normalization.
Forn € IR"\ {0} and § € IR, the (hyper)plane H(n, §) in IR" is a set of
points defined by

Hmn,8)={xcR":n-x+8 =0}

The vector n is referred to as a normal, and the scalar § as the correspond-
ing offset of the hyperplane. For |n|| = 1, it can be shown that the distance
from a point p to H(n, §) is |n - p + §| so it is often useful to have a normal
of unit length.

Often, the orientation of a hyperplane is important. The orientation
of a hyperplane is determined by the direction of the normal. So, the
hyperplanes H(n, §) and H(—n, —§8) should be regarded as different enti-
ties, although they represent the same point set. The orientation plays a
role when defining halfspaces. The positive and negative closed halfspaces
defined by a hyperplane H(n, §) are defined as

Htm,8)={xecR":n-x+4 >0}
Hm§)={xeR":n-x+8§ <0}.

The positive and negative open halfspaces defined by a hyperplane H(n, §)
are defined as

H®m,8)={xeR":n-x+8>0}
H®Mm,8)={xecR":n-x+6§<0).

For a point p, the value n - p + § is referred to as the signed distance to
H(n, §).

2.1.5

2.1 Geometry 19

Affine Transformations

The group of affine transformations has a number of important sub-
groups. We have already seen one of them, namely, the group of
linear transformations. The group of tramslations is formed by the
transformations

Tx)=x+c.
The group of rotations about the origin is formed by the transformations
R(x) = Bx, where B~! = BT and det(B) = 1.

A matrix B for which B-! = BT is called orthogonal. For an orthogonal
matrix B we have det(B) = £1. If the determinant of an orthogonal matrix
is positive, then the matrix is called special orthogonal.

An orthogonal matrix maps an orthonormal basis to an orthonormal
basis (note the nomenclature!), since for orthogonal B and orthonormal
basis {b;} we have

(Bb;) - (Bbj) = (Bbi)T(Bbj) = b;-rBTBb' = b;rbj =b;-b; =§;.

Furthermore, it follows that any matrix that maps an orthonormal basis
to an orthonormal basis is necessarily orthogonal.

The group of rigid motions in IR” is the supergroup of translations and
rotations. The group of length-preserving transformations is formed by the
set of affine transformations T for which

IT(x) —TWI = lIx -yl

holds for all points x and y. An affine transformation T(x) = Bx + ¢ is
length-preserving iff B is orthogonal, since

IT(x) ~ T(y)| = IBx — By| = |B(x —y)| = VBx —y) - B(x —y),
which is reduced to
VE-y) - x-y)=Ilx—yl

iff B is orthogonal.
A reflection in a plane through the origin is an affine transformation of
the form

W(x) =Bx, where Bis orthogonal and det(B) = —1.

20 Chapter 2 Concepts

Any length-preserving transformation is either a rigid motion or a com-
position of a translation and a reflection [26].

The group of uniform scalings about the origin is the group of transfor-
mations of the form

Ux)=ax fora #0.

Compositions of length-preserving transformations and uniform scalings
constitute the group of angle-preserving transformations. For each angle-
preserving transformation T, an « > 0 exists, such that for arbitrary points
xandy

ITx) = T = alix -yl

The group of nonuniform scalings about the origin is the group of
transformations of the form

S(x) =[x, where a; # 0iffi =j.
Notice that the group of uniform scalings is a subgroup of the group

of nonuniform scalings. Figure 2.2 shows a visual representation of the
group of affine transformations.

Affine transformations
Angle-preserving

Length-preserving

Rigid motions

4 - . S~ ~
/ Nonuniform ™

1
1 . 7
. scalings

e - ~
;7 Uniform ™
scalings /

N .

I3
1
\

Figure 2.2 The group of affine transformations. The dashed ellipses denote classes of basic
operations. Each group of transformations denoted by a solid ellipse is composed
of operations from the classes inside the ellipse.

2.1.6

2.1 Geometry 21

As shown in [56], any affine transformation A can be constructed
as a composition of a translation T, two rotations Ry and Rg, and a
nonuniform scaling §, such that

A=ToRLoSoRg.

So, we need only three types of basic operations for constructing any
affine transformation, namely, translations, rotations, and nonuniform
scalings.

Let H' be the image of a hyperplane H under affine transformation
T(x) = Bx + ¢. A normal n’ and a scalar §' such that

H=xecR":n x+§ =0}

are found by expressing A’ in terms of T~!, the inverse of T. For x € H’
we deduce

n-Blx-—¢c)+§=0=n"B 1(x-¢)+6§=0
=B H'n)Tx-c)+6=0
=B HTn.-x—-c)+5=0.

We see thatn’ = (B~)Tnand 6’ =6 —n’ -cyieldsn’ - x + & = 0. Iff T is
length-preserving, then B is orthogonal, and thus (B~1)T = B, in which
case we may transform a normal simply as n’ = Bn.

Three-Dimensional Space

Here, we will discuss some concepts that apply to three-dimensional
Euclidean space only. By convention, the world coordinate system in IR3
is a right-handed Cartesian systemn. A coordinate system relative to the
world coordinate system is called right-handed if the matrix [by b, bs]
has a positive determinant, where b; are the basis vectors in world
coordinates.

The cross product of two vectors v and w, denoted by v x w, is a vector
determined by the following rules:

1. Orthogonal: (v x w) L vand (v x w) L w.
2. Positively oriented: det[v w v x w] > 0 for v, w linearly independent.

3. [[v x w| = [[v][[[w] sin(#), where § is the angle between v and w.

22 Chapter 2 Concepts

Thus, the length of v x w is equal to the area of the parallelogram spanned
by v and w. For vectors relative to an orthonormal basis, the cross product

is given by
o1 Bt af3 —azf
o | x| B2} =|az3f1 —a183
a3 B3 a2 —a2p

The cross product has the following properties:

1. Anticommutative: v X w = —w X V.

2. Bilinear: u x (av + fw) = ou x v + fu x w.

The cross product is used for computing a normal to the plane through
(the affine hull of) three affinely independent points. Let {po, p1,p2} be
affinely independent. Then, n = (p1 — po) x (P2 — Po) is a normal to the
plane through {p;}. It follows from rule 3 that the length of n is twice the
area of the triangle. If needed, n can be normalized to get a normal of unit
length. The plane is given by H(n, —n - pg).

The triple product of three vectors u, v, and w is the scalar u - (v x w).
The triple product has the following useful property.

u-(vxw)=v-(wxu)=w-(uxv)=detflu v w].

Notice that u - (v x w) is zero iff {u, v, w} is linearly dependent.

2.2 Objects

In this section we define the class of objects for which collision detec-
tion algorithms are presented in this book. An object is a closed bounded
nonempty set of points in three-dimensional Euclidean space. Here, closed
means that the boundary is considered part of the object, and bounded
means that there exists a sphere of finite radius that encloses the object.
For instance, a plane is closed but not bounded.

An object is convex if it contains all the line segments connecting any
pair of its points. An object that is not convex is called concave. Figure 2.3
shows the difference between a convex and a concave object. Convex
objects often allow simpler or faster algorithms for intersection testing.
In Chapter 4, we will discuss a number of algorithms that are applicable
for collision detection of convex objects only.

2.2 Objects 23

QA

Convex Concave

Figure 2.3 An object is convex if it contains all the line segments connecting any pair of its

2.2.1

points.

Objects may be composed of simpler objects called primitive shapes,
or primitives for short. Primitives are the building blocks of the objects
in the simulated environment. The primitives we consider are the com-
mon primitives for geometric modeling: spheres, cones, cylinders, boxes,
points, line segments, and polygons, as described for instance in VRML97
[10]. Furthermore, we also consider polytopes as primitives for represent-
ing objects. A precise definition of the term polytope is presented further
on. For now, let us define a polytope as a convex object whose boundary
is composed of a finite number of flat facets. Figure 2.4 shows a taxonomy
of the types of primitives we consider. Here, the acronym “DOP” denotes
discrete-orientation polytope, that is, a three-dimensional polytope whose
facet orientations are chosen from a fixed finite set of orientations.

Concave polyhedra are not considered primitives. For collision detec-
tion a concave polyhedron needs to be either decomposed into convex
parts or represented by the set of boundary polygons. We will discuss the
merits of both representations in Chapter 5. Let us have a closer look at
the different primitive types now.

Polytopes

A (convex) polytope is the convex hull of a finite point set. The convex
hull of a point set A, denoted by conv(A), is the smallest convex object
containing A. The convex hull of a finite point set A = {ay, ..., a,} can be
expressed as the set of convex combinations of A. A convex combination
of A is any point x defined by

n n
X=Z)»iai for Zkizl,andkizo.
li=1

i=1

24 Chapter 2 Concepts

(Nonconvex) polygons Convex objects

S 7

Concave
polygons

Polytopes

Simplices

Convex polygons / Convex polyhedra

Triangles
Tetrahedra
Line segments

Convex quadrics

Figure 2.4 A taxonomy of primitive types.

The set of vertices of a polytope P = conv(4), denoted by vert(P), is the
smallest set X C A, such that conv(X) = P. A simplex is the convex hull
of an affinely independent set of points. Simplices of one, two, three, and
four vertices are points, line segments, triangles, and tetrahedra, respec-
tively. The dimension of a polytope is the dimension of its affine hull. The
set of two- and three-dimensional polytopes are, respectively, the set of
convex polygons and the set of convex polyhedra.

Boundary Representations

A feature? of a polytope is any subset of its boundary that is the intersec-
tion of the polytope with a contact plane. Features of zero, one, and two
dimensions are called vertices, edges, and facets, respectively. A bound-
ary representation of a polytope is the set of its features together with their
incidence relation. The boundary representation of a polygon is simply
the chain of its edges.

2. In the geometry literature the common term is face. However, we avoid using this term,
since in computer graphics texts, “face” is a synonym for “polygon.”

2.2 Objects 25

A polyhedron’s boundary representation has a planar-graph topology.
A graph is planar if it can be embedded in the plane without crossing
edges. For planar graphs the numbers of the different types of features
arerelated by Euler’s formula. Letv, e, andf denote the number of vertices,
edges, and facets, respectively, in a polyhedron’s boundary. Then, Euler’s
formula states that

v—e+f =2

The degree of a vertex p, denoted by deg(p), is the number of edges it
is incident upon. For polyhedra we know that each vertex has a degree of
at least three. From this property it follows that the number of vertices,
edges, and facets are pairwise proportional [104]. Phrased differently, for
a polyhedron having n vertices, the number of edges and the number of
facets are both O(n).

We will discuss a few data structures that can be used for representing
planar graphs. For a more thorough discussion of the representation of
polyhedron boundaries, see [74].

The best-known data structure for representing the boundaries of poly-
hedra is Baumgart’s winged-edge structure [9]. In a winged-edge structure
the incidence relation of the features is stored in edge nodes. For each
undirected edge in the graph, an edge node is maintained. An edge node
stores references to the incident vertices and facets, as well as pointers to
four adjacent edge nodes. Per incident vertex we maintain pointers to the
successor and predecessor of the edge when traversing the edges incident
to the vertex in counterclockwise order. Similarly, the pointers can also
be used for traversing the edges that bound one of the incident facets in
clockwise order. The edge, together with the four linked edges, resem-
bles a butterfly, hence the name “winged-edge.” Figure 2.5 illustrates the
linkage of edge nodes in the winged-edge structure.

A similar data structure, called a doubly connected edge list (DCEL), was
proposed by Muller and Preparata [92, 104]. The DCEL is a winged-edge
structure in which pointers to the predecessor edge nodes are omitted.
Thus, with a DCEL, the edges that bound a facet cannot be traversed in
a simple way. Often, we do not require a complete representation of the
boundary, but are interested only in the adjacency graph of the polytope’s
vertices. In these cases, we may use a simplified variant of the DCEL, in
which the references to the incident facets are also omitted.

In winged-edge-type structures, each edge node represents an undi-
rected edge in the vertex adjacency graph. When traversing all incident
edges of a vertex in counterclockwise order, we need to determine for
each visited edge node which of its two vertices is the vertex for which all
edges are traversed. This leads to an inefficient case distinction in graph
traversals, since it is necessary to determine the direction of each edge
node traversed in order to find the proper successor edge node.

26 Chapter 2 Concepts

Figure 2.5

The linkage of edge nodes in a winged-edge structure. Each edge node contains
references to the incident vertices v and v, and incident facets F; and F,, as well
as four pointers to adjacent edge nodes. Per vertex v;, the pointers succ; and pred;
point to the next and previous edge nodes, respectively, when traversing the edges
incident to v; in counterclockwise order.

This problem is solved in the halfedge structure, in which each undi-
rected edge is represented by a pair of directed edge nodes [74]. For vertex
adjacency graphs, each halfedge node stores a reference to a vertex, a
pointer to the successor halfedge node of the vertex, and a pointer to the
oppositely directed halfedge node that stores the other vertex of the edge.

Winged-edge-type boundary representations are useful for applications
where polyhedra are subjected to topological changes. Features can be
added and removed in a flexible way. However, in most applications that
require collision detection, the boundaries of polyhedra are topologically
invariant. Hence, we do not rely on efficient operations for modifying
boundary representations. In these cases, we represent the vertex adja-
cency graph by simply storing for each vertex a set of (pointers to its)
adjacent vertices. We denote the set of adjacent vertices of a vertex p by
adj(p). Thus, for each directed edge from p to q, we have q € adj(p).

Both the winged-edge-type structures and the vertex adjacency graph
require storage that is linear in the number of edges. The winged-edge
structure and the vertex adjacency graph of a polytope can be obtained
by using the Quickhull algorithm for convex hulls [7, 101, 104]. A
C implementation of this algorithm, Qhull, has been released as open
source by the Geometry Center of the University of Minnesota [8], and is
included on the accompanying CD-ROM.

Algorithm
2.1

2.2 Objects 27

The Dobkin-Kirkpatrick Hierarchical Representation

A boundary representation can be used for closest and extreme point
queries. However, these type of queries would still take linear time in
the worst-case number of vertices of the polytope. In order to speed up
such queries, Dobkin and Kirkpatrick devised a hierarchical representa-
tion for two- and three-dimensional polytopes that allows these queries
to be performed in worst-case logarithmic time [30, 31].

A hierarchical representation of a polytope P is a sequence of polytopes
P, ..., Py of decreasing complexity, such that Py = P and P, is a simplex.
Each polytope P;; 1 is obtained from its predecessor P; by removing some
vertices from P;. The set of vertices S = vert(P;) \ vert(P;y1) is chosen
such that S forms an independent set; that is, no two vertices in S are
adjacent. Furthermore, all vertices in S have a degree that is at most b,
for some constant b, and |vert(P;;1)|, the number of vertices in P; 1, is at
most c|vert(P;)|, for some constant ¢ < 1. Edelsbrunner has shown that for
b=8andc = {—; such a set S can be constructed using Algorithm 2.1 [38].
Obviously, S can be computed in time linear in the number of vertices.
Since in each next polytope P;;1 a constant fraction of the vertices is
removed, the height 4 of the hierarchy (i.e., the number of polytopes
in the sequence) is O(logn). Figure 2.6 shows the construction of the
hierarchical representation for a convex polygon.

Computing an independent set S of vertices of polytope P. All vertices in
S have a degree that is at most eight.

S:=0;
forp € vert(P) do
begin
if deg(p) < 8 and “p is not marked” then
begin
S:=Su{p};
forq € adj(p) do “mark q”
end
end

Halfspace Representation

In most cases, we will use a representation for polytopes based on vertex
data. However, a polytope may also be represented as the intersection of
a finite number of closed halfspaces. In fact, any object that is a bounded
intersection of a finite number of closed halfspaces is a polytope [61]. We
saw that the number of facets of a polytope is linear in its number of

28 Chapter 2 Concepts

Figure 2.6

The Dobkin-Kirkpatrick hierarchical representation of a polytope. The vertices
marked by an open circle are the independent vertices that are removed in the
next polytope.

vertices. Since each facet corresponds with a halfspace in the halfspace
representation, the minimum number of halfspaces that are required for
representing a given polytope is linear in the number of vertices of the
polytope.

In some applications, representing a polytope by a collection of
halfspaces is more convenient than using a vertex representation. For
instance, polytope types that are applied as bounding volumes, such
as discrete-orientation polytopes, rely on a halfspace representation. A
discrete-orientation polytope (DOP) is the intersection of a fixed number
of slabs. A slab is the intersection of a pair of oppositely oriented half-
spaces, that is, a region of space bounded by a pair of parallel planes.
Each slab is oriented according to a fixed axis relative to the object’s coor-
dinate system. For each DOP we use the same set of axes; hence, the
description of the axes is not part of a DOP’s representation.

A k-DOP is the intersection of k slabs.3 Fordy, ..., d;, a set of axes, we
define the k-DOP represented by offsets 8; and n;, as the point set

xeR3: B <d; - x<mnfori=1,... k).

Due to their small storage requirements (2k scalars), k-DOPs are well-
suited for use as a bounding volume.

A 3-DOP is better known as a parallelepiped, or simply box. We com-
monly use coordinate axes for aligning the three slabs, since this greatly
simplifies the dot product computation. For a coordinate axis e;, the dot
product e;-x is simply the ith component of x. For notational convenience,
we lift the relational operator < to three-dimensional space:

(a1,02,03) <(B1,B2,83) = a1 <P and a2 <Py and a3 <§ps.

3. Incontrast with [76], we count the number of slabs rather than the number of halfspaces.

2.2.2

2.2 Objects 29

Then, an axis-aligned box with minimum p and maximum q can be
described as the point set

[pql={xeR}*:p<x<q}.

Boxes may alternatively be represented by a center point ¢ and extent
vector h. Again for notational convenience, we lift the absolute value
operator to three-dimensional space:

I(eer, o2, @3)| = (laq], lee2], |3).

Then, the box represented by center point ¢ and extent vector h is the
point set

xeR3®:x—c|<h}=[c—h,c+h].

Both representations have their uses in collision detection, as we shall
discover further on. To get from min-max to center-extent representation,
simply take h = %(q —~p)andc=p+h.

Polygons

Polygons are currently the most commonly used modeling primitives in
3D graphics. A polygon is the region of a plane bounded by a closed chain
of line segments that lie in the plane. Let py, ..., pn—1 be coplanar points.
Fori = 0,...,n — 1, the (i + 1)th line segment in the boundary of the
polygon defined by this sequence of points is the segment connecting p;
and p;g1, where @ denotes addition modulo #. The points are referred to
as vertices and the segments as edges. A polygon is called simple if no two
edges intersect, other than the edges that share a vertex.

According to this definition, a simple polygon cannot have holes. How-
ever, if we allow pairs of identical but oppositely directed edges in the
boundary of a polygon, we can represent polygons with holes. For a
polygon with a hole, let po,...,pm—1 be a simple polygon in coun-
terclockwise orientation that represents the polygon’s outer boundary,
and let qo, ...,qn—1 be a simple polygon in clockwise orientation that
represents the hole. By connecting a vertex p; on the outer boundary
and a vertex q; on the inner boundary by a pair of oppositely directed
edges, we can represent the polygon with a hole as a single chain of
edges.

Special care must be taken in choosing the vertices p; and q; in order
to avoid constructing a nonsimple polygon. First, choose for q; a vertex

30 Chapter 2 Concepts

on the inner boundary that is also a vertex of the convex hull of the inner
boundary. It is not necessary to compute the convex hull, since, for a
coordinate axis that is not orthogonal to the polygon, a vertex that has the
greatest (or least) coordinate value on this axis must be a vertex of the con-
vex hull. Choose the coordinate axis for which the polygon’s normal has
the least absolute component value, since this axis cannot be a normal.
Simply choose as q; the vertex with the greatest coordinate value for this
axis. We choose p; by traversing the outer boundary and checking whether
the edge piq; does not cross any of the edges of the inner and outer bound-
aries. It can be seen that at least one such p; must exist, since the “view” of
the outer boundary from a vertex on the convex hull of the inner boundary
is unobstructed for an angle that is larger than 7, so at least one vertex on
the outer boundary must be “visible.” For polygons having multiple holes,
this operation is performed repeatedly until all holes have been attached
to the outer boundary. In each step, the vertex with the greatest coordinate
value of all remaining hole vertices needs to be chosen as q ;. Note that the
order in which the holes are attached to the outer boundary is important.
By choosing a vertex on the convex hull of all remaining holes, we make
sure that the corresponding hole can be connected to the outer boundary
without crossing any of the remaining holes. Figure 2.7 illustrates this
construction.

For many applications, a representation of a polygon as a list of vertices
suffices. However, sometimes a representation of the supporting plane of
a polygon is convenient. We saw earlier how the supporting plane of a
triangle is computed. For polygons with more than three vertices, we may
compute a supporting plane by selecting three vertices and computing the

Po

Figure 2.7 Fixing a hole in a polygon. Edges are added between q; and pq, since q; is
the hole vertex with the greatest y-coordinate and py is the first vertex “visible”
from q; .

2.2 Objects 31

plane through these vertices. However, there are a number of issues with
this approach that might give unwanted results:

m The selected vertices should not be (close to) collinear. Otherwise, the
computed normal’s length will be (close to) zero. For almost collinear
vertices the computation of the normal is numerically unstable, as we
will see in Section 2.7.

m The orientation of the triangle formed by the selected vertices may be
opposite to the orientation of the polygon.

m The vertices of the polygon are often not exactly coplanar, so different
selections of vertices may result in slightly different planes.

A better alternative is Newell’'s method [122, 123], which produces a
plane that approximates the best-fit plane more closely. It can be seen
that the components of the normal are proportional to the areas of the
projections of the polygon on the planes orthogonal to the corresponding
coordinate axes. Newell's method computes the signed areas of these pro-
jections in the following way. Let, fori =0, ... ,n—1,p; = ((xi’), ag), agl)) be
the polygon’s vertices. The normal to the plane n = (11, v, v3) is given by

n—1
: D) (i .
V] = Z(Otg) - ag@))(agl) + agl@l)),
—~

n—1
v = Z(agl) — ag@l))(a?) + ai@l)),
=0

n—1
vy = Z(agl) — Olgl@l))(ag) + agzéBl))'
i=0

Again, we may need to normalize n if the application requires it. As offset
for the plane equation we take § = —n - p, where p is the average of the
vertices,

1n—1
p= ;gpi-

The majority of polygonal models that are used in 3D graphics applica-
tions are composed of convex polygons. Popular graphics libraries such
as OpenGL [133] support convex polygons only. The reason for this lim-
itation lies in the fact that for convex polygons we can use simpler and
faster clipping and rasterization algorithms [43]. In order to use models

32 Chapter 2 Concepts

2.2.3

composed of nonconvex polygons in such a graphics library, itis necessary
to decompose concave polygons into convex subparts, for instance by
triangulation. Algorithms for triangulating nonconvex polygons can be
found in[101].

Conveniently, convex polygons also allow for faster intersection test-
ing and computation algorithms, as we will see in Chapters 3 and 4.
So why bother considering intersection algorithms for nonconvex poly-
gons? Well, some file formats, such as VRML97 [10], as well as some
CAD-oriented applications support nonconvex polygons. Since collision
detection requires potentially O(#2) intersection tests for n primitives, we
want to keep the number of primitives as small as possible. One way to
achieve this is to use algorithms that can handle nonconvex polygons,
since then we do not have to decompose concave polygons into multi-
ple convex polygons. Also, keeping concave polygons in one piece saves
storage. Nevertheless, we acknowledge that the use of models composed
of nonconvex polygons is not widespread, so our main focus will be on
convex polygons.

Quadrics

A quadric is an object that has quadratic surface elements. Quadrics
are considered solids rather than surfaces; that is, the interior is part
of the object. We consider convex quadrics, such as spheres, capped
cones, and capped cylinders, as primitives. Although for interactive visu-
alization, these shapes are often represented by convex polyhedra, it is
possible—and usually more efficient and accurate—to use their exact
quadric representation for intersection testing, as we will discover in
Chapter 4.

A sphere is represented by a center point ¢ and a radius p. A cone is
represented by a center point ¢ (halfway between the apex and the base),
a unit vector u that spans its central axis and is directed from the center
to the apex, and two positive scalars n (its halfheight) and p (its radius
at the base). A cylinder is represented by a center point ¢, a unit vector
u that spans its central axis, and two positive scalars 5 (its halfheight)
and p (its radius). See Figure 2.8 for a visual description of these
primitives.

In VRML97, the center point and central axis of the quadric and box
primitives are fixed and cannot be used as a shape parameter [10]. The
local origin and y-axis are taken to be, respectively, the center point and
central axis of the primitives. This convention does not restrict the set
of objects that can be specified using the language, since the primitives
may be placed at arbitrary positions and orientations by applying affine
transformations.

Figure 2.8

2.2.4

2.2 Objects 33

S——
- ui
Ui n
c‘K p ce T ce
7 7
e S S

(2 (b) (c)
The three quadric primitives: (a) sphere, (b) cone, and (c) cylinder.

Minkowski Addition

From the primitives we have seen so far, we can derive more complex
shapes by applying Minkowski addition. The Minkowski sum of objects A
and B is defined as

A+B={x+y:x€A,yeB}

At first sight, this definition does not make much sense since we know
that addition of points is not allowed. However, we are not exactly adding
points here. A point is regarded as a vector from the origin of the given
coordinate system to the point. The sum of two such vectors is again
regarded as a point by adding it to the origin of the coordinate system. The
object A + B is the set of points that is covered by sweeping B’s origin over
all points of A. As can be seen, Minkowski sums are useful for representing
swept volumes. Most commonly used are sphere-swept volumes. A sphere-
swept volume is the result of adding a sphere'centered at the origin to an
arbitrary object. Figure 2.9 shows the sphere-swept volume that results
from adding a sphere to a box.

Figure 2.9 The Minkowski sum of a box and a sphere.

34 Chapter 2 Concepts

Theorem
2.1

Theorem
2.2

A useful property of Minkowski addition is the fact that the sum of two
convex objects is convex as well, as shown in Theorem 2.1. Minkowski
sums of general convex objects usually have shapes that are difficult to
represent explicitly, so algorithms for Minkowski sums generally use an
implicit representation.

The sum of two polytopes, however, is itself a polytope, as shown in
Theorem 2.2, and can thus be represented using any of the given polytope
representations. Theorem 2.2 presents us with a method for computing
an explicit representation of the Minkowski sum of a pair of polytopes.
Simply construct the set of all combinations a + b of vertices of A and B,
and compute the convex hull of this set to get a boundary representation
of the Minkowski sum. For polytopes A and B that have # vertices each,
there are n? combinations of vertices of A and B. Computing the convex
hull of n? points takes O(n? log#) time [7, 104]. The resulting boundary
representation of A + B has O(n?) features.

Let A and B be convex objects. Then, A + B is also convex.

Proof

Let w; and w» be points in A + B, and let x1,x> € A and yi1,y2 € B such
that wi = x; + y; and wy = x> + y2. We have to show that any convex
combination of w; and w; is a point in A 4+ B. A convex combination of wy
and w; is described by w = Aywq +Awy, for A1+ = 1and A1, A2 > 0. We
derivew = A1 (x1+y1)+Ar2{X2+y2) = A X1 +22X3+A1y1 +A2y2 = X-+y, where
X = A1X1 +A2x2 and y = A1y1 + A2y3; that is, X is a convex combination of
x; and x», and y is a convex combination of y; and y;. Since A and B are
both convex, we havex e Aandy € B,andthusw=x+y € A + B.

Let A and B be polytopes. Then, A + B is the polytope conv(vert(A) +
vert(B)), the convex hull of the set of all combinations a +b, wherea is a
vertex of A and b is a vertex of B.

Proof

This proof is a slightly modified version of the proof presented in [80].
First, we show that conv(vert(4) + vert(B)) is a subset of A + B, and next
(the hard part), we show that A + B is a subset of conv(vert(A) + vert(B)).

1. conv(vert(A) + vert(B)) €A+ B:
Since A and B are convey, it follows from Theorem 2.1 that A + B is also
convex. Obviously, vert(4) + vert(B) C A + B. Since A + B is convex and
conv(vert(A)+vert(B)) is the smallest convex object containing vert(A)+
vert(B), it follows that conv(vert(A4) + vert(B)) is a subset of A + B.

2.2 Objects 35

2. A + B C conv(vert(A) + vert(B)):
Let w be a point in A + B, and let x € A and y € B such that w = x +
y. Furthermore, let vert(A) = {ai, ..., a;} and vert(B) = {by, ...,b,}.
Then, there exist A;, ;A = 1,4; > 0, and u;, Z;l=1 wi = 1,u; >0,
such that

m n
X = Z)‘iai and y= Z uib;.
i=1 j=1

We derive

m m
W=Xx+y = (Zkiai) +y=) Aiai+y)

i=1

Since 72, 3> ;= 1 and A > 0, we find that w is a con-
vex combination of vert(A) + vert(B), and thus must be contained by
conv(vert(A) + vert(B)).

From step 1 and step 2 it follows that A + B = conv{vert(A) + vert(B)).

As mentioned earlier, Minkowski sums are useful for representing
swept volumes. However, there is deeper reason why we introduce
Minkowski addition. Minkowski sums give us a means to express a
number of queries on pairs of objects in terms of their configuration
space obstacle. For this purpose we introduce a negation operation on
objects:

—B={-y:yeB}

The configuration space obstacle (CSO) of objects A and B is the object
A + (—B), which is abbreviated to A — B. The object A — B is the set of all

36 Chapter 2 Concepts

vectors from a point of B to a point of A, as can be verified by working out
the expression. Note that in order for this definition to make sense, the
objects must be defined relative to the same coordinate system.

The CSO contains all the information needed to answer a number of
queries on pairs of objects in the context of collision detection. First
of all, an intersection test can be expressed in terms of the CSO of the
query objects, since a pair of objects intersect iff their CSO contains the
origin:

" ANB#£0=0cA—B.

This is obvious, since only if the objects intersect, do they have a common
point, and thus the vector from this point to itself, which is the zero vector
or origin, is contained in the CSO.

The distance between two objects A and B, denoted by d(4,B), is
defined as

d(A,B) = min{||x —y|| : x € A,y € B}.
The distance can be expressed in terms of the CSO as follows:
d(A,B) = min{|x| : x €A - B}.

For any pair of convex objects there exists a unique point in A — B that
is closest to the origin. This can be seen by the fact that if there were two
such points, then there exists a convex combination of these points that
is closer to the origin than d(A, B). But since A — B is convex, the convex
combination is contained in A — B, and thus its distance to the origin is at
least d(4, B), which results in a contradiction. Note that the uniqueness
of the point of A — B closest to the origin does not imply that the distance
between two convex objects is realized by a unique pair of points. There
may exist multiple pairs a € A and b € B, such that |a — b|| = d(4, B).
However, all closest pairs map to the same point a — b in configuration
space.

Similarly, the penetration depth of a pair of objects can be expressed in
terms of their CSO. The penetration depth of a pair of intersecting objects is
the length of the shortest vector over which one of the objects needs to be
translated in order to bring the pair in touching contact. The penetration
depth p(A, B) of A and B can be expressed as

p(A, B) = inf{||x|| : x ¢ A — B}.

Note that we must use infimum (i.e., greatest lower bound) rather than
minimum since A — B is a closed set. For a pair of intersecting objects, the

2.2 Objects 37

penetration depth is realized by a point on the boundary of A — B that is
closest to the origin. Such a point is not necessarily unique. Consider the
case where A and B are a pair of concentric spheres. For such a pair of
objects, all points on the boundary of A — B realize the penetration depth.
It can be seen that by translating object B over a vector from the origin to
a point on the boundary of A — B, the pair is brought in touching contact.
Clearly, for a point on the boundary of A — B closest to the origin, the
translational distance is the shortest. Figure 2.10 illustrates the relation
between a pair of objects and its CSO.

The following property of Minkowski addition is useful when bounding
volumes are applied. Let A € C and B C D. Then,

A+BC C+D.

Thus, the Minkowski sum of the bounding volumes of objects A and B is
a bounding volume of A + B. In the same manner, we find that

A-BcC-D.

Thus, the CSO of the bounding volumes of A and B is a bounding volume
of A—B.

Minkowski sums can be represented explicitly for a number of
bounding-volume types. The Minkowski sum A — B of two spheres A and
B given by center points ¢4 and ¢p and radii ps and pp is itself a sphere
with center ¢4 + ¢g and radius ps + pg. The CSO A — B of these spheres
has the same radius, but is centered at ¢4 — ¢3g.

The Minkowski sum of a pair of axis-aligned boxes is itself an axis-
aligned box:

P,]+ 1p2.q2]1 =[p1 + P2, 91 +q2l.

And, for the CSO of two axis-aligned bounding boxes, we find

(p1.q1] — [P2, Q2] = [P1 — 92, q1 — P2l.

Readers familiar with interval arithmetics [117] will recognize these
equations as the addition and subtraction of intervals. The plus and
minus operations on intervals are, in fact, by definition equivalent to the
Minkowski plus and minus.

For a pair of boxes that are represented by centers ¢1 and ¢; and extents
h; and h,, the Minkowski sum is the box centered at ¢; + ¢, and with
extent h; + h,. The CSO is a box of equal extent, centered at ¢; — ¢».

38 Chapter 2 Concepts

Figure 2.10

2.2.5

;

(a)

(b)

©

o

(d)

A pair of convex objects and the corresponding CSO. (a) Nonintersecting: The
origin is outside the CSO. The arrow denotes the distance. (b) Intersecting: The
origin is inside the CSO. The arrow denotes the penetration depth. (c) After a
translation of B over the penetration depth vector, the objects are in contact. The
origin lies on the boundary of the CSO. (d) After a rotation of B, the shape of the
CSO changes.

Complex Shapes and Scenes

So far, we have discussed the different types of primitives that are com-
monly used for building models. Here, we will examine how these shapes
are combined to create complex shapes and scenes.

2.2 Objects 39

Complex shapes are constructed by grouping primitives. The object
represented by a grouping of primitives is the set of points defined by
the union of the primitives. We do not consider objects defined by the
intersection or set difference of primitives. Such types of object repre-
sentations are common in constructive solid geometry (CSG), but are not
easily dealt with for performing collision detection. We restrict ourselves
to unions of objects, since only for unions can we reduce an intersection
test involving a complex object to a number of intersection tests for the
object’s primitives. Let A U B be a grouping of two objects A and B, and C
an arbitrary object. Then, an intersection test between A U B and C,

(AUB)NC # 4,
can be reduced to
ANC#@ and BNC # 4.

Such a reduction is not possible for objects defined by the intersection or
set difference of primitives.

The most commonly used complex shape types are triangle and quadri-
lateral meshes. Meshes are often used for approximating curved surfaces.
For storing the incidence relation of the polygons in a mesh we can use
the boundary representations discussed on page 24. However, for colli-
sion detection of objects represented by meshes we usually do not need
the incidence relation of the polygons. Meshes are treated simply as sets
of polygons, commonly referred to as polygon soups. See Chapter 5 for a
discussion of collision detection methods for complex shapes.

It is common practice to define a shape relative to a local coordinate sys-
tem. An object is created by placing the shape’s local coordinate system
relative to the object’s parent coordinate system. In this way, the posi-
tion, orientation, and scaling of an object within the parent coordinate
systemn can be changed without changing the shape description. Further-
more, multiple objects can be instanced using the same shape, each object
being the result of a different placement of the shape’s local coordinate
system.

Objects can again be grouped together to form even more complex
objects, and groups of objects can be given their own local coordinate
systems, which are placed in yet another parent coordinate system, and
so on. The hierarchical structure we get by using this construction method
is commonly known as a scene graph. A scene graph is a directed acyclic
graph (DAG), that is, a treelike structure in which a single node may have
multiple parents. The structure has two types of internal nodes: grouping
nodes and transform nodes.

40 Chapter 2 Concepts

m A grouping node simply combines a number of subgraphs. The object
represented by a grouping node is the union of the objects represented
by its children.

m A transform node defines a local coordinate system for its child relative
to the parent coordinate system. The object represented by a transform
node is the image of the child object under the corresponding affine
transformation.

The terminating nodes are the basic shapes in local coordinates. Each
root path in a scene graph corresponds with an instance of its terminat-
ing shape. The placement of this shape relative to the root coordinate
system is given by the composition of all transformations along the root
path. Let Ty, ..., T, be the affine transformations corresponding with the
transform nodes on the root path of the shape. Then, the local coordinate
system of the shape relative to the root coordinate system is given by

T=Tio-.--0T,.

Geometric queries on pairs of objects can be answered only if we have
representations of the objects relative to the same reference coordinate
system. For queries that depend on a metric, such as distance and pene-
tration depth computation, the reference coordinate system should be a
Cartesian system. The world coordinate system is an obvious choice for
such a reference coordinate system. The world coordinate system is the
coordinate system associated with the root of the world scene graph and
is by definition Cartesian.

For queries that do not depend on a metric, such as testing for inter-
sections, we may use any coordinate system as the reference system.
Usually, it is faster to use one of the objects’ local coordinate systems as
areference system, since this saves us coordinate transformations for the
object’s shape description. In that case, we compute the second object’s
local coordinate system relative to the first object’s. Let T4 and Tp be the
local coordinate systems of objects A and B, respectively, relative to the
world coordinate system. Then, B’s local coordinate system relative to A’s
is simply

Tpas = TZI oTg.

A popular file format for describing 3D objects and environments is
VRML97 [10]. VRML97 uses a scene graph structure that is similar to
what is described above.* In VRMLY7 it is possible to describe dynamic
environments in which 3D objects can be animated. In the next section

4. In VRMLY7 a Transform node can have multiple children, so it is in fact the combination
of a transform node and a grouping node.

2.3 Animation 41

we will have a look at the different types of animation that are commonly
used.

2.3 Animation

Animation adds a time parameter to the object representation; that is, the
set of points that comprises an object is a function of time. Animation is
created by changing attributes of a scene graph over time. For collision
detection we are interested only in model changes that affect the geometric
attributes. We discern two types of motion corresponding with different
attributes in a scene graph:

s The most common way to animate a model is by altering the transfor-
mations in the transform nodes of the scene graph. We will refer to
this type of motion as placerment change. The placement changes are
the result of translations, rotations, and nonuniform scalings on (part

of) the model.

®» Animation may also be created by changing the geometries of the prim-
itive shapes. This type of motion is called deformation. This is most
commonly done for objects represented by polygon meshes. Here, the
positions of the vertices of the polygons are time-dependent. Deforma-
tions may be applied to simulate, for instance, fluids, cloths, or skin.

The majority of placement changes we see in interactive 3D environments
are rigid motions, so let’s have a closer look at this important group of
motions.

Rigid motion is the motion of a rigid body—an object that is not sub-
jected to deformation or change of scaling. The placement of a rigid bodv
is given by the position of its local origin and orientation of its local basis.
In three-dimensional space, position and orientation have three degrees of
freedom (DOFs) each, so a rigid body has a total of six DOFs. For positions,
the three DOFs correspond with the three coordinate axes. For orienta-
tions, the three DOFs are less obvious. The three angular DOFs become
clear from the observation that any orientation of the local basis can be
created by a single rotation around an arbitrary axis. The angle of rotation
gives us one DOF and the direction of the axis gives us the other two DOFs.

Each orientation of a rigid body corresponds with a special orthog-
onal matrix (all columns mutually orthogonal and of length 1, and the
determinant positive). However, for representing orientations, special
orthogonal matrices are not an ideal choice. A 3 x 3 matrix has nine
DOFs corresponding with the nine scalars. The requirement that it has
to be special orthogonal constrains six DOFs. The surplus of DOFs in

42 Chapter 2 Concepts

orientation matrices for rigid bodies tends to become a nuisance when
doing motion simulation. Numerical operations such as integration and
computing derivatives are performed on nine scalars although only three
DOFs are used. Apparently, computations are complicated by the inef-
ficient representation. Moreover, since numerical integration introduces
some drift (i.e., an error in the returned value due to discretization of
time), the orientation matrix needs to be reorthogonalized after each
integration step. All this suggests that we could benefit from a more
economical representation for orientations.

Since an orientation has three DOFs, any representation should use
at least three scalars. We can represent an orientation using only three
scalars. The three scalars represent the angles of rotation around three
well-chosen axes. The common name for such a triple of angles is Euler
angles. Another representation that is often better suited for doing motion
simulation are quaternions. Quaternions use four scalars. However, for
the purpose of representing orientations, it suffices to store only three of
the four scalars, since one of the components can be deduced from the
other three, as we shall see further on.

Euler angles exist in different formats depending on the choice of
axes. The three angles are commonly referred to as the roll, pitch, and
yaw, corresponding with the x-, y-, and z-axis, respectively, as shown in
Figure 2.11. Note that the order in which each rotation is applied is impor-
tant. A roll rotation over 2 7 followed by a pitch rotatlon over ;71 will give
a different orlentatlon than a pitch rotation over 271 followed by a roll
rotation over 271 Conventionally, the roll is applied first, then the pitch
rotation, and finally the change of heading.

Although rotations have three DOFs, the rotation space does not really
map nicely to a three-dimensional vector space. Since Euler angles are
actually a forced mapping of rotation space to a linear space, certain
artifacts exist that make the use of Euler angles for motion simulation
somewhat awkward. This forced mapping of the rotation space is com-
parable to the mapping of a global map to the plane. There is not really a
nice way to represent a global map in the plane. For a Mercator projection
we see that the poles are stretched to lines. The poles are the singularities
of the projection—a point on the globe corresponds with multiple points
on the map. Also, the shortest line segment between two points on the
planar map does not generally correspond with the shortest arc between
the points on the globe.

For Euler angles we have similar artifacts. A single orientation can be
represented using many different triples of Euler angles. For instance, a
roll rotation over n followed by a pitch rotatlon over ;n results in the
same orlentatlon as a pitch rotation over 27r followed by a yaw rotation
over —jn The same orientation can be achieved by performing a roll

rotation over — 771 followed by a pitch rotation over 5 L7 followed by a yaw

Figure 2.11

2.3 Animation 43

N 4_@ Vertical axis
=
=

The conventional use of yaw, pitch, and roll.

rotation over . In fact, there is an infinite number of Euler triples that
result in the same orientation, since any roll rotation can be canceled out
by a yaw rotation after a pitch rotation over %n.

As with the poles on a Mercator projection, Euler angles suffer from
singularities, since there exist orientations that correspond with an infi-
nite number of Euler angles. It is possible to prove that any mapping
of rotation space to a three-dimensional linear space will contain singu-
larities. Also, linear interpolation of two triples of Euler angles does not
generally give you the smoothest interpolation in rotation space. More-
over, the conversion from a triple of Euler angles to a 3 x 3 orientation
matrix involves evaluating the sine and cosine for each angle. For an ori-
entation given by the triple (¢, 8, ¥), where ¢ is yaw, 9 is pitch, and ¢ is
roll, we find the matrix

cos¢cost —singcosy+cosgsindsiny singsiny +cos¢@sind cosyr
singcosf cos¢cosy+singsinfsiny —cos@siny +singsind cosy

—siné cos@siny cosfcosy

This conversion is computationally more expensive than performing the
conversion from quaternions to orientation matrices, which we discuss
further on. Notably, computations of the sines and cosines of each of the
three angles take a considerable amount of processing.

44 Chapter 2 Concepts

Although they have some limitations, Euler angles do have their use
in animation. They are quite useful in configurations where some of the
angular DOFs are constrained. For instance, the knees of a walking figure
have only one angular DOF, and the shoulder joints usually have only
two DOFs. For these types of joints, one or more angles are fixed and
the remaining angles can be constrained to a “safe” range, so there is no
risk of running into a singularity. Usually it is easier to manipulate the
free Euler angles directly rather than impose additional constraints on
the relative orientations.

Forrigid bodies that have all three angular DOFs, quaternions are better
suited for representing orientations. The quaternion algebra is a general-
ization of complex numbers. A quaternion is a quadruple of the form

q = ag +io + jo2 + kas,

where i2 =2 =k? = —1,ij = —ji=k, jk = —kj =i, and ki = —ik = j. The
conjugate of q, denoted by q*, is the quaternion

q* = ag — ey — joz — kas.

The quaternion space behaves as a four-dimensional vector space with
respect to addition and scalar multiplication. The norm of a quaternion
q is the squared length of this four-dimensional vector:

N(q) = a(z) +a% —|—a§ +a§ =qq* =q*q.

The noncommutative product rule gives quaternions their special prop-
erties that make them useful for representing orientations. Quaternion
multiplication has the property

N(q1q2) = N(q1)N(q2).

As a result of this, the set of unit quaternions, that is, N(q) = 1, forms a
subgroup with unit 1 (= 1 +i0 + j0 + k0) and inverse q~! = q*.

Quaternions can be used for rotating points about the origin. For this
purpose we regard a point x = (a1, @2, ®3) as a quaternion X = iy + jo +
kas. The rotation defined by a unit quaternion q is given by

% = qxq*.

Given an axis v, ||[v|| = 1, and an angle 9, the rotation around v over 6 is
represented by the unit quaternion

q = cos{#/2) + Vsin(9/2),

2.3 Animation 45

where ¥ is the quaternion representation of vector v. In the context of
rotations, the four components of a unit quaternion are often referred
to as Euler parameters. Note that Euler angles and Euler parameters are
different concepts!

As with Euler angles, unit quaternions do not have a one-on-one
relation with orientations in three-dimensional space either; however,
quaternions are far less problematic for representing orientations. As can
be seen, each orientation corresponds with exactly two unit quaternions.
For q, a unit quaternion, q and —q represent the same orientation. In
fact, we can represent an orientation by the vector part of a unit quater-
nion only, since its scalar part «g can be determined from the other three
components. Note that, since q and —q represent the same orientation,
we can choose, for each orientation, a unit quaternion that represents
this orientation and for which ag is nonnegative. For this unit quaternion
ag +ie1 + joz + kas, we know that

aoz\/l—a%—a%—a;

So, for representing orientations in this way, we need to store only three
of the four Euler parameters.

Of course, the reduction in storage space does not always justify
the added cost of computing ¢ from the other three parameters.
Furthermore, constraining all results of quaternion operations to a
four-dimensional hemisphere complicates matters to some extent, so
intermediate results are better allowed the full quaternion unit sphere
as range. Nevertheless, it is good to know that converting the vector part
of a unit quaternion to an orientation matrix is still a lot cheaper than
converting a triple of Euler angles to an orientation matrix. So, if you
have to store an orientation using only three scalars, then the quaternion
format is preferable.

The conversion from unit quaternions to special orthogonal matrices
follows directly from the rotation operation. Since quaternion multipli-
cation uses only scalar addition and scalar multiplication, the matrix
can be found by working out the expression qxq*. For a unit quaternion
q = ag + iy + jaz + kaz, we find the matrix

1— Z(a% + a%) 2(x102 ~ apa3) 2(a1a3 + aga2)
2aro +agaz) 12 +e3) 2(eaz —apar)
2oz — agar) 2(ar03 + agay) 1-— 2(0:% + a%)
Notice that in each element of the matrix, quaternion components occur

only in second-degree terms—terms that are the product of two quater-
nion components. Thus, indeed we find the same matrix for q and —q.

46 Chapter 2 Concepts

Quaternions behave a lot better than Euler angles in animation. Inter-
polation of a sequence of orientations can be done smoothly by following
curves over the four-dimensional unit sphere, without the necessity of
handling singularities [112]. Also, for motion simulation, it pays to use
quaternions for representing the orientation of the rigid bodies. The
derivative q of a quaternion q can be determined directly from the angular
velocity vector w:

Again, & is the quaternion representation of the vector w. There are some
advantages of using quaternions over special orthogonal matrices for rigid
body simulations. Since a quaternion representation uses fewer scalars,
we have to carry out fewer operations for numerical integration. Also, in
order to cancel out numerical drift, matrices need to be reorthogonalized,
whereas quaternions merely need to be renormalized, which is a much
simpler operation.

2.4 Time

In the real world, time is assumed to be continuous—the time interval
between two instances of time can be arbitrarily short. The placement of
an object is given for each instance of time. In computer simulation, time
is discrete. Object placements are given at discretely sampled instances of
time only. By making the interval between two samples small enough, we
can suggest continuously moving objects. The observer of the simulation
is not aware that the object placements between two consecutive samples
are not actually there.

However, if we would perform collision detection for these discretely
sampled instances of time only, we might end up detecting collisions too
late or not at all, as illustrated in Figure 2.12. Missing collisions may result
in behavior that will be observed as incorrect. For instance, a high-speed
object, such as a bullet fired from a gun, may pass through an obstacle,
such as a wall, without resulting in a collision for any of the sampled times.
We can reduce the possibility of this happening by increasing the sam-
pling rate. However, if the speed of an object is unbounded, there always
remains the possibility that a collision is not detected. Moreover, using
a higher sampling rate is not always an option in real-time applications,
since it increases the computational load of a simulation.

This suggests that we need to solve the collision detection problem
as an intersection test in continuous four-dimensional space (space-
time). The object placements between two sampled instances of time are

Figure 2.12

2.4 Time 47

(a) (b)

Problems when detecting collisions at discrete time steps: (a) too late; (b) missed.

obtained by interpolating the sampled placements. The four-dimensional
objects that we test for intersection are the result of extruding the three-
dimensional objects along their interpolated placements over the time
interval. Solutions to the four-dimensional intersection detection prob-
lem have been presented for a restricted class of objects and motions
[13, 14, 17, 37, 71, 105, 108]. However, in many common cases, the
four-dimensional object that is the extrusion of a three-dimensional
object in motion is often geometrically too complex to make a four-
dimensional intersection test at interactive rates computationally feasible.
Forinstance, it is hard to test the space-time extrusion of a spinning object,
such as a propellor or a fan, for intersection with the extrusion of another
moving object.

For objects that have fixed orientations or are invariant under rota-
tions, the swept volume is simply the Minkowski sum of the object in
local coordinates and the line segment connecting the sampled positions
of the object at the start and end of the time interval.® Let A and B be fixed-
orientation objects given in local coordinates, and p, and q; the positions
of their respective local origins at time ¢ € [0, 1]. For the times ¢ = 0 and
t = 1, the positions are given by the sampled placements. The in-between
positions are the result of linear interpolation; thus p; = (1 — #)po + tp1.
Then, the configuration of the objects at time ¢ is A + {p;} and B+ {q;}. For
a collision between the objects at time ¢, we derive

A+PHNB+{q)) #9=0cA+{p:} - B+{q})
=0cA—-B-(q}—{p})

5. Strictly speaking, the Minkowski sum is not a four-dimensional object. In order to make
it four-dimensional, we should assign to each point of the line segment the corresponding
time as time component, and zero as time component of the object.

48 Chapter 2 Concepts

=0cA-B-{q—pr}
=A-Bn{q—p:} #9
=q;—p:r€A—-B.

Thus, the objects collide at time ¢ iff q; — p; is contained in their
CSO given in local coordinates. A collision occurred on the time interval
[0, 1] iff the line segment q; — p; = (1 — t)(qo — po) + t(q1 — p1), t € [0, 1],
intersects with the CSO. The time of the collision is the earliest ¢ for which
q: — P is contained by A — B. Such a query that returns the first point of
intersection of a line segment (ray) and an arbitrary query object is called
aray cast. In the case where we do not need to know the time or points of
collision, but only require to know whether the objects intersect at some
point in the given time frame, simply testing the intersection of the line
segment and the CSO suffices. We will talk some more about ray casts
and line segment intersection tests in the following chapters.

What to do with rotating objects? We may deal with objects that have
angular DOFs by encapsulating them by a bounding sphere. For objects
that have only one angular DOF, a line-symmetrical volume, such as a
cylinder or a cone, may in some cases be a more sensible choice. The
four-dimensional intersection test is performed for the bounding volumes
rather than for the actual objects. This approach will detect high-speed
objects passing through obstacles; however, the time of collision returned
for a bounding volume may not be the actual time of collision for the
encapsulated object. Tt is even possible that a collision is detected for the
bounding volume, whereas the encapsulated object does not collide at
all. The best that we can get from a four-dimensional intersection test on
bounding volumes is a subinterval of time where the encapsulated object
potentially collided. If accuracy is an issue, exact intersection tests for
placements on the returned subinterval are necessary to establish whether
the encapsulated object did indeed collide.

In some cases you may get away with the following simplified four-
dimensional intersection test of objects with angular DOFs. When the
maximum angular velocity is rather low, orientations do not change a lot
between frames. Thus, a good approximation of the trajectory of such
objects can be obtained by changing the orientations instantaneous at
fixed time steps, and only interpolating the positions of the objects in
between frames. In this way, we can use the discussed ray-cast technique
for fixed-orientation objects, since orientations are assumed to be invari-
ant in between frames. Of course, this simplification results in rather poor
accuracy for fast spinning objects. However, if the center of rotation is
contained in the object, then the collision test is guaranteed not to suffer
from the bullet-wall problem. See Figure 2.13 for an illustration of these
solutions.

2.5 Response 49

/
/

t=0 L 1=0

(a) (b)

Figure 2.13 Solutions for simplified four-dimensional intersection tests on rotating objects.
(a) Encapsulation: The rotating object is encapsulated by a sphere. Since spheres
are invariant under rotations, a four-dimensional intersection test is easier on
spheres. (b) Instantaneous orientation changes: Orientations are assumed to be
invariant between frames.

2.5 Response

Obviously, the reason for performing collision detection is to have some
form of response to a collision. For some forms of collision response,
no additional data pertaining to the geometry of the colliding objects are
needed. For instance, in a game, the response to a collision of two objects
is often the deletion of one or both objects, and an update of the game
statistics. However, for most forms of collision response, additional data
are used for response computations. For instance, in VR applications the
exact spot where the simulated hand of the operator touches an object is
often required for collision response. Here, a common point of the object
and the hand is the collision data.

In the application of collision detection to physics-based simulations,
it is necessary to have (an approximation of) the time of collision, a con-
tact normal, and a contact point for a colliding pair of objects in order
to compute the reaction forces or impulses that resolve the collision. A
contact point is a point where the objects first touch, and a contact nor-
mal is a normal to a plane that passes through the contact point and is
oriented such that it separates the objects near the contact point. More
formally, the intersections of the objects with an e-neighborhood of the
contact point (i.e., a small sphere with radius ¢ and the contact point as
center) lie on different sides of the plane, as depicted in Figure 2.14. It
is assumed that by choosing ¢ small enough, each object’s intersection
with the e-neighborhood can be regarded as a convex set; hence, a con-
tact plane always exists. Note that neither a contact point nor a contact
normal is necessarily unique.

50 Chapter 2 Concepts

Figure 2.15

Computing a contact point (open dot) and contact normal (arrow) of fixed-
orientation objects by performing a ray test on the CSO of the objects.

As we saw earlier, we can compute the exact time of collision for a
restricted set of objects and motions. For fixed-orientation objects, the
time of collision, a contact plane, and a contact normal can be computed
by performing a ray test on the CSO of the objects, as described in Sec-
tion 2.4. The contact point is the point where the ray enters the CSO, and
the contact normal is the normal to the boundary of the CSO at this point.
Figure 2.15 shows an example of the ray test for spheres. Note that for the
contact point we find a point on the boundary of the CSO that does not
necessarily map uniquely to a contact point on either object. For instance,
multiple contact points exist for objects that collide face-to-face or edge-
to-face. It is usually not hard to find a contact point on the objects given
a contact point on the CSO, as we will see further on.

For arbitrary objects and motions, computing the exact time of colli-
sion is not always feasible. For these cases, we may approximate the time
of collision by bisection. Suppose we have for ¢t = 0 a nonintersecting
configuration and for ¢ = 1 an intersecting configuration of two objects.

2.5 Response 51

By repeatedly bisecting the time interval and performing an intersection
test for the conhguration at the bisection time, we can find an arbitrary
short interval [fg,#1] for which the configuration at t¢ is nonintersect-
ing and the configuration at #; is intersecting. It goes without saying
that such an approach is computationally expensive, since each bisection
step requires an intersection test. Furthermore, it is not guaranteed that
bisection gives us the earliest collision time if the objects’ status changes
multiple times from nonintersecting to intersecting during the time inter-
val. For interactive applications, we often do not bother to approximate
the collision time in this way and simply take ¢t = 0 ort = 1 as the collision
time.

For computing a contact point and a contact normal we have several
options. Suppose we found a pair of intersecting objects at ¢t = 1. In
general, this means that at7 = 1 the objects overlap to some extent. Given a
configuration of intersecting objects, we have to estimate a contact normal
and contact point that best describe the contact region at the time of
collision.

Good estimations for the contact point and contact normal are achieved
by using the configuration at r = 0, the time step prior to the collision. For
this purpose, a pair of closest points of the objects at 7 = 0 are determined.
A pair of closest points is a pair of points, one from each object, such that
their distance is the shortest of all point pairs. We use the difference of the
closest points as the contact normal, which is a fairly good approximation
of the actual contact normal, as depicted in Figure 2.16. The closest points
are used as contact points.

The accuracy of the contact points and contact normal derived
from a pair of closest points depends on the velocities of the objects.

Figure 2.146 For a pair of closest points p and q at ¢ = 0, the difference p — q is a good
approximation of a contact normal.

52 Chapter 2 Concepts

For fast-moving or spinning objects, the closest point pair at = 0 may
differ considerably from the actual contact data. Again, we can use bisec-
tion to find a nonintersecting configuration of the objects at a time closer
to the time of collision. For such a configuration the closest points describe
the contact data more accurately.

Another way to get more accurate contact data from the closest points is
by applying a skin-bone technique. For intersection testing, we use slightly
enlarged objects. The enlarged objects are defined by the Minkowski sums
of the original objects and a tiny sphere. Such a Minkowski sum thus
represents the set of points that lie at a distance of at most the sphere’s
radius from the original object. When a collision between the sphere-
swept objects is detected, we check whether the original objects intersect
as well. If so, then we use bisection to find a configuration in which the
sphere-swept objects (the skins) intersect, but the plain objects (the bones)
do not. For such a configuration, the closest-points pair of the plain objects
can be used as a better approximation of the contact points and contact
normal. By tweaking the size of the sphere, accuracy can be traded for
performance and vice versa. A large sphere needs fewer bisection steps to
find a proper configuration, but results in poorer accuracy, than a small
sphere.

The skin-bone technique takes a lot of processing time and is therefore
less suited for interactive applications. Also, in order for the closest-points
approach to be usable, the configuration of (bone) objects at ¢t = 0 must
be nonintersecting. This requirement can be quite hard to establish when
there are lots of interactions between objects in a scene. Therefore, it
might be better to rely solely on the collision configuration at t = 1 for
computing the contact data.

An approximation of the contact normal can also be found by com-
puting the penetration depth vector. The penetration depth vector is
computed for the collision configuration at ¢t = 1. As contact points, we
take the points on the boundaries of the intersecting objects that are the
witness points of the penetration depth vector. As for closest points, the
penetration depth vector results in fairly accurate contact data for most
intersecting configurations of objects. However, for some configurations
we may get undesired results, as shown in Figure 2.17. We see that for
the rectangle example, the penetration depth vector is orthogonal to the
actual contact normal. Nevertheless, computing the penetration depth is
quite useful for interactive applications, since it does not require bisec-
tion of the time interval and does not fail because of earlier intersecting
configurations.

There exist a number of techniques for physics-based collision resolu-
tion. In impulse-based methods, the impulse that (partially) reverses the
relative velocity of the contact points is pointed along the contact nor-
mal. In penalty-based methods, a spring is attached to the contact points

2.6 Performance §3

() (b)

Figure 2.17 Using the penetration depth vector for approximating a contact normal: (a) fairly
accurate and (b) inaccurate.

that pushes the objects out of each other. A discussion of methods used
for physics-based simulations falls outside the scope of this book. The
reader is referred to [36] for a thorough treatment of techniques used for
interactive dynamics simulations.

2.6 Performance

In interactive computer animation, the available computational time per
frame for collision detection is bound by the desired frame rate. In order
to experience real-time response, the frame rate needs to be around 30
to 60 frames per second. We see that this real-time constraint imposes
quite strict demands upon the performance of the used collision detection
methods.

Often, performance can be gained at the cost of higher memory usage.
For instance, faster algorithms often require special shape representa-
tions or reuse cached data from earlier computations. Although in many
cases memory usage is less critical than performance, the amount of avail-
able memory nevertheless imposes a hard constraint on the used methods
and shape representations. On the other hand, memory access is slow on
current computer platforms. So, a reduction in the amount of memory
processed by an algorithm may have a positive effect on the performance.
Thus, we also have to take the amount of memory used into account in
choosing a collision detection method. In this section, we discuss a num-
ber of efficiency considerations that may govern the choice of algorithm
for collision detection.

54 Chapter 2 Concepts

2.6.1

2.6.2

Frame Coherence

Under the assumption that the changes per frame are small (i.e., the
motion is smooth), the computations for detecting collisions are repeated
for mostly the same input values. By caching and reuse of earlier com-
putations the computation time per frame may be greatly reduced. The
measure of reusability of computations from earlier frames is called frame
coherence.

Witnesses play an important role in the exploitation of frame coher-
ence. A witness is some piece of data pertaining to the current configu-
ration of a pair of objects that can be used for quickly answering future
intersection queries on the objects, provided that the configuration does
not change much. A witness may be either positive (i.e., the objects inter-
sect) or negative (i.e., the objects are disjoint). An example of a positive
witness is a common point of both objects. For convex objects, we may
use a separating plane or a separating axis (i.e., an axis orthogonal to a
separating plane) as a negative witness. A closest-points pair may be used
both as a positive and a negative witness. We will discuss the computation
of these witnesses for convex objects in Chapter 4.

The use of cached witnesses is based on the idea that testing whether
a witness from a previous frame is still valid in the current frame is
cheaper than repeating the witness computation from scratch for the cur-
rent frame. For instance, a point containment test is cheaper than an
object intersection test for many object types. Therefore, if a witness from
a previous frame is likely to be a witness in the current frame, as a result
of a high degree of frame coherence, we may save ourselves some time by
first testing the validity of the cached witness in the current frame. Only if
the witness test fails does an expensive collision test need to be performed,
which may result in a new witness being computed.

Besides the cost of testing their validity, some additional overhead costs
are involved when using witnesses. The witnesses need to be cached in
a data structure and retrieved in the following frames, which obviously
takes some time. Therefore, it is wise to cache witnesses only if they have a
high probability of being valid witnesses in the following frames. In com-
puter animation, collisions are usually resolved rather than maintained.
Hence, in this context, negative witnesses are more useful than positive
witnesses, since most object pairs will be disjoint most of the time.

Geometric Coherence

Another type of coherence, which we will refer to as geometric coher-
ence, may also be exploited for improving the performance of collision

2.6 Performance 55

(a) (b)

Figure 2.18 The amount of geometric coherence in a collection of triangles: (a) little coherence
and (b) much coherence.

detection. Geometric coherence is the quality of a complex model that
expresses the degree in which the objects in the model can be ordered
geometrically. Tt is hard to give a formal definition of the notion of geo-
metric coherence, since the notion is strongly related to the method of
ordering that is applied. However, we shall try to give a formal definition
that is more or less independent of a specific ordering method.

Geometric coherence of a complex model is best described as the degree
of separability of the set of objects in the model. Two objects are separable
if the regions defined by the convex hulls of the objects are disjoint. The
degree of separability decreases if the degree of overlap among the convex
hulls increases. Figure 2.18 shows two sets of triangles: one has very little
geometric coherence, and the other a lot.

It may sound awkward that a model that has more space between the
components has more geometric coherence than a model in which all the
objects are interlinked. We should keep in mind that geometric coherence
has to do with the degree to which a location in space can be associ-
ated with one designated object, rather than the degree to which objects
cohere.

A bounding volume is a simple primitive that encloses a more complex
shape and for which a cheap intersection test exists. If the probability
that the bounding volumes of the objects intersect is low (i.e., there is a
lot of geometric coherence among the objects in a model), we may save
ourselves some time by first testing the bounding volumes for intersec-
tion. Only for the objects whose bounding volumes intersect do we need
to perform an exact and expensive intersection test. Again, the use of
bounding volumes requires some additional storage and computational
cost, so performance is gained only if the bounding volumes have a high
probability of being disjoint.

56 Chapter 2 Concepts

2.6.3

Average Time

In order to attain the best average performance by exploiting coherence,
collision detection is typically done as a sequence of intersection tests
of increasing computational cost. Except for the last test, each test estab-
lishes an answer to the intersection query only for a portion of all possible
configurations of objects. The last test must return an answer for all the
remaining configurations. Here, an answer may be either positive or neg-
ative. A test in the sequence needs to be performed only if the previous
test failed; that is, it did not establish an answer to the query.

For instance, an intersection test of two geometric objects may consist
of a bounding-volume test and an exact intersection test. The common
terms for these steps in a collision detection framework are broad phase
and narrow phase, respectively [72]. If the bounding volumes of the two
objects do not intersect, then a negative answer is returned; thus, the
bounding-volume test is successful. Otherwise, we need to do an exact
intersection test.

Let Sy, ..., S, be asequence of intersection tests that is used for answer-
ing an intersection query, and let f; represent the event that test S; fails,
and C;, the average time necessary for performing S;. We can define the
average time of an intersection query as

Tavg = Zp[fl e 'fi—l]Ci;
i=1

where P[f1---fi—1] is the probability of failure of tests Sy,...,S;_; for
a given input domain. Often, C; depends on the size of the input. For
instance, testing whether two polygons intersect takes an amount of time
that is linear in the total number of vertices of the two polygons (see
Chapter 3). Hence, the average time for performing an intersection query
is often a function of the input size.

Tt is our goal to design collision queries as a sequence of tests for which,
given a realistic input domain, the worst-case time never exceeds a given
time constraint. However, since collision query times vary a lot between
best and worst cases, and since absolute worst cases are rare, we often
abandon the hard real-time requirement and shoot for optimal average
timings. Since we will be performing a lot of these collision queries per
frame, it is considered unlikely that the total time per frame spent on colli-
sion detection will stray far from the average query time. It can be seen that
the best times are gained by using tests S; for which both P[f|f1---fi—1]
(i.e., the probability of the test failing under the condition that the former
tests failed) and C; are small.

The next question to answer is how the values for the probabilities
and cost are determined. The cost values may be found by counting the

2.7 Robustness 57

number of primitive operations in a single intersection test. Primitive
operations are, for instance, arithmetic operations (additions, subtrac-
tions, multiplications, and divisions), branch instructions, and memory
accesses. We often express the cost of a test routine by the number of
arithmetic operations only.

For more complex intersection tests that depend on the input size,
expressing the cost in primitive operations is often not feasible. In these
cases, we determine the cost empirically. For a given implementation and
input size, the cost is measured by running a large number of tests for a
representative input domain using a profiling tool, such as gprof [42]. Of
course, the measured values are only valid for the given implementation,
input size, and testing platform, and thus, we need to apply our findings
with some restrictions.

The probability values are also best found empirically by running a
large number of tests. Although a field of probability theory called stochas-
tic geometry [119] can be applied for determining these values for some
configurations of objects, the majority of object types and input domains
are too complex for an analytic approach to be feasible. The probability
values can be found simply by counting the number of times each inter-
section test is called. For this purpose, we may also use a profiling tool.

2./ Robustness

2.7.1

Geometry is the theoretical basis for deriving collision detection algo-
rithms. In these theoretical algorithms, scalars are assumed to be real
numbers, and scalar operations are assumed to be exact. However, for
implementations of these algorithms that run on a computer, infinite-
precision number representations and arithmetics are either not possible
or computationally very expensive.

Generally, we represent the scalars in collision detection algorithms
by floating-point numbers. Floating-point arithmetic is not exact. Since
floating-point numbers have a finite precision, the result of a floating-
point operation may deviate from the theoretical result due to rounding
of the result to the given precision. The error introduced by rounding the
result of an arithmetic operation may cause all sorts of problems in our
algorithms. This section explains what sort of problems you can expect
and how to cope with them.

Floating-Point Numbers

A floating-point number format is given by a base g, a mantissa size p
(precision), and an exponent size ¢q. The floating-point numbers that can

58 Chapter 2 Concepts

be represented using this format are of the form
+m x B,

where m, the mantissa, is a number represented by p base-8 digits such
that

1<m<g,

and e, the exponent, is an integer represented by g base-g digits. Usually,
the range of the exponent is defined by an exponent bias b such that the
exponent is taken to be the unsigned integer represented by the ¢ base-8
digits minus the bias,

—b<e<pi—b.

Notice that it is not possible to represent the number zero using this
format. For this purpose, the value e = —b is reserved. The number zero
is represented by the floating-point number +1.0 x 87%. In base-2 floating
point formats such as the popular IEEE Standard 754, the most significant
digit of the mantissa is always one and can thus be left out of the mantissa
representation.

Floating-point numbers have a certain range. The largest number that
can be represented is

Omax = (1 - :B_p)ﬂﬂq_b,

and the smallest positive number is®

O'min = B ! ~b~
The result of an arithmetic operation may fall outside the range of floating-
point numbers. If the absolute value of the result is greater than amax, we
speak of overflow. If the absolute value of the result is less than ayin but
greater than zero, we speak of underflow. Problems due to numbers that
are out of range are less common and are not discussed here. The readeris
referred to [55] for a more thorough discussion of out-of-range problems
in floating-point arithmetic.

The main source of headache is the fact that the results of arithmetic
operations are rounded to the nearest representable floating-point num-
ber. The distance between two consecutive floating-point numbers in the

6. In the IEEE Standard 754 it is possible to represent smaller numbers by allowing
denormalized mantissas (m1 < 1) fore =1 —b.

2.7 Robustness 59

interval [8¢~1, g¢] is B¢P. For each real number « € [8¢~!, B¢], there exists
a floating-point number & e [g¢~1, g¢], such that |a—a| < % B¢7P. Under the
assumption that floating-point operations return the floating-point num-
ber closest to the actual result, the greatest relative error introduced by a
floating-point operation is %,Bl_p. Thus, for «, the result of an arithmetic
operation, and &, the floating-point number after rounding, there exists
an n, such that

. 1
& =a(l+n), Inlsiﬂ1 P,

The number ¢ = % B177 is called the machine epsilon.

Arelative error of € in the result of an arithmetic operation seems pretty
harmless; however, problems may occur when further operations are
performed on the already contaminated floating-point values. Notably,
subtracting two almost equal floating-point values introduces a large rel-
ative error. Let floating-point numbers &; and & be the result of arithmetic
operations, and let n1 and 52 be their respective relative errors with
respect to their theoretical values oy and «2. Thus, & = «1(1+7;1) and
a = az(1 +). For y = a1 — a, we find the computed value

v = (1 — &)1 +ne),

where 7g is the rounding error introduced by the floating-point subtrac-
tion. The relative error in y is found as follows:

7 = (a1(1 +n1) —o2(1 + n2))(1 + ng)
= (a1 — a2 +a1n —az2n2)(1 +ng)

o —
= (a1 — a») (1+_1n1 2"2)(1 + 16).
ay —az

Assume that the earlier computations for «; and o were fairly accurate;
thus n; = O(e), for i = 1,2. For small relative errors we ignore higher-
order terms in 5;, which are terms that contain products of relative errors
n;. We then find as an upper bound for the relative error in 7,
¥ =yl _ leimi| + loama)

vl = o — a2

Now, suppose that a; and « are almost equal («; &~ «2). Then, we see
that the relative error in y can be huge. The relative error can be orders of
magnitude larger than ¢, in which case the least-significant digits in the

60 Chapter 2 Concepts

Table 2.1

2.7.2

Arithmetic operations and their upper bounds for the relative error in the com-
puted floating-point value. n denotes the relative error in the floating-point
representation of the corresponding parameter a.

4 Upper bound for W
ap +az %_H
o] — Q2 %4—6
o192 1]+ Im2] +€
ayfer Il =+ lml +e
o? 20| + e
va linl+e
oy’ i) + 1082 In(ay Ing | + €

mantissa are meaningless. This loss of significant digits in the mantissa
due to subtraction is called cancellation and is the source of all sorts of
numerical problems in geometric algorithms. Table 2.1 shows the upper
bound in the relative error for a number of arithmetic operations. As can
be seen, addition and subtraction are the most problematic.

The number of contaminated digits in the mantissa of a floating-point
number y that represents the real number y is

_ i Iy — vl
T e |

So, the number of significant digits in the mantissa of y is p —c. In the
IEEE Standard 754, the floating-point formats are base 2, and thus, € =
2P, The single-precision (32-bit) floating-point format has p = 24, and
the double-precision (64-bit) format has p = 53.

Stability

Huge relative errors in computed values are bad enough as it is. They can
be levered to dramatic proportions by the algorithm that uses the values
as input parameters. In some algorithms, a small change in the input
parameters can give rise to a huge change in the returned value. Such
algorithms are called unstable.

2.7 Robustness 61

For example, let us examine the computation of the signed distance of
a point x to the plane given by a normal n and a point p. For ||n| = 1, the
signed distance is § = n - (x — p). Suppose the computed normal fi has
a direction that is slightly different from the direction of the theoretical
normal n. Then, the absolute error in the computed signed distance for x is

1§ — 8| = [(A —n) - (x —p)l.

We see that the error is larger for points x that lie further from p. If the
distance between x and p is orders of magnitude larger than the distance
of x to the plane, then a slight relative error in 1i can give rise to a huge
relative error in §.

Let’s illustrate this example by performing the computations for
floating-point numbers represented using 8 = 10 and p = 4. Note that this
number format serves purely as illustration. The single-precision IEEE
754 format holds roughly twice as many base-10 digits in the mantissa
and should therefore generate much smaller errors.

Suppose we computed n as the normal to the triangle given by the
points

Po = (3.856 x 10°,4.074 x 10°,8.278 x 10°),

p1 = (1.000 x 10°,1.000 x 10°,1.000 x 10°), and
p2 = (1.001 x 10%,9.996 x 1071,9.992 x 1071).

Thus, n is the normalized cross product vi x v2, where vi = p1 — po
and v; = p2 — po. We see that that p; and p, lie close to each other
and that pg lies at some distance from these points. Thus, the vectors
vi and vy are relatively close to each other, in which case v x vy is
close to being zero. For the computed values of the vectors vi and v, we

find

V1 = (—2.856 x 10°,-3.074 x 10°,-7.278 x 10°) and
¥y = (—2.855 x 10°,—3.074 x 10°, -7.279 x 10%).

The computation of the cross product returns

2.238 x 101 —2.237 x 10!
Vi x V2 = | 2.078 x 10! —2.079 x 10!
8.779 x 10° — 8.776 x 10°

62 Chapter 2 Concepts

2.7.3

This is where cancellation shows its devastating effect. The computed
value for vy x¥2is (1.0x 1072, —1.0x 1072, 3. 0x 10~3), whereas the precise
value for vi x v2 would be (—4.52 x 1074, -9.563 x 1073,4.216 x 1073).
After normalization, we find

fi=(6.916 x 1071, -6.916 x 1071,2.075 x 10~ 1),

which differs substantially from what we would find given a higher
precision:

n=(-4.321x10"%-9.142 x 1071,4.031 x 107 1).

We see that the relative error introduced by rounding is large enough to
enable a change of sign in the first component of the computed normal.

If we take p = po as a point in the plane, then we find for the computed
signed distance of p; to the plane,

§=n-(py—po) =1 ¥ = —1.359 x 10°.

Whereas, if we take p = pi1 as a point in the plane, we find for the
computed signed distance of p; to the plane,

§=n-(py—p1)=8.022x 1074

The exact signed distance of p; to the plane of course is zero. The relative
error in i resulted in a much larger error in the computed signed distance
of p2 for p = po than for p = py, since p, lies much further away from py
than from p;.

This type of behavior occurs in many different forms in geometric algo-
rithms. We have to keep an eye open for values that can have huge relative
errors due to rounding. If used in unstable algorithms, large relative errors
can create all sorts of numerical havoc. Understanding the source of a
numerical problem is the first step. The next step is fixing it.

Coping with Numerical Problems

Obviously, the easiest way to solve a numerical problem is increasing
the precision. Changing from single-precision to double-precision or
even quadruple-precision (128-bit) floating-point numbers may in some
cases get you out of the mud. If this does not help, then switching to
a software library for arbitrary precision arithmetic, such as the GNU
Multiple Precision Arithmetic Library (GMP), will give you the necessary
precision.

2.7 Robustness 673

However, switching to a higher-precision floating-point format is not
always desirable from a storage and performance point of view. Increas-
ing the precision results in a larger storage usage for storing the scalar
values. Of course, we can use higher-precision floating-point numbers for
intermediate results only and store the final results in single precision. So,
the increase in storage usage should not be that dramatic.

The increase in computation time for higher-precision floating-point
arithmetic can, however, become a problem for interactive applications.
In geometric algorithms, floating-point operations take up the larger part
of the computations. So, an increase in computation time for floating-
point operations invariably results in a substantial drop in performance
for geometric algorithms.

Modern platforms for interactive 3D media can perform single-
precision floating-point arithmetic parallel in hardware. At best, a switch
to double-precision arithmetic results in fewer floating-point operations
per second, since the hardware cannot perform as many double-precision
operations in parallel as single-precision operations. At worst, the hard-
ware is not capable of handling higher-precision numbers, and thus, the
floating-point operations have to be performed in software, using up valu-
able CPU time. So, in order to warrant a sufficient performance, the
decision to use single-precision floating-point numbers is often made out
of necessity rather than choice.

Single-precision numbers generally have ample precision for geomet-
ric computations as performed in interactive 3D applications. However,
certain degeneracies in the input, such as the case described in the previ-
ous section where the normal of an oblong triangle is computed, result in
huge errors that cause our algorithms not to perform as expected. The
general trick to solving or at least coping with these numerical prob-
lems is modifying the algorithm such that degeneracies in the input
do not trigger bad behavior. There are several strategies to modifying
problematic algorithms:

m If an algorithm is unstable for a certain input, then use a more stable
algorithm for this input. For instance, in the case of computing the
signed distance of a query point to a plane given by a normal and a
point in the plane, store multiple points in the plane and pick the one
closest to the query point for doing the signed-distance computation.

m Detect degeneracies in the input and either pass on them or process
them in a simplified manner. For instance, if the input is a triangle hav-
ing almost collinear vertices, then regard it as a line segment. Since it is
not possible to compute a normal to a line segment, the signed-distance
algorithm has to pass on the input. In some queries, a sensible answer
exists even for triangles with collinear vertices. For instance, the query

64 Chapter 2 Concepts

whether or not a pair of triangles intersect can be answered for trian-
gles that have collinear vertices. However, the algorithm for answering
the query may require the triangles to have a nonzero normal. In such
a case, we drop the superfluous vertex of a degenerate input triangle
and use an algorithm for testing the intersection of a line segment and
a triangle.

m We can use assertions in the theoretical algorithm to detect misbehav-
ior in the finite-precision algorithm. For instance, after computing the
plane of a triangle, we can check whether the vertices of the triangle
are sufficiently close to the plane. In theory, the vertices should lie in
the plane, so if they are at some distance from the computed plane,
we know the algorithm suffered from numerical errors. Usually, there
is not a lot we can do to return an accurate result after detecting mis-
behavior of the algorithm. However, we can prevent the algorithm from
making an even bigger mess by not allowing it to continue on values
that are contaminated by numerical errors.

Numerical problems are the toughest to tackle in geometric algorithms.
Algorithms that behave perfectly on test input may run into numerical
problems as soon as you apply them to real-life input. Real-life input is full
of cases you never thought about when designing the algorithm. Real-life
objects can differ by orders of magnitude in size, they can be composed of
many more primitives than your test input, they have a higher probability
of having degeneracies, and last but not least, real-life simulations have
a tendency to generate configurations of objects that are problematic.
For instance, in real life, objects are never overlapping; however, a lot of
objects are in resting contact. So, a real-life simulation will often generate
configurations of barely touching objects, which are the hard cases for
collision detection, as we shall see.

As long as we are using finite-precision arithmetic, it is impossible to
safeguard ourselves from running into numerical problems. However, we
can take some actions to find out as soon as possible where numerical
problems might occur.

= First of all, use real-life input as early as possible in the development of
the algorithms. By using the input domain of the real-life application
that is going to use the algorithm, you are not only confronted with
numerical problems early in the development of your algorithm, but
you also get an idea of the performance of the algorithm.

m It is a good idea to develop an algorithm using double- or higher-
precision floating-point numbers in order to make sure that the theoret-
ical algorithm is doing what it should. However, when you are confident
that the algorithm is correct, try running it using single-precision

2.7 Robustness 65

floating-point numbers, even if you plan to use double-precision num-
bers in the final version. The single-precision algorithm will help you
track down numerical problems much faster.

m “Measure” the relative error in the computed values by simultaneously
performing the same computations using both single- and higher-
precision arithmetic. By comparing the results for the different preci-
sions, you should get an idea of the relative error in the single-precision
numbers. Alternatively, estimate an upper bound for the accumulated
relative error using the formulas given in Table 2.1. This can be done
automatically in the code while running the algorithm.

The companion CD-ROM contains a C++ header of a tracer class for
floating-point numbers. By replacing the scalars in our programs by
instances of this tracer class, an estimated upper bound for the accumu-
lated relative error is computed at run time for all arithmetic operations.
In this way, potentially unstable expressions can be tracked down quickly,
simply by executing the programs compiled using the tracer class.

Chapter
Basic Primitives

Elementary, my dear Watson.
—Sherlock Holmes

In this chapter we discuss intersection tests for a number of basic primi-
tives. The primitives we consider are spheres, boxes, line segments (rays),
triangles, and general polygons. These are the most commonly used
primitives in interactive 3D applications. Spheres and boxes are popular
bounding-volume types, whereas triangles and polygons are in general the
components from which complex models are built. This chapter provides
intersection tests for any combination of these primitives.

3.1 Spheres

3.1.1

Spheres are probably the simplest type of primitives for geometric
modeling. A sphere can be represented using only four scalars (three for
the center point and one for the radius), so they are quite cheap to store.
Furthermore, spheres are invariant under rotations, which makes them a
good candidate as a bounding volume for rigid bodies. In many applica-
tions, spheres are also used as active areas in which events are triggered.
For instance, a sliding door that opens when an avatar approaches the
door can be simulated by detecting whether the avatar intersects a sphere
that represents the active area of the door. An avatar is an object in a 3D
world that represents the user who is viewing the world from the location
of the object. Both the avatar itself as well as the area of the world that is
visible/audible by the user are often represented as spheres.

Sphere-Sphere Test

Due to their simplicity, collision detection of spheres is not that hard. Two
spheres A and B intersect iff the distance between their centers ¢4 and ¢g

67

68 Chapter 3 Basic Primitives

3.1.2

is at most the sum of their radii p4 and pz:
ANB#@=|cs—cBl < pa+pB-

We want to avoid the evaluation of square roots as much as possible, since
square roots take more time to compute than primitive arithmetic opera-
tions such as additions and multiplications. So, for our implementations
we rewrite the expression as

ANB #0 = |lca —cgl? < (pa + pB),

which uses only primitive arithmetic operations. The distance between
a pair of spheres is the distance between their centers minus the sum
of their radii—that is, if the spheres do not intersect, because then the
distance is of course zero:

d(A,B) = max(|lca — cgll — (pa + pB), 0).

We find a similar expression for the penetration depth, which is zero
for nonintersecting objects:

p(A, B) = max(pa + pB — llca — ¢gll, 0).

The witness points for both a nonzero distance and a nonzero pene-
tration depth are computed in the same way. Let v = ¢4 — ¢, the vector
from B’s center to A’s center. Then, the points

v v
pa=cs—pa— and pp=cp+pp—
vl vl
are the witness points for either the distance or the penetration depth, as
can be verified by computing the distance between these points. Note that
these expressions are valid only for nonconcentric spheres. For a pair of
concentric spheres, v is the zero vector, and thus the expressions result
in division by zero. For concentric spheres, choose an arbitrary nonzero
vector v, preferably one of unit length, since this saves normalization, and
compute the witness points for the penetration depth using this vector.

Ray-Sphere Test

In Section 2.4, we saw that a four-dimensional space-time collision test
on a pair of spheres can be done by performing a ray cast on the CSO
of the spheres in local coordinates. A ray is a line segment connecting a
source point s and a target point t. For the four-dimensional intersection
test, the points s and t are the differences ¢g — ¢4 of the centers at t = 0

3.1 Spheres 69

and t = 1, respectively. If the ray intersects the CSO, then the ray cast
returns the smallest A € [0, 1] for which the point x = s + A(t — s) is
contained in the CSO. The CSO of a pair of spheres is itself a sphere
centered at ¢4 — ¢g and with a radius p equal to ps + pg, the sum of the
radii of the spheres. For the ray cast we use the CSO of the spheres in
local coordinates (i.e., centered at the origin); thus the CSO is centered at
the origin as well. The ray cast is performed in the following way.

Let the direction of the ray be given by the vector r = t — s. First,
we compute the intersection of the unbounded line x = s + Ar and the
sphere. The points of intersection of the line and the sphere’s boundary
are given by

x=s+Air and [x|| =p.

We substitute the first expression in the second and square out the square
root,

lIs + ax|? = p?.
This quadratic equation needs some rewriting in order to find the roots:

Is+ar|? = p? = s+ x> - p* =0
= |Is|? +2A(s - 1) + A2)2 — p* =0
= Ir[?A% + 2(s - r)A + ||s||® = p% = 0.

Thus,

—s-r /(s 12— |r|2(Is|? —)

A2 =
x|

A solution exists only if
(s- 1) — [rl*(jis|? - p?) = 0.

This should not be too much of a surprise, since after rewriting this

expression as
2
2 s r 2
el

we see that the left-hand side is the squared distance of the origin to the
line, as can be verified in Figure 3.1. The line intersects the sphere iff the
distance between the origin and the line is at most the sphere’s radius.

70 Chapter 3 Basic Primitives

Figure 3.1

Algorithm
3.1

The distance o of the origin to the line st is found using the Pythagorean theorem,
a? + g2 = y2. Here, p = —s - r/|rjj and y = |s|i. Thus, we find a? = |s|? - (s-
r / iri)2. The line intersects the sphere only if a? < 02, in which case the closest
cgmm(z)n pozint of the ray and the sphere lies at a distance of 8 — § from s, where
84 = p* —a“.

The ray itself intersects the sphere iff [Ay, A21N[0, 1] # @. This is the case
iff Ay < 1and A, = 0. If &y > 1, then the ray did not reach far enough to
hit the sphere. If A, < 0, then the ray is pointing away from the sphere. In
the case where the ray intersects the sphere, the parameter for the point
where the ray enters the sphere is Aenrer = max(iy, 0). The value Aenser
can be used as the time of collision of the spheres in the four-dimensional
intersection test. The interval of time where the spheres are intersecting is
[Aenter, Aexit I, Where A.i; = min(i;, 1). Note that if A.;; does not need to be
returned, the value A, is used only for testing whether it is at least zero. In
that case, we can leave out the division by |r||? in the computation of 1.

If 0 < A1 < 1, then the point x = s + Ajr is the point where the ray
enters the sphere. The normal to the boundary at this point is x, regarded
as the vector from the origin to x. If A; < 0 < A3, then the point s is an
internal point of the sphere, and thus the ray does not enter the sphere.
Algorithm 3.1 summarizes the operations that are performed for a ray
cast.

A ray cast for a ray st and a sphere centered at the origin having radius p.
The intersection of the ray and the sphere is represented by the interval
[Aenters rexit]- The point where the ray enters the sphere is returned as x.

r=t-—s;
o:=(s-1)? — |rh2(IsliZ — p2);

3.1.3

3.1 Spheres 71

if o >0 then
{Line x = s + Ar intersects the sphere.)}
begin

A= (-s-r— o)/ |rl?
A= (=s-1+0)/|rl?
if A1 <1 and A, > 0 then
{{The ray intersects the sphere, since [A1, 221 N[0, 11 # 8. }}
begin
Aenter :=max(11,0);
Aexiz :=min(Az, 1);
X:=S8 + AenterT;
return true
end
end;
return false

For a ray of infinite length, we can use almost the same computation.
An infinite ray is represented by a source point s and a unit vector r. The
ray is the set of points x = s + Ar, where A > 0. Algorithm 3.1 is greatly
simplified for infinite rays, since the condition A7 < 1 does not have to be
checked and all occurrences of ||r||> can be removed.

Let us explore the potential numerical problems in Algorithm 3.1.
Suppose that the length of s is orders of magnitude greater that p, ||s| > p,
and that the ray is pointing at the sphere. Then, (s - r)?> ~ |r|?|s|?, and
thus, the relative error in &, the computed value of o, can become quite
large. So, the computed value & may be negative when the theoretical
value o is nonnegative or vice versa. Furthermore, suppose that & > 0
and that the ray is long enough to hit the sphere, A; < 1. Then, the com-
puted value x for the point where the ray enters the sphere may not lie
exactly on the sphere’s boundary. We see that the long-range accuracy of
the ray cast is limited. Using an infinite ray, |r|| = 1, for long-range ray
casts does not make a dramatic difference, since this will reduce the rel-
ative error in ¢ only by a small factor. So, in practical applications of the
ray cast, it is best to use relatively short rays, or, for infinite rays, ignore
hits with distant spheres.

Line Segment-Sphere Test

For cases where the points of intersection of the ray with the sphere’s
boundary are of no interest, a simpler test can be used. A line segment
intersects a sphere iff the point on the segment closest to the sphere’s
center is contained by the sphere. A point on the line segment is a point
X = s + Ar, for some A € [0, 1]. We first solve this problem without the

72 Chapter 3 Basic Primitives

Algorithm
3.2

constraint A € [0, 1] and compute the parameter A for the closest point
on the unbounded line through the segment. This is the point x = s + Ar
for which the vector from the sphere’s center to x is orthogonal to the
direction of the line. Thus, for the closest point we have x - r = 0. We
substitute x = s + Ar in the latter equation and find

(s+ir) - r=0.

This equation gives us the parameter A = —s - r/|r||>. If 4 < 0, then s is
the closest point of the line segment. If A > 1, then t is the closest point.
Otherwise, if 0 < A < 1, then the closest point is an internal point of the
line segment. Algorithm 3.2 describes this intersection test.

An intersection test for a line segment st and a sphere centered at the
origin having radius p. The point x is the point of the line segment closest
to the sphere’s center.

r=t—s;

d:=—S8-T1;

if § <0 then x:=s

else if § > |r||? then x:=t

else

begin
ri=8 /Il
fl0<a< 1}
X =8+ Ar

end;

return ||x]|2 < p2

The closest point x is also the witness point on the line segment for the
distance and the penetration depth. The distance is max(||x|| — p, 0), and
the penetration depth is max(p — ||x||, 0). As witness on the sphere we can
use the point px / IIx||—that is, if x is not the zero vector. In the degenerate
case where the line segment contains the origin, we may use any point
oy / llyll, for which y L r, as the witness point on the sphere. A good choice
isy = r x e;, where e; is the coordinate axis on which r has the smallest
absolute coordinate (Jv-e;| is the smallest). In this way, y can never be
ZETO.

3.2 Axis-Aligned Boxes

Axis-aligned boxes are the most widely used type of bounding volumes
because they are easy to compute, cheap to store, and fast to test for

3.2.1

3.2 Axis-Aligned Boxes 73

intersection. For axis-aligned boxes represented using min-max rep-
resentation, testing the intersection is simply done by comparing the
extrema:

pr.ailNIp2,q21 #%9 = p1<q2 and p2 <q;.

Testing the intersection of a pair of boxes in center-extent representation
is not much harder:

[ci —hi,ci+hilnfe; —hy, e+l #0 = Jeg—c2| <h; +h;.

The center-extent test uses a few arithmetic operations but performs
three scalar comparisons and branch instructions fewer than the min-max
test. On a platform that has parallel hardware for performing arithmetic
operations, the difference in performance is negligible.

Ray-Box Test

For performing a ray cast on an axis-aligned box we enter the realm of line
segment clipping. If we merely need to test a line segment for intersection
with an axis-aligned box, then the separating-axes test, discussed in Sec-
tion 3.3, is likely to be faster. There is a considerable amount of literature
available on line segments [11, 32, 33, 43, 78]. We borrow techniques from
two popular line clippers, Cohen-Sutherland (CS) [43] and Liang-Barsky
(LB) [78]. Originally, CS and LB were presented for clipping in 2D; how-
ever, both algorithms can be readily generalized to 3D. We will give brief
descriptions of the algorithms.

CS uses a classification of points with respect to the six planes sup-
porting the facets of the box. The classification is represented by a 6-bit
outcode, in which each bit corresponds with a plane. A bit in the outcode
is 1 iff the point lies “outside” the corresponding plane—in the positive
open halfspace of the plane for plane normals pointing outward. We see
that a point that is contained by the box is classified as 000000. If the out-
codes of the ray’s endpoints contain the same bit (i.e., their bitwise AND
is nonzero), then the ray does not hit the box, since the corresponding
plane separates the ray from the box. If the bitwise AND of the outcodes
of the ray’s endpoints is zero, the ray may still miss the box, as illustrated
in Figure 3.2 for the 2D case.

We need to compute the parameters of the intersection points of the
ray and the planes, and, for this purpose, we use a technique from the LB
parametric line clipping algorithm. Let s be the source point and t be the
target point of the ray. Then, an intersection point can be expressed as
s+A(t—s), where A € [0, 1]is its parameter. By classifying the intersection

74 Chapter 3 Basic Primitives

1001 1000 1010
t
0001 0000 0010 4
/ exiting
0101 0100 0110

s’ entering

Figure 3.2 A ray cast for axis-aligned boxes using techniques from Cohen-Sutherland and
Liang-Barsky line clipping. The ray intersects the box iff the largest parameter
of an entering intersection point is at most the smallest parameter of an exiting
intersection point.

point as entering or exiting, we can decide whether the ray hits the box.
An intersection point is classified as entering if moving from s to t we go
from the positive to the negative halfspace of the corresponding plane,
and exiting otherwise. It can be seen that a ray intersects the box iff the
largest parameter of an entering intersection point is at most the smallest
parameter of an exiting intersection point.

We will now explain why CS and LB make such a good team. First of
all, under the assumption that the bitwise AND of the outcodes of the end-
points is zero, the 1 bits in either of the two outcodes correspond with the
planes for which intersection points need to be computed, since the ray
crosses only the planes that correspond with these bits. Moreover, each
intersection point corresponding with a 1 bit in the outcode of s is enter-
ing, and each intersection point corresponding with a 1 bit in t's outcode
is exiting. Hence, the ray intersects the box iff the largest parameter cor-
responding with a 1 bit in §’s outcode is at most the smallest parameter
corresponding with a 1 bit in t’s outcode. We see how neatly LB benefits
from the outcodes computed by CS. Considering the long history of line
clipping, it is remarkable that a hybrid of CS and LB got published only
recently [11].

For a box centered at the origin the parameters are computed in the
following way. Let o; and 7; be the ith components of the ray’s source s and
target t, respectively, and let n; be the ith component of the box’s extent
h. Then, the parameters of the intersection points on the lower and upper
plane orthogonal to the ith coordinate axis are, respectively,

—0; — N

_.O"._I_, .
o= and ap = AT
T; — O0f 1; — O0j

Algorithm
3-3

3.2 Axis-Aligned Boxes 75

Since we compute these parameters only for planes for which s and t lie
on different sides, each computed parameter lies in the interval [0, 1], and
thus represents an intersection point of the ray and the plane. Pseudocode
for the ray cast on boxes is presented in Algorithm 3.3.

A ray cast for a ray st, where s = (01, 02,03) and t = (11, 2, 13), and a box
centered at the origin having extent (11, 172, n3). The intersection of the ray
and the box is represented by the interval [Aenser, Aexiz]. The point where
the ray enters the box is returned as x.

bitsg :=outcode(s);
bitsy :=outcode(t);
if bitss & bitsy =0 then
{{None of the side planes separate the ray from the box. }}
begin
Aenter =0
Aexit i =1;
bit:=1;
for i:=1,2,3 do
begin
if bitss & bit # 0 then
{{Point of intersection is entering. }}
henter = max(Aenser, (—0; — Ui)/(fi —01));
else if bitsy & bit # 0 then
{{Point of intersection is exiting. }}
Aexit = min(Aeyiz, (—0; — ni)/(fi - 07));
bit:=bit « 1;
if bitss & bit # 0 then
{{Point of intersection is entering. }}
Aenter ' =maX(Aenzer, (—0; + Ui)/(ri —07));
else if bitsy & bit # 0 then
{{Point of intersection is exiting. }}
Aexit :=miNexir, (=07 + 0i) [(i = 0));
bit :=bit « 1
end;
if Aenter < Aexit then
{{The ray intersects the box, since [Aonter, hexit) 7 8.}
begin
X =S8+ Aenrer (t — 8);
return true
end
end;
return false

76 Chapter 3 Basic Primitives

3.2.2

Sphere-Box Test

We conclude this section with a discussion of how a sphere and an axis-
aligned box are tested for intersection. This is done by computing the
point in the box closest to the sphere’s center, and testing whether this
point is contained in the sphere. Let the box be centered at the ori-
gin with extent h = (1,n2,n3), and let the sphere’s center be given
by ¢ = (y1, 2, y3). Then, the point in the box closest to ¢ is the point

x = (clamp(y1, —n1, M), clamp(y2, —n2, n2), clamp(y3, —n3, n3)), where

aify<a
clamp(y,a,) = {8 if y > B
y otherwise.

The sphere intersects the box iff the point x is contained in the sphere;
that is, the squared distance ||x — c||? is at most the squared radjus p2.

The witness points for a nonzero distance are found in the following
way. We take the point x closest to the sphere’s center as the witness point
on the boundary of the box. The witness point on the sphere’s boundary
is the point

r=c+ A
BT

where v = x — ¢. The distance between the sphere and the box is |x—r|| =
vl — p—that is, if the sphere and the box do not intersect (|v|| > p), since
otherwise the distance is zero.

If the sphere and the box intersect and the center of the sphere is not
contained by the box, then the points r and x are witness points of a
nonzero penetration depth as well. In that case, the penetration depth is
o — |lv)l. However, if the center is contained by the box, then the points
¢ and x coincide. In that case, the witness point for the box is given by
the point y on the boundary of the box closest to the sphere’s center. The
point y is found in the following way. First, we select the coordinate axis
on which ¢’s component lies closest to the boundary, as illustrated in
Figure 3.3. This is the axis e; for which §; = »; — |y;| has the smallest value.
If multiple axes result in a smallest value §;, then simply choose one of
these axes. Given such an axis e;, the point on the boundary of the box
closest to the sphere’s center is

y = ¢ 4+ §;sign(y;e;,
where

—1ifa<O

sign(e) = { 1 otherwise.

3.3 Separating Axes 77

() h

€

Figure 3.3 Computing the penetration depth of a sphere A and a box B for the case where
the sphere’s center ¢ is contained by the box. The point y is the point on the
boundary of B closest to ¢. The penetration depth vector y — r is aligned along e;,
the coordinate axis on which ¢’s component lies closest to the boundary.

The witness point on the sphere is the point r = ¢ — p sign(y;)e;, and the
penetration depth is |y — r|| = §; + p.

3.3 Separating Axes

For simple polytopes, such as line segments, triangles, and boxes, there
exists an easy and fast method for intersection testing. Two objects A
and B are disjoint if for some vector v the projections v - A and v - B of
the objects onto the vector do not overlap. Such a vector v is called a
separating axis. This property is illustrated in Figure 3.4. For noninter-
secting convex objects a separating axis always exists. A general proof for
this claim is presented in Chapter 4. For now, let’s restrict ourselves to
separating axes for polytopes.

Theorem 3.1 gives us a straightforward method for finding a separating
axis for a pair of polytopes that can successfully be used if the number of

Y4

—

[[

o [11 1 x

Figure 3.4 The vector x is a separating axis of A and B, whereas y is not a separating axis.

78 Chapter 3 Basic Primitives

Theorem

3.1

facet orientations and edge directions is small. From Theorem 3.1, it fol-
lows that we can decide whether or not a pair of polytopes intersect simply
by testing all facet orientations and all cross products of edge directions
to see if one of these is a separating axis. If none of these axes is a separat-
ing axis, then the polytopes must intersect. For a pair of polytopes with,
respectively, fi and f2 facet orientations and e¢; and e, edge directions,
we need to test at most 1 + f2 + ejes axes. We refer to this method for
intersection testing of polytopes as the separating-axes test (SAT).

For a pair of nonintersecting polytopes, there exists a separating axis that
is orthogonal to a facet of either polytope, or orthogonal to an edge from
each polytope.

Proof

Let A and B be a pair of nonintersecting polytopes. Then, their CSOA — B
is itself a polytope, as shown in Theorem 2.2. Therefore, the CSO can be
represented as the intersection of a finite number of halfspaces [61]. Each
halfspace in this representation corresponds with a facet of the CSO; that
is, the boundary plane of a halfspace is the supporting plane (affine hull)
of a facet. Since for nonintersecting objects, the origin is not contained in
the CSO, there is at least one halfspace that does not contain the origin.
Let H*(v,$) be such a halfspace that does not contain the origin. Since
0 ¢ H"(v,8), we see that § < 0. Forallx e A— B, we havev-x 4§ > 0,
and thus v - x > 0, which in turn yields that v is a separating axis of A and
B. Hence, a separating axis exists that is normal to a facet of A — B. Each
facet of A — B is (the union of subfacets, being) either the CSO of a facet
from one polytope and a vertex from the other, or the CSO of a pair of
edges from each polytope.! A normal to a facet of A — B is therefore either
orthogonal to a face of one of the polytopes, or orthogonal to a pair of
edges, one from each polytope.

The SAT works well for simple polytopes, such as line segments (rays),
triangles, and boxes. A line segment has no facets and one edge direction.
A triangle has one facet orientation and three edge directions. A box has
three facet orientations and three edge directions. Table 3.1 presents an
overview of the maximum number of axes tests in a SAT for these polytope
types.

A single separating-axis test in the SAT involves projecting both poly-
topes onto the axis, and testing whether the projection intervals of the
polytopes overlap. The projection interval of a polytope A onto an axis v

1. Two or more facet-vertex or edge-edge pairs may have coplanar CSOs. The union of these
coplanar CSOs is a single facetin A — B.

Table 3.1

Figure 3.5

3.3 Separating Axes 79

The maximum number of axes that need to be tested in a separating-axes test for
different types of polytopes.

Polytope Polytope Number of axes
line segment triangle O0+1+(1x3)=4
line segment box 0+3+(1x3)=6
triangle triangle 1+14+(3x3)=11
triangle box 1+34+(3%x3)=13
box box 3434+(3x3)=15

The projection of a box with center ¢ and extent h onto an axis v is the interval
[v.-c—p,v-c+p], where p = |v|-h.

is the interval [8min, dmax], Where

Smin = min{v-p : p € vert(4)} and Spax = max{v.p:p € vert(4)}.

Since we are not dealing with arbitrary axes, there is often room for opti-
mizations in the computation of the projection interval. For instance, the
axis that is the result of a cross product of a line segment’s direction and
another edge direction is orthogonal to the line segment, and thus, the pro-
jection of the line segment onto this axis is a single point. The same is true
for the projection of a triangle onto an axis that is normal to the triangle.

For computing the projection interval of a box, it is not necessary
to project all the vertices of the box onto the axis. Let ¢ be the center,
and h = (1, n2, n3), the extent vector of the box. Then, the vertices of the
box are the points ¢ + (71, £13, £n3). The projection of the box onto an
axis v is the interval [v.-¢ — p, v-c+ p], where p = max{v-(£n;, £12, £n3)}.
We see that forv = (v, v2, v3), the value of pis [vin1|+|vanz|+lvinz| = |v]-h.
See Figure 3.5 for an illustration of this projection.

80 Chapter 3 Basic Primitives

3.3.1

Next, we discuss three examples of the SAT. A line segment-triangle test
and a triangle-triangle test are not discussed here. For these two types, the
SAT is in many cases not the fastest test. Better alternatives are discussed
in Section 3.4.

Line Segment-Box Test

For testing the intersection of a line segment st and an axis-aligned box,
the axes that are tested in the SAT are the three coordinate axes e; and the
cross products e; x r of the coordinate axes and the directionr =t — s of
the line segment. Let o; and 7; be the components of, respectively, s and
t corresponding with coordinate axis e;. Then, the projection of the line
segment st onto e; is the interval [min(o;, 7;), max(o;, 7;)]. Assume the box
is centered at the origin. For boxes that have an arbitrary center ¢, simply
replace s by s — ¢ and t by t — c. The axis e; is a separating axis iff

min(o;, ;) > n; or max(o;, ;) < —7n;.

The projection of the line segment st onto e; can also be represented as
the interval [y — 8, y + 8], where y = %(ai +z;)and § = %|oi — 1;|. Using this
representation, it can be seen that e; is a separating axis iff

1301 +)| > 3loi — wl + ;.
This expression is optimized a little further by multiplying it by two:
loi + il > loi — wl + 2n;.

In this way, the expression has one multiplication fewer. The latter expres-
sion is generally cheaper to evaluate than the one that uses the minimum
and maximum of ¢; and 1, since it requires fewer scalar comparisons and
branch instructions.

For the three axes v = e; x r, the projection of the line segment is a
single point v - s. The axis v is a separating axis iff

[v-s|>|v|-h.

Note that in each vector e; x r, the ith component is zero, so by writing out
the dot products and removing all multiplications by zero, this expression
can be further optimized.

The SAT is likely to be faster than the ray cast discussed in Section 3.2,
since for the SAT there are more possibilities for early exit and there
are no divisions necessary, whereas in the clipping method divisions are
necessary for computing the line parameters. So, if we merely need to test
a ray and a box for intersection, then the SAT is the preferred method.

3.3.2

3.3 Separating Axes 81

Also, if we need to do a lot of ray casts on boxes, then the SAT can be
used as a first phase for culling the boxes that are not intersected by the
ray, after which the intersection point or interval is computed only for the
intersected boxes using the clipping method.

The SAT for testing the intersection of a line segment and a box is
used in a method by Green and Hatch for testing the intersection of a
polygon and a box [60]. However, in their explanation of the method,
Green and Hatch do not refer to the separating-axis theorem, but explain
it as a test for containment of the origin in the CSO of the line segment
and the box. The CSO is a rhombic dodecahedron or 6-DOP, according to
the definition on page 28. The six facet orientations of the dodecahedron
correspond with the six axis tests in the SAT. The resulting test is similar
to the SAT described above.

Triangle-Box Test

For testing the intersection of a triangle and an axis-aligned box, the SAT
again shows its usefulness. The 13 axes that are tested in the SAT are the
three coordinate axes e;, the triangle’s normal, and the nine cross products
of coordinate axes and edge directions of the triangle. Let p;,j =0, 1,2 be
the triangle’s vertices, and ai(’) the component of p; corresponding with
coordinate axis e;. Then, the projection of the triangle onto coordinate
axis e; is the interval [a{“i“,a{nax], where oelmin = min{oei(’). j=0,1,2}, and
o = max{oel(’). j=0,1,2}. Again, assume the box is centered at the ori-
gin. For boxes that have an arbitrary center ¢, simply replace p; by p; —c.
The axis e; is a separating axis iff

min

o

>n; or of* < —n;.

Notice that performing these three coordinate-axis tests is equivalent to
computing an axis-aligned bounding box for the triangle and testing it for
overlap with the box.

For the remaining axes let the vectors d; = p; — po, d2 = p2 — po, and
d3; = p2 — p1 be the edge directions of the triangle. The triangle’s normal
is the vector n = d; x dy. The projection of the triangle onto n is a single
point n - pg. The axis n is a separating axis iff

In - pol > n| - h.

Finally, the axis tests for the nine cross products of coordinate axes
and edge directions are optimized as follows. Let’s consider the axis v =
e; x da. Since v is orthogonal to the edge pop2, the vertices pg and p; are
projected onto the same point. So, we only have to take the vertices pg and
p; into consideration. Let 8y = v - pp and §; = v - p; be the projections of

82 Chapter 3 Basic Primitives

3-3-3

Figure 3.6

po and p; onto v. Then, we find the following expression for a separating
axis v, which is similar to the coordinate axis test in the SAT for testing
the intersection of a line segment and a box:

180 + 811 > 180 — 811 + 2(jv| - h).

For each vector e; x d;, the ith component is zero, so again this expression
can be further optimized by writing out the dot products and removing
all multiplications by zero.

Box-Box Test

The SAT is particularly useful for testing the intersection of two relatively
oriented rectangular boxes, as demonstrated by Gottschalk in the RAPID
collision detection package [58]. Here, the relative orientation is given
by an orthogonal 3 x 3 matrix B that represents the local basis of box B
relative to box A’s local basis. The center of box B is given by a point ¢
relative to box A’s local coordinate system as shown in Figure 3.6. Note
that since B is orthogonal, the result of the dot product operation on two
vectors is the same for vectors given relative to either A’s or B’s basis. So,
we are free to choose either A’s or B’s basis for computing the dot products
as long as both operands of the dot products are given relative to the same
basis. Let hy and hp be the extent vectors of boxes A and B, respectively,
given relative to their respective bases. For a vector v given relative to A’s

€

A separating-axis test for two relatively oriented boxes A and B on an axis v. Box
B is given relative to A by a 3 x 3 matrix B = [b;] and center point ¢. Note that all
vectors are given relative to A’s coordinate system except for hg, which is given
relative to B’s coordinate system.

3.3 Separating Axes 873

basis, we find that this vector relative to B’s basis is BYv. Thus, an axis v
is a separating axis iff

v-c| > |v|-hs + [BTv| - hg.

The 15 axes that are tested in the SAT are the three coordinate axes of
A’s local basis, the three coordinate axes of B’s local basis, and all nine
cross products of a coordinate axis of A’s local basis and a coordinate axis
of B’s local basis. The coordinate axes of B’s local basis relative to A’s local
basis are the columns of B.

The expression BTv can be simplified for any of the 15 axes. For exam-
ple, let us consider the case where v is the cross product of A’s first
coordinate axis and B’s second coordinate axis. Let B = [b; b b3] = [8;].
Then, for v = e; x by = (0, — B33, B22) given relative to A’s basis, we find
the following components relative to B’s basis:

b; - (e; x by) Nk - (b2 x by) e - (—b3)
Bi(e; xby)=|by-(ey xby) | = |e;-(baxby) | =|e;-0
bz - (e1 x by) e - (b2 x b3) e - by

= (—p13,0, B11).

The equation step marked by () is the result of the triple product property
discussed on page 22.

Since the axis tests frequently use the absolute values of elements of B,
it is a good idea to compute |B| = [|8;|], the matrix of absolute values of
B’s elements, before doing the axis tests. In this way, the SAT for oriented
boxes takes fewer than 200 primitive operations, given a relative orienta-
tion matrix and a relative center position [59]. The SAT is currently the
fastest method for testing the intersection of oriented boxes.

For relatively oriented k-DOPs with higher complexity, k > 3, the num-
ber of axis tests in the SAT will rapidly become too large in order for this
method to be of any practical use. The number of facet orientations of a
k-DOP is k by definition. From Euler’s formula it follows that the number
of edge directions is at most 3k — 6 (see page 25). Therefore, the number
of axes that need to be tested for determining whether a pair of k-DOPs
intersect is 2k + (3k — 6)2. Zachmann shows in [135] that the projection of
a DOP onto an axis can be found in O(k) time. Hence, a SAT for relatively
oriented DOPs has O(k?) time complexity.

We see that for more complex polytopes, the number of axis tests is
too large, and the cost of an axis test is too high, for this approach to be
useful. In Chapter 4, we discuss cheaper methods for finding a separating
axis for polytopes of arbitrary complexity.

84 Chapter 3 Basic Primitives

3.4 Polygons

3.4.1

Polygons are currently the most commonly used modeling primitives in
interactive 3D media. Complex shapes are usually modeled using triangle
meshes, although quadrilaterals and other polygon types are used as well
[10]. In this section, we discuss intersection tests for both triangles and
general polygons.

Ray-Triangle Test

For testing the intersection of a line segment and a triangle we can use
the SAT, as we saw in the previous section. However, there exists a faster
method by Méller and Trumbore that requires only two cross product
computations and also gives us the point of intersection [90].

Let s be the source point and t be the target point of the ray, and let pg,
p1, and p> be the vertices of the triangle. A point x on the triangle can be
represented as a convex combination of the triangle’s vertices,

X = uoPo + 11P1 + u2p2, where po +p1 +p2 =1, 4 > 0.
The three values ug, w1, and u2 are called the barycentric coordinates

of point x relative to the triangle. We immediately eliminate uy by
substituting o =1 — p1 — u2 and get

x = po + n1(pP1 — po) + #2(p2 — Po), where pi+puz <1, > 0.
A point x on the ray is given by
x =8+ A(t —s), where 0 <A < 1.

Letr =t—s,d; = p1 — po, and d2 = p> — po. Then, for the point of
intersection, we have

S+ Ar = po + p1d; + pads.
We rearrange this equation to an expression in matrix notation:
A

[—r di d2] | u1 | =s —po.
w2

Algorithm
3.4

3.4 Polygons 85

Now, letb = s—pg. With Cramer’s rule (see page 13), we find the following
solution.

A 1 det[b d1 dz]

pi|l=———— | det[-r bds]
> det[-r d; dy] det[-r d; b}

The determinants are computed using triple products. By permuting
the vectors in the triple products, we derive an expression that uses only
two distinct cross products,

A . b (di x do)
[781 = dz(bxr)
o] THAdD| g b xr)

A solution exists only if the determinant § = —r - (d; x dz) is not zero. If
the determinant is zero, then the ray is parallel to the plane, in which case
we return a nonintersection. The case where a ray that lies in the triangle’s
plane intersects the triangle is ignored. Note that for back-facing trian-
gles, the § is negative, so in applications where only front-facing triangles
should be tested, we return a nonintersection for negative 5.

The ray intersects the triangle iff 0 < A < 1, u1 +u2 < 1,and pq, u2 > 0.
The point of intersection is x = s + Ar. The computations for the ray-
triangle test are summarized in Algorithm 3.4. If performance is an issue,
then it pays to store the vectors d; and d; and the normal n = dy x d»
with the triangle rather than to compute them in the test.

A ray cast for a ray st and a triangle with vertices pg, p1, and p2. The point
of intersection is x.

di :=p1 — po;
dz:=p> — po;
n:=d; xdy;
r=t-—s;
d:=—r-n;
if § #0 then

{{The ray is not parallel to the triangle’s plane. (Coplanar rays
are ignored.)}}
begin
b:=s - po;
A:=(b.n)s;

Algorithm

3.4

3.4 Polygons 85

Now, letb = s —pg. With Cramer’s rule (see page 13), we find the following
solution.

A) det[b d; d;]
pi|l=—" |det[-r bds]
wp | detl=r didal | o b g, by

The determinants are computed using triple products. By permuting
the vectors in the triple products, we derive an expression that uses only
two distinct cross products,

A 1 b-(d; xds)
pi|=———— | d-(bxr)
o] THAx)| _qp @xr)

A solution exists only if the determinant § = —r-(d; x d2) is not zero. If

the determinant is zero, then the ray is parallel to the plane, in which case
we return a nonintersection. The case where a ray that lies in the triangle’s
plane intersects the triangle is ignored. Note that for back-facing trian-
gles, the § is negative, so in applications where only front-facing triangles
should be tested, we return a nonintersection for negative 8.

The ray intersects the triangle iff 0 < A < 1, uy+p2 < 1, and u1, 2 > 0.
The point of intersection is x = s + Ar. The computations for the ray-
triangle test are summarized in Algorithm 3.4. If performance is an issue,
then it pays to store the vectors d; and d; and the normal n = d; x d;
with the triangle rather than to compute them in the test.

A ray cast for a ray st and a triangle with vertices pg, p1, and p,. The point
of intersection is x.

d; :=p1 — po;
d2:=p2 — po;
n:=d; xdy;
r=t-s;
d:=-r-n;
if § # 0 then

{{The ray is not parallel to the triangle's plane.(Coplanar rays
are ignored.)}}
begin
b:=s— pg;
A:=(b-n)/s;

86 Chapter 3 Basic Primitives

if 0 <A<1 then
{{The ray intersects the triangle’s plane. }}

begin
u:=bxr;
pt = (dz - w)/s;

w2 = (=dy - w)/é;
if u1+um2 <1 and pu; >0 and py > 0 then
{(The ray intersects the triangle. }}
begin
X:=S8 + ATL;
return true
end
end
end;
return false

Numerical problems may arise due to cancellation in the computation
of the determinants. If the determinant § is small in comparison to the
lengths of the vectorsr, di, and d3, then the computed value of § may have
a huge relative error. This error is propagated to the computed values of
A, u1, and . So, to be on the safe side, we may want to replace the guard
§ # 0 by |8] > ¢, where ¢ is a small tolerance value. Thus, intersections
are returned only for cases where the absolute value of § is greater than a
given tolerance value.

However, keep in mind that the size of the determinant is propor-
tional to the area of the triangle. For huge triangles the tolerance may
be too strict, whereas for tiny triangles the tolerance may be too lenient.
So, when there is a huge difference in triangle sizes, it is better to use
a tolerance value that is relative to the triangle’s area. For instance,
we can use the tolerance value ¢|n|, since the length of n is twice the
triangle’s area. It is computationally a little bit cheaper to use ¢|n| s,
where

1(v1,v2, v3)lloo = max{|vi], [v2|, [v3l},

since this expression does not require the evaluation of a square root.

Loss of precision occurs also for long-range ray casts. If the source of
the ray lies at a great distance from the triangle and the ray is pointing at
the triangle, then the computation of b x r suffers from cancellation, in
which case the computed values of &, i1, and p2 may have a large relative
error. If, in this case, the ray hits the triangle, then the computed value for
the intersection point may have a considerable error. So again, accurate
results are achieved only for relatively short rays.

3.4 Polygons 87

3.4.2 Line Segment-Triangle Test

If no point of intersection is required, then the following line segment-
triangle test may be a better alternative than the ray-triangle test discussed
in Section 3.4.1. Since this test uses only multiplications, additions, and
subtractions of scalars, it is very fast and robust [66, 110].

Let r = t — s be the direction of the line segment, and let v; = p; — s
be the vectors from the source of the line segment to each of the three
vertices. Furthermore, let §; = det[v;v;g1r] be the signed volumes of the
parallelepipeds spanned by the vectors v;, vig1, and r, wherei = 1,2, 3 and
@ is addition modulo 3. Then, the line segment st intersects the triangle
if the determinants §; all have the same sign, and the endpoints s and t of
the line segment are located on different sides of the triangle’s supporting
plane. As discussed on page 21, a positive §; indicates that the vectors v;,
vig1, and r form a right-handed basis, and a negative §; indicates a left-
handed basis. Figure 3.7 describes this test in terms of the handedness of
the vector triples.

Computing a determinant takes one cross product and one dot product
(two additions, three subtractions, and nine multiplications). Further-
more, we need an extra cross product for computing the triangle’s normal,
and three dot products for determining whether the line segment crosses
the triangle’s plane. This results in a total of four cross products and six dot
products. In this respect, the ray-triangle test from Section 3.4.1, which
requires only two cross products and four dot products, seems to be the
fastest alternative. In practice, however, the two tests appear to be roughly
as fast [110].

An interesting variation of this approach is the line segment-triangle
test described in [1]. This test computes the signs of the determinants
based on Pliicker coordinates. Pliicker coordinates are an alternate way

Po t

s vy Py

Figure 3.7 The line segment st intersects the triangle if the bases {v;, vig1, r} are either all
right-handed or are all left-handed, and the endpoints s and t of the line segment
are located on different sides of the triangle’s supporting plane.

88 Chapter 3 Basic Primitives

3.4.3

of describing directed lines in three-dimensional space using vectors of six
scalars [118]. A discussion of the geometric properties of Pliicker coordi-
nates falls outside the scope of this book. However, we would like to note
that, using Pliicker coordinates, computing the signs of the determinants
requires only five additions and six multiplications. Sadly, there is no free
lunch here as well, since the coordinates have to be computed and stored
with the triangles. Thus, if you can spare the storage space, then you may
benefit from a faster line segment-triangle test using Pliicker coordinates.

Ray-Polygon Test

In this section we discuss a ray cast for nonconvex polygons. This test uses
the plane equation H(n, §) of the polygon’s supporting plane. The plane
equation is best computed using Newell’s method described on page 31.
If a lot of ray casts need to be performed on the polygon, we may want
to store the plane equation with the polygon. When transforming a poly-
gon to another coordinate system, it is usually faster to transform its
plane equation, rather than recompute it for the new coordinates. A plane
equation can be transformed using the method described on page 21.

A ray-polygon intersection test involves the following steps. First, the
point of intersection of the ray with the polygon’s supporting plane is
computed, after which this point is tested for containment in the polygon.
Finding the point of intersection of a ray and a plane involves computing
the signed distances of the ray’s endpoints. For a plane

Hn,8)={xeR>:n-x+4§=0)},

the signed distance of a point p to this plane is n - p + §. Note that for
the correctness of the following computations, it is not necessary that
| = 1.

Let ¢ and B be the signed distances of the endpoints s and t of the ray,
respectively. If ¢ and g have the same sign (i.e., the endpoints lie on the
same side of the plane), then the ray does not intersect the polygon and
can be rejected. If « and 8 have opposite signs, then the intersection point
of the ray and the plane is the point x = s + A(t — s), where A = a/(a — B).
Figure 3.8 illustrates this operation.

After computing the point of intersection of the ray and the support-
ing plane of the polygon, we test whether this point is contained in the
polygon. Since this is actually a 2D problem, we project all points onto a
coordinate plane; that is, we drop (ignore) a coordinate in the 3D coordi-
nates of the intersection point and the vertices of the polygon. The safest
coordinate axis to drop is the one whose angle with the normal of the
polygon’s supporting plane is the smallest. Since the projection of the

Figure 3.8

3.4 Polygons 89

Computing the point of intersection of a ray and a polygon’s supporting plane.
The point of intersection is x = s + A(t — s), where A = a/(a — B).

polygon onto the plane orthogonal to this axis has the largest area of all
coordinate axes, we avoid the problem of the projection of the polygon
being a line segment (area is zero). The coordinate axis whose angle with
the normal of the polygon’s supporting plane is the smallest corresponds
with the component of the plane’s normal that has the largest absolute
value of the three component values [53]. The axis is referred to as the
closest axis to the plane normal.

There are quite a number of methods for testing the containment of a
point in a polygon. Haines presents an excellent discussion of a number of
methods for point-in-polygon testing in [64]. When preprocessing of the
polygons is not done, the best choice for a point-in-polygon test for general
polygons is the crossings test. The crossings test counts the number of
times a ray, originating from the query point and targeted in the direction
of the positive x-axis, crosses the boundary of the polygon. If the number
of crossings is odd, then the query point lies inside the polygon; otherwise,
it lies outside the polygon.

Let, fori =0,...,n—1,p; = (a',(cl), a}(,l)) be the 2D coordinates of the ver-
tices, and x = (Bx, By) the query point. The ray intersects an edge p;pie1 iff
the y-coordinates of the endpoints lie on opposite sides of x, and the point
of intersection of the edge and the line through x parallel to the x-axis
lies to the right of x. Trivially, the point of intersection lies to the right
of x if the x-coordinates of the edge’s endpoints both lie to the right of x.
The opposite is true if both endpoints lie to the left of x. Only if the x-
coordinates of the endpoints lie on opposite sides of x do we need to

90 Chapter 3 Basic Primitives

Algorithm
3.5

3.4.4

compute the actual x-coordinate of the intersection point. Pseudocode
for the crossings test is given in Algorithm 3.5.

The crossings test for testmg the containment of a point (8, fy) in a poly-
gon with vertices (a,(c 2 , ay) where i = 0,...,n — 1. Here, @ denotes
addition modulo 7.

inside :— false,
fori:=0,...,n—1 do
begin
if a(l) > By # aﬁl@l) > B, then
{{Edge i crosses the horizontal line y = B,. }
begin
if of > g #af®) > g, then
{{Edge i crosses the vertical line x = Bx. }
begin
if a(l) + (,By))(a(l®1) _a(l))/((i®1) ot}(,i)) > B, then
{Edge 1 crosses therayy = ,By,x > B B}
inside := not inside
end)
else if o > Bx then
{{Edge i crosses the ray y = By, x > Bx. }}
inside :=not inside
end
end;
return inside

Note that a convex polygon can have at most two edges for which the
y-coordinates lie on opposite sides of the query point x. We can use this
property to speed up the crossings tests for convex polygons. After the
second time the algorithm encounters an edge for which the endpoints
lie on opposite sides of x with respect to the y-axis, we can exit, since the
remaining edges all lie either completely below or above x.

Triangle-Triangle Test

As we saw in Section 3.3, the intersection of a pair of triangles can be
tested using a separating-axes test. The SAT requires a maximum of 11
axes to be tested, which are the normals of the triangles plus the nine cross
products of edge directions. The SAT works well if the triangles have low
probability of intersecting, since then the test is likely to exit early after
only a few axis tests.

3.4 Polygons 91

However, triangle-triangle tests are commonly performed only after
extensive culling using bounding-volume tests, so in practice the tested
triangles have a high probability of intersecting. So, in that case, we might
want to use a different approach. A common way of detecting an intersec-
tion of two polygons is testing each edge of the first polygon against the
second polygon for intersection and vice versa [12]. Clearly, this suffices
to find an intersection, since for a pair of intersecting polygons at least
one polygon has an edge that intersects the other.

For testing the intersection of an edge and a triangle, we use the ray-
triangle test from page 84. As soon as we find an intersecting edge, we may
exit. Note that we can use the same vectors d; = p;1 —po and dy = p> —po
and normal n = dy x dy for all three edge-triangle tests on each triangle.
Thus, the maximum number of cross products that need to be computed
is eight (two normals plus one for each of the six edge-triangle tests). In
comparison, the SAT requires 11 cross-product computations in the worst
case, which occurs when the triangles are intersecting.

Intersecting edges come in pairs. If the triangles intersect, there must
be two intersecting edges. So, in theory, we do not have to test all six
edges, since if five edges are found to be nonintersecting, the sixth edge
must also be nonintersecting. However, keep in mind that, in the finite-
precision ray-triangle test, edges that are almost parallel to the triangle’s
plane are regarded as nonintersecting. So, for degenerate cases, we may
find only one intersecting edge, as illustrated in Figure 3.9.

Yet another method for testing the intersection of a pair of triangles
is presented by Méller in [89]. This method can be tailored to return
the line segment of intersection of a pair of triangles. Since it can be
readily generalized to convex polygons, we discuss this method in the next
section.

P2

Figure 3.9 The edge pgp; is almost parallel to triangle B’s plane, and thus is regarded as
nonintersecting by the finite-precision ray-triangle test. The only intersecting edge
we find is p1p3.

92 Chapter 3 Basic Primitives

3.4.5

Polygon-Polygon Test

Similar to the the triangle-triangle test, two general polygons can be tested
for intersection by testing edges of one polygon against the other polygon
using the ray-polygon test described on page 88. Using this approach, a
polygon-polygon intersection test takes a worst-case time of O(n) for con-
vex polygons, and O(n?) for nonconvex polygons, where 7 is the number
of vertices in each polygon. The worst case for nonconvex polygons occurs
when all edges of both polygons intersect the other polygon’s supporting
plane, but none of them intersect the polygon itself, since then we need to
perform » point-in-polygon tests. For convex polygons, there are at most
two edges that intersect the other polygon’s supporting plane, so the worst
case still takes linear time.

There exists, however, an approach for polygon-polygon intersection
testing that has also a worst-case linear time complexity for nonconvex
polygons. This method is presented by Méller for triangle-triangle inter-
section testing [89], but can be readily generalized to convex polygons.
We demonstrate that with a little bit more effort this method can be
generalized to nonconvex polygons as well.

The approach is based on the following idea. A pair of polygons
intersect iff the intersections of each polygon and the other polygon’s sup-
porting plane overlap. The intersection of a convex polygon and a plane
is a line segment. The intersection of a nonconvex polygon and a plane is
a collection of collinear line segments. If both polygons intersect with the
other polygon’s plane, then the line segments of intersection are collinear,
since they are segments of the line of intersection of the polygon’s planes,
as depicted in Figure 3.10. We see that for a pair of intersecting polygons,
one or more pairs of line segments overlap.

Let ny and ny be the normals of the polygons. Note that for the cor-
rectness of what follows it is not necessary that the normals are of unit
length. The direction of the line of intersection of the polygon’s planes is
the vector d = ny x ny. If d is the zero vector, then the planes are paral-
lel and a nonintersection is returned. We simply ignore intersections of
coplanar polygons. Ignoring this case is usually not harmful for detecting
collisions between polygonal objects, since the polygons are commonly
pieces of a mesh. So, at least one of the coplanar polygons has an adja-
cent polygon that intersects the other polygon and is not coplanar with
this polygon.

The intersection of a polygon and a plane is computed using a polygon
clipping technique [54, 121]. We use the ray-plane intersection method
described on page 88 to compute all intersection points of one polygon’s
edges with the other polygon’s plane. These intersection points are the
endpoints of the line segments. The endpoints are computed in the order
in which they appear along the boundary, as can be seen in Figure 3.11.

3.4 Polygons 93

Figure 3.10 A pair of nonconvex polygons intersect iff the intersections of each polygon with
the other polygon’s supporting plane overlap.

P7

Figure 3.11 When computing the intersection of a nonconvex polygon and a plane, the inter-
section points of the edges are found in the order in which they appear along the
boundary of the polygon.

94 Chapter 3 Basic Primitives

In order to find the line segments of intersection we need to sort the
endpoints along the line of intersection.

In order to sort the endpoints along the line of intersection it is not
necessary to project the endpoints onto the line. We may choose any axis
that is not orthogonal to the line for projecting the endpoints. It is easiest
to project the points onto a coordinate axis, since for a coordinate axis the
projection of a point is simply the coordinate of the point corresponding
with the coordinate axis. In order to eliminate the risk of having coinciding
finite-precision values for the projections of distinct endpoints, we choose
the coordinate axis that is closest to the direction of the line of intersection.
The closest axis is the coordinate axis for which the direction d has the
largest absolute value.

Next, the endpoints are sorted according to their coordinate values for
the closest axis. For convex polygons, sorting the endpoints is trivial, since
a convex polygon has at most two edges that intersect with a plane. For
nonconvex polygons, we can apply a general sorting algorithm, such as
Quicksort, which has O(nlog#n) average time complexity. However, for
this particular sorting problem, which is referred to as Jordan sorting,
there exists a sorting algorithm that has a better time complexity. Jordan
sorting is the problem of sorting a sequence of intersection points of a
Jordan curve with an axis, given in the order in which they occur along
the curve. Clearly, this is the case here, since the boundary of a simple
polygon is a Jordan curve. It has been shown that Jordan sorting can
be done in linear time [47, 67]. However, these algorithms require rather
sophisticated data structures. Therefore, we regard it unlikely that Jordan
sorting outperforms the Quicksort routine for the input sizes that we are
interested in.

After sorting the endpoints, we have a representation of the intersection
line segments in the order in which they occur along the closest axis. For
convex polygons it is now simply a matter of testing the projections of
the line segments onto the closest axis for overlap. Nonconvex polygons
may have multiple line segments of intersection. So, we need to check for
overlap among these line segments.

Let 53;,82+1 and ty;, 15,1 be the sorted sequences of, respectively, [
and m intersection line segments of the two polygons, and let [02;, 62;41]
and [ry;, 72j+1] be their respective projections onto the closest axis, for
i=0,...,I-1andj=0,...,m— 1. Overlap among the segments is found
by simultaneously scanning the sorted sequences of endpoints for both
polygons. Two segments overlap iff their projections onto the closest axis
overlap. More precisely, the ith segment of s overlaps the jth segment
of t iff [o2;, 02i41] N [727, 12j41] # B; that is, 02; < 141 and 137 < 02i41.
Assume without loss of generality that 07;+1 < 12;. Then, the ith segment
of s does not overlap the kth segment of t, where k > j. This property
is exploited in Algorithm 3.6 for detecting whether two sequences of line

Algorithm
3.6

3.4 Polygons 95

segments overlap in O(] + m1) time. For a pair of polygons, each having n
vertices, we have [< n and m < n, since each edge contributes at most
one endpoint. Hence, Algorithm 3.6 runs in O(n) time.

Detecting overlap in two sorted sequences of intervals. The intervals
are, respectively, [02i,02i+1] and [1j, 72j41], for i = 0,...,l — 1 and
j=0,...,m—1.

1:=0;

j=0;

while i < and j < m do begin
if g2i41 < T2j then i:=i +1
else if j+1 < 024 then j:=j+1
else return true

end;

return false

Let’s summarize the complete algorithm for testing the intersection of
a pair of nonconvex polygons, each having » vertices:

1. The direction of the line of intersection of the polygon’s supporting
planes is computed, d = n; x ny. If d = 0 (i.e., the planes are parallel),
then false is returned. We simply ignore the case where the polygons
are coplanar.

2. For each polygon, the intersection points of its edges with the other
polygon’s supporting plane are computed and stored in a list. This
takes O(n) time. If the list is empty for one of the polygons then false is
returned.

3. The lists of intersection points are sorted along the coordinate axis
that is closest to the direction of the line of intersection. This takes
O(n) time using Jordan sorting, and O(n log n) average time using the
more common Quicksort algorithm.

4. The lists are checked for overlapping segments using Algorithm 3.6.
This operation takes O(xn) time.

We see that the complete algorithm has a worst-case time complexity
of O(n) using Jordan sorting. At this level, though, asymptotic worst-case
performance bounds are mainly of theoretical interest.

In practice, we will in most cases perform a bounding-box test before
testing the polygons for intersection, in which case the performance of
this method differs only slightly from the method that tests edges using a
ray-polygon test. In our experiments, we found that the sorting approach

96 Chapter 3 Basic Primitives

Sy S, S5 S3 S, Sg Sg¢ S7
> -t el -
ty t >) & ty ts
B S——— -t > ro—— -
' L’v—b‘ L L

Figure 3.12 The intersection of two line segment sequences.

Algorithm
3.7

that uses Quicksort is only 10% faster than the ray-polygon approach in
the cases where the bounding boxes of the polygons intersect.

As a conclusion, we show how to tailor the sorting approach such that
it returns the intersection of a pair of polygons. The main difference with
intersection detection is that for intersection computation we need to have
all intersecting pairs of line segments. Note that a single segment from one
polygon may overlap multiple segments of the other polygon, as can be
seen in Figure 3.12. As soon as a pair of overlapping segments is found,
the segment of intersection of these segments is reported. After reporting
an overlapping pair of segments, we examine the next pair of segments
by progressing in one of the segment sequences. Assume without loss of
generality that 02,41 < ;1. Since the sequences are sorted, we know
that the ith segment in s does not overlap any of the kth segments of t
for k > j. Hence, we discard the ith segment of s from consideration, and
progress to the next segment in s. See Algorithm 3.7 for a description of
the intersection computation algorithm in pseudocode. As the detection
algorithm, the intersection computation algorithm runs also in O(+ m)
time.

Computing the intersection of two sequences of collinear line segments.
The line segments are §3;, 5211 and ty;, tj4.1, and their respective projec-

tions are [0, 02i+1] and [t3}, 27411, fori =0, ...,/ —1andj =0, ..., m—1.
1:=0;
j:=0;

while i <! and j<m do begin
if 02i41 < 12then i:=i+1
else if 7711 < 02; then j:=j+ 1

else begin
if 02; > T then a:=s);
else a:=ty;

if o241 < T2j+1 then b:= S$2i4+1
else b:=ty11;

3.4.6

3.4 Polygons 97

“Report the line segment ab”;
if 02541 < 72j+1 then i:=i+1
else j:=j+1
end
end

The algorithms we have seen so far use a representation of the support-
ing plane. Since a plane equation is represented using only four scalars,
the additional storage that is needed for representing the plane equation is
in most cases acceptable. However, transformations on polygons, which
are needed for getting the coordinates of the polygons relative to the coor-
dinate system of reference, require some additional overhead if plane
equations are involved. Hence, using an intersection testing algorithm
that does not require a representation of the plane equation might be a
valid option in some applications. In [126] Thomas and Torras present
an intersection test for nonconvex polygons that does not require a plane
representation. In their algorithm, the point of intersection of an edge
and a plane is not computed. Similar to the line segment—triangle test
discussed in Section 3.4.2, an edge-polygon test is performed using only
dot and cross products and sign comparisons.

Triangle-Sphere Test

For testing the intersection of a triangle and a sphere, we compute the
point of the triangle closest to the sphere’s center. The triangle and the
sphere intersect iff the closest point is contained by the sphere; that is,
the (squared) distance of the closest point to the sphere’s center is at most
the (squared) radius of the sphere.

In Chapter 4, we will discuss Johnson’s distance algorithm in the con-
text of the Gilbert-Johnson-Keerthi algorithm for computing the distance
between arbitrary convex objects. Johnson’s distance algorithm is a gen-
eral solution for computing the closest point of a simplex. The solution
presented here is basically a written-out version of Johnson’s distance
algorithm, in which some further optimizations are incorporated.

Let po, p1, and p2 be the vertices of the triangle. Then, the barycentric
coordinates of a point x on the triangle are the parameters A9, A1, A2,
given by

X = AoPo + A1P1 + Aap2, where g+ i1+ =1, and A; > 0.

Assume that the sphere is centered at the origin. For spheres that have an
arbitrary center ¢, simply replace p; by p; — c.

98 Chapter 3 Basic Primitives

Let’s first look at the problem of computing the point on the triangle’s
plane (affine hull) closest to the origin. For this problem, we simply drop
the constraints A; > 0. The point x is the closest point iff the vector from
the origin to x is orthogonal to the plane. This is the case iff the vec-
tor x is orthogonal to two of the triangle’s edges. The choice of the two
edges is arbitrary. Let’s pick ppp; and popz. The vector x is orthogonal to
edge pop1 iff (p1 — po) - x = 0. We substitute x = Agpo + A1P1 + A2p2,
and do this also for edge popz, to find the following linear system of

equations:
1 1 1 Ao 1
(P1—po)-Po (p1—Po) Pi (P1—po) P2 | |2 |=]0
(p2—po)-Po (P2—Po)-P1 (P2—Po)-P2 | [22 0

Notice that the choice of edges is indeed arbitrary, since by subtracting
the second row from the third row we get the orthogonality of pyp3.

Before we solve this system of equations, let’s take a look at the possible
solutions. If A; > 0 for i = 0, 1, 2, then the point x is an internal point of
the triangle. Otherwise, the closest point lies on the triangle’s boundary.
The closest point may be one of the vertices, or it may be an internal
point of one of the edges. For computing the closest point on an edge, we
use the same strategy. The problem is simpler, however, because we have
only one edge to take into account. For edge pop1, we solve the system of
equations

- por-p][] = [0
(P1—po)-Po P1—po)-p1][u1]| [O0]

Again, if u; > 0, for i = 0, 1, then the closest point is an internal point of
the edge. If ug < 0, then p; is the closest point, else if 1 < 0, then pg is
the closest point. Furthermore, if pg is the closest point of both edge pop1
and edge popz, then py is the closest point of the triangle.

The basic outline of our approach is as follows. We first compute the
parameters u; for the edges of the triangle. If we find a vertex p; that is
the closest point of its adjacent edges, we return this vertex as the clos-
est point of the triangle. If such a vertex does not exist, then the closest
point of at least one of the edges is an internal point of that edge. In that
case, we compute the parameters A; for the triangle. If for anyi =0, 1, 2,
we have A; < 0, then the closest point of the triangle is the closest point
of the edge connecting the vertices p;, for j # i. Otherwise, the clos-
est point is an internal point of the triangle and has %; as barycentric
coordinates.

3.4 Polygons 99

We find the parameters u; for the edges by solving the linear systems
of equations using Cramer’s rule. For edge pop1, this is done as follows.
Let

1 1 1
A—[aoal]_[(Pl—PO)'Po (PI—PO)'PI] and b_[o]'

Then, we have as solution,

_ det[b a;] d _ det[ag b]
0= "qetd) 2" M7 Tgera)

It can be shown that det(A) is positive for affinely independent triangles
[52]. Note that in the first step we only need the signs of the parameters.
Since the denominator of y; is positive, it suffices to compute only the
numerator in order to determine the sign of each parameter. We define
Al{po'pl} as the numerator of y;, that is, the determinant of the matrix we

get by replacing the column in A corresponding with p; by b. Thus,

Aépo,Pl} =det(ba;] =(p1 —po)-p1 and

APOPU _ det[ag b] = —(p1 — Po) - Po-

Since o + n1 = 1, we have det(4) = det[b a;] + det[ag b], so let’s also
define APoPI} = det(A) = A({)po,m} + A{lpo‘pl}. Then, for edge pop1, we have

Wi = AEPO’P”/ APoP1} In the same way, we find for edge pop3,

APP = (py —po) - p2 and

APOP) — _(p; —po) - po,
and for edge p1p2,

AlPYPY () p1)-p; and

APYP) — _(py —p1) p1.

100 Chapter 3 Basic Primitives

For the triangle itself, we solve the system of equations in a similar way.

The solution is given by A; = Al{po’pl’pz}/A({pOJ"l’PZ}, where A({Po-P1P2}=
Aépo,m,pz} + A{IPO:PerZ} + A{ZPO;PLPZ}’ and

APOPLP2 _ o [(P1—po) Pt (P1—Po)-p2
0 P2-po) Pt (P2-po) P2

APOPLPY _ 4oy [(pl -po)-po (P1—po)-m
b =
(P2—-pPo)-Po (P2—PpPo) P2

APOPLE2) _ oy [(P1—po)-Po (P1—po) Pt
z P2-po)-Po (P2—Po)-p1]’

Notice that the determinants that have been computed for the edges

can be reused in the computation of the determinants Al{po P1-P2} To make
even more reuse of earlier computed determinants possible, we subtract

the first row from the second in the submatrix for Ag’o’pl'pz}:

AlPOPLP2Y _ g [(Pl —Po) - P1 (p1 - po) - pz]
0 _ .
(P2-p0)-p1 (P2—Pp1) P2

By substituting the edge determinants where appropriate, we find

Ag)po,m,pz} - AE)POrPJ}A{lperZ} + A{ZPI:PZ}((pl —po)-p2)
A{IPO,PLPZ} - A{lpo’m}A({)po,Pz} _ A{zpo,Pz}((pl —Po) - P2)

A{ZPO,PLpz} - A{zpoypz}Agpo,m} _ A{lpo,m}((pz —Po) - p1)-

We will now summarize the operations needed for testing the intersec-
tion of a triangle and a sphere centered at the origin:

1. Compute the determinants for the three edges of the triangle. If for any
i=0,1,2, we have A].{pi’pj} <0 and Alipi’p") < 0, forj, k # i, then return
the closest point x = p;.

2. Otherwise, compute the determinants for the triangle. If for any i =

0,1,2, we have APOPUP2) < g then return the closest point X = 1yp; +
uiePr, wherej, k #iand u; = Aip”p" /AP and gy = Akp"pk | APIPi

3. Otherwise, return the closest point x = Agpo + A1p1 + A2p2, where
2 = APOPUP2) A (PopLP2)

3.4.7

3.4 Polygons 101

4. The triangle intersects the sphere iff the squared distance ||x||? to the
closest point x is at most the squared radius p? of the sphere.

Testing a point for containment in a sphere is quite cheap. So, if we do
not require witnesses for either the distance or the penetration depth, we
can speed up the triangle-sphere test by first testing the triangle’s vertices
for containment in the sphere. If one of the vertices is contained in the
sphere, then we can exit early, returning an intersection.

The distance between the triangle and the sphere is max(||x| —p, 0). The
penetration depth is max(p — || x||, 0). The witness point on the triangle for
both the distance and the penetration depth is the closest point x. The
witness point on the sphere is the point px/||x||. However, this is only the
case if x is nonzero. In the case where the center of the sphere is contained
by the triangle, x is the zero vector. In that case we return the point pn/||n||
as the witness point on the sphere, where n is a normal to the triangle. Note
that in all of these cases the penetration depth vector is not unique, and
therefore multiple choices for the witness point on the sphere are possible.
However, the given choice for the witness point is by far the simplest.

Recall that for spheres that are centered at an arbitrary point ¢, we
translate both triangle and sphere over —e¢ to construct an equivalent
configuration in which the sphere is centered at the origin. When return-
ing the witness points, we of course have to translate them back over ¢
in order to place these points in the reference coordinate system of the
original objects.

We conclude with a note on numerical issues. From a performance
point of view, it is tempting to rewrite expressions of the form (p; —po) - p2
to p1-p2 — Po - P2, since this eliminates the need for an intermediate vector
p1 — po. However, note that subtractions may suffer from cancellation;
that is, subtracting two values that are almost equal introduces a huge
relative error. Therefore, it is better to perform subtractions as early as
possible in the computation, since then the values are less contaminated
by rounding errors. So in this case, the expression (p1 —po)-p2 is preferred

over pi1 -p2 —po - p2.

Polygon-Volume Tests

We wrap up this chapter with a discussion of intersection testing of gen-
eral polygons with primitive volumes. Again, we use the plane equation
H(n, §) of the polygon’s supporting plane. The basic strategy for polygon-
volume intersection testing is as follows:

1. If the polygon’s supporting plane and the volume do not intersect, then
return false.

102 Chapter 3 Basic Primitives

2. Otherwise, if a vertex of the polygon is contained in the volume, then
return true.

3. Otherwise, if an edge of the polygon intersects the volume, then return
true.

4. Otherwise, if a point common to both the volume and the polygon’s sup-
porting plane is contained in the polygon, then return true. Otherwise,
return false.

This strategy can be used for testing the intersection of a polygon with
any object type and is most useful for intersection tests of a polygon with a
primitive volume, such as a sphere or a box, since for these types of objects
the individual tests in the strategy are quite elementary. For polygon-
polygon intersection testing we found strategies that exploit the symmetry
of this problem to be more effective. Note that the first two tests in this
algorithm are not necessary for the correctness of the operation; however,
they contribute to a large extent to the performance of the test. Recall that
it is our aim to come up with algorithms that have good average perfor-
mance. In this light, the two tests are quite useful, since they give us a
quick answer for the majority of intersection tests and are relatively cheap.

We will show how to apply this basic strategy to polygon-sphere and
polygon-box intersection testing. For other primitives, such as cylinders
and cones, similar algorithms can be used.

Polygon-Sphere Test

Deciding whether a sphere intersects a plane is quite simple. The sphere
intersects the plane if the distance from its center to the plane is at most
its radius. Let ¢ be the center of the sphere and H(n,§) the polygon’s
supporting plane. Then, the distance of ¢ to the plane is |n- ¢+ §|/|n}. We
see that in this case it is useful to have a normal of unit length, since this
saves us the division by the normal’s length. For normals that do not have
unit length, we may want to eliminate the square root in the computation
of the normal’s length by comparing the squared distance (n-c +8)2/||nj|?
with the squared radius p?.

For the vertex containment test, we simply compare the (squared)
distance between the vertex and the sphere’s center with the sphere’s
(squared) radius. The edge-sphere intersection test is done by comput-
ing the closest point of the edge to the sphere’s center and testing this
point for containment. We saw how to compute the closest point of an
edge on page 71. Alternatively, we can use the ray-sphere test described on
page 68 for testing the intersection of an edge and a sphere. However, this
method is likely to be slower, since it involves a square root evaluation.

3.4 Polygons 103

e\

Figure 3.13 Computing a point x common to a sphere and a plane H(n,§). The point x =
¢ + in, whereA=—-(-¢c+ 6)/||n||2.

For the final test a common point to both the plane and the sphere
needs to be found. As a common point we take the center of the sphere
projected onto the plane, that is, the intersection point of the plane and
the line orthogonal to the plane passing through the center, as depicted
in Figure 3.13. This is the point x = ¢+ A-n such thatn-x+§ = 0. We
substitute x in the plane equation

n-(c+in)+8=0

and find that

n-c+34
Inj?

It can be seen that under the assumption that the plane intersects the
sphere, this point is indeed contained in both the plane and the sphere.
Finally, the intersection point is tested for containment in the polygon,
for which we use the point-in-polygon test described on page 89. Note
that in all cases where the polygon-sphere test returns an intersection, we
have a common point as witness of the intersection.

Polygon-Box Test

For testing the intersection of a general polygon and an axis-aligned box,
we follow the same basic strategy. The plane H(n, §) does not intersect the
box iff the normal n is a separating axis. Clearly, for all points x in the
plane, the projection n - x is simply —§. Recall that, for a box centered at
point ¢ and with extent h, the projection of the box onto n is the interval

104 Chapter 3 Basic Primitives

[n-c— p,n-c+ pl, where p = In| - h. Thus, the plane does not intersect
the box (i.e., n is a separating axis) iff

n-c+348|>n|-h

A vertex p is contained in the box iff |x — ¢} < h. For the edge-box intersec-
tion test, we use the SAT described on page 80 if we merely want to test the
polygon for intersection and do not require any further data. If we need
to compute a common point or the actual intersection of the polygon and
the box, then we should use the clipping method described on page 73.

Finally, if none of these tests results in an answer, there is still a possi-
bility that the box intersects the interior of the polygon. This case is tested
by the fourth test in the basic strategy. In order to test this case, we com-
pute the intersection point of the polygon’s plane and the box diagonal
that is closest to (i.e., has the smallest angle with) the plane’s normal, and
check whether this point lies inside the polygon. This method for testing
the intersection of the box and the polygon’s interior has been proposed
by Green and Hatch in [60] as an improvement over the method presented
by Voorhies in [129].

Let n = (v1,v2,v3) and h = (n1, 72, n3). Then, the closest diagonal is the
line segment ¢ + Ad, for A € [—1, 1], where

d = (sign(v1)n1, sign(v2)n2, sign(vs)nz).

This diagonal is indeed closest to n, since n - d = |n| - h is the maximum
over all diagonal directions (41, 17, £n3). The point of intersection of
the diagonal and the plane is the point x = ¢ + Ad, where

n-c+34
A=
n-d
Clearly, we have A € [~1, 1] iff the plane intersects the box, since then
n - ¢+ 8| <n-d. Thus, the point x is indeed a common point of the box
and the plane. The box intersects the interior of the polygon iff the point
X is contained in the polygon.

Chapter
Convex Objects

Just ask the axis.
—Jimi Hendrix

In this chapter, we look at algorithms for convex objects. We consider
algorithms for polytopes (convex polyhedra) and general convex objects,
such as ellipsoids, cones, and cylinders. We present an overview of
algorithms for performing several types of proximity queries on pairs
of polytopes. The major part of this chapter discusses the Gilbert-
Johnson-Keerthi algorithm (GJK) in detail. GJK is an iterative method
for computing the distance between a pair of general convex objects. We
will show how to tailor GJK for performing the other proximity queries
as well. GIK receives our special attention here, since it not only excels in
versatility, being applicable to general convex objects, but it is also one of
the fastest methods for intersection testing of polytopes. We conclude
this chapter with an explanation of the expanding-polytope algorithm
(EPA) for computing the penetration depth of a pair of intersecting con-
vex objects. GJK and EPA are closely related and are applicable to the
same class of convex objects.

4.1 Proximity Queries

A proximity query is a query on a pair of objects that provides us with
a clue about their relative geometric configuration. The proximity query
types that we consider for convex objects are

= finding a common point

® finding a separating plane or a separating axis

m computing the distance and a pair of closest points

® computing the penetration depth and a pair of witness points for the
penetration depth.

105

106 Chapter 4 Convex Objects

We will look at single-shot algorithms and incremental algorithms
for solving these queries. In animated 3D worlds, there usually is
a lot of frame coherence. Incremental algorithms that exploit frame
coherence are likely to result in a better performance than single-shot
algorithms.

Algorithms for finding a common point are usually single-shot algo-
rithms. Exploiting coherence by using common points from previous
frames for speeding up intersection tests does not appear to be useful,
since in most applications of collision detection, collisions are resolved
rather than maintained. A separating plane or axis is a witness of the
disjointness of a pair of objects. This type of witness is better suited
for exploiting frame coherence than common points, since it is the
objective in most applications to keep objects disjoint. So, a witness
of the disjointness of a pair of objects is likely to persist over several
frames.

A separating plane of two objects is a plane for which one object lies
in the positive open halfspace and the other in the negative. The axis
orthogonal to a separating plane is a separating axis. Let the plane H(v, §)
be a separating plane of objects A and B, and assume without loss of
generality that A ¢ H®(v,§) and B C H®(v, §). We see that for separating
axis v we have

v-x>v-y forallxeAandyeB.

Conversely, for an axis v for which the above inequality holds, we find
that each plane H(v,$) withmax{v-y:ye B} < d<min{v-x:x € A}isa
separating plane.

Frame coherence can be exploited by testing whether a separating plane
or axis from a previous frame also separates the objects in the current
frame. This operation is usually a lot cheaper than performing a single-
shot intersection test. Since animated objects usually move relatively little
between frames, a separating plane from a previous frame is likely to be
a separating plane in the current frame, in which case we immediately
have an answer.

Theorem 4.1 shows that for nonintersecting convex objects a separating
axis always exists. We already saw this to be true for convex polytopes in
Theorem 3.1 on page 78; however, the theorem presented here is more
general. For proving Theorem 4.1 we use Lemma 4.1. We will use this
lemma a few more times in proofs in this chapter.

We see that closest points of a € A and b € B coincide if objects A and
B are intersecting, and form a separating axis a—b if A and B are disjoint.
Apparently, an algorithm for computing a pair of closest points of two
convex objects can be used to solve three types of proximity queries: the

Theorem

4.1

Lemma

4.1

Figure 4.1

4.1 Proximity Queries 107

common point query, the separating-axis query, and of course, the closest
point query.

Let A and B be convex objects and a € A and b € B, a pair of closest points.
Then, either A and B intersect (A N B # @), or a — b is a separating axis.

Proof

Suppose that AN B = @. Then, v=a — b # 0. Since a and b are closest
points, v is the point closest to the origin of A — B, the CSO of A and B. Let
xcAandy € B. Then,w =x—y € A— B. Since A — B is convex, any u on
the line segment vw is contained in A — B, and thus |ul|| > |v|. It follows
from Lemma 4.1 that |v|? —v-w < 0. Hence, v-w > ||v||? > 0. We find
thatv-x >v-yforall x € A and y € B. Thus, v is a separating axis. B

Let v and w be vectors. The line segment connecting v and w contains a
vector u for which |u|| < ||v| only if |v|2 — v - w > 0. (See Figure 4.1.)

Proof

Let u = v+ A(w —v). Then, for 0 < A < 1, u is contained by the line
segment vw. We see that |[u|? — |v]|*> = 2Av - (W — v) + A%|lw — v||2. For
fluf?2 = [(v[i> = 0, we find the roots A; = 0 and A» = —2v - (W — v)/|[w — v|2.
Since |w—v||2 > 0, we find that | u||?—|lv|]? is positive for A — oo. It follows
that A, > O only if |[v|> —v-w > 0. If |[v|> —v-w < 0, then A, < 0, and
thus |u||? — |v|? is positive for all 0 < A < 1. Otherwise, [u|> — |v||* < 0
for A1 < A < A. Since [A1, A2] N {0, 1] # @, there must be a point u on the
line segment vw for which ufl < ||v|. B

The line segment YW contains a vector u for which ffuf < {{v[[only if (viiZ—v-w > 0.

108 Chapter 4 Convex Objects

4.2 Overview of Algorithms for Polytopes

4.2.1

Proximity queries on polytopes are a popular topic in computational
geometry literature. The algorithms presented in computational geom-
etry texts are usually single-shot algorithms that are aimed at finding the
worst-case time bounds for the different query types. Research in this area
was mainly driven by theoretical interest, and thus implementations are
often lacking.

For our purpose, incremental algorithms are more interesting than
single-shot algorithms, since they allow us to exploit temporal coherence.
This section presents an overview of both single-shot and incremental
algorithms for performing different types of proximity queries on

polytopes.

Finding a Common Point

The first algorithm that improved upon the trivial O(#%) bound for finding
a common point of a pair of convex polyhedra was presented by Muller
and Preparata [92]. Their paper presents an algorithm for constructing
the intersection of two convex polyhedra. The common point returned
by the detection algorithm is a prerequisite for the construction algorithm.
The algorithms use doubly connected edge lists (DCELs) as boundary
representations for the polyhedra. A DCEL is basically a winged-edge
structure in which some information is omitted. Winged-edge type struc-
tures are discussed on page 25. Both the detection and construction
algorithms have a time complexity of O(nlogn), where #n is the total
number of vertices of both polyhedra.

In fact, it has been shown by Chazelle and Dobkin that detecting inter-
sections between polyhedra can be done in sublinear time if the proper
preprocessing on the polyhedra is allowed, whereas constructing the
intersection of polyhedra has a linear lower bound [22]. The best upper
bound for the common point detection problem was given by Dobkin and
Kirkpatrick [29]. Their algorithm has an upper bound of O(log® n) and
requires a representation of each polyhedron decomposed into drums,
which are the convex subparts that are formed by slicing the polyhedron at
each vertex by a horizontal plane. The drum representation requires O(n?)
space. Little is known of how well these algorithms perform on current
computer platforms, since implementations are not currently available
and are probably nonexistent.

An interesting way to view the intersection detection problem for poly-
topes is by regarding it as a linear programming (LP) problem. An LP

4.2 Overview of Algorithms for Polytopes 109

problem is an optimization problem of the form

maximize ¢ - x
subjectton; - x+38; <0 fori=1,...,n,

where the vector ¢ and the constraints n; - x + 8; < 0 are given, and x
is the variable for which an optimal solution is sought. The feasible set
is the intersection of all halfspaces H™ (n;, §;). A feasibility test returns, if
possible, a member of the feasible set. For a feasibility test, the objective
vector ¢ may be taken to be any vector, including the zero vector.

The problem of finding a common point of a pair of polytopes can
be expressed as an LP feasibility test in the following way. We take the
halfspaces of the two polytopes as the constraints of our LP problem; thus,
the intersection of the polytopes is the feasible set. Recall that the number
of halfspaces in a halfspace representation of a polytope is linear in its
number of vertices. Hence, for a pair of polytopes of n vertices each, we
have O(n) constraints. A common point of a pair of polytopes is returned
by a feasibility test on the set of halfspaces of both polyhedra.

Both Megiddo [84] and Dyer [34] showed independently that low-
dimension LP problems can be solved in linear time with respect to the
number of constraints. Their solutions, however, are rather complex and
have a large constant for problems in three or higher dimensions. Low-
dimensional LPs can be implemented in a surprisingly simple manner, by
applying a randomized algorithm, as shown by Seidel in [111]. The basic
outline for performing a feasibility test using this randomized algorithm
is as follows.

First, the halfspaces are put is some random order Hy, ..., H,. We com-
pute an arbitrary point x; in P; = H1 N---N Hy, where d is the dimension
of the space. If, fori = 1, ... ,d, the normals n; are linearly independent,
then the intersection point of the hyperplanes n; - x + §; = 0 is a proper
point x; in P;. Otherwise, swap one or more of the d halfspaces with a
halfspace H;,i = d+1, ...,n, until the first d normals are linearly indepen-
dent. If no d linearly independent normals can be found, then reduce the
problem to a lower-dimensional LP problem by replacing the halfspaces
by their intersection with the subspace spanned by the normals.

Next, we iterate over all remaining halfspaces H;,i =d + 1, ...,n, and
compute, if possible, in each step a point x; in P; = P;_y N H;. If we are
lucky, and x;_1 € H;, then we simply take x; = x;_1. Otherwise, x; is taken
to be a point in P;_; N H(ny, §;), that is, a point on the current hyperplane
in the previous feasible set. This is actually a feasibility test in (d — 1)-
dimensional space on the halfspaces H]’ =H;NnHMm;,é;), forj=1,...,i-1.
We recursively reduce the dimension of the problem space and solve the
feasibility test in the lower-dimensional space. Ford = 1, either finding a
feasible point or detecting that the feasible set is empty is trivial. As shown

110 Chapter 4 Convex Objects

Table 4.1 Common point search algorithms for convex polyhedra.

MP [92] DK [29] LP problem [111]
Representation DCEL drum decomp. halfspaces
Space bound O(n) On?) O(n)
Time bound O(nlogn) O(log2 n) expected O(n)
Implementation unknown unknown Hohmeyer [68]

by Seidel in [111], this algorithm has an expected time complexity of
O(dn).

Table 4.1 shows an overview of the discussed common point detection
algorithms. These algorithms seem less suitable for collision detection
in animated worlds, since they are single-shot algorithms and probably
perform worse than the incremental algorithms that we discuss in the
following sections.

4.2.2 Finding a Separating Plane

Contrary to the problem of finding a common point, the problem of finding
a separating plane for polytopes cannot be expressed as a linear program-
ming problem. However, there is a less strict definition of a separating
plane, referred to as a weakly separating plane, for which the separat-
ing plane search problem can be expressed as an LP feasibility test. A
weakly separating plane is a plane for which the objects are contained in
the positive and negative closed halfspaces. The existence of a weakly sep-
arating plane does not guarantee the disjointness of the objects, but it
does warrant the disjointness of the interiors of the objects. In practice,
not counting touching contacts as collisions hardly makes a difference,
since in general touching contacts are extremely rare and are hard to
distinguish from near contacts.

The problem of finding a weakly separating plane for a pair of polytopes
can be expressed as an LP problem in the following way. It can be seen
that a plane that weakly separates the vertices of two polytopes also weakly
separates the polytopes themselves. For a pair of polytopes A and B, we
need to find a plane H(v, §) such that for all vertices a € vert(4), we have
v-a+ 4§ > 0, and for all vertices b € vert(B), we have v-b + 8§ < 0. We see
that our search space is four-dimensional. This problem can be expressed
as the problem of finding a “point” x = (v, §) subject to the constraints
(a,1) - x > O for a € vert(4), and (b,1) - x < 0 for b € vert(B), which is
clearly an LP problem. As we saw earlier, low-dimensional LP problems
can be solved in expected linear time using Seidel’s randomized algorithm.

4.2 Overview of Algorithms for Polytopes 111

An original approach to finding a weakly separating axis of a pair of
polytopes is presented by Chung and Wang in [23]. A weakly separating
axis of polytopes A and B is a nonzero vector v such that

v-a>v.-b forall aevert(4d)andb € vertB.

The Chung-Wang (CW) algorithm is an iterative method for approximat-
ing a weakly separating axis. The algorithm uses support mappings of the
polytopes for computing approximations of the weakly separating axis. A
support mapping of a polytope 4 is a function s4 that maps a vector v to a
vertex of A, according to

sa(v) e vert(A) suchthat v.ss(v) =max{v-a:a e vert(d)}.

The result of a support mapping is called a support point. Support map-
pings are used also in the GJK algorithm. We will discuss the computation
of support points for polytopes and other shapes in Section 4.3.4.

Expressed in terms of support points, a weakly separating axis of A and
B is a nonzero vector v for which

v-sa(=v) > v -sp(v),
as illustrated in Figure 4.2. Suppose that in the kth iteration, the axis v;
failed to be a weakly separating axis. Then, the following axis is taken as

a better approximation of a possibly existing weakly separating axis:

Vip1 = Vi — 2(1y - vty

Figure 4.2 For a weakly separating axis v, we have v-s4(—v) > v -sg(v).

112 Chapter 4 Convex Objects

where
e =wi/[will and wy =sa(—vg) —sp(vg).

This choice is motivated by the observation that for a nonintersecting pair
of spheres, for which v, is not a weakly separating axis, the axis vi; is
a weakly separating axis [23]. As initial axis vp we may take an arbitrary
unit vector. Each v has length 1, since each new v is the reflection of
vy in the plane H(ry, 0).

The CW algorithm terminates as soon as either vy, is a weakly separat-
ing axis (i.e., v - wi > 0) or there is evidence that the objects’ interiors
intersect. Note that r;. is not defined for w;, = 0. However, this case does
not yield a problem, since for w;, = 0, we have v -w; = 0, and thus, vi isa
weakly separating axis, in which case the algorithm terminates. Figure 4.3
illustrates a sequence of iterations that results in v3 being a separating axis.

bWy

@k=0 k=1

©k=2 (dyk=3

Figure 4.3 Four iterations of the CW algorithm. The dashed line segments represent the
support planes H(v;, —v; - w). The plane in which vy is reflected is represented
as a continuous line segment.

Theorem

4.2

4.2 Overview of Algorithms for Polytopes 113

In the case where a weakly separating axis does not exist, the algorithm
terminates as soon as there is evidence that the interiors of the objects
intersect. For this purpose, the CW algorithm uses a subalgorithm that
tries to compute a vector ng such thatn, -w; > Oforalli =0, ..., k. If such
a vector does not exist, then 0 must lie in the interior of A — B, and thus,
the interiors of A and B intersect. Chung and Wang present an O(k) time
algorithm for computing such an n;. Hence, for a pair of polytopes of n
and m vertices, it takes O(k?) time to perform k iterations, assuming that
the support points are computed in constant time. Tt shows that for an
acceptable performance of the algorithm the number of iterations needs
to be kept small.

The problem with the basic iteration step is the fact that for a weakly
separable pair of objects, v;, may not converge to a weakly separating axis.
Theorem 4.2 expresses the strongest point that can be made.! Since both
v and v, are unit vectors, it follows from Theorem 4.2 that the angle
between v, and u is at most as large as the angle between v, and u.
However, this is not sufficient to conclude that v -wy, > 0, for some k > 0;
that is, it does not prove that eventually a weakly separating axis is found.
Further on, we will discuss how termination can be achieved.

Suppose that unit vector u is a weakly separating axis of A and B, and that
Vi is not a weakly separating axis. Then, v;,; -u > v, -u.

Proof

We deduce, v, 1 -u = v -u—2(ry - v)(r. -u). Since u is a weakly separating
axis, and vy, is not, we have r; - u > 0 and 1y - v, < 0. Hence, v, - u — 2(ry, -
v -u) > v - u.

Let’s explore how large the number of iterations of the CW algorithm
can grow. Clearly, if v is close to being a separating axis (i.e., vi - wy = 0),
then ry - v, ~ 0, and thus v;; = v, which suggests that convergence is
slow. This problem will occur most prominently if the objects are (almost)
touching. In our experiments, we computed a convergence factor p using
the formula

e v
 YpopcVier
Here, 1y, - v, is half the length of vi | — v (half the length of the dotted line

in Figure 4.3). For the cases where objects were touching, we often found
p ~ 1, which shows that the algorithm’s convergence is extremely slow.

1. Chung and Wang claim vy 1 -u > v -uin [23]; however, the proof they give is incorrect.

114 Chapter 4 Convex Objects

In general, the number of iterations can grow arbitrarily large.
However, Chung and Wang exploit a property that enables the algorithm
to terminate in a finite number of iterations. After a certain number of
iterations (Chung and Wang suggest the first time a vector wy, is returned
that appeared before), the algorithm continues iterating using v;; = n
as a new axis. If for this axis a vector wy,; is returned that appeared
before, then the axis is a weakly separating axis, since ng - w; > 0 for all
i =0, ...,k Thus, in each iteration the algorithm either terminates, or the
new vector wy is different from all w;, fori =0, ..., k. Since for poly-
topes of m and n vertices there exist mn combinations of support points,
the number of different vectors wy, = sa(—v;) — sg(vy) is at most mn.
Thus, the algorithm will perform mn iterations in the worst case, before
establishing a termination condition. In practice, the algorithm will often
need fewer iterations, since only a small number of all the possible vertex
combinations will be returned. However, for polytopes that have a lot of
vertices, the number of iterations can still be quite large, which is harmful
for performance, considering the algorithm’s O(k?) time complexity.

Further iterations can be saved by exploiting frame coherence. We saw
that the initial axis vg may be chosen arbitrarily. In cases where there is a
lot of frame coherence, an existing separating axis of the object pair from
a previous frame is likely to be a separating axis in the current frame. If
we take this axis as the initial axis, the algorithm will often need only one
iteration.

At first glance, the CW algorithm seems a good candidate for generaliza-
tion to other convex objects besides polytopes, since we can also provide
support mappings for nonpolytopes. However, since the number of sup-
port points of a nonpolytope is unbounded, we cannot guarantee that the
algorithm terminates. Due to extremely slow convergence for cases where
the objects are almost touching, this termination condition is of crucial
importance.

Table 4.2 shows an overview of the discussed separating-plane algo-
rithms. Although Seidel’s randomized LP algorithm runs in linear time,
we have to be aware of the fact that for higher dimensions the constant
factor is quite large (O(d!)). Since finding a weakly separating axis is a
four-dimensional problem, the LP approach may turn out to be too expen-
sive in practice. In this respect, the Chung-Wang approach seems more
attractive, since it runs in near constant time when used incrementally.
However, keep in mind that the differences in performance between the
average and the worst case can be huge for CW. The Gilbert-Johnson-
Keerthi algorithm, which we will discuss in Section 4.3, results in a similar
iterative method for finding (strongly) separating axes. GJK may not per-
form as well as CW on average; however, its worst-case performance has
a tighter bound, which is often more desirable. Moreover, GJK can be
generalized more successfully to arbitrary convex objects.

Table 4.2

4.2.3

4.2 Overview of Algorithms for Polytopes 115

Weakly separating plane algorithms for convex polyhedra.

LP problem [111] CW [23]
Representation vertices only vertex adjacency graph
Space bound o) On)
Time bound expected O(n) incremental: near O(1)
single shot: roughly O(#?)
Implementation Hohmeyer [68] no longer publicly available

Distance and Penetration Depth Computation

One of the first significant solutions to the polytope distance computation
problem was presented by Dobkin and Kirkpatrick in [30]. They devised
an algorithm for computing the distance between two convex polyhedra in
time that is linear in the total number of vertices. This algorithm utilizes a
hierarchical representation for two- and three-dimensional polytopes, dis-
cussed on page 27. They later showed that the distance between a pair of
polytopes with m and n vertices can be found in O(log m log) time using
the same hierarchical representation [31]. Although these algorithms are
mainly of theoretical interest, the hierarchical polytope representation on
which they rely has been applied successfully in practice, as we shall see
further on.

In Chapter 2 we saw that the distance between a pair of convex objects
A and B is realized by the point in their CSO A — B closest to the origin. If
the objects intersect, then the penetration depth is realized by the point
on the boundary of the CSO closest to the origin. The distance as well
as the penetration depth of a pair of convex polyhedra can be computed
using the following approach by Cameron and Culley [16].

First, an explicit representation of A — B is constructed, which is then
used for solving the queries. We showed in Theorem 2.2 on page 34 that
the Minkowski sum of two convex polyhedra is itself a convex polyhe-
dron and can thus be represented using any of the discussed polyhedron
representations. Cameron and Culley represent A — B as the intersection
of a set of halfspaces H; = H (n;,8;), where |n;| = landi =1,...,m.
From Theorem 2.2 it follows that, for a pair of polytopes A and B hav-
ing »n vertices each, the number of halfspaces m is O(n?). The theoretical
worst-case bound for the construction time of the set of halfspaces is
O(n? log n) by applying a convex hull algorithm [104]. However, Cameron
and Culley claim for their worst-case O(?) time construction method a
better expected performance.

116 Chapter 4 Convex Objects

From the halfspace representation, the distance and penetration depth
are computed in the following way. Let dmax = max{§;}. If dmax < 0,
then the origin is contained in the CSO, and thus, the distance is zero.
The penetration depth is simply —8max, the distance from the origin to
H(Mmax, dmax), the closest boundary plane of any of the halfspaces. If
Smax > 0, then the origin is not contained in the CSO, since nmy is a sep-
arating axis. The point of the CSO closest to the origin lies on the plane
H(Mpax, Smax). Similar to the LP feasibility test described on page 109, this
point is found by reducing the dimension of the problem space. The clos-
est point is the point in the convex polygon that is the region of the plane
H(npmax, $max) bounded by the halfspaces H; = H; N H(Mmax, 8max), for
i =1, ...,m. This algorithm does not return witness points for either the
distance or the penetration depth since all computations are performed
in configuration space.

The approach presented by Cameron and Culley is useful for objects
that have a fixed orientation, since then the CSO is computed only once
and only needs to be translated if one of the objects is translated. For
objects with angular degrees of freedom, the CSO needs to be recom-
puted each time the orientation of one of the objects changes. In that
case, computing the distance or the penetration depth using an explicit
representation of the CSO may turn out to be too expensive. Tt would be
better if we compute the closest point of A — B without using an explicit
representation of A — B. In Section 4.3 we will describe the GJK distance
algorithm, which takes this approach for computing the point in A — B
closest to the origin, for convex objects A and B.

The Lin-Canny algorithm (LC) is an incremental algorithm for com-
puting a pair of closest features of convex polyhedra [79]. A feature is a
vertex, an edge, or a facet of the boundary of a polyhedron. LC forms the
heart of I-COLLIDE, a publicly available software library for interactive
collision detection [24]. LC’s utility for interactive collision detection fol-
lows from its ability to compute a pair of closest features in near constant
time if the closest features are approximately known. This is useful when
there is a lot of frame coherence, as commonly is the case in computer
animation, since then the closest features from a previous frame are likely
to be approximate to the closest features in the current frame.

LC finds the closest features by iteratively “walking” across the bound-
aries of the polyhedra toward the features of the boundary that lie closest
to each other. The algorithm starts at an arbitrary pair of features, prefer-
ably features that lie near to the closest features. In each iteration, the
algorithm proceeds to a neighboring pair of features that either lie closer
to each other or have lower dimensionality than the previous pair.

In order to quickly traverse the boundary toward the closest features,
LC applies the concept of Voronoi regions. A Voronoi region of a feature is
the set of points that are closer to this feature than to any other feature.

Figure 4.4

4.2 Overview of Algorithms for Polytopes 117

Voronoi regions of the features of a box. Vertex p has Voronoi region Ry, edge E
has region R;, and facet F has region R3.

The Voronoi regions of the features of a convex polyhedron form
a partitioning of the space outside the polyhedron, as illustrated in
Figure 4.4. The Voronoi regions are separated by constraint planes and
are unbounded. The constraint plane that separates the Voronoi region
of a vertex from the region of an adjacent edge contains the vertex and is
orthogonal to the edge. Similarly, the constraint plane that separates the
Voronoi region of an edge from the region of an adjacent facet contains
the edge and is orthogonal to the facet.

The basic data structure used for feature walking is the winged-
edge structure, discussed on page 25. The constraint planes are stored
as additional data in the edge nodes. Each edge node maintains four
constraint planes: two corresponding with the adjacent vertices and two
corresponding with the adjacent facets.

The Lin-Canny algorithm relies on Theorem 4.3 for its correctness. LC
performs a local search of pairs of features until it finds a pair that satisfies
the conditions of this theorem. In each iteration step the closest points of
the current feature pair are computed and tested for containment in the
other feature’s Voronoi region. Should both points be contained by the
Voronoi regions, then the closest points of the current feature pair are
the closest points of the polyhedra, and we are done. Otherwise, one or
both points violate some of the constraint planes that bound the Voronoi
region of its counterpart. In that case, we replace the counterpart feature
by an adjacent feature corresponding to a violated constraint plane. In the

118 Chapter 4 Convex Objects

Theorem

4.3

case where multiple constraint planes are violated, we simply pick one of
them.

Let X and Y be features of disjoint convex polyhedra A and B, and let
x € X and y € Y be the closest points of X and Y. If x is contained by the
Voronoi region of Y and y is contained by the Voronoi region of X, then
x and y are the closest points of A and B.

Proof

Let v =x —y. Since x is the point of X closest to y, and y is contained by
X’s Voronoi region, it follows from Lemma 4.1 that for all X’ € A, we have
v.(x—x) = [v)|?—v.(x —y) < 0. Similarly, we find that for all y’ € B,
we havev-(y —y) <0.Letx’' € A and y € B. We deduce

O>v-(x—x)+v- (Y ~-y)
=v-(x-y-&-Yy))

= |v|? —v-w,

where w = x’ — y’. Again, it follows from Lemma 4.1 that {|w| > {v|.
Therefore, x and y must be the closest points of A and B.

In each iteration step, either the distance between the current features
or the dimension of one or both features decreases. In the case of a switch
to a lower-dimensional feature, the distance between the features remains
the same. Thus, the distance between the feature pairs in a sequence of
iterations is monotonically nonincreasing. Furthermore, the algorithm
cannot iterate infinitely using only switches to lower-dimensional fea-
tures. Since a polyhedron has a finite number of features, any sequence
of iteration steps must be finite.

This does not mean, however, that the sequence always converges to a
feature pair that meets the conditions of Theorem 4.3. Special care should
be taken in handling local minima—feature pairs that are not closest, and
for which no closer neighboring feature pair exists. A local minimum
occurs if one of the features is a facet and the closest point of the other
feature (usually a vertex) is enclosed by the constraint planes of the facet’s
Voronoi region and lies on the negative side of the facet, as illustrated in
Figure 4.5. We see that in this case all features adjacent to the facet lie
further from the closest point than the facet.

The existence of a local minimum may be the result of the polyhe-
dra interpenetrating; however, this is not guaranteed to be the case.
Additional computations are necessary in order to determine if the poly-
hedra truly intersect. We escape a local-minimum condition for a disjoint

Figure 4.5

4.2 Overview of Algorithms for Polytopes 119

A local minimum condition. Facet F is not closest to point p. However, since p is
enclosed by the constraint planes of F’s Voronoi region, all features adjacent to F
are further from p than F.

pair of polyhedra by replacing the locally minimal facet with the closest
facet. Testing a point for containment inside a polyhedron and finding the
closest facet to a point can be done in a single operation [88]. Simply find
the facet for which the point has the largest signed distance to the facet’s
supporting plane. If the maximum signed distance is negative, then the
point is contained in the polyhedron. Otherwise, the corresponding facet
is closest to the point. This operation takes linear time in the number of
features. Note that for detecting intersections of the polyhedra we also
need to check edges for intersection with the facets, since two polyhedra
may intersect without the need for either polyhedron to contain a vertex
of the other polyhedron. Checking edge-facet intersections can be done
while computing the closest points for the feature pair, and thus takes
little additional processing.

In theory, the running time of the LC algorithm has a worst-case upper
bound of O(n?) for a pair of polyhedra of n vertices each, since there
are O(n?) feature pairs. However, Lin and Canny claim that empirically
their algorithm has a time bound that is linear in the number of ver-
tices if no special initialization is done, and constant when the algorithm
is initialized by a pair of features that lie close to the closest features.
Local-minimum conditions for disjoint polyhedra should only occur in
the initialization phase if the degree of frame coherence is high, since
then at most one feature switch per frame is necessary. If there is not a
lot of frame coherence—for instance, if objects are moving or spinning
fast—then local minima may still occur in the simulation phase.

120 Chapter 4 Convex Objects

Although in theory the algorithm is guaranteed to reach a termina-
tion condition, finite-precision implementations of LC tend to suffer from
cycling (i.e., infinite alternating of pairs of features) for degenerate config-
urations of objects. In I-COLLIDE the closest-feature test recovers from
cycling by setting a maximum on the number of iterations. If the max-
imum is reached, then the LC approach is abandoned, and the results
of the test are computed using Seidel’s randomized linear-programming
algorithm for finding a separating plane. Mirtich presented a variant of
LC, called V-Clip, which is claimed to solve the cycling problem and has
better performance than the original algorithm [88]. An implementation
by Mirtich of the V-Clip algorithm is made publicly available as the V-Clip
collision detection library.

Recently, two new variants of the LC feature-walking algorithm that
employ multiple-level-of-detail polyhedron representations have been
proposed [40, 62]. Both variants are offered as faster solutions for cases
where the degree of coherence is low. The solution presented by Guibas
et al. [62] is based on the Dobkin-Kirkpatrick hierarchical representa-
tion, discussed on page 27. By following shortcuts via coarser layers, their
algorithm reduces the worst-case time for finding the closest features to
O(logn).

The solution presented by Ehmann and Lin [40] is similar to the
Dobkin-Kirkpatrick structure in the sense that each coarser level of detail
reduces the number of features by a fixed factor. However, unlike DK,
each level is a bounding volume of the original polyhedron. During fea-
ture tracking, the algorithm may skip to a coarser or finer level depending
on the current distance between the features. In this way, considerable
speedups can be attained in applications where accurate distances are not
required. An implementation of this algorithm is publicly available as the
SWIFT library [39].

Table 4.3 shows an overview of the discussed distance computation
algorithms, of which the algorithm by Cameron and Culley also computes
the penetration depth. Although the Dobkin-Kirkpatrick algorithm has

Table 4.3 Distance computation algorithms for convex polyhedra.

DK [31] CC[16] LC[79]
Representation hierarchical winged-edge winged-edge
Space bound O(n) o(n?) O(n)
Time bound O(log2 n) O(n3) incremental: near O(1)
(O(n?) single shot: roughly O(n)
orientations)
Implementation unknown exists [16] I-COLLIDE [24],

V-Clip [88]

4.3 The Gilbert-Johnson-Keerthi Algorithm 121

the best worst-case time bound, we cannot draw conclusions regarding
its actual performance, since there is no reference to an implementation of
this algorithm. Of the mentioned distance algorithms, the L.C-based algo-
rithms are best suited for computer animation applications, where there
is usually a lot of frame coherence. In the following section we will discuss
the Gilbert-Johnson-Keerthi distance algorithm, which is competitive in
performance with the LC-based algorithms.

4.3 The Gilbert-Johnson-Keerthi Algorithm

4.3.1

We devote the rest of this chapter to the Gilbert-Johnson-Keerthi algo-
rithm (GJK). GJK is an iterative method for computing the distance
between convex objects; however, it can be tailored to solve all the men-
tioned proximity queries. GJK is our method of choice for proximity
queries on convex objects for the following reasons:

® GJK is extremely versatile. It can be applied to convex objects in gen-
eral. We will show how to use GJK for polytopes, quadrics, Minkowski
sums of convex objects, and images of convex objects under affine
transformation.

® GJK is a one of the fastest methods currently available for performing
the mentioned proximity queries. Incremental versions of GJK that
exploit frame coherence achieve a performance that is competitive with
other incremental methods.

s Despite the fact that GJIK can be difficult to grasp, since the algo-
rithm requires quite a lot of nonintuitive mathematics to describe,
implementing GJK is not so hard. The algorithm needs to handle hardly
any special cases.

The difficulty in understanding—or rather, getting an intuitive notion
of—how GJK works can be a problem for implementors. Moreover, since
it is an iterative method, GJK is very susceptible to numerical errors that
may cause all sorts of bad behavior. So, we will take extra care in explain-
ing all the mathematical and numerical details of the algorithm and pay
special attention to how bad behavior due to numerical problems can
be met. We start off with an overview of GJK and fill in the details in
subsequent sections.

Overview

The original GJK distance algorithm is applicable to polytopes only [52].
Later, Gilbert and Foo presented a generalized GIK algorithm to be

122 Chapter 4 Convex Objects

used for convex objects in general [51]. We describe the generalized GJK
algorithm here.

GJK is essentially a descent method for approximating the point closest
to the origin of A—B, the CSO of A and B, where A and B are general convex
objects. We denote this point as v(4 — B), where

v(C) e C and |[v(C)|| = min{|x| : x € C}.
It follows that the distance between A and B can be expressed as
d(A,B) = |v(A - B)II.

GJK approximates the point v(A —B) in the following way. In each itera-
tion a simplex is constructed that is contained in A—B and lies nearer to the
origin than the simplex constructed in the previous iteration. A simplex
is the convex hull of an affinely independent set of vertices. The simplices
can have one to four vertices, so a simplex can be a single point, a line
segment, a triangle, or a tetrahedron. We define Wy, as the set of vertices of
the simplex constructed in the kth iteration (k > 1), and v asv(conv(W)),
the point of the simplex closest to the origin. Initially, we take Wy = 8,
and vg, an arbitrary point in A — B. Since A — B is convex and W, € A — B,
we see that v, € A — B, and thus [fvi|| > |v(A — B)| for all k > 0. So, the
length of v;, is an upper bound for the distance between A and B.

GJK constructs each new simplex using a support mapping of A — B. A
support mapping of a convex object A is a function s that maps a vector
v to a point of A, according to

salv) € A suchthat v-sap(v) =max{v-x:x e A}.

The result of a support mapping for a given vector is called a support point.
We already saw the use of support mappings for polytopes in the Chung-
Wang algorithm on page 111. Note that a support mapping of a given
object may not be unique. The choice of support mapping does not matter
in the applications that we will encounter. We discuss the computation of
support mappings for the different types of convex shapes in Section 4.3.4.
For now, let’s assume we have a support mapping ss—g of A — B.

In each iteration we add a new support point wy, = sa_p(—vy) as a vertex
to the current simplex W;. We take vi,; = v(conv(Wj U {w})), the point
closest to the origin of the new simplex. As Wy, 1, we take the smallest set
X € Wi U{wy}, such that vi, | is contained in conv(X). It can be seen that
exactly one such X exists and that it must be affinely independent. So,
what happens is that while we are adding vertices to the simplex, earlier
vertices that are no longer necessary for supporting v, are discarded.

4.3 The Gilbert-Johnson-Keerthi Algorithm 1273

Vi

__________________________ O
..... -

@k=0,Wy=0 (b) k=1, W; = {w)

N Wy
(© k=2, W;={wy w} (d) k =3, Wy = [wy, w,}

Figure 4.6 TFour iterations of the GJK algorithm. The dashed lines represent the support

4.3.2

planes H(—vy,v; - wg.). The points of W), are drawn in black.

Figure 4.6 illustrates a sequence of iterations of the GJK algorithm in
two-dimensional space.

Convergence and Termination

The theorems presented here prove that the sequence {v;} converges to
v(A4 — B) and provide an upper bound for the error in v;. The proofs of
these theorems are rather elaborate and presented only for the interested.
They are not essential for understanding the GJK algorithm and can be
safely skipped.

Theorem 4.4 shows that in each iteration step the new v;,; must be
closer to the origin than the previous one, except if the previous v, was
already the closest point. The proof of this theorem uses Lemma 4.1 from
page 107 as well as Lemma 4.2. Lemma 4.2 offers a criterion for deciding
whether v, is the closest point of A — B.

124 Chapter 4 Convex Objects

Theorem

4-4

Lemma

4.2

V11l < lIvell, with equality only if v, = v(A — B).

Proof
First of all, vy, 1| = min{||x|| : x € conv(W; U {w;})} < [vgll, since v €
conv(Wy) and conv(W;,) € conv(Wy U{wy}). Suppose |[Vi, 1]l = [IV¢ll. Then,

lvell < |Ix|| for any x € conv(Wy U {w;}). Since v, € conv(W), and thus,
the line segment v wy, is contained in conv(W, U{w;}), we have |lu|| > |||
for any point u on the line segment v wy. Thus, according to Lemma 4.1,
it follows that ||v||2 — v - w; < 0. From Lemma 4.2 we know that |v||> —
Vi - Wi > 0, and thus, ||vi||? — v; - w; = 0, which can only be the case if
Vi = V(A - B).

(vi? — v - wg > 0, with equality only if v = v(4 — B).

Proof

Since —vi - Wy = —Vj - Sa_p(—v;) > —v; - x for all x € A — B, we have
Vi -X— v W > 0 for x € A—B. In particular, ||v;]|? — v - w; > 0. Suppose
Vel — vi - wg = 0. Then, foranyx € A — B,

Vel < vl + Ix — vlf?
= [xI? = 2(v; - x — [Ivg1?)
= Ixl? = 2(v - x — v - W)

< IxI?,
and thus, v, =v(4 — B).

Theorem 4.4 provides a necessary, yet not sufficient, condition for
global convergence [81]. It falls outside the scope of this book to get into
the details of proving global convergence; however, an argument that can
be made is the following. Gilbert has shown that for vi,; = v(Vjwy), the
sequence {v;} converges to v(A — B) [50]. Since Yyw; < conv(W; U {w;}),
the GJK algorithm must do at least as well as the simpler iterative method.
Thus, indeed v, — v(A — B) for k — oo.

For polytopes, GJK arrives at v; = v(A — B) in a finite number of iter-
ations, as shown in [52]. For nonpolytopes this may not be the case. For
these types of objects, it is necessary that the algorithm terminates as soon
as vy lies within a given tolerance from v(4 — B). Theorem 4.5 provides
us with a means to estimate the error in v;. This theorem states that the
squared distance between v, and v(A — B) is bounded by [v[|* — v - wg.
We recognize this term as the stop criterion from Lemma 4.2.

Theorem

4.5

Algorithm
4.1

4.3 The Gilbert-Johnson-Keerthi Algorithm 125

v —v(A — B)|1? < ||vill® — vg - wy.

Proof

From Lemma 4.2 it follows that ||v||? — v-sa_g(—v) = 0, for v =v(A — B).
Since, for any x € A — B, we have —v - s4_g(—v) > —v.x, and thus,
[v||? — v-x < 0, we find that |[v(A — B)||2 —v(A — B) - v, < 0. We derive

Vi —v(A = B)I? = IVl — 2v - v(A — B) + |v(A — B)|}?
< |Ivg]l*> = vi - v(A — B).

Furthermore, —v; - wy, = —vi -534_p(—v}) > —v; -xforanyx c A —B. In
particular, —v;- Wi > —vi-v(A—B). Hence, |[vi—v(A—B)||? < [[vg |2 —vg- wy.

Let y; = |vilI* — vi - w; be the upper bound for the squared distance
between v, and v(A — B). Note that, although w;. = s4_g(—v;) may not be
uniquely defined for v, the error bound y; is uniquely defined for each v;.
It follows from the well-known triangle inequality x| — |ly|| < |lx — | that

Vil — (A = B}l < livie —v(A = B)I| < V%

So, ./« is an upper bound for the absolute error in | v ||, the approximated
value for d(4, B). Furthermore, it follows from Lemma 4.3.2 that y;, = 0
for vi = v(A — B). Since y; is continuous in v;, we find that y;, — 0 for
v, — v(A — B). For any positive absolute error tolerance ¢,, there exists
a k such that /¥ < e,,s. Phrased differently, y, drops below Eibs within
a finite number of iterations, for any positive ¢,,. As a stop criterion for
general convex objects we may choose ||V ||Z — v - Wy < 8§bs‘ Algorithm 4.1
describes the GJK distance algorithm in pseudocode.

The theoretical GIK distance algorithm.

v := ‘arbitrary point in A — B”;
W.=;
w:=54_p(-V);
while |v|? —v -w > 8§bs do
{{v is not close enough to v(A — B). }
begin
v:=v(conv(W U {w}));
W = “smallest X € W U {w} such that v € conv(X)”,
w:=s54_p(-V);
end;
return ||v||

126 Chapter 4 Convex Objects

4.3.3

Note that Algorithm 4.1 describes the theoretical algorithm, in which
arithmetic operations are assumed to have infinite precision. In a finite-
precision implementation of the GJK algorithm, numerical problems may
cause all sorts of bad behavior. We address these problems further on.
First, let’s fill in the remaining details.

Johnson's Distance Algorithm

Johnson’s distance algorithm is an algorithm for computing the point
v of a simplex closest to the origin. Let Y be the affinely independent
set of vertices of the simplex. Then, v = v(conv(Y)). Furthermore, with
Johnson’s distance algorithm we determine the smallest X € Y such that
v € conv(X). The algorithm is used in GJK for computing v,y and W
from Y = W, U {wyg}.

ForY = {y1, ...,¥x}, the point v is described as a convex combination
of Y in the following way:

n n
V= Zkiyi, where Z)‘i =1 and X;>0.

i=1 i=1

The smallest X C Y such that v € conv(X) is the set X = {y; : A; > 0}. In
other words, the set X is found by discarding all the points y; from Y for
which ; = 0.

Since v = v(conv(X)) and X = {y; : &; > 0}, it must also be that v =
v{aff(X)), that is, the point closest to the origin of the affine hull of X.
This can be seen from the fact that if v(aff(X)) is closer to the origin
than v(conv(X)), then for at least one y; € X, the parameter A; would
have to be zero. Moreover, for any y; € Y \ X, the parameter A; for the
point v(aff(X U {y;})) is at most zero, because otherwise v(conv(X)) #
v(conv(Y)).

So, we are looking for set X = {y; : i € Ix}, where Ix C {1, ...,n}, for
which (i) for all 1 € Iy, we have A; > 0 In

v(aff(X)) = Z Ayi and Z ri=1,

iely iely

and (ii) for allj ¢ Ix, we have A; < 0 in

v(aff(X U {y;})) = }: Ay and Z A= 1.

ielxUj) ielxUtj)

For such a set X, we have v(aff(X)) = v(conv(Y)). In Johnson’s algorithm,
this subset X is found simply by iterating over all nonempty X € Y and

4.3 The Gilbert-Johnson-Keerthi Algorithm 127

checking whether X complies with rules (i) and (ii). Thus, it is necessary
to compute the signs of the parameters %; that represent v(aff (X)) for each
nonempty X C Y. The parameters 4; of v(aff(X)) are computed as follows.

LetX ={y;:i €lx} = {xq,...,Xm} be a subset of Y. We observe that a
point v € aff(X) is closest to the origin iff the vector v is perpendicular to
aff(X), that is, (x; —x1)-v =0fori = 2, ...,m. Thus, the parameters A; of
v(aff(X)), expressed as an affine combination of X,

v(@ff(X) =) nx and D r=1,

i=1 i=1

are found by solving the system of linear equations A[Aq, ..., ,]T = b,
where
1 . 1 1
Ao (Xzﬂ:u)-m (X2_7f1)'xm and b
(Xm—;il)‘xl---(xm—;n)'Xm 0

We apply Cramer’s rule to solve this system of equations. For A=
[a1 - - a], we find the solution

o detfa;---aj—1 bajiq---au]
T det(A)

By performing a cofactor expansion about the first row, we find that

o (—I)IH det(Ali)
a det(A)

For x; =y;, i € Ix we define
A‘IX = (—1)1+i det(Ali).

This expression makes sense since the order in which the y; appear in
X is irrelevant. This can be seen by the fact that for any permutation of
assignments of points y; to x;, the vectors x; — xq forj = 2,...,m are
linearly independent and contained in aff(X). Thus, the value of AX will
be the same for all of these permutations.

128 Chapter 4 Convex Objects

We will derive a recursive definition for A;X . First of all, for singleton
X, we trivially have Af(= 1; thus,

AEY:‘} =1.

Suppose we have computed AlX foralli € Ix. Takej ¢ Ix, and assign y; to
X;+1. Then,

XUty;

I } — (_1)1+(m+1) det(M),

A

where the submatrix M is defined as

(x2—x1)-x1 -+ (X2—X1) Xpm
M=

Xm —%x1) X1 -+ X —X1) X

K1 —X1) - X1 -+ K1 — X1) - X

The determinant det(M) is computed by cofactor expansion about the
last (#mth) row of M. We find

det(M) = Z(—l)m+i((xm+1 —X1) - ;) det(Ay)).
=1
We derive

m
AFI = (D 3 Y (1 — 1) - %)) det(Agy)

j=1

= (=D (K41 — x1) - x) det(Ay)

— DM ((x1 = Xpmt1) - X)) det(Ay))

AX((ye = ¥i) - ¥0),

=1
m
>
=1
D
iely

where y; = x3. Since the order in which y; appear in X is irrelevant, we
may take any y; for which k € Ix, as long as we use the same y;, for all

4.3 The Gilbert-Johnson-Keerthi Algorithm 129

terms in the summation. Let’s summarize the recursive definition we just
found:

Al{Yi} =1
XU(y;} .
A - Z A‘l?(((y,< —yj)-yi) forj¢lxandanyk e Ix.
iEIX

In the same way, we define A* = det(A) and express v(aff(X)) as

X

v(aff(X)) = Z Aiy; where A; = %

iEIX

Since v(aff(X)) is expressed as an affine combination of X, and thus,
Yicry A = 1, we have

X_y Ak

iGIX

Furthermore, it can be shown that det(A) is positive for affinely inde-
pendent sets X [52]; thus the signs of the parameters A; are equal to the
signs of the values AX Thus, the smallest X € Y such thatv € conv(X) can
now be characterlzed as the subset X for which (i) AX > 0 for eachi € Iy,

and (ii) A Xoty) < 0, for all j ¢ Ix. Johnson's algonthm successively tests

each nonempty subset X of Y until it finds one for which (i) and (ii) hold.

Let’s take a look at the numerical aspects of Johnson’s algorithm. As
mentioned on page 101, it may seem tempting from a performance view-
point to rewrite (y, — ¥;) - ¥i as Y - ¥i — ¥; - ¥i,» since then we avoid the
computation of an intermediate vector y; — y;. However, if the result is
close to zero, then the expression y; - y; —y; - y; may result in a much larger
relative error than the expression (y; —y;) - yi- This is due to the fact that
for the first expression the relative round-off errors in the computations
of the dot products are amplified by the subtraction, whereas in the sec-
ond expression the subtractions are performed before the dot product
computation. So, for numerical stability, it is preferred to compute the
determinants Af‘ using the expression (y; — ;) - ¥i.

An aspect of Johnson’s algorithm that can be exploited for improving
the precision is the choice of the arbitrary y;. Since we are free to pick any
v for which k € Iy, we would like to choose the one that introduces the
smallest numerical error. The choice of y; affects the amount of cancella-
tion 1n the summation of the terms AX ((yr—yi)- yl) in the computation of
AIXU vl . We should choose y;, such that the terms A ((yx —¥;)-yi) have the
smallest absolute value, since then the loss of pre0151on in the computation

130 Chapter 4 Convex Objects

4.3.4

of A;(U{yi ! will be the least. So, an obvious choice for y;, is the point in X

closest to y;, since if the length of y; — y; is short, then the absolute value
of (yr —y;) - yi is likely to be small as well.

Experiments show that this choice for y; indeed results in a relative
error in the computed values of the determinants that is at most as large,
and often smaller, than the relative error for an arbitrary chosen y;. How-
ever, the gain in precision in comparison with an arbitrarily chosen y;
is only marginal. Considering the high cost of determining the point in
X closest to y;, it may therefore be a reasonable choice to simply pick yj
arbitrarily if performance is an issue.

Despite these measures to preserve precision in the computation of
the determinants Af(, numerical errors cannot be avoided when using
finite-precision arithmetics. Numerical errors manifest themselves most
prominently when X is close to being affinely dependent, since then
AX is close to zero. Large relative errors in the computed parameters
A cause a number of irregularities in the GJK algorithm. We address
these irregularities further on. But first, let’s fill in the remaining issue of
how to compute the support mappings for the different types of convex
objects.

Support Mappings

The versatility of GJK is a result of the fact that it relies solely on sup-
port mappings for reading the geometry of an object. A support mapping
fully describes the geometry of a convex object and can thus be viewed
as an implicit representation of the object. In this section we discuss the
computation of the support points for a large class of convex objects. The
class of objects we consider is recursively constructed from

1. convex primitives, such as

(a) polytopes (e.g., line segments, triangles, boxes, and other convex
polyhedra)

(b) quadrics (e.g., spheres, cones, and cylinders)
2. images of convex objects under affine transformation
3. Minkowski sums of two convex objects
4. convex hulls of a collection of convex objects.
For each primitive type we need to supply a support mapping. The sup-

port mappings for affine transformations, Minkowski sums, and convex
hulls are derived from the support mappings of their child objects.

4.3 The Gilbert-Johnson-Keerthi Algorithm 131

Earlier, we defined a support mapping of a convex object A as a function
s4 that maps a vector v to a point of A, according to

sa(v) e A suchthat v.si(v) =max{v-x:x €A}

We see that for v = 0 any point in A may be returned as a support point.
However, we will impose that the support mappings we use should always
return a point on the boundary of the object. The reason for this constraint
will become apparent in Section 4.3.8.

Polytope
For a polytope P, we may take sp(V) = Syeryp)(V); that is,
sp(v) € vert(P), where v-sp(v)=max{v-p:p € vert(P)}.

Obviously, a support point of a polytope can be determined in time that is
linear in the number of vertices of the polytope. Simply search the list of
vertices for a vertex p for which v - p is maximum. For simple polytopes,
such as simplices, this is the fastest way to determine a support point.
However, for more complex polytopes we can do a lot better.

It is shown in [23] that a support point can be found in O(log#) time
for two- and three-dimensional polytopes represented by the Dobkin-
Kirkpatrick hierarchical representation, as discussed on page 27. For our
purpose, the Dobkin-Kirkpatrick hierarchy is best represented as a multi-
layered vertex adjacency graph. Let Py, ..., Py, be the sequence of polytopes
in the hierarchical representation, where Py = P and P;, is a simplex. With
each vertex p we associate a sequence of successor sets adj;(p), which con-
tain the adjacent vertices of p in polytope P;. The successor sets are defined
only for polytopes P; that have p as a vertex. For each ith layer, the vertex
adjacency graph is obtained by performing a convex hull computation on
the vertices of P;. It can be seen that the shortest path between two vertices
using edges from multiple layers has O(logn) length.

Using a multilayered vertex adjacency graph, a support point sp(v) is
determined efficiently in the following way. Let p; = sp,(v), the support
point for v of P;. First, we determine the vertex py, simply by testing
all the vertices of P;,. Since Py, is a simplex, this takes constant time. We
determine a support point p; from p;+1 by testing the vertices in adj;(p;+1)
only. Since vert(P;) \ vert(P;y1) is an independent set, the support point
pi must be either p;;1 or a member of adj;(pi+1). If for any q € adj;(pi+1),
we have v.q > v - p;i1, then p; = q. Otherwise, p; = piy1.

Note that for a vertex p we do not necessarily have adj;(p) N adj;,, (p) =
@; that is, P; and P;, 1 may have edges in common. For the correctness of

132 Chapter 4 Convex Objects

Algorithm
4.2

the given method it is not harmful to remove from adj;(p) the vertices it has
in commmon with adj;,;(p). By doing this for all vertices on all layers, we
can attain a considerable speedup. It can be shown that for a slimmed-
down multilayered vertex adjacency graph, adj;(pi+1) has at most eight
vertices, and thus the amount of work that needs to be done on each layer
is constant. Since there are O(logn) layers, a support point sp(v) can be
determined in O(logn) time.

In GJK, especially in the incremental version we discuss further on,
there is usually a lot of coherence between consecutive calls of the support
mappings. It has been mentioned in a number of publications [15, 16, 23,
98] that by exploiting this coherence, the cost of computing a support
point of a convex polytope can be reduced to almost constant time. For
this purpose, an adjacency graph of the vertices is maintained with each
polytope. Using a vertex adjacency graph, a support point that lies close
to the previously returned support point can be found much faster using
local search. This technique, commonly referred to as hill climbing, is
described in Algorithm 4.2.

Computing a support point p = sp(v) using hill climbing on the polytope’s
vertex adjacency graph.

p := ‘cached support vertex”,
repeat

optimal := true,

for q € adj(p) do

begin
if v.-q>v-p then
begin
p=q
optimal := false
end
end

until optimal

Notice that for vertices that have a large number of adjacent edges,
such as the apex of the polyhedral cone in Figure 4.7, a single iteration of
the hill-climbing method may still take a large amount of time. Moreover,
these complex vertices are likely to be visited more frequently than other
vertices and therefore slow down hill climbing considerably. This prob-
lem can be solved by leaving out the complex vertices from the vertex
adjacency graph and handling them separately [99]. Thus, for W, the set
of vertices minus the vertices that have a degree of, say, eight or more,
we compute a vertex adjacency graph of conv(W), and use this graph

Figure 4.7

4.3 The Gilbert-Johnson-Keerthi Algorithm 133

Vertex p has a very high degree and slows down hill climbing on this polytope.
Hill climbing is performed on the vertex adjacency graph of the reduced polytope
conv(W), where W is the set of vertices minus p. The result sy/(v) is compared
with p afterwards.

in Algorithm 4.2. We compare the returned support point of the reduced
polytope with the complex vertices and return the point p for which v-p is
maximum. Usually a polytope has only a few complex vertices, so handling
them separately is much faster.

In addition, it is important to use fully triangulated vertex adjacency
graphs. Otherwise, complex facets, such as the base of the polyhedral
cone in Figure 4.7, slow down hill climbing when the support point
moves to a vertex on the opposite side of the facet [99]. Qhull, a software
library for convex-hull computation, supports fully triangulated boundary
representations as output [8].

On page 120 we mentioned a feature-walking variant by Guibas et al.
[62] that attains a worst-case O(logn) time bound by employing the
Dobkin-Kirkpatrick hierarchical polyhedron representations, while still
maintaining a near constant computation cost per frame when there is a
lot of frame coherence. A similar technique can be applied for determining
a support point using a multilayered vertex adjacency graph. We use the
full multilayered vertex adjacency graph rather than the slimmed-down
variant in this scheme. Think of a multilayered vertex adjacency graph
as a road network in which the coarser layers correspond with freeways
and the finer layers correspond with local roads. We use the coarser lay-
ers only if the new support point lies further away from the previously
returned support point.

134 Chapter 4 Convex Objects

Algorithm

4.3

In this scheme, a support point is determined in a two-phase proce-
dure. The first phase is similar to the hill-climbing technique, only, for
the multilayered graph, we attempt to descend to the next coarser layer
in each step. We descend from layer i to layeri + 1 if the current vertex is
also a vertex of P;, . If this is not the case, then we continue to search the
current layer. The depth of a vertex p, denoted by depth(p), is the coarsest
layer i for which p is a vertex of P;. Thus, if i < depth(p), then we may
descend to a coarser layer.

As with the hill-climbing technique, we repeat these steps until we have
found a vertex that is a support point on the current layer. The second
phase, in which we ascend back to the finest layer, is similar to the single-
shot operation that starts on the coarsest level. Algorithm 4.3 describes
this two-phase scheme in pseudocode.

Computing a support point p = sp(v) using hill climbing on a multilayered
vertex adjacency graph.

:= ‘cached support vertex”;
i=1,;
repeat

optimal := true;

for q € adj;(p’) do

begin
if v.-q>v-p then
begin
P=q
optimal .= false
end
end;

if notoptimal and i < depth(p) then
i:=i+1; {Switch to a coarser layer.}
until optimal;
{{p is support point of the current layer.}}
while i #1 do
begin
i:=i—1; {Switch to a finer layer.}}
for q € adj;(p) do
begin
if v.g>v-pthenp:=q
end
end

The advantage of this multilayered hill-climbing technique over the
single-shot method is the fact that if the current support point is close to

4.3 The Gilbert-Johnson-Keerthi Algorithm 135

the previously returned support point, then we only need to descend a few
layers to find the support point, whereas for the single-shot method we
would always have to start on the coarsest level and step through all layers.
Thus, if there is a lot of coherence between consecutive calls for support
points, then determining a support point can be done in almost constant
time, whereas, in the worst case, when the current support point lies
further away from the previously returned support point, the time bound
is O(logn) (if the vertex degree is bounded by a constant).

Note that the full multilayered vertex adjacency graph is needed only in
the first phase, while descending the hierarchy. For the second phase, we
may use the slimmed-down variant. So, in order to speed up the second
phase, we mark, per layer, the adjacent vertices of each vertex p with a
Boolean flag denoting whether or not this vertex is also an adjacent vertex
of p on a coarser layer. In this way, we can skip the flagged vertices when
iterating over the adjacent vertices of p in the second phase.

Box

Let A be an axis-aligned box centered at point ¢ and with extent vector
h = (1,12, n3). Then, we take as a support mapping for 4,

sa((v1,v2,v3)) = € + (sign{vi)n1, sign(v2)n2, sign(vs)ns),

where sign(ae) = —1 if ¢ < 0 and 1 otherwise.

Sphere

The support mapping of a sphere A centered at the point ¢ and with radius
o is
p"z—” ifv#£0

salv) =e+ { pe; otherwise.

Notice that for all vectors v, including v = 0, a point on the boundary of
A is returned.

Cone

Let A be a cone that is centered at the point ¢ and whose central axis is
spanned by the unit vector u. Furthermore, let the cone A have a radius
of p at its base and a halfheight of 5. Then, for the top angle 6 we have

0

Jor+@n?

sin(9) =

136 Chapter 4 Convex Objects

Figure 4.8

Computing a support point for a cone. For the top angle 0, we have sin(6) =

p/v/ p? + (2n)2. The apex is a support point only if ¢, the angle between v and w,
is at least 8. We have sin(¢) = §/||v|, where § =u - v.

Figure 4.8 explains how this value is used to determine whether or not
the apex is the support point. Let w = v — (u - v)u be the component of v
orthogonal to u. We choose as a support mapping for A, the mapping

na it (u - v)/||v] > sin(9)
sapv)=c+ 4 —npu+ p”‘w”—” if (w-v)/|v| < sin(@) and w # 0
—nu otherwise.

Cylinder

Let A be a cylinder that is centered at the point ¢ and whose central axts
is spanned by the unit vector u. Furthermore, let cylinder A have a radius
of p and a halfheight of n. Again, let w = v — (u - v)u be the component of
v orthogonal to u. We find as a support mapping for A, the mapping

ign(u-vinu+ p= ifw#0
e S0 I3y

sign(u - v)nu otherwise.

Note that for both the cone and the cylinder the computations can
be greatly simplified if one of the coordinate axes is chosen for u. For
instance, for u = e3, the dot product u - v is simply the second component
ofv, and the vector w is the vector v with the second component set to zero.

Theorem

4.6

4.3 The Gilbert-Johnson-Keerthi Algorithm 137

Affine Transformation

As discussed in Section 2.3, an object is most commonly animated by
changing the placement (position, orientation, and scaling) of its local
coordinate system. The placement of an object is represented by an affine
transformation. Theorem 4.6 shows that for any object A that has a proper
support mapping sa, the following mapping can be used as a support
mapping for T(A), the image of A under affine transformation T(x) =
Bx +c:

sta)(v) = T(s4(BTv)).

Note that BTv = (vIB)T, which is simply the vector result of B left-
multiplied by v. We see that we do not need to compute the inverse of B
for computing a support point for T(A). This is true even if the transfor-
mation involves nonuniform scalings. We do not need an inverse in order
to transform v to local coordinates, since vector v behaves as a normal in
support point computation.

Let s4 be a support mapping of object A, and T(x) = Bx + ¢ an affine
transformation. Then a support mapping for T(A), the image of A under
T, is sp(a)(v) = T(s4(BTv)).

Proof

A support mapping st is characterized by
V- sta)(v) = max{v - T(x) : x € A}.

We rewrite the right member of this equation using the following
deduction:

v-T(x) =v-Bx+v-c
=vBx+v-c
= B x+v-c
= B™) x+v-c
This equation is used in the steps marked by (x) in the following deduction:

max{v-T(x) : x € A} W max{(BTv) - x +v-c:x € A}

= max{(BTv)-x:x€A}+v-¢c

138 Chapter 4 Convex Objects

= B') saBv) +v-c
“ . T(s,BTV))

Hence, st(4)(v) = T(sa (BTv)) is a support mapping of T(A).

Minkowski Sum

Given two convex objects A and B, for which we have support mappings
s and sp, the support mapping

sa+B(V) = s4(v) +sp(v)

is a proper support mapping for A + B, the Minkowski sum of A and B, as
can be verified quite easily. We see that it is not necessary to construct an
explicit representation of A + B in order to determine support points for
A+B.

For —B, the Minkowski negation of convex object B, we find the support
mapping

S_B(V) = —SB(_V)-
Thus, a proper support mapping for A — B, the CSO of A and B, is
sa—B(v) = sa(v) — sp(—v).

The versatility of GIK lies in the fact that it uses a support mapping
for reading the geometry of the CSO. Since it is easy to compute support
points for CSOs of different types of convex objects, we can combine any
two types of convex primitives in the GJK algorithm.

Convex Hull

We saw that for polytopes we may choose a vertex p, for which the dot
product v - p is maximum, as the support point for v. This idea can be
generalized to collections of arbitrary convex objects. Let X be a collection
of convex objects. Then, a support mapping for conv(X), the convex hull
of X, is

Sconv(x)(V) = 54(v), where A € X and v - s4(v) = max{v - sg(v) : B € X}.

In other words, simply compute support points s4(v) for all A € X, and
select the point p for which v - p is maximum.

4.3 The Gilbert-Johnson-Keerthi Algorithm 139

R 54(v)

Figure 4.9 A support mapping for the convex hull of spheres A and B. Compute the support

4.3.5

points for each sphere, and select the point p for which v - p is maximum.

Convex hulls are useful for constructing complex objects from primi-
tives. For instance, a conical shape with rounded caps can be constructed
by taking the convex hull of two spheres of different sizes, as illustrated in
Figure 4.9. Such shapes can be used, for instance, for representing limbs
of an animated character.

Implementing the GJK Algorithm

In this section, we discuss a fast implementation of the GJK distance
algorithm. Recall that Johnson’s algorithm computes, for each nonempty
X C Y, the parameters A; of the point closest to the origin of aff(X) using
the recursive definition

X . .
Ai Uiy;} — Z A?(((Yk _ y]) -y;) forj &Iy andanyk e Iy.
iely

In the kth iteration, this set Y is the set W; U {w;}. Since some or all vertices
in W, reappear in W ;, many vectors y; — y; from the kth iteration are
also needed in the (k + 1)th iteration. So, it makes sense to cache these
vectors for future iterations. We will show how this caching of vectors is
implemented efficiently.

In order to minimize the caching overhead, we assign an index to each
new support point, which is invariant for the duration that the support
point is a member of Wj, U {w;}. Since W U {w;} has at most four points,

140 Chapter 4 Convex Objects

and each point that is discarded will not reappear, we need to cache data
for only four points. The support points are stored in an array y of length
four. The index of each support point is its array index. The set W} is
identified by a subset of {0, 1, 2, 3}, which is implemented as a bit-array b;
that is, Wy, = {y[i] : b[i]] = 1,i = 0,1, 2, 3}. The index number of the new
support point wy, is the smallest i for which b[i] = 0. Note that during
iterations, a free “slot” for w; is always available, as long as v; is not
the closest point. This follows from the fact that if W has four elements,
then the point v; = v(aff(W;)) must be the origin, since Wj, is affinely
independent. We see that if v, is the origin, Algorithm 4.1 terminates
immediately without computing a new support point.

The vector differences of all pairs y[i], y[j] € Wy U {w;} are stored in a
4 x4 arrayd; thus, d[i,j1 = y[i]—y[]. Note that the elements of the diagonal
of d, the vectors d[i, {], are not used. However, a tighter representation of
the cache space, for instance as a 3 x 4 array, complicates indexing the
cached vectors, so we prefer the 4 x 4 array. In each iteration, we need to
compute the vector differences of the pairs containing wy, only. The other
vector differences are already computed in previous iterations. For a Wy,
containing n points, this takes 2n vector difference computations.

Earlier we explained that some precision improvements can be
achieved by choosing y; such that |ly; — y;l|? is minimal. In the same
way as we do for the vector differences, we cache the squared lengths
of the vectors d[i,j] in a 4 x 4 array, rather than recompute them when
needed. Since the squared length of d[i,/] is equal to the squared length
of d[j,1], we need to compute n squared lengths in each iteration.

We further improve the performance by caching also the values of the
determinants A¥. Let Y = W; U {w;}. For many of the subsets X C Y,
the determinants Af are needed in several iterations and are therefore
better cached and reused instead of recomputed. For this purpose, each
subset X is identified by the integer value of the corresponding bit-array.
For instance, for X = {y[0], y[3]}, we find bit-array 1001, corresponding
to integer value 20 + 23 = 9. The values of A;X for each subset X are
stored in a 16 x 4 array. The element A[x, 1] stores the value of Af(, where
x is the integer value corresponding with subset X. Only the elements
Alx, 1] for which bit i of bit-array x is set are used. Again, we do not
choose to use a tighter cache space for the determinants, since that would
complicate the indexing of cached determinants. Similar to the vector
difference computations, we only need to compute, in each kth iteration,
the values of Ag(for the subsets X containing the new support point wy,
since the other values are computed in previous iterations.

Another performance improvement is based on Theorem 4.7. This
theorem states that in each iteration, the new support point has to be
one of the vertices of the new simplex. Consequently, only the subsets of
Wy U {wy} that contain wy, need to be tested in Johnson’s algorithm. This

Theorem

4.7

4.3.6

4.3 The Gilbert-Johnson-Keerthi Algorithm 141

reduces the number of subsets to be tested from 2"+! — 1 to 2", where n
is the number of elements in Wj.

For each kth iteration, if v; # v(A — B), then wy € Wy ;.

Proof
Suppose v, # v(A — B) and w;, € Wy, ;. Then, v(Wi 1) = v(W,), and
thus v,y = v. But according to Theorem 4.4, {vi 1]l = [lv¢|l only if

vi, = v(A — B), so this yields a contradiction.

We test all subsets X U {w;}, where X € W, and is possibly empty, in
the following way. Let y be the integer value that represents Iw,. Then,
for the integer value x of a subset X € W, we have 0 < x <y, and x&y,
the bitwise AND of x and y, is equal to x. Thus, in order to generate the
integer values corresponding with the subsets X € W, we iterate over
x =0, ...,y and skip all integers x for which x&y # x. Let w be the integer
value corresponding with {w;}. Thus, w = 2!, where i is the index of wy.
Then, the subsets X U {w;} are represented by the integers x + w.

Finally, a pair of closest points is computed as follows. At termination,
we have a representation of v ~ v(4 — B) as

V= Z Aiyi, where Zki =1 and i;>0.

iely iely

Each vertex y; is a support point of A — B and is therefore equal to a; — b;,
where a; and b; are support points of A and B, respectively. These support
points of A and B are stored in two arrays of length four and are indexed in
the same way as the array y. Let p =) ;. Aia;j and q = } ;. A;b;. Since
A and B are convex, it is clear that p € A and q € B. Furthermore, it can
be seen that p — q = v. Hence, p and q are the closest points of A and B.

Numerical Aspects of the GJK Algorithm

Arithmetic operations on finite-precision numbers will introduce round-
ing errors. In this section we discuss the implications of rounding errors
for the GJK algorithm and present solutions to problems that might occur
as a result of these.

Johnson’s Algorithm

Johnson’s algorithm is the main source of precision loss due to round-
ing. If the set W, U {wy} is close to being affinely dependent, then the

142 Chapter 4 Convex Objects

determinants AIX are close to zero. Thus, the computed values of the
determinants may have a huge relative error.
The point v(conv(W; U {w;}) is computed as the point

AX
v=7) ky, where Ai=-%>0 and a¥=3}Af,

iely iely

for a subset X < W; U {w;}. We see that the computed values for
the parameters A; add up to 1 (within machine precision) even if they
have large relative errors due to rounding. Thus, the computed point
v = v(conv(Wy U {w;})) lies in conv(X). However, large relative errors
in the computed parameters A; result in a vector v that may not be quite
orthogonal to aff(X). A small deviation in the direction of ¥ may cause
termination problems, as we discover further on.

More dramatic problems occur when a large error in a computed
determinant AX causes its sign to change. As a result of this, Johnson’s
algorithm may select a wrong subset X or, even worse, may not be able
to find a subset X that satisfies the stated criteria. The case where John-
son’s algorithm is unable to find a proper subset X is addressed in the
original GJK paper [52]. The original GJK uses a backup procedure to
compute the best subset. Here, the best subset is the subset X for which
all determinants AlX are positive and v(aff(X)) is closest to the origin.

In our experiments, we observed that in the degenerate case where the
backup procedure needs to be called, the difference between the best vec-
tor returned by the backup procedure and the vector v; from the previous
iteration is negligible. Hence, considering the high computational cost of
executing the backup procedure, we choose to leave it out and return the
vector from the previous iteration, after which GJK is forced to termi-
nate. Should the algorithm continue iterating after this event, then it will
infinitely loop, since each iteration will result in the same vector being
computed.

Termination

Let us review the termination condition ||v||? —v-w < gﬁbs of the GJK
distance algorithm. We see that for large |jv| the absolute rounding error
in the computed error bound [[v]|?> — v - w can be of the same magnitude
as Sﬁbs‘ This may cause termination problems. We solve this problem by
terminating as soon as the relative error, rather than the absolute error, in
the computed value of |v||? drops below a tolerance value &, > 0. Thus,
as a termination condition we take |[v|2 —v-w < erzel ivil2.

We would like to add that our experiments have shown that for quadric
objects, such as spheres and cones, the average number of iterations used

4.3 The Gilbert-Johnson-Keerthi Algorithm 143

for computing the distance is O(—log(e.)); that is, the average number
of iterations is roughly linear in the number of accurate digits in the com-
puted distance. For polytopes, the average number of iterations is smaller
than for quadrics, regardless of the complexity of the polytopes, and is
not a function of &, (for small values of).

Let’s examine the other end of the spectrum. If v ~ 0, then the rounding
error in the computed ¥ may render the direction of v totally unreliable.
Experiments show that, for v = v(aff(W)), the absolute rounding error in
|[¥]|2 is proportional to |[ymax||? = max{|ly||® : y € W}. Thus, for some well-
chosen error tolerance &, we trust only ¥ for which [[¥]|2 > &)l Vmax|I%-
We found that for ¢,;; = 100¢, the accuracy of the direction of ¥ to be
sufficient. Here, ¢ is the machine epsilon of the floating-point format,
which is 2724 for the single-precision format, and 2->3 for the double-
precision format of the IEEE Standard 754. If |[¥]|2 < &4/Vmax|I, then
we regard v as the zero vector, in which case GIK terminates.

Often, we can establish more easily that the actual v = v(aff(W)) is zero.
We know that W is affinely independent. If |W|, the number of points in
W, is equal to four, then aff(W) is the whole space, and thus, v must be the
zero vector. Note that v can be equal to the zero vector for |W| < 4; how-
ever, these cases are rare for general objects and occur most frequently
for configurations of symmetrical objects such as spheres and cylinders.

Ill-Conditioned Error Bounds

For certain configurations of objects, in particular objects that have flat
boundary elements, the error bound ||v||Z —v-w is ill-conditioned—a small
change in v may result in a large change in ||v||> —v-s4_g(—V). The relative
error in Vv = v(aff(W)) is larger for sets W that are close to being affinely
dependent. GJK has a tendency to generate simplices that are progres-
sively more oblong (i.e., closer to being affinely dependent) as the number
of iterations increases. Since for certain configurations of objects, a slight
deviation in the direction of ¥ is amplified to a huge error in the error
bound, termination problems may arise.

Termination problems may occur when two polytopes that differ a few
orders of magnitude in size are in close proximity of each other. Due to
the difference in size, the CSO of the objects has extremely oblong-shaped
facets. Let’s examine a scenario in which the current simplex conv(W) is
an oblong-shaped triangle, and v = v(A — B) is an internal point of the
triangle.

First we note that two of the triangle’s vertices lie close to each other in
comparison to the third vertex. This may cause a large relative rounding
error in the computation of the determinants AY. Hence, the computed
v may be contaminated by these errors. As mentioned earlier, Johnson’s

144 Chapter 4 Convex Objects

Figure 4.10

0
(b)

Two types of oscillations in GJK when the termination conditions are not met
due to an ill-conditioned error bound. (a) A slight error in ¥ causes a huge error
in the error bound 7 = ||v||2 — v - w and prevents GJK from terminating. The
same support point w is found in each following iteration. (b) If v lies close to the
diagonal of a quadrilateral, then failure to meet the termination condition may
cause GJK to alternate between two support points.

algorithm computes parameters A; that are positive and add up to 1. Thus,
V is an interior point of the triangle, yet located at some distance from the
actual v. Figure 4.10(a) depicts the effect of an error in v. We see that a
small error in ¥ may result in a large error in V]2 — v - w, the computed
error bound of |v||2. The algorithm should terminate at this point since
the actual error bound is zero. However, the computed error bound is
too large for the termination condition to be met. Since the support point
w = s4_p{V) is already a vertex of the current simplex, the algorithm will
find the same V in each following iteration and thus will never terminate.

Failure to meet the termination condition can result in a different
type of behavior when v(A — B} lies close to the diagonal of an oblong

Algorithm
4-4

4.3.7

4.3 The Gilbert-Johnson-Keerthi Algorithm 145

quadrilateral facet in A — B, as depicted in Figure 4.10(b). Again, the large
error in the error bound causes the algorithm to continue iterating, only
this time GJK alternately returns the diagonal’s opposing vertices w and
w’ as support points. In each iteration, one of the vertices is added to the
current simplex and the other is discarded, and vice versa. The remain-
ing two vertices of the current simplex are the vertices of the facet lying
on the diagonal. We see that for the simplex containing w, the value v/
is computed, which results in the vertex w’ being added to the current
simplex. For the simplex containing w’, the value v is computed, which
again will cause w to be added to the current simplex.

Both degenerate cases are tackled in the following way. In each itera-
tion, we test whether the support point wy_ | is a member of W U {wy}.
This can only be true as a result of one of the discussed cases. If a degen-
erate case is detected, then the algorithm terminates and returns v as the
best approximation of v(A — B) within the precision bounds of the floating-
point format. Algorithm 4.4 summarizes all the modifications that are
needed in the GJK algorithm, in order to have it behave robustly without
running into termination problems.

The numerical GJK distance algorithm.

v .= ‘arbitrary point in A — B"

W .=¢;
Y =0
repeat

wi=s54_p(~V);

ifweY or|v]|?—v-w <e2 |v|? then
{{v is close enough to v(A — B). }}
return |vi;

Y =WuU{w};

v :=v{conv(Y));

W := “smallest XC Ysuch that v € conv(X)”
until |W| =4 or [[v|? < e max{lly|® : y € W};
{{v is considered zero.)}
return 0

Testing for Intersections

For determining whether two objects intersect, we do not need to know the
distance. We merely need to know whether the distance is equal to zero
or not. As a lower bound for the distance we have the signed distance
from the origin to the support plane H(—vg,v; - wy). We see that for a

146 Chapter 4 Convex Objects

Algorithm
4.5

positive signed distance (i.e., v; - wi > 0) the origin lies in the positive
open halfspace of the support plane, whereas A — B is contained in the
negative closed halfspace. Thus, if v, - wy > 0, then vy is a separating axis
of A and B, in which case we return a nonintersection for the objects.

In general, GJK needs fewer iterations for finding a separating axis
of a pair of nonintersecting objects than for computing an accurate
approximation of v(A — B). For instance in Figure 4.6, the vector v;
is a separating axis for the first time when k = 2. For intersecting
objects, the GJK separating-axis algorithm terminates on v, = 0. We
test whether v, is (almost) the zero vector in the same robust way as
we did for the GJK distance algorithm, such that potential rounding
errors do not cause termination problems. Algorithm 4.5 describes the
GJK separating-axis algorithm, which is, as can be seen, quite similar
to the GIK distance algorithm. Note that in the collision detection algo-
rithm, v does not have to be initialized by a point in A — B, since there is
no reference to the length of v. This feature is convenient for exploiting
frame coherence.

The GIK separating-axis algorithm.

- ”
v .= ‘arbitrary vector”;

W =0
Y =9
repeat

w:=54_p(-V);

if weY orv-w>0 then
{{v is (considered) a separating axis. }}
return false;

Y =WuU{w};

v:=v(conv(Y));

W = “ssnallest X C Y such that v € conv(X)”
until [W| = 4 or |[v|? < e max({lly|? : y € W};
{{v is considered zero.)
return true

The separating-axis GJK is particularly useful when there is a lot of
frame coherence. Similar to the Lin-Canny closest-feature tracking algo-
rithms [79], an incremental version of the GJK separating-axis algorithm
shows almost constant time complexity per frame for convex objects
of arbitrary complexity when frame coherence is high. The incremen-
tal separating-axis GJK algorithm (ISA-GJK) exploits frame coherence
by using the separating axis from the previous frame as the initial vector.
When the degree of coherence between frames is high, then the separating
axis from the previous frame is likely to be a separating axis in the current

Figure 4.11

4.3 The Gilbert-Johnson-Keerthi Algorithm 147

Incremental separating-axis computation using ISA-GJK. The separating axis v
from ¢ = 0 is also a separating axis for t = 1. However, v fails to be a separating
axis for = 2. A new separating axis v’ is computed using v as the initial axis.

frame, in which case ISA-GJK terminates in the first iteration. Figure 4.11
shows the behavior of ISA-GJK for a smoothly moving object. We saw in
Section 4.3.4 that a support point can be computed in constant time for
quadrics and, when coherence is high, in nearly constant time for arbi-
trary polytopes. Hence, in these cases, ISA-GJK takes nearly constant time
per frame.

Penetration Depth

In this section, we present an iterative method for computing the penetra-
tion depth of a pair of intersecting objects. This method is closely related
to GIK. Like GIK, it uses only support mappings for reading the geome-
try of the objects and is therefore applicable to the same class of objects
as GJK. Moreover, the method requires, as the initial state, a polytope
that contains the origin and has vertices that lie on the boundary of the
CSO of the objects. For intersecting objects, GIK terminates when a sim-
plex is generated that contains the origin. In most cases, this simplex is a
tetrahedron. Recall that all support mappings discussed in Section 4.3.4
return support points on the boundary of the object. So, a tetrahedron
generated by GJK is a proper initial polytope for the penetration depth
method.

The method presented here is similar to an earlier method by Cameron
for estimating the penetration depth [15], in the sense that it uses
the simplex returned by GJK for determining the penetration depth.

148 Chapter 4 Convex Objects

Figure 4.12

For a convex polytope that contains the origin, a point v on the affine hull of an
edge closest to the origin is an internal point of the edge.

However, unlike Cameron’s method, our algorithm returns the exact pen-
etration depth of an intersecting pair of polytopes. For nonpolytopes, we
compute the penetration depth within a given numerical tolerance.

We saw that the penetration depth of a pair of intersecting objects
A and B is a point on the boundary of A — B closest to the origin. We
say “a point” since the penetration depth is not necessarily unique. Our
algorithm for finding such a point starts with a polytope that contains the
origin and “expands” it by adding vertices that lie on the boundary. The
added vertices are generated by the support mapping of A — B. The basic
strategy is to iteratively pick the facet of the polytope closest to the origin
and subdivide it using support points as additional vertices.

For reasons of clarity, we will first explain the algorithm in 2D and then
generalize it to 3D. In the 2D version, we blow up a convex polygon by
splitting the edges. We start off with a simple polygon, such as a triangle,
that contains the origin and has vertices on the boundary of the CSO. For
each edge X of the polygon, we compute v(aff(X)), the point on the affine
hull of the edge (i.e., the line through the edge’s vertices) that lies closest
to the origin. Let v = v(aff(X)) be a point on the affine hull of an edge X
closest to the origin. Since the polygon is convex, the point v must be an
internal point of edge X, as illustrated in Figure 4.12. Theorem 4.8 shows
the general form of this property.

The length of the vector v is a lower bound for the penetration depth,
since the polygon is contained in the CSO. In each iteration step, the
closest edge is split by inserting the support point s4_g(v) as a new ver-
tex. For the two new edges we again compute the points closest to the
origin on the affine hulls of the edges and repeat this procedure until
v lies sufficiently close to the penetration depth. Figure 4.13 shows a
sequence of iterations of this algorithm, which we will refer to as the
expanding-polytope algorithm (EPA).

Figure 4.13

Theorem

4.8

4.3 The Gilbert-Johnson-Keerthi Algorithm 149

k=2 (dDk=3

A sequence of iterations of the expanding-polytope algorithm. An arrow denotes a
point v on the polygon’s boundary closest to the origin. The dashed lines represent
the support planes H(vy, —vj - wy).

Let P be a d-dimensional polytope that contains the origin, and, for each
(d — 1)-dimensional boundary feature X of P, let vy = v(aff(X)), the point
closest to the origin on the affine hull of X. Furthermore, let v be a point of
{vx} closest to the origin. Then, (i) v € P, (ii) v is a point on the boundary of
P closest to the origin, and (iii) v is an internal point of the corresponding
(d — 1)-dimensional boundary feature.

Proof

A d-dimensional polytope P can be represented as the intersection of a set
of halfspaces. For a minimal set, each halfspace corresponds to exactly
one (d — 1)-dimensional boundary feature, and vice versa. As a repre-
sentation for P, we choose a minimal set of halfspaces H (m;, $;) such
that ||n;|] = 1. Suppose the origin is contained in P. Then, §; < 0 for all
i. The affine hulls of the (d — 1)-dimensional boundary features are the

150 Chapter 4 Convex Objects

hyperplanes H(n;, §;) and the points closest to the origin on the affine hulls
are the points —§;n;. Since the distance from H(n;, §;) to the origin is —4;,
a point v = —8maxNmax, for which dmax = max{é;}, is closest to the origin
of all points —§;n;. The point v is contained in all halfspaces, since

VvV + 8 = —8max(Di - Mmax) + 8 < —8max + 8 <0,

and thus v € P. Obviously, v is a point on the boundary, and since all
points on the boundary of P are contained in one of the hyperplanes,
v is a point on the boundary of P closest to the origin. Only points on
boundary features with dimensions lower than d — 1 are contained in
multiple hyperplanes. If a point is contained in only one hyperplane, then
it can only be an internal point of a (d — 1)-dimensional boundary feature.
It can be seen that the point v is contained in H(ftmax, dmax) only and, thus,
must be an internal point of a (d — 1)-dimensional boundary feature.

The EPA has some similarities with Dijkstra’s shortest path algorithm,
which computes the lowest-cost path from a source to a destination on
a weighted graph [28]. Dijkstra’s algorithm constructs a shortest path
by maintaining a list of candidate nodes and iteratively expanding the
lowest-cost candidate. Here, “expanding a candidate” means replacing the
candidate by its successors in the graph. In our case, the best candidate
is the edge closest to the origin. As in Dijkstra’s algorithm, we store the
candidates in a priority queue, using the distance to the origin as the key
value. In the EPA, an “expansion” can be taken literally, as the area of the
polygon is expanded by splitting the closest edge. Note that according to
Theorem 4.8, an edge, for which the point on its affine hull closest to the
origin is not an internal point of the edge, can never be a closest edge of
any convex polygon containing the origin, and thus need not be inserted
in the priority queue.

A candidate entry entry stores

= entry.y;, fori = 0, 1, the endpoints of the edge

= entry.v, the point closest to the origin on the affine hull of the edge

m entry.r;, fori = 0, 1, the parameters of v, such that v = Agyg + A1y and
M+Air=1

m entry.key, the distance of v to the origin.

Given an edge X = {yo, y1}, the corresponding entry is constructed by
the function construct_entry(X). For the computation of the closest point
entry.v and the parameters entry.i;, we refer to page 98. Recall that the
point entry.v is an internal point of the edge iff entry.2; > 0 fori = 0, 1.

Algorithm
4.6

4.3 The Gilbert-Johnson-Keerthi Algorithm 151

The priority queue Q supports the following operations:

®m push(Q, entry): push entry in priority queue Q
B best(Q): return the entry with the smallest key value entry. key in Q
® pop_best(Q): remove the entry with smallest key value entry. key from Q.

Priority queues can be implemented efficiently using binary heaps. A
binary heap implementation allows the best operation to be performed in
constant time, and the push and pop_best operations to be performed in
O(logn) time, where n is the number of entries [109]. For C++ developers,
a useful implementation of the binary-heap operations is available in the
Standard Template Library (STL) [93].

The penetration depth vector is the vector entry.v at termination. The
penetration depth vector can be used as an approximation of the con-
tact plane’s normal. The expanding-polytope algorithm can be tailored
to return the witness points of the penetration depth vector also, which
are proper contact points for contact resolution. At termination, we have
a description of the penetration depth vector entry.v as a convex combi-
nation of the vertices entry.y;. Each vertex is computed as y; = p; — q;,
where p; and q; are support points of A and B, respectively. If we store,
besides y;, also the points p; and q; in entry, we are able to compute the
witness points. From the final entry, we compute the witness points as
a = Agpo + A1p1 and b = A0qo + A1q1. These are proper witness points,
sinccacAandbeBanda—b=v.

Termination

For pairs of polytopes, the EPA finds the point closest to the origin on the
boundary of their CSO in a finite number of iterations. For quadric types,
the algorithm terminates as soon as the error in v drops below a given
tolerance. Since v is the closest point on the boundary of a polytope that
is contained in the CSO, ||v| is a lower bound for the penetration depth.
As an upper bound for the penetration depth we take the distance from
the support plane H(v, —v-w) through w to the origin. The distance from
this support plane to the origin is v - w/||v]|. Algorithm 4.6 describes the
theoretical expanding-polytope algorithm in pseudocode.

The theoretical expanding-polytope algorithm in 2D.
P :=‘a convex polygon containing the origin”;

Q:=;
for ‘each edge X of P”

152 Chapter 4 Convex Objects

begin

entry :=construct_entry(X);

if closest _is_internal(entry) then push(Q,entry)
end;
repeat

entry :=best(Q);

pop_best(Q);

V:=entry.v,
w:=sa_p(V);
close_enough :=v - W/||v|| — ||v|| < gps;

if notclose enough then
{{ Split edge “entry” by adding w as vertex. }}
begin
entry, = construct_entry({entry.yo, w});
if closest_is_internal(entry,) then push(Q,entry,);
entry, :=construct_entry({entry.y1, w});
if closest_is_internal(entry,) then push(Q,entry,)
end
until close_enough;
return ||v||

We observe that when the origin lies close to the center of the CSO,
the algorithm “pokes around” wildly before converging to the penetra-
tion depth. This is due to the fact that the early splits result in edges
that are further away from the origin than the current best candidate.
So, the priority queue behaves more like a FIFO (first-in-first-out) queue.
Gradually the queue will have a more stacklike, or LIFO (last-in-first-out),
behavior; that is, a split results in a new best candidate, and convergence
will go faster. When the origin is already close to the boundary of the
CSO0, we observe an immediate stacklike behavior of the priority queue,
in which case convergence is very fast.

In the extreme case where the CSO is circular and centered at the ori-
gin, the priority queue will keep a FIFO behavior throughout the iterative
process, since the penetration depth has an infinite number of solutions.
This results in the EPA converging extremely slowly. These cases are bet-
ter avoided or dealt with in a different way. Examples of such cases are
pairs of concentric spheres or cylinders.

Expanding a Polytope in 3D

We are now ready to tackle penetration depth computation in 3D. The
main difference with the 2D algorithm is that we need to inflate a convex

Figure 4.14

4.3 The Gilbert-Johnson-Keerthi Algorithm 1573

Y2

Yo

yi
0

A naive split of the triangle {yg, y1,y2} by adding the support point w = s4_pg(v)
as a vertex. Notice that by splitting triangles in this way, the edges of the triangle
remain edges of the polytope.

polyhedron in 3D and thus have to subdivide triangles rather than line
segments. The naive way of splitting a triangle would be to add the last-
found support point as depicted in Figure 4.14. This is not a very good
solution for two reasons. First, as we proceed in splitting the triangles,
the resulting triangles will become gradually more oblong. For oblong
triangles, the computation of the closest point suffers more from numeri-
cal problems due to round-off errors in floating-point arithmetic. Second,
since the edges of the split triangle remain edges of the polytope, the algo-
rithm will have a hard time approaching the surface when the penetration
depth vector is located near an edge of the initial polytope.

In fact, unlike the two-dimensional case, the three-dimensional poly-
tope can become concave if a triangle is split in this way, as illustrated in
Figure 4.15. An edge of the split triangle becomes a reflex edge if the new
vertex w lies above the supporting plane of the adjacent triangle, that is,
if the adjacent triangle is visible from w.

It is important to keep the expanding polytope convex, since otherwise
it may happen that certain areas of the boundary of the CSO are not
approached properly. This can be established by taking the convex hull
of w and the current polytope as the new polytope. Rather than inspect
only the best candidate, we also need to check the adjoining triangles
of the polytope’s boundary to see if they are part of the boundary of the
new polytope. All triangles that are visible from w are removed from the
polytope, and a cone-shaped set of triangles, whose apex is w and whose
base is the silhouette of the current polytope as seen from w, is added. The
silhouette is the set of edges that bound the visible part of the boundary.
See Figure 4.16 for an illustration of this operation.

154 Chapter 4 Convex Objects

Reflex edge

X

Figure 4.15 Splitting triangle {yg,y1,y2} by adding support point w causes the polytope to
become concave. Edge ¥5¥7 becomes a reflex edge.

Figure 4.16 The silhouette of the polytope as seen from support point w is marked by thick
lines. The visible triangles (shaded gray) are removed from the polytope and
replaced by triangles connecting the silhouette to w.

4.3 The Gilbert-Johnson-Keerthi Algorithm 155

Computing the convex hull of a polytope and a point outside the poly-
tope normally takes linear time in the number of boundary features [104].
The basic difficulty is finding the chain of edges that form the silhouette of
the polytope as seen from the new point. However, in our case we know
that the silhouette is located near the current best triangle and often is
simply the set of edges of the best triangle. So, we can find the silhouette
a lot faster by local search.

The local search algorithm for finding the silhouette performs a flood
fill over the boundary of the current polytope, starting from the current
best triangle, and marks all triangles that are visible from the new vertex
“obsolete.” In order to be able to perform a flood fill, we need to maintain
adjacency information with the triangles, so that the adjoining triangles
can be retrieved quickly. We could use a winged-edge structure for retriev-
ing adjoining triangles; however, since the boundary is composed of
triangles only, we can use a simpler structure for our purpose.

Rather than maintaining different storage classes for the different
boundary features, we maintain all adjacency information in a single entry
structure. Similar to the 2D case, a triangle entry entry stores

B entry.y;, fori = 0,1, 2, the vertices of the triangle
m entry.v, the point closest to the origin on the affine hull of the triangle

m entry.);, fori =0,1,2, the parameters of v, such that v = Agyg + A1y1 +
Ayrand Ao+ 211 +A2 =1

m entry. key, the distance of v to the origin.

Furthermore, in order to perform a flood fill on the boundary, entry also
stores

m entry.adj;, fori =0,1,2, (a pointer to) the triangle adjacent to edge i

m entry.j;, for each adjoining triangle entry. adj;, the index of the adjoining
edge, so entry.adj;. adjpyyy j, = entry

® entry.obsolete, a Boolean flag to denote whether the triangle is visible
from the new support point.

The indexing of triangle edges requires further explanation. All trian-
gles in the polytope are oriented in the same way, either clockwise or
counterclockwise. The actual orientation is irrelevant as long as we use
the same orientation for all triangles. We assume, without loss of gener-
ality, that the triangles are oriented counterclockwise (i.e., the vertices of
the triangle are enumerated in counterclockwise order). The edge indexed
byi, i =0,1,2,is the edge connecting the vertices y; and y;g1, where & is
addition modulo 3. Figure 4.17 illustrates this relation.

156 Chapter 4 Convex Objects

adjy

Figure 4.17 Adjoining triangles are stored in the order given by the vertices. The ith adjoining
triangle is the triangle adjacent to the edge ¥;y;51, where & is addition modulo 3.

As mentioned, the silhouette is a sequence of connecting edges. An
edge is represented by a pair (sentry,i), where sentry is a triangle not
visible from w, and i is the index of the silhouette edge in entry. Thus,
for each pair (sentry,i) in the silhouette, sentry.adj; is a visible triangle.
The flood fill is performed by a recursive procedure silhouette described
in Algorithm 4.7.

Algorithm Recursive flood-fill algorithm for retrieving the silhouette as seen from w.
4.7
silhouette(entry,i, w, E)
begin
if notentry.obsolete then
{ Facet “entry” is visited for the first time. }}
begin
if entry.v-w < |lentry.v||* then
{ Facet “entry” is not visible from w. }
E:=E ++ (entry,i);
else
{ Mark “entry” visible, and search its neighbors. }
begin
entry.obsolete := true;

Algorithm
4.8

4.3 The Gilbert-Johnson-Keerthi Algorithm 157

silhouette(entry. adj;q,, entry.jig1, w, E);
silhouette(entry.adj;g, , entry.jig2, W, E)
end
end
end

We perform the flood fill in the following way. First, the current best
triangle entry is marked “obsolete.” The current best triangle must be
visible from w, since w = s4_g(eniry.v), and thus must lie above the plane
of entry. The sequence of edges E is initialized as the empty sequence #.
Next, for each edge i of entry, we call silhouette(entry.adj;,entry.j;,w, E).
By traversing the adjoining triangles in strict counterclockwise order, we
make sure that the edges found by silhouette are indeed connected. Note
that the recursive algorithm cannot run in cycles, since triangles already
marked “obsolete” are skipped.

If the polytope is convex, then the flood fill will result in a single
connected chain of edges. This chain is used to construct the new poly-
tope. For each edge (sentry,i) in the sequence, a triangle {sentry.yig1,
sentry.y;, w} is constructed. This wigwam-shaped sequence of triangles
closes up the polytope such that the resulting polytope is convex.

Removing other than the current best triangle from the current poly-
tope has some consequences for the candidate list. The triangle entries
marked “obsolete” should be removed from the candidate list, since they
are no longer part of the boundary of the new polytope. However, remov-
ing arbitrary entries from a candidate list represented by a binary heap is
quite tricky, since we either have to retrieve the obsolete candidates by lin-
ear search or have to maintain additional search data for quick retrieval.
So, the cheap solution is to keep the obsolete entries in the candidate list
and simply ignore them when they pop up as the best candidate. Having
a larger than necessary candidate list is not that much of a burden, con-
sidering the O(log#) time push and pop operations. The 3D variant of the
EPA is described in Algorithm 4.8.

The theoretical expanding-polytope algorithm in 3D.

P := “a convex polyhedron containing the origin”;
Q:=9;
for ‘each triangle X of P”
begin

entry :=construct_entry(X);

if closest_is_internal(entry) then push(Q, entry)
end;

158 Chapter 4 Convex Objects

repeat
entry .= best(Q);
pop_best(Q);
if not entry.obsolete then
{{ Facet “entry” is a proper best candidate. }}
begin
vV =entry.v,
w:=54_g(V);
close_enough :=v - w/||v|| — V|| < éaps;
if not close_enough then
{{Blow up the current polytope by adding vertex w. }
begin
entry.obsolete :=true; {{ Facet “entry” is visible from w. }}
E.=0;
fori=0,1,2 do
silhouette(entry. adj;, entry.j;, w, E);
{(E is the silhouette of the current polytope as seen from w. }}
for (sentry,i) € E do
begin
new_entry .= construct_entry({sentry.yie1,sentry.y;, w});
if closest_is_internal(new_entry) then push(Q,new_entry)
end
end
end
until close_enough;
return ||v||

Note that, when constructing the initial polytope and when adding new
faces to the polytope, we must make sure that the adjacency information
in the triangle entries is kept up-to-date and in the correct orientation.
The operations needed for maintaining the adjacency information are not
included in Algorithm 4.8. These operations are quite elaborate (hence
their omission here), but not too hard, so the attentive reader is expected
to be capable of implementing these operations from the text provided
above.

Initialization

As mentioned earlier, we initialize the algorithm with a polytope that con-
tains the origin and has its vertices on the boundary of the CSO. We saw
that for intersecting objects, GJK returns a simplex that contains the ori-
gin. By choosing a support mapping that returns points on the boundary
only, we can make sure that the vertices of the simplex are points on the

Figure 4.18

4.3 The Gilbert-Johnson-Keerthi Algorithm 159

boundary of the CSO. This simplex will in most cases be a tetrahedron,
which is just what we need for the EPA. However, in some cases, GJK
may also return a point, a line segment, or a triangle as the simplex.

The point case is the easiest to deal with. When GJK returns a point
as the simplex, the point must be the origin. Since the point lies on the
boundary, the objects are in touching contact, and thus, the penetration
depth is zero. Most applications do not have a use for a zero penetra-
tion depth, so you might want to ignore these cases and simply return a
nonintersection for touching contacts.

In the case where the simplex returned by GJK is a line segment, we
are dealing most likely with a pair of intersecting spheres. Other configu-
rations of intersecting objects that result in GJK returning a line segment
are cylinders or cubes that are aligned along their diagonals. We could
simply return the vertex of the line segment that lies closest to the ori-
gin, which is the correct penetration depth vector for these special cases.
However, GJK returns line segments for other cases as well. So, in order
to cover all cases, we should create a convex polyhedron containing the
origin and use the EPA to find the penetration depth.

We already have the two vertices of the line segment and need to add
three additional vertices to construct a hexahedron with triangular facets
(two tetrahedra glued together), as depicted in Figure 4.18. We use the

Constructing an initial polytope for the EPA, in the case where GJK returns a line
segment Jgy] containing the origin. A hexahedron is constructed by adding three
vertices y7, y3, and y4. These additional vertices are the support mappings of three
vectors vy, v, and vy that are orthogonal to the direction of the line segment
d = yp — y1 and have a relative angle of %n radians.

160 Chapter 4 Convex Objects

CSO’s support mapping for computing the additional vertices. First we
construct three vectors orthogonal to the line segment and with a relative
angle of %n radians (120°). This is done in the following way.

The first vector vy is the cross product of the direction d of the line
segment and a coordinate axis. The best coordinate axis is the axis e; for
which the ith component of d has the smallest absolute value. In this way,
the angle between d and e; is the largest, and thus, the cross product has
the largest length. We do not want the cross product to be (close to) the
zero vector, since it then becomes useless for computing the support point.

The other vectors are constructed by rotating the first vector about the
direction d of the line segment. There are several ways in which this can
be done. One way is to construct a quaternion q = cos(%n) + dsin(%n),
where d has unit length. Using this quaternion, we compute ¥, = qv,q*
and V3 = qV¥2q*. However, it takes fewer arithmetic operations if we con-
struct a rotation matrix R and compute the two remaining vectors as
v = Rvj and v3 = Rv,. The rotation matrix R can be constructed from
the quaternion q, or directly from the axis and angle of rotation [35]. The
three additional vertices are the support points s4_g(v;). With these five
vertices we construct the boundary triangles of the hexahedron.

For degenerate cases, the line segment returned by GJK may be con-
tained by the boundary of the CSO. This happens only if the objects are
in touching contact, since the origin lies on the boundary of the CSO. In
that case, a triangle of the hexahedron may have coinciding vertices, or
the distance from the origin to the triangle’s affine hull may be zero. So,
for each boundary triangle of the hexahedron we need to check whether
it is a proper triangle and whether its affine hull does not contain the
origin. Should any of the triangles fail the check, then we return a zero
penetration depth, since the objects are in touching contact.

In the case where the simplex returned by GJIK is a triangle, we also
construct a hexahedron, but this time we need to add only two addi-
tional vertices. The additional vertices are the support points s4_g(n) and
sa-p(—m), where n is a normal to the triangle. Figure 4.19 illustrates how
the hexahedron is constructed. Again, if the triangle returned by GIK is
part of the boundary, then a boundary triangle of the hexahedron has coin-
ciding vertices or its affine hull contains the origin. We check the boundary
triangles of the hexahedron in the same way as we did for the line segment
case, and return a zero penetration depth if one of the triangles fails the
check.

Care should be taken in constructing the triangle entries for the hexahe-
dron, since all entries need to have the same orientation. As mentioned,
a hexahedron is basically two tetrahedra glued together, so we can rid
ourselves immediately of one half of the hexahedron by testing each
tetrahedron for containment of the origin. The tetrahedron containing

Figure 4.19

Algorithm
4.9

4.3 The Gilbert-Johnson-Keerthi Algorithm 161

In the case where GJK returns a triangle yg,y1,y2 containing the origin, we also
construct a hexahedron as the initial polytope for the EPA, but this time we need
to add only two vertices, y3 and y4. These two additional vertices are the support
mappings of n, the triangle’s normal, and —n, the normal pointing in the opposite
direction.

the origin is the one we will use to initialize the EPA. In this way, the
initial polytope is always a tetrahedron, which simplifies the initialization
process.

Testing a tetrahedron for containment of the origin is quite easy. For
each of the four triangles we test whether the origin lies in between the
triangle’s supporting plane and a parallel plane through the point not in
the triangle. Only if this is true for all four triangles is the origin contained
in the tetrahedron. Algorithm 4.9 describes this operation in pseudocode.

Testing a tetrahedron {pg, p1, p2, p3} for containment of the origin.

no := (p1 — Po) x (P2 —~ Po);

if ng-po>0=mng-p3 >0 then return false;
ny := (p2 — p1) x (P3 — p1);

if nj -p; >0=mny-po >0 then return false;
n; := (p3 — p2) x (Po — P2);

if ny-p2>0=mny-p; >0 then return false;
n3:= (po — p3) x (p1 — P3);

ifns - p3 >0=mn3-p2 >0 then return false;
return true

162 Chapter 4 Convex Objects

Numerical Aspects of the Expanding-Polytope Algorithm

When implementing the EPA using finite-precision arithmetic, we
encounter a number of potential problems. For point sets X that are close
to being affinely dependent, the computed value for v(aff(X)) may have
a considerable error. Since we have little control over the triangle subdi-
vision process, we cannot avoid generating oblong triangles, so we will
have to cope with errors in the computed closest points. As a result of an
error in the computed value of v(aff(X)), we may run into the following
problems:

1. A triangle is falsely accepted, since the computed closest point of its
affine hull is an internal point of the triangle, whereas the theoretical
closest point is not an internal point.

2. A triangle is falsely rejected, since the computed closest point of its
affine hull is not internal, whereas the theoretical closest point is
internal.

3. The computation of the v(aff(X)) fails. Recall from page 99 that the
parameters); are computed by applying Cramer’s rule. For affinely
independent triangles the sum of the determinants should be pos-
itive. However, due to rounding errors, the computed sum of the
determinants can be zero or negative.

4. The termination condition v - w/||v|| — [[v|| < &, is not met where it
should be met. In theory, the termination condition should hold when
the current triangle is part of the boundary of the CSO; however, due
to an error in ¥, this may not be the case.

Problem 1 is pretty harmless. Even if the triangle is selected as the best
candidate, which is theoretically impossible, then iterating further using
this triangle can do little damage.

Problem 2 is more serious, since we potentially reject the triangle that
would result in the closest point on the boundary. The algorithm may
terminate on a nonoptimal boundary point by expanding the remaining
candidate triangles, or it may simply run out of candidate triangles to
expand.

During the process of expanding triangles there is no way of telling
whether a triangle is falsely rejected, given the numerical precision of the
floating-point format used. However, we can detect whether the current
best candidate results in a nonoptimal solution by maintaining the tightest
upper bound for the penetration depth.

Since, for each support plane H(v, —v - w), the CSO is contained in the
negative closed halfspace defined by the support plane, the distance from

4.3 The Gilbert-Johnson-Keerthi Algorithm 163

the origin to the plane is an upper bound for the penetration depth. We
define §; as the distance to the plane H(vy, —v; - wy), where vy is the closest
point on the affine hull of the kth triangle, and wy, is the corresponding
support point. Thus,

8 = vi - Wi/ [l

Unlike |lv¢]l, the upper bound §; may not be monotonic in k; that is, it is
possible that & > §; forj > i. Therefore, we use

“r = min{dy, ..., 8}

as the upper bound, which is often tighter than &.

The distance from the origin to the current best candidate can become
larger than the current tightest upper bound w only if in an earlier expan-
sion a proper triangle was falsely rejected. Thus, before we expand a
best candidate we must check whether its distance to the origin is at
most the current upper bound. If its distance is larger than the current
upper bound, we terminate and return the distance to the previous best
candidate as the penetration depth.

In the same way, if we run out of candidates, we simply return the
distance to the last expanded candidate as the penetration depth. Since
we do not meet the original termination condition, it is not guaranteed
that the error in the computed penetration depth is smaller than our set
tolerance. However, rest assured that the error in ||v| is probably much
smaller than the difference between p and ||v||, since, as we recall from
our discussion on GJK termination, the computation of v-w/|v| tends to
be on the low side due to ill-conditioning.

Since the upper bound u is monotonically nonincreasing, it is useless
to add triangles to the priority queue for which the distance to the origin
is larger than the current upper bound. Furthermore, theoretically it is
impossible that the split parts of a triangle are closer to the origin than
the original, so if one of the parts of a triangle after splitting is closer to
the origin than the current best candidate, we know that the computation
of the closest point suffered from numerical errors. In order to guarantee
that ||v| is strictly nondecreasing, we reject triangles that are closer to the
origin than the current best candidate. So, only triangles for which the
closest point of the affine hull is an internal point of the triangle and for
which the distance to the origin lies in the interval [||v], u] are added to
the priority queue.

As with GJK, we will use a relative error tolerance rather than an abso-
lute one for termination of the EPA. Thus, EPA terminates as soon as the

164 Chapter 4 Convex Objects

following criterion is met:

w—= vl < epetlivi.

We rid ourselves of the evaluation of a square root in ||v|| by moving the
term ||v|] from the left-hand side to the right-hand side of the inequality
and squaring both sides:

1t < (1 +ee)? V)2

Squaring is allowed since both sides are nonnegative. We know that if
the origin is contained in A — B, then v - s4_p(v) is nonnegative, and thus
8 = vy - Wi/||v || is nonnegative for each iteration k. Therefore,

pu? = (minfo, ..., &))? = min{s}, ..., 67}

We see that computation of 82 = (v- w)?/|v||> does not require evaluating
a square root.

We cope with Problem 3 simply by terminating as soon as an expansion
results in a bad triangle. For a bad triangle, the computed numerator of
the parameters A; is zero or negative. Since the numerator is twice the
area of the triangle, theoretically it cannot be negative and can only be
zero if the triangle is affinely dependent. However, for a triangle that is
(almost) affinely dependent, the computed numerator can be negative due
to rounding errors. In that case, there is no proper way to compute the
closest point v = v(aff X} of triangle X. We need v not only for the best
candidate, but also for its adjoining triangles. Furthermore, we need |v||
to decide whether or not to add the triangle to the candidate list. So, as
soon as an expansion results in a bad triangle, we have no other choice
than to terminate and return the distance to the last expanded candidate
as the penetration depth.

Problem 4 is quite similar to the GJK termination issue we discussed on
page 143. Due to the ill-conditioning of the upper bound u, the EPA may
not terminate even if the current best triangle is part of the boundary of
the CSO. For such a triangle, the support point w is most likely one of the
vertices of the triangle. If the new support point w is a vertex of the current
triangle, then expansion of this triangle results in a number of fragments
that are affinely dependent. Since construction of affinely dependent tri-
angles during an expansion results in immediate termination, there is no
need to check whether the new support point is equal to one of the vertices
of the current best triangle, as we did in GJK. So, the solution we pre-
sented for Problem 3 fixes Problem 4 as well. Algorithm 4.10 summarizes

Algorithm
4.10

4.3 The Gilbert-Johnson-Keerthi Algorithm 165

all the adaptions to the theoretical EPA in order to cope with numerical
€rrors.

The numerical expanding-polytope algorithm in 3D.

P :=‘a convex polyhedron containing the origin”;
Q=0
for ‘each triangle X of P”
begin
entry :=construct_entry(X);
if closest_is_internal(entry) then push(Q,entry)
end;
w:=infinity; {Upper bound for the squared penetration depth. }
repeat
entry :=best(Q);
pop_best(Q);
if not entry.obsolete then
{{ Facet “entry” is a proper best candidate. }}
begin
vV .=entry.v;
w:=54_g(V);
= min(u, (v - w)?/|Iv]|2);
close_enough :=u < (1 + e.)?|IVII%;
if not close_enough then
{{Blow up the current polytope by adding vertex w.}}
begin
entry.obsolete :=true; {{ Facet “entry” is visible from w. }}
E:=0;
fori=0,1,2 do
silhouette(entry. adj;, entry.ji, w, E);
{{E is the silhouette of the current polytope as seen from w. }}
for (sentry,i) ¢ E do
begin
new_entry :=construct_entry({sentry.yig1, sentry.y;, w});
if affinely dependent(new_entry) then return |v|;
if closest_is_internal(new_entry) and [v]|? < lnew_entry.v||® < pu
then
push(Q, new_entry)
end
end
end
until close_enough or Q = @ or ||best(Q). v||? > u;
return ||v||

166 Chapter 4 Convex Objects

Penetration Depth Using a Hybrid Technique

The EPA is numerically not very well-behaved when interpenetrations
are relatively small. Unfortunately, in real-life simulations such types of
contacts are very common. Movement of objects per frame are usually
small; thus objects will interpenetrate only a small amount. Also, the
EPA is computationally more expensive than GJK, since it requires more
advanced data structures and usually does not converge as fast as GIK. In
order to warrant a faster and more stable penetration depth computation,
the following hybrid technique can be used.

The hybrid technique uses GJK when interpenetrations are small and
EPA when interpenetrations are large. The objects are slightly enlarged
by adding a tiny sphere to the original objects, thus creating a small mar-
gin around them. If a pair of objects intersect only in the margins, then
a closest point pair is computed for the original nonintersecting objects.
The witness points of the distance are projected to the boundaries of the
enlarged objects in order to return the penetration depth for the enlarged
objects. If the original objects intersect as well, then EPA is used for com-
puting the penetration depth of the enlarged objects. See Figure 4.20 for
a visual description of this technique.

When performing an intersection test on enlarged objects using GJK,
we do not compute support points for the enlarged objects. Instead, we
use the GJK distance algorithm on the original objects and enable an early
exit when the lower bound for the distance exceeds the sum of the margins
of the two objects. We could have used ISA-GJK on the enlarged objects
for the intersection test, since we have support mappings of Minkowski
sums of convex object and spheres at our disposal. However, support
mappings for Minkowski sums are computationally more expensive than
support mappings for plain objects. Moreover, since we need to compute
the closest points in the common case where the enlarged objects only
slightly intersect, it is faster to start off by computing the distance rather
than performing a distance computation as a second step.

We saw in Section 4.3.7 that in GJK a lower bound for the distance is
given by the distance to the support plane H(—v,v-w), which is v. w/||v|.
If the lower bound is greater than us + up, the sum of the margins of
objects A and B, then the enlarged objects do not intersect, as depicted in
Figure 4.21, and thus we may exit early without computing the exact clos-
est points. In order to improve performance, we rid ourselves of the square
root in the evaluation of ||v]| by squaring both the left-hand and right-hand
side of the inequation. However, note that v - w can be negative, so we
should first check whether v - w is positive before testing the inequality
for the squared values. Thus, we may exit, returning a nonintersection, if

v.-w>0 and v-w|v|® > (us + uB)?.

Figure 4.20

4.3 The Gilbert-Johnson-Keerthi Algorithm 167

>

<_)

(b)

A hybrid technique for a faster penetration depth computation when interpene-
trations are small. (a) The objects intersect only in the margins. Closest points a
and b are computed for the original objects using GJK and projected to the points
a’ and b’ on the boundaries of the enlarged objects. (b) The original objects inter-
sect as well. Witness points a and b of the penetration depth are computed for the
enlarged objects using EPA.

168 Chapter 4 Convex Objects

Figure 4.21

If the lower bound § = v - w/||v|| for the distance between the original objects is
greater than uy + up, the sum of the margins, then the enlarged CSO does not
contain the origin, and thus the enlarged objects do not intersect.

In the case where the enlarged objects intersect, then the GJK distance
algorithm terminates in the usual way. If the enlarged objects intersect
only in the margins, then GJK terminates, returning a nonzero distance,
and we are done. Whereas if the original objects intersect, then GJK
returns a zero distance, in which case we need to rerun GJK for the
enlarged objects in order to construct an initial polytope and compute
the penetration depth using the EPA.

One issue remains in this approach. ISA-GJK is capable of exploit-
ing frame coherence by reusing a separating axis from an earlier frame.
As can be seen in Figure 4.21, the vector v is a separating axis for the
enlarged objects; thus in the case of a nonintersection we have a proper
separating axis that can be cached for future calls. However, unlike ISA-
GJK, the GJK distance algorithm needs to be initialized by a vector v that
points to a point in A — B, rather than an arbitrary vector. GJK needs
an initial v that is contained in the CSO because ||v|| serves as an upper
bound for the distance. We can get rid of the constraint that v needs
to lie in the CSO by using infinity rather than ||v||? as the initial upper
bound for the distance. In this way, we can use the cached separating
axis from an earlier frame as the initial vector v regardless of whether
it lies in the CSO. Algorithm 4.11 suminarizes the hybrid technique for
computing the penetration depth of objects that are enlarged by a small
margin.

4.3 The Gilbert-Johnson-Keerthi Algorithm 169

Algorithm Penetration depth of objects that are enlarged by a margin. The margins

4.11 of the original objects A and B are 4 and up, respectively. This algorithm
is capable of exploiting frame coherence by caching separating axes as in
ISA-GJK.

v := ‘arbitrary vector”;
v:=infinity; {Upper bound for the squared distance.}}
W :=0;
Y =0
repeat
w:=54_p(-V);
if v-w >0 and (v-w)%/|v|> > (ug + ug)* then
{The enlarged objects do not intersect. }}
return 0;
if weY orv—v-w<eZu then
{The objects intersect only in the margins.})
return pa + U — /U;
Y =WuU{w}
v:=v(conv(Y));
W := “mallest X €Y such that v € conv(X)*
v=|lv|?
until [W| =4 or v < g,y max{|ly|?:y € W};
{{The original objects intersect as well. }}
return “penetration depth of enlarged A and B returned by the EPA”

Chapter

Spatial Data
Structures

1 feel like a million tonight, but one at a time.
—Mae West

In no other problem area of interactive 3D animation are the often con-
flicting constraints on space and time so critical as in collision detection
of complex environments. In environments composed of hundreds of
objects, in which each object may again be composed of thousands
of primitives, the number of pairwise primitive intersection tests that
need to be performed can become huge. In this chapter, we will dis-
cuss spatial data structures for accelerating collision detection of complex
environments.

Spatial data structures are used in two ways. First, they are used for
reducing the number of intersection tests among static and freely mov-
ing objects in an environment. For n objects there are (5) = in(n — 1)
potentially colliding pairs of objects. Additional search structures can be
used to quickly reject the majority of these pairs. Second, they are used
for reducing the number of pairwise primitive intersection tests in inter-
section testing between two complex models or a complex model and
a primitive. In the latter case, the data structures are constructed as a
preprocessing step and are usually static.

An important concept in this context is geometric coherence, as
defined in Chapter 2. Geometric coherence is important because it
enables us to quickly reject pairs of objects based on the region of
space that they occupy. Spatial data structures, such as voxel grids,
hierarchical space partitioning structures, and bounding-volume hier-
archies, can be used for “capturing” geometric coherence. Basically,
the data structures that are used for this purpose fall into two cat-
egories: space partitioning and model partitioning. In the following
sections, we will discuss the advantages and drawbacks of data structures
for each category. But first, let’s explore how to deal with concave
polyhedra.

171

172 Chapter 5 Spatial Data Structures

5.1 Nonconvex Polyhedra

5.1.1

So far, we covered intersection tests for a variety of (mostly convex) prim-
itive shape types. Interactive 3D environments are usually modeled using
complex shapes that cannot be represented by a single primitive. Most
commonly used are polyhedral meshes, such as triangle or quadrilateral
meshes. Polyhedral meshes are used for modeling curved surfaces and
polyhedra. A polyhedron is a region of space that is enclosed by a poly-
hedral mesh. Thus, the region of space that is enclosed by the mesh is
usually considered part of the object.

For convex polyhedra we can use the collision detection methods dis-
cussed in Chapter 4. Concave polyhedra need to be decomposed into a
collection of primitives. Here, we will look into decomposition methods
for nonconvex polyhedra.

Convex Decomposition

One way to tackle this problem is to decompose a nonconvex polyhedron
into convex subpolyhedra. Convex polyhedra can be tested for intersection
using, for instance, GJK, as discussed in Chapter 4.

Convex decomposition of nonconvex polyhedra is more difficult than
its two-dimensional counterpart, convex decomposition of polygons. In
particular, some polyhedra cannot be tetrahedralized (i.e., partitioned
into tetrahedra) such that each tetrahedron’s vertices are vertices of the
polyhedron. In fact, polyhedra exist that require Q(1n?) convex pieces in
the best partitioning, where n is the number of vertices [100].

The problem of partitioning a nonconvex polyhedron into a minimal
number of convex pieces is known to be NP-hard [3]. Thus, shooting for a
minimal partitioning does not seem practical. However, we need not stray
too far from the mark, since algorithms exist that partition a polyhedron
of n vertices into O(n?) convex pieces in polynomial time [20].

An easy, implementable partitioning method is binary space partition-
ing (BSP) [125]. A BSP is a recursive subdivision of a space into convex
cells, using partitioning planes. By choosing the partitioning planes from
the set of supporting planes of the polyhedron’s facets, a BSP can be
formed such that the polyhedron is the union of a subset of cells. A draw-
back of the BSP method is that it often results in unnecessarily many
components. We will further discuss the use of BSPs for representing
polyhedra in Section 5.2.3.

It is worth noting that, for the purpose of collision detection, it is
not necessary to decompose a concave polyhedron into disjoint pieces.
We may decompose a polyhedron into overlapping pieces, as depicted
in Figure 5.1, since we are interested in intersections with the union of

5.1 Nonconvex Polyhedra 173

I

Covering Partitioning BSP

Figure 5.1

5.1.2

Convex decomposition methods.

all pieces. The question remains unanswered how this added freedom can
be exploited for constructing decompositions that have significantly fewer
components than the best partitionings. Surprisingly little is found in the
literature on this intriguing problem.

Convex decomposition is still an important research topic. Existing
partitioning methods often generate an unacceptable number of con-
vex pieces (O(n?), where n is the number of vertices). A more feasible
approach is to test only the boundaries of polyhedra for intersection.

Polyhedral Surfaces

In most applications, we are content if we can detect intersections of
boundaries of polyhedra. We do not care too much about detecting

174 Chapter 5 Spatial Data Structures

5.1.3

polyhedra that are fully contained in the interior of another polyhedron,
simply because most collision response handlers will prevent a simulation
from ever generating such a configuration. If objects move at a limited
velocity, and if they have a large enough size, it will be impossible for a
pair of objects to travel in one frame from a disjoint configuration to a
configuration in which one object is enclosed by the other. In these cases,
a boundary intersection must occur before one of the objects is enclosed
by the other.

Nonconvex polyhedra are thus handled as polyhedral surfaces. In most
collision detection techniques of polyhedral surfaces no adjacency of
facets is assumed. The surfaces are considered sets of polygons without
any further constraints. Such sets are commonly referred to as polygon
soups. Polygon soups need not form connected surfaces and may contain
intersecting polygons.

Examples of techniques that use adjacency information of polyhe-
dral surfaces do exist. Ehmann and Lin [41] describe an algorithm for
incremental distance computation of polyhedral surfaces that is based
on convex surface decomposition. A convex surface decomposition is
a decomposition of a polyhedral surface into convex patches—surface
patches that lie entirely on their convex hull. Amanatides and Choi [1]
describe another example that uses adjacency information of polyhedral
surfaces. They establish a reduction in the cost of ray casting of triangle
meshes by amortizing the cost of ray-triangle tests over adjacent triangles.
Reduced amortized costs are realized by caching intermediate results in
the edge nodes of the mesh.

Point in Nonconvex Polyhedron

In cases where we do need to detect objects that are enclosed in a
nonconvex polyhedron, we require a point-in-polyhedron test. A point-
in-polyhedron test can be done similar to its two-dimensional variant,
a point-in-polygon test. A ray with the query point as its starting point
extending infinitely in one direction crosses the boundary an even num-
ber of times if the query point lies outside and an odd number of times if
the query point lies inside the polyhedron. Hence, by counting the num-
ber of times the ray crosses the boundary we can classify the location of
a given query point with respect to a polyhedron.

Although rather straightforward in theory, this method is quite tricky
in practice. Due to precision problems, degenerate cases, where the ray
passes (nearly) through an edge of the boundary, may cause incorrect
results. O’ Rourke [101] presents a robust implementation of the ray inter-
section count. He uses an approach in which a randomly generated ray
is used. If the chosen ray happens to result in a degeneracy, then another

5.2 Space Partitioning 175

random ray is tried. This process is repeated until a ray is found that does
not result in a degeneracy.

5.2 space Partitioning

5.2.1

A space partitioning is a subdivision of space into convex regions, called
cells. Each cell in the partitioning maintains a list of references to objects
that are (partially) contained in the cell. Using such a structure, a lot
of object pairs can be quickly rejected from intersection testing, since
we only need to test the pairs of objects that share a cell. Many space
partitioning structures have been borrowed from rendering [43, 53]. We
will briefly discuss a number of commonly used space partitionings. For
a more thorough discussion, the reader is referred to [106].

Voxel Grids

Avoxel grid is a space partitioning into uniform rectangular cells. A voxel
grid is represented by an axis-aligned box enclosing all objects in the
model and a three-dimensional array of cells of size N1 x N2 x N3, where
N1, N3, and N3 are the number of subdivisions along the respective axes.
Other than the position and size of the box, no further geometric data
need to be maintained in the grid structure.

Let (81, B2, B3) be a vertex of the box and 751, 72, and 53 the extents
along the respective axes, such that the box is the Cartesian product of
the intervals [B, B + i) for k = 1,2, 3. Then, the cell indexed by (i1, i2,i3)
is the box defined by the product of intervals

Br + i B+ (g + D%) for0 <ip < Npandk = 1,2,3.
Ni Ni

Given a point x = (a1, a2,3) inside the box, the indices i; of the cell
containing x are

N
%=b%-&%ﬂ-
Nk

The translation from coordinates to cell indices is basically a conversion
to a fixed-point number format of resolution N, and can be done in a
constant number of operations.

Each cell maintains a list of objects that intersect the cell. Adding,
moving, or removing an object in the grid boils down to updating the
lists of all cells that cover the object. This operation is similar to scan

176 Chapter 5 Spatial Data Structures

conversion of geometric objects to bitmaps in computer graphics [43].
Often, we do not scan-convert the actual object to the grid, but add the
object to all cells that cover the object’s axis-aligned bounding box, which
is a much simpler operation. Since the grid serves only as a first phase
for fast rejection of pairs of objects, adding an object to more cells than
strictly necessary is not harmful for the correctness. The larger number of
exact object intersection tests that result from the use of bounding boxes
are usually justified by the faster scan conversion of boxes.

Assume we have a collection of objects of more or less the same size,
and assume that the set has a high degree of geometric coherence and is
distributed evenly over the space. Then, for a grid that has a number of
cells that is linear in the number of objects, adding or moving an object
can be done in roughly constant time, since only a constant number of
cells need to be visited, and object lists in cells contain only a limited
number of entries [19, 75]. This is useful in an environment with lots of
similar moving objects such as described in [138].

Voxel grids have been shown to be useful also in real-time intersection
testing between complex rigid objects [48, 49]. Here, each object’s primi-
tives are maintained in a grid that is aligned to the local coordinate system
of the object. The algorithm finds all pairs of overlapping nonempty cells
of a pair of relatively oriented grids, and tests for intersections between
primitives for these pairs of cells.

The benefits of using a voxel grid are low storage usage and fast cell
access. However, the biggest drawback of voxel grids, which is common
to all bucketing techniques, is the fact that performance greatly depends
on the density of objects in the space being uniform. If the objects in an
environment are clustered, which is commonly the case in many applica-
tions, then a few cells contain most of the objects, whereas the majority
of cells are empty. In such cases, a grid is not very useful in rejecting pairs
of objects for intersection testing.

Choosing the best resolution for a voxel grid is hard. If there are too few
cells in the grid, then the cells will be crowded and thus alot of intersection
tests will be performed among objects in each cell. If there are too many
cells, then the grid takes up a lot of storage, and many cells will maintain
references to identical objects. Moving a large object in the grid space can
become quite expensive, since the object may cover a lot of cells. Also, in
order to avoid repeating a lot of intersection tests in cells that maintain
the same pair of objects, we need to keep track of the pairs of objects that
have been tested for intersection. The overhead of maintaining these data
results in added computational and storage costs.

An example of such a bookkeeping technique, know as mailboxing, is
used a lot in ray tracing [53]. For each intersection query of an object
against a collection of objects maintained in a voxel grid, we gener-
ate a positive integer ID. We maintain for all grid objects an integer

5.2.2

5.2 Space Partitioning 177

representing the ID of the last query object this object was tested with. All
IDs are initially zero. Each time we perform an intersection test between a
query object and an object in the grid, the ID of the grid object is set to the
query object’s ID. Intersection tests are performed only for grid objects
whose ID differs from the query object’s ID. In this way, grid objects are
never tested more than once with the same query object. Since a new ID
is generated for each query, we may quickly run out of IDs. We may reuse
IDs of earlier queries; however, before we do this, we must reset the IDs
of the grid objects back to zero.

Voxel grids work best for geometrically coherent sets of primitives of
uniform density and size. However, in practice, few models satisfy these
conditions. Hence, adaptive partitioning schemes, using recursive space
partitioning, often yield better results. In the following sections, we will
discuss a number of hierarchical space partitioning methods that are
better suited for dealing with clusters of objects.

Octrees and k-d Trees

Octrees and k-d trees are hierarchical structures for partitioning space
into rectangular cells. Each node in the tree corresponds with a rectangu-
lar region of the space. The root node corresponds with the whole space,
represented by a rectangular box enclosing the complete model. Each
internal node in the tree represents a subdivision of its corresponding
region into smaller regions, which correspond with the children of the
node. The regions of the leaf nodes are the cells in which the objects are
maintained.

Octrees and k-d trees differ in the way the regions are subdivided. Each
internal node in an octree divides its corresponding region into eight
octants by splitting the region along the three coordinate axes. In a k-d
tree, the region of an internal node is subdivided into two regions by
splitting the region along an arbitrary coordinate axis. See Figure 5.2 for a
visual representation of the two structures. It can be seen that the best k-d
tree often has fewer cells than the best octree for the same configuration
of objects.

In the standard representation, a region is split into subregions of equal
size. However, octree or k-d tree variants, in which regions are split at
arbitrary points along the axis, are possible as well. These tree variants
require more storage, since the positions of the partitioning planes need to
be stored in the internal nodes, but the added freedom in choosing the par-
tittoning results in a structure that is more adaptive to the configuration
of objects.

It can be seen that in a standard octree each node’s region has the
same aspect ratio as the root’s region. This property often results in poor

178 Chapter 5 Spatial Data Structures

Figure 5.2

(a)

(b)

Two hierarchical structures for partitioning space into rectangular cells: (a) octree
and (b) k-d tree.

partitionings if the root region is oblong. Often, partitioning a space into
fat cells (aspect ratio ~ 1) results in better performance for intersection
queries than a partitioning into thin cells, since a given query object can
overlap more thin cells than fat cells of the same volume, as depicted
in Figure 5.3. Hence, in the cases where the root’s region is oblong, it
is better to use k-d trees, rather than octrees, since in a k-d tree a cell’s
aspect ratio need not be equal to the root region’s aspect ratio. Of course,
for octrees the root region can be taken to be a cube enclosing the objects
in the model; however, this may result in a larger number of cells, of
which some are always empty. A more general definition of fatness and
its significance to space partitioning are presented in [27].

The benefit of using a recursive space partitioning is the fact that it is
adaptive to local densities in a model. In regions where a lot of objects are

Figure 5.3

5.2 Space Partitioning 179

7T
\
\
f v
I |
L I
/
\\ /
_//
(@)
e \\\
\
/ \
F A
' }
\
\ //
N /
\\ -

(b)

A query object (dashed circle) can overlap fewer fat cells than thin cells: (a) octree
vs. (b) k-d tree.

clustered the space is partitioned into many small cells, whereas in regions
where there are hardly any objects the cells can be large. In environments
in which the local densities of objects change over time, for instance, as
in simulations of chemical phenomena, dynamic hierarchical space par-
titioning structures may be applied. If a cell becomes crowded, it can be
subdivided into smaller cells containing less objects. Conversely, if the
children of a node, which are all leaves, contain few objects, the corre-
sponding cells can be united and the internal node is transformed into a
leaf.

Octrees and k-d trees can be used for reducing the number of pair-
wise intersection tests among objects in a model, as well as for reducing
the number of intersection tests between the primitives of a pair of com-
plex models. An example of a k-d-tree-type data structure that is used
in the latter application is the BoxTree by Zachmann and Felger [137].
A BoxTree is constructed a priori for each complex model in its local
coordinate system. It is a static structure and is therefore applicable to
rigid (i.e., nondeformable) models only. Examples of uses of octrees for
deformable models are described in [91, 115]. In both methods, a sin-
gle octree, maintaining primitives for different objects in the scene, is
constructed anew for each frame. In Section 5.3 we will present another
scheme for detecting collisions among deformable models, which is based
on axis-aligned bounding-box trees.

180 Chapter 5 Spatial Data Structures

5.2.3

Octrees and k-d trees are popular space partitioning structures, since
they require relatively little storage and are adaptive to differences in local
densities in a model. Next, we explore the most general of all recursive
space partitioning structures, the binary space partitioning tree.

Binary Space Partitioning Trees

A binary space partitioning (BSP) tree is a hierarchical structure for par-
titioning space recursively into convex cells. Each internal node in the
tree divides the convex region associated with the node into two regions
by means of a freely oriented partitioning plane. Phrased differently, a
BSP tree is a variable split k-d tree, but without the restriction that the
partitioning planes are oriented orthogonal to the coordinate axes. A vari-
ant of the BSP tree in which the orientations of the partitioning planes
are chosen from a finite set of orientations, similar to DOPs, may be
useful in some applications. We refer to this type of BSP tree as a discrete-
orientation BSP (DOBSP) tree. Representing cell structures using DOBSP
trees requires less storage than using general BSP trees, since in a DOBSP
tree the partitioning plane orientations are described by an index num-
ber rather than a 3D vector. Figure 5.4 shows a taxonomy of recursive
hierarchical space partitioning structures.

BSP trees can be used to represent cell structures in which objects
are maintained. However, a more interesting application of BSP trees is
found in representing concave polyhedra, as an alternative to boundary
representations. As we saw in Section 5.1, a concave polyhedron can be
represented as the union of a subset of cells in a binary space partitioning.
For this purpose, the leaves of the BSP tree are labeled in or out, depending
on whether the corresponding cell lies inside or outside the polyhedron
[125],'as depicted in Figure 5.5. We will refer to this type of BSP tree as
a solid-leaf BSP tree.

Construction

A solid-leaf BSP tree representing a polyhedron is constructed by choosing
support planes of boundary facets as partitioning planes. Such a construc-
tion is called an autopartitioning. Algorithm 5.1 illustrates how a solid-leaf
BSP tree of a polyhedron is constructed. The choice of the “best” parti-
tioning plane in the BSP tree construction affects the size of the tree as
well as the performance of the queries performed on the tree.

1. Explicit labeling of leaf nodes is not necessary if we adopt the convention that a leaf node
that is the child corresponding with the positive halfspace of an internal node is out, and
in otherwise.

5.2 Space Partitioning 181

BSP tree

DOBSP tree

_

k-d tree
(variable splits)

k-d tree Octree

(uniform splits) \ (variable splits)

Octree

\ (uniform splits)

Figure 5.4 A taxonomy of recursive hierarchical space partitioning structures. The arrows in
the diagram denote the relation “is a generalization of.”

in out in out

Figure 5.5 A polygon and its BSP tree representation.

182 Chapter 5 Spatial Data Structures

Algorithm
5.1

Recursive algorithm for constructing a solid-leaf BSP tree of a set of
boundary facets P. The flag label denotes whether the associated region is
contained in the positive or negative halfspace of the parent’s partitioning
plane, and is our for the root node.

autopartition (P, label)
begin
if P= ¢ then retum label
else
begin
H :=‘the ‘best’ partitioning plane supporting a facet in P”,
P~ :=0; Pt.=¢;
for facet € P do
begin
if “facet’ is not contained in H" then
begin
if “facet’ intersects H” then
begin
P~ := P~ U {facet};
Pt := P* U {facet}
end
else if “facet’ completely beneath H” then
P~ := P~ U {facet}
else {{ facet’ completely above H }}
Pt := Pt U {facet}
end
end;
child™ :=autopartition(P~, “in”);
child® .= autopartition(Pt, “out”);
return construct_node(H, child™, child™)
end
end

First of all, it is important to keep the number of nodes in the BSP
tree as small as possible. We see in Algorithm 5.1 that the number of
nodes in the constructed tree is larger if a lot of facets are intersected by
partitioning planes. Paterson and Yao [103] show that for a set of n disjoint
facets a BSP tree can be constructed that has O(#2) nodes. Furthermore,
they prove that this bound is worst-case optimal; that is, sets of disjoint
facets exist for which the smallest BSP tree representation still has Q(n2)
nodes.

For polyhedral meshes, however, the number of nodes in an autopar-
titioning is generally closer to O(nlogn) [96]. This is due to the usually
higher degree of geometric coherence in a mesh. So, any reductions in

Figure 5.6

5.2 Space Partitioning 183

Choosing a partitioning plane. The thick line segments represent facets; the
dashed lines represent partitioning planes. Plane H; splits the set of facets into
two sets of equal size. Plane H> splits the region into two fat regions of roughly
equal volume. Choosing H; results in minimal worst-case query times, whereas
choosing H> results in minimal average-case query times.

BSP tree size that are gained by selecting minimal-split partitioning planes
are only marginal. Simply choosing a random partitioning plane from the
set of facets often yields trees of very acceptable sizes.

For the purpose of collision detection, however, it is important to
construct BSP irees that result in minimal average-case query times for
intersection queries. The time it takes to perform a query is linear in the
number of nodes visited during the query. Since we want to optimize
the average case and not necessarily the worst-case query time, the best
heuristic is to choose a partitioning plane that splits the convex region
associated with the node into two fat regions of roughly equal volume,
rather than a plane that splits the set of facets into sets of roughly equal
size (see Figure 5.6) [96].

Note that for some polyhedra, in particular for (almost) convex ones,
none of the facets are proper candidates for partitioning planes. Any
autopartitioning of a convex polyhedron is a single string of nodes, and
thus not very well balanced. In such cases, we can improve the bal-
ance of the BSP tree by using auxiliary planes that are not supporting
planes of a facet. For instance, we could choose an axis-aligned plane
that splits the longest axis of the bounding box of the set of facets along
the median vertex, or we could randomly generate a number of planes
that contain an edge of one facet and a vertex of another, and choose the
best one.

184 Chapter 5 Spatial Data Structures

Algorithm
5.2

BSP Trees and Collision Detection

Solid-leaf BSP trees are quite useful for point-in-polyhedron tests.
The only geometric operation needed for performing the test is the
classification of a point with respect to a partitioning plane. Algorithm 5.2
describes the recursive point-in-polyhedron test. Notice that for each vis-
ited node the associated region contains the query point. Thus, only the
cells that contain the query point are visited.

Testing a point p for inclusion in a polyhedron represented by a BSP tree.

point_in_polyhedron(p, node)
begin
if node = “in” then
return true
else if node = “out” then
return false
else {{ “node” is an internal node. }
begin
n:=node.Hn; { Plane normal }}
8:=nodeHJSs;, { Plane offset }}
hit := false;
if n-p+4+48 <0 then
ip € H (n,0)}
hit :==point_in_polyhedron(p, node. child);
if not kit and n-p+ 38 > 0 then
fip € H*(n,8)}
hit := point_in_polyhedron(p, node. child™);
return hit
end
end

Generally, we are not that interested in testing points for inclusion.
Rather, we want to test volumes for intersection with complex polyhedral
environments. We saw in Chapter 2 that an intersection between two
objects can be expressed as an inclusion of a point in their configuration-
space obstacle (CSO). Let A be a static environment, and let B+ {p;} be a
moving object. Then,

ANB+{p})#0=p, €A-B.

In simple terms, we shrink the moving object to a point and blow up the
environment by adding the negate of the query object.

Figure 5.7

5.2 Space Partitioning 185

(a) () ©

Using offset surfaces for approximating the CSO of a polyhedron and a sphere.
Acute convex edges result in a large error with respect to the actual CSO. This
error can be reduced by inserting auxiliary bevel planes (dashed line). (a) Actual
CSO, (b) offset surface, and (c) beveled offset surface.

Representing the exact CSO of a polyhedron and a query object by a
BSP tree is generally too expensive in terms of tree size (for polytopes)
or simply impossible (for quadrics). In common applications, the CSO is
approximated by offsetting the partitioning planes, thus creating a volume
that encloses the CSO [86], as depicted in Figure 5.7. Notice that for acute
convex edges the error of this approximation can be large. In order to
reduce the error, we insert auxiliary planes in the BSP tree. These auxiliary
planes do not modify the original object; however, they support the convex
edges in such a way that offsetting them results in beveled edges [86].

Since both halfspaces of a partitioning plane may contain parts of
the polyhedron, we need to offset the plane in two directions. Given a
partitioning plane H(n, §), the offset in the direction of normal n is

8§t =8 —max{-n-x:x € B)}.
Similarly, the offset in the direction opposite to n is
8" =6+ max{n-x:x € B}.

If object B is a sphere centered at the origin, then the added offsets are
equal to the radius of the sphere, that is, if the normal has unit length.

For polytopes and other types of convex objects, we can use support
mappings for computing the offsets. See page 130 for a discussion on
support mappings. Expressed in terms of sp, a support mapping of object
B, the offset in the direction of n is

§" =8 +n-sp(-m),
and the offset in the opposite direction is

8~ =6+n-spn).

186 Chapter 5 Spatial Data Structures

Algorithm
5.3

Since only support mappings are required, this offset-surface technique
is applicable to the same class of convex object as defined in the context
of the GJK algorithm and derived algorithms. In this class we find object
types that are commonly used as proxies for navigating an avatar through
an environment, such as cylinders [86] and capsules (spheres extruded
over a line segment) [83].

This offset-surface technique is applied in popular video games such as
Quake [18]. Here, a separate offset-surface BSP tree is used for collision
detection besides the BSP tree used for rasterization. A drawback of the
use of static offset-surface BSP trees is the fact that when query objects of
different sizes are used, we need to construct an offset-surface BSP tree for
each query object. Moreover, query objects cannot have angular degrees
of freedom. Melax [86] presents a solution to this problem in which off-
set surfaces are computed and tested on the fly. Algorithm 5.3 describes
the use of this dynamic plane-shifting technique for testing intersections
between convex objects and polyhedra. Notice that by shifting the planes
the two regions associated with the children of an internal node overlap
each other to some extent.

Since Algorithm 5.3 is applicable to objects that are extrusions of
convex objects along a line segment, it is possible to detect in-between-
frame collisions of a moving convex object against a static environment.
However, for simulating physics or navigating smoothly through an envi-
ronment, we not only need to detect these collisions, but we also need the
first time of impact. This dynamic plane-shifting technique can be applied
for computing the first time of impact as well [86].

Dynamic plane-shifting BSP traversal for testing a convex object B + {p}
for intersection with an environment represented by a BSP tree. This
algorithm requires a support mapping sg for object B.

intersect(B, p, node)
begin
if node = “in” then
return true
else if node = ‘out” then
return false
else {{ “node” is an internal node. }}
begin
n:=node. H.n; { Plane normal }}
8:=node.H.§; {{ Plane offset }
hit = false;
§T:=8+n- sg(—n);
if n-p+48" <0 then

5.2 Space Partitioning 187

{ipeH N}
hit .= intersect(B, p,node. child ™),
if not hir then
begin
87 :=8+n- sp(n);
if n-p+48- >0 then
{peH (®m,87)}}
hit :=intersect(B, p, node. child™);
end;
return Ait
end
end

As we saw on page 48, the first time of impact can be found by perform-
ing a ray cast on the CSO of the environment and the object. This ray cast
is formulated as follows. For an object B + {p;}, where p; = (1 — t)po +tp1
fort € [0, 1], we need to find the earliest time ¢ at which the object hits the
environment A. This query can be answered by performing a ray cast of
ray p, onto the CSO A — B.

The BSP tree that represents A — B splits the ray p; in a number of
overlapping segments. The segments are represented by intervals [#g, ¢1]
that are subintervals of [0, 1]. The first time of impact is given by the
minimum Zg over all segments that are contained in solid cells (cells that
are labeled in).

The segments are computed while traversing the BSP tree. For each
visited node we compute the part of the interval that is contained in the
convex region associated with the node. Let [tg, #1] be the intersection of
the ray segment and the convex region associated with the node. Then, the
intersection of the segment and the region associated with the negative
child is the intersection of the segment and the halfspace H~(n,§%). We
find the subinterval of [fg,#1] that is contained by the halfspace in the
following way.

We first compute the point of intersection of the line through pg and
p1 and the plane H(n,§%). Let r = p1 — po be the direction of the ray.
The line and the plane intersect only if n - r # 0. In that case, the point of
intersection is given by

t+=_n-po+8+'
n-r

If n - r > 0, then t* is an upper bound for the subinterval of [t¢,#1] con-
tained in the halfspace. Thus, the sought subinterval is [tg, min(zy,17)],
that is, if 79 < ¢, since otherwise the subinterval is empty. If n-r < 0, then
t1 is a lower bound, and the subinterval is [max(¢g,t%),#1]. If n-r = 0,

188 Chapter 5 Spatial Data Structures

Algorithm
5.4

then the ray is parallel to the plane. In that case, we test point pg for
inclusion in the halfspace. If pg is contained in the halfspace, then the
complete segment must be contained in the halfspace.

A similar exercise is performed for finding the subinterval that is con-
tained by the halfspace of the positive child. If a solid cell is reached, then
we return fg as the first time of impact for this cell. For empty cells, we
return infinity as the earliest time. Algorithm 5.4 is a complete description
of the sketched algorithm.

Determining the first time of impact of a moving convex object B + {p;}
and a static environment represented by a BSP tree. The trajectory p; is
given by (1 — t)po + tp1 for ¢t € [to,#1]. If no intersection is found, then
infinity is returned.

first_hit(B, po, Pt,to,t1,node)
begin
if node = “in” then return tq
else if node = “out” then return infinity

else begin
n:=node. H.n;
§:=node.H.S§;
§T:=86+n.sg(—m); & :=85+n- sgn);
r.=pi—po;

timpact = infinity;
if n-r =0 then begin
if n-po+8t <0 then
timpact = first_hit(B, po, P1, t0, t1, node. child™);
if n-pg+4- >0 then
timpact '= I impact, first_hit(B, po, p1, to, t1, node. child™));
return fimpact

end
else begin
tTi=—m-po+st)m-r; t:=—m-po+87)n-r;

if n-r>0 then begin
if tg <t* then
timpact :=first_hit(B, po, P1,to, min(ty, ¢ "), node. child™);
if ¢y >t~ then
timpact = min(timpact; first_hit(B, Po, p1, max(to,t7), 1,
node. child™));
return fivpact
end
else begin
if 11 >t then
timpact = first_hit(B, po, p1, max(tg, ™), t|,node. child™);

5.2 Space Partitioning 189

if to <t~ then
timpact = min(timpact: first_hit(B, po, p1, o, min(ty,17),
node. child™));
return ¢;mpact
end
end
end
end

Note that this algorithm is applicable to objects that have angular
degrees of freedom. However, the orientation can only be changed instan-
taneously at discrete time steps. Over the course of a single integration
step the orientation remains fixed. See Figure 2.13 on page 49 for a
description of this motion type.

Merging BSP Trees

In [97], an algorithm is presented for performing Boolean operations on
a pair of polyhedra represented by solid-leaf BSP trees. The result of a
Boolean operation, which is also represented by a BSP tree, is obtained
by merging the two BSP trees. A merge of a pair of BSP trees involves
splitting one of the trees according to the root partitioning plane of the
other tree, and recursively merging the split trees with the corresponding
children of the other tree.

In order to achieve faster splits, the split BSP tree maintains, besides a
partitioning plane, also a convex polygon in each internal node. The poly-
gon represents the intersection of the partitioning plane and the convex
region associated with the node and is explicitly represented by a list of
vertices. Both children need to be split only if the splitting plane intersects
the convex polygon. Otherwise, only one of the children needs to be split,
while the other child stays intact.

This merge operation can be used for efficiently computing the inter-
section of a pair of concave polyhedra. The algorithm can also be applied
to testing the intersection between a pair of polyhedra, with some adap-
tations for speed to enable early exit in case an intersection is found [95].
However, note that these adaptations will only marginally improve per-
formance for intersection testing, since it seems that the BSP tree split,
the most expensive operation in the intersection computation, cannot be
removed or simplified for the collision detection problem.

BSP tree representations of polyhedra are expensive with respect to the
storage requirements, especially the ones that maintain a convex poly-
gon in the internal nodes for fast tree merges. Due to their large storage
usage and high computational cost, we consider it therefore unlikely that

190 Chapter 5 Spatial Data Structures

5.2.4

intersection tests between polyhedra that utilize BSP trees will outperform
algorithms that use bounding-volume hierarchies. For a discussion of
bounding-volume hierarchies see Section 5.3.

Discussion

A drawback of space partitioning methods is the fact that objects that
straddle cell boundaries are maintained in multiple cells. This may lead
to structures with sizes that exceed the number of stored objects by orders
of magnitude. Maintaining multiple references to the same object results
in either a lot of intersection tests being repeated for the same pair of
objects, or additional overheads for keeping records of the pairs of objects
that have been tested for intersection.

Hence, it seems better to siore objects in search structures in such
a way that each object is referred to only once. For hierarchical space
partitioning structures, this can be achieved by maintaining objects in
all the nodes rather than in the leaves only. Each object is maintained
in the node that corresponds with the smallest region that encloses the
object. The interval tree is an example of such a data structure for one-
dimensional space and is used for efficiently reporting all intervals in a
set that intersect a query interval [104].

However, if we allow objects to be stored in all nodes rather than leaf
nodes only, intersection testing among objects is more complicated, since
intersecting objects may be maintained at different levels in the tree. In
a dynamic setting, we find intersections among objects maintained in the
tree by performing range queries in which we use the moving objects as
query objects. The computational cost of a range query depends on the
number of objects maintained in nodes that are visited during the query.
A node is visited if the corresponding region overlaps the query box.

A problem that occurs when objects are maintained in this way in recur-
sive space partitioning trees (octrees, k-d trees, BSP trees) is the fact that
small objects may be stored at all levels in the tree; that is, there is no
upper bound for the extent of the region in relation to the size of the object
stored in the corresponding node. Figure 5.8(a) illustrates this property
for a quadtree. Hence, the upper levels of the tree may contain an unac-
ceptable number of objects. Since the nodes at the upper levels are visited
more often than the nodes close to the leaves, the range queries are slowed
down considerably by a lot of small objects at upper levels. We say “slowed
down” because these objects have a low probability of intersecting with
the query object due to their size. Therefore, most of the intersection tests
on small objects at upper levels are wasted.

A data structure known from geographic information systems (GIS)
literature, referred to as a fieldtree, can be used to solve this problem [45].

5.2 Space Partitioning 191

Figure 5.8

(a) (b)

Two spatial data structures used in GIS: (a) quadtree and (b) fieldtree. In both
structures the objects are stored in the node that corresponds with the smallest
region enclosing the object. Notice that in the quadtree small objects are stored
at all levels, whereas in the fieldtree small objects are stored close to the leaves
only.

In a fieldtree, a node may have up to nine children, and a child node
may have multiple parents; hence, a fieldtree is actually a directed acyclic
graph (DAG). The extent of a child’s region is half the extents of its par-
ents’ regions as in a quadtree; however, the different levels of the tree
are shifted with respect to their parent nodes. The shift of region bound-
aries allows objects to be stored in a node for which the size of the region
is approximately the size of the objects. Thus, large objects are stored
close to the root, whereas smaller objects are stored close to the leaves.
Figure 5.8(b) shows how objects are stored in a fieldtree.

A generalization of the fieldtree to three-dimensional space is possible
and may be useful as an alternative to the voxel grid. However, we expect
such a structure to be less useful as a dynamic data structure, since the
time complexity of adding and deleting nodes in the tree is quite high
because the children may have multiple parents.

To conclude this survey of space partitioning structures, we present an
overview of structures that are, or may be, used for speeding up collision
detection. Depending on the type of intersection problem, we recognize
the following solutions using space partitioning techniques:

» Finding all intersecting pairs among a set of moving objects.

—Evenly distributed Voxel grid [75, 138]—Merits: fast access and
objects of more or update times, low storage cost. Drawbacks:
less equal size. bad performance and/or high storage cost if

object sizes or densities vary.

192 Chapter 5 Spatial Data Structures

—Changes in local Octree, k-d tree, (DO)BSP tree—Merits: adap-
densities of objects tive to differences in local densities of
over time. objects, low storage cost (octree, k-d tree,

DOBSP tree). Drawbacks: bad perfor-
mance when objects straddle cell bound-
aries: either maintain objects in the leaves
(cells) only and keep multiple references to
objects, or maintain objects in all nodes,
possibly resulting in small objects being
stored close to the root, and thus inefficient
range queries.

—Wide variations in 3D fieldtree—Merits: fast query times due
object sizes. to single references to object, and size-
sensitive storage of objects. Drawbacks:
complex structure and algorithms, fairly

high storage cost.

®» Finding intersecting primitives between a pair of complex models.

—Rigid models. Voxel grid [48, 49]—Merits: fast access, low
storage cost. Drawbacks: bad performance
due to multiple references to objects that
straddle cell boundaries.

k-d tree [137]—Merits: adaptive, low storage
cost. Drawbacks: bad performance when
objects straddle cell boundaries.

—Deformable Octree [91, 115]—Merits: fast construction
models. times, low storage cost. Drawbacks: bad
performance when many objects straddle

cell boundaries.

In the following section, we discuss spatial data structures in which the
set of objects in a model is partitioned rather than the space in which
the objects are placed.

5.3 Model Partitioning

Model partitioning is often a better choice than space partitioning, since
model partitioning structures do not suffer from the problem of having
multiple references to the same object. The basic strategy is to subdivide a

5.3.1

5.3 Model Partitioning 193

set of objects into geometric coherent subsets and compute a tight-fitting
bounding volume for each subset of objects, such that in intersection
tests, subsets of objects can be quickly rejected from intersection testing
depending on whether their bounding volumes overlap. In the following
section we discuss a number of commonly used bounding-volume types.

Bounding Volumes

A bounding volume of a model is a primitive shape that encloses the model
and has the following desired properties:

1. A bounding volume should fit the model as tightly as possible in order
to have a low probability of a given query object intersecting the volume
but not the model.

2. Overlap tests between bounding volumes should be computationally
cheap. In particular, they should be much cheaper than intersection
tests for the enclosed models.

3. A bounding volume should be representable using a relatively small
amount of storage; thus, the amount of storage used by the bounding
volume is preferably smaller than the storage used by the model.

4. The cost of computing a bounding volume for a given model should
be low. This property is relevant only if the volume is recomputed
regularly.

Examples of bounding-volume types are spheres, axis-aligned bound-
ing boxes (AABBs), discrete-orientation polytopes (k-DOPs), and oriented
bounding boxes (OBBs). We will briefly discuss the different volume types.

Bounding Spheres

Spheres are the simplest and one of the most commonly used bounding-
volume types. A sphere can be stored using only four scalars. Testing a
pair of spheres for intersection takes only 11 primitive operations (see
page 67). For many shapes, spheres are not the most tightly fitting vol-
ume types. However, their simplicity and the fact that they are invariant
under rotations make them a popular bounding-volume type in dynamic
environments.

The problem of computing the smallest enclosing sphere of a set
of points can be solved quite easily using a randomized algorithm
[132]. Welzl shows that this algorithm runs in expected linear time.

192 Chapter 5 Spatial Data Structures

—Changes in local Octree, k-d tree, (DO)BSP tree—Merits: adap-
densities of objects tive to differences in local densities of
over time. objects, low storage cost (octree, k-d tree,

DOBSP tree). Drawbacks: bad perfor-
mance when objects straddle cell bound-
aries: either maintain objects in the leaves
(cells) only and keep multiple references to
objects, or maintain objects in all nodes,
possibly resulting in small objects being
stored close to the root, and thus inefficient
range queries.

—Wide variations in 3D fieldtree—Merits: fast query times due
object sizes. to single references to object, and size-
sensitive storage of objects. Drawbacks:
complex structure and algorithms, fairly

high storage cost.

®» Finding intersecting primitives between a pair of complex models.

—Rigid models. Voxel grid [48, 49]—Merits: fast access, low
storage cost. Drawbacks: bad performance
due to multiple references to objects that
straddle cell boundaries.

k-d tree [137]—Merits: adaptive, low storage
cost. Drawbacks: bad performance when
objects straddle cell boundaries.

—Deformable Octree [91, 115]—Merits: fast construction
models. times, low storage cost. Drawbacks: bad
performance when many objects straddle

cell boundaries.

In the following section, we discuss spatial data structures in which the
set of objects in a model is partitioned rather than the space in which
the objects are placed.

5.3 Model Partitioning

Model partitioning is often a better choice than space partitioning, since
model partitioning structures do not suffer from the problem of having
multiple references to the same object. The basic strategy is to subdivide a

5.3.1

5.3 Model Partitioning 193

set of objects into geometric coherent subsets and compute a tight-fitting
bounding volume for each subset of objects, such that in intersection
tests, subsets of objects can be quickly rejected from intersection testing
depending on whether their bounding volumes overlap. In the following
section we discuss a number of commonly used bounding-volume types.

Bounding Volumes

A bounding volume of a model is a primitive shape that encloses the model
and has the following desired properties:

1. A bounding volume should fit the model as tightly as possible in order
to have alow probability of a given query object intersecting the volume
but not the model.

2. Overlap tests between bounding volumes should be computationally
cheap. In particular, they should be much cheaper than intersection
tests for the enclosed models.

3. A bounding volume should be representable using a relatively small
amount of storage; thus, the amount of storage used by the bounding
volume is preferably smaller than the storage used by the model.

4. The cost of computing a bounding volume for a given model should
be low. This property is relevant only if the volume is recomputed
regularly.

Examples of bounding-volume types are spheres, axis-aligned bound-
ing boxes (AABBs), discrete-orientation polytopes (k-DOPs), and oriented
bounding boxes (OBBs). We will briefly discuss the different volume types.

Bounding Spheres

Spheres are the simplest and one of the most commonly used bounding-
volume types. A sphere can be stored using only four scalars. Testing a
pair of spheres for intersection takes only 11 primitive operations (see
page 67). For many shapes, spheres are not the most tightly fitting vol-
ume types. However, their simplicity and the fact that they are invariant
under rotations make them a popular bounding-volume type in dynamic
environments.

The problem of computing the smallest enclosing sphere of a set
of points can be solved quite easily using a randomized algorithm
[132]. Welzl shows that this algorithm runs in expected linear time.

194 Chapter 5 Spatial Data Structures

However, as for other randomized algorithms [111], the expected amount
of processing per point is quite large.

A reasonable approximation of the smallest enclosing sphere of a set
of points can be computed using the following heuristic presented by
Wu [134]. First, we apply multivariate analysis to find the principal axes
of the distribution of the points. For each axis i, we find the extreme
points—the points pf;)in and pgl)ax for which the projection onto the axis
is the minimum and maximum, respectively, of all points. We construct a
tentative sphere whose diameter is the line segment connecting the points

pgl)in and pSan for the axis i for which the distance between pgl)in and

pgl)ax is the largest. Next, for each point that is not yet contained by the
tentative sphere, we expand the sphere such that it contains the vertex

and the original sphere.

Axis-Aligned Bounding Boxes and k-DOPs

Even more widely used than spheres are axis-aligned bounding boxes
(AABBs). Although they take up more storage than spheres (six scalars),
AABBs can be tested faster for intersections (at most six primitive opera-
tions). For the average shape, the smallest AABB fits as badly as the small-
est bounding sphere. By maintaining bounds for additional axes besides
the three coordinate axis, we can create a volume that generally has a
better fit than an AABB. The common name for such a volume is discrete-
orientation polytopes or k-DOPs. Here, k is the number of axes over which
bounds are stored. A k-DOP uses 2k scalars of storage and can be tested
for intersection with another k-DOP in at most 2k primitive operations.

In contrast with spheres, AABBs and k-DOPs are not invariant under
rotations. AABBs and k-DOPs are either recomputed whenever the
enclosed object is rotated or set large enough so that the object can be
enclosed in all possible orientations. Computing the smallest AABB or k-
DOP for an object can be done reasonably fast. We simply compute the
projection intervals of the object onto the axes and store for each axis the
minimum and maximum value of these intervals.

The projection interval of a convex object onto an axis can be com-
puted straightforwardly by using a support mapping. See page 130 for a
discussion of support mappings. The projection of object A onto axis v is
the interval

[v-sa(—v),v-sa(V)].

For an object A whose placement is given by an affine transformation
T(x) = Bx + ¢, the computation of the AABB of T(4) with respect to

5.3 Model Partitioning 195

the standard (world) coordinate system can be further optimized. The
projection of T(A) on coordinate axis e; is

[e; - T(sa(—BTe;)), e; - T(sa(BTe))1.

We see that the vector BTe; = (eiTB)T is simply the ith row of B.
Furthermore,

e - Tx)=e¢;-Bx+e;-cC
=b; x+y,

where b; is the ith row of B and y; is the ith component of ¢. We can thus
reduce the projection of T(A) onto coordinate axis e; to

[b; - sa(=b;) + y1, b; - sa(b;) + yil.

Since we have not made any special assumptions about matrix B, this
computation is valid for any type of transformation, including nonuni-
form scalings.

The smallest AABB of a nonconvex polyhedron is equal to the small-
est AABB of its convex hull. So, for quickly computing the smallest
AABB of a nonconvex polyhedron, we compute its convex hull as a pre-
processing step and use a support mapping of the hull for computing
the AABB. Again, we may exploit temporal coherence when evaluating
support mappings by applying the hill-climbing technique discussed on
page 132.

Oriented Bounding Boxes

Oriented bounding boxes (OBBs) are not the most economical bounding-
volume types in terms of storage cost and cost of intersection testing.
However, since they are for many shapes the most tight-fitting volume
type, this high cost is often justified.

An OBB's orientation is represented by a 3 x 3 matrix, which defines a
local basis with respect to the model’s local coordinate system. Although
representation in Euler angles or quaternions (see page 42) uses less stor-
age space (3 versus 9 scalars), we prefer a matrix representation, since
it is more efficient in intersection tests [59]. We test a pair of OBBs for
intersection using the separating-axes test discussed on page 82. This test
uses at most 200 primitive operations.

Finding the smallest OBB of a set of points is hard; however, we can get
reasonably tight-fitting boxes by applying heuristics [134]. As for spheres,

196 Chapter 5 Spatial Data Structures

Table 5.1

A comparison of a number of bounding-volume types. “Test” denotes the cost, in
primitive operations, of testing a pair of volumes for intersection and does not
include the cost of (re)computing the volume.

Volume Fit Test (operations) Storage (scalars)
Sphere poor 11 4
AABB poor <6 6
k-DOP fair <2k 2k
OBB good < 200 (cf. [59]) 15

we first compute the principal axes of the distribution of the points using
multivariate analysis. The principal axes are mutually orthogonal and can
therefore serve as a local basis for rectangular boxes. This method results
in tight-fitting boxes for many models; however, for some cases, such as
the vertices of a cube, the returned orientations are quite bad.

Gottschalk [59] proposes a heuristic that uses axes based on the
weighted spread of sample points on the surface of the convex hull of the
set of points in order to get a tight fit for a wider range of models. Evidently,
this method is more expensive, since a convex hull computation requires
O(n logn) time for n points.

Table 5.1 shows an overview of the characteristics of the mentioned
bounding-volume types. We see that a tighter fit is acquired at a higher
cost of storage space and processing time for overlap testing. The choice
of bounding volumes for a particular application depends on the shapes
and complexities of the enclosed objects, as well as the densities of the
objects in the space.

Case Study

Let us discuss a real-life example of the use of bounding volumes on the
basis of the average time formula presented in Chapter 2. Recall that the
average time of a sequence of intersection tests can be expressed as

Tavg = Zp[fl o ‘fi—l]Ciy
i=1

where f; represents the event that test i fails, and C;, the average time
necessary for performing test i. A bounding volume overlap test fails iff
the volumes overlap.

For this example, we use a model of a torus composed of a large number
of triangles. The torus has a major radius of 10 and a minor radius of 2.

5.3 Model Partitioning 197

Table 5.2 Average performance of an intersection test on a pair of tori, using a single
bounding-volume test. The value of “Cube size” is the length of the sides of the
cube in which the centers of the tori are placed.

Bounding sphere
Cube size PLf, sphere] (%) Tavg (0ps)
100 4.6 471
20 98.7 9881
OBB
Cube size PlfosBl (%) Tavg (0ps)
100 4.1 610
20 86.9 8890

The test is performed by placing a pair of tori randomly in space and
testing them for intersection. The tori have arbitrary orientations. The
space size in which the tori are placed is determined by a cube in which
the centers of the tori are randomly positioned. By scaling the cube the
probability of an intersection can be tuned.

We first examine the use of a single bounding-volume test. The average
time formula for such a test is given by

T, avg = CVOlume + Pl f volume]Ctorus-

The cost of testing a pair of tori for intersection, denoted here by Ciopis,
depends on the number of triangles, but should at its best be on the order
of 10* operations for a torus composed of a hundred triangles, so for
the sake of our discussion let us assume Ciorys = 10,000 ops. Table 5.2
shows the average times over 100,000 runs for a bounding sphere and
an OBB. The smallest sphere enclosing the torus has a radius of 12. The
smallest OBB has a size of 24 x 24 x 4. The cost of overlap testing can be
found in Table 5.1 for both volume types. We see that for both bounding-
volume types the use of the overlap test is justified, since the average time
when using the volume is smaller than Cionys for the tested space sizes.
Moreover, we see that the bounding spheres perform better than the OBBs
when the density is low, whereas OBBs perform better for high densities.

Often, it makes sense to use a combination of bounding-volume types.
A cheap, loose-fit volume type yields quick rejections of pairs of objects
that are at some distance from each other, and a tighter, more expen-
sive volume type is used for rejecting closer configurations of objects.

198 Chapter 5 Spatial Data Structures

Table 5.3

The average time formula for a test with two bounding-volume types is
given by

Tavg = Cvolume1 +P [f volumel]Cvolumez + P [f volumelf volumez]ctorus-

We examine this idea using OBBs as the tight-fitting volumes in the second
bounding-volume test. For the choice of the first volume we have several
options.

Our first option is to use a dynamic AABB enclosing the OBB. A
dynamic AABB is recomputed for each placement of the torus. Although
the smallest AABB enclosing the torus is usually smaller than the smallest
AABB enclosing the OBB, we opt for the latter construction, since com-
puting the smallest AABB of an OBB is much cheaper than computing
the smallest AABB of the set of triangles that represents the torus. The
smallest AABB enclosing an OBB can be computed using 24 operations.
For this purpose, we compute the projections of the OBB onto the coordi-
nate axes, which takes 8 operations for each axis, as we saw in Chapter 3.
Hence, the total cost for performing an overlap test for a pair of AABBs
is 2 x 24 operations for the AABB computations plus 6 operations for the
actual overlap test, which makes a total of 54 operations. See Table 5.3
for the results of this experiment. Notice that this combined approach
performs better than the bounding sphere only for the high-density case,
and better than the single OBB only for the low-density case.

Average performance when combining two bounding-volume types.

Dynamic AABB and OBB

Space size P{faaBB] (%) P[faaBBfoBBI (%) Tavg (ops)
100 9.1 4.1 482
20 99.0 86.9 8942

Fixed-size AABB and OBB

Space size PlfaaBBl (%) PlfaaBrfoBB] (%) Tavg (ops)
100 7.8 39 412
20 100 86.9 8896
Bounding sphere and OBB
Space size Plfspherel (%) PlfspherefoBBI (%) Tavg (ops)
100 4.6 34 360

20 98.7 86.5 8858

5.3.2

5.3 Model Partitioning 199

Due to the recomputations, the cost of overlap testing for dynamic
AABBs is high compared to the cost for fixed-size AABBs—AABBs that
are set at a fixed size that is large enough to enclose the model in each
configuration. An overlap test for fixed-size AABBs takes only 6 opera-
tions. Moreover, since the cost of computing the AABB is not an issue for
fixed-size AABBs, we can use the smallest fixed-size AABB of the actual
model rather than the smallest AABB of the model’s OBB. For the torus we
use a fixed-size AABB with sides of length 24. As can be seen in Table 5.3,
the fixed-size AABB performs better than the dynamic AABB for both
space sizes, even though the overlap test for fixed-size AABBs is wasted in
the high-density case (P[faass] = 100%, since two cubes of size 24 placed
such that their centers lie in a cube of size 20 always overlap).

Finally, we test a combination of a bounding sphere and an OBB.
Table 5.3 shows that this is the best combination for our torus model.
The sphere-OBB test shows the best performances for both space sizes of
all the tests performed in this example. Also, notice that there are con-
figurations of tori for which the bounding spheres do not overlap but the
OBBs do overlap. This is shown by the fact that P[f,hcrefoBB] < PlfoBBI-

Generally speaking, bounding spheres yield in most cases better per-
formance than fixed-size AABBs for intersection testing of objects that
have three rotational degrees of freedom, since in this case, the smallest
bounding sphere is enclosed by the smallest fixed-size AABB and, thus,
is tighter than the AABB, whereas the cost of a sphere intersection test is
only slightly higher than the cost of an AABB intersection test.

Bounding-Volume Hierarchies

We can “capture” geometric coherence in a model by means of a
bounding-volume hierarchy. A bounding-volume hierarchy is a tree struc-
ture in which primitives are stored in the leaves. Each node maintains a
bounding volume of the subset of primitives represented by the node.
The bounding volumes of the children of a node may, and often do, over-
lap. Examples of bounding-volume hierarchies are sphere trees [73, 102],
oriented-bounding-box (OBB) trees [59], and k-DOP trees [76, 135].

The benefits of using bounding-volume hierarchies are the fast query
times for intersection testing and the linear space requirements with
respect to the number of objects in the model. The major drawback is the
high cost of constructing a bounding-volume hierarchy and maintaining a
hierarchy under model changes. Therefore, bounding-volume hierarchies
are generally used only for complex rigid models, for which construction
is performed only once as a preprocessing step. Nevertheless, applications
of bounding-volume hierarchies to collision detection among freely mov-
ing objects have been considered [130]. Further on, we will present an

200 Chapter 5 Spatial Data Structures

application of AABB trees to collision detection between complex models
undergoing deformation.

An intersection test between two models represented by bounding-
volume hierarchies is performed by recursively testing pairs of nodes.
The intersection test handles the following cases:

1. If the bounding volumes of the nodes do not intersect, then false is
returned.

2. If both nodes are leaves, then the primitives are tested for intersection
and the result of the test is returned.

3. If one of the nodes is a leaf and the other an internal node, then the leaf
node is tested for intersection with each of the children of the internal
node.

4. If both nodes are internal nodes, then the node with smaller volume
is tested for intersection with the children of the node with the larger
volume.

The latter heuristic choice of first unfolding the node whose volume is the
largest results in the largest reduction of total volume size in the following
bounding-volume tests, thus the lowest probability of following bounding-
volume tests returning an intersection.

Note that we do not perform volume-primitive intersection tests,
Volume-primitive tests are often as expensive as primitive-primitive tests
and have a high probability of failure; that is, the chance of a volume-
primitive test returning false under the assumption that the volume-
volume test returned true is rather small. Hence, adding volume-primitive
tests as a prestep in case 2 of the recursive intersection test is likely to
worsen the performance, rather than improve it.

However, if the cost of a volume-primitive test is comparable to the cost
of a volume-volume test, then it would make sense to introduce a separate
case for leaf nodes that are tested against internal nodes and perform
case 1 for internal nodes only. In this way, it is no longer necessary to
maintain bounding volumes in leaf nodes, and thus we need only store half
the number of volumes. Terdiman applies this technique in his OPCODE
collision library for triangle meshes [124]. The triangle-box test can be
performed roughly as fast as a box-box test using the separating-axes test
discussed on page 81. This added case not only results in a lower memory
footprint, but the higher accuracy of the triangle-box test also results in
fewer nodes being visited and, thus, better performance.

For our performance analysis of bounding-volume hierarchies, we
return to the initial intersection test that uses only volume-volume and
primitive-primitive tests. The total cost of testing a pair of models

5.3.3

5.3 Model Partitioning 201

represented by bounding-volume hierarchies is expressed in the following
cost function [59, 131]:

Trotat = Np % Cp + Np % Cp,
where

T;0a1 = the total cost of testing a pair of models,
N, = the number of bounding-volume pairs tested for intersection,
Cp, = the cost of testing a pair of bounding volumes for intersection,
Np = the number of primitive pairs tested for intersection, and

Cp = the cost of testing a pair of primitives for intersection.

The parameters in the cost function that are affected by the type of
bounding volume are N, Np, and C,. A tight-fitting bounding-volume
type, such as the OBB, results in a low N, and N,, but has a relatively
high C;,, whereas an AABB will result in more tests being performed, but
the value of Cy, will be lower.

AABB Trees versus OBB Trees

Let us compare the performance of AABB trees versus OBB trees. Both
tree types are binary trees. They are constructed top-down, by recursive
subdivision. At each recursion step, the smallest bounding box of the set
of primitives is computed, and the set is split by ordering the primitives
with respect to a well-chosen partitioning plane. This process continues
until each subset contains one element. Thus, a bounding-box tree for a
set of n primitives has n leaves and » — 1 internal nodes.

At each recursion step, we choose the partitioning plane orthogonal to
the longest axis of the bounding box. In this way, we get a “fat” subdivi-
sion. In general, fat boxes (i.e., cubelike rather than oblong) yield better
performance in intersection testing, since under the assumption that the
boxes in a tree mutually overlap as little as possible, a given query box
can overlap fewer fat boxes than thin boxes.

We position the partitioning plane along the longest axis by choosing
8, the offset on the longest axis where the partitioning plane intersects
the axis. We then split the set of primitives into the negative and positive
subsets that correspond with the respective halfspaces of the plane. A
primitive is classified as positive if the midpoint of its projection onto
the axis is greater than §, and negative otherwise. Figure 5.9 shows a
primitive that straddles the partitioning plane depicted by a dashed line.

202 Chapter 5 Spatial Data Structures

Figure 5.9

min 0 mid max

| | |
[f |

The primitive is classified as positive, since its midpoint on the coordinate axis is
greater than §.

This primitive is classified as positive. It can be seen that by using this
subdivision method, the degree of overlap between the AABBs of the two
subsets is kept small.

For choosing the partitioning coordinate § we tried several heuristics.
Our experiments with AABB trees for a number of polygonal models show
that, in general, the best performance is achieved by simply choosing § to
be the midpoint of the AABB, thus splitting the box in two equal halves.
Using this heuristic, it may take O(n?) time in the worst case to build
an AABB tree for n primitives; however, in the average case, where the
primitives are distributed more or less uniformly over the box, building
an AABB tree takes only O(nlog n) time.

Other heuristics we have tried that didn’t perform as well are (1) sub-
dividing the set of primitives into two sets of equal size, thus building an
optimally balanced tree, and (2) building a halfbalanced tree—the larger
subset is at most twice as large as the smaller one, and the overlap of the
subsets’ AABBs projected onto the longest axis is minimized.

Occasionally, it may occur that all primitives are classified to the same
side of the plane. This will happen most frequently when the set of primi-
tives contains only a few elements. In this case, we simply split the set into
two subsets of (almost) equal size, disregarding the geometric location of
the primitives.

Building an AABB tree of a given model is faster than building an OBB
tree for that model, since the estimation of the best orientation of an
OBB for a given set of primitives requires additional computations. We
found that building an OBB tree takes about three times as much time as
building an AABB tree.

5.3 Model Partitioning 203

Intersection Testing

Since for both tree types the boxes that are tested for intersection may be
arbitrarily oriented, we need an overlap test for relatively oriented boxes.
A fast overlap test for oriented boxes is the separating-axes test (SAT), pre-
sented by Gottschalk [59]. For a pair of oriented boxes, the SAT tests 15
potential separating axes (3 facet orientations per box plus 9 pairwise com-
binations of edge directions). The SAT exits as soon as a separating axis is
found. If none of the 15 axes separate the boxes, then the boxes overlap.

We refer to page 82 for details on how the SAT is implemented such
that it uses the least number of operations. For the following discussion, it
is important to note that this implementation requires the relative orien-
tation represented by a 3 x 3 matrix and its absolute value (i.e., the matrix
of absolute values of matrix elements) to be computed before performing
the 15 axes tests.

In general, testing two AABB trees for intersection requires more box
overlap tests than testing two OBB trees of the same models, since the
smallest AABB of a set of primitives is usually larger than the smallest
OBB. However, since each tested pair of boxes of two OBB trees normally
has a different relative orientation, the matrix operations for computing
this orientation and its absolute value are repeated for each tested pair of
boxes, whereas for AABB trees the relative orientation is the same for each
tested pair of boxes, and thus needs to be computed only once. Therefore,
the performance of an AABB tree might not be as bad as we would expect.

In order to compare the performances of the AABB tree and the OBB
tree, we have conducted an experiment, in which a pair of models were
placed randomly in a bounded space and tested for intersection. The
random orientations of the models were generated using the method
described by Shoemake [113]. The models were positioned by placing the
origin of each model’s local coordinate system randomly inside a cube.
The probability of an intersection is tuned by changing the size of the
cube. For all tests, the probability was set to approximately 60%.

For this experiment we used Gottschalk’s RAPID package [58] for the
OBB tree tests. For the AABB tree tests, we used a modified RAPID, in
which we removed the unnecessary matrix operations. We experimented
with three models: a torus composed of 5000 triangles, the Utah Teapot
model composed of 3752 triangles, and the Bunny model (courtesy of the
Stanford Computer Graphics Laboratory) composed of 69451 triangles,
as shown in Figure 5.10. The Bunny model’s vertices were translated by
0.1 down the y-axis in order to place the local origin inside the model.
Each run performs 1,000,000 random placements and intersection tests,
resulting in approximately 600,000 collisions for all tested models. An
intersection test immediately terminates after detecting the first intersect-
ing pair of triangles, and does not continue to search for other intersecting

Figure 5.10

Table 5.4

{a))

Two models that were used in our experiments: (a) Utah Teapot and (b) Stanford
Bunny.

Performance of the AABB trec versus the OBB tree, both using the SAT. Ny, and
Ny, are, respectively, the total number of box and triangle intersection tests; €,
and Cp, the per-test times in microseconds for, respectively, the box and triangle
intersection tests; T = Ny, = (p is the total time in seconds spent testing for box
intersections; Tp = Ny % Cp is the total time used for triangle intersection tests;
and finallv 7, is the total time in seconds for pertorming 1,000,000 intersection
Lests.

OBB tree

Model Npy Cp Ty Np Cp Iy Tiseal

Torus 100,971,773 0.53 53.57 1,946,006 156 3.03 56.6
Teapol 119,828,088 0.53 62.91 1,861,728 1.68 312 66.0
Bunny 180,084 565 0.54 97.35 1,349,839 1.97 2.66 100.0

AABB tree

Model Ny, Cy, Ty Np Cp Tp Tiotal

Torus 451,627,619 029 13306 37,173,201 .54 20.02 153.1
Teapot 360,367,257 0.29 103.90 19.693,604 0.63 12.44 116.3
Bunny 306,440,438 030 15351 14,135.544 0.74 10.49 164.0

pairs. Table 5.4 shows the results of the tests for both the OBB tree and
the AABB tree. The tests were performed on an AMD Athlon clocked at
1.4 GHz with 312 MB of PC2100 (DDR266) memory, compiled using the
GNU C++ compiler version 3.3 with “-02” optimization, and run under
Linux kernel version 2.4 (glibc version 2.3.2),

The results show that an AABB tree requires approximately three to
four times as many box intersection tests as an OBB tree; however, the
time used for intersection testing is in two cases only around 50% longer
for AABB trees. The exception here is the torus model, for which the AABB

Figure 5.11

5.3 Model Partitioning 205

25%
E OBB tree
H AABB tree
20% [
15%
10%
5%
0% A A A NHRN = WS W= W= N
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Distribution of axes on which the SAT exits in the case of the boxes being disjoint.
Axes 1 to 6 correspond with the facet orientations of the boxes, and axes 7 to 15
correspond with the combinations of edge directions.

tree uses almost three times as much time as the OBB tree. Apparently, the
OBB tree is able to fit this model much better than the AABB tree, which
is probably due to the fact that the torus has a smooth surface composed
of a regular grid of rectangular quadrilaterals. Furthermore, we observe
that, due to its tighter fit, the OBB tree requires much fewer triangle
intersection tests (less than two triangle intersection tests per placement).

For both tree types, the most time-consuming operation in the intersec-
tion test is the SAT, so let’s see if there is room for improvement. We found
that, in the case where the boxes are disjoint, the probability of the SAT
exiting on an axis that corresponds with a pair of edge directions is about
15%. Figure 5.11 shows a distribution of the separating axes on which
the SAT exits for tests with a high probability of the models intersecting.
Moreover, for both the OBB and the AABB tree we found that about 60%
of all box overlap tests resulted in a positive result. Thus, if we remove
from the SAT the nine axis tests that correspond with the edge directions,
we will get an incorrect result only 6% (40% of 15%) of the time.

Since the box overlap test is used for quick rejection of subsets of prim-
itives, exact determination of a box overlap is not necessary. Using a box
overlap test that returns more overlaps than there actually are results in
more nodes being visited, and thus more box overlap and primitive inter-
section tests. Testing fewer axes in the SAT reduces the cost of a box
overlap test, but increases the number of box and primitive pairs being
tested. Apparently, when we use a SAT that tests fewer axes, there is a
trade-off of per-test cost against number of tests.

In order to examine whether this trade-off is in favor of performance,
we repeated the experiment using a SAT that tests only the six facet

206 Chapter 5 Spatial Data Structures

Table 5.5 Performance of AABB tree versus OBB tree, both using the SAT lite.

5.3.4

OBB tree

Model N, G Ty Np Gy T Tl

Torus 130,139,725 0.39 50.92 3,671,005 1.34 4.92 55.8
Teapot 143,540,360 0.39 56.62 2,794,760 1.27 3.56 60.2
Bunny 216,946,083 0.41 89.05 1,964,455 1.77 348 92.5

AABB tree

Model Ny Gy Ty Np G Iy Tiotal

Torus 547,995,855 0.18 99.58 48,685,371 0.51 25.05 124.6
Teapot 420,645,385 0.17 72.59 23,096,133 0.58 13.44 86.0
Bunny 589,819,356 0.19 111.92 16,755,783 0.71 1196 1239

orientations. We refer to this test as the SAT lite. The results of this
experiment are shown in Table 5.5. We see a performance increase of
about 25% for the AABB tree, whereas the change in performance for the
OBB tree is only marginal.

We found that the AABB tree’s performance benefits from a cheaper
but sloppier box overlap test in all cases, whereas the OBB tree shows
hardly any change in performance. This is explained by the higher cost of
a box overlap test for the OBB tree due to extra matrix operations.

We see that despite our efforts to improve the performance of the
intersection test for AABB trees, OBB irees still beat AABB trees on perfor-
mance. However, the OBB tree’s higher performance comes at the price of
longer construction times and a larger memory footprint. Which of these
qualities turns out to be the most important depends, of course, on the
computer platform and application.

AABB Trees and Deformable Models

AABB trees lend themselves quite easily to speeding up collision detection
of deformable models. In this context, a deformable model is a set of
primitives in which the placements and shapes of the primitives within
the model’s local coordinate system change over time. A typical example
of a deformable model is a triangle mesh in which the local coordinates
of the vertices are time-dependent.

Instead of rebuilding the tree after a deformation, it is usually a lot
faster to refit the boxes in the tree. The following property of AABBs allows
an AABB tree to be refitted efficiently in a bottom-up manner. Let S be a

Figure 5.12

5.3 Model Partitioning 207

B

B B'

The smallest AABB of a set of primitives encloses the smallest AABBs of subsets
of the set.

set of primitives and S*,S™, subsets of S such that St US™ =S, and let
B* and B~ be the smallest AABBs of ST and S, respectively. Then, the
smallest AABB enclosing BT U B~ is also the smallest AABB of S. This
property is illustrated in Figure 5.12. Of all bounding-volume types we
have seen so far, AABBs share this property only with DOPs, and this
property does not hold for OBBs.

This property of AABBs yields a straightforward method for refitting a
hierarchy of AABBs after a deformation. First, the bounding boxes of the
leaves are recomputed, after which each parent box is recomputed using
the boxes of its children in a strict bottom-up order. This operation may be
implemented as a postorder tree traversal; that is, for each internal node,
the children are visited first, after which the bounding box is recomputed.
However, in order to avoid the overhead of recursive function calls, we
propose a different implementation.

Since the number of primitives in the model is static and known a pri-
ori, we are able to allocate the leaves and the internal nodes of an AABB
tree as contiguous arrays of nodes. Furthermore, the tree is built such that
each internal child node’s index number in the array is greater than its
parent’s index number. In this way, the internal nodes are refitted prop-
erly by iterating over the array of internal nodes in reversed order. Since
refitting an AABB takes constant time for both internal nodes and leaves,
an AABB iree is refiited in time linear in the number of nodes. Refitting an
AABB tree of a triangle mesh takes less than 48 arithmetic operations per
triangle. Experiments have shown that for models composed of over 6000
triangles, refitting an AABB tree is about 10 times as fast as rebuilding it.

208 Chapter 5 Spatial Data Structures

Figure 5.1.3

B B* B B*
(a) (b)

(a) Refitting versus (b) rebuilding a model after a deformation.

There is, however, a drawback to this method of refitting. Due to rel-
ative position changes of primitives in the model after a deformation,
the boxes in a refitted tree may have a higher degree of overlap than the
boxes in a rebuilt tree. Figure 5.13 illustrates this effect for the model
in Figure 5.12. A higher degree of overlap of boxes in the tree results
in more nodes being visited during an intersection test and, thus, worse
performance for intersection testing.

We observe a higher degree of overlap among the boxes in a refitted
tree mostly for radical deformations such as excessive twists, features
blown out of proportion, or extreme forms of self-intersection. However,
for deformations that keep the adjacency relation of triangles in a mesh
intact (i.e., the mesh is not torn up), we found no significant performance
deterioration for intersection testing, even for the more severe deforma-
tions. This is due to the fact that the degree of overlap increases mostly
for the boxes that are maintained high in the tree, whereas most of the
box-box tests are performed close to the leaves.

Refitting AABB trees of triangle meshes takes asymptotically 51 prim-
itive operations per triangle (15 comparisons, 36 arithmetic operations).
The question arises how the time used for refitting an AABB tree compares
to the intersection testing time. We found that on our testing platform,
refitting a triangle mesh takes roughly 0.6 microseconds per triangle. For
instance, for our torus model composed of 5000 triangles, refitting takes
3 milliseconds, which is about 25 times the amount of time it takes to
test two tori for intersection. Hence, refitting is likely to become the bot-
tleneck if many of the models in a simulated environment are deformed
and refitted in each frame. However, for environments with many moving

5.4 Broad Phase 209

Table 5.6 Comparing the times for building, refitting, and testing. All times are in milli-

seconds.

Operation Torus Teapot Bunny
Build an OBB tree 35.9 28.0 681
Build an AABB tree 6.1 5.0 192
Refit an AABB tree 3.1 2.4 50.2
Test a pair of OBB trees 0.06 0.06 0.10
Test a pair of AABB trees 0.12 0.09 0.12

models, in which only a few are deformed in each frame, refitting will not
take much more time in total than intersection testing.

Table 5.6 presents an overview of the times we found for operations on
the two tree types. We see that for deformable models the OBB’s faster
intersection test is not easily going to make up for the high cost of rebuild-
ing the OBB tree, even if only a few of the models are deformed. For these
cases, an AABB tree, which is refitted in less than 10% of the time it takes
to rebuild an OBB tree, will yield better performance and is therefore the
preferred method for collision detection of deformable models.

5.4 Broad Phase

Although bounding-volume tests are relatively cheap, testing all (3) pairs
in a collection of n bounding volumes still gives rise to a lot of com-
putations. In the common case, where configurations of objects are
geometrically coherent, only a small number of all pairs of bounding vol-
umes are overlapping. Hence, an output-sensitive algorithm for finding all
overlapping pairs of volumes should perform better than the naive O(n?)
test-all-pairs algorithm.

An output-sensitive algorithm for reporting all overlapping pairs of
AABB:s has been presented by Six and Wood [114]. Their algorithm has
a time complexity of O(nlog? n + k), where # is the number of AABBs in
the set and k is the number of overlapping pairs of boxes and requires
O(nlog® n) space. The algorithm applies a space-sweeping technique—
that is, a plane orthogonal to a coordinate axis is swept from —oo to oo
iterating over the coordinates that correspond with the extremes of the
boxes. As the plane is swept, the intersections of boxes that are cut by the
plane are maintained in data structures. The data structures used, a seg-
ment tree and a range tree [104], enable fast insertion, deletion, and query
operations, such that a subquadratic time bound can be attained. A similar
technique is applied in [69] for detecting intersections among # spheres.

210 Chapter 5 Spatial Data Structures

5.4.1

Sweep and Prune

Algorithms that apply space-sweeping essentially have a worst-case lower
time bound of Q(n log 1) since it is necessary to sort the input with respect
to a given coordinate axis. However, if frame coherence is high, the sorted
sequence of box coordinates from a previous frame is likely to be nearly
sorted in the current frame, in which case sorting will take only linear
time using insertion sort [109]. Baraff exploits this idea in an incremental
algorithm for maintaining the set of overlapping AABBs during a simu-
lation [6]. In his approach, the endpoints of the intervals of projection of
the boxes onto the three coordinate axes are maintained in three sorted
sequences. Each endpoint maintains, besides its coordinate, also a refer-
ence to its box, and whether it is a lower or upper bound of the interval.

The ordering of endpoints is based on their coordinate. For endpoints
that have the same coordinate, lower-bound endpoints precede upper-
bound endpoints. In this way, adjacent intervals will be counted as
overlapping.

In each frame, the coordinates of the endpoints are updated, and the
three sequences are sorted using insertion sort. Insertion sort is performed
as follows. Assume that the sequence is sorted up to a certain element. This
element is found to be less than its predecessor, and has to be inserted
in the segment of the sequence from the head up to the current location.
Insertion is performed by swapping the element with its predecessor until
an element is reached that is less than the current element. After the
element is inserted, we continue sorting the remaining elements from the
previous location of the inserted element. This process continues until we
reach the end of the sequence.

When during a sort a lower-bound endpoint of one interval and an
upper-bound endpoint of another interval are swapped, the intervals will
either start or cease to overlap. Note that insertion sort performs swaps
of adjacent elements only; thus the only intervals that may be affected
by the swap are the ones that correspond with the swapped endpoints.
Figure 5.14 illustrates how changes in overlap status of box intervals can
be detected.

When a pair of intervals changes from nonoverlapping to overlapping,
the corresponding pair of boxes is tested for overlap with respect to the
other two coordinate axes. If the boxes overlap, then the pair is inserted
in a set of overlapping pairs of boxes. When a pair of intervals ceases to
overlap and the intervals of the corresponding boxes overlap with respect
to the other two coordinate axes, the pair of boxes is removed from the set
of overlapping pairs of boxes. In order to keep the times of insertions and
deletions of pairs of boxes short, the set of overlapping box pairs is best
implemented using a balanced binary-search tree (AVL tree, red-black
tree) or a hash table [85].

Figure 5.14

5.4 Broad Phase 211

1 3
E . : Ze o |
L L i L [[lals
(a)
1 . 3
| i 2 P4

t] 1j tz t3 jz t4 js j4
A - A
(b)

Incrementally sorting a sequence of endpoints: (a) ¢ = 0 and (b) ¢t = 1. Interval 2
moves and causes two swaps in the sequence of endpoints. The swap of [, and];
indicates that the intervals 1 and 2 cease to overlap. The swap of [, and]3 indicates
that the intervals 2 and 3 begin to overlap. The move of interval 4 causes a swap
of 14 and 13. The overlap status of 3 and 4 does not change.

Each swap can be performed in constant time, except for the swaps that
result in an insertion or deletion of a box pair. Insertions and deletions of
box pairs take linear time in the worst case and roughly constant time on
average for a set of box pairs represented by a hash table. Since a nearly
sorted sequence can be sorted in linear time, we find that when frame
coherence is high, the worst-case cost of updating the set of overlapping
box pairs is O(n + ck), where ¢ is the total number of box pairs whose
overlap status changed with respect to the previous frame.

Often, only a few of the boxes in a scene are moving at a given time. In
order to exploit this, Baraff’s sweep-and-prune algorithm can be adapted
such that it enables update of the set of overlapping box pairs in linear
time in the number of moving boxes. Instead of performing an insertion
sort on the sequences of endpoints once for all endpoints, we propose an
incremental approach in which insertions are performed immediately for
each displaced endpoint.

Each time an endpoint is assigned a new position, the endpoint is
immediately inserted at the correct location in the sequence. Unlike inser-
tion sort, where insertions are only done downward, we allow insertions
to be performed upward as well as downward. We are able to do this
since both the segments of the sequence below and above the displaced
endpoint are always sorted, whereas with insertion sort only the segment

212 Chapter 5 Spatial Data Structures

5.4.2

below the current endpoint is sorted. In this way, the worst-case update
time per frame is expected to be O(m +ck) when frame coherence is high,
where m is the number of moving boxes.

Implementing the Sweep-and-Prune Algorithm

Although the sweep-and-prune algorithm can be explained in simple
terms, designing an efficient implementation of the algorithm cannot
be dismissed as trivial. The performance of the sweep-and-prune algo-
rithm is highly determined by the choice of data structure used for storing
sequences of endpoints. This data structure needs to support the following
operations:

® Insertion and deletion of endpoints, when boxes are created or
destroyed.

m Displacement of endpoints, when boxes are moved. If the degree of
frame coherence is high, then the displacements are expected to be
relatively short.

For insertions and deletions of elements in a sorted sequence, the best
time bounds are attained for balanced binary-search trees and hash tables
[85]. However, these structures do not support displacements very well.
Displacements are performed by a small number of swaps with adjacent
endpoints, so it is important to have fast access to adjacent elements.
Sequential structures, such as arrays and doubly linked lists, are better
suited for performing swaps of adjacent elements. Since it is expected that,
during a simulation, performance is mostly governed by displacements,
the need for fast swaps is considered more important.

Insertions and deletion of elements in a sorted sequence take linear time
for both arrays and doubly linked lists. However, on current computer
architectures, arrays are likely to be faster. Current CPUs keep blocks of
memory in cache, so it pays to organize data in contiguous blocks of mem-
ory. Inserting an element in a sorted array involves finding the location
of the new element by binary search, and moving all elements from that
location to the end of the array one location to the right. Memory blocks
can be moved quickly using dedicated hardware. Inserting an element in
a sorted doubly linked list involves a linear search on the list, and thus is
likely to be slower. So, the preferred data structure for storing endpoints
is an array.

In cases where we know a priori the maximum number of boxes in
the simulated environment, we can allocate arrays that are large enough
to store all endpoints. In other cases we can use dynamically resizeable

5.4 Broad Phase 213

arrays. The Standard Template Library offers a C++ implementation of
dynamically resizeable arrays in the form of the vecror class [93].

Insertions and Deletions

Each time a box is inserted to or deleted from the scene, we have to add
or remove the box pairs for the boxes that overlap the inserted or deleted
box. In order to find all boxes that overlap a query box, we perform range
queries on the set of intervals for each of the three coordinate axes. These
range queries report all intervals that overlap the interval of the query box
for that axis. A box overlaps the query box if for all three coordinate axes
the corresponding interval is reported.

The intervals [«;, B;] that overlap a given query interval [«g, B;] can be
categorized into two classes: either a; < o; < B or o; < oy < ;. The first
class of intervals can be found by iterating over the array from the location
of ¢y to the location of ;. Reporting the second class requires iterating
from the location of oy to the start of the array.

Under the assumption that the set of intervals is geometrically coher-
ent (i.e., it contains intervals that are relatively short and are distributed
evenly), the first class of intervals does not pose too many problems. The
number of endpoints enclosed by a; and g, is likely to be small. However,
for the second class of intervals, things do not look as good. We have to
iterate back over all endpoints from «g to the start of the array and can-
not exit early, since there is no way we can tell whether we are going to
encounter any intervals of the second class while iterating. Thus, without
any further knowledge, a range query would take linear time.

The solution to this problem is quite simple. With each endpoint, we
maintain a counter containing its stabbing number—the number of lower-
bound endpoints minus the number of upper-bound endpoints located to
left of the endpoint. For each lower-bound endpoint, this stabbing number
is equal to the number of intervals of the second class. In order to retrieve
all second-class intervals for a query interval [y, B4], we read the stabbing
number # of the endpoint to the right of o, and iterate backward until
we have found n second-class intervals. Since, for geometrically coherent
sets of intervals, the stabbing number is fairly small, we probably do not
have to iterate backwards over a lot of endpoints.

Updating stabbing numbers under the different operations does not
take a lot of overhead. An insertion or deletion of an interval involves
updating only the stabbing numbers of the endpoints in the array that
are enclosed by the endpoints of the interval. Furthermore, swaps of
endpoints affect only the stabbing numbers of the swapped endpoints.
Figure 5.15 shows how the stabbing numbers change under different types
of swaps.

214 Chapter 5 Spatial Data Structures

Figure 5.15

1 3
2 4 |

[1 lj tZ t3 jZ t4 j} j4
o [1][o] 2]1][2][1]

(b)

Each endpoint maintains a counter containing its stabbing number: (a) t = 0
and (b) t = 1. Swapping [, and] results in a decrease of both counters by one.
Swapping [, and]3 results in an increase of both counters by one. Swapping 14
and]3 results in an exchange of counter values; that is, everything is swapped
except the counters.

Box Structure

As mentioned, each endpoint maintains a reference to its corresponding
box. This is necessary for testing the other two axes if the overlap status
of a pair of boxes changes for one axis. Furthermore, whenever a pair of
boxes starts or ceases to overlap, we need to update the set of overlapping
pairs.

We also need a reference the other way around, from boxes to end-
points, If the bounds of a box are updated, then we need fast access to the
corresponding endpoints in the three arrays in order to update the over-
lap status of the boxes. Furthermore, during range queries we need to
retrieve the upper-bound endpoints corresponding with the lower-bound
endpoints that are encountered.

These operations require us to maintain indices of the locations of the
endpoints of each box. These indices have to be updated when endpoints
are inserted, deleted, and swapped. In order to enable fast updates of
these indices, each endpoint refers directly to its corresponding index,
rather than maintain a reference to the box itself. The indices of endpoint
locations are stored in a single array for all boxes. Each box owns a block
of six indices in the index array. The endpoints refer to their indices by

Figure 5.16

5.4.3

5.4 Broad Phase 215

1 3
| : 2 ig |

Indexing endpoints in box structures. Boxes maintain indices of locations in the
endpoint arrays. Endpoints maintain indices of locations in the index array.

means of indices of locations in the index array. In this way, endpoints
can refer implicitly to their box, since the index of the location in the index
array divided by six yields the box index.

Furthermore, we make sure that the index structure of an upper-bound
endpoint is allocated adjacent to the index structure of the corresponding
lower-bound endpoint. This is convenient for retrieving the upper-bound
endpoint corresponding with a lower-bound endpoint. Figure 5.16 shows
an overview of the different references between box structures and
endpoint arrays.

Ray Casting and AABBs

The structure we described above suits perfectly for performing ray
queries on sets of AABBs [25]. Given a set of AABBs, three-dimensional
space can be thought of as a nonuniform grid subdivided by axis-aligned
planes that support the sides of the AABBs. By performing a grid traversal
along the ray using 3D-DDA [2], we can detect all AABBs that intersect
the ray (see Figure 5.17).

The first step is to locate the cell containing the source s = (01, 02, 03) of
the ray. This operation is similar to the insertion operation discussed on
page 213. For each axis e;, we locate the leftmost endpoint greater than
o;, read its stabbing number n, and retrieve all n intervals that contain
this coordinate by iterating backwards.

The box indices corresponding to the reported intervals for the three
coordinate axes are stored in a multiset—a set in which multiple instances
of the same element may occur. Thus, for each reported interval an
instance of the corresponding box index is inserted in the multiset.

216 Chapter 5 Spatial Data Structures

Figure 5.17

Ray casting AABBs using 3D-DDA on a nonuniform grid. The numbers indicate
the order in which the cells are visited.

Any box for which three instances of its index are contained in the mul-
tiset must contain s, and thus is reported as one of the boxes that are hit
by the ray.

The remaining boxes that are hit by the ray are found by applying 3D-
DDA. Since we have located the cell that contains the ray’s source, we can
compute the plane in the grid that the ray hits first. Let r = (p1, p2, p3) be
the direction t — s of the ray. For each coordinate axis e;, we compute the
parameter A; for the point of intersection of the ray component and the
next plane. If the sign of the direction component p; is positive, then we
take the upper bound of the current cell as plane coordinate §. Otherwise,
we take the lower bound as §. The resulting parameter A; of the point of
intersection is given by

é—oj
A= L
Pi

If the ray component is zero, or if the cell is not bounded in the direction
of the ray, we return infinity.

The smallest of the three parameters A; corresponds with the cell bound
that is hit first by the ray. If the direction component p; is positive and
the hit plane corresponds with a lower-bound endpoint, or if p; is negative
and the hit plane corresponds with an upper-bound endpoint, then the box
index corresponding with this endpoint is added to the multiset. Other-
wise, the box index is removed from the multiset. Again, if the multiplicity

5.4 Broad Phase 217

of the added box in the multiset reaches three, the box is reported as being
hit by the ray. Next, we proceed to the cell corresponding with the clos-
est plane and compute a new parameter A; for this axis. This process is
repeated until the smallest A; is greater than 1.

For ray casting we usually return only the object that is hit first. Since
the AABB:s in this algorithm are commonly used as bounding boxes for
more complex shapes, the following modification may result in speedups
for some applications. Rather than report all boxes that are hit by the
ray, we can immediately start testing the enclosed shapes of the hit boxes
using an exact ray cast. The smallest parameter Aoxqcr returned by an exact
ray cast can then be used for tightening the stop criterion. As soon as the
smallest A; of the three cell bounds is larger than the smallest A¢xqc, we may
exit, since the ray cannot hit any of the shapes enclosed by the remaining
boxes before Axqc:. Care should be taken when applying this modification,
since modern CPUs employ code cache, so executing different parts of
code simultaneously may turn out to be slower than running the same
code parts sequentially.

Chapter
Design of SOLID

Quote under construction.

—~Gino van den Bergen

In this chapter we discuss the design of SOLID, a Software Library for
Interference Detection. We discuss the goals and constraints involved
in the design of SOLID and give a brief description of its functionality.
The motivations behind major design decisions, and some implementa-
tion details are discussed. We evaluate the current version of SOLID with
respect to the goals that were originally set out. Finally, we share some of
the C++ coding details that we find worthwhile to mention.

6.1 Requirements

We set out in 1996 to design a general-purpose software library for colli-
sion detection in interactive 3D applications. At that time, continuous
space-time collision tests of arbitrary objects were not considered to
be feasible at interactive rates. So, we aimed at developing a library
for intersection testing of complex environments at consecutive time
intervals.

The library should provide a simple, yet versatile, interface to the
application program. Furthermore, in order to reduce the calling over-
head, the application program interface (API) should allow low-bandwidth
data exchange between the application program and the library. We will
further refer to the application program as the client.

Graphical rendering and collision detection are the two tasks! of a 3D
engine that processes geometric objects. However, the manner in which
geometric data is processed in these two tasks differs to a large extent.
Rasterization hardware typically renders geometric objects represented

1. 3D sound modules, however, may also require geometric data for rendering reflection
and occlusion of sound.

219

220 Chapter 6 Design of SOLID

as triangle meshes. Triangle meshes are stored as strips or fans of adjacent
triangles, such that they can be efficiently passed to and processed by the
graphics library. In collision detection, we are not forced to use triangle
meshes for modeling geometric objects. Furthermore, since usually only
a few triangles at a time will be queried for collisions, there is less need
for optimizing the processing of multiple triangles. Therefore, it does not
seem sensible to use the same geometric representation for both rendering
and collision detection.

Collision detection is performed in the animation loop, where the
behavior of objects in a 3D environment is processed. In distributed 3D
environments, the animation loop and rendering loop may be executed on
different machines and can therefore not physically share the same data.
So, early in the design of SOLID, we opted for the collision detection
library to maintain its own internal representation of geometric objects,
rather than to rely on the geometry representations that are used for ren-
dering. This enables the application of faster data structures for collision
queries at the cost of additional storage space. However, for data that can
be shared between rendering and collision detection, the library should
facilitate sharing.

We aimed at providing collision detection for all shapes and motions
that can be described in VRML [10]. VRML was launched as a standard
for describing interactive 3D content on the Web and, as such, the lan-
guage seemed general enough to base our library on. The major issues
that need to be addressed in order to achieve compliance with VRML are
the following:

® Models are built using VRML primitive shapes, such as boxes, cones,
cylinders, spheres, and complex shapes, represented by soups of points,
line segments, and polygons.

®m Objects are instances of shapes; that is, a shape may be used to
instantiate multiple objects. This requirement captures the DEF/USE
mechanism of VRML.

® The types of movement should be as general as possible. Mostly rigid
motions {translations and rotations) are used, but also nonuniform
scalings and deformations of complex shapes can be described in
VRML. Nonuniform scalings enable us to use instances of the same
shape at different dimensions and, less commonly, to change the scale
of an animated object.

Keep in mind that VRML serves solely as a format for exchanging
interactive 3D content in an open manner. It does not necessarily reflect
the format in which content is stored and used internally in 3D graphics
applications. VRML shapes are generally converted to a format that can

6.1 Requirements 221

be processed faster by the 3D graphics library. However, since we want to
keep a separate shape representation for collision detection, independent
of the representation used for rendering, we might as well keep the format
for collision shapes as universal as the underlying algorithms allow.

Furthermore, the library should allow the collision handling to be
defined by the application program and should compute different types
of response data depending on the needs of the application program.
In particular, response data that is used for physics-based simulations,
such as approximations of contact points and a contact plane, should be
computed by the library.

Since the library should be able to perform within the limitations of
current platforms for interactive 3D, we should also address issues such
as performance, accuracy, storage usage, and versatility, which express
quality, rather than functionality. The following design constraints deter-
mine the usefulness of the library for general purposes and received a lot
of attention in the design:

m The library should perform collision detection of complex environ-
ments at interactive rates. In the early design of SOLID, around 1997,
we aimed at a performance that would allow up to a hundred moving
objects composed of thousands of primitives to be tested for collisions
in less than 10 milliseconds on the high-performance computer plat-
forms of that time. Since 1997, the processing power of computers has
increased by an order of magnitude, so on current computer platforms
this task should take less than 1 millisecond.

m The library should be able to detect collisions accurately. Thus, given
a configuration of objects the library should return the pairs of objects
that are actually intersecting. This requires that the library should be
able to use the same shape types as used for rendering, and that the
used algorithms for intersection testing are sufficiently accurate.

s The library should not use too much storage. What is considered “too
much” depends largely on the constraints imposed by the target plat-
form and application. As a rule of thumb we imposed that the amount
of storage used by the library is asymptotically linear in the number
of primitives in the shape representations, with a constant factor that
should not exceed 100 bytes per primitive. Thus, a model composed
of 10,000 polygons should fit in 1 megabyte of memory. Through the
years, the complexity of simulated environments has grown faster than
the available memory, so a reduction of the constant factor is up for
discussion.

s The library should not impose constraints on the data structures that
are used by the client. The client should be free in the choice of shape

222 Chapter 6 Design of SOLID

representations used for the different tasks. In particular, the library
should allow the client to choose a shape representation for collision
detection that differs from the representation used for other tasks,
such as rendering. This is useful for scaling down the accuracy of the
collision detection in favor of the performance by using simpler shapes.

The lack of support for continuous space-time collision testing became
painfully apparent in early applications. Detecting collisions too late or
missing them altogether, as a result of intersection testing at sampled time
intervals, is often highly undesired. So, in addition to static intersection
testing, the library should offer support for detecting in-between-frames
collisions.

6.2 oOverview of SOLID

This section provides an overview of the SOLID framework. The motiva-
tions behind design decisions are discussed in Section 6.3.

SOLID is a true software library—a collection of functions that can be
linked to and used by application programs. The functions are referred to
as commands. The names and types of these commands, as well as the data
types that are used as input and output for these commands, comprise the
APL. SOLID provides an API conforming to the C programming language,
although the library itself is coded in C++. See the accompanying CD-
ROM for a complete description of the commands and data types in the
SOLID API. The commands of SOLID fall into five categories:

m Shape definition and deformation: Commands for defining and deform-
ing shapes relative to a local coordinate system.

m Object creation and motion: An object is an instance of a shape. An
object is placed or moved by setting or changing the placement of its
local coordinate system.

® Scene management: A scene is a collection of objects on which a global
collision query can be performed.

m Response definition: Collision handling is defined by the client by means
of callback functions.

m Global controls: This category includes commands for controlling the
global behavior of the library in terms of performance, storage usage,
and precision.

SOLID maintains a separate shape representation for collision detec-
tion. Shapes are referred to by the client via handles to the internal shape

Figure 6.1

6.2 Overview of SOLID 223

o\ —
A\ *
1

Z

A pyramid relative to its local coordinate system.

structures maintained by SOLID. These handles are used exclusively as
shape references; thus the client cannot access these structures. The
shapes are built using commands similar to OpenGL. All commands and
data types defined in the SOLID API are prefixed by “DT_". For instance,
the pyramid in Figure 6.1 may be built in the following manner:

DT_ShapeHandle pyramid = DT _NewComplexShape();

DT_Begin(};

DT Vertex(1.0f, 0.0f, 1.0f);
DT Vertex(-1.0f, 0.0f, 1.0f);
DT Vertex(-1.0f, 0.0f, -1.0f);
DT Vertex(1.0f, 0.0f, -1.0f);
DT _End();

DT Begin();

DT _Vertex(-1.0f, 0.0f, 1.0f);
DT _Vertex(1.0f, 0.0f, 1.0f);
DT Vertex(0.0f, 1.27f, 0.0f);

DT_End();

DT_EndComplexShape();

Thus, the pyramid shape is described by enumerating the vertices of its
five facets. See the API reference on the accompanying CD-ROM for an
overview of the different commands for specifying geometry.

The shape types currently supported by SOLID include primitive
shapes, such as boxes, spheres, cones, and cylinders; convex polyhedra;

224 Chapter 6 Design of SOLID

and complexes of simple polytopes. Here, a simple polytope is either a
simplex or a convex polygon or polyhedron that has a small number of
vertices (typically fewer than 10). No constraints with respect to the topol-
ogy of polytopes in a complex shape are assumed. For instance, a set of
polygons need not define a closed surface. We refer to complex shapes
defined in this way as polytope soups, in accordance with the terminology
used by Gottschalk [59].

An object is an instance of a shape placed relative to the world coor-
dinate system. A shape may be used to instantiate multiple objects. Note
that each object maintains a reference to a shape structure, rather than a
copy of the shape representation. In this way, we mimic VRML’s DEF/USE
mechanism. The client refers to objects using handles to internal struc-
tures maintained by SOLID. Furthermore, each SOLID object maintains
a void pointer to an associated structure maintained by the client. These
pointers to client structures provide easy access to object-related data
maintained by the client for collision handling in callback functions. We
discuss the callback mechanism further on. Figure 6.2 shows a simplified
diagram of the SOLID framework.

For the placement of objects, we use commands similar to the com-
mands of OpenGL. However, unlike 3D rasterization, for which the
geometries and placements of all visible objects is specified each frame,
we have to specify only the placements of objects that are displaced
with respect to the previous frame, since SOLID maintains an internal
representation of each object’'s geometry and placement.

Objects are placed using translations, rotations, and nonuniform scal-
ings of their local coordinate systems. Each transformation is defined
relative to the world coordinate system. The following sample code
demonstrates how objects are created and placed relative to the world
coordinate system:

MyObject clientKhufuObject;

DT Vector3 khufuPosition = {248.0f, 0.0f, 312.0f};
DT Vector3 khufuScaling = {115.0f, 115.0f, 115.0f};

DT ObjectHandle khufuHandle =
DT CreateObject (&clientKhufuObject, pyramid);

DT _SetPosition(khufuHandle, khufuPosition);
DT_SetScaling(khufuHandle, khufuScaling);

Unlike OpenGL, rotations are specified using quaternions, rather than
axis-angle pairs. We discuss the benefits of quaternions over axis-angle
pairs in Section 6.3.

Figure 6.2

6.2 Overview of SOLID 225

Client APl SOLID

Shape Create
handles shape Shapes
Client '
references
Create and Objects

place object

Object
handles

Scene Create Scenes
handles scene
Response
callbacks
Set Response
response tables
Response \ o — |
table handles
Intersection testing and
Test ! €

response data computation
algorithms

A diagram of the SOLID framework. Ellipses denote data structures, boxes denote
API commands, and arrows denote data dependencies.

Objects can be expanded by Minkowski addition of an origin-centered
sphere. Thus, the actual object used for collision detection is the set of
points for which the distance to the transformed shape is at most the
sphere’s radius. In this context, the radius of the added sphere is called
the margin of the object. By setting an object’s margin to a positive value,
we create rounded corners and edges on a sharp-edged shape, such as
a box. Larger margins enable us to create “sensitive” regions around
objects. Moreover, using small margins is advisable in cases where we
need to compute penetration depths of slightly interpenetrating objects,
since it enables faster and more robust penetration depth computation
using Algorithm 4.11 on page 169.

Objects are managed in scenes. By managing objects in scenes, the
client can conveniently perform collision queries for all objects at once.
Also, scenes enable the exploitation of temporal coherence by maintaining

226 Chapter 6 Design of SOLID

data from previous collision queries. Each scene maintains a list of pairs of
possibly colliding objects. This list is updated each time an object is added,
displaced, or removed. SOLID applies the sweep-and-prune algorithm
discussed on page 210 for updating this list. For each pair of possi-
bly colliding objects, SOLID caches data computed in previous collision
queries. These cached data are reused in calls to incremental algorithms.
For instance, ISA-GJX, discussed on page 145, reuses separating axes for
speeding up intersection testing.

Collisions are handled by means of callback functions. A callback func-
tion is a function that is defined by the client and is called by the library
for each pair of intersecting objects. Response callbacks are functions of
the type

void (*)(void *client_data,
void *client_objectl,
void *client object2,
const DT_CollData *coll_data)

Here, client_data is a pointer to an arbitrary structure maintained by the
client. This structure corresponds with a specific response defined by the
client. The client_objectl and client_object2 pointers refer to object-
specific structures. They are passed to SOLID at the time of creation of an
object. The co11_data pointer refers to response data computed by SOLID.

For example, a client that counts the number of times two given objects
collide would use a callback similar to

void collide(void *client data,

void *client objectl,

void *client object2,

const DT_CollData *coll_data)
()

++H(*(int *)client_data);
printf("Object %d and %d collide \n",
((MyObject *)objectl)->id,
{((MyObject *)object2)->id);
}

Here, client_data points to the counter that tracks the number of
collisions.

The type of response data that need to be computed by SOLID is
specified by the response type. Currently, there are three response types:

1. Simple response: No additional response data is computed.

6.2 Overview of SOLID 227

2. Witnessed response: An arbitrary common point is computed.

3. Depth response: A penetration depth vector and a pair of witness points
of this vector are computed.

Thus, a response is defined by a callback function, a c1ient_data pointer,
and a response type. For each pair of objects that requires collision
handling, we associate one or more responses.

Responses are managed in response tables. To each object on which
a response is defined in a response table a response class is assigned.
Responses are defined per pair of response classes, rather than per pair
of objects. So, the response for a pair of objects is the response defined
for their respective response classes. Multiple response tables can be used
simultaneously. Each response table has its own range of response classes.
A different response class can be assigned to an object for each of the
response tables. The response class of an object can be changed or cleared
during the lifetime of the object.

Responses can be defined per pair of response classes, for all pairs
containing a given response class, or as a default response for all pairs of
objects. For example, suppose we want to write a space game. The game
involves spaceships, of which some are minesweepers, and mines. The
rules of this game are as follows:

1. If two spaceships collide, then both sustain damage.

2. If a spaceship hits a mine, then the spaceship and the mine are both
destroyed.

3. If a minesweeper hits (detects) a mine, then the mine is destroyed.
We may implement these events using the following responses:

1. Both objects sustain damage.
2. Both objects are destroyed.

3. The mine is destroyed.

Mines are considered static, so no responses need to be defined on pairs
of mines.

As a default response we choose Response 1, which implements Rule 1.
Rule 2 is implemented as class responses for mines using Response 2.
Since we already defined Response 1 as a default response, we remove
this response for the class of mines. Finally, we overrule the mine class
response for pairs of mines and minesweepers by adding Response 3 and
removing Response 2 for this pair of classes. We see that with SOLID’s

228 Chapter 6 Design of SOLID

response-handling mechanism different responses can be applied to
different object pairs in a simple manner requiring little overhead.

The actual collision query is performed by the DT Test command.
This command takes a scene and a response table as argument, and
calls response callbacks for all colliding pairs of objects for which a
response is defined in the response table. The command returns the num-
ber of callbacks that have been called. Depending on the type of response
data required, response data pertaining to the colliding object pairs are
computed and passed to the callbacks as argument.

The use of scenes and the DT_Test command is not mandatory. SOLID
also performs proximity queries directly on any pair of SOLID objects. For
this purpose, we have the commands DT_GetClosestPair (for computing
the distance and a pair of closest points), DT_GetCommonPoint (for inter-
section testing and computing a common point), and DT_GetPenDepth (for
computing the penetration depth and witness points for the penetration
depth). These commands are useful for tracking the distance between
objects, or in response callbacks for checking the overlap status when
manipulating object placements.

The algorithms for intersection testing and response data computation
are maintained in a table, such that for each pair of shape types, one
intersection test and some response data computation algorithms can be
defined. In the current SOLID, the choice of algorithms is fixed and cannot
be altered at run time by the client.

6. 3 Design Decisions

In this section, we look at the motivations behind the main design deci-
sions for SOLID. Here, we will have a closer look at the algorithms and
data structures that are used.

Shape Representation

SOLID maintains internal shape representations for performing collision
detection. Rather than sharing shape representations with other tasks
such as rendering, we chose to keep the representations internal for the
following reasons:

m Shape representations used for interactive graphics generally do not
allow fast collision detection. Most graphics hardware currently used
for interactive graphics renders shapes represented by polygon meshes.
These polygonal data are represented in a form that enables low-
bandwidth interfacing with and fast processing by the graphics library,

6.3 Design Decisions 229

for instance, as strips or fans of triangles [133]. Meshes are basically
processed as complete entities in each frame. For collision detection,
only a small portion of a mesh needs to be processed for intersec-
tion testing in each frame. Spatial data structures, as described in
Chapter 5, are used to get rid of most of the geometry early in the col-
lision pipeline, and only a small fraction of the mesh data is tested for
intersections. These data structures are constructed on top of the mesh
data and take up the lion’s share of storage required for the internal
mesh representation.

m A design in which the collision detection library uses shape representa-
tions that are maintained by the client inevitably imposes constraints
on the client’s choice of shape representation. Often these constraints
are unacceptable, and the client is forced to maintain two sepa-
rate shape representations for collision detection and rendering. For
instance, applications may generate view-dependent mesh data on the
fly by dynamically tessellating curved surfaces represented by Bézier
patches or height maps. However, fast collision detection algorithms
for polygon meshes often require the mesh data to be preprocessed,
and thus rely on an explicit representation of the polygon mesh.

= Graphics libraries can essentially render polygons only. However, for
collision detection, it is possible and often desired to use exact represen-
tations of quadric shapes. For instance, in physics-based simulation, it
is better to represent the wheels of a vehicle by cylinders rather than
by polyhedra.

» Clients should be free to choose different shape representations for ren-
dering and collision detection. Often, less-accurate representations for
collision detection are less disturbing than less-accurate visual repre-
sentations. Trading shape complexity for performance is often desired
in game programming.

In order to keep the bandwidth of data exchange between the client
and the library narrow, the collision detection library should maintain
its own shape representation. An API that supports a wide range of
shape representation formats inevitably has a large overhead cost for
adapting to the different formats.

= By hiding the internal shape representation from the client, future
changes in the data structures and algorithms used by the library do
not result in compatibility issues.

In multiuser environments simulated across a network, consistent
behavior of the environment for all users may be achieved by performing
the simulations remotely on a single server. This server computes the new
configuration of the environment globally for all users. For this purpose,

230 Chapter 6 Design of SOLID

Figure 6.3

Frame
GL buffer

OS Input B:l
devices

(@)

Animation and
render loop

Collision detection

Server Network Client
Configuration Frame
Animation changes GL buffer
Joop Render loop
User 0Ss Input
interaction devices E:’

Collision detection

(b)

Two environment simulation architectures: (a) monolithic architecture and (b)
networked architecture.

the server performs collision handling. The configuration changes com-
puted by the server are sent to the individual users, where they are
processed in order to update the local environment configuration main-
tained by the user. Each user renders the updated environment locally
according to its own viewpoint and returns the user interactions to the
server. Figure 6.3 shows a networked and a monolithic environment sim-
ulation architecture. Obviously, in multiuser applications, using separate
shape representations for collision detection and rendering is a necessity
rather than an option.

In single-user applications, however, maintaining two sets of geometric
data seems rather wasteful. Notably, vertex data in polygon meshes takes
up a lot of storage space and desirably should not be duplicated. Moreover,
when using two sets of vertex data for deformable shapes, copying vertex
data results in a performance penalty. Hence, in these cases, a shape
representation that uses a single set of vertex data is more appropriate.

In order to cope with the conflicting demands regarding shape repre-
sentations for rendering and collision detection, and still keep the vertex
data maintained at a single storage location, we use the following storage
method. We borrow a data structure used in graphics libraries, such as
OpenGL, called a vertex array. A vertex array, as the name suggests, is
a contiguous block of vertex data in which each vertex can be randomly
accessed. Instead of storing the actual vertices in the primitives, we use

Figure 6.4

6.3 Design Decisions 231

Client API SOLID
Shape Create and
handles deform
shape

Vertex arrays are maintained by the client. SOLID may directly access data main-
tained in vertex arrays. APl commands are used to pass or change the memory
location of a vertex array to the shape representation used by the library.

array indices to refer to the vertices in the array. Since an integer uses
less storage than a 3D vertex (4 versus 12 bytes, using 32-bit integers for
indices, and 32-bit floating-point numbers for scalars), sharing vertex data
saves a considerable amount of storage. Figure 6.4 illustrates the use of
vertex arrays.

Moreover, vertex arrays allow easy interfacing of shape deformations,
without the need for copying vertex data. Shape deformations may be
specified in two ways: (1) the vertex data in the array of the shape are
explicitly changed, after which SOLID is notified of the change, or (2) the
current vertex array of the shape is replaced by a vertex array at a dif-
ferent address, that is, in a different block of memory. The latter method
enables double buffering of vertex data, for instance, in parallel processed
animation loops.

The use of vertex arrays seemingly conflicts with the requirement that
the library should not impose constraints on the shape representation
used by the client, and the requirement that the data exchange between the
client and the collision detection library should be kept minimal. Regard-
ing the first requirement, we note that flexible dereferencing methods, for
instance as used in OpenGL [133], give the client quite a lot of freedom in
arranging the vertex data in arrays. The client is free to choose any numer-
ical format and spacing between the memory locations of the individual
array items. Regarding the second requirement, we note that no copying
of vertex data is necessary, since SOLID accesses the external vertex array
directly, rather than keeping an internal copy of the vertex array.

SOLID uses bounding-volume hierarchies for speeding up collision
queries on complex shapes. As discussed in Chapter 5, bounding-volume
hierarchies result generally in the fastest query times of all spatial data
structures for arbitrary meshes. As a bounding-volume type, SOLID uses
bounding boxes that are aligned to the shape’s local coordinate system.
Although oriented bounding box (OBB) trees have been shown to be faster

232 Chapter 6 Design of SOLID

than axis-aligned bounding box (AABB) trees, we chose the latter tree type
for the following reasons:

= An AABB tree requires less storage than an OBB tree for the same
model. An AABB uses 24 bytes (6 scalars), whereas an OBB uses 60
bytes (15 scalars). An OBB can be represented using only 40 bytes (10
scalars) if we represent its orientation by a unit quaternion, or even 36
bytes if we further leave out the scalar part of the quaternion. However,
the less-compact representation of the orientation as a 3 x 3 matrix is
preferred, since the performance penalty for converting quaternions to
matrices is simply too high. Both tree types are binary trees and thus
require 2n — 1 nodes for n primitives. Each node in the tree stores
a bounding box. Considering the fact that for triangle meshes, the
per-triangle storage requirements are roughly 20 bytes (vertex data is
shared among the triangles in a mesh), we see that the storage used by
the tree structures takes up the larger part of the internal shape repre-
sentations. Hence, for complex models the excessive storage usage of
the OBB tree may turn out to be a problem. In these cases, the AABB
tree, which has a more moderate storage usage, is preferred.

m OBB trees are not easily adapted to shape deformations. OBB trees
need to be rebuilt whenever the shape they represent deforms. AABB
trees, on the other hand, can quite easily be adapted to deformations,
as discussed in Chapter 5. Refitting an AABB tree is roughly 30 times
faster than rebuilding an OBB tree.

Since for intersection testing, AABB trees are not much slower than
OBB trees, even for highly concave models at close proximity, we found
the AABB tree to be the preferred spatial data structure for complex
shapes. Moreover, AABB trees can be built faster than OBB trees, although
this feature is not crucial since a bounding-volume tree is constructed
once as a preprocessing stage. The construction of an AABB tree is per-
formed automatically by SOLID and does not require instructions by the
client. Experiments with different tree-building heuristics have shown
that the trees constructed by SOLID are generally close to optimal; hence
we consider it unlikely that any hints given by the client on how to perform
the model partitioning will result in significantly faster trees.

On platforms that have a very limited amount of memory, such as game
consoles, the large storage usage of bounding-volume hierarchies can be
a problem. Fortunately, the memory footprint of an AABB tree can be fur-
ther reduced by applying aggressive compression techniques [57]. Again,
compressed data structures require additional processing for converting
the bounding boxes to a representation that can be used in intersection
tests. However, on platforms that are bound by memory-access bandwidth

6.3 Design Decisions 233

rather than processing power, using compressed bounding-box trees may
actually result in a performance increase [124].

Motion Specification

Except for shape deformations, motions are specified by changing the
placement of the local coordinate system of an object relative to the
world coordinate system. Most commonly used are rigid motions, which
are composed of translations and rotations. We translate an object by
changing the position of the local origin and rotate an object by chang-
ing the orientation of the local basis relative to the world coordinate
systemn. Translations are specified using vectors; rotations are specified
using quaternions.

Quaternions have some benefits over axis-angle orientation represen-
tations as used in popular graphics libraries [133]. Most notably, they
enable smooth interpolation over a sequence of key orientations [112],
and cheap and simple numerical integration. Furthermore, for comput-
ing an orthonormal basis whose orientation is given by an axis-angle tuple,
we need to evaluate the sine and cosine of the angle, whereas computing a
basis given by a quaternion requires only primitive arithmetic operations.
Of course, transforming an axis-angle tuple to a quaternion involves sine
and cosine evaluations,

The sin and cos functions included in the standard C library are com-
putationally quite expensive. Quick and dirty sine/cosine evaluation using
lookup tables is faster and may yield reasonable results for most applica-
tions. Because enforcing a specific sine/cosine routine deteriorates the
versatility, we opt for quaternions instead of axis-angle tuples, since with
quaternions calls to sine and cosine routines can be avoided in our library.

Besides rigid motions, we also support nonuniform scalings on the
placement of local coordinate systems. Including scalings adds to the ver-
satility of the library. Nonuniform scalings can be used for instantiating
a single shape multiple times at different dimensions, and for animation
effects such as shears and other deformations.

There is, however, a small performance penalty to be paid for allowing
general affine transformation rather than restricting object placements to
length-preserving transformations. Results of queries that rely on a metric
given by the Euclidean distance, such as closest-point pair and penetration
depth computation, depend on the coordinate system in which the queries
are performed. If a local coordinate system is scaled nonuniformly with
respect to the world coordinate system, then the closest points that are
computed in the local coordinate system and transformed to the world
coordinate system may not be equal to the closest points computed in the
world coordinate system, as illustrated in Figure 6.5. The length of a vector

234 Chapter 6 Design of SOLID

Figure 6.5

—_—

The closest points of a pair of objects in a given coordinate system may not be the
closest points after scaling the coordinate system nonuniformly.

v given relative to a coordinate system that is nonuniformly scaled with

respect to the world coordinate system is not ~/'vIv. Phrased differently,
the dot product is invariant under translations, rotations, and reflections
only.

So, if we allow coordinate systems to be scaled, we need to transform
coordinates to the world coordinate system before applying the distance
metric. If we use length-preserving transformations only, however, we can
use the same distance metric in all coordinate systems. In the latter case,
we may choose the local coordinate system of one of the objects as the
reference system, and thus have to transform only the other object’s coor-
dinates to the reference system. Allowing only length-preserving transfor-
mations saves us roughly half the number of coordinate transformations.

We did not decide to impose this restriction in favor of performance,
since the portion of time spent transforming coordinates was not large
enough to get a substantial gain in performance. Note that intersection
testing and common-point computation do not rely on a distance metric,
so in these queries we are still free to choose any coordinate system as a
reference system.

Exploiting frame coherence is crucial for attaining a good performance
in collision detection. Hence, we chose a method for specifying object
placements that is persistent between frames. Only the object placements
that have changed relative to the previous frame are specified in each
frame. The static objects keep their placements from the previous frame.

SOLID does not provide a mechanism for handling transformation
hierarchies, such as OpenGL’s matrix stacks. The client should take care of
computing the local-to-world transformations of each object in the scene.
Usually, the graphics engine performs this task, so an internal transfor-
mation hierarchy maintained by the collision detection library would only
result in duplicated computations.

Transformations computed by OpenGL can be used to specify object
placements in SOLID. In OpenGL, affine transformations are represented
by 4 x 4 matrices and are stored as arrays of 16 scalars in column-major
order. Matrices can be loaded into, or multiplied with, the top matrix
of the OpenGL model-view matrix stack. These matrices representing
affine transformations can be used to place SOLID objects as well. In this

6.3 Design Decisions 235

way, SOLID benefits from the computations performed for rendering.
Moreover, consistency between the configuration of objects used by
OpenGL and the configuration maintained by SOLID is established quite
easily, since both libraries use identical object placements.

Response Handling

Callbacks provide an elegant mechanism for handling collision responses.
A callback is a function that handles a specific event. In our case, the event
is the collision of a pair of objects. Callbacks are defined by the client, but
are not called directly by the client. Instead, a callback that handles the
response for a pair of objects is called by the library when a collision is
detected for the pair of objects. In event-driven systems, such as graphical
user interfaces, the use of callbacks for handling all sorts of events is quite
common. The idea of using callbacks for response handling in collision
detection has been applied earlier by Zachmann [136].

Some response types require additional data pertaining to the config-
uration of the intersecting objects. These response data are computed
by the library and are passed as arguments to the callback functions.
Currently, SOLID supports two response data types. The first type is a
pair of common points. The common points computed by SOLID for the
pair of intersecting objects are, as the name suggests, common to both
objects. However, they need not be equal. The reason for this freedom will
become apparent further on. In our space game, for example, we might
want to use a common point if the amount of damage a spaceship sustains
depends on the location on its hull where the spaceship is hit.

The second response type is a pair of witness points of the penetration
depth together with the penetration depth vector. A goal in the design
was to provide response data that can be used for resolving collisions in
physics-based simulations. For this purpose, we need to have an approxi-
mation of a pair of contact points and a contact plane of a pair of colliding
objects. In Chapter 2 we saw that these data are best approximated using
witness points of the penetration depth. The penetration depth vector is
the shortest vector over which an object needs to be translated in order to
bring the objects into touching contact. It therefore has to be orthogonal
to the objects’ surfaces (that is, if the surfaces are differentiable at the
contact points), and thus can serve as a contact normal. Moreover, the
witness points can be used as attachment points for the reaction forces or
impulses that resolve the collision.

The assignment of responses to pairs of objects is managed in response
tables. In SOLID, multiple response tables can be defined. Response tables
are defined independently of the scenes in which they are used, so multi-
ple response tables can be used in one scene and a response table can

236 Chapter 6 Design of SOLID

be shared among multiple scenes. In this way, we achieve maximum
flexibility using a simple interface.

This flexibility, however, comes at a price. In the broad phase, a list of
potentially colliding object pairs is maintained. The scene’s broad phase
could benefit from information stored in the response table, since pairs
of objects for which no response is defined need not be processed in the
narrow phase and can thus be left out of the list of potentially colliding
object pairs. In this way, the list can be shorter, and thus accessing it takes
less time. However, since multiple response tables can be used with the
same scene, object pairs cannot be discarded from the list.

In SOLID, the list of possibly colliding object pairs in a scene is imple-
mented as a balanced binary search tree, for which access times are
logarithmic in the number of pairs. So, the added overhead of maintaining
a full list of object pairs should not be that high in comparison to a list from
which the pairs that do not have an entry in the response table are pruned.

However, besides insertions and deletions, we also need to traverse the
list of possibly colliding pairs for performing exact collision tests. Iterating
over all entries in a balanced binary search tree is relatively expensive,
since a tree traversal involves multiple pointer dereferences per entry.
For large scenes, processing a complete list of object pairs thus takes
somewhat longer, even though the pairs for which no entry is defined
in the given response table are immediately rejected. Nevertheless, we
decided to keep the extra flexibility in allowing multiple response tables
per scene, since the performance loss turns out to be only minor for most
applications.

Usually a scene contains classes of objects for which the same response
needs to be defined. In order to accommodate assignment of responses
to classes of objects, response tables manage responses defined on pairs
of response classes rather than on pairs of objects. The required response
classes are generated per response table and assigned to SOLID objects,
so a SOLID object on which responses are defined in multiple response
tables gets assigned a response class for each response table. The response
class that is assigned to an object can be changed during the lifetime of
the object to another response class of the response table. In this way,
the collision response on an object can be changed without changing the
response table.

On a pair of response classes, multiple responses can be defined. This
enables us to manage responses to a single collision event into sepa-
rate response callbacks. For instance, in our space game, we respond
to a spaceship-spaceship collision by playing a sound and updating the
amount of damage. Since the two responses have very little in common
besides the fact that they are triggered by the same collision event, we
might want to separate the play-sound code from the damage-update
code, and write them as separate response callbacks.

6.3 Design Decisions 237

Since the required response data type differs per response callback, we
should compute response data for each of the callbacks defined on a pair
of objects. However, if we let go of the restriction that common points
should be identical, a pair of witness points of the penetration depth can
serve as a pair of common points. We therefore compute only one response
data type for object pairs on which multiple callbacks are defined. Thus,
for a pair of objects on which both a common-point and a penetration
depth callback is defined, we pass the witness points of the penetration
depth as common points to the common-point callback.

The combination of using multiple response tables, in which multi-
ple callbacks can be defined per pair of response classes, and allowing
response class assignment to change during an object’s lifetime gives us
maximum flexibility in handling collisions for different tasks and stages
of a 3D simulation system. Although we trade in some performance in
exchange for this flexibility, the performance loss is only marginal and
does not harm us too much.

Algorithms

In order to speed up the broad phase, SOLID maintains a list of object
pairs whose bounding boxes overlap. This list is incrementally updated
each time an object is moved, using the enhanced version of Baraff’s
incremental sweep-and-prune algorithm, as described on page 210. The
update time per moved object for this algorithm is in the worst case O(nk),
for n objects and a list of k object pairs. However, when frame coher-
ence is high, the update time per moved object is expected to be roughly
constant.

The broad phase used by SOLID is linked as a separate library with its
own abstract API. In this way, alternative broad-phase implementations
can be used in combination with the narrow-phase library. Using a dif-
ferent broad phase is desirable if the degree of frame coherence is low or
the library is used for single-shot interference detection.

Similar to the narrow-phase library, the broad-phase library supports
multiple scenes. A scene maintains a collection of axis-aligned bounding
boxes. The API offers commands to create, destroy, and update the boxes.
Whenever a pair of boxes start or cease to overlap, the narrow-phase
library is notified of this event via callback functions. The narrow-phase
library provides callback functions that update the list of potentially
intersecting object pairs.

As mentioned, the bounding boxes used in the incremental sweep-and-
prune algorithm are aligned to the world coordinate system. An object’s
bounding box is recomputed each time the object is moved. The alterna-
tive choice of maintaining bounding boxes that have fixed dimensions is

238 Chapter 6 Design of SOLID

not possible, since objects may also be scaled and deformed. For rigid
objects, we can maintain fixed-size bounding boxes that are large enough
to enclose the objects in any orientation. However, for most shape types,
recomputing a bounding box is quite cheap and well worth the effort since
dynamically updated axis-aligned bounding boxes are usually smaller
than fixed-size bounding boxes and, thus, result in fewer entries in the
list of possibly colliding object pairs.

The bounding boxes of primitive convex shapes, such as spheres or
cones, can be straightforwardly computed. However, for complex shapes
composed of thousands of primitives, computing the smallest enclosing
box is a little more expensive. For such shapes we opt for a fast but sloppy
solution. Recall that for complex shapes we maintain an AABB tree, which
is aligned to the shape’s local coordinate system. We take the smallest
world-axes-aligned box that encloses the root box of the AABB tree as
bounding box of a complex shape. Figure 6.6 illustrates this bounding
box computation. As shown in Chapter 5, computing a bounding box of
an oriented box takes only 24 arithmetic operations.

Computing the smallest AABB of a polytope soup can be done rea-
sonably fast. As discussed on page 194, the bounding box of a convex
object can be computed using support mappings. We saw that comput-
ing support points of convex polyhedra can be sped up by applying hill

i Smallest enclosing world-axes-aligned box

[T 1 Root box of AABB tree
[] World-axes-aligned box used by SOLID

Figure 6.6 Although it is usually larger in size, we use the world-axes-aligned bounding box
of the AABB tree’s root box rather than the smallest world-axes-aligned bounding
box of a complex shape, since it can be computed much faster,

6.3 Design Decisions 239

climbing over the vertex adjacency graph of the polyhedron. By caching
support points for each of the six sides of the box, computing a bound-
ing box of a preprocessed convex polyhedron takes roughly constant time
when the degree of frame coherence is high.

Since the smallest AABB of a polytope soup is equal to the smallest
AABB of its convex hull, we can compute the vertex adjacency graph
of the convex hull of the polytope soup as a preprocessing step and use
the convex hull for computing the AABB. This method is more expensive
than the sloppy AABB computation method; however, it yields tighter-
fitting boxes. Whether the extra effort in computing the bounding box
is in favor of the performance depends on the application. Currently,
SOLID supports only sloppy bounding-box computation for complex
shapes.

The list of possibly colliding object pairs is processed in the narrow
phase each time the test command is issued. Processing an object pair
involves testing whether the objects intersect and, if so, computing the
specified response data. The algorithms for intersection testing and for
response data computation depend on the shape types of the objects in
the pair. For instance, testing a sphere for intersection with a polygon
soup requires a different algorithm than testing a sphere and a cone.

In C++, we can implement algorithms as a virtual method if the choice
of algorithm depends on the dynamic type of only one of its parame-
ters. However, in our case the algorithms depend on the dynamic types
of two data types. This kind of dependency is commonly referred to as
double dispatch in object-oriented programming [87]. Since C++ does not
offer a straightforward double-dispatch construction, we chose to apply
algorithm tables for implementing double dispatch.

An algorithm table is a mapping of pairs of shape types to function
pointers. For instance, suppose all intersection testing algorithms are
functions of the type

bool (*){const Shape& a, const Shape& b);
Here, Shape is the base type of all shape types. Suppose we have the fol-
lowing function for testing the intersection of a convex and a complex
shape:

bool intersect(const Convex& a, const Complex& b);

Then, the function returned by the algorithm table for the pair of shape
types (CONVEX, COMPLEX) is the function given by

bool intersectConvexComplex(const Shaped a,
const Shape& b)

240 Chapter 6 Design of SOLID

{

return intersect(static_cast<const Convex&>(a),
static_cast<const Complex&>(b));

}

Note that we may safely cast objects of the base class Shape to the derived
classes Convex and Complex using a static cast, since the types of the objects
are checked by the algorithm table.

The dynamic type of an object—the type of the object at the time of
creation—can be retrieved at run time using the C++ run-time type iden-
tification (RTTI) mechanism [120]. However, since the RTTI mechanism
is not the most elegant solution—both in terms of performance and ease
of use—and since it was not supported by most compilers at the time we
developed SOLID, we chose to give each shape a type tag that is used to
identify the shape’s dynamic type.

SOLID currently supports two basic shape types: convex shape and
complex shapes. The number of basic shape types can easily be increased
for future extensions, if necessary. New shape types can be added by
inserting new entries in the algorithm table. For each pair of shape types
that contains the new shape type, we add an intersection testing and, for
all response data types, a response data computation algorithm to the
algorithm table.

The class of convex shapes is specialized into subclasses for spheres,
boxes, cones, cylinders, and polytopes. The class of polytopes again is
further specialized into simplices, convex polygons, and convex polyhe-
dra. Complex shapes are representations of polytope soups. A complex
shape maintains an AABB tree of the set of polytopes. Figure 6.7 shows a
diagram of the hierarchy of shape classes used in SOLID.

We test pairs of convex shapes using ISA-GJK, a GJK-based incre-
mental separating-axis computation algorithm discussed in Chapter 4 on
page 146. The common-point response data type is also computed using
ISA-GJK. The penetration depth is computed using the hybrid technique
described on page 166.

Two complex shapes are tested for intersection using the AABB tree
intersection test described in Chapter 5. Currently, we use ISA-GJK for
testing pairs of polytopes also. For some polytope types, such as trian-
gles, using a dedicated intersection test may be faster. However, polytope
intersection tests take only a small portion of the time used for testing a
pair of AABB trees, as we saw in Chapter 5. Hence, the loss of performance
is not dramatic when a general approach is taken.

Finally, for testing a convex shape and a complex shape we apply
the following technique. First, we compute a bounding box of the con-
vex shape aligned to the local coordinate system of the complex shape.
Overlap tests on aligned bounding boxes are cheap, thus, an AABB tree

Figure 6.7

6.3 Design Decisions 241

AN

| Convex |LCOmplex

| Box || Cone —|| Cylinder |LSphere || Polytope

LSimplex || Polygon ||Polyhedr0n|

An OMT diagram of the class hierarchy of shape types used in SOLID.

can be quickly traversed depth-first, using the convex shape’s bounding
box as a query volume. On arriving at a leaf node, the polytope maintained
in the leaf is tested for intersection with the convex shape and the result is
returned. Again, we use GJK-based algorithms for primitive intersection
testing and response data computation.

SOLID caches a separating axis for each disjoint object pair in the list
of object pairs updated by the sweep-and-prune algorithm. This axis is
used for initializing the ISA-GJK algorithm and the penetration depth
algorithm. Separating axes are also cached for complex shapes. If mul-
tiple primitive pairs are tested during a traversal of the AABB tree, then
all primitive tests share the same cached separating axis. Thus, a prim-
itive intersection test that is performed after another primitive test uses
the separating axis found by this earlier primitive test as an initial axis.
If none of the primitive intersection tests results in an intersection, the
last found separating axis is cached. In this way, coherence between
the placements of consecutively tested primitives in a complex shape is
exploited.

As previously mentioned, support point computation of objects that
are represented by convex polyhedra can be speeded up by caching the
last-found support point. For such objects we store the last-found support
point per pair of objects in the list of object pairs. It is less profitable to
cache the support point in the object itself, since the object may be tested
for intersection with many other objects. Thus, for each occurrence of a
convex polyhedron in the list of object pairs, the last-found support point
is cached.

242 Chapter 6 Design of SOLID

6. 4 Evaluation

In this section we discuss the goals that were attained for SOLID. We also
discuss some shortcomings that need to be addressed in future revisions.

One major goal was to provide collision detection for a wide variety of
shapes and motions. At that time, VRML seemed to capture the model-
ing and animation practices that are common in interactive 3D graphics
[10], so we set out to support an almost one-to-one mapping of VRML
shapes to our collision shapes. We achieved compliance with VRML by
incorporating the following features:

® Models can be built using boxes, cones, cylinders, spheres, and
complexes of points, line segments, and convex polygons.

m Shapes can be instantiated multiple times. This feature captures
VRML's DEF/USE mechanism.

® Object placement and motion are specified using translations, rota-
tions, and nonuniform scalings of the object’s local coordinate systems.

s Complex shapes can be deformed.

Note that we did not achieve full compliance, since VRML supports
nonconvex polygons. However, this hardly poses a problem, since the bulk
of polygonal models that are currently used in interactive 3D graphics
are composed of convex polygons (iriangles, in most cases). More-
over, code for decomposing a concave polygon into convex components
(triangulation) can easily be obtained [94].

We found it useful also to include convex polyhedra in our set of colli-
sion shapes. In this way, we can trade accuracy for performance by using,
instead of the actual mesh, the convex hull of a polygon mesh as the shape
representation for collision detection. A convex hull representation uses
far less storage and results generally in faster query times than its exact
counterpart.

Thanks to GJK we are able to handle all convex shape types in a unified
manner. As an added bonus, we are offered two powerful methods for con-
structing compound shapes out of arbitrary convex objects: Minkowski
addition and convex hulls. Both construction methods can be used for
detecting potential in-between-frames collisions. Let T;(x) = B;x + ¢; be
the placement of a convex object A at time ¢t = 0, 1. Thus, T;(A) is the object
A at time t. Then, as an approximation of T;(A) swept over t € [0, 1], we
can use B (4) + €y, €1, the Minkowski sum of A at the orientation of t = 1
and the line segment from ¢y to ¢1. Another approximation of the swept
object A is conv{Tp(4), T1(A)}, the convex hull of the placements of A at
{ = 0andt = 1. See Figure 6.8 for an illustration of the two constructions.

Figure 6.8

6.4 Evaluation 243

‘________-_,
~ 7

(a) (b)

Both Minkowski addition and convex hulls can be used for detecting in-between-
frames collisions. (a) Minkowski sweep: Addition of the oriented object and a
line segment connecting the positions at t = 0 and ¢ = 1. (b) Convex hull sweep:
Convex hull of the placements att =0 and { = 1.

As we saw in Chapter 4, GJK is capable of handling both types of swept
objects.

With the current library we can detect intersections between swept
objects in three-dimensional space. However, we saw on page 46 that
we actually need an intersection test in continuous four-dimensional
space (space-time) if we want accurate results and a time of collision
for in-between-frames collisions. Currently, SOLID does not support
four-dimensional intersection testing for general objects.

SOLID is capable of computing contact data for resolving collisions in
physics-based simulation, although with some restrictions. These contact
data of a pair of colliding objects are approximated by a penetration depth
vector, A penetration depth vector does not always render a good repre-
sentation of the contact point and normal at the first time of contact, as
we saw on page 52. Furthermore, for complex shapes, SOLID may return
multiple penetration depths for each of the intersecting pairs of primi-
tives. These penetration depth vectors cannot be combined in a simple way
into a single penetration depth vector for complex shapes. So, the physics
solver should be capable of resolving multiple simultaneous contacts.

SOLID uses the ISA-GJK algorithm for testing intersections between
any pair of convex primitives. This choice offers us the highest flexibility
at a minimum of coding effort. However, for certain shape types, such
as boxes and triangles, ISA-GJK may not be the fastest choice. Dedicated
algorithms for these shape types may yield shorter times, albeit those
primitive intersection tests take up only a small portion of the total colli-
sion processing time. For the sake of simplicity, we decided not to include
dedicated algorithms for any pair of primitive shape types, although in
applications where flexibility is of less importance than performance, the
use of dedicated algorithms for these shape types may be preferable.

244 Chapter 6 Design of SOLID

Performance-wise, SOLID does not do a bad job in comparison to other
libraries [127, 128]. However, with respect to its memory usage, there is
some room for improvement. SOLID’s AABB-tree implementation uses
roughly 64 bytes per primitive. Note that the severe memory constraints
of game consoles have forced implementors to look for ways to reduce
the memory footprint of AABB trees [57, 124].

6. 5 Implementation Notes

This section is a collection of implementation details concerning the fun-
damental data structures used in SOLID. Here, we take the opportunity to
evangelize on generic programming and the Standard Template Library
(STL) [93].

Generic Data Types and Algorithms

Many of SOLID’s container data types are implemented using template
container classes from the STL. For instance, the set of possibly colliding
object pairs is implemented as an STL set. The std::set and std::map
container types are implemented as balanced binary search trees, which
support logarithmic access and update times [77, 85].

As an example, we will show how the std: :set is used. A possibly collid-
ing object pair is called an encounter in the SOLID context. An encounter
is an object of the following type:

struct Encounter {
Encounter() {}
Encounter(Index objl, Index obj2);

Index m_objl;
Index m_obj2;
CachedData m_cached;

s

Here, m_obj1 and m_obj2 are indices of entries in the scene’s object array,
and m_cached is cached data from the previous collision query.

In order to store encounters in a std: :set, we need to define an order-
ing on the Encounter class. Phrased differently, for each two encounters
we need to be able to tell which one is “less than” than the other. The
std: :set needs this ordering in order to perform binary search on the set
of encounters.

6.5 Implementation Notes 245

Encounters are unordered pairs of objects and are constructed such
that m_objl is always less than m obj2:

Encounter: :Encounter(Index objl, Index obj2)

{
if (objl < obj2)
{

m_objl = objl;
m objZ = objZ;
}
else
{
m_objl = obj2;
m_obj2 = obji;

}

Thus, encounters are uniquely identified by their index pairs. As “less
than” operator on encounters we take the lexicographic order, which is

“

implemented by overloading the “<” operator:

inline bool operator<(const Encounter& a,
const Encounterd b)

{
return a.m_objl < b.m objl ||
(a.m_objl == b.m_objl && a.m_obj2 < b.m obj2);
}

The list of encounters can now be constructed as an object of the following
type:

typedef std::set<Encounter> Encounterlist;

Entries can be added to and removed from the set using the methods
insert and erase. In the narrow phase, each encounter in the scene’s set
is tested for exact intersections. We iterate over sets of encounters using
STL iterators. An iterator is best viewed as a generalized pointer:

EncounterList::iterator it;

for (it = encounters.begin();
it != encounters.end(); ++it)
{

if (exactCollision{objects[(*it).m objl],

246 Chapter 6 Design of SOLID

objects[(*it).m obj2],
(*it).m_cached))
{
++count;
}
}

Here, objects is the scene’s object array.

The standard template container classes have proven to be very useful
for implementing SOLID’s container types. The benefit of using standard
template classes over hand-coded classes is the fact that these classes
are readily available without requiring coding and testing effort from the
developer. Also, since all the STL container classes have similar interfaces,
changing from one type of container to another is easy.

The use of STL template classes introduces hardly any performance
penalty. Most template classes result in code that is as fast as the
equivalent hand-coded classes. Moreover, when used properly, STL
classes do not require significantly more storage than hand-coded classes
would use.

Besides container classes, the STL also offers a number of template
algorithms and functions, such as sort, copy, and search routines. We
found the performance of these algorithms to be as good as hand-coded,
and often better than the standard C library functions. In particular, sort-
ing using the STL sort is significantly faster than using gqsort from the
standard C library.

However, there are some drawbacks to the use of the STL. Since all
template code is inlined, executable code is generated for each type that
instantiates a template function. Hence, an executable that is built from
templates is likely to be larger in bytes of memory than a fully hand-coded
executable. For SOLID, we managed to keep the total size of the library’s
executable code close to a modest 200 kilobytes; hence, code size was not
a problem.

Another issue has to do with the software development process itself.
For the developer a library should function as a black box, and should not
expose too much of its internals to the application programmer. How-
ever, since templates offer functionality that still needs to be parsed
by the compiler, improper use of templates in application programs
usually results in compiler errors in the template code. These error mes-
sages often contain little information that can be of any help to the
programmer.

Furthermore, since STL uses rather advanced template constructions,
C++ compilers from a number of vendors currently fail to compile some
STL constructions. As a result of this, STL implementations that are
shipped with the current vendor’s C++ compilers differ in the set of

6.5 Implementation Notes 247

supported types and constructions. With the adoption of the STL in the
ISO/ANSI C++ standard [120], this problem is expected to be solved in the
near future. A complete third-party multiplatform STL implementation
is currently available for all major vendor C++ compilers under the name
STLport [44].

Fundamental 3D Classes

The fundamental linear algebra classes for representing 3D vectors,
points, quaternions, and 3 x 3 matrices that are used in SOLID were
developed from scratch. It would have been desirable to use existing linear
algebra classes for these data types, since implementation of these classes
requires considerable effort and affects the performance of the library to a
large extent. However, at the time we started to develop SOLID, no usable
C++ linear algebra classes were freely available.

Similar to the STL, our 3D linear algebra classes have all their code
inlined. We chose to use inline methods, since they allow better per-
formance than explicitly called functions. Since these methods usually
require only a few statements, the increase in executable code that results
from using inline methods is insignificant. A number of operations, such
as vector addition, scalar multiplication, and matrix operations, are
denoted by overloaded operators such as + and *=. Overloading of ele-
mentary operations for algebraic types greatly enhances the readability
of the code.

In SOLID, affine transformations are represented by instances of the
Transform class. A Transform object contains a row-major 3 x 3 matrix
as the linear component and a vector as the translational component.
Affine transformations represent local coordinate systems. The columns
of the matrix represent the basis axes and the vector represents the
position of the origin relative to a reference coordinate system. We did
not decide for a 4 x 4 matrix representation as used in OpenGL, since
projections are not used in SOLID. In our case, the fourth row of a
4 x 4 matrix representation would always contain (0,0, 0, 1) and, thus,
such a representation would result in unnecessary memory usage and
computations.

The Transform class contains a method for mapping points from local to
reference coordinates. In order to give a Transform object the appearance
of a function, we chose to implement this method as a function operator.
This function operator may be implemented in the following way:

Transform: :operator() (const Point& p) const

{

248 Chapter 6 Design of SOLID

return basis * p + origin;

}

and may be used as follows:

Point world = xform{local);

where xform is a Transform object, and local a point given in coordinates
relative to the local coordinate system represented by xform.

Using the function operator in this way allows easy application of STL
algorithms. For instance, an array local array containing n points in
local coordinates can be transformed to an array world array in world
coordinates using STL'’s transform algorithm in the following way:

std::transform(&local_array[0], &local_array[n],
&world_array[0], xform);

These types of constructions are easy to program, easy to read, and result
in fast code.

As a conclusion, we present some brief recommendations for develop-
ing code in C++ :

m Exploit the STL as much as possible. STL offers template container
classes and algorithms that generally perform as well as your own hand-
coded efforts.

m QOperator overloading for fundamental types is useful, since it improves
the readability of the code and allows easy interfacing with STL
algorithms.

® In C++, it is OK to return objects. Code efficiency is not harmed by
the construction of superfluous temporary objects, as long as there
is a fair chance that the returned temporary is optimized out by the
compiler. In this respect, it is preferable not to introduce a name for
the resulting object, but to always return a constructor call [87]. For
instance, compilers stand a better chance of eliminating the temporary
returned by

inline Vector3 operator+(const Vector3& vl,
const Vector3& v2)
{
return Vector3(v1[0] + v2[0],
vi[1] + v2[1],
vifz] + vz[2]);

6.5 Implementation Notes 249

than the temporary returned by

inline Vector3 operator+(const Vector3& vl,
const Vector3& v2)
{
Vector3 result;
result.setValue(vl[0] + v2[0],
vi[1] + v2[1],
vi[2]l + v2[2]);
return result;

}

In order to facilitate return value optimization, you should make sure
that the value type has the proper constructors for creating return
values.

Short functions are best inlined, since the overhead of explicit func-
tion calls deteriorates performance. However, do not overdo inlining.
If the overhead of a function call is small in comparison with the opera-
tions performed by the function, inlining yields little performance gain
and increases the size of the executable code if the function is called
from multiple places in the code. Moreover, inlining forces us to expose
class implementation details in header files, thus creating dependencies
between source files.

Chapter
Conclusion

A movement is accomplished in six stages,
and the seventh brings return.

—Syd Barrett

In this final chapter we summarize the state of the art in 3D collision
detection and present some pointers to new trends and interesting topics
for future work.

7.1 State of the Art

Our research on collision detection methods was mostly motivated by
the development of SOLID. The development of SOLID started in 1996,
when interactive 3D graphics on personal computers was starting to take
form with the arrival of 3D graphics accelerators. At that time, processing
power for animation and collision detection was still limited; however,
the use of graphics accelerators for rasterization enabled us to free up
more processing time for animation tasks.

This notion sparked the idea that exact collision detection for com-
plex scenes should be possible at interactive rates. Our goal was to
develop a general-purpose collision detection library for performing exact
collision detection in interactive 3D applications. We targeted the appli-
cation domain of SOLID at environments that can be described in VRML
[10]. VRML emerged as the standard file format for interactive 3D envi-
ronments on the Web and supports description formats for the most
commonly used geometric modeling techniques.

To this date, the building blocks for constructing 3D environments have
changed little. Geometric models are still mainly polygonal, although the
complexity of current models has grown with the increase of the process-
ing power of CPUs and graphics accelerators. 3D environments, however,
have become more and more dynamic. Advanced animation techniques,
such as skinned meshes and other types of mesh deformation, have
found a place in interactive 3D graphics applications. Uses of parametric

251

252 Chapter 7 Conclusion

surfaces, implicit surfaces, and constructive solid geometry for anima-
tion, in combination with dynamic surface tessellation, are finding their
way into interactive 3D graphics. These developments have complicated
the task of performing exact collision detection and will demand our
attention in further developing collision detection methods.

In the last decade, algorithms for collision detection of convex objects
have received much attention in research. Convex objects allow easy
exploitation of frame coherence by caching separating axes or closest-
feature pairs. Since animated environments usually have a high degree
of frame coherence, algorithms that exploit frame coherence take lit-
tle processing time per frame and are therefore ideal for interactive
applications.

Currently, algorithms for incremental collision detection of convex
objects are based on either the Lin-Canny closest-feature tracking algo-
rithm or the GJK distance algorithm. In this book, GJK receives our main
attention, since it excels in versatility, being applicable to general convex
objects.

Since algorithms for convex polyhedra are a lot faster than algorithms
for general nonconvex polyhedra, it makes sense to decompose concave
polyhedra into (possibly overlapping) convex pieces. Convex decomposi-
tion of concave polyhedra is still an ongoing research topic. Recently, a
technique for decomposing polyhedral surfaces has been published [21].
Since convex decomposition of a polyhedral surface is easier than con-
vex decomposition of a polyhedral solid and does not result in as many
convex pieces, this technique is found to be more useful for proximity
queries [41].

The increase in the processing power of current computers has enabled
us to perform physics simulations at interactive rates. Interactive physics,
provided by software libraries such as Karma [82], Havok [65], and the
Open Dynamics Engine (ODE) [116], is now applied in 3D games. In
order to resolve collisions in a physically correct way, the physics engine
has to rely on accurately computed collision times and contact points
and normals. Approximate contact information can be derived from the
penetration depth vector of a pair of intersecting objects, as discussed in
Chapter 2. However, such an approach may turn out to be less robust
due to sampling artifacts in collision detection of object configurations
at discrete time steps. Physics-based simulation asks for a continuous
four-dimensional space-time approach. In the last few years, continu-
ous collision detection at interactive rates has become feasible on current
mainstream hardware platforms [105].

For complex environments composed of a large number of objects,
the cost of collision detection can be reduced by exploiting geometric
coherence. We discern two types of problems: (1) finding all intersecting
pairs of objects among freely moving objects, the so-called broad phase,

7.2 Future Work 253

and (2) finding all intersecting pairs of primitives of two complex shapes
composed of thousands of primitives.

For the broad phase, the incremental sweep-and-prune scheme by
Baraff is most commonly used [6]. This scheme involves maintaining a list
of pairs of objects whose world-axes-aligned bounding volumes overlap
by sorting the endpoints of the boxes along the three coordinate axes.

For the second problem, the oriented-bounding box (OBB) tree by
Gottschalk is currently the fastest data structure available. However, the
axis-aligned-bounding-box (AABB) tree, as described in this book, is not a
lot slower and takes roughly half as much storage as an OBB tree. Another
significant benefit of AABB trees over OBB trees concerns shape deforma-
tions. In Chapter 5 we presented a fast method for updating an AABB tree
after a shape deformation. Updating an OBB tree after a shape deforma-
tion is more complex and involves reconstructing the tree for the deformed
shape.

Storage overhead used by bounding-volume hierarchies quickly
becomes a problem when the number of primitives in a model increases.
Using single-precision floating-point numbers, an AABB tree still takes
around 64 additional bytes per primitive. New developments aimed at
compressing the storage usage of bounding-volume hierarchies have
vielded considerable reductions. Gomez [57] describes techniques that
can be used to reduce the memory footprint of an AABB tree to 11 bytes
per primitive.

7.2 Future Work

The beauty of working in the field of interactive 3D computer graphics is
that it continues to innovate at a fast pace. Faster hardware offers more
possibilities for applications and new challenges in developing solutions
for simulated 3D environments. As a result of this, the work on collision
detection algorithms is never done. In this section, we discuss a number
of interesting research topics that may be addressed in future work.

Implicit surfaces, parametric surfaces (NURBs, Bézier patches), and
constructive solid geometry (CSG) are popular shape representations in
geometric modeling. The rendering of these shape representations at
interactive rates using current graphics hardware requires a (possibly
dynamic) translation to tessellated surfaces. However, for the purpose
of collision detection, implicit surfaces, parametric surfaces, and CSG
representations may in some cases be more suitable than polyhedral sur-
faces. For instance, they enable smoother and less memory-consuming
shape representations. We expect that the focus of collision detection
algorithms will gradually shift from polyhedral surfaces to these implicit
shape types.

254 Chapter 7 Conclusion

In general, OBB trees yield the best performance of all bounding-
volume hierarchies currently used for testing intersections between com-
plex shapes. It shows that the relatively high cost of testing a pair of OBBs
for overlap is largely made up for by its tighter fit. In this respect, it may
be a good idea to take this one step further. The convex hull of a set of
polytopes is in general smaller than the smallest OBB of the set. However,
the cost of testing a pair of convex hulls for overlap is considerably higher
than for OBBs. If the cost of testing a pair of convex hulls for overlap is
sufficiently small, a hierarchy of convex hulls for a set of polytopes might
perform better than an OBB tree.

The cost of overlap testing for convex hulls may be reduced by exploit-
ing coherence. For instance, by exploiting frame coherence, we can reduce
the cost of each overlap test to almost constant time, as described in Chap-
ter 4. Moreover, overlap tests on the child hulls of an internal node may
repeat some of the computations performed for overlap tests on the par-
ent node’s convex hull. For instance, in GJK, the same support points
will often be computed for both the parent and the child hulls. Hence, by
caching and reusing these computed values, we may speed up hull tests
for the child nodes if the hull test for the parent node fails.

Using convex hulls as bounding volumes in volume hierarchies seems
promising. However, in order to exploit the different types of coherence,
intricate data structures and algorithms are needed. Altogether, we reckon
convex hull hierarchies to be well worth examining further.

Further, we would like to hint at a topic that has received a lot of atten-
tion in the graphics community lately, namely, the use of progressive mesh
representations for smooth level of detail [70]. Smooth level of detail is
mostly used for rendering complex terrains. A progressive mesh represen-
tation is a way of storing triangle meshes that allows selective refinement
of parts of the mesh. This is useful in interactive graphics, since it allows
maintaining in memory at a given time only those parts of a shape that
are actually rendered. This results in higher rendering performance, since
fewer triangles need to be processed, and lower memory usage.

Storage usage is also critical for mesh representations used for colli-
sion detection. However, unlike rendering, the mesh should have its finest
detail in areas where the interaction takes place in collision detection.
Progressive mesh representations of complex models may be an interest-
ing research topic in the context of collision detection as well. For this
purpose, the progressive mesh representation should include a descrip-
tion of the bounding-volume hierarchy used for speeding up intersection
testing. Given such a progressive bounding-volume hierarchy, the bound-
ing volumes that are traversed during an intersection test can be generated
on the fly. Whenever a bounding volume test fails (i.e., does not result in
an early rejection), the bounding volumes of the child nodes are generated
and tested. By caching the generated bounding volumes and removing the

7.2 Future Work 255

ones that are no longer interesting, the bounding-volume hierarchy of a
mesh can be kept small. In this way, a limited amount of memory is used
to store a mesh, so complex meshes can be used for collision detection
without sacrificing too much performance.

Continuous four-dimensional space-time collision detection is the lat-
est trend in interactive physics-based simulation of rigid bodies [105].
Here, the trajectories of points on a rigid body over a time interval are
represented by parametric curves. For polyhedral surfaces, the actual
time of collision, as well as the contact points and normal, can be deter-
mined by algebraically solving systems of polynomial equations. Similar
approaches may be applied as well to quadric objects, such as ellip-
soids, cones, and cylinders. However, for more complex shapes, such
as Minkowski sums of convex objects, such an approach is no longer
feasible.

A reasonable compromise between reliability and ease of computation
is obtained by sweeping only the positions of the rigid bodies in space-
time while keeping the orientations constant over the time interval. As
we saw in Chapter 2, such a swept four-dimensional intersection test
boils down to a ray cast on the CSO of the queried objects. For a lim-
ited number of primitive types, the CSO can be represented explicitly.
For instance, the CSO of two spheres is itself a sphere. However, for most
pairs of shape types, an explicit representation of the CSO is difficult to
obtain. These cases beg for a ray-cast algorithm that relies solely on sup-
port mappings, similar to the GJK distance algorithm. Such an algorithm
would be extremely powerful since it is applicable to any convex shape
you can think of, including Minkowski sums of convex objects. Finding
an iterative method for performing a ray cast on a convex object given by
a support mapping still remains a challenge for the future.

Bibliography

[1] J. Amanatides and K. Choi. Ray tracing triangular meshes. In Proc.
8th Western Computer Graphics Symposium, pages 43-52, 1997.

[2] J. Amanatides and A. Woo. A fast voxel traversal algorithm for ray
tracing. In Proc. Eurographics '87, pages 3-10, 1987,

[3] C. Bajaj and T. K. Dey. Convex decomposition of polyhedra and
robustness. SIAM Journal on Computing, 21:339-364, 1992.

[4] D. Baraff. Analytical methods for dynamic simulation of non-

penetrating rigid bodies. In Proc. SIGGRAPH ‘89, volume 23, pages
223-232, 1989.

[5] D. Baraff. Curved surfaces and coherence for non-penetrating rigid
body simulation. In Proc. SIGGRAPH 90, volume 24, pages 19-28, 1990.

[6] D. Baraff. Dynamic Simulation of Nown-Penetrating Rigid Bodies.
PhD thesis, Computer Science Department, Cornell University, 1992.
Technical Report 92-1275.

[7] C. B. Barber, D. P. Dobkin, and H. Huhdanpaa. The Quickhull
algorithm for convex hull. ACM Transactions on Mathematical Sofiware,
22:469-483, 1996.

[8] C. B. Barber and H. Huhdanpaa. Home page for ghull. hstp://
www.geom.ummn.edu/software/ghull/, 1995. Software library.

[9] B. G. Baumgart. A polyhedron representation for computer vision.
In Proc. AFIPS National Computer Conference, volume 44, pages 589-596,
1975.

[10] G. Bell, R. Carey, and C. Marrin. VRML97: The Virtual Reality
Modeling Language. http://www.vrml.org/Specifications/VRML97, 1997.

[11] J. F. Blinn. A trip down the graphics pipeline: Line clipping. IEEE
Computer Graphics and Applications, 11(1):98-105, 1991.

[12] J. W. Boyse. Interference detection among solids and surfaces.
Communications of the ACM, 22:3-9, 1979.

[13] S. Cameron. A study of the clash detection problem in robotics. In
Proc. IEEE International Conference on Robotics and Automation, pages
488-493, 1985.

257

258 Bibliography

[14] S. Cameron. Collision detection by four-dimensional intersection
testing. IEEE Transactions on Robotics and Automation, 6(3):291-302,
1990.

[15] S. Cameron. Enhancing GJK: Computing minimum and penetra-
tion distances between convex polyhedra. In Proc. IEEE International
Conference on Robotics and Automation, pages 3112-3117, 1997.

[16] S. A. Cameron and R. K. Culley. Determining the minimum trans-
lational distance between convex polyhedra. In Proc. IEEE International
Conference on Robotics and Automation, pages 591-596, 1986.

[17] J. Canny. Collision detection for moving polyhedra. IEEE Transac-
tions on Pattern Analysis and Machine Intelligence, PAMI-8(2):200-209,
1986.

[18] J. Carmack and M. Abrash. Quake source.
http:/www.idsoftware.com/business/home/techdownloads/, 1997.

[19] F. Cazals and C. Puech. Bucket-like space partitioning data struc-
tures with applications to ray-tracing. In Proc. 13th Annual ACM Sympo-
sium on Computational Geometry, pages 11-20, 1997.

[20] B. Chazelle. Convex partitions of polyhedra: A lower bound and
worst-case optimal algorithm. SIAM Journal on Computing, 13:488-507,
1984.

[21] B. Chazelle. Decomposing the boundary of a nonconvex polyhedron.
Algorithmica, 17:327-342, 1997.

[22] B. Chazelle and D. P. Dobkin. Detection is easier than computation.
In Proc. 12th Annual ACM Symposium on Theory of Computing, pages
146-153, 1980.

[23] K. Chung and W. Wang. Quick collision detection of polytopes in vir-
tual environments. In Proc. ACM Symposium on Virtual Reality Software
and Technology, pages 125-131, 1996.

[24] J.D.Cohen, M. C. Lin, D. Manocha, and M. K. Ponamgi. I-COLLIDE:
An interactive and exact collision detection system for large-scale envi-
ronments. In Proc. ACM Symposium on Interactive 3D Graphics, pages
189-196, 1995.

[25] E. Coumans. 3D-DDA on a dynamic grid. Posted on the conp.
graphics.algorithms newsgroup, Feb. 2003.

[26] H. S. M. Coxeter. Introduction to Geometry. Wiley, New York, 2nd
edition, 1989.

[27] M. de Berg. Linear size binary space partitions for fat objects. In
Proc. 3rd Annual European Symposium Algorithms, volume 979 of Lecture
Notes in Computer Science, pages 252-263. Springer-Verlag, New York,
1995.

Bibliography 259

[28] E. W. Dijkstra. A note on two problems in connexion with graphs.
Numerische Mathematik, 1:269-271, 1959.

[29] D. P. Dobkin and D. G. Kirkpatrick. Fast detection of polyhedral
intersection. Theoretical Computer Science, 27:241-253, 1983,

[30] D.P.Dobkin and D. G. Kirkpatrick. A linear algorithm for determin-
ing the separation of convex polyhedra. Journal of Algorithms, 6:381-392,
1985.

[31] D. P. Dobkin and D. G. Kirkpatrick. Determining the separation of
preprocessed polyhedra—a unified approach. In Proc. 17th International
Colloguium on Automata, Languages and Programming (ICALP), volume
443 of Lecture Notes in Computer Science, pages 400—413. Springer-Verlag,
New York, 1990.

[32] V.J. Duvanenko, W. E. Robbins, and R. S. Gyurcsik. Improving line
segment clipping. Dr. Dobb’s Journal, pages 36-45, July 1990.

[33] V. J. Duvanenko, W. E. Robbins, and R. S. Gyurcsik. Line-segment
clipping revisited. Dr. Dobb’s Journal, pages 107-110, Jan. 1996.

[34] M. E.Dyer. Linear time algorithms for two- and three-variable linear
programs. STAM Journal on Computing, 13:31-45, 1984.

[35] D. H. Eberly. 3D Game Engine Design: A Practical Approach to Real-
Time Computer Graphics. Morgan Kaufmann Publishers, San Francisco,
2001.

[36] D. H. Eberly. Game Physics. Morgan Kaufmann Publishers, San
Francisco, 2002.

[37] J. Eckstein and E. Schémer. Dynamic collision detection in vir-
tual reality applications. In Proc. 7th International Conference in Central
Europe on Computer Graphics and Visualization and Interactive Digital
Media, WSCG 99, pages 71-78, 1999.

[38] H. Edelsbrunner. Algorithms in Combinatorial Geometry, volume 10
of EATCS Monographs on Theoretical Computer Science. Springer-Verlag,
New York, 1987.

[39] S.A.Ehmann. SWIFT—speedy walking via improved feature testing.
http://www.cs.unc.edu/geom/SWIFT/, 2000. Software library.

[40] S.A.Ehmann and M. C. Lin. Accelerated proximity queries between
convex polyhedra by multi-level Voronoi marching. In Proc. International
Conference on Intelligent Robots and Systems, 2000.

[41] S. A. Ehmann and M. C. Lin. Accurate and fast proximity queries
between polyhedra using convex surface decomposition. In Computer
Graphics Forum (Proc. EUROGRAPHICS 2001), 2001.

[42] J. Fenlason and R. Stallman. GNU gprof: The GNU Profiler. Free
Software Foundation, 1992.

260 Bibliography

[43] J. D. Foley, A. van Dam, S. K. Feiner, and J. F. Hughes. Computer
Graphics: Principles and Practice. Addison-Wesley, Reading, MA, 2nd
edition, 1990.

[44] B. Fomitchev. STLport. http://www.stlport.org/, 1999. Software
library.

[45] A. U. Frank and R. Barrera. The Fieldtree: A data structure for geo-
graphic information systems. In A. Buchmann, O. Giinther, T. R. Smith,
and Y.-F. Wang, editors, Proc. 1st Symposium SSD on Design and Imple-
mentation of Large Spatial Databases, volume 409 of Lecture Notes in
Computing Science, pages 29-44. Springer-Verlag, New York, 1990.

[46] H.Fuchs, Z. M. Kedem, and B. Naylor. On visible surface generation
by a priori tree structures. In Proc. SIGGRAPH 80, volume 14, pages
124-133, 1980.

[47] K.Y.Fung, T. M. Nicholl, R. E. Tarjan, and C. J. Van Wyk. Simplified
linear-time Jordan sorting and polygon clipping. Information Processing
Letters, 35:85-92, 1990.

[48] M. A. Ganter and B. P. Isarankura. Dynamic collision detection using
space partitioning. Journal of Mechanical Design, 115:150-155, 1993.

[49] A. Garcia-Alonso, N. Serrano, and J. Flaquer. Solving the collision
detection problem. IEEE Computer Graphics and Applications, 14:36-43,
1994.

[50] E.G. Gilbert. An iterative procedure for computing the minimum of
a quadratic form on a convex set. SIAM Journal on Control, 4:61-80, 1966.

[51] E. G. Gilbert and C.-P. Foo. Computing the distance between general
convex objects in three-dimensional space. IEEE Transactions on Robotics
and Automation, 6(1):53-61, 1990.

[52] E. G. Gilbert, D. W. Johnson, and S. S. Keerthi. A fast procedure for
computing the distance between complex objects in three-dimensional
space. IEEE Journal of Robotics and Automation, 4(2):193-203, 1988.

[53] A. S. Glassner. An Introduction to Ray Tracing. Academic Press,
Boston, 1989.

[S4] A. S. Glassner. Clipping a concave polygon. In A. W. Paeth, editor,
Graphics Gems V, pages 50-54. Academic Press, Boston, 1995.

[55] D. Goldberg. What every computer scientist should know about
floating-point arithmetic. ACM Computing Surveys, 23(1):5-48, 1991.

[56] G. H. Golub and C. F. Van Loan. Matrix Computations. Johns
Hopkins University Press, Baltimore, MD, 3rd edition, 1996.

[57] M. Gomez. Compressed axis-aligned bounding box trees. In
M. DeLoura, editor, Game Programming Gems 2, pages 388-393. Charles
River Media, Hingham, MA, 2001.

Bibliography 261

[58] S. Gottschalk. RAPID: Robust and accurate polygon interference
detection system. http://www.cs.unc.edu/geom/OBB/OBBT.html, 1996.
Software library.

[59] S. Gottschalk, M. C. Lin, and D. Manocha. OBBTree: A hierarchical
structure for rapid interference detection. In Proc. SIGGRAPH '96, pages
171-180, 1996.

[60] D. Green and D. Hatch. Fast polygon-cube intersection testing. In
A. W. Paeth, editor, Graphics Gems V, pages 375-379. Academic Press,
Boston, 1995.

[61] B. Griinbaum. Convex Polytopes. Wiley, New York, 1967.

[62] L. J. Guibas, D. Hsu, and L. Zhang. H-walk: Hierarchical distance
computation for moving convex bodies. In Proc. 15th Annual ACM
Symposium on Computational Geometry, pages 265-273, 1999.

{63] J. K. Hahn. Realistic animation of rigid bodies. In Proc. SIGGRAPH
‘88, volume 22, pages 299-308, 1988.

[64] E. Haines. Point in polygon strategies. In P. Heckbert, editor,
Graphics Gems IV, pages 24-46. Academic Press, Boston, 1994.

[65] Havok. Havok game dynamics sdk. http.//www.havok.com/, 2000.
Software library.

[66] M. Held. ERIT—A collection of efficient and reliable intersection
tests. Journal of Graphics Tools, 2(4):25-44, 1997.

[67] K. Hoffmann, K. Mehlhorn, P. Rosenstiehl, and R. E. Tarjan.
Sorting Jordan sequences in linear time using level-linked search trees.
Information and Control, 68:170-184, 1986.

[68] M. Hohmeyer. LP, a C implementation of Seidel's random-
ized linear programming algorithm. http://graphics.lcs.mit.edu/ seth/
geomlib/geomlib.html, 1990. Software library.

[69] J. E. Hopcroft, J. T. Schwartz, and M. Sharir. Efficient detection of
intersections among spheres. International Journal of Robotics Research,
2(4):77-80, 1983.

[70]1 H. Hoppe. Progressive meshes. In Proc. SIGGRAPH 96, pages
99-108, 1996.

[71] P. M. Hubbard. Space-time bounds for collision detection. Technical
Report CS-93-04, Dept. of Computer Science, Brown University, 1993.

[72] P. M. Hubbard. Collision detection for interactive graphics appli-
cations. IEEE Transactions on Visualization and Computer Graphics,
1(3):218-230, 1995.

[731 P. M. Hubbard. Approximating polyhedra with spheres for time-
critical collision detection. ACM Transactions on Graphics, 15(3):179-210,
1996.

262 Bibliography

[74] L. Kettner. Designing a data structure for polyhedral surfaces. In
Proc. 14th Annual ACM Symposium on Computational Geometry, pages
146-154, 1998.

[75] D.-J. Kim, L. J. Guibas, and S.-Y. Shin. Fast collision detection
among multiple moving spheres. In Proc. Computer Animation '97, pages
1-7, 1997.

[76] J. T. Klosowski, M. Held, J. S. B. Mitchell, H. Sowizral, and
K. Zikan. Efficient collision detection using bounding volume hierarchies
of k-DOPs. [EEE Transactions on Visualization and Computer Graphics,
4(1):21-36, 1998.

[77] D. Knuth. The Art of Computer Programming. Addison-Wesley,
Reading, MA, 1973.

[78] Y.-D. Liang and B. A. Barsky. A new concept and method for line
clipping. ACM Transactions on Graphics, 3:1-22, 1984.

[79] M. C. Lin and J. F. Canny. A fast algorithm for incremental distance
computation. In Proc. IEEE International Conference on Robotics and
Automation, pages 1008-1014, 1991.

[80] T. Lozano-Pérez. Spatial planning: A configuration space approach.
IEEE Transactions on Computers, C-32:108-120, 1983.

[81] D. G. Luenberger. Linear and Nonlinear Programming. Addison-
Wesley, Reading, MA, 2nd edition, 1984,

[82] MathEngine. Karma. http://www.mathengine.com/, 2001. Software
library.

[83] M. McLaurin. Outsourcing reality: Integrating a commercial physics
engine. Game Developer Magazine, 9(8):40-46, August 2002,

[84] N. Megiddo. Linear-time algorithms for linear programming in R3
and related problems. SIAM Journal on Computing, 12:759-776, 1983.
[85] K. Mehlhorn. Data Structures and Algorithms 1: Sorting and Search-
ing, volume 1 of EATCS Monographs on Theoretical Computer Science.
Springer-Verlag, New York, 1984.

[86] S. Melax. Dynamic plane shifting BSP traversal. In Proc. Graphics
Interface, pages 213-220, May 2000.

[87] S. Meyers. More Effective C++. Professional Computing Series.
Addison-Wesley, Reading, MA, 1996.

[88] B. Mirtich. V-Clip: Fast and robust polyhedral collision detection.
ACM Transactions on Graphics, 17(3):177-208, 1997.

[89] T. Méller. A fast triangle-triangle intersection test. Journal of
Graphics Tools, 2(2):25-30, 1997.

[90] T. Moller and B. Trumbore. Fast, minimum storage ray-triangle
intersection. Journal of Graphics Tools, 2(1):21-28, 1997.

Bibliography 2673

[91] M. Moore and J. Willhelms. Collision detection and response for
computer animation. In Proc. SIGGRAPH 88, volume 22, pages 289-298,
1988.

[92] D. E. Muller and F. P. Preparata. Finding the intersection of two
convex polyhedra. Theoretical Computer Science, 7:217-236, 1978.

[93] D. R. Musser and A. Saini. STL Tutorial and Reference Guide.
Professional Computing Series. Addison-Wesley, Reading MA, 1996.
[94] A. Narkhede and D. Manocha. Fast polygon triangulation based
on Seidel’s algorithm. In A. W. Paeth, editor, Graphics Gems V, pages
394-397. Academic Press, Boston, 1995.

[95] B. F. Naylor. Interactive solid geometry via partitioning trees. In
Proc. Graphics Interface '92, pages 11-18, 1992.

[96] B. Naylor. Constructing good partitioning trees. In Proc. Graphics
Interface '93, pages 181-191, 1993,

[97] B. Naylor, J. A. Amanatides, and W. Thibault. Merging BSP trees
vields polyhedral set operations. In Proc. SIGGRAPH '90, volume 24,
pages 115-124, 1990.

[98] C. J. Ong and E. G. Gilbert. The Gilbert-Johnson-Keerthi distance
algorithm: A fast version for incremental motions. In Proc. IEEE Interna-
tional Conference on Robotics and Automation, pages 1183-1189, 1997.

[99] C. J. Ong and E. G. Gilbert. Fast versions of the Gilbert-Johnson-
Keerthi distance algorithm: Additional results and comparisions. IEEE
Transactions on Robotics and Automation, 17(4):531-539, 2001.

[100] J. O’'Rourke. Art Gallery Theorems and Algorithms. Oxford University
Press, New York, 1987.

[101] J. O'Rourke. Computational Geometry in C. Cambridge University
Press, New York, 2nd edition, 1998.

[102] I.7J. Palmer and R. L. Grimsdale. Collision detection for animation
using sphere-trees. Computer Graphics Forum, 14(2):105-116, 1995.
[103] M. S. Paterson and F. F. Yao. Efficient binary space partitions for
hidden-surface removal and solid modeling. Discrete and Computational
Geometry, 5:485-503, 1990.

[104] F. P. Preparata and M. 1. Shamos. Computational Geometry: An
Introduction. Springer-Verlag, New York, 1985.

[105] S.Redon, A. Kheddar, and S. Coquillart. Fast continuous collision
detection between rigid bodies. In Proc. EUROGRAPHICS 2002, 2002.
[106] H. Samet. The Design and Analysis of Spatial Data Structures.
Addison-Wesley, Reading, MA, 1990.

[107] P. J. Schneider and D. H. Eberly. Geometric Tools for Computer
Graphics. Morgan Kaufmann Publishers, San Francisco, 2002.

264 Bibliography

[108] E. Schémer and C. Thiel. Efficient collision detection for moving
polyhedra. In Proc. 11th Annual ACM Symposium on Computational
Geometry, pages 51-60, 1995.

[109] R. Sedgewick. Algorithms. Addison-Wesley, Reading, MA, 2nd
edition, 1988.

[110] R. Segura and F. Feito. Algorithms to test ray-triangle intersection:
Comparative study. In Proc. WSCG'01, 2001.

[111] R. Seidel. Small-dimensional linear programming and convex
hulls made easy. Discrete and Computational Geometry, 6:423-434,
1991.

[112] K. Shoemake. Animating rotations with quaternion curves. In
Proc. SIGGRAPH 85, volume 19, pages 245-254, July 1985.

[113] K. Shoemake. Uniform random rotations. In D. Kirk, editor,
Graphics Gems I1I, pages 124-132. Academic Press, Boston, 1992,

[114] H. W. Six and D. Wood. Counting and reporting intersections of
d-ranges. IEEE Transactions on Computers, C-31:181-187, 1982.

[115] A. Smith, Y. Kitamura, H. Takemura, and F. Kishino. A simple
and efficient method for accurate collision detection among deformable
polyhedral objects in arbitrary motion. In Proc. IEEE Virtual Reality
Annual International Symposium, pages 136-145, 1995.

[116] R. Smith. Open dynamics engine. http.//opende.sourceforge.net/,
2001. Software library.

[117] J. M. Snyder. Interval analysis for computer graphics. In Proc.
SIGGRAPH '92, volume 26, pages 121-130, 1992.

[118] J. Stolfi. Oriented Projective Geometry: A Framework for Geometric
Computations. Academic Press, New York, 1991.

[119] D. Stoyan, W. S. Kendall, and J. Mecke. Stochastic Geometry and
Its Applications. Wiley, Chichester, UK, 1987.

[120] B. Stroustrup. The C++ Programming Language. Addison-Wesley,
Reading, MA, 3rd edition, 1997.

[121] 1. E. Sutherland and G. W. Hodgman. Reentrant polygon clipping.
Comwmunications of the ACM, 17:32-42, 1974.

[122] 1. E. Sutherland, R. F. Sproull, and R. A. Schumacker. A charac-
terization of ten hidden-surface algorithms. ACM Computing Surveys,
6(1):1-55, 1974.

[123] F. Tampieri. Newell’s method for computing the plane equation
of a polygon. In D. Kirk, editor, Graphics Gems III, pages 231-232.
Academic Press, Boston, 1992.

Bibliography 265

[124] P. Terdiman. Memory-optimized bounding-volume hierarchies.
http://codercorner.com/CodeArticles.htm, Mar. 2001.

[125] W. C. Thibault and B. F. Naylor. Set operations on polyhedra using
binary space partitioning trees. In Proc. SIGGRAPH '87, volume 21,
pages 153-162, 1987.

[126] F. Thomas and C. Torras. Interference detection between
non-convex polyhedra revisited with a practical aim. In Proc. IEEE
International Conference on Robotics and Automation, pages 587-594,
1994,

[127] G. van den Bergen. Efficient collision detection of complex
deformable models using AABB trees. Journal of Graphics Tools, 2(4):
1-14, 1997.

[128] G. van den Bergen. A fast and robust GJK implementation for
collision detection of convex objects. Journal of Graphics Tools, 4(2):7-25,
1999,

[129] D. Voorhies. Triangle-cube intersection. In D. Kirk, editor,
Graphics Gems I1I, pages 236-239. Academic Press, Boston, 1992.

[130] R. Webb and M. Gigante. Using dynamic bounding volume hier-
archies to improve efficiency of rigid body simulations. In T. L. Kunii,
editor, Visual Computing (Proc. CG International '92), pages 825-842.
Springer-Verlag, New York, 1992.

[131] H. Weghorst, G. Hooper, and D. P. Greenberg. Improved com-
putational methods for ray tracing. ACM Transactions on Graphics,
3(1):52-69, 1994.

[132] E. Welzl. Smallest enclosing disks (balls and ellipsoids). In H. Mau-
rer, editor, New Results and New Trends in Computer Science, volume 555
of Lecture Notes in Computer Science, pages 359-370. Springer-Verlag,
New York, 1991.

[133] M. Woo, J. Neider, and T. Davis. OpenGL Programming Guide.
Addison-Wesley, Reading, MA, 2nd edition, 1997.

[134] X.Wu. Alinear-time simple bounding volume algorithm. Tn D. Kirk,
editor, Graphics Gems III, pages 301-306. Academic Press, Boston,
1992.

[135] G. Zachmann. Rapid collision detection by dynamically aligned
DOP-trees. In Proc. IEEE Virtual Reality Annual International Symposium,
pages 90-97, 1998.

[136] G. Zachmann. Virtual Reality in Assembly Simulation: Collision
Detection, Simulation Algorithms, and Interaction Techniques. PhD thesis,
Dept. of Computer Science, TU Darmstadt, 2000.

266 Bibliography

[137] G. Zachmann and W. Felger. The BoxTree: Enabling real-time
and exact collision detection of arbitrary polyhedra. In Proc. Workshop

on Simulation and Interaction in Virtual Environments, pages 104-113,
1995.

[138] M. J. Zyda, D. R. Pratt, W. D. Osborne, and J. G. Monahan.
NPSNET: Real-time collision detection and response. Journal of
Visualization and Computer Animation, 4(1):13-24, 1993.

A

AABB see axis-aligned bounding box
(AABB)
affine combination, 15, 127, 129
affine hull, 15, 126
affine set, 15
dimension, 15
affine spaces, 14-17
affine transformation, 15-16, 19-21,
40, 130, 233, 247
angle-preserving, 20
composition, 16
group of, 20
length-preserving, 19
support mapping, 137-138
affinely independent, 15
affinely independent triangles, 162
algorithm table, 239
algorithms
crossings test, 90
Dijkstra’s shortest path algorithm,
150
distance computation, 120
feature-walking, 6
finite-precision, 64
future work, 253-255
geometric, 64
Johnson's, 97, 126-130, 139-144
line segment-sphere test, 71-72
nonconvex polygons, 95
polytopes, 108-121
randomized linear-programming,
120
rasterization, 31
ray-box test, 75
ray cast, 70-71
ray-triangle test, 85-86
recursive, solid-leaf BSP tree, 182

Index

recursive flood-fill, for retrieving
silhouette, 156-157
single-shot, 106
SOLID, 237-41
sweep-and-prune, 210-215, 237
unstable, 60-62
weakly separating plane, 115
see also CW algorithm; EPA
algorithm; GJK algorithm;
ISA-GIK algorithm; LC
algorithm; LP algorithm;
V-Clip algorithm
angle between two nonzero vectors,
17
angle-preserving transformations, 20
angular degrees of freedom, 189
animation, 2, 6, 41-46
API see application program
interface (API)
application program interface (API),
219, 237
arithmetic operations, 60
automation, 5
autopartitioning, 180, 182
avatar, 67
average time, 56-57
AVL tree, 210
axis, 18
axis-aligned bounding box (AABB),
7,29, 72-73, 193-195
and ray casting, 215-217
overlapping, 210
overlapping pairs, 209
axis-aligned bounding box (AABB)
trees, 199, 232, 253
and deformable models,
206-207
intersection testing, 203
refitting, 207-208

267

268 Index

axis-aligned bounding box (AABB)
trees (continued)
SOLID, 238
versus OBB trees, 201-206

balanced binary-search tree, 210
barycentric coordinates, 84, 97-98
basic primitives, 67-104
basis, 13
binary space partitioning (BSP), 5, 7,
172
binary space partitioning (BSP)
trees, 180
merging, 189-190
number of nodes, 182
offset-surface, 186
binary space partitioning (BSP) trees
and collision detection,
184-189
boundary representation, 24-26
bounded, 22
bounding spheres, 193-194, 198
bounding volume, 55
bounding volumes, 193-199
average time formula, 198
case study, 196-199
comparison of types, 196
convex hulls as, 254
desired properties, 193
types, 193
types for tree structures, 7
bounding-volume hierarchies,
199-201, 254
storage overhead, 253
box, 4, 28
projection interval, 79
support mapping, 135
box-box test, 82-83
box coordinates, 210
box structures
indexing endpoints, 215
sweep-and-prune algorithm,
214-215
BoxTree, 179
broad phase, 56, 209-217, 252-253

speeding up, 237
BSP see binary space partitioning
(BSP); solid-leaf BSP tree
bullet-wall problem, 48

C

caching, 140
caching overhead, 139
callback functions, 226-227
cancellation, 60
Cartesian system, 18, 40
right-handed, 21
CD-ROM, 65
cell indices, 175
cells, 175-176
client, 219
closed, 22
closed halfspaces, 18, 110
closest axis to the plane normal, 89
closest features of convex polyhedra,
116
closest point query, 107
closest points
of a pair of objects, 234
of two convex objects, 106-107
cofactor, 14
cofactor expansion, 14, 127-128
Cohen-Sutherland (CS) line clipper,
73-74
collinear line segments, intersection
of two sequences, 96-97
collision, 1
definition, 1-2
collision detection
cost of, 252
reason for performing, 2
speeding up, 191, 206
collision detection methods, state of
the art, 251-253
collision response, 49-53
commands, 222
common point detection, 108-110
common point query, 107
common points, 106
complex shapes, 4, 84, 240
and scenes, 3841

complex vertices, 133
compound shapes, 4
computational geometry, 5
computed signed distance, 62
computer animation see animation
concave object, 22
concave polygons, 32
cone, 4, 33
support mapping, 135-136
configuration of objects, 2
configuration space obstacle (CSO),
35-40, 48, 50, 68-69, 78, 81,
115-116, 138, 143, 151-153,
164, 168, 184-185, 187, 255
conjugate, 44
constructive solid geometry (CSG),
39, 253
contact normal, 49-52
contact plane, 50
contact point, 49-51
contact region, 50
continuous four-dimensional
space-time collision detection,
255
convergence, 123-126
convex combination, 23, 126
convex decomposition, 172-173, 252
convex hulls, 4, 23, 130, 155, 243
as bounding volumes, 254
computation, 133
cost of overlap testing, 254
support mapping, 138-139
convex objects, 22-23, 38, 105-169
extrusions, 186
first time of impact, 188-189
Minkowski sums of, 255
convex polygons, 32
convex polyhedra, 4, 242
distance computation algorithms
for, 120
convex polytopes, 4
convex shapes, 240
convexity, 4
coordinate system
multiple, 15
origin of, 15-16
parent, 15-16

Index 269

right-handed, 21
world, 16
coordinates, 15
cost values, 56-57
Cramer’s rule, 13-14, 85, 99, 127, 162
cross product, 21-22
properties, 22
crossings test, algorithm, 90
CSO see configuration space obstacle
(CSO)
cube size, 197
CW algorithm, 111-114
cylinder, 4, 33
support mapping, 136

DAG see directed acyclic graph (DAG)

DCEL see doubly connected edge list
(DCEL)

3D-DDA, 216

deformable models, 206-209

deformation, 41

degrees of freedom (DOF), 41-42, 48

angular, 189

determinant function, 14

Dijkstra’s shortest path algorithm,
150

dimension, 13

dimension of an affine set, 15

directed acyclic graph (DAG), 39, 191

direction, 18

discrete-orientation BSP (DOBSP)
tree, 180, 192

discrete-orientation polytopes (DOP),
7,23, 28, 193-195

discrete time steps, 47

distance between two objects, 36

distance between two points, 17

distance computation, 115-121

distance computation algorithms for
convex polyhedra, 120

Dobkin-Kirkpatrick algorithm, 120

Dobkin-Kirkpatrick hierarchical
representation, 27, 120, 131

DOBSP see discrete-orientation BSP
(DOBSP) tree

270 Index

DOF see degrees of freedom (DOF)

DOP see discrete-orientation
polytopes (DOP)

dot product, 17

double dispatch, 239

doubly connected edge list (DCEL),
25,108

dynamic axis-aligned bounding box
(AABB), 198-199

dynamic plane-shifting BSP
traversal, 186-187

dynamic plane-shifting technique,
186

dynamic type of an object, 240

edge-box intersection test, 104
edge determinants, 100
edge directions, 78
edge nodes, 25-26
edges, 29
Elite, 5-6
ellipsoids, 4
encapsulation, 49
encounters, 244-245
endpoints, incrementally sorting,
211
entering intersection point, 74
EPA algorithm, 148-151, 159, 166
in 2D, 151-152
in 3D, 157-158, 165
initial polytope, 159
numerical aspects, 162-165
termination, 163-164
Euclidean space, 17-18
Euler angles, 42-44, 46
Euler parameters, 45
Euler’s formula, 25
exact signed distance, 62
exiting intersection point, 74
exponent, 58

face, 24

facet orientations, 78
feasibility test, 109
feature of a polytope, 24
feature-walking, 133
feature-walking algorithm, 6
fieldtree, 190-191
3D, 192
generalization to
three-dimensional space, 191
FIFO (first-in-first-out) queue, 152
finite-precision algorithm, 64
fixed-orientation objects, 50
fixed-size axis-aligned bounding box
(AABB), 198-199
floating-point numbers, 57-60, 62-63
floating-point operations, 63
four-dimensional intersection
detection problem, 47
four-dimensional intersection test,
49, 68-69
four-dimensional space, 46
frame coherence, 54, 106, 114
function composition, 16
function objects, 245

geographic information systems
(GIS), 190
geometric algorithms, 64
geometric coherence, 54-55, 171,
182, 252
geometry, 11-22
notational conventions, 11-12
Gilbert-Johnson-Keerthi (GJK)
algorithm see GJK algorithm
GJK algorithm, 4, 97, 111, 114,
121-169, 242, 252
implementation, 139-141
incremental version, 132
numerical aspects, 141-145
overview, 121-123
reasons for selecting, 121
separating-axis algorithm, 146
termination, 123-126, 142-143,
151-152, 162-164
global convergence, 124

GMP see GNU Multiple Precision
Arithmetic Library (GMP)

GNU Multiple Precision Arithmetic
Library (GMP), 62

gprof, 57

grouping node, 40

halfedge structure, 26
halfspace representation, 27-29
hexahedron, 160-161
hierarchical data structures, 7
hill climbing, 132, 134
hyperplane, 18

orientation of, 18

I-COLLIDE, 116, 120

identity, 12

IEEE Standard 754, 58, 60-61, 143

iff, 12

ill-conditioned, 143

ill-conditioned error bounds,
143-145

ill-conditioning, 163

implicit surfaces, 253

impulse-based methods, 52

incremental separating-axis GJK
algorithm see ISA-GJK
algorithm

infimum, 36

initialization, 158-161

insertion sort, 210

instantaneous orientation changes,
49

interactive 3D applications, 3

historical background, 5

interactive 3D media, 63

internal nodes, 39—40

intersecting pairs among set of
moving objects, 191-192

intersecting pairs of primitives of
two complex shapes composed
of thousands of primitives, 253

Index 271

intersecting primitives between pair
of complex models, 192

intersection query, 56

intersection testing, 145-147

for nonconvex polygons, 97

interval tree, 190

ISA-GJK algorithm, 146-147, 166,
168, 226, 240-241, 243

J

Johnson’s algorithm, 97, 126-130,
139-144

Jordan curve, 94

Jordan sorting, 94-95

k-d tree, 177-180, 192
k-DOP tree, 83, 199
Kronecker symbol, 12

L

LC algorithm, 116-117, 146, 252

length of a vector, 17

length-preserving transformations,
19-20

Liang-Barsky (LB) line clipper, 73-74

LIFO (last-in-first-out) queue, 152

Lin-Canny (LC) algorithm see LC
algorithm

line segment, 4, 159-160

line segment-box test, 80-81

line segment-sphere test, 71-72

algorithm, 72

line segment-triangle test, 79, 87-88

linear combination, 12-14

linear programming (LP), 108-110

linear transformation, 13

linearly independent, 13

local coordinate system, 39-40

local minimum condition, 119

LP algorithm, 114

272 Index

machine epsilon, 59

mailboxing, 176

mantissa, 58

margin of an object, 225

matrix notation, 12

memory usage, 53

Mercator projection, 42-43

mesh representations, storage usage
for, 254

Minkowski addition, 33-37, 225, 243

Minkowski sum, 4, 33, 47, 52, 130,
166

of convex objects, 255
support mapping, 138

model partitioning, 7, 192-209

motion, 2

moving objects, 3

multilayered vertex adjacency graph,
131, 133-135

multiple cells, 190

multiple coordinate system, 15

multiset, 215

naive split, 153
narrow phase, 48, 56
Newell’s method, 31
noncommutative product rule, 44
nonconvex polygons, 32, 93
algorithm, 95
intersection test for, 97
nonconvex polyhedra, 172
axis-aligned bounding box
(AABB), 195
handled as polyhedral surfaces,
174
nonintersecting convex objects, 106
nonintersecting polytopes, 78
nonsingular, 12
nonuniform scalings, 20-21
norm of a quaternion, 44
normal, 18
normalization, 18
numerical problems, 62-65

OBB see oriented bounding box
(OBB)
objects, 2241
definition, 22-23
octrees, 177-180, 192
offset, 18
offset surfaces, 185-186
BSP tree, 186
support mappings, 185-186
OMT diagram, class hierarchy of
shape types, 241
OPCODE collision library for
triangle meshes, 200
open halfspaces, 18
OpenGL, 31, 224, 230, 234-235, 247
orientation of hyperplane, 18
oriented bounding box (OBB), 193,
195-199
oriented bounding box (OBB) trees,
199, 231-232, 253
future work, 254
intersection testing, 203
rebuilding, 209
versus axis-aligned bounding box
(AABB) trees, 201-206
oriented boxes, 7
origin of coordinate system, 15-16
orthogonal, 17, 19, 21
orthonormal, 18
outcode, 6-bit, 73
overflow, 58

P

pair of closest points, 51-52

parallelepiped, 28

parametric curves, 255

parametric surfaces, 253

parent coordinate system, 15-16

partitioning coordinate, 202

partitioning methods, 172-173

see also model partitioning; space

partitioning

partitioning plane, 182-183, 185

penalty-based methods, 52

penetration depth, 36, 68, 77,
147-169
candidates for, 163
computation, 115-121
hybrid technique, 166-169
objects enlarged by a margin, 169
penetration depth vector, 52-53, 151
performance improvements, 140
performance of collision detection,
53-57
physics-based simulation, 53, 252
pitch, 4243
placement change, 41
planar graph, 25
plane, 18
Pliicker coordinates, 87-88
point in nonconvex polyhedron,
174-175
point-in-polygon test, 103, 174
point-in-polyhedron test, 174, 184
points, 14
polygon, 29-32, 84-104
BSP tree representation, 181
definition, 29
ray-triangle test, 84-86
simple, 29
polygon-box test, 103-104
polygon-polygon test, 92-97
polygon soups, 39, 174
polygon-sphere test, 102-103
polygon-volume test, 101-104
polyhedra, 108
BSP tree representations, 189-190
polyhedral cone, 132
polyhedral meshes, 172, 182
polyhedral surfaces, 173-174, 255
decomposing, 252
polytope soup, 224, 238-240
polytopes, 23-29
algorithms, 108-121
expanding in 3D, 152-158
sum of, 34
support mappings, 131-136
three-dimensional, 153
vertices of, 24
positive integer ID, 176-177
positively oriented, 21

Index 273

power-set, 12
precision, 62-63, 140
primitive, positive, 202
primitive operations, 57
primitive shapes, 23
primitives, 23
taxonomy, 24
priority queue, 151
probability values, 57
progressive mesh, 254
representations for smooth level
of detail, 254
proximity queries, 105-107
types considered, 105
Pythagorean theorem, 70

Q

quadrics, 32

quadtree, 190

Quake, 7, 186
quaternions, 4446
query object, 179, 186
query point, 89
Quickhull alogrithm, 26

randomized linear-programming
algorithm, 120

range query, computational cost, 190
RAPID, 82, 203
rasterization algorithms, 31
ray-box test, 73-75

algorithm, 75
ray cast, 48, 69

algorithm, 70-71
ray casting and AABBs, 215-217
ray-polygon test, 88-90
ray-sphere test, 68-71, 102
ray test, 50
ray-triangle test

algorithm, 85-86

polygons, 84-86
real-life simulation, 64
real-time constraint, 53

274 Index

real-time response, 53

recursive defintion, 129

recursive flood-fill algorithm for
retrieving silhouette, 156-157

recursive hierarchical space
partitioning structures, 181

recursive space partitioning trees,
190

red-black tree, 210

reflection, 19

reflex edge, 154

relative error tolerance, 163

response, 49-53

response callbacks, 236

response class, 227

response data, 2

rhombic dodecahedron, 81

rigid body, 41

rigid motion, 19, 41

robotics, 5

robustness, 57-65

roll, 42-43

rotations, 19, 21

run-time type identification (RTTI),
240

SAT see separating-axes test
SAT lite, 205-206
scalars, 12, 57
scene graph, 39, 41
segment clipping, 73
separability degree, 55
separating axes, 54, 77-80, 106,
146
weakly, 111
separating-axes query, 107
separating-axes test (SAT), 78-83, 90,
104, 203, 205
separating plane, 54, 106, 110-114
weakly, 110
shape types, 4
signed distance, 18
silhouette, recursive flood-fill
algorithm for retrieving,
156-157

simplex, 24
single-shot algorithms, 106
singular, 12
singularities, 42
skin-bone technique, 52
slab, 28
software library, 222
SOLID, 219-249
algorithms, 237-241
axis-aligned bounding box (AABB)
tree, 238
basic shape types, 240
bounding-volume hierarchies,
231
caches, 226
class hierarchy of shape types, 241
command categories, 222
contact data for resolving
collisions in physics-based
simulation, 243
container types, 246
design constraints, 221-222
design decisions, 228-241
design requirements, 219-222
development, 251
environment simulation
architectures, 230
evaluation, 242-244
frame coherence, 234
framework, 224
goals attained, 242
implementation details, 244
motion specification, 233-235
multiple callbacks, 237
multiple response tables, 237
multiple responses, 236
multiuser applications, 230
object placements, 234
overview, 222-228
performance, 244
response data, 226-228
response handling, 235-237
shape deformations, 231
shape representations, 228-233
shape types supported by,
223-224
single-user applications, 230

solid-leaf BSP tree, 180, 184
construction, 180-183
recursive algorithm, 182

space partitioning, 175-192
drawback of methods, 190
into rectangular cells, 178

space-time interference checking, 5

span of a set of vectors, 13

spatial coherence, 3

spatial data structures, 171-217

special orthogonal, 19

sphere, 4, 8, 32-33, 67-72
support mapping, 135
support mapping for convex hull,

139

sphere-box test, 76-77

sphere-OBB test, 199

sphere-sphere test, 67-68

sphere trees, 199

splitting triangles, 153-154

square matrix, 12

stabbing number, 213-214

stability, 60-62

standard basis, 17

Standard Template Library (STL),

151, 213, 244248
standard (world) coordinate system,
195

static objects, 34

stochastic geometry, 57

storage usage for mesh

representations, 254

support mapping, 111, 122, 130-139,

158, 238
affine transformation, 137-138
box, 135
cone, 135-136
convex hull, 138-139
cylinder, 136
Minkowski sum, 138
offset surfaces, 185-186
polytopes, 131-136
sphere, 135
support plane, 123, 162
support point, 111, 122, 131,
138-139, 153-154, 160, 163
computation, 241

Index 275

computing, 132, 134
two-phase procedure, 134
supporting plane, 97, 101
sweep-and-prune algorithm,
210-215, 237
box structure, 214-215
insertions and deletions, 213
swept volumes, 35
SWIFT library, 120

T

temporal coherence, 3, 6
termination, 123-126, 142-143,
151-152, 162-164
EPA, 163-164
tetrahedron, testing for containment
of the origin, 161
three-dimensional polytope, 153
three-dimensional space, 21-22
time, 4648
time constraint, 56
time of collision, 50
torus
bounding volume, 196-199
intersection test, 197
transform node, 40
translations, 19, 21
transpose, 12
tree structures, bounding-volume
types for, 7
triangle, 4
falsely accepted, 162
falsely rejected, 162
triangle-box test, 81-82, 200
triangle edges, indexing, 155
triangle entry, 155, 157-158, 160
triangle inequality, 125
triangle-sphere test, 97-101
triangle-triangle test, 79, 90-91
triple product, 22

underflow, 58
uniform scalings, 20
unstable algorithms, 60-62

276 Index

V-Clip algorithm, 120
vector components, 13
vector differences, 140
vector space, 12-14

basis, 13

dimension, 13
vectors, 12
vertex adjacency graph, 26, 132-133
vertex array, 230-231
vertex containment test, 102-103
vertex degree, 25
vertex depth, 134
vertices, 29

of a polytope, 24
video games, 5
virtual reality, 1
volume-primitive tests, 200
Voronoi regions, 116-119
voxel grid, 175-177, 191-192
VRML, 220, 242, 251
VRML97, 23, 32, 40

weakly separating axis, 111, 113

weakly separating plane, 110

weakly separating plane algorithms,
115

winged-edge structure, 25-26

winged-type boundary
representations, 26

witness, 54

witness points, 68, 76-77

world coordinate system, 16,

237
Y
yaw, 4243
y 4

zero vector, 12

About the CD-ROM

The accompanying CD-ROM contains source code and demos that
demonstrate the techniques described in this book. The source code has
been tested to compile on Linux IA32 and Win32 platforms, but will prob-
ably compile on other platforms without problems. Please refer to the
website http://www.dtecta.com for errata and updates.

Contents

m so0lid-3.5: The SOLID version 3.5 source code, documentation, and
demos. See the doc directory for documentation in HTML and PDF for-
mats. This open-source edition of SOLID version 3 is released under the
terms of either the GNU Public License (GPL) or the Q Public License
(QPL). This means that for software created with SOLID version 3 you
must comply with the terms of one of these licenses. You may choose
which of these licenses best suits your purpose. See the following files
contained in this distribution for a complete list of terms and conditions
of these licenses.

LICENSE QPL.txt The Q Public License
LICENSE GPL.txt The GNU General Public License

m ghul12002.1: The Qhull library is Copyright 1993 by The Geometry
Center of the University of Minnesota. Qhull is used in SOLID for
convex hull computations. On Linux platforms Qhull needs to be
installed in a directory that is included in the compiler’s search path.
Under Visual C++ development, Qhull is incorporated in the solid.dsw
workspace file, and does not need to be installed separately.

m glut-3.7.6-bin: Win32 run-time libraries for GLUT 3.7.6 by Nate
Robins. GLUT is a utility toolkit for creating OpenGL applications. The
original source code for GLUT is Copyright 1997 by Mark J. Kilgard.
GLUT for Win32 is Copyright 1997 by Nate Robins. You need to install
the GLUT run-time library on Win32 if you want to build the demos
in the SOLID distribution that utilize OpenGL. See the file README-
Win32.txt in the GLUT directory for details on how to install the GLUT
SDK under Visual C++.

277

Trademarks

The following trademarks, mentioned in this book and the accompanying
CD-ROM, are property of the following organizations.

AMD Athlon is a trademark of Advanced Micro Devices, Inc.
Linux is a trademark of Linus Torvalds

OpenGL is a trademark of Silicon Graphics, Inc.

Quake is a trademark of Id Software, Inc.

Visual C++ is a trademark of Microsoft Corporation

278

Algorithms on the CD-ROM

All implementations of algorithms described in this book that are used
in SOLID can be found in the solid-3.5/src directory. The code in the
root of the src directory is needed for memory management, manage-
ment of response related data, and generally tying things together. The
more interesting code for the reader is found in the three subdirectories of
the src directory. The subdirectory broad contains all code for the broad
phase of SOLID. The subdirectory complex contains code that is related to
algorithms for constructing and querying AABB trees. Finally, the convex
subdirectory contains code for doing primitive-primitive tests. The fol-
lowing list links the algorithms described in the text to the SOLID C++
source files on the accompanying CD-ROM.

Chapter 3
Section Algorithm Files
312 Ray-Sphere (Algorithm 3.1) convex/DT_Sphere.cpp
3.2.1 Ray-Box (Algorithm 3.3) convex/DT_Box.cpp
3.3.1 Line Segment-Box SAT complex/DT_CBox.h
3.3.3 Box-Box SAT complex/DT BBoxTree.h

341 Ray-Triangle (Algorithm 3.4) convex/DT_Triangle.cpp

Chapter 4

Section Algorithm Files

433 Johnson’s algorithm convex/DT_GJK.h

434 Support mappings convex/DT_Box.cpp
convex/DT_Cone.cpp
convex/DT_Cylinder.cpp
convex/DT_LineSegment.cpp
convex/DT_Point.cpp
convex/DT_Polyhedron.cpp
convex/DT_Polytope.cpp

Algorithms on the CD-ROM

Section Algorithm Files

convex/DT_Sphere.cpp
convex/DT Triangle.cpp
convex/DT_Hull.h
convex/DT_Minkowski.h
convex/DT_Transform.h
4.3.6 GJK (Algorithm 4.4) convex/DT_Convex.cpp
4.3.7 ISA-GJK (Algorithm 4.5) convex/DT_Convex.cpp
438 EPA (Algorithm 4.10) convex/DT_PenDepth.cpp
4.3.8 Hybrid (Algorithm 4.11) convex/DT_Convex.cpp

Chapter 5
Section Algorithm Files
5.3.3 AABB tree convex/DT_BBoxTree.cpp
convex/DT _BBoxTree.h
5.4 Sweep and Prune broad/BP_*.cpp

broad/BP_*.h

R

o, B,v,...
IRd
ab,c,...

0

€;

V- W,VXW
Ivll, ivi?
A, BC,...
[orjf]

[vi]

AT A-1

I

det(A)
A,B,C,...

{xi}

{x: P(x)}

@
AUB,ANB,A\B

ACB

Al
A+B,A-B
[, B]

P=Q

fog
f(n) = O(g(n))

f(n) = Q(g(n))
aff(4), conv(4)

vert(P)
adj(p), deg(p)

Glossary of Notation

set of scalars (real numbers)

scalars

set of d-dimensional tuples of scalars

tuples of scalars (vectors, points, quaternions)
Zero vector

ith vector of the standard basis

dot and cross product of vectors v and w

length and squared length of vector v

matrices over IR

matrix with element ¢;; in the ith row and jth
column

matrix with vector v; as ith column

transpose and inverse of matrix A

identity matrix

determinant of matrix A

point sets (objects, planes), predicates

set of points x;

set of points for which predicate P(x) holds
empty set

union, intersection, and set difference of sets

A and B

A is a subset of B and is possibly equal to B
number of elements in set A

Minkowski sum and CSO of objects A and B
interval of IR containing all y for whiche <y < 8
predicates P and Q are equivalent

function composition operator (f o g(x) = f (g(x)))
constants k and ¢ exist such that f(n) < cg(n) for all
n>k

constants k and ¢ exist such that f (n) > cg(n) for all
n=>k

affine and convex hull of point set A

the set of vertices of polytope P

set and number of adjacent vertices of vertex p

COLLISION DETECTION ===
IN INTERACTIVE :=-_:E
=== ENVIRONMENTS

SINO VAN DEN BERGEN

THE HORGAN KAUFHANN SERIES IN INTERALTIVE 30 TECH

NOLOGY

The heart of any system that simulates the physical interaction between objects is collision
detection—the ability to detect when two objects have come into contact. This system is also
one of the maost difficult aspects of a physical simulation to implement correctly, and invariably it

is the main consumer of CPU cycles. Practitioners, new to the field or otherwise, quickly discover
that the attempt to build a fast, accurate, and robust collision detection system takes them down a long
path fraught with perils and pltfa_lja unlike most they have ever encountered. Without in-depth knowledge
and understanding, the end of that path is an abyss that has swallowed many a good programmer!

Gino van den Bergen’s new book is the story of his successful journey down that path resulting in his well-known
collision detection system, the SOftware Library for Interference Detection (SOLID). Along the way, he covers
the topics of vector algebra and geometry, the various geometric primitives of interest in a collision system,
the powerful method of separating axes for the purposes of intersection testing, and the equally powerful
Gllbanhnlqn-lt_aarthl (GJK) algorithm for computing the distance between convex objects. But this

book also provides much more. The curse of practical computational geometry is floating-point
arithmetic. Algorithms with straightforward implementations when using exact arithmetic can
have catastrophic failures in a floating-point system. Gino's ultimate accomplishment in

FREE

SOFTWARE

<D

INCLuDrD

ABOUT THE CD-ROM

The CD-ROM includes the full C4+ source code of
SOLID 3.5 as well as APl documentation in HTML and
PDF formats. Both single (32bit) and double (84bit)
precision versions of the SOLID SDK plus example
programs can be compiled for Linux platforms using
GNU g++ version 2,95 to 3.2 and for Win32 platforms
using Microsoft Visual C++ version 6.0 to 7.1.

M <
MOHGAN KAUFANN

An lmprint of Elssviar
wwwww mp com

this book is his presentation on how to correctly implement the GJK distance algorithm
in single-precision floating-point arithmetic. And what better way to illustrate this
‘than with a case study, the final chapter on the design and implementation of SOLID.

ABOUT THE AUTHOR

Gino van den Bergen Is a game developer living
and working in The Netherlands. He Is the creator
of SOLID and holds a Ph.D. in computing science
from Eindhoven University of Technology Gino
implemented caollision detection and physics in
NaN Technologies’ Blender, a ureation suite for
interactive 3D content.

ISBN 1-55B60-801-X

||9DD
AR

GAME PROGRAMMING

COMPUTER GRAPHICS 7781

608

	Cover
	Praise to the Lord
	Title page1
	About Series
	Title page2
	Copyright
	Dedication
	Contents
	Figures
	Algorithms
	Theoremes
	Preface
	Chapter 1 - Introduction
	Chapter 2 - Concepts
	Chapter 3 - Basic Primitives
	Chapter 4 - Convex Objects
	Chapter 5 - Spatial Data Structures
	Chapter 6 - Design of Solid
	Chapter 7 - Conclusion
	Bibliography
	Index
	About the CD-ROM
	Trademarks
	Algorithms on the CD-ROM
	Glossary of Notation
	Back Cover

