

DirectX
®

9 Graphics:
The Definitive Guide

to Direct3D
®

Alan Thorn

Wordware Publishing, Inc.

Library of Congress Cataloging-in-Publication Data

Thorn, Alan.
DirectX 9 graphics : the definitive guide to Direct3D / by Alan Thorn.

p. cm.
Includes bibliographical references and index.
ISBN-13: 978-1-55622-229-7
ISBN-10: 1-55622-229-7 (pbk.)
1. Computer graphics. 2. DirectX. I. Title.
T385.T49576 2005
006.6'93--dc22 2005003234

CIP

© 2005, Wordware Publishing, Inc.

All Rights Reserved

2320 Los Rios Boulevard
Plano, Texas 75074

No part of this book may be reproduced in any form or by
any means without permission in writing from

Wordware Publishing, Inc.

Printed in the United States of America

ISBN-13: 978-1-55622-229-7
ISBN-10: 1-55622-229-7
10 9 8 7 6 5 4 3 2 1
0503

DirectX and Direct3D are registered trademarks of Microsoft Corporation in the United States and/or other countries.
Other brand names and product names mentioned in this book are trademarks or service marks of their respective

companies. Any omission or misuse (of any kind) of service marks or trademarks should not be regarded as intent to
infringe on the property of others. The publisher recognizes and respects all marks used by companies, manufacturers, and
developers as a means to distinguish their products.

This book is sold as is, without warranty of any kind, either express or implied, respecting the contents of this book and
any disks or programs that may accompany it, including but not limited to implied warranties for the book’s quality,
performance, merchantability, or fitness for any particular purpose. Neither Wordware Publishing, Inc. nor its dealers or
distributors shall be liable to the purchaser or any other person or entity with respect to any liability, loss, or damage caused
or alleged to have been caused directly or indirectly by this book.

All inquiries for volume purchases of this book should be addressed to Wordware Publishing,
Inc., at the above address. Telephone inquiries may be made by calling:

(972) 423-0090

To Jean and Bill Mills, Peter Thorn, and Reginald Stokes

This page intentionally left blank.

Contents

Acknowledgments . xi
Introduction . xiii

Chapter 1 Getting Started with DirectX. 1

What Is DirectX? . 2
A More Precise Definition of DirectX 4
Obtaining DirectX . 5
Installing DirectX . 5
Configuring DirectX. 6
Exploring DirectX. 7
DirectX Utilities. 9
Conclusion . 13

Chapter 2 Starting DirectX — Your First Program 15

Getting Started . 16
Step 1 — Create a Window . 17
Step 2 — Create a Direct3D Object 19
Step 3 — Create a Direct3D Device. 20

Creating a Device . 21
More on Direct3D Devices 27

Step 4 — Configure the Message Loop 28
The Game Loop . 29

Step 5 — Render and Display a Scene 30
Direct3D Surfaces — IDirect3DSurface9 31
Preparing to Present a Scene 32
Beginning and Ending a Scene 34

Step 6 — Shut Down Direct3D 36
More on Surfaces . 37

Creating Surfaces . 37
Loading Images onto Surfaces. 40
Copying Surfaces . 42
Presenting Images with the Back Buffer 44

Lost Devices . 46
Conclusion . 49

v

Chapter 3 3D Mathematics. 51

Coordinate Systems . 52
One-Dimensional (1D) Coordinate Systems 52
Two-Dimensional (2D) Coordinate Systems 53
More on 2D Coordinate Systems 54
Three-Dimensional (3D) Coordinate Systems 56

Geometric Transformations . 57
Translation . 58
Rotation . 58
Scaling . 60

Vectors . 61
Length of the Diagonal (Magnitude). 63
Vector Addition. 64
Vector Subtraction . 65
Vector Multiplication. 66
Vector Normalization . 67
Vector Dot Product . 67
Vector Cross Product . 68

Matrices . 70
Matrix Components . 71
Matrix Addition . 72
Matrix Subtraction . 72
Matrix Multiplication (Scalar) 72
Matrix by Matrix Multiplication 73
Identity Matrix . 74
Inverse Matrix . 75

Matrices for Geometric Transformations 76
Matrix Translation . 76
Matrix Rotation . 78
Matrix Scaling . 81
Combining Transformations 82

Planes . 83
Creating Planes from Three Points 84
Creating Planes from Point and Normal 85
Classifying Points in 3D Using Planes. 86
Plane and Line Intersection 87

Conclusion . 89

Chapter 4 Direct3D for 3D Graphics 91

Getting Started . 92
Create and Define a Vertex Format 93

Using Vertices . 94
Create a Vertex Buffer . 95

Fill the Vertex Buffer . 97
Rendering the Triangle . 99

View, Projection, and Transform Matrices. 99

Contents

vi

Transformation Matrix 100
View Matrix . 102
Projection Matrix . 103

Setting the Stream Source 104
Setting the FVF . 106
Drawing a Primitive . 106

Animating the Triangle . 109
Drawing Other Primitives . 109
Indexed Primitives . 111

Setting Up Index Buffers . 113
Drawing Indexed Primitives 115

Conclusion . 118

Chapter 5 Materials, Lights, and Textures 119

Lighting . 120
Turning the Lights On and Off 121
More on Lights . 122

Setting the Ambient Lighting 122
Getting Started with Direct Lights. 123

Direct3D Shading Modes. 123
Materials . 124
Direct Lighting Types . 126
Textures . 131

Creating Textures . 132
Creating Blank Textures 132
Creating Textures from Image Files 134

Texture Mapping . 135
Setting the Active Texture 137
Texture Filtering . 138
Texture Addressing Modes. 141
Texture Alpha Blending . 144
2D Texturing . 145

ID3DXSprite — Drawing Textures in 2D 147
Conclusion . 150

Chapter 6 X Files — Loading and Saving Data. 151

Introduction to X Files . 152
Structural Overview . 154

Header . 154
Templates. 154
Data Objects . 156
Parent and Child Objects . 157
Data Objects and References. 157

Standard Templates. 159
Custom Templates . 169
Reading X Files Using DirectX. 170

Contents

vii

Preparing . 170
Registering Templates . 171
Opening a File . 173
Enumerating Top Objects 174
Enumerating Child Objects. 175
Processing Child Objects . 176
Enumeration Overview . 176
Getting Object Data . 178

Object Names. 178
Object Types . 179
Object Data . 181

Saving Data to X Files — Save Object 182
Preparing . 183
Saving Data . 184
Building the Tree . 185
Committing the Data . 186

Conclusion . 186

Chapter 7 Meshes . 187

What Are Meshes? . 188
How to Make Meshes . 188
How to Export Meshes. 189
Testing Your Mesh . 190
Meshes in Direct3D . 191

Loading Meshes from X Files 191
Loading Meshes from X File Data Objects. 193
Mesh Materials and Textures 196
Rendering Meshes . 199
Cleaning Up Meshes . 200

More on Meshes . 201
Meshes and Vertex Buffers 201
Meshes and FVFs . 202

Bounding Boxes and Spheres 204
Rays Intersecting Meshes . 209
Vertex Interpolation . 212
Conclusion . 214

Chapter 8 Cameras — First-Person and More 215

The Problem . 216
Overview . 217
Looking Around . 218

Pitch . 218
Roll . 219
Yaw . 219

Combining Rotations . 220
Moving the Camera . 221

Contents

viii

Making the Camera. 222
Initializing the Camera Class 223
Moving the Camera. 223
Rotating the Camera . 224
Building the View Matrix. 225
Test Drive. 228

Viewing Frustum . 229
Constructing the Frustum 230
Testing for a Point . 232
Testing for a Cube . 232
Testing for a Sphere . 234
Testing for a Mesh . 234

Chapter 9 Timing and Animation 237

Time . 238
Keyframe Animation . 240
Hierarchical Animation . 242
Linked Lists . 243

Adding Items to the List . 244
Clearing a Linked List . 245

Object Hierarchies for Animations 245
Conclusion . 248

Chapter 10 Point Sprites and Particle Systems 249

Particle Systems Overview . 249
Particles in Direct3D — Point Sprites 250
Creating Point Sprites . 251
Rendering Point Sprites . 253
Particle Systems . 254
Creating a Particle System . 256
Conclusion . 260

Chapter 11 Playing Video and Animating Textures 261

Playing Video Using DirectShow. 261
The 1, 2, 3 of Playing a File. 262

Creating the Filter Graph 262
Media Control and Event System 263
Loading a Media File 263

Configuring Events . 264
Playing a File . 268

Playing Video — Further Information 269
Animating Textures. 270
Conclusion . 272

Contents

ix

Chapter 12 More Animated Texturing. 273

Movie Files (MPG, AVI, and More) 274
Playing Video on Textures in Theory 274
Playing Video on Textures in Practice 275
Creating the Base Video Renderer. 276
Implementing the Base Video Renderer 277
Implementing the Constructor 278
Implementing CheckMediaType 278
Implementing SetMediaType. 279
Implementing DoRenderSample 282
Preparing the Filter Graph . 287
Conclusion . 293

Chapter 13 Skeletal Animation . 295

What Is Skeletal Animation? . 295
Skinned Meshes . 296

The Structure of a Skinned Mesh 297
Loading a Skinned Mesh from an X File 299

Bone Hierarchies . 302
Loading the Bone Hierarchy 306
Mapping the Bone Hierarchy to the Mesh 310

Updating the Mesh . 311
Rendering the Mesh . 314
Animating the Skeleton . 314
Loading Animations . 319
Playing Animations . 325
Conclusion . 328

Afterword . 329

Appendix A DirectX Q&A . 331

Appendix B Recommended Reading 343

Index . 345

Contents

x

Acknowledgments

There are a great many people who, in one way or another, have

helped my second book through to completion. I would like to take

this opportunity to thank the following individuals:

Wes Beckwith, Beth Kohler, and the rest of Wordware Pub-

lishing for their encouragement and professionalism.

My mother, Christine; my father, Gary; and my sister, Angela.

I would like to thank them for their advice and support.

The rest of my friends and family for their care and attention,

and for their help throughout the years.

Cassandra Gentleman. I would like to thank Cassie, a striking

and intelligent lady who’s tolerated all my mood swings during

the production of this book.

Oh, and finally, I would like to thank you, the reader, for

purchasing my book. I hope you will find it valuable.

xi

This page intentionally left blank.

Introduction

So you want to make computer games? Or perhaps you want to pro-

duce alternative media products and digital art? If you do, then this

could very well be the book for you. That’s right; this book is about

a technology designed to create first-rate multimedia products,

from games to other interactive media. It’s called Direct3D, and it’s

part of the DirectX suite of APIs distributed freely by Microsoft.

DirectX is one of the slickest, fastest, and most powerful tech-

nologies in town. Using DirectX you can produce computer games

and multimedia products of the highest caliber, making use of the

latest features of today’s hardware. Simply put, using DirectX you

can make stunning computer games. The possibilities are, in case

you hadn’t guessed, endless.

Interested? I hope so. Before we get started, however, let me

tell you some things about this book, such as its intended audience,

what you may ideally need to know, and how to obtain the compan-

ion files.

Who Should Read This Book?

Whether we like it or not, nearly every book is aimed at a specific

audience. Now, while I wouldn’t want to discourage any person

from learning what’s contained within these pages, I would like to

stress that this book may not be suitable for all audiences. For

example, you may be a student at a college or university who is

looking to try his hand at some side project, or you may already be

an industry professional keen to learn more or change your career

direction. Ultimately, to understand and appreciate the knowledge

xiii

contained with these pages, you will ideally be a confident program-

mer familiar with the following:

� Windows programming

� Windows API and GDI

� Microsoft Visual C++

� Basic understanding of COM (Component Object Model)

� Foundational knowledge of mathematics

Why Should You Read This Book?

There could be any number of reasons why you’d want to read a

book like this. Typically, you may be a student and game player who

is now keen to try making your own games. Additionally, you may

be someone looking to skill up for a job in the game or entertain-

ment industry. On the other hand, you could simply be curious

about how games are made and want to know more. Whatever the

reason, if you’re already a C++ programmer, you’re likely to find

this book interesting and informative.

How Should You Read This Book?

This book has been designed to be both a reference and a tutorial in

order to suit programmers both new to and experienced with

DirectX. It is divided into chapters that focus on a specific feature of

DirectX. This means it should be simple for experienced DirectX

coders to flick back and forth through the book and find what they

need. Those new to DirectX can read this book through from begin-

ning to end, trying their hand at each topic as they go.

Introduction

xiv

What Is Contained in the Companion Files?

The companion files can be downloaded from

www.wordware.com/files/dx9graphics. They include the following:

� All code featured in this book

� Panda DirectX X file exporter for 3D Studio MAX

What Do I Need to Compile the Code Featured in

the Book and in the Companion Files?

All the code samples featured in this book were written in

Microsoft Visual C++. Thus, to compile this code you will need

Microsoft Visual C++ 6.0 or .NET, or above. The book has the fol-

lowing requirements:

� Microsoft Visual C++ 6.0 or above

� DirectX 9 SDK Update — February 2005

� DirectX 9 SDK Extras Pack (for Visual C++ 6.0)

Introduction

xv

This page intentionally left blank.

Chapter 1

Getting Started
with DirectX

If you want to make your own games and multimedia applications,

the kind of applications with fast-paced 3D graphics, smooth anima-

tion, and real-time lighting, then you’ve come to the right place.

This book provides a detailed and comprehensive guide on how to

get started with DirectX, and specifically it focuses on Direct3D. In

short, this book offers a detailed reference for people new to game

making, or for those with some knowledge who want to know

more. Now, when I say “games,” I mean computer/video games like

Doom, Quake, Half-Life, Black & White, etc. That’s right, I’m talk-

ing big leagues.

This chapter begins our long and interesting journey into the

world of game development. As you read these pages I’d like you to

think of yourself as a fledgling game developer, and as a developer

you will need to make various decisions about how you’ll use the

technology I’ll teach you for making games. In this chapter I’ll dis-

cuss the basics of DirectX and how it’s used in the development of

games, and I’ll discuss specifically why it’s useful to you and why

you’d want to use it. Overall, this chapter will answer the following

questions:

� What is DirectX?

� What components does DirectX include?

� How can DirectX be obtained?

1

� How is DirectX installed?

� What’s the difference between DirectX runtime and DirectX

SDK?

� How do you set up DirectX for your development environment?

� What utility software comes with DirectX?

What Is DirectX?

Imagine this: You want to create an adventure exploration game.

The game will be first-person perspective, meaning the player

views the game world as he’d see it from the eyes of the game

character. So, the game allows the player to look left, right, up, and

down and also allows the character to walk forward, backward, left,

and right. Furthermore, the character will be able to shoot a gun at

creatures that try to attack. To create this game a developer must

consider many factors. Some of these include the following:

� Engine

A developer will need to make an engine for the game. This

means you must code the physics of the 3D world, including

features like gravity, wind, and rain. Furthermore, a developer

must also perform all the calculations for lighting, like the

lengths and angles at which shadows are cast from a light

source — like the sun — at a particular point in 3D space.

� Graphics

A developer will need to produce all the images and artwork

used for the game. Then he or she must find a way to load all

the 3D models — like game characters and scenery — into the

game. Additionally, the developer must texture map the scen-

ery (in other words, make it look real).

� Sound

A developer is responsible for all the game sounds, from the

sounds on option screens and menus to in-game sounds. The

latter requires additional thought because in-game sounds can

2 Chapter 1: Getting Started with DirectX

use advanced technologies to enhance their realism, such as 3D

sound. Using 3D sound, a developer can play sounds from

selected speakers and pan sounds in various directions across

multiple speakers. This can give the effect of a sound having a

position in 3D space — such as a 3D game world — and as the

player moves around, the sound will be heard differently. For

example, as the player moves farther away from the sound, its

volume will decrease, or as the player turns his head, the

sounds heard in each ear will have reversed.

� Multiplayer

Nowadays many games can be played on the Internet, meaning

people can play against or cooperatively with people from other

nations and other parts of the world. From the perspective of

the developer, this gives us more issues to consider. Spe-

cifically, the developer must develop a system whereby each

running game, from machine to machine, can communicate and

transfer data to the other as the game is being played.

Whew! That’s a lot of stuff to be thinking about; makes me dizzy

just writing about it. As you’re no doubt beginning to see, develop-

ing a first-person exploration game is not a simple process. It

involves a combination of many disciplines — from graphics and

music to programming and mathematics. Naturally, then, game

developers are always on the lookout for ways their lives can be

made easier. Enter DirectX…

Now, if we wanted to make that first-person exploration game,

we could code everything from scratch — the sound system, the

mechanism by which we texture map 3D objects, and the very sys-

tem by which images are drawn to the screen. Or, we could use a

library of premade functions and classes, which we can call upon to

do a lot of the work for us. This, simply put, is what DirectX is.

Chapter 1: Getting Started with DirectX 3

C
h

a
p

te
r

1

A More Precise Definition of DirectX

DirectX is an SDK (software development kit) composed of a col-

lection of COM libraries. These libraries provide a variety of

functions and classes to make the process of developing games and

multimedia applications simpler for the developer. Specifically,

DirectX is a collection of smaller APIs. These are:

� Direct3D

This API forms the main subject matter for this book. Direct3D

is a graphics API that makes the process of drawing images to

the screen simpler. Using Direct3D you can load 3D models,

texture map models, represent and animate 3D worlds, and

generally display flashy graphics. This component takes care of

the visual aspect of games. In other words, more or less every-

thing you see in a video game is developed with Direct3D.

� DirectShow

DirectShow is responsible for media streaming. It can play

movie and sound files, .MPG files, .MP3 files, and more. Think

of it like a programmable media player. Using DirectShow you

can load and play many kinds of media files.

� DirectInput

DirectInput is the component that reads data from peripheral

input devices such as the mouse, keyboard, and joystick.

� DirectSound

This component allows developers to play digitized sounds.

Using DirectSound, you can play sounds in a 3D environment.

Unfortunately, DirectSound is beyond the scope of this book.

� DirectPlay

DirectPlay is an API used to create and design multiplayer

games, or games that need to communicate via networks.

4 Chapter 1: Getting Started with DirectX

� NOTE. DirectX is distributed in two modes by Microsoft: runtime and

SDK. The runtime DirectX is typically downloaded and installed

only by users of DirectX applications, not developers. In other

words, the runtime package contains only that data that is required

to run DirectX applications; it does not include the library, include,

or help files that are needed to develop DirectX applications. The

SDK is the full package. This includes all files needed to both

develop and run DirectX applications.

� TIP. The DirectX SDK often installs the debug versions of the DirectX

DLLs. This makes it simpler for developers to debug their DirectX

applications, but results in a performance penalty. To solve this, you

can install the DirectX runtime after installing the SDK. This

replaces the debug DLLs with the retail versions.

Obtaining DirectX

So now that you’ve learned more about DirectX — in terms of what

it is, what it does, and how it’s useful — you’ll probably want to

know how you can get a copy. Fortunately, obtaining DirectX is

really simple. You can download the most current version of

DirectX from Microsoft’s web site. The DirectX web site can be

found at: http://www.microsoft.com/windows/directx/default.aspx.

Installing DirectX

Installing DirectX is a simple, one-time process. Once completed,

the DirectX SDK will be ready to use. To begin the DirectX instal-

lation you just need to double-click on the setup.exe file after you

download it. As installation begins, it’ll look something like

Figure 1.1.

Chapter 1: Getting Started with DirectX 5

C
h

a
p

te
r

1

� NOTE. Before installing the latest version of DirectX, you should

ensure any previous versions of DirectX have been uninstalled.

By clicking the Next button and moving from screen to screen, you

can select a path to install and other options.

After installation has finished you’ll want to restart your com-

puter before coding anything.

Voilà! Installation complete. It’s that simple.

Configuring DirectX

Now it’s time to examine how you can set up your development

environment, like Visual C++ 6.0 and .NET, to use Microsoft

DirectX. In other words, you’ll need to tell your development envi-

ronment which directories to search when referencing the DirectX

SDK libs and includes. Thankfully, most of the time the DirectX

installer will automatically configure itself for use in your develop-

ment environment. However, there may be occasions when this

doesn’t occur. In order to set up your environment you will need to

perform the following steps:

6 Chapter 1: Getting Started with DirectX

Figure 1.1

For Visual C++ 6.0:

1. Click Tools | Options from the main menu.

2. Select the Directories tab.

3. Select Include Files from the right-hand drop-down list.

4. In the Directories list, add a path to the top of the list that

points to the DirectX\Include path.

5. Select Library Files from the right-hand drop-down list.

6. Again, in the Directories list, add a path to the top of the list.

This time, provide the DirectX\Lib path.

7. Click OK.

For Visual C++ .NET:

1. Click Tools | Options from the main menu.

2. Click the Projects category.

3. Click the VC++ Directories option.

4. Select Include Files from the top right-hand drop-down list.

5. Add a path to the DirectX\Include folder using the New tool

button.

6. Select Library Files from the top right-hand drop-down list.

7. Add a path to the DirectX\Lib folder using the New tool button.

8. Click OK.

Exploring DirectX

Once the DirectX SDK has been installed, it’s always a good idea to

check out the newly installed files and folders. DirectX will have

been installed to a path of your choosing; typically this may be

C:\DXSDK or a similar path. Try opening up this folder using the

standard Windows Explorer to take a look. You’ll notice at least the

Chapter 1: Getting Started with DirectX 7

C
h

a
p

te
r

1

folders shown in Figure 1.2. The following list describes each

folder’s purpose.

� Developer Runtime

This folder houses the redistributable runtime version of

DirectX. In other words, this folder includes the DirectX instal-

lation that your users will need in order to run your DirectX

applications.

� Documentation

This folder is where the help files and legal documentation are

located.

� Include

The Include directory contains all the DirectX source files,

some or all of which you’ll need in order to develop DirectX

applications.

8 Chapter 1: Getting Started with DirectX

Figure 1.2

� Lib

This folder contains the libraries (.lib files) that your develop-

ment projects will reference.

� Samples

The Samples folder is where you’ll find all the example projects

and other media that have been included in the SDK to demon-

strate how DirectX works. Take care, you could get lost here,

as there are lots of them.

� Utilities

The Utilities folder is home to a number of tools distributed

with the SDK. These are small applications intended to make

the developer’s life a little easier.

DirectX Utilities

The DirectX SDK comes with a number of utility applications.

These can be found on the Windows Start menu in the DirectX pro-

gram group. The purpose of these utilities is to assist the developer

in producing DirectX software. The utilities can also be found in the

Utilities folder where DirectX was installed. The following para-

graphs briefly describe each utility.

� D3DSpy

This utility is a debugging tool that can monitor running

DirectX applications and provide developers with a report on

the current status of DirectX. It can list the calls made to the

API and the current values of DirectX’s internal variables.

Chapter 1: Getting Started with DirectX 9

C
h

a
p

te
r

1

� DirectX Caps Viewer

DirectX Caps Viewer is an abbreviation for the DirectX Capabil-

ities Viewer. This application is like the standard system

information tool that accompanies Windows. It provides

detailed information about DirectX and the computer’s relevant

hardware components.

10 Chapter 1: Getting Started with DirectX

Figure 1.4

Figure 1.3

� DirectX Diagnostic Tool

The DirectX Diagnostic Tool provides information about

DirectX and pertinent system information. You can launch this

window by clicking Start | Run and typing DXDIAG.

� DirectX Error Lookup

The DirectX Error Lookup tool takes a DirectX error code — in

binary or hexadecimal format — and converts it into a human

readable string that describes the error.

Chapter 1: Getting Started with DirectX 11

C
h

a
p

te
r

1

Figure 1.6

Figure 1.5

� DirectX Texture Tool

This tool is a miniature image converter that can convert

images like JPEGs, bitmaps, and Targas into DDS, the native

DirectX image format.

� Mesh Viewer

The DirectX MeshView is a small utility for viewing 3D

meshes (models) that have been saved in the DirectX X file for-

mat (explained later). This is a good way to test your models

and see if they will appear properly in Direct3D.

12 Chapter 1: Getting Started with DirectX

Figure 1.7

Conclusion

This chapter was a real walk in the park; nice and simple stuff. It

explained how to get started using DirectX. Specifically, it

explained how DirectX is a software development kit composed of a

variety of APIs. These APIs are designed to make game and multi-

media development simpler for developers.

The next chapter looks more closely at DirectX, and it specifi-

cally focuses on Direct3D. That’s right — the next chapter starts

our journey into the world of great, fast-paced graphics.

Chapter 1: Getting Started with DirectX 13

C
h

a
p

te
r

1

Figure 1.8

This page intentionally left blank.

Chapter 2

Starting DirectX —
Your First Program

The previous chapter explained how DirectX is an SDK (software

development kit) developers use to produce multimedia products,

like games. It mentioned specifically how Direct3D is a component

of DirectX that is used to render cutting-edge graphics, both 2D

and 3D. Finally, it demonstrated how the DirectX SDK can be

obtained from Microsoft’s web site, then installed and configured

for your development environment.

This chapter is the first of many to focus on how Direct3D

works and should help you code your first Direct3D application.

This application won’t be anything spectacular, though. It’ll simply

draw a bitmap image in the top-left corner of the screen, but it will

demonstrate some important concepts. In this chapter you will

learn the following:

� How to create and configure a Direct3D application

� The purpose of a Direct3D device

� How to structure a game message loop

� How to draw images to the screen

� How to handle lost devices

� How to free Direct3D interfaces

15

Getting Started

This chapter demonstrates the most basic and essential features of

Direct3D. Specifically, it shows you how to structure Direct3D

applications, including the message loop, and explains how images

can be loaded from a file and drawn onto the screen. No flashy 3D

stuff, just plain, simple 2D for the moment. From this you will get a

feel for how Direct3D works, making this a great starting point for

any developer.

To make any Direct3D program we perform the following cod-

ing steps, which are examined as the chapter progresses:

1. Create a window

This is a standard window, identified by a window handle. To

create a window you can use the normal Win API functions or

other libraries like MFC. The purpose of creating a main win-

dow, as should be obvious, is to receive messages and provide a

canvas upon which Direct3D will render images. In other

words, Direct3D will draw all its data onto this window.

2. Create a Direct3D object

This is the main object that all Direct3D applications have. It is

created when the application starts and destroyed when the

application ends. By having this object it’s like saying, “Hey, I’m

a Direct3D application.” Its primary use will be to create other

objects, which will do stuff like drawing images, etc., for us.

3. Create a Direct3D device

One of the other objects a Direct3D object (step 2) creates for

us is a Direct3D device. A Direct3D device represents the sys-

tem’s graphics card and uses it to draw images. In other words,

we use the Direct3D device to actually draw images in our app’s

window.

4. Configure the message loop

Once applications create their main window they usually enter

a message pump. Here, the window often waits around for mes-

sages and redraws itself on WM_PAINT. Direct3D applications

16 Chapter 2: Starting DirectX — Your First Program

don’t hang around, though; they repeatedly redraw themselves

whenever no other messages need processing. Redrawing is

performed by the Direct3D device (step 3) and this occurs

many times a second.

5. Render and display a scene

This is like the drawing we’d normally do on WM_PAINT. On

each redraw the scene is rendered (displayed). By this I mean

we draw our data using the Direct3D device. As mentioned in

step 4, this process occurs many times per second whenever

there are no messages to handle. In this chapter we will be

drawing a simple image. Later, we’ll be rendering 3D models,

etc.

6. Shut down Direct3D

As the application ends, the message loop finishes and all cre-

ated objects (steps 2 and 3 for example) must be released. If

you’ve used COM objects before, you’ll be familiar with the

standard Release method.

Step 1 — Create a Window

So you want to draw a simple image in Direct3D? An image loaded

from a file? First things first. All Direct3D applications begin by

creating a main application window; this is just a standard window

and will be identified by its window handle. Direct3D will later use

this window as a canvas, like a giant sketchpad or a surface onto

which it’ll continually draw (render) a scene.

� NOTE. When I use the word “scene” I mean a final image. This

could be an image loaded from a file or it could be an image

snapshot taken from a complex 3D world. No matter from where

the image is taken or how the image is created, a “scene” refers to

the final image the user/player will see on the screen every frame.

Chapter 2: Starting DirectX — Your First Program 17

C
h

a
p

te
r

2

There are many ways to create a window, and it’s assumed you

already know at least one of them. However, for convenience and

thoroughness, I have provided an example. A window is often cre-

ated in the WinMain function of an application, like this:

INT WINAPI WinMain(HINSTANCE hInst, HINSTANCE, LPSTR, INT)

{

// Register the window class

WNDCLASSEX wc = {sizeof(WNDCLASSEX), CS_CLASSDC, MsgProc, 0L, 0L,

GetModuleHandle(NULL), NULL, NULL, NULL, NULL,

TEXT("WindowClass"), NULL};

RegisterClassEx(&wc);

// Create the application's window

HWND hWnd = CreateWindow(TEXT("WindowClass"), TEXT("Test"),

WS_OVERLAPPEDWINDOW, 100, 100, 512, 512,

GetDesktopWindow(), NULL, wc.hInstance, NULL);

The above code is probably not new to you. It creates a window

512x512 pixels in size and stores its window handle in hWnd. The

created window does not contain a menu but does contain both

minimize and maximize buttons. After this, an application would

proceed to update and show the window before entering the mes-

sage pump. This stage is shown later in the section titled “Step 4

— Configure the Message Loop.” Once a window has been created

and displayed, an application then proceeds by creating a Direct3D

object.

� NOTE. You can create a window using other methods too. You could

even use MFC. For your convenience, a sample project that creates

a window has been included in the companion files and can be

found in Code\Chapter2\Proj.vcproj.

18 Chapter 2: Starting DirectX — Your First Program

Step 2 — Create a Direct3D Object

A Direct3D application must begin by creating a Direct3D object.

This is a COM interface of type IDirect3D9. Applications typically

declare this as a global object that is instantiated at application

startup and destroyed at application end. You only need one of

these objects and it represents the lifespan of a Direct3D applica-

tion. Creating this object is the equivalent of saying, “Hey, I’m a

Direct3D application.” Its primary purpose is to create other

objects, such as a Direct3D device, as we’ll see later. To create a

Direct3D object we must call the Direct3DCreate9 function. It

accepts one parameter, the current DirectX version number. Its

syntax and parameter can be seen below.

IDirect3D9 *WINAPI Direct3DCreate9(

UINT SDKVersion

);

UINT SDKVersion

The value of this parameter should be D3D_SDK_VERSION.

� NOTE. Don’t forget the Direct3D include files: #include <d3d9.h>

and #include <d3dx9.h>.

This function is really simple to use. We just pass it D3D_SDK_

VERSION to confirm we want to use the current version of

DirectX. On successful completion, the function returns a pointer

to a valid Direct3D object, which we’ll need to hold onto throughout

our application. We’ll use it later. The code to create a Direct3D

object would look like this:

IDirect3D9* g_pD3D = NULL;

if(NULL == (g_pD3D = Direct3DCreate9(D3D_SDK_VERSION)))

return E_FAIL;

� NOTE. Rather than using IDirect3D9*, you can also use the typedef

LPDIRECT3D9.

Chapter 2: Starting DirectX — Your First Program 19

C
h

a
p

te
r

2

There, now we have a proper Direct3D application. This object can

then be employed to help set up our application, ready for drawing

something. This is done by first creating a Direct3D device.

Step 3 — Create a Direct3D Device

In the previous section we saw how a Direct3D object (IDirect3D9)

is the lifeline of a Direct3D application. It’s mostly created at the

beginning and destroyed at the end, and it’s used to create other

objects. In this section we use IDirect3D9 to create the most

important of these objects: the Direct3D device. This is a COM

interface of type IDirect3DDevice9 and it’s essential if you expect

to actually draw anything on the screen. It represents a computer’s

graphics card or some other graphical hardware. It’s important to

note that one Direct3D device can only represent one piece of hard-

ware; if you wanted to program two cards, you’d create two

devices, and so on. Each device has a unique ID to distinguish it

from any others. This book focuses on using only one device, the

primary graphics device attached to the system.

� NOTE. Graphic cards with dual heads are considered two devices.

20 Chapter 2: Starting DirectX — Your First Program

Figure 2.1: Direct3D devices

In Direct3D, a device can be one of the following two types:

� HAL device

The primary device type, and the one used in this book, is a

HAL device. This stands for hardware abstraction layer. This

device type includes the main 3D accelerated cards used to play

games.

� Reference device

This is a software-exclusive device that supports every

Direct3D feature. However, these devices are often slow and

are typically used only by developers to test features that will

later be implemented in hardware. This book does not use this

device type.

Creating a Device

Direct3D devices are created by the CreateDevice method of

IDirect3D9. This method requires several parameters, including

the unique ID of the device to be created, the device type, a win-

dow handle, and some behavior flags specifying how the created

device should operate. Once successful, this function returns a

valid pointer to an IDirect3DDevice9 interface. The CreateDevice

syntax and parameters appear as follows:

HRESULT IDirect3D9::CreateDevice(

UINT Adapter,

D3DDEVTYPE DeviceType,

HWND hFocusWindow,

DWORD BehaviorFlags,

D3DPRESENT_PARAMETERS *pPresentationParameters,

IDirect3DDevice9** ppReturnedDeviceInterface

);

Chapter 2: Starting DirectX — Your First Program 21

C
h

a
p

te
r

2

UINT Adapter

[in] Ordinal number denoting the display adapter. This parame-

ter represents the device to use. This book uses

D3DADAPTER_DEFAULT since this is the primary display

adapter.

D3DDEVTYPE DeviceType

[in] Member of the D3DDEVTYPE enumerated type that

denotes the desired device type. If the desired device type is

not available, the method will fail. This value will be

D3DDEVTYPE_HAL.

HWND hFocusWindow

[in] Handle of the window to be associated with the created

device. IDirect3DDevice9 will use this window as a canvas for

drawing upon. This value will be the window you created in

Step 1 earlier.

DWORD BehaviorFlags

[in] One or more flags indicating how the device should behave.

This book uses D3DCREATE_SOFTWARE_VERTEX-

PROCESSING. For now, don’t worry too much about the

significance of this parameter.

� TIP. Direct3D devices are not by default created to support

multithreaded applications. However, by passing a value of

D3DCREATE_MULTITHREADED in the BehaviorFlags parameter,

you can support threading, although this will entail a performance

hit.

D3DPRESENT_PARAMETERS *pPresentationParameters

[in] This is a pointer to a D3DPRESENT_PARAMETERS

structure, which specifies how your created device should oper-

ate. Using this structure you can specify, among other things,

screen resolution and whether the application runs full screen

or in a window. The structure looks like this:

22 Chapter 2: Starting DirectX — Your First Program

typedef struct _D3DPRESENT_PARAMETERS_ {

UINT BackBufferWidth, BackBufferHeight;

D3DFORMAT BackBufferFormat;

UINT BackBufferCount;

D3DMULTISAMPLE_TYPE MultiSampleType;

DWORD MultiSampleQuality;

D3DSWAPEFFECT SwapEffect;

HWND hDeviceWindow;

BOOL Windowed;

BOOL EnableAutoDepthStencil;

D3DFORMAT AutoDepthStencilFormat;

DWORD Flags;

UINT FullScreen_RefreshRateInHz;

UINT PresentationInterval;

} D3DPRESENT_PARAMETERS;

Again, don’t worry if you don’t understand what each parameter

does. Many can be left blank and most are explained as this

book progresses. For reference, a brief description of this struc-

ture follows.

UINT BackBufferWidth, UINT BackBufferHeight

Specifies the width and height of the back buffer

(explained later). If your application is running in

full-screen mode, then these parameters must match the

screen resolution. If your application is running in a win-

dow, then they may be any value. 0 indicates a back buffer

whose dimensions match the window size.

D3DFORMAT BackBufferFormat

This is an enumeration of type D3DFORMAT. It specifies

the color format of the back buffer and is something like

256-color, or 16-, 24-, or 32-bit color. It also defines how

the RGB (red, green, blue) and alpha components are

arranged. There are many possible values. You can also

specify D3DFMT_UNKNOWN if the format is not known.

Chapter 2: Starting DirectX — Your First Program 23

C
h

a
p

te
r

2

UINT BackBufferCount

The number of back buffers (explained later) you desire.

This can be zero or more. Mostly you will only require

one.

D3DMULTISAMPLE_TYPE MultiSampleType

Multisampling can achieve graphical effects like

antialiasing, motion blurring, and more. Typically you

won’t need this, so you can pass D3DMULTI-

SAMPLE_NONE.

DWORD MultiSampleQuality

Indicates the quality. This value can be left blank if

MultiSampleType is D3DMULTISAMPLE_NONE.

D3DSWAPEFFECT SwapEffect

Describes how the back buffer behaves when “flipped”

(explained later). You will nearly always specify

D3DSWAPEFFECT_DISCARD.

HWND hDeviceWindow

This is a handle to the window where rendering will occur.

BOOL Windowed

Boolean value indicating whether the application will run

full screen or in a window. True for a window and False for

full screen.

BOOL EnableAutoDepthStencil

You’ll usually set this to False. Passing True will allow

DirectX to manage your depth buffers.

D3DFORMAT AutoDepthStencilFormat

If EnableAutoDepthStencil is True, you should specify the

color format of the depth buffers, much like how you spec-

ified the color format of the BackBufferFormat parameter.

DWORD Flags

Typically you will pass D3DPRESENTFLAG_LOCK-

ABLE_BACKBUFFER or you can leave this blank.

24 Chapter 2: Starting DirectX — Your First Program

UINT FullScreen_RefreshRateInHz

Defines the screen refresh rate in Hz per second. So, 75

would mean 75 updates per second. For windowed mode

this value must be 0.

UINT PresentationInterval

Specifies how fast the back buffer is presented. For win-

dowed mode you must specify D3DPRESENT_

INTERVAL_DEFAULT, and you’ll likely always use this

value for any application.

IDirect3DDevice9** ppReturnedDeviceInterface

[out, retval] Address of a pointer to the returned IDirect3D-

Device9 interface. If the function is successful, then a valid

pointer to your created device will be returned here.

Some sample code to create a standard windowed Direct3D device

might look like this:

//Pointer to a Direct3D device

IDirect3DDevice9 *g_pd3dDevice = NULL;

D3DPRESENT_PARAMETERS d3dpp;

ZeroMemory(&d3dpp, sizeof(d3dpp));

d3dpp.Windowed = true;

d3dpp.SwapEffect = D3DSWAPEFFECT_DISCARD;

d3dpp.BackBufferFormat = D3DFMT_UNKNOWN;

d3dpp.EnableAutoDepthStencil = TRUE;

d3dpp.AutoDepthStencilFormat = D3DFMT_D16;

// Create the D3DDevice

if(FAILED(g_pD3D->CreateDevice(D3DADAPTER_DEFAULT,

D3DDEVTYPE_HAL, hWnd,

D3DCREATE_SOFTWARE_VERTEXPROCESSING,

&d3dpp, &g_pd3dDevice)))

{

return E_FAIL;

}

Chapter 2: Starting DirectX — Your First Program 25

C
h

a
p

te
r

2

� NOTE. Notice how we are automatically selecting the primary graph-

ics card by passing D3DADAPTER_DEFAULT to CreateDevice.

Or, to create a standard full-screen Direct3D device, you might

code something like the following. Remember, by creating a

full-screen device, Direct3D will automatically enter full-screen

mode and change the computer’s resolution to the one you

specified.

//Pointer to a Direct3D device

IDirect3DDevice9 *g_pd3dDevice = NULL;

D3DPRESENT_PARAMETERS d3dpp;

ZeroMemory(&d3dpp, sizeof(d3dpp));

d3dpp.Windowed = false;

d3dpp.SwapEffect = D3DSWAPEFFECT_DISCARD;

d3dpp.BackBufferFormat = D3DFMT_X8R8G8B8;

d3dpp.BackBufferCount = 1;

d3dpp.BackBufferWidth = 1024;

d3dpp.BackBufferHeight = 768;

d3dpp.EnableAutoDepthStencil = TRUE;

d3dpp.AutoDepthStencilFormat = D3DFMT_D16;

// Create the D3DDevice

if(FAILED(g_pD3D->CreateDevice(D3DADAPTER_DEFAULT,

D3DDEVTYPE_HAL, hWnd,

D3DCREATE_SOFTWARE_VERTEXPROCESSING,

&d3dpp, &g_pd3dDevice)))

{

return E_FAIL;

}

� NOTE. Many games do not hard-code all parameters passed to

CreateDevice; they often allow the user to select things like the res-

olution, etc., in an options screen.

26 Chapter 2: Starting DirectX — Your First Program

More on Direct3D Devices

You have already seen how Direct3D devices represent graphical

hardware and are very important for Direct3D applications. This

section provides a brief overview of some things IDirect3DDevice9

can do. Many of these points are explained in more detail later.

With a Direct3D device you can do all the following and more:

� Render a scene to a window

That’s right; a Direct3D device will be used to draw (present)

images in its associated window, on a frame-by-frame basis.

Later in this chapter, the Direct3D device will be used to load

an image from a file and draw it in the window. To do this, we’ll

use a combination of its methods. This is explained later.

� Query device capabilities

IDirect3DDevice9 tells us much about the hardware it repre-

sents. Using its GetDeviceCaps method to populate a

D3DCAPS9 structure, we can check its properties to see what

our hardware can and can’t do. The GetDeviceCaps method

looks like this:

HRESULT IDirect3DDevice9::GetDeviceCaps(

D3DCAPS9 *pCaps

);

� Set a cursor image

IDirect3DDevice9 can be used to show a cursor image and set

its position on screen. This is shown later when we examine

the SetCursorPosition and SetCursorProperties methods.

� Create and manage graphical resources

A Direct3D device can create graphical resources in memory,

like loading images from files or loading 3D models.

� Simulate 3D environments

IDirect3DDevice9 provides methods to situate 3D models in

3D space and then draw them correctly in the window. Objects

will be drawn according to their distance from the camera. It

will also ensure that objects closer to the camera will properly

occlude those objects behind them.

Chapter 2: Starting DirectX — Your First Program 27

C
h

a
p

te
r

2

Step 4 — Configure the Message Loop

A window was created in Step 1, then a Direct3D object (Step 2),

and then a Direct3D device (Step 3). Right now, if you compiled and

ran your application you’d immediately notice a problem. It doesn’t

run. Well, it does run but immediately exits so you never see any-

thing. This is because — as you should already know — there is no

message pump in action. Typically an application should enter a

loop, called the message loop, and this loop continues until a user

exits an application. During this loop the application receives and

processes messages, which are generated as events occur, like

when a mouse button is clicked or a key is pressed. When a user

quits an application, a WM_QUIT message is generated, the loop

exits, and the application ends. The following shows how this might

look in code.

MSG msg;

while(GetMessage(&msg, NULL, 0, 0))

{

TranslateMessage(&msg);

DispatchMessage(&msg);

}

This kind of loop is the standard kind you’re probably used to by

now. It’s useful for many Windows applications because it means

they consume little processor time, as they just sit around and only

process messages as they occur. This means Windows applications

don’t generally interfere with each other; they only consume CPU

power when instructed to and they don’t get in the way too much.

Games are different, however.

28 Chapter 2: Starting DirectX — Your First Program

The Game Loop

Games are greedy. They require a different kind of message loop

entirely, a message loop unlike the standard one. Instead, games

require a lot of power. This is for the following reasons:

� Graphics

Games need to ensure their graphics are updated and redrawn

many times per second so animations appear smoothly. The

number of times it redraws per second is known as FPS

(frames per second).

� Input

Games need to have a very exact knowledge of which controls a

user presses and when in order to ensure the game reacts

appropriately.

� Timing

Games require very precise control over timing. This is because

many events, like lip synching, need to be synchronized.

The standard window message loop can be amended to accommo-

date games easily, as shown in the following code fragment. Like

before, this loops runs until the user exits with a WM_QUIT

Chapter 2: Starting DirectX — Your First Program 29

C
h

a
p

te
r

2

Figure 2.2: Game message loop

message, but when no messages occur the application does not sit

around; instead, we utilize all the time we have. When there is a

message to process, we process it. When there are no messages to

process, we continually process our game data, again and again.

MSG mssg;

PeekMessage(&mssg, NULL, 0, 0, PM_NOREMOVE);

// run till completed

while (mssg.message!=WM_QUIT)

{

// is there a message to process?

if (PeekMessage(&mssg, NULL, 0, 0, PM_REMOVE))

{

// dispatch the message

TranslateMessage(&mssg);

DispatchMessage(&mssg);

}

else

{

//No message to process?

// Then do your game stuff here

Render();

}

}

This game loop continually calls my application’s Render function,

which I set aside for processing game data, and specifically for

drawing images to the screen as we’ll see later. You can call your

function something different if you want. Next we examine how a

Direct3D device presents a scene (draws data) during this loop.

Step 5 — Render and Display a Scene

If you compile and run your application using all the steps previ-

ously mentioned, you’ll notice it runs and shows a window that

remains until you exit; however, there is still a problem. The win-

dow will display all kinds of artifacts in its client area, and this gets

30 Chapter 2: Starting DirectX — Your First Program

worse if you drag the window around the desktop or drag other

windows in front of it. If your application is full screen, it may

instead just look like a dull gray background. The problem is that

nothing is being drawn on the window. It never gets updated,

cleaned, or redrawn during the game loop. This is one of the duties

of the Direct3D device (IDirect3DDevice9), and this section exam-

ines how to clear the window and draw an empty scene. It’s empty

right now because we have no 3D objects to draw or any images

loaded from a file. Before we can draw this empty scene, however,

you’ll need to know a little about how Direct3D renders scenes.

Direct3D Surfaces — IDirect3DSurface9

Direct3D uses surfaces to perform its rendering. A surface is a flat

rectangle of bytes in memory. Like a canvas, a surface stores an

image; it could be a bitmap or just a blank image. If you’ve used

GDI before, then a device context would be a similar analogy. Just

think of a sheet of cardboard with a picture on it. Direct3D can cre-

ate and store as many surfaces as memory will allow. You can even

create surfaces to hold your own images. Surfaces can also be cop-

ied entirely or partially to and from one another. So, if you wanted

to load two bitmaps into your application (a process shown later in

this chapter), you would create two surfaces for each one and load

the images from the files onto the surfaces.

Chapter 2: Starting DirectX — Your First Program 31

C
h

a
p

te
r

2

Figure 2.3: Monitor, front buffer, and back buffer

When Direct3D presents a scene to the window it actually, behind

the scenes, uses a surface to do this. That’s right; it presents the

final scene on a surface. Seems sensible. In fact, Direct3D keeps

track of two special surfaces exclusively for the rendering process.

These surfaces are called the front buffer and the back buffer. The

front buffer is the final surface you see on screen — that is, the final

image presented in the window. The back buffer is a hidden surface

— like a work in progress — being prepared for the next frame.

The back buffer is actually where the 3D device will draw all your

data first. Then, on the next frame, the two surfaces (the front

buffer and the back buffer) are swapped (flipped). So the back buffer

gets pushed to the front where it can now be seen — becoming the

new front buffer — and the old front buffer gets moved to the back

where it’s cleared and becomes the new back buffer. And so the

process goes on. Just remember that the front buffer is the surface

the user will always see, while the back buffer is an area being pre-

pared for the next frame. You never edit the front buffer, only the

back buffer. Take a look at Figure 2.3 for an example of the front and

back buffers and the flipping process.

Direct3D abstracts a surface with the IDirect3DSurface9 inter-

face — one interface per surface. Later sections explain how to

create surfaces, load image data onto them, and copy this data

between multiple surfaces. For now, it is sufficient to understand

what surfaces are and how Direct3D uses them to render images.

Preparing to Present a Scene

A Direct3D device typically presents a scene on every frame. To

begin presenting a scene you first clear the back buffer, making it

ready for drawing to occur. This wipes the surface clean and fills it

with a color we choose. To do this, we use the Clear method of

IDirect3DDevice9. Clear takes several parameters and gives us the

option to clear the entire back buffer, or we can pass a series of

RECT structures to clear only specified areas. Its syntax and

parameters follow.

32 Chapter 2: Starting DirectX — Your First Program

HRESULT Clear(

DWORD Count,

const D3DRECT *pRects,

DWORD Flags,

D3DCOLOR Color,

float Z,

DWORD Stencil

);

DWORD Count

[in] The number of rectangles in pRects. If you want to clear the

entire surface, as you most often will, specify 0 for this value.

const D3DRECT *pRects

[in] An array of RECT structures defining regions on the back

buffer to clear. To clear the entire surface this can be NULL.

DWORD Flags

[in] This defines the surface you want to clear since there are

other special buffers Direct3D maintains in addition to the back

buffer. Most often you will pass D3DCLEAR_TARGET |

D3DCLEAR_ZBUFFER.

D3DCOLOR Color

[in] This specifies the color to use for clearing either the entire

surface or the areas specified by pRects.

� NOTE. Color in Direct3D can be specified using the

D3DXCOLOR_XRGB macro.

For example,

This is blue: D3DXCOLOR_XRGB(0,0,255).

This is red: D3DXCOLOR_XRGB(255,0,0).

This is green: D3DXCOLOR_XRGB(0,255,0).

RGB stands for red, green, and blue. By providing values from 0 to

255 in each of these components, you can generate a final color

value.

float Z

[in] Clear the depth buffer to this new Z value, which ranges

from 0 to 1. For the purposes of this book, pass 1.0f.

Chapter 2: Starting DirectX — Your First Program 33

C
h

a
p

te
r

2

DWORD Stencil

[in] Clear the stencil buffer to this new value, which ranges

from 0 to 2n–1 (n is the bit depth of the stencil buffer). For the

purposes of this book, pass 0.

Here’s an example of how to use the Clear method. Notice that we

want to clear the entire back buffer, so we pass NULL for those

RECT structures.

g_pd3dDevice->Clear(0, NULL, D3DCLEAR_TARGET|D3DCLEAR_ZBUFFER,

D3DCOLOR_XRGB(0, 0, 255), 1.0f, 0);

Beginning and Ending a Scene

Once the back buffer has been cleared using the Clear method, a

new scene can begin. Beginning a scene occurs when we call the

BeginScene method of IDirect3DDevice9. It requires no parame-

ters. Calling this method is like telling the device, “Hey, get the

back buffer ready for some drawing.” This method simply prepares

the back buffer.

The EndScene method of IDirect3DDevice9 ends a scene.

Again, it requires no parameters and it’s like saying, “Well, we’ve

finished drawing to the back buffer now.” So this method confirms

the back buffer is ready to be flipped and become the new front

buffer. Typically, applications will perform all their drawing between

the BeginScene and EndScene calls. For now we have nothing to

draw, so the scene will be empty.

Once EndScene has been called, the back buffer has not actu-

ally flipped and become the front buffer yet. To do this final step we

call the Present method of IDirect3DDevice9. This method offi-

cially signifies the end of a frame. This means whatever we

rendered to the back buffer between BeginScene and EndScene

will now become visible. The old front buffer then becomes the

new back buffer, ready for the next frame. The syntax and parame-

ters for Present appear below.

HRESULT Present(

CONST RECT *pSourceRect,

34 Chapter 2: Starting DirectX — Your First Program

CONST RECT *pDestRect,

HWND hDestWindowOverride,

CONST RGNDATA *pDirtyRegion

);

CONST RECT *pSourceRect

You can pass a RECT structure if you only want to show a spec-

ified rectangle from the back buffer. Normally, you’ll want to flip

the whole surface; to do this pass NULL.

CONST RECT *pDestRect

For this value you will normally pass NULL. However, you can

specify a rectangle on the front buffer into which the contents

of the back buffer will be pasted.

HWND hDestWindowOverride

If you want to present a scene inside a different window, you

can pass its handle here. Normally you will pass NULL.

CONST RGNDATA *pDirtyRegion

The value must be NULL unless the swap chain was created

with D3DSWAPEFFECT_COPY. For the purposes of this book,

this value should be NULL.

The entire rendering loop can be coded as follows. This loop should

be executed on each frame, during an application’s message pump.

This will refresh the window and present a scene.

// Clear the back buffer and the z buffer

g_pd3dDevice->Clear(0, NULL, D3DCLEAR_TARGET|D3DCLEAR_ZBUFFER,

D3DCOLOR_XRGB(0, 0, 255), 1.0f, 0);

// Begin the scene

if(SUCCEEDED(g_pd3dDevice->BeginScene()))

{

//Draw stuff here

// End the scene

g_pd3dDevice->EndScene();

}

Chapter 2: Starting DirectX — Your First Program 35

C
h

a
p

te
r

2

// Present the back buffer contents to the display

g_pd3dDevice->Present(NULL, NULL, NULL, NULL);

Step 6 — Shut Down Direct3D

As your application ends it’s your responsibility to free up all the

DirectX interfaces you created. This stops memory leaks and keeps

your application nice and neat. To delete a Direct3D interface you

call its Release method. This is something many COM program-

mers will already be familiar with. The code to free up your

IDirect3D9 and IDirect3DDevice9 pointers looks like this:

g_pD3D->Release();

pd3dDevice->Release();

36 Chapter 2: Starting DirectX — Your First Program

Figure 2.4: Blank scene window

More on Surfaces

Now it’s time to see how bitmaps can be loaded from a file and onto

a surface, and then finally rendered to the window by IDirect3D-

Device9. Surfaces are encapsulated by the IDirect3DSurface9

interface. To recap, surfaces have the following properties:

� Surfaces hold images

A surface is a buffer, a rectangle of bytes in memory. Like a can-

vas, surfaces are used to store images, or pixel data.

� Surfaces can be loaded from files or resources

Surfaces are originally created blank. They just hold blank pixel

data. Once a surface has been created, you can then load image

data onto it. This can originate from a file on disk or in memory

or a resource. DirectX provides functions to achieve these pro-

cesses, as demonstrated shortly.

� Surfaces can be copied to and from one another

The pixel data on a surface can be copied between surfaces.

This means you can load an image onto a surface, and then copy

all of it onto another surface, or you can copy just a subset of it

onto another surface.

Creating Surfaces

You can create surfaces to hold your own image data; however, you

cannot create surfaces with image data preloaded onto them. You

must first create a blank surface of a specified width and height. You

then load image data onto it at a later stage. The created surface

will not be rendered immediately; it will simply be used to hold

image data in memory. Later, it will be drawn to the window by

copying it to the back buffer surface. To create a surface you call

IDirect3DDevice9’s method CreateOffscreenPlainSurface. This

function requires you to specify the width and height of the surface

to create. Once completed it returns a valid IDirect3DSurface9

Chapter 2: Starting DirectX — Your First Program 37

C
h

a
p

te
r

2

pointer. The syntax and parameters for CreateOffscreenPlain-

Surface appear below.

HRESULT IDirect3DDevice9::CreateOffscreenPlainSurface(

UINT Width,

UINT Height,

D3DFORMAT Format,

DWORD Pool,

IDirect3DSurface9** ppSurface,

HANDLE* pSharedHandle

);

UINT Width

[in] Width in pixels of the surface to create.

UINT Height

[in] Height in pixels of the surface to create.

D3DFORMAT Format

[in] Color format of the surface to create.

DWORD Pool

[in] A constant indicating in which area of memory to create the

surface. You can create the surface in system memory or even

the memory on your system’s graphics card. Most often this

value will be D3DPOOL_SYSTEMMEM.

IDirect3DSurface9** ppSurface

[out, retval] Address to which a valid IDirect3DSurface9 pointer

is to be returned.

HANDLE* pSharedHandle

[in] This is a reserved value. Just pass NULL.

38 Chapter 2: Starting DirectX — Your First Program

� Tip. You may be wondering exactly what to pass for the surface

width, height, and format values, and how you can expect to know

this information in advance. You could potentially be creating all

kinds of surfaces to hold different sized images. To solve this issue,

DirectX provides a useful function called D3DXGetImageInfoFrom-

File. It accepts a filename and populates a D3DXIMAGE_INFO

structure with image size and format information. You can then

pass these values straight onto the CreateOffscreenPlainSurface

function to size your surface appropriately. DirectX also provides

similar functions to read information from images already in mem-

ory and from resources. The declarations for all these functions are

as follows:

HRESULT WINAPI D3DXGetImageInfoFromFile

(

LPCSTR pSrcFile,

D3DXIMAGE_INFO *pSrcInfo

);

HRESULT WINAPI D3DXGetImageInfoFromFile-

InMemory

(

LPCVOID pSrcData,

UINT SrcDataSize,

D3DXIMAGE_INFO *pSrcInfo

);

HRESULT WINAPI D3DXGetImageInfoFromResource

(

HMODULE hSrcModule,

LPCTSTR pSrcFile,

D3DXIMAGE_INFO *pSrcInfo

);

The code to create and size a surface might look like the following

example. It creates a surface whose width, height, and format

match the information read from an image file on disk. This way, we

know in advance that our surface is configured correctly to hold this

image. Remember, the image is not actually loaded onto the surface

yet. The loading process is described in the next section.

Chapter 2: Starting DirectX — Your First Program 39

C
h

a
p

te
r

2

//Creates a surface

IDirect3DSurface9 *Surface = NULL;

D3DXIMAGE_INFO Info

D3DXGetImageInfoFromFile(Path, &Info)))

g_pd3dDevice->CreateOffscreenPlainSurface(Info.Width, Info.Height,

Info.Format,

D3DPOOL_SYSTEMMEM,

&Surface, NULL);

Loading Images onto Surfaces

Surfaces are created blank, with no images loaded onto them. To

load image data onto a surface DirectX provides a number of func-

tions. This book demonstrates how to load an image from a file,

which is achieved by calling the D3DXLoadSurfaceFromFile

function. It’s not a method of any specific interface; it’s a standalone

helper function. Its syntax and parameters follow.

HRESULT WINAPI D3DXLoadSurfaceFromFile

(

LPDIRECT3DSURFACE9 pDestSurface,

CONST PALETTEENTRY* pDestPalette,

CONST RECT* pDestRect,

LPCTSTR pSrcFile,

CONST RECT* pSrcRect,

DWORD Filter,

D3DCOLOR ColorKey,

D3DXIMAGE_INFO* pSrcInfo

);

LPDIRECT3DSURFACE9 pDestSurface

[in] Specifies the Direct3D surface onto which the image will be

loaded. Pass your surface here.

CONST PALETTEENTRY* pDestPalette

[in] Pointer to a PALETTEENTRY structure, the destination

palette of 256 colors, or NULL. Usually this will be NULL.

CONST RECT* pDestRect

[in] This specifies a rectangle on the surface that receives the

image. Your surface could be larger than the image or you may

40 Chapter 2: Starting DirectX — Your First Program

only want a portion of the surface to be loaded. Pass NULL to

use the entire surface.

LPCTSTR pSrcFile

[in] Specifies the filename of the image to be loaded. Images

can be in the following formats: .bmp, .dds, .dib, .hdr, .jpg, .pfm,

.png, .ppm, and .tga.

CONST RECT* pSrcRect

[in] You can pass a rectangle to select a portion of the source

image to load. This is useful if you don’t want to load the entire

image. To load the entire image, pass NULL.

DWORD Filter

[in] Using this flag you can tweak how the surface will appear.

Most often you will pass D3DX_FILTER_NONE.

D3DCOLOR ColorKey

[in] You can pass a hexadecimal color value generated from the

D3DXCOLOR_ARGB macro. Using this you can manipulate

the alpha channel to make the surface fully visible, fully trans-

parent, or partially transparent. Alpha channels and transpar-

ency are covered in detail when we examine textures later in

the book. To disable color keying, as we will do in this example,

just pass 0. This will load the image normally from the file.

D3DXIMAGE_INFO* pSrcInfo

[in, out] You can pass a D3DXIMAGE_INFO structure in here

to receive information about the loaded image. Usually you will

pass NULL.

� NOTE. DirectX also provides other means to load images onto

surfaces: D3DXLoadSurfaceFromFileInMemory, D3DXLoadSurface-

FromMemory, D3DXLoadSurfaceFromResource, and

D3DXLoadSurfaceFromSurface.

The following code demonstrates how to load an image from a file

onto a surface. Notice how simple a process it really is.

IDirect3DSurface9 *Surface;

//...

Chapter 2: Starting DirectX — Your First Program 41

C
h

a
p

te
r

2

//Loads a surface from a file

D3DXLoadSurfaceFromFile(Surface, NULL, NULL, Path, NULL,

D3DX_FILTER_NONE, 0, NULL);

Copying Surfaces

Copying image data from one surface onto another is a simple pro-

cess. It works much like the copy and paste routine in a normal

photo editing program. The source surface is where data is taken

from and the destination surface is where data is copied to. You can

copy the whole source surface onto the destination surface or you

can even select a rectangle on the source surface from which you

want to copy. You can also choose the XY location on the destina-

tion surface where pasting begins. To copy surfaces you call the

UpdateSurface method of IDirect3DDevice9. Its syntax and

parameters appear below.

42 Chapter 2: Starting DirectX — Your First Program

Figure 2.5: Two surfaces before copying

Figure 2.6: Two surfaces after copying

HRESULT IDirect3DDevice9::UpdateSurface

(

IDirect3DSurface9* pSourceSurface,

CONST RECT* pSourceRect,

IDirect3DSurface9* pDestinationSurface,

CONST POINT* pDestinationPoint

);

IDirect3DSurface9* pSourceSurface

[in] Pointer to the source surface from which data is to be

copied.

CONST RECT* pSourceRect

[in] A rectangle structure selecting a region on the source sur-

face from which data is to be copied. If you want to copy the

whole surface, pass NULL.

IDirect3DSurface9* pDestinationSurface

[in] Pointer to the destination surface where data is to be

copied.

CONST POINT* pDestinationPoint

[in] A point structure defining an XY location on the destination

surface where pasting is to begin. To paste the source surface’s

pixel data to the top-left corner of the destination surface, just

pass NULL.

Take a look at the following code. It shows how a source surface is

copied to a destination surface.

IDirect3DSurface9 *SourceSurface;

IDirect3DSurface9 *DestSurface;

//...

//Copy a surface

g_pd3dDevice->UpdateSurface(SourceSurface, NULL, DestSurface, NULL);

Chapter 2: Starting DirectX — Your First Program 43

C
h

a
p

te
r

2

� NOTE. Here are some important rules to remember when surface

copying:

• The source surface must have been created with

D3DPOOL_SYSTEMMEM.

• The destination surface must have been created with

D3DPOOL_DEFAULT.

• Neither surface can be locked or holding an outstanding device

context.

• Neither surface can be created with multisampling. The only

valid flag for both surfaces is D3DMULTISAMPLE_NONE.

• The surface format cannot be a depth stencil format.

• The source and dest rects must fit within the surface.

• No stretching or shrinking is allowed (the rects must be the same

size).

• The source format must match the dest format.

Presenting Images with the Back Buffer

You now know how to create your own surfaces and load images

onto them. That’s good, but none of those surfaces are drawn to the

window; you never see them on screen. Currently, they’re just

images held in memory. You’ve probably guessed already how you

might show an image in the window. That’s right; you need to copy

your surface to the back buffer surface on each frame. Remember,

the back buffer is a surface too. It’s a working area where an image

is composed and then pushed to the front (flipped) where it can be

seen in the window. This occurs on every frame.

Before we can actually copy data to the back buffer we’ll need

its IDirect3DSurface9 pointer. This is because we’ll need to pass it

to the UpdateSurface function as the destination surface for the

copying operation. To retrieve the back buffer we call the

GetBackBuffer method of IDirect3DDevice9. This returns an

IDirect3DSurface9 interface representing the back buffer. Its syn-

tax and parameters follow.

HRESULT GetBackBuffer

(

UINT iSwapChain,

UINT BackBuffer,

D3DBACKBUFFER_TYPE Type,

44 Chapter 2: Starting DirectX — Your First Program

IDirect3DSurface9 **ppBackBuffer

);

UINT iSwapChain

[in] An unsigned integer specifying the swap chain. For the pur-

poses of this book, pass 0.

UINT BackBuffer

[in] Index of the back buffer object to return. Back buffers are

numbered from 0 to the total number of back buffers minus one.

A value of 0 returns the first back buffer. For the purposes of

this book, pass 0.

D3DBACKBUFFER_TYPE Type

[in] Pass D3DBACKBUFFER_TYPE_MONO.

IDirect3DSurface9 **ppBackBuffer

[out, retval] Address of a surface to where the back buffer

pointer is returned.

The code to get the back buffer and copy a surface onto it might

look like the following. Be sure to copy your surface onto the back

buffer between the BeginScene and EndScene statements of the

rendering loop, which occurs on each frame. This will ensure your

data gets copied onto the back buffer correctly and that it’ll be visi-

ble as the frame is presented.

if(SUCCEEDED(g_pd3dDevice->BeginScene()))

{

//Draw stuff here

IDirect3DSurface9 *BackBuffer = NULL;

g_pd3dDevice->GetBackBuffer(0, 0, D3DBACKBUFFER_TYPE_MONO, & BackBuffer);

g_pd3dDevice->UpdateSurface(SourceSurface, NULL, BackBuffer, NULL);

// End the scene

g_pd3dDevice->EndScene();

}

// Present the back buffer contents to the display

g_pd3dDevice->Present(NULL, NULL, NULL, NULL);

Chapter 2: Starting DirectX — Your First Program 45

C
h

a
p

te
r

2

� NOTE. You would not usually call GetBackBuffer in the rendering

loop since you only need to get the back buffer pointer once

throughout the application. You’d usually perform this step during

application initialization.

Lost Devices

The last issue in this chapter to consider is a lost device. There

comes a point in many Direct3D applications where things go

wrong and you lose control of the Direct3D device and therefore

lose control of the hardware. It just doesn’t work. You can’t present

a scene, you can’t render, and you can’t really do anything. This can

happen for many reasons. For example, the user may press the

Alt+Tab key combination in a full-screen DirectX application. This

switches focus from your program to another. This means your

application falls into the background and you lose control of the dis-

play adapter. The resolution probably changes and other

applications might access the 3D hardware. Thus, whatever sur-

faces or resources you created with the 3D device and stored on

46 Chapter 2: Starting DirectX — Your First Program

Figure 2.7: Image in window

the graphics card are considered invalid and overwritten. In short,

the Direct3D device has been reset.

During this time most Direct3D functions will give a silent fail-

ure, meaning they will return successful even though they didn’t

actually do anything productive. The only thing your application can

do is sit and wait until focus is restored and the device can be con-

trolled again. As you regain control, you will need to set it up again.

This means you’ll need to free up whatever resources you created

before — like surfaces and textures and 3D models — and then

you’ll need to create them again. To detect and handle lost devices

you generally perform the following steps on every frame:

1. Test the cooperative level of the Direct3D device. This is basi-

cally a check to see if the device is with us or not. To check this

status you can call the TestCooperativeLevel method of

IDirect3DDevice9. It requires no parameters. If the function

succeeds, then the device is operational and the application can

continue. If it returns D3DERR_DEVICELOST, then the

device has been lost and is still being used by another process.

Finally, if it returns D3DERR_DEVICENOTRESET, this means

the device was lost and is now ready to be reset and set up

again by your application; in other words, your program has

focus again.

2. If step 1 returns D3DERR_DEVICELOST, then do nothing;

just sit and wait because the device is currently unavailable. If it

returns D3DERR_DEVICENOTRESET, then go to step 3.

3. Here, control of the device has been regained and is ready to

set up again. If you’re running a windowed DirectX application,

then you need to free up all resources — surfaces, textures,

models, etc. — that were created in the graphics card’s mem-

ory. If your application is full screen, you should free all

resources you created. Go to step 4.

4. If you’re running a windowed application, you then call the

Reset method of IDirect3DDevice9 to restore the device to

an operational state. It requires one parameter, the

D3DPRESENT_PARAMETERS structure you used to create

Chapter 2: Starting DirectX — Your First Program 47

C
h

a
p

te
r

2

the device. If your application is full screen, you should release

the device and create a new device. Move on to step 5.

5. Create your resources again.

Here is a sample render function that occurs on every frame. It

tests and handles a lost device.

HRESULT Result = g_pd3dDevice->TestCooperativeLevel();

If(FAILED(Result))

{

if(Result == D3DERR_DEVICELOST)

return; //Do nothing

if(Result == D3DERR_DEVICENOTRESET)

{

DeleteMyResources();

g_pd3dDevice->Reset(&Params);

InitMyResources();

}

}

if(SUCCEEDED(g_pd3dDevice->BeginScene()))

{

//Draw stuff here

// End the scene

g_pd3dDevice->EndScene();

}

// Present the back buffer contents to the display

g_pd3dDevice->Present(NULL, NULL, NULL, NULL);

48 Chapter 2: Starting DirectX — Your First Program

Conclusion

Hopefully this chapter has set you well on your way and has given

you a good idea about the general structure of a Direct3D applica-

tion. It has demonstrated how to set up Direct3D and associate a

device with a window. It has also shown how the game loop works

and how this is used to preset a scene. Furthermore, it has shown

how to draw images to the main window via surfaces and illustrated

how you should handle lost devices.

Soon we examine how Direct3D can be used to render 3D

geometry. I’m talking triangles, polygons, 3D meshes, and 3D

worlds. First, however, you’ll need to understand 3D mathematics

and some general principles. The next chapter provides a crash

course. Stick with me. It’s not that difficult.

Chapter 2: Starting DirectX — Your First Program 49

C
h

a
p

te
r

2

This page intentionally left blank.

Chapter 3

3D Mathematics

Ah, mathematics, the language of numbers — something people

seem to either love or hate. That’s what this chapter’s all about.

Don’t worry though; it’s not too difficult. The reason this chapter is

important is because you’ll need to understand 3D mathematics

before you can go on to create fantastic games in 3D, or 2D for that

matter. For example, you’ll want to know how to position things in

3D space using coordinate systems and you’ll probably want to

rotate things by specified angles. No point in trying to do that if we

don’t know the theory behind it. This chapter will attempt to cover

everything you’ll need to know. Specifically, it aims to confront the

following issues:

� Dimensions

� Coordinate systems

� Points

� Primitives

� Translation, rotation, and scaling

� Vectors

� Matrices

� Planes

� NOTE. Many of the theories and mathematical ideas I present are

applied in the context of games. It may not be the most accurate

definition mathematically, but it works for games. And, for this

book and your work in Direct3D, that’s what matters.

51

Coordinate Systems

The best way to start thinking about 3D mathematics is to use a

practical example. Since probably the birth of mankind, humans

have needed to measure distances to get an idea of how far some-

thing is from them or how far something has moved. We needed to

know how far the nearest river was or how far the nearest fruit

trees stood so we could estimate how much time it’d take to get

there and back home again. So throughout the ages humans have

charted the lands and developed various numerical systems to mea-

sure and understand distance. This means if I stumbled across a

tribe living in the jungle and they educated me in the ways of their

numerical system, I would mathematically be able to express a

position on the land and they’d be able to find it.

This kind of system used to measure and define space is called

a coordinate system. Now, it might sound rather obvious to say this,

but all coordinate systems are relative. This means distances are all

measured from a common reference point. For example, if you

asked me where the bus stop was and I told you it was 50km north

you’d probably give me a rather funny look. Did I mean 50km north

from where you and I are standing? Or did I even mean 50km north

from a crater on the moon? The problem is 50km north on its own

has no real value because I’ve not specified a reference point from

which to begin traveling. Thus, every coordinate system has a ref-

erence point — a center — from which distances are measured.

This point is called the origin.

One-Dimensional (1D) Coordinate Systems

The best way to start learning about coordinate systems is with the

simplest kind, a 1D system. If you could only walk forward and

backward in a straight line, you’d be traveling in a 1D coordinate

system. The point you’re standing at in the beginning will be the

origin. A good way to visualize a 1D system is to think of the stan-

dard number line (see Figure 3.1). The origin, as always, is at 0.

Points to the right of the origin are positive integers (numbers with

52 Chapter 3: 3D Mathematics

no decimal place) such as 1, 2, 3, 4, 5, 6, etc. Numbers to the left of

the origin are negative integers such as –1, –2, –3, etc. So if I told

you I was standing at point 5 you’d know exactly where I’d be.

Two-Dimensional (2D) Coordinate Systems

A standard XY graph is a classic example of a 2D coordinate sys-

tem. Here, you can move up, down, left, and right. This kind of

system is called a Cartesian coordinate system. It’s basically two

1D number lines crossing one another. Each number line is called

an axis (plural: axes). One of them is running horizontally, from left

to right (like in a 1D system); this axis is called X. The other axis is

running vertically from top to bottom and is called Y. The axes

cross (intersect) in the middle, and the point where they intersect

is the origin, 0. Take a look at Figure 3.2 for an example. To specify

a point (also called a vertex, plural: vertices) on this coordinate sys-

tem we need two pieces of information: an X value and a Y value.

So if I were standing at (5,3), meaning X=5 and Y=3, you’d be able

to measure this from the origin and find exactly where I was.

Simple.

Chapter 3: 3D Mathematics 53

C
h

a
p

te
r

3

Figure 3.2: Cartesian coordinate system

Figure 3.1: A number line

� NOTE. Direct3D provides a good structure to represent 2D vertices

and vectors (explained later). This structure is D3DXVECTOR2. You

can define a 2D vertex like this:

D3DXVECTOR2 Vertex;

Vertex.x = 5.0f;

Vertex.y = 3.0f;

Or, more simply:

D3DXVECTOR2 Vertex(5.0f,3.0f);

More on 2D Coordinate Systems

Before moving onto 3D, it’s worth taking a look at some of the

things we can already represent using a 2D coordinate system. We

can express more than simply vertices. We can draw some pretty

pictures too. We can represent lines, triangles, and many other

shapes. Take a look.

� Lines

Mathematically, lines are really just two vertices — a start ver-

tex and an end vertex. The farther apart the vertices, the

longer the line.

� Line strips

A line strip can be thought of as an array of joining lines; that is,

a sequence of lines where the end vertex of one line becomes

the starting vertex for the next line.

54 Chapter 3: 3D Mathematics

Figure 3.3: Line

� Triangles

The triangle is a basic and very important primitive. Basically,

it’s three vertices — one vertex for each corner of the triangle.

Using a combination of triangles it’s possible to create more

complex shapes.

� Triangle strips

Chapter 3: 3D Mathematics 55

C
h

a
p

te
r

3

Figure 3.5: Triangle

Figure 3.6: Triangle strip

Figure 3.4: Line strip

Like line strips, triangle strips are sequences of connected tri-

angles. The triangles are joined at the edges. From this you can

form all kinds of shapes, like squares.

� Triangle fans

Triangle fans are sequences of connected triangles, like triangle

strips, except in triangle fans all the triangles share one corner

— the same vertex.

Three-Dimensional (3D) Coordinate Systems

Once you’ve got the 2D coordinate system in your mind it’s not too

difficult to extend that to 3D. 3D is being able to move forward and

backward, left and right, and up and down. 3D is composed of three

axes, two of which come from the 2D system. You have X, which,

like before, runs from left to right, and you still have Y, which runs

up and down. You now have a third axis though, called Z. This runs

into the distance, coming from behind you and disappearing ahead

of you.

Actually there are two types of 3D coordinate systems,

although we only need to worry about one of them. There are

left-handed and right-handed coordinate systems. The only differ-

ence between them is the values of the Z axis. In a left-handed

coordinate system (the one we will use), Z extends positively into

the distance. In a right-handed system, the Z axis extends nega-

tively into the distance. Take a look at Figures 3.8 and 3.9 to see

what I’m talking about.

56 Chapter 3: 3D Mathematics

Figure 3.7: Triangle fan

Not surprisingly, vertices in a 3D coordinate system are specified

like 2D systems, except for an extra Z component, like this: (5,3,7).

You’ll also notice that nearly everything that works in a 2D system

will apply to a 3D one too. You can still represent lines, triangles,

rectangles, etc.; you just need to include that extra Z component.

Direct3D provides a structure to represent 3D vertices called

D3DXVECTOR3. You can use it in just the same way as a 2D ver-

tex; just be sure to specify Z too.

Geometric Transformations

In the previous sections we examined coordinate systems and how

we can plot vertices. Furthermore, you saw how to use a collection

of vertices to build shapes like triangles and squares, generally

called primitives. That’s fine; however, you’ll still want to know how

you can make those primitives do things like move around the

screen. You don’t want them to just sit there doing nothing. Spe-

cifically, you’ll want to know how you can move them around, rotate

them, and scale them.

Chapter 3: 3D Mathematics 57

C
h

a
p

te
r

3

Figure 3.8: Left-handed system Figure 3.9: Right-handed system

Translation

The simplest form of transformation is a translation. This means

you physically move your vertices from one place to another.

Therefore, if I were standing at (5,5) and I moved to (10,7), I have

translated my position by 5 units on the X axis and 2 units on the Y

axis.

Calculating a translation mathematically is simple. Just add the

amount you want to move onto your existing position, like this:

D3DXVECTOR2 Position(0, 0);

Position.x += AmountToMove.x;

Position.y += AmountToMove.y;

� NOTE. You can also use the Direct3D function D3DXVec3Add to add

two vertices or vectors.

Rotation

Rotation is about turning something a specified number of degrees

about the origin. Rotation always occurs around the origin. If you’re

rotating a triangle or some other shape, notice what actually hap-

pens: It’s not the shape itself that is rotating, but the vertices that

make up its corners. It’s simply the vertices that move and, thus,

the shape rotates. Take a look at Figure 3.12.

58 Chapter 3: 3D Mathematics

Figure 3.10: Before translation Figure 3.11: After translation

Rotating vertices by a specified angle requires some knowledge of

trigonometry, which is not covered in this book. Don’t worry,

though, I’ll show you the formula and an example. Fortunately,

there are a number of other ways to rotate objects in Direct3D that

do not require you to learn the mathematics. These are covered

later as we consider matrices. The formula to rotate a vertex about

the origin is:

x = x * cos(Angle) – y * sin(Angle);

y = x * sin(Angle) + y * cos(Angle);

For example, if I wanted to rotate a vertex at (5,5) by 45 degrees,

the code to achieve this would be:

D3DXVECTOR2 Vertex(5.0f, 5.0f);

FLOAT Angle = 45.0f;

Vertex.x = Vertex.x * cos(Angle) – Vertex,y * sin(Angle);

Vertex.y = Vertex.x * sin(Angle) + Vertex.y * cos(Angle);

� NOTE. Generally in Direct3D, angles are specified in a measurement

called radians, not degrees. This is explained later.

Chapter 3: 3D Mathematics 59

C
h

a
p

te
r

3

Figure 3.12: Rotation

Scaling

Scaling means to make something smaller or larger. If I wanted to

make a triangle half its current size, for example, then I would need

to scale it. In reality, all that happens when you scale is that you

move a primitive’s vertices closer together for shrinking and far-

ther apart for enlarging. Simple.

To scale a vertex all you need to do is multiply it by a scaling factor.

A scaling factor is a scalar number (an ordinary number) that tells

us by how much you’d like to scale. This number can range from 0

to infinity. 1 means to keep the original scale, 0 means to shrink it

so much that it becomes invisible, 0.5 shrinks it to half its size, 2

increases the size by double, and so on.

� NOTE. You can even check out this scaling idea with ordinary num-

bers. Let’s take the number 2.

Now, if I want to scale 2 by half (in other words, make it half its

size) I multiply it by 0.5. Like the following:

2 * 0.5 = 1. Correct.

Let’s try one more. If we wanted to make 2 larger by six times, then

we’d scale it by a factor of 6.

2 * 6 = 12. Correct.

The formula to scale a vertex looks like this:

x = x * ScalingFactor

y = y * ScalingFactor

60 Chapter 3: 3D Mathematics

Figure 3.13: Scaling

Some sample code to do this would look like this:

D3DXVECTOR2 Vertex(5.0f, 5.0f);

FLOAT ScalingFactor = 0.5;

Vertex.x = Vertex.x * ScalingFactor;

Vertex.y = Vertex.y * ScalingFactor;

� NOTE. Direct3D provides a function to scale vertices and vectors

called D3DXVEC2Scale. There is also a version available for 3D

vertices called D3DXVEC3Scale.

Vectors

Previous sections have explained 1D, 2D, and 3D coordinate sys-

tems. We also elaborated on how to plot vertices, create primitives,

and apply basic transformations to them. These transformations are

translation, rotation, and scaling. It’s now time to consider the con-

cept of direction and movement more closely.

We now know how to move a primitive to a specified point by

translating it; for example, moving a triangle at (5,5) to (10,10).

This is all well and good but it requires that we know in advance

the location to which we wish to translate. Instead, what if we were

moving a monster in a game? The monster may be traveling in

some direction and it may take him five minutes to reach his desti-

nation. During that time he would be moving closer and closer to

his destination, traveling at a certain speed. Currently, our mecha-

nism of specifying absolute positions (points in our coordinate

space measured from the origin) doesn’t seem too convenient. It

means we have to know every move he makes and keep track of

every point he walks on. Instead, wouldn’t it be nice if we could just

keep track of the creature’s direction and be able to move him along

it according to his speed? Indeed. This section attempts to address

this issue by using vectors.

Chapter 3: 3D Mathematics 61

C
h

a
p

te
r

3

Vectors look just like vertices. They can be 2D or 3D, just like

vertices, and they have the standard XYZ structure too. The differ-

ence, though, is that vectors represent direction and tell you how

far along a direction to travel. Vertices just specify a position and

nothing more. For example, imagine I’m standing at (5,3) and was

given a vector of (2,3). This vector is not telling me to move to the

point (2,3) but it’s telling me to move 2 units along the X axis and 3

along Y from where I’m currently standing. This will take me to

vertex (7,6). Thus, vectors represent direction. Take a look at Fig-

ure 3.14 to see a vector.

� NOTE. Like vertices, vectors can be represented in the

D3DXVECTOR2 and D3DXVECTOR3 structures.

� NOTE. Vectors can be negative, so (–2,–3) means you’ll move left by

two and down by 3. The vector (2,3) means you’ll move right by 2

and up by 3.

� TIP. Vectors are very useful for representing paths your game charac-

ters must travel.

As you will see, game characters won’t usually travel vectors the

long way around. Instead, they’ll walk the direct route: across the

diagonal.

62 Chapter 3: 3D Mathematics

Figure 3.14: Vectors

Length of the Diagonal (Magnitude)

The distance along a vector’s diagonal (its length) is called a vec-

tor’s magnitude. There’s a special kind of notation mathematicians

use to represent vector magnitude. It looks like two vertical bars

placed on either side of the vector name. So if we have a vector

called V, its magnitude can be expressed as |V|.

Working out the length of this diagonal might remind you of your

days in school when you learned how to solve the diagonal in a

right-angle triangle using the Pythagorean theorem. Don’t worry if

you can’t remember it though; the formula is provided here and

Direct3D provides a function to solve it for you too. To work out

the length of the diagonal you simply add together the square of

each component in the vector, XYZ, and then take the square root

of the total. The formula follows.

| Vector | = sqrt((Vector.x * Vector.x) + (Vector.y * Vector.y))

Direct3D provides two functions to calculate vector length, one for

2D vectors and one for 3D. These are D3DXVec2Length and

D3DXVec3Length respectively. The D3DXVec3Length function

syntax and parameter are:

FLOAT D3DXVec3Length

(

CONST D3DXVECTOR3 *pV

);

Chapter 3: 3D Mathematics 63

C
h

a
p

te
r

3

Figure 3.15: Magnitude

CONST D3DXVECTOR3 *pV

[in] Pointer to the source D3DXVECTOR3 structure.

Vector Addition

If you’ve got one or more vectors that make a connected path, per-

haps some vectors zigzagging this way and that, you can add them

all up to make a shorter and more direct path between your source

and final destination.

Adding two vectors is a simple process. You just go through each of

their components, XYZ, and add each one to the corresponding

component in the other vector. You can do this manually or you can

use the Direct3D functions D3DXVec2Add and D3DXVec3Add to

do it for you. The syntax and parameters appear below, along with

some sample code to add two 3D vectors.

D3DXVECTOR3 *D3DXVec3Add

(

D3DXVECTOR3 *pOut,

CONST D3DXVECTOR3 *pV1,

CONST D3DXVECTOR3 *pV2

);

64 Chapter 3: 3D Mathematics

Figure 3.16: Addition

D3DXVECTOR3 *pOut

[in, out] Pointer to the D3DXVECTOR3 structure that is the

result of the operation.

CONST D3DXVECTOR3 *pV1

[in] Pointer to a source D3DXVECTOR3 structure.

CONST D3DXVECTOR3 *pV2

[in] Pointer to a source D3DXVECTOR3 structure.

Code sample:

D3DXVECTOR3 Vec1(0,0,0);

D3DXVECTOR3 Vec2(5,5,5);

D3DXVECTOR3 Result(0,0,0);

//Result (5,5,5)

D3DXVec3Add(&Result, & Vec1, &Vec2);

Vector Subtraction

Simply put, subtracting two vectors gives you a vector between

their end points. In other words, subtracting two vertices (point X

and point Y) gives you the vector between them. This means you

can add the result onto point X and the result will take you to point

Y. So if I were standing at (5,5) and wanted to reach point (10,10), I

could subtract my destination from (5,5) and it gives me the route I

need to travel.

Chapter 3: 3D Mathematics 65

C
h

a
p

te
r

3

Figure 3.17: Subtraction

The order in which vectors are subtracted is important too. Just

like in normal subtraction, subtracting a larger vector from a

smaller one will result in a vector with a negative direction. Mathe-

matically, subtracting vectors is a similar process to addition. You

just work through all the destination vector’s XYZ components and

subtract them from the source vector’s. Again, you can perform

this process manually or you can use Direct3D’s D3DXVec2-

Subtract and D3DXVec3Subtract functions to do it for you. The

code to subtract two vectors follows.

D3DXVECTOR3 Vec1(5,5,5);

D3DXVECTOR3 Vec2(1,3,5);

D3DXVECTOR3 Result(0,0,0);

//Result (4,2,0)

D3DXVec3Subtract(&Result, & Vec1, &Vec2);

Vector Multiplication

Multiplying a vector by a scalar means to scale the vector, just like

multiplying a vertex or a number achieves scaling. By scaling a vec-

tor you can make it larger or smaller. To make a vector twice as

long you multiply it by 2. To make a vector the same size (rather

pointless) you multiply it by 1. To make a vector half the size you

multiply it by 0.5. You can also negate a vector’s direction too and

make it point in the opposite direction. To do this, you multiply by a

negative value. So, to make a vector twice as long and point in the

opposite direction you multiply by –2.

66 Chapter 3: 3D Mathematics

Figure 3.18: Multiplication

Vector Normalization

Mathematically, vector normalization means that a vector’s magni-

tude is reduced to 1. It still points in the same direction, but the

length of its diagonal is 1. A vector whose magnitude is 1 can be

said to have been normalized; this vector is known as a unit vector.

You may be wondering exactly why anyone would want to do this.

First, there are a number of Direct3D functions that require nor-

malized vectors as their arguments. But also, unit vectors are a

smart way to simply represent direction, direction without distance.

You can normalize a vector using the Direct3D function

D3DXVec3Normalize.

Vector Dot Product

The dot product is also known as the scalar product. Essentially,

the dot product is a nice little formula that takes two vectors and

returns a scalar number. This number tells us some useful informa-

tion about the angle between two vectors. It can also be used to

actually find the angle between two vectors. The notation used to

represent a dot product looks like a dot between two vectors. So if

we have two vectors, A and B, the dot product looks like this:

(A · B). Don’t worry too much about the actual theory behind the

dot product. The formula to compute it is shown below, and I also

explain how you can use the resulting scalar to find out stuff about

the angle. Direct3D also provides a function to work out the dot

product of two vectors for you. The formula for the dot product is

shown in the following code fragment:

D3DXVECTOR3 VectorA(1.0f, 1.0f, 1.0f);

D3DXVECTOR3 VectorB(2.0f, 5.0f, 7.0f);

FLOAT DotProduct = (VectorA.x · VectorB.y) + (VectorA.y · VectorB.y) +

(VectorA.z · VectorB.z)

Direct3D provides two functions to calculate the dot product, one

for 2D vectors and one for 3D vectors. These are D3DXVec2Dot

Chapter 3: 3D Mathematics 67

C
h

a
p

te
r

3

and D3DXVec3Dot respectively. The syntax and parameters

follow.

FLOAT D3DXVec3Dot

(

CONST D3DXVECTOR3 *pV1,

CONST D3DXVECTOR3 *pV2

);

CONST D3DXVECTOR3 *pV1

[in] Address of vector A.

CONST D3DXVECTOR3 *pV2

[in] Address of vector B.

The scalar returned by the dot product tells us about the angle

between two vectors. Using this number we can tell the following:

� If the dot product is a negative value, the angle between the

two vectors is acute (less than 90°).

� If the dot product is greater than 0, the angle between the two

vectors is obtuse (greater than 90°).

� If the dot product is equal to 0, the angle between the two vec-

tors is perpendicular (equal to 90°).

If you just want to find the angle between two vectors you can use

the dot product like this:

FLOAT Angle = acos(D3DXVec3Dot(&Vec1, &Vec2) / (D3DXVec3Length((&Vec1) ·

D3DXVec3Length(&Vec2));

Vector Cross Product

The vector cross product is also known as the vector product. The

cross product takes two vectors and returns a vector that is perpen-

dicular. This means the angle between the new vector and the

other two is 90°. Note the cross product is not commutative. This

means it matters which way you cross the vectors. The cross

68 Chapter 3: 3D Mathematics

product of Vector1 and Vector2 does not give the same answer as

the cross product of Vector2 and Vector1, just like 5 – 3 is not the

same as 3 – 5. The notation for cross product looks like a giant X.

So the cross product of vectors A and B is like this: (A � B). The

formula for the cross product appears in the code fragment below.

D3DXVECTOR3 v;

D3DXVECTOR3 pV1;

D3DXVECTOR3 pV2;

v.x = pV1.y * pV2.z - pV1.z * pV2.y;

v.y = pV1.z * pV2.x - pV1.x * pV2.z;

v.z = pV1.x * pV2.y - pV1.y * pV2.x;

Direct3D provides a function to compute the cross product of two

vectors called D3DXVec3Cross. Its syntax and parameters follow.

D3DXVECTOR3 *D3DXVec3Cross

(

D3DXVECTOR3 *pOut,

CONST D3DXVECTOR3 *pV1,

CONST D3DXVECTOR3 *pV2

);

D3DXVECTOR3 *pOut

[in, out] Pointer to the D3DXVECTOR3 structure that is the

result of the operation.

CONST D3DXVECTOR3 *pV1

[in] Pointer to a source D3DXVECTOR3 structure.

CONST D3DXVECTOR3 *pV2

[in] Pointer to a source D3DXVECTOR3 structure.

Chapter 3: 3D Mathematics 69

C
h

a
p

te
r

3

Matrices

We’ve seen how vectors represent directions and how transforma-

tions like translation and rotation can be applied to vertices. It’s

time to move on from transformations and vectors now. This sec-

tion examines a mathematical structure called a matrix (plural:

matrices). By now you’ve probably guessed that in real games lots

of transformations will occur as polygons move about. Some of

those transformations will be translations, others will be rotations,

and some may be scaling.

Take a space combat simulator where spaceships have a show-

down to blast one another from the skies. Here, you must keep

track of every spaceship, including its position, orientation, and

size. If a craft needs to move, then you’ll have to cycle through

every vertex in the 3D model and update its position using the

translation techniques previously shown. Then if it rotates you’ll

need to turn every vertex too. This can get tiresome as you can

imagine. Now, wouldn’t it be great if we could build a structure that

encodes a complete combination of transformations — translation,

rotation, and scaling — all in one? Then, we could say to all our

vertices, “Hey, we have a structure here telling you every transfor-

mation to go through. Now go and do it.” For the purposes of

games, matrices can be used for exactly this purpose.

Simply put, a matrix is like a collection of vectors; a whole grid

of numbers inside a box. This represents a set of instructions tell-

ing Direct3D how to do something or how to transform something.

Matrices can be all kinds of dimensions, for example, 3x3, 4x4, etc.

Here’s what a matrix looks like:

70 Chapter 3: 3D Mathematics

Figure 3.19: Matrix

Direct3D represents a matrix using a D3DXMATRIX structure. For

3D transformations Direct3D will use a 4x4 matrix, and for 2D

transformations it will use a 3x3 matrix. Before examining how

matrices are applied in transformations, it’s a good idea to see how

they work mathematically.

� NOTE. Matrices are very important for 3D calculations, and Direct3D

makes heavy use of them.

Matrix Components

Direct3D represents a matrix by using the D3DXMATRIX struc-

ture. Each number in a matrix is referred to as a component. So, a

3x3 matrix has 9 components and a 4x4 matrix has 16. Since these

components are arranged in columns and rows we can reference

each component by its grid index; for example, (1,1) or (3,3). To

access the components of a matrix structure in Direct3D you use

the following member names:

_11, _12, _13, _14

_21, _22, _23, _24

_31, _32, _33, _34

_41, _42, _43, _44

The code to declare a matrix and set some of its components to

arbitrary values could look like this:

D3DXMATRIX Matrix;

Matrix._11 = 5.0f;

Matrix._31= 7.0f;

Matrix._43 = 9.0f;

Chapter 3: 3D Mathematics 71

C
h

a
p

te
r

3

Matrix Addition

Adding two matrices together is really simple. It’s just like adding

two vectors together. You simply go through each component in the

source matrix and add it to the corresponding component in the

destination matrix. It’s important to remember you can only add

two matrices of the same dimension. So you can add two 4x4 matri-

ces, but not one 4x4 matrix and one 3x3 matrix. The code to add

two matrices looks like this:

D3DXMATRIX Result;

D3DXMATRIX Matrix1;

D3DXMATRIX Matrix2;

Result = Matrix1 + Matrix2;

Matrix Subtraction

Again, like vector subtraction, you simply subtract all the compo-

nents of one matrix from the respective components of another.

Both matrices must be the same dimension. Some code to do this

appears below:

D3DXMATRIX Result;

D3DXMATRIX Matrix1;

D3DXMATRIX Matrix2;

Result = Matrix1 - Matrix2;

Matrix Multiplication (Scalar)

A single matrix can be multiplied by a scalar. Like addition, you

simply cycle through each component of the matrix and multiply it

by the specified number. Some code to do this follows:

D3DXMATRIX Result;

D3DXMATRIX Matrix1;

FLOAT Scalar = 1.0f;

Result = Matrix1 * Scalar;

72 Chapter 3: 3D Mathematics

Matrix by Matrix Multiplication

Matrix by matrix multiplication is often referred to as matrix con-

catenation, for reasons I explain later. A matrix can be multiplied by

another matrix. The exact process to do this is a little lengthy, and

considering Direct3D provides a function to do it for you, there’s no

real need to trouble ourselves with this here. The function to multi-

ply two matrices together is D3DXMatrixMultiply. It requires

three arguments: the output matrix where the result is returned

and two matrices to multiply. Its syntax and parameters follow and

then a code sample is shown.

D3DXMATRIX *WINAPI D3DXMatrixMultiply

(

D3DXMATRIX *pOut,

CONST D3DXMATRIX *pM1,

CONST D3DXMATRIX *pM2

);

D3DXMATRIX *pOut

[in, out] Pointer to the D3DXMATRIX structure that is the

result of the operation.

CONST D3DXMATRIX *pM1

[in] Pointer to a source D3DXMATRIX structure.

CONST D3DXMATRIX *pM2

[in] Pointer to a source D3DXMATRIX structure.

Code sample:

D3DXMATRIX Result;

D3DXMATRIX Matrix1;

D3DXMATRIX Matrix2;

D3DXMatrixMultiply(&Result, &Matrix1, &Matrix2);

Chapter 3: 3D Mathematics 73

C
h

a
p

te
r

3

Identity Matrix

The above matrix is called the identity matrix. This matrix is to

matrices what the number 1 is to scalars. That’s right; in the world

of matrices the identity matrix is like the number 1. It’s like a

matrix variable that has been initialized. If you were to multiply

another matrix by the identity matrix, you’d get the same matrix

back with no changes. If you were to transform a bunch of polygons

by the identity matrix, it’d be the same as not transforming the

polygons at all; they’d just stay where they were. This doesn’t

seem very useful, but it’s important to remember that when you

create a matrix structure in Direct3D it’s not initialized. Before you

do any work with matrices, make sure they are initialized first as an

identity matrix. The function to make a matrix an identity matrix is

called D3DXMatrixIdentity. You can also check to see whether a

matrix is an identity matrix by calling the D3DXMatrixIsIdentity

function.

The syntax and parameter for D3DXMatrixIdentity follow.

D3DXMATRIX *D3DXMatrixIdentity

(

D3DXMATRIX *pOut

);

D3DXMATRIX *pOut

[in, out] Pointer to the D3DXMATRIX structure that is the

result of the operation.

74 Chapter 3: 3D Mathematics

Figure 3.20: Identity matrix

Code sample:

D3DXMATRIX Result;

D3DXMatrixIdentity(&Result);

If(D3DXMatrixIsIdentity(&Result))

MessageBox(NULL, "Is Identity Matrix", "", MB_OK);

Inverse Matrix

The inverse of a matrix is like the reverse of a matrix. It’s like 1

and –1. If you were to take the inverse of a matrix and multiply it by

the original matrix, you’d end up with the identity matrix. Some

matrices can be inverted and some can’t. Don’t worry too much

about the inverse of a matrix for now; just be aware it exists.

Direct3D provides the D3DXMatrixInverse function to compute

the inverse of a matrix. If the matrix cannot be inverted, then this

function returns NULL.

The function and parameter table for D3DXMatrixInverse can

be seen below. Some sample code follows.

D3DXMATRIX *WINAPI D3DXMatrixInverse

(

D3DXMATRIX *pOut,

FLOAT *pDeterminant,

CONST D3DXMATRIX *pM

);

D3DXMATRIX *pOut

[in, out] Pointer to the D3DXMATRIX structure that is the

result of the operation.

FLOAT *pDeterminant

[in, out] Set this parameter to NULL.

CONST D3DXMATRIX *pM

[in] Pointer to the source D3DXMATRIX structure.

Chapter 3: 3D Mathematics 75

C
h

a
p

te
r

3

Code sample:

D3DXMATRIX Result;

D3DXMATRIX Matrix1;

D3DXMatrixInverse(&Result, NULL, &Matrix1);

Matrices for Geometric Transformations

Let’s put all the matrix mathematics stuff to the back of our minds

for the moment. Earlier, we mentioned how a game uses matrices

to apply transformations to its objects, such as spaceships, poly-

gons, models, etc. We previously saw how to transform points,

vertices, and vectors using standard mathematics. Now we’ll exam-

ine how matrices can be used to achieve the same thing. Matrices

also have the nice advantage of being able to accumulate a whole

series of single transformations and group them all into one matrix.

Matrix Translation

You already know translation is about moving stuff from one place

to another. Matrices can be used to encode a translation. For exam-

ple, we can code a matrix to translate something by 5 units on the X

axis, 3 units on the Y axis, and 2 units on the Z axis. Then we can

pick one or more objects, say a bunch of vertices, and transform

them by our matrix.

76 Chapter 3: 3D Mathematics

Figure 3.21: Translation

A translation matrix looks like the one in Figure 3.21. Where it says

X, Y, and Z, you can just fill those in with your own coordinates. To

make things simpler, Direct3D provides a function to create a

translation matrix for you. This function is called D3DXMatrix-

Translation. It simply requires a pointer to a resultant matrix and

the coordinates for the translation.

The syntax and parameters for D3DXMatrixTranslation can be

seen below. An example follows.

D3DXMATRIX *WINAPI D3DXMatrixTranslation

(

D3DXMATRIX *pOut,

FLOAT x,

FLOAT y,

FLOAT z

);

D3DXMATRIX *pOut

[in, out] Pointer to the D3DXMATRIX structure that is the

result of the operation.

FLOAT x

[in] X-coordinate offset.

FLOAT y

[in] Y-coordinate offset.

FLOAT z

[in] Z-coordinate offset.

Code sample:

D3DXMATRIX Result;

D3DXVECTOR3 Vector1(5.0f, 7.0f, 9.0f);

D3DXMatrixTranslation(&Result, Vector1.x, Vector1.y, Vector1.z);

� NOTE. Later in this book we shall see how matrix encoded transfor-

mations are actually applied to 3D geometry.

Chapter 3: 3D Mathematics 77

C
h

a
p

te
r

3

Matrix Rotation

Matrices can encode rotation. This means they can rotate your 3D

game geometry. Rotation in 3D can occur about any of the three

axes (X, Y, or Z). Turn your head left and right; that’s a rotation

around the Y axis. Raise and lower your head up and down; that’s a

rotation about the X axis. Finally, roll your head from side to side;

that’s a rotation about the Z axis. The three separate rotation matri-

ces for each axis appear below. Where I’ve written “Angle” it means

you can just put your angle (in degrees) in there.

Direct3D also provides three separate functions to build the rota-

tion matrices for you. First, however, it is important to understand

that many of the Direct3D functions represent angles differently. It

may come as a surprise to you that they don’t measure angles in

degrees. Instead, angles are specified in radians. The degree to

radian conversion diagram in Figure 3.25 demonstrates how to

78 Chapter 3: 3D Mathematics

Figure 3.24: RotationZ

Figure 3.23: RotationYFigure 3.22: RotationX

convert between the systems. Direct3D also provides two macros

to convert back and forth between radians and degrees.

� NOTE. D3DX_PI is a Direct3D constant representing PI.

� Converts Degrees to Radians

#define D3DXToRadian(degree) ((degree) * (D3DX_PI / 180.0f))

Example:

FLOAT AngleInRadians = D3DXToRadian(45);

� Converts Radians to Degrees

#define D3DXToDegree(radian) ((radian) * (180.0f / D3DX_PI))

Example:

FLOAT AngleInDegrees = D3DXToDegree(D3DX_PI/2);

The three functions Direct3D provides to build a rotation matrix

are listed below. Each of them rotates about a specific axis and each

simply requires the address of a matrix and an angle in radians. A

code sample is also provided.

Chapter 3: 3D Mathematics 79

C
h

a
p

te
r

3

Figure 3.25: Degree to radians

D3DXMATRIX *WINAPI D3DXMatrixRotationX

(

D3DXMATRIX *pOut,

FLOAT Angle

);

D3DXMATRIX *WINAPI D3DXMatrixRotationY

(

D3DXMATRIX *pOut,

FLOAT Angle

);

D3DXMATRIX *WINAPI D3DXMatrixRotationZ

(

D3DXMATRIX *pOut,

FLOAT Angle

);

Code sample:

D3DXMATRIX Result;

D3DXVECTOR3 FLOAT Angle = D3DXToRadian(45);

D3DXMatrixRotationX(&Result, Angle);

You can also rotate about a custom axis you define rather than the

standard X, Y, or Z axes. To do so, Direct3D provides the function

D3DXMatrixRotationAxis. By passing this function a vector

structure, you can specify the direction and alignment of your own

axis. This function can then rotate a specified number of radians

around this axis. The syntax and parameters for this function follow.

D3DXMATRIX *WINAPI D3DXMatrixRotationAxis

(

D3DXMATRIX *pOut,

CONST D3DXVECTOR3 *pV,

FLOAT Angle

);

80 Chapter 3: 3D Mathematics

D3DXMATRIX *pOut

[in, out] Pointer to the D3DXMATRIX structure that is the

result of the operation.

CONST D3DXVECTOR3 *pV

[in] Pointer to the D3DXVECTOR3 structure that identifies the

axis angle.

FLOAT Angle

[in] Angle of rotation in radians. Angles are measured clockwise

when looking along the rotation axis toward the origin.

Matrix Scaling

Matrices can also encode scaling transformations. You can specify a

scaling factor for each axis. This means all your geometry will be

enlarged or shrunk on each axis by the scaling factor. You can man-

ually build a scaling matrix using the template above. Just replace

the X, Y, and Z with scaling factors. Remember: 1 keeps the size

the same, 0.5 halves the size, 2 makes it twice as large, etc. Also,

Direct3D provides a matrix scaling function to do this for you called

D3DXMatrixScaling. It requires the address of a matrix for the

result and three scaling factors, one for each axis.

Chapter 3: 3D Mathematics 81

C
h

a
p

te
r

3

Figure 3.26: Scaling

The syntax and parameters for D3DXMatrixScaling appear

below. Some sample code follows.

D3DXMATRIX *WINAPI D3DXMatrixScaling

(

D3DXMATRIX *pOut,

FLOAT sx,

FLOAT sy,

FLOAT sz

);

D3DXMATRIX *pOut

[in, out] Pointer to the D3DXMATRIX structure that is the

result of the operation.

FLOAT sx

[in] Scaling factor that is applied along the X axis.

FLOAT sy

[in] Scaling factor that is applied along the Y axis.

FLOAT sz

[in] Scaling factor that is applied along the Z axis.

Code sample:

D3DXMATRIX Result;

D3DXMatrixScaling (&Result, 2.0f, 1.0f, 0.5f);

Combining Transformations

I said earlier that a matrix can also represent combined transforma-

tions. In other words, a single matrix can encode translation,

rotation, and scaling all in one. You simply need to create a separate

matrix for each transformation, one for translation, one for scaling,

etc. Then you can join them together, resulting in a single matrix.

The process of joining matrices together is called matrix concatena-

tion, a term we heard earlier in this chapter. To do this, you just

multiply the matrices together. That’s right; it’s that simple. To join

two matrices you multiply them. Matrix multiplication can be

82 Chapter 3: 3D Mathematics

achieved with the D3DXMatrixMultiply function or you can use the

multiplication operator. Some sample code to combine several

matrices appears below.

D3DXMATRIX Translation;

D3DXMATRIX Rotation;

D3DXMATRIX Combined;

Combined = Translation * Rotation;

Planes

So you’ve seen matrix mathematics and how matrices are applied

to encode transformations. It’s now time to move on. The final

issue to consider in this chapter is planes. Imagine an ordinary, flat

sheet of paper aligned in 3D space, perhaps aligned at an angle.

Now imagine the sheet of paper is infinite in height and width but

has no thickness. Simple; you’ve just imagined a plane.

A plane is a mathematical structure used to classify points in 3D

space. Using a plane you can determine whether any point in 3D

space is in front of the plane, behind the plane, or resting on the

plane. This is useful for all kinds of things. For example, you can

determine whether objects in 3D space are visible to the camera.

Chapter 3: 3D Mathematics 83

C
h

a
p

te
r

3

Figure 3.27: Plane

You can also use it for collision detection so your game’s monsters

and creatures don’t walk through walls.

Direct3D represents planes using the D3DXPLANE structure.

Don’t worry too much about this structure’s components. In short,

this structure will allow us to represent a plane in 3D space mathe-

matically. Direct3D provides us with some additional functions to

create planes so we can choose how they are aligned.

The D3DXPLANE structure looks like this:

typedef struct D3DXPLANE {

FLOAT a;

FLOAT b;

FLOAT c;

FLOAT d;

} D3DXPLANE;

Creating Planes from Three Points

The simplest way to create a plane is with three points. Three

points can define a triangle. In the context of planes, three points

in 3D space exactly define a plane, assuming each of the points is

resting on the plane. They show us how the plane is aligned. The

function to create a plane from three points is called D3DXPlane-

FromPoints. This function requires the address of a plane

structure into which the created plane is returned, and it also

requires the coordinates of the three points. Its syntax and parame-

ters can be seen below, followed by an example.

D3DXPLANE *WINAPI D3DXPlaneFromPoints

(

D3DXPLANE *pOut,

CONST D3DXVECTOR3 *pV1,

CONST D3DXVECTOR3 *pV2,

CONST D3DXVECTOR3 *pV3

);

D3DXPLANE *pOut

[in, out] Pointer to the D3DXPLANE structure that is the

result of the operation.

84 Chapter 3: 3D Mathematics

CONST D3DXVECTOR3 *pV1

[in] Pointer to a D3DXVECTOR3 structure, defining one of the

points used to construct the plane.

CONST D3DXVECTOR3 *pV2

[in] Pointer to a D3DXVECTOR3 structure, defining one of the

points used to construct the plane.

CONST D3DXVECTOR3 *pV3

[in] Pointer to a D3DXVECTOR3 structure, defining one of the

points used to construct the plane.

Code sample:

D3DXPLANE Plane;

D3DXVECTOR3 V1(0.0f, 0.0f, 0.0f);

D3DXVECTOR3 V2(1.0f, 0.0f, 0.0f);

D3DXVECTOR3 V3(0.0f, 0.0f, 1.0f);

D3DXPlaneFromPoints(&Plane, &V1, &V2, &V3);

Creating Planes from Point and Normal

If three points are not known and you only have one point, you can

create a plane from a single point and a normal vector. A normal is a

perpendicular arrow that sticks out from a point or polygon. In a

way, it represents the direction a point or polygon is facing. A nor-

mal is a unit vector (magnitude of 1). By specifying a point and a

normal you are defining the position and orientation of a plane in

3D space. Direct3D provides the D3DXPlaneFromPointNormal

function to construct a plane from a point and a normal. This func-

tion requires an address of a resultant plane structure, a point, and

a normal. The syntax and parameters follow, along with an example.

D3DXPLANE *WINAPI D3DXPlaneFromPointNormal

(

D3DXPLANE *pOut,

CONST D3DXVECTOR3 *pPoint,

CONST D3DXVECTOR3 *pNormal

);

Chapter 3: 3D Mathematics 85

C
h

a
p

te
r

3

D3DXPLANE *pOut

[in, out] Pointer to the D3DXPLANE structure that is the

result of the operation.

CONST D3DXVECTOR3 *pPoint

[in] Pointer to a D3DXVECTOR3 structure defining the point

used to construct the plane.

CONST D3DXVECTOR3 *pNormal

[in] Pointer to a D3DXVECTOR3 structure defining the normal

used to construct the plane.

Code sample:

D3DXPLANE Plane;

D3DXVECTOR3 Point(0.0f, 0.0f, 0.0f);

D3DXVECTOR3 Normal(0.0f, 1.0f, 0.0f);

D3DXPlaneFromPointNormal(&Plane, &Point, & Normal);

Classifying Points in 3D Using Planes

Once a plane has been constructed, either from three points or

from one point and a normal, you can then classify points in 3D

space. This means you can test the plane to see whether a specific

point is in front of the plane, behind the plane, or on the plane.

Direct3D provides a function to classify a point in relation to a plane

called D3DXPlaneDotCoord. This function requires the address

of a resultant plane and a point, and returns a scalar. You should

then check this value as follows:

� If the result is 0, the point and the plane are coplanar. This

means the point is on the plane.

� If the result is greater than 0, the point is in front of the plane.

� If the result is less than 0, the point is behind the plane.

86 Chapter 3: 3D Mathematics

The syntax and parameters for D3DXPlaneDotCoord follow, and

then some sample code.

FLOAT D3DXPlaneDotCoord

(

CONST D3DXPLANE *pP,

CONST D3DXVECTOR3 *pV

);

CONST D3DXPLANE *pP

[in] Pointer to a source D3DXPLANE structure.

CONST D3DXVECTOR3 *pV

[in] Pointer to a source D3DXVECTOR3 structure.

Code sample:

D3DXVECTOR3 Point(0.0f, 0.0f, 0.0f);

FLOAT result = D3DXPlaneDotCoord(&Plane, & Point);

If(result == 0) //On the plane

If(result > 0) //In front of

If(result < 0) //Behind

Plane and Line Intersection

Another useful classification planes can provide is line intersection.

Remember, a line is just two points, one for the start and one for

the end of the line. By representing a line in this way we can test to

see whether a line crosses through a plane and, if so, we can also

determine the point at which the line crosses. Direct3D provides

the D3DXPlaneIntersectLine function to calculate this. It

requires the address of a plane structure for the result, the address

of a vector structure where the intersection point will be returned

if there’s an intersection, and the start and end points of the line to

test. Its syntax and parameters follow, and then an example.

Chapter 3: 3D Mathematics 87

C
h

a
p

te
r

3

D3DXVECTOR3 *WINAPI D3DXPlaneIntersectLine

(

D3DXVECTOR3 *pOut,

CONST D3DXPLANE *pP,

CONST D3DXVECTOR3 *pV1,

CONST D3DXVECTOR3 *pV2

);

D3DXVECTOR3 *pOut

[in, out] Pointer to a D3DXVECTOR3 structure identifying the

intersection between the specified plane and line.

CONST D3DXPLANE *pP

[in] Pointer to the source D3DXPLANE structure.

CONST D3DXVECTOR3 *pV1

[in] Pointer to a source D3DXVECTOR3 structure defining a

line starting point.

CONST D3DXVECTOR3 *pV2

[in] Pointer to a source D3DXVECTOR3 structure defining a

line ending point.

Code sample:

D3DXVECTOR3 StartPoint(-5.0f, -5.0f, -5.0f);

D3DXVECTOR3 EndPoint(5.0f, 5.0f, 5.0f);

D3DXVECTOR3 Result;

D3DXPlaneIntersectLine(&Result, &Plane, &StartPoint, &EndPoint);

if(Result)

{

//Result now equals intersection point

}

� NOTE. If the line is parallel to the plane, then NULL is returned.

88 Chapter 3: 3D Mathematics

Conclusion

This chapter has covered a broad area of mathematics in quite some

detail. Hopefully, you now understand coordinate systems and how

to represent vertices and vectors in them. Furthermore, you should

have a sound grasp of transformations and how matrices can be effi-

ciently deployed to represent them. Finally, you have seen how

planes are an excellent structure for classifying points and primi-

tives in 3D space.

The next chapter investigates how 3D environments are cre-

ated and rendered in Direct3D. This is where the fun begins.

Chapter 3: 3D Mathematics 89

C
h

a
p

te
r

3

This page intentionally left blank.

Chapter 4

Direct3D for 3D
Graphics

This chapter begins our voyage into the world of 3D. Much of the

material we’ll be covering here requires that you already know

about the concepts and ideas presented in the previous two chap-

ters. Specifically, you’ll need to know how to create a Direct3D

application. This involves creating a window, a Direct3D object, and

a Direct3D device, and configuring a game loop to render data

every frame. You’ll also need to know about some of the mathemat-

ics presented in Chapter 3, like coordinate systems, vertices, and

matrices. This chapter will show you how to set up a 3D environ-

ment and draw a triangle and some other primitives like triangle

strips. Overall, this chapter demonstrates the following:

� How to create vertices in 3D space using vertex buffers

� FVF (flexible vertex formats)

� How to set streams

� How to draw primitives like triangles, triangle strips, and lines

� How to set up the view, projection, and transformation matrices

91

Getting Started

The best way to get started in the world of 3D graphics is to draw a

triangle, which is simply three vertices in 3D space. For now we

won’t worry about lighting, textures, or other such issues; they’re

covered in detail later in this book. Here we’ll just concentrate on

rendering vertices. For a Direct3D application to render vertices

and primitives it needs to perform several steps. These are listed

below and the following sections examine each step in more detail.

1. Create and define a vertex format

In Direct3D vertices can express more than just an XYZ posi-

tion in 3D space. They can also have color, store information

about lighting calculations, express how textures will appear,

etc. So you’ll need to tell Direct3D what kind of vertices you’re

using. For now our vertices will just be storing position.

2. Create a vertex buffer

Once you’ve created all your vertices — three for a triangle,

four for a rectangle, etc. — you load them all into a vertex

buffer, which is an array of vertices.

3. On every frame:

� Set the view, projection, and transformation matrices

This step tells Direct3D where your camera (viewpoint) is

situated in 3D space. It will also tell Direct3D if your trian-

gle needs to be transformed by a matrix.

� Set the stream source

This tells Direct3D that you want to draw some vertices or

some shapes. To do this you need to load your vertex buffer

into the stream.

� Set the FVF

During this step you tell Direct3D the format of your verti-

ces. You defined this in step 1.

92 Chapter 4: Direct3D for 3D Graphics

� Draw one or more primitives

This is the actual drawing part. You have already set the

stream and told Direct3D the format of your vertices. You

now need to tell Direct3D what these vertices represent: a

triangle, a rectangle, or something else.

4. Release the vertex buffer

When you application has finished drawing vertices, you’ll need

to release the created vertex buffer using the standard Release

method.

Create and Define a Vertex Format

A vertex is a point in 3D space. Using them we can create shapes:

two vertices make a line; three make a triangle, etc. These shapes

are often called primitives. When rendering a primitive in Direct3D,

the first thing you should do is create a structure to hold your verti-

ces. You must also define what is known as an FVF (discussed

below). In Direct3D vertices are expressed as data structures and

each has an XYZ position. Additionally, they can contain other infor-

mation such as color value or data for lighting calculations or

texture information. The list of possibilities is huge. Some applica-

tions store vast amounts of data in their vertices while others may

only store position data. Since Direct3D cannot predict what data

you might be storing in your vertices, you’ll need to tell Direct3D

their exact format. For this chapter we’ll be rendering a triangle and

we’ll only need position and color data. A structure to store this

would look like the following:

struct CUSTOMVERTEX

{

FLOAT x, y, z; //Position

DWORD color; //Color

};

In order to express your vertex format, Direct3D requires you to

fill in an FVF (flexible vertex format) descriptor. The FVF is simply

Chapter 4: Direct3D for 3D Graphics 93

C
h

a
p

te
r

4

a DWORD value that holds a combination of tags describing which

data your vertex stores. For the vertex structure above, the FVF

descriptor would look like the following. Notice how it contains

flags for XYZ position and color information.

#define D3DFVF_CUSTOMVERTEX (D3DFVF_XYZ|D3DFVF_DIFFUSE)

� NOTE. This FVF will be used later when passed to various Direct3D

functions.

There are many other values your FVF can specify if you choose to

store extra data. The following list contains some of these values

and describes their purposes. Don’t worry if you don’t understand

every value since much of this subject matter is included in later

chapters.

D3DFVF_XYZ

Untransformed XYZ position for the vertex. In your data struc-

ture this will take the form of FLOAT X, Y, Z.

D3DFVF_NORMAL

Vertex normal. Remember, this is a perpendicular unit vector.

In your data structure this will take the form of FLOAT X, Y, Z.

D3DFVF_DIFFUSE

This is the diffuse color of the vertex; the standard color. In

your data structure this will take the form of FLOAT COLOR.

D3DFVF_SPECULAR

This is the color for highlights on a shiny surface. In your data

structure this will take the form of FLOAT COLOR.

D3DFVF_TEX0 – D3DFVF_TEX7

Texture coordinates for this vertex. In your data structure this

will take the form of FLOAT TEXTURE.

Using Vertices

Once you’ve created a vertex structure you can actually make some

vertices. That’s right; you can start declaring instances of your ver-

tex structure and fill them with position and color information. For

94 Chapter 4: Direct3D for 3D Graphics

a triangle this means we create three vertices, one for each corner.

The sample code below demonstrates how this can be done using

the vertex structure defined in the previous section. This code

specifies the XYZ value first and then defines a vertex color. When

the triangle is finally presented the colors will be blended over the

triangle’s surface, between the vertices.

CUSTOMVERTEX vertices[] =

{

{ 150.0f, 50.0f, 0.5f, D3DXCOLOR_XRGB(255, 0, 255), },

{ 250.0f, 250.0f, 0.5f, D3DXCOLOR_XRGB(0, 255,0), },

{ 50.0f, 250.0f, 0.5f, D3DXCOLOR_XRGB(255, 255, 0), },

};

Create a Vertex Buffer

So now you’ve created three vertices defining the corners of a tri-

angle. That was easy. Nothing is visible on your screen yet, though.

The next step involves putting all those vertices into a buffer that

Direct3D recognizes. This buffer is called a vertex buffer. Simply

put, it represents an array of vertices. Direct3D allows you to

create vertex buffers and use them through the IDirect3DVertex-

Buffer9 interface. Vertex buffers are created with the Create-

VertexBuffer method of IDirect3DDevice9. Remember,

IDirect3DDevice9 is the Direct3D device that represents your

graphics hardware. The syntax and parameters for CreateVertex-

Buffer follow.

Chapter 4: Direct3D for 3D Graphics 95

C
h

a
p

te
r

4

Figure 4.1

� NOTE. Pointers to IDirect3DVertexBuffer9 can either be written as

IDirect3DVertexBuffer9*, or you can use the typecast

LPDIRECT3DVERTEXBUFFER9.

HRESULT IDirect3DDevice9::CreateVertexBuffer

(

UINT Length,

DWORD Usage,

DWORD FVF,

D3DPOOL Pool,

IDirect3DVertexBuffer9 **ppVertexBuffer,

HANDLE *pSharedHandle

);

UINT Length

Size in bytes of the vertex buffer to create. This will be some-

thing like sizeof(CUSTOMVERTEX)*3.

DWORD Usage

Just pass 0.

DWORD FVF

The FVF of your vertex structure. This will tell Direct3D how

your vertices are structured. For this value you can pass your

DWORD FVF constant, as defined earlier.

D3DPOOL Pool

The memory in which the vertex buffer should be created. You

can create this in system memory or on your graphics card. For

this example we will use D3DPOOL_SYSTEMMEM. Possible

values can be:

typedef enum _D3DPOOL {

D3DPOOL_DEFAULT = 0,

D3DPOOL_MANAGED = 1,

D3DPOOL_SYSTEMMEM = 2,

D3DPOOL_SCRATCH = 3,

D3DPOOL_FORCE_DWORD = 0x7fffffff

} D3DPOOL;

IDirect3DVertexBuffer9 **ppVertexBuffer

Address where the created vertex buffer is returned.

96 Chapter 4: Direct3D for 3D Graphics

HANDLE *pSharedHandle

This is a reserved value. Just pass NULL.

Notice this function does not ask for a pointer to your actual verti-

ces. That is, it doesn’t want to know where you created your

vertices in memory. This is because a vertex buffer is created

blank, just like surfaces are created blank. It initially contains no

vertices; it just starts off as a bunch of nullified bytes. The size of

the buffer matches the size you specified. In the next section we’ll

see how to put your vertices into the buffer. For now, take a look at

the code below to see how a vertex buffer is created.

LPDIRECT3DVERTEXBUFFER9 g_pVB = NULL;

g_pD3DDevice->CreateVertexBuffer(sizeof(CUSTOMVERTEX)*3,

0, D3DFVF_CUSTOMVERTEX,

D3DPOOL_SYSTEMMEM,

&g_pVB, NULL);

Fill the Vertex Buffer

A vertex buffer is not created with vertices initially loaded into it.

It’s simply an area of memory reserved for vertex data to be loaded

into it. To copy data into the vertex buffer you first need to lock it.

This gives you a pointer to an area of memory where the vertices

should be copied. You then copy your vertices here. The whole

operation is then finished by unlocking the vertex buffer.

You can lock the vertex buffer by calling its Lock method. You

can unlock the vertex buffer by calling Unlock. Both these methods

are part of the IDirect3DVertexBuffer9 interface. The syntax and

parameters for Lock are shown below.

HRESULT Lock(

UINT OffsetToLock

UINT SizeToLock

VOID **ppbData

DWORD Flags

);

Chapter 4: Direct3D for 3D Graphics 97

C
h

a
p

te
r

4

UINT OffsetToLock

Indicates the offset from the start of the buffer from which you

want to lock. This is measured in bytes. In most cases you will

want to lock the entire buffer for modification. To do this, just

pass 0.

UINT SizeToLock

Indicates the size in bytes, from OffsetToLock, that should be

locked for modification. To lock the entire buffer, pass 0.

VOID **ppbData

The address of a pointer that is to receive the buffer pointer.

After the function has been called you’ll copy your vertex data

here.

DWORD Flags

This value allows you to choose the behavior of the vertex

buffer. For example, you can access the buffer in read-only

mode, write mode, etc. Mostly you’ll pass 0 for this value.

We use the memcpy function to copy data from one memory loca-

tion to another. It requires source and destination pointers and the

amount of data in bytes you want to copy. Its syntax and parameters

are shown below.

void* memcpy

(

void* Dest,

const void* Source,

DWORD Size

);

void* Dest

Destination to receive copied bytes. This is where you want to

copy data.

const void* Source

Source of bytes. This is where data will be taken from.

98 Chapter 4: Direct3D for 3D Graphics

DWORD Size

Number of bytes to copy.

� NOTE. Be sure to lock the vertex buffer before copying and be sure

to unlock the vertex buffer when completed. If you do not unlock

the vertex buffer before presenting the frame, no vertices will be

rendered.

Assuming we’re using the vertices created earlier in the section

called “Using Vertices,” which define the corners of a triangle, we

could write some code to fill the vertex buffer like below. Notice the

use of Lock and Unlock and how vertices are copied into the buffer

using the memcpy function.

VOID* pVertices = NULL;

if(FAILED(g_pVB->Lock(0, sizeof(vertices), (void**)&pVertices, 0)))

return E_FAIL;

memcpy(pVertices, vertices, sizeof(vertices));

g_pVB->Unlock();

Rendering the Triangle

Now that you’ve created some vertices and you have a vertex

buffer set up, you’re almost ready to draw the triangle. However,

there are just a few more steps to perform before we’ll see any-

thing. All of these steps will occur inside the rendering loop of our

application. First, we’ll need to set the view, transform, and projec-

tion matrices. Then we’ll use the Direct3D device to set the stream

source and FVF, and finally to draw our triangle. These steps are

explained in more detail over the next few sections.

View, Projection, and Transform Matrices

Chapter 3 explained the concept of matrices. To recap, a matrix is a

grid of numbers that acts like a set of instructions. Matrices are

often used to express transformations and can tell Direct3D how to

Chapter 4: Direct3D for 3D Graphics 99

C
h

a
p

te
r

4

move objects around in 3D space. To present any 3D scene in

Direct3D you’ll need to fill in three kinds of matrices. These are

the view, projection, and transform matrices. Once filled in, you’ll

pass them to your Direct3D device so that it will know how to dis-

play a scene properly in your application window. Let’s take a quick

look at each type of matrix.

� Transform matrix

The transform matrix tells Direct3D how to transform the

geometry it’s about to render. It instructs Direct3D where to

position your triangle in 3D space, as well as how to rotate it

and how to scale it. By setting the transform matrix you’re say-

ing, “Hey Direct3D, I’ve got a transformation matrix here and I

want you to apply it to any geometry that is rendered.”

� View matrix

The view matrix tells Direct3D where to position your camera

in 3D space. It orients it too, so your camera can be looking up,

down, left, right, etc. When Direct3D comes to render your 3D

world it will do so from the vantage point of your camera.

� Projection matrix

The projection matrix tells Direct3D how to project a 3D image

from your camera onto the flat 2D surface of your screen. In

other words, this matrix makes sure you can see your 3D world

accurately.

Transformation Matrix

The first matrix to set is the transformation matrix. This tells

Direct3D how to position and orient vertices in 3D space. They can

make your polygons dance. In other words, if you want to move

your triangle about a 3D world, you’ll need to use a transformation

matrix to do it. In Chapter 3 you learned about transformation

matrices. Specifically, you saw how transformations can be a combi-

nation of translation, rotation, and scaling. For this example, we’ll

just move the triangle to the origin by translating it to (0, 0, 0). The

code to build a transformation matrix that does this follows.

100 Chapter 4: Direct3D for 3D Graphics

D3DXMATRIX g_Transform;

D3DXMatrixIdentity(&g_Transform);

D3DXMatrixTranslation(&g_Transform, 0.0f, 0.0f, 0.0f);

� NOTE. Remember, when you create a matrix, be sure to initialize it

as an identity matrix. Like this:

D3DXMATRIX Matrix;

D3DXMatrixIdentity(&Matrix);

� NOTE. You can combine transformations by multiplying matrices.

� TIP. If you adjust the transformation matrix over time, you can ani-

mate your triangle. For example, you can alter its rotation on each

frame so the triangle spins.

Once you’ve created a transformation matrix you’ll need to notify

Direct3D. You do this by calling the SetTransform method of

IDirect3DDevice9. You pass it your transformation matrix as an

argument. This allows Direct3D to know which transformation to

use when rendering vertices. The SetTransform method will also

be used to set the view and projection matrices too, as shown later.

The syntax and parameters for SetTransform follow.

HRESULT SetTransform(

D3DTRANSFORMSTATETYPE State,

CONST D3DMATRIX *pMatrix

);

D3DTRANSFORMSTATETYPE State

Represents the matrix type. This is where you tell Direct3D

whether you’re setting the transform, view, or projection

matrix. The values can be:

D3DTS_WORLD //Transform

D3DTS_VIEW //View

D3DTS_PROJECTION //Projection

CONST D3DMATRIX *pMatrix

Pointer to your matrix. In other words, the address of the

matrix you wish to use.

Chapter 4: Direct3D for 3D Graphics 101

C
h

a
p

te
r

4

Some code to set the world transformation matrix looks like this:

g_pd3dDevice->SetTransform(D3DTS_WORLD, &g_Transform);

View Matrix

Just as the transformation matrix can position and orient polygons

in a 3D world, the view matrix can position and orient your camera.

That’s right; the view matrix exclusively controls where your cam-

era is situated in 3D space. This means when Direct3D presents a

scene to the window it does so from the vantage point of your cam-

era. This opens up all kinds of possibilities. For example, if you

animate your view matrix over time you can create a first-person

camera that moves around a 3D world. Chapter 8 shows you how to

do this.

A view matrix can be built manually, or you can use one of

Direct3D’s provided functions. Specifically, you can use

D3DXMatrixLookAtLH. This function builds a view matrix

according to three arguments: the position of your camera, the

point at which it’s looking, and which way is up. The syntax and

parameters follow.

D3DXMATRIX *WINAPI D3DXMatrixLookAtLH

(

D3DXMATRIX *pOut,

CONST D3DXVECTOR3 *pEye,

CONST D3DXVECTOR3 *pAt,

CONST D3DXVECTOR3 *pUp

);

D3DXMATRIX *pOut

Address to where a view matrix is returned.

CONST D3DXVECTOR3 *pEye

The camera’s position. This might be something like (0, –15, 0).

CONST D3DXVECTOR3 *pAt

The point at which the camera is looking.

102 Chapter 4: Direct3D for 3D Graphics

CONST D3DXVECTOR3 *pUp

A vector indicating which way is up. It might seem silly to pass

this value, but to perform calculations correctly and to make

sure your image is the right way up, Direct3D needs to know

this. Usually, up will be (0, 1, 0). Upside down would be

(0, –1, 0).

Some sample code to build a view matrix follows. It will also use

SetTransform to set it as Direct3D’s active view matrix. This works

just like setting the transform matrix, except we pass D3DTS_

VIEW for the matrix type parameter. Take a look at the following

code.

D3DXMATRIX g_View;

D3DXVECTOR3 Eye (0.0f, -5.0f, 0.0f);

D3DXVECTOR3 LookAt(0.0f, 0.0f, 0.0f);

D3DXVECTOR3 Up(0.0f, 1.0f, 0.0f);

D3DXMatrixLookAtLH(&g_View, &Eye, &LookAt, &Up);

g_pd3dDevice->SetTransform(D3DTS_VIEW, &g_View);

Projection Matrix

The projection matrix tells Direct3D how to project your 3D world,

as seen from your camera, onto the flat 2D surface of your applica-

tion’s window. In other words, it makes sure you get to see your 3D

world properly, with objects closer to the camera looking bigger

than objects farther away. Mathematically, it’s the most complicated

matrix to compute. Don’t worry if you don’t understand the mathe-

matics behind it; Direct3D provides a function to do all that hard

work for you. This function is called D3DXMatrixPerspective-

FovLH, and it builds a projection matrix according to some

arguments you provide. Its syntax and parameters follow.

D3DXMATRIX *WINAPI D3DXMatrixPerspectiveFovLH

(

D3DXMATRIX *pOut,

FLOAT fovy,

FLOAT Aspect,

Chapter 4: Direct3D for 3D Graphics 103

C
h

a
p

te
r

4

FLOAT zn,

FLOAT zf

);

D3DXMATRIX *pOut

Address of a matrix that is to become the final projection

matrix. This is where you put your matrix.

FLOAT fovy

Aspect ratio, defined as view space width divided by height.

This value will nearly always be D3DX_PI/4.

FLOAT Aspect

This value is window width/window height.

FLOAT zn

Z value of the near view plane. This value will usually be 1.0f.

FLOAT zf

This value indicates how far into the distance the camera can

see. Objects beyond this distance will be considered beyond the

horizon and will not be drawn. For a simple triangle sample, this

value might be something like 500.0f.

The code below shows how you can build a projection matrix. It

also uses SetTransform to set it as the current projection matrix.

This time we pass it the D3DTS_PROJECTION flag. Take a look.

D3DXMATRIX Projection;

FLOAT FOV = D3DX_PI / 4;

FLOAT Aspect = WindowWidth/WindowHeight;

D3DXMatrixPerspectiveFovLH(&Projection, FOV, Aspect, 1.0f, 500.0f);

g_pd3dDevice->SetTransform(D3DTS_PROJECTION, &Projection);

Setting the Stream Source

Once the transform, view, and projection matrices are set it means

your scene is almost ready to draw. This is because we’ve now told

Direct3D how geometry is transformed, where the camera is posi-

tioned, and how the world is drawn in the window. All that remains

104 Chapter 4: Direct3D for 3D Graphics

is to prepare Direct3D for actually rendering the triangle. This

begins by setting the stream source. A Direct3D stream is a channel

of information. Direct3D has several streams, which it numbers

from 0 onward. You tell Direct3D which vertices to render by con-

necting the vertex buffer to a stream. This is like saying, “Hey

Direct3D, I have some vertices to draw and you’ll find them waiting

in Channel 1.” To connect a vertex buffer to a stream you call the

SetStreamSource method of IDirect3DDevice9. The syntax and

parameters for this function are listed below.

HRESULT SetStreamSource(

UINT StreamNumber,

IDirect3DVertexBuffer9 *pStreamData,

UINT OffsetInBytes,

UINT Stride

);

UINT StreamNumber

This is the number of the stream to which your vertex buffer

should be connected. In this case we’ll pass 0, which means the

first stream.

IDirect3DVertexBuffer9 *pStreamData

This is a pointer to the vertex buffer to be connected. In other

words, you’ll pass your vertex buffer pointer here.

UINT OffsetInBytes

This is an offset from the beginning of the stream in bytes

where vertex data begins. To set this to the beginning you

should pass 0.

UINT Stride

This is the size in bytes of a single vertex. The value would be

something like sizeof(CUSTOMVERTEX).

Here’s some code to set the stream source for the triangle. This

won’t actually render data yet; there are still two more steps.

g_pd3dDevice->SetStreamSource(0, g_pVB, 0, sizeof(CUSTOMVERTEX));

Chapter 4: Direct3D for 3D Graphics 105

C
h

a
p

te
r

4

Setting the FVF

After setting the stream source we next set the FVF. Remember,

FVF stands for flexible vertex format. It’s a DWORD descriptor

that tells Direct3D what data your vertices contain, such as posi-

tion, color, texture information, etc. Before we can render the

triangle we’ll need to pass your FVF to Direct3D so it can under-

stand the vertices loaded into the stream. This is really simple to

do. To set the FVF you must call the SetFVF method of

IDirect3DDevice9. It requires only one parameter, your FVF. The

code to achieve this follows.

g_pd3dDevice->SetFVF(D3DFVF_CUSTOMVERTEX);

Drawing a Primitive

Finally, we can draw a triangle. The vertex buffer has been created

and filled. The transform, view, and projection matrices have been

set. The stream source has been linked to a vertex buffer and now

the FVF has been defined. This means we can go ahead and give

106 Chapter 4: Direct3D for 3D Graphics

Figure 4.2

the command for Direct3D to draw something. To draw a triangle

or any other primitive from vertices in a stream you call the

DrawPrimitive method of IDirect3DDevice9. It requires you to

indicate what type of primitive to draw (triangle list, triangle strip,

etc.), which vertex in the stream is the first vertex, and finally how

many primitives to draw. Its syntax and parameters follow.

HRESULT DrawPrimitive(

D3DPRIMITIVETYPE PrimitiveType,

UINT StartVertex,

UINT PrimitiveCount

);

D3DPRIMITIVETYPE PrimitiveType

This is the kind of primitive you want to draw. For a standard

triangle this must be D3DPT_TRIANGLELIST. It can also be

other values for triangle strips, line strips, triangle fans, etc.

These types were covered in Chapter 3. Possible values can be:

typedef enum _D3DPRIMITIVETYPE {

D3DPT_POINTLIST = 1,

D3DPT_LINELIST = 2,

D3DPT_LINESTRIP = 3,

D3DPT_TRIANGLELIST = 4,

D3DPT_TRIANGLESTRIP = 5,

D3DPT_TRIANGLEFAN = 6,

D3DPT_FORCE_DWORD = 0x7fffffff

} D3DPRIMITIVETYPE;

UINT StartVertex

The first vertex in the stream to use for rendering. This value

will usually be 0.

UINT PrimitiveCount

The number of primitives to draw using the vertices in the

stream. For one triangle this value will be 1.

The following sample code represents the entire render procedure,

including how to draw a triangle using DrawPrimitive. Notice the

function calls to Clear, BeginScene, EndScene, and Present. These

Chapter 4: Direct3D for 3D Graphics 107

C
h

a
p

te
r

4

functions were explained in Chapter 2. This procedure represents

one frame and is called many times per second to draw a 3D scene.

VOID Render()

{

g_pd3dDevice->Clear(0, NULL, D3DCLEAR_TARGET,

D3DCOLOR_XRGB(0, 0, 255), 1.0f, 0);

//Set the matrices

D3DXMATRIX g_Transform;

g_pd3dDevice->SetTransform(D3DTS_WORLD, &g_Transform);

D3DXMATRIX g_View;

D3DXVECTOR3 Eye(0.0f, -5.0f, 0.0f);

D3DXVECTOR3 LookAt(0.0f, 0.0f, 0.0f);

D3DXVECTOR3 Up(0.0f, 1.0f, 0.0f);

D3DXMatrixLookAtLH(&g_View, &Eye, &LookAt, &Up);

g_pd3dDevice->SetTransform(D3DTS_VIEW, &g_View);

D3DXMATRIX Projection;

FLOAT FOV = D3DX_PI / 4;

FLOAT Aspect = WindowWidth/WindowHeight;

D3DXMatrixPerspectiveFovLH(&Projection, FOV, Aspect, 1.0f, 500.0f);

g_pd3dDevice->SetTransform(D3DTS_PROJECTION, &Projection);

// Begin the scene

if(SUCCEEDED(g_pd3dDevice->BeginScene()))

{

g_pd3dDevice->SetStreamSource(0, g_pVB, 0, sizeof(CUSTOMVERTEX));

g_pd3dDevice->SetFVF(D3DFVF_CUSTOMVERTEX);

g_pd3dDevice->DrawPrimitive(D3DPT_TRIANGLELIST, 0, 1);

// End the scene

g_pd3dDevice->EndScene();

}

108 Chapter 4: Direct3D for 3D Graphics

// Present the back buffer contents to the display

g_pd3dDevice->Present(NULL, NULL, NULL, NULL);

}

Animating the Triangle

Now that the triangle has been drawn and everything is looking

good, let’s try something a bit more adventurous. In this section

we’ll make the triangle rotate; that’s right, make it spin around the

Y axis. Rotation is really simple to do; it’s all related to matrices.

You simply change the transform matrix every frame. We simply

build a rotation matrix using D3DXMatrixRotationY (we saw this in

the previous chapter) and on each frame we adjust the angle of

rotation a little. To make the triangle spin, simply adjust the trans-

form matrix code as follows:

//Set the matrices

UINT iTime = timeGetTime() % 1000;

FLOAT fAngle = iTime * (2.0f * D3DX_PI) / 1000.0f;

D3DXMatrixRotationY(&g_Transform, fAngle);

g_pd3dDevice->SetTransform(D3DTS_WORLD, &g_Transform);

Drawing Other Primitives

In Direct3D you’re not limited to just drawing a triangle. You can

draw many triangles in all kinds of arrangements. You can even join

them together to make cubes, spheres, boxes, and many more

shapes. Most complex models are created in a 3D modeling pack-

age like 3D Studio MAX, Maya, or Softimage. Then they are

exported from the package and imported into Direct3D as meshes.

Meshes are explained in Chapter 7. This section shows you how to

create a number of other basic primitive types, specifically, point

lists, line lists, line strips, triangle strips, and triangle fans.

Chapter 4: Direct3D for 3D Graphics 109

C
h

a
p

te
r

4

� Point list — D3DPT_POINTLIST

You don’t have to render your vertex buffers as triangles. You

can also fill in your vertex buffer with lots of vertices and ren-

der them all as unconnected points — just a load of dots in 3D

space. This is called a point list, which is a collection of one or

more points. Point lists can be used to simulate star effects.

DrawPrimitive can render a point list like this:

g_pd3dDevice->DrawPrimitive(D3DPT_POINTLIST, 0, NumPoints);

� NOTE. In the above code sample, NumPoints is the number of points

to render. You should have at least that many vertices in the vertex

buffer.

� Line list — D3DPT_LINELIST

Similar to a point list, a line list is a collection of one or more

lines. A line is formed by two vertices: a start point and an end

point. So for every line, you need two vertices in the vertex

buffer. DrawPrimitive can render a line list like this:

g_pd3dDevice->DrawPrimitive(D3DPT_LINELIST, 0, NumLines);

� Line strip — D3DPT_LINESTRIP

A line strip is a collection of one or more connected lines. If

there is more than one line, then the next line’s start point joins

onto the end point of the previous line. DrawPrimitive can ren-

der a line strip like this:

g_pd3dDevice->DrawPrimitive(D3DPT_LINESTRIP, 0, NumLines);

� Triangle strip — D3DPT_TRIANGLESTRIP

In a similar fashion to a line strip, a triangle strip is a collection

of one or more connected triangles. Each triangle joins onto the

edge of the previous triangle. DrawPrimitive can render a trian-

gle strip like this:

g_pd3dDevice->DrawPrimitive(D3DPT_TRIANGLESTRIP, 0, NumTriangles);

110 Chapter 4: Direct3D for 3D Graphics

� Triangle fan — D3DPT_TRIANGLEFAN

Triangle fans are collections of one or more triangles where

every triangle shares a common vertex. This is a bit like a tri-

angle strip except the triangles will form a fan shape.

DrawPrimitive can render them like this:

g_pd3dDevice->DrawPrimitive(D3DPT_TRIANGLEFAN, 0, NumTriangles);

Indexed Primitives

Indexed primitives are an optimization on the standard primitives

we’ve seen so far. In other words, indexed primitives are generally

more efficient than standard primitives. To illustrate, let’s consider

a rectangle. In Direct3D, a rectangle is made from two right-angle

triangles aligned with diagonals touching. In Direct3D, a triangle is

often called a face or a polygon. A rectangle made from two trian-

gles is shown in Figure 4.3.

This means to represent this rectangle we need to store six verti-

ces, one for each corner of a triangle. There are three vertices per

triangle and there are two triangles. Notice the problem here?

Those two triangles have vertices in the same place: two of the

corner points. There’s an overlap. Wouldn’t it be nice if we could

share those two end vertices between both triangles? This means

we could store fewer vertices in our vertex buffer and Direct3D

would process fewer vertexes. This is the issue indexed primitives

Chapter 4: Direct3D for 3D Graphics 111

C
h

a
p

te
r

4

Figure 4.3

attempt to resolve. You’ll find them particularly useful when repre-

senting complex geometry, that is, objects with lots of vertices.

Indexed primitives work very much like standard primitives. We’ll

still be using FVFs and vertex buffers; however, this time around,

vertex buffers will be used as simply a storage place for vertices.

They will store all the vertices of our primitive, but the vertices

will not be arranged in any specific order. They will not relate to the

order in which Direct3D draws geometry. Also, the buffer will not

store any duplicate vertices. Every vertex in the buffer will be

unique. To define the order and arrangement of vertices we’ll need

a separate buffer, called an index buffer. This is represented by the

IDirect3DIndexBuffer9 interface. Take a look at Figure 4.4 to see

how an index buffer works.

Every element in the index buffer is an offset into the vertex

buffer. In other words, every element points to a vertex. The index

buffer refers to vertices in the vertex buffer by their offset. Let’s

take our rectangle for example. Previously we would have stored

six vertices, and some of them would be duplicates where the two

triangles overlap. Now, this time, we only store four vertices in the

vertex buffer: the corner points of the rectangle. Remember, no

duplicates are allowed. Then using the index buffer we define our

two triangles by referencing the vertices in the vertex buffer. So

our first three entries in the index buffer would be 0, 1, and 2. This

tells Direct3D that our first triangle is made up from the first three

points in the vertex buffer. Then our next three entries in the index

buffer would be 1, 2, and 3. This defines our second triangle. Notice

how we share points 1 and 2 between both triangles. Simple.

112 Chapter 4: Direct3D for 3D Graphics

Figure 4.4

Setting Up Index Buffers

Setting up your application to use index buffers requires only a few

amendments. You still create your vertices, define an FVF, and cre-

ate a vertex buffer. Once this is created, you will create an index

buffer with the CreateIndexBuffer method of IDirect3DDevice9.

Its syntax and parameters are listed below, followed by some sam-

ple code to populate a vertex buffer with four vertices, which

specify a rectangle’s corners. Notice how, like vertex buffers, the

index buffer is locked while data is copied into it. This data will not

be vertices. Instead, you copy over numbers that represent offsets

into the vertex buffer. The next section shows how you can draw

primitives with index buffers.

HRESULT CreateIndexBuffer(

UINT Length,

DWORD Usage,

D3DFORMAT Format,

D3DPOOL Pool,

IDirect3DIndexBuffer9 **ppIndexBuffer,

HANDLE *pSharedHandle

);

UINT Length

Size of the index buffer in bytes. For a rectangle you’ll need to

hold six indices, so this would be sizeof(short)*6.

DWORD Usage

Just pass 0.

D3DFORMAT Format

This can be either D3DFMT_INDEX16 or D3DFMT_

INDEX32. Most of the time you’ll pass D3DFMT_INDEX16.

D3DPOOL Pool

The area of memory in which to create the index buffer. On

most occasions you’ll pass D3DPOOL_DEFAULT.

IDirect3DIndexBuffer9 **ppIndexBuffer

Address to where a created index buffer is to be returned.

Chapter 4: Direct3D for 3D Graphics 113

C
h

a
p

te
r

4

HANDLE *pSharedHandle

This is a reserved value. Just pass NULL.

Sample code:

//Create vertices for rectangle

CUSTOMVERTEX vertices[] =

{

{ 50.0f, 50.0f, 0.5f, 0xffff0000, }, // x, y, z

{ 250.0f, 250.0f, 0.5f, 0xff00ff00, },

{ 50.0f, 250.0f, 0.5f, 0xff00ffff, },

{ 250.0f, 50.0f, 0.5f, 0xff00ffff, },

};

//Create vertex buffer

if(FAILED(g_pd3dDevice->CreateVertexBuffer(4*sizeof(CUSTOMVERTEX),

0, D3DFVF_CUSTOMVERTEX,

D3DPOOL_DEFAULT, &g_pVB, NULL)))

{

return E_FAIL;

}

//Fill vertex buffer

VOID* pVertices;

if(FAILED(g_pVB->Lock(0, sizeof(vertices), (void**)&pVertices, 0)))

return E_FAIL;

memcpy(pVertices, vertices, sizeof(vertices));

g_pVB->Unlock();

//Create index buffer

if(FAILED(g_pd3dDevice->CreateIndexBuffer(sizeof(short)*6,

0, D3DFMT_INDEX16,

cc, &g_pIndexBuffer, NULL)))

{

return E_FAIL;

}

114 Chapter 4: Direct3D for 3D Graphics

//Fill index buffer

short Indices[6] =

{

0, 1, 2,

3, 1, 0

};

VOID* IndexData = NULL;

if(SUCCEEDED(g_pIndexBuffer->Lock(0, 0, &IndexData, 0)))

{

memcpy(IndexData, (void*) &Indices, sizeof(Indices));

g_pIndexBuffer->Unlock();

}

Drawing Indexed Primitives

Once you’ve created a vertex and index buffer you can draw your

indexed primitive. This works very much like drawing a normal

primitive. It still occurs during the rendering loop and you still need

to call SetStreamSource and set the FVF; however, you’ll also need

Chapter 4: Direct3D for 3D Graphics 115

C
h

a
p

te
r

4

Figure 4.5

to call the SetIndices method of IDirect3DDevice9. This tells

Direct3D which index buffer to use. Additionally, you no longer call

DrawPrimitive to render your vertices; instead you’ll call

DrawIndexedPrimitive. This does the same thing as DrawPrimi-

tive except it’s used for indexed primitives. The syntax and

parameters for both SetIndices and DrawIndexedPrimitive follow.

Then we’ll see some sample code to render a rectangle (two diago-

nally aligned triangles).

HRESULT IDirect3DDevice9::SetIndices

(

IDirect3DIndexBuffer9 *pIndexData

);

IDirect3DIndexBuffer9 *pIndexData

Pointer to the index buffer used for rendering.

HRESULT IDirect3DDevice9::DrawIndexedPrimitive

(

D3DPRIMITIVETYPE Type,

INT BaseVertexIndex,

UINT MinIndex,

UINT NumVertices,

UINT StartIndex,

UINT PrimitiveCount

);

D3DPRIMITIVETYPE Type

The type of primitive you’re drawing. Possible values are the

same as for DrawPrimitive. In the case of a rectangle we’ll

choose triangle list.

INT BaseVertexIndex

The vertex from which rendering should begin. In most cases

this will be 0.

UINT MinIndex

This is the minimum index for vertices that you’ll be using.

Usually this will be 0.

116 Chapter 4: Direct3D for 3D Graphics

UINT NumVertices

This is the maximum number of vertices you’ll be using. For a

rectangle this will be four — one for each corner.

UINT StartIndex

The position in the index buffer to start reading vertices.

Normally this will be 0.

UINT PrimitiveCount

This is the number of primitives you’ll be rendering. For a rect-

angle this will be two because there are two triangles.

Sample code:

// Clear the back buffer to a blue color

g_pd3dDevice->Clear(0, NULL, D3DCLEAR_TARGET,

D3DCOLOR_XRGB(0, 0, 255), 1.0f, 0);

// Begin the scene

if(SUCCEEDED(g_pd3dDevice->BeginScene()))

{

g_pd3dDevice->SetStreamSource(0, g_pVB, 0, sizeof(CUSTOMVERTEX));

g_pd3dDevice->SetIndices(g_pIndexBuffer);

g_pd3dDevice->SetFVF(D3DFVF_CUSTOMVERTEX);

g_pd3dDevice->DrawIndexedPrimitive(D3DPT_TRIANGLELIST, 0, 0, 4, 0, 2);

// End the scene

g_pd3dDevice->EndScene();

}

// Present the back buffer contents to the display

g_pd3dDevice->Present(NULL, NULL, NULL, NULL);

Chapter 4: Direct3D for 3D Graphics 117

C
h

a
p

te
r

4

Conclusion

This chapter has covered a lot of new and important ground. Hav-

ing come this far you should understand how Direct3D renders

geometry in 3D space. Specifically, you have seen how this is

accomplished largely with the help of vertex buffers and index

buffers.

The next chapter moves on to make your 3D environments

look more realistic. It’ll show you how to make your geometry look

as though it’s made from real-life materials — like walls made from

brick, trees looking like trees, and all kinds of stuff. Furthermore,

it’ll examine how we can light your scene or make some areas

brighter than others. In short, the next chapter examines materials,

textures, and lights.

118 Chapter 4: Direct3D for 3D Graphics

Chapter 5

Materials, Lights,
and Textures

The previous chapter introduced the basic concepts governing the

architecture of a Direct3D application, including the rendering loop

and how a Direct3D device renders graphical data to the screen.

Additionally, it explained how to create and render vertices for stan-

dard 3D primitives like triangles, rectangles, and cubes. This

chapter goes on to explain how the realism of 3D primitives and a

3D world can be enhanced using materials, lights, and textures.

Specifically, this chapter discusses the following points:

� Lighting: Flat shading and Gouraud shading

� Materials: Diffuse, ambient, and specular color

� Light types: Spotlights, point lights, and directional lights

� Textures

� Texture coordinates and texture addressing

� ID3DXSprite interface

119

Lighting

Until now your Direct3D applications have either been very, very

dark because the lighting level was low, or they looked perfectly

normal because Direct3D lighting was disabled. Regardless, it’s

pretty obvious by now that Direct3D has a lighting system, and pro-

grammers use this to illuminate their 3D world, much like we use

lights to illuminate our own world. However, before we consider

Direct3D lighting further, let’s examine light in the real world.

As you may remember from high school science, light bounces

off everything. Some objects absorb light and other objects, like

glass or metal, scatter light in various directions. The net result

means that the appearance of every object we see — its coloration

and hue — is affected by light. For example, the color of a white

sheet of paper will change when placed beneath green, red, or some

other colored light. Nowadays, computers are powerful enough to

simulate this kind of lighting, and various applications are available

to render 3D graphics with advanced lighting. However, such accu-

rate simulation of light severely reduces the speed at which 3D

scenes are calculated, and therefore it becomes unsuitable for the

fast needs of real-time graphics like Direct3D. So Direct3D makes

compromises and uses a less accurate lighting system that still pro-

duces results close enough to the real thing to make our 3D worlds

believable.

So what does Direct3D do? Simply put, Direct3D uses a ver-

tex-based lighting system. This means Direct3D gives an individual

weight to each vertex in the scene. Then, it checks to see where

each light is located, how bright each light is, and in which direction

it’s facing, which it then compares to each vertex weight and blends

the light appropriately across the polygon’s surface, between the

vertices. Don’t worry too much if this doesn’t make much sense.

Direct3D hides a lot of implementation from us and makes lighting

really simple to use. Let’s take a look at how lighting is used in

Direct3D.

120 Chapter 5: Materials, Lights, and Textures

Turning the Lights On and Off

A good place to start learning about lights is how to enable and dis-

able lighting in Direct3D. This is really simple to do. Remember,

this process doesn’t actually put any lights into the scene; it simply

tells Direct3D whether or not to enable lighting. To enable or dis-

able lighting you call the SetRenderState method of IDirect3D-

Device9. This function can be used to set a whole lot of Direct3D

states. Its syntax and parameters follow.

HRESULT SetRenderState(

D3DRENDERSTATETYPE State,

DWORD Value

);

D3DRENDERSTATETYPE State

This parameter can be one of many different values. To enable

or disable lighting, this value should be D3DRS_LIGHTING.

DWORD Value

The value of this parameter depends on the first parameter,

State. For lighting, this value will be either True or False to

indicate whether lighting is to be enabled or disabled

respectively.

Below is some code to enable lighting in Direct3D:

g_pDevice->SetRenderState(D3DRS_LIGHTING, TRUE);

� NOTE. If lighting is enabled and there are no lights in the scene,

then everything will appear dark. On the other hand, if lighting is

disabled, the scene will not appear dark. Instead, Direct3D will use

its default lighting configuration.

Chapter 5: Materials, Lights, and Textures 121

C
h

a
p

te
r

5

More on Lights

Now that you know how to enable and disable lighting in Direct3D,

let’s look at lighting modes. In Direct3D there are two modes of

lighting, both of which are independent of the other: ambient light-

ing and direct lighting.

� Ambient lighting

Think of this as general lighting — like brightness and contrast.

It’s rather like a general light that pervades the scene and dis-

tributes its brightness and color equally and infinitely. There is

only one ambient light, and by adjusting its properties the over-

all lighting of Direct3D is changed.

� Direct lighting

Direct lighting is generally what we think of as lighting. It’s the

system that allows developers to place lights in a scene. These

lights will have a specific position, brightness, and direction.

Consequently, depending on their brightness, they may not illu-

minate the entire scene.

Setting the Ambient Lighting

As explained above, ambient lighting controls the overall lighting of

a scene. Setting the ambient light in Direct3D is a simple process:

You just call the SetRenderState function — the same function to

enable or disable lighting — and you pass D3DRS_AMBIENT for

the first parameter. For the second parameter you pass a

D3DCOLOR structure specifying the color and alpha for the light in

the form of RGBA (red, green, blue, and alpha). As you learned

from Chapter 2, these color components can be any value from 0 to

255. Here’s an example to set the ambient lighting to red:

g_pDevice->SetRenderState(D3DRS_AMBIENT, D3DCOLOR_RGBA(255,0,0,22));

122 Chapter 5: Materials, Lights, and Textures

Getting Started with Direct Lights

Direct lights are the primary part of Direct3D’s lighting system.

They typically have a position, brightness, and direction. They usu-

ally won’t illuminate the entire scene and they can be moved

around in real time.

Before we examine direct lights practically, we’ll need to learn

more about how Direct3D simulates lighting using a shading mode,

and we’ll also need to understand how polygons use materials to

instruct Direct3D how lighting is to interact with their surfaces

(faces).

Direct3D Shading Modes

As mentioned earlier, Direct3D does not accurately simulate light-

ing as it behaves in the real world. Instead, it expedites lighting

calculations by approximating light so it looks real enough to the

average eye. To light a polygon’s surface Direct3D uses one of two

shading modes: flat shading or Gouraud shading. Depending on

which shading mode you use, Direct3D will light a polygon’s sur-

face differently.

� Flat shading

This shading mode calculates quickly but isn’t very accurate.

As a result, this speeds things up nicely but doesn’t look partic-

ularly realistic. Nowadays, hardly any game uses flat shading.

� Gouraud shading

This is the most realistic shading mode. In this mode the light

is blended smoothly across the polygon’s surface, between each

vertex.

To set Direct3D’s shading mode you call the SetRenderState

method of IDirect3DDevice9. By default it will be set to Gouraud

shading. For the first parameter you should pass D3DRS_SHADE-

MODE. The second parameter is then used to set the shading

mode.

Chapter 5: Materials, Lights, and Textures 123

C
h

a
p

te
r

5

D3DSHADE_FLAT

Flat shading

D3DSHADE_GOURAUD

Gouraud shading

Here’s an example of setting Direct3D’s shading mode to Gouraud

shading:

g_pDevice->SetRenderState(D3DRS_SHADEMODE, D3DSHADE_GOURAUD);

Materials

In Direct3D materials are simple structures that define how lights

affect a polygon’s surface. Direct3D assigns a material to each ver-

tex in a polygon and each material defines how light will interact

with the surface of a polygon. For example, light acts differently

when striking a shiny surface as opposed to a soft cushion. So

materials can make the surfaces of your polygons look shiny, dull,

smooth, jagged, etc. Take a look at the following material structure.

typedef struct _D3DMATERIAL9 {

D3DCOLORVALUE Diffuse;

D3DCOLORVALUE Ambient;

D3DCOLORVALUE Specular;

D3DCOLORVALUE Emissive;

float Power;

} D3DMATERIAL9;

As you can see, this structure contains various color values and a

power factor. Together, these properties define how a vertex will

react when hit by light. The following list describes the various

members.

124 Chapter 5: Materials, Lights, and Textures

� Diffuse color

Diffuse color is probably the most significant color for your ver-

tices; it defines how vertices reflect light. Essentially, when

your vertices are hit by light, the diffuse color defines what

color your vertices will be.

� Ambient color

The opposite of diffuse color, ambient color defines how verti-

ces appear when not in direct light. Typically, this value will be

the same as for diffuse color.

� Emissive color

Emissive color creates the effect of fluorescence when the ver-

tices are hit by light. In other words, by specifying the emissive

color you can make your vertices glow.

� Specular color

Specular color makes objects shine a specific color. This value

is combined with power. Materials with 0 power don’t shine,

while materials with higher values have a greater shine.

� NOTE. You can set each color component by using the standard

D3DCOLOR_RGBA macro.

Once you’ve filled in a material structure you’re ready to apply it to

vertices. Of course, it won’t have much of an effect if there are no

lights in the scene. We’ll see how to add lights later in this chapter.

To apply a material to one or more vertices you call the

SetMaterial method of IDirect3DDevice9 as you draw vertices

during the rendering loop, like when you call DrawPrimitive or

DrawIndexedPrimitive. The syntax and parameter for SetMaterial

are as follows.

HRESULT SetMaterial(

CONST D3DMATERIAL9 *pMaterial

);

CONST D3DMATERIAL9 *pMaterial

Pointer to a material structure to set as the active material.

Chapter 5: Materials, Lights, and Textures 125

C
h

a
p

te
r

5

Take a look at the code below. It demonstrates how to fill in a mate-

rial structure and use SetMaterial to apply it to the vertices of a

primitive.

D3DMATERIAL9 g_Material;

ZeroMemory(&g_Material, sizeof(D3DMATERIAL9));

g_Material.Diffuse = D3DCOLOR_RGBA(1.0, 1.0, 1.0, 0.0);

g_Material.Ambient = D3DCOLOR_RGBA(0.0, 0.0, 0.0, 0.0);

g_Material.Specular = D3DCOLOR_RGBA(0.0, 0.0, 0.0, 0.0);

g_Material.Emissive = D3DCOLOR_RGBA(0.0, 0.0, 0.0, 0.0);

g_Material.Power = 0;

g_pDevice->SetMaterial(&g_Material);

Direct Lighting Types

The previous section discussed a material structure and how it

defines the way a surface should react when it’s hit by light. Addi-

tionally, it explained how a material is assigned to vertices as

they’re rendered to the display. However, materials on their own

simply don’t cut it. You still need to add lights to your scene before

any lighting will take effect. This section discusses direct lights and

the various types available to you. Then we’ll see how to use them

practically.

� Point lights

Point lights have a position in space and radiate light equally in

all directions.

126 Chapter 5: Materials, Lights, and Textures

Figure 5.1: Point light

� Spotlights

Spotlights have a position in space. Additionally, they have a

direction in which they cast light. Furthermore, they have two

invisible cones that determine the brightness and stretch of the

light they cast: an inner cone and outer cone.

� Directional lights

Directional lights have no physical position in space but cast

light in a direction. You can think of a directional light as the

sun.

Creating a light in Direct3D is simple. You just need to fill in a

D3DLIGHT9 structure specifying various properties about the

light, such as color, position, type, and direction. Here’s what a

Chapter 5: Materials, Lights, and Textures 127

C
h

a
p

te
r

5

Figure 5.2: Spotlight

Figure 5.3: Directional light

D3DLIGHT9 structure looks like. The parameters are described

below.

typedef struct _D3DLIGHT9 {

D3DLIGHTTYPE Type;

D3DCOLORVALUE Diffuse;

D3DCOLORVALUE Specular;

D3DCOLORVALUE Ambient;

D3DVECTOR Position;

D3DVECTOR Direction;

float Range;

float Falloff;

float Attenuation0;

float Attenuation1;

float Attenuation2;

float Theta;

float Phi;

} D3DLIGHT9;

D3DLIGHTTYPE Type

Defines the light type. This can be any value from the following

enumeration D3DLIGHTTYPE:

D3DLIGHT_POINT

Point light

D3DLIGHT_SPOT

Spotlight

D3DLIGHT_DIRECTIONAL

Directional light

D3DCOLORVALUE Diffuse

Specifies the color of the diffuse light. This value can be gener-

ated by the D3DCOLOR_RGBA macro.

D3DCOLORVALUE Specular

Specifies the color of the specular light. This value can be gen-

erated by the D3DCOLOR_RGBA macro.

128 Chapter 5: Materials, Lights, and Textures

D3DCOLORVALUE Ambient

Specifies the color of the ambient light. This value can be gen-

erated by the D3DCOLOR_RGBA macro.

D3DVECTOR Position

Specifies the XYZ position of the light. This value is a

D3DXVECTOR3 structure, which is three floats. Remember,

Direct3D will ignore this value for directional lights since they

have no position.

D3DVECTOR Direction

A normalized vector specifying the direction of the light. This

value is only meaningful for directional lights and spotlights. A

value of (0, 0, 1) points into the monitor and (0, 0, –1) points

outward from the monitor.

float Range

Specifies the maximum distance at which the light can shine. In

other words, the greatest distance at which an object can still

be hit by the light.

float Falloff

Falloff is the fade out between the beginning and end of the

light cone.

float Attenuation0

float Attenuation1

float Attenuation2

Controls how the light fades over distance.

float Theta

Specifies the angle in radians of the spotlight’s inner cone.

float Phi

Specifies the angle in radians of the spotlight’s outer cone.

Chapter 5: Materials, Lights, and Textures 129

C
h

a
p

te
r

5

Once you’ve created a light, you simply perform two steps, as

follows:

1. Direct3D provides several slots to store lights that are to be

used in a scene. To tell Direct3D you wish to place a light in the

scene, you must call the SetLight method of IDirect3D-

Device9. This function requires two arguments: the slot

number to store the light and a pointer to the light structure

itself. You call this function like this:

g_pd3dDevice->SetLight(0, &Light);

2. Once the light has been placed into a slot, you must then turn

the light on. You do this by calling the LightEnable method of

IDirect3DDevice9, like this:

g_pd3dDevice->LightEnable(0, TRUE);

Here’s an example of how to use a Direct3D light. Take a look at

the code below and see how lights work with all the bells and whis-

tles. Next, we’ll take a look at how texturing works in Direct3D.

D3DXVECTOR3 vecDir;

D3DLIGHT9 light;

ZeroMemory(&light, sizeof(light));

light.Type = D3DLIGHT_DIRECTIONAL;

light.Diffuse.r = 1.0f;

light.Diffuse.g = 1.0f;

light.Diffuse.b = 1.0f;

vecDir = D3DXVECTOR3(cosf(timeGetTime()/360.0f),

0.0f,

sinf(timeGetTime()/360.0f));

D3DXVec3Normalize((D3DXVECTOR3*)&light.Direction, &vecDir);

light.Range = 1000.0f;

g_pd3dDevice->SetLight(0, &Light);

g_pd3dDevice->LightEnable(0, TRUE);

130 Chapter 5: Materials, Lights, and Textures

Textures

Textures are one of the most important features for enhancing real-

ism in a 3D application. In short, textures are flat, bitmap images

painted onto the surface of one or more polygons. Textures can

make your polygons appear to be manufactured from real-life mate-

rials such as bricks, metal, wood, etc. Furthermore, textures can be

employed in more advanced techniques. For example, textures can

be mixed and combined with one another, or they can be used for

effects like bump mapping. (A bump map use textures combined

with other textures and light calculations to simulate bumps and

indentations on the surface of polygons, like the bumps on an

orange skin.)

Direct3D encapsulates textures using the IDirect3DTexture9

interface. In reality, Direct3D treats textures very much like sur-

faces (explained in Chapter 2). In fact, textures are like advanced

surfaces and more or less everything you can do with surfaces you

can also do with textures. You can load textures from image files

like bitmaps or JPEGs, copy pixel data between textures, and copy

surfaces and textures to and from one another.

Chapter 5: Materials, Lights, and Textures 131

C
h

a
p

te
r

5

Figure 5.4: Texture mapped cube

� NOTE. Remember, image size is an important factor for textures. Tex-

tures should be sized to a power of 2, such as 2x2, 4x4, 8x8,

16x16, etc. Combinations are also allowed, like 16x64. If your tex-

tures are not sized properly, they may appear stretched or

squeezed in your applications.

Creating Textures

There are many ways to create textures in Direct3D. You can cre-

ate blank textures of a specified size or you can create textures

with images already loaded onto them. Furthermore, as we shall

see, Direct3D allows you to choose in which memory the created

texture will reside. Textures can be created in standard system

memory (RAM), or you can exploit the onboard memory of the sys-

tem’s graphics card.

Let’s take a look at two ways you can create textures. Remem-

ber, when a texture is created, it starts off as an image held in

memory. It’s not drawn to the screen and it’s not applied to the sur-

face of any polygon straight away. We’ll see how to apply a texture

to a polygon later in this chapter.

Creating Blank Textures

Creating a blank texture is very much like creating a surface with

no image loaded onto it. Effectively, a blank texture is a rectangle of

memory filled in with white pixels. Don’t worry though; a blank

texture doesn’t need to stay blank. You can copy image data to it

later. To create a blank texture you call the CreateTexture method

of IDirect3DDevice9. This method requires you to pass width and

height parameters for the size of the rectangle in pixels. It also

requires the format of the texture (like the surface format) and it

requires the memory pool in which the texture will be created. The

memory pool means the area of memory where the texture will be

held, like RAM or on the graphics card. The syntax and parameters

for CreateTexture are:

132 Chapter 5: Materials, Lights, and Textures

HRESULT CreateTexture

(

UINT Width,

UINT Height,

UINT Levels,

DWORD Usage,

D3DFORMAT Format,

D3DPOOL Pool,

IDirect3DTexture9 **ppTexture,

HANDLE *pSharedHandle

);

UINT Width

Width in pixels of the texture.

UINT Height

Height in pixels of the texture.

UINT Levels

Number of levels in the texture. If this is 0, Microsoft Direct3D

will generate all texture sublevels down to 1x1 pixels for hard-

ware that supports mipmapped textures.

DWORD Usage

Typically you will pass 0. You can pass one or more of the fol-

lowing values:

D3DUSAGE_AUTOGENMIPMAP

D3DUSAGE_DEPTHSTENCIL

D3DUSAGE_DMAP

D3DUSAGE_DONOTCLIP

D3DUSAGE_DYNAMIC

D3DUSAGE_NPATCHES

D3DUSAGE_POINTS

D3DUSAGE_RENDERTARGET

D3DUSAGE_RTPATCHES

D3DUSAGE_SOFTWAREPROCESSING

D3DUSAGE_WRITEONLY

D3DFORMAT Format

Image format of the texture. This can be many values, but a

typical value is D3DFMT_A8R8G8B8.

Chapter 5: Materials, Lights, and Textures 133

C
h

a
p

te
r

5

D3DPOOL Pool

Specifies the memory pool in which the created texture will be

stored. Typically you will pass D3DPOOL_DEFAULT. This

parameter can be one or more of the following values:

D3DPOOL_DEFAULT

D3DPOOL_MANAGED

D3DPOOL_SCRATCH

D3DPOOL_SYSTEMMEM

IDirect3DTexture9 **ppTexture

Address to receive a valid texture interface pointer, which rep-

resents the created texture.

HANDLE *pSharedHandle

This is a reserved value. Just pass NULL.

Creating Textures from Image Files

One of the most common ways to create a texture is from an image

file. The image file can be a simple bitmap or JPEG, or you can cre-

ate textures from more complex formats that contain alpha

channels. To create a texture and load an image file onto it you call

the D3DXCreateTextureFromFile function. This function is sim-

ple to use and requires only three parameters: a pointer to the

Direct3D device, a valid path to an image file, and an address to

receive a pointer to the created texture interface. Let’s take a look

at this function’s syntax.

HRESULT WINAPI D3DXCreateTextureFromFile(

LPDIRECT3DDEVICE9 pDevice,

LPCTSTR pSrcFile,

LPDIRECT3DTEXTURE9 *ppTexture

);

� NOTE. Direct3D provides other functions to load textures that are not

covered in this book. These are: D3DXCreateTextureFromFileEx,

D3DXCreateTextureFromFileInMemory, D3DXCreateTexture-

FromFileInMemoryEx, D3DXCreateTextureFromResource, and

D3DXCreateTextureFromResourceEx.

134 Chapter 5: Materials, Lights, and Textures

Here’s a sample code snippet provided as an example.

hr = g_pd3dDevice->CreateTexture(uintWidth, uintHeight, 1,

D3DUSAGE_DYNAMIC,

D3DFMT_X8R8G8B8, D3DPOOL_DEFAULT,

&m_Texture, NULL);

Texture Mapping

The previous sections explained how textures can be created either

blank or from image files on disk. Now it’s time to see how textures

are applied to the surface of 3D polygons. This can really bring your

3D world to life. Using textures you can make your polygons appear

as though they’re made from real materials. For example, a polygon

could appear to be brick, grass, or even water. Sounds good? Well,

before we examine how textures work practically we’ll need to

examine the theory behind how textures work in Direct3D.

In Direct3D, textures are applied to polygons through a process

called texture mapping. Let’s consider the example rectangle in the

figure below and imagine this to be a 3D primitive formed by an

index buffer with two triangles aligned side by side. Thus, this rect-

angle is defined by four vertices, with a vertex on each corner.

Chapter 5: Materials, Lights, and Textures 135

C
h

a
p

te
r

5

Figure 5.5

Notice that each vertex is encoded with additional information

other than just its physical position in 3D space. The additional

information is a set of coordinates; for example (0.0, 1.0). These are

called texture coordinates and are used to tell Direct3D how a tex-

ture should be aligned across the surface of a polygon. What does

this mean exactly? Well, as a texture is applied to a polygon,

Direct3D ties the texture to specific vertices. Take a look at Figure

5.6 to see what’s happening between the polygon and the texture.

As you can see, texture coordinates (also called texels) take the

form of U and V. U specifies the width of a texture and V specifies

the height of a texture. You’ll probably also notice that texels usu-

ally range from 0.0 to 1.0. These values correspond to the

proportional dimensions of the texture. In Figure 5.6, (U:0.0 V:0.0)

corresponds to the top-left corner of the texture while (U:1.0 V:1.0)

represents the bottom-right corner of the texture. Therefore, each

vertex specifies which portion of the texture should be overlaid on

that part of the polygon’s surface.

Let’s see how to do this practically in Direct3D. As you may

have surmised, texture coordinates are specified in your vertex

structure, which was explained earlier. That’s right, texture coordi-

nates are added to your vertex structure, which until now has been

used to encoded only position and color. The following code shows

136 Chapter 5: Materials, Lights, and Textures

Figure 5.6

a vertex structure containing texture information. Texture coordi-

nates are specified by two floats.

struct CUSTOMVERTEX

{

D3DXVECTOR3 position; // The position

D3DCOLOR color; // The color

FLOAT tu, tv; // The texture coordinates

};

The FVF descriptor for this structure would look something like

the following. Notice the inclusion of the additional D3DFVF_TEX1

flag.

D3DFVF_CUSTOMVERTEX (D3DFVF_XYZ|D3DFVF_DIFFUSE|D3DFVF_TEX1)

Some code to create a rectangle and include texture coordinates

might look like this:

//Create vertices for rectangle

CUSTOMVERTEX vertices[] =

{

{50.0f, 50.0f, 0.5f, 0xffff0000, 0.0, 0.0}, // x, y, z

{250.0f, 250.0f, 0.5f, 0xff00ff00, 0.0, 1.0},

{50.0f, 250.0f, 0.5f, 0xff00ffff, 1.0, 0.0},

{250.0f, 50.0f, 0.5f, 0xff00ffff, 1.0, 1.0},

};

Setting the Active Texture

The last foundational step you need to know before you can use

textures in your applications is how to actually apply them to poly-

gons. You do this very much like setting the active material using

SetMaterial, as we saw earlier. During the rendering loop you call

the SetTexture method of IDirect3DDevice9 to tell Direct3D

which texture should be the active texture. This texture will then

be applied to whatever vertices are subsequently rendered. The

syntax and parameters for this function are as follows.

Chapter 5: Materials, Lights, and Textures 137

C
h

a
p

te
r

5

HRESULT SetTexture

(

DWORD Sampler,

IDirect3DBaseTexture9 *pTexture

);

DWORD Sampler

For the purposes of this book, this value should be 0. By speci-

fying other numbers you can perform various texture effects.

However, multitexturing is beyond the scope of this book.

Please see the DirectX documentation for more details.

IDirect3DBaseTexture9 *pTexture

Pointer to the texture to be used as the active texture.

Quite simple, really. The code below demonstrates a practical

example of how to set an active texture. The following sections

explore textures further.

g_pd3dDevice->SetTexture(0, g_pTexture);

Texture Filtering

Think about this for a moment: You have just created a nice brick

texture sized at 256x256 pixels, and now you intend to map it onto

a rectangular polygon in order to make it look like a wall. OK, so

you’ve created the vertices and you’ve set up the texture coordi-

nates so the image will map across the polygon’s surface correctly.

However, there’s a problem: The rectangle is larger than the brick

texture, which means the texture is stretched to fit the rectangle.

This makes the texture look blurred and horrible. Furthermore,

when the wall is viewed from an angle, the texture looks grainy and

pixelated. This can be quite problematic. The solution? Texture

filtering.

Texture filtering is the process Direct3D adopts for deciding

how textures should be processed when mapped across a polygon’s

surface. There are several texture filtering modes that Direct3D

can use, including nearest-point sampling, linear texture filtering,

anisotropic texture filtering, and mipmap filtering.

138 Chapter 5: Materials, Lights, and Textures

� Nearest-point sampling

This is the quickest of all filtering modes and should only be

used when you know your texture matches the size of the poly-

gon onto which it’s mapped, without stretching or shrinking.

This is because as your texture is resized or viewed from vary-

ing angles, it will appear blocky and blurred due to the quick

and messy calculations Direct3D performs.

� Linear texture filtering

Direct3D uses a technique called bilinear filtering for this

mode, which offers improved filtering over nearest-point sam-

pling but textures can still suffer from a blurred or blocky

appearance.

� Anisotropic texture filtering

The technicalities behind this filtering are beyond the scope of

this book. In short, this filtering mode offers some advanced

features and good performance. This is a good method for filter-

ing your textures.

� Mipmap filtering

Mipmap filtering works by applying a chain of textures to the

same polygon. Each texture is of the same image at a progres-

sively lower resolution than the last. This means Direct3D can

juggle between textures as the surface is seen from different

angles and distances. This method can be very effective but is

computationally expensive.

By default Direct3D uses nearest-point sampling. However, you can

set the texture filtering mode by calling the SetSamplerState

method of IDirect3Device9. The syntax and parameters for this

method are as follows.

HRESULT SetSamplerState

(

DWORD Sampler,

D3DSAMPLERSTATETYPE Type,

DWORD Value

);

Chapter 5: Materials, Lights, and Textures 139

C
h

a
p

te
r

5

DWORD Sampler

The sampler stage index. For the purpose of this book, you can

pass 0.

D3DSAMPLERSTATETYPE Type

This parameter can be many different values. For texture filter-

ing you’ll want to pass one of the following:

D3DSAMP_MAGFILTER

Controls the filtering to use for enlarging the texture.

D3DSAMP_MINFILTER

Controls the filtering to use for shrinking the texture.

D3DSAMP_MIPFILTER

Controls the filtering to use for mipmap filtering.

DWORD Value

This value selects the type of filtering to use. This can be one

of the following:

D3DTEXF_NONE

No filtering

D3DTEXF_POINT

Nearest-point sampling

D3DTEXF_LINEAR

Linear texture filtering

D3DTEXF_ANISOTROPIC

Anisotropic texture filtering

As you can probably tell, this parameter controls many features of

Direct3D, one of which we’ll see shortly. First, however, let’s see

an example of how to set the texture filtering mode. It’s very sim-

ple to do. Take a look at the code below.

hr = g_pd3dDevice->SetSamplerState(0, D3DSAMP_MINFILTER, D3DTEXF_LINEAR);

140 Chapter 5: Materials, Lights, and Textures

Texture Addressing Modes

As explained previously, texture coordinates (UV) typically fall

within the range from 0.0 to 1.0, which corresponds to the propor-

tional extents of a texture. This influences how the surface of a

polygon is mapped by a texture. However, texture coordinates need

not be just values from 0.0 to 1.0; they could, for example, be

higher than 1.0. What happens if a texture coordinate is 2.0? Well, a

number of different things could happen, depending on which tex-

ture addressing mode Direct3D is using.

Direct3D uses a texture addressing mode to handle textures

when vertices have texture coordinates outside the typical range.

Using texture addressing you can perform various effects with tex-

tures, like mirroring and tiling. The various texture addressing

modes that Direct3D offers are: wrap texture address mode, mirror

texture address mode, clamp texture address mode, and border

color texture address mode.

� Wrap texture address mode

This texture mode tiles the texture when it encounters texture

coordinates outside the range of 0.0 to 1.0. For example, if a

rectangle has the texture coordinate (U:2.0 V:0.0) for its

rightmost vertex, then the texture will be tiled twice across the

width of the polygon.

Chapter 5: Materials, Lights, and Textures 141

C
h

a
p

te
r

5

Figure 5.7: Wrap texture address mode

� Mirror texture address mode

Like wrap texture address mode, mirror texture address mode

will tile the texture across the polygon, except it will mirror the

texture on each consecutive tile. See Figure 5.8.

� Clamp texture address mode

With clamp texture address mode, Direct3D takes the last col-

umn and row of pixels in the texture and drags them across the

width and height of the polygon. Take a look at Figure 5.9.

To set the texture addressing mode in Direct3D you call the

SetSamplerState method of the IDirectDevice9 interface. This

method was introduced in the previous section and will be used

142 Chapter 5: Materials, Lights, and Textures

Figure 5.8: Mirror texture address mode

Figure 5.9: Clamp texture address mode

again here to set the texture addressing mode. In this case, the

syntax and parameters for SetSamplerState follow.

HRESULT SetSamplerState

(

DWORD Sampler,

D3DSAMPLERSTATETYPE Type,

DWORD Value

);

DWORD Sampler

The sampler stage index. For the purpose of this book, you can

pass 0.

D3DSAMPLERSTATETYPE Type

This parameter can be many different values. For texture

addressing you’ll want to pass one of the following:

D3DSAMP_MAGFILTER

Controls the filtering to use for enlarging the texture.

D3DSAMP_MINFILTER

Controls the filtering to use for shrinking the texture.

D3DSAMP_MIPFILTER

Controls the filtering to use for mipmap filtering.

DWORD Value

This value selects the type of filtering to use. This can be one

of the following:

D3DTEXF_NONE

No filtering

D3DTEXF_POINT

Nearest-point sampling

D3DTEXF_LINEAR

Linear texture filtering

D3DTEXF_ANISOTROPIC

Anisotropic texture filtering

Chapter 5: Materials, Lights, and Textures 143

C
h

a
p

te
r

5

Here’s an example of how to set the texture addressing mode to

wrap:

g_pDevice->SetSamplerState(0, D3DSAMP_MINFILTER, D3DTEXF_ANISOTROPIC);

g_pDevice->SetSamplerState(0, D3DSAMP_MAGFILTER, D3DTEXF_ANISOTROPIC);

Texture Alpha Blending

It’s certainly worth mentioning that various image formats, like

Targa and PNG, support alpha channels to define transparent,

semi-transparent, or opaque regions in an image. An alpha channel

is a separate grayscale image that is attached to a normal image of

the same size and dimensions. Each pixel in the alpha channel cor-

responds to a pixel in the normal image and defines whether the

pixel should be transparent, semi-transparent, or opaque. Black pix-

els are transparent, white pixels are opaque, and gradations in

between represent degrees of visibility that become less visible the

closer it comes to black. Thus, alpha channels can be used to create

transparent effects with textures since Direct3D supports alpha

144 Chapter 5: Materials, Lights, and Textures

Figure 5.10

blending. Alpha blending is the process whereby Direct3D takes the

alpha channel of an image and applies the transparency information

to the final texture. Thankfully, Direct3D does all the hard work for

us. All we need to do is enable alpha blending. To do this we call the

SetRenderState function, as explained earlier. The code to enable

and disable alpha blending appears as follows.

m_pDevice->SetRenderState(D3DRS_ALPHABLENDENABLE, true);

m_pDevice->SetRenderState(D3DRS_SRCBLEND, D3DBLEND_SRCALPHA);

m_pDevice->SetRenderState(D3DRS_DESTBLEND, D3DBLEND_INVSRCALPHA);

� NOTE. When alpha blending isn’t needed, be sure to disable it for

an overall performance gain.

2D Texturing

So far this chapter has spoken about applying textures to polygons

in 3D space. However, what if we wanted to create a user interface

for a game, draw energy panels on the screen, or render a gauge

that displays a player’s remaining ammo? These kinds of graphics

don’t exist in 3D space. Instead, they’re little widgets that display

information in 2D screen space. Thus, it’ll be useful to know how

we can render textures directly to the screen in 2D. Furthermore,

we’ll be able to retain the benefits of textures.

Chapter 5: Materials, Lights, and Textures 145

C
h

a
p

te
r

5

Figure 5.11

First, let’s recap screen coordinates, as shown in Figure 5.11.

Screen space has two axes: X and Y. These are measured in pixels.

The origin for these axes is in the top-left corner of the screen,

which is (0, 0).

Drawing a texture in screen space is simple and can be

achieved in Direct3D using various methods. This book concen-

trates on using the ID3DXSprite interface to draw textures in 2D

screen space. This interface acts very much like a GDI pen, or any

normal pen for that matter. Before we examine how this interface is

used, let’s see how it’s created.

To create a valid instance of ID3DXSprite you call the

D3DXCreateSprite function. It requires two parameters: a

pointer to a Direct3D device and an address to receive a valid

ID3DXSprite interface. The syntax and parameters follow. Remem-

ber, this function simply creates a sprite interface in memory. The

process of drawing textures is performed in the next section.

HRESULT WINAPI D3DXCreateSprite

(

LPDIRECT3DDEVICE9 pDevice,

LPD3DXSPRITE *ppSprite

);

LPDIRECT3DDEVICE9 pDevice

Pointer to a Direct3D device.

LPD3DXSPRITE *ppSprite

Address to receive an ID3DXSprite interface.

Here’s an example of how to create a sprite interface:

LPD3DXSPRITE Sprite = NULL;

D3DXCreateSprite(&Sprite);

146 Chapter 5: Materials, Lights, and Textures

ID3DXSprite — Drawing Textures in 2D

As the previous section explained, ID3DXSprite is like a pen. You

simply pass it a texture and it will draw it in 2D screen space. This

is useful for the various kinds of interface widgets your game might

have. To draw a texture in 2D screen space you call a number of

ID3DXSprite methods during your application’s rendering loop.

Here’s how the process works:

1. You start by calling the Begin method of ID3DXSprite. This

prepares the interface for drawing a texture to the screen. This

function requires only one parameter. Typically you will pass 0;

however, for more advanced features, you can pass other val-

ues. The syntax and parameters for this function follow.

HRESULT Begin

(

DWORD Flags

);

DWORD Flags

Can be 0 or a combination of one or more of the following flags.

Please see the DirectX SDK documentation for more

information.

D3DXSPRITE_ALPHABLEND

D3DXSPRITE_BILLBOARD

D3DXSPRITE_DONOTMODIFY_RENDERSTATE

D3DXSPRITE_DONOTSAVESTATE

D3DXSPRITE_OBJECTSPACE

D3DXSPRITE_SORT_DEPTH_BACKTOFRONT

D3DXSPRITE_SORT_DEPTH_FRONTTOBACK

D3DXSPRITE_SORT_TEXTURE

2. After Begin is called you’ll want to call the SetTransform

method of ID3DXSprite. This method accepts a D3DXMA-

TRIX. This matrix should represent a 2D transformation that is

to be applied to the drawn texture. In other words, this matrix

Chapter 5: Materials, Lights, and Textures 147

C
h

a
p

te
r

5

will tell ID3DXSprite how to draw a specified texture. We might

want to translate it (5,5) from the screen origin, or we might

want the texture rotated or scaled. Until now we have only

learned how to build matrices that encode 3D transformations

in Direct3D. However, Direct3D provides a function to assem-

ble a 2D matrix that we can later pass to the SetTransform

method. This function is called D3DXMatrixTransforma-

tion2D. Its syntax and parameters follow.

D3DXMATRIX *WINAPI D3DXMatrixTransformation2D

(

D3DXMATRIX *pOut,

CONST D3DXVECTOR2 *pScalingCenter,

FLOAT *pScalingRotation,

CONST D3DXVECTOR2 *pScaling,

CONST D3DXVECTOR2 *pRotationCenter,

FLOAT Rotation,

CONST D3DXVECTOR2 *pTranslation

);

D3DXMATRIX *pOut

Address to receive a resultant 2D matrix.

CONST D3DXVECTOR2 *pScalingCenter

A D3DXVECTOR2 structure representing the center point at

which scaling occurs. If scaling is not required, this parameter

can be NULL.

FLOAT *pScalingRotation

Pointer to the scaling rotation factor. If scaling is not required,

this parameter can be NULL.

CONST D3DXVECTOR2 *pScaling

A D3DXVECTOR2 structure defining the scaling factor. If scal-

ing is not required, this parameter can be NULL.

CONST D3DXVECTOR2 *pRotationCenter

A D3DXVECTOR2 structure specifying the center of rotation.

If rotation is not required, this value can be NULL.

148 Chapter 5: Materials, Lights, and Textures

FLOAT Rotation

Angle in radians to rotate. If you don’t want to perform rotation,

just pass 0.

CONST D3DXVECTOR2 *pTranslation

A D3DXVECTOR2 structure representing the number of pixels

to translate from the origin. If translation is not required, this

parameter can be NULL.

Once you have built a 2D transformation matrix you can then pass

this onto SetTransform. Like this:

D3DXMatrixTransformation2D(&Mat, NULL, 0, NULL, NULL, 0, NULL);

Sprite->SetTransform(&Mat);

3. Now that you’ve prepared the interface for drawing and speci-

fied a transformation for the texture, you can call the Draw

method of the ID3DXSprite interface to actually draw the tex-

ture to the screen. You can pass translation and rotation values

to this function too, but since we provided these via a transfor-

mation matrix in step 2, we can set these values to NULL. The

syntax and parameters for Draw follow.

HRESULT Draw

(

LPDIRECT3DTEXTURE9 pTexture,

CONST RECT *pSrcRect,

CONST D3DXVECTOR3 *pCenter,

CONST D3DXVECTOR3 *pPosition,

D3DCOLOR Color

);

LPDIRECT3DTEXTURE9 pTexture

Pointer to a texture to draw.

CONST RECT *pSrcRect

Pointer to a rectangle on the texture to draw. This can be NULL.

CONST D3DXVECTOR3 *pCenter

Pointer to a vector marking the center of the sprite. This can be

NULL.

Chapter 5: Materials, Lights, and Textures 149

C
h

a
p

te
r

5

CONST D3DXVECTOR3 *pPosition

Pointer to a vector representing the translation. This can be

NULL.

D3DCOLOR Color

Using this value you can tint the texture a specific color or you

can change its alpha value.

4. Finally, you call the End method of ID3DXSprite to complete

the texture drawing process. This method requires no argu-

ments. The entire drawing process can be summarized in the

following code.

D3DXMATRIX Mat;

D3DXMatrixTransformation2D(&Mat, NULL, 0, NULL, NULL, 0, NULL);

Sprite->Begin(0);

Sprite->SetTransform(&Mat);

Sprite->Draw(Texture, NULL, NULL, NULL, 0xFFFFFFFF);

Sprite->End();

And that, ladies and gentlemen, is texture drawing. Simple, I’m

sure you’ll agree.

Conclusion

This chapter has presented an introduction to lighting, materials,

and textures in Direct3D. Hopefully, having understood the content

presented here, you’ll no doubt realize the awesome potential at

your fingertips. At this point I recommend going back through the

chapter and playing with some code. Try tweaking some of the

arguments you pass to the functions and see what happens. Then

try moving lights in real time and see what happens.

The next chapter will take you a step further on our journey of

Direct3D as we consider data storage and specifically X files.

150 Chapter 5: Materials, Lights, and Textures

Chapter 6

X Files — Loading
and Saving Data

As any good programmer is likely to know, there are many ways to

store persistent data. Games store their levels and meshes in files

that are read in at run time. A graphic artist models 3D characters

and saves them in a file, and then this data is loaded into DirectX by

the programmer. Now, you could reinvent the wheel and design

your own proprietary file format for all your application’s data, or

you could use X files, which is a file storage system provided with

the DirectX SDK. X files allow you to store and load any kind of

data of any size. Using them, or at least understanding how they

work, makes your life easier because many of the DirectX mesh

saving plug-ins (for exporting models from 3D packages) will save

the mesh data into an X file. Beyond this, X files offer many bene-

fits for storing your own game data. This chapter explains how to

use X files. Specifically it explains how to:

� Load data from X files

� Enumerate data in X files

� Save data to X files

151

Introduction to X Files

Imagine for a moment you’re making a first-person shooter game

where players run around an environment and shoot baddies.

Typically, you’d store each level in a data file that your game will

read at run time. There is a lot of data to store. Usually, the levels

themselves — walls, doors, floors, etc. — will be stored as a mesh.

Remember, a mesh is just a complex collection of polygons. And the

baddies themselves would also be meshes. Additionally, you’ll want

to store miscellaneous information, like the XYZ positions of

power-ups, medi-kits, and ammo. You’ll also want to know which

parts of the floor are walkable and which are traps, and it’ll be use-

ful to know the locations to which teleporters will take you when

activated. The list goes on. You could design your own file format to

store all this data, or you could use a mechanism already made.

Enter X files…

X files are so named because of their .x file extension. It’s an

open-ended file format, which means X files can be of any length

and can store any kind of data. Furthermore, your data can be

stored in one of two ways: binary mode or text mode. So X files can

either be a bunch of unreadable bytes or they can be textual data,

the kind you can open up and edit in a text editor.

To save and load information to and from an X file, you use a

number of DirectX interfaces. Using these, every item of data you

write to an X file — like your meshes, power-ups, starting health,

etc. — will be written as a self-contained object, and these objects

are contained inside the X file in a tree structure, much like an

XML file or the files and folders on your hard disk. This kind of

structure is called a hierarchy. In other words, any object inside an

X file can have none, one, or more than one child objects. Don’t

worry though; DirectX provides all the methods and interfaces

you’ll need to enumerate and cycle through objects in an X file.

Let’s begin by taking a look at what an X file (text version) actually

looks like:

152 Chapter 6: X Files — Loading and Saving Data

xof 0302txt 0032

//Declaration

template MY_GAME_INFO{

<AA1308FD-FF98-4f6e-9A55-CD083178672F>

STRING GameName;

STRING GameMaker;

DWORD Version;

}

template MY_LEVEL{

<0FC92315-6897-4f03-B2BD-A6CE20065861>

STRING LevelName;

[...]

}

template MY_MEDI_KIT{

<DACCED4A-433E-4fa3-91A6-2A8EA6B6D090>

DWORD XPos;

DWORD YPos;

DWORD ZPos;

}

//Definition

MY_GAME_INFO Game01

{

"My Test Game";

"Alan Thorn";

1;

}

MY_LEVEL Level01

{

"Level01";

MY_MEDI_KIT

{

5;

7;

Chapter 6: X Files — Loading and Saving Data 153

C
h

a
p

te
r

6

13;

}

MY_MEDI_KIT

{

435;

757;

139;

}

}

Structural Overview

The X file example in the previous section let you see what an X

file looks like inside. In many ways it follows the typical C style

syntax; however, there are differences. The structure of an X file is

explained in the following subsections.

Header

You’ll notice that each X file begins with a header. This is a line

stating the version number and file mode (text or binary). It looks

like the following. When creating your own X files you’ll simply

need to copy and paste this line at the top of each file.

xof 0302txt 0032

Templates

The next section of an X file is the declarations section. This is

where you define all the data types that will appear in your file.

Each definition is called a template. It’s like writing ordinary

classes. The template defines how your data is structured. So in

this example our file will be storing data about a number of things;

specifically, game info, level info, and medi-kits. The templates for

these tell DirectX what kind of data our objects are made of. The

game info template is defined like this:

154 Chapter 6: X Files — Loading and Saving Data

template MY_GAME_INFO{

<AA1308FD-FF98-4f6e-9A55-CD083178672F>

STRING GameName;

STRING GameMaker;

DWORD Version;

}

� NOTE. You’ll also notice a line preceded by “//”. This signifies a

comment, like in C++, and is ignored by DirectX. It’s simply there

for reference. You can put comments anywhere you want in the file.

Comments can also be written by using “#” instead of “//”.

To define a template, you start by using the keyword “template,”

followed by the name of your template. In this example, the name is

MY_GAME_INFO. This is the name you will use later in the file

when creating instances of your template. Then there’s an opening

brace that is partnered by a closing brace. These mark the begin-

ning and end of your template declaration. Between them you

declare whatever data types form your template. The first line is

different, however. The first line is a GUID (globally unique identi-

fier), which is a long bunch of numbers and letters that allows

DirectX to distinguish one template from another. The GUID will

also be used to identify your templates when coding DirectX appli-

cations. More on how to generate these numbers later.

After the GUID, you add whatever members you need to your

template, just like class members. The kinds of data types available

are very similar to C++. You’ll notice our example MY_GAME_

INFO holds three members: two strings, which hold the game

name and the creator’s name, and one integer to keep track of the

current game version. The list below shows the various data types

and reserved words available for use in X files.

Chapter 6: X Files — Loading and Saving Data 155

C
h

a
p

te
r

6

ARRAY

BINARY

BINARY_RESOURCE

CHAR

CSTRING

DOUBLE

DWORD

SDWORD

STRING

SWORD

TEMPLATE

UCHAR

ULONGLONG

UNICODE

WORD

In addition to the standard data types you’ll also notice the […]

symbol in the template declaration for medi-kits. This is like a

placeholder character. It details whether any objects can be embed-

ded inside this object. By specifying […] you’re effectively saying,

“Hey, instances of this template are going to have child objects. I

don’t know how many or what data type; it could be any number

and any data type.” Templates that can contain child objects are

called open templates and templates that cannot are called closed

templates. You’ll get a feel for exactly how this works when you look

further down in the file and see the templates in action. This is

explained in more detail in the next section.

Data Objects

Data objects make up the rest of an X file and are the main body.

This is where you actually store your own data, using objects based

upon your templates. The definition for an object based upon the

example MY_GAME_INFO template looks like this:

MY_GAME_INFO Game01

{

"My Test Game";

"Alan Thorn";

1;

}

Simple. To create an object based upon a template you first write

the template name, in this case MY_GAME_INFO. You can then

give the object a name by which it can be identified throughout the

file. The name is optional though. In this case I have used the name

Game01. You then use the opening and closing braces to mark the

beginning and end of the definition. Between them you define the

object’s properties line by line, each value corresponding to the

order you defined in the template. So the top member is game

name, which for object Game01 is "My Test Game." Remember to

use the " " symbols for strings; numbers and other objects do not

require these symbols. Also, be sure to end each line using a semi-

colon, like in C++.

156 Chapter 6: X Files — Loading and Saving Data

Parent and Child Objects

I mentioned earlier that X file objects can be stored in a hierarchy,

just like XML files or the files and folders on your hard disk. This

means that objects can contain other objects. We’ve already seen

that by using the […] symbol we can create a template for objects

to own none, one, or more children. The following extract from the

example X file shows how a level object contains several medi-kits.

These medi-kits are separate objects stored as child objects of the

level. You’ll notice it’s exactly the same as creating any other

object, except child objects are declared between the opening and

closing braces of the parent object.

MY_LEVEL Level01

{

"Level01";

MY_MEDI_KIT

{

5;

7;

13;

}

MY_MEDI_KIT

{

435;

757;

139;

}

}

Data Objects and References

The final object type to consider is the reference. This is like a

pointer to an object elsewhere in the file. A parent can contain

pointers to objects as its children, but it does not necessarily own

the object that is being referenced. The reference simply refers to

any object somewhere in the file. The examples we have been

working with thus far do not contain an example of references, but

they can be defined like this:

Chapter 6: X Files — Loading and Saving Data 157

C
h

a
p

te
r

6

MY_GAME_INFO Game01

{

"My Test Game";

"Alan Thorn";

1;

}

MY_LEVEL Level01

{

"Level01";

MY_MEDI_KIT

{

5;

7;

13;

}

MY_MEDI_KIT

{

435;

757;

139;

}

[Game01]

}

The reference [Game01] is a child of a level object but it references

the MY_GAME_INFO object further up in the file. As you can see,

it references an object by name. Later, when we cycle through all

the objects in an X file using the DirectX SDK, we’ll need to check

each object to assess whether it is a standard object or a reference

to another object.

158 Chapter 6: X Files — Loading and Saving Data

Standard Templates

Now that you’ve got an idea how the X file template system works,

you’ll be interested to know what kind of premade templates

DirectX provides for you. The standard templates and examples of

their syntax are listed below. For now we won’t be examining how

to use the standard templates specifically, although some are cov-

ered later. However, it’s good to know them and will provide

further insight into how you can define your own templates, which

is something we’ll do later in this chapter.

Chapter 6: X Files — Loading and Saving Data 159

C
h

a
p

te
r

6

Animation

AnimationKey

AnimationOptions

AnimationSet

AnimTicksPerSecond

Boolean

Boolean2d

ColorRGB

ColorRGBA

Coords2d

DeclData

EffectDWord

EffectFloats

EffectInstance

EffectParamDWord

EffectParamFloats

EffectParamString

EffectString

FaceAdjacency

FloatKeys

Frame

FrameTransformMatrix

FVFData

Guid

IndexedColor

Material

MaterialWrap

Matrix4x4

Mesh

MeshFace

MeshFaceWraps

MeshMaterialList

MeshNormals

MeshTextureCoords

MeshVertexColors

Patch

PatchMesh

PatchMesh9

PMAttributeRange

PMInfo

PMVSplitRecord

SkinWeights

TextureFilename

TimedFloatKeys

Vector

VertexDuplicationIndices

VertexElement

XSkinMeshHeader

template Animation

{

< 3D82AB4F-62DA-11cf-AB39-0020AF71E433 >

[...]

}

template AnimationKey

{

< 10DD46A8-775B-11CF-8F52-0040333594A3 >

DWORD keyType;

DWORD nKeys;

array TimedFloatKeys keys[nKeys];

}

template AnimationOptions

{

< E2BF56C0-840F-11cf-8F52-0040333594A3 >

DWORD openclosed;

DWORD positionquality;

}

template AnimationSet

{

< 3D82AB50-62DA-11cf-AB39-0020AF71E433 >

[Animation < 3D82AB4F-62DA-11cf-AB39-0020AF71E433 >]

}

template AnimTicksPerSecond

{

< 9E415A43-7BA6-4a73-8743-B73D47E88476 >

DWORD AnimTicksPerSecond;

}

template Boolean

{

< 537da6a0-ca37-11d0-941c-0080c80cfa7b >

DWORD truefalse;

}

template Boolean2d

160 Chapter 6: X Files — Loading and Saving Data

{

< 4885AE63-78E8-11cf-8F52-0040333594A3 >

Boolean u;

Boolean v;

}

template ColorRGB

{

< D3E16E81-7835-11cf-8F52-0040333594A3 >

float red;

float green;

float blue;

}

template ColorRGBA

{

< 35FF44E0-6C7C-11cf-8F52-0040333594A3 >

float red;

float green;

float blue;

float alpha;

}

template Coords2d

{

< F6F23F44-7686-11cf-8F52-0040333594A3 >

float u;

float v;

}

template DeclData

{

< BF22E553-292C-4781-9FEA-62BD554BDD93 >

DWORD nElements;

array VertexElement Elements[nElements];

DWORD nDWords;

array DWORD data[nDWords];

}

template EffectDWord

Chapter 6: X Files — Loading and Saving Data 161

C
h

a
p

te
r

6

{

< 622C0ED0-956E-4da9-908A-2AF94F3CE716 >

DWORD Value;

}

template EffectFloats

{

< F1CFE2B3-0DE3-4e28-AFA1-155A750A282D >

DWORD nFloats;

array float Floats[nFloats];

}

template EffectInstance

{

< E331F7E4-0559-4cc2-8E99-1CEC1657928F >

STRING EffectFilename;

[...]

}

template EffectParamDWord

{

< E13963BC-AE51-4c5d-B00F-CFA3A9D97CE5 >

STRING ParamName;

DWORD Value;

}

template EffectParamFloats

{

< 3014B9A0-62F5-478c-9B86-E4AC9F4E418B >

STRING ParamName;

DWORD nFloats;

array float Floats[nFloats];

}

template EffectParamString

{

< 1DBC4C88-94C1-46ee-9076-2C28818C9481 >

STRING ParamName;

STRING Value;

}

162 Chapter 6: X Files — Loading and Saving Data

template EffectString

{

< D55B097E-BDB6-4c52-B03D-6051C89D0E42 >

STRING Value;

}

template FaceAdjacency

{

< A64C844A-E282-4756-8B80-250CDE04398C >

DWORD nIndices;

array DWORD indices[nIndices];

}

template FloatKeys

{

< 10DD46A9-775B-11cf-8F52-0040333594A3 >

DWORD nValues;

array float values[nValues];

}

template Frame

{

< 3D82AB46-62DA-11CF-AB39-0020AF71E433 >

[...]

}

template FrameTransformMatrix

{

< F6F23F41-7686-11cf-8F52-0040333594A3 >

Matrix4x4 frameMatrix;

}

template FVFData

{

< B6E70A0E-8EF9-4e83-94AD-ECC8B0C04897 >

DWORD dwFVF;

DWORD nDWords;

array DWORD data[nDWords];

}

Chapter 6: X Files — Loading and Saving Data 163

C
h

a
p

te
r

6

template Guid

{

< a42790e0-7810-11cf-8f52-0040333594a3 >

DWORD data1;

WORD data2;

WORD data3;

array UCHAR data4[8];

}

template IndexedColor

{

< 1630B820-7842-11cf-8F52-0040333594A3 >

DWORD index;

ColorRGBA indexColor;

}

template Material

{

< 3D82AB4D-62DA-11CF-AB39-0020AF71E433 >

ColorRGBA faceColor;

FLOAT power;

ColorRGB specularColor;

ColorRGB emissiveColor;

[...]

}

template MaterialWrap

{

< 4885ae60-78e8-11cf-8f52-0040333594a3 >

Boolean u;

Boolean v;

}

template Matrix4x4

{

< F6F23F45-7686-11cf-8F52-0040333594A3 >

array float matrix[16];

}

164 Chapter 6: X Files — Loading and Saving Data

template Mesh

{

< 3D82AB44-62DA-11CF-AB39-0020AF71E433 >

DWORD nVertices;

array Vector vertices[nVertices];

DWORD nFaces;

array MeshFace faces[nFaces];

[...]

}

template MeshFace

{

< 3D82AB5F-62DA-11cf-AB39-0020AF71E433 >

DWORD nFaceVertexIndices;

array DWORD faceVertexIndices[nFaceVertexIndices];

}

template MeshFaceWraps

{

< ED1EC5C0-C0A8-11D0-941C-0080C80CFA7B >

DWORD nFaceWrapValues;

array Boolean2d faceWrapValues[nFaceWrapValues];

}

template MeshMaterialList

{

< F6F23F42-7686-11CF-8F52-0040333594A3 >

DWORD nMaterials;

DWORD nFaceIndexes;

array DWORD faceIndexes[nFaceIndexes];

[Material <3D82AB4D-62DA-11CF-AB39-0020AF71E433>]

}

template MeshNormals

{

< F6F23F43-7686-11cf-8F52-0040333594A3 >

DWORD nNormals;

array Vector normals[nNormals];

DWORD nFaceNormals;

array MeshFace meshFaces[nFaceNormals];

Chapter 6: X Files — Loading and Saving Data 165

C
h

a
p

te
r

6

}

template MeshTextureCoords

{

< F6F23F40-7686-11cf-8F52-0040333594A3 >

DWORD nTextureCoords;

array Coords2d textureCoords[nTextureCoords];

}

template MeshVertexColors

{

< 1630B821-7842-11cf-8F52-0040333594A3 >

DWORD nVertexColors;

array IndexColor vertexColors[nVertexColors];

}

template Patch

{

< A3EB5D44-FC22-429D-9AFB-3221CB9719A6 >

DWORD nControlIndices;

array DWORD controlIndices[nControlIndices];

}

template PatchMesh

{

< D02C95CC-EDBA-4305-9B5D-1820D7704BBF >

DWORD nVertices;

array Vector vertices[nVertices];

DWORD nPatches;

array Patch patches[nPatches];

[...]

}

template PatchMesh9

{

< B9EC94E1-B9A6-4251-BA18-94893F02C0EA >

DWORD Type;

DWORD Degree;

DWORD Basis;

DWORD nVertices;

166 Chapter 6: X Files — Loading and Saving Data

array Vector vertices[nVertices];

DWORD nPatches;

array Patch patches[nPatches];

[...]

}

template PMAttributeRange

{

< 917E0427-C61E-4a14-9C64-AFE65F9E9844 >

DWORD iFaceOffset;

DWORD nFacesMin;

DWORD nFacesMax;

DWORD iVertexOffset;

DWORD nVerticesMin;

DWORD nVerticesMax;

}

template PMInfo

{

< B6C3E656-EC8B-4b92-9B62-681659522947 >

DWORD nAttributes;

array PMAttributeRange attributeRanges[nAttributes];

DWORD nMaxValence;

DWORD nMinLogicalVertices;

DWORD nMaxLogicalVertices;

DWORD nVSplits;

array PMVSplitRecord splitRecords[nVSplits];

DWORD nAttributeMispredicts;

array DWORD attributeMispredicts[nAttributeMispredicts];

}

template PMVSplitRecord

{

< 574CCC14-F0B3-4333-822D-93E8A8A08E4C >

DWORD iFaceCLW;

DWORD iVlrOffset;

DWORD iCode;

}

template SkinWeights

Chapter 6: X Files — Loading and Saving Data 167

C
h

a
p

te
r

6

{

< 6F0D123B-BAD2-4167-A0D0-80224F25FABB >

STRING transformNodeName;

DWORD nWeights;

array DWORD vertexIndices[nWeights];

array float weights[nWeights];

Matrix4x4 matrixOffset;

}

template TextureFilename

{

< A42790E1-7810-11cf-8F52-0040333594A3 >

string filename;

}

template TimedFloatKeys

{

< F406B180-7B3B-11cf-8F52-0040333594A3 >

DWORD time;

FloatKeys tfkeys;

}

template Vector

{

< 3D82AB5E-62DA-11cf-AB39-0020AF71E433 >

float x;

float y;

float z;

}

template VertexDuplicationIndices

{

< B8D65549-D7C9-4995-89CF-53A9A8B031E3 >

DWORD nIndices;

DWORD nOriginalVertices;

array DWORD indices[nIndices];

}

template VertexElement

{

168 Chapter 6: X Files — Loading and Saving Data

< F752461C-1E23-48f6-B9F8-8350850F336F >

DWORD Type;

DWORD Method;

DWORD Usage;

DWORD UsageIndex;

}

template XSkinMeshHeader

{

< 3CF169CE-FF7C-44ab-93C0-F78F62D172E2 >

WORD nMaxSkinWeightsPerVertex;

WORD nMaxSkinWeightsPerFace;

WORD nBones;

}

Custom Templates

Probably one of the main reasons you’ll use X files is to store your

own data. To do this you’ll need to write your own templates, which

is a really simple thing to do now that you know how they work.

However, you may be wondering how to generate a valid unique

number, the GUID, for your templates. There are many applications

around that can generate this unique number for you at the touch of

a button. One of them is GUIDgen (guidgen.exe), a small utility

that comes with Microsoft Visual Studio. It can be found in the

common\tools folder where you installed Visual Studio. Give it a

Chapter 6: X Files — Loading and Saving Data 169

C
h

a
p

te
r

6

Figure 6.1

run, click the option for DEFINE_GUID, and then click the New

GUID button. Finally, click the Copy button and you will have cop-

ied a new unique ID to the clipboard. All you need to do now is

paste that ID into your template declaration and that’s it; simple.

Take a look at Figure 6.1.

Reading X Files Using DirectX

The best way to start using X files is to take an existing X file and

have your application read data from it. Conveniently, DirectX pro-

vides a number of interfaces to read X file data for you. However,

before you can compile your apps to use them, you’ll need to add

the following headers and libs to your C++ project.

Libs

d3dxof.lib

dxguid.lib

Includes

dxfile.h

initguid.h

rmxftmpl.h

rmxfguid.h

Preparing

To start working with X files — both reading and writing — you

need to create an ID3DXFile interface. This interface will act like a

manager that oversees the whole reading process. To create an

instance of this interface you’ll need to call the D3DXFileCreate

function. You don’t specify any actual filenames at this point; that

will occur later. The syntax and parameter for D3DXFileCreate

follow, and then an example.

STDAPI D3DXFileCreate

(

LPD3DXFILE *lplpDirectXFile

);

170 Chapter 6: X Files — Loading and Saving Data

LPD3DXFILE *lplpDirectXFile

Address to where an ID3DXFile pointer, representing a valid

object, is to be returned.

Sample code:

LPDIRECTXFILE File = NULL;

if(FAILED(D3DXFileCreate(&File)))

return;

Registering Templates

Once an X file object has been created you may need to tell DirectX

which templates your files will be using. Although I didn’t mention

it earlier, it’s possible to have an X file without any template decla-

rations at the top. This is because you could have many different X

files using the same templates, which would mean you’d have many

files with duplicate template declarations. To avoid this waste of

space, DirectX gives you the choice to omit template declarations

from your X files. However, this means as you load those files in

your app later, you’ll need to manually tell DirectX which templates

you use. On the other hand, if you include template declarations at

the tops of all your X files, as shown in the previous sections, you

won’t need to register templates since DirectX does this automati-

cally. If this is the case, you can skip this section.

To register one or more templates you use the RegisterTem-

plates method of ID3DXFile. Its syntax and parameters are shown

below, then an example follows.

HRESULT RegisterTemplates

(

LPVOID pvData,

DWORD cbSize

);

Chapter 6: X Files — Loading and Saving Data 171

C
h

a
p

te
r

6

LPVOID pvData

Pointer to a string that contains the X file templates to register.

This string will be exactly how the templates appear in the X

file.

DWORD cbSize

Size of string in bytes.

An example to register all the templates in our sample file shown

earlier would look as follows:

char *szTemplates = "xof 0302txt 0032\

template MY_GAME_INFO{\

<AA1308FD-FF98-4f6e-9A55-CD083178672F>\

STRING GameName;\

STRING GameMaker;\

DWORD Version;\

}\

template MY_LEVEL{\

<0FC92315-6897-4f03-B2BD-A6CE20065861>\

STRING LevelName;\

[...]\

}\

template MY_MEDI_KIT{\

<DACCED4A-433E-4fa3-91A6-2A8EA6B6D090>\

DWORD XPos;\

DWORD YPos;\

DWORD ZPos;\

}”;

File ->RegisterTemplates(szTemplates, strlen(szTemplates));

� NOTE. DirectX provides a premade buffer to register the standard

templates shown in an earlier section. To register these templates

you can call RegisterTemplates with the following params:

File ->RegisterTemplates((LPVOID)D3DRM_XTEMPLATES,

D3DRM_XTEMPLATE_BYTES);

172 Chapter 6: X Files — Loading and Saving Data

Opening a File

Once an ID3DXFile object has been created and after any templates

have been registered, you can then open an X file from disk to start

reading. To do this, you call the CreateEnumObject method of

ID3DXFile. This function returns a pointer to an ID3DXFile-

EnumObject interface, which represents the data in your file. The

next section will show you how to cycle through this data and read

from it. For now, though, let’s take a look at the syntax and parame-

ters for CreateEnumObject and then see an example of how to use

it.

HRESULT CreateEnumObject

(

LPVOID pvSource,

DXFILELOADOPTIONS dwLoadOptions,

ID3DXFileEnumObject **ppEnumObj

);

LPVOID pvSource

The source for the file. This can be a filename, memory

address, or something else. In most cases it will be a filename.

DXFILELOADOPTIONS dwLoadOptions

Specifies where the file is loaded from. This value can be one of

the following:

DXFILELOAD_FROMFILE

DXFILELOAD_FROMMEMORY

DXFILELOAD_FROMRESOURCE

DXFILELOAD_FROMSTREAM

DXFILELOAD_FROMURL

ID3DXFileEnumObject *ppEnumObj

Address of an enum pointer to where a valid object is returned.

This function can return one of the following return codes:

DXFILE_OK

DXFILEERR_BADALLOC

DXFILEERR_BADFILEFLOATSIZE

DXFILEERR_BADFILETYPE

Chapter 6: X Files — Loading and Saving Data 173

C
h

a
p

te
r

6

DXFILEERR_BADFILEVERSION

DXFILEERR_BADRESOURCE

DXFILEERR_BADVALUE

DXFILEERR_FILENOTFOUND

DXFILEERR_RESOURCENOTFOUND

DXFILEERR_URLNOTFOUND

The following code shows how to use the CreateEnumObject func-

tion to load an X file from a file on disk.

LPD3DXFILEENUMOBJECT EnumObject = NULL;

File->CreateEnumObject("MyXFile.X", DXFILELOAD_FROMFILE, &EnumObject);

Enumerating Top Objects

Once an enumeration object has been created you can then cycle

through X file data, object by object, and pick out what you need.

The enumeration object can be thought of as a linear list of all

top-level objects in the X file. By top level, I mean all objects that

may have children and do not have parents. Essentially, a single

object in the file is represented by an ID3DXFileData object, and

the enumeration object provides you with a list of these, one by

one. To enumerate through all top-level objects you must first

obtain the number of top-level objects, which can be retrieved by

calling the GetChildren method of ID3DXFileEnumObject. Once

you have retrieved the number of objects, you then call the

GetChild method of ID3DXFileEnumObject. This function

requires one parameter: the index of the child to retrieve. The syn-

tax and parameters for both GetChildren and GetChild appear

below, and then some code shows you how to enumerate through

all top-level objects.

HRESULT GetChildren

(

SIZE_T *puiChildren

);

174 Chapter 6: X Files — Loading and Saving Data

SIZE_T *puiChildren

Address to receive the number of top-level objects.

HRESULT GetChild

(

SIZE_T id,

ID3DXFileData **ppObj

);

SIZE_T id

Index of the object to retrieve.

ID3DXFileData **ppObj

Address to where the data object is returned.

Below is some code that uses the enumerator to cycle through

every top-level object in an X file.

SIZE_T Size = 0;

Enum->GetChildren(&Size);

for(SIZE_T Counter = 0; Counter < Size; Counter++)

{

LPD3DXFILEDATA DataObject = NULL;

Enum->GetChild(Counter, &DataObject);

//Do stuff here

DataObject->Release();

}

Enum->Release();

Enumerating Child Objects

You’ll remember that objects in an X file can have child objects.

Until now you’ve only seen how to enumerate top-level objects

using the X file enumerator. Now we will look at enumerating child

objects. Doing this is quite simple; in fact, it’s exactly the same as

Chapter 6: X Files — Loading and Saving Data 175

C
h

a
p

te
r

6

using the enumerator object to enumerate top-level objects. You

just call the GetChildren and GetChild methods of the

ID3DXFileData object. Remember, ID3DXFileData represents any

single data object in an X file. This means you’ll need to call

GetChildren on each ID3DXFileData object to check whether it has

children.

SIZE_T Size = 0;

Data->GetChildren(&Size);

for(SIZE_T Counter = 0; Counter < Size; Counter++)

{

LPD3DXFILEDATA DataObject = NULL;

Data->GetChild(Counter, &DataObject);

//Do stuff here

DataObject->Release();

}

Data->Release();

Processing Child Objects

As you cycle through child objects, you’ll notice they can be one of

two types: instanced or referenced. In other words, the object can

be either a normal data object or it can be a pointer to another

object elsewhere in the file. To check whether the object is an

actual object or just a reference, you can call the IsReference

method of ID3DXFileData.

bool IsReference = Data->IsReference();

Enumeration Overview

This section shows how the enumeration process can be divided

into two small functions. These two functions will allow you to enu-

merate through all the objects in an X file. The next sections

demonstrate how to actually read data from your objects.

176 Chapter 6: X Files — Loading and Saving Data

VOID OpenXFile(CString FileName)

{

LPD3DXFILE File = NULL;

if(FAILED(D3DXFileCreate(&File)))

return;

File->RegisterTemplates((LPVOID)D3DRM_XTEMPLATES, D3DRM_XTEMPLATE_BYTES);

LPD3DXFILEENUMOBJECT EnumObject = NULL;

If(FAILED(File->CreateEnumObject(FileName, DXFILELOAD_FROMFILE,

&EnumObject)))

return;

SIZE_T Size = 0;

EnumObject ->GetChildren(&Size);

for(SIZE_T Counter = 0; Counter < Size; Counter++)

{

LPD3DXFILEDATA DataObject = NULL;

EnumObject ->GetChild(Counter, &DataObject);

//Do stuff here

DataObject->Release();

}

EnumObject->Release();

File->Release();

}

VOID ProcessChildObjects(LPD3DXFILEDATA Data)

{

if(!Data)

return;

SIZE_T Size = 0;

Data ->GetChildren(&Size);

Chapter 6: X Files — Loading and Saving Data 177

C
h

a
p

te
r

6

for(SIZE_T Counter = 0; Counter < Size; Counter++)

{

LPD3DXFILEDATA DataObject = NULL;

Data ->GetChild(Counter, &DataObject);

//Do stuff here

DataObject->Release();

}

}

Getting Object Data

As you enumerate through objects in an X file you’ll want to read

data from them. Not surprisingly, you use the ID3DXFileData inter-

face to do this. The following sections explain how to extract

various pieces of information.

Object Names

The object name is the name you gave to an object in the X file; for

example, GAME01 or MYOBJECT. An object name is optional, so

some objects may have names and others may not. To get the name

of an ID3DXFileData object, you call its GetName method.

HRESULT GetName

(

LPSTR szName,

SIZE_T *puiSize

);

LPSTR szName

Pointer to an appropriately sized string to receive the object

name. This can be NULL if you just want to retrieve the size of

the string. This is useful to allow you to dynamically size your

string accordingly.

SIZE_T *puiSize

Address of a SIZE_T structure, which is the size of the string in

bytes.

178 Chapter 6: X Files — Loading and Saving Data

Sample code:

SIZE_T Size = 0;

Data->GetName(NULL, & Size);

char* String = new char[Size];

Data->GetName(String, & Size);

Object Types

You’ll also want to know whether an object is of a specific type. For

example, you may have an X file filled with objects of different

types — medi-kits, level objects, etc. So, it’ll be useful to take an

object and query it to see whether it’s a medi-kit or whatever. To

check an object type, you call the GetType method of

ID3DXFileData.

HRESULT GetType

(

const GUID *pType

);

const GUID *pType

Address to where the object’s GUID is returned.

This function returns a GUID (globally unique identifier) that cor-

responds to the template declaration in the X file. This allows you

to determine the data type of the object. Before we can check to

see whether an object is of a specific type, we’ll need to find a way

to hold our object’s GUIDs in code. This is so we’ll be able to com-

pare our returned GUID with something.

Let’s take our sample MY_GAME_INFO template, whose

GUID was generated by guidgen.exe as shown earlier in the

chapter.

template MY_GAME_INFO{

<CE1D5996-CA1D-4832-A6D9-C923EC39FC0F>

STRING GameName;

STRING GameMaker;

DWORD Version;

}

Chapter 6: X Files — Loading and Saving Data 179

C
h

a
p

te
r

6

When we copied this over from guidgen.exe, the text looked some-

thing like this:

// {CE1D5996-CA1D-4832-A6D9-C923EC39FC0F}

DEFINE_GUID(<<name>>,

0xce1d5996, 0xca1d, 0x4832, 0xa6, 0xd9, 0xc9, 0x23, 0xec, 0x39, 0xfc, 0xf);

To represent this GUID in our code we can copy some of this text

and paste it to the top of our source file. We’ll also need to fill in the

object name where it says <<name>>. Like this:

DEFINE_GUID(GUID_MYGAMEINFO, 0xce1d5996, 0xca1d, 0x4832, 0xa6, 0xd9,

0xc9, 0x23, 0xec, 0x39, 0xfc, 0xf);

� NOTE. DEFINE_GUID is macro that allows us to define GUIDs.

So now we can check whether an object is of type MYGAMEINFO,

like this:

GUID ObjectGUID;

Data->GetType(&ObjectGUID);

If(ObjectGUID == GUID_MYGAMEINFO)

{

//This object is of type MY_GAME_INFO

}

The standard GUIDs for normal mesh objects appear in the follow-

ing list.

180 Chapter 6: X Files — Loading and Saving Data

TID_D3DRMAnimation

TID_D3DRMAnimationKey

TID_D3DRMAnimationOptions

TID_D3DRMAnimationSet

TID_D3DRMAppData

TID_D3DRMBoolean

TID_D3DRMBoolean2d

TID_D3DRMCamera

TID_D3DRMColorRGB

TID_D3DRMColorRGBA

TID_D3DRMCoords2d

TID_D3DRMExternalVisual

TID_D3DRMFloatKeys

TID_D3DRMFrame

TID_D3DRMFramePosition

TID_D3DRMFrameRotation

TID_D3DRMFrameTransformMatrix

TID_D3DRMFrameVelocity

TID_D3DRMGuid

TID_D3DRMIndexedColor

Object Data

Other than object type and name, the most important thing you’re

going to want to know is what data an object actually contains. This

is really simple to do. To get the object data you must call the Lock

method of ID3DXFileData. This locks the object’s data buffer and

returns a pointer to the data. Once you’ve finished accessing the

data you must call the matching Unlock method. The syntax and

parameters for Lock appear below, and then some sample code

demonstrates how to access an object’s data.

HRESULT Lock

(

SIZE_T *pSize,

const VOID **ppData

);

Chapter 6: X Files — Loading and Saving Data 181

C
h

a
p

te
r

6

TID_D3DRMInfo

TID_D3DRMInlineData

TID_D3DRMLight

TID_D3DRMLightAttenuation

TID_D3DRMLightPenumbra

TID_D3DRMLightRange

TID_D3DRMLightUmbra

TID_D3DRMMaterial

TID_D3DRMMaterialAmbient-

Color

TID_D3DRMMaterialArray

TID_D3DRMMaterialDiffuse-

Color

TID_D3DRMMaterialEmissive-

Color

TID_D3DRMMaterialPower

TID_D3DRMMaterialSpecular-

Color

TID_D3DRMMaterialWrap

TID_D3DRMMatrix4x4

TID_D3DRMMesh

TID_D3DRMMeshFace

TID_D3DRMMeshFaceWraps

TID_D3DRMMeshMaterialList

TID_D3DRMMeshNormals

TID_D3DRMMeshTextureCoords

TID_D3DRMMeshVertexColors

TID_D3DRMProgressiveMesh

TID_D3DRMPropertyBag

TID_D3DRMRightHanded

TID_D3DRMStringProperty

TID_D3DRMTextureFilename

TID_D3DRMTextureReference

TID_D3DRMTimedFloatKeys

TID_D3DRMUrl

TID_D3DRMVector

SIZE_T *pSize

Address to receive the size of the locked data buffer.

const VOID **ppData

Address to receive a pointer to the data.

Below is some code to get an object’s data. Once the Lock function

has succeeded it’ll give you a buffer where all your data is stored.

To access this data you can manually increment through the bytes

and read in the data according to the order of your template, or you

can define a structure that matches your template and typecast the

buffer. The code below shows how to do this using the sample

MY_GAME_INFO template.

//Structure for MY_GAME_INFO matches the X file template

struct MY_GAME_INFO{

char* GameName;

char* GameMaker;

DWORD Version;

}

SIZE_T Size = 0;

MY_GAME_INFO* MyData = NULL;

Object->Lock((const void**)&MyData, &Size);

//Access data here

Object->Unlock();

Saving Data to X Files — Save Object

The last thing to cover in this chapter is how to save information to

an X file. This would be a useful way to store your saved games.

The first step is to create an ID3DXFile object, as shown earlier.

Once completed, you must create an ID3DXFileSaveObject inter-

face, which will be used to add data to your file. To do this, you call

the CreateSaveObject method of ID3DXFile. This function is

simple to use; you just pass it a filename to where your data should

182 Chapter 6: X Files — Loading and Saving Data

be saved, the format of the file (binary or text), and an address to

where the ID3DXFileSaveObject interface is to be returned.

HRESULT CreateSaveObject(

LPCVOID pData,

D3DXF_FILESAVEOPTIONS flags,

D3DXF_FILEFORMAT dwFileFormat,

ID3DXFileSaveObject **ppSaveObj

);

LPCVOID pData

Name of the file to create to which data is to be saved.

D3DXF_FILESAVEOPTIONS flags

Specifies the string format of the filename, which can be one of

the following parameters:

D3DXF_FILESAVE_TOFILE

D3DXF_FILESAVE_TOWFILE

D3DXF_FILEFORMAT dwFileFormat

Format of the X file, which can be any of the following

parameters:

D3DXF_FILEFORMAT_BINARY

D3DXF_FILEFORMAT_COMPRESSED

D3DXF_FILEFORMAT_TEXT

ID3DXFileSaveObject **ppSaveObj

Address to where a file save object is returned.

LPD3DXFILESAVEOBJECT Save = NULL;

pDXFile->CreateSaveObject("test.x", DXFILEFORMAT_TEXT, &Save);

Preparing

Before data can be saved, you must register any templates your file

will use. To register templates, you call the RegisterTemplates

function, which was shown earlier.

Chapter 6: X Files — Loading and Saving Data 183

C
h

a
p

te
r

6

Saving Data

Once you’ve registered your templates to the X file, you can start

putting in your data. You do this by creating ID3DXFileSaveData

objects. You fill them with your data and then link them together to

make a tree. You then save all the top-level objects. Don’t worry;

DirectX will cycle through every object, their children, and their

children, etc., and it’ll save those for you.

To create an ID3DXFileSaveData object you call the

CreateDataObject method of ID3DXFileSaveObject. This func-

tion allows you to give the object a name, tell it which template to

use, and assign it some data. On completion it returns a valid

ID3DXFileSaveData interface.

HRESULT CreateDataObject

(

REFGUID rguidTemplate,

LPCSTR szName,

const GUID *pguid,

DWORD cbSize,

LPVOID pvData,

ID3DXFileSaveData **ppObj

);

REFGUID rguidTemplate

GUID representing the ID of the template to use.

LPCSTR szName

Name of the object to create, or NULL if the object doesn’t

have a name.

const GUID *pguid

Most of the time you can pass NULL for this value.

DWORD cbSize

Size of the data object in bytes.

LPVOID pvData

Pointer to the buffer that actually contains the data.

184 Chapter 6: X Files — Loading and Saving Data

ID3DXFileSaveData **ppObj

Address to receive a valid pointer to a save data object.

Sample code:

MYGAMEINFO Info;

ZeroMemory(&Info, sizeof(MYGAMEINFO));

Info.Name = "Test";

Save->CreateDataObject(GUID_MYGAMEINFO, "Test", NULL, sizeof(Test),

&T, &Data);

Building the Tree

As you already know, objects in an X file are stored in a structured

hierarchy. That is, objects can have children, and they in turn may

contain other children. The way you build this hierarchy is remark-

ably simple. You just call the AddDataObject method of ID3DX-

FileSaveData. You call this on the parent object and you pass, as an

argument, a pointer to the object that is to become one of its chil-

dren. Its syntax and some sample code are shown below. The

parameters are the same as those for the AddDataObject function

seen in the previous section.

HRESULT AddDataObject(

REFGUID rguidTemplate,

LPCSTR szName,

const GUID *pId,

SIZE_T cbSize,

LPCVOID pvData,

ID3DXFileSaveData **ppObj

);

Sample code:

//Adds a new child object to a data object

Data-> AddDataObject(ChildData);

Chapter 6: X Files — Loading and Saving Data 185

C
h

a
p

te
r

6

Committing the Data

The final stage in saving X files is to actually flush the data to a file.

This sends your data to the actual X file on disk. To do this you call

the Save method of ID3DXFileSaveObject. You don’t need to save

all objects manually. This function will automatically cycle through

child objects and save them to the file for you. It requires no argu-

ments. You can save an object and all its children to file like this:

pSave->Save();

Conclusion

Hopefully this chapter has provided some excellent insight into

how X files work and will serve as an excellent model for storing

your own data as well as meshes. Before reading further in this

book I recommend taking some time to play around and explore X

files generally. A good way to practice would be to take an existing

X file, like Tiny.x provided with the Microsoft DirectX SDK, and

cycle through the objects.

186 Chapter 6: X Files — Loading and Saving Data

Chapter 7

Meshes

You may have guessed by now that once you move beyond render-

ing polygons, cubes, and other basic primitives, it becomes

considerably harder to represent complex shapes. For example, cre-

ating a 3D world with a house, some trees, and perhaps some hills

requires a lot of polygons, and I mean a lot. Creating these sorts of

shapes in code would just be too much hard work. The solution is

to use a 3D package to visually design the models and let it do the

hard work for you. Once the model is created, you can then export

each and every polygon, including its position and orientation, into

an X file. DirectX can then scan this file and load the model for you.

Another name for a 3D model is a mesh, and meshes form the sub-

ject matter for this chapter. This chapter explains how to:

� Create meshes using 3ds max

� Export meshes to an X file

� Load meshes into Direct3D

� Render meshes

� Scan through a mesh’s vertices

� Set a mesh’s FVF

� Interpolate between two keyframed meshes

187

What Are Meshes?

A mesh is a 3D model. So, if you wanted to have a dragon in your

game, or a spaceship, or even a car, each would be a separate mesh.

Nowadays, meshes are made from a complex arrangement of poly-

gons, which are faces defined by three vertices. A mesh is full of

these very small polygons juxtaposed together, this way and that, to

make shapes and models. Meshes will also have textures to make

them look more real, like green, slimy skin for a dragon or sexy

chrome bodywork for a futuristic car.

You can make a mesh in many ways. You could, if you really,

really wanted, manually type the coordinates for each and every

vertex in your mesh. Or, to make life simpler, you can use a 3D

package to design a mesh in a fraction of the time, using just your

mouse and some artistic ability. If you chose the former, I wish you

the very best of luck. If you chose the latter, however, the next sec-

tion explains some of the packages available to make these 3D

meshes.

How to Make Meshes

There are an enormous number of 3D packages out there to make

meshes for your games. Some of them are free, some of them are

cheap, and some are very expensive. Furthermore, some are very

simple to use while others are extremely complex. It is beyond the

scope of this book to teach you how to use these programs, but I

will point you in the right direction. This chapter briefly covers only

one of these 3D package’s methods for exporting your model to an

X file. Of the many programs you can find out there, I shall mention

a few (in no particular order):

� MilkShape 3D

� LightWave 3D

� 3D Studio MAX

� Maya

188 Chapter 7: Meshes

� Softimage

� Cinema 4D

� NOTE. To get more information about the 3D packages listed here,

see the recommended reading section at the back of this book.

This chapter looks more closely at 3ds max and exporting meshes

to the X file format using a freely available third-party plug-in called

Panda Exporter.

How to Export Meshes

I used 3ds max to produce the sample mesh in Figure 7.1. Using

MAX you can make the mesh and save it for use at a later time.

However, 3ds max 6 — the latest version at the time of publication

— does not come with any support to export meshes to the

DirectX X file format. To do this, you must either develop your own

Chapter 7: Meshes 189

C
h

a
p

te
r

7

Figure 7.1

plug-in (yuck!) or download one somebody else has already made.

In this chapter I use the Panda DirectX X file exporter from

Pandasoft. This plug-in can be downloaded from http://www.andy-

tather.co.uk/Panda/directxmax.htm. It is really simple to use and

provides a lot of flexibility over how you can export your meshes.

Once this file has been downloaded you simply copy it to the 3ds

max plug-in directory and then load up MAX. To use this plug-in,

you select a mesh to export in your scene and click the File |

Export option. Select .X as the format to save and you’ll be pre-

sented with a screen very much like Figure 7.2.

� NOTE. Don’t worry about bones, frames, etc., at this point; this

chapter only deals with static meshes, that is, meshes that are not

animated. Animation is covered later in this book.

Testing Your Mesh

Before loading an exported mesh into your application using

Direct3D you can use the DirectX Mesh Viewer application to view

the mesh. This program allows you to see your mesh and rotate a

camera around to see it from any angle. This is useful for checking

whether the mesh exported properly from your 3D package.

� NOTE. Sometimes Mesh Viewer does not work properly when view-

ing animated meshes.

190 Chapter 7: Meshes

Figure 7.2

Meshes in Direct3D

Direct3D represents a single, static mesh using the ID3DXMesh

interface. This interface keeps track of all the mesh’s vertices,

faces, and adjacency data. There are two common ways you can

load a mesh into Direct3D. The next two sections explain each

method.

� NOTE. To see more on loading meshes, take a look at the SDK

examples (Tutorial 6).

Loading Meshes from X Files

The simplest way to load a mesh is straight from an X file. This

method works fine if there’s only one mesh in your X file or you

want DirectX to load in all the mesh data from the file and treat it as

one single mesh. The DirectX SDK comes with some good exam-

ples of single meshes in files, such as the tiger.x file. To load a mesh

from a file, you call the D3DXLoadMeshFromX function. This

function accepts a filename for the X file and returns a valid

ID3DXMesh interface representing the loaded data. It also returns

a number of other buffers containing material and texture informa-

tion. Don’t worry about these for now; they will be processed later.

After the mesh has been loaded, you’ll get an ID3DXMesh inter-

face. The syntax and parameters for D3DXLoadMeshFromX follow,

and then I’ll show you some sample code to load a mesh.

HRESULT WINAPI D3DXLoadMeshFromX

(

LPCTSTR pFilename,

DWORD Options,

LPDIRECT3DDEVICE9 pD3DDevice,

LPD3DXBUFFER *ppAdjacency,

LPD3DXBUFFER *ppMaterials,

LPD3DXBUFFER *ppEffectInstances,

DWORD *pNumMaterials,

Chapter 7: Meshes 191

C
h

a
p

te
r

7

LPD3DXMESH *ppMesh

);

LPCTSTR pFilename

Filename of the X file to open.

DWORD Options

This can be one or more of the following options:

D3DXMESH_32BIT

D3DXMESH_DONOTCLIP

D3DXMESH_DYNAMIC

D3DXMESH_IB_DYNAMIC

D3DXMESH_IB_MANAGED

D3DXMESH_IB_SOFTWAREPROCESSING

D3DXMESH_IB_SYSTEMMEM

D3DXMESH_IB_WRITEONLY

D3DXMESH_MANAGED

D3DXMESH_NPATCHES

D3DXMESH_POINTS

D3DXMESH_RTPATCHES

D3DXMESH_SOFTWAREPROCESSING

D3DXMESH_SYSTEMMEM

D3DXMESH_USEHWONLY

D3DXMESH_VB_DYNAMIC

D3DXMESH_VB_MANAGED

D3DXMESH_VB_SHARE

D3DXMESH_VB_SOFTWAREPROCESSING

D3DXMESH_VB_SYSTEMMEM

D3DXMESH_VB_WRITEONLY

D3DXMESH_WRITEONLY

This parameter is used to specify various creation options for

the mesh. Typically you will pass D3DXMESH_SYSTEMMEM.

LPDIRECT3DDEVICE9 pD3DDevice

Pointer to the Direct3D device used to create the mesh.

LPD3DXBUFFER *ppAdjacency

Address to receive a buffer containing polygonal adjacency

information.

192 Chapter 7: Meshes

LPD3DXBUFFER *ppMaterials

Address to receive material information.

LPD3DXBUFFER *ppEffectInstances

Address to receive a buffer of effect instances. This subject is

not covered in this book. Just pass NULL.

DWORD *pNumMaterials

Address to receive the number of materials in the buffer

ppMaterials.

LPD3DXMESH *ppMesh

Address to receive a valid ID3DXMesh interface.

Sample code:

LPD3DXBUFFER pD3DXMtrlBuffer = NULL; //Array of materials

DWORD dwNumMaterials = 0; //Number of materials

LPD3DXMESH pMesh = NULL; //Mesh

D3DXLoadMeshFromX("Mesh.x", D3DXMESH_SYSTEMMEM,

g_pd3dDevice, NULL,

&pD3DXMtrlBuffer, NULL, &dwNumMaterials,

&pMesh);

Loading Meshes from X File Data Objects

The second method of loading a mesh is preferred if you may have

more than one mesh in a single X file or your file contains more

than just mesh data. For example, you could specify that your game

files store data about the levels and position of medi-kits, and also

contain each mesh that’ll appear in every level. If so, it’s likely

you’ll want to:

� Cycle through the objects in your X file (as shown in the previ-

ous chapter)

� Check whether the object is a mesh object

� For every mesh object call D3DXLoadMeshFromXof

D3DXLoadMeshFromXof takes an IDirectXFileData object and

returns a valid mesh, ID3DXMesh. Remember, an IDirectXFileData

Chapter 7: Meshes 193

C
h

a
p

te
r

7

is a valid data object contained in an X file. X files can have none,

one, or more data objects, and each object may have none, one, or

more child objects. D3DXLoadMeshFromXof is almost identical to

D3DXLoadMeshFromX, except it doesn’t require a filename;

instead, it requires an IDirectXFileData pointer representing a valid

data object and which is also a mesh. The syntax and parameters

for D3DXLoadMeshFromXof are listed below.

HRESULT WINAPI D3DXLoadMeshFromXof(

LPD3DXFILEDATA pxofMesh,

DWORD Options,

LPDIRECT3DDEVICE9 pD3DDevice,

LPD3DXBUFFER *ppAdjacency,

LPD3DXBUFFER *ppMaterials,

LPD3DXBUFFER *ppEffectInstances,

DWORD *pNumMaterials,

LPD3DXMESH *ppMesh

);

LPD3DXFILEDATA pxofMesh

Pointer to an X file data object.

DWORD Options

This can be one or more of the following options:

D3DXMESH_32BIT

D3DXMESH_DONOTCLIP

D3DXMESH_DYNAMIC

D3DXMESH_IB_DYNAMIC

D3DXMESH_IB_MANAGED

D3DXMESH_IB_SOFTWAREPROCESSING

D3DXMESH_IB_SYSTEMMEM

D3DXMESH_IB_WRITEONLY

D3DXMESH_MANAGED

D3DXMESH_NPATCHES

D3DXMESH_POINTS

D3DXMESH_RTPATCHES

D3DXMESH_SOFTWAREPROCESSING

D3DXMESH_SYSTEMMEM

194 Chapter 7: Meshes

D3DXMESH_USEHWONLY

D3DXMESH_VB_DYNAMIC

D3DXMESH_VB_MANAGED

D3DXMESH_VB_SHARE

D3DXMESH_VB_SOFTWAREPROCESSING

D3DXMESH_VB_SYSTEMMEM

D3DXMESH_VB_WRITEONLY

D3DXMESH_WRITEONLY

This parameter is used to specify various creation options for

the mesh. Typically you will pass D3DXMESH_SYSTEMMEM.

LPDIRECT3DDEVICE9 pD3DDevice

Pointer to the Direct3D device used to create the mesh.

LPD3DXBUFFER *ppAdjacency

Address to receive a buffer containing polygonal adjacency

information.

LPD3DXBUFFER *ppMaterials

Address to receive material information.

LPD3DXBUFFER *ppEffectInstances

Address to receive a buffer of effect instances. This subject is

not covered in this book. Just pass NULL.

DWORD *pNumMaterials

Address to receive the number of materials in the buffer

ppMaterials.

LPD3DXMESH *ppMesh

Address to receive a valid ID3DXMesh interface.

The code below shows how, on every iteration of an X file data

object, you can check its GUID to determine whether it’s a mesh

object. If so, you pass it to D3DXLoadMeshFromXof and it returns

a valid mesh.

const GUID *pType = NULL;

if(FAILED(pDXData->GetType(&pType)))

return false;

Chapter 7: Meshes 195

C
h

a
p

te
r

7

if(*pType == TID_D3DRMMesh)

{

MessageBox(NULL, "", "Mesh was found", MB_OK);

}

Mesh Materials and Textures

Loading your mesh, whether from a file with D3DXLoadMesh-

FromX or from a data object with D3DXLoadMeshFromXof, is just

the beginning. At this stage you will have a bunch of buffers and an

ID3DXMesh interface. ID3DXMesh represents the mesh’s raw

data, such as the XYZ position of vertices, transparency informa-

tion, and other structural data. The other buffers represent

materials and textures, and we’ll need to process this information if

we expect the mesh to render properly. If you need a recap on

materials and textures, take a look at Chapter 5. In short, materials

tell Direct3D how the mesh appears when lit, and textures are

actual images that cover the model to make it look more realistic,

like it’s made from real-life objects.

Once the mesh has been loaded, the first thing you’ll need to do

is create an array of material and texture objects large enough to

hold the materials and textures of the mesh. You’ll notice from the

syntax and parameters in previous sections that each of the mesh

loading functions, D3DXLoadMeshFromX and D3DXLoadMesh-

FromXof, return the number of textures and materials contained in

the mesh. This was returned in pNumMaterials. So allocating

memory for them is simple. The code to do this follows (where

g_dwNumMaterials represents the returned number of materials).

g_pMeshMaterials = new D3DMATERIAL9[g_dwNumMaterials];

g_pMeshTextures = new LPDIRECT3DTEXTURE9[g_dwNumMaterials];

Next, we’ll need to grab all the material and texture information

about the mesh so we can populate our material and texture arrays

with useful information. You’ll notice each mesh loading function

returns all its material and texture data in a buffer, ppMaterials.

This buffer is represented by the ID3DXBuffer interface.

196 Chapter 7: Meshes

Essentially, this specific buffer is an array of D3DXMATERIAL

structures representing the mesh’s material data. To get a pointer

to the beginning of this array, we call the GetBufferPointer

method of ID3DXBuffer. It requires no arguments and can be called

like this:

D3DXMATERIAL* d3dxMaterials = (D3DXMATERIAL*)pD3DXMtrlBuffer->

GetBufferPointer();

The D3DXMATERIAL structure contains two members: a

D3DMATERIAL9 member (as explained in Chapter 5), which is the

actual material; and a string, which is the filename of a texture to

load from disk. The structure looks like this:

typedef struct D3DXMATERIAL {

D3DMATERIAL9 MatD3D;

LPSTR pTextureFilename;

} D3DXMATERIAL;

Now, let’s actually fill your arrays with something useful. The

objective here is simple: You just loop through each material and

texture in your arrays, which you created earlier. (Remember, both

arrays are the same size.) Then, on every iteration, you copy the

corresponding material from the buffer to the material in your

array, and you also create a texture from the file specified by

pTextureFilename and assign it to the texture in your array. It’s

that simple. Once the loop has completed, you’ll have an array of

materials and textures suitable for your loaded mesh. The following

code shows this process in action.

//Loop for all materials and textures

for(DWORD i=0; i<g_dwNumMaterials; i++)

{

// Copy the material from the buffer to your array

g_pMeshMaterials[i] = d3dxMaterials[i].MatD3D;

// Set the ambient color for the material

// Don’t worry about the technical reasons for this

// Many 3D modeling apps export the ambient color in the diffuse

g_pMeshMaterials[i].Ambient = g_pMeshMaterials[i].Diffuse;

Chapter 7: Meshes 197

C
h

a
p

te
r

7

//Set the texture to NULL

g_pMeshTextures[i] = NULL;

if(d3dxMaterials[i].pTextureFilename != NULL &&

lstrlen(d3dxMaterials[i].pTextureFilename) > 0)

{

D3DXCreateTextureFromFile(g_pd3dDevice,

d3dxMaterials[i].pTextureFilename,

&g_pMeshTextures[i]);

}

}

That’s it. That’s all there is to loading a mesh. You first load the

mesh from a file or data object, which gives you an ID3DXMesh

interface. Then you create an array for the mesh’s materials and

textures. Now you’re actually ready to render your mesh. Before

moving on, then, the following code shows the complete mesh load-

ing routine for loading a single mesh from an X file.

LPD3DXBUFFER pD3DXMtrlBuffer;

// Load the mesh from the specified file

D3DXLoadMeshFromX("Tiger.x", D3DXMESH_SYSTEMMEM,

g_pd3dDevice, NULL, &pD3DXMtrlBuffer, NULL,

&g_dwNumMaterials, &g_pMesh) ;

D3DXMATERIAL* d3dxMaterials = (D3DXMATERIAL*)pD3DXMtrlBuffer->

GetBufferPointer();

g_pMeshMaterials = new D3DMATERIAL9[g_dwNumMaterials];

g_pMeshTextures = new LPDIRECT3DTEXTURE9[g_dwNumMaterials];

for(DWORD i=0; i<g_dwNumMaterials; i++)

{

// Copy the material

g_pMeshMaterials[i] = d3dxMaterials[i].MatD3D;

// Set the ambient color for the material (D3DX does not do this)

g_pMeshMaterials[i].Ambient = g_pMeshMaterials[i].Diffuse;

198 Chapter 7: Meshes

g_pMeshTextures[i] = NULL;

if(d3dxMaterials[i].pTextureFilename != NULL &&

lstrlen(d3dxMaterials[i].pTextureFilename) > 0)

{

// Create the texture

if(FAILED(D3DXCreateTextureFromFile(g_pd3dDevice,

d3dxMaterials[i].pTextureFilename,

&g_pMeshTextures[i])))

}

}

// Done with the material buffer

pD3DXMtrlBuffer->Release();

Rendering Meshes

Now it’s time to bring your mesh to life and show it on screen. Ren-

dering a mesh is a simple process. You just need to be aware that a

mesh is made up from subsets. A subset is a collection of polygons,

and each subset in the mesh is grouped by texture. So there are as

many subsets in the mesh as there are textures — one subset per

texture. In other words, all the polygons in subset 1 will share the

same texture, and those in subset 2 will share the same texture,

and so on.

When you render a mesh you render it subset by subset, every

frame. Effectively, all you need to do is loop through each subset in

the mesh, set the Direct3D device’s texture and material to the

corresponding array element in your material and texture array, and

then finally render the subset. If that sounds complicated, don’t

worry; it’s not. The following code demonstrates just how easy it

really is.

for(DWORD i=0; i<g_dwNumMaterials; i++)

{

// Set the material and texture for this subset

g_pd3dDevice->SetMaterial(&g_pMeshMaterials[i]);

g_pd3dDevice->SetTexture(0, g_pMeshTextures[i]);

Chapter 7: Meshes 199

C
h

a
p

te
r

7

// Draw the mesh subset

g_pMesh->DrawSubset(i);

}

The most noticeable line in the above code fragment contains a call

to the DrawSubset method of ID3DXMesh. This renders a specific

mesh’s subset. It requires only one parameter: the number of the

subset to render.

� NOTE. Remember, meshes are affected by world transformations like

any other geometry. So you can use matrices to scale, move, and

rotate your meshes.

Cleaning Up Meshes

You’re probably seeing by now that meshes are simple to use.

Cleaning up meshes is no more difficult either. It’s important, how-

ever, to know that you’re not just freeing the ID3DXMesh

interface, you’re also freeing the textures and materials. The code

to free a mesh and associated textures and materials looks like this:

if(g_pMeshMaterials != NULL)

delete[] g_pMeshMaterials;

if(g_pMeshTextures)

{

for(DWORD i = 0; i < g_dwNumMaterials; i++)

{

if(g_pMeshTextures[i])

g_pMeshTextures[i]->Release();

}

delete[] g_pMeshTextures;

}

if(g_pMesh != NULL)

g_pMesh->Release();

200 Chapter 7: Meshes

More on Meshes

The previous sections have demonstrated how to load a mesh, load

and store its materials and textures, and then render it to the

screen. This means you can go ahead and model your goblins,

robots, and whatever other creatures will appear in your game. You

now have sufficient knowledge to load them into your DirectX pro-

jects and position them in a 3D world.

The remaining sections of this chapter will refine your knowl-

edge of meshes and explain how to perform more complicated tasks

with them. Before proceeding, however, it’s a good idea to ensure

you’re familiar with the mesh concepts already presented.

Meshes and Vertex Buffers

It’s already been explained that a mesh is an arrangement of poly-

gons, and a polygon is represented by three vertices. In essence,

therefore, a mesh, at its most basic level, is a collection of vertices.

Like every other polygon and geometric object in DirectX, meshes

store their vertices in a vertex buffer (explained in Chapter 4). Sim-

ply put, a vertex buffer is an array of vertices.

On occasion, especially if you want to dynamically adjust your

meshes at run time, in code, you might want to access the vertices

in this buffer and change them. For example, if you wanted to make

a goblin’s nose gradually longer over time, you could cycle through

the mesh’s vertex buffer on every frame and increment the nose

vertices’ XYZ position. This would give the impression of the nose

changing size over time.

To access a mesh’s vertex buffer you call the GetVertexBuffer

method of ID3DXMesh. It requires only one parameter: an address

to receive an IDirect3DVertexBuffer9 pointer representing the

mesh’s vertex buffer. Once you have this, you can access the

mesh’s vertices like you would any normal vertex buffer. This pro-

cess of locking and unlocking vertex buffers was explained in

Chapter 4. The following code obtains a mesh’s vertex buffer.

Chapter 7: Meshes 201

C
h

a
p

te
r

7

LPDIRECT3DVERTEXBUFFER9 VertexBuffer = NULL;

g_pMesh->GetVertexBuffer(&VertexBuffer);

� NOTE. You can find out how many vertices are in a mesh’s vertex

buffer by calling the GetNumVertices method of ID3DXMesh.

Meshes and FVFs

Fine, so you know how to access a mesh’s vertex buffer; that’s

good. However, there’s a problem. You’ll remember from Chapter 4

that vertices are stored using a flexible vertex format (FVF). This

means vertices can contain all kinds of data — position data, color

data, texture data, and the list goes on. Some vertices may contain

only the bare minimum, while other vertices may be more complex.

Furthermore, the programs to create meshes — like 3ds max and

LightWave — vary greatly and, depending on the mesh itself, the

vertex format is likely to differ from one mesh to another. Simply

put, this means that after loading in your mesh, you can’t immedi-

ately tell which format its vertices are in. So, as you cycle through

your vertex buffer to read in each vertex, you won’t know the size

of each one (the stride), meaning you won’t know where one vertex

ends and the next begins.

There are several ways to handle this problem. First, you can

manually work out the FVF of any mesh and thus determine what

data its vertices contain. To do this, you call the GetFVF method of

ID3DXMesh. This function requires no parameters and returns a

DWORD, which is the FVF descriptor. For more information on

FVFs, please refer to Chapter 4. The code below retrieves a mesh’s

FVF.

DWORD FVF = g_Mesh->GetFVF();

� NOTE. To get the actual size in bytes of the data structure used to

hold information matching this FVF vertex format, you can call

D3DXGetFVFVertexSize.

The second way to handle this problem is to programmatically cre-

ate a cloned mesh (a duplicate mesh) and set its FVF to an FVF you

specify. That’s right; you can say, “Hey Direct3D, I have my own

202 Chapter 7: Meshes

FVF and I want to create a duplicate mesh in memory that uses my

FVF for all its vertices.” This way you can know the exact format of

a mesh’s vertices, and iterating through them in the vertex buffer

will be quite simple. This means that in future operations — such

as iterating through the vertex buffer or animating — you’ll be

dealing with the cloned mesh, not the original mesh. To create a

cloned mesh that is set to an FVF of your choosing, you call the

CloneMeshFVF method of ID3DXMesh. This function requires

several parameters, including the FVF descriptor the closed mesh

will use and an address to receive an ID3DXMesh pointer repre-

senting the cloned mesh. The syntax and parameters for

CloneMeshFVF are listed below, and then some sample code dem-

onstrates how this function can be used.

HRESULT CloneMeshFVF(

DWORD Options,

DWORD FVF,

LPDIRECT3DDEVICE9 pDevice,

LPD3DXMESH *ppCloneMesh

);

DWORD Options

Options for the cloned mesh. Typically you will use a value such

as D3DXMESH_SYSTEMMEM. This value can be any of the

following:

D3DXMESH_32BIT

D3DXMESH_DONOTCLIP

D3DXMESH_DYNAMIC

D3DXMESH_IB_DYNAMIC

D3DXMESH_IB_MANAGED

D3DXMESH_IB_SOFTWAREPROCESSING

D3DXMESH_IB_SYSTEMMEM

D3DXMESH_IB_WRITEONLY

D3DXMESH_MANAGED

D3DXMESH_NPATCHES

D3DXMESH_POINTS

D3DXMESH_RTPATCHES

D3DXMESH_SOFTWAREPROCESSING

D3DXMESH_SYSTEMMEM

Chapter 7: Meshes 203

C
h

a
p

te
r

7

D3DXMESH_USEHWONLY

D3DXMESH_VB_DYNAMIC

D3DXMESH_VB_MANAGED

D3DXMESH_VB_SHARE

D3DXMESH_VB_SOFTWAREPROCESSING

D3DXMESH_VB_SYSTEMMEM

D3DXMESH_VB_WRITEONLY

D3DXMESH_WRITEONLY

DWORD FVF

FVF descriptor the cloned mesh is to use.

LPDIRECT3DDEVICE9 pDevice

Pointer to a Direct3D device.

LPD3DXMESH *ppCloneMesh

Address to receive a cloned mesh.

Sample code:

LPD3DXMESH ClonedMesh = NULL;

g_Mesh->CloneMeshFVF(D3DXMESH_SYSTEMMEM, My_Custom_FVF, g_pD3DDevice,

&ClonedMesh);

Bounding Boxes and Spheres

When you produce your own games and begin to use meshes for

your game characters you’ll want to know how to perform collision

detection. Wait a second. What’s collision detection? Well, the

actual process and calculations behind collision detection are

beyond the scope of this book, but briefly, collision detection is being

able to determine when your meshes and objects touch things. For

example, if the player uses the arrow keys to move a character

around a room he might move the character into objects like desks,

walls, chairs, etc. Now, in most cases, it would look rather stupid if

your character could walk straight through walls. Most of the time

you’ll want to block the character’s path and prevent it from walk-

ing through solid items. Thus, you’ll need to determine when the

204 Chapter 7: Meshes

character touches a wall or some other object, like another charac-

ter. Once you determine when a collision has occurred, you can

prevent any further movement closer to the object to make your

game more realistic.

There are many ways collision detection can be performed;

some are very fast and others very slow. For example, if you

wanted to test whether a character mesh has collided with an

enemy character you could do the following:

Cycle through every vertex in your character’s vertex buffer

and test to see whether any vertex falls between any other vertices

in the enemy’s vertex buffer. If it does, then a collision has

occurred. If not, then both meshes are a sufficient distance from

one another.

The biggest problem with this method concerns its speed. It’s

very, very slow, especially when you’re performing this kind of cal-

culation every frame. It simply isn’t feasible to check every vertex

in a scene against every other vertex just to see whether a collision

has occurred. In most cases a collision won’t have happened, so

such processing would simply be a waste.

One good alternative, which gets around checking every vertex

although it isn’t quite as accurate, is to use a bounding box or

bounding sphere. Both are ways to approximate the shape of your

mesh. Consider Figures 7.3 and 7.4. A bounding box is an invisible

box surrounding your mesh and is sized to the greatest extents of

the mesh. A bounding sphere is an invisible sphere that surrounds

your mesh. You only need to use one of these — either a bounding

box or bounding sphere. Now, let’s say we’re using bounding

spheres. If you generate a bounding sphere for each mesh in your

level, you can determine whether a collision occurred by quickly

comparing the spheres, rather than the meshes, to see whether

they intersect. By comparing an approximated box or sphere, you

can easily tell whether two meshes collide.

Chapter 7: Meshes 205

C
h

a
p

te
r

7

To generate a bounding box for a mesh you call the D3DXCom-

puteBoundingBox function. This function requires:

� A pointer to the first vertex in the mesh’s vertex buffer

� The total number of the vertices in the mesh’s vertex buffer

� The size in bytes of each vertex

This function returns two 3D vectors that describe the bounding

box. One vector represents the bottom-left corner of the bounding

box, and the other vector represents the top-right corner of the

bounding box. The syntax and parameters for D3DXCompute-

BoundingBox follow, and then some code that demonstrates how to

use this function.

206 Chapter 7: Meshes

Figure 7.3:
Bounding box

Figure 7.4:
Bounding sphere

HRESULT WINAPI D3DXComputeBoundingBox(

const D3DXVECTOR3 *pFirstPosition,

DWORD NumVertices,

DWORD dwStride,

D3DXVECTOR3 *pMin,

D3DXVECTOR3 *pMax

);

const D3DXVECTOR3 *pFirstPosition

Pointer to the first vertex in the mesh’s vertex buffer.

DWORD NumVertices

The number of vertices in the mesh’s vertex buffer. You can

find out how many vertices are in a mesh’s vertex buffer by

calling the GetNumVertices method of ID3DXMesh. It requires

no parameters and returns the number of vertices in the

mesh’s vertex buffer.

DWORD dwStride

The size in bytes of a single vertex in the vertex buffer. You can

find the size of any vertex from an FVF by calling the

D3DXGetFVFVertexSize function. It requires one parameter:

the FVF DWORD descriptor.

D3DXVECTOR3 *pMin

Address of a D3DXVECTOR3 structure to receive the bottom-

left corner of the computed bounding box.

D3DXVECTOR3 *pMax

Address of a D3DXVECTOR3 structure to receive the top-right

corner of the computed bounding box.

Sample code:

LPDIRECT3DVERTEXBUFFER9 VertexBuffer = NULL;

D3DXVECTOR3* Vertices = NULL;

D3DXVECTOR3 LowerLeftCorner;

D3DXVECTOR3 UpperRightCorner;

DWORD FVFVertexSize = D3DXGetFVFVertexSize(g_pMesh->GetFVF());

g_pMesh->GetVertexBuffer(&VertexBuffer);

VertexBuffer->Lock(0,0, (VOID**) &Vertices, D3DLOCK_DISCARD);

Chapter 7: Meshes 207

C
h

a
p

te
r

7

D3DXComputeBoundingBox(Vertices, g_pMesh->GetNumVertices(),

FVFVertexSize, &LowerLeftCorner,

&UpperRightCorner);

VertexBuffer->Unlock();

VertexBuffer->Release();

To generate a bounding sphere you call the D3DXCompute-

BoundingSphere function. This function requires exactly the

same arguments as D3DXComputeBoundingBox, except it does not

return two vectors. Instead, it returns a single vector, which repre-

sents the center point of the bounding sphere, and a distance from

the center to the edge (radius) of the sphere. The syntax and

parameters for D3DXComputeBoundingSphere follow, then some

sample code.

HRESULT WINAPI D3DXComputeBoundingSphere(

const D3DXVECTOR3 *pFirstPosition,

DWORD NumVertices,

DWORD dwStride,

D3DXVECTOR3 *pCenter,

FLOAT *pRadius

);

const D3DXVECTOR3 *pFirstPosition

Pointer to the first vertex in the vertex buffer.

DWORD NumVertices

Number of vertices in the vertex buffer.

DWORD dwStride

Size in bytes of a single vertex.

D3DXVECTOR3 *pCenter

Address of a D3DXVECTOR3 structure to receive the center of

the sphere.

FLOAT *pRadius

Address of a FLOAT to receive the radius of the sphere.

208 Chapter 7: Meshes

Sample code:

LPDIRECT3DVERTEXBUFFER9 VertexBuffer = NULL;

D3DXVECTOR3* Vertices = NULL;

D3DXVECTOR3 Center;

FLOAT Radius;

DWORD FVFVertexSize = D3DXGetFVFVertexSize(g_pMesh->GetFVF());

g_pMesh->GetVertexBuffer(&VertexBuffer);

VertexBuffer->Lock(0,0, (VOID**) &Vertices, D3DLOCK_DISCARD);

D3DXComputeBoundingSphere(Vertices, g_pMesh->GetNumVertices(),

FVFVertexSize, &Center, &Radius);

VertexBuffer->Unlock();

Rays Intersecting Meshes

Another useful thing to know is how to determine whether a ray

intersects a mesh. When I say ray I mean an infinite line in 3D

space. It has a start point and a normalized direction vector, indicat-

ing in which direction the ray extends. It’ll also be useful to

calculate at exactly which point a ray intersects a mesh. This is

especially helpful if you’re creating a shooting game and want to

know whether a character has been hit by a weapon like a ray gun.

See Figure 7.5 to see what I mean.

To determine whether a ray intersects a mesh you call the

D3DXIntersect function. This function requires several argu-

ments, including a pointer to the mesh to check for intersection,

the starting point of the ray, and the direction of the ray. This

Chapter 7: Meshes 209

C
h

a
p

te
r

7

Figure 7.5

function returns a Boolean value indicating whether an intersection

occurred. It also can return additional values, such as the distance

along the ray where intersection occurs and an array of points rep-

resenting every location on the mesh where intersection occurs.

The syntax and parameters for D3DXIntersect follow. Then some

sample code.

HRESULT WINAPI D3DXIntersect(

LPD3DXBASEMESH pMesh,

const D3DXVECTOR3 *pRayPos,

const D3DXVECTOR3 *pRayDir,

BOOL *pHit,

DWORD *pFaceIndex,

FLOAT *pU,

FLOAT *pV,

FLOAT *pDist,

LPD3DXBUFFER *ppAllHits,

DWORD *pCountOfHits

);

LPD3DXBASEMESH pMesh

Pointer to a mesh to check for intersection.

const D3DXVECTOR3 *pRayPos

Starting point of the ray.

const D3DXVECTOR3 *pRayDir

Normalized vector representing the direction of the ray.

BOOL *pHit

Address of a Boolean to receive True or False, indicating

whether the ray intersects the mesh.

DWORD *pFaceIndex

If an intersection occurs, this value indicates which polygon the

ray passes through.

FLOAT *pU

Pointer to a barycentric hit coordinate. This value is beyond the

scope of this book.

210 Chapter 7: Meshes

FLOAT *pV

Pointer to a barycentric hit coordinate. This value is beyond the

scope of this book.

FLOAT *pDist

Distance along the ray until the first intersection occurs.

(Remember, the ray may pass through multiple places on the

mesh.) With this value you can work out the exact location of

the first intersection by using this formula:

HitPoint = RayStart + (RayDir * pDist)

Check out the sample code to see this in action.

LPD3DXBUFFER *ppAllHits

This value will typically be NULL if you’re only interested in

the first point of intersection on the mesh. Most of the time this

will be enough; however, if you need every place of intersection

you can pass the address of an ID3DXBuffer interface to

receive an array of intersection points. This will be array of

D3DXINTERSECTINFO structures. This structure contains

the face index, barycentric coordinates, and the distance along

the ray until the point of intersection. D3DXINTERSECTINFO

looks like this:

typedef struct _D3DXINTERSECTINFO {

DWORD FaceIndex;

FLOAT U;

FLOAT V;

FLOAT Dist;

} D3DXINTERSECTINFO, *LPD3DXINTERSECTINFO;

DWORD *pCountOfHits

Can be NULL; however, if you pass the address of a DWORD,

you’ll receive the number of intersections between the ray and

the mesh.

Sample code:

D3DXVECTOR3 RayPos(0,0,0);

D3DXVECTOR3 RayDir(0,0,1.0f);

BOOL bHit = false;

Chapter 7: Meshes 211

C
h

a
p

te
r

7

DWORD FaceIndex = 0;

FLOAT pU = 0;

FLOAT pV = 0;

FLOAT pDist = 0;

D3DXVECTOR3 IntersectPoint(0,0,0);

D3DXIntersect(Mesh, &RayPos, &RayDir, &bHit, &FaceIndex,

&pU, &pV, &pDist, NULL, NULL);

if(bHit)

IntersectPoint = RayPos + (RayDir * pDist);

Vertex Interpolation

Imagine this… You have two meshes of a wizard with a cape, hat,

and a long white beard. One of the meshes (mesh 1) is of the wizard

with his arms outstretched and the other (mesh 2) is of the wizard

with his arms by his sides. Now, using these two meshes you can

calculate every pose of the mesh between these two positions

(keyframes). For example, I could dynamically generate a wizard

mesh with his arms half outstretched — halfway between mesh 1

and mesh 2.

You could even gradually change the mesh’s posture over time

and animate it from one pose to the next (Fig. 7.6). This process is

known as vertex interpolation, because we’re interpolating from

212 Chapter 7: Meshes

Figure 7.6

one mesh state to another. It’s actually a very simple thing to do.

You simply need to generate a scalar between 1 and 0, like 0.5, and

using a clever little DirectX function you can generate a pose

between mesh 1 and mesh 2. That’s right, it’s that simple. So 0.5

would create a mesh halfway between mesh 1 and mesh 2, 1.0

would generate the final mesh, and 0 would be the starting mesh.

In short, every value between 0 and 1 builds a mesh that much

closer to the destination mesh from the starting mesh.

� NOTE. The one rule you must keep in mind when interpolating

between two meshes is that both meshes must have the same num-

ber of vertices.

The function to interpolate between two vertices is

D3DXVec3Lerp. It requires four parameters: a vector where the

result is to be returned, a starting vector, an ending vector, and a

scalar that is the interpolation factor. So, if I wanted to build a vec-

tor that was three-quarters between the start and end vectors, the

scalar would be 0.75. The syntax and parameters for

D3DXVec3Lerp follow.

D3DXVECTOR3 *D3DXVec3Lerp(

D3DXVECTOR3 *pOut,

CONST D3DXVECTOR3 *pV1,

CONST D3DXVECTOR3 *pV2,

FLOAT s

);

D3DXVECTOR3 *pOut

Address to receive the resultant vector.

CONST D3DXVECTOR3 *pV1

First vector from where interpolation should begin.

CONST D3DXVECTOR3 *pV2

End vector where interpolation may end.

FLOAT s

Scalar that determines the interpolation factor between the

start and end vectors.

Chapter 7: Meshes 213

C
h

a
p

te
r

7

You may notice that D3DXVec3Lerp does not interpolate between

two meshes but rather between two vectors. However, it gives us

the potential to interpolate between two meshes. We simply need

to lock the vertex buffers for each mesh, then cycle through every

vertex and, one by one, interpolate every vertex and store the

result in the vertices of a cloned mesh, which will become the final,

interpolated mesh. The code below deals with three vectors (the

source vector, the destination vector, and a final resulting vector),

then it interpolates halfway between them.

D3DXVECTOR3 Source(0,0,0);

D3DXVECTOR3 Destination(10,10,10);

D3DXVECTOR3 Result(0,0,0);

D3DXVec3Lerp(&Result, &Source, &Destination, 0.5f);

Conclusion

This chapter presented an overview on how to deal with meshes.

Specifically it has explained how to load meshes from an X file or

from X file data objects. Furthermore, it investigated how you can

cycle through the vertices of a mesh, how you can set a mesh’s

FVF, and, finally, how you can interpolate between two meshes.

The next chapter explores 3D worlds and the view matrix fur-

ther. To be more exact, it explains how to create a first-person

camera with some nice and advanced features.

214 Chapter 7: Meshes

Chapter 8

Cameras —
First-Person

and More

I mentioned earlier that cameras are controlled by the view matrix.

Until now, we have seen only how to move the camera to specific

locations and look at certain points in 3D space using the

D3DXMatrixLookAtLH function. This chapter expands on this

knowledge by implementing a fully functional 3D camera, which is

the kind of first-person camera used in games like Doom, Descent,

and Unreal. Once completed, the camera will be encapsulated into a

single class featuring the following:

� The ability to look up, down, left, and right

� The ability to move forward and backward, and strafe left and

right

� The ability to determine whether meshes and other geometry

are in the camera’s view

215

The Problem

Imagine for a moment that you wanted to create a first-person

game — in other words, a game where the player sees through the

eyes of a character. You already know how 3D space is measured,

how positions are set using vectors, and how rotations are specified

in radians. Therefore, you may already have some ideas on how to

create such a camera. Initially, it seems a good idea to maintain a

position vector for the camera and to continually throw this at the

D3DXMatrixLookAtLH function whenever it changes, as the player

moves around. For example, if the player moves forward three

units you might increment his position’s Z component by three; in

other words, three units forward. Likewise, if the player side-

stepped (strafed) left five units, you’d expect to decrement his

position’s X component by five. So far so good, but there’s a terri-

ble problem you’re likely to run into should you adopt this method.

To illustrate, picture the following scenario: The player moves for-

ward by five, sidesteps by three, rotates around the Y axis by –PI/2

radians (turns left) and is now facing a new direction, and finally

moves forward by another five units. Notice that once rotation has

occurred, the player is no longer moving exclusively along the Z

axis. Instead, moving forward affects movement along both the X

and the Z axes. This is because the direction in which he’s now fac-

ing is at an angle. The problem would be even trickier were this a

space simulator where you can also move up and down, look

around, and move in a potentially infinite number of directions.

We’ll address these issues as we create a camera that can accom-

modate all these scenarios and more.

216 Chapter 8: Cameras — First-Person and More

Overview

Probably the best way to visualize a first-person camera is to think

of the human head. You may recall from biology lessons at school an

illustration of a human head with three arrows pointing in different

directions. These arrows are all perpendicular to each other and

together form our axes of orientation. There is one arrow pointing

straight ahead in the direction we’re looking, known as the direc-

tion or look at vector; one arrow pointing directly to the right,

called the right vector; and one arrow pointing straight upward,

unsurprisingly named the up vector. Finally, the origin — the point

where these axes intersect — represents the position of the cam-

era in 3D space (i.e., the place you’re standing).

Chapter 8: Cameras — First-Person and More 217

C
h

a
p

te
r

8

Figure 8.1:
First-person
camera

Looking Around

Three axes extending outward from our position in 3D space (up,

right, and look at) have now been defined. Using these axes it is

possible to rotate the camera — our head — in any direction by an

arbitrary number of radians and to move the camera in the direction

we’re facing. First, let’s examine rotation. Because we have three

axes there are essentially three possible ways we can rotate. We

can rotate around the look at axis, the up axis, and the right axis, or

any combination of these, and the axis we rotate about will influ-

ence where the camera will face. The next three sections examine

the different types of rotation.

Pitch

For the moment, pretend you’re a first-person camera. Start by

looking straight in front of you. Now, rotate your head to look down

about 45 degrees. Rotate back up by 45 degrees to look in front of

you again. Finally, rotate your head to look upward by 45 degrees.

In doing this you have effectively rotated your view about the right

axis — the axis sticking out the side of your head — by both posi-

tive and negative quantities. Rotation about this axis is known as

pitch; so, to pitch your head by some angle — say 45 degrees —

means to rotate it up or down by 45 degrees, around the right axis.

218 Chapter 8: Cameras — First-Person and More

Figure 8.2

Roll

Facing straight in front of you again, tilt your head to the right by 45

degrees, and then back again, looking straight ahead. Finally, roll

your head the other way, to the left by 45 degrees. Here, you have

rotated your head about the look at axis. This is known as roll.

Yaw

The final form of rotation occurs about the up axis and involves you

turning your head left or right. Start again facing forward and look

left. Now look ahead again, then look right. This kind of rotation is

known as yaw.

Chapter 8: Cameras — First-Person and More 219

C
h

a
p

te
r

8

Figure 8.3

Figure 8.4

Combining Rotations

You now understand what it means to rotate a camera in terms of

pitch, roll, and yaw. Pitch is to look up and down, roll is to tilt the

view one way or the other, and yaw is to look left and right. In the

context of a camera, several things occur at the time of rotation. For

example, you’re standing at the origin and are looking straight

ahead. Our camera vectors begin normalized. Thus, your position is

(0,0,0), your look at vector is (0,0,1), your right vector is (1,0,0),

and your up vector is (0,1,0). Simple so far. Now, we want to look up

by 45 degrees (pitch) and we then want to look right by 45 degrees

(yaw). These two rotations can be seen as follows.

Notice what occurs to the vectors. By pitching about the right axis

in our first transformation we are affecting our other two vectors —

up and look at. To put it another way, the right vector is the only

unaffected vector here; the other two vectors (axes) are rotated

about the right vector. For example, if I look down, I am no longer

looking straight ahead; thus, my look at vector changes because I’m

facing a new location. Likewise, my up vector — pointing from the

top of my head — also changes because since I’m looking down-

ward it can no longer be pointing directly upward like it was before.

It rotates. Hence, a pattern begins to emerge. We can conclude

that, when rotating about an axis, it is the other two axes that are

transformed about that axis; the axis of rotation itself remains

unchanged. In short, rotation involves transforming two perpendic-

ular vectors about a common axis by a specified number of radians.

220 Chapter 8: Cameras — First-Person and More

Figure 8.5

Moving the Camera

In theory we now know how to rotate a camera around any axis by

a specified number of radians using the ideas of pitch, roll, and yaw.

This section examines how to move the camera around; for exam-

ple, moving it forward. Previously, it seemed like a good idea to

move the camera forward by incrementing the Z component of our

position vector. But we then realized that if the camera were facing

an angle its movement would involve changing more than simply

the Z component. A forward movement like this would require an

increment of the Z component as well as a change to X and, if look-

ing up, it could involve incrementing Y too.

To move forward therefore, we effectively want to move in the

direction we’re facing by a specified amount rather than by an abso-

lute position. In other words, we want to move in the direction of

our look at vector at some speed. We actually know how to do this

already using basic vector mathematics. Let’s imagine we’re stand-

ing at (0,0,0) and we’re facing (5,0,5). We want to move forward by

one unit in the direction we’re facing. To compute our new position,

we do the following:

1. Subtract the look at vector from our position vector.

Example: (5,0,5) – (0,0,0)

2. Normalize the resultant vector.

3. Multiply the normalized vector by the speed.

4. Add the resultant vector to the current position.

You see the magic here? We’re effectively saying, “We have a direc-

tion, and to move forward we simply scale the direction by some

amount to move and finally add this onto our current position.”

We can apply this movement concept to any of our other vec-

tors too. For example, to strafe right by some amount, we simply

scale the right vector — as we did with our look at vector — and

add it to our current position. To walk backward or to move in a

negative direction we can simply subtract from our current posi-

tion, rather than add.

Chapter 8: Cameras — First-Person and More 221

C
h

a
p

te
r

8

Making the Camera

All of this theory is no doubt whetting your appetite and you’re

probably eager to get into coding this camera class. The following

declaration is a good place to begin. For convenience, I have not

included the method declarations (except one), just the class mem-

bers. The one method that is shown will be called on each frame to

build a view matrix according to axis information — up, look at,

right, etc. The following sections examine this class and its meth-

ods in more detail.

class CXCamera

{

protected:

//Stores the position and three vectors

D3DXVECTOR3 m_Position;

D3DXVECTOR3 m_LookAt;

D3DXVECTOR3 m_Right;

D3DXVECTOR3 m_Up;

//Stores whether the camera has changed since last update.

//By change, we mean whether the camera has moved

//or rotated. If so, we’ll recompute the matrix.

bool m_bChanged;

//Stores the rotation to apply to a given axis

float m_RotateAroundUp;

float m_RotateAroundRight;

float m_RotateAroundLookAt;

//Final view transformation matrix

D3DXMATRIX m_MatView;

//Called each frame to update the total view matrix

VOID Update();

};

222 Chapter 8: Cameras — First-Person and More

Initializing the Camera Class

The first thing to do, before any of this mathematics stuff and

before creating any functions, is to ensure our class members are

set to starting values. This process will occur in the class construc-

tor, when the class is created in memory. Here we set our position

to (0,0,0), and our look at, right, and up vectors to equally appropri-

ate values. This can be seen below.

CXCamera::CXCamera()

{

m_Position = D3DXVECTOR3(0.0f,0.0f,0.0f); //Set position to 0,0,0

m_LookAt = D3DXVECTOR3(0.0f,0.0f,1.0f); //Set look at to 0,0,1

m_Right = D3DXVECTOR3(1.0f,0.0f,0.0f); //Set right to 1,0,0

m_Up = D3DXVECTOR3(0.0f,1.0f,0.0f); //Set up to 0,1,0

m_RotateAroundUp = m_RotateAroundRight = m_RotateAroundLookAt = 0;

D3DXMatrixIdentity(&m_matView);

}

Moving the Camera

In terms of moving the camera, we want to be able to do several

things: move forward and backward, sidestep left and right, and set

the camera to some arbitrary position. Remember, moving forward

in any direction does not mean just moving along the Z axis. The

camera could be at an angle, in which case movement affects other

axes too. Once a position has been set, you’ll notice our methods

below, then set class member m_bChanged to True. This is a flag. A

value of True means a change of position or rotation has occurred

and the view matrix should be updated on the next frame. This pro-

cess will occur in the Update method, shown later. For now, the

class methods to achieve movement follow:

void CXCamera::SetPosition(D3DXVECTOR3 *Pos)

{

m_Position = *Pos;

m_bChanged= true;

}

Chapter 8: Cameras — First-Person and More 223

C
h

a
p

te
r

8

void CXCamera::MoveForward(float Dist)

{

m_Position += Dist*m_LookAt;

m_bChanged = true;

}

void CXCamera::MoveRight(float Dist)

{

m_Position += Dist*m_Right;

m_bChanged = true;

}

void CXCamera::MoveUp(float Dist)

{

m_Position += Dist*m_Up;

m_bChanged = true;

}

void CXCamera::MoveInDirection(float Dist, D3DXVECTOR3 *Dir)

{

m_Position += Dist*(*Dir);

m_bChanged = true;

}

Rotating the Camera

Rotation occurs in radians about any of the three axes, as men-

tioned previously. You can rotate around the right axis, the look at

axis, and the up axis; these rotations are known as pitch, roll, and

yaw. Like before, the following rotation methods set our member

variables ready for rotation, and afterward set member

m_bChanged to True. Then, the view matrix is constructed on the

next frame, using Update. The following methods prepare the class

for such rotations:

void CCamera::RotateDown(float Angle)

{

m_RotateAroundRight += Angle;

m_bChanged = true;

}

224 Chapter 8: Cameras — First-Person and More

void CCamera::RotateRight(float Angle)

{

m_RotateAroundUp += Angle;

m_bChanged = true;

}

void CCamera::Roll(float Angle)

{

m_RotateAroundLookAt += Angle;

m_bChanged = true;

}

Building the View Matrix

The most important process occurs in the Update method, which

is intended to be called on each frame. If the position or rotation of

the camera hasn’t changed since Update was last called, then the

view matrix doesn’t need to be rebuilt and the existing view matrix

can safely be used. If, however, m_bChanged has been set to True,

then the view matrix needs to be rebuilt. Rebuilding the view

matrix basically means telling Direct3D where we’re standing and

where we’re facing, and we can specify this using our member vec-

tors. Previously, we used the D3DXMatrixLookAtLH function to

build the view matrix. For this process, however, we’ll need to build

the view matrix manually. The following code shows the definition

for the Update method and an explanation follows.

bool CXCamera:Update()

{

if(m_bChanged)

{

//Matrices to store the transformations about our axes

D3DXMATRIX MatTotal;

D3DXMATRIX MatRotateAroundRight;

D3DXMATRIX MatRotateAroundUp;

D3DXMATRIX MatRotateAroundLookAt;

Chapter 8: Cameras — First-Person and More 225

C
h

a
p

te
r

8

//Get the matrix for each rotation

D3DXMatrixRotationAxis(&MatRotateAroundRight,

&m_Right, m_RotateAroundRight);

D3DXMatrixRotationAxis(&MatRotateAroundUp,

&m_Up, m_RotateAroundUp);

D3DXMatrixRotationAxis(&MatRotateAroundLookAt,

&m_LookAt, m_RotateAroundLookAt);

//Combine the transformations into one matrix

D3DXMatrixMultiply(&MatTotal, &MatRotateAroundUp,

&MatRotateAroundRight);

D3DXMatrixMultiply(&MatTotal, & MatRotateAroundLookAt,

& MatTotal);

//Transforms two vectors by our matrix and computes the third by

//cross product

D3DXVec3TransformCoord(&m_Right, &m_Right, &MatTotal);

D3DXVec3TransformCoord(&m_Up, &m_Up, &MatTotal);

D3DXVec3Cross(&m_LookAt, &m_Right, &m_Up);

//Check to ensure vectors are perpendicular

if (fabs(D3DXVec3Dot(&m_Up, &m_Right)) > 0.01)

{

//If they’re not

D3DXVec3Cross(&m_Up, &m_LookAt, &m_Right);

}

//Normalize our vectors

D3DXVec3Normalize(&m_Right, &m_Right);

D3DXVec3Normalize(&m_Up, &m_Up);

D3DXVec3Normalize(&m_LookAt, &m_LookAt);

//Compute the bottom row of the view matrix

float fView41,fView42,fView43;

fView41 = -D3DXVec3Dot(&m_Right, &m_Position);

fView42 = -D3DXVec3Dot(&m_Up, &m_Position);

226 Chapter 8: Cameras — First-Person and More

fView43 = -D3DXVec3Dot(&m_LookAt, &m_Position);

//Fill in the view matrix

m_matView = D3DXMATRIX(m_Right.x, m_Up.x, m_LookAt.x, 0.0f,

m_Right.y, m_Up.y, m_LookAt.y, 0.0f,

m_Right.z, m_Up.z, m_LookAt.z, 0.0f,

fView41, fView42, fView43, 1.0f);

}

//Set view transform

m_pDevice->SetTransform(D3DTS_VIEW, &m_matView);

//Reset update members

m_RotateAroundRight = m_RotateAroundUp = m_RotateAroundLookAt = 0.0f;

m_bChanged = false;

}

Although this method is comparatively long it is generally clear and

simple. It can be broken down into the following stages:

1. It begins by determining whether the Boolean member

m_bChanged is True.

2. If not, then we transform the 3D device using SetTransform

and passing it our old view matrix. Otherwise, we need to

rebuild the view matrix and then set our device using our new

version.

3. The rebuilding process begins by calling D3DXMatrixRota-

tionAxis. This will create a transformation matrix to rotate

geometry about a specified axis by a specified number of radi-

ans. In our case, we call it three times — once for each axis (up,

right, and look at) — and we’ll pass our rotation values for each

axis. The value for each may be 0, or some other value if the

camera has actually rotated since the last frame.

4. Once a rotation matrix has been constructed for each axis, the

transformations are then combined into a single transformation.

This is accomplished by multiplying the matrices. The resultant

matrix is stored in local variable MatTotal.

Chapter 8: Cameras — First-Person and More 227

C
h

a
p

te
r

8

5. Our axes of orientation — right, up, and look at — are then

transformed by our rotation matrices using D3DXVec3Trans-

formCoord. In other words, they are actually rotated by the

combined matrix to a new orientation. The third vector is gen-

erated by the cross product of the other two. Effectively, at this

point our axes have been adjusted to their new orientations,

based on the rotation of the camera. However, we still need to

construct a view matrix to pass on to our 3D device.

6. Before building the view matrix we check to see that our vec-

tors are perpendicular to one another. Due to floating-point

mathematics, it’s possible that very long decimals may have

been truncated and over time have grown more inaccurate.

Thus, we need to perform this test and, should they be found

not perpendicular, we must regenerate another vector by cross

product.

7. In preparation for constructing the view matrix, we then nor-

malize our vectors using D3DXVec3Normalize.

8. Here, the process for building the view matrix begins. This

starts by computing the bottom row — the negative dot product

between the position and every other vector. Afterward, this

process continues by filling in the matrix with the right, up, and

look at vector coordinates until the view matrix is completed.

Test Drive

The hard work pays off here. You can now take this camera for a

test whirl around a 3D world. You have seen from previous chapters

how to set up an environment, load a few models, and set some

lights. So go ahead and place this camera right in the center of

things, move it around, and take a tour.

228 Chapter 8: Cameras — First-Person and More

Viewing Frustum

At the beginning of this chapter I promised to explain how you can

determine whether objects are visible to the camera. For example,

if you move your camera about a 3D world where there are 3D

models like castles, doors, monsters, etc., it’ll be useful to know

what is in the camera’s view and what is not. We can assume that

objects visible to the camera are situated in front of it and are not

too distant from it, and that objects not visible to the camera are

either behind it or are too far from it. Ultimately, we want to be able

to ask questions like, “Hey, camera, can you see this mesh?” and

receive an accurate answer. This section explains how to achieve

this.

It should be obvious from Figure 8.6 and your own knowledge

that the camera can only see whatever is contained inside the 3D

volume in front of its lens. For most cases, this 3D volume can be

thought of as an elongated pyramid, one whose smallest point is

protruding from the camera’s lens. If an object is inside the pyra-

mid, it is visible, and everything outside cannot be seen. This

pyramid is known as the viewing frustum.

From a mathematical perspective, the viewing frustum is repre-

sented by six planes, with each plane representing one side of the

frustum’s extents. These planes are known as the clipping planes.

One defines the far clipping plane — the horizon plane beyond

which objects are not visible — and another is the near clipping

plane — objects in front of this are not visible because they are

Chapter 8: Cameras — First-Person and More 229

C
h

a
p

te
r

8

Figure 8.6

behind the camera. The other planes are the bottom, top, left, and

right sides between the near and far clipping planes. The entire

frustum is shown in Figure 8.6.

� NOTE. Planes are explained in Chapter 3.

You may remember from earlier in this book that planes are like

infinitely long sheets of paper. Using planes, we can classify points.

Specifically, we can determine whether a point in 3D space resides

on the plane, in front of the plane, or behind the plane. In the con-

text of the frustum, therefore, we can test whether a point resides

behind the near clipping plane and in front of the far clipping plane.

Similarly, we can also test if a point resides between each of the

other sides. If it does, then the point is in the frustum’s volume

(visible), and if not, the point is outside the frustum (not visible).

If we then extend this technique to test three points, we can

effectively determine whether a polygon resides in the frustum —

fully, partially, or not at all — and, at a higher level, we can then

determine whether a mesh is visible. The next section concen-

trates on adding functionality to the existing camera class to

encapsulate the frustum. We’ll also add some other methods to test

whether a specified point, cube, sphere, and mesh are in the

frustum.

Constructing the Frustum

To ensure our camera class can also behave as the frustum, we’ll

need to add some members to the class. These will be m_Planes[6]

— a plane representing each side of the frustum — and each must

be initialized in the class constructor. We must also multiply our

view matrix by our projection matrix. The resultant matrix will con-

tain the coordinates needed to generate our planes at the right

place and orientation. Initialization can be seen below.

D3DXMATRIX Matrix, ViewMatrix, ProjectionMatrix;

pDevice->GetTransform(D3DTS_VIEW, &ViewMatrix);

pDevice->GetTransform(D3DTS_PROJECTION, &ProjectionMatrix);

230 Chapter 8: Cameras — First-Person and More

D3DXMatrixMultiply(&Matrix, &ViewMatrix, &ProjectionMatrix);

m_Planes[0].a = Matrix._14 + Matrix._13;

m_Planes[0].b = Matrix._24 + Matrix._23;

m_Planes[0].c = Matrix._34 + Matrix._33;

m_Planes[0].d = Matrix._44 + Matrix._43;

D3DXPlaneNormalize(&m_Planes[0], &m_Planes[0]);

m_Planes[1].a = Matrix._14 - Matrix._13;

m_Planes[1].b = Matrix._24 - Matrix._23;

m_Planes[1].c = Matrix._34 - Matrix._33;

m_Planes[1].d = Matrix._44 - Matrix._43;

D3DXPlaneNormalize(&m_Planes[1], &m_Planes[1]);

m_Planes[2].a = Matrix._14 + Matrix._11;

m_Planes[2].b = Matrix._24 + Matrix._21;

m_Planes[2].c = Matrix._34 + Matrix._31;

m_Planes[2].d = Matrix._44 + Matrix._41;

D3DXPlaneNormalize(&m_Planes[2], &m_Planes[2]);

m_Planes[3].a = Matrix._14 - Matrix._11;

m_Planes[3].b = Matrix._24 - Matrix._21;

m_Planes[3].c = Matrix._34 - Matrix._31;

m_Planes[3].d = Matrix._44 - Matrix._41;

D3DXPlaneNormalize(&m_Planes[3], &m_Planes[3]);

m_Planes[4].a = Matrix._14 - Matrix._12;

m_Planes[4].b = Matrix._24 - Matrix._22;

m_Planes[4].c = Matrix._34 - Matrix._32;

m_Planes[4].d = Matrix._44 - Matrix._42;

D3DXPlaneNormalize(&m_Planes[4], &m_Planes[4]);

m_Planes[5].a = Matrix._14 + Matrix._12;

m_Planes[5].b = Matrix._24 + Matrix._22;

m_Planes[5].c = Matrix._34 + Matrix._32;

m_Planes[5].d = Matrix._44 + Matrix._42;

D3DXPlaneNormalize(&m_Planes[5], &m_Planes[5]);

That’s all we need to do. Now we can test whether a point, a poly-

gon, a cube, or anything else intersects the frustum.

Chapter 8: Cameras — First-Person and More 231

C
h

a
p

te
r

8

Testing for a Point

Testing for whether a point is on, behind, or before a plane or group

of planes is what this section is about. Is a point in the frustum?

The following code uses the D3DXPlaneDotCoord function to find

out.

bool CXCamera::TestPoint(FLOAT XPOS, FLOAT YPOS, FLOAT ZPOS)

{

for(short Counter = 0; Counter < 6; Counter++)

{

if(D3DXPlaneDotCoord(&m_Planes[Counter],

&D3DXVECTOR3(XPOS, YPOS, ZPOS)) < 0.0f)

return false;

}

return true;

}

Testing for a Cube

A cube is a 3D primitive that can be defined by eight points, one for

each corner. To test whether a cube is visible (in the frustum) we

can use the following function.

bool CXCamera::TestCube(float XCenter, float YCenter, float ZCenter,

float Size)

{

for(short Counter = 0; Counter < 6; Counter++)

{

if(D3DXPlaneDotCoord(&m_Planes[Counter],

&D3DXVECTOR3(XCenter - Size, YCenter - Size,

ZCenter - Size)) >= 0.0f)

continue;

if(D3DXPlaneDotCoord(&m_Planes[Counter],

&D3DXVECTOR3(XCenter + Size, YCenter - Size,

ZCenter - Size)) >= 0.0f)

continue;

232 Chapter 8: Cameras — First-Person and More

if(D3DXPlaneDotCoord(&m_Planes[Counter],

&D3DXVECTOR3(XCenter - Size, YCenter + Size,

ZCenter - Size)) >= 0.0f)

continue;

if(D3DXPlaneDotCoord(&m_Planes[Counter],

&D3DXVECTOR3(XCenter + Size, YCenter + Size,

ZCenter - Size)) >= 0.0f)

continue;

if(D3DXPlaneDotCoord(&m_Planes[Counter],

&D3DXVECTOR3(XCenter - Size, YCenter - Size,

ZCenter + Size)) >= 0.0f)

continue;

if(D3DXPlaneDotCoord(&m_Planes[Counter],

&D3DXVECTOR3(XCenter + Size, YCenter - Size,

ZCenter + Size)) >= 0.0f)

continue;

if(D3DXPlaneDotCoord(&m_Planes[Counter],

&D3DXVECTOR3(XCenter - Size, YCenter + Size,

ZCenter + Size)) >= 0.0f)

continue;

if(D3DXPlaneDotCoord(&m_Planes[Counter],

&D3DXVECTOR3(XCenter + Size, YCenter + Size,

ZCenter + Size)) >= 0.0f)

continue;

return false;

}

return true;

}

Chapter 8: Cameras — First-Person and More 233

C
h

a
p

te
r

8

Testing for a Sphere

A sphere can be defined by a center point and a radius. To deter-

mine whether a sphere intersects the frustum, we simply test to

see whether the D3DXPlaneDotCoord function returns a value

greater than the sphere’s negative radius. The following code

achieves this:

bool CXCamera::TestSphere(float XCenter, float YCenter, float ZCenter,

float Radius)

{

for(short Counter = 0; Counter < 6; Counter++)

{

if(D3DXPlaneDotCoord(&m_Planes[Counter],

&D3DXVECTOR3(XCenter, YCenter, ZCenter))

< -Radius)

return false;

}

return true;

}

Testing for a Mesh

A good way to check a mesh’s visibility is to test whether its

bounding sphere intersects the frustum. The D3DXCompute-

BoundingSphere function calculates the bounding sphere of a mesh,

as mentioned previously. Thus, a function to determine the visibil-

ity of a specified mesh can be coded as below.

bool CXCamera::TestMesh(LPD3DXBASEMESH pMesh)

{

if(pMesh)

{

DWORD NumVertices = pMesh->GetNumVertices();

DWORD FVF = pMesh->GetFVF();

UINT FVFSize = D3DXGetFVFVertexSize(FVF);

LPVOID ppData = NULL;

234 Chapter 8: Cameras — First-Person and More

pMesh->LockVertexBuffer(D3DLOCK_READONLY, &ppData);

if(ppData)

{

D3DXVECTOR3 Center(0,0,0);

FLOAT Radius = 0;

D3DXComputeBoundingSphere((D3DXVECTOR3*)ppData,

NumVertices, FVFSize, &Center, &Radius);

if(TestSphere(Center.x, Center.y, Center.z, Radius))

{

pMesh->UnlockVertexBuffer();

return true;

}

}

pMesh->UnlockVertexBuffer();

}

return false;

}

Chapter 8: Cameras — First-Person and More 235

C
h

a
p

te
r

8

This page intentionally left blank.

Chapter 9

Timing and
Animation

This chapter begins the topic of animation in Direct3D. Animation

is discussed throughout the remainder of this book. This chapter

aims to explain the basics behind animation. Specifically, it will

teach you:

� What animation is

� What keyframed animation is

� Timing in animation

� Animation and frames

Animation is about how things change over time. It doesn’t matter

how much something changes and it doesn’t matter how long it

takes, but if something changes over time it can be said to be ani-

mating. In computer games, animation is no different. If a game

character is walking around the screen killing baddies or doing

something else, then the character is being animated. Ultimately,

the character is probably animating in two ways: 1) It’s moving its

arms and firing a gun, or 2) It’s walking around the screen. Ulti-

mately, it gives you the illusion of movement and this enhances

realism and your game-playing experience. After all, it would proba-

bly look quite dull if everything in your game was static and

inanimate.

237

So how do we get started with animation? Well, first we’ll need

to discuss the most important aspect of animation: time. That’s

right, time. After all, animation won’t work unless we establish

some concept of time and some way to measure time.

Time

In animation, time is a unit of measurement. Animations have a

start time and an end time, and every in-between action in an ani-

mation occurs at a specific time. Ultimately, time allows us to

measure how long it has been since the animation started.

Timing is important to animations for many reasons. A long

time ago, many games just played animations as fast as they could

run, frame by frame, and everything seemed fine. However, there

was a problem: Because the speeds of computers vary from

machine to machine (some machines are fast and some are slow), it

meant animations played at different speeds depending on which

machine you used. Thus, different gamers had different experi-

ences; for some the animations were too slow and jerky and for

others the animations were too fast. Thus, a way to standardize the

speed of animations began. The way to solve this problem is to use

time as a reference for your animation. Time is constant; a second

is exactly one second. One second is the same on every machine.

So, by using time to measure and play your animations you ensure

that every user will experience the same things.

There are many ways a programmer can measure time in an

application. Although DirectX provides no function to measure

time, we can use one that is included with Visual C++. I’m talking

about the timeGetTime function. This function returns a DWORD

value representing the elapsed time in milliseconds since Windows

started. This value is not in itself useful, but since it acts like a

counter we’ll be able to use it to measure the relative time since an

animation began. We’ll look more closely at this later. The following

code shows you how this function is used.

DWORD StartTime = timeGetTime();

238 Chapter 9: Timing and Animation

Once you have a time value from the timeGetTime function, you

can call it again, at a later time, and subtract the two times to find

out the elapsed time in milliseconds, like this:

DWORD ElapsedTime = timeGetTime() – StartTime;

So, by logging the start time of any animation, you can subse-

quently call the timeGetTime function and subtract the start time

from it to work out how far into the animation you’ve reached (in

milliseconds).

� NOTE. To convert milliseconds into seconds, you divide the time by

1000, like this:

TimeInSeconds = TimeInMilliseconds/1000

To convert seconds into milliseconds, you multiply the time by

1000, like this:

TimeInMilliseconds = TimeInSeconds * 1000

Another nice trick you can do using timeGetTime for animation

timing is to represent, using a scalar, how far into an animation you

are. For example, let’s say 0 represents the beginning of the anima-

tion, 1 represents the end, and any value between represents how

close to the end you’ve reached. So, halfway into the animation

would be 0.5. To compute this scalar you use the following formula:

Scalar = CurrentTime / (EndTime – StartTime)

� NOTE. We’ll see more on how this is useful later in the chapter.

So now you know how time can be measured. That’s good. But we

still want to apply it to animation specifically. We’ll cover this in the

next section as we explore further how an application implements

animation. There are many ways a program can implement anima-

tion; some are simple and some are complex. The next section

begins by looking at a simple technique called keyframe animation.

Chapter 9: Timing and Animation 239

C
h

a
p

te
r

9

Keyframe Animation

One of the most common and useful animation techniques is

keyframe animation. This works by keeping track of only key points

in the animation (keyframes) and then linearly interpolating

between those frames as time elapses. Consider Figure 9.1. This

demonstrates keyframe animation. For example, let’s say we have a

monster that begins with his arms by his sides at frame 0. Then, by

frame 100, his arms are stretched out in front of him. Frame 0

occurs at 0 milliseconds and frame 100 occurs at 5000 milliseconds

(5 seconds). We therefore know that from frame 0 to 100 (within 5

seconds) the monster will move his arms from his sides to out-

stretched, starting from the position in frame 0 and moving closer

to frame 100, frame by frame. In this case, we don’t need to store

how the monster will look in every frame because we already know

the intervening movements involved. Instead, we can just store the

positions for both frame 0 and frame 100, and we can simply com-

pute the position of the mesh in all frames in between. This is why

it’s called keyframe animation; you only store the important, defin-

ing frames of the animation sequence.

Let’s take another example and look at how it can be imple-

mented practically from what we know already. For example, take a

man who walks in a straight line. The animation begins at frame 0

(0 seconds) where the man is standing at position 0 on the X axis.

The animation lasts 5 seconds (frame 100) and by this time he has

completed his walk along the X axis line to position 10. We know,

therefore, that the man spends the animation (100 frames, 5

240 Chapter 9: Timing and Animation

Figure 9.1

seconds) walking along the line, step by step. We therefore know

the following:

1 frame = 5 (seconds) / 100 (frames)

1 frame = 0.05 seconds

1 step (along the X axis) = 5 (seconds) / 10 (steps)

To walk 1 step = 0.5 seconds (10 frames)

This means by frame 10 the man has walked one step, and by frame

70 the man has walked to the seventh step, and finally by frame 100

he has walked to the end. That’s fine, we know this, but we also

want to be able to work this out mathematically so we can automat-

ically update the position of the man as the animation elapses.

So how can we work out the position of the man on every

frame? Simple. First we need to compute a scalar between 0 and 1,

which represents how far into the animation we have reached. We

saw the theory on how to do this in the previous section. In the

context of this example we can compute this value as follows:

DWORD AnimLength = 5000;

DWORD CurrentAnimPos = timeGetTime() - AnimStart

FLOAT Scalar = AnimLength / CurrentAnimPos

Next, once a scalar has been computed (for example, this will be 0.5

if we’re halfway through the animation) we need to use this value

to calculate the position to which the character must travel. Let’s

assume the time into the animation is 3500, which means the scalar

will be 0.7. To work out where along the 1 to 10 number line our

character must be at this time, we simply multiply 10 (the total dis-

tance to move) by 0.7 (our scalar). This gives us 7. So 7 is the new

position for the character. Easy stuff!

So, if the time was 5000 (the animation length) then our scalar

would be 1, and 1 x 10 (on the number line) is 10. This is correct

because it means our character is where he should be: at the end of

the number line. Again, if the time was 0 (the beginning) then our

scalar would be 0, and this puts our character right at the start of

the number line.

Chapter 9: Timing and Animation 241

C
h

a
p

te
r

9

And there we are; that’s how keyframe animation works. Of

course, in real life you won’t be simply interpolating between just

two keyframes. Full animation sequences may require you to inter-

polate between hundreds of keyframes. But no matter how many

keyframes you use, the principle is the same. You’re just interpolat-

ing between a start frame and an end frame.

Hierarchical Animation

Another useful animation technique for synchronously transform-

ing a large number of different but related objects in an animation is

known as hierarchical animation. Imagine this: You have a magic

carpet that can fly around a scene. On top of this carpet you have a

wizard who controls the carpet, and sitting next to him you have his

pet monkey. Now, if the wizard or monkey moves on top of the car-

pet — if they walk around, for example — they do not affect the

movement of the carpet itself. But, if the carpet moves — say it

moves forward — then any object seated upon the carpet will natu-

rally move with it. This may seem obvious but it poses a real

problem for animation. It means that as the carpet moves, you must

also animate the objects seated upon it. This is because the carpet

and its passengers are related. So your application needs to keep

track of all these relationships and ensure objects are animated

according to their relationships. Now, there are many ways to han-

dle this scenario; some are really, really easy and some are really,

really hard. The simplest and best method is called hierarchical

animation.

Using hierarchical animation every object in the animation (the

carpet, the wizard, and the monkey) has its own transformation

matrix (matrices were explained in earlier chapters). Furthermore,

every object is part of a hierarchy — they have parent-child rela-

tionships. So, in this case, the carpet is the parent because its

position and orientation affect its dependents (children), which are

the wizard and monkey. As the carpet moves, so do all of its chil-

dren. Examine Figure 9.2.

242 Chapter 9: Timing and Animation

Now, when that carpet moves, wouldn’t it be great if every object

on the carpet updated its position automatically? This way, we

wouldn’t need to worry about which objects should be repositioned

as a result of the magic carpet moving. This is exactly what the

next section shows you how to do.

Linked Lists

The first thing we’ll need to consider if we expect objects to keep

track of their relationships with one another is how to represent

these relationships in code. Just like the X file format, objects in

our scene will have the potential to have none, one, or more chil-

dren. Effectively, each object will need to maintain a list of child

objects. In other words, how can we code a class to hold a list of

child objects? Well, we could create a fixed array. But this requires

we either know exactly how many children the class will hold or we

must create a maximum sized array. If we choose the latter, it’s

likely a lot of memory will be wasted since most classes probably

won’t have that many children. Instead, it’d be better if we could

have a dynamically sized list, one that shrinks and expands intelli-

gently as objects are added or removed. There are many ways we

could code such a list, but this chapter examines just one of these

methods: a linked list.

A linked list is a linear list of items, one after the next. In a

linked list every item keeps track of the next item in the list. It

does this by keeping a pointer to the next item. If this pointer is

NULL, then there is no next item, which means it’s the last item in

the list. Figure 9.3 shows how a linked list looks diagrammatically.

Chapter 9: Timing and Animation 243

C
h

a
p

te
r

9

Figure 9.2

Some sample code follows, which shows two simple data structures

set up to keep a linked list.

class CItem

{

CItem* m_Next;

}

class CLinkedList

{

CItem* m_Items;

}

Adding Items to the List

To add an item to the end of the list you simply cycle through every

item from beginning to end, testing each item to see whether its

next pointer is NULL. If so, then you’ve reached the last item. You

then change the next pointer from NULL to point to the new item.

VOID CLinkedList::AddItem(CItem* Item)

{

If(!Item)

return;

if(!m_Items) //if list is empty

m_Items = Item; //Make first item

else //Add to end of list

{

CItem* List = m_Items;

while(!List->m_Next) //Find list end

List = List->m_Next;

List->m_Next = Item; //Add to end

}

}

244 Chapter 9: Timing and Animation

Figure 9.3

Clearing a Linked List

To clear the list of all items, you begin with the first item in the list.

You keep a reference to the next item. You delete the first item and

then move on to the next. Once there, you keep a reference to the

next item, delete the current item, and move on. And the process

continues.

VOID CLinkedList::ClearItems()

{

CItem* Item = m_Items;

While(Item)

{

CItem* Next = Item->m_Next; //Get next item

delete Item; //Delete the item

Item = Next; //Set next item

}

}

Simple, isn’t it? So now we’ve seen how a class can store a list of

objects and, what’s more, a list that is always just the right size for

the number of items to hold. We’ll use this linked list mechanism to

store the parent-child relationship for objects in our scene, such as

our magic carpet and wizard. The next section looks at the specific

implementation details on how to do this.

Object Hierarchies for Animations

Now it’s time to take our magic carpet example with the wizard and

monkey riding on top and, using linked lists, animate them properly.

This means that as the carpet moves, dependent objects follow. To

do this, we’ll create a data structure to encode our object hierarchy.

There’ll be one structure for each object. We’ll call this structure a

frame. It will contain a mesh pointer representing the actual object,

like the magic carpet or wizard. Next, it will contain a transforma-

tion matrix that’ll store the specific transformation for that mesh.

Chapter 9: Timing and Animation 245

C
h

a
p

te
r

9

Then, we’ll store an additional matrix that will represent the final

transformation used to actually transform the mesh. It’ll also con-

tain a string to give the frame a name of our choosing. And finally,

it’ll contain a next pointer (so it can become part of a linked list) and

it’ll contain a pointer to its first child object, if it has any. Take a look

at the code fragment below.

class CFrame

{

LPD3DXMESH m_Mesh;

D3DXMATRIX m_Matrix;

D3DXMATRIX m_FinalTransformation;

CString m_Name;

Frame* m_Next;

Frame* m_Children;

}

Before doing anything more, let’s add some helper methods to this

class to make dealing with frames simpler. We’ll start by adding a

search function. This method will take a frame name to search for,

then it’ll search that frame and all its children recursively until a

match is found, and finally it’ll return either a pointer to the match-

ing frame or NULL if no frame is found.

CFrame CFrame::SearchFrame(CString Name)

{

If(m_Name == Name)

return this;

246 Chapter 9: Timing and Animation

Figure 9.4

return NULL;

CItem* Item = m_Children;

While(Item)

{

CItem* Next = Item->m_Next; //Get next item

CFrame* Frame = Item->SearchFrame(Name);

if(Frame)

return Frame;

Item = Next; //Set next item

}

}

Now we’ll code an update function for our frame class. This will

typically be called on every frame of an animation to update the

transformations of all objects in the scene as the animation elapses.

In other words, this update function updates the position and orien-

tation of all objects in the scene. By calling this function on the

topmost parent frame, it’ll recursively update the transformation

matrix of every frame in our hierarchy. The trick to making all child

objects follow their parent is simple: You simply combine every

object’s transformation matrix with its parent’s transformation

matrix. It’s really that easy. This means that any transformations

applied to parent objects are always passed down to children and

combined with the child’s own individual transformation matrix.

� NOTE. Remember, to combine two transformation matrices, you sim-

ply multiply them together.

Let’s see an example of how transformations are iteratively passed

down the hierarchy and specifically how they affect the transforma-

tions finally applied to child objects. To do this we’ll first examine

the Update method.

Chapter 9: Timing and Animation 247

C
h

a
p

te
r

9

VOID CFrame::Update(D3DXMATRIX ParentTransform)

{

m_FinalTransformation = ParentTransform * m_Matrix;

While(Item)

{

CItem* Next = Item->m_Next; //Get next item

Item->Update(m_FinalTransformation);

Item = Next; //Set next item

}

}

Now let’s think about how this function works practically. First, the

magic carpet will be in the top frame object and it will have two

child frame objects: the wizard and the monkey. To move the car-

pet, and consequently all its child objects, you simply need to call

the Update function on the magic carpet and pass it, as an argu-

ment, to a transformation matrix. The Update function will then

automatically update every child, combining its individual transfor-

mations with its parent’s. Easy.

� NOTE. DirectX provides a premade frame class for you to use, called

D3DXFRAME. Furthermore, it provides some utility functions to find

frames, such as D3DXFrameFind, and to add children, such as

D3DXFrameAppendChild.

Conclusion

This chapter has provided some insight into how animation works

at a basic level. Using the knowledge featured in this chapter you

can create many kinds of animations and can start making your

games look very professional. The next chapter explores animation

further by examining animated textures created with point sprites

and particle systems.

248 Chapter 9: Timing and Animation

Chapter 10

Point Sprites and
Particle Systems

Hold on; don’t give up! The name of this chapter makes it sound

more complicated than it really is. This chapter discusses point

sprites and particle systems. Basically, you’ll learn how to include

rain, snow, fog, sparks, and all kinds of other special effects in your

games. Overall, this chapter explains the following:

� Direct3D point sprites

� Particle system properties

� Particle properties

� Amending vertex formats

Particle Systems Overview

So far this book has explained how to create 3D primitives and load

in 3D meshes. Furthermore, it has explained how to create an

advanced 3D camera that can move around a 3D world. OK, that’s

great, but wouldn’t it be even better if you could walk around a

world where it rained and snowed? Well, if you think so, then this

chapter is for you.

Essentially a particle system is a collection of small pieces, or

particles. In this case, a particle is something small like a raindrop,

snowflake, or spark. The particle system is responsible for emitting

249

and controlling the particles, such as their movement, behavior, and

lifetime. Now, we’ll look at how Direct3D supports particle

systems.

Particles in Direct3D — Point Sprites

The previous section explained that a particle system is a collection

of particles, and a particle is something small like a snowflake.

Direct3D represents particles using point sprites. Technically, a

point sprite is a vertex. That’s right; just a normal, ordinary vertex,

like the kind you pump into vertex buffers. However, Direct3D

won’t render point sprites as ordinary vertices. Instead, it renders a

texture in place of every vertex. In other words, you make a tex-

ture for your particles and Direct3D will substitute point sprite

vertices with your texture. You see what’s happening here? The

vertices no longer represent corners of a triangle; instead, each

vertex represents the center of a particle. And that’s how particle

systems work. Simple! Using this mechanism you can make snow,

rain, magic effects, and more. So let’s see how point sprites

250 Chapter 10: Point Sprites and Particle Systems

(x – s/2, y + s/2,z)

(u,v) = (0,1)

(x + w/2, y + s/2,z)

(u,v) = (1,1)

(x,y,z)

(u,v) = (1,0)

(x + s/2, y – s/2,z)Position = (x – s/2, y – s/2,z)

(u,v) = (0,0)

Figure 10.1

themselves work, and then we’ll examine how point sprites work in

the context of particle systems.

Point sprites are created in Direct3D much like normal verti-

ces. You create a vertex structure, define an FVF, and copy the

vertices into a vertex buffer, then render them to the display during

the application’s rendering loop. Figure 10.1 shows an example of

point sprites. The main differences between rendering vertices and

rendering point sprites are as follows:

� The vertex structure itself will be slightly different since we’ll

be holding more than just positional data.

� Because the vertex structure is different, our FVF will also be

different.

� Finally, when rendering the point sprites, we’ll need to set a

few specific render states using the SetRenderState method.

This method was used earlier in this book.

Creating Point Sprites

As explained previously, the vertex structure and FVF for point

sprites are different from standard vertices. A standard vertex

might look like the following. You’ll notice the structure contains

members for position and texture coordinates, and the FVF

descriptor reflects this.

struct CUSTOMVERTEX

{

FLOAT x, y, z; // The position for the vertex

DWORD color; // The vertex color

FLOAT tu, tv; // The texture coordinates

};

#define D3DFVF_CUSTOMVERTEX (D3DFVF_XYZ|D3DFVF_DIFFUSE|D3DFVF_TEX1)

For point sprites, however, the vertex structure changes. Point

sprites don’t need texture coordinates since the vertices don’t rep-

resent the corners of a triangle. Point sprites require position, size,

Chapter 10: Point Sprites and Particle Systems 251

C
h

a
p

te
r

1
0

and color. The structure to hold this and the corresponding FVF

appears below.

struct CUSTOMVERTEX

{

FLOAT x, y, z-

DWORD PSIZE;

DWORD Diffuse;

};

#define D3DFVF_CUSTOMVERTEX (D3DFVF_XYZ | D3DFVF_PSIZE | D3DFVF_DIFFUSE)

Once you’ve defined a new vertex structure and FVF, you can just

load them into the vertex buffer like any normal vertices. You saw

how to do this in Chapter 4. The code to create some point sprites

and load them into a vertex buffer appears below.

CUSTOMVERTEX vertices[] =

{

{150.0f, 50.0f, 0.5f, 10, 0xffff0000},

{250.0f, 250.0f, 10.5f, 10, 0xff00ff00},

{50.0f, 250.0f, 50.5f, 10, 0xff00ffff},

{73.0f, 150.0f, 10.5f, 10, 0xff00ffff},

};

g_pd3dDevice->CreateVertexBuffer(4*sizeof(CUSTOMVERTEX), 0,

D3DFVF_CUSTOMVERTEX, D3DPOOL_DEFAULT, &g_pVB, NULL);

VOID* pVertices;

if(FAILED(g_pVB->Lock(0, sizeof(vertices), (void**)&pVertices, 0)))

return E_FAIL;

memcpy(pVertices, vertices, sizeof(vertices));

g_pVB->Unlock();

� NOTE. You may be wondering how Direct3D knows how to texture

your point sprites since no texture coordinates are included in the

vertex structure. Simply put, Direct3D takes the position of your ver-

tex and uses this as the center point for a quad (rectangle). Then it

uses the point size as a distance to calculate the position of each

edge of the rectangle. Finally, it assigns its own texture coordinates

to each of those edges to ensure the texture is mapped correctly

across the quad, from left to right.

252 Chapter 10: Point Sprites and Particle Systems

Rendering Point Sprites

Rendering point sprites is almost the same as rendering ordinary

vertices except you’ll need to set a few additional render states.

Apart from that, everything else is the same; you still perform your

drawing in the rendering loop and you still use SetTexture and

DrawPrimitive. The first thing you need to do is use SetRender-

State to set the render states that prepare DirectX for drawing

point sprites. The code to do this appears below, then each parame-

ter is explained.

g_pd3dDevice->SetRenderState(D3DRS_POINTSPRITEENABLE, TRUE);

g_pd3dDevice->SetRenderState(D3DRS_POINTSCALEENABLE, TRUE);

g_pd3dDevice->SetRenderState(D3DRS_POINTSIZE_MIN, *((DWORD*)&MinSize));

g_pd3dDevice->SetRenderState(D3DRS_POINTSCALE_A, *((DWORD*)&Scale));

g_pd3dDevice->SetRenderState(D3DRS_POINTSCALE_B, *((DWORD*)&Scale));

g_pd3dDevice->SetRenderState(D3DRS_POINTSCALE_C, *((DWORD*)&Scale));

D3DRS_POINTSPRITEENABLE

Typically this will be True. When True, DirectX will automati-

cally map the texture across the point sprite. If False, DirectX

will use the texture coordinates for each vertex.

D3DRS_POINTSCALEENABLE

If this value is True, DirectX positions and scales point sprites

in camera space. If this value is False, DirectX will position and

scale point sprites in screen space.

D3DRS_POINTSIZE_MIN

Defines the minimum size of a point sprite.

D3DRS_POINTSCALE_A

D3DRS_POINTSCALE_B

D3DRS_POINTSCALE_C

If D3DRS_POINTSCALEENABLE is True, this value deter-

mines how point sprites are scaled. See the SDK documenta-

tion for more information.

Chapter 10: Point Sprites and Particle Systems 253

C
h

a
p

te
r

1
0

The rest of the render procedure you’ll already recognize. It looks

like the following:

g_pd3dDevice->SetStreamSource(0, g_pVB, 0, sizeof(CUSTOMVERTEX));

g_pd3dDevice->SetFVF(D3DFVF_CUSTOMVERTEX);

g_pd3dDevice->SetTexture(0, g_Texture);

g_pd3dDevice->DrawPrimitive(D3DPT_POINTLIST, 0, 4);

� NOTE. Unfortunately, not all graphics cards support point sprites,

meaning that on some systems nothing will appear or an error

may occur when running a point sprite application.

Particle Systems

Now that you’ve seen how to create and render point sprites in

DirectX we can consider them specifically for particle systems.

Remember, particle systems will use point sprites to create the illu-

sion of rain, fog, sparks, and more, depending on which textures

your application is using.

So let’s examine particle systems more closely by studying the

following facts about them:

� A particle system is a collection of particles — like raindrops or

sparks.

� A particle system is responsible for emitting and destroying

particles, and is also responsible for controlling them.

Each particle in a particle system will correspond to a point sprite

vertex in the vertex buffer. Typically each particle will have the fol-

lowing properties, if not more:

� Position

A particle will have a physical position in 2D/3D space. In terms

of point sprites, this position directly corresponds to the posi-

tion of a point sprite vertex, such as (0,5,0).

� Duration

Most particles do not last forever. They are created and

destroyed, often within seconds. For example, in a rain particle

254 Chapter 10: Point Sprites and Particle Systems

system, the drops begin in the air and gradually fall to the

ground under the effects of gravity. Then, as the drops hit the

ground they disperse. So, the particles are emitted in the sky

and destroyed as they hit the ground. Typically this process will

repeat itself to make the rain appear constant. In other words,

particles will continually be emitted and destroyed.

� Trajectory

The direction a particle will be moving. For example, rain falls

from top to bottom and sparks might spew this way and that.

Regardless, each particle will usually be following some prede-

termined trajectory.

� Size

Finally, a particle will have a size. This is rather self explana-

tory really. Simply put, particles can be different sizes.

Before moving on to create a sample particle system, let’s consider

a few properties and behaviors specific to particle systems. In addi-

tion to being a collection of particles, a particle system must emit

and destroy the particles it contains. As it does so, it must also con-

trol the particles (move them about) according to a specific

behavior and under the influence of various factors. Let’s take the

rain example again. Here, the particle system must emit a specified

number of raindrops in the air and, under the influence of gravity,

must draw the raindrops closer to the ground at a specified speed

and then destroy the particles as they reach the ground. To summa-

rize, then, a particle system has two primary roles:

� Particle generation and destruction

A particle system creates particles either randomly or accord-

ing to a specific generation rate, and then destroys particles in a

similar way, usually when a condition is met; for example, when

the rain hits the ground.

� Particle behavior

Particle systems also control the behavior of a particle. Spe-

cifically this means moving the particle around. In some cases

the particle might move in any random direction; however, to

Chapter 10: Point Sprites and Particle Systems 255

C
h

a
p

te
r

1
0

be more realistic, the particles will probably react to a variety of

forces like gravity or wind.

Creating a Particle System

Using our knowledge of point sprites and our theoretical under-

standing of particle systems, we can now create a real particle

system for ourselves. This involves creating two classes: one for

the particle system itself, which will be called CParticleSystem, and

one for a single particle, which will be named CParticle. The main

class will be CParticleSystem and will contain a collection of

CParticle instances. Furthermore, CParticleSystem is responsible

for emitting, destroying, and controlling particles.

The class declaration for CParticle appears below, and a brief

explanation follows.

class CParticle

{

private:

protected:

public:

D3DXVECTOR3 m_Position; //Position of the particle

D3DXVECTOR3 m_Trajectory; //Normalized trajectory of the particle

DWORD m_Size; //Particle size

DWORD m_Color; //Particle color

DWORD m_Duration; //Particle duration after emission

DWORD m_Age; //How long the particle lasts

DWORD m_StartTime; //Time the particle was created

DWORD m_Speed;

CParticle()

{

m_Position = m_Trajectory = D3DXVECTOR3(0,0,0);

m_Color = D3DCOLOR_XRGB(0,0,0);

m_Size = m_Duration = m_Age = m_Speed = m_StartTime = 0;

}

256 Chapter 10: Point Sprites and Particle Systems

VOID Update(DWORD Time)

{

m_Age = Time - m_StartTime;

m_Position += m_Trajectory * m_Speed;

}

};

As you can see, not much is actually going on in this small class. It

represents a single particle. It has a position, an age, a speed, and a

trajectory. Nearly all of its values are set to 0 in the constructor.

The Update function updates the time, recalculates the particle’s

age, and then updates the particle’s trajectory by a specific speed.

The Update function will be called by the CParticleSystem class, as

shown in a moment. Notice that the particle class doesn’t draw

itself either; it simply updates its position. The owning CParticle-

System class will be responsible for maintaining the particle

texture and drawing the particles themselves. Take a look at the

particle system class below.

class CParticleSystem

{

private:

protected:

public:

CParticle *m_Particles;

DWORD m_NumParticles;

LPDIRECT3DVERTEXBUFFER9 m_pVB;

LPDIRECT3DTEXTURE9 m_Texture;

CParticleSystem(DWORD NumParticles)

{

m_NumParticles = NumParticles;

m_Particles = new CParticle[m_NumParticles];

m_pVB = NULL;

m_Texture = NULL;

g_pd3dDevice>CreateVertexBuffer(m_NumParticles*sizeof(CUSTOMVERTEX),

0, D3DFVF_CUSTOMVERTEX, D3DPOOL_DEFAULT, &m_pVB, NULL);

D3DXCreateTextureFromFile(g_pd3dDevice, "Sprite.bmp", &m_Texture);

Chapter 10: Point Sprites and Particle Systems 257

C
h

a
p

te
r

1
0

}

~CParticleSystem()

{

if(m_pVB)

m_pVB->Release();

if(m_Texture)

m_Texture->Release();

if(m_Particles)

delete [] m_Particles;

}

VOID Update()

{

DWORD Time = timeGetTime();

CUSTOMVERTEX *vertices = new CUSTOMVERTEX[m_NumParticles];

for(DWORD Counter = 0; Counter < m_NumParticles; Counter++)

{

if(m_Particles[Counter].m_Age >= m_Particles[Counter].m_Duration)

{

m_Particles[Counter].m_StartTime = timeGetTime();

m_Particles[Counter].m_Position = D3DXVECTOR3(0, 100, 0);

m_Particles[Counter].m_Trajectory = D3DXVECTOR3(0, -1, 0);

m_Particles[Counter].m_Speed = 5;

m_Particles[Counter].m_Duration = 1000;

}

m_Particles[Counter].Update(Time);

vertices[Counter].x = m_Particles[Counter].m_Position.x;

vertices[Counter].y = m_Particles[Counter].m_Position.y;

vertices[Counter].z = m_Particles[Counter].m_Position.z;

}

VOID* pVertices = NULL;

m_pVB->Lock(0, sizeof(CUSTOMVERTEX) * m_NumParticles,

(void**)&pVertices, 0);

258 Chapter 10: Point Sprites and Particle Systems

memcpy(pVertices, vertices, sizeof(vertices));

m_pVB->Unlock();

g_pd3dDevice->SetRenderState(D3DRS_POINTSPRITEENABLE, TRUE);

g_pd3dDevice->SetRenderState(D3DRS_POINTSCALEENABLE, TRUE);

g_pd3dDevice->SetRenderState(D3DRS_POINTSIZE_MIN,

((DWORD)&MinSize));

g_pd3dDevice->SetRenderState(D3DRS_POINTSCALE_A, *((DWORD*)&Scale));

g_pd3dDevice->SetRenderState(D3DRS_POINTSCALE_B, *((DWORD*)&Scale));

g_pd3dDevice->SetRenderState(D3DRS_POINTSCALE_C, *((DWORD*)&Scale));

g_pd3dDevice->SetStreamSource(0, g_pVB, 0, sizeof(CUSTOMVERTEX));

g_pd3dDevice->SetFVF(D3DFVF_CUSTOMVERTEX);

g_pd3dDevice->SetTexture(0, m_Texture);

g_pd3dDevice->DrawPrimitive(D3DPT_POINTLIST, 0, m_NumParticles);

}

};

That’s it; that’s all the code there is. The particle system in this

example simply moves particles from top to bottom like raindrops.

After examining the above code you’ll notice several key features

about the particle system:

� It keeps a dynamically sized array of particle classes. These

represent the particles of the particle system.

� It maintains a vertex buffer, which is created in the constructor

and is continually repopulated in the Update function with an

array of updated particles.

� CParticleSystem also holds the texture to be used for each par-

ticle (point sprite).

As CParticleSystem is created the constructor is called. Here, the

class creates a vertex buffer and a texture from a file, and then

finally generates a batch of particles. All that an application needs to

do then is continually call the Update method during the render

loop. As the Update method is called, CParticleSystem is responsi-

ble for moving particles from top to bottom. During this method,

CParticleSystem checks to see whether the lifetime of any particle

has expired. If it has, then the particle will have reached the

Chapter 10: Point Sprites and Particle Systems 259

C
h

a
p

te
r

1
0

bottom, so CParticleSystem resets the particle by moving it back to

the top and resetting its age and position. If, on the other hand, the

particle has not expired, the Update function moves it farther along

its trajectory. Finally, the Update method loads the particles into the

vertex buffer and renders them to the display where they’re seen

as point sprites. It’s really that simple.

Conclusion

This chapter was comparatively short and focused on a very spe-

cific feature of Direct3D: point sprites and their practical use in

particle systems. Of course, particle systems go beyond simply ren-

dering point sprites that move from top to bottom. They’re also

used in particle systems that simulate behavior far more complex

than this. In real-life particle systems, developers tend to use real

physics to simulate true-life forces like wind, gravity, and inertia. I

used a simplified system for the purposes of this book to concen-

trate on the Direct3D-related implementation rather than the

mathematical concepts for coding forces. For a more involved

examination on exactly how to implement natural forces for simu-

lating physics, I recommend picking up a high school- or

university-level mathematics textbook.

260 Chapter 10: Point Sprites and Particle Systems

Chapter 11

Playing Video and
Animating Textures

This chapter discusses two different subjects, both related to ani-

mations. First, it examines how video is played using DirectX and

how sound and other kinds of streamable media are played. Second,

this chapter examines how pixel data on textures can be animated.

Playing Video Using DirectShow

Part of DirectX, DirectShow is an API used for playing streamable

media like movies and music, among other things. Using

DirectShow it’s possible to play movie files like MPGs, AVIs, and

WMVs and sounds like WAVs, MP3s, and WMAs. Ultimately,

DirectShow works by using a COM interface called a filter graph.

This component can be thought of as a giant chart made up of vari-

ous blocks all connected to one another by pins or wires. This

graph represents how the bytes are read in from a media file, like

an MP3, and then processed through the graph into something

playable, such as sound. In other words, the filter graph is the

engine by which media data is taken from the file and then played

on the monitor or speakers. So let’s look at how to play a file using

DirectShow.

261

To begin working with DirectShow you’ll need to include some

extra libraries and include files in your project. These are listed

below.

Includes

Dshow.h

Libs

Strmiids.lib

Quartz.lib

The 1, 2, 3 of Playing a File

Once you’ve linked to your libraries and included your headers, the

next step in playing a media file using DirectShow is to build a filter

graph using the various graph building functions DirectX exposes.

That’s right; we need to build a filter graph to play a file. Don’t

worry, though, it’s really simple to do. The following sections show

you how.

� NOTE. Remember to call the COM function CoInitialize() before

using DirectShow, and CoUninitialize() after using DirectShow.

Creating the Filter Graph

The first step in the graph building process is to create a filter

graph using the graph builder interface, IGraphBuilder. This inter-

face provides a variety of methods to construct a filter graph that

plays media files. To create a graph builder interface you simply call

the standard COM creating method CoCreateInstance. The follow-

ing code demonstrates how to create a graph builder.

IGraphBuilder *pGraph = NULL;

HRESULT hr = CoCreateInstance(CLSID_FilterGraph, NULL,

CLSCTX_INPROC_SERVER, IID_IGraphBuilder, (void **)&pGraph);

262 Chapter 11: Playing Video and Animating Textures

Media Control and Event System

At this stage you’ve created a blank filter graph and now it’s time to

prepare it for playing a media file. The first stage of this involves

obtaining two other interfaces that are part of the filter graph: the

media control interface (IMediaControl) and the media event inter-

face (IMediaEventEx). The media control can be thought of as a

standard media player and is responsible for starting and stopping

playback on the filter graph. When it comes to playing a media file,

we’ll use the media control to start playback. The other interface,

the media event, is responsible for notifying an application when

events in the filter graph occur, such as when playback has com-

pleted or when an error occurs. To obtain interface pointers to

these two interfaces you’ll need to call the standard COM method

QueryInterface on the IGraphBuilder interface. The code below

demonstrates how this is done.

IMediaControl *pControl = NULL;

IMediaEvent *pEvent = NULL;

hr = pGraph->QueryInterface(IID_IMediaControl, (void **)&pControl);

hr = pGraph->QueryInterface(IID_IMediaEvent, (void **)&pEvent);

Loading a Media File

Now that you’ve created a filter graph and obtained the media con-

trol and event interfaces, you can start to assemble the graph for

playing a file. There are many ways to construct a filter graph,

some simple and some complex. If you just want to play a media

file, then building a filter graph is really simple. In fact, DirectShow

will do it automatically for you in one call. This method is called

RenderFile, and it accepts a filename to load. Once called success-

fully, DirectShow will have constructed a filter graph to play the

file, ready to start. The syntax and parameters for RenderFile fol-

low, along with some code that demonstrates how to call this

function.

Chapter 11: Playing Video and Animating Textures 263

C
h

a
p

te
r

1
1

HRESULT RenderFile(

LPCWSTR lpwstrFile,

LPCWSTR lpwstrPlayList

);

LPCWSTR lpwstrFile

Filename of the media to load.

LPCWSTR lpwstrPlayList

This is a reserved value and must be set to NULL.

Sample code:

hr = pGraph->RenderFile(L"test.mpg", NULL);

Configuring Events

The previous sections have prepared the file for playing on the fil-

ter graph. Before we use the media control to start playback,

however, we’ll configure our event interface to ensure the applica-

tion receives events as playback elapses. To do this, we must define

a custom window message. This message will be sent to our appli-

cation’s window whenever the event interface needs to be polled

for filter graph events. A custom window message can be defined in

our source like this:

#define WM_GRAPHNOTIFY WM_APP + 1

Once a custom message has been defined by your app, like the one

above, you must then register this message and your application’s

window handle with the event interface using the SetNotifyWin-

dow method. The syntax and parameters for this method appear

below. Then some code shows how message registration is

performed.

HRESULT SetNotifyWindow

(

OAHWND hwnd,

long lMsg,

LONG_PTR lInstanceData

);

264 Chapter 11: Playing Video and Animating Textures

OAHWND hwnd

Handle of the window where the custom message is to be sent

when events occur in the filter graph.

long lMsg

Custom message to be sent when events occur. This will be

your custom defined message.

LONG_PTR lInstanceData

This is an additional data parameter that can be passed with

your message. This can also be set to NULL.

Sample code:

g_pEvent->SetNotifyWindow((OAHWND)g_hwnd, WM_GRAPHNOTIFY, 0);

Once you’ve registered the window handle and associated message

to be sent when events occur in the filter graph, you’ll also need to

amend your WndProc procedure. Remember, WndProc is where

application messages are sent. You’ll want to add an extra switch

case statement to handle your custom message, like this:

LRESULT WINAPI MWndProc(HWND hWnd, UINT msg, WPARAM wParam,

LPARAM lParam)

{

switch(msg)

{

case WM_DESTROY:

Cleanup();

PostQuitMessage(0);

return 0;

case WM_GRAPHNOTIFY:

HandleGraphEvent(); //Do stuff here

return 0;

}

return DefWindowProc(hWnd, msg, wParam, lParam);

}

Chapter 11: Playing Video and Animating Textures 265

C
h

a
p

te
r

1
1

Once an application has received a custom message from the filter

graph, it means one or more events have occurred during media

playback. To process these events you need to call the GetEvent

method of IMediaEventEx. To process all events (because there

could be more than one event queued) you simply call this method

repeatedly until it fails. The function fails when there are no more

events to process. The syntax and parameters for GetEvent are

listed below, and the code that follows demonstrates how to use

this function.

HRESULT GetEvent(

long *lEventCode,

LONG_PTR *lParam1,

LONG_PTR *lParam2,

long msTimeout

);

long *lEventCode

Address to receive the event code. This code describes the

event that occurred. This can be any of these values:

EC_ACTIVATE

A video window is being activated or deactivated.

EC_BUFFERING_DATA

The filter graph is buffering or has stopped buffering data.

EC_COMPLETE

All data from the stream has been rendered. In other

words, the video or sound has finished playing.

EC_DEVICE_LOST

The device was lost.

EC_DISPLAY_CHANGED

The display mode has changed.

EC_ERRORABORT

The filter graph has aborted the current operation. Simply

put, an error occurred.

266 Chapter 11: Playing Video and Animating Textures

EC_GRAPH_CHANGED

The filter graph has changed.

EC_LENGTH_CHANGED

The length of the media has changed.

EC_OPENING_FILE

The graph is opening a file or has finished opening a file.

EC_PAUSED

The graph has been paused.

EC_USERABORT

The user has terminated playback.

EC_VIDEO_SIZE_CHANGED

The video size has changed.

LONG_PTR *lParam1

Address to receive the first event parameter.

LONG_PTR *lParam2

Address to receive the second event parameter.

long msTimeout

Timeout interval in milliseconds to wait, or use INFINITE to

wait until an event occurs.

Sample code:

// Get all the events

long evCode;

LONG_PTR param1, param2;

HRESULT hr;

while (SUCCEEDED(g_pEvent->GetEvent(&evCode, ¶m1, ¶m2, 0)))

{

g_pEvent->FreeEventParams(evCode, param1, param2);

switch (evCode)

{

case EC_COMPLETE: // Fall through

case EC_USERABORT: // Fall through

case EC_ERRORABORT:

RunMyFunction(); // Do stuff here

Chapter 11: Playing Video and Animating Textures 267

C
h

a
p

te
r

1
1

return;

}

}

Playing a File

Once you’ve loaded a filter graph from a file and configured an

event mechanism, you can start using the media control to play the

media. To do this you call the Run method of IMediaControl. The

code for building and running the filter graph appears below.

IGraphBuilder *pGraph = NULL;

IMediaControl *pControl = NULL;

IMediaEventEx *pEvent = NULL;

//Create filter graph

HRESULT hr = CoCreateInstance(CLSID_FilterGraph, NULL,

CLSCTX_INPROC_SERVER, IID_IGraphBuilder, (void **)&pGraph);

//Create media control and events

hr = pGraph->QueryInterface(IID_IMediaControl, (void **)&pControl);

hr = pGraph->QueryInterface(IID_IMediaEventEx, (void **)&pEvent);

//Load a file

hr = pGraph->RenderFile(L"test.mpg", NULL);

//Set window for events

pEvent->SetNotifyWindow((OAHWND)g_hwnd, WM_GRAPHNOTIFY, 0);

//Play media control

pControl->Run();

268 Chapter 11: Playing Video and Animating Textures

Playing Video — Further Information

Now that you can play a video you may wonder how you can play

this video on the surfaces of textures. In other words, you want to

copy the video pixel data onto a texture so you can have animated

textures. There are several ways you can do this; however, this

topic is beyond the scope of this book. Instead I’ll give you a few

pointers and places you can look if you’re interested.

� First, if you have the video pixel data (either by using GDI or

DirectX) and you simply want to copy the pixels onto a valid

Direct3D surface, then the IDirect3DSurface9 interface pro-

vides a really convenient way of doing this. To retrieve a valid

device context associated with a Direct3D surface, you can call

the GetDC method of IDirect3DSurface9. Then you can copy

over your pixel data. And finally, once you’re finished, you must

be sure to call the ReleaseDC method. Here’s an example:

Surface->GetDC(&hdc);

SetDIBitsToDevice (hdc, rect.left, rect.top, rect.right - rect.left + 1,

rect.bottom - rect.top + 1, 0, 0, 0, (UINT) lpbmi ->

bmiHeader.biHeight, lpvbits, lpbmi, DIB_RGB_COLORS);

Surface->ReleaseDC(hdc);

� The other method of copying video data onto a surface involves

creating a custom DirectShow filter that plugs into the filter

graph and copies video pixel data as it’s streamed through the

pipeline. Then, as it encounters video data, it transfers it onto a

texture. A DirectShow sample application that accompanies the

DirectX SDK can be found in the Samples\DirectShow\Play-

ers\Texture3D folder. This sample demonstrates how to render

video data from a filter graph onto a Direct3D texture.

Chapter 11: Playing Video and Animating Textures 269

C
h

a
p

te
r

1
1

Animating Textures

In addition to playing video and playing video on textures, you can

also transform the pixel data on textures by using matrices. That’s

right; you can actually transform the pixels on a texture by a

matrix, just like you’d transform ordinary geometry by using a

transformation matrix. This process is called texture transforma-

tion, and it’s extremely simple to do. For example, if you wanted to

create a scrolling sky or rushing stream of water, you could create a

tileable texture that you could scroll repeatedly along by using a

transformation matrix.

To begin, you simply create a standard Direct3D texture and

load an image onto it. Then you can use the texture as you would

normally, by either applying it to some geometry or by rendering

the texture individually using the ID3DXSprite interface.

Next, you need to build a transformation matrix to transform

the texture. You can do this using the standard matrix building func-

tions. The only thing you need to remember is that textures are flat

surfaces, not 3D, so your transformation matrix needs to be a 3x3

(2D) matrix. In other words, your transformation can manipulate

the texture along the X and Y axes but not on the Z axis. Earlier in

this book, when examining textures in conjunction with the

ID3DXSprite interface, you were introduced to a way to build 2D

matrices. DirectX provides a function to do this called

D3DXMatrixTransformation2D. To quickly recap, its syntax is fea-

tured below. (For a more thorough explanation, please refer to the

section in Chapter 5 called “ID3DXSprite — Drawing Textures in

2D.”)

D3DXMATRIX *WINAPI D3DXMatrixTransformation2D

(

D3DXMATRIX *pOut,

CONST D3DXVECTOR2 *pScalingCenter,

FLOAT *pScalingRotation,

CONST D3DXVECTOR2 *pScaling,

270 Chapter 11: Playing Video and Animating Textures

CONST D3DXVECTOR2 *pRotationCenter,

FLOAT Rotation,

CONST D3DXVECTOR2 *pTranslation

);

Once a transformation matrix has been constructed, you can pro-

ceed to apply it to a texture by performing the following steps:

1. Call the SetTransform method of IDirect3DDevice9, passing

D3DTS_TEXTURE0 as the first parameter and then your

matrix as the second. This will tell Direct3D that you’re trans-

forming a texture. Some sample code to do this appears below.

pDevice->SetTransform(D3DTS_TEXTURE0, &Transform);

2. Call the SetTextureStageState function to inform Direct3D that

you’ll be using a 2D matrix to transform the texture. Here’s

some code to do this:

pDevice->SetTextureStageState(

0, D3DTSS_TEXTURETRANSFORMFLAGS,

D3DTTFF_COUNT2

);

3. Once the texture has been rendered and all texture transforma-

tions are completed, you can disable texture transformation by

calling SetTextureStageState again. This time you’ll pass differ-

ent parameters. Take a look at the code below to see how this is

done.

pDevice->SetTextureStageState(

0, D3DTSS_TEXTURETRANSFORMFLAGS,

D3DTTFF_DISABLE

);

Chapter 11: Playing Video and Animating Textures 271

C
h

a
p

te
r

1
1

Conclusion

You’ve reached the end of this chapter and this concludes video

playing and texture animation. Now, as you approach the next chap-

ter in this book, you should prepare yourself for some

comparatively taxing challenges as we begin to examine further

texture work, specifically video textures.

272 Chapter 11: Playing Video and Animating Textures

Chapter 12

More Animated
Texturing

This chapter expands upon the work of the previous chapter and

examines textures that can play video, that is, textures that are not

simply static images like JPEGs or bitmaps, but textures that are

loaded from sources like AVIs or MPGs. In other words, this chap-

ter examines animated textures that can be loaded from video files.

Specifically, the following points are studied:

� The DirectShow base classes

� The filter graph plug-in framework

� Custom renderers

� Surface copying

� Playing videos as textures

� TIP. The work covered in this chapter relies upon subject matter cov-

ered in the previous chapter. Specifically, you should already know

how to create a filter graph and play media files.

273

Movie Files (MPG, AVI, and More)

OK, so far this book has taught you how to load static textures onto

a polygon and how to animate those textures in terms of texture

transformation. Using texture transformation you can move a static

image — like an image of water — and scroll or move it about the

surface of a polygon to simulate movement using matrices. How-

ever, thus far you have not seen how actual video (moving images)

can be loaded onto a texture. When I say video, I mean movie files

like AVIs and MPGs. These can be captured from standard video

cameras or produced using rendering software like 3ds max.

� NOTE. Although movie files can contain a plethora of additional

data like compression information, etc., you will find that through-

out this chapter it will be useful to think of movie files as simply an

array of bitmaps that are cycled through as time elapses.

Playing Video on Textures in Theory

As I mentioned, in this chapter we’ll think about a movie file as

simply an array of static images. These images are cycled through,

one by one, as time elapses. Under this assumption, the theory

behind playing movie files on textures is painfully simple. It goes

roughly as follows:

1. Open the movie file using the DirectShow filter graph and read

in the video dimensions (the width and height of the video).

According to these dimensions you should then create a texture

of sufficient size to hold these dimensions. It is therefore

important at this stage to note that your videos should ideally

be sized to a power of two (256x256, 512x512, etc.). This is

because, as mentioned earlier, most cards only support textures

of this size, and textures of any other size will be stretched or

shrunk to the nearest valid size.

2. Once the texture has been created, you can set the video file

playing using the filter graph.

274 Chapter 12: More Animated Texturing

3. As playback elapses, you access the video’s pixels for the cur-

rent frame (the actual image data of the bitmap currently being

shown) and then copy them over onto the texture. Because the

pixel data can be stored in various formats, you’ll need to copy

over those pixels manually too.

Playing Video on Textures in Practice

As you can see, the theory behind playing video on textures is

really simple. Unfortunately, the reality behind achieving this isn’t.

In order to achieve this practically, you must implement a

DirectShow filter graph plug-in called a custom renderer. Basically,

this means you need to create a class that plugs into and interacts

with the filter graph as it plays back video. By doing this, the filter

graph can notify you, through the methods of your class, of stream-

ing events as playback occurs and can provide you with access to

the actual pixel data of the current video frame. The class that

you’ll need to implement should be derived from a class (included

with the DirectX SDK) called CBaseVideoRenderer. This class,

among many others, is part of the DirectShow base classes, which

are used with the filter graph in different ways. For the purposes of

this chapter, only CBaseVideoRenderer needs to be used.

In order to use this base class, or any other, you’ll need to

include streams.h in your projects. This header file can be found in

the DirectX SDK folder at: \Samples\C++\DirectShow\Base-

Classes. However, in addition to the streams.h file, you’ll also need

to include a complementary .lib file (strmbase.lib or strmbasd.lib).

This .lib file is not included prebuilt with the DirectX SDK. Instead,

you’ll need to build the .lib file yourself by compiling the

BaseClasses project included in the same folder as streams.h.

Take a look at Figure 12.1 to see how CBaseVideoRenderer fits

into the DirectShow base class framework. You don’t actually need

to know this hierarchy intimately, but it’s important to understand

that CBaseVideoRenderer inherits functionality from other base

classes.

Chapter 12: More Animated Texturing 275

C
h

a
p

te
r

1
2

Creating the Base Video Renderer

As mentioned previously, the base video renderer class is a point

from which developers should derive their own class to plug into

the filter graph. This class will be used to stream in the pixel data

as video is played through the filter graph and then to copy it onto a

texture on each frame. For the purposes of this chapter, this

derived class will be named CTextureRenderer, and I have gener-

ated a GUID to represent this class. You saw how to generate

GUIDs earlier in this book using GUIDGEN. My GUID looks like

this:

struct __declspec(uuid("{71771540-2017-11cf-ae26-0020afd79767}"))

CLSID_TextureRenderer;

276 Chapter 12: More Animated Texturing

Figure 12.1: CBaseVideoRenderer hierarchy

Let’s take a look at the class declaration for CTextureRenderer that

appears below. Don’t worry if you don’t understand it all yet. The

class is explained as the chapter progresses.

class CTextureRenderer : public CBaseVideoRenderer

{

public:

BOOL m_bUseDynamicTextures;

LONG m_lVidWidth; // Video width

LONG m_lVidHeight; // Video height

LONG m_lVidPitch; // Video pitch

LPDIRECT3DTEXTURE9 m_pTexture;

D3DFORMAT m_TextureFormat;

CTextureRenderer::CTextureRenderer(LPUNKNOWN pUnk, HRESULT *phr);

~CTextureRenderer();

HRESULT CheckMediaType(const CMediaType *pmt);

HRESULT SetMediaType(const CMediaType *pmt);

HRESULT DoRenderSample(IMediaSample *pSample);

};

Implementing the Base Video Renderer

Before continuing, it’s important to remember that the CBase-

VideoRenderer class will act as a plug-in for the filter graph. This

means that as the movie file is played back, some of the methods of

your class (such as DoRenderSample) will be used periodically, on

each frame, by the filter graph. These methods are overridden from

the base class and are implemented and explained in the following

sections.

Chapter 12: More Animated Texturing 277

C
h

a
p

te
r

1
2

Implementing the Constructor

CTextureRenderer’s constructor is where it all begins. It accepts

one parameter and must pass on several others to the ancestor

class’s constructor. All of this is a pretty simple initialization pro-

cess, as shown below.

CTextureRenderer::CTextureRenderer(LPUNKNOWN pUnk, HRESULT *phr)

: CBaseVideoRenderer(__uuidof(CLSID_TextureRenderer),

NAME("Texture Renderer"), pUnk, phr),

m_bUseDynamicTextures(FALSE)

{

ASSERT(phr);

if (phr)

*phr = S_OK;

m_pTexture = NULL;

m_bUseDynamicTextures = false;

m_lVidWidth = m_lVidHeight = m_lVidPitch = 0;

ZeroMemory(&m_TextureFormat, sizeof(D3DFORMAT));

}

Implementing CheckMediaType

The CheckMediaType method is overridden from the CBase-

VideoRenderer class and is called by the filter graph as it needs to

establish whether the video format is acceptable for our class. Take

a look at the code below and then I’ll explain it.

HRESULT CheckMediaType(const CMediaType *pmt)

{

HRESULT hr = E_FAIL;

VIDEOINFO *pvi=0;

CheckPointer(pmt, E_POINTER);

278 Chapter 12: More Animated Texturing

// Reject the connection if this is not a video type

if(*pmt->FormatType() != FORMAT_VideoInfo) {

return E_INVALIDARG;

}

// Only accept RGB24 video

pvi = (VIDEOINFO *)pmt->Format();

if(IsEqualGUID(*pmt->Type(), MEDIATYPE_Video) &&

IsEqualGUID(*pmt->Subtype(), MEDIASUBTYPE_RGB24))

{

hr = S_OK;

}

return hr;

}

This method accepts as its argument an object of CMediaType,

which describes the media type being loaded and processed. It is

the role of the CheckMediaType function to determine whether this

media type and format is acceptable and to return success or failure

accordingly. If the method fails, then no further processing will

occur because the media will have been rejected. If this method

returns success, then media processing will continue.

Implementing SetMediaType

The SetMediaType method for the video renderer takes media

information that is accepted by CheckMediaType and allocates

resources accordingly. In other words, this function accepts an

argument that contains information about the video format and

video size. Then it creates a texture to hold the video data as it’s

streamed later on. Take a look at the code below to see how this is

done.

HRESULT SetMediaType(const CMediaType *pmt) // Video format notification

{

HRESULT hr;

Chapter 12: More Animated Texturing 279

C
h

a
p

te
r

1
2

UINT uintWidth = 2;

UINT uintHeight = 2;

// Retrieve the size of this media type

D3DCAPS9 caps;

VIDEOINFO *pviBmp; // Bitmap info header

pviBmp = (VIDEOINFO *)pmt->Format();

m_lVidWidth = pviBmp->bmiHeader.biWidth;

m_lVidHeight = abs(pviBmp->bmiHeader.biHeight);

m_lVidPitch = (m_lVidWidth * 3 + 3) & ~(3); // We are forcing RGB24

// Here let's check if we can use dynamic textures

ZeroMemory(&caps, sizeof(D3DCAPS9));

hr = g_pd3dDevice->GetDeviceCaps(&caps);

if(caps.TextureCaps & D3DPTEXTURECAPS_POW2)

{

while((LONG)uintWidth < m_lVidWidth)

{

uintWidth = uintWidth << 1;

}

while((LONG)uintHeight < m_lVidHeight)

{

uintHeight = uintHeight << 1;

}

}

else

{

uintWidth = m_lVidWidth;

uintHeight = m_lVidHeight;

}

// Create the texture that maps to this media type

hr = E_UNEXPECTED;

if(m_bUseDynamicTextures)

{

280 Chapter 12: More Animated Texturing

hr = g_pd3dDevice->CreateTexture(uintWidth, uintHeight, 1,

D3DUSAGE_DYNAMIC, D3DFMT_X8R8G8B8, D3DPOOL_DEFAULT,

&m_pTexture, NULL);

g_pachRenderMethod = g_achDynTextr;

if(FAILED(hr))

{

m_bUseDynamicTextures = FALSE;

}

}

if(FALSE == m_bUseDynamicTextures)

{

hr = g_pd3dDevice->CreateTexture(uintWidth, uintHeight, 1, 0,

D3DFMT_X8R8G8B8, D3DPOOL_MANAGED,

&m_pTexture, NULL);

g_pachRenderMethod = g_achCopy;

}

if(FAILED(hr))

return hr;

// CreateTexture can silently change the parameters on us

D3DSURFACE_DESC ddsd;

ZeroMemory(&ddsd, sizeof(ddsd));

if (FAILED(hr = m_pTexture->GetLevelDesc(0, &ddsd)))

return hr;

LPDIRECT3DSURFACE9 Surface = NULL;

if (SUCCEEDED(hr = m_pTexture->GetSurfaceLevel(0, &Surface)))

Surface->GetDesc(&ddsd);

m_TextureFormat = ddsd.Format;

if (m_TextureFormat != D3DFMT_X8R8G8B8 && m_TextureFormat !=

D3DFMT_A1R5G5B5)

return VFW_E_TYPE_NOT_ACCEPTED;

return S_OK;

}

Chapter 12: More Animated Texturing 281

C
h

a
p

te
r

1
2

Implementing DoRenderSample

DoRenderSample is a method that occurs on every frame, as the

video is played back. This is tricky part, and it’s here that you’ll

need to access the video’s pixel data and copy it over to a texture.

The code appears as follows and then I’ll explain it.

HRESULT DoRenderSample(IMediaSample *pSample) // New video sample

{

BYTE *pBmpBuffer, *pTxtBuffer; // Bitmap buffer, texture buffer

LONG lTxtPitch; // Pitch of bitmap, texture

BYTE * pbS = NULL;

DWORD * pdwS = NULL;

DWORD * pdwD = NULL;

UINT row, col, dwordWidth;

CheckPointer(pSample, E_POINTER);

CheckPointer(m_pTexture, E_UNEXPECTED);

// Get the video bitmap buffer

pSample->GetPointer(&pBmpBuffer);

// Lock the texture

D3DLOCKED_RECT d3dlr;

if(m_bUseDynamicTextures)

{

if(FAILED(m_pTexture->LockRect(0, &d3dlr, 0, D3DLOCK_DISCARD)))

return E_FAIL;

}

else

{

if (FAILED(m_pTexture->LockRect(0, &d3dlr, 0, 0)))

return E_FAIL;

}

// Get the texture buffer & pitch

pTxtBuffer = static_cast<byte *>(d3dlr.pBits);

lTxtPitch = d3dlr.Pitch;

282 Chapter 12: More Animated Texturing

// Copy the bits

if (m_TextureFormat == D3DFMT_X8R8G8B8)

{

dwordWidth = m_lVidWidth / 4;

for(row = 0; row< (UINT)m_lVidHeight; row++)

{

pdwS = (DWORD*)pBmpBuffer;

pdwD = (DWORD*)pTxtBuffer;

for(col = 0; col < dwordWidth; col ++)

{

pdwD[0] = pdwS[0] | 0xFF000000;

pdwD[1] = ((pdwS[1]<<8) | 0xFF000000) | (pdwS[0]>>24);

pdwD[2] = ((pdwS[2]<<16) | 0xFF000000) | (pdwS[1]>>16);

pdwD[3] = 0xFF000000 | (pdwS[2]>>8);

pdwD +=4;

pdwS +=3;

}

// We might have remaining (misaligned) bytes here

pbS = (BYTE*) pdwS;

for(col = 0; col < (UINT)m_lVidWidth % 4; col++)

{

*pdwD = 0xFF000000 |

(pbS[2] << 16) |

(pbS[1] << 8) |

(pbS[0]);

pdwD++;

pbS += 3;

}

pBmpBuffer += m_lVidPitch;

pTxtBuffer += lTxtPitch;

} // for rows

}

if (m_TextureFormat == D3DFMT_A1R5G5B5)

{

Chapter 12: More Animated Texturing 283

C
h

a
p

te
r

1
2

for(int y = 0; y < m_lVidHeight; y++)

{

BYTE *pBmpBufferOld = pBmpBuffer;

BYTE *pTxtBufferOld = pTxtBuffer;

for (int x = 0; x < m_lVidWidth; x++)

{

*(WORD *)pTxtBuffer = (WORD)

(0x8000 +

((pBmpBuffer[2] & 0xF8) << 7) +

((pBmpBuffer[1] & 0xF8) << 2) +

(pBmpBuffer[0] >> 3));

pTxtBuffer += 2;

pBmpBuffer += 3;

}

pBmpBuffer = pBmpBufferOld + m_lVidPitch;

pTxtBuffer = pTxtBufferOld + lTxtPitch;

}

}

// Unlock the texture

if (FAILED(m_pTexture->UnlockRect(0)))

return E_FAIL;

return S_OK;

}

Hmmm, this function looks quite nasty, doesn’t it? Actually, go over

it a few times and you’ll see it’s not as bad as it first seems. The

first important part is the locking of the texture. This is achieved by

calling the LockRect method of IDirect3DTexture9. Calling

LockRect on a texture is tantamount to calling Lock on a Direct3D

surface; it accesses the raw pixel data of the texture. Nothing is

actually copied yet; it simply prepares the texture for copying pixels

onto it. The syntax and parameters for LockRect appear below.

HRESULT LockRect(

UINT Level,

284 Chapter 12: More Animated Texturing

D3DLOCKED_RECT *pLockedRect,

CONST RECT *pRect,

DWORD Flags

);

UINT Level

Specifies the level of the texture to lock. For the purposes of

this book, you can pass 0.

D3DLOCKED_RECT *pLockedRect

Pointer to a D3DLOCKED_RECT structure to receive informa-

tion describing the locked region.

CONST RECT *pRect

Pointer to a rectangle to lock, or NULL to lock the entire

texture.

DWORD Flags

Can be none or a combination of any of the following flags, indi-

cating the type of lock to perform:

D3DLOCK_DISCARD

D3DLOCK_NO_DIRTY_UPDATE

D3DLOCK_NOSYSLOCK

D3DLOCK_READONLY

Once the texture has been locked it’s ready to receive pixel data.

So, the DoRenderSample function moves on. Afterward, the func-

tion casts the bits of the texture and then checks for the format of

the texture. The format will influence exactly how those raw bytes

will be copied in the next process, so this is why it needs to be

checked beforehand; otherwise, the image will look all messed up.

Here’s the isolated texture copying code for your convenience:

if (m_TextureFormat == D3DFMT_X8R8G8B8)

{

dwordWidth = m_lVidWidth / 4;

for(row = 0; row< (UINT)m_lVidHeight; row++)

{

Chapter 12: More Animated Texturing 285

C
h

a
p

te
r

1
2

pdwS = (DWORD*)pBmpBuffer;

pdwD = (DWORD*)pTxtBuffer;

for(col = 0; col < dwordWidth; col ++)

{

pdwD[0] = pdwS[0] | 0xFF000000;

pdwD[1] = ((pdwS[1]<<8) | 0xFF000000) | (pdwS[0]>>24);

pdwD[2] = ((pdwS[2]<<16) | 0xFF000000) | (pdwS[1]>>16);

pdwD[3] = 0xFF000000 | (pdwS[2]>>8);

pdwD +=4;

pdwS +=3;

}

// We might have remaining (misaligned) bytes here

pbS = (BYTE*) pdwS;

for(col = 0; col < (UINT)m_lVidWidth % 4; col++)

{

*pdwD = 0xFF000000 |

(pbS[2] << 16) |

(pbS[1] << 8) |

(pbS[0]);

pdwD++;

pbS += 3;

}

pBmpBuffer += m_lVidPitch;

pTxtBuffer += lTxtPitch;

} // for rows

}

if (m_TextureFormat == D3DFMT_A1R5G5B5)

{

for(int y = 0; y < m_lVidHeight; y++)

{

BYTE *pBmpBufferOld = pBmpBuffer;

BYTE *pTxtBufferOld = pTxtBuffer;

for (int x = 0; x < m_lVidWidth; x++)

{

*(WORD *)pTxtBuffer = (WORD)

286 Chapter 12: More Animated Texturing

(0x8000 +

((pBmpBuffer[2] & 0xF8) << 7) +

((pBmpBuffer[1] & 0xF8) << 2) +

(pBmpBuffer[0] >> 3));

pTxtBuffer += 2;

pBmpBuffer += 3;

}

pBmpBuffer = pBmpBufferOld + m_lVidPitch;

pTxtBuffer = pTxtBufferOld + lTxtPitch;

}

}

And that’s it! That’s how a video is copied onto a texture. However,

this plug-in class is no good on its own. It needs a filter graph to

load the video file, load the plug-in, and then kick the movie into

action. The next section demonstrates how to create a filter graph.

Preparing the Filter Graph

Before our custom renderer can actually render video, it needs to

be plugged into a filter graph. In other words, the custom render

class relies on the filter graph to receive video data. In the previous

chapter it was demonstrated how a filter graph could be created,

loaded with streamable media, and set into motion. This process is

more or less repeated here with a few exceptions involving our cus-

tom renderer. Let’s see the individual stages of creating and

building a filter graph to use our plug-in renderer.

1. The process begins by creating the filter graph. This is no dif-

ferent from what we’re used to. Take a look at the code to do

this:

HRESULT hr = CoCreateInstance(CLSID_FilterGraph, NULL,

CLSCTX_INPROC_SERVER, IID_IGraphBuilder, (void **)&m_pGraph);

Chapter 12: More Animated Texturing 287

C
h

a
p

te
r

1
2

2. Next, you should declare an instance of your render class. This

is really simple to do, as shown below.

m_TextureRenderer = new CTextureRenderer(NULL, &hr);

3. After this, you’ll want to insert the render class into the filter

graph as a valid custom video renderer. From this point onward,

the filter graph is able to call upon any of your implemented

methods. The filter graph accepts the insertion of plug-ins

through the AddFilter method. Its syntax and parameters are

shown below, and then some sample code follows.

HRESULT AddFilter

(

IBaseFilter *pFilter,

LPCWSTR pName

);

IBaseFilter *pFilter

Pointer to the IBaseFilter interface to add as a plug-in. This is

where your video render class is ultimately derived. In other

words, this is where you pass your custom render class.

LPCWSTR pName

Pointer to a wide-character string containing a user-defined

name for the filter. This can be any name you want.

� NOTE. It is important to note the possible failure codes for this func-

tion. These are as follows:

� S_OK — Success

� VFW_S_DUPLICATE_NAME — Successfully added a filter with

a duplicate name

� E_FAIL — Failure

� E_OUTOFMEMORY — Insufficient memory

� E_POINTER — Null pointer argument

� VFW_E_CERTIFICATION_FAILURE — Use of this filter is

restricted by a software key

� VFW_E_DUPLICATE_NAME — Failed to add a filter with a

duplicate name

288 Chapter 12: More Animated Texturing

Sample code:

if(FAILED(hr = m_pGraph->AddFilter(m_TextureRenderer, L"TEXTURERENDERER")))

return hr;

4. Once the custom render class has been added successfully to

the filter graph, you need to add the source file. This means

actually telling the filter graph which video file to open. For

those who remember the filter graph loading process from the

previous chapter, this function replaces the RenderFile routine.

The process of adding the video file to the filter graph is accom-

plished by calling the AddSourceFilter method of the

IGraphBuilder interface. The syntax and parameters for

AddSourceFilter are listed below, and then some sample code

follows.

HRESULT AddSourceFilter

(

LPCWSTR lpwstrFileName,

LPCWSTR lpwstrFilterName,

IBaseFilter **ppFilter

);

LPCWSTR lpwstrFileName

Filename of the media file to load.

LPCWSTR lpwstrFilterName

Name of the filter to add. This can be any name you want.

IBaseFilter **ppFilter

Address to receive a pointer to a base filter interface represent-

ing the added media.

Sample code:

if(FAILED(hr = m_pGraph->AddSourceFilter (wFileName, L"SOURCE", &pFSrc)))

return hr;

5. Great! You’ve now added the custom video renderer and a

source filter representing the loaded media file to the filter

graph. Next, you’ll need to enumerate through the filter’s pins

Chapter 12: More Animated Texturing 289

C
h

a
p

te
r

1
2

to find the output pin. The exact reasons for doing this are

beyond the scope of this book since such subject matter is spe-

cifically related to DirectShow rather than Direct3D. In short,

however, as the filters are added to the filter graph, most of

them are automatically configured together. And, as video is

played back it will travel along the filters and outward through

connections called pins. It is therefore our duty, since we’re

manually building a filter graph, to ensure the output pin —

where video and sound will be output — must be the pin that is

rendered. If it is not, then we won’t see or hear anything from

the file. In order to search the filter for the correct output pin,

I’ve coded the following function to do this. As arguments, it

takes a filter and a direction to search, and returns its nearest

unconnected output pin. This code is as follows:

HRESULT GetUnconnectedPin(IBaseFilter *pFilter, PIN_DIRECTION PinDir,

IPin **ppPin)

{

*ppPin = 0;

IEnumPins *pEnum = 0;

IPin *pPin = 0;

HRESULT hr = pFilter->EnumPins(&pEnum);

if (FAILED(hr))

{

return hr;

}

while (pEnum->Next(1, &pPin, NULL) == S_OK)

{

PIN_DIRECTION ThisPinDir;

pPin->QueryDirection(&ThisPinDir);

if (ThisPinDir == PinDir)

{

IPin *pTmp = 0;

hr = pPin->ConnectedTo(&pTmp);

if (SUCCEEDED(hr))

{

pTmp->Release();

}

else

290 Chapter 12: More Animated Texturing

{

pEnum->Release();

*ppPin = pPin;

return S_OK;

}

}

pPin->Release();

}

pEnum->Release();

return E_FAIL;

}

6. Once the output pin has been located, it needs to be rendered

by the filter graph. This is how you prepare the graph to play

your file. This process is performed by calling the Render

method of IGraphBuilder. This method simply takes the output

pin as an argument. The code below demonstrates how to use

this method.

if (FAILED(hr = m_pGraph->Render(pFSrcPinOut)))

return hr;

7. Although the output pin has been rendered, it still hasn’t

started playing the media file. This will be done when the Run

method of IMediaControl is called. First, however, it’s a good

idea to get pointers to some more of those standard interfaces.

Here’s some code to do this:

//Create media control and events

if(FAILED(hr = m_pGraph->QueryInterface(IID_IMediaControl, (void

**)&m_pControl)))

return hr;

if(FAILED(hr = m_pGraph->QueryInterface(IID_IMediaEventEx, (void

**)&m_pEvent)))

return hr;

Here’s the full code. It creates a filter graph, adds a video renderer,

loads a file, connects pins, and then sets a file in motion. And that’s

Chapter 12: More Animated Texturing 291

C
h

a
p

te
r

1
2

it! That’s how video files can be played on textures. A bit complex,

I know, but well worth the effort.

HRESULT LoadFromFile(char* File)

{

IBaseFilter* pFSrc = NULL;

IPin* pFSrcPinOut = NULL;

HRESULT hr = CoCreateInstance(CLSID_FilterGraph, NULL,

CLSCTX_INPROC_SERVER, IID_IGraphBuilder, (void **)&m_pGraph);

if(FAILED(hr))

return hr;

m_TextureRenderer = new CTextureRenderer(NULL, &hr);

if(FAILED(hr = m_pGraph->AddFilter(m_TextureRenderer,

L"TEXTURERENDERER")))

return hr;

WCHAR wFileName[MAX_PATH];

mbstowcs(wFileName, File, MAX_PATH);

if(FAILED(hr = m_pGraph->AddSourceFilter (wFileName,

L"SOURCE", &pFSrc)))

return hr;

if (FAILED(hr = GetUnconnectedPin(pFSrc, PINDIR_OUTPUT,

&pFSrcPinOut)))

return hr;

if (FAILED(hr = m_pGraph->Render(pFSrcPinOut)))

return hr;

//Create media control and events

if(FAILED(hr = m_pGraph->QueryInterface(IID_IMediaControl,

(void **)&m_pControl)))

return hr;

292 Chapter 12: More Animated Texturing

if(FAILED(hr = m_pGraph->QueryInterface(IID_IMediaEventEx,

(void **)&m_pEvent)))

return hr;

if(FAILED(hr = m_pGraph->QueryInterface(IID_IMediaPosition,

(void **)&m_pMP)))

return hr;

return S_OK;

}

Conclusion

This chapter introduced you to one of the most complex subjects

this book covers. Having come this far you should be able to load a

video from a file and then copy it to a texture as playback elapses.

Now, you should be hungry for some more challenging work. Hope-

fully, the next chapter will not disappoint as we turn our attention

to skeletal animation.

Chapter 12: More Animated Texturing 293

C
h

a
p

te
r

1
2

This page intentionally left blank.

Chapter 13

Skeletal Animation

This final chapter covers some pretty advanced subject matter; spe-

cifically, skeletal animation. Overall, this chapter aims to cover the

following topics:

� What is skeletal animation?

� How to use skinned meshes and bone hierarchies

� How to load frame hierarchies

� How to parse bones

� How to apply keyframed animation to skinned meshes

What Is Skeletal Animation?

If you’ve played any of the latest video games, I’m sure you’ve seen

skeletal animation at work. Until now we’ve seen how to move

objects from one place to another, and we’ve also seen how to ani-

mate the surfaces of textures. Now, imagine we have a character

model — say, a mesh of a woman. We want to show an animation of

this woman walking, moving her legs and swinging her arms back

and forth as she takes each stride. Up to this point, the only way we

could implement this animation would be to export several meshes

of the woman at various points in the walk animation and to inter-

polate between them over time using D3DXVec3Lerp. While this is

possible, it’s also a very, very slow way to implement this animation

sequence. A more effective solution would be to employ skeletal

animation.

295

Essentially, skeletal animation is a memory-efficient way of ani-

mating meshes. For example, if you have a mesh of a person,

animal, or some other creature or vehicle whose parts move, then

it’s likely skeletal animation will prove a real benefit. For skeletal

animation, you only need to use one mesh rather than many ver-

sions of the same mesh at different keyframes. You encode the

animations themselves by way of matrices, which means you can

encode potentially many animations and apply them independently

to a single mesh (more on this later).

A mesh that is animated using skeletal animation is called a

skinned mesh, and for the rest of this chapter, we’ll be thinking

about skeletal animation and skinned meshes in terms of animating

a single character mesh of a woman. Being a skinned mesh, it

means we can access each part of the mesh’s body independently

and, furthermore, we can animate each limb using its own transfor-

mation matrix. Therefore, we can move the mesh’s arms and legs,

or other limbs, to our liking without affecting other areas of the

mesh. The mesh used for our work in this chapter, like most

skinned meshes, will be stored in a Microsoft X file, discussed ear-

lier in this book. This mesh is provided with the Microsoft DirectX

SDK and is called Tiny.x. It can be found in the SDK Samples\Media

folder.

Skinned Meshes

Tiny.x is a skinned mesh, and skinned meshes are typically stored

in X files. The X file will at least contain the following:

� Mesh

The mesh itself; this will be the model actually exported from a

3D modeling package. This mesh will contain vertices, materi-

als, and textures.

� Skin info

Skinned meshes contain a skin info data structure that goes

hand in hand with the mesh. The skin info structure stores a

296 Chapter 13: Skeletal Animation

collection of objects called bones, which represent the different

parts of the mesh, like arms, legs, the torso, etc.

� Frame hierarchy

The file will also contain a hierarchy of frame objects, which

each contain a transformation matrix. These frames correspond

to each bone in the mesh and represent how the bone — a spe-

cific area of the mesh — is to be transformed and posed.

The Structure of a Skinned Mesh

Figure 13.2 contains an illustration of how a skinned mesh, Tiny.x,

with its frame and bone data can be visualized. As you can see, it’s

structurally very simple. The file contains a character mesh and a

bone hierarchy that corresponds to the various limbs of the mesh.

You can think of the bone hierarchy as being the underlying skele-

ton of the mesh, and the mesh itself as the skin wrapped over the

bones. As the skeleton is transformed and moved, the dependent

mesh conforms to match the skeleton. So, if you moved the upper

arm of the skeleton, the attached lower arm, wrist, and hand would

Chapter 13: Skeletal Animation 297

C
h

a
p

te
r

1
3

Figure 13.1: Tiny.x

follow. Additionally, the corresponding character mesh would move

according to the skeleton.

Figure 13.2 shows the DirectX mesh viewer with the Tiny.x mesh

and its corresponding hierarchy loaded. Now, it should become

clear how the skinned mesh file is structured practically. It

contains:

298 Chapter 13: Skeletal Animation

Figure 13.2

� A mesh, which, when loaded, will be represented by a standard

ID3DXMesh interface. Furthermore, this mesh will be accom-

panied by the ID3DXSkinInfo interface, which contains addi-

tional information about the skeletal composition of the mesh.

� A bone hierarchy, represented by a hierarchy of D3DXFRAME

structures (or frames, as shown earlier in this book when dis-

cussing timing and animation). These frames are named after

the corresponding bone in the mesh, and also have a transfor-

mation matrix representing the pose and movement of the

bone. These matrices will be used to change the bones and

pose the mesh.

Loading a Skinned Mesh from an X File

The first stage of loading a skinned mesh is to load the actual mesh

object and skin info data, and then load the bone hierarchy sepa-

rately. The reason it’s a good idea to keep the mesh and skeleton

separate is because you could make many different skeletons, some

in a walking pose and some in other poses, and then apply them to

the same mesh to pose it differently. Loading the skinned mesh

involves a bit more work than just calling a function and passing a

filename. Instead you’ll need to use the X file interface functions, as

discussed in Chapter 6. You’ll need to open up the X file manually

and cycle through the file’s data objects looking for an object whose

type matches a mesh. Once found, you can load the skinned mesh

and skin info using the D3DXLoadSkinMeshFromXof function.

This function requires, among other parameters, an X file data

object from which to load the mesh, some addresses to receive

material and texture data, and an address to receive the mesh’s

skin info. The syntax and parameters for this function appear below.

HRESULT WINAPI D3DXLoadSkinMeshFromXof(

LPD3DXFILEDATA pxofMesh,

DWORD Options,

LPDIRECT3DDEVICE9 pD3DDevice,

LPD3DXBUFFER *ppAdjacency,

LPD3DXBUFFER *ppMaterials,

LPD3DXBUFFER *ppEffectInstances,

Chapter 13: Skeletal Animation 299

C
h

a
p

te
r

1
3

DWORD *pMatOut,

LPD3DXSKININFO *ppSkinInfo,

LPD3DXMESH *ppMesh

);

LPD3DXFILEDATA pxofMesh

Pointer to an ID3DXFileData object from which to load a mesh.

DWORD Options

Specifies creation options for the mesh. Typically, this will be

D3DXMESH_SYSTEMMEM. Possible parameters are:

D3DXMESH_32BIT

D3DXMESH_DONOTCLIP

D3DXMESH_DYNAMIC

D3DXMESH_IB_DYNAMIC

D3DXMESH_IB_MANAGED

D3DXMESH_IB_SOFTWAREPROCESSING

D3DXMESH_IB_SYSTEMMEM

D3DXMESH_IB_WRITEONLY

D3DXMESH_MANAGED

D3DXMESH_NPATCHES

D3DXMESH_POINTS

D3DXMESH_RTPATCHES

D3DXMESH_SOFTWAREPROCESSING

D3DXMESH_USEHWONLY

D3DXMESH_VB_DYNAMIC

D3DXMESH_VB_MANAGED

D3DXMESH_VB_SHARE

D3DXMESH_VB_SOFTWAREPROCESSING

D3DXMESH_VB_SYSTEMMEM

D3DXMESH_VB_WRITEONLY

D3DXMESH_WRITEONLY

LPDIRECT3DDEVICE9 pD3DDevice

Pointer to a valid Direct3D device.

LPD3DXBUFFER *ppAdjacency

Address of a buffer to receive mesh adjacency information.

LPD3DXBUFFER *ppMaterials

Address of a buffer to receive material information.

300 Chapter 13: Skeletal Animation

LPD3DXBUFFER *ppEffectInstances

Address of a buffer to receive effects information. Can be

NULL.

DWORD *pMatOut

Address to receive the number of returned materials.

LPD3DXSKININFO *ppSkinInfo

Address to receive mesh skin information.

LPD3DXMESH *ppMesh

Address to receive a skinned mesh.

The code below demonstrates how to use the D3DXLoadSkin-

MeshFromXof function to load a skinned mesh. The code also loads

the mesh’s material and textures, and then finally creates a clone of

the mesh using the CloneMeshFVF method of ID3DXMesh. This

method was explained in Chapter 7, “Meshes.” To recap, the

CloneMeshFVF method creates a duplicate mesh. The reason the

code creates a duplicate mesh is so that as the mesh is animated

using skeletal animation later, the original mesh will not be changed

and can be reverted to again should it be required.

HRESULT Res = D3DXLoadSkinMeshFromXof(m_FileDataObject,

D3DXMESH_DYNAMIC, m_pDevice,

&m_pAdjacencyBuffer,

&m_pMaterialBuffer, NULL,

&NumMaterials, &pSkinInfo, &pMesh);

if(SUCCEEDED(Res))

{

pMesh->CloneMeshFVF(0, pMesh->GetFVF(), m_pDevice, &pClonedSkinMesh);

}

pMaterials = (D3DXMATERIAL*)m_pMaterialBuffer->GetBufferPointer();

pTextures = new LPDIRECT3DTEXTURE9[NumMaterials];

for(unsigned int Counter = 0; Counter < NumMaterials; Counter++)

{

pMaterials[Counter].MatD3D.Ambient = pMaterials[Counter].MatD3D.Diffuse;

Chapter 13: Skeletal Animation 301

C
h

a
p

te
r

1
3

pTextures[Counter] = NULL;

D3DXCreateTextureFromFile(m_pDevice, pMaterials[Counter].pTextureFilename,

pTextures[Counter]);

}

//If pSkinInfo is NULL, then the loaded mesh was not a skinned mesh

return pSkinInfo;

Bone Hierarchies

As mentioned previously, in addition to the skinned mesh and skin

info stored in a skinned mesh X file, there’s also a bone hierarchy.

This hierarchy is really a hierarchy of D3DXFRAME objects, which

has a name and contains a transformation matrix. Figure 13.2

showed how the frame hierarchy is composed. Take a look at the

syntax and parameters below. This shows you how a single

D3DXFRAME structure is composed and what its members mean.

typedef struct _D3DXFRAME

{

LPSTR Name;

D3DXMATRIX TransformationMatrix;

LPD3DXMESHCONTAINER pMeshContainer;

struct _D3DXFRAME *pFrameSibling;

struct _D3DXFRAME *pFrameFirstChild;

}

D3DXFRAME, *LPD3DXFRAME;

LPSTR Name

A string member used to store the name of the frame.

D3DXMATRIX TransformationMatrix

A matrix structure reserved for the frame’s transformation

matrix.

LPD3DXMESHCONTAINER pMeshContainer

Some frames may contain or are associated with one or more

meshes. For the purposes of this book, this member will usu-

ally be NULL.

302 Chapter 13: Skeletal Animation

struct _D3DXFRAME *pFrameSibling

struct _D3DXFRAME *pFrameFirstChild

These two parameters are used to keep track of the hierarchy

of frames. Remember, the hierarchy is maintained by a linked

list. This means each frame needs to maintain a pointer to its

next sibling frame, if any, and its first child frame, if any. For

more information, review the section in Chapter 9 called

“Linked Lists.”

So now that we’ve seen how a frame structure is composed we can

simply iterate through the skinned mesh X file, looking for all

frame objects, and then create our hierarchy accordingly. This is

done exactly how we iterated through X files before, except this

time we’ll need to iterate through the objects using recursion to

ensure we mimic the frame hierarchy. However, before we dive in

and start loading our frame objects right away, we can make our

lives a little simpler by deriving a class from the D3DXFRAME

structure. This will contain some additional members to hold some

useful information about our frames. Its class declaration appears

below. Afterward we’ll begin to load the frame hierarchy from the X

file using our new frame class.

class D3DXFRAME2 : public D3DXFRAME

{

private:

protected:

public:

D3DXMATRIX matCombined;

D3DXMATRIX matOriginal;

D3DXFRAME2()

{

Name = NULL;

D3DXMatrixIdentity(&TransformationMatrix);

D3DXMatrixIdentity(&matOriginal);

D3DXMatrixIdentity(&matCombined);

pMeshContainer = NULL;

pFrameSibling = pFrameFirstChild = NULL;

Chapter 13: Skeletal Animation 303

C
h

a
p

te
r

1
3

}

~D3DXFRAME2()

{

if(pMeshContainer)

delete pMeshContainer;

if(pFrameSibling)

delete pFrameSibling;

if(pFrameFirstChild)

delete pFrameFirstChild;

}

D3DXFRAME2* Find(const char* FrameName)

{

D3DXFRAME2 *pFrame, *pFramePtr;

if(Name && FrameName && !strcmp(FrameName, Name))

return this;

if((pFramePtr = (D3DXFRAME2*)pFrameSibling))

{

if((pFrame = pFramePtr->Find(FrameName)))

return pFrame;

}

if((pFramePtr = (D3DXFRAME2*)pFrameFirstChild))

{

if((pFrame = pFramePtr->Find(FrameName)))

return pFrame;

}

return NULL;

}

void Reset()

{

TransformationMatrix = matOriginal;

304 Chapter 13: Skeletal Animation

D3DXFRAME2 *pFramePtr = NULL;

if((pFramePtr = (D3DXFRAME2*)pFrameSibling))

pFramePtr->Reset();

if((pFramePtr = (D3DXFRAME2*)pFrameFirstChild))

pFramePtr->Reset();

}

void UpdateHierarchy(D3DXMATRIX *matTransformation = NULL)

{

D3DXFRAME2 *pFramePtr = NULL;

D3DXMATRIX matIdentity;

if(!matTransformation)

{

D3DXMatrixIdentity(&matIdentity);

matTransformation = &matIdentity;

}

matCombined = TransformationMatrix * (*matTransformation);

if((pFramePtr = (D3DXFRAME2*)pFrameSibling))

pFramePtr->UpdateHierarchy(matTransformation);

if((pFramePtr = (D3DXFRAME2*)pFrameFirstChild))

pFramePtr->UpdateHierarchy(&matCombined);

}

void AddChildFrame(D3DXFRAME2 *Frame)

{

if(Frame)

{

if(!pFrameFirstChild)

pFrameFirstChild = Frame;

else

{

D3DXFRAME* FramePtr = pFrameFirstChild;

while(FramePtr->pFrameSibling)

Chapter 13: Skeletal Animation 305

C
h

a
p

te
r

1
3

FramePtr = FramePtr->pFrameSibling;

FramePtr->pFrameSibling = Frame;

}

}

}

};

Loading the Bone Hierarchy

In the previous section we developed an extended frame class to

hold some additional information about our frames, including an

original and combined transformation matrix. This section begins

the process of loading a frame hierarchy from the skinned mesh X

file. As you will see, the hierarchy is stored like this:

� There will be a root frame at the top of the hierarchy. This will

usually correspond to the root bone in the mesh, such as the

head or hip.

� Each frame will contain only one transformation matrix as a

child. This matrix will be the transformation matrix for the

frame and represents the transformation to use for that specific

bone.

� Each frame will have none, one, or more child frame objects.

The child frame objects represent child bones that are depend-

ent on their parent. As their parent moves, so do all its

children.

The function below demonstrates how to cycle through an X file’s

data objects, finding all frames, and then loads them into the hierar-

chy. A more detailed explanation of the code follows.

HRESULT ProcessObject(LPD3DXFILEDATA DataObject, D3DXFRAME2 *Parent)

{

//If data object is NULL then exit

if(!DataObject)

return E_FAIL;

306 Chapter 13: Skeletal Animation

D3DXFRAME2 *Frame = NULL;

//If data object is a reference then skip object

if(DataObject->IsReference())

return E_FAIL;

//Is data object a frame?

GUID Type;

DataObject->GetType(&Type)

if(Type == TID_D3DRMFrame)

{

Frame = new D3DXFRAME2();

//Get frame name

SIZE_T Size = 0;

DataObject->GetName(NULL, &Size);

Frame->Name = new char[Size];

DataObject->GetName(Frame->Name, &Size);

//Is there currently a parent frame?

if(!Parent)

{

if(m_RootFrame)

{

//Should not usually occur, but if so, then add as sibling of

//root frame

D3DXFRAME* FramePtr = m_RootFrame;

while(FramePtr->pFrameSibling)

FramePtr = FramePtr->pFrameSibling;

FramePtr->pFrameSibling = Frame;

}

else

m_RootFrame = Frame; //Make this frame the root

}

else

{

Parent->AddChildFrame(Frame); //Add as child of the parent frame

Chapter 13: Skeletal Animation 307

C
h

a
p

te
r

1
3

}

}

//If data object is a transformation matrix

if(Type == TID_D3DRMFrameTransformMatrix)

{

//Make sure there is a parent frame to add matrix to

if(Parent)

{

D3DXMATRIX *Matrix = NULL;

SIZE_T Size = 0;

//Lock matrix data

DataObject->Lock(&Size, (const void**) &Matrix);

if(Size == sizeof(D3DXMATRIX))

{

//Copy over matrix

Parent->TransformationMatrix = *(Matrix);

Parent->matOriginal = Parent->TransformationMatrix;

}

//Unlock matrix data

DataObject->Unlock();

}

}

//Process child objects

SIZE_T ChildCount = 0;

DataObject->GetChildren(&ChildCount);

for(SIZE_T Counter = 0; Counter < ChildCount; Counter++)

{

LPD3DXFILEDATA ChildObject = NULL;

DataObject->GetChild(&ChildObject);

ProcessObject(ChildObject, Frame);

}

308 Chapter 13: Skeletal Animation

return S_OK;

}

};

This lengthy piece of code is nowhere near as bad as it might first

seem. Why not take a moment to go back and read through it again,

step by step? One of the main variables in this piece of code is

m_RootFrame, which is a global D3DXFRAME* pointer represent-

ing the root (topmost) frame in the hierarchy. This variable is set to

NULL. Additionally, this function is recursive, and for every frame

created it’ll be passed on as the parent parameter to which child

frames can be added. Overall, you’ll notice that loading a frame

hierarchy is about going through the following steps every time a

frame object is located in the X file.

1. Create a D3DXFRAME2 object.

2. Get the name of the frame and assign it to the frame object.

3. Check to see whether your root frame object (m_RootFrame)

has already been assigned a frame object. If it’s NULL, then

there is currently no root frame and this is the first frame

you’ve encountered in the hierarchy. Therefore, this frame

should become the root frame. However, if the root frame is not

NULL, then the root frame has already been assigned a frame

object previously, meaning the current frame is not the root

frame. So, in this case, you must add the current frame as a

child frame to the frame object passed as the parent parameter.

In other words, the current frame is a child object to the parent

frame.

The other aspect to this function, which is quite self explanatory, is

about assigning a matrix to a frame. As this code demonstrates, a

frame’s matrix is actually stored as a separate child object to the

frame. This means that as you cycle through all the X file’s data

objects, you must also check to see whether a matrix object was

encountered. Whenever a matrix object is encountered, you do the

following:

Chapter 13: Skeletal Animation 309

C
h

a
p

te
r

1
3

1. Check to see that there is a parent frame to which the matrix

should belong. If the parent parameter is NULL, then there is

no parent frame and the operation can be ignored. However, if

the parent parameter points to a valid frame, then the matrix

can be processed.

2. Lock the data and validate its size.

3. Copy the matrix data over into the frame.

Mapping the Bone Hierarchy to the Mesh

At this point you’ve loaded two distinct items from the skinned

mesh X file: the mesh itself and the associated bone hierarchy.

However, there’s currently no discernible linkage between the two.

Now it’s time to iterate through the frame hierarchy that you’ve

created and associate each frame with a specific area of the mesh so

that its respective transformation matrix will later be applied to the

correct area. In other words, you need to process all the frames and

make sure each frame is associated with a specific bone of the

mesh’s skeleton. Thus, you’re establishing the relationship

between the skeleton and the mesh.

To access the skeletal information from the mesh, you call upon

the skin info interface (ID3DXSkinInfo). This was loaded along with

your mesh and it contains a plethora of data about the skeletal com-

position underlying the skin of your mesh. Using this interface we

can iterate through every bone in the mesh. The following function

shows you how to map the frames to the bones, and the code is

explained afterward.

VOID MapFramesToBones()

{

if(IsSkinnedMesh())

{

DWORD NumBones = m_pMeshContainer->pSkinInfo->GetNumBones();

m_pMeshContainer->ppFrameMatrices = new D3DXMATRIX*[NumBones];

m_pMeshContainer->pBoneMatrices = new D3DXMATRIX[NumBones];

310 Chapter 13: Skeletal Animation

for(DWORD Counter = 0; Counter < NumBones; Counter++)

{

const char* BoneName = m_pMeshContainer->pSkinInfo-

>GetBoneName(Counter);

D3DXFRAME2* FramePtr = m_pFrames->Find(BoneName);

if(FramePtr)

m_pMeshContainer->ppFrameMatrices[Counter] =

&FramePtr->matCombined;

else

m_pMeshContainer->ppFrameMatrices[Counter] = NULL;

}

}

}

The above code calls upon the GetNumBones function to get the

number of bones in the mesh. Then it allocates enough matrices to

hold the bone transformations, and finally it cycles through every

bone. As it does so, it takes the name of each bone and searches

through the corresponding frame hierarchy until it finds a match.

Once found, it keeps a pointer to the frame’s transformation matrix

for later reference.

Updating the Mesh

Now that the bones have finally been mapped to the mesh, it’s

almost ready to render. Before we can do this, though, we need to

make sure the mesh is updated on every frame so that it’s set into

its correct pose. In other words, what we really mean is we must

cycle through all the bones in the hierarchy and apply their specific

transformation matrices to the corresponding area of the mesh. For

example, the mesh’s arm might be raised. This means the arm

frame will contain a matrix that’ll position the arm correctly. Take a

look at the following code to see how the bone hierarchy is updated.

Chapter 13: Skeletal Animation 311

C
h

a
p

te
r

1
3

VOID Update()

{

m_pFrames->UpdateHierarchy(m_Transform);

DWORD NumBones = m_pMeshContainer->pSkinInfo->GetNumBones();

for(DWORD Counter = 0; Counter < NumBones; Counter++)

{

m_pMeshContainer->pBoneMatrices[Counter] =

(*m_pMeshContainer->pSkinInfo-

>GetBoneOffsetMatrix(Counter));

if(m_pMeshContainer->ppFrameMatrices[Counter])

m_pMeshContainer->pBoneMatrices[Counter] *=

(*m_pMeshContainer->ppFrameMatrices[Counter]);

}

void *SrcPtr, *DesPtr;

m_pMeshContainer->MeshData.pMesh->LockVertexBuffer(D3DLOCK_READONLY,

(void**) &SrcPtr);

m_pMeshContainer->pSkinMesh->LockVertexBuffer(0, (void**) &DesPtr);

m_pMeshContainer->pSkinInfo->UpdateSkinnedMesh(m_pMeshContainer->

pBoneMatrices, NULL, SrcPtr, DesPtr);

m_pMeshContainer->MeshData.pMesh->UnlockVertexBuffer();

m_pMeshContainer->pSkinMesh->UnlockVertexBuffer();

}

First, the above function calls the Update method on the root frame

of the hierarchy, passing a transformation matrix to it. The called

method then updates the root frame and passes the transformation

recursively down the hierarchy to update every other frame. Over-

all, this process positions and transforms the mesh. Next, the above

function calls the GetNumBones method of ID3DXSkinInfo to

retrieve the number of bones in the mesh. Then, it cycles through

312 Chapter 13: Skeletal Animation

each bone. As it does so, it retrieves each bone offset matrix using

the GetBoneOffsetMatrix method of ID3DXSkinInfo. This is a

matrix that tells us where the bone joints are. Because all transfor-

mations are applied at the world origin, we’ll need the offset matrix

in order to first move the bones to their joints, and then apply the

transformations to each one. Then finally you need to apply all

these updates to the mesh itself. To do this, you need to lock the

vertex buffers to both meshes, the original mesh and the cloned

mesh, and call the UpdateSkinnedMesh method of

ID3DXSkinInfo. The syntax and parameters for this function appear

below.

HRESULT UpdateSkinnedMesh

(

const D3DXMATRIX *pBoneTransforms,

const D3DXMATRIX *pBoneInvTransposeTransforms,

LPCVOID pVerticesSrc,

PVOID pVerticesDst

);

const D3DXMATRIX *pBoneTransforms

Pointer to an array of transform matrices. These will actually be

your transform matrices for each bone.

const D3DXMATRIX *pBoneInvTransposeTransforms

Inverse transpose of the bone transform matrix. This can be

NULL.

LPCVOID pVerticesSrc

Pointer to the vertices in your source mesh.

PVOID pVerticesDst

Pointer to the vertices in your destination mesh.

Chapter 13: Skeletal Animation 313

C
h

a
p

te
r

1
3

Rendering the Mesh

Like updating the mesh, rendering occurs on every frame. Render-

ing is the actual process of drawing the mesh to the screen, and the

process of drawing skinned meshes is just like drawing any other

mesh.

bool CXSkinnedMesh::Render()

{

if(m_pMeshContainer->pSkinMesh)

{

Update();

for(unsigned int Counter = 0; Counter < m_pMeshContainer-

>NumMaterials; Counter++)

{

m_pDevice->SetMaterial(&m_pMeshContainer->

pMaterials[Counter].MatD3D);

m_pDevice->SetTexture(0, m_pMeshContainer->pTextures[Counter]);

m_pMeshContainer->pSkinMesh->DrawSubset(Counter);

}

return true;

}

return false;

}

Animating the Skeleton

By this point you should be able to load a skinned mesh and bone

hierarchy from an X file and render it to the screen. However, so far

the mesh doesn’t move; it just stands there, still and motionless in

its starting pose. You could choose to manipulate those bone matri-

ces manually and animate the skeleton yourself; however, this

would be a long and tedious process. A better way to animate the

skeleton is to use keyframed animation. These animations can be

314 Chapter 13: Skeletal Animation

created in a 3D package and exported to the X file format. This

means you can create many different keyframed animations where

the skeleton of the mesh is animated. You can then load these in

separately from the mesh and apply the different animations to the

skeleton when required. For example, you could make a keyframed

animation of a skeleton jumping, and then another of a skeleton

running. Then finally, when you want your mesh to run, you simply

apply the running animation. When you want your mesh to jump,

you just apply the jumping animation. Using this method, you won’t

need to change a single line of code when you want to use different

animations.

To recap, first let’s remember exactly what keyframed anima-

tion is. Keyframed animation is a memory-efficient way of

representing animations. Simply put, you just store the state of the

mesh at specific intervals in the animation and, as time advances

through the animation during playback, you interpolate between

the keyframes. This means you don’t need to store the state of the

mesh on every frame. That’s how keyframed animation works.

Now it’s almost time to start animating our skinned mesh.

Before we can do this, however, we’ll need to code a few classes to

hold our animation data, such as the keyframes themselves. Spe-

cifically, we’ll need to code a class that’ll hold all the keyframe data

that will be read in from an X file, which can be the same X file as

the mesh or a separate X file. Furthermore, we’ll need to code an

animation controller we can use like a media player to start and

stop animation playback. The animation field of data that must be

encapsulated can be summarized as follows.

� Keyframe

A keyframe records the state of some part of the mesh at a spe-

cific time in the animation. For example, if the mesh’s forearm

raises during the animation, then at various points there will be

keyframes recording the state of the forearm and the time at

which that change occurs. A class can be coded to hold a

keyframe that stores a DWORD time at which the change

occurs and a matrix structure that encodes the exact transfor-

mation to apply at that time. The class appears as follows:

Chapter 13: Skeletal Animation 315

C
h

a
p

te
r

1
3

class CMatrixKey

{

private:

protected:

public:

DWORD m_Time; //Time of change

D3DXMATRIX m_Matrix; //Recorded keyframe state

};

� Animation

In the context of skeletal animation, an animation is a collection

of related keyframes. Generally, we think of an animation as

referring to the entire animation, which is the entire movement

of the mesh from swinging arms and running legs. However, in

this case, an animation is a collection of all the keyframes for a

specific body part. So, all the keyframes that move the forearm

form one animation, and all the keyframes that animate the

lower leg form another animation. A class to encapsulate an

animation is coded below. It stores a pointer to an array of

keyframe classes, and also maintains a next pointer so it can be

used in a linked list hierarchy. Take a look.

class CAnimation

{

private:

316 Chapter 13: Skeletal Animation

Figure 13.3

protected:

public:

CAnimation *m_Next;

D3DXFRAME *m_AnimBone;

DWORD m_Length;

CMatrixKey *m_Keys;

DWORD m_NumKeys;

char* m_Name;

CAnimation()

{

m_Next = NULL;

m_AnimBone = NULL;

m_Length = m_NumKeys = 0;

m_Keys = NULL;

m_Name = NULL;

}

~CAnimation()

{

delete [] m_Keys;

}

};

� Animation set

An animation set is what people generally think of as the ani-

mation; it’s the entire animation process. Thus, an animation

set can correctly be defined as a collection of animations. A class

to encapsulate an animation set can be coded as shown below.

class CAnimationSet

{

private:

protected:

public:

CAnimationSet *m_Next;

CAnimation *m_Animations;

DWORD m_NumAnimations;

char* m_Name;

Chapter 13: Skeletal Animation 317

C
h

a
p

te
r

1
3

CAnimationSet()

{

m_Next = NULL;

m_Name = NULL;

m_Animations = NULL;

m_NumAnimations = 0;

}

~CAnimationSet()

{

}

HRESULT AddAnimationObject(CAnimation *Anim)

{

if(!Anim)

return E_FAIL;

if(!m_Animations)

m_Animations = Anim;

else

{

CAnimation *Anims = m_Animations;

while(Anims->m_Next)

Anims = Anims->m_Next;

Anims->m_Next = Anim;

}

m_NumAnimations++;

return S_OK;

}

};

318 Chapter 13: Skeletal Animation

Loading Animations

Loading animations is simply a process of reading through an X file,

searching for some keyframe and animation templates, and then

building your animation hierarchy using the class just defined. Once

you have a valid animation hierarchy constructed in memory, you

can then begin the process of animating the skinned mesh.

Typically, the following code for loading animations and the code

that follows for playing animations will all be coded into a single

class, perhaps named CAnimationController. This class can then be

used to load and play animations on a skinned mesh. Loading ani-

mations from a file might begin like this:

HRESULT LoadFromFile(char *File)

{

if(!FileExists(File))

return E_FAIL;

LPD3DXFILE pFile = NULL;

LPD3DXFILEENUMOBJECT Enum = NULL;

if(SUCCEEDED(D3DXFileCreate(&pFile)))

{

pFile->RegisterTemplates(D3DRM_XTEMPLATES, D3DRM_XTEMPLATE_BYTES);

if(SUCCEEDED(pFile->CreateEnumObject(File,

D3DXF_FILELOAD_FROMFILE, &Enum)))

{

SIZE_T Size = 0;

Enum->GetChildren(&Size);

for(SIZE_T Counter = 0; Counter < Size; Counter++)

{

LPD3DXFILEDATA DataObject = NULL;

Enum->GetChild(Counter, &DataObject);

ProcessItems(DataObject);

Chapter 13: Skeletal Animation 319

C
h

a
p

te
r

1
3

DataObject->Release();

}

Enum->Release();

}

pFile->Release();

}

return S_OK;

}

Nothing too special about this code so far. It just opens an X file and

cycles through every top-level object, calling ProcessItems each

time. The custom-made ProcessItems function is where a lot of

work will occur. In short, this will be a recursive function designed

to load an animation hierarchy. Take a look at its definition, and then

see the explanation that follows.

HRESULT ProcessItems(LPD3DXFILEDATA Object, CAnimationSet *AnimSet =

NULL, CAnimation *Anim = NULL)

{

if(!Object)

return E_FAIL;

CAnimationSet *AnimationSet = AnimSet;

CAnimation *Animation = Anim;

GUID guid;

Object->GetType(&guid);

if((guid == TID_D3DRMAnimationSet) && (!Object->IsReference()))

{

SIZE_T Length = 0;

AnimationSet = new CAnimationSet();

Object->GetName(NULL, &Length);

AnimationSet->m_Name = new char[Length];

320 Chapter 13: Skeletal Animation

Object->GetName(AnimationSet->m_Name, &Length);

//Add animation set

if(!m_AnimationSets)

m_AnimationSets = AnimationSet;

else

{

CAnimationSet *AnimSets = m_AnimationSets;

while(AnimSets->m_Next)

AnimSets = AnimSets->m_Next;

AnimSets->m_Next = AnimationSet;

}

m_NumAnimationSets++;

}

if((guid == TID_D3DRMAnimation) && (!Object->IsReference()))

{

if(AnimSet)

{

SIZE_T Length = 0;

Animation = new CAnimation();

Object->GetName(NULL, &Length);

Animation->m_Name = new char[Length];

Object->GetName(Animation->m_Name, &Length);

AnimSet->AddAnimationObject(Animation);

ProcessKeyFrames(Object, AnimationSet, Animation);

}

}

SIZE_T Size = 0;

Object->GetChildren(&Size);

for(SIZE_T Counter = 0; Counter < Size; Counter++)

{

LPD3DXFILEDATA DataObject = NULL;

Chapter 13: Skeletal Animation 321

C
h

a
p

te
r

1
3

Object->GetChild(Counter, &DataObject);

ProcessItems(DataObject, AnimationSet, Animation);

DataObject->Release();

}

return S_OK;

}

This function looks quite nasty, but just take a moment to read

through it again and you’ll see it’s not as bad as it first seems. The

principle is simple. The function does the following:

� It cycles through every data object in the file for an animation

set. When an animation set is encountered it creates a corre-

sponding animation set object. Afterward, the animation set is

assigned a name and then is added to a list of animation sets. In

this case, there will only be one animation set because our

mesh has only one walking animation; however, for more

advanced scenarios, there could be more. Then processing con-

tinues and the function will cycle through the file for every

child object because, since we know an animation set has been

encountered, there are likely to be animation objects, which in

turn will contain keyframe objects. Notice how, when the func-

tion is called recursively after an animation set has been

encountered, it will pass on the valid animation set (AnimSet)

as a function parameter so that each subsequent instance of the

function can access the previously created animation set. This

is important later when child animation objects need to be

added to the parent animation set.

� Once an animation set is encountered it’s time to search for

animation objects, which are to be added as child objects of the

animation set. Every time an animation template is found in the

X file (TID_D3DRMAnimation), a corresponding animation

object is created. Furthermore, it’s given a name and is added

to the animation set. Finally, a new function is called (Process-

KeyFrames). This function takes an animation template from an

X file, cycles through all child keyframe templates, and creates

corresponding keyframe objects.

322 Chapter 13: Skeletal Animation

As I mentioned, the ProcessKeyFrames function creates all the

keyframes for an animation object. Its definition appears below, and

then an explanation follows.

HRESULT ProcessKeyFrames(LPD3DXFILEDATA Object, CAnimationSet *AnimSet =

NULL, CAnimation *Anim = NULL)

{

if((!Object) || (!AnimSet) || (!Anim))

return E_FAIL;

SIZE_T Size = 0;

Object->GetChildren(&Size);

for(SIZE_T Counter = 0; Counter < Size; Counter++)

{

LPD3DXFILEDATA DataObject = NULL;

Object->GetChild(Counter, &DataObject);

GUID guid;

DataObject->GetType(&guid);

if((guid == TID_D3DRMFrame) && (!Object->IsReference()))

{

SIZE_T Length = 0;

char *Name = NULL;

DataObject->GetName(NULL, &Length);

Name = new char[Length];

DataObject->GetName(Name, &Length);

Anim->m_AnimBone = m_Frames->Find(Name);

delete [] Name;

}

if((guid == TID_D3DRMAnimationKey) && (!Object->IsReference()))

{

DWORD *DataPtr = NULL;

SIZE_T BufferSize = 0;

Chapter 13: Skeletal Animation 323

C
h

a
p

te
r

1
3

if(SUCCEEDED(DataObject->Lock(&BufferSize, (const

void**) &DataPtr)))

{

DWORD Type = *DataPtr++;

DWORD NumKeys = *DataPtr++;

if(Type == 4) //if matrix key

{

CMatrixKey *Key = new CMatrixKey[NumKeys];

for(DWORD Counter = 0; Counter < NumKeys;

Counter++)

{

Key[Counter].m_Time = *DataPtr++;

if(Key[Counter].m_Time > Anim->m_Length)

Anim->m_Length = Key[Counter].m_Time;

DataPtr++;

D3DXMATRIX *mPtr = (D3DXMATRIX*) DataPtr;

Key[Counter].m_Matrix = *mPtr;

DataPtr+=16;

}

Anim->m_Keys = Key;

Anim->m_NumKeys = NumKeys;

}

}

DataObject->Unlock();

ProcessKeyFrames(DataObject, AnimSet, Anim);

}

DataObject->Release();

}

return S_OK;

}

324 Chapter 13: Skeletal Animation

This function is quite simple overall. It takes an X file data object

(which, in this case, should be an animation template) and cycles

through all child objects. On each iteration it does the following:

� Checks to see whether a frame object is found (remember that

a frame corresponds to a bone in the mesh). If a frame is found,

then this means we have not found a keyframe in this case, but

instead the frame tells us to which bone in the mesh this ani-

mation corresponds. For example, if we found a frame called

forearm, then we know this animation, and all its keyframes,

relate to the forearm. So, if a frame is found we must take its

name. Then, we search through the frame hierarchy of the

mesh (which we loaded earlier) and we find a matching frame.

We then store a reference to this frame in our animation object

so that, later, we can reference this frame as we come to update

our matrices as the animation elapses.

� If animation keys are found, then we first retrieve the total

numbers of keys associated with this animation (frame/bone).

Afterward, we initialize the keys pointer (m_Keys) of the ani-

mation object to hold this many keys, then we simply lock the

data buffer and copy over the keys from the file and into the

buffer.

Voilà! And finally the entire animation data has been read in from an

X file and into a hierarchy in memory. Once an animation has been

loaded it’s all simple from now on.

Playing Animations

Here’s the fun part, the part where all your hard work pays off and

you can start to play your loaded animations. By now you can load a

skinned mesh and load in an animation hierarchy, which consists of

animation sets, animations, and animation keys. Each animation

object relates to a bone in the mesh, and each of its keys refers to

the bone’s state at a specific point in time. In other words, each key

contains a time (the time when the bone is in that state) and a

Chapter 13: Skeletal Animation 325

C
h

a
p

te
r

1
3

transformation matrix that contains the exact transformation that

should be applied to the bone at that time. However, there will be

times when the current time of the animation does not exactly fall

into any one key, but between two different keys. For example,

there may be a key at 0 seconds into the animation and another key

at 100 milliseconds into the animation. The current time might be

50 milliseconds, so we’re effectively halfway between the two

keyframes. In this case, we must then take both matrices — one

from the start key and one from the end key — and interpolate

between the two to arrive at the correct matrix, which represents

our transformation at that time. To update the animation we must

ensure the keyframes are processed like this on every frame. Take

a look at the Update function below to see how animations can be

applied to the skinned mesh.

VOID Update()

{

m_CurrentTime = timeGetTime() - m_StartTime;

if(!m_AnimationSets)

return;

CAnimationSet *Sets = m_AnimationSets;

while(Sets)

{

CAnimation *Animation = Sets->m_Animations;

while(Animation)

{

CMatrixKey *Keys = Animation->m_Keys;

CMatrixKey *StartKey = NULL;

CMatrixKey *EndKey = NULL;

for(DWORD Counter = 0; Counter < Animation->m_NumKeys; Counter++)

{

if(m_CurrentTime >= Keys[Counter].m_Time)

StartKey = &Keys[Counter];

326 Chapter 13: Skeletal Animation

else

EndKey = &Keys[Counter];

}

if(!EndKey)

Animation->m_AnimBone->TransformationMatrix =

StartKey->m_Matrix;

else

{

DWORD TimeDifference = EndKey->m_Time – StartKey->m_Time;

float Scalar = (float) (m_CurrentTime - StartKey-

>m_Time)/TimeDifference;

D3DXMATRIX Matrix = EndKey->m_Matrix – StartKey->m_Matrix;

Matrix *= Scalar;

Matrix += StartKey->m_Matrix;

Animation->m_AnimBone->TransformationMatrix = Matrix;

}

Animation = Animation->m_Next;

}

Sets = Sets->m_Next;

}

}

Once again, this is one of those functions that looks worse than it

really is on the first occasion you view it. Browse through it a few

times, though, and you’ll likely see a much simpler picture. This

function occurs on every frame and updates the skinned mesh

according to the elapsed time in the animation. First, the function

cycles through all animation sets (in this example, there’s only

one). Then it cycles through all animation objects, effectively loop-

ing through each bone. Then it cycles through each keyframe. As it

encounters each keyframe the function determines, using the

elapsed time, which two keyframes the current time falls between.

Once this has been established, the function creates a scalar value

Chapter 13: Skeletal Animation 327

C
h

a
p

te
r

1
3

between 0 and 1 to determine by how much the matrix should be

interpolated to arrive at the final matrix, which will be applied to

the skinned mesh. This process is repeated for every bone in the

mesh. And that’s it. You should now be equipped to render this

mesh in its full, animated glory. This is shown in Figure 13.4.

Conclusion

Wow, that was a tough chapter overall. Skinned meshes can be a

real nightmare when approached unguided, and I hope this chapter

provided good and approachable insight into the world of skeletal

animation. Since this topic is really tough in comparison to much of

the other subject matter presented in this book, I reserved it for

last.

Now that you’ve reached the end of this book and completed

one of the toughest challenges it had to offer, I hope your knowl-

edge of DirectX has passed the summit of DirectX knowledge and

that you’re well on your way to picking up new and interesting

things with confidence.

328 Chapter 13: Skeletal Animation

Figure 13.4

Afterword

Congratulations! You’ve reached the end of this book and no doubt

picked up a lot of useful information. Now, you can go on to start

creating some rather advanced products and you’re also in a good

position to begin learning the remaining facets of Direct3D, namely

the programmable pipeline, which includes vertex and pixel

shaders. So, where to go from here then? Well, the best place to

start is by practicing the subject matter covered in this book by

making some sample projects and mini games. Then, once you’re

confident you’ve come to grips with the API, I recommend skim-

ming through the recommended reading section to look for books

on more advanced topics.

And, on that note, I’ll leave you and sign off. I hope my book has

proved valuable and has provided you with the inspiration to learn

more. Thank you and happy coding.

Alan Thorn

directx_user_interfaces@hotmail.com

329

This page intentionally left blank.

Appendix A

DirectX Q&A

Q. If a DirectX function fails, can I retrieve the error name and

description as a string?

A. Yes. DirectX provides two functions: DXGetErrorDescription9

and DXGetErrorString9. These functions accept HRESULT values,

as returned by DirectX functions, and translate the error code to

informative string data.

� TIP. These functions are good for displaying DirectX errors to the

user in message boxes.

Q. How do I enumerate all the display adapters attached to a user’s

computer?

A. To enumerate all the display devices attached to a computer you

should use a combination of functions.

To retrieve the actual count of display adapters, you call the Get-

AdapterCount method. This function accepts no parameters and

returns an unsigned integer representing the number of attached

display adapters.

To get driver information about a specific device, such as the

device name and driver version, you call the GetAdapterIdenti-

fier method. This method populates a D3DADAPTER_IDENTI-

FIER9 structure. The syntax and parameters for this function

follow.

331

HRESULT GetAdapterIdentifier

(

UINT Adapter,

DWORD Flags,

D3DADAPTER_IDENTIFIER9 *pIdentifier

);

UINT Adapter

Ordinal number that denotes the display adapter for which we

want to retrieve information. 0 is the default adapter, but the

number can range to GetAdapterCount–1.

DWORD Flags

Flags can be set to either 0 or D3DENUM_WHQL_LEVEL. If

D3DENUM_WHQL_LEVEL is specified, this call can connect

to the Internet to download new Microsoft Windows Hardware

Quality Labs (WHQL) certificates.

D3DADAPTER_IDENTIFIER9 *pIdentifier

Address to receive a D3DADAPTER_IDENTIFIER9 structure

containing information about a specific device. The structure

looks like this:

typedef struct _D3DADAPTER_IDENTIFIER9 {

char Driver[MAX_DEVICE_IDENTIFIER_STRING];

char Description[MAX_DEVICE_IDENTIFIER_STRING];

char DeviceName[32];

LARGE_INTEGER DriverVersion;

DWORD DriverVersionLowPart;

DWORD DriverVersionHighPart;

DWORD VendorId;

DWORD DeviceId;

DWORD SubSysId;

DWORD Revision;

GUID DeviceIdentifier;

DWORD WHQLLevel;

} D3DADAPTER_IDENTIFIER9;

332 Appendix A: DirectX Q&A

Q. Does Direct3D support multiple monitors?

A. Yes, provided you have a separate display adapter associated

with each monitor. To create multimonitor applications, you simply

enumerate through the devices and create them. Then you handle

each device as you would normally, and each device should render

to its specific monitors.

Q. Can I retrieve a device’s capabilities? In other words, can I find

out what my graphics card can and can’t do?

A. Yes. To do this, you should call the GetDeviceCaps method of

IDirect3DDevice9. This method returns the capabilities of the card

represented by the IDirect3DDevice9 interface. The GetDevice-

Caps method returns a D3DCAPS9 structure describing the

capabilities of the card. You should refer to the SDK documentation

for more information. The D3DCAPS9 structure looks like this:

typedef struct _D3DCAPS9 {

D3DDEVTYPE DeviceType;

UINT AdapterOrdinal;

DWORD Caps;

DWORD Caps2;

DWORD Caps3;

DWORD PresentationIntervals;

DWORD CursorCaps;

DWORD DevCaps;

DWORD PrimitiveMiscCaps;

DWORD RasterCaps;

DWORD ZCmpCaps;

DWORD SrcBlendCaps;

DWORD DestBlendCaps;

DWORD AlphaCmpCaps;

DWORD ShadeCaps;

DWORD TextureCaps;

DWORD TextureFilterCaps;

DWORD CubeTextureFilterCaps;

DWORD VolumeTextureFilterCaps;

DWORD TextureAddressCaps;

DWORD VolumeTextureAddressCaps;

DWORD LineCaps;

Appendix A: DirectX Q&A 333

A
p

p
e
n

d
ix

A

DWORD MaxTextureWidth;

DWORD MaxTextureHeight;

DWORD MaxVolumeExtent;

DWORD MaxTextureRepeat;

DWORD MaxTextureAspectRatio;

DWORD MaxAnisotropy;

float MaxVertexW;

float GuardBandLeft;

float GuardBandTop;

float GuardBandRight;

float GuardBandBottom;

float ExtentsAdjust;

DWORD StencilCaps;

DWORD FVFCaps;

DWORD TextureOpCaps;

DWORD MaxTextureBlendStages;

DWORD MaxSimultaneousTextures;

DWORD VertexProcessingCaps;

DWORD MaxActiveLights;

DWORD MaxUserClipPlanes;

DWORD MaxVertexBlendMatrices;

DWORD MaxVertexBlendMatrixIndex;

float MaxPointSize;

DWORD MaxPrimitiveCount;

DWORD MaxVertexIndex;

DWORD MaxStreams;

DWORD MaxStreamStride;

DWORD VertexShaderVersion;

DWORD MaxVertexShaderConst;

DWORD PixelShaderVersion;

float PixelShader1xMaxValue;

DWORD DevCaps2;

float MaxNpatchTessellationLevel;

UINT MasterAdapterOrdinal;

UINT AdapterOrdinalInGroup;

UINT NumberOfAdaptersInGroup;

DWORD DeclTypes;

DWORD NumSimultaneousRTs;

DWORD StretchRectFilterCaps;

D3DVSHADERCAPS2_0 VS20Caps;

334 Appendix A: DirectX Q&A

D3DPSHADERCAPS2_0 PS20Caps;

DWORD VertexTextureFilterCaps;

DWORD MaxVShaderInstructionsExecuted;

DWORD MaxPShaderInstructionsExecuted;

DWORD MaxVertexShader30InstructionSlots;

DWORD MaxPixelShader30InstructionSlots;

DWORD Reserved2;

DWORD Reserved3;

} D3DCAPS9;

Q. By using the color macros D3DCOLOR_XRGB and

D3DCOLOR_ARGB, I can create colors according to my own red,

green, blue, and alpha settings. However, if I have a single DWORD

color value, how I can extract the individual RGBA values?

A. To extract the red, green, blue, and alpha components from a

DWORD color value, you can code the following macro:

#define ExtractAlpha(x) ((x>>24)&255)

#define ExtractRed(x) ((x>>16)&255)

#define ExtractGreen(x) ((x>>12)&255)

#define ExtractBlue(x) (x&255)

Q. If I want to render text to the screen, how can I do this?

A. You should use the ID3DXFont interface. This is used very simi-

larly to ID3DXSprite. You can create this interface by using either

D3DXCreateFont or D3DXCreateFontIndirect.

Q. Can I copy pixels between two surfaces where stretching and

resizing is allowed?

A. Yes. To do this, you should call the StretchRect method of

IDirect3DDevice9. This function copies pixels between two sur-

faces and allows stretching under certain restrictions. To view

these restrictions, please consult the DirectX SDK.

Q. My application renders a lot of stuff, and since everything I ren-

der requires a lot of changes to my rendering settings, like

SetRenderState, I need to code an awful lot of lines just to prepare

Appendix A: DirectX Q&A 335

A
p

p
e
n

d
ix

A

a device for rendering. Is there any way I can store all my rendering

settings and then set the device to these in one single batch?

A. Yes, you can use state blocks. State blocks can save the current

state of a device. Then you can change the device settings and

restore them to the original settings that were saved in the state

block. A state block can save the following settings about a device:

� Vertex state

� Pixel state

� Each texture assigned to a sampler

� Each vertex texture

� Each displacement map texture

� The current texture palette

� For each vertex stream: a pointer to the vertex buffer, each

argument from IDirect3DDevice9::SetStreamSource, and the

divider (if any) from IDirect3DDevice9::SetStreamSourceFreq

� A pointer to the index buffer

� The viewport

� The scissors rectangle

� The world, view, and projection matrices

� The texture transforms

� The clipping planes (if any)

� The current material

To create a state block, you call the CreateStateBlock method of

IDirect3DDevice9. This returns a valid IDirect3DStateBlock9*

pointer, which contains the current state of the device. The syntax

and parameters for this function appear below.

HRESULT CreateStateBlock(

D3DSTATEBLOCKTYPE Type,

IDirect3DStateBlock9 **ppSB

);

336 Appendix A: DirectX Q&A

D3DSTATEBLOCKTYPE Type

Indicates the type of settings you wish to record in the state

block. This can be any of the following values:

D3DSBT_ALL

Capture the current device state.

D3DSBT_PIXELSTATE

Capture the current pixel state.

D3DSBT_VERTEXSTATE

Capture the current vertex state.

IDirect3DStateBlock9 **ppSB

Address to receive a valid state block interface pointer.

Once the state block has been created and has captured the current

device state, you can proceed to change the device state as needed.

Then, once you wish to restore the settings recorded in the state

block, you can call the Apply method of IDirect3DStateBlock9. This

function requires no arguments.

Q. Can I save the pixel data on a surface or texture to a file?

A. Yes. To save a texture or surface to a file, you call D3DXSave-

TextureToFile and D3DXSaveSurfaceToFile respectively.

Q. Can I see the standard Windows GDI dialog boxes when running

full-screen Direct3D applications?

A. Yes. To do this you must ensure the dialog boxes are created as

child windows of the Direct3D parent window and that you call the

SetDialogBoxMode method of IDirect3DDevice9. You must pass

True to this function to enable GDI dialog boxes.

Appendix A: DirectX Q&A 337

A
p

p
e
n

d
ix

A

Q. How can I set the mouse cursor from a Direct3D surface?

A. To use a Direct3D surface as the mouse cursor, you must call

upon two methods from the IDirect3DDevice9 interface:

SetCursorPosition and SetCursorProperties. SetCursorPosition will

set the actual X and Y positioning of your cursor. SetCursor-

Properties allows you to specify a surface to use as a cursor and

also allows you to specify the X and Y hotspot of the cursor — in

other words, the actual tip of the cursor where clicking is activated.

Q. How can I translate the X and Y mouse click in screen space as a

position in 3D object space?

A. There are many ways to do this. Effectively you wish to take the

XY location of the mouse in screen space and translate this to be a

directed ray into 3D object space. You can then test this ray to see

what 3D geometry it intersects. To do this, you call upon the

D3DXVec3Unproject function, which translates coordinates from

screen space into object space. You can also translate object space

into screen space by calling D3DXVec3Project. The syntax and

parameters for D3DXVec3Unproject are as follows:

D3DXVECTOR3 *WINAPI D3DXVec3Unproject

(

D3DXVECTOR3 *pOut,

CONST D3DXVECTOR3 *pV,

CONST D3DVIEWPORT9 *pViewport,

CONST D3DXMATRIX *pProjection,

CONST D3DXMATRIX *pView,

CONST D3DXMATRIX *pWorld

);

D3DXVECTOR3 *pOut

Address to receive a translated 3D vector.

CONST D3DXVECTOR3 *pV

Pointer to the coordinate in screen space. This will be the posi-

tion of your mouse.

338 Appendix A: DirectX Q&A

CONST D3DVIEWPORT9 *pViewport

Pointer to the Direct3D device’s viewport. This can be

returned by calling the GetViewport method of IDirect3D-

Device9. The viewport structure looks as follows:

typedef struct _D3DVIEWPORT9 {

DWORD X;

DWORD Y;

DWORD Width;

DWORD Height;

float MinZ;

float MaxZ;

} D3DVIEWPORT9;

CONST D3DXMATRIX *pProjection

Pointer to the projection matrix currently being used by the

Direct3D device.

CONST D3DXMATRIX *pView

Pointer to the view matrix currently being used by the

Direct3D device.

CONST D3DXMATRIX *pWorld

Pointer to the world matrix currently being used by the

Direct3D device.

To use this function to translate the mouse cursor into a ray that

extends into 3D space you’ll need to call this function twice. Why?

Because first you’ll notice this function requires that the mouse

coordinates in screen space be a 3D vector, not 2D. In short, what

you need to do is call the function twice; first you pass Z = 0 as the

first 2D coordinate, then you pass Z = 1. Calling the function twice

will give you two returned vectors; the first represents the origin of

the ray, and the second will be used to calculate the ray’s direction.

Here’s some code:

D3DXVECTOR Result1;

D3DXVECTOR Result2;

D3DXVECTOR VecDir;

Appendix A: DirectX Q&A 339

A
p

p
e
n

d
ix

A

D3DXVec3Unproject(&Result1, &D3DXVECTOR3(X,Y, 0), &Viewport,

&Projection, &View, &World);

D3DXVec3Unproject(&Result2, &D3DXVECTOR3(X,Y, 0), &Viewport,

&Projection, &View, &World);

VecDir = Result2 - Result1;

D3DXVec3Normalize(VecDir);

Q. I’m tired of having to use the old Windows API to create win-

dows and do lots of work just to get a DirectX application running.

Is there any way some of this toil can be avoided?

A. Yes, you can use the DirectX sample framework. Take a look in

the DirectX SDK for more information. With the sample framework

you can create windows and devices, and check mouse clicks and

keyboard presses in simple functions. Here’s a list of the sample

framework functions:

DXUTCreateDevice

DXUTCreateDeviceFromSettings

DXUTCreateWindow

DXUTFindValidDeviceSettings

DXUTGetBackBufferSurfaceDesc

DXUTGetD3DDevice

DXUTGetD3DObject

DXUTGetDeviceCaps

DXUTGetDeviceSettings

DXUTGetDeviceStats

DXUTGetElapsedTime

DXUTGetExitCode

DXUTGetFPS

DXUTGetFrameStats

DXUTGetHWND

DXUTGetHWNDDeviceFullScreen

DXUTGetHWNDDeviceWindowed

DXUTGetHWNDFocus

DXUTGetPresentParameters

DXUTGetShowSettingsDialog

340 Appendix A: DirectX Q&A

DXUTGetTime

DXUTGetWindowClientRect

DXUTGetWindowTitle

DXUTInit

DXUTIsKeyDown

DXUTIsMouseButtonDown

DXUTIsRenderingPaused

DXUTIsTimePaused

DXUTIsWindowed

DXUTKillTimer

DXUTMainLoop

DXUTPause

DXUTRender3DEnvironment

DXUTResetFrameworkState

DXUTSetCallbackDeviceCreated

DXUTSetCallbackDeviceDestroyed

DXUTSetCallbackDeviceLost

DXUTSetCallbackDeviceReset

DXUTSetCallbackFrameMove

DXUTSetCallbackFrameRender

DXUTSetCallbackKeyboard

DXUTSetCallbackMouse

DXUTSetCallbackMsgProc

DXUTSetConstantFrameTime

DXUTSetCursorSettings

DXUTSetDevice

DXUTSetMultimonSettings

DXUTSetShowSettingsDialog

DXUTSetTimer

DXUTSetWindow

DXUTShutdown

DXUTStaticWndProc

DXUTToggleFullscreen

DXUTToggleREF

Appendix A: DirectX Q&A 341

A
p

p
e
n

d
ix

A

This page intentionally left blank.

Appendix B

Recommended
Reading

3ds Max 6 Bible. Kelly L. Murdock. Indianapolis, Indiana: Wiley

Publishing, Inc., 2004. (ISBN: 0764557637)

Advanced 3D Game Programming with DirectX 9.0. Peter Walsh.

Plano, Texas: Wordware Publishing, Inc., 2003. (ISBN:

1556229682)

Essential LightWave 3D 8. Timothy Albee and Steve Warner with

Robin Wood. Plano, Texas: Wordware Publishing, Inc.,

2005. (ISBN: 1556220820)

Introduction to 3D Game Programming with DirectX 9.0. Frank

D. Luna. Plano, Texas: Wordware Publishing, Inc., 2003.

(ISBN: 1556229135)

Learning Maya 6: Modeling. Alias. Alameda, California: Sybex

International, 2004. (ISBN: 1894893719)

Programming Game AI by Example. Mat Buckland. Plano, Texas:

Wordware Publishing, Inc., 2004. (ISBN: 1556220782)

343

This page intentionally left blank.

Index

1D coordinate system, 52-53
2D coordinate system, 53-56
2D texturing, 145-146
3D coordinate system, 56-57
3D Studio MAX, 189

A
AddDataObject, 185
AddFilter, 288
AddSourceFilter, 289
alpha blending, 144-145
alpha channel, 144
ambient color, 125
ambient lighting, 122
animated textures, 270-271
animation, 237, 316-317

hierarchical, 242-243
keyframe, 240-242
loading, 319
playing, 325-326
skeletal, 295-296

animation set, 317-318
anisotropic texture filtering, 139

B
back buffer, 32, 34

presenting images with, 44-46
base video renderer,

creating, 276-277
implementing, 277

Begin, 147
BeginScene, 34
bone hierarchy, 297-299, 302-306

loading, 306-310
mapping, 310-311

bounding boxes, 204-206

bounding spheres, 204-206
bump map, 131

C
camera,

creating, 222-228
first-person, 217
moving, 221, 223-224
rotating, 224-225

CheckMediaType, 278-279
child objects, 175-176
clamp texture addressing, 142
Clear, 32-34
clipping planes, 229-230
CloneMeshFVF, 203-204
collision detection, 83-84, 204
coordinate systems, 52-57
CreateDataObject, 184-185
CreateDevice, 21-25
CreateEnumObject, 173-174
CreateIndexBuffer, 113-114
CreateOffscreenPlainSurface, 37-38
CreateSaveObject, 182-183
CreateStateBlock, 336-337
CreateTexture, 132-134
CreateVertexBuffer, 95-97
cube, testing for, 232-233
cursor, 27, 338
custom video renderer, 288
custom X file templates, 169-170

D
D3DCAPS, 333-335
D3DCOLOR, 122, 126
D3DCOLORVALUE, 124
D3DFORMAT, 23

345

D3DLIGHT9, 127-129
D3DMATERIAL9, 124
D3DPOOL, 96, 134
D3DPRESENT_PARAMETERS, 23-25,

47
D3DPRIMITIVETYPE, 107
D3DRS_ALPHABLENDENABLE, 145
D3DVIEWPORT9, 339
D3DXCOLOR, 33
D3DXComputeBoundingBox, 206-207
D3DXComputeBoundingSphere, 208
D3DXCreateSprite, 146
D3DXCreateTextureFromFile, 134
D3DXCreateTextureFromFileInMemory,

134
D3DXCreateTextureFromFileInMemory

Ex, 134
D3DXCreateTextureFromResource, 134
D3DXCreateTextureFromResourceEx,

134
D3DXFileCreate, 170
D3DXFRAME, 248, 299, 302-303
D3DXFrameAppendChild, 248
D3DXFrameFind, 248
D3DXGetFVFVertexSize, 202
D3DXGetImageInfoFromFile, 39
D3DXGetImageInfoFromFileInMemory,

39
D3DXGetImageInfoFromResource, 39
D3DXIMAGE_INFO, 39
D3DXIntersect, 209-211
D3DXLoadMeshFromX, 191-193
D3DXLoadMeshFromXof, 193-194
D3DXLoadSkinMeshFromXof, 299-301
D3DXLoadSurfaceFromFile, 40-41
D3DXLoadSurfaceFromFileInMemory,

41
D3DXLoadSurfaceFromMemory, 41
D3DXLoadSurfaceFromResource, 41
D3DXLoadSurfaceFromSurface, 41
D3DXMATERIAL, 196-197
D3DXMATRIX, 71
D3DXMatrixIdentity, 74
D3DXMatrixInverse, 75

D3DXMatrixLookAtLH, 102-103, 216,
225

D3DXMatrixMultiply, 73, 83
D3DXMatrixPerspectiveFovLH,

103-104
D3DXMatrixRotationAxis, 80-81
D3DXMatrixRotationX, 80
D3DXMatrixRotationY, 80
D3DXMatrixRotationZ, 80
D3DXMatrixScaling, 81-82
D3DXMatrixTransformation2D,

148-149, 270-271
D3DXMatrixTranslation, 77
D3DXPLANE, 84
D3DXPlaneDotCoord, 86-87
D3DXPlaneFromPointNormal, 85-86
D3DXPlaneFromPoints, 84-85
D3DXPlaneIntersectLine, 87-88
D3DXToDegree, 79
D3DXToRadian, 79
D3DXVec3Add, 58, 64-65
D3DXVec3Cross, 69
D3DXVec3Dot, 67-68
D3DXVec3Length, 63-64
D3DXVec3Lerp, 213
D3DXVec3Normalize, 67
D3DXVec3Subtract, 66
D3DXVec3Unproject, 338-339
D3DXVECTOR2, 54
D3DXVECTOR3, 57
degrees, 79
device,

creating, 21-26
querying capabilities of, 27

diffuse color, 125
direct lighting, 122, 123, 126-127
Direct3D, 4

creating device, 20-26
creating object, 18-19
creating program, 16-17

Direct3DCreate9, 19
DirectInput, 4
directional lights, 127
DirectPlay, 4

346 Index

DirectShow, 4, 261-262
base classes, 275-276
building filter graph, 262

DirectSound, 4
DirectX, 4-5

configuring, 6-7
directories, 7-9
installing, 5-6
utilities, 9-13

DoRenderSample, 282-284
Draw, 149-150
DrawIndexedPrimitive, 116-117
DrawPrimitive, 107
DrawSubset, 200

E
emissive color, 125
EndScene, 34
enumeration, 174-178
events, configuring, 264-268

F
filter graph, 261, 263

creating, 262
preparing, 287-293

first-person camera, 217
flat shading, 123
flexible vertex format, 93-94

and meshes, 202-203
setting, 106

frame hierarchy, 297, 325
frames, 248
front buffer, 32
FVF, see flexible vertex format

G
game loop, 29-30
GDI, 31, 146, 337
geometric transformations, 57-61, 76
GetBackBuffer, 44-45
GetChild, 175
GetChildren, 174-175
GetDeviceCaps, 27, 333-335
GetEvent, 266-267
GetFVF, 202

GetName, 178
GetType, 179
GetUnconnectedPin, 290-291
GetVertexBuffer, 201
Gouraud shading, 123
graphics, drawing, 92-93

H
hierarchies

bone, 297-299, 302-311
frame, 297, 325
object, 245-248
X file objects, 152, 185

I
ID3DXSprite, 146-147, 270
images,

loading onto surfaces, 40-42
presenting from back buffer,

44-46
IMediaControl, 263, 268, 291
IMediaEventEx, 263, 266
index buffer, 112, 116, 135

setting up, 113-115
indexed primitives, 111-112

drawing, 115-116

K
keyframe, 212, 315-316
keyframe animation, 240-242

L
lights, 120-123

types, 126-127
line lists, 110
line strips, 54-55, 110
linear texture filtering, 139
lines, 54

intersection with planes, 87
linked lists, 243-245
LoadFromFile, 319-320
Lock, 97-98, 181-182
LockRect, 284-285
lost device, 46-48

Index 347

M
materials, 124-125
matrix (matrices), 70-71, 99-100

addition, 72
components, 71
concatenation, 73, 82
identity, 74-75
inverse, 75-76
multiplication, 72, 73
rotation, 78-81
scaling, 81-82
structure, see D3DXMATRIX
subtraction, 72
translation, 76-77

media files, playing, 261-268
memcpy, 98-99
meshes, 188, 196-199

and FVF, 202-203
and rays, 209-210
creating, 188-189
exporting, 189-190
loading from X files, 191, 193-194
rendering, 199
testing, 190
testing for, 234-235
updating, 311-313

message loop, configuring, 28
mipmap texture filtering, 139
mirror texture addressing, 141
mouse coordinates, projecting, 338
movie files, 274

N
normal, 85
nearest-point sampling, 138

O
object hierarchy, 245-248
objects, enumerating, 174-178

P
particle systems, 249-250, 254-256

creating, 256-260
pitch, 218

planes, 83-84
classifying points, 86
creating from point and normal,

85-86
creating from three points, 84-85
intersection with lines, 87

point, testing for, 232
point lights, 126
point lists, 110
point sprites, 250-251

creating, 251-252
rendering, 253-254

Present, 34-35
primitives, 57, 93

drawing, 106-107, 109-111
indexed, 111-113, 115-116

ProcessItems, 320-322
ProcessKeyFrames, 323-325
ProcessObject, 306-309
projection matrix, 100, 103-104

R
radians, 59, 78-79
ray intersection, 209-210
RegisterTemplates, 171-172
render loop, see game loop
RenderFile, 263-264
roll, 219
rotation, 58-59, 78, 218, 220

S
scaling, 60-61, 66, 81
scene, presenting, 32-34
SetCursorPosition, 338
SetCursorProperties, 338
SetFVF, 106
SetIndices, 116
SetLight, 130
SetMaterial, 125
SetMediaType, 279-281
SetNotifyWindow, 264-265
SetRenderState, 121, 145, 253
SetSamplerState, 139-140, 142-143
SetStreamSource, 105, 115
SetTexture, 137-138

348 Index

SetTransform, 101-102, 147
shading modes, 123-124
skeletal animation, 295-296
skeleton, animating, 314-318
skinned mesh, 296

loading, 299
specular color, 125
sphere, testing for, 234
spotlights, 127
state blocks, 336
stream, 105
surfaces, 31, 37

back buffer, see back buffer
copying, 42-44
creating, 37-40
loading from file, 40-42
rendering, 31-32

T
TestCooperativeLevel, 47
texture addressing modes, 141-143
texture coordinates, 136
texture filtering, 138-139
texture mapping, 135-137
textures, 131

animating, 270
creating, 132-134
loading from file, 134-135
transforming, 270

time, 238-239
transform matrix, 100-101
transformations,

combining, 82-83
geometric, 57-61

translation, 58
triangle fans, 56, 111
triangle strips, 55-56, 110
triangles, 55

U
unit vector, 67
Update, 326-327
UpdateSkinnedMesh, 313
UpdateSurface, 42-43

V
vectors, 61-62

addition, 64
cross product, 68-69
dot product, 67-68
length (magnitude), 63
normalization, 67
scaling (multiplication), 66
subtraction, 65-66

vertex (vertices), 53, 93
using, 94-95

vertex buffer, 95, 201
creating, 95-97
locking, 97-99

vertex interpolation, 212-213
video, playing, 269, 274-275
view matrix, 100, 102-103
viewing frustum, 229-230

W
window, creating, 17-18
wrap texture addressing, 141

X
X file templates, 154-156

custom, 169-170
registering, 171-172
standard, 159-169

X files, 151-152
enumerating, 174-177
extracting information from,

178-182
loading meshes from, 191,

193-194
object hierarchy, 152, 185
opening, 173-174
reading, 170-171
saving data to, 182-186
structure, 154-158

Y
yaw, 219

Index 349

DirectX 9 Audio Exposed
1-55622-288-2 • $59.95
6 x 9 • 568 pp.

Visit us online at www.wordware.com for more information.

Use the following coupon code for online specials: dxgraph2297

Looking for more?

Check these and other titles from
Wordware’s complete list.

ShaderX2: Introductions & Tutorials
with DirectX 9
1-55622-902-X • $44.95
6 x 9 • 384 pp.

Programming Game AI by Example
1-55622-078-2 • $49.95
6 x 9 • 520 pp.

Introduction to 3D Game
Programming with DirectX 9.0
1-55622-913-5 • $49.95
6 x 9 • 424 pp.

Programming Multiplayer
Games
1-55622-076-6 • $59.95
6 x 9 • 576 pp.

Advanced 3D Game Programming
with DirectX 9.0
1-55622-968-2 • $59.95
6 x 9 • 552 pp.

Learn Vertex and Pixel Shader
Programming with DirectX 9
1-55622-287-4 • $34.95
6 x 9 • 304 pp.

DirectX 9 User Interfaces
1-55622-249-1 • $44.95
6 x 9 • 376 pp.

ShaderX2: Shader Programming
Tips & Tricks with DirectX 9
1-55622-988-7 • $59.95
6 x 9 • 728 pp.

Wireless Game Development in
Java with MIDP 2.0
1-55622-998-4 • $39.95
6 x 9 • 360 pp.

Unlocking Visual C#
Programming Secrets
1-55622-097-9 • $24.95
6 x 9 • 376 pp.

Official Butterfly.net Game
Developer’s Guide
1-55622-044-8 • $49.95
6 x 9 • 424 pp.

Visit us online at www.wordware.com for more information.

Use the following coupon code for online specials: dxgraph2297

Looking for more?Looking for more?

Check out Wordware’s market-leading Graphics and
Game Programming Libraries featuring the following

new releases, backlist, and upcoming titles.

LightWave 3D 8 Texturing
1-55622-285-8 • $49.95
6 x 9 • 504 pp.

Essential LightWave 3D 8
1-55622-082-0 • $44.95
6 x 9 • 624 pp.

LightWave 3D 7.5 Lighting
1-55622-354-4 • $69.95
6 x 9 • 496 pp.

LightWave 3D 8 Lighting
1-55622-094-4 • $54.95
6 x 9 • 536 pp.

CGI Filmmaking: The Creation of Ghost
Warrior
1-55622-227-0 • $49.95
9 x 7 • 344 pp.

LightWave 3D 8 Character
Animation
1-55622-099-5 • $49.95
6 x 9 • 496 pp.

3ds max Lighting

1-55622-401-X
$49.95
6 x 9 • 432 pp.

Advanced Lighting and Materials with
Shaders
1-55622-292-0 • $44.95
9 x 7 • 360 pp.

LightWave 3D 8 Cartoon Character
Creation: Volume 2 Rigging &
Animation
1-55622-254-8 • $49.95
6 x 9 • 440 pp.

LightWave 3D 8 Cartoon Character
Creation: Volume 1 Modeling &
Texturing
1-55622-253-X • $49.95
6 x 9 • 496 pp.

LightWave 3D 8: 1001 Tips and
Tricks
1-55622-090-1 • $39.95
6 x 9 • 648 pp.

Game Design Theory and Practice
2nd Ed.
1-55622-912-7 • $49.95
6 x 9 • 728 pp.

