

Focus on Mod

Programming

for Quake III
Arena

This page intentionally left blank

Focus on Mod

Programming

for Quake III
Arena

Shawn Holmes

© 2002 by Premier Press, a division of Course Technology. All rights reserved. No part
of this book may be reproduced or transmitted in any form or by any means, elec-
tronic or mechanical, including photocopying, recording, or by any information stor-
age or retrieval system without written permission from Premier Press, except for the
inclusion of brief quotations in a review.

The Premier Press logo, top edge printing, and related trade dress are trade-
marks of Premier Press, Inc. and may not be used without written permis-
sion. All other trademarks are the property of their respective owners.

Publisher: Stacy L. Hiquet
Marketing Manager: Heather Hurley
Managing Editor: Sandy Doell
Acquisitions Editor: Emi Smith
Series Editor: André LaMothe
Project Editor: Estelle Manticas
Editorial Assistant: Margaret Bauer
Technical Reviewer: Robi Sen
Technical Consultant: Jared Larson
Copy Editor: Kate Welsh
Interior Layout: Marian Hartsough
Cover Design: Mike Tanamachi
Indexer: Katherine Stimson
Proofreader: Jennifer Davidson

All trademarks are the property of their respective owners.

Important: Premier Press cannot provide software support. Please contact the appro-
priate software manufacturer’s technical support line or Web site for assistance.

Premier Press and the author have attempted throughout this book to distinguish
proprietary trademarks from descriptive terms by following the capitalization style
used by the manufacturer.

Information contained in this book has been obtained by Premier Press from sources
believed to be reliable. However, because of the possibility of human or mechanical
error by our sources, Premier Press, or others, the Publisher does not guarantee the
accuracy, adequacy, or completeness of any information and is not responsible for any
errors or omissions or the results obtained from use of such information. Readers
should be particularly aware of the fact that the Internet is an ever-changing entity.
Some facts may have changed since this book went to press.

ISBN: 1-931841-56-X
Library of Congress Catalog Card Number: 2001099836
Printed in the United States of America

02 03 04 05 RI 10 9 8 7 6 5 4 3 2 1

Premier Press, a division of Course Technology
2645 Erie Avenue, Suite 41

Cincinnati, Ohio 45208

To Ariel and Hunter,
who love to play games

almost as much as their Dad

And to Dave Kirsch,
for inspiring me, and many others,

to create

Acknowledgements

This is my first book, and it was both challenging and a constant
learning process from start to finish. Because of the unusual cir-

cumstances that led to my becoming the author, I have many impor-
tant people to thank; without them I surely wouldn’t have been able
to pull this off. The first of these people are Emi Smith and Estelle
Manticas, two patient ladies who held my hand as I stumbled blindly.

Many of the tutorials in this book are based on the hard work of dedi-
cated Quake III Arena fans, who took their own personal time to write
up what they had discovered. My thanks go to Chris Hilton, Karl
Pauls, Arthur “Calrathan” Tomlin, and Ian “HypoThermia” Jefferies at
Code3Arena for their extensive help and knowledge. As well, thanks to
my favorite 3D modeler and friend Dave Wolfe for his contribution in
the modeling department. My passion for C programming would not
exist if it weren’t for the support of Dave Sausville, and so I have him
to thank as well. I need to thank Thaxton Beesely, too, for it was his
laptop on which a great deal of this book was written.

Special thanks go to Robi Sen, my technical editor, for believing in me
enough to get me on this project. Jared Larsen provided detailed
information on Q3’s code, shaders, and wrote the Flag Indicator &
Dynamic Spawn generating functions (all after having just welcomed a
baby!), so thanks very much to him. Many thanks also to Andy Smith
for providing introductory content in Chapter 2. Also, special thanks
to Anthony Jacques, for providing the source to his “Domination”
mod for Q3, which formed the basis of the Defend the Flag modifica-
tion, handled in the last section of this book. Thanks also go to the
team back at Breckenridge Communications, who dared me to write a
book.

And finally, thanks especially to my wife, Julie, for her support and
patience during this exciting and unpredictable project.

About the Author

SHAWN HOLMES is a gaming addict, period. Born in the recesses of the
Great White North, Shawn grew up in the small town of Parksville,
British Columbia, with dreams of one day becoming a professional
video-game developer. He first tinkered with an Apple computer back
in 1985, and wrote his first game for a Computer Science project in
1990. Today, Shawn is Senior Programmer at Breckenridge
Communications, an Internet-applications company in Denver,
Colorado, and lives with his wife Julie and their two children, Ariel
and Hunter. He can be reached at sholmes@breckcomm.com.

Shawn has played a role in several game modifications; in 1997 he
headed up The CTF Expansion Project to increase the number of quality
CTF maps available for Quake. In 1999, his Decay! mod for Heretic II
was named “Mod of the Month” by an Australian gaming magazine,
PC Powerplay. As long as video and computer games exist, Shawn will
continue to push his development experience to new levels in his
quest to create the next exciting game.

Contents

Letter from the Series Editor xiv

Introduction xvii

CHAPTER 1 Introduction to
Programming Mods 1
What Is a Mod? . 2

Why Create a Mod Instead of Just Writing a Game? . 3

The Tools of the Trade . 4

Using C. 4

Using the VC++ Compiler . 5

What Mods Are Currently Available? . 6

Urban Terror. 6

Rocket Arena Q3A . 7

Quake III Fortress (Q3F) . 8

Painkeep Arena . 9

Rune Quake . 11

Summary . 12

CHAPTER 2 C Programming
in Quake I I I 13
The History of Quake and Its Code . 15

The Move from DOS to Win32 . 16

Hello Quake III, Goodbye DLL! (Sort Of) . 18

Getting Set Up. 19

Installing Q3 and the Source . 19

The Source Directory. 21

Using Visual C++. 22

Building the Source . 25

Compiling the Project . 27

Loading Up Your Mod . 28

Looking at the Quake III Code . 29

On Your Marks, Get Set . 29

The Q3 Source . 30

Planning . 33

A Simple Mod:The Homing Missile . 33

I Think,Therefore I NextThink 36

Entities: Building Blocks in Q3. 37

Changing the Missile’s Behavior. 38

Smoothing the Missile . 47

A Final Note . 48

Summary . 48

CHAPTER 3 More
Weaponry Work. 49
Understanding Weapon Types . 50

Modifying the Shotgun . 52

Understanding the Top-Down Approach . 52

Knowing the Shotgun Inside and Out . 53

The Physics of Vectors . 55

Intricacies of Damage . 56

Adjusting the Shotgun’s Accuracy . 58

The Shotgun’s Dirty Secret . 62

Synchronicity in the Client Code . 66

Adding Polish: Shooting While Moving. 68

Modifying Grenades:The Cluster Grenade. 72

Further g.weapon.c Detective Work . 73

Why a Grenade Bounces (and Rockets Don’t) . 74

Using What You Know: think and nextthink. 76

Making the Cluster Grenade Behave . 78

ixContents

A Further Adjusting Gravity Wells . 82

Into the Vortex . 83

Testing for Collision . 89

Making Gravity Work for You . 90

Summary . 91

CHAPTER 4 Manipulating
the Player 93
The Quake III Player and His World. 94

Player Structure . 96

The Guts of gclient_s . 97

State of the Player. 102

Changing the Player’s Movement . 105

Playing with ps.speed. 106

Gravity Kills . 107

The Case of the Missing client . 108

Solving the Jumping Mystery . 109

The Move to Pmove . 112

Modifying Jump Velocity. 114

Giving the Player a Jetpack. 115

Creating a New pmove Flag . 115

Defying Gravity . 117

A Surprise Effect . 118

Borrowing Code from PM_FlyMove . 119

Implementing Locational Damage. 124

Creating Hit Flags . 124

The Bounding Box . 126

Scanning Body Parts . 128

My Feet Are . . .Where Now? . 130

Switching Off the Hits. 131

Summary . 132

x Contents

CHAPTER 5 Quake
Communication 133
The Client/Server Relationship . 134

Leaving Peering in the Past . 135

Lag in a Nutshell . 138

The Quest for Low Latency . 139

The Process of Updates . 140

Bridging game, cgame, and ui . 143

The Server Is God . 144

The Main Event . 145

Interfacing with the User . 147

Modifying Variables on-the-Fly . 149

The Quake Virtual Machine . 150

Getting the Best of Both (Quake) Worlds. 151

Build Your Own QVM . 152

Summary . 154

CHAPTER 6 Client
Programming 155
Revisiting Weapons: Chain Lightning. 156

Trace Your Path . 162

Be Like Zeus . 165

Creating Client Events . 166

Enumerating an Event . 167

The Communication of entityState_t . 170

Chain Lightning Lives . 174

Working with Shaders . 175

A Shady Modification:Armor Regeneration. 177

Making the Player Glow . 179

Regenerating Armor . 182

xiContents

Adding New Icons and Sound Effects. 184

Making It Count . 185

Getting Up in the Player’s Face . 193

Cache Memory . 196

Summary . 200

CHAPTER 7 Defend the Flag 201
The Rules . 202

What You Will Reuse . 204

What You Will Create . 205

Preparing Q3 for DTF . 205

Your Journey Begins at gametype_t . 206

itemType_t: Birth of the Sigil . 209

Fleshing Out the Sigil . 211

Bending the Rules with powerup_t . 213

Tranforming Flags into Sigils . 215

Every Item Is a gitem_t . 215

Sigils Become New Items . 218

Initializing Sigils for DTF . 220

Warning Q3 about Sigils (Or Lack Thereof) . 225

Creating the New Sigil Behavior . 227

Getting Touchy-Feely with Touch_Item . 228

Wiring Sigil-Touch for Touch_Item . 231

Keeping Score with Sigil_Think . 235

Keeping cgame in Check . 236

Tricking Q3: Reusing Spawn Points. 238

The Process of Spawning Level Entities . 239

Jimmying Item Entities into a Map . 242

Yanking Out CTF Flags . 244

Creating a Third Sigil Spawn Point . 245

Picking the Preferred Item . 249

Summary . 252

xii Contents

CHAPTER 8 Where to Go Next . . . 253
Deathmatch, CTF, and Other Game Types . 255

Vanilla Deathmatch . 255

Games Without Frontiers: CTF. 256

A Class Act:Team Fortress . 258

Squad Tactics: Counter-Strike . 259

Structure of a Mod . 261

The PK3 File: Unlocking Its Secrets . 261

Art Is Life (and Death, in Q3) . 264

Modeling Without a Runway . 264

Brushing Up on Level Design . 266

Creating Sound Effects Using Household Items. 268

Summary . 270

Index 271

xiiiContents

xiv Letter from the Series Editor

Letter from the
Series Editor

If you’re interested in making 3D games but don’t have five
to ten years to spend learning 3D graphics, AI, networking,
optimization, hardware, DirectX, and about a billion other
things, then a great place to start is by creating modifications
to existing games. This process is known as modding, or devel-
oping mods.

In a nutshell, there are two engines out there from which
90 percent of all 3D games for the PC are made—id
Software’s Quake engine, and Epic’s Unreal engine. Focus on
Mod Programming for Quake III Arena leverages the Quake III
engine, as it’s far more widely used; however, the Unreal
engine is similar, so the concepts you learn here will translate
nicely into any modding venture.

If you’ve tried to learn modding by reading Internet articles,
you’ve realized that no one who really knows how to make
mods is writing the articles! The goal of Focus on Mod
Programming for Quake III Arena is to give you a book written
by an expert “modder”—that expert being Shawn Holmes.
Shawn has taken a huge subject and condensed it into a
nicely-sized data stream that anyone can download into their
brain (with proper augmentation of course).

Focus on Mod Programming for Quake III Arena starts off by
describing what mods are and giving you some history
behind the Quake technology. Shawn describes key program-
ming concepts so that even non-programmers can get up to
speed immediately on creating mods. Then Shawn gets right
into it and begins creating weapon mods and using these
examples to show you the very complex and mysterious code
base of Quake III. He picks examples that illustrate concepts
such as client server issues, simple physics, game play, and

xvLetter from the Series Editor

testing. By the end of the first few chapters you’ll be pro-
gramming in Quake C and will have made numerous mods to
the game! Moving on, more complex subjects are broached,
such as making modifications to the player, creating new
game types, and more.

I can without hesitation say that this is the first book in his-
tory that describes in a professional and concise manner how
to create mods for the Quake engine. Not only do I guarantee
that if you read this book, you will be able to create mods, but
I also believe that you will come away with a deep under-
standing of how next-generation 3D games are created. This
alone is worth the price of admission. Understanding how
one of the greatest software engineers in history—that is,
John Carmack—thinks is definitely a good thing!

So stop reading this and get started on creating a mod for
Quake III !

Sincerely,

André LaMothe
Series Editor

This page intentionally left blank

Introduction

Welcome to the world of mod programming!

The goal of this book is to get you started programming mods for
Quake III. There is a lot of territory to cover in a short time, but by the
time you’re finished, you’ll have a solid understanding of what it takes
to make the necessary changes for your mod. I also plan to give you
many examples of how to extrapolate Quake III information on your
own, so that after you finish this book you can continue to learn by
using the methods taught herein. What you will soon discover (as
many mod programmers before you have) is that working with Quake
III’s code is an experiment in learning by itself. I believe that with a
bit of dedication, we can clear up the ambiguities and get you rolling
your own mods in no time at all.

How this Book
Is Organized
Chapters 1 and 2 of the book introduce mod development, look at
some of the best mods already available, and then guide you through
the process of setting up your tools. Chapter 3 moves on to some
basic programming examples by working with Quake III’s weapons,
and finally, Chapter 4 introduces you to working with altering player
behavior.

Chapters 5 and 6 get a little more advanced. You’ll take an in-depth
look at the structure of Quake III’s code base, and learn how its three
major parts communicate. You’ll also learn about the Quake Virtual
Machine, and its role in mod programming. Then you’ll get a chance
to work with Quake III’s client code in more detail.

Chapter 7 builds on the information in previous chapters, teaching
you to develop a custom mod with a completely new game style.

Chapter 8 summarizes elements of the book and goes over what tools
you should have under your belt. Breakdown of other mods, as well as
summary of external components that go into a mod, is also covered.

If you have some experience developing Quake III mods, then you can
pretty much read any of the chapters that interest you. If you are new
to mod programming, however, there is no better place to start than
right at the very beginning of this book.

System Requirements
If you have played Quake III on your machine and it works fine, then
your system is probably up to scratch. The required specifications for
Quake III modding are as follows:

■ Processor. Pentium II 300+ MHz (Pentium III 500 MHz+
recommended)

■ Operating system. Windows 95/98/ME/2000/XP
■ Video card. 8MB RAM (3D graphics card recommended)
■ Memory. 64MB (128MB recommended)
■ Hard disk. 500MB minimum for installation of Quake III and

tools
■ Compiler. Visual C++ recommended

On the CD
Included with this book is a CD on which I’ve compiled some addi-
tional resources for your viewing pleasure.

Source Code
Every chapter in this book that features a tutorial working with the Q3
source code has its code conveniently saved on the CD, in case your
fingers get tired of typing. They are broken out into multiple ZIP files

xviii Introduction

across separate folders for each chapter. You also have a fresh archive
of the complete Q3 source, which as of this writing is version 1.29h.
Additionally, you’ll find the latest Q3 point release on the CD, 1.31.

e-Chapters
Quake III Mod programming covers so much territory that I simply
could not fit it all into this book! Therefore, I’ve gone ahead and put
some additional chapters on the CD for you. On the CD, you’ll find
Chapter 9, “UI Programming”, which introduces you to working with
Q3’s User Interface. You’ll also find Chapter 10, “Enhancing DTF”,
which offers some really exciting ways to polish your Defend the Flag
mod. In it, you’ll discover how to create a new HUD to display Flag
Statuses, a “Flag Locator”, which acts as a compass to guide players
towards flags, and build DTF support into the Q3 UI. I’ve also supplied
an Appendix, “Debugging Your Mod in Visual Studio”, which offers
some expert insight into configuring Visual Studio to program mods
more effectively. Appendix B offers a list of online resources for game
developers.

User-Created Mods
To give you a feel for the kind of work that is being done in the mod
community, I have compiled a set of absolutely insane mods created
by fans, just like you. On the CD, you’ll find Painkeep Arena, Rocket
Arena Q3A, Rune Quake, Threewave CTF, and Urban Terror.

Development Tools
I’ve also supplied a few of the major tools that mod developers use,
along with their trusty compiler. On the CD you’ll find a shareware
version of Milkshape 3D that is good to use for 30 days, after which
you may register it for a small fee. As well, the latest version of
Q3Radiant is included, in case you get the itch to tackle a bit of level
design.

xixIntroduction

Last But Not Least
Thank you for buying this book. I know you’ll have as much fun devel-
oping your mod as I had putting together all the examples. And if you
master everything on these pages, you’ll be well on your way to pro-
ducing a complete mod for Quake III—one that is both exciting and
fun to play. Remember, anybody can program a modification for
Quake III, and many of today’s game developers started just like you
are now. What are we waiting for? Let’s go!

xx Introduction

CHAPTER 1

Introduction
to

Programming
Mods

Creating mods for Quake III is a challenging and rewarding experi-
ence. It requires a lot of tenacity and hard work, but the payoff is

twofold. Not only do you come closer to understanding what goes into
professional game development, but you also have the luxury of shar-
ing your programming efforts with hundreds, if not thousands of fans
online. In fact, many professional game developers get a head start in
the industry simply by playing around with code.

Before you jump in and start developing your mod, let’s take a look at
what mods are and what drives people to create them, and examine
some of the impressive mods that have already been developed. At the
end of this chapter, you’ll look at the tools you’ll need to develop your
mod.

What Is a Mod?
Mod is short for modification. Simply put, a mod is a single change or a
package of changes made to a game that alters the way in which the
game was designed to work. A mod can involve something as simple as
changing the speed at which a rocket moves across a room or as com-
plex as a complete overhaul of the look and feel and even the rules of
the game.

Mods came about when fans of the immensely popular id Software
game DooM started fiddling with the game’s code in order to alter
how it was played. This feat required a fair amount of dedication con-
sidering that DooM hadn’t really been documented, and that its source
code hadn’t been made available for download on the Internet. (In
fact, the Internet hadn’t even become popular yet, and most file trans-
fers were being done over old BBSes, short for Bulletin Board Systems.)
Even so, dedicated gamers were creating utilities to add new monsters,
create new levels, even import new sound effects—ultimately chang-
ing how DooM was played.

2 1. Introduction to Programming Mods

id Software saw this as a fantastic way to build onto future game tech-
nologies it developed. If fans wanted to work with the company’s
code, the company would invent better and easier ways of allowing it.
Word soon got out during the development of id Software’s Quake
that it would be engineered to be modifiable from the get go. As
expected, the release of Quake spawned huge amounts of interest
among programmers because ID Software allowed the source code to
be downloaded and played with. Quake II followed in the footsteps of
its predecessor, and inevitably so did Quake III .

Why Create a Mod Instead
of Just Writing a Game?
So what’s with all this mod business, anyway? Doesn’t it make more
sense to just create your own game from scratch? Not necessarily. For
starters, creating a game that is as technically outstanding as Quake III
is a huge undertaking, requiring considerable amounts of time, money,
and manpower. Second, developing a 3D engine takes a lot of coding
experience, as well as a deep understanding of math, 3D hardware,

3Why Create a Mod?

The Mod Developer Has Arrived

For many of my friends now in the gaming industry, Quake
was a turning point. These people—boring application
developers (or taxi drivers) by day, aspiring mod developers
by night—spent countless hours designing levels, coding
new bots, and creating special effects—not for financial
gain, but to create something that thousands, if not tens or
hundreds of thousands of people would play. Many were
hired by established development houses on the basis of
their mod work, while others went on to form their own
game companies. Quake really did change things.

and other associated
knowledge. Creating a
mod, on the other hand,
is a great hands-on way to
learn a lot of the skills
used in game develop-
ment. You don’t have to
create a cool 3D engine;
one is already provided.
That means you can focus
on creating a game rather than creating the technology. And did I
mention it’s also a lot more fun?

The Tools of the Trade
Before you get started programming your own mods you should know
that this book is geared toward programmers with a basic understand-
ing of the C programming language. Don’t worry if your C skills are a
bit rough around the edges; I’ll be sure to go over some more compli-
cated concepts when the time arises.

Using C
If you’ve never worked with game source before, you’ll be happy to
know that I’m going to start from the very beginning, so that you can
familiarize yourself with the necessary tools, and play with small bits of
code without getting overwhelmed. If you’re already familiar with Q3
and its code, you may want to skip ahead to chapters that focus on the
specific area of the code base in which you are interested.

Hopefully, you have at least some knowledge of fundamental C con-
structs, such as

■ Basic variable types. Integers, floats, chars, structs, and enums
are used quite frequently throughout the Q3 code base, so it’s a
good idea to know what these are.

■ Functions. A segment of self-contained code, a function gener-
ally takes input parameters and returns a variable. You should
have no problem with the construct of a function, and you

4 1. Introduction to Programming Mods

NOTE
Throughout the rest of this book, I am
going to use the abbreviation Q3
instead of the long-winded Quake III.
You never know, those seven extra
characters may just make a difference!

should be able to both identify existing ones and write your own
with ease.

■ Pointers. Quite easily one of the most confusing concepts for
beginning programmers, pointers are special variables that point
to memory addresses. When you see a variable with an asterisk
next to it (for example, *char), you are dealing with a pointer.
Pointers are an efficient way of passing complex variables from
function to function, and are used often throughout the Q3
code base. If you are unclear on pointer usage, I recommend
doing a bit of research on the subject.

■ Memory addresses. Somewhat related to pointers is dealing
with memory addresses explicitly via the address-of operator, or
ampersand symbol, such as &char. If you don’t have a good
understanding of handling memory addresses, it may be worth
it to read up on that as well.

■ Typedef. This is a keyword in C that allows you to create a new
type of variable, which is basically another name for an existing
type. Q3’s code is designed in such a manner that many variable
types are user-defined, so that they better describe their func-
tion within the code. In fact, there are quite a few cascading
typedefs (a typedef of a typedef of a typedef, and so on) in Q3’s
code. It’s very important to know what is going on when vari-
able types are redefined, so that you can work with the existing
types, and go on to create your own when necessary.

If you are comfortable with all these concepts, you’re well on your way
to programming some modifications in Q3.

Using the VC++ Compiler
To start programming a Q3 mod, you’ll need a compiler. For this
book, I have used Microsoft Visual C++ Version 6, because it’s the tool
of choice for the developers of Q3 and the majority of mod authors. It
is also the easiest to configure. This commercial package is available
from most major software retailers; if you are a student at a university
or college, you may be able to get it at a discount.

If you have worked with Visual C++ Version 6 (to be referred to here-
after as VC++), excellent! Diving into the Q3 code should be a breeze

5The Tools of the Trade

for you. If not, no
worries: I’ll take some
time at the beginning
of Chapter 2 to help
you set up VC++ and
get familiar with its
interface.

What Mods Are
Currently Available?
Q3 has been around for some time now; consequently, numerous
mods are available for it. During the writing of this book I down-
loaded and play-tested most of them (hard work, I know, but someone
has to do it). The following sections briefly review my favorites. I have
included these on the CD-ROM that accompanies this book, and rec-
ommend that you install and spend a few hours playing them to get
some idea of what is possible with the Q3 engine.

Urban Terror
On the surface, you could describe Urban Terror as simply another
Counter-Strike clone. Although in some respects this is true, labeling it
as such would not do it jus-
tice. From the moment
you load up UT, you real-
ize the developers have
succeeded in making it a
“total conversion”—that is,
a modification that has
changed everything in Q3
including levels, weapons,
game types, even the user
interface.

UT ’s attention to detail is
spectacular. The current

6 1. Introduction to Programming Mods

NOTE
Even though the language I’ll use is
called Visual C++, don’t fret.VC++ is also
capable of working with plain-old vanilla
C as well. It even has the ability to work
with inline assembly language!

NOTE
In case you’re not familiar with it,
Counter-Strike is one of the Internet’s
most-played mods to date.Although
CS is a mod for Half-Life, the engine
that drives it is a derivative of the
original Quake engine.As an aside, it
may interest you to know that Valve
Software, the company that created
Half-Life, hand-picked Quake mod
programmers to join their company.

version comes with 15 maps, all based on an urban theme, with
UT_Streets and UT_Docks being my favorites. The game play revolves
around a series of rounds with time limits and different styles of play
including Deathmatch, Team Deathmatch, Capture the Flag (CTF),
and Follow the Leader. The UT mod team plans to add modes of play
in the future, and I look forward to its next release. Figure 1.1 shows a
player helping his teammates finish off the last of the enemy for a
round win.

Rocket Arena Q3A
Rocket Arena goes back a long way. In fact, it was originally a mod cre-
ated for Quake. Then, when Quake II was released, Rocket Arena 2 fol-
lowed. It only made sense that Rocket Arena Q3A would make its debut
soon after Q3 hit the shelves. Rocket Arena has always been an exciting
mod because it pits you against one other foe, mano y mano, in a battle
to the death. You start the game by connecting to a Rocket Arena Q3A
server (or setting one up yourself).

7What Mods Are Currently Available?

Figure 1.1 A red team member gets the win in Urban Terror.

If others are playing the game, you are placed in a waiting line, or
queue. While you wait, two other players battle each other until one
falls, at which point the loser is removed from the play area and
added to the bottom of the queue. The winner remains to battle the
next player in the queue; play resumes to see who can survive the
longest.

Rocket Arena Q3A is very fast paced, and gets your adrenaline pump-
ing. The mod authors added some great features to it, including a
built-in MP3 player that enables you to create and organize your own
personal music playlists while you frag away!

Quake III Fortress (Q3F)
Q3F is a well-rounded mod that focuses on team play by building on a
classic gaming format. Its levels are well thought out, and the unique
aspects of the different characters make for a rewarding gaming expe-
rience for all styles of players. Q3F is a team-based mod that lets you
play a variety of character classes, each with its own roles, capabilities,
and weapons. These classes include

■ Recon. This is the fastest unit, but has weaker weapons. The
Recon is equipped with a radar scanner.

■ Sniper. This one-shot killing machine is for the player with
quick reflexes; it enables you to take out the opposition from a
distance.

■ Soldier. This is the backbone of every squad—a general all-
arounder with some devastating weapons.

■ Paramedic. No unit is complete without a paramedic. He is
reasonably fast, sports some good weaponry, and can heal
teammates.

■ Minigunner. Armed to the teeth with heavy weapons and devas-
tating cluster bombs, this is the mean machine of any Q3F team.

■ Flametrooper. The arsonist of Q3F ; armed with a flamethrower,
napalm launcher, and napalm grenades, he can turn the hard-
est of foes into crispy pancakes in seconds.

■ Agent. With the ability to disguise himself as one of the enemy,
the agent can slip behind enemy lines and launch a deadly and
unexpected attack—making way for the frontal assault.

8 1. Introduction to Programming Mods

■ Engineer. The master of defense, the engineer has the skills to
build and maintain auto-sentries that guard the team base and
unleash a deadly hail of fire on any approaching enemy (see
Figure 1.2). The engineer is also responsible for creating supply
depots for the troops.

Painkeep Arena
Painkeep Arena is another extravagant mod that has been around for
some time. Like its first incarnation for the original Quake, Painkeep
Arena brings to the table some incredibly detailed and unique level
designs, and a quality of game play that is a force to be reckoned with.
Some interesting features that Painkeep Arena include are as follows:

■ Chain lightning gun. This is an extremely cool update to the
standard lightning gun, causing an arc of lightning to leap from
target to target.

■ Turrets. Much like the auto-sentries found in Q3F, these guns
target any enemies near them and begin riddling them with
bullets.

9What Mods Are Currently Available?

Figure 1.2 An auto-sentry guards the corridor in Q3F.

■ Bear traps. As you might have guessed from the name, these are
traps you can place on the ground in an effort to trap your ene-
mies, causing damage as they drag their wounded feet around
the levels.

■ Gravity well. An insanely powerful device, this object sucks any
and all targets toward it with tremendous speed, causing them
to explode on contact in a bloody mess.

■ Airfist. This unique weapon allows the player to blast concussive
forces of air at his opponent and at incoming missiles, sending
them in different directions. Airfist can also be used to blast
against the ground, propelling the player up to high areas in
levels that would otherwise be unreachable.

■ Pork and beans. The craziest powerup ever in any Q3 mod, play-
ers can pick up and use a can of pork and beans to be restored
to full health—with some . . . ahem, side effects.

With its various weapon upgrades and powerups, Painkeep Arena, which
was put together in a very professional fashion, is a lot of fun. Figure
1.3 shows a player getting busy in one of Painkeep’s creative levels.

10 1. Introduction to Programming Mods

Figure 1.3 A player fires the magnum, a new weapon in Painkeep Arena.

Rune Quake
Although Rune Quake is a very simple, straightforward mod, it is loads
of fun to play. The rules are simple: Play Q3 as you normally would,
on pre-existing levels, with standard Q3 game rules. There is one
slight difference, however. Littered throughout the Q3 level are
runes—small objects, usually in the shape of an easily recognizable
symbol—that can grant the player some incredible abilities. There are
50 different types of runes, including the following:

■ Rune of fire. Collect this rune, and you become a walking
torch, igniting your opponents with the merest touch—not to
mention firing on them with your standard weapons. Water is
something you want to stay away from with this powerup.

■ Vampiric rune. When you hold this rune, you gain health as you
damage your opponents, the way a vampire grows strong from
the blood of others.

■ Rune of recall. This rune enables you to set a recall point.
Then, when you’re in trouble, you can teleport back to your
point. It’s great for emergency escapes!

■ Switch rune. This sneaky rune, when activated against an oppo-
nent, enables you to switch with them—locations, weapons,
health, even powerups!

■ Weirdness rune. Keep your distance from any player dropping
colored bubbles—a sure indication he holds the Weirdness
rune. If you get caught in the bubbles, you can expect to
bounce, wobble, weave, fly, spin, and just plain get sick!

■ Rune of uncontrollable jumping. If you hold this rune, any play-
ers near you start hopping against his will, which is sure to
throw his aim off.

■ Phase rune. One of my favorite runes in Rune Quake, the Phase
rune allows you to pass through thin walls and surprise your
opponents (see Figure 1.4). Note the transparent-weapon effect,
which indicates that the player has become a ghost and can shift
through solid surfaces. The rune’s icon, situated in the lower-
right area of the screen, mirrors that effect.

This is just a smattering of mod examples that regular fans of Q3 (like
you) have gone on to create. I’ve put these mods on the CD-ROM so
you can try them out yourself, and I highly recommend you scour the

11What Mods Are Currently Available?

Internet for even more. In Appendix A on the CD-ROM, I’ll provide
you with some online resources to help you locate other mods so you
can get a feel for what’s out there.

Summary
Game programming is both exhilarating and challenging, and the
best experience you can get is starting with mod development. The
best way to prepare yourself for modding (both physically and men-
tally) is to take a look at what kinds of mods have already been cre-
ated. This can often get you thinking about “what is fun” and “what
can be done better.” It also saves you from remaking a mod that is
already out there. Players are constantly looking for new and exciting
ideas to be implemented in mods, so don’t be afraid to explore
uncharted waters. So, without further ado . . . let’s get making some
mods!

12 1. Introduction to Programming Mods

Figure 1.4 A player makes a surprise kill after phase-shifting through a wall in
Rune Quake.

CHAPTER 2

C
Programming

in Quake III

Almost every professional game written today is in C or its big
brother, C++. C is used for many reasons. First, it’s fast. Short of

writing your code directly in assembly language, squeezing the most
performance out of your programs will definitely be easier when writ-
ten in C. When you consider that id Software, the creator of Quake III,
is well-known for cranking out code that taxes the latest and greatest
computer hardware to its very limits, it’s no wonder that C is chosen
for its speed. Second, it’s standardized. That means there are compil-
ers for C on all kinds of different operating systems. Code that is writ-
ten in C for one platform can be translated, or ported, to another
platform with great ease. Q3 also benefits from this because there are
multiple ports available for users on operating systems other than
Win32, such as Linux and MacOS (for Apple Macintosh).

Learning C is also essential if you think you might later decide to
move on to C++, because C++ is actually an extension of the C lan-
guage. As I write this, the programmers at id Software are pushing the
envelope with their next big project, an updated version of DooM, and
the word on the street is that it will be written in C++. That, coupled
with the fact that the next DooM will almost certainly be just as modifi-
able (perhaps more so) as Q3, should inspire you to get in on the C++
action.

14 2. C Programming in Quake III

NOTE
When I use the term Win32, I mean any
32-bit Windows operating system produced
by Microsoft. In layman’s terms, this is any
operating system produced since Windows
95, including Windows 98,Windows
Millennium,Windows NT 4.0,Windows 2000,
and Windows XP.

The History of Quake
and Its Code
John Carmack, lead programmer at id Software, is the man responsi-
ble for creating the technology that drives all the latest and greatest
games. Not only do his 3D engines power id Software’s games, such as
the Quake series, it also powers many other companies’ games as well,
thanks to licensing agreements made between those companies and
ID Software.

Carmack was determined from the onset of development for the origi-
nal Quake that the source would be readily available to mod authors,
and easily used. You may be wondering, however, how id Software
managed to make money on Quake given that the game’s source code
was released. After all, couldn’t anybody just download the source
and make his own games? The answer is simple: When Quake was
designed, it was built as two separate interlocking components: the
3D engine and the game logic. The code that drove the 3D engine
remained proprietary, and was locked away within the dark confines
of id’s office space. (Well, id Software’s games are spooky, so why
wouldn’t its office space be?) Meanwhile, the code responsible for
monsters’ behaviors, how
the weapons worked, and
the rules of the game was
made available for public
consumption.

John Carmack had an
extremely innovative idea
for implementing the
code for Quake—he cre-
ated a simpler version of
C that would be used to
code the logic for Quake,
complete with its very own
compiler. This language,
called “QuakeC,” was then
used by mod authors to create mods for Quake. The process involved
getting the current code from id’s public FTP site (which is still avail-
able today), along with the QuakeC compiler, called “qcc.” Each part

15The History of Quake and Its Code

NOTE
Carmack has always felt that any-
body who wants to learn from other
people’s code should be able to. For
this reason, he has always made it a
rule to release all the source (includ-
ing the 3D engine code) to the
games he’s built once enough time
has passed.As of this writing, he has
not only made the full source to
Quake available, but Quake II as well!

of Quake’s game logic was contained in different qc files, such as
world.qc and client.qc, which consisted of various bits of code written
in John’s custom language. Then, when various qc files had been suc-
cessfully modified, they were compiled down into a progs.dat file,
which was then placed in Quake’s install directory within its own
folder, such as C:\quake\mymod\progs.dat. Finally, Quake would be
fired up with the –game mymod parameter, where mymod was the name of
the new folder, and voilá! The newly modified code would come to
life within Quake.

The Move from DOS to Win32
After Quake was released, it went through many evolutions. For
instance, thanks to the development of a programming standard for
3D objects called OpenGL, Quake’s 3D engine went from being soft-
ware accelerated (meaning the CPU was solely responsible for draw-
ing the world) to hardware accelerated (meaning the video card
contained special processors that rendered the world faster and more
efficiently). It also evolved from a basic dumb client-server model to a
model in which the client attempted to predict events, thereby reduc-
ing latency or lag while being played online with a 56Kbps modem.
Finally, it got a well-deserved boot up from the dark ages of DOS to a
full Win32 application, called WinQuake. After playing with the
options that Win32 gave them, the programmers at id decided they
would move to Win32 for the development of Quake’s sequel, aptly
titled Quake II.

The move to Win32, however,
meant the demise of QuakeC,
because Win32 required
using Visual C++—and it
didn’t seem to understand
QuakeC. As a result, a new
question arose: How could
the game logic be most effi-
ciently separated from the 3D
engine so that mod authors
could use it? The answer
would be the DLL, or dynam-
ically linked library.

16 2. C Programming in Quake III

NOTE
OpenGL, developed by Silicon
Graphics, Inc., is an Application
Programming Interface, or API.
Because it was an open standard,
OpenGL was regarded favorably by
the programmers at id—they
wanted to be able to port Quake
to other platforms. By using a stan-
dard graphics library, that feat
would be less ominous. John
Carmack still uses OpenGL today.

In Win32 C programs, parts of code that a programmer deems
reusable can be wrapped up in a separate file, which makes itself avail-
able via hooks called imports and exports. This separate file is called a
DLL, and ends with the .dll extension. When another programmer
wants to use that code, he can create a program that hooks into the
code during runtime and use it as if it were actually written into the
main program. This is called dynamically linking. These DLLs can then
be packaged with an archive utility and uploaded to the Internet for
others to share; alternatively, if the author of the DLL deems its value
high enough, it can be sold. Because id needed Q2’s proprietary 3D
engine to remain a secret, the logical choice was to allow the game
code to reside in a DLL.

When Q2’s game source was made available, mod authors snatched it
from the same FTP site that hosted the original Quake source. It was
structured in very much the same manner as the old QuakeC code
was. The code that took care of specific components within Q2, such
as weapons, monster control, and game rules, were broken up into
standard C files, ending in the .c extension (such as g_weapon.c and
g_monsters.c, in which the letter g
represented the word game).
After various files were modified
and were ready to be tested, they
were compiled into a DLL called
gamex86.dll (x86 represents the
architecture of the CPU—in this
case, the Intel x86 processor
found in common PCs). The
gamex86.dll was then placed in
its own directory within Q2’s
install directory, as in
C:\quake2\mymod\gamex86.dll.
Q2 was then fired up with the
+set game parameter, with the
value of the game parameter
equal to the new directory,
like so:

quake2.exe +set game mymod

17The History of Quake and Its Code

NOTE
Breaking out various chunks of
code into reusable DLLs was
such a good idea, the program-
mers at id did the same thing
to allow multiple 3D rendering
drivers for the various types of
hardware that were popular
during Q2’s reign. One was a
software driver (ref_soft.dll)
that made Q2 render or “draw”
its world like the original
Quake: completely CPU based.
The other was ref_gl.dll, the
OpenGL hardware-accelerated
driver. Other vendors provided
drivers to be used with Q2 in
the same manner, such as
Vèritè and PowerVR.

This code would trigger the loading of the new DLL as Q2 came to
life on-screen.

Hello Quake III, Goodbye DLL!
(Sort Of)
The move to Win32 was a success, so id Software decided to keep the
momentum going. Shortly after Q2 was released, the company
announced that work had begun on a third installment in the Quake
series, also to be written in Win32 C. John Carmack, however, was
not entirely convinced that using a DLL was the right architectural
choice, the main reason being security. Because a DLL, by nature,
makes itself available to other programs, it is capable of calling other
DLLs. Any kind of functionality can be written into a Win32 DLL,
from the capability to create a game on your desktop, to defragment-
ing your hard drive, to creating an email client, and so on. That
means that malicious users could potentially write evil code into a
DLL, link it to the DLL used in Q2, and cause some pretty nasty
results. Who’s to say someone couldn’t write a mod that secretly
included a call within its DLL to format your hard drive as soon as you
scored 100 frags in a game of deathmatch? Not a pretty picture, to say
the least.

So John went back to the drawing board to see what he could come
up with for Quake III Arena. His solution was quite innovative. He pro-
posed that Quake III Arena run a Quake Virtual Machine (QVM)
within the core of the engine. This QVM could then interpret a spe-
cial kind of compiled code within the game, aptly named QVM files.
He went on to say that a QVM would be totally safe, as they would
only be interpretable from within Q3. No external Win32 functions
could be called, such formatting a hard drive. He also explained that
a QVM file would be made from exactly the same code that could
compile into a Win32 DLL, and he would provide a custom compiler
to create this QVM. As a result, mod authors could not only write
mods in their familiar C, but they could compile into both a Win32
DLL and a Q3-specific QVM. The QVM, then, would be the final prod-
uct that mod authors would upload to the Internet to share with the
gaming community.

And this is where you come in. . . .

18 2. C Programming in Quake III

Getting Set Up
Now that you know a bit of Quake’s history and how its code has
evolved over time, let’s
take a look at the
code itself. You’ll start
by getting your com-
piler configured. Your
compiler will be your
best friend for the
remainder of this
book, so ensuring
that it is set up effi-
ciently is key. Q3 is
very particular about
where and how things
should be installed
(and uninstalled), so
please read the next
few sections carefully.

Installing Q3 and the Source
To get set up, you must first install the game in the correct location,
add the point releases, and finally add the Q3 source. By default, Q3
installs itself in C:\Program Files\Quake III Arena\. Unfortunately,
when you are developing mods, they need to be in a directory named
“quake3” in the root of your hard drive. This can be any drive—for

19Getting Set Up

NOTE
Quake not only said goodbye to the DLL in its third
installment, but one other concept went away with the
release of Q3: It is the first Quake game in the series
that has no support for a software renderer. Q3 contains
only 100-percent hardware-accelerated 3D graphics.

TIP
Before you start, I suggest you visit this
book’s Internet site (http://www.
moddeveloper.com/downloads/) and
download the Q3 source; unfortunately,
due to id Software’s End User Licensing
Agreement (EULA), I cannot include it on
the CD-ROM.While you are there, take a
look at the updates section (http://www.
moddeveloper.com/updates/) to see if
anything has changed. id Software occa-
sionally releases a source update that
alters the directory names or lacks cer-
tain files needed for mod development.

example, C:\quake3, D:\quake3, and so on—but the folder must be
named “quake3.”

If you have already installed Q3 to its default location, you’ll need to
uninstall it and then re-install it in a quake3 folder in your root drive,
as noted in the preceding paragraph. When uninstalling Q3, however,
it is extremely important that you remove the individual elements in
the order listed here (failure to follow these steps in order can result
in elements being uninstalled incorrectly and an unstable environ-
ment if Q3 is reinstalled):

1. If you have installed any of the game source files such as
Q3AGameSource.exe or Q3A_TA_GameSource_129h.exe,
remove them using Add/Remove Programs in Control Panel.

2. Remove any installed point releases. These will be labeled
Quake III Arena Point Release (1.31) or something similar.

3. Remove Quake III Team Arena if installed.

4. Remove Quake III Arena.

When you are ready to install the source, simply double-click the
source’s executable file (the latest one being
Q3A_TA_GameSource_129h.exe) and follow the dialogs it presents to
you. This will involve:

1. Clicking the Next button on the first Welcome dialog.

2. Clicking the “Yes” button after reading and agreeing to id
Software’s EULA.

3. Selecting the proper Q3 installation directory (which, by
default, should be C:\quake3\) and clicking Next.

4. Clicking Next a final time to confirm the installation of the
source, finishing by clicking Close to close the dialog when it is
complete.

When you are certain your copy of Q3 is in the correct location and
that it is working properly, you will need to install the latest patch,
Point Release 1.31. This patch can be found on this book’s CD in the
patches directory. After the point release is installed, you can add the
Q3 source. Run the installer and select the quake3 directory where
the game is located.

20 2. C Programming in Quake III

To successfully build the Q3 source and deploy Quake Virtual
Machines (more on these later), you will need to install a few addi-
tional files. I have compiled these into a single ZIP file—buildup-
dates.zip, found in the \files\patches\ directory—that you can extract
to your quake3 folder. Do this now (make sure that you select Use
Folder Names in your ZIP program). This will install:

■ cpp.exe and rcc.exe, two files used during QVM compilation
(which you’ll cover in Chapter 5).

■ game.bat, cgame.bat, q3_ui.bat and all.bat, four batch files to
assist you in QVM compilation.

■ Various “Project” files that will compose the Q3 source’s work-
space in Visual Studio.

With Q3, the point release, and the source installed, you are almost
ready to load your compiler and build a mod. But first, let’s look at
the components that make up the Q3 source and prepare a working
environment.

The Source Directory
In your quake3 folder, you will
find a directory called code.
This contains the entire
source to build Q3 and Q3
Team Arena. Make a copy of
this folder and name it
MyMod; you will use this as
your base for development
throughout this book.

The MyMod directory contains a
series of files and additional directo-
ries, listed in Table 2.1.

21Getting Set Up

NOTE
By copying the folder rather than
simply renaming it, you ensure
that if you delete a file by acci-
dent or wish to change something
back to the way it was, you have a
clean copy of the original.

NOTE
Chapter 5,“Quake
Communication,” goes
into more detail about the
Quake Virtual Machine
and how to use the batch
files to create QVM files.

Using Visual C++
Because you’ll use VC++ to build
mods throughout this book, let’s
focus on its installation and setup
here. Do the following:

1. Insert your installation CD
into a CD drive.

2. Run the installation CD’s
setup file, typically named
“setup.exe” and found on
the root of the disc. You
should see a Welcome
installation screen; click
Next to continue.

22 2. C Programming in Quake III

Table 2.1 The Q3 Source Files

Name Description

game/ This directory contains the source for the Q3 server.

cgame/ This directory contains the source for the Q3 client.

q3_ui/ This directory contains the user-interface (UI) code for
Quake III Arena.

ui/ This directory contains additional UI code, used for the Team
Arena Expansion Pack.

Project.dsw This project workspace file is created for Visual Studio. It
loads all the source code for Q3 and is setup for compiling
your mod.

game.bat This batch file builds the Quake Virtual Machine for the
server.

cgame.bat This batch file builds the Quake Virtual Machine for the client.

ui.bat This batch file builds the Quake Virtual Machine for the UI.

all.bat This batch file builds all the QVM files (game, cgame, and UI).

NOTE
Microsoft offers VC++ on mul-
tiple distributions; this section
details the installation of the
version I use,Visual Studio
Enterprise.Your installation
screens may vary slightly from
the screenshots I’ve included,
but they should all contain
similar options that will lead
to the same end result.

3. Visual Studio’s EULA screen
should prompt you to
accept the terms and condi-
tions of installing the soft-
ware. Go ahead and click
the “I accept the agree-
ment” radio button and
click Next.

Enter the required name and
registration information for VC++, and click “Next.”

4. If given the opportunity to choose what type of installation you
want, select Custom; this enables you to specify which pieces of
software are installed. Click Next to move on.

5. You are asked to specify the folder in which you want to place
the software’s common files. Feel free to accept the default
path—in this case, C:\Program Files\Microsoft Visual
Studio\Common. Click Next to continue.

6. Some distributions of VC++, including the Visual Studio
Enterprise distribution, are packaged with other software; your
focus, however, is VC++. To install only the software you’ll need,
uncheck everything but the Microsoft Visual C++ 6.0, Enterprise
Tools, and Tools check boxes, as shown in Figure 2.1. Click
Continue when you’ve picked the noted software.

7. If given the opportunity,
click the Register
Environment Variables
check box to select it, as
shown in Figure 2.2. This is
to allow Visual Studio to
“find” files across various
folders on your system that
it requires to compile code.
Click OK to continue.

8. The VC++ files are installed on your hard drive. When this oper-
ation is complete, you may be informed that an icon has been
installed on your start menu (within the same program group as
VC++) that will allow you to set up debug symbols. You can click
OK to continue.

23Getting Set Up

NOTE
If your CD drive’s auto-run
feature is enabled, you may
not need to run the setup file
yourself; instead, it will be
started automatically.

NOTE
The screen shown in Figure
2.1 also enables you to
change the installation folder
of VC++ itself, but you can
leave the default choice as is.

24 2. C Programming in Quake III

Figure 2.1 Umm . . . I’ll just stick with Visual C++, thanks.

Figure 2.2 Yes, I will register my environment vari-
ables, thank you very much.

9. If prompted to reboot, go ahead and do so.

10. The installation may prompt you to install MSDN, which is a
good idea as it has an extensive repository of programming
information that can be referred to when in need. Any other
options that are offered can be skipped. Go ahead and continue
to click Next until you get to the Finish button, which should
conclude the entire installation.

Although you are officially finished installing VC++, I highly recom-
mend checking the Internet for any service packs. Just as id Software
releases patches for Q3, so too does Microsoft release updates for its
compilers. As of this writing, the current Service Pack available for
VC++ is SP5 (be sure to select the “Full” one), and you can download
it from http://msdn.microsoft.com/vstudio/downloads/updates/sp/
vs6/sp5/default.asp. You have the option of downloading multiple
separate EXEs that will combine during the patch, or of downloading
one 126MB file. Either selection is fine, although the latter can be
quite intimidating—especially if you don’t have a high-speed connec-
tion to the Internet.

After the file is downloaded and extracted to a temporary directory,
run setupsp5.exe to install the Service Pack. Fortunately, running this
setup procedure isn’t nearly the hassle that running the original VC++
installation is. It should do everything in one fell swoop. When this
setup routine is complete, you are ready to tackle Q3 programming.

Building the Source
By now, you should have VC++ installed and fully patched, raring to
go. As an added bonus, the project workspace provided with this book
has been completely configured so that you don’t need to mess

25Building the Source

TIP
Debug symbols can often help you determine how or
why a program fails, so be sure to run that setup after
you are finished with your VC++ installation.

around with any of the complicated settings; just follow the next set of
steps to build the source.

Let’s get into the meat of mod programming by making a quick mod
to Q3’s rocket launcher.

1. Double-click on the Project.dsw file in your /MyMod/code/
directory. Visual Studio is loaded for you.

2. The Visual Studio Integrated Development Environment (IDE)
appears. In the top-left corner of the screen, click on the File
View tab under the project.

3. As shown in Figure 2.3, a folder list appears containing four sep-
arate directories, or projects, which are used to build separate
components for Q3. Each project includes all the source files
for the client, server, and both user-interface modules, labeled
cgame files, game files, q3_ui files, and ui files, respectively.
Because you are primarily interested in making changes to the
server-side code, double click on the game files project.

26 2. C Programming in Quake III

Figure 2.3 The newly opened workspace in Visual Studio, with game files as
the active project

4. The game files project displays three folders, labeled Source
Files, Header Files, and Resource Files. Double-click on the
Source Files folder. A list of the individual source files that con-
trol every aspect of the Q3 game will appear.

5. To make a mod of the rocket launcher, scroll down to the
g_missile.c entry and double click on it to open the file. A new
window will open containing the source to the projectile
weapons. This controls how they fire, the damage they do, and
the effects displayed on-screen.

6. Scroll down to line 646, where you’ll see the following:

bolt->s.pos.trType = TR_LINEAR;

bolt->s.pos.trTime = level.time - MISSILE_PRESTEP_TIME; // move a

bit on the very first frame

VectorCopy(start, bolt->s.pos.trBase);

VectorScale(dir, 900, bolt->s.pos.trDelta);

SnapVector(bolt->s.pos.trDelta); // save net bandwidth

VectorCopy (start, bolt->r.currentOrigin);

This code sets the speed at which the rocket moves across the
room when fired from the rocket launcher. The speed is set to
900; change it to 200, as shown here:

VectorScale(dir, 200, bolt->s.pos.trDelta);

7. Save the file by clicking on the Save button (the one with a disk
on it) on the toolbar at the top of the screen. Alternatively,
open the File menu and choose Save, or press Ctrl+S.

Congratulations! You have just made your first Q3 mod. All you need
to do now is compile the changes and load them into Q3.

Compiling the Project
Because there are several projects loaded into the workspace, you
have a number of options. You can compile all four projects at once,
which would produce three new DLLs for you (only one UI DLL is
generated, based on the type of project you are working on).
Alternatively, because you have modified a file in only one of the pro-
jects, the game project, you can choose to compile only that project.
To do so, do the following:

1. Open the Project menu, select Set Active Project, and click game.

27Building the Source

2. Specify whether you are building a release version of the code
as opposed to a debug version by opening the Build menu,
choosing Set Active Configuration, and choosing game–Win32
Release.

3. Open the Build menu and choose Rebuild All to compile the
mod. The compiler compiles all the files into a DLL file; the
progress of this operation is shown in an output window at the
bottom of your screen.

When the compile operation is finished, you should see the following
message:

qagamex86.dll – 0 error(s), 0 warning(s)

This means that the source has been built and that no errors were
found in the code. If you look in your MyMod directory, you will also
find a new folder named Release, in which you should find a brand
new qagamex86.dll.

Loading Up Your Mod
The time has come to test your creation. Bring up a command
prompt and change directories to your quake3 folder. You can now
load up your mod by typing the following:

quake3.exe +set fs_game MyMod +map q3dm1

Once in the game, pick up the rocket launcher and fire away. You
should see that the rockets are moving noticeably more slowly.

28 2. C Programming in Quake III

NOTE
If you chose to install the Q3 source to a folder outside the
game installation directory (as I often do), you will be
responsible for manually copying your created DLLs over
to your MyMod directory.With the game–Win32 Release
build used in this example, you should find qagamex86.dll
in a folder named Release within the code folder where
you installed your source.

Looking at the
Quake III Code
How addictive is that? Come on, admit it. You just spent the last ten
minutes running around, firing rockets, and standing in front of
them, didn’t you? Well, while you are waiting for the men in white
coats to come knocking on the door, let’s take some time now to look
at the Q3 code in greater detail.

One of the hardest things about developing a mod is knowing where
to start. As your modding journey continues, I will provide some gen-
eral suggestions on how to plan your development. To make sure
things don’t get too serious, you’ll finish up by building your very own
homing-missile mod.

On Your Marks, Get Set . . .
Q3 has about 150 files that control every aspect of the game.
Unfortunately, making a change or adding a new weapon can often
mean adding code to dozens of them. This can seem at first like quite
a daunting task, but don’t be put off—after a while, some of the
changes you make will seem like second nature.

When you build a homing missile later in this chapter, you will be
introduced to some important concepts such as flags, entities, and the
fact that weapons “think.” Before you get to that, however, I suggest
you spend an hour or so with the next section and browse through

29Looking at the Quake III Code

TIP
A fast way to run your changes is to use a batch file. Simply
right-click an unused area of your desktop and choose New
Text Document from the shortcut menu that appears.
Name the document MyMod.bat.Then, right click it, select
Edit, and type quake3.exe +set fs_game MyMod +map q3dm1.
Save your changes and close the document.You now have
an instant way to load your changed code into Q3.

the individual files. Don’t worry—there may be some things you don’t
understand, but you will pick up valuable information on how Q3
works.

The Q3 Source
Listing all the Q3 files and the functions they include could easily fill a
book this size. Instead, I have picked the most important ones and
briefly summarized each one. Table 2.2 lists the game project files;
these make up the core of any Q3 mod.

30 2. C Programming in Quake III

Table 2.2 game Files

ai_cmd.c This file controls how the bots react to commands issued by
teammates and other players as well as functions for issuing
the actual commands.

ai_dmnet.c This is the core of how bots achieve their goals.Take a look
at the BotClearPath function on line 1306; it shows how the
bots go about clearing obstacles such as proximity mines.

ai_dmq3.c This file contains more great bot code for goal-orientated
behavior such as playing Capture the Flag. It also includes a
variety of tests and functions including weapon selection,
inventory, item control, and general movement decisions.

ai_main.c This file contains bot initialization code.

ai_team.c This is the starting point for the team code. It is responsible
for issuing orders, assigning tasks, and so on.

bg_pmove.c This file handles player movement and physics routines. It
controls how the player behaves when running, walking,
swimming, sliding, and so on.

g_active.c This contains the client think events.This is where any player
events are processed, such as taking damage, using items, or
activating triggers.

g_client.c This file functions to spawn the client and handle the
connection with the server.

Table 2.3 lists the cgame files, which handle the client-side operations
in Q3. I will get into a much more thorough discussion regarding
cgame files in Chapter 6, “Client Programming;” for now, just browse
through these files.

31Looking at the Quake III Code

g_cmds.c This file controls the sending of messages to the client, such
as adding it to a team, giving an item, and calling for a vote.

g_combat.c This file handles client combat, death, and damage. Have a
look at the function LookAtKiller, which is run when the
player dies so you can see who the attacker was.

g_items.c This file specifies how items such as weapons, ammo, and
powerups are picked up, dropped, and respawned in the
game.

g_main.c This file handles general game control such as loading maps,
adding players to a tournament, and voting. Have a good read
of this to get an overall feeling for the structure of Q3.

g_missile.c This file functions to control the projectile-based weapons.
You will be using this file in the homing missile example.

g_mover.c This file handles entity movement routines, doors, triggers,
and platforms.

g_session.c This file stores and retrieves information that needs to be
persistent across multiple level loads.

g_spawn.c This file handles spawning entities.

g_svcmds.c This file handles commands that can be executed by the
server console but not remote clients, such as IP filters and
bans, forcing players to a team, and adding bots.

g_team.c This file handles general team functions such as adding
scores, getting a flag’s status, and so on.

g_trigger.c This file handles trigger functions including the teleport and
timed triggers.

g_utils.c This is a collection of utilities used by many of the other
files, including the very important G_Spawn function, which
handles adding new entities to the game world.

g_weapon.c This is a collection of events that happen when a weapon
fires, such as dealing damage, or creating specific effects.

32 2. C Programming in Quake III

NOTE
Whenever I refer to gibs, I mean the shower of frag-
mented body parts that spray the screen after a player
explodes. Sounds yucky, but it has been a term used by
players since as far back as DooM. It’s pronounced with
a j sound, as in the word giant.

Table 2.3 cgame Files

cg_consolecmds.c This file handles local console functions for processing
key binds or typed-in commands.

cg_draw.c This file handles local drawing commands for displaying
HUD items, scoreboards, and so on.

cg_effects.c This is used to generate local effects such as bubbles
when entering water, particles, smoke, blood, gibs, and
explosions.

cg_ents.c This file handles local entity functions that are
processed every frame.

cg_info.c This file functions to display the loading screen
between levels. It shows icons, status, and so on.

cg_localents.c This file generates the commands for the renderer to
display entities such as smoke, gibs, and shells.

cg_main.c This is the entry point for the client-side game. It loads
the graphics, shaders, models, menus, and sounds.

cg_players.c This file handles the animation and sounds for the
player.

cg_predict.c An important element of a multi-player game is the
conservation of bandwidth.The Q3 server, instead
of updating the client with every move an entity
makes, sends a snapshot every so often.The functions
in this file are responsible for filling in the missing
information; this is called interpolation.

cg_scoreboard.c This file displays the scoreboard on top of the screen.

cg_weapons.c This file is responsible for local weapon handling such
as selecting the next weapon, drawing trails, and
ejecting shells.

Planning
The key to developing any mod—be it a simple weapons enhance-
ment or a full-blown total conversion—is research and planning. I
have often started developing a function to provide a certain feature
only to discover that the folks at id have already written it, even if it is
being used for a different purpose. When planning out your mod, try
to identify the separate elements you will need to make it function,
then look through the source to see if anything similar exists.
Describing its purpose exactly often helps with this process.

A Simple Mod:
The Homing Missile
In the rest of this chapter, you’ll focus on building a homing-missile
mod. By having you do this I aim to show you the approach I take
when developing mods, and to introduce you to a few fundamental
features of Q3.

Because you will be creating a homing missile, it is probably wise to
figure out how the standard Q3 missile functions. First, however, you
might need a refresher on just what a function is and what it does.
A function is a block of instructions that can be called from another
point in a program, and is used to structure a program in an orga-
nized fashion. Commonly used algorithms can be wrapped into a
function, which can be called from different parts of a program, sav-
ing the programmer from having to duplicate code.

33A Simple Mod: The Homing Missile

NOTE
I have not covered the user interface files here,
because they are pretty self-explanatory.Their func-
tion is to display menus and the heads-up display or
HUD to the players. In Chapter 9,“UI Programming,”
you’ll build a custom interface for your mod; I’ll go
into more detail then.

The format of a function is as follows:

type name (argument1, argument2, ...) { statement }

In this format, type is the type of data returned by the function, name is
the name of the function, arguments are parameters passed to the
function, and statement is the body of the function. Here is an exam-
ple of a function:

int add (int a, int b)

{

int res; // a variable to store the result

res = a + b; // add a and b and store in res

return res; // return the result

}

This code defines a function called add; this function accepts two para-
meters, a and b, which are integers. The body of a function is con-
tained within curly braces; in the example above, a new variable called
res is defined, a and b are added together and stored in res, and res is
then returned to the code that called the function.

The function could be called from another part of the program using
the following:

int r; // A variable to store the result

r = add(5,18); // Call the function

In this function, 5 and 18 are
passed to the add function. A
result of 23 is returned and
stored in r.

Now that you understand func-
tions, open up g_missile.c in
the game project, and go to
line 621. You’ll see a function
called fire_rocket; it’s responsi-
ble for creating an entity and defining it as a rocket (also called a
missile). This function is shown in the following code snippet; I have
annotated the code so you can understand what it does.

1. gentity_t *fire_rocket (gentity_t *self, vec3_t start, vec3_t dir)

{

2. gentity_t *bolt;

34 2. C Programming in Quake III

NOTE
Functions in Q3 tend to be a lot
more complicated than this,
often passing whole objects
rather just variables, but the
principle is the same.

3. VectorNormalize (dir);

4. bolt = G_Spawn();

5. bolt->classname = “rocket”;

6. bolt->nextthink = level.time + 15000;

7. bolt->think = G_ExplodeMissile;

8. bolt->s.eType = ET_MISSILE;

9. bolt->r.svFlags = SVF_USE_CURRENT_ORIGIN;

10. bolt->s.weapon = WP_ROCKET_LAUNCHER;

11. bolt->r.ownerNum = self->s.number;

12. bolt->parent = self;

13. bolt->damage = 100;

14. bolt->splashDamage = 100;

15. bolt->splashRadius = 120;

16. bolt->methodOfDeath = MOD_ROCKET;

17. bolt->splashMethodOfDeath = MOD_ROCKET_SPLASH;

18. bolt->clipmask = MASK_SHOT;

19. bolt->target_ent = NULL;

20. bolt->s.pos.trType = TR_LINEAR;

21. bolt->s.pos.trTime = level.time - MISSILE_PRESTEP_TIME;

22. VectorCopy(start, bolt->s.pos.trBase);

23. VectorScale(dir, 900, bolt->s.pos.trDelta);

24. SnapVector(bolt->s.pos.trDelta); // save net bandwidth

25. VectorCopy (start, bolt->r.currentOrigin);

26. return bolt;

27. }

Lines 1 and 2 are the entry point for the function; it expects an entity
to be returned, and is passed a starting location and a direction to
face. Line 3 “normalizes” the vector by making its distance exactly 1.0
(we will cover vectors in more detail in Chapter 3). Lines 4 and 5 call
a function that either finds a
free entity or creates one,
and defines it as a rocket.
Lines 6 and 7 set the time
until the next think period
(I’ll get to that in a
minute), and specifies
which think function will
be called.

35A Simple Mod: The Homing Missile

TIP
Although floating points (also called
floats) and integers are both numer-
ic variable types, their main differ-
ence is that floats can contain a deci-
mal place, whereas integers are con-
strained to whole numbers only.

Lines 8–12 define the type of bolt, link position, the weapon it was
fired from, and its owner. The amount of damage is then set in lines
13–19, with the indirect damage that occurs if the rocket explodes
nearby (referred to as splash dam-
age). Finally, in lines 20–25, the
rocket is moved forward slightly,
then fired at 900 units/second.

You just saw how spawning a new
entity and setting its parameters
created a rocket. This is just part
of the process. If you open
g_weapon.c and scroll down to
approximately line 372, you will find a function called
Weapon_RocketLauncher_Fire. As you might have guessed, this has some-
thing to do with firing the rocket. This function appears in the next
bit of code.

void Weapon_RocketLauncher_Fire (gentity_t *ent) {

gentity_t *m;

m = fire_rocket (ent, muzzle, forward);

m->damage *= s_quadFactor;

m->splashDamage *= s_quadFactor;

}

The code in this listing is called when the player has the rocket launcher
in his hand and presses fire. It calls the fire_rocket function listed previ-
ously, and multiplies the damage by any powerups the player has.

There is one last function you can look at: G_ExplodeMissile. It’s found
in g_missile.c starting at line 41. This is the missile’s think routine,
which is called after 15 seconds of not hitting anything. It destroys the
missile and frees up the entity so that there are not hundreds of them
flying through space. So, what is the deal with this “think” stuff, anyway?

I Think, Therefore I NextThink . . .
Any object, created or spawned and placed within Q3, that has some
kind of behavior associated with it is said to think. This think variable
is often set when an entity is first created. In reality, the think variable
actually points to a function that the particular object will run, at vari-

36 2. C Programming in Quake III

NOTE
Time in Q3 is measured in
thousandths of a second. 1000
would equal 1 second; 15000
is, therefore, 15 seconds.

ous times during execution of the game. So, different types of objects
naturally have their think variable pointing to different functions. For
example, in the fire_rocket function you looked at, the rocket’s think
variable pointed to a function called G_ExplodeMissile, which basically
tells Q3, “When this rocket’s time is up, call the G_ExplodeMissile func-
tion.” The next question, then, is when is the rocket’s time up?

Just as the think variable is set when an entity is spawned, so too is the
interval in which it needs to call the function that think points to.
Some entities behave in such a manner that they need to have their
think function called constantly, such as 10 times per second. Others,
like the rocket in the first bit of code listed above, need to update
think only once every 15 seconds. The size of this interval is set with
the nextthink variable, which is really an integer representing a value
of time (in milliseconds) in the game. In the rocket’s code above, the
nextthink is set to the value of another variable called level.time, plus
an additional 15000 milliseconds. What this says to Q3 is, “The instant
this rocket is created, I want it to think exactly 15 seconds from now.”
As you might guess, level.time is a global variable that holds the cur-
rent time in milliseconds.

So, by taking all the informa-
tion you have just learned, it
should be pretty obvious how
the rocket’s entity will behave
when it enters the Q3 world:
Its movement is based entirely
on its initial settings (such as
position and velocity), and it
doesn’t think for 15 seconds.
When 15 seconds are up, if
the rocket is still intact, its
think function is called—in this
case, G_ExplodeMissile, which blows the rocket up and removes the
entity from the level.

Entities: Building Blocks in Q3
Now that you have a handle on think and nextthink, let’s go into more
detail on just what an entity is. If you browse through any of the
source files, you will see that entities come up a lot. For instance, in

37A Simple Mod: The Homing Missile

NOTE
This is a relatively simple example
of a think/nextthink relationship,
and I guarantee that you will see
some more complicated entities
in the future, including ones where
think functions tell the entity to
point to new think functions!

the fire_rocket example, an entity is created and then defined as a
rocket. You may be wondering: What is an entity? How many can you
have? How do they behave?

Anything that is created in the game world is an entity; this includes
players, bots, rockets, shotguns, ammo packs, animations of explo-
sions, and much more. When a rocket needs to be created, a free
entity is allocated and turned into a rocket. When it explodes or is
removed, it is stripped of its properties and placed back in the pool.

There is currently a hard limit of 1,024 entities in the game; this is for
all your objects, including players, bots, and weapons. This may not
seem like a very large number, but if you think about it, it is far more
than what’s required. A typical Q3 game consists of about 16 players,
40 weapon and ammo points, and a few powerups—let’s say three.
That’s only 59 entities so far. Even if every one of the 16 players fired
a rocket into the game, the
total would only be pushed
up to 75 entities. That
means you are still left with
more then 900 entities for
plasma bursts, launched
grenades, shotgun blasts,
rail trails, and so on.
Considering that an entity
is used over and over
again, and that it is deleted
after a certain period of
time, this number is more
than sufficient.

Changing the Missile’s Behavior
Now that you have seen how standard missiles work, you’re ready to
have a go at building a homing missile. Following is a description of
how I would like this mod to work; I strongly recommend you write
something similar for anything you develop. If it is a larger mod
you’re creating, then split it down into small chunks like this:

The homing missile should be fired from the standard Q3 rocket
launcher with the player being able to select either a standard or
homing mode prior to launch. The missile should home in on its

38 2. C Programming in Quake III

NOTE
If you want to investigate how enti-
ties are defined, open g_local.h in
Header Files (part of the game pro-
ject) and start reading from line 50.
You should recognize a few things
from when the rocket was created.
I’ll cover the variable type of an enti-
ty, gentity_t, in greater detail in
Chapter 3,“More Weaponry Work.”

nearest target, but have a wide turning circle so the player is able to
dodge. The missile should also move more slowly than the standard
rocket.

Now that you have defined your mod, you can split the task into two
separate elements:

■ Getting input from the user to select homing or normal missile
behavior

■ Creating a homing missile that targets a player

Getting the Input
To get input from the user, you’ll create a console command that can
be bound to a key. The console is the interface into which you can
type direct commands, much like at a DOS prompt. You can toggle
the console on and off by pressing the tilde (~) key on your keyboard.

Many activities that the player performs throughout Q3, such as jump-
ing or firing a weapon, are assigned to console commands, and actual
keys, joystick buttons, or mouse controls are set or bound to these con-
sole commands. Because you need to allow the player to specify
whether he wants to fire normal missiles or homing missiles, you need
to create a new console command for this. To do so, open g_local.h and
go to line 227. You should see the code listing shown below.

1. typedef struct {

2. clientConnected_t connected;

3. usercmd_t cmd; // we would lose angles if

not persistant

4. qboolean localClient; // true if “ip” info key is

“localhost”

5. qboolean initialSpawn; // the first spawn should be

at a cool location

6. qboolean predictItemPickup; // based on cg_predictItems

userinfo

7. qboolean pmoveFixed;

8. char netname[MAX_NETNAME];

9. int maxHealth; // for handicapping

10. int enterTime; // level.time the client

entered the game

11. playerTeamState_t teamState; // status in teamplay games

39A Simple Mod: The Homing Missile

12. int voteCount; // to prevent people from

constantly calling votes

13. int teamVoteCount; // to prevent people from

constantly calling votes

14. qboolean teamInfo; // send team overlay

updates?

15. } clientPersistant_t;

This creates a struct called clientPersistant_t that stores persistent
client data across multiple respawns. In English: when a player is
killed and then gets placed back into the level to continue playing,
the variables in this struct will remain intact.

After line 14, add this line:

qboolean homing_status;

Your last three lines should now look like this:

qboolean teamInfo; // send team overlay updates?

qboolean homing_status;

} clientPersistant_t;

This creates a flag to indicate
whether the homing missiles
are on or off. Instead of using
on and off, however, you use a
variable called a boolean,
which can be set to either true
or false. The variable type
qboolean is simply a new vari-
able type that the program-
mers at ID created for use
within Q3, and its values can
either be qtrue or qfalse,
respectively. Next, you need to create a console command that sets
this variable. Open g_cmds.c and scroll to line 1575. You should see a
function starting with the following:

void ClientCommand(int clientNum) {

gentity_t *ent;

char cmd[MAX_TOKEN_CHARS];

At the end of this function, you should also see:

40 2. C Programming in Quake III

NOTE
The clientPersistant_t struct is
one of several very important
properties of a player entity that
enable it to maintain its state in
various stages throughout the
game. I will cover all these structs
in more detail in Chapter 4,
“Manipulating the Player.”

else if (Q_stricmp (cmd, “stats”) == 0)

Cmd_Stats_f(ent);

else

trap_SendServerCommand(clientNum, va(“print \”unknown cmd %s\n\””,

cmd));

}

Directly after the line that starts with Cmd_Start_f, insert the following:

else if (Q_stricmp (cmd, “homing”) == 0)

Cmd_SetHoming_f (ent);

This compares what has been entered on the command line with the
word between the quotation marks. If a match is found, then the
Cmd_SetHoming_f function is called. To add this function, head back up
to line 1575, and insert the following code a line or so above the void
ClientCommand function:

void Cmd_SetHoming_f (gentity_t *ent)

{

if (ent->client->pers.homing_status == 1)

{

trap_SendServerCommand(ent-g_entities, va(“print \”Homing Missiles

are off.\n\””));

ent->client->pers.homing_status = 0;

}

else

{

trap_SendServerCommand(ent-g_entities, va(“print \”Homing Missiles

are on.\n\””));

ent->client->pers.homing_status = 1;

}

}

This checks whether the homing missiles are turned on; if so, they are
switched to off, and vice versa.

The first bit of your mod has now been written. Now, let’s create the
homing missile.

Seek and Destroy: Targeting a Player
The missile is going to search for a target within a certain radius. If a
target is found, the missile will alter its direction to point at it. To find

41A Simple Mod: The Homing Missile

a target within a certain radius, you need a new function. Quake II
included this in its source, but it is missing from Q3; for this reason,
you’ll have to add it. Load up g_utils.c and add the following code to
the end:

gentity_t *findradius (gentity_t *from, vec3_t org, float rad)

{

vec3_t eorg;

int j;

if (!from)

from = g_entities;

else

from++;

for (; from < &g_entities[level.num_entities]; from++)

{

if (!from->inuse)

continue;

for (j=0; j<3; j++)

eorg[j] = org[j] - (from->r.currentOrigin[j] + (from->r.mins[j] + from-

>r.maxs[j])*0.5);

if (VectorLength(eorg) > rad)

continue;

return from;

}

return NULL;

}

Also, add this next bit of code after the findradius function:

qboolean visible(gentity_t *ent1, gentity_t *ent2) {

trace_t trace;

trap_Trace (&trace, ent1->s.pos.trBase, NULL, NULL, ent2-

>s.pos.trBase, ent1->s.number, MASK_SHOT);

if (trace.contents & CONTENTS_SOLID) {

return qfalse;

}

return qtrue;

}

This traces a line from one entity to the other to see if it is visible. If
the trace hits a wall, then false is returned; otherwise, it’s true.

42 2. C Programming in Quake III

Next you need add the
next two lines to the bot-
tom of g_local.h to allow
the visible and findradius
functions to be called from
another part of the pro-
gram:

qboolean visible(gentity_t

*ent1, gentity_t *ent2);

gentity_t *findradius (gen-

tity_t *from, vec3_t org,

float rad);

When this is finished, load
up your g_missile.c file
again and add the rather
large segment of code in the next listing, just below the #define
MISSILE_PRESTEP_TIME 50 statement. This is your missile’s think func-
tion. I’ve numbered the code so that it is easier to follow along with;
you do not need to include the numbers in your actual code.

1. void G_HomingMissile(gentity_t *ent)

2. {

3. gentity_t *target = NULL;

4. gentity_t *rad = NULL;

5. vec3_t dir, dir2, raddir, start;

6.

7. while ((rad = findradius(rad, ent->r.currentOrigin, 1000)) !=

NULL)

8. {

9. if (!rad->client)

10. continue;

11. if (rad == ent->parent)

12. continue;

13. if (rad->health <= 0)

14. continue;

15. if (rad->client->sess.sessionTeam == TEAM_SPECTATOR)

16. continue;

17. if ((g_gametype.integer == GT_TEAM || g_gametype.integer ==

GT_CTF)

43A Simple Mod: The Homing Missile

TIP
trap_Trace is one of many system
call functions built into Q3’s code
that are granted special access right
into the 3D engine code—code that
you do not get to see or modify.
These top-secret system calls are
used frequently for very specific data
that is retrieved in the most efficient
ways possible. I’ll be covering them
in more detail as this book progress-
es, and will get into the specifics of
trap_Trace in Chapter 6.

18. && rad->client->sess.sessionTeam == rad->parent->client-

>sess.sessionTeam)

19. continue;

20. if (!visible (ent, rad))

21. continue;

22.

23. VectorSubtract(rad->r.currentOrigin, ent->r.currentOrigin,

raddir);

24. raddir[2] += 16;

25. if ((target == NULL) || (VectorLength(raddir) <

VectorLength(dir)))

26. {

27. target = rad;

28. VectorCopy(raddir, dir);

29. }

30. }

31.

32. if (target != NULL)

33. {

34. VectorCopy(ent->r.currentOrigin, start);

35. VectorCopy(ent->r.currentAngles, dir2);

36. VectorNormalize(dir);

37. VectorScale(dir, 0.2, dir);

38. VectorAdd(dir, dir2, dir);

39. VectorNormalize(dir);

40. VectorCopy(start, ent->s.pos.trBase);

41. VectorScale(dir, 400, ent->s.pos.trDelta);

42. SnapVector(ent->s.pos.trDelta);

43. VectorCopy (start, ent->r.currentOrigin);

44. VectorCopy (dir, ent->r.currentAngles);

45. }

46. ent->nextthink = level.time + 100;

47. }

Line 7 dictates that when there are objects in a 1,000-unit radius, the
code between the curly braces should be executed. The while loop is
calling the findradius function you added earlier. Lines 9 and 10 state
that if the target is not a player, the code sequence should continue.
The continue statement breaks out of the while loop and starts again
(the findradius function then moves on to the next entity).

44 2. C Programming in Quake III

The next several lines ask a series of questions. Line 11 asks whether it
was the player who fired the weapon; line 13 asks whether the player is
dead. Line 15 asks whether it was a spectator, while lines 17 and 18 try
to determine whether the target is on the same team. Line 20 asks
whether the target is visible. After all that, if the target is a valid one,
the missile aligns itself to the target and moves forward. This is done
with a series of vector manipulations. Finally, in line 46, the missile’s
next think time is set to 100.

What you must do now is modify your fire_rocket function a little.
The next bit of code contains the complete version, which checks
whether a homing or normal missile has been fired and sets the cor-
rect think function, damage, and velocity.

1. gentity_t *fire_rocket (gentity_t *self, vec3_t start, vec3_t dir) {

2. gentity_t *bolt;

3.

4. VectorNormalize (dir);

5.

6. bolt = G_Spawn();

7. bolt->classname = “rocket”;

8.

9. if (self->client->pers.homing_status ==1)

10. {

11. bolt->nextthink = level.time + 60;

12. bolt->think = G_HomingMissile;

13. bolt->damage = 75;

14. bolt->splashDamage = 100;

15. bolt->splashRadius = 90;

16.

17. } else {

18. bolt->nextthink = level.time + 15000;

19. bolt->think = G_ExplodeMissile;

20. bolt->damage = 100;

21. bolt->splashDamage = 100;

22. bolt->splashRadius = 120;

23. }

24.

25. bolt->s.eType = ET_MISSILE;

26. bolt->r.svFlags = SVF_USE_CURRENT_ORIGIN;

27. bolt->s.weapon = WP_ROCKET_LAUNCHER;

45A Simple Mod: The Homing Missile

28. bolt->r.ownerNum = self->s.number;

29. bolt->parent = self;

30. bolt->methodOfDeath = MOD_ROCKET;

31. bolt->splashMethodOfDeath = MOD_ROCKET_SPLASH;

32. bolt->clipmask = MASK_SHOT;

33. bolt->target_ent = NULL;

34. bolt->s.pos.trType = TR_LINEAR;

35. bolt->s.pos.trTime = level.time - MISSILE_PRESTEP_TIME; //

move a bit on first frame

36. VectorCopy(start, bolt->s.pos.trBase);

37.

38. if (self->client->pers.homing_status ==1)

39. VectorScale(dir, 400, bolt->s.pos.trDelta);

40. else

41. VectorScale(dir, 900, bolt->s.pos.trDelta);

42.

43. SnapVector(bolt->s.pos.trDelta); // save net bandwidth

44. VectorCopy (start, bolt->r.currentOrigin);

45.

46. return bolt;

47. }

Lines 9 through 23 are new, having been moved from their original
spot between lines 29 and 30. Lines 38 through 41 are also new, slow-
ing the missile down if it is a homing missile. There is one last thing
you need to do to complete this mod: Set the homing missile to be
off by default. Load g_client.c and go to line 966; the code you’ll see
there is outlined below.

void ClientBegin(int clientNum) {

gentity_t *ent;

gclient_t *client;

gentity_t *tent;

int flags;

ent = g_entities + clientNum;

client = level.clients + clientNum;

This function is called after a client connects and enters the level and
sets a few parameters.

46 2. C Programming in Quake III

Add the following line after the preceding code:

client->pers.homing_status = 0;

That’s it! You’re finished. Compile the mod into a DLL and run it. To
test your homing missile, you will need to bind a key to the homing
toggle you wrote earlier. Do this by bringing up your console with the
~ key and typing /bind h homing. Fire away.

Smoothing the Missile
I trust you have had a little play with the homing missile, and have
probably noticed that its movement is a little jerky. Here is a little fix
that smoothes its movement to give a more realistic feel. Place the
code below after the homing missile’s think function.

void Missile_Smooth_H(gentity_t *ent, vec3_t origin,trace_t *tr
) {

int touch[MAX_GENTITIES];
vec3_t mins, maxs;
int num;

num = trap_EntitiesInBox(mins, maxs, touch, MAX_GENTITIES);
VectorAdd(origin, ent->r.mins, mins);
VectorAdd(origin, ent->r.maxs, maxs);
VectorCopy(origin,ent->s.pos.trBase);
ent->s.pos.trTime = level.time;

}

Then, in the G_RunMissile function, add the following after
VectorCopy(tr.endpos, ent->r.currentOrigin):

Missile_Smooth_H(ent,origin,&tr);

Your code now looks something like this:

else {
VectorCopy(tr.endpos, ent->r.currentOrigin);

}
Missile_Smooth_H(ent,origin,&tr);
trap_LinkEntity(ent);

Run your mod again; you’ll see the missile smoothly chasing its target.
Figure 2.4 shows one of the new missiles locking in on a Q3 bot.

47A Simple Mod: The Homing Missile

A Final Note
There are probably a couple of things you could do to enhance this
mod. For example, normal missiles are destroyed after 15 seconds,
whereas the homing missiles carry on until they hit something. This
could present a problem if missiles are fired into the air and don’t
locate a target, because they would go on forever. It would be rela-
tively simple to add a counter to the think function and destroy the
missile after a certain period of time.

Summary
I hope this chapter has given you some insight into how Q3 works and
encouraged you to jump in and make changes. From here on in, I’m
going to be very specific in how you implement changes, breaking
down variable type definitions, and the mechanics of each function
that is used. This way, you’ll start to understand what is really happen-
ing in the code, giving you the power to learn and grow with mod
development on your own.

48 2. C Programming in Quake III

Figure 2.4 A homing missile fired to the left adjusts its path accordingly.

CHAPTER 3

More
Weaponry

Work

It may not seem like much, but you’ve successfully built a mod! By
changing the behavior of the rocket, you’ve systematically altered

the way Q3 will handle the rules of its world. Many mods start out this
way—a simple tweak here and a change there, eventually evolving
into thousands of lines of code that will ultimately change Q3 into an
entirely new game.

Because you have the weapon code from g_weapon.c fresh in your
mind, let’s spend this chapter further exploring this integral part of
the game. You’ll learn about the various weapon types, and how you
can modify them to better suit your needs.

Understanding
Weapon Types
Because Q3 falls into the “first-person shooter” category, it should
come as no surprise that one of its most important features is the way
it handles weapons. A quality first-person shooter (henceforth to be
known as an FPS) game offers players a considerable arsenal of
weapons designed to cause destruction and mayhem. Many FPS games
are noted for their unique weapons, or weapons that are modeled
closely to match their real-life counterparts. Ultimately, it will be up to
you to decide how weapons will behave in your mod, however realistic
or imaginary they may be.

Although Q3 has nine individual weapons, they can be broken down
into one of the four following categories:

■ Hitscan weapons. A hitscan weapon is so named because it per-
forms a scan of a target area and calculates the total amount of
damage based on the accuracy of the hit. These weapons gener-
ally do not have visible projectiles (such as bullets or missiles)
unless they are used for client effects such as the ejection of
a spent shell. They are also often fired in bursts or heavy

50 3. More Weaponry Work

repetition. Examples of hitscan weapons include the shotgun
and the chaingun (found in the Team Arena Expansion pack).

■ Missile weapons. Weapons in this category generally cast out a
visible projectile of some sort, such as a rocket or a grenade.
Typically, they do not fire in rapid succession. The missile itself
causes two types of damage: direct damage (from making full
contact with another surface or enemy) and splash damage
(damage inflicted by the explosion of the missile). Generally,
splash damage varies in intensity based on where the target lies
on the explosion’s radius—that is, the distance the target is
from the explosion’s center point.

■ Beam weapons. A beam weapon is one that produces a constant
barrage of ammunition toward a given target. Q3’s lightning
gun is a perfect example of a beam weapon, as is the flame-
thrower in Return to Castle Wolfenstein (see Figure 3.1). Beam
weapons generally release ammunition at an extremely fast pace
and deal out the most damage, because they often involve a fair
amount of accuracy on the part of the shooter. Beam weapons,
however, typically have less range than missile weapons.

51Understanding Weapon Types

Figure 3.1 The flamethrower in Return to Castle Wolfenstein.

■ Melee weapons. Melee
weapons are often over-
looked, but are
nonetheless a vital
weapon in any arsenal.
Indeed, the melee
weapon is a player’s last-
ditch chance at survival
if all other forms of
ammunition are
exhausted. A melee
weapon is simply one
that is held by the player
and swung or thrust toward an enemy. The most common types
of melee weapons are axes, bats, crowbars, and the like. Q3 has
one melee weapon, the gauntlet, which acts like an electrified
fist used to punch opponents if they are within range.

If you understand each of these weapon categories before creating
your mod, you will have a much better idea of what types of specific
weapons you will want to implement in your mod. Weapon familiarity
will be a fundamental building block for you in your quest to become
a mod programmer.

Modifying the Shotgun
One of the easiest weapons to work with in Q3 is the shotgun, so let’s
start there. As you may know by playing around with Q3, the shotgun
is a fairly straightforward weapon. Each time it is fired, a burst of shots
is blasted toward a given target, each creating a slightly different pat-
tern than the previous. Before you start changing the shotgun’s behav-
ior, however, let’s take some time to learn how it works.

Understanding the
Top-Down Approach
Anytime you work with any type of object in code, you’ll typically “drill
down” from the most general aspects to the most specific parts of a
given idea. This approach is known as the top-down approach, and is
commonly used even beyond the scope of game programming. The

52 3. More Weaponry Work

NOTE
Return to Castle Wolfenstein is a
sequel to id Software’s first great
3D game, Wolfenstein 3D, which
predates even DooM. Even though
another company obtained the
license to create Return to Castle
Wolfenstein, guess what 3D engine
drives the game? Yep, you guessed
it:The Quake III engine.

top-down approach is so widely used, in fact, that it forms the basis of
other programming languages, such as C++ and Java. Understanding
the top-down approach is essential to working with Q3’s code base, as
you shall see with the code to support Q3’s shotgun.

To give you a concrete example of the top-down approach, here is
how it applies to the shotgun code: When a player in Q3 fires the shot-
gun, the game code calls a function that fires the shotgun, which in
turn calls a function that determines the pattern of bullets that burst
forth when the shotgun is fired. This function then calls a third func-
tion, which calculates each unique bullet’s path. You can see from this
simple example that you are moving from the most general (fire the
gun) to the most specific (where each bullet goes).

Knowing the Shotgun
Inside and Out
To gain an understanding of how the shotgun works, start by opening
g_weapon.c and scrolling down to line 233 or so. You should see a
comment header alerting you that you’re entering a chunk of code
that will handle the shotgun’s behavior in Q3 (it’s the giant C-style
comment with the word SHOTGUN surrounded by = signs).

As you can see, the first function is ShotgunPellet, which is called by
the second function ShotgunPattern, which in turn, is called by the
function weapon_supershotgun_fire. Let’s take a look at what goes on
behind the scenes in these three functions. The functions are ordered
in the file in the reverse of the top-down approach (ShotgunPellet is
the most specific), simply because it is required by C to define a func-
tion before it is called (unless explicitly declared in a header file).

The function declaration of weapon_supershotgun_fire looks like so:

void weapon_supershotgun_fire

(gentity_t *ent)

The function’s return type is void,
which means it will return noth-
ing upon completion. It also
requires one input parameter, a
variable of type gentity_t, which is
a user-defined data type that the

53Modifying the Shotgun

NOTE
I will revisit the gentity_t data
type many times throughout
the course of this book, so I’ll
get to the actual meat of the
code here instead of discussing
gentity_t in more detail.

programmers at id created to
refer to all the various types of
entities that appear in the game.

In a nutshell, the weapon_super-
shotgun_fire function creates a
temporary entity, which holds
the flash of the shotgun’s muz-
zle. This entity’s position is then
slightly moved or scaled forward
from the muzzle to appear as
though the weapon in question
is producing it. A random seed is
then created and assigned to
one of the event parameter
properties an entity may hold,
which helps create the effect of
the random spread of bullets
that one might expect a shotgun
to produce.

At the end of the weapon_supershotgun_fire function, you see
ShotgunPattern is called. Its function call looks like this:

void ShotgunPattern(vec3_t origin, vec3_t origin2, int seed,

gentity_t *ent)

Like weapon_supershotgun_fire, ShotgunPattern’s return type is void,
which means it will return nothing upon completion. As for what you
need to pass into this function, the inputs consist of a vec3_t, a second
vec3_t, the random seed generated earlier, and the gentity_t passed
into weapon_supershotgun_fire. (I’ll get to what exactly vec3_t and
gentity_t variables are in a moment.)

The brunt of the ShotgunPattern function, however, is dedicated to the
firing of each individual bullet, testing for a hit on the target from
that bullet, and if a successful hit is found, accruing the attacker’s
accuracy variable.

Within a loop of 11 bullets near line 319 in g_weapon.c, each bullet’s
position is randomly generated, based on the firing origin. Then, the
third function, ShotgunPellet, is called. The function call looks like this:

qboolean ShotgunPellet(vec3_t start, vec3_t end, gentity_t *ent)

54 3. More Weaponry Work

NOTE
In real life, shotgun ammunition
usually comes in the form of a
gauge, such as 12 or 20 gauge,
which itself is a plastic shell con-
taining small bullets or buckshot.
When fired, the ejection of the
bullet causes the casing to
explode, sending the buckshot
out in a randomly spread pat-
tern toward its target. In
essence, no two shots fired from
a shotgun should produce the
same effect. By creating this
random seed, Q3 is attempting
to reproduce a shotgun’s
randomness.

This function takes three parameters: a vec3_t to start, a vec3_t to
end, and a Q3 entity to which the effects of the bullet will be applied
(I think you can take a wild guess that the entity in question will be
the target). The function returns a variable that is of type qboolean. A
Boolean variable is simply a variable that can evaluate to true or false;
on and off, yes and no, and 1 and 0 are all examples of Booleans. The
programmers at ID Software simply created their own Booleans, but
rest assured, you are free to use them as freely as they did to return
values that can either be true or false. And if you guessed that a
qboolean returns qtrue or qfalse, you can award yourself an extra 50
points right now.

The Physics of Vectors
You had a bit of exposure to the vec3_t, or vector variable type, when
you played with the homing-missile code in Chapter 2. My advice is:
Get used to it! Vectors are used frequently in the Q3 code base;
they’re a fundamental building block to representing the data of a
three-dimensional world. In that respect, a quick definition of the vec-
tor is in order. In a nutshell, a vector is a measurement by which to
gauge in which direction or how far a particular item is from a given
point. For its application in Q3, the vector’s data type consists of three
important numbers: a value for the x axis, a value for the y axis, and a
value for the z axis.

55Modifying the Shotgun

NOTE
Players in Q3 have multiple variables associated with them
that indicate how the player has been performing during play.
An example of this is the accuracy variable, which is a direct
indication of how many shots that have been fired actually hit
their target.There are also variables to indicate how many
shots a player has fired, how much damage has been taken by
his armor, how long he has been idle in the game, and more.
All these variables are a part of the gclient_s struct, which is
declared around line 240 in g_local.h.You will get to know the
gclient_s struct in greater detail in Chapter 4,“Manipulating
the Player.”

However, three arbitrary numbers just don’t “cut the mustard,” as
there is nothing to reference those values from. To obtain real data
from a vector in Q3, you reference the left-hand coordinate system, on
which Q3’s world is based. What this means is, given a specific point in
the world, values above the point, to the right of the point, and fur-
ther away (imaging a jet flying overhead, towards the horizon) from
the point are positive values of x, y, and z. As expected, values below
(literally, as in underneath) the point, to the left of the point, and
away from the horizon (meaning towards you) are negative values of x,
y, and z. Knowing the values held in a vector, and comparing them to
a position in the left-hand coordinate system allows usable data to be
extracted from a vector, including position and distance.

Internally, the vec3_t variable type that was created for Q3 is simply an
array of floats. A float, if you recall, is a numerical data type that can
have a decimal value, such as 1.5, or 6.87354. An array is a complex
data type in C, which can contain multiple values that are referenced
by an index, or common key. Because the vec3_t data type must hold
a value for x, y, and z in 3D space, it is a three-dimensional array,
which looks like var[0], var[1], and var[2], where var is the float.
(Arrays always start at 0 in the C Language.) Feel free to look up the
declaration of vec3_t in q_shared.h, near line 452. Since all vectors
are relative, the Q3 code describes their relativity with the variable
names forward (describing the value in vec3_t[0]), right (the value in
vec3_t[1]), and up (the value in vec3_t[2].)

Intricacies of Damage
Diving into the actual code within the ShotgunPellet function, you can
discern a number of interesting tidbits. First, this is the function that
actually calculates what entity the bullet hits. It does this with a call to
trap_Trace, a system call function that passes some data directly into
Q3’s executable for a resolution.

You may recall that trap_Trace was used in the homing-missile code; it
is a commonly used function that will pop up often throughout this
book. For now, all you need to remember is that the trap_Trace func-
tion will take a start and end point, and draw an invisible line or trace
to see if anything interfered with the line. What would interfere with
the line, you ask? How about a player trying to block your shotgun fire
with his face? All kidding aside, the results of trap_Trace will indicate

56 3. More Weaponry Work

to ShotgunPellet whether the bullet actually came into contact with
something that is capable of registering a hit. (A box of ammunition,
for example, is inanimate and bullets pass right through it. Of course,
you might want to change that . . .)

If the entity has a valid surface (indicated by a property called sur-
faceflags), the function then goes on to calculate damage that the
bullet would cause. You will see that on or around line 267, the dam-
age is calculated as so:

damage = DEFAULT_SHOTGUN_DAMAGE * s_quadFactor;

The DEFAULT_SHOTGUN_DAMAGE variable is defined at the top of the shot-
gun’s code in g_weapon.c as 10. Changing this variable is the quickest
way to increase or decrease the amount of damage each shotgun bul-
let causes. Notice also that the damage is multiplied by the variable
s_quadFactor, which is used to hold the value of the player’s Quad
Damage powerup (if he happens to be carrying that powerup at the
time of firing).

Finally, if all signs indicate that the bullet hit a surface that can be
damaged, the damage is dealt out with a call to G_Damage near line 290.
G_Damage is called like this:

void G_Damage(gentity_t *targ, gentity_t *inflictor, gentity_t

*attacker, vec3_t dir, vec3_t point, int damage, int dflags, int mod)

G_Damage is a function that returns no data, but requires a slew of input
parameters:

■ targ. The entity in the game that will receive the damage.
■ inflictor. The entity that caused the damage, in a literal sense.

This could be a bullet, a grenade, a rocket, and so on.
■ attacker. The entity that caused the inflictor to do damage. An

example is the player who fired the shotgun.
■ dir. This is the direction of “knock back” for the target. Some

items cause so much damage that the target may be thrown
back from the blow.

■ point. This is the point of actual contact where the damage is
done. This is a good reference point in case you want to look
for damage in specific areas on the target, such as a headshot.

■ damage. Simply, the total amount of damage being dealt to the
target.

57Modifying the Shotgun

■ dflags. Some types of damage can be specialized or flagged to
behave differently within Q3. This is where the damage flags are
passed in. The available dflags are:

• DAMAGE_RADIUS: the damage was applied indirectly, such as
from an explosion.

• DAMAGE_NO_ARMOR: the damage ignores player’s armor

• DAMAGE_NO_KNOCKBACK: the damage doesn’t affect a player’s
velocity.

• DAMAGE_NO_PROTECTION: there is no protection against this dam-
age (not even god-mode, which normally makes a player
invincible!)

• DAMAGE_NO_TEAM_PROTECTION: used specifically to identify Team
Arena’s “Kamikaze” massive supernova that kills everything in
a wide radius.

■ mod. These are flags that tell the function what will be consid-
ered the means of death in case it is to be determined at a later
point (for example, if you want to track a certain weapon’s
usage and effectiveness). Chapter 6, “Client Programming,” will
cover the means-of-death flags in greater detail.

A final function, LogAccuracyHit, is called to perform an accuracy log
calculation—think of it as a final sanity check to make sure the
attacker and the target are both valid. The function then returns with
either a qtrue or qfalse, depending on the success of the shot.

Now that you have an understanding of the how the shotgun works,
you can begin to make adjustments to how it performs.

Adjusting the Shotgun’s Accuracy
In the real world, running and accurately firing a shotgun at the same
time would be quite difficult. That lack of accuracy, however, is offset
by the fact that a shotgun’s spread has a larger area of coverage than a
generic pistol or handgun. Still, it makes sense that a person standing
motionless would have better luck aiming and firing than a person
running backward at full speed. Better yet, a person crouching would
have the additional balance to aim with even greater skill. With that in
mind, let’s set how to improve the shotgun’s accuracy if the player is
crouching, and lessen the accuracy if he is on the move.

58 3. More Weaponry Work

The first piece of information you need to know in order to imple-
ment this change is how you can tell if the player is crouching. By con-
ducting a simple search across the Q3 code tree, you will discover
various references to a flag called PMF_DUCKED. PMF_DUCKED belongs to a
larger subset of flags, called pmove flags, which are used to describe
how the player is moving in the game. (As you learned in the previous
section, a flag is simply a type of variable that you can attach to a given
entity in order to make the entity behave or perform differently
within the game.) Table 3.1 lists the pmove flags in Q3 and what they
stand for:

The PMF_DUCKED flag is the
variable you check to see if
the player is in a crouching
or ducked state. In addition
to being able to determine
whether the player is
crouching or standing, you
want to be able to scale a
factor of accuracy up or
down based on this state. To
do so, you create an integer
variable called
accuracyFactor, which will
be used in your function
modification.

Armed with that knowledge,
let’s go do some damage in
the code! Start by moving to
the shotgun’s middle function, which you’ll recall is ShotgunPattern.
After the declaration of hitClient (around line 308), add the follow-
ing code:

int i;

float r, u;

vec3_t end;

vec3_t forward, right, up;

int oldScore;

qboolean hitClient = qfalse;

int accuracyFactor = 4; // Our default accuracy multiplier is 4

59Modifying the Shotgun

TIP
You can search across the Q3 code
tree by opening the Edit menu from
within Visual Studio and choosing
the Find in Files command.This
opens a dialog box in which you can
search for a specific string of text by
typing it in the Find What text box.
You can also specify the folder in
which to start your search by
changing the folder path in the In
Folder text box.To search across
the entire Q3 code base, change the
In Folder path to C:\quake3\code\,
where C:\ equals the drive in which
you installed the source.

60 3. More Weaponry Work

Table 3.1 pmove Flags

Variable Value

PMF_DUCKED This flag indicates that the player is crouching.

PMF_JUMP_HELD This flag indicates that the player is holding the
jump button down.

PMF_BACKWARDS_JUMP This flag indicates that the player is jumping
backwards.

PMF_BACKWARDS_RUN This flag indicates that the player is running
backwards.

PMF_TIME_LAND This flag indicates that the player is landing
from a jump, typically used to tell Q3 when the
player is allowed to jump again.

PMF_TIME_KNOCKBACK This flag indicates that the player is recoiling
from damage.

PMF_TIME_WATERJUMP This flag indicates that the player is jumping in
water.

PMF_RESPAWNED This flag indicates that the player has re-
spawned in the level.

PMF_USE_ITEM_HELD This flag indicates that the player is using a
held-item (such as the personal teleporter).

PMF_GRAPPLE_PULL This flag indicates that the player being pulled
by the grappling hook (a weapon removed from
the released version of Q3).

PMF_FOLLOW This flag indicates that the player is actually
spectating another player in the game.

PMF_SCOREBOARD This flag indicates that the player is spectating
as a scoreboard (not spectating any particular
player).

PMF_INVULEXPAND This flag indicates that the player is surrounded
with Team Arena’s Invulnerability Sphere.

PMF_ALL_TIMES This flag is a combination of
PMF_TIME_WATERJUMP, PMF_TIME_LAND, and
PMF_TIME_KNOCKBACK.

Note the new variable, accuracyFactor, at the end of the declaration
list; it will be responsible for dictating the accuracy of a player’s shot
(higher values meaning less accurate). Next, scroll down to the line of
code that copies the player’s current score into a local variable. This is
an excellent place for you to add player crouch detection. Make the
following code adjustments:

oldScore = ent->client->ps.persistant[PERS_SCORE];
// is the user crouching? bump up the accuracy!
if (ent->client->ps.pm_flags & PMF_DUCKED)

accuracyFactor = 1;

Here, you indicate in the
code that if the player’s
pmove flags contain the flag
PMF_DUCKED, the accuracy fac-
tor should be changed from
4 to 1.

Once you have your updated
accuracyFactor variable, you
can apply it to the actual
code that generates the shot-
gun spread when fired.
Scroll down to the following
code chunk in
ShotgunPattern, near line
320, and make the noted
changes:

for (i = 0 ; i < DEFAULT_SHOTGUN_COUNT ; i++) {
r = Q_crandom(&seed) * DEFAULT_SHOTGUN_SPREAD * accuracyFactor * 16;
u = Q_crandom(&seed) * DEFAULT_SHOTGUN_SPREAD * accuracyFactor * 16;
VectorMA(origin, 8192 * 16, forward, end);
VectorMA (end, r, right, end);
VectorMA (end, u, up, end);

Looking at the lines of code that calculate the starting right and up
positions (as noted by the r and u variables, respectively), you are now
multiplying the variable DEFAULT_SHOTGUN_SPREAD by your noted
accuracyFactor variable. Because the accuracyFactor variable’s default
value is 4, and is only ever modified if the player crouches, the shotgun
will behave exactly as it does in regular Q3 if the player crouches first.

61Modifying the Shotgun

NOTE
The reason you check whether the
player’s flags contain PMF_DUCKED as
opposed to actually equaling
PMF_DUCKED is simple:The very
nature of flag usage in Q3 is such
that they can be mixed and
matched, added or removed, with-
out any particular dependency upon
one another.Thus, at any given time
in the game, the player’s pmove
flags may contain PMF_DUCKED along
with any number of other flags.

If you’re confused, let me clarify: The shotgun’s DEFAULT_SHOTGUN_SPREAD
variable, multiplied by 1, will always be its original value (which in Q3 is
700). This is the effect that takes place when your player crouches and
fires the newly modified shotgun. Standing and firing the gun will
cause a greater spread, since DEFAULT_SHOTGUN_SPREAD is multiplied by 4
instead of 1.

The Shotgun’s Dirty Secret
Your mod of the shotgun’s firing accuracy is not quite complete. If
you were to compile and run it now, everything would seem in order.
A quick observation of the intended change, however, would reveal

62 3. More Weaponry Work

Working a Bit at a Time

All the various types of bit flags that are used in Q3 require the
use of bitwise operators. Unlike standard logical operators and
(&&), and or (||), which evaluate an expression to either true or
false, bitwise operators work at the binary level, comparing the
bits of a given variable to those of another variable. Explanations
of bitwise operations can become very complicated very quickly,
so here’s what you need to know for now: In Q3, when you
check for a flag being turned on, you use the bitwise and operator
(&), like so:

if (ent->client->ps.pm_flags & PMF_DUCKED)

You may also group flags together using the bitwise or operator (|).
Although it sounds confusing, trust me: associating flags together
with bitwise or is the same as saying “this flag and that flag.” For
example, to check whether the player is holding the Jump button
down and is jumping backwards, you’d use the following:

if (ent->client->ps.pm_flags & (PMF_JUMP_HELD |

PMF_BACKWARDS_JUMP))

With bitwise logical operators, you can also check whether cer-
tain flags are missing by using the inverse bitwise operator (~). For

nothing new. Standing or crouching, if you were to fire the shotgun
into a wall, you would see the same basic pattern as before.

So what’s the deal? When you modified the rocket in Chapter 2, all
you had to do was make a few changes in a few files, compile, and
run. The difference here is that the effects of the shotgun, unlike
those of the rocket, do not reside in the game module of the code.
Take a deep breath, because this is where things get really exciting.

Look at the top of ShotgunPattern function. You’ll see a C-style com-
ment that the programmers at id Software left for you as a clue:

// this should match CG_ShotgunPattern

63Modifying the Shotgun

example, to check whether a player is not crouching, you’d use the
following:

if (ent->client->ps.pm_flags & ~PMF_DUCKED)

When it comes time to start adding or removing bit flags from your
variable, you’ll use the bitwise or assignment operator (|=). For example,
to add the knock-back pmove flag, you’d use the following:

player->client->ps.pm_flags |= PMF_TIME_KNOCKBACK;

To remove a bit flag, use the bitwise and assignment operator (&=), and
invert the flag with the ~ symbol. For example, to remove the
PMF_TIME_KNOCKBACK flag you just added, you’d do the following:

player->client->ps.pm_flags &= ~PMF_TIME_KNOCKBACK;

Finally, to toggle a bit flag, regardless of its current status (either on
or off), use the bitwise exclusive or assignment operator (^=). For exam-
ple, to toggle the player crouched flag on (if it is off) or off (if it is
on), use the following:

ent->client->ps.pm_flags ^= PMF_DUCKED;

There are many more types of bitwise operations and assignments,
but for the most part, everything you will need to do in Q3 is listed
above.

Hmm, CG_ShotgunPattern isn’t a function you’ve seen yet. If you do a
quick search across all of the Q3 source code, you can see that
CG_ShotgunPattern comes up in a file called cg_weapons.c; this is defi-
nitely not a file you’ve worked with. In fact, by looking at the Find dialog
in VC++’s interface, near the bottom of the editor as shown in Figure
3.2, you can see that cg_weapons.c is in a different folder than the one
in which you have been working, the \cgame\ folder. If you double-click
on the first occurrence of the string “cg_weapons.c” in the Find dialog,
the file will pop into view. Sure enough, around line 2025, you can see a
comment that introduces the CG_ShotgunPattern function; right below
the comment, the function is defined:

static void CG_ShotgunPattern(vec3_t origin, vec3_t origin2, int seed,

int otherEntNum)

At first glance, CG_ShotgunPattern looks very similar to the first
ShotgunPattern function you worked with, although it does return a
static void instead of just a plain-old void type. Returning a static void
is really the same as returning a normal void—but in reality, neither
function returns anything! The difference here is that by declaring

64 3. More Weaponry Work

Figure 3.2 Searching for CG_ShotgunPattern in Visual Studio

the function static, you cause the function to be seen only by other
functions in its file (in this case, cg_weapons.c). As for the input para-
meters, there are still the two vector origin points and the random
seed. Instead of a gentity_t type for the fourth parameter, however,
you see a simple integer type called otherEntNum. You will see how this
comes into play in just a moment.

By looking at the first few lines of the CG_ShotgunPattern function, you
can see that it behaves in much the same manner as the
ShotgunPattern function. VectorNormalize2 is called, then
PerpendicularVector, followed by CrossProduct. There is even a loop to
generate the random spread of bullet fire in much the same way as
was performed in ShotgunPattern.

Ack! What’s going on?
Why do you need two dif-
ferent copies of essentially
the same function? What is
cgame code, and how is it
different from game code?
Why didn’t you have to
mess with the cgame code
when you modified the
rocket’s behavior?

Whoa, whoa, whoa, let’s
take it one step at a time.
Here are the facts: The shot-
gun’s behavior within the world of Q3 necessitates the need to store its
control half in the server-side portion of the game code and half in the
client-side portion. This is mostly due to a judgment call made by ID
to decide what could be sacrificed to the client in order to save band-
width when playing online. If you’re confused already, let me put your
mind at ease: I will cover the topic of cgame code, bandwidth, server-
side and client-side code, and much more later in this book. For now,
trust me. You will simply work with the cgame code, based on the
assumption that the shotgun’s effects are better suited to the client-
side code.

So, now that you trust me (and thanks for waiting this long!), how can
you go about making this change? As I stated earlier, the gentity_t
parameter is not going to be available to you within the scope of this

65Modifying the Shotgun

NOTE
The function that actually fires the
bullet in this file ends up, predictably,
being called CG_ShotgunPellet. I’ll
leave it up to you to look at the con-
tents of CG_ShotgunPellet, if you dare.
I’ll warn you now: It’s nothing like the
ShotgunPellet function (but it is sit-
ting right above CG_ShotgunPattern,
around line 1973).

function, so how do you determine whether the player is crouching?
Fortunately, there is a way to tell what the player is doing with some
client-side trickery.

Synchronicity in the Client Code
On the client side of things, if you have an integer to work with
(otherEntNum being your integer in this case), you can compare it to a
property found in a variable that is held on the client called cg. cg is a
variable that pops up from time to time as you peruse the cgame code.
It is a very important variable, because along with a few others, it ulti-
mately leads you to one very important person: the player.

Unlike server code, which must deal with many different entities and
players working with (and against) each other, the client code needs
to worry about only one entity: the person currently viewing the
screen. Fortunately, cg has a property you can look up that will map to
some of the player’s server-side properties, such as whether the player
is ducking. This property is cg.snap. The snap property then points to
a struct you have access to, called ps (short for “player state”).

Hmmm, that sounds familiar . . . yes! Sure enough, you used ps in
your ShotgunPattern function! Once you have access to the ps struct,
you have access to a further set of properties, including clientNum,
which is also an integer. You can compare otherEntNum’s value to
clientNum to see if you’re dealing with the proper client entity.

Armed with that knowledge, let’s make the appropriate adjustments.
Add your accuracyFactor declaration near the top of CG_ShotgunPattern
like so:

vec3_t end;

vec3_t forward, right, up;

int accuracyFactor = 4; // same as game code!

Then, add this code right after the call to CrossProduct:

CrossProduct(forward, right, up);

// is the user crouching? bump up the accuracy!

if ((otherEntNum == cg.snap->ps.clientNum) && (cg.snap-

>ps.pm_flags & PMF_DUCKED))

accuracyFactor = 1;

66 3. More Weaponry Work

Finally, add the accuracyFactor multiplier to this spread function in
exactly the same manner as you did in ShotgunPattern:

for (i = 0 ; i < DEFAULT_SHOTGUN_COUNT ; i++) {

r = Q_crandom(&seed) * DEFAULT_SHOTGUN_SPREAD *

accuracyFactor * 16;

u = Q_crandom(&seed) * DEFAULT_SHOTGUN_SPREAD *

accuracyFactor * 16;

VectorMA(origin, 8192 * 16, forward, end);

Excellent. With this new client-side code update, your mod has all the
ingredients to make the shotgun behave differently. On the server
side of things, your modification to ShotgunPattern will allow the
server to properly calculate where shotgun blasts are to be employed
against other entities in the game. And, on the client side of things,
your new code will make sure that your shotgun’s firing pattern truly
does look different when fired from a crouching position than when
fired while standing. These mutual changes in both game and cgame
should maintain synchronicity between the two distinct modules. Let’s
compile the code and give it a try.

After compiling your changes, you should have two DLLs:
qagamex86.dll and cgamex86.dll. Make sure both of these files are
copied over to your MyMod directory. You also need to run Q3 with
the sv_pure value set to 0. This forces Q3 to run as a standard server
instead of as a pure server (see the ensuing sidebar for more informa-
tion about standard servers and pure servers). To refresh your mem-
ory, here is a command line to type:

quake3.exe +set fs_game MyMod +set sv_pure 0 +map q3dm1

Sure enough, with a few tests you can see that when fired, the
shotgun has a much wider spread while the player is standing, but
while the player is crouching, the blast is more focused (see Figures
3.3 and 3.4).

There is some serious spread happening in the shot in Figure 3.3—
maybe a bit too much. At least by looking at these two images, you can
clearly see that you have made a significant change in the behavior of
the shotgun. Now that you have a visual indication of just how much
you affected the shotgun, you can begin to roughen out the edges and
make the shotgun perform in an even more realistic manner.

67Modifying the Shotgun

Adding Polish: Shooting
While Moving
Since you already have a good idea how to extract player information
to modify the shotgun’s behavior, let’s go back and see if you can
extrapolate data relating to the player’s movement. Jump back into
g_weapon.c’s code, and scroll down to where you originally did your
code change for ShotgunPattern (near line 302). Start by adjusting the
accuracyFactor a bit; set the default at 2 now.

int oldScore;

qboolean hitClient = qfalse;

int accuracyFactor = 2;

68 3. More Weaponry Work

A Pure Server Is a Virtuous Server

One of the features id Software has had built into Quake since
Q1 is its ability to allow clients to download new files, right
from within the game.This is so that if a player joins a server
online that is running a new map or has new weapon models,
those new data files can be downloaded immediately.That
allows the player to begin play right away, without having to go
look for them on an Internet Web site.

Unfortunately, some players who used demo Quake clients that
they downloaded free from the Internet were dynamically
downloading the official copyrighted Quake maps by connecting
to servers running legitimate copies! Because that was not a
very good business solution for id Software, the company built
a server setting into Q3 called pure server. If a Q3 server runs
with the pure server setting turned on, the client’s files must
exactly match the files on the server. So if you’re using any new
files, such as DLLs, or new maps or weapon models, and you
don’t launch Q3 with the pure server setting disabled (sv_pure
0), Q3 will ignore any extraneous files when it loads.

69Modifying the Shotgun

Figure 3.3 Your shotgun’s fire while standing . . .

Figure 3.4 . . . and while crouching.

The ducking code can be left alone, because it performs correctly as
is. Right below it (near line 321), add the following code:

// is the user moving? lower the accuracy!

else if (ent->client->ps.velocity[0] || ent->client->ps.velocity[1])

accuracyFactor = 3;

Once again, you fall back on the player state of the client, or
ent->client->ps. Like the pm_flags property found within ps, another
property available to you is velocity, which is a vec3_t data type that
holds values pertaining to the player’s movement. Because the vari-
able velocity is of type vec3_t, and you know from experience that
vec3_t is actually an array, you can access the three elements of veloc-
ity by their index, either velocity[0] for forward/backward move-
ment, velocity[1] for left/right movement, and velocity[2] for
up/down movement (like jumping or falling).

Because you are already modifying the shotgun’s accuracy if the player
is moving, let’s take it one step further. For fun, let’s drop the shot-
gun’s accuracy even more if the player is found to be jumping or
falling—that is, if the player is moving along the z axis:

// is the user jumping? lower it more!

else if (ent->client->ps.velocity[2])

accuracyFactor = 4;

There it is! A fully modified shotgun . . . well, enough so that its
behavior more closely mimics a person’s ability during a heated
firefight.

70 3. More Weaponry Work

NOTE
I suppose if you wanted to get technical, you could argue that
a shotgun’s spread is ultimately unaffected by movement, but
instead by the amount of force exerted onto the shell casing
causing its explosion as it exits the gun’s chamber, but hey, this
is a book on Quake III programming, not ballistics! As you get
into game development, you will discover that realism is
important, but too much realism can often put a damper on
the fun factor.

71Modifying the Shotgun

Forward Is Such a Vague Term

When I talk about forward/backward movement, or left/right
movement within the world of Q3, I do not always mean it lit-
erally.The velocity of the player is relative to the actual game
world and how the player’s movement relates to its x, y, and z
coordinates (as mentioned earlier when I talked about the left-
hand coordinate system.) Let me put it to you this way: If your
player was placed in the game facing the direction of the posi-
tive y axis (towards the horizon), and you turned to the left 90
degrees and started walking forward, you would not be seen as
moving “forward” to Q3.That’s because you would actually be
moving along the x axis (negatively), and your ps.velocity[1]
would be the value changing, not ps.velocity[0].

Keep this in mind when you are looking at player movement
code. If the velocity variable is your only point of reference,
it’s far easier to determine that the player is simply moving as
opposed to whether he is moving forward or backward (or to
the left or right, for that matter). Luckily, these rules don’t
apply so much with the z axis.You can be assured that if the
player’s ps.velocity[2] value is positive, the player is moving
straight up into the air. Likewise, a negative ps.velocity[2]
indicates that the player is falling. I’ll cover player movement
and interaction in more detail in Chapter 4.

Make sure you also update your cgame code so that it acts in the same
manner as your game code. To do so, pop open cg_weapons.c, scroll to
the CG_ShotgunPattern function, and modify the accuracyFactor so that
it equals 2, exactly as you did in ShotgunPattern:

vec3_t end;

vec3_t forward, right, up;

int accuracyFactor = 2;

Then, rewrite the code that handles the checks for various player
states. Because all of them must fire if (and only if) otherEntNum is
equal to the client’s ps.clientNum value, you can wrap all your accuracy

logic within that evaluation. Modify your code under the CrossProduct
function so that it looks like so:

CrossProduct(forward, right, up);

if (otherEntNum == cg.snap->ps.clientNum)

{

// is the user crouching? bump up the accuracy!

if (cg.snap->ps.pm_flags & PMF_DUCKED)

accuracyFactor = 1;

// is the user moving? lower the accuracy!

else if (cg.snap->ps.velocity[0] || cg.snap->ps.velocity[1])

accuracyFactor = 3;

// is the user jumping? lower it more!

else if (cg.snap->ps.velocity[2])

accuracyFactor = 4;

}

Save your changes, compile your DLLs, drop them in your MyMod
directory, and fire up Q3. Test it by adding a few bots to your game. I
ran through q3dm3 with three bots and found the changes quite
interesting. Not only was I having a harder time shooting while run-
ning and jumping away from the bots, but they, too, were firing fre-
quently without crouching. Thus, their accuracy also fell.

By taking the time to play with the shotgun, you have learned how to
work with both the server-side game code as well as the client-side cgame
code. You’ve also played with a few more variables in Q3, such as the
player’s pmove flags and velocity. With every change you make to Q3,
you will come away with a better understanding of a few more ele-
ments in the game; ultimately, that will lead you to quicker develop-
ment as you move to areas you haven’t worked with yet.

Modifying Grenades:
The Cluster Grenade
For your next modification, I will show you how to modify the
grenade’s behavior in Q3 so that it acts like a cluster grenade. That is,
when the grenade explodes, it will break apart into three more
grenades, which in turn will explode and cause extra damage.

72 3. More Weaponry Work

Moving from the shotgun to the grenade launcher shouldn’t be too
difficult for you at this point. You already had a bit of experience play-
ing with a missile-based weapon in the previous chapter, when you
dealt with the rocket launcher. The grenade launcher is very similar in
many respects: Both the rocket and grenade fire a missile-based object
that is visible on the screen, and both missiles cause some hefty dam-
age when they explode. Unlike the rocket, however, the grenade is
affected by gravity, and has a bit of a bounce to it. Let’s take a look at
what defines this new behavior so you can prepare yourself better to
modify the grenade’s behavior.

Further g_weapon.c
Detective Work
Because the shotgun’s base firing function ended up being weapon_super
shotgun_fire, let’s take a look and see if we can find a similar function in
g_weapon.c for the grenade. A quick search through the file reveals a
function located around line 355, called weapon_grenadelauncher_fire:

void weapon_grenadelauncher_fire (gentity_t *ent) {

gentity_t *m;

// extra vertical velocity

forward[2] += 0.2f;

VectorNormalize(forward);

m = fire_grenade (ent, muzzle, forward);

m->damage *= s_quadFactor;

m->splashDamage *= s_quadFactor;

}

It seems to be a very simple function
that starts by creating a gentity_t vari-
able (which you should know by now is
the type of entity on which all objects
in Q3 are based). It then gives the new
entity a bit of a vertical boost by taking
the global static variable forward
(which represents the front of the
player), and boosting its z axis by 0.2f.

73Modifying Grenades: The Cluster Grenade

TIP
The lowercase f at the
end of 0.2f forces the
variable to be a 32-bit
float; on its own, 0.2
would represent a 64-bit
double. By explicitly
expressing 0.2 as a 32-bit
float, a slight speed
increase in the calcula-
tion is gained.

That updated forward variable
is passed to VectorNormalize,
which rounds out its positions
to save some bandwidth. Then,
the new gentity_t is assigned to
the value of the fire_grenade
function, which you will look at
in a moment. The gentity_t’s
damage variable is multiplied by
any active quad damage the
player may have, as is its
splashDamage variable.

So, if fire_grenade is the func-
tion that does the dirty work,
let’s find it. If you guessed that you would find the function in
g_missile.c, give yourself another 50 bonus points. Pop open
g_missile.c and scroll down to around line 562. Sure enough, there
sits fire_grenade:

gentity_t *fire_grenade (gentity_t *self, vec3_t start, vec3_t dir)

Because a gentity_t is assigned to the result of fire_grenade back in
weapon_grenadelauncher_fire, it comes as no surprise that this function
returns a pointer to a variable of type gentity_t. It also takes a
gentity_t as an input parameter, as well as two vectors: one for a start-
ing location in the Q3 world, and one to represent the direction it was
fired.

Why a Grenade Bounces
(and Rockets Don’t)
Although the core of the fire_grenade function is quite similar to that
of the fire_rocket function from the previous chapter, there are a few
key differences. Its classname property is not rocket, for starters; it’s
grenade. In addition, its nextthink value seems to be a lot lower, only
the current time plus another 2.5 seconds (recall that the rocket’s
nextthink time was the current time plus an additional 15 seconds).
There is also a line to modify the grenade’s entityState_t property,
which is held in the variable s:

bolt->s.eFlags = EF_BOUNCE_HALF;

74 3. More Weaponry Work

NOTE
Remember, missile weapons do
two types of damage.The first
type is direct damage, which is
caused when the missile actually
hits a physical target. Splash dam-
age is the other type; a target
within the vicinity of the missile’s
explosion will be affected by it.
Typically, the closer a target is to
the center of the explosion, the
more damage is taken.

If you take a quick peek in bg_public.h, around line 230, you will see
that EF_BOUNCE_HALF is one of many flags that can be assigned to an
entity’s state in Q3. This flag is especially important to the grenade,
because it tells Q3 that the grenade will bounce against surfaces that
can’t take damage when it makes contact with them (as opposed to
instantly exploding like a rocket would). You should also note that the
grenade’s splash damage is somewhat higher than the rocket’s (150 as
opposed to 120), and of course, there are explicit flags that assign the
grenade’s “means-of-death” property. You see those in MOD_GRENADE and
MOD_GRENADE_SPLASH.

The only other significant difference is the flag that is assigned to the
grenade’s position trace type, which is found in the s.pos.trType vari-
able. For the rocket, it was a flag called TR_LINEAR, but in the case of
the grenade, you can see that it is TR_GRAVITY. This is the flag that will
tell Q3 as each frame of animation is processed how to move the
grenade throughout the world. By adding this flag, Q3 understands
that gravity will affect the grenade’s trajectory as it is launched out of
a weapon. To show you what kind of trace flags are available, I’ve
added Table 3.2, which lists them in their entirety.

75Modifying Grenades: The Cluster Grenade

Table 3.2 trType_t Flags

Variable Value

TR_STATIONARY This flag denotes an unmoving object.

TR_INTERPOLATE This flag indicates an object whose motion can be
“predicted” by Q3.

TR_LINEAR This flag describes an object that moves in a constant
straight line.

TR_LINEAR_STOP This flag is the same as TR_LINEAR, except that it also
indicates that the object has reached its endpoint.

TR_SINE This flag describes an object that “bobs” up and down.

TR_GRAVITY This flag is used on objects that are affected by gravity.

Using What You Know:
think and nextthink
You know two things coming into fire_grenade by having worked with
the rocket’s behavior code already. One: because the entity’s s.eType
flag is ET_MISSILE, you know that if the object hits a damageable target,
the function G_MissileImpact will fire. Two: the grenade’s think prop-
erty is pointing to the G_ExplodeMissile function, just like the rocket’s
think property was. That means if the game’s current time (held in
level.time) ever exceeds the grenade’s nextthink value, then
G_ExplodeMissile will be the function that is called. To reiterate by
using C-style comments:

bolt->s.eType = ET_MISSILE; // means G_MissileImpact will run if the

grenade hits a target

bolt->think = G_ExplodeMissile; // means G_ExplodeMissile will run if

time runs out. And time will run out when:

bolt->nextthink = level.time + 2500; // which means 2500 milliseconds

(or 2.5 seconds) from when the grenade is launched.

Now you have a crystal-clear picture of the functions that will run
when the grenade explodes or comes into contact with a target. Let’s
start by writing a function that will control the explosion of the cluster
grenade, so you can call it from both G_MissileImpact and
G_ExplodeMissile.

Right above G_ExplodeMissile (which itself is above G_MissileImpact) is
where you will define this new function. It’s important to place the
function in this spot, because you will not provide a function declara-
tion or prototype for it. If you write a function that you do not declare,
you must physically place it in your .c file before any other function that
will call it. Above G_ExplodeMissile, add the following:

/*

================

G_ExplodeCluster

Explode a cluster grenade into three shards

================

*/

void G_ExplodeCluster(gentity_t *ent) {

vec3_t dir;

76 3. More Weaponry Work

VectorSet(dir, 33, 33, 10);

fire_cgrenade(ent->parent, ent->r.currentOrigin, dir);

VectorSet(dir, -33, 33, 10);

fire_cgrenade(ent->parent, ent->r.currentOrigin, dir);

VectorSet(dir, 0, -33, 10);

fire_cgrenade(ent->parent, ent->r.currentOrigin, dir);

}

Here is the function that will launch three clusters after a grenade
explodes. It is a very simple function that returns nothing, and
requires one input parameter: a gentity_t that will be your original
grenade. Within the function, you declare a vec3_t called dir, which
will be used three times to set the direction of each cluster. You do
this with the VectorSet function:

VectorSet(dir, 33, 33, 10);

VectorSet takes a vec3_t passed in the first parameter, and changes its
x, y, and z positions by the amounts specified in the second, third, and
fourth input parameters. You then take the updated dir variable and
pass it to a new function, fire_cgrenade:

fire_cgrenade(ent->parent, ent->r.currentOrigin, dir);

You haven’t written fire_cgrenade yet, but if you are keen observer, you
will see that it takes the same input parameters as fire_grenade: a
pointer to a gentity_t, a start vector, and a direction vector. By looking
at the three VectorSet calls, you can guess that your three cluster
grenades will break apart in triangular pattern, as noted by the different
x and y values in each of the calls, similar to the diagram in Figure 3.5.

77Modifying Grenades: The Cluster Grenade

Figure 3.5 The directions of
the intended cluster grenades

Also, each cluster gets a bit of a kick upward by passing 10 into the
final input parameter (which maps to the z axis). Now that you have
G_ExplodeCluster in place, let’s write fire_cgrenade.

Making the Cluster
Grenade Behave
The function fire_grenade is called outside of g_missile.c (you saw that
it was the function that was called from weapon_grenadelaucher_fire),
so it has been declared outside this file. You won’t be calling
fire_cgrenade from outside g_missile.c, but for sanity’s sake (and so
you don’t have to worry about function placement within g_missile.c),
let’s declare it in g_local.h. Open g_local.h and scroll down to where
fire_grenade is declared (around line 505). After fire_grenade’s decla-
ration, add the following line:

gentity_t *fire_cgrenade (gentity_t *self, vec3_t start, vec3_t

aimdir); // new for clusters

Now let’s add the function to g_missile.c. Start by copying everything
in fire_grenade and pasting it after fire_grenade’s function completes,
changing the name of the function after the paste. Also, change the
velocity of the clusters so that they don’t bounce as they would if fired
directly from your grenade launcher. Then, find the call to
VectorScale and change the 700 to 300. When you are finished, the
code should look like the following:

/*

================

fire_cgrenade

================

*/

gentity_t *fire_cgrenade (gentity_t *self, vec3_t start, vec3_t dir) {

gentity_t *bolt;

VectorNormalize (dir);

bolt = G_Spawn();

bolt->classname = “grenade”;

bolt->nextthink = level.time + 2500;

bolt->think = G_ExplodeMissile;

78 3. More Weaponry Work

bolt->s.eType = ET_MISSILE;

bolt->r.svFlags = SVF_USE_CURRENT_ORIGIN;

bolt->s.weapon = WP_GRENADE_LAUNCHER;

bolt->s.eFlags = EF_BOUNCE_HALF;

bolt->r.ownerNum = self->s.number;

bolt->parent = self;

bolt->damage = 100;

bolt->splashDamage = 100;

bolt->splashRadius = 150;

bolt->methodOfDeath = MOD_GRENADE;

bolt->splashMethodOfDeath = MOD_GRENADE_SPLASH;

bolt->clipmask = MASK_SHOT;

bolt->target_ent = NULL;

bolt->s.pos.trType = TR_GRAVITY;

bolt->s.pos.trTime = level.time - MISSILE_PRESTEP_TIME; // move a

bit on the very first frame

VectorCopy(start, bolt->s.pos.trBase);

VectorScale(dir, 300, bolt->s.pos.trDelta);

SnapVector(bolt->s.pos.trDelta); // save net bandwidth

VectorCopy (start, bolt->r.currentOrigin);

return bolt;

}

Now let’s change the behavior of the original grenade. After all, it is the
original grenade that will physically break up into the clusters. In order
to do that, you must tell Q3 that the grenade’s entity name is something
new. Scroll up to fire_grenade and change the bolt->classname to
cgrenade. On the very next line, change the think time from 2500 (mil-
liseconds) to 1500 (milliseconds). This will make the cluster break up
faster than normal grenades took to explode on their own. After you
make these changes, the first part of your fire_grenade function
should look like this:

gentity_t *fire_grenade (gentity_t *self, vec3_t start, vec3_t dir) {

gentity_t *bolt;

VectorNormalize (dir);

79Modifying Grenades: The Cluster Grenade

bolt = G_Spawn();

bolt->classname = “cgrenade”; // initially fire a cluster grenade

bolt->nextthink = level.time + 1500; // break apart faster than a

normal grenade explodes

bolt->think = G_ExplodeMissile;

Phew! You’re almost there. Now all you need to do is make sure that
when a cluster grenade is present in the world of Q3 it is handled
appropriately—that is, it breaks apart into three other grenades. This
is why I quizzed you on think and nextthink earlier. You know that
G_MissileImpact and G_ExplodeMissile are the functions that will han-
dle a grenade’s explosion, so let’s go to those two functions and make
your final adjustments.

G_MissileImpact is situated around line 264 in g_missile.c, so scroll up
to it. Then, right near the end of the function, make the following
change:

if(!hitClient) {

g_entities[ent->r.ownerNum].client->accuracy_hits++;

}

}

}

// cluster grenades will spawn 3 new grenades on explosion

if (!strcmp(ent->classname,”cgrenade”)) {

G_ExplodeCluster(ent);

}

trap_LinkEntity(ent);

This is a very straightforward way to check the entity type—you use a
function called strcmp, which stands for string compare. You compare
the value of the string assigned to the classname property of the cur-
rent object you’re dealing with (ent), to the string cgrenade. If they
match, you know you’re dealing with a cluster grenade, and, thus, you
need to fire the G_ExplodeCluster function you wrote earlier.

Let’s go ahead and add the same string comparison on ent->classname
to G_ExplodeMissile. This function is located way up at the top of
g_missile.c, near line 56. As before, scroll to the end of the function

80 3. More Weaponry Work

and look for “cgrenade” in ent->classname as your last check, just
before the call to trap_LinkEntity:

// splash damage

if (ent->splashDamage) {

if(G_RadiusDamage(ent->r.currentOrigin, ent->parent, ent-

>splashDamage, ent->splashRadius, ent

, ent->splashMethodOfDeath)) {

g_entities[ent->r.ownerNum].client->accuracy_hits++;

}

}

// cluster grenades blow themselves up differently

if (!strcmp(ent->classname, “cgrenade”))

G_ExplodeCluster(ent);

trap_LinkEntity(ent);

Wow, that wasn’t so bad, eh? You don’t have to worry about any cgame
modification this time around, because you’re not modifying the
visual effects of the grenade. Instead, you’re modifying its behavior,
which is fully controlled by the server portion of the code. Let’s com-
pile and give it a run-through (see Figure 3.6).

81Modifying Grenades: The Cluster Grenade

NOTE
If two strings are compared with the strcmp function, and
they equal each other, strcmp will return 0.That may seem
odd, because 0 typically evaluates to false—after all, you’re
clearly looking to see if one string matches another, which
sounds like that should be true.The reason for this relates to
how the C programming language works.Testing for zero is
always faster than testing for non-zero, so many functions
that were built into C were made to work in this manner.
That’s why you check for a false on the return of strcmp.
Don’t be alarmed; many functions in C work this way.

Hey, I think you’re getting the hang of this weapon-modification bit!
You could now take what you’ve learned with the cluster grenade and
further refine its behavior, such as changing the velocity of the frag-
mented grenades (recall the 700 to 300 adjustment in VectorScale of
fire_cgrenade), or even the number of grenades that fragment
(G_ExplodeCluster calls fire_cgrenade three times, so why not four or
five?). Don’t be afraid to experiment with new ideas or changes. Any
little modification you make may lead you to try a newer, better idea
that may evolve into the next great weapon.

A Further Adjustment:
Gravity Wells
Because you’re already working on the grenade, let’s take a look at
another possibility. Instead of having the grenade simply explode or
break apart into more grenades, let’s try something completely new: a
gravity well. A gravity well is an object that pulls all other objects toward
it. Wouldn’t it be cool if you could have a grenade suck all nearby

82 3. More Weaponry Work

Figure 3.6 Your cluster grenade breaking apart

opponents toward it like a vacuum? Then, when all the opponents
near it get sucked too close, boom! You detonate the grenade on
impact, damaging everyone that was caught in its gravitational field.

The gravity well is a really cool idea for a weapon mod, and one of its
first uses was in a great deathmatch mod called Painkeep, for the origi-
nal Quake. The creators of Painkeep went on to build their mod for Q3,
and the gravity well made an encore appearance. In order to make
grenades acts like gravity wells, however, you must do something we
haven’t done before: Affect the physics of other players near the
grenade. Is that possible? Absolutely! It’s simply a matter of knowing
what to work with.

Into the Vortex
Start with a fresh code base so you don’t mix your gravity-well code
with the cluster-grenade code you just added. First, you need a way for
your gravity well to find valid targets lying in its radius. The grenade is
the center point in this case; you determine its range by granting it a
given radius out from the center, generating a much larger circle in
which its gravitational field will affect targets. How do you do this?
Well, back when you modified the shotgun, you worked with a func-
tion called trap_Trace, which allowed you to draw a line toward a tar-
get to see if anything, such as an enemy, intersected that line.
Optimally, you would like to use a similar function that looks within
the area of a circle to see if any targets intersect the circle.
Coincidentally, the programmers at id created a similar function,
called trap_EntitiesInBox (shown here); you can re-use it in your grav-
ity well’s code.

int trap_EntitiesInBox(const vec3_t mins, const vec3_t maxs, int

*list, int maxcount)

Just like trap_Trace, trap_EntitiesInBox is a system call function in Q3,
which means it has a direct line of communication into the Q3 exe-
cutable. This makes its performance extremely fast. It requires two
vectors to be passed in, which represent the extents (or farthest
points) of an invisible box in the world of Q3. Then, an array of inte-
gers is passed in; this is used by the function to hold any entities that
positively past the test for existence within the box’s boundaries.
Finally, an integer is passed in that represents the maximum amount
of entities that will be in the array. (Because built-in arrays in C are

83A Further Adjustment: Gravity Wells

Building a Better Box with mins and maxs

When two vec3_t points are identified in 3D space, they can
be used as farthest corners or extents of an invisible box. In
Q3, these two points are often referred to as mins and maxs.
By extending invisible lines toward each other, across each of
the three axes (x, y, and z), these six lines eventually form the
corners of a box that has an identifiable height, width, and
depth, as shown here.This box can then be used in a number
of calculations. For example, other vec3_t points can be
tested to fall within the box. Or, the box itself can be used to
represent the dimensions of a player, making it a bounding box.
This assists in collision detection, the ability to tell when other
objects pass into the box.You will be revisiting the concepts
of mins and maxs throughout this book, and as well, be work-
ing with the player’s bounding box in Chapter 4.

not self-describing, there is no
way to extrapolate the length
of the array by just the array
itself.)

When all four of these para-
meters are passed into this
function, a single integer is
returned, which represents
the number of all entities that
were successfully found in the
box.

84 3. More Weaponry Work

NOTE
Actually, there is one way of
determining an array’s length: by
using the sizeof function. For all
intents and purposes, however, it’s
often faster to define an upper
limit of an array and simply use
that instead.That’s what ID did
with MAX_GENTITIES, so I’m certain
it’s good enough for us.

Knowing that, let’s take a look at trap_EntitiesInBox in action. I’ve
taken the liberty of writing you a new think function for the grenade,
based off existing code created and refined by Karl Pauls. This update
will make the grenade behave like a gravity well. Take a look at this
function now; it is called G_Vortex, and appears in the next code list-
ing, which I have numbered, so that we can refer back to specific
parts.

1. /*

2. ================

3. G_Vortex

4. ================

5. */

6. #define GVORTEX_TIMING 10 // the think time interval

of G_Vortex

7. #define GVORTEX_VELOCITY 10000 // the amount of kick each

second gets

8. #define GVORTEX_RADIUS 500 // the radius of the gravity

well

9.

10. static void G_Vortex (gentity_t *self)

11. {

12. qboolean explode = qfalse;

13. float dist;

14. gentity_t *target;

15. vec3_t start, dir, end, kvel, mins, maxs, v;

16. int entityList[MAX_GENTITIES], numListedEntities, i,

j;

17.

18. target = NULL;

19.

20. for (i = 0 ; i < 3 ; i++) {

21. mins[i] = self->r.currentOrigin[i] - GVORTEX_RADIUS;

22. maxs[i] = self->r.currentOrigin[i] + GVORTEX_RADIUS;

23. }

24.

25. numListedEntities = trap_EntitiesInBox(mins, maxs,

entityList, MAX_GENTITIES);

26.

27. for(j = 0 ; j < numListedEntities ; j++) {

85A Further Adjustment: Gravity Wells

28.

29. target = &g_entities[entityList[j]];

30.

31. for (i = 0 ; i < 3 ; i++) {

32. if (self->r.currentOrigin[i] < target->r.absmin[i])

{

33. v[i] = target->r.absmin[i] - self-

>r.currentOrigin[i];

34. } else if (self->r.currentOrigin[i] >

target->r.absmax[i]) {

35. v[i] = self->r.currentOrigin[i] -

target->r.absmax[i];

36. } else {

37. v[i] = 0;

38. }

39. }

40.

41. dist = VectorLength(v);

42.

43. if (dist > GVORTEX_RADIUS)

44. continue;

45.

46. if (target == self)

47. continue;

48.

49. if (!target->client)

50. continue;

51.

52. if (target == self->parent)

53. continue;

54.

55. if (!target->takedamage)

56. continue;

57.

58. if (target->health < 1)

59. continue;

60.

61. explode = (dist <= 5) ? qtrue : qfalse;

62.

86 3. More Weaponry Work

63. VectorCopy(target->r.currentOrigin, start);

64. VectorCopy(self->r.currentOrigin, end);

65. VectorSubtract(end, start, dir);

66. VectorNormalize(dir);

67. VectorScale(dir, GVORTEX_VELOCITY / GVORTEX_TIMING, kvel);

68. VectorAdd(target->client->ps.velocity, kvel,

target->client->ps.velocity);

69.

70. if (!target->client->ps.pm_time) {

71. target->client->ps.pm_time = GVORTEX_TIMING - 1;

72. target->client->ps.pm_flags |= PMF_TIME_KNOCKBACK;

73. }

74.

75. VectorCopy(dir, target->movedir);

76.

77. if (explode)

78. G_ExplodeMissile(self);

79. }

80.

81. self->nextthink = level.time + GVORTEX_TIMING;

82. if (level.time > self->wait)

83. G_ExplodeMissile(self);

84. }

Wow, there is a lot going on in this function, so let’s dissect it a little
bit at a time so that everything is clear. First, you start by setting a few
global variables (line 6 through 8) via the define keyword.
GVORTEX_TIMING represents the time your gravity well updates itself (in
milliseconds), rechecking for new targets, while GVORTEX_VELOCITY is a
value used to represent how hard you will suck your targets toward the
grenade. Finally, you set a variable called GVORTEX_RADIUS, which is used
to determine how wide an area your gravity well will affect. It gener-
ates a vector that represents the absolute extents of the target’s
bounding box, including any degree of rotation involved, which acts
as a more realistic way to test for collision. You could have made a call
to the Distance function, which takes two origins as parameters (the
origin of the grenade and the origin of the player), but a center point
of a target may not fall within a radius, whereas its outer extents may
(see Figure 3.7). Doing this extra bit of work just makes for a more
realistic test.

87A Further Adjustment: Gravity Wells

When the function begins (line 10), start by creating your own tempo-
rary extents, which will make up the area of affect for the gravity well.
Do this by creating two vectors, a mins and a maxs, and set them to the
origin of grenade minus the radius, and plus the radius, respectively.
A quick refresher of simple geometry reveals that a circle is as wide as
its radius * 2, so by taking a center point, and by both adding and sub-
tracting a radius, you successfully create the circle’s diameter, or the
width of the circle.

Once you have this “area
of effect” circle, you can
begin testing for existence
of targets by calling
trap_EntitiesInBox (line
25), passing in your newly
created extents (mins and
maxs), as well as your array
of integers to hold the
found entities and your
entity upper limit
(MAX_GENTITIES). You assign
the results of this function
call to an integer named numListedEntities. Next, begin looping over
this number so that you can test each entity for validity. Each entity to
test is set by assigning a temporary gentity_t variable, target (line 29),

88 3. More Weaponry Work

Figure 3.7 The center of the target does not fall within the grenade’s area of
affect (left), but the extents of its mins and maxs value create a box that does.

TIP
Technically, you don’t create a circle
when you use trap_EntitiesInBox
because a mins and a maxs value cre-
ate a three-dimensional cube. By
using the cheat of adding and sub-
tracting a radius (line 21 & 22), how-
ever, you can fake the creation of the
circle, achieving a relatively good
approximation (which would be a
sphere in 3D space).

to the value of the matching entity in the global game variable
g_entities. Every single entity in game will be found in the g_entities
array somewhere, so this is the way you handle entity lookup.

Testing for Collision
The next thing you need to take care of is determining whether there
is a valid connection between the entity’s bounding box and your
grenade’s area of affect. Do so by borrowing a bit of code that ID used
in another function (the for loop over all three axes on line 27). This
snippet of code will give you a vector equal to the distances found
from the target to the grenade. Pass this vector to VectorLength, which
returns a distance you can begin to test with. Then, do some sanity
checking on your distance and target information (on line 43):

1. If the distance between the grenade and the target is greater
than the gravity well’s radius, skip it.

2. If the target is equal to the gravity well, skip it.

3. If the target is not a client (an active player), skip it.

4. If the target is the client that fired the gravity well, skip it. The
attacker, in this case, is ignored by the gravity well’s field.

5. If the target cannot take damage, skip it.

6. If the target is dead, skip it.

If all those checks pass, then you can do your dirty work. Start by
assigning a value to your explode variable, which will either be true or
false. You want the grenade to explode if a target is pulled within 5
units of the grenade, so if your newly created distance variable is less
than or equal to 5, you set that explode variable to true; otherwise, it’s
set to false (line 61).

Next (starting at line 63), assign a start vector equal to the target’s
position, and assign an end vector equal to the gravity well’s position.
Then, subtract these two vectors to get a dir, or direction vector (the
direction the target will move toward the gravity well). Normalize the
three coordinates in the vector to get a fixed distance, and then scale
the direction vector by a calculation of the gravity well’s velocity
divided by the think time. Place this result, kvel, into your target’s
velocity (line 68). Finally, set the target’s move direction equal to the
new direction you have created (line 75).

89A Further Adjustment: Gravity Wells

Wow, did you make it through all that? If so, congratulate yourself!
Working with vectors, velocity, and move directions definitely allows
you to chalk up some experience in the physics department.

Next, check to see if the explode flag was set to true (line 77), and if
so, call G_ExplodeMissile on the gravity well. Otherwise, the loop con-
tinues through the rest of the found targets, applying the same logic
to each of them in succession.

The function begins to wrap up by adding your GVORTEX_TIMING value
to its nextthink property (line 81), making it perform this entire func-
tion call again 0.1 seconds in the future. G_Vortex concludes with a
check to see whether the current game time is greater than the gravity
well’s wait property, and if so, it calls G_ExplodeMissile to finish off the
life span of the grenade.

Making Gravity Work for You
The last thing you need to do is modify the grenade’s initial behavior
when launched, so that it calls G_Vortex and not G_ExplodeMissile
when its nextthink time is up. Scroll to around line 577 in g_missile.c
and make the following changes:

bolt = G_Spawn();

bolt->classname = “grenade”;

90 3. More Weaponry Work

NOTE
There is an additional bit of code used here (at line 70)
that deals with the PMF_TIME_KNOCKBACK flag.This code is
placed here so that if the velocity of the target is some-
how acted upon by another object (say, another gravity
well), the target’s velocity is not suddenly negated, which
would cause a jerky movement.This same code is used
by id when G_Damage is used to move a target with knock
back, and in the TeleportPlayer function, which kicks a
player out of a new teleport destination.

bolt->nextthink = level.time + 1000; // G_Vortex will run in 1

second.

bolt->think = G_Vortex; // G_Vortex is our dirty

doer!

bolt->wait = level.time + 20000; // Wait for 20 seconds before

any final explosion

bolt->s.eType = ET_MISSILE;

By changing the grenade’s think function to G_Vortex, you change its
behavior as it enters the Q3 world, because that will be the function
that is called when the current game time equals or exceeds the
grenade’s nextthink property. You have also modified nextthink to be
only 1000 milliseconds from launch time, so it starts calling G_Vortex
within 1 second of being fired. Furthermore, the wait property of the
grenade is modified, setting it to the current time, plus an additional
20 seconds. Because G_Vortex is the only function that is called by the
grenade while it’s in the game world, the wait property allows you to
call an additional function when a certain amount of time has
elapsed, which you’ll recall ends up being G_ExplodeMissile.

That’s it! You’re ready to compile and give it a run. I quickly tried it
with a few bots on q3dm3 and was excited to see the bots unknowingly
get sucked toward the grenade and blown up on impact. You can go
back and tweak the GVORTEX_TIMING, GVORTEX_VELOCITY and
GVORTEX_RADIUS variables to create different styles of the gravity well.
With the current defaults, the gravity well is quite powerful—it draws
targets toward it with insane speed. Lowering the GVORTEX_VELOCITY
variable will create a slower pull toward the grenade.

Summary
You’ve done some considerable work up to this point. For example,
you’ve gotten to know the different types of weapons that are in Q3
and what makes them tick. You’ve also had a chance to modify differ-
ent types of behaviors, from aim accuracies to making the weapons
affect the physics of the players around them. And, while working with
all this weapon code, you’ve begun to see how different pieces of
information in Q3 can be extrapolated, such as what the player is
doing, or how much time has elapsed since a certain event. I’d wager

91Summary

that you have a pretty good understanding of vectors by now, as well.
You will revisit weapon code one more time before this book ends,
when you take a deeper look into the cgame code and how to create
weapons that use new client effects. For now, though, because the
code of dealing with player’s physics is still fresh in your mind, let’s
turn to working directly with the Q3 player itself.

92 3. More Weaponry Work

CHAPTER 4

Manipulating
the Player

Modifying how the weapons in Q3 behave is reasonably simple,
primarily involving the changing of properties, such as the

speed of a weapon’s projectile or how much damage a gun’s blast
causes. When you manipulate the player and his actions, however,
things get a lot more complex—and a lot more fun. You’ve gotten a
taste of this already, through the gravity-well mod in Chapter 3.
Bouncing the player around by playing with vectors and velocity, how-
ever, is just the start. In this chapter, you’ll delve into how the player
interacts with his world and how he maintains his information from
fight to fight. You’ll also learn some new techniques for investigating
the code yourself, gaining knowledge about solving some of these
problems on your own. These techniques will be essential for you after
you complete this book.

The Quake III Player
and His World
There would be no Quake without players. It makes sense, then, that
the player, an integral part of Q3, is dealt with in explicit detail. On
the surface, the player is a fairly straightforward character that you
might find in any FPS. He has a set of statistics, such as health and
armor, and a list of weapons currently being held with ammo for each
one. As for his physical presence,
he is rendered in the 3D world
of Q3 by a model, a series of
polygons placed together to
create the form of a human
being (or alien, if that happens
to be your model of choice).
The model is skinned, which
means it has lifelike images or
textures applied to the surfaces
of the polygons. This creates

94 4. Manipulating the Player

NOTE
A polygon is simply a closed-
plane figure that is bounded by
straight lines.The simplest poly-
gon is the triangle, as it meets the
minimum requirement of having
three sides.All polygons can be
broken down into triangles.

the effect of a more believable character. When you see the player’s
model in the game, you can easily associate it in your mind with an
actual Q3 game player. And of course, this character model has anima-
tions. He walks, runs, crouches, jumps, and fires a multitude of
weapons; he even has the ability to taunt his opponent with a crude
gesture.

To a programmer, however, the player is a complicated and extremely
detailed piece of code. The player knows how it is killed, and by
whom, and with what weapon. The player has its own internal score-
keeping system, such as how many frags it has accrued, how many
times it has died, and so on. In team games like Capture the Flag, the
player even knows how many times it has captured, or has assisted in a
capture, or has successfully defended the flag from being taken. There
is a significant amount of code dedicated simply to initializing the
player’s 3D model within the world of Q3.

The code behind the player even has the ability to segregate and cap-
ture certain variables to be held in different states, which are uniquely
organized into one of three groups:

■ Variables to be held across sessions, between full-level loads, as
long as the player persists on the server. Examples of these are
whether the player is a spectator, how many wins and losses the
player has, and in team games, whether the player has been des-
ignated a team leader.

■ Variables to be held across multiple respawns (such as after the
player is killed), but not between level loads. Variables that fall
into this category include the player’s name (as other players
see it in the game and on the scoreboard), the time that the
player entered the level, and how many times the player has
called a vote.

■ Variables that are held only between client spawns. Every time a
player dies and respawns in the map, these variables are reset.
You’ve already worked with some of these variables, such as the
direction of the player’s movement, whether the player is
crouching (remember pm_flags?), the player’s velocity, and the
currently selected weapon.

This is just scratching the surface of the player’s code; there is much
more to be learned about what the player can see and do from within

95The Quake III Player and His World

Q3. To get a better understanding of just what controls all this data,
let’s take a look at the structs that define what a player is.

Player Structure
Ironically, the player’s structure is made up of several important
structs in Q3. To refresh your memory, a struct is a variable that is
defined within C to contain other types of variables in a tree-like hier-
archy that can be referenced using dot notation (shown in a
moment). Let me give you an example:

typedef struct {

int health;

char *name;

float dir;

} player_t;

Here, a simple struct is defined, which itself contains an integer called
health, a char pointer called name, and a float called dir, which will
hold a decimal value equal to a compass direction between 0 and 360.
The newly created struct is called player_t. This code snippet in and of
itself is not enough to be used in a program; another internal variable
must be declared to be of type player_t. For example:

player_t myClient;

Magic! Now you have a newly defined variable, called myClient, for use
in your program, and it is declared as a variable of type player_t,
which is your struct. Therefore, using the previously mentioned dot
notation, you should be able to read and write to the values of
player_t’s properties or members, such as:

myClient.health = 300;

myClient.name = “Learless|M”;

myClient.dir = 180.7;

With this code, the new variable’s health is set to 300, the name to
“Learless|M”, and the dir to 180.7.

Because there are no limitations as to what types of variables can be
used to define members of a struct, a struct can also contain other
structs, which can result in some fairly complicated code snippets. As

96 4. Manipulating the Player

you feel the need to create and manage new structs, strive to keep
their complexity to a mininum; structs of structs can easily get out of
hand and will only serve to confuse you more.

The Guts of gclient_s
I mentioned in Chapter 3 that everything in Q3 is, ultimately, an
entity. The object representing the player is no different. Beginning at
the top of the Q3 code hierarchy, in the definition of the struct that
creates all entities (gentity_s), you can see a reference to a variable
called client. Open up g_local.h and scroll to line 58:

struct gclient_s *client; // NULL if not a client

Here, a variable named client is defined, which points to a data type
called gclient_s. Since the gentity_s struct is the basis for every entity
in Q3, every full-fledged player in Q3 will have a pointer to the client
variable, absorbing all the data that is contained within a gclient_s
struct.

97The Quake III Player and His World

Being Directly Indirect

There is one time when you do not access the properties of
a struct with dot notation: when you pass a pointer to a
struct into a function. Because structs can be large, complex
variable types, it is often much more efficient to pass a
pointer to a struct into a function (and this is done frequently
in Q3).When dealing with a struct that has been passed into a
function via a pointer, you access its properties indirectly,
using pointer notation, or the -> symbol. So, if the myClient
variable had been passed to a function as a pointer, and you
wanted to set the value of the health property to 0, you
would do it with the following syntax:

myClient->health = 0;

So, then, the next task is to determine what the makeup of a gclient_s
struct is. Jump down to line 241 in the same file, and you should see
the following code:

struct gclient_s {

// ps MUST be the first element, because the server expects it

playerState_t ps; // communicated by server to clients

// the rest of the structure is private to game

clientPersistant_t pers;

clientSession_t sess;

qboolean readyToExit; // wishes to leave the intermission

98 4. Manipulating the Player

Saving Keystrokes with typedef

In Q3, the structs gclient_s and gentity_s, which are the basis
for all clients and entities, respectively, have been also named
gclient_t and gentity_t.This is done via the keyword typedef,
occurring on line 47 of g_local.h.The typedef keyword is used
in C to create new names for existing types. Since structs are
declared via the struct keyword, any time a variable that is of
type gclient_s or gentity_s needs to be referenced in the
code, it must be prefaced with the struct keyword.To save
this extra typing, a typedef of each struct was created, so it
could be referenced by a single word.The naming convention
that id Software decided on was _s, to refer to the actual
struct, and _t, to refer to the typedef.You will see this naming
convention throughout the Q3 code base (and throughout
this book).

So remember, whenever you see:

gentity_t

you are really seeing:

struct gentity_s

qboolean noclip;

int lastCmdTime; // level.time of last usercmd_t,

for EF_CONNECTION

// we can’t just use

pers.lastCommand.time, because

// of the g_sycronousclients case

int buttons;

int oldbuttons;

int latched_buttons;

vec3_t oldOrigin;

// sum up damage over an entire frame, so

// shotgun blasts give a single big kick

int damage_armor; // damage absorbed by armor

int damage_blood; // damage taken out of health

int damage_knockback; // impact damage

vec3_t damage_from; // origin for vector calculation

qboolean damage_fromWorld; // if true, don’t use the dam-

age_from vector

int accurateCount; // for “impressive” reward sound

int accuracy_shots // total number of shots

int accuracy_hits; // total number of hits

//

int lastkilled_client; // last client that this client

killed

int lasthurt_client; // last client that damaged this

client

int lasthurt_mod; // type of damage the client did

// timers

int respawnTime; // can respawn when time > this,

force after g_forcerespwan

int inactivityTime // kick players when time > this

qboolean inactivityWarning // qtrue if the five seoond warn-

ing has been given

99The Quake III Player and His World

int rewardTime; // clear the EF_AWARD_IMPRESSIVE,

etc when time > this

int airOutTime;

int lastKillTime; // for multiple kill rewards

qboolean fireHeld; // used for hook

gentity_t *hook; // grapple hook if out

int switchTeamTime // time the player switched teams

// timeResidual is used to handle events that happen every second

// like health / armor countdowns and regeneration

int timeResidual;

#ifdef MISSIONPACK

gentity_t *persistantPowerup;

int portalID;

int ammoTimes[WP_NUM_WEAPONS];

int invulnerabilityTime;

#endif

char *areabits;

};

Wow, that is a one giant struct! The first three variables may ring a
bell; they refer to the three states that a player maintains throughout
the course of playing Q3. The first, playerState_t, is a struct that main-
tains values only between respawns. If your player dies in battle, you
can expect that everything in the playerState_t struct will reset.

The second struct, called clientPersistant_t, is responsible for carrying
player information for the duration of an entire level. If you were cre-
ating a mod like Q3 Fortress, where players are given the choice of
selecting a specific class to play, you would want to hold that class in
the clientPersistant_t struct so that if the player dies, his class is
remembered.

The last of the big three structs is clientSession_t, which maintains spe-
cific player information as long as the player persists on the server.
That includes keeping variables after a player dies and respawns, and

100 4. Manipulating the Player

even after levels change. As I mentioned earlier, a good value to hold
here is whether the player is spectating the current battle, because he
would most likely want to remain spectating if a level changes.

The remainder of variables found in gclient_s, such as damage_armor,
accuracy_hits, and lastkilled_client, are all treated as playerState_t’s
variables; that is, they expire when the player expires. gclient_s has
quite a number of other variables as its members; most of them are
reasonably well documented right in the source, so feel free to take a
look at the remainder of the struct. Your focus for the duration of this
chapter is going to be these three structs. Let’s start by taking a look
at what values are held only between player respawns.

101The Quake III Player and His World

Preprocessor Directives

There is a strange bit of code in the previous listing which you
may have seen already in your travels through the Q3 source.
The following line,

#ifdef MISSIONPACK

is called a preprocessor directive.That means it is a special bit of
logic that does not get compiled into the code, but rather, is
interpreted by the compiler during compilation to specify cer-
tain parameters you would want only on a given build.This
particular directive says “If the current build being compiled is
a Quake III Team Arena Mission Pack build, include the follow-
ing lines of code; otherwise, skip them.”

The reason for this is that the mission pack for Q3 contains
many new references to models, powerups, rules, and game
types that don’t normally exist in standard Q3.All that addi-
tional stuff requires additional code. If you unnecessarily
include the extra mission-pack code in your standard Q3
builds, and then run your mod (without the mission pack being
installed), Q3 will throw all kinds of crazy errors.This particu-
lar preprocessor directive ensures that mission-pack builds get
the necessary code, while standard Q3 builds do not.

State of the Player
In order to break down the mystery of the playerState_t struct, you
need to go beyond g_local.h and look in a file called q_shared.h. This
file has a little more meat to it, because every other file in the Q3
source references it. For exactly that reason, changes to this file
should not be made lightly; ID itself makes that point very clear in sev-
eral detailed C comments throughout the file. The struct you are
looking for is found deep within this file, around line 1114:

typedef struct playerState_s {

int commandTime; // cmd->serverTime of last executed

command

int pm_type;

int bobCycle; // for view bobbing and footstep

generation

int pm_flags; // ducked, jump_held, etc

int pm_time;

vec3_t origin;

vec3_t velocity;

int weaponTime;

int gravity;

int speed;

int delta_angles[3]; // add to command angles to get view

direction

// changed by spawns, rotating

objects, and teleporters

int groundEntityNum; // ENTITYNUM_NONE = in air

int legsTimer; // don’t change low priority

animations until this runs out

int legsAnim; // mask off ANIM_TOGGLEBIT

int torsoTimer; // don’t change low priority

animations until this runs out

int torsoAnim; // mask off ANIM_TOGGLEBIT

int movementDir; // a number 0 to 7 that represents

the reletive angle

102 4. Manipulating the Player

// of movement to the view angle

(axial and diagonals)

// when at rest, the value will

remain unchanged

// used to twist the legs during

strafing

vec3_t grapplePoint; // location of grapple to pull

towards if PMF_GRAPPLE_PULL

int eFlags; // copied to entityState_t->eFlags

int eventSequence; // pmove generated events

int events[MAX_PS_EVENTS];

int eventParms[MAX_PS_EVENTS];

int externalEvent; // events set on player from another

source

int externalEventParm;

int externalEventTime;

int clientNum; // ranges from 0 to MAX_CLIENTS-1

int weapon; // copied to entityState_t->weapon

int weaponstate;

vec3_t viewangles; // for fixed views

int viewheight;

// damage feedback

int damageEvent; // when it changes, latch the other

parms

int damageYaw;

int damagePitch;

int damageCount;

int stats[MAX_STATS];

int persistant[MAX_PERSISTANT]; // stats that aren’t

cleared on death

int powerups[MAX_POWERUPS]; // level.time that the

powerup runs out

int ammo[MAX_WEAPONS];

103The Quake III Player and His World

int generic1;
int loopSound;
int jumppad_ent; // jumppad entity hit this frame

// not communicated over the net at all
int ping; // server to game info for score-

board
int pmove_framecount; // FIXME: don’t transmit over the

network
int jumppad_frame;
int entityEventSequence;

} playerState_t;

It is evident that there is quite a bit of data to hold between respawns.
Some items may look familiar, such as the pm_flags integer, the
velocity vector, and the integer that represents movementDir. You may
also remember eFlags, clientNum, and weapon. You will be playing with
some more of these variables in this chapter.

The next struct you will want to look at is clientPersistant_t, which you
looked at briefly in Chapter 2. It’s shown next.

typedef struct {
clientConnected_t connected;
usercmd_t cmd; // we would lose angles if not

persistant
qboolean localClient; // true if “ip” info key is

“localhost”
qboolean initialSpawn; // the first spawn should be at a

cool location
qboolean predictItemPickup; // based on cg_predictItems userinfo
qboolean pmoveFixed; //
char netname[MAX_NETNAME];
int maxHealth; // for handicapping
int enterTime; // level.time the client entered

the game
playerTeamState_t teamState; // status in teamplay games
int voteCount; // to prevent people from

constantly calling votes
int teamVoteCount; // to prevent people from

constantly calling votes
qboolean teamInfo; // send team overlay updates?

} clientPersistant_t;

104 4. Manipulating the Player

You’ll recall that in Chapter 2, you added the homing_status variable to
this struct, which acted as a toggle (on/off) switch to determine what
type of missile the player had selected. Because you placed in it this
struct, you systematically made this variable’s state persist for the dura-
tion of the entire level of play. When the player died, and then
respawned in the game, his previous selection of homing_status was
retained.

Finally, the third state of a player variable can reside in the struct
clientSession_t, which is shown below, and can be found on line 206
of g_local.h.

typedef struct {

team_t sessionTeam;

int spectatorTime; // for determining next-in-line to

play

spectatorState_t spectatorState;

int spectatorClient; // for chasecam and follow mode

int wins, losses; // tournament stats

qboolean teamLeader; // true when this client is a team

leader

} clientSession_t;

Any variable set in this struct will remain intact as long as the player
remains on the server—that includes between deaths and between
level changes. Unlike with the previous members of the gclient_s
struct, which represents all the player’s data, it is not enough to simply
add a new variable to this struct and assume its state will be main-
tained automatically. The clientSession_t struct’s members are actually
maintained by reading and writing to a console variable, or Cvar, dur-
ing level changes.

Changing the
Player’s Movement
Now that you have a better understanding of the player’s internal vari-
able construct, let’s take a look at what you can do to modify it. The eas-
iest place to start modification is with the player’s movement. In order
to change any of the player’s movement variables, you must visit the
player’s think function that is called every frame of animation. That
function is ClientThink_real, and can be found on line 736 of g_active.c.

105Changing the Player’s Movement

Playing with ps.speed
ClientThink_real is a think function, not unlike the ones you have
dealt with in previous chapters. It is called by Q3 about once for every
frame of animation within the current game. This is where many
playerState_t values are read, set, or updated, due to changes in the
game. One of these members is speed. A good example of how the
player’s speed is modified in the Q3 code is via the haste rune, a
powerup in Q3 that allows the user to speed around the map much
faster than normal.

If you open g_active.c and jump to line 831, you’ll see the following
tidbit of code.

if (client->ps.powerups[PW_HASTE]) {

client->ps.speed *= 1.3;

}

This simple piece of logic looks at the client variable, which you’ll
remember is of type gclient_s, the gigantic struct of variables that con-
trol the player. It is specifically accessing a member of playerState_t, as
represented by the ps variable, which is being pointed to by the client
variable (remember, members of structs are accessed via dot notation
or pointer notation, the . or -> symbols, respectively). These few lines
of code read in plain English, as follows: “If the player currently has
the haste powerup, multiply the player’s current speed by 1.3.”

106 4. Manipulating the Player

NOTE
The strange *= notation used in the haste example is a com-
mon bit of shorthand in the C language for variable assign-
ment. Generally, you might see something like this:

variable = variable * 3;

This sets the value of a variable equal to itself, multiplied by 3.
You can shorten that to the following:

variable *= 3;

This type of assignment can also be used with the +, - and /
operators.

The player’s speed property is very easy to change. For example, you
could double the effects of the haste rune by changing the line to

client->ps.speed *= 2.6;

Or, you could create a new powerup that slows the player down (and
possibly does something else, like double his melee damage) by halv-
ing its current value like so:

client->ps.speed /= 2;

Speed modification is the simplest of procedures, so for now, keep
that nugget of information in the back of your head. You’ll use it later
on. Now let’s take a look at more facets of player movement.

Gravity Kills
Another playerState_t member that is updated in ClientThink_real is
gravity. Gravity, as you know, is the “pulling” effect that large mass
objects have on smaller objects. In the world of Q3, gravity must also
be simulated in a reasonable fashion. That means that any object that
is affected by gravity and not standing on a surface must have down-
ward movement applied to it.

Because you have already worked
with the player’s movement in the
world of 3D, you should know
that in order to move any object
downward, you must apply a nega-
tive vector to the player’s z axis.
Thankfully, the Q3 engine already
handles this for you, so you need
not worry about applying any
kind of physics algorithms to the
player to force him downward. All
you need to worry about is the amount of gravity currently in use in
the game, and how much of it is applied to the player.

By default, a Q3 game has an amount of gravity equal to 800. This
value is simply an arbitrary number used by the engine to determine
how to properly calculate the acceleration of objects moving

107Changing the Player’s Movement

NOTE
The acceleration an object
undergoes due to gravity is a
constant value, often refer-
enced in math and physics
texts as g. Its value is 9.81
(meters/sec) per second.

downward. It is applied to the player every frame in ClientThink_real,
on line 820 of g_active.c:

client->ps.gravity = g_gravity.value;

Once again, you can see that the playerState_t struct’s gravity mem-
ber is being set to a value—in this case, the value of another struct’s
member, that of g_gravity.value. g_gravity maps to a Cvar that can
be set and controlled by the server. You could take this line of code
and adjust the gravity being applied to the player based on a powerup.
For example, if the user had the Invisibility powerup, you might drop
the gravity for the user slightly:

if (client->ps.powerups[PW_INVIS]) {

client->ps.gravity = g_gravity.vaue / 1.4;

}

Another idea to try might be to increase the effects of gravity on a
player that has the BFG in his inventory of weapons:

if (client->ps.stats[STAT_WEAPONS] & (1 << WP_BFG))

client->ps.gravity = g_gravity.value * 2;

Again, you can see that this is a fairly simple stat to modify.

The Case of the Missing client
After having dealt with player speed and gravity, you can look to a
third movement option: that of how high the player can jump. The
player’s jump velocity is a hard-coded value, set near the top of
bg_local.h:

#define JUMP_VELOCITY 270

108 4. Manipulating the Player

NOTE
The powerups member of playerState_t is an array. Each index
of the array is an enum of type powerup_t, which you can see
declared in bg_public.h on line 247. I’ll cover the enum data
type in more detail in Chapter 6,“Client Programming.”

By hard-coded, I simply mean that there is no other state in the game
that changes this variable. It is not Cvar that can be changed on the
server, nor is it a value that can change based on powerups, style of
game, health, weapons, or any other event you might think of. Every
single player gets the same jump velocity. Well, that’s no fun, so let’s
see what you can do to change it.

The most obvious change would be to modify #define at the top of
bg_local.h, but that doesn’t solve the problem of the variable being
constant. Once a constant variable is declared in C, it cannot change
throughout the entire course of the program’s execution. You want to
find a way to dynamically change the player’s jump velocity based on
some kind of criteria, such as a powerup or amount of health. The
player’s movement code is mostly handled in a file called bg_pmove.c,
so let’s open that file now.

Around line 339, you’ll come to a function called PM_CheckJump, which
is called when the player attempts to jump within Q3. A bit more
sleuthing reveals that on line 361, the magic happens:

pm->ps->velocity[2] = JUMP_VELOCITY;

From this, you can extrapolate that the z axis (held in the third
index) of velocity in the playerState_t struct is set to the value of the
JUMP_VELOCITY variable as defined at the top of bg_local.h. Sounds sim-
ple enough; setting the z axis’s velocity of an object equal to a positive
value would result in that object moving upward, hence a jump.
Except there is one small problem: where the heck is the client vari-
able? To unravel this mystery, you work backward through the func-
tions you know to figure out how to arrive at pm->ps->velocity.

Solving the Jumping Mystery
Let’s take a look at ClientThink_real, where you’re sure to extract
valid player data from the client variable. You’ve already played with
gravity and speed in this function, so you are guaranteed access to the
client variable. As the function begins, a number of variables are
declared, including pm, which is of type pmove_t, and a pointer called
ucmd, which points to a variable of type usercmd_t. These are two
new structs that you have not dealt with yet, so let’s take a look at
them.

109Changing the Player’s Movement

The pmove_t struct is defined at the top of bg_public.h, at line 140.

typedef struct {
// state (in / out)
playerState_t *ps;

// command (in)
usercmd_t cmd;
int tracemask; // collide against these

types of surfaces
int debugLevel; // if set, diagnostic output

will be printed
qboolean noFootsteps; // if the game is setup for

no footsteps by the server
qboolean gauntletHit; // true if a gauntlet attack

would actually hit something

int framecount;

// results (out)
int numtouch;
int touchents[MAXTOUCH];

vec3_t mins, maxs; // bounding box size

int watertype;
int waterlevel;

float xyspeed;

// for fixed msec Pmove
int pmove_fixed;
int pmove_msec;

// callbacks to test the world
// these will be different functions during game and cgame
void (*trace)(trace_t *results, const vec3_t start,

const vec3_t mins, const vec3_t maxs, const vec3_t end, int
passEntityNum, int contentMask);

int (*pointcontents)(const vec3_t point, int
passEntityNum);
} pmove_t;

110 4. Manipulating the Player

This looks to be a very straightforward struct (albeit large). The vari-
able that stands out like a sore thumb, however, is the first one, ps,
which is of type playerState_t. You know already that you are attempt-
ing to modify a playerState_t member of the player (velocity), so by
seeing this variable here you have an indication of being on the right
track. The second member declared is cmd, of type usercmd_t. Aha!
You already made a note to research the usercmd_t struct, so it is
very interesting that you find it here in pmove_t as well. The plot
thickens. . . .

The struct usercmd_t is declared near the bottom of q_shared.h, on
line 1213:

// usercmd_t is sent to the server each client frame

typedef struct usercmd_s {

int serverTime;

int angles[3];

int buttons;

byte weapon; // weapon

signed char forwardmove, rightmove, upmove;

} usercmd_t;

Hmmm, the C comment suggests that this struct is sent to the server
every client frame, which you’re already looking at by peering
through code in ClientThink_real. This is a very important clue in the
mystery of your missing client variable. Now that you know what is
contained within these structs, let’s jump back to ClientThink_real.

Starting around line 841, some C comments begin to suggest that some-
thing is being prepared for—a pmove or “player movement.” After scan-
ning a few more lines of code, you see the following key snippet:

pm.ps = &client->ps;

pm.cmd = *ucmd;

In the first line, the pm variable’s ps member is being set to the mem-
ory address of the client’s playerState_t struct. By doing an assignment
to a memory address, the pm.ps variable essentially becomes the client’s
playerState_t variable, and any reads or writes that occur to pm.ps
will ultimately happen to the client’s playerState_t. This is very impor-
tant, so let me reiterate: By setting pm.ps to the memory address of
client->ps, you create a reference to client->ps, and any changes
made to pm.ps will also happen to client->ps.

111Changing the Player’s Movement

The second line sets pm.cmd equal to the pointer to a usercmd_t type
that was created at the top of the ClientThink_real function. And just
what is ucmd pointing to, anyway? Line 750 answers that question:

ucmd = &ent->client->pers.cmd;

Interesting . . . this line of code says that the pointer declared earlier
is set to the memory address of ent->client->pers.cmd. By assigning to
a memory address you know you’re creating another reference
directly to the client variable, and in this case, you point to the
player’s commands, which have been sent to the server. This could be
any command, like joining a team, firing a weapon, or—you guessed
it—jumping.

The Move to Pmove
After a bit more logic to check some last-minute things, the final
bombshell drops on line 922:

Pmove (&pm);

Here, the entire pm variable construct is passed to a function called
Pmove. Notice that it is passed by reference, meaning that the actual
memory address for the pm variable is passed to Pmove. Whatever magic
happens in Pmove is ultimately going to happen to pm in this function,
and you already know what that means: The change will cascade back
to the player’s client var. Let’s visit the Pmove function now and find
out what’s happening.

Searching through the code base, you find Pmove situated nicely at the
bottom of bg_pmove.c:

void Pmove (pmove_t *pmove)

You’re hot on the trail. bg_pmove.c is the file that also holds
PM_CheckJump, the original function you found that held the modifica-
tion to the player’s z-axis velocity. By looking at this function, you can
see that Pmove takes a pointer to a pmove_t variable to be passed in (in
this case, it is referred to within the function body as *pmove). The
Pmove function then calls a function called PmoveSingle, handing off
the same *pmove variable, on line 1816:

PmoveSingle(pmove);

if (pmove->ps->pm_flags & PMF_JUMP_HELD) {

112 4. Manipulating the Player

pmove->cmd.upmove = 20;

}

Interestingly enough, PmoveSingle is called first. Then, a check is
made to see if the PMF_JUMP_HELD flag is on, effectively queuing the
actual jump event until the next frame process. The signal for the
jump event in this case is the setting of the pmove->cmd.upmove member
to 20, which as you can guess, is actually setting the player’s
client->pers.cmd.upmove value to 20.

You’re very close now. On the very first line of PmoveSingle, a global
variable called pm, which is declared way up at the top of this file, is set
to the pointer passed in:

pm = pmove;

Because pm is a global variable, it is now available to every other func-
tion in this file. PmoveSingle goes on to perform some logic, and then
calls a function called PM_WalkMove on line 1970. Leaping up to line
672 reveals the contents of the PM_WalkMove function; lo and behold,
look at what is found on line 690:

if (PM_CheckJump ()) {

There, PM_CheckJump is called, in all its glory. Heading back up to
PM_CheckJump on line 339, you can see several lines down that if
pm->cmd.upmove is less than 10, a jump is considered to have not taken
place, and the function exits. Because you queued it up with the last
frame pass to 20, however, it will register a jump.

Give yourself a pat on the back—you have successfully solved your
own problem. You have tracked down the passing of the client’s
playerState_t variable all the way back to PM_CheckJump. Because pm is a
global variable declared in this file, any function, including
PM_CheckJump, has access to it. And because pm points to the pmove
pointer passed into the function Pmove (deep breath), which in turn
holds a playerState_t member that points to the client’s playerState_t,
you can be assured that anything affecting pm.ps will cascade all the
way back to client->ps.

As for why this particular functionality is implemented through
Pmove . . . well, I can’t give all my secrets away just yet, can I? I’ll discuss
just what exactly a Pmove is, and why it is important in this instance,
in Chapter 5.

113Changing the Player’s Movement

Modifying Jump Velocity
The benefit of having waded through the code is that you now have a
deeper understanding of how variable constructs are passed from
function to function within the game. This will be key when you start
to modify cgame code in greater detail in Chapter 6. For now, let’s try
tweaking the value of that jump velocity based on the player’s health.

Let’s make a change to the PM_CheckJump function that uses the follow-
ing rules:

■ If the player has more than 100 health, let him jump 25%
higher.

■ If the player has more than 30 health, give him a normal jump.
■ If the player has less than or equal to 30 health, cut his jump

height in half.

That’s pretty easy; I think you can implement it with the following
snippet of code. Replace the line that actually sets the velocity[2] to
JUMP_VELOCITY with the following lines:

if (pm->ps->stats[STAT_HEALTH] > 100)

114 4. Manipulating the Player

TIP
In Chapter 3, I showed you how to search for a keyword across
your code, when you used VC++’s Find in Files feature to look
for CG_ShotgunPattern.There is, however, another way to per-
form a lookup on a specific term. Simply right-click on the text
and select Go To Definition Of (your selected text).This makes
VC++ do the dirty work by searching across all the projects for
you for where the variable was originally defined. If the vari-
able definition is found,VC++ opens the file and jumps to
exactly the line where the variable definition is located. If you
have more than one variable with the same name, you may see
a dialog box allowing you to select which specific variable you
want to find. Sometimes this method requires you to build a
browse-directory first, so if you get a warning that tells you
there is no browse info available, simply allow it to build the
info, and the search should complete.

pm->ps->velocity[2] = JUMP_VELOCITY * 1.25;

else if (pm->ps->stats[STAT_HEALTH] > 30)

pm->ps->velocity[2] = JUMP_VELOCITY;

else

pm->ps->velocity[2] = JUMP_VELOCITY * 0.75;

Give that a compile, and try it out. You should notice a significantly
higher jump right from the get-go. Then, fire a rocket into the
ground a few times to decrease your health and try jumping again. As
your health lowers, so too does your jump height. In fact, when you
get below 30 health, you can barely even leave the ground!

Giving the Player a Jetpack
Now that you know how to modify the player’s speed, jump height,
and the effect that gravity has on him, how can you tie all of these
effects together into a mod? The answer is to give the player a jetpack.
Some of Q3’s levels, especially those found in the Team Arena
Expansion Pack, can be quite large, which makes the addition of a jet-
pack quite appropriate. To develop this jetpack mod, let’s outline
what you want it to accomplish:

■ The jetpack will function as a booster, which propels the player
into the air via the use of an on/off toggle.

■ Real-world physics will apply to the player when he is airborne.
That is, if he is moving, he will continue to move in the same
direction until he hits another object.

■ The player will be unable to control his movement until he
lands again.

These rules make for a fairly quick and uncomplicated implementa-
tion. So, without further ado, let’s get started.

Creating a New pmove Flag
Your first change will take place in bg_public.h. In order to assign a
new movement type to the player (specifically, flight via a jetpack),
you need to create a new pmove flag to accommodate the check.
Conveniently, there is a missing flag from the list on line 122 of
bg_public.h. Go ahead and change the list so that it includes your
new flag, as shown here:

115Giving the Player a Jetpack

// pmove->pm_flags

#define PMF_DUCKED 1

#define PMF_JUMP_HELD 2

#define PMF_JETPACK 4 // jetpacking!!

#define PMF_BACKWARDS_JUMP 8 // go into backwards land

This change adds a bit flag called PMF_JETPACK, and sets its value to 4,
allowing you a new variable to look for, to see if the jetpack is being
activated or not.

Next, you’ll need to create a new console command to hold your tog-
gle for the jetpack. This will be the command to which you bind a key
in order for the jetpack’s thrust to be activated (or deactivated). The
command is created in much the same way you created it when you
bound a toggle to the homing missile in Chapter 2.

Open g_cmds.c and scroll down to line 1677 and make the following
changes to the ClientCommand function:

else if (Q_stricmp (cmd, “stats”) == 0)

Cmd_Stats_f(ent);

else if (Q_stricmp (cmd, “jetpack”) == 0) // toggle jetpack

Cmd_ToggleJetpack_f(ent);

else

trap_SendServerCommand(clientNum, va(“print “unknown cmd %sn””,

cmd));

After the entry for the stats command, a new command is set up that
looks for the string jetpack. If this string is found, a new function is
called: Cmd_ToggleJetpack_f. This is the function that turns your
PMF_JETPACK flag on or off. Let’s go ahead and do that next.

Jump up to where the Cmd_Stats_f function begins, and add this new
function before it:

/*

=====================

Cmd_ToggleJetpack_f

=====================

*/

void Cmd_ToggleJetpack_f(gentity_t *ent)

{

ent->client->ps.pm_flags ^= PMF_JETPACK;

}

116 4. Manipulating the Player

A nice, simple function for a change! This function does only one
thing: toggles your PMF_JETPACK flag. So, if it is on, this function will
turn the flag off; if it is already off, this function flips the switch and
turns it on. Now that you have a flag that’s going to be your means of
determining whether the jetpack is in use and a command to fire the
jetpack, let’s create the jetpack’s effect on the player.

Defying Gravity
Begin by opening bg_pmove.c, the friendly file that contains the
movement code for the player. You may recall that PmoveSingle was the
function used to hand off the player’s movement state to various
movement functions, such as PM_CheckJump. This is a perfect spot for
you to check the PMF_JETPACK flag. Scroll to around line 1954, and
make the following change:

} else if (pm->ps->pm_flags & PMF_GRAPPLE_PULL) {

PM_GrappleMove();

// We can wiggle a bit

PM_AirMove();

} else if (pm->ps->pm_flags & PMF_JETPACK) {

// jetpacking around

PM_JetpackMove();

117Giving the Player a Jetpack

Bit Flag Uniqueness

The value of a bit flag must use a unique number that cannot
be reached by adding any other combination of flags together,
which is why your PMF_JETPACK flag is 4. Even though it seems
that 3 is also available, consider that a player can theoretically
be crouching (PMF_DUCKED) and holding the jump button down
at the same time (PMF_JUMP_HELD).Those two flags added
together also equal 3. If that had been the case, and you
checked for PMF_JETPACK with a bitwise operation, you would
have received a value of true if the user was activating the jet-
pack or if the player was ducking and holding the jump button
at the same time. Not a good thing!

} else if (pm->ps->pm_flags & PMF_TIME_WATERJUMP) {

PM_WaterJumpMove();

Here, after the line of code calling PM_AirMove, you perform a check
for the PMF_JETPACK flag using a simple bitwise operation. Note
here that you’re using pm.ps, the global variable that points to the
client->ps struct, so—in case you had any doubts—you are truly look-
ing at the player. If the PMF_JETPACK flag is found to be on, call a new
function, PM_JetpackMove, which will be a new movement function that
you’ll write next.

A Surprising Effect
Before you add PM_JetpackMove, let’s review what you need to do. The
effect of a jetpack being turned on should modify the player’s z-axis
velocity; that is, it should propel the player upward. Because this will
be an effect that takes place over time, you will want to continually
increment the player’s velocity. However, it’s probably not a good idea
to blast the player into space, so a fixed maximum velocity should
never be breached. This all seems simple enough, so let’s write the
function in, right above PM_CheckJump:

/*

===============

PM_JetpackMove

===============

*/

static void PM_JetpackMove(void)

{

pm->ps->velocity[2] += 10;

if (pm->ps->velocity[2] > 250)

pm->ps->velocity[2] = 250;

}

This looks like it should work without any adjustments. You simply
increment the player’s z-axis velocity by 10 each time this function is
called (which will happen repeatedly, as long as the PMF_JETPACK flag is
on). And, just for safe measure, if the player’s z-axis velocity ever goes
beyond 250, it will be capped back to 250. Let’s compile it all, and
give it a whirl.

118 4. Manipulating the Player

After you drop your new qagamex86.dll into your MyMod folder and
fire up a Q3 map, set up your jetpack key binding by typing the follow-
ing in the console and pressing Enter:

\bind j “jetpack”

You can substitute j with whatever you wish; I used my right-mouse
button, which is mouse2. Pressing the button bound to the jetpack com-
mand should turn the jetpack on, giving you lift; another press of the
button should turn it off. Something is amiss, however. A few
moments after leaving the ground, your player vibrates violently in
place, and never gains more than a few inches of height. What’s going
on? You have followed all the rules, handling the velocity as an incre-
ment across time, yet for some reason your player won’t stop this hov-
ering dance. This brings up the question: If the jetpack doesn’t work,
how the heck does the flying powerup—among the most sought-after
powerups in Q3—work?

Borrowing Code from
PM_FlyMove
In Q3, there is a powerup that can be grabbed by the player that
allows him to fly. The player is given complete freedom from gravity
(for a limited time), and can move in any direction he chooses.
Figure 4.1 shows the much sought-after flight powerup in q3dm19,
Apocalypse Void.

If similar functionality already exists in Q3 to allow the player to
ignore gravity for a small amount of time, surely you can implement a
jetpack. Let’s take a look at what function is called when the player is
holding the flight powerup.

Jumping back down to PmoveSingle, near line 1968 you see the follow-
ing bit of code:

if (pm->ps->powerups[PW_FLIGHT]) {

// flight powerup doesn’t allow jump and has different fric-

tion

PM_FlyMove();

It looks as though the PW_FLIGHT flag in the powerups array of the
player’s state is the flag that maps to the flight powerup in Q3. Here,
the code says, “If the PW_FLIGHT flag is in existence in the player’s

119Giving the Player a Jetpack

powerups array, call a function called PM_FlyMove.” Scroll up to the def-
inition of PM_FlyMove, and see what magic is happening there. You
should see PM_FlyMove around line 553; it follows below.

1. static void PM_FlyMove(void) {

2. int i;

3. vec3_t wishvel;

4. float wishspeed;

5. vec3_t wishdir;

6. float scale;

7.

8. // normal slowdown

9. PM_Friction ();

10.

11. scale = PM_CmdScale(&pm->cmd);

12. //

13. // user intentions

14. //

15. if (!scale) {

16. wishvel[0] = 0;

120 4. Manipulating the Player

Figure 4.1 The flight powerup

17. wishvel[1] = 0;

18. wishvel[2] = 0;

19. } else {

20. for (i=0 ; i<3 ; i++) {

21. wishvel[i] = scale * pml.forward[i]*pm->cmd.forward-

move + scale * pml.right[i]*pm->cmd.rightmove;

22. }

23.

24. wishvel[2] += scale * pm->cmd.upmove;

25. }

26.

27. VectorCopy (wishvel, wishdir);

28. wishspeed = VectorNormalize(wishdir);

29.

30. PM_Accelerate (wishdir, wishspeed, pm_flyaccelerate);

31.

32. PM_StepSlideMove(qfalse);

33. }

Let’s dissect this bit by bit. An initial function, PM_Friction, is called to
apply appropriate physics to the player (line 9), which causes a grad-
ual deceleration if the player isn’t applying movement force in some
direction (walking forward or backward, jumping up, and so on). You
didn’t use this function, but it might be a good idea to try it to get
some more realistic response for the player while airborne.

Next, PM_CmdScale is called, passing in the player’s command variable
(line 11), which would point to any keys or buttons that the player
may be pressing at the time. The function returns a float, which is
assigned to a variable called scale, which, for the record, can be any
value between −127 and 127. At first it may not seem make sense to
return the movement key press as a float (either the player is moving
forward or not, right?). The reason it is done this way is so that a
player using analog controls can adjust the amount of speed he wishes
to apply to a given direction.

If no movement is detected by the player’s control, the scale variable
is returned as a 0, which tells the PM_FlyMove function to set a tempo-
rary velocity vector, wishvel, equal to 0 on all three of its axes. If
movement is detected, wishvel obtains the player’s forward- and
right-movement degrees and multiplies them by the scale detected
(line 21). Then, the player’s upward movement is also taken into

121Giving the Player a Jetpack

consideration, and added (by scale) to the z axis of wishvel (line 24).
A call to VectorCopy is made to copy wishvel into another vector,
wishdir (line 27), which is then sent to VectorNormalize to obtain a
measurement of speed (line 28).

Next, wishvel and wishdir are passed to PM_Accelerate (line 30),
a function used to apply acceleration to a player object, with
pm_flyaccelerate passed as the intended acceleration factor
(pm_flyaccelerate is declared at the top of bg_pmove.c). Then, a final
function is called: PM_StepSlideMove (line 32). This call poses the most
interesting content of all, as it takes one input parameter, aptly
named gravity. In the call from PM_FlyMove, this value is set to false.
Hmm . . . gravity set to false. This sounds very much like a solution
you want to implement.

Let’s go back to PM_JetpackMove and add this same function call to the
end. The new function looks like this:

static void PM_JetpackMove(void)

{

pm->ps->velocity[2] += 10;

if (pm->ps->velocity[2] > 250)

pm->ps->velocity[2] = 250;

122 4. Manipulating the Player

NOTE
There are two types of controls in most games played today.
Digital controls are those that are registered by a game as
either on or off, like a toggle.A good example of a digital con-
trol is a key press on the keyboard.The second type of control
is analog, which indicates that there is a range or degree of
selection being transmitted to the game.The best example of
an analog control is a steering wheel, used for racing simula-
tions. By turning the wheel gradually, a small degree of a turn
is sent to the game to appropriately adjust the virtual car.As
the steering wheel is turned more sharply one way or the
other, a higher-degree turn is transmitted, thereby resulting in
a sharper turn in the game.

PM_StepSlideMove(qfalse);

}

Compiling and running this a second time reveals some more pre-
dictable results; when activated, the player begins to accelerate into
the air, free from gravity. If the key bound to the jetpack command is
pressed a second time, the jetpack is disengaged, and the player falls
freely to the surface (getting hurt if he falls too far). Figure 4.2 shows
a bit of fun the player is having by jetpacking above q3dm17 and fir-
ing away at some unsuspecting bots.

For now, you can say that you’re satisfied with the implementation of
the jetpack; it meets the criteria listed at the beginning of this section.
After the player leaves the ground, he continues moving in the direc-
tion he was moving during liftoff until he hits a surface (or is killed).
While in the air, he also loses the ability to change directions (which
makes sense, because his feet aren’t on the ground), making for a
more realistic jetpack. You may want to tweak the jetpack’s functional-
ity by borrowing more code from PM_FlyMove, but for now, let’s move
to another aspect of dealing with the player.

123Giving the Player a Jetpack

Figure 4.2 The jetpack in action

Implementing
Locational Damage
As you get into mod development on a more regular basis, you’re
undoubtedly going to come across many fans shouting “Realism!” In
fact, realism is quite a contention in the world of user-developed mods
nowadays, especially when it comes to how much realism in a mod is a
appropriate. Granted, having futuristic aliens and robots battling each
other with plasma rifles isn’t necessarily defining the norm of realistic
warfare, but on the other hand, certain fundamental issues should not
be overlooked. One such issue is damage inflicted to different areas of
the body. If you are creating a mod in which strategy and tactics play
more of a role than mind-numbing deathmatch, then you may want to
consider alternative ways of handling damage done by weapons. Case
in point: Mods like Urban Terror and Counter-Strike use a locational
damage system, where players take different levels of damage based
upon where they are hit. Leg and arm shots obviously do less damage
than a shot to the chest. And, it goes without saying that a headshot
almost definitely means instant death. Q3, on the other hand, does
not use a locational damage system; let’s take a look at how one could
be implemented.

Creating Hit Flags
For starters, you need to find a way to determine what part of the
player is being fired upon, because there is currently no way in Q3 to
scan the area that is hit. There are definitely a number of ways to han-
dle this, some of which extend beyond the scope of this book and are
based on different 3D model types. For now, let’s take a look at what
makes up the current Q3 player, and see if it can be broken down in
segmented parts. The Q3 player, as shown in Figure 4.3, is constructed
of three identifiable areas: the head, the body, and the legs. This could
be further broken down, but for this tutorial, three areas are sufficient;
you are certainly welcome to expand upon this as you see fit.

You can assign some bit flags to these body parts, which you can then
apply to the actual target once in the game. To do so, open
bg_public.h and scroll down to about line 244, right after EF_TEAMVOTED
is declared. Here, set up some new bit flags, with the LC naming con-
vention, which seems appropriate for locational flags. Right after

124 4. Manipulating the Player

EF_TEAMVOTED is declared, add the following lines (notice that room is
also left for no body part, as in the case of LC_NONE):

// LOCATIONAL DMG FLAGS

#define LC_NONE 0x00000000

#define LC_HEAD 0x00000001

#define LC_BODY 0x00000002

#define LC_LEG 0x00000004

Next, you need a new client variable to tell where the player was
hurt—in essence, a place to store any or all the flags you have just
declared. By now, you should be pretty familiar with what variables the
player maintains. Because this variable is something that will expire as
soon as the player is killed, and not something that will be updated as
frequently as player speed or velocity, the prime candidate for place-
ment is within the gclient_s struct. Open g_local.h and scroll down to
around 276, where you should see declarations of lastkilled_client,
lasthurt_client, and lasthurt_mod. Add your new variable after
lasthurt_mod, as shown in the following code:

125Implementing Locational Damage

Figure 4.3 The Quake III player

int lastkilled_client; // last client that this client killed

int lasthurt_client; // last client that damaged this client

int lasthurt_mod; // type of damage the client did

int lasthurt_loc; // location of damage the client did

The new variable called lasthurt_loc holds the bit flags you created as
damage is done to specific parts of the target’s body. Next, you need
to calculate how the target is actually hit. The simplest way that this
can be done is by estimating where the legs, body, and head are, based
on the player’s height. You do this by using the player’s currentOrigin,
mins, and maxs, which reside in the entityShared_t struct.

The Bounding Box
If you’ve got a good memory (and if you want me to give you another
50 bonus points), you’ll recall that I talked briefly about bounding
boxes in Chapter 3. The bounding box is very familiar to game devel-
opers because it is the primary tool used in collision detection, which
refers to the act in which a game tests whether two objects are touch-
ing each other. Think back for a moment to a classic game like
Asteroids. Remember when those meteors smacked into your ship, caus-
ing it to explode? That was a very simple form of collision detection
using a bounding box. Likewise, each asteroid had its own bounding
box; when your tiny ship blasted away at an asteroid, its bounding box
assisted in the collision detection, as shown in Figure 4.4.

The dashed square surrounding the asteroid represents the invisible
bounding box in the game. You never saw that box while playing, but
the code controlling the game knew that it was present for each and
every asteroid. As a player fired a shot toward the asteroid, the code

126 4. Manipulating the Player

Figure 4.4 The
bounding box in Asteroids.

for the game would test to see if a bullet passed into the box. If it did,
the computer would register a hit and the asteroid would break into
smaller asteroids. As scary as it may sound, game programmers are
still using those same bounding-box methodologies today. Hey, if it
ain’t broke, why fix it?

In Q3, there really is no differ-
ence in the usage of the bound-
ing box. Certainly, things are a
lot more complicated now that
you are in a virtual 3D world, but
fundamentally the rules are the
same. In Q3, mins and maxs vec-
tors define an entity’s bounding
box. There is only a need for two
vectors, because each vector
spans three directions in 3D
space, and if both vectors point to
each other along one plane, all the coordinates hook to each other to
form a complete rectangular cube in 3D space.

Now that you know your player has a bounding box associated with it,
how do you find out its height in order to properly gauge a headshot
as opposed to a shot in the leg? At the top of the g_client.c file, two
static vectors are declared as global variables:

static vec3_t playerMins = {-15, -15, -24};

static vec3_t playerMaxs = {15, 15, 32};

If you exclude the z axis (because you are not concerned with how
thick or thin the player is), the distance between the two farthest
points (−15, −15) and (15, 15) is 30, 30 (which equates to 30 units
wide by 30 units tall). You can see that these units are then poured
into the player’s variables when the player is first spawned in the game
at line 1147 in g_client.c, in the function ClientSpawn:

VectorCopy (playerMins, ent->r.mins);

VectorCopy (playerMaxs, ent->r.maxs);

Here, the units representing the player’s bounding box are passed into
the ent->r.mins and ent->r.maxs values, respectively, which can then be
used from other parts of the game. Because you have a height of 30 to
play with, you can estimate that the head area is roughly 8 units from

127Implementing Locational Damage

NOTE
There are actually two more
coordinates that Q3 applies to
all entities in the game, absmin,
and absmax.They are used when
the entity in question is being
rotated to get a more accurate
bounding box—at the cost of a
bit more processing.

the top of the player, while the body extends another 18 units down
from there. The remaining 4 units will be considered a leg shot.

Scanning Body Parts
Now let’s write the function that will actually perform the locational
damage check. Start by declaring the function. Back in g_local.h,
scroll to around line 480, where G_Damage is declared; underneath it,
add the following line:

int G_LocDamage (gentity_t *targ, gentity_t *attacker, int damage,

vec3_t point);

Your function is called G_LocDamage, and will require the following enti-
ties passed to it:

■ The target (the player who is being fired upon)
■ The attacker (the player who is actually doing the shooting)
■ The damage
■ An entry point in the 3D world

The new function will also return an integer equal to the amount of
damage that was caused. You can add the function just below G_Damage
in the g_combat.c file. Open g_combat.c, scroll to where G_Damage
ends (just about line 1049), and add this new function:

1. /*
2. ============
3. G_LocDamage
4. ============
5. */
6. int G_LocDamage(gentity_t* targ, gentity_t* attacker, int damage,
vec3_t point) {
7.
8. int targHeight;
9. int feetAt;
10. int inflictorHeight;
11.
12. if (!damage)
13. return 0;
14.
15. feetAt = targ->r.currentOrigin[2] + targ->r.mins[2];
16. targHeight = targ->r.maxs[2] - targ->r.mins[2];

128 4. Manipulating the Player

17. inflictorHeight = point[2] - feetAt;
18.
19. if (inflictorHeight > targHeight - 8)
20. targ->client->lasthurt_loc |= LC_HEAD;
21. else if (inflictorHeight > targHeight - 26)
22. targ->client->lasthurt_loc |= LC_BODY;
23. else
24. targ->client->lasthurt_loc |= LC_LEG;
25.
26. switch (targ->client->lasthurt_loc)
27. {
28. case LC_HEAD:
29. damage *= 3;
30. trap_SendServerCommand(attacker-g_entities, “print “Head
Shot!n””);
31. break;
32.
33. case LC_BODY:
34. damage *= 1.2;
35. trap_SendServerCommand(attacker-g_entities, “print “Body
Shot!n””);
36. break;
37.
38. case LC_LEG:
39. damage *= 0.6;
40. trap_SendServerCommand(attacker-g_entities, “print “Leg
Shot!n””);
41. break;
42.
43. }
44. return damage;
45.
46. }

Let’s break this function down
in order to understand what’s
going on. Initially, the value of
the passed-in damage variable is checked to see if it is actually a positive
value. If the damage is less than or equal to zero, control of the code
is handed back to the calling program that runs the G_LocDamage func-
tion (line 12). If there is damage, however, the function continues.

129Implementing Locational Damage

NOTE
G_LocDamage is based on another
height-level locational damage
system, created by Arthur
“Calrathan” Tomlin.

The next thing G_LocDamage does is try to figure out what the target’s
height is, because it only has absolute x, y, and z coordinates for the
target. By absolute coordinates, I mean that when Q3 looks at a value for
x, y, and z on a player’s location, it retrieves numbers that map to an
actual location in the world, not the height, width, and depth of a
player. What you need to do is take these absolute values and perform
simple subtraction to get the relative x, y, and z coordinates—in other
words, how the x, y, and z coordinates apply to a certain character.

My Feet Are . . . Where Now?
Start by creating a variable called feetAt, and assign it the value of
your target’s origin, or r.currentOrigin (line 15), along the z axis
(because you will be traveling the axis up and down to determine
height). Then, add the target’s mins value to the current origin, which
gives you the z-axis location of the target’s feet. The mins value is
added, instead of subtracted, from the center point because the mins
value is a negative number.

Your second variable, targHeight, is set to the value of the target’s maxs
value minus the target’s mins value (both along the z axis). This gives
you a total height of the player (line 16). The third variable,
inflictorHeight, is then assigned the value of the bullet minus the ver-
tical location of the player’s feet, which is stored in feetAt. This gives
you a relative height of the bullet as it hits the player, which you can
compare to the actual player’s height to estimate what part of the
body was hit (line 17).

Because you already know that the player’s bounding box is 30 units
tall, you can start to play with some numbers to create the effect of loca-
tional damage. Approximately, the first 8 units from the top of the
player down are a good range for a headshot. The code reflects this, as
it checks to see if the height of the bullet (inflictorHeight) is greater
than the target’s height, minus 8 units (line 19). If so, you have a valid
headshot, and you can apply the LC_HEAD flag to your lasthurt_loc vari-
able. If the bullet didn’t hit the player 8 units from the top (or less), the
next check is to see whether the bullet came anywhere within the top
26 units of the player (recall that you estimated the body’s height being
another 18 units). If so, this will be considered a body shot, and the
appropriate LC_BODY flag will be applied (line 21). Finally, any remaining
registered hit below the 26-unit mark will be flagged as a leg shot.

130 4. Manipulating the Player

Switching Off the Hits
Once you have a hit flag in place for an appropriate body part, you
can switch off the value. A switch is a standard C-language construct
that allows you to perform a number of operations based on a single
value, if that value can have multiple results. Think of it as a giant if-
then-else block. Because your hit flag can be one of three different val-
ues, a switch is an efficient way of handling the various bits of logic,
and allows for easy addition of new cases in the future.

For the case of a headshot (line 28), multiply the damage by 3 and
send a text message back to the client telling him that a headshot has
occurred. For a body shot (line 33), multiply the damage by 1.2 and
send another message, letting the player know a body shot was made.
Finally, for a leg shot (line 38), multiply the damage by 0.6 and send a
message acknowledging the leg shot. Because G_LocDamage is a function
that returns an integer, make sure it is being passed back; wrap the
function up by returning the newly updated damage value.

The last part you need to implement is the actual call to G_LocDamage in
order to apply your new calculations to the attack being made. This is
done within G_Damage, which you should remember from Chapter 3. Make
sure you are still in g_combat.c, and scroll up to about line 1016, where
you should see some code checking for if (targ->client). Go ahead and
make the following changes, so that the function call looks like this:

if (targ->client) {
// set the last client who damaged the target
targ->client->lasthurt_client = attacker->s.number;
targ->client->lasthurt_mod = mod;

// if target is applicable, apply locational damage
if (targ && targ->health > 0 && attacker && take && point)

take = G_LocDamage(targ, attacker, take, point);
else

targ->client->lasthurt_loc = LC_NONE;
}

Nothing really complicated is happening here; all that occurs is a
check to make sure that the target is valid, it isn’t dead, the attacker is
valid, there is a valid amount of damage inflicted, and there is a valid
point of entry for your inflictor (the bullet). If all of these checks suc-
ceed, the variable that holds the current total damage, take, is assigned

131Implementing Locational Damage

to the result of the function call. If the checks fail, locational damage is
not applied. Instead, the lasthurt_loc variable is assigned the flag
LC_NONE. That should be it! Give your code a compile and run-through.
Test it on a few bots and see if you can make some headshots. It can
be quite challenging, especially when the bots move quickly. The
locational-damage code in action is pictured in Figure 4.5.

Summary
Hopefully, you’ve come away from this chapter with some knowledge
about the player and how it interacts with the Q3 world. By under-
standing how the player moves, you will be able to more efficiently
modify things like player speed, velocity, acceleration, and so on. This
will help if you ever decide to break the player up into multiple classes
within your mod, each class having different movement attributes.
Also, by working with locational-damage code, you have a better
understanding of how collision detection works in the world of Q3,
which is helpful when you are trying to visualize how the player’s
dimensions are represented.

I hope some of the code-research techniques I introduced to you in
this chapter will assist you in your further exploration of the code
base. In the next section of the book, you’ll push those methods even
further as you explore the interaction between server-side code, client-
side code, and user-interface code.

132 4. Manipulating the Player

Figure 4.5
A successful head-
shot on a Q3 bot

CHAPTER 5

Quake
Communication

In the first section of this book, you became acquainted with the Q3
code base. You also got to make a few modifications to things like

weapons and players. Now, you’re going to take a bit of a break from
coding so that you can get up to speed on what actually goes on
behind the scenes when a mod is created. In this chapter, I’ll give a
broader view of Quake III—not just as a game, but as a true Internet
application—and the reasons it is constructed in a modular fashion.

The Client/Server
Relationship
Although Q3 can be played in single-player mode, in which one
human takes on a contingency of bots, this is not the ultimate func-
tionality of the game. Where Q3 shines is in its capability to connect to
itself over a network, typically a large area network (LAN). A LAN is
simply a group of computers that can “talk” to each other. When a
computer is part of a LAN, it can share resources, such as files or a
single printer, with other computers on the LAN.

Computers can also be a part of a wide area network (WAN), which
consists of computers that span a large geographical area, but still
communicate with each other. The best example of this network is the
Internet, in which hundreds of thousands of computers are able to
“jack in” and gain access to resources such as Web sites, ftp servers,
news feeds, and so on. If you have a connection to the Internet on
your computer, you are most definitely participating in a WAN. Q3 can
also utilize a WAN for online playing capabilities, allowing players to
fight against one another even if they are separated by thousands of
geographic miles.

When computers are part of a network they are granted the ability to
run various types of applications on that network. For example, if you
spend any amount of time on the Internet you probably use an email
program to send and receive electronic mail and a Web browser to

134 5. Quake Communication

surf the Web. These are examples of client applications; that is, they
reside on your computer, or client, and make data requests to another
computer, the server.

As it happens, Q3 is also a client application. When your computer is
connected to a network and you launch Q3, you can search the net-
work for other Q3 games currently in progress. If you find one, you
can jump right in and start fragging
away. Alternatively, you can launch a
game of Q3 and set up a game your-
self, awaiting other players to join
you for a deathmatch. In this sce-
nario, Q3 acts as a server application—
that is, a network application
awaiting client connections so that it
can distribute data accordingly.
These abilities make Q3 a fully func-
tional client/server application.

Leaving Peering in the Past
The original Quake was id’s first attempt at implementing true
client/server architecture. With its DooM series, id had used a quicker
but less robust architecture, often referred to as the peer-to-peer model.
In a peer-to-peer network, a computer sends information to every
other computer on the network, as shown in Figure 5.1. Because this
model causes quite a bit of network traffic, it is better-suited for small
groups of computers; that’s why DooM allowed only a maximum of
four people to play simultaneously on a network.

In addition to boosting network traffic, peer-to-peer networks offer
less flexibility when it comes to actually running the game. For exam-
ple, all computers participating in a game of DooM had to be prepared
beforehand, with everyone starting at the same moment; there was no
way for a computer to jump in and join a game already in progress.
Even worse, if one player’s computer had a slower modem (say, a
9.6Kbps modem as opposed to a 28.8Kpbs modem), all the computers
in the game would be slowed to that speed.

As Quake was being developed, the need for a client/server model was
evident. Using client/server architecture, one computer would act as

135The Client/Server Relationship

NOTE
Even when you launch Q3
in single-player mode, it
still acts as a client/server
application because you
are technically connecting
to your own computer.

the server, or host, doing nothing but distributing data to the clients
that connected to it. Then, as clients joined, they would receive infor-
mation from the host as to what was happening in the game—who
had which score, who was shooting whom, and so on. The only thing
the client needed to do was sit back, receive the updates, and play
away. This architecture would result in a lot less network traffic,
because clients only ever talked to one computer: the server (as shown
in Figure 5.2).

As an added bonus, the client/server model allowed for clients to
freely join and leave at will, because they were no longer responsible
for “explaining their data” to each and every other computer on the
network. A client could connect, and leave it to the server to notify
the other computers on the network. Likewise, when a client discon-
nected the server could send an appropriate message to the remain-
ing clients. This, clearly, was a much better model. And so, Quake was
built, the players rejoiced, and on the seventh day, id rested.

There was one problem, however: latency.

136 5. Quake Communication

Figure 5.1 A peer-to-peer network

When a Quake server needs to send an update to a client, it wraps all
the various bits of data that are important into something called a
packet, which is transmitted over the network. A packet can contain
anything, such as a player’s location, his currently selected weapon,
what level he’s on, how much health he has, and so on. As more data
is needed, the size of the packet grows. There is also some additional
overhead to take into consideration, such as information about when
a packet starts and when a packet ends. As a result, packets can
become very large—and as packet size grows, so too does the amount
of time it takes to deliver it. If the delivery time exceeds an acceptable
amount, a delay, or pause in game time, occurs. That is, the client
expects data from the server so that it can update the game, but the
data does not arrive quickly enough. On the client’s end, the result is
delayed or jerky movement, and the seemingly random appearance
and disappearance of missiles. Players can even be killed without ever
seeing an enemy! The term used to describe this delay in time experi-
enced from the client to the server is referred to as latency. Many play-
ers have labeled the effects this delay produces in the game as lag.

137The Client/Server Relationship

Figure 5.2 A client/server network

Lag in a Nutshell
Imagine there are two people playing a game of Quake on a network.
Player A is on a high-speed connection to the Internet, so his com-
puter can talk to the server in tens of milliseconds. Player B is on a
28.8Kbps modem, which receives data only at about 3.6Kbps. In a cur-
rent frame of game time, Player A is standing across the room from
Player B. The server updates both players, telling them what’s going
on, who is standing where, and what is happening; when both updates
arrive, the two players see that they are facing each other.

Then, Player A decides he is going to fire a rocket at Player B, so he
selects his rocket launcher, aims at Player B, and fires. The Quake
server begins sending out updates to all the clients, alerting them that
Player A is firing a rocket at Player B, so they can update their anima-
tions and sound effects accordingly. Player B, at that moment, experi-
ences a “hiccup” in the network connection. It could stem from any
kind of problem, like some bad data being received on the modem, or
just a poor ping to the server. Regardless, the packet holding the data
that says “Player A is firing a rocket at Player B” does not arrive.

138 5. Quake Communication

Losing Data

Thanks to the protocol that Q3 uses to transmit packets in a
game, User Datagram Protocol (UDP), packets can indeed be
lost or dropped en route from the client to the server.
Despite this glitch, UDP was chosen because less overhead is
required to transfer UDP packets, and speed is definitely of
the essence in a game like Q3.With the alternative protocol,
Transmission Control Protocol (TCP), a true established con-
nection between the client and server is required, and packets
that are lost are also re-transmitted; coding around these fea-
tures makes for an unnecessary headache.TCP is more com-
mon in applications like FTP (File Transfer Protocol) and
HTTP (Hyper-Text Transfer Protocol), which are used in com-
mon Internet applications like file-sharing programs and Web
browsers, respectively.

Because Player A has a fast connection to the Quake server, he sees the
results of his attack instantly (the missile moves pretty fast in Quake!);
his rocket travels the length of the room in a split second, smacks into
Player B, and blows him up into tiny gibs. In reality, this involved mul-
tiple packet updates: one during the firing of the gun, possibly several
during the rocket’s traversal of the room, and yet another to indicate
that Player B was hit and killed. Meanwhile, Player B experiences
every online player’s worst nightmare: lag. He is frozen while his com-
puter awaits its next update packet from the server to tell his game
what is happening.

Finally, the network hiccup resolves, and Player B’s connection
smoothes out long enough to receive a packet update from the server.
Because several seconds have gone by, many packets were lost; as a
result, Player B’s game simply picks up from the most recent packet it
receives. And guess what packet it gets next? “Player B was killed by a
rocket fired by Player A two seconds ago.” Suddenly, Player B keels
over dead in the game, hit by a rocket he never saw or heard coming.
There was never even a chance to get out of the way! Player B ends up
very frustrated because his Quake game had no way of knowing in time
what was happening on the server.

Although this is a worst-case scenario, it can happen. The reality of it
is that even tiny differences and small delays are enough to throw a
client’s synchronization off, forcing game play to be jerky, unpre-
dictable, and difficult to maneuver through. Even if Player B never
experienced a network hiccup, and continued to receive a steady
stream of updates from the server, his modem’s limitations wouldn’t
physically allow the same number of updates per second as Player A’s
did. Therefore, the game would always tilt in the favor of Player A,
who gets a smooth, clean view of the world.

The Quest for Low Latency
The root of the lag problem was that Quake was acting as a dumb client,
meaning that every single thing that happened in the game would be
transmitted through the server. To resolve this problem, the program-
mers at id devised a way to pass only the information that was
absolutely necessary through the server, and have the player’s game,
on the client-side of things, handle the rest. For example, suppose a
player fired a rocket into the air at a given angle. Under the old

139The Client/Server Relationship

model, the client would send 10 updates a second to the server saying,
in essence, the following:

1. A rocket has been fired.

2. A rocket has moved to here.

3. Now it is here.

4. Now it has moved to the right a bit.

5. Now it has moved up a little.

6. Now it is going to move a bit farther.

7. Now it has moved even farther still.

Sheesh! What a waste of bandwidth! Wouldn’t it make more sense for
the client to say the following:

1. A rocket has fired from X position and at Y angle.

If the client had a general understanding of how missile physics works
in the game, it could theoretically take a starting position, a firing
direction, and be able to calculate everything else on its own. By inter-
nally handling all that extraneous data, precious bandwidth is con-
served; this can then be used for more crucial communication. The
act of the client getting a simpler picture of the game and filling in
the rest of the data on its own is called interpolation. Because of the
success of this new technique, interpolation went on to form the basis
of client/server development for Quake II and, ultimately, Q3.

The Process of Updates
The interpolation code has been reworked, rewritten, and revised
many times since the original Quake hit the shelves. Q3 uses the best of
all the ideas that came out of experimenting with Quake and Quake II.
The end result is a very efficient system of transmitting data and mak-
ing guesses as to what is happening around the player.

When a Q3 server is active, its responsibility is to deliver the game’s
state to all the clients participating in the game. It does this by send-
ing updates, often called snapshots, to the clients at regular intervals.
These updates contain information that tells each client where it is
and what it is doing. The updates also include information on the
other players on the server, and what sneaky actions they are up to.
This is what is known as an authoritative update ; in other words, the

140 5. Quake Communication

server is making the final
decision as to what is hap-
pening in the game (see
Figure 5.3).

When the client receives
an authoritative update, it
responds by adjusting
everything to match the
server’s view of the world,
such as moving camera
angle, positioning other
players, and spawning
client-side events that
should be happening in
the game at that time.
Control then moves momentarily to the client so that it can look at
localized information specific to its own player, such as whether the
player has pressed any controls (forward, back, jump, and so on) that
would affect its movement. During this brief interval (usually less than
one second), the client-code assesses any commands that the player
has issued and uses this information to interpolate where the player
will move to. This is known as prediction (see Figure 5.4). This stage

141The Client/Server Relationship

NOTE
Technically, the original Quake never
had the capability to interpolate.
Because it was designed as a full
dumb client/server model (the client
sends everything happening back to
the server with each update), it never
contained any code to make guesses
or fill in missing data.When id
Software began the task to smarten
up the Quake client, they broke the
project out into a completely sepa-
rate application, dubbed QuakeWorld.

Figure 5.3 The authoritative
update

allows the client to offset some of the data transmission needed to
keep the server in constant sync. Instead, it creates a sort of pseudo
synchronous state; the client has about a pretty good estimation of
what is going on, with a small margin of error.

When the client has interpolated all the moves and events that the
player will see, it sends the important parts of that data back to the
server. The important parts are the non-predicted, real movements
and actions that were entered into the game by the player, called
pmoves (remember all the pmove research you did back in Chapter
4?). The server knows to trust these updates as accurate, because it is
handling an individual pmove for each client involved in the game.
All the other predicted information is kept separate from the update
packet (see Figure 5.5).

When the pmove update completes, the server looks at all the updates
from each client, reorganizes them, and distributes a new snapshot of
the game to the clients, thus starting the process over again. Because
the client already had predicted information from the second stage,
there is an expected adjustment as each authoritative update comes in
from the server. This is where the phrase “The Server is God” comes
from; no matter what the client truly believes is happening in the
game at any one time, the server will be sure to make the final call.

Knowledge of the client/server model and how it applies to Q3 is
essential for developing mods. By understanding what data is authori-

142 5. Quake Communication

Figure 5.4 The prediction

tative and must be sent to and from the server, you can make judg-
ment calls as you develop your code. It will become easier as time goes
on for you to know what data can safely be predicted, and not affect
the outcome of the game (much) if it is overwritten by data sent from
the server.

Now that you have an understanding of how the communication
between a Q3 client and server works at the network level, let’s take a
look at the communication between the three modules of Q3’s code,
game, cgame, and ui.

Bridging game,
cgame, and ui
The Q3 code base is broken out into three modules. There is the game
project, which deals with all the server-side logic. The cgame project
handles the client-side aspect of things, such as sounds, graphical
events, and such. Finally, there is the ui project, which allows for the
support of the user interface, including menus. You took a brief look
at a list of game and cgame files in Chapter 2; here you’ll take some time
to see what role each of these modules plays.

143Bridging game, cgaame, and ui

Figure 5.5 The pmove update

The Server Is God
The Q3 server-side module of code, or game code, has the largest
responsibility of all three parts. Because you have been working almost
exclusively with game code, you should have a pretty good understand-
ing of what it is doing under the hood; to reiterate, however, the game
code is responsible for understanding the rules of the game being
played. For example, it knows that Capture the Flag differs from pure
deathmatch in that there are teams, different spawn points, two flags
that must be captured and returned, and so on. The game code knows
how each weapon behaves, and how players interact with the Q3
world. In essence, the game code is ultimately responsible for the over-
all behavior of Q3.

The role of the game code extends beyond simply dealing with entities,
rules, physics, and such. It is also responsible for dealing with the fun-
damentals of client/server technology. Because the actual core of mak-
ing data connections from a Q3 client to a Q3 server is hidden away in
the 3D engine code, the client/server logic is implemented in a much
simpler layer—but it is no less important. In theory, it must be able to
handle the connection and disconnection of players at any given time
within the lifespan of the server. When new players connect to a Q3
server, functions in game handle the addition of the player to the level,
the assignment of various attributes to that player (such as name,
model, skin, and so on), and the actual spawning of the player entity
within the world. The game code also maintains functionality to allow
clients to disconnect from the server, cleaning up any left-over data
and properly removing their appropriate variables from Q3.

144 5. Quake Communication

NOTE
As I stated earlier, even though you technically have four pro-
jects in VC++ while working with the Q3 source, the q3_ui
and ui projects are both user-interface projects.The q3_ui
project is used for the interface to plain Quake III Arena,
while the ui project is used for the Team Arena Expansion
Pack.When I refer to the “ui project” from here on in, I’ll be
talking about the files found in the q3_ui folder.

Because all the rules for client connection, disconnection, and game
play reside within game, it makes sense that game code has the ultimate
say in what happens to each player within the game. As you will see
shortly, the cgame code assists the game code by handling as many of the
Q3 client-side events as possible, thus diminishing the amount of
bandwidth required to play a game online. Because this separation of
logic exists, so too does the possibility for a loss of synchronicity to
occur; in other words, there is a possibility that the data on the client-
side can begin to differ from data being seen on the server.
Ultimately, something must make the final decision in this situation,
and it is the code in game that is assigned this responsibility. So, game
code has the added capability to maintain consistency between what it
sees is happening in a game, and all the clients that are participating
on that server.

The Main Event
The client’s code responsibility is two-fold. First and foremost, it is
responsible for handling interpolated states of the entities that are in
the vicinity of the player. As discussed earlier, interpolation is the key to
keeping bandwidth usage low between the client and server when play-
ing a network game, because less data has to travel across the pipe (oth-
erwise known as a network connection). Again, consider the example
of a missile being fired by a player. In Q3, the cgame code has an under-
standing of how rocket physics behave, so if the server can send a sim-
ple tiny packet acknowledging the position and direction a rocket was
fired, the cgame code can handle the movement of the rocket between
server updates. In this manner, cgame assists in prediction.

cgame has another important role: spawning client-side events that
cause visual and audible occurrences within the game. As you know,
entities make up the backbone of all objects that exist in Q3; a player,
a rocket, an explosion, and a box of ammo all represent entities.
Entities exist on both game and cgame, and they maintain their syn-
chronicity by passing only the most important data possible between
the two modules. A good example of this is the struct entityState_t, a
member of the gentity_s struct. Values in entityState_t are communi-
cated between the cgame and game modules (see Figure 5.6), so that a
certain amount of synchronicity can be maintained in two separate
areas of code. Remember, because Q3 is an online playable game, the

145Bridging game, cgaame, and ui

cgame code and the game code can physically exist on two different
computers, but they still must maintain data.

Because cgame has a list of entities that match the entities that exist in
the game code, and because certain data is relayed between the two
modules, there must be a way for the game code to alert the cgame code
that things are happening to the entities. For example, sound effects
need to be played when missiles whip past the player’s head, special
visual effects have to be applied to players who carry the Quad
Damage powerup, icons need to be drawn up on the screen when a
player makes an impressive attack, and so on; these are all examples
of events, and they are handled in cgame.

Some events are shared between the cgame and game code. For exam-
ple, when the game code sends an update to a client saying a certain
player has died, it initiates the player’s death event. On the client side
of things, the cgame code creates the visual explosion and sends the
gibs of player body parts flying across the screen. In this respect, both
the game and cgame know what’s going on: A player is dying.

There are also events that are
exclusive to cgame only. For
example, when a player in Q3
presses the Tab key, the score-
board appears on the screen.
Here, the player can look at
where he ranks, how many
frags he’s scored, what his cur-
rent ping is, and possibly more
info, based on the game. If the
player is looking at the score-

146 5. Quake Communication

Figure 5.6
Communicating
entityState_t between
cgame and game

NOTE
Ping refers to the amount of time
a small packet takes to complete
a round trip from a client to a
server. It gets its name from the
sonar pings that submarines use
to detect how close they are to
objects underwater.

board (or not), there is no need to communicate that to the server-
side code; it has no bearing on any other logic that the game code
must make decisions around, and therefore, is a prime example of an
event that is exclusive to cgame only.

In summary, cgame both assists in the prediction of events occurring
around the player and handles client-side events by maintaining a nec-
essarily small but important segment of data between entities on the
client and server. You will soon learn that many changes to game will
ultimately lead to changes in cgame (otherwise, game changes are fairly
restrictive in what they can achieve). In Chapter 6, “Client Program-
ming,” you’ll get the chance to dive into cgame in greater detail.

Interfacing with the User
The user interface code establishes how you interact with the game. For
example, the mouse and keyboard can be assigned certain functions
in the game; the mouse, for example, can be used to aim and fire
your weapon, and the keys of the keyboard can be used to move,
switch weapons, and talk to other players. All these functions are
established through bindings in the user-interface (ui) code. The ui
files are responsible for building this interface, which allows you to set
your particular configuration. It does this by first knowing the controls
necessary to present this interface to you, and then by having an inter-
face layout into which it can place these controls.

If you’ve ever used a form on the World Wide Web, you’re probably
already familiar with certain types of controls, such as the text box
into which you can type characters (such as your name), or the option
button (a circle with a dot in it), which you can click to select or dese-
lect an option. Additionally, you can use checkbox controls, drop-
down menus, and so on, all of which enable you to enter data into the
Web form.

Similarly, the Q3 user interface features basic controls that let you alter
game options and update your configuration. For example, one option
button in the ui enables you to specify whether you want your weapons
to auto-change when you pick them up (a yes/no question). Addition-
ally, the ui features a textbox control into which you can enter your
player’s name, and a slider control that allows you to specify how
sensitive your mouse is to movement. In addition to playing with the

147Bridging game, cgaame, and ui

controls already included in the ui to build your own custom interface,
you can take it a step farther and define your own controls!

An example of how the ui code can be modified to change the way
the player interacts with Q3 is demonstrated in the code differences
between standard Quake III Arena and the Team Arena Expansion
Pack. Take a look at Figure 5.7, which shows Q3’s in-game menu; note
that the main menu is located in the center of the screen, with the
choices listed down the middle. Then, check out Figure 5.8, which is
the in-game interface from the Team Arena Expansion Pack. Wow!
Even though it is the same game, the user-interface code allows the
layout to completely change. The controls are laid across the top of
the screen in a completely new fashion, and some new choices, such
as About and Call Vote, are included.

This is just one example of what you can change by fiddling with the
user-interface code. You’ll toy around with this in Chapter 9, “UI
Programming,” which can be found on the CD-ROM.

148 5. Quake Communication

Figure 5.7 The standard Quake III in-game interface

Modifying Variables on the Fly
When a Q3 game runs, certain variables that define the behavior of a
given session are initialized with specific defaults. A good example is
the fraglimit variable, which tells Q3 what score players need to
achieve in order to cycle to the next map. During the setup of a stan-
dard Q3 server, the fraglimit variable is set to 20 by default; if no
other options are changed, only 20 frags are required to cause the
level to change. Q3 allows that variable to be altered, either before
setup or during the game in progress, through the use of console vari-
ables (Cvars). Cvars are simply variables that can be typed into the
console to read and write variables directly into Q3. So if the host of a
Q3 game decides to change the maximum score required to change
the level to 40, he could do so simply by typing

\fraglimit 40

149Bridging game, cgaame, and ui

Figure 5.8 The Team Arena Expansion Pack in-game interface

In this case, the Cvar fraglimit is sent a new value to the game code
(40), and the server-side logic can make the update appropriately.
Alternately, one could set fraglimit before the game even launches
by typing

quake3.exe +set fraglimit 40

As you can see, this is the same format as what you have been using to
launch your modifications throughout this book; you are setting Cvars
that tell Q3 the directory from
which to load game logic.
Cvars vary from variable to
variable; some take effect
right away, while others
require a restart of the map
currently being played.
Some Cvars are read-only,
existing simply to retrieve
data for the user; an exam-
ple of this type of Cvar is
version, which prints out the
current build number of Q3.
Some Cvars are module spe-
cific, such as
cg_drawCrosshair, which is a
client-side Cvar that tells Q3
which style of crosshair icon
to draw in the center of the
screen.

The Quake
Virtual Machine
Now that you have a solid handle on game, cgame, ui, and the concept
of console variables, one question remains: How do they all tie
together? The answer is that the three modules communicate with
each other through a common interface, the Quake Virtual Machine
(QVM). This QVM then handles the relaying of communication

150 5. Quake Communication

TIP
To get a list of all the Cvars in Q3,
press the ~ key to open the con-
sole, and type the following:

cvarlist

A flood of variable names (and
their corresponding default values)
should appear in the console.To
scroll through them, use your Page
Up and Page Down keys.To locate a
specific variable, type the first few
letters of it and press Tab; the con-
sole should try to complete the
name for you, or present you with a
list of names that come close.

between the three modules back to the main Q3 executable (the guts
of the 3D engine).

Getting the Best of
Both (Quake) Worlds
To understand why communication is filtered through the QVM, you
must examine decisions made during evolution of Quake’s original
code base. During the development of Q3, John Carmack, lead pro-
grammer at id, was gauging the importance of certain factors that
were implemented in the previous incarnations of Quake. He liked
having a simpler, lighter version of an interpreted C language that he
could use to build the logic for his game, as was the case with his cre-
ation of QuakeC. The drawback to QuakeC was that it wasn’t as fast as
he would have liked.

In the creation of Quake II, Carmack felt that breaking the game logic
out into a binary Win32 DLL was a great way to modularize the code,
but that, too, had drawbacks. For one, it was not very secure. Any com-
petent Win32 C programmer could devise a way to hook the DLL to
other DLLs, which could ultimately cause some serious damage to the
computer from which they were being executed. The other drawback
involved portability, meaning a different DLL would have to be built
for each platform on which Quake II was released.

The solution to these problems was to develop a way to modularize
the code by allowing it to be compiled down into a new format—one
that was secure, fast, and portable. Carmack announced that the solu-
tion would be implemented as a Quake Virtual Machine. That meant a
programmer could develop and test a mod using the standard Win32
DLL format. Then, when it came time to release, he would compile
the finished source down into a new native format, a QVM file, with a
tool that Carmack developed called q3asm. This resultant QVM file
would be able to run on any platform that Q3 ran on—Windows,
Linux, or Macintosh—without a need to be recompiled. In addition,
QVM files had access only to their own private memory space, and
would not be allowed to make any external system calls to the com-
puter on which it ran; thus, the security risk was eliminated.

151The Quake Virtual Machine

Build Your Own QVM
Building a QVM is simple, so let’s take a moment and build one now
using the mod you created in Chapter 4 for implementing locational
damage. Here’s how:

1. Click your Windows Start button and choose Run.

2. In the Run dialog box, type command and press the Enter key
on your keyboard.

3. The command prompt opens on your desktop (this is the same
prompt you have been
using to launch Q3 with
your mod). To change to
the directory in which
your mod source is
stored, type the following
line and press Enter:

cd \quake3\code

4. From within the code directory (or folder), type dir and press
Enter to view a list of files in that directory. Several files that
end with .BAT should appear, such as all.bat, cgame.bat,
game.bat, q3_ui.bat, and so on. These are batch files, which you
can execute by simply typing their names.

5. Type all.bat and press Enter. A stream of data should fill your
command-prompt window, indicating that the various modules
of Q3’s source are compiling. The difference now is that,

152 5. Quake Communication

NOTE
If Windows 2000 or Windows XP
is your development platform,
type cmd instead of command
in the Run dialog box.

TIP
If you have more than one hard disk, you may need to
change to the correct drive before typing the command
used for changing directories. For example, I store my mod
source in my computer’s C: drive, but my command
prompt starts on the D: drive. To change drives, simply type
the name of the drive you want and press Enter. For exam-
ple, to change to the C: drive, type C: and press Enter.

instead of Win32 DLLs being generated, you are creating Q3
QVM files. When the process is complete, you should see the
following:

0 total errors

code segment: 239092

data segment: 11712

lit segment: 20944

bss segment: 508824

instruction count: 78148

Writing to \quake3\baseq3\vm\q3_ui.qvm

Writing \quake3\baseq3\vm\q3_ui.map...

6. Using Windows Explorer, browse to the directory
\quake3\baseq3\vm. In it, you should see some brand new QVM
files, along with some additional MAP files.

7. Select the new QVM files, open the Edit menu, and choose
Copy.

8. Browse to your MyMod folder.

9. In MyMod, locate the qagamex86.dll file and delete it. Don’t
worry! You can always recompile it later if you want to. This
deletion is just to prove that you’ll be running your Mod with-
out the help of a DLL.

10. Still in MyMod, create a new folder called vm.

11. Open the vm folder, open the Edit menu, and choose Paste.
The new QVM folders are pasted into the vm folder; you should
now have a folder tree that reads something like
\quake3\MyMod\vm\, with three files in it: cgame.qvm, ui.qvm,
and qagame.qvm.

12. In the command-prompt window, type the following to return
to the root \quake3\ folder:

cd \quake3\

13. In the root quake3\ folder, type the following:

quake3.exe +set fs_game MyMod +set sv_pure 0 +map q3dm1

Here, you are adding the sv_pure argument and setting it to 0; this
launches Q3 in a non–pure server mode. That means Q3 is being told
that some files necessary to run this game will differ from the stan-
dard Q3 install, and can be located outside of a PK3 file.

153The Quake Virtual Machine

After launching Q3 and playing around a bit, you should notice that
your changes from the locational damage mod are all still working as
expected, yet no DLL exists for the changes to load from. That’s
because all the data for your mod is now wrapped nicely within the
QVM files. If you had Q3 running on another platform, such as Linux
or Mac, you could copy those QVM files right over and be ready to go
instantly—without making code changes or recompiling. The QVM is
definitely a very convenient way of handling mod development, and I
encourage you to use it!

Summary
Data communication is the key that unlocks many of Q3’s secrets.
Having spent some time on the fundamentals of how the various com-
ponents interlock, you should now have a better understanding of why
Q3 was broken out into a modular format. You should also have a
much clearer picture of each module’s responsibilities, and what tasks
each is best suited for.

You’ve spent a good deal of time analyzing game code up to this point
in the book; now you’ll turn your attention to the modules you
haven’t dealt with as much, beginning with learning more about cgame
code and how it can be modified.

154 5. Quake Communication

TIP
PK3 archives, which are used to house all the various
files needed to run Q3 properly, are in actuality noth-
ing more than renamed ZIP files. If you want to peek
at the contents of a PK3 file, just rename the file to
have a .ZIP extension, and then open it in your
favorite compression utility. Don’t forget to rename it
back to a PK3 when you’re done snooping!

CHAPTER 6

Client
Programming

Now that you know the ins and outs of the three main segments of
Q3’s code, let’s start tinkering in the client code, something rela-

tively untouched up to this point. As you will soon see, the client code
is vital to mods. I hope to impress upon you the idea that the client
and game code do indeed go hand in hand, and you will almost defi-
nitely be doing development in both projects from here on in. We’re
going to speed up very quickly, but trust me—this is the chapter
where things really get exciting!

Revisiting Weapons:
Chain Lightning
You spent a good deal of time digesting weapon code in Chapters 2
and 3, but one weapon was left out, and for good reason: the beam
weapon. Beam-weapon implementation in Q3 tightly integrates the
game and cgame code, so it would have been pointless for you to do any
kind of modification to it that early. Now, however, you should be fully
prepared to tackle the beam-weapon modification you are about to
implement.

One of the coolest weapon modifications I have ever played around
with is the chain-lightning gun, which is a simple modification to the
standard lightning gun with one minor difference: When a chain-
lightning gun is fired, a standard stream of lighting arcs toward the
target. If any other targets are near, lightning then continues to arc
toward the new target. The beam continues to hop from target to tar-
get, cascading damage across all of them. Let’s take a look at what it
will take to implement this change.

First, there is no function in Q3 that matches the type of logic you
want: the ability for an attacked target to test for other targets in light-
ing range. You will have to write that function into the game code.
Secondly, there is no visual way in Q3 to draw a beam of energy
between two arbitrary points. This is another function you will have to

156 6. Client Programming

provide, and because it
involves a visual effect, the
code will be implemented as
an event in the cgame code.

You’ll write the logic to find
new targets first, so start by
opening up g_weapon.c and
scrolling down to about line
660. You should find the start
of the function
Weapon_LightningFire. You’ll
need a way to hold the all the
potential targets that are
found within the vicinity of the
primary target, and an array
seems the obvious choice. Above the definition for
Weapon_LightningFire, add the following line of code:

static gentity_t *chain_targets[MAX_CLIENTS];

It will be a static array, which means it will be visible only to this partic-
ular file to conserve memory (because it is already a global variable).
Typically, you want to use as few global variables as possible, but in this
case it’s necessary. You can see that it’s an array of type gentity_t,
which is the same type of struct that holds all the entities in the game.
After you have your array declared, go ahead and type in the code
below. It’s a hefty function, so I have numbered the lines so you can
follow along more easily (remember, you don’t have to type the num-
bers in).

1. void ChainLightning_Fire(gentity_t *ent, gentity_t *target) {

2. int i, j, damage, currentTargetTotal;

3. qboolean isChainTarget;

4. vec3_t dir;

5. gentity_t *tent, *oldtarget;

6. float tent_dist, targetlength;

7. trace_t tr, targettr;

8.

9. damage = 8 * s_quadFactor;

10. currentTargetTotal = 1;

11. chain_targets[0] = target;

157Revisiting Weapons: Chain Lightning

NOTE
The Team Arena Expansion pack
for Q3 uses a new event,
EV_LIGHTNINGBOLT, which creates a
similar effect of lightning jumping
from one point to the next.
Because it’s important that you
understand everything that goes
into the creation of an event,
however, this section shows you
how to custom-build a new event
instead of just copying and past-
ing EV_LIGHTNINGBOLT.

12.

13. while (1) {

14. oldtarget = target; // save original target

15. target = NULL; // clear target pointer for reuse

16.

17. for (i = 0; i < MAX_CLIENTS; i++) {

18.

19. tent = &g_entities[i];

20. isChainTarget = qfalse;

21.

22. // is the entity in use?

23. if (!tent->inuse)

24. continue;

25.

26. // is the entity the attacker?

27. if (tent == ent)

28. continue;

29.

30. // is the entity the current primary target?

31. for (j = 0; j < currentTargetTotal; j++) {

32. if (tent == chain_targets[j]) {

33. isChainTarget = qtrue;

34. break;

35. }

36. }

37.

38. if (isChainTarget)

39. continue;

40.

41. // is the entity too far for a standard light-

ning beam to reach?

42. VectorSubtract(oldtarget->r.currentOrigin, tent-

>r.currentOrigin, dir);

43. tent_dist = VectorLength(dir);

44. if (tent_dist > LIGHTNING_RANGE)

45. continue;

46.

47. // does a valid trace occur between our primary

target and the new target?

158 6. Client Programming

48. trap_Trace(&tr, oldtarget->r.currentOrigin,

NULL, NULL, tent->r.currentOrigin, ENTITYNUM_NONE, MASK_SHOT);

49. if (tent != &g_entities[tr.entityNum])

50. continue;

51.

52. // all checks pass, we have a new target

53. target = tent;

54. targettr = tr;

55. targetlength = tent_dist;

56. }

57.

58. if (!target)

59. break;

60.

61. if (!target->takedamage)

62. break;

63.

64. chain_targets[currentTargetTotal++] = target;

65.

66. // Use tent to create the temporary lightning event

entity

67. tent = G_TempEntity(targettr.endpos, EV_MISSILE_HIT);

68. tent->s.otherEntityNum = target->s.number;

69. tent->s.eventParm = DirToByte(targettr.plane.normal);

70. tent->s.weapon = WP_LIGHTNING;

71.

72. // Deal out the damage

73. G_Damage(target, ent, ent, dir, targettr.endpos, dam-

age, 0, MOD_LIGHTNING);

74.

75. // Signal for the lightning event

76. tent = G_TempEntity(oldtarget->r.currentOrigin,

EV_LIGHTNINGARC);

77.

78. // Set the destination of the arc for the client event

to pickup

79. VectorCopy(target->r.currentOrigin, tent->s.origin2);

80. }

81. }

159Revisiting Weapons: Chain Lightning

This is quite a function, so let’s break it down part by part. After get-
ting all your variables declared, the first thing you do is set the damage
parameter (line 9), or the amount of damage dealt with each arc of
lightning that contacts a target. Because the original
Weapon_LightningFire sets the damage to 8 multiplied by s_quadFactor,
you can do the same here. You also want to create a variable to hold
the total number of targets being hit by chain lightning; you can do
that with currentTargetTotal (line 10). Start by setting it to 1, because
you already have one target when this function is called. As well, you
use the first index of the static gentity_t array to hold the current tar-
get being hit—the very same target variable that is passed into this
function (line 11).

You may have seen while(1) before, littered throughout the Q3 code.
This is a tricky bit of code to which you should pay careful attention.
Typically, a while loop continues to execute as long as the logic in
parentheses evaluates to true. Because the only bit of code in paren-
theses is the number 1, you’re looking at an infinite loop—a chunk of
code that repeats forever. This is not a good thing, unless you enjoy
locking up your computer. In this instance, the infinite loop is han-
dled carefully, so that it is broken when the proper indicators are
flagged. Bear in mind that this function, ChainLightning_Fire, is con-
structed in a manner to continually look for new targets once an ini-
tial target is hit. For this, an infinite loop is exactly what you want:
constant updates for new targets. Just know that when you reach this
code, the loop will begin, and it is your job to stop it.

As the loop begins (line 13), you assign oldtarget a value equal to the
current target, and then clear the target variable by setting it to NULL.
Next, you begin to loop through all the clients in the game; the easi-
est way to achieve this is to loop from 0 to the global variable
MAX_CLIENTS (line 17). In this loop,
you assign a temporary variable
called tent equal to the entity found
in the global entity array, g_entities.
Note the usage of the address-of
symbol (&), which means tent is
physically that entity! If you change
tent now, you’ll be changing the
actual entity in the game!

160 6. Client Programming

NOTE
The functions that breathe
life into the chain lightning
gun featured in this chapter
are based on code created
for the MaxCarnage mod,
created by Chris Hilton.

Once you have your temporary entity, you need to perform some
checks on it to see if it is a valid player entity capable of being hit by
an arc of chain lightning. The first check, if (!tent->inuse), checks
whether the entity is not currently being used by Q3 (line 23). If it
isn’t, the continue keyword causes control to be passed to the next iter-
ation of the loop, skipping the remaining checks. If it passes the
check, however, it then looks to see if the entity equals the player fir-
ing the gun, shown with if (tent == ent). You certainly do not want
the chain lightning to arc back to the player firing the gun, so if this
check is true (line 27), the loop skips to the next entity as well.

Next, a check is made to see if the temporary entity equals any cur-
rent target that is already being hit by chain lightning. The idea is that
you will keep track of a list of targets already being hit by lightning, so
that they can no longer be a valid target searched for at the end of the
chain. If you’re confused, take a look at Figure 6.1. The chain lighting
path on the left is correct; it leaps from target to target, never hitting
the same player twice. The chain on the right, however, is incorrect,
because the first target is also the third target in the chain, a behavior
you want to avoid.

Remember that you’re keeping a list of all players being hit by assign-
ing them a spot in chain_targets. Because this is your first trip
through the loop, the array only has one index, 0, which points to the
original target. Soon you will see how this array grows, but for now,
execute the loop starting at 0 and ending one less than the value of
currentTargetTotal (line 31). Within the loop, check whether tent is
equal to the current entity in chain_targets (at that index of the
loop). If it is, set isChainTarget to true (actually, to qtrue, because it is

161Revisiting Weapons: Chain Lightning

Figure 6.1 The correct (left) and incorrect (right) execution of chain lightning

qboolean), and break out of the list of chain_targets with break. On
the very next line, look at the value of isChainTarget (line 38); if it is
true, it means the temporary entity is already a target being hit, so
move to the next entity with the continue keyword.

The next bit requires a little vector math. Don’t worry! You’ve done
fine working with vectors before; this is no different. You will want to
create a distance vector that is equal to the distance between the last
target in the chain (remember, you set it to oldtarget), and the cur-
rent temporary target, tent. Do that with a simple call to
VectorSubtract:

VectorSubtract(oldtarget->r.currentOrigin, tent->r.currentOrigin, dir);

Here, you are subtracting the distance between oldtarget and tent,
and saving the results in dir. Then, you convert that vector into a
scalar of distance by passing it to the VectorLength function:

tent_dist = VectorLength(dir);

The new distance measurement is saved in tent_dist (line 43). Then,
test to see if test_dist is greater than the lightning gun’s standard
range, which is saved in a global variable called LIGHTNING_RANGE. If it
is, this target is no good, so move to the next entity with good old
continue.

Trace Your Path
The next test the temporary entity must pass is whether a valid light-
ning bolt could hit it, based on other entities or obstructions that may
lie within the level between the two targets. You certainly don’t want
to hit a target that’s on the other side of a wall, because lightning
can’t pass through walls in Q3. You perform this check with a call to
trap_Trace. As you have seen time and time again, trap_Trace is a sys-
tem call function:

void trap_Trace(trace_t *results, const vec3_t start, const vec3_t

mins, const vec3_t maxs, const vec3_t end, int passEntityNum, int con-

tentmask)

trap_Trace is a function of void type, which means it returns nothing.
The reason it returns nothing is that it actually assigns the value of
what it finds to the first input parameter, results, which you can see is

162 6. Client Programming

passed in as a pointer. results is a new type of variable, trace_t, which
you will examine in a second. The second parameter is a vector at
which to start the trace. The third parameter is a mins value, followed
by a fourth parameter, a maxs value. This should spark some memory
of bounding boxes, which were discussed in Chapter 4. This means
you’re not restricted to just tracing a line from one target to another;
you could trace the entire width of a bounding box extended along
that line. Pretty cool, eh? (Those guys at id aren’t game developers for
nothing!) The fifth parameter is an ending vector, where your trace
will stop. The sixth parameter is slightly obscure; it references an inte-
ger called passEntityNum, which you can use to ignore a specific entity.
In this case, you ignore nobody, and can do that by passing in a global
variable called ENTITYNUM_NONE. The final parameter is an integer that
represents a content mask. In a nutshell, you can hide or “mask” your
trace from certain entity types, meaning if the trace hits an entity
found within the mask, it will stop tracing. MASK_SHOT is a global vari-
able representing solid walls and other players, living or dead. Table
6.1 shows the current masks in Q3 and their definitions.

163Revisiting Weapons: Chain Lightning

Table 6.1 Content Mask Flags

Name Types Included in Mask

MASK_ALL Everything and anything

MASK_SOLID Solid walls, floors, and roofs

MASK_PLAYERSOLID Everything in MASK_SOLID, plus living players or
players’ bounding boxes

MASK_DEADSOLID Everything in MASK_SOLID, plus players’ bounding
boxes

MASK_WATER Water, lava, or slime

MASK_OPAQUE Everything in MASK_SOLID, plus slime or lava

MASK_SHOT Everything in MASK_SOLID, plus players or dead bodies

When all the parameters are passed into trap_Trace, if a valid entity is
hit, it is returned in a trace_t struct, which is defined as follows:

typedef struct {

qboolean allsolid; // if true, plane is not valid

qboolean startsolid; // if true, the initial point was in a

solid area

float fraction; // time completed, 1.0 = didn’t hit any-

thing

vec3_t endpos; // final position

cplane_t plane; // surface normal at impact, transformed

to world space

int surfaceFlags; // surface hit

int contents; // contents on other side of surface hit

int entityNum; // entity the contacted sirface is a part of

} trace_t;

Ah, if only every function in Q3’s source was as gracefully documented
as this! As you can see, there are a number of members of this struct,
but the one you want to deal with is the last one, an integer called
entityNum. Because you worked with entityNum way back in Chapter 3,
you may recall that all entities are numbered, and can be referred to
by that number. This is how you check to see if the trap_Trace’s
returned entityNum belongs to that of your temporary entity (lines 48
through 50).

This shows that you trace a line from oldtarget to the temporary
entity tent, ignoring nobody and using the MASK_SHOT mask. Notice
that you also pass in NULL values for mins and maxs, which creates a
basic line. If any entity was hit, its entityNum is returned in the tr vari-
able. If tent is not the entity that was hit in the trace, it’s back to the
loop you must go, to keep checking for a valid target. Otherwise, con-
gratulations! You’ve found a valid player entity that will become the
next target in the chain. Make it so by assigning target equal to tent
(line 53). You will also want to hang onto the trace variable, so
assign it to targettr (line 54). Finally, that distance measured between
the target and the new target will also be of value, so assign it to
targetlength (line 55).

Once out of the loop of all the clients (MAX_CLIENTS), you must per-
form some sanity checks. There is the definite possibility of looping

164 6. Client Programming

through all the clients and still
not having a valid target. So,
because you set target = NULL
when the loop began, check to
see if it is still NULL (line 58). If
it is, end your loop and start
the process all over again with
break. You will also want to
break out of the loop if the tar-
get is not able to take damage
(line 61).

To validate your new target,
add it to the chain_targets
array, incrementing the
currentTargetTotal variable in the process (line 64). This will ensure
that the target can never be retargeted by the same chain. Because you
have a valid target, you need to create the chain lightning to hit it.

Be Like Zeus
Now it’s time to get a little like Zeus and start working the lightning
bolts. You already have the tent variable set aside to be an entity; you
are free to reassign its role from being a possible temporary player
entity to being a real temporary event entity. You start by calling a
client event that is already defined in Q3, EV_MISSILE_HIT (lines 67
through 70). This causes a visual effect of a small lightning blast on
the enemy (the arc will follow shortly). Then, you deal out the dam-
age with your good friend G_Damage (line 73). Once those chores are
out of the way, it’s time to call your new client event, the one that will
create the visual effect of an arc of lightning jumping from your target
to a new target.

First, you reuse tent a second time and pass it to G_TempEntity (line
76), which creates your new client event, located at oldtarget’s posi-
tion. (Recall that the oldtarget variable will equal the value of the
last target in the chain at the time of execution.) The type of event
will be EV_LIGHTNINGARC. Then, you copy the vector of the new target
(currently assigned to the target variable) into the temporary
entity’s s.origin2 value (line 78). If that’s a bit confusing, here’s the

165Revisiting Weapons: Chain Lightning

TIP
Just to be sure you’re on the
right page, the differences
between break and continue in a
loop are as follows:The continue
keyword passes control of the
function to the next iteration of
the loop it is currently within.
The break statement, on the
other hand, immediately steps
out of the current loop, regard-
less of what index it’s at.

plain-English translation: You have created an entity that will start an
arc of chain lighting at the current target being hit, and will end at
the newly found target’s center point.

I know you’re itching to create the new EV_LIGHTNINGARC event (I am
too!), but you have one more quick change to add before you leave
the game code. You need to update the original lightning gun to call
the new ChainLightning_Fire function. Scroll down into the
Weapon_LightningFire function, and find the line that deals the damage
out via G_Damage (it should be about line 733 in Visual Studio now).
Add the call to ChainLightning_Fire right after G_Damage, so the lines
together read as follows:

G_Damage(traceEnt, ent, ent, forward, tr.endpos,

damage, 0, MOD_LIGHTNING);

ChainLightning_Fire(ent, traceEnt); // initial

target hit, now find more targets

You call ChainLightning_Fire by passing in the attacker, held in ent,
and the current traced-to target for the standard lightning gun, held
in traceEnt (yep, the original lightning gun also uses trap_Trace!).
Give yourself a pat on the back; you’ve done everything in the game
code that will support the new chain-lightning gun. Now it’s time to
create a little magic in the client code.

Creating Client Events
As discussed in Chapter 5, the client code has a basic understanding
of what is going on in the game, but for the most part, it is a separate
beast from the game server code altogether. Both cgame and game are
responsible for their own upkeep, but every once in awhile they do
need to communicate. One such occasion is when the server-side code
alerts clients that an event is to occur—something visual or audible
that each player will experience on his screen. Because the server-side
game code is far too busy handling more complicated issues, it hands
the task off by passing a single event to the players. When the client
code in each player’s Q3 game receives this event, it takes over and
creates the intended effect, be it a blast of shotgun shells, a sound
effect of a missile as it flies past your head, or the explosion of a
player into bloody gibs. Like all of these occurrences, your chain

166 6. Client Programming

lightning mod will have a new event assigned to it, which will create
the visual effect of arcs of lightning leaping from target to target.

Enumerating an Event
Start by opening bg_public.h and scrolling to about line 430. Here,
you see the ending to an enum definition, called entity_event_t. An
enum is very similar to a struct, except that it contains only variables
that equal a certain integer. Typically, the integers start at 0 and count
up automatically, but you can assign them a different start point if you
wish. Most of the enums in Q3’s code start at 0 and go up from there.
The enum entity_event_t holds a list of variables describing events
that are known to both the game code and client code. The game
code knows them only by their enum variable name. The client code,
on the other hand, knows the dirty secret behind each variable in the
entity_event_t enum. Add your new EV_LIGHTNINGARC event at the very
end of the enum, so that the final few lines read like this:

EV_TAUNT_GUARDBASE,

EV_TAUNT_PATROL,

EV_LIGHTNINGARC // arc of lightning

} entity_event_t;

Excellent. Next, you want to prototype or “declare” the function that
will handle your new arc of lightning event. Place the prototype of the
function near the bottom of cg_local.h, right after CG_Bleed on line
1395:

void CG_Bleed(vec3_t origin, int entityNum);

void CG_LightningArc(vec3_t start, vec3_t end); // our new event!

Here, you have set the stage for the as-yet-to-be-written CG_LightningArc
function, which is of void type and takes two input parameters: a vec-
tor to start, and a vector to end. Let’s go ahead and write this function
next.

Open up cg_effects.c. This file is chock full of client-side effects; per-
forming a quick scan down the list reveals functions that gib a player
into a bloody mess of flying chunks, a function to show the player

167Creating Client Events

bleeding, and a function to show the player teleporting. Scroll all the
way to the bottom and add your new event function, which reads as
follows:

/*

=================

CG_LightningArc

Generates an arc of lightning between

two arbitrary vectors

=================

*/

void CG_LightningArc(vec3_t start, vec3_t end) {

refEntity_t arc;

memset(&arc, 0, sizeof(arc));

arc.reType = RT_LIGHTNING;

arc.customShader = cgs.media.lightningShader;

VectorCopy(start, arc.origin);

VectorCopy(end, arc.oldorigin);

trap_R_AddRefEntityToScene(&arc);

}

Kind of a short and sweet function, isn’t it? As you will see, great
things do come in small packages. In this function, you will start by
defining a temporary variable called arc, which is of a new type,
refEntity_t. The refEntity_t struct is declared in the file tr_types.h on
line 54:

typedef struct {

refEntityType_t reType;

int renderfx;

qhandle_t hModel; // opaque type outside refresh

// most recent data

vec3_t lightingOrigin; // so multi-part models can be

lit identically (RF_LIGHTING_ORIGIN)

float shadowPlane; // projection shadows go here,

stencils go slightly lower

168 6. Client Programming

vec3_t axis[3]; // rotation vectors

qboolean nonNormalizedAxes; // axis are not normalized, i.e.

they have scale

float origin[3]; // also used as MODEL_BEAM’s

“from”

int frame; // also used as MODEL_BEAM’s diam-

eter

// previous data for frame interpolation

float oldorigin[3]; // also used as MODEL_BEAM’s “to”

int oldframe;

float backlerp; // 0.0 = current, 1.0 = old

// texturing

int skinNum; // inline skin index

qhandle_t customSkin; // NULL for default skin

qhandle_t customShader; // use one image for the entire

thing

// misc

byte shaderRGBA[4]; // colors used by rgbgen entity

shaders

float shaderTexCoord[2]; // texture coordinates used by

tcMod entity modifiers

float shaderTime; // subtracted from refdef time to

control effect start times

// extra sprite information

float radius;

float rotation;

} refEntity_t;

There’s quite a lot of obscure information going on in there, but I
think you can determine what some of those values mean by now.
Specifically, you will use the members reType, customShader, origin, and
oldorigin. You’ll be happy to know that reType is of yet another new
variable type, an enum of type refEntityType_t, which if you’ll recall sim-
ply maps to an integer value. Luckily for you, the declaration of
refEntityType_t is directly above the declaration of refEntity_t, so if
you’re curious, you won’t have to scroll far to see all the values. The
one value that’s of importance to you is RT_LIGHTNING.

169Creating Client Events

After you create your arc variable, the first thing you want to perform
is a memory-clear of the variable, done with a call to memset. This is
simply a good practice to get into, because initializing complex vari-
ables in C often forces the program to pull memory from random
places in the stack, sometimes pulling from memory that already had
old, unused garbage data in it. Passing the new variable into memset
with a value of 0 ensures that the value is cleared and ready to go.

Next, set the reType member of
arc to RT_LIGHTNING, and set the
customShader member to
cgs.media.lightningShader. This
is so that the new arc of light-
ning will look and behave like a
standard bolt of lightning fired
from a weapon.

Then use VectorCopy to copy the
passed in vectors start and end to
the arc’s appropriate counterparts: origin, and oldorigin, respectively.
Finally, signal to Q3 to add this new chain-lighting event to the game
by passing the arc variable to trap_R_AddRefEntityToScene. This new
function is another of the now-familiar system calls that simply pass
the data to a direct line within Q3’s executable file, causing the event
to be placed in the game.

The Communication
of entityState_t
The final change you must make to your code in order to allow the
new CG_LightningArc event to fire is to hand it off to Q3’s main event
handler. Open cg_event.c and scroll down to about line 445. Here,
you should see the function CG_EntityEvent. This is where every event
that can be sent to Q3 is handed off to each appropriate function. If
an event is created, it will ultimately land in the hands of
CG_EntityEvent, so this is definitely where you want to make your call.
As you can see by peering down the pages of code, there are a LOT of
events to take care of. Heck, what’s one more? Let’s add your new
event in here now.

170 6. Client Programming

NOTE
After you complete the modifi-
cation of the chain-lightning
gun, I’ll give you a closer look at
shaders, what they represent,
and how to make a new one.

Scroll down to about line 834, right after the event handler for
EV_GRENADE_BOUNCE, and add the following code:

case EV_LIGHTNINGARC:

CG_LightningArc(position, es->origin2);

break;

That was nothing! I didn’t even break a sweat typing that, how about
you? Here, the list of events is handled in a simple switch block. And
as all good C programmers know, to add a new bit of code to a switch,
you use the case keyword. Here, you add a case for EV_LIGHTNINGARC,
which will call the new function CG_LightningArc, passing in two para-
meters. The first is position, which is a vector passed into
CG_EntityEvent, representing the location of the event, in its starting
place. The second parameter is es->origin2. es is a variable set at the
top of CG_EntityEvent, which points to cent->currentState. So what is
cent, you ask? cent is actually the other variable passed into
CG_EntityEvent, and it is of type centity_t. Let’s take a look at what that
type of variable is.

The struct centity_t is declared at line 149 in cg_local.h:

typedef struct centity_s {

entityState_t currentState; // from cg.frame

entityState_t nextState; // from cg.nextFrame, if

available

qboolean interpolate; // true if next is valid

to interpolate to

qboolean currentValid; // true if cg.frame

holds this entity

int muzzleFlashTime; // move to playerEntity?

Int previousEvent;

Int teleportFlag;

Int trailTime; // so missile trails can

handle dropped initial packets

Int dustTrailTime;

Int miscTime;

171Creating Client Events

Int snapShotTime; // last time this entity

was found in a snapshot

playerEntity_t pe;

int errorTime; // decay the error from

this time

vec3_t errorOrigin;

vec3_t errorAngles;

qboolean extrapolated; // false if origin /

angles is an interpolation

vec3_t rawOrigin;

vec3_t rawAngles;

vec3_t beamEnd;

// exact interpolated position of entity on this frame

vec3_t lerpOrigin;

vec3_t lerpAngles;

} centity_t;

Interesting. This centity_t struct does bear a few similarities to a struct
with which you are already familiar: gentity_t. Could it be that c stands
for client while g stands for game? Absolutely. The centity_t struct is
used for client-side maintenance of entities. To find out where cent is
really coming from, let’s trace the steps back from CG_EntityEvent.

CG_EntityEvent is called at the end of CG_CheckEvents, a function that
also has cent passed into it (so control of cent is passed directly from
CG_CheckEvents to CG_EntityEvent—the same variable all the way
through). CG_CheckEvents is called at the end of CG_TransitionEntity,
which also receives cent as an input parameter, passing it directly
through. (Are you beginning to get the idea that cent is important?)
Finally, CG_TransitionEntity can be traced back to a call from
CG_TransitionSnapshot in the following code:

for (i = 0 ; i < cg.snap->numEntities ; i++) {

cent = &cg_entities[cg.snap->entities[i].number];

CG_TransitionEntity(cent);

172 6. Client Programming

From this code, it looks as though cent is a variable whose value points
to a specific index of a global array called cg_entities. Whoa, dèjá vu!
This is almost exactly what happens in the game code, when you loop
over entities by assigning a temporary variable to a given index in
the array g_entities! By now, you should have probably guessed the
result: cent is a client-side entity that has a partner on the server side,
and it maintains its state from the two modules by the passing of
entityState_t to cent->currentState. Remember when you used this line
of code in game, near the end of your ChainLighting_Fire function?

VectorCopy(target->r.currentOrigin, tent->s.origin2);

Well, take another look at your CG_LightingArc function call:

CG_LightningArc(position, es->origin2);

See something familiar? When you performed the VectorCopy, you
took a copy of the location of the newest target being hit by chain
lightning and passed it into your temporary entity’s s.origin2 variable.
s, if you recall, is the entityState_t struct of gentity_t. And, if your
memory is very good, you’ll also remember that entityState_t’s values
are communicated from the server to the client. I have already shown
that the client-side variable es points to a cent->currentState variable,
and currentState is also an
entityState_t struct. Therefore,
the ending position you’re
passing to CG_LightningArc,
which is es->origin2, is actually
a client to server–communi-
cated entityState_t value,
coming from the original tem-
porary entity tent you created
in ChainLightning_Fire!

Yikes! That’s some pretty tech-
nical stuff. If you’ve made it
this far and can still see
straight, good for you. Take a
deep breath and let’s press on.
With the final addition of the
CG_LightningArc event to CG_EntityEvent, you have successfully imple-
mented the client-side event of your new chain-lightning gun. Now is

173Creating Client Events

NOTE
The specifics of communicating
the entityState_t structs from
server to client are even more
complicated than I have shown
here. (I discussed it briefly in the
previous chapter.) It’s important
only that you understand the
semantics behind the creation of
a temporary entity, signaling an
event, and accessing its corre-
sponding value on the client.

the time of judgment. Go ahead and compile both the game code and
cgame code. Remember, you can right-click one of the projects in your
FileView tab and select Set As Active Project to prepare for a build of a
specific DLL. Or, you can open the Build menu in Visual Studio,
select Batch Build, and put checkmarks next to cgame—Win32 Release
and game—Win32 Release only, as shown in Figure 6.2. Then, click the
Build button, and VC++ does its thing.

Chain Lightning Lives
After compiling, verify that you indeed have a cgamex86.dll and a
qagamex86.dll in your MyMod folder. If you compiled to a custom
directory, be sure to move your new DLLs over to /quake3/MyMod/.
Then, test your new DLLs with the following:

quake3.exe +set fs_game MyMod +set sv_pure 0 +map q3tourney2

Don’t forget to set sv_pure to 0 (you have not placed your files in a
PK3 archive yet). If all goes well, you should be able to storm through
a map with several bots and see arcs of chain lightning zig-zagging
across it, as pictured in Figure 6.3.

Forgive me for being excited, but that’s some incredibly cool stuff!
Not only have you modified the lightning gun’s behavior in the game
code, you’ve create new visual effects of chain lightning in the client
code. Hopefully, you can see why I encouraged you to tackle this chap-
ter at the start. Harnessing the client-side code via events is a powerful

174 6. Client Programming

Figure 6.2 The Batch Build dialog box in VC++ with
game and cgame selected

way to create mods, because the changes you make are visual and,
therefore, more noticeable. As you explore the client code in greater
detail, you’ll see that you have an awesome array of programming
tools at your disposal that allow you to play with visuals and audio.
The next part of this chapter is dedicated to one of those tools, the
shader.

Working with Shaders
In order to achieve some heavy-hitting visuals in Q3, the developers
back at id devised a streamlined manner to implement special effects.
They achieved this by creating a uniform scripting language that han-
dled the way surfaces were represented in the 3D world. A common
set of functionality was applied to these surfaces through these scripts
with various attributes, allowing the developer to quickly bring a tex-
ture to life within the game, making it glow, vibrate, pulse, or more.
These scripts are known as shaders.

175Working with Shaders

Figure 6.3 Arcs of chain lightning hitting multiple bots

Most of the shaders are hidden from view, packed away nicely in the
PK3 archives that contain all the other important data for Q3. If you
extract all the files from a PK3 archive, however, you find the shaders
in the /scripts/ directory. A code snippet of this scripting language
looks like so:

powerups/quad
{

deformVertexes wave 100 sin 3 0 0 0
{

map textures/effects/quadmap2.tga
blendfunc GL_ONE GL_ONE
tcGen environment
tcmod rotate 30
tcmod scroll 1 .1

}
}

Here is the definition for the quad powerup shader, which wraps
around the player when he picks up the quad-damage powerup.
deformVertexes is a keyword that tells Q3 that this shader will inevitably
change the shape of the surface to which it is applied. Some shaders
handle only visual coloring and glow-style changes, while others physi-
cally manipulate the shape of the surface, as this example will. The
wave keyword indicates that this shader will attempt to handle the sur-
face as water, while the sin keyword indicates the type of constant
math function applied to the manipulation of the texture. In case you
didn’t know, sin stands for sine, a trigonometric function that, when
graphed, produces an oscillating wave form, bearing a striking resem-
blance to water. Thus, sin is the perfect function to apply to a texture
that needs to exhibit wave-like properties.

The value of 3 indicates how many units “above” the surface the
shader will be applied. Because the quad-damage shell effect sits out-
side the player model, a positive value reflects this position. (0 would
denote the surface itself, while a negative number would apply the
shader effect below the surface.) The three trailing zeros are addi-
tional parameters that can be used to affect the style of shader; in this
case, no more surface changes are required. Additional parameters
exist with the curly brackets that tell Q3 such things as what image file
will be used in the shader and how the effect will blend, move, rotate,
and scroll through the image file used.

176 6. Client Programming

A Shady Modification:
Armor Regeneration
This shader scripting language is quite powerful and easy to use.
Because you’re working with a modification in progress, let’s see what
it will take to apply a shader to it. I think a really cool effect would be
to make the chain-lightning gun allow the player to regenerate armor
when he successfully creates a chain between two or more targets.
And, to signify that armor is being regenerated, you can apply a glow-
ing shell to the player, much like the quad-damage effect.

Start by opening bg_public.h and heading to line 247. Here the enum
powerup_t is defined. The values of powerup_t map to flags that rep-
resent the various powerups that are in Q3; you may recognize
PW_FLIGHT from Chapter 4. Right after PW_FLIGHT, add your new flag:

PW_REGEN,

PW_FLIGHT,

PW_ARMORDRAIN, // our new

visual shell effect

Here, you add
PW_ARMORDRAIN, a flag that
will represent the effect of
armor being regenerated
on the player.

177Working with Shaders

NOTE
Unfortunately, there is a lot of information regarding the
creation and manipulation of shaders—enough to fill an
entire chapter (or more) in this book. Here, I’ll focus on
getting a new shader up and running; then, near the end
of the book, I’ll provide you with some online resources
to further your knowledge of shaders.

NOTE
Be careful when you add powerups to
this powerup_t struct.As a C-style
comment notes near the top of the
declaration, there can only be 16
powerups at one time. I’ll let you in on
a secret about this restriction in
Chapter 9,“UI Programming,” on the
CD-ROM, but for now, if you need to
add new variables, simply rename old
ones and use them.

Next, you will need to tell the cgame code that it can expect a new
shader to be loaded into memory when Q3 initializes a new game ses-
sion. Creating a new handle to a shader through the use of another
Q3-specific datatype, qhandle_t, does this. Open cg_local.h and scroll
down to about line 744, where you should see the declaration of the
quadShader variable. Add a new line below that, and insert your new
shader like so:

// powerup shaders

qhandle_t quadShader;

qhandle_t armorDrainShader; // new handle for armor drain

This will allow Q3 to set aside memory for a new shader when it comes
time to load it into the game and give the code a point of reference to
that variable. Now you need to load the shader into the game when a
new client initializes. Do this using CG_RegisterGraphics, which sits in
cg_main.c at line 789.

In brief, the function CG_RegisterGraphics loads once when a client
first sets up after loading Q3. It churns through all the various texture
images in the Q3 game, and starts assigning them to shader variables
that will be referenced later, as the game is played. This is known as
caching data; a cache is frequently used in all kinds of applications
aside from games. Thanks to a cache, when it comes time to actually
make use of some physical data outside the executable, the applica-
tion does not have to take extra time to access the hard disk, load the
file, and then deal with it appropriately. Disk access is always slower
than memory access, so using a cache is a smart way to handle exter-
nal data.

CG_RegisterGraphics is where you will add a cached referenced to your
new armor-drain shader. Scroll down to about line 860, where a bunch
of powerup shaders are being cached. After the quadShader variable is
set, add one for your new shader like this:

// powerup shaders

cgs.media.quadShader = trap_R_RegisterShader(“powerups/quad”);

cgs.media.armorDrainShader =

trap_R_RegisterShader(“powerups/armordrain”);

As you can see, a global struct called cgs, which contains a member
media, now has a third member in its hierarchy, armorDrainShader. The
value of the armorDrainShader property is assigned by making a call to

178 6. Client Programming

another system call function
named trap_R_RegisterShader,
passing in the path to shader
script.

The shader script does not
exist yet, but you will write it
shortly. The setup of the
shader is complete at this
point, so the next task is to
actually apply it to the player
currently regenerating armor.

Making the Player Glow
To apply the effect to the player, the shader you have created will
need to be added to the game at the appropriate time. Luckily, this
particular shader works exactly as the other powerups do, so there is
no better way to do this than by looking at the current powerup func-
tion, CG_AddRefEntityWithPowerups. You will find this function on line
2118 of cg_players.c:

void CG_AddRefEntityWithPowerups(refEntity_t *ent, entityState_t

*state, int team) {

if (state->powerups & (1 << PW_INVIS)) {

ent->customShader = cgs.media.invisShader;

trap_R_AddRefEntityToScene(ent);

} else {

trap_R_AddRefEntityToScene(ent);

if (state->powerups & (1 << PW_QUAD))

{

if (team == TEAM_RED)

ent->customShader = cgs.media.redQuadShader;

else

ent->customShader = cgs.media.quadShader;

trap_R_AddRefEntityToScene(ent);

}

if (state->powerups & (1 << PW_REGEN)) {

179Working with Shaders

NOTE
The global variable cgs is of data
type cgs_t, which is declared
on line 969 of cg_local.h.The
qhandle_t you added was made
a member of a struct called
cgMedia_t, which itself is used as a
data type of the variable media,
which in turn is a member of cgs.

if (((cg.time / 100) % 10) == 1) {

ent->customShader = cgs.media.regenShader;

trap_R_AddRefEntityToScene(ent);

}

}

if (state->powerups & (1 << PW_BATTLESUIT)) {

ent->customShader = cgs.media.battleSuitShader;

trap_R_AddRefEntityToScene(ent);

}

}

}

This function requires the input of a refEntity_t, an entityState_t, and
a team variable. Here, ent refers to the client-side version of the player
entity, while state refers to the currently communicated state of the
entity in question. The various chunks of code in this function look at
the state of the powerups in the entityState_t struct; if they include a
flag referencing a specific powerup, then the client-side entity’s
customShader member is set to the appropriate shader variable. After
the new shader is set, it is physically added to the visuals in the game
with trap_R_AddRefEntityToScene, yet another system call that ties
directly to the 3D rendering code.

After the code that adds the quad shader, add the following code seg-
ment, so that it looks like this:

ent->customShader = cgs.media.quadShader;

trap_R_AddRefEntityToScene(ent);

}

// check for the armor drain activity of chain lighting gun

// if it is a powerup found on a player, draw the shell effect

if (state->powerups & (1 << PW_ARMORDRAIN))

{

ent->customShader = cgs.media.armorDrainShader;

trap_R_AddRefEntityToScene(ent);

}

I shouldn’t be surprising you at this point. You make a simple check
to see if the new powerup flag, PW_ARMORDRAIN, is presently found on
the entityState_t passed in. If so, the armorDrainShader is assigned to

180 6. Client Programming

the entity’s customShader member, and the updated entity is sent to
trap_R_AddRefEntityToScene.

Of course, when a player is being drained of armor, there should be
some visual effect to indicate this both to that player and to the other
players in the game. Because the player never sees himself, but can
see his weapon model bobbing and weaving as he runs through a
level, let’s apply the visual effect to the weapon as well as to the player.

Open the file cg_weapons.c and scroll down to about line 1168. You
should see the definition of the function CG_AddWeaponWithPowerups:

/*

========================

CG_AddWeaponWithPowerups

========================

*/

static void CG_AddWeaponWithPowerups(refEntity_t *gun, int powerups)

{

// add powerup effects

if (powerups & (1 << PW_INVIS)) {

gun->customShader = cgs.media.invisShader;

trap_R_AddRefEntityToScene(gun);

} else {

trap_R_AddRefEntityToScene(gun);

if (powerups & (1 << PW_BATTLESUIT)) {

gun->customShader = cgs.media.battleWeaponShader;

trap_R_AddRefEntityToScene(gun);

}

if (powerups & (1 << PW_QUAD)) {

gun->customShader = cgs.media.quadWeaponShader;

trap_R_AddRefEntityToScene(gun);

}

}

}

Having a bit of dèjá vu yet? If this function looks similar to the previ-
ous one, that’s because the handling of the powerup visual effect on
the gun model is basically the same as the application to the player
model. Another refEntity_t is passed in, along with a powerups variable,

181Working with Shaders

which is tested for the powerup in question. If it exists, the same old
rules apply: Assign the shader to the entity’s customShader member,
and pass the entity to trap_R_AddRefEntityToScene. I’ll bet you can
make the appropriate modification to this function with your eyes
closed, but just to play it safe, here’s the code you’ll add:

gun->customShader = cgs.media.quadWeaponShader;

trap_R_AddRefEntityToScene(gun);

}

// if the player holding the gun is draining armor,

// draw the shell effect on the gun

if (powerups & (1 << PW_ARMORDRAIN)) {

gun->customShader = cgs.media.armorDrainShader;

trap_R_AddRefEntityToScene(gun);

}

That should do it! Now you can be assured that either the player
receiving the armor drain powerup or another player nearby will have
the appropriate visual effect applied to him.

Regenerating Armor
Now that you have all the code in place to handle the visual effects,
you need to come up with a way of actually calling the event and gen-
erating armor on the player. Let’s jump back to the game code and
pop open ChainLighting_Fire. Get back into g_weapon.c in the game
project, and scroll down to line 666, where the damage from the
chain lightning is dished out via G_Damage. Here’s where you will add
the powerup flag to the player, and award him with some additional
armor:

// Deal out the damage

G_Damage(target, ent, ent, dir, targettr.endpos, damage, 0,

MOD_LIGHTNING);

// activate the shell for moment

ent->client->ps.powerups[PW_ARMORDRAIN] = level.time + 100;

// increment armor!

ent->client->ps.stats[STAT_ARMOR]+= 5; // same as a shard

182 6. Client Programming

Right after G_Damage is called, the playerState_t variable ps has its mem-
ber powerups (which is an array) updated. The index of the array
equals the new powerup flag you created, PW_ARMORDRAIN, and its value
equals the current game time plus 0.1 seconds. That should ade-
quately reflect the shell effect as the player succeeds in chaining tar-
gets together. Then, ps has another member updated, stats, which is
also an array. The index in question this time equals STAT_ARMOR, which
refers to the player’s current armor level. Tacking on an additional 5
armor units per chain event is
the equivalent of picking up
a shard of armor off the
map; that’s a nice, fair num-
ber. Anything less isn’t very
noticeable, and anything
more can accrue armor at
an astronomical speed.
Note, however, the armor
will max out at 50 using this
technique.

Let’s review. You have the
code in cgame that will ini-
tialize the shader and load
it into memory, and assign
it a variable to be used as a
reference later. Then, you
have added logic to apply the effect to other player models and to
the main player’s gun model when the powerup is active. Finally, you
have added the logic to add the powerup to the player when a chain-
lightning event triggers, also adding armor to the player. The final
step is physically creating the shader script and image that will be used
in the visual effect.

The script file, which needs to exist in /scripts/ in your MyMod
folder, contains a single entry:

powerups/armordrain

{

deformVertexes wave 100 sin 3 0 0 0

{

183Working with Shaders

NOTE
By setting
ps.powerups[PW_ARMORDRAIN] equal to
the current game time (level.time)
plus an additional 100 milliseconds,
you’re effectively telling Q3 how long
the effect will last. If you use any-
thing over one second (1000 mil-
liseconds), the visual effect will
behave like all other powerups in
Q3—that is, as its time runs out, a
warning sound alerts the player that
the powerup will soon disengage.

map textures/effects/armordrain.tga

blendfunc GL_ONE GL_ONE

tcGen environment

tcMod turb 0 0.2 0 1

}

}

This shader looks almost exactly like the effect for the quad-damage
powerup, except that this has a surface parameter of turb, or turbu-
lence, causing a swaying and swirling effect on the texture image being
used. Then, in the /textures/effects/ folder, which also needs to exist
in MyMod, you will place the image that is to be loaded by Q3 and
used in the shader effect. Both these files are on the CD-ROM in
/files/source/chapter06/chp06-02.zip, in the PK3 archive file
included. You can build your DLLs now, copy them to your MyMod
directory (if necessary), and drop the armordrain.pk3 file in the same
folder alongside the DLLs. Remember, you don’t have to create the
/scripts/ or /textures/effects/ directory, because the paths exist
within the PK3 file itself. (I’ll discuss paths inside the PK3 file in
Chapter 8, “Where to Go Next.”)

With all your DLLs and the PK3 file in place, load up the new mod
and give it a run with some bots. Don’t forget to run Q3 with the
sv_pure setting set to 0, so that Q3 will look for DLLs outside of the
PK3 file. In Figure 6.4, a bot manages to hit the player and another
bot, causing your new armor regeneration shell effect to render.

You’re quickly beginning to harness the full effect of the cgame code
by creating a visual effect that can be assigned to a game-related
powerup. Let’s push this modification one step farther by accessing
yet more frequently used areas of cgame: the HUD (heads-up display)
and sounds.

Adding New Icons and
Sound Effects
In order to round out the modification of the chain-lightning gun,
let’s add one more feature to the cgame code. One of the items you
haven’t yet dealt with is the reward notification used when handing
out awards to players. These awards show up on the player’s screen
(like the scoreboard), and do not affect the server-side game code

184 6. Client Programming

when they are visible. Likewise, if an opponent of the player scores the
same award, the icon that represents the award hovers above the
opponent’s head. Additionally, a sound-effect may be tied to that par-
ticular award. So, let’s take a look at displaying a new reward on the
HUD (if the player himself gains the award), adding the icon above a
player’s head (if an opponent gains the award), and playing a sound
effect in either case. The new reward will be given to a player when he
manages to make a kill by hitting three players in a chain at once.

Making It Count
The first part that needs tackling is the server-side portion of the
code—the stuff that sits in game. Start by opening up g_local.h and
scrolling down to line 305, near the end of the definition of gclient_s.
Here, let’s add a new integer to hold the total number of targets
being hit by chain lightning:

char *areabits;

int currentChainCount; // for chainlightning;

};

185Adding New Icons and Sound Effects

Figure 6.4 A Q3 bot chains targets and regenerates armor

Now you will be able to access the currentChainCount member via the
entity variable that points to the player firing the chain-lightning gun.

Next, the award will require the creation of new variables that will
hold references to the award you will add. There are two important
places that will need to be updated to hold these new values. You will
find the first change in bg_public.h, where all the definitions for
eFlags exist. eFlags, as you recall, is a member of the entityState_t
struct. One or more bit flags can be assigned to an entity’s eFlags.
Remember that because the values are bit flags they can be mixed and
matched however you see fit, but a combination of flags must never
add up to be exactly the same value as any other bit flag.

Scroll up to the top of bg_public.h and take a look line 222, where the
series of #define keywords begin. As you move down the list, you see
that a bunch of the variable names near the end refer to awards, such
as EF_AWARD_IMPRESSIVE and EF_AWARD_DEFND. Notice the numbering
scheme that was chosen for the previous defines. They start with a
hexadecimal value of 0x00000001, followed by 0x00000002,
0x00000004, and 0x00000008. After that, the bit flags carry on from
0x00000010, in the same fashion. The last one in the list, EF_TEAMVOTED
is 0x00080000. You could go ahead and add the next one in the list, but
due to a limitation in the Q3 source, let’s swap with an existing award.
EF_AWARD_DEFEND is an award used in Capture the Flag. Also, because you
are modifying a vanilla deathmatch game, you can swap places with it
and your new flag. Make the change so they look like this:

#define EF_AWARD_IMPRESSIVE 0x00008000 // draw an

impressive sprite

#define EF_AWARD_TRIPLE 0x00010000 // our triple

award

#define EF_AWARD_ASSIST 0x00020000 // draw a assist

sprite

#define EF_AWARD_DENIED 0x00040000 // denied

#define EF_TEAMVOTED 0x00080000 // already cast a

team vote

#define EF_AWARD_DEFEND 0x00100000 // draw a defend

sprite

As you can see, the hex value of 0x00010000 is now being used by
EF_AWARD_TRIPLE, because you have bumped EF_AWARD_DEFEND down to
the bottom, giving it a value of 0x00100000.

186 6. Client Programming

Now that you have an award flag that can be applied to the player
when he earns the award, you now need a way to count up how many
times that particular award has been given to a player. This is used in
scoring (especially for tournament play) as well as a visual indicator to
the player of how many times he has been given a specific reward (see
Figure 6.5).

To keep a running log of how many times this new award is given to a
particular player, head to line 214 in bg_public.h, where you will see a
enum called persEnum_t. Because persEnum_t is of type enum, you
know from experience that the values are all integers, and start at
zero. The use of this enum is to help in the description of an array
index. The array, persistant, is a member of the playerState_t struct,
which has a special behavior: Unlike many of the other members of
playerState_t, which are reset after a player dies, the values in the
persistant array are not cleared. This makes perfect sense, because
you do not want a player to have his awards cleared when he dies.

Each index of the persistant array will ultimately map to a value,
which will indicate how many awards that player has received. For

187Adding New Icons and Sound Effects

Figure 6.5 A player accrues a hefty number of Excellent awards

188 6. Client Programming

Bits and Bytes

Programmers have a variety of ways to describe numbers in
code.The most common ways are decimal, hexadecimal and
binary formats. Decimal is the most familiar of the three; it is the
base-10 standard that you learned in school, where numbers are
represented by combinations of the characters 0 though 9.The
next format, used widely across multiple programming languages,
is the hexadecimal system, which is base-16.This means that
there are an additional six characters used to represent a num-
ber.The extra six characters are the letters A through F.The third
most used way to describe numbers are closer to a computer’s
natural language of ones and zeroes, which is called binary.The
binary system is base 1, which means there are only two digits
needed to represent any binary number: 0 and 1.

To give you a visual representation, here are values 0 through 20,
as they are displayed in their native formats:

Decimal Hexadecimal Binary

0 0 0

1 1 1

2 2 10

3 3 11

4 4 100

5 5 101

6 6 110

7 7 111

8 8 1000

9 9 1001

10 A 1010

11 B 1011

189Adding New Icons and Sound Effects

Decimal Hexadecimal Binary

12 C 1100

13 D 1101

14 E 1110

15 F 1111

16 10 10000

17 11 10001

18 12 10010

19 13 10011

20 14 10100

In the C language, programmers have specific ways of working with
these various formats. Decimal numbers are handled normally; if you
want to deal with the value for 2014, you literally use “2014” in your
code. For a hexadecimal value, the number is represented by “0x”
symbol, followed by eight digits.To deal with the hex value of 2014,
you would code it as 0x000007DE.When you work with bit flags in
the Q3 source, you will deal with numbers at the hex level.

As discussed in earlier chapters, the value of a bit flag must not
match the sum of any other flags.The common numbering for this
scheme is 1, 2, 4, 8, 16, 32, and so on. So, by looking at the hex values
of the bit flags listed in this section, you can see that they match the
numbering convention perfectly.The first four values are 1, 2, 4, and 8,
then 0x00000010, which is 16, 0x00000020, which is 32 . . . I think
you can see the pattern emerging.

Because there are eight bits in a byte, and the eFlags variable is a 32-
bit integer, you can deduce that the hexadecimal representation of
the preceding bit flags indicate one byte for every digit (8 bits in a
byte * 8 bytes = 32-bit integer).This means that 1 is a byte, and so is
F (and everything in between).

example, if persistant[PERS_EXCELLENT_COUNT] equals 4, then you know
that player has accrued four Excellent awards. So, let’s go ahead and
add a new index to this enum. After the declaration for the
PERS_EXCELLENT_COUNT variable, add a new variable, like so:

PERS_IMPRESSIVE_COUNT, // two railgun hits in a row

PERS_EXCELLENT_COUNT, // two successive kills in a

short amount of time

PERS_TRIPLE_COUNT, // new for triple reward

count!!

Now, you have a new index that you can refer to in the persistant
array, called PERS_TRIPLE_COUNT. This index counts how many times the
player has been given the new award.

Now that you have the two vari-
ables necessary to track the
award (the count of the award,
and the flag that determines
whether it is being applied
to the player), you need to
put them in place. Open
g_combat.c, and scroll to line
521. This is right smack in the
middle of the player_die func-
tion, which is called whenever
a player perishes in the game.
As you may note, there are
some awards already being handed out to the player in this chunk of
code, such as the Impressive award, given when a player kills his oppo-
nent with the gauntlet.

After the code to handle the Excellent award, add the following code
so that the function reads as follows:

attacker->client->ps.eFlags |= EF_AWARD_EXCELLENT;

attacker->client->rewardTime = level.time + REWARD_SPRITE_TIME;

}

// if our chain lightning caught 3 people add the award!

if (meansOfDeath == MOD_LIGHTNING && attacker->client-

>currentChainCount == 3) {

190 6. Client Programming

NOTE
As the C comment notes on line
200 of bg_public.h, you may only
ever have 16 values in the
persEnum_t enum.Anything more
will extend beyond the bound-
aries of the persistant[] array,
causing mayhem and destruction!
(Well, not quite . . . but it will
cause some grief.)

// play triple award sound

attacker->client->ps.persistant[PERS_TRIPLE_COUNT]++;

// add sprite over player’s head

attacker->client->ps.eFlags &= ~(EF_AWARD_IMPRESSIVE |

EF_AWARD_EXCELLENT | EF_AWARD_GAUNTLET | EF_AWARD_ASSIST |

EF_AWARD_DEFEND | EF_AWARD_CAP | EF_AWARD_TRIPLE);

attacker->client->ps.eFlags |= EF_AWARD_TRIPLE;

attacker->client->rewardTime = level.time +

REWARD_SPRITE_TIME;

}

Here, a simple check is made to see if the target was killed by
MOD_LIGHTNING, which is the means-of-death flag assigned to the light-
ning gun’s energy beams. Every way a player dies in Q3 has an appro-
priate means-of-death flag, all of which are declared near line 552 of
bg_public.h. Table 6.2 presents a no-nonsense listing of the some mor-
bid ways in which a Q3 player can meet his maker.

191Adding New Icons and Sound Effects

Table 6.2 Means-Of-Death Flags

Variable Value

MOD_SHOTGUN Death by shotgun blast

MOD_GRENADE Death by direct contact with a grenade

MOD_GRENADE_SPLASH Death by a grenade’s explosion

MOD_ROCKET Death by rocket launcher

MOD_PLASMA Death by plasma gun

MOD_LIGHTNING Death by lightning bolt

MOD_WATER Death by drowning

MOD_LAVA Death by roasting to a crisp in liquid magma

MOD_CRUSH Death by being crushed (by some obstacle)

MOD_TELEFRAG Death by another player teleporting into you

MOD_FALLING Death by falling a great distance

MOD_SUICIDE Death by killing yourself

After the check for MOD_LIGHTNING, another check is made to see if your
new member variable, currentChainCount, equals 3. If both evaluations
turn out to be true, the persistant array is incremented by one on the
index equal to your new enum value, PERS_TRIPLE_COUNT. Then, the
next three lines of code handle placing the new award above the
player’s head so that other players in the game can see what award was
just handed out. The rewardTime member of gclient_s (the client vari-
able) simply holds the time in which the reward is to be displayed. By
setting it to level.time (current game time), plus the value of
REWARD_SPRITE_TIME, Q3 knows to play the award notification for two
seconds (because REWARD_SPRITE_TIME is defined as 2000).

Next, you want to make a few adjustments to ChainLightning_Fire to
use your new target-counting variable. Scroll up to line 594 in
g_weapon.c, and remove the declaration of currentTargetTotal. This
variable is no longer needed; you will be using the client’s counter
instead. Line 603 gets the next change, as so:

damage = 8 * s_quadFactor;

ent->client->currentChainCount = 1; //changed lined

chain_targets[0] = target;

Now you’re setting the currentChainCount variable that resides in the
client struct. Change line 657 next, so that it reads like this:

if (!target->takedamage)

break;

chain_targets[ent->client->currentChainCount++] = target; //

changed line

Again, you make a reference to the new client counting variable. The
rest of the function can remain as is.

One last thing needs to be added to the game portion of the award
code. Remember working with ClientThink_real a few chapters back? I
explained then that ClientThink_real was the player’s think function,
meaning it executed once or twice about every frame of game time
(exactly once for each frame on the client). You played with gravity as
well as speed, both of which represent values that need to be checked
every frame in order to properly place the player in the game.
Another check that needs to take place every frame is whether the
amount of time during which an award is to be displayed has elapsed;

192 6. Client Programming

if so, then the award needs to be removed. This happens on line 807
in g_active.c. Head there now, and note that all the existing awards
are being turned off in this line of code:

client->ps.eFlags &= ~(EF_AWARD_IMPRESSIVE | EF_AWARD_EXCELLENT |

EF_AWARD_GAUNTLET | EF_AWARD_ASSIST | EF_AWARD_DEFEND | EF_AWARD_CAP);

All you need to do to keep the player clean and clear after the new
award is given to him is to clear the award away when its time is up.
Do that by modifying the preceding line so it reads like this:

client->ps.eFlags &= ~(EF_AWARD_IMPRESSIVE | EF_AWARD_EXCELLENT |

EF_AWARD_GAUNTLET | EF_AWARD_ASSIST | EF_AWARD_DEFEND | EF_AWARD_CAP |

EF_AWARD_TRIPLE);

Super simple! All you do is add a pipe symbol (|) and the new flag
that represents the triple award you created. Now, each pass through
the client’s think function will check to make sure the award hasn’t
been hanging around too long.

Getting Up in the Player’s Face
Now it’s time to get freaky with the client code. When an award is
given to a player, it is splashed up on the player’s screen, right on top
of the game in action. In a sense, it acts much like the scoreboard,
overlaying the action on the HUD. Awards often have sound effects
associated with them as well; generally, the deep, foreboding voice of
the Q3 announcer booms out of the speakers when an award is given.
This is where you can get creative and make your own sounds to
import into the game. Because I am providing you an icon for the
new award, I’ll also provide you with a sound file used to announce
which award is given, but feel free to go off and experiment with your
own sounds. Near the end of the book, I’ll recommend some great
tools to help you in your sound-processing endeavors.

To begin the client modification to handle a new award, you will need
to create a handle to the icon and the sound effect. Handles are sim-
ple integers that have been retyped by the programmers at ID, so that
their role is more easily identified. In traditional C and C++ programs,
handles simply act as tools that programmers use to quickly identify
other processes in their application. Because icons and sound effects
are used frequently in Q3 (and there are a LOT of them), a handle is

193Adding New Icons and Sound Effects

an excellent way of working with them. Don’t be confused by the ter-
minology: the guts of the handle in Q3 are simply an integer, and
nothing more—and if you don’t believe me, look at line 307 in
q_shared.h!

Start by opening cg_local.h and scrolling to line 801. Here, a chunk of
handles is being declared in the struct cgMedia_t, which becomes a
member named media, in the
global variable cgs. This is
exactly the same place you cre-
ated a handle to your
armorDrainShader a few sections
ago. These particular handles
will hold references to awards.
Go ahead and add a new one
after the medalGauntlet handle,
like so:

qhandle_t medalExcellent;

qhandle_t medalGauntlet;

qhandle_t medalTriple; // our triple medal!

Here, you simply use the ID-created keyword qhandle_t, and declare
medalTriple. Next, scroll down to line 873 and take a peek at the
handles being declared for sound effects. Like the new keyword
qhandle_t, another data type called sfxHandle_t is used to declare
these sound effects. Add a new one after the sound effect handle for
the Excellent award:

sfxHandle_t impressiveSound;

sfxHandle_t excellentSound;

sfxHandle_t tripleSound; // our triple sound effect!

This stuff is easy! There it is, a variable called tripleSound, which is of
data type sfxHandle_t.

Now that you have handles to your award icon and sound effect, you’ll
need to have those files cached before Q3 starts a new game, exactly as
you did with your shader earlier on. To cache your new award icon
and sound effect, open the file cg_main.c and scroll to line 996. Here
you can see a familiar struct being assigned values, cgs.media. Right
after medalExcellent in the cgs.media struct is assigned a value, go
ahead and add an assignment to your medalTriple handle:

194 6. Client Programming

NOTE
cgs stands for client game static,
which represents all data
loaded in by Q3 or calculated
by the server updates that are
sent during game play.

cgs.media.medalImpressive = trap_R_RegisterShaderNoMip(

“medal_impressive”);

cgs.media.medalExcellent = trap_R_RegisterShaderNoMip(

“medal_excellent”);

cgs.media.medalTriple = trap_R_RegisterShaderNoMip(“medal_triple”

); // our new triple medal!

Here, you access your
medalTriple handle from the
cgs.media struct, and assign
it the value returned from
the function
trap_R_RegisterShaderNoMip,
passing in a string equal to
the name of the shader.
This function is a system
call, which acts very similarly
to the trap_R_RegisterShader
function used earlier, except
that this particular shader
tells Q3 that the image
involved will not be mip-
mapped.

After preparing your award
icon to be cached, go ahead
and do the same for your
sound effect. Scroll up to line
641 in the same file, and you should see a bunch of sound-effect han-
dles getting similar treatment. Add a new assignment to your
tripleSound handle, right after excellentSound’s assignment:

cgs.media.impressiveSound = trap_S_RegisterSound(

“sound/feedback/impressive.wav”, qtrue);

cgs.media.excellentSound = trap_S_RegisterSound(“sound/feed-

back/excellent.wav”, qtrue);

cgs.media.tripleSound = trap_S_RegisterSound(

“sound/feedback/triple.wav”, qtrue); // our triple sound effect

In this bit of code, you assign tripleSound (which is also a member
of cgs.media) the return value of yet another system call,

195Adding New Icons and Sound Effects

TIP
Mip-mapping refers to the technique
of applying different qualities of a
texture to a given 3D surface, based
on the distance of that 3D surface
from the viewer.Typically, in a mip-
mapped scenario, a 3D image that is
far away from the viewer has a
small, less-detailed texture applied
to it, whereas a surface that is close
to the viewer gains a much larger
and more precise texture.This often
conserves CPU cycles that would
otherwise be needed to calculate
what the texture would look like at
any given distance. Mip itself is an
acronym, multum in parvum, which is
Latin for “many in one.”

trap_S_RegisterSound, which will tell the Q3 engine to set aside some
memory for a sound clip. The function trap_S_RegisterSound takes two
parameters: a string equal to the relative path and file name that phys-
ically holds the sound effect to be played, and a qboolean, which indi-
cates compression for the file.

Cache Money
As the heading suggests, this is the time for your cache to “pay off”
(sorry, bad pun). You now need to implement the code necessary to
pull the icon and sound effect from the cache and present them to
the player when he receives the award. The icon that represents the
award must be placed on the HUD and also be made to hover above
the player’s head, so that other players can witness the event from
afar. In addition, the sound effect indicating that the award was given
will have to be played.

Start by opening cg_playerstate.c and scrolling to line 354. At this
point in the file, you will be in the middle of CG_CheckLocalSounds, a
giant function used on the client to play sound effects. Many sound
effects can simply be played without being attached to a certain visual
effect, but in this case, you will play a sound and display an icon.
Luckily for you, this functionality is wrapped up nicely in a function
called pushReward:

static void pushReward(sfxHandle_t sfx, qhandle_t shader, int

rewardCount)

As you can see, pushReward takes three input parameters. The first is an
sfxHandle_t, the second is a qhandle_t, and the third is an integer
value representing the number of awards to be dished out, held in a
variable called rewardCount. On line 354, right after the Excellent
award is handled, add the following bit of code:

pushReward(sfx, cgs.media.medalExcellent, ps->persistant[PERS_EXCEL-

LENT_COUNT]);

reward = qtrue;

//Com_Printf(“excellent\n”);

}

// play the sound!

if (ps->persistant[PERS_TRIPLE_COUNT] != ops-

196 6. Client Programming

>persistant[PERS_TRIPLE_COUNT]) {

sfx = cgs.media.tripleSound;

pushReward(sfx, cgs.media.medalTriple, ps-

>persistant[PERS_TRIPLE_COUNT]);

reward = qtrue;

}

In the same manner as the PERS_EXCELLENT_COUNT index of persistant is
handled, you will check to see whether ps->persistant is not equal to
ops->persistant (as noted by the != symbol). “Okay,” you may say, “but
what are ps and ops, and what do they have to do with each other?”
Very good question! In every cycle through a client frame of game
time, the current value of the player’s state is held in ps, while the pre-
vious frame of the player is held in ops. So, if an award were to be
assigned to the player, you know from handling the preceding game
code that the value of the PERS_TRIPLE_COUNT index of persistant would
be one value greater than it was a frame ago, when the award had not
been given. This is indicative of the preceding code snippet. In the
split second of game time between the player’s last frame and the
player’s current frame, an award was given, causing the value of the
current player’s award variable to be different from that of the vari-
able one frame ago. I know it sounds complicated, but you have to
remember that you are dealing with time at the atomic level when you
program logic like this; each tidbit of code is looking at a very small
slice of game time, so you can imagine that this function is called
many times per second. Comparing the present with one frame in the
past is the fastest way of looking at changes made to the player.

Now, back to the function. As noted, if a valid award change has been
detected, the local sfx variable is assigned to cgs.media.tripleSound,
which is then passed into pushReward, along with
cgs.media.medalTriple, which is the handle for the award icon. Then,
another local variable, reward, is set to qtrue. reward is simply an over-
ride flag that tells CG_CheckLocalSounds that this particular sound effect
is more important than others, and should take precedence over some
less-important audible notifications.

The last change you will make is to cg_players.c, in the function
CG_PlayerSprites. This function is responsible for drawing an icon
above a player’s head in the Q3 world, so that it hovers in place, indi-
cating the award that the particular player just received. Scroll down

197Adding New Icons and Sound Effects

to line 1932, after the handling of the Excellent award, and add the
following code:

if (cent->currentState.eFlags & EF_AWARD_EXCELLENT) {

CG_PlayerFloatSprite(cent, cgs.media.medalExcellent);

return;

}

// float the sprite!

if (cent->currentState.eFlags & EF_AWARD_TRIPLE) {

CG_PlayerFloatSprite(cent, cgs.media.medalTriple);

return;

}

As you can see, immediately after the Excellent award is handled, a
check to the cent->currentState.eFlags variable is checked. It just so
happens that, like the visual shell effect earlier, cent->currentState will
map to the state of a specific entity in the game code. Because you
applied the EF_AWARD_TRIPLE to the attacker entity in player_die, you
can now look for that flag by accessing cent->currentState. If the
proper flag is detected, a call to CG_PlayerFloatSprite is made, passing
in the entity (the attacker) and the icon to hover above the player’s
head, held in the handle cgs.media.medalTriple. CG_PlayerFloatSprite
is a function that wraps up the technical details for you, determining
the physical location of the vector above the player’s head, assigning
the proper shader, and so on; you can find its definition on line 1876
of cg_players.c

That’s it! All you need to do now is compile, and place the appropri-
ate icon and sound effect into their respective folders in your MyMod
directory. If you are using the PK3 file I supplied on the CD, you can
place it in the MyMod folder on its own. If, however, you want to use
your own icon and sound effect, you will need to place an image
called medal_triple.tga in /MyMod/menu/medals/, and a sound file
called triple.wav in /MyMod/sound/feedback/. Additionally, because
the icon is a graphical image represented in the world of Q3, it needs
a shader associated to it. I provided a shader script in the PK3 file
called triple.shader, but feel free to make your own. Place it in
/MyMod/scripts/, with the contents of the script reading as follows:

medal_triple

{

198 6. Client Programming

nopicmip

{

clampmap menu/medals/medal_triple.tga

blendFunc blend

}

}

This is a very simple shader, telling Q3 that the image is not to be mip-
mapped, and is not to be repeated if the dimensions of the image
grow or shrink. The image will be resized, of course, because it will be
hovering over a player that could be close in the foreground or very
far away. blendFunc blend simply indicates that this image has trans-
parency. With these files in place and your DLLs all compiled, give
your new mod a try. Throw in some bots and see what happens when
you kill them with the chain-lightning gun. Figure 6.6 shows a player
who has already accrued two of the triple-kill awards:

As you can see, adding an award is a pretty simple feat, as long as you
understand that the files you use must be cached ahead of time. You
can now go on to play with other similar types of icons and sound

199Adding New Icons and Sound Effects

Figure 6.6 A player receiving the new triple-kill award

additions to your mods, simply by playing around with some of the
techniques you’ve learned in this section. Try experimenting by
changing the rules that dictate how an award is handed out.

Summary
There was a lot to get through in this chapter, but by now, you should
be up to speed on how important the cgame code is to making mods in
Q3. cgame is integral to the entire process, and should not be over-
looked when developing code that seems to be needed only on the
server side. As you learned in this chapter, the cgame code is responsi-
ble for creating visual effects in the form of events, which can tie
directly to states of entities as they appear on the server, such as a gun
firing a lightning bolt. You also saw that cgame code could be used to
manipulate shaders and create icons on the screen (and in the game),
as well as play sound effects. All this information will be important to
you as you move to the third section of this book, which binds
together all you have learned up to this point. For now, let’s move to
the next chapter, which will teach you how to work with Q3 ’s user
interface.

200 6. Client Programming

CHAPTER 7

Defend
the Flag

This chapter focuses on the development of your new mod, Defend
the Flag. This consists of implementing a new game type and sys-

tem of rules into Q3, based on the existing game type of Capture the
Flag. You will create a set of unique rules, which will dictate how the
game is played. You will also learn about level entities and how they
can be changed to reflect new types. This will give you the ability to
modify existing CTF flags—transforming them into sigils, the new
item that will be used in DTF—utilizing a few clever tricks in the
process.

The Rules
Defend the Flag is an exciting team-based mod that alters the game play
slightly from standard CTF style. In DTF, a team of two will battle for
control of three flags, placed in various spots throughout a map. In
standard CTF, the goal of the player is to race to the opponent’s flag,
steal it, and return it to his own base. In DTF, however, there is no par-
ticular team flag (in other words, no red-team flag, and no blue-team
flag, either). Instead, the flags are neutral, belonging to neither team.
In addition, instead of two flags, there will be three.

As the match begins, players from either team race to the three neu-
tral flags and attempt to tag them. When a player successfully touches
a flag, it is converted to the color of the team that tagged it. The goal,
then, is to have all three flags held by a given team. Every few seconds,
each held flag earns its team a number of points; the more flags held,
the more points accrued at each interval. If an opposing team mem-
ber manages to touch the held flag, it converts to the color of the new
team, at which point the new team will be the recipient of accrued
points.

The DTF mod is a popular game type, and has found its way into
other mods, going by other names such as Capture-and-Hold, or
Domination. Urban Terror is a version of this game type, implementing

202 7. Defend the Flag

more than three flags per level. Some professionally developed games
have also used variations on this game type, such as Tribes and Unreal
Tournament. In Figure 7.1, you can see a game of Domination being
played in Unreal Tournament, another popular FPS game. Instead of
flags, Domination uses control points—floating symbols that change
shape and color when they are tagged by a team.

This is a perfect game-type mod to implement because many of the
existing bits of logic for CTF can be reused. This will ultimately save you
hours of development time, because you won’t have to re-write the
game’s specifics from scratch. From the preceding summary, let’s extract
the pertinent information and create a list of goals for your mod:

■ Place three flags in a map instead of two.
■ Modify flag behavior so they are not picked up when touched.
■ Develop a way to accrue points, at specific intervals, based on

the number of held flags.
■ Update the HUD to show which flags are held, and by which

team.

203The Rules

Figure 7.1 Players guard a control point in Domination

■ Update the HUD to give the player three “compass pointers”
showing the way to the flags (and give the user an option to
turn it off).

■ Update the user interface to allow players to select DTF as a
game type and choose existing CTF maps to play on.

Not a bad set of goals, don’t you think? Now that you have your list of
goals for the mod, let’s take a look at what it will take to implement
them.

What You Will Reuse
For starters, you should probably be aware that flag models already
exist in Q3 right off the shelf, because CTF is a built-in game type. So
breathe easy—you won’t have to worry about creating any compli-
cated models or frames of animation. The current Q3 flag model will
work fine for this mod. There are, however, only red and blue skins
for these models in the current PK3 files for Q3. So you’ll definitely
need to come up with a third neutral skin.

Secondly, the standard CTF maps have spawn points for only two flags
in their current state. Because you do not have the luxury of having
the source files to the maps used in Q3, you cannot simply add a new
entity type to the map, recompile, and be good to go. You’ll have to
come up with another way of generating the third flag point. You’ll be
using an interesting trick to generate this third flag point. Also, CTF
maps that were built specifically for the Team Arena Expansion Pack
have three CTF spawn points (because they must contain a spawn
point for one white flag, in the One-Flag CTF game type), so you’ll
make the mod smart enough to use either map type.

Thirdly, as you may know from experience, when you touch a flag in a
regular game of CTF, the flag disappears from its holder in the map
and appears on the player in the form of a powerup. The player then
carries this flag around with him. If he is killed, the flag is dropped. If
it remains dropped for too long, or it is touched by a teammate, it is
sent back to its holder. Unfortunately, this will not do for your mod.
For the DTF mod, you do not want the player to ever pick the flag up.
Furthermore, when a player touches a flag in DTF, you will want it to
change color. This flag behavior will have to be modified.

204 7. Defend the Flag

As for the remaining specifics, the standard rules of CTF will still work
fine, as will the variables that hold various CTF-related info, such as
capturelimit (how many captures will be needed to end the game).
You’ll simply tweak the variables so that they more accurately reflect
what a DTF game will require. The user interface will also be tweaked
to allow for the new DTF game type to be selectable, and when the
user chooses it, the updated UI will properly constrain the map selec-
tion list to existing CTF maps.

What You Will Create
Now, let’s discuss what you’ll need to generate by hand for this mod.
For starters, there is no function that accrues CTF points as a game
progresses, so that function will have to be written. There are, how-
ever, similar functions, and you will take a look at them to see what
you can use in the new function.

There is definitely no way to show three flags on the HUD. You’ll have
to come up with a new layout for the HUD’s icons that represent flags
in DTF. In standard CTF, flags are represented on the HUD by icons
that indicate whether the flag is at home, stolen by an enemy team-
mate, or dropped somewhere in the map. For DTF, the states of the
flags will be different. Now, you’ll want to show the three flags, and
which team currently holds each. This will be indicated by the color of
the icons: red, blue, or your neutral color.

In order to give the player some guidance as to where the flags are on
the map, you will need to create compass pointers that hover over the
player’s view, pointing in the general direction of the flags. This func-
tionality doesn’t exist at all in Q3; it will be a brand-new chunk of
code. You’ll implement this new compass function as a client-specific
event, because its state does not need to be communicated to the
server. As well, you will add appropriate Cvars to cgame, to allow the
user to disable the pointers if he chooses to do so.

Preparing Q3 for DTF
To lay the foundation for your new game type, a traversal of the exist-
ing code base is in order. Littered throughout the files that comprise

205Preparing Q3 for DTF

the game, cgame, and ui projects are many variables and initialization
routines that prepare Q3 to handle the unique rules that apply to
each specific game type. For example, when a CTF game is launched,
Q3 needs to know what a capturelimit variable represents, what the
“red flag” and “blue flag” entities do, how to spawn players into the
map differently, and so on. In this next section, you will begin to mod-
ify those appropriate areas of the code base so that your mod is recog-
nized by Q3 as well.

Your Journey Begins
at gametype_t
The heart of all the different types of games that Q3 supports lie in an
enum called gametype_t. A Cvar called g_gametype holds the value of
the game type being played, and this value is communicated between
cgame and game as well. Much of what goes on in Q3 that requires a
game rule lookup is based on the value found in g_gametype. You can
find the gametype_t enum declared on line 79 of bg_public.h, and it
looks like this:

typedef enum {
GT_FFA, // free for all
GT_TOURNAMENT, // one on one tournament
GT_SINGLE_PLAYER, // single player ffa

//— team games go after this —

GT_TEAM, // team deathmatch
GT_CTF, // capture the flag
GT_1FCTF,
GT_OBELISK,
GT_HARVESTER,
GT_MAX_GAME_TYPE

} gametype_t;

As you can see, gametype_t is comprised of a series of integers, identi-
fied by the GT naming convention. The first game type, GT_FFA, stands
for a free-for-all deathmatch, in which all players fight each other to
the death. GT_TOURNAMENT, the second value, is for hosting a one-on-one
tournament, in which two players battle each other until one player
reaches a specific frag limit (or time runs out). GT_SINGLE_PLAYER is the

206 7. Defend the Flag

variable set aside for the single-player version of Q3, where one
human battles through a series of levels against an assortment of bots.

The next set of gametype_t’s members represents the team-based
styles of play supported in Q3. GT_TEAM stands for a team-based version
of deathmatch, where two teams battle each other for supremacy.
GT_CTF is the flag (if you’ll pardon the pun) that represents the classic
game type of Capture the Flag, which I have already discussed in great
detail. The next variables represent special game types featured in the
Team Arena Mission Pack for Q3. GT_1FCTF is a unique variation of
Capture the Flag called One Flag CTF in which a third white flag exists
somewhere near the center of the map. Players must attempt to grab
the white flag and use it to touch their enemy’s flag for a score.
GT_OBELISK represents the Obelisk game type, in which two teams have a
skull-shaped artifact, or obelisk, at each base. Players must attempt to
infiltrate the enemy’s base and shoot their opponent’s obelisk until it
explodes. Small scores are obtained for making shots on the obelisk,
and a giant team score is awarded when an obelisk is destroyed.

The next game, GT_HARVESTER, is even more exciting than the previous
types. In a game of Harvester, players kill their opponents, producing
skulls near the center of the map (the skulls are ejected from a special
container). Players must then rush to collect these skulls and take
them to their enemy’s base to a drop-off point. There is no limit to
the number of skulls a player can carry, so courageous players can
take in a string of skulls—if they so choose. If a player carrying skulls
is killed, all the carried skulls are lost. Harvester, shown in Figure 7.2, is
probably the most exciting game type featured in the Team Arena
Expansion Pack.

The final value, GT_MAX_GAME_TYPE, is simply used as total number of
game types, often placed in array declarations as the upper limit of
that array. To add a new game type to Q3, the first change to be made
will be here.

Right between the GT_CTF and GT_1FCTF values, go ahead and add a
new entry for Defend the Flag, which I will herein abbreviate as DTF. An
excerpt of the updated gametype_t should read like this:

GT_CTF, // capture the flag

GT_DTF, // defend the flag

GT_1FCTF,

207Preparing Q3 for DTF

Hooray! The creation has begun! You’re going to be seeing a lot more
of GT_DTF, so you’d better make friends with it. In fact, you can use
GT_DTF immediately to describe the game type to new players who try
your mod. If you jump to the cgame code, open a file called cg_info.c,
and scroll down to line 233, you will see a set of strings being assigned
to a variable s based on the game type. This string is then displayed to
the player as a level loads, via the function CG_DrawInformation. Right
after the assignment for GT_CTF, add a case for your new GT_DTF flag,
like so:

case GT_CTF:

s = “Capture The Flag”;

break;

case GT_DTF:

s = “Defend The Flag”;

break;

Now players will know when they are about to start a game using your
new mod, as shown in Figure 7.3.

208 7. Defend the Flag

Figure 7.2 The Harvester game type in the Team Arena Mission Pack

itemType_t: Birth of the Sigil
Earlier, I promised that I would show you how to modify the behavior
of the existing red and blue flags in CTF. In order to prepare for that
change, you need to be able to tell Q3 that the flags are a new type of
item. In every Q3 level, there are items that can be picked up, such as
boxes of ammo, weapons, powerups, and (you guessed it) flags. All
these items fall into a certain category, which is held in an enum
called itemType_t, found near line 596 of bg_public.h. A quick visit to
that line number in bg_public.h reveals the following declaration:

typedef enum {

IT_BAD,

IT_WEAPON, // EFX: rotate + upscale + minlight

IT_AMMO, // EFX: rotate

IT_ARMOR, // EFX: rotate + minlight

IT_HEALTH, // EFX: static external sphere + rotating internal

IT_POWERUP, // instant on, timer based

// EFX: rotate + external ring that rotates

IT_HOLDABLE, // single use, holdable item

209Preparing Q3 for DTF

Figure 7.3 What a player will see during a level load for Defend the Flag

// EFX: rotate + bob

IT_PERSISTANT_POWERUP,

IT_TEAM

} itemType_t;

As with all good enums, this declaration maintains a list of variables
that define each category of item that exists in Q3. You should be able
to recognize many of these variables simply from their names:
IT_WEAPON refers to weapons, IT_AMMO indicates boxes of ammunition,
IT_HEALTH is a reference to items that give the player health, and so on.
One of these variables is incorporated into every item, held in the
giType member of the gitem_t struct.

Because each item in a Q3
level has this giType mem-
ber indicating the item cate-
gory it belongs to, you can
imagine that there are vari-
ous bits of logic in the code
base that look at giType, and
perform differently, based
on the item being refer-
enced. For instance, when
the player touches a health
pack he gains health; like-
wise, when the player picks
up ammunition, that type of
ammo is added to the
player’s inventory. Grouping items into itemType_t categories make it
easier to develop reusable functions for similar items.

The flags in DTF will, essentially, still be the flags that players have
come to know and love. That is, they will look like normal CTF flags
on the outside. Internally, however, they will act differently, as if they
are completely new items (and in fact, they will be). To create this new
category of item, insert a new IT flag at the end of itemType_t, and
call it IT_SIGIL:

IT_PERSISTANT_POWERUP,

IT_TEAM,

IT_SIGIL // DTF Flags will be called ‘sigils’

} itemType_t;

210 7. Defend the Flag

TIP
If you haven’t found it yet, the decla-
ration of gitem_t can be found on
(or near) line 614 of bg_public.h.All
the items that exist in a level are of
type gitem_t, and they are poured
into a global array called
bg_itemlist, which you will learn in
the next section. If you have a refer-
ence to an entity, you can determine
whether it is an item by looking at
its item member, such as ent->item.

This new DTF flag, which
will behave differently
from normal CTF flags, will
be categorized by the vari-
able IT_SIGIL.

With IT_SIGIL in place,
you now have a way of
referring to your new DTF-
specific flags. From now
on, I will refer to the flags
in DTF as sigils; when I say
“flag,” you’ll know I’m talk-
ing about standard CTF.

Fleshing Out the Sigil
In regular CTF, flags get pretty active. At one moment, they may be
resting idle, safe within the walls of their team’s base. In another
moment, they can be stolen by the enemy, strapped to a player’s back
as the defending team rushes the thief, laying down a barrage of fire.
The flags can also be dropped somewhere in the map—if a carrier is
killed during a flag run, for example—waiting patiently to be picked
up by another foe or returned to safety by a teammate. In a game of
One-Flag CTF, the white flag has the added capability of being
snatched by either team. Because the flag in CTF gets busy at times,
Q3 needs a way to determine what the status of that flag is. That status
can be extracted from an enum called flagStatus_t, found on line
1374 of q_shared.h:

typedef enum _flag_status {

FLAG_ATBASE = 0,

FLAG_TAKEN, // CTF

FLAG_TAKEN_RED, // One Flag CTF

FLAG_TAKEN_BLUE, // One Flag CTF

FLAG_DROPPED

} flagStatus_t;

211Preparing Q3 for DTF

NOTE
I chose the variable name IT_SIGIL
because I didn’t want to cause any
confusion with existing variables in
the game that reference the word
“flag” in some way.The new DTF
flags will be completely separate
from the flags used in CTF; only their
models and skins will be the same. I
took the word “sigil” from the
names of the symbols used in the
original Quake, which also had their
functionality reprogrammed when
they were turned into runes for the
first release of CTF.

As shown, the values of a flagStatus_t variable can be one of five types.
FLAG_ATBASE simply means the flag is safe at home. FLAG_TAKEN refers to
a flag that has been picked up by an enemy; both FLAG_TAKEN_RED and
FLAG_TAKEN_BLUE refer to this same status, except that they apply
directly to the white flag in One-Flag CTF. The last value, FLAG_DROPPED,
is the status of a flag that was dropped by a flag carrier.

In DTF, the sigil will have three different statuses. It can be white,
meaning neither team has touched it; this will be the status of a sigil
when a new DTF game begins. Additionally, the sigils will change color
based on the team that touches them. Because there are two teams in
Q3, the other two statuses of the sigils will be either red or blue.
Under the declaration of flagStatus_t, create a new enum that will
hold the status of the sigils in DTF, calling it sigilStatus_t:

typedef enum _sigil_status {

SIGIL_ISWHITE = 0, // DTF

SIGIL_ISRED, // DTF

SIGIL_ISBLUE // DTF

} sigilStatus_t;

This new sigilStatus_t enum will define a variable that will be used to
communicate the status of the three sigils between the game and
cgame code, functionality that you will be creating later. While I’m on
the subject of the three sigils: you will want to indicate to Q3 that the
DTF game type will, in fact, have three sigils in each game. Place one
more line of code into q_shared.h that will identify those three sigils
directly above the sigilStatus_t declaration you just added:

#define MAX_SIGILS 3

Now you have a convenient variable that references the total number
of sigils that can exist in a game of DTF. The variable name is easy to
remember; plus, if you later decide that you want more than three sig-
ils in a game of DTF, you can change this one line of code. This saves
countless hours of weeding through the source trying to change your
3 to some other value, making sure all instances are taken care of. You
will get a much more concise result if you search your code base for
MAX_SIGILS than if you search for the number 3.

212 7. Defend the Flag

Bending the Rules with
powerup_t
Sometimes rules are meant to be broken. You should be comfortable
knowing that in order to get some work done, you may have to cheat
a little. The cheating that I am referring to will come in the form of a
modification to powerup_t. Resting quietly on line 249 of bg_public.h
is the declaration of powerup_t, which reads as follows:

// NOTE: may not have more than 16

typedef enum {

PW_NONE,

PW_QUAD,

PW_BATTLESUIT,

PW_HASTE,

PW_INVIS,

PW_REGEN,

PW_FLIGHT,

PW_REDFLAG,

PW_BLUEFLAG,

PW_NEUTRALFLAG,

PW_SCOUT,

PW_GUARD,

PW_DOUBLER,

PW_AMMOREGEN,

PW_INVULNERABILITY,

PW_NUM_POWERUPS

} powerup_t;

As you can see, powerup_t is no different from any other enum; it
simply has a list of variables that map to integer values, starting at 0
and incrementing by one for each member. You should be able to see
variables referencing the existing CTF flags, PW_REDFLAG, PW_BLUEFLAG,
and PW_NEUTRALFLAG. As well, the last member of the enum refers to the
total number of members within it: PW_NUM_POWERUPS.

213Preparing Q3 for DTF

powerup_t variables are used very discreetly throughout the Q3 code
base; there are no actual variables that are declared of type powerup_t.
There is one function, BG_FindItemForPowerup, which takes a powerup_t
variable as an input parameter and returns a gitem_t. The reason for
this is that because the powerup_t data type holds integers, it can be
mixed and matched with other enums (such as weapon_t) to identify
the type of item being referenced (much in the same way that IT_SIGIL
refers to a category of item, as do other IT values).

The most interesting part of powerup_t is the C comment at the top
of the declaration, indicating that there can be only 16 values in the
enum. This stems from the existence of the powerups array, held in
playerState_t. If you open q_shared.h and scroll to line 1169, you will
see that powerups is an integer array that has its upper limit initialized
to MAX_POWERUPS, which itself is 16. playerState_t is one of those touchy
variable types that are transmitted between game and cgame to assist
with player movement and prediction. Because game and cgame can
potentially live on two different computers (as discussed in Chapter
5), the data required in each transmission needs to be as small as pos-
sible. Hence, smaller physical limits are imposed on the size of the
arrays holding info such as stats, ammo, and powerups.

Because all 16 values in powerup_t are already called for, how can you
modify this enum? The answer lies within how the powerup_t enum
will be used in DTF. Because CTF flags are actually present on the
player when they are stolen, the cgame code needs to be able to see the
communicated powerup_t vari-
able in the player’s persistent
playerState_t member, and
update any client-side effects
appropriately. In a game of DTF,
however, the sigils will not act
like flags in that they will not be
picked up and carried the way
standard CTF flags are. Because
cgame will not need to know (or
care) about a client-side effect
related to the sigils, you can
safely make an addition to this
enum to represent the sigil.

214 7. Defend the Flag

NOTE
There will definitely be data in
DTF that cgame will need to see
in order to make appropriate
updates to the client’s view of
the game, such as the status of
each sigil (white, red, or blue),
but you will not be using the
powerup_t enum for that.
Instead, you’re going to be using
a config string, which you’ll learn
about in the next section.

Go ahead and add the following code near the end of the powerup_t
enum, so that it reads as follows:

PW_INVULNERABILITY,

PW_SIGILWHITE,

PW_SIGILRED,

PW_SIGILBLUE,

PW_NUM_POWERUPS

} powerup_t;

There’s no turning back now; you’re breaking every rule in the book!
Just kidding. Bending the rules every once in awhile is a good thing,
as long as you’re clear on what residual effects your rule-bending
will have on the code. This particular modification to powerup_t
will be safe, as long as you do not try to use the new PW_SIGILWHITE,
PW_SIGILRED, and PW_SIGILBLUE variables as indexes to any arrays that
have already been sized.

Transforming Flags
into Sigils
In this section, you will learn how to change the behavior of the CTF
flags so that they become the new DTF sigils. Flags, at their core, are
items, sharing the same kinds of attributes as those found in weapons,
runes, boxes of ammo, and so on. They must have their own models,
and sometimes their own skins. They may also have associated sound
effects that play when the items are picked up, and they are assigned a
unique identifier for both their item type and category. You will use
all the preceding information to build the new sigil items in Q3,
reusing some flag information, thereby creating the illusion that you
have altered how CTF flags behave. Creating illusions, as you are dis-
covering, is the magic of a mod programmer.

Every Item Is a gitem_t
As explained earlier, the sigil is going to be the heart of DTF. In your
new mod, players will race around the map attempting to control

215Transforming Flags into Sigils

three sigils by touching them, which will change the sigil’s coloring to
match the team that “holds” them. Players will then attempt to defend
those held sigils, preventing any enemies from making a similar hold
attempt. Because the sigils will have an entirely new behavior, you will
create a new item definition for them.

When a map is first launched in Q3, all the map’s items are parsed
and set up to be placed in the world. Each item is compared to a list
of items that is declared in bg_misc.c—an array called bg_itemlist,
which is of type gitem_t. The initialization of bg_itemlist is one giant
chunk of code. Because bg_itemlist is an array, each element must
have default values that map to the members of a gitem_t struct. Let’s
take a look at the definition of a gitem_t now:

typedef struct gitem_s {

char *classname; // spawning name

char *pickup_sound;

char *world_model[MAX_ITEM_MODELS];

char *icon;

char *pickup_name; // for printing on pickup

int quantity; // for ammo how much, or duration of

powerup

itemType_t giType; // IT_* flags

int giTag;

char *precaches; // string of all models and images this

item will use

char *sounds; // string of all sounds this item will use

} gitem_t;

As shown here, the first member is classname, a pointer to a char, which
will contain the physical name of the item, such as item_armor_combat or
weapon_gauntlet. The second member is pickup_sound, another char
pointer that contains a string, which maps to a sound file. This sound
file is then played when the player picks up the item. The third mem-
ber is world_model, which is array that can contain four elements
(because MAX_ITEM_MODELS equals four). These four elements represent
the 3D models used to represent the item in the world.

216 7. Defend the Flag

The next member in gitem_t is called icon, yet another pointer to a
char (see a trend starting here?), and within it is a mapping to an
image that will be displayed on the player’s HUD when he picks up
the item. pickup_name holds the display name of the item, as it will be
written on the HUD of the player when the item is picked up. The
next member is not a char pointer, but instead is an integer called
quantity, which represents how many units of a particular item are
assigned to the player’s inventory when one is picked up. This is com-
monly used for ammunition; when you pick up an ammunition-type
item, you may get 50 or 20 of those items instead of one. quantity can
also refer to an amount of time, such as how long a powerup has until
it times out, as is the case with quad damage and the flight powerup.

The giType and giTag members reference the categories and unique
identifiers of the item, respectively. This is where itemType_t and
powerup_t values come into play. The final two members, precaches
and sounds, are used to contain mappings to models, images, and
sound files that need to be cached for each item during level loads.
Now that you have a feel for what goes into each item, let’s take a look
at the definition for a CTF flag—namely, the red flag:

{

“team_CTF_redflag”,

NULL,

{ “models/flags/r_flag.md3”,

0, 0, 0 },

/* icon */ “icons/iconf_red1”,

/* pickup */ “Red Flag”,

0,

IT_TEAM,

PW_REDFLAG,

/* precache */ “”,

/* sounds */ “”

},

Because all items in bg_itemlist are defined during the array’s decla-
ration, C programming requirements dictate that each element be
identified by curly braces (the { and } symbols). The preceding code
snippet represents one element in the bg_itemlist array. Each mem-
ber of the gitem_t struct is defined, in order, to match the declaration
of gitem_t on line 614 of bg_public.h.

217Transforming Flags into Sigils

As you can see, the classname is team_CTF_redflag, there is no default
pickup_sound, and only one 3D model is assigned to the flag: the
model found at models/flags/r_flag.md3. An icon is displayed on the
player’s HUD when a flag is picked up, denoted by the image found at
icons/iconf_red1 (if there is no extension, it is assumed that the
image file is a TGA file). Also, the words “Red Flag” will be rendered
to the screen when the item is picked up.

You can see that there is a 0 quantity assigned to the flag, because it
doesn’t technically increment any ammunition or time. The next two
values represent the category and type of item, identified by
itemType_t and powerup_t values (IT_TEAM and PW_REDFLAG). No addi-
tional models, images, or sounds are needed for the caching of the
flag. Now, when a new map loads, Q3 can parse the values in this ele-
ment and handle this item appropriately when it is to be placed in the
world.

Sigils Become New Items
Let’s go ahead and make the sigil an official item in Q3. Using what
you have just learned about gitem_t variables and the global array
bg_itemlist, you should know that in order to create your new items,
you will place them into this array declaration in the same format as
the previous items. The sigils in DTF will reuse the flag models and
icons from Q3 as well as the white flag model and icon from the Team
Arena Mission Pack. Scroll down to line 637 in bg_misc.c, right after
the definition of the team_CTF_blueflag item, and add the following
lines of code:

/* team_DTF_sigil_red

Only in DTF games

*/

{

“team_DTF_sigil_red”,

NULL,

{ “models/flags/r_flag.md3”,

0, 0, 0 },

/* icon */ “icons/iconf_red1”,

/* pickup */ “Flag”,

0,

218 7. Defend the Flag

IT_SIGIL,

PW_SIGILRED,

/* precache */ “”,

/* sounds */ “”

},

/* team_DTF_sigil_blue

Only in DTF games

*/

{

“team_DTF_sigil_blue”,

NULL,

{ “models/flags/b_flag.md3”,

0, 0, 0 },

/* icon */ “icons/iconf_blu1”,

/* pickup */ “Flag”,

0,

IT_SIGIL,

PW_SIGILBLUE,

/* precache */ “”,

/* sounds */ “”

},

/* team_DTF_sigil

Only in DTF games

*/

{

“team_DTF_sigil”,

NULL,

{ “models/flags/n_flag.md3”,

0, 0, 0 },

/* icon */ “icons/iconf_neutral1”,

/* pickup */ “Flag”,

0,

IT_SIGIL,

PW_SIGILWHITE,

/* precache */ “”,

/* sounds */ “”

},

219Transforming Flags into Sigils

This code snippet reveals that the sigils will indeed utilize the existing
CTF flag models from Q3 and the Mission Pack. The class name
team_DTF_sigil will be the actual entity that is held in a map, requiring
the item to be spawned (because sigils will be white by default when
the game begins). The third element in this array declaration snippet
refers to that sigil. You can also see that all three sigils will display the
string “Flag” on the player’s HUD when touched; you do this because
you want to maintain the illusion that players are dealing with the
standard CTF flags. Remember, even though these sigils are three
unique items in the code, the player will think of them as “one flag
that can be colored three ways.” So, making each item announce itself
as a flag, without a specific color, is a good way to stop any confusion
players may have.

You should also see that
each sigil is assigned the
IT_SIGIL itemType_t vari-
able that you set up in the
first part of this chapter.
This will allow you to con-
trol the behavior of all
three items in a similar fash-
ion. Finally, your PW_SIG-
ILRED, PW_SIGILBLUE, and
PW_SIGILWHITE powerup_t
variables make their debut
as well. They are assigned to
each of the three types of
sigils that can be represented
in the game of DTF, and this will assist you later in dealing with logic
that must apply to each sigil individually (for example, did a red team
member just touch a sigil that was blue?).

Initializing Sigils for DTF
Your first exploration into using these new items in Q3 will be to prop-
erly initialize and prepare them for a game of DTF. Most of the team-
related functions are held in g_team.c (and its header, g_team.h), so
you’ll be placing code there for the sigils as well. Your first modifica-
tion will be within the function Team_InitGame, called during the setup
of a team-based game in Q3. Open g_team.c; near the top of the file,

220 7. Defend the Flag

NOTE
A good portion of the functionality
you’re building into DTF is based on
Anthony Jacques’ mod Domination,
which itself is based on the
Domination game type found in
Unreal Tournament. Many of the func-
tions and variables you’ll use in this
and the next chapter are modeled
after his successful implementation.
You can find Jacques’ mod on the
Internet at http://www.planetquake.
com/domination/.

you should see a declaration of the struct teamgame_t and a variable
teamgame that is defined to be of that data type:

typedef struct teamgame_s {
float last_flag_capture;
int last_capture_team;
flagStatus_t redStatus; // CTF
flagStatus_t blueStatus; // CTF
flagStatus_t flagStatus; // One Flag CTF
int redTakenTime;
int blueTakenTime;
int redObeliskAttackedTime;
int blueObeliskAttackedTime;

} teamgame_t;
teamgame_t teamgame;

Here, the teamgame_t struct is comprised of members that reference
the status of certain items in various team-based games. You should
recognize the flagStatus_t struct, because I discussed it earlier in this
chapter. The variable teamgame is declared to be of type teamgame_t,
which is then used throughout g_team.c to reference the status of the
members found in this struct. Tracking the status of your sigils in a
game of DTF is a prerequisite for this mod, and because DTF qualifies
as a team game, there is no better place to declare it than here in
teamgame_t. Go ahead and add a final member, right after
blueObeliskAttackedTime, which will finish off the struct like this:

int blueObeliskAttackedTime;
dtf_sigil_t sigil[MAX_SIGILS]; // DTF

} teamgame_t;

Excellent. You will now have access to teamgame.sigil[0],
teamgame.sigil[1], and teamgame.sigil[2], the three sigils needed in a
game of DTF. However, there’s a problem: What in the heck is a
dtf_sigil_t data type? Because the sigil in DTF is going to require a bit
more information than simply a status, you’ll need to create a struct
that contains several members. Go ahead and add the following struct
declaration above teamgame_t:

typedef struct dtf_sigil_s
{

gentity_t *entity;
sigilStatus_t status;

} dtf_sigil_t;

221Transforming Flags into Sigils

Ah, that’s much better. Now you can safely use the dtf_sigil_t type to
declare variables. This simple struct has only two members, a gentity_t
pointer called entity, and a sigilStatus_t called status. Knowing this,
you should now be able to access teamgame.sigil[x].status, where x is
any number from 0 to 2; the result will be one of three values:

SIGIL_ISWHITE, SIGIL_ISRED, or SIGIL_ISBLUE.

Next, let’s take a look at Team_InitGame, which you should find around
line 31. Team_InitGame is assigned the task of preparing the teamgame
variable (and its various members) for a new team-based game,
depending on the particular game type that was picked. The first
chunk of Team_InitGame looks like this:

void Team_InitGame(void) {
memset(&teamgame, 0, sizeof teamgame);

switch(g_gametype.integer) {
case GT_CTF:

teamgame.redStatus = teamgame.blueStatus = -1; // Invalid to
force update

Team_SetFlagStatus(TEAM_RED, FLAG_ATBASE);
Team_SetFlagStatus(TEAM_BLUE, FLAG_ATBASE);
break;

The call to memset should be familiar; it’s always a good idea to initial-
ize complex variable types to 0 to wipe away any bad data that may
be lurking. Next, a switch block is entered, looking at the value of
g_gametype.integer (the numeric value of the Cvar g_gametype dis-
cussed earlier). In the first case, which happens to be a value of
GT_CTF, Q3 is told to prepare CTF-related information. Therefore, it
first accesses the redStatus and blueStatus members of the teamgame
variable, and sets them both to -1, telling Q3 that they must be forced
into a valid state as soon as possible. Then, two functions are called
(one per flag), both called Team_SetFlagStatus, setting the value for
each flag to be the initial 0 value of flagStatus_t, which is FLAG_ATBASE.

To modify Team_InitGame to handle your new sigils, you will first need
to add a new case to the switch. Right after the break in the GT_CTF
case, add the following code:

case GT_DTF:

Init_Sigils();

222 7. Defend the Flag

teamgame.sigil[0].status = teamgame.sigil[1].status =

teamgame.sigil[2].status = -1; // Invalid to force update

Team_SetSigilStatus(0, SIGIL_ISWHITE);

Team_SetSigilStatus(1, SIGIL_ISWHITE);

Team_SetSigilStatus(2, SIGIL_ISWHITE);

break;

With the addition of this code, Team_InitGame now knows about the
new GT_DTF gametype_t variable you declared earlier. When the GT_DTF
value is found, a call is made to Init_Sigils (a function you will write
shortly), followed by a similar bit of code borrowed from the GT_CTF
case. All three sigils must be flagged to have their status forced to an
appropriate value when the game initializes. To do that, set the status
of each sigil to -1. Next, make three calls to Team_SetSigilStatus,
which will be a new function to handle client-side sigil updating. The
function will take two parameters: the index of the sigil in the array
and the status of the sigil (white, red, or blue) as found in the
sigilStatus_t enum.

Team_SetSigilStatus is going to be used in Chapter 10 (on the CD-
ROM), “Enhancing DTF,” when you get into updating the HUD and
scoreboard, so for now you will leave it alone. If you try to compile
your code at the end of this chapter without properly declaring and
defining Team_SetSigilStatus, however, your compiler will get upset.
So, go ahead and prototype it on line 30, right after the prototype for
Team_SetFlagStatus, like so:

void Team_SetFlagStatus(int team, flagStatus_t status);

void Team_SetSigilStatus(int sigilNum, sigilStatus_t status);

As for the body of the function, jump down to where
Team_SetFlagStatus is defined, near line 188, and add the following
code above it:

void Team_SetSigilStatus(int sigilNum, sigilStatus_t status) {}

Now your compiler will be happy when you attempt to build a DLL
later on. You still have to take care of another function that doesn’t
exist yet: Init_Sigils. Above the empty Team_SetSigilStatus function,
add the following definition for Init_Sigils:

void Init_Sigils(void) {

gentity_t *point = NULL;

int sigilNum = 0;

223Transforming Flags into Sigils

for (point = g_entities; point < &g_entities[level.num_entities] ;

point++)

{

if (!point->inuse)

continue;

if (!strcmp(point->classname, “team_DTF_sigil”)) {

teamgame.sigil[sigilNum].entity = point;

sigilNum++;

}

if (sigilNum==2)

return;

}

}

Let’s take a look at what’s going on here. An initial gentity_t pointer
is created called point, along with an integer called sigilNum. The
function starts by looping over the list of all the entities in the level,
held in the g_entities array (a technique you have used before). For
each iteration of the loop, the current entity (which is assigned to
point) is checked to see whether it is not in use by the game. If it
isn’t, the loop skips to the next entity. If the entity passes the first
check, however, a comparison is made between the entity’s classname
variable and the string team_DTF_sigil, which you should recognize as
the sigil’s classname, as assigned in the bg_itemlist array.

If the strings match, a sigil entity was found, so the
teamgame.sigil[sigilNum]’s entity is assigned to the current entity, held
in point. Because sigilNum begins its life in this function as 0, this
assignment would equate to the initialization of the first index of the
sigil array in teamgame. The sigilNum variable is then incremented,
and checked to see if it is equal to 2 (which would be the third and
final sigil). If it is, the function returns to its caller; otherwise, the
entity loop continues, looking for the remaining team_DTF_sigil items.

You now have a way of setting up the sigils at the beginning of a team
game! Because Init_Game is called higher up in the file g_team.c, you
will need to prototype the function. Go ahead and scroll back up to
line 29, where Team_SetFlagStatus is prototyped, and add a declaration
of Init_Game below it, like so:

224 7. Defend the Flag

void Team_SetFlagStatus(int team, flagStatus_t status);

void Init_Sigils(void);

Warning Q3 about Sigils
(Or Lack Thereof)
The next test of the new sigils in your mod will be in a function called
G_CheckTeamItems. This function is called from G_InitGame, one of the
very first functions run by Q3 when a new game starts up. In
G_CheckTeamItems, specific team-related variables are initialized. Then,
based on the type of game being played, certain sanity checks are per-
formed on the most important items. For example, in a game of CTF,
there must be a red flag and a blue flag in the map. If for some reason
a non-CTF map were to be loaded into Q3 when the game was expect-
ing to launch CTF, Q3 would need to warn the user that no flags exist
in that map.

Head over to g_items.c and scroll to line 696, where the definition of
G_CheckTeamItems begins:

/*

==================

G_CheckTeamItems

==================

*/

void G_CheckTeamItems(void) {

// Set up team stuff

Team_InitGame();

if(g_gametype.integer == GT_CTF) {

gitem_t *item;

// check for the two flags

item = BG_FindItem(“Red Flag”);

if (!item || !itemRegistered[item - bg_itemlist]) {

G_Printf(S_COLOR_YELLOW “WARNING: No team_CTF_redflag in

map”);

}

item = BG_FindItem(“Blue Flag”);

225Transforming Flags into Sigils

if (!item || !itemRegistered[item - bg_itemlist]) {

G_Printf(S_COLOR_YELLOW “WARNING: No team_CTF_blueflag in

map”);

}

}

Near the top of the function, a familiar call is made (weren’t we just
messing around in Team_InitGame?) to prepare team-related informa-
tion. Then, the g_gametype Cvar is queried (by accessing its integer
member); if the value is found to be GT_CTF, then a search is per-
formed for both the red and blue flags. Creating a temporary gitem_t
pointer called item starts this task, assigning it to the value of
BG_FindItem, with an input parameter of the string “Red Flag” for the
red flag and “Blue Flag” for the blue.

If the item pointer is NULL after the call to BG_FindItem, then the item
was not found. There is one more chance for the check to be success-
ful, however, and that is if the particular item flagged is true in the
itemRegistered array. itemRegistered is a global qboolean array that
contains either qtrue or qfalse for each item in the bg_itemlist array,
which can be set via RegisterItem, a function that tells Q3 to precache
an item, regardless of whether it was found in a level or not.

If the item pointer is NULL and is not set to be precached in the
itemRegistered array, the item was
not found anywhere in the level,
and so the player is warned. The
warning comes in the form of a
call to G_Printf, which simply
prints a string of text to the con-
sole. The console, if you remem-
ber, can be toggled on and off
via the tilde (~) key. You can
specify the color of the warning
with the first parameter; in the
case of the missing CTF flags, the
warning text is written in yellow (as
indicated by the S_COLOR_YELLOW flag).

To add the appropriate checks for your GT_DTF game type, add the fol-
lowing code after the GT_CTF section in G_CheckTeamItems ends, like so:

226 7. Defend the Flag

TIP
The string-color flags are
declared on line 511 of
q_shared.h, and allow you to
use any one of eight different
colors for your specific text.
They are fairly self-explanatory;
S_COLOR_BLACK is black,
S_COLOR_RED is red, and so on.

G_Printf(S_COLOR_YELLOW “WARNING: No team_CTF_blueflag in

map”);

}

}

if (g_gametype.integer == GT_DTF)

{

gitem_t *item;

// check for at least one sigil

item = BG_FindItem(“Flag”);

if (!item || !itemRegistered[item - bg_itemlist])

G_Printf(S_COLOR_YELLOW “WARNING: No team_DTF_sigil in

map”);

}

In this code snippet, you can
see that a single check is per-
formed for one sigil. As with
the CTF flag check before it,
the “Flag” string is passed to
BG_FindItem (remember that
you had the display name of
the sigil actually read “Flag”),
and the result is saved in item.
If item is NULL, and its indexed
value is qfalse in the
itemRegistered array, a warn-
ing is printed to the console
telling the player to get the heck out of the level; there is no
team_DTF_sigil item type found in the map.

Creating the
New Sigil Behavior
You have touched the sigil with the finger of God (so to speak) and
created it from the dust of so many bits and bytes. It has a new identi-
fying classname that distinguishes it from all the previous Q3 items,

227Creating the New Sigil Behavior

NOTE
Although there will be three sigils
in DTF, technically, only one is
really needed.You could easily
modify this function to loop three
times, keeping a counter for the
current total of found sigils, and if
the final total wasn’t MAX_SIGILS,
you could throw your warning
message up to the console.

and has absorbed the visual aspects of the CTF flag. It is now time to
take your new item to obedience school so that it can learn new
behaviors. As I have mentioned, flags in CTF can be picked up, car-
ried, or dropped, or can remain idle in their team’s base. DTF sigils,
on the other hand, will never be picked up, carried, or dropped in
the middle of a map. They will, however, change colors when they are
touched, and automatically generate a score for the team that holds
them. This section covers the necessary code to implement these
behaviors.

Getting Touchy-Feely
with Touch_Item
All items in Q3 can be touched. In fact, as the player runs around the
map, attacking opponents and fighting for survival, he almost perpet-
ually comes into contact with items. Touching weapons adds them to
the player’s inventory; touching a powerup will grant that power to
the player for a limited time. It goes without saying that touching a
CTF flag will cause the flag to be picked up (if it is the enemy flag) or
returned home (if it is the team flag, having been dropped in the
map). There is a function that controls what each item will do if it is
touched, and it is aptly named Touch_Item.

Touch_Item’s definition can be found near line 393 of g_items.c. Take a
look at the first part of the function body:

void Touch_Item (gentity_t *ent, gentity_t *other, trace_t *trace) {

int respawn;

qboolean predict;

if (!other->client)

return;

if (other->health < 1)

return; // dead people can’t pickup

// the same pickup rules are used for client side and server side

if (!BG_CanItemBeGrabbed(g_gametype.integer, &ent->s,

&other->client->ps)) {

return;

}

228 7. Defend the Flag

The Touch_Item function takes two gentity_t pointers as input, one
called ent and one called other. In the context of this function, ent
refers to the item that was touched, and other refers to the player that
touched said item. A third pointer, a trace_t called trace, is also
passed into the function, but is presently unused, so you don’t need to
worry about it.

The first few lines of the function check to see whether the player who
touched the item (referenced by other->client) is a valid player, and
that he is not dead (because dead players do not need to pick up
items). If the first two checks pass, a call is then made to a function
named BG_CanItemBeGrabbed. This function performs a series of sanity
checks on a specified item to see if the player in question can actually
pick it up.

Take a look at the definition for BG_CanItemBeGrabbed on line 1063 of
bg_misc.c. The first part of it reads as follows:

qboolean BG_CanItemBeGrabbed(int gametype, const entityState_t *ent,

const playerState_t *ps) {

gitem_t *item;

#ifdef MISSIONPACK

int upperBound;

#endif

if (ent->modelindex < 1 || ent->modelindex >= bg_numItems) {

Com_Error(ERR_DROP, “BG_CanItemBeGrabbed: index out of range”);

}

item = &bg_itemlist[ent->modelindex];

switch(item->giType) {

case IT_WEAPON:

return qtrue; // weapons are always picked up

case IT_AMMO:

if (ps->ammo[item->giTag] >= 200) {

return qfalse; // can’t hold any more

}

return qtrue;

229Creating the New Sigil Behavior

BG_CanItemBeGrabbed starts by first looking at the modelindex member of
entityState_t in the item. The modelindex member of entityState_t is an
integer that points to one of the elements in the bg_itemlist array; its
range can be anywhere from 1 to bg_numItems. And, although I have
reiterated that arrays begin at element 0 in C, this first element is
unusable, since it is reserved in the Q3 code with NULL values; hence,
the range begins at 1. If the value found in modelindex is invalid,
BG_CanItemBeGrabbed throws an error in Q3, causing the game to stop
loading.

Next, a local gitem_t
pointer called item is
assigned to represent the
actual item passed into the
function (done by refer-
encing its place in the
bg_itemlist array). Then, a
switch block is entered,
based on the item’s giType.
Remember that the giType
property of a gitem_t vari-
able holds the flag that
identifies the item as
belonging to a certain cate-
gory of items. The first two shown in this code snippet are IT_WEAPON
(which can always be picked up) and IT_AMMO (which can always be
picked up, as long as the player’s current ammunition count isn’t
beyond 200).

Every category of item is listed in this switch block, including IT_TEAM,
which is the category assigned to the CTF flags. You will need to add
your sigil’s category, IT_SIGIL, to this switch block, and create logic
that will tell Q3 whether your sigil can be picked up. Your logic should
be simple and straightforward.

■ Are you a red team member, touching a sigil that is red? If so,
you are disallowed.

■ Are you a blue team member, touching a sigil that is blue? If so,
you are disallowed.

■ Otherwise, you are allowed to touch the sigil.

230 7. Defend the Flag

TIP
The error-printing function,
Com_Error, uses a special type of flag
as its first input parameter: that of
an errorParm_t enum, which can be
found declared on line 381 of
q_shared.h.The two scariest types of
errors to throw are ERR_FATAL, which
causes Q3 to exit completely, and
ERR_DROP, which prints the error to
the screen and disconnects the play-
er from the active game session.

Scroll down to line 1201, while still in the same file, and add the fol-
lowing code right after the IT_TEAM’s case statement completes:

case IT_SIGIL:

// red team cannot touch a red sigil

if (ps->persistant[PERS_TEAM] == TEAM_RED && ent->powerups ==

PW_SIGILRED)

return qfalse;

// blue team cannot touch a blue sigil

else if (ps->persistant[PERS_TEAM] == TEAM_BLUE &&

ent->powerups == PW_SIGILBLUE)

return qfalse;

else

return qtrue;

In this snippet of code, the current team of the player in question is
referenced, with a call to ps->persistant[PERS_TEAM]. You have not yet
handled the logic that assigns a sigil a particular color. When you look
at this code snippet, you’ll see that the cat is out of the bag: The
powerup_t value will be held in ent->powerups. I will get to the actual
assignment of colors soon; for now, use this code with that assumption
in place. As the rules for touching the sigils dictate, if the player’s
team is red, and the sigil is red, qfalse is returned. If the player’s team
is blue, and the sigil is blue, qfalse is also returned. For all other com-
binations of values, qtrue is returned, which allows for mixed
color/team touching (that is, a member of the red team can touch a
blue sigil, and so on), as well as white sigil touches (either team may
touch a white sigil).

Wiring Sigil_Touch for Touch_Item
Now that you have logic handling whether a specific sigil can be
touched, let’s revisit Touch_Item to see what happens next. A few lines
down from the call to BG_CanItemBeGrabbed is the start of another
switch block, based on the category of the item:

// call the item-specific pickup function

switch(ent->item->giType) {

case IT_WEAPON:

respawn = Pickup_Weapon(ent, other);

break;

231Creating the New Sigil Behavior

case IT_AMMO:

respawn = Pickup_Ammo(ent, other);

break;

In each case statement, an integer called respawn is assigned the value
of a specific function that handles each item category. For these first
two item categories, the IT_WEAPON type makes a call to Pickup_Weapon,
while the IT_AMMO type calls Pickup_Ammo. Each of these functions passes
in the item (ent) and the player touching the item (other). As
expected, the IT_TEAM category is also present in this, and it calls
Pickup_Team. Pickup_Team breaks up the logic for team-related items,
and disperses it to other functions for appropriate updates. In a nut-
shell, Pickup_Team performs the following tasks for CTF:

■ It finds out what team owns the touched flag.
■ If the player’s team matches the touched flag (for example, a

member of the red team touches a red flag), it either sends the
flag home (if it has been dropped) or scores a capture (if the
player is carrying the enemy’s flag). It then processes the appro-
priate scoring.

■ If the player’s team does not match the touched flag (for exam-
ple, a member of the red team touches a blue flag), it adds the
flag powerup to the player and updates the flag’s status
(FLAG_TAKEN). It then processes the appropriate scoring.

Sounds easy enough, right? You should be able to implement a func-
tion that performs a similar set of tasks for the DTF sigils. Start near
line 444 of g_items.c, right after the IT_TEAM case is handled in
Touch_Item, and add a new case like so:

case IT_TEAM:

respawn = Pickup_Team(ent, other);

break;

case IT_SIGIL: // new dtf sigil type

respawn = Sigil_Touch(ent, other);

break;

Very simply, you enter the case for an item discovered to be of type
IT_SIGIL, and perform the respawn assignment by calling a new func-
tion called Sigil_Touch. Your next job will be to create that function.
Place Sigil_Touch on line 944 of g_team.c, because the other pickup-
related functions are declared in that file as well:

232 7. Defend the Flag

/*

=========

Sigil_Touch

=========

*/

int Sigil_Touch(gentity_t *ent, gentity_t *other) {

gclient_t *cl = other->client;

if (!cl)

return 0;

if (ent->count && ent->nextthink < level.time + 1500) //

protect against overflows by not counting

return 0;

if (cl->sess.sessionTeam == TEAM_RED && ent->s.powerups !=

PW_SIGILRED)

{

ent->nextthink = level.time - (level.time % 4000) + 4000;

ent->think = Sigil_Think;

ent->s.powerups = PW_SIGILRED;

ent->s.modelindex = ITEM_INDEX(BG_FindItemForPowerup(

PW_SIGILRED));

ent->count = 1;

}

else if (cl->sess.sessionTeam == TEAM_BLUE && ent->s.powerups !=

PW_SIGILBLUE)

{

ent->nextthink = level.time - (level.time % 4000) + 4000;

ent->think = Sigil_Think;

ent->s.powerups = PW_SIGILBLUE;

ent->s.modelindex = ITEM_INDEX(BG_FindItemForPowerup(

PW_SIGILBLUE));

ent->count = 1;

}

return 0;

}

This is a hefty function; let’s take it one step at a time. Sigil_Touch
begins with a sanity check to the player, to make sure it is valid. The

233Creating the New Sigil Behavior

next line, which checks ent->count and ent->nextthink, is performed
to prevent players from constantly touching sigils . . . an event that
could call functions unnecessarily and consume resources (also
referred to as overflowing).

If the checks pass, then the real logic begins to determine what will
happen when a specific sigil is touched. The code basically mirrors
itself; a blue team member will set the sigil’s s.powerups value to
PW_SIGILBLUE, while a red team member will set the sigil’s s.powerups
value to PW_SIGILRED. You should also note that the sigil’s s.modelindex
value is set to the return of BG_FindItemForPowerup, passing in the new
sigil color (PW_SIGILBLUE or PW_SIGILRED).

The common assignments that take place, regardless of team or sigil
color, involve timing, setting the count
value, the sigil’s think function, and
nextthink time. The assignment of
ent->count to 1 reflects the earlier
statement made about overflows; by
setting this value to 1, you can pre-
vent an immediate re-touch of the
sigil, causing excess calls to the
Sigil_Touch function. The sigil will
need to have a think function once a
team holds it, so the assignment of
ent->think to Sigil_Think performs
this action (you will write Sigil_Think
shortly).

Finally, because the sigil will be running a think function, you will
need to tell the sigil the next valid time it can run said function.
Because you will want all sigils to perform their think function at a
specific interval, you will need to use an algorithm to set the nextthink
value to a specific time, regardless of the current game time. That
algorithm is as follows, where x is a proper nextthink value that always
calls the think function every two seconds, maintaining this touched
sigil’s synchronization with other sigils:

x = current time - (current time % 4000) + 4000

The last thing you will need to take care of is prototyping Sigil_Touch,
because it is called from Touch_Item in g_items.c. Open g_team.h and,

234 7. Defend the Flag

TIP
ITEM_INDEX is a macro that
is wrapped around the call
to BG_FindItemForPowerup.
It is declared on line 639
of bg_public.h, and simply
returns a numeric value
that represents the found
item’s place in the global
bg_itemlist array.

at the very end of the file after the declaration of Pickup_Team, add the
following line of code:

int Sigil_Touch(gentity_t *ent, gentity_t *other); // dtf

Perfect! Sigil_Touch is now ready to go.

Keeping Score with Sigil_Think
In the previous section, when you dealt with handling a sigil that had
been touched, you saw that the sigil was assigned a think function
called Sigil_Think. That’s because when a sigil is held by a team in a
game of DTF, that team will start accumulating points based on how
many sigils are held. Each sigil should assign a capture point of 1 for
every four seconds that pass in the game. Just above the Sigil_Touch
function in g_team.c, add the following code for Sigil_Think:

/*

=========

Sigil_Think

=========

*/

void Sigil_Think(gentity_t *ent) {

team_t team;

team = (ent->s.powerups == PW_SIGILRED) ? TEAM_RED : TEAM_BLUE;

ent->count = 0;

level.teamScores[team]++;

ent->nextthink = level.time + 4000;

//refresh scoreboard

CalculateRanks();

}

Sigil_Think is relatively small, starting with the declaration of a local
team_t variable called team. Then, the value of team is assigned either
TEAM_RED or TEAM_BLUE, based on whether the passed-in entity (the sigil
itself) is colored red or blue, respectively. Next, the sigil’s count prop-
erty is reset to 0, marking the sigil safe to be touched again by players.
The team scores are held in a global variable, level.teamScores, which

235Creating the New Sigil Behavior

is actually an array that has two indexes, either TEAM_RED or TEAM_BLUE.
Because your local team variable is set earlier and then used as the
index in the score addition, the appropriate team’s score will reflect
the change. The sigil’s nextthink property is then set to 4000 millisec-
onds from the current game time, which will repeat this entire process
again every four seconds.

A concluding function call named CalculateRanks is made at the end
of Sigil_Think. This function is simply provided to update the score-
board when an important event takes place. Sigils increment the
teams’ scores every four seconds, so this qualifies as an important-
enough event to refresh the player’s scoreboard. With both
Sigil_Touch and Sigil_Think in place, you can now return to
Touch_Item to clean up any leftover code. As it turns out, there is one
more place in the Q3 code base that needs updating.

Keeping cgame in Check
When standard CTF flags are picked up, they play a default sound
effect. This sound effect is handled on the client side of things, safely
tucked away in cgame. Because the DTF sigils have borrowed the CTF
flag’s default sounds, changes need to be made in both game and cgame
to support the sigils playing these sound effects. You can start by head-
ing back to g_items.c and scrolling down to around line 465, in the
heart of Touch_Item. Here, you should see code that looks like the fol-
lowing snippet:

// play the normal pickup sound

if (predict) {

G_AddPredictableEvent(other, EV_ITEM_PICKUP, ent->s.modelindex

);

} else {

G_AddEvent(other, EV_ITEM_PICKUP, ent->s.modelindex);

}

// powerup pickups are global broadcasts

if (ent->item->giType == IT_POWERUP || ent->item->giType ==

IT_TEAM) {

// if we want the global sound to play

if (!ent->speed) {

gentity_t *te;

236 7. Defend the Flag

te = G_TempEntity(ent->s.pos.trBase,

EV_GLOBAL_ITEM_PICKUP);

te->s.eventParm = ent->s.modelindex;

te->r.svFlags |= SVF_BROADCAST;

In this segment of code, a variable called predict is checked for true
or false. Because it is false by default, and you do not explicitly set it
to true for IT_SIGIL, G_AddEvent is called, passing in an event flag of
EV_ITEM_PICKUP. This will create a client-side event to play a “pickup”
sound on the client, and will do so for all items, including your new
sigils. Next, the item category is checked for a value of either
IT_POWERUP or IT_TEAM. If either is found, the code continues to play a
global pickup sound to all players. You don’t want your sigil left out in
the cold, so go ahead and modify that line so it reads as follows:

if (ent->item->giType == IT_POWERUP || ent->item->giType ==

IT_TEAM || ent->item->giType == IT_SIGIL) {

Now, when a sigil is touched, the game code will send a signal to
cgame, letting it know that it needs to play a generic global pickup
sound effect, which all players will hear.

To actually have cgame play
that sound effect, open
cg_event.c and scroll down to
line 666, which puts you
smack-dab into
CG_EntityEvent (remember
him from Chapter 6, “Client
Programming”?). All events
that are created by entities
will be handled in this func-
tion. At this position in the
file, you should be within the
case for EV_ITEM_PICKUP. Find the line of code that reads like this:

if (item->giType == IT_POWERUP || item->giType == IT_TEAM) {

and change it to the following:

if (item->giType == IT_POWERUP || item->giType == IT_TEAM || item-

>giType == IT_SIGIL) {

237Creating the New Sigil Behavior

NOTE
This function actually continues
deeper into Touch_Item, creating
the identical EV_GLOBAL_ITEM_PICKUP
event, but plays it locally to a client
if the player’s speed value is not 0.
You can see this in the snippet ear-
lier with the line of code that
starts with if (!ent->speed).

This allows the cgame code to properly interpret the EV_ITEM_PICKUP
event for sigils and play the default sound (which, coincidentally, is
the sound used to pick up a health pack), held in
cgs.media.n_healthSound.

You’re creating some exciting stuff here! With the sigils identified and
uniquely described within Q3, they can now think and react when play-
ers touch them, changing colors and incrementing team scores over
time. The only thing you need to do now is get the actual sigil spawned
in a level. The next section discusses how to dynamically create sigil
spawn points on the fly, without having to recompile any maps.

Tricking Q3: Reusing
Spawn Points
Every year, id Software hosts a giant party in Texas for the many fans
of Quake. This gaming fest is referred to as QuakeCon. Back at
QuakeCon ’97, volunteers were in the midst of trying to quickly come
up with a way to rewrite code in QuakeC to allow for more players
spawning into maps. Because QuakeCon has typically held a tourna-
ment each year, 1997 was no different. However, the code had not
been prepared ahead of time, and anxious players were getting
annoyed at the delay. The volunteers who were modifying QuakeC
could not get the new tournament mod to work properly; every time
they had a new release, players would try it, only to find that many of
them were spawning into each other, which of course, meant a telefrag
and instant death. There simply weren’t enough spawn points in the
selected tournament maps to allow for so many players.

Someone stepped out of the crowd and offered to help. He sat down
and began to look at what could be done to solve the problem as fast
as possible. His answer? Dynamically turning the spawn points for
health packs into player spawn points. His trick worked, and the tour-
nament got started, allowing many players to spawn into maps with
only a few starting points to begin with. The person who solved the
problem was none other than Dave Kirsch, the same man responsible
for CTF. The technique he used of changing level entities on the fly
has been reused many times since then, and offers mod programmers
an additional level of flexibility. Now, new entity types no longer have
to be dictated to level designers ahead of time; mod programmers can

238 7. Defend the Flag

simply re-map old entities to new ones as the level loads. In this next
section, you’ll apply this technique in several formats to create DTF-
ready levels, without having to recompile the maps from scratch.

The Process of Spawning
Level Entities
In order to attempt such a feat as changing level entities, you must
first understand how they are handled normally. When Q3 fires up a
new level, it runs through a series of initialization functions (you saw
one of these earlier, G_CheckTeamItems). The Q3 engine parses out the
physical map file, and the level entities are returned to the game code
via the use of a system-call function named trap_LocateGameData. This
commits the appropriate entity information into a global variable
called level.gentities (which itself is a pointer to the g_entities
array). And, you should know by experience that every single entity
in Q3 is held in the g_entities array.

Once the level data is properly processed into the game code, the
server-side DLL takes over and begins preparing each entity to be
launched into the map. It does this by first making a call to
G_SpawnEntitiesFromString, which can be found on line 665 of
g_spawn.c:

void G_SpawnEntitiesFromString(void) {

// allow calls to G_Spawn*()

level.spawning = qtrue;

level.numSpawnVars = 0;

// the worldspawn is not an actual entity, but it still

// has a “spawn” function to perform any global setup

// needed by a level (setting configstrings or cvars, etc)

if (!G_ParseSpawnVars()) {

G_Error(“SpawnEntities: no entities”);

}

SP_worldspawn();

// parse ents

while(G_ParseSpawnVars()) {

G_SpawnGEntityFromSpawnVars();

}

239Tricking Q3: Reusing Spawn Points

level.spawning = qfalse; // any future calls to

G_Spawn*() will be errors

}

As demonstrated by this function, a check is first made to see if there
are actually any entities loaded that can be spawned. If not, an error is
thrown with a call to G_Error. Otherwise, the world is created through
a call to SP_worldspawn. Then, all the level entities are parsed and
spawned into the map through a call to G_ParseSpawnVars, which places
the entity strings for each item parsed out of the level data into a
global array called level.spawnVars. Once this global array is popu-
lated, G_SpawnGEntitiyFromSpawnVars takes over.

In the function G_SpawnGEntityFromSpawnVars (found on line 449 of
g_spawn.c), each entity string is looked at in order in the
level.spawnVars array. As each entity string is evaluated, a physical
entity is prepared by Q3 to hold the parsed-out entity (via a call to
G_Spawn). The entity string’s name and value are obtained from
level.spawnVars and placed into the physical entity, performed by a
call to G_ParseField. For example, the entity string’s name might be
classname, and its value might be team_CTF_redflag. A series of rules
are then applied, which allow Q3 to specifically refrain from spawning
a particular entity based on a series of special entity strings that can be
added by the level designer. For example, if the notteam string is found
(and its value is 1), then the entity being handled will not be spawned
into Q3 in team-based games.

Finally, after all these checks have been performed, the final physical
entity, which has had all the current level entity’s info passed into it, is
spawned into the map through a call to G_CallSpawn, which can be
found near line 252 of g_spawn.c:

qboolean G_CallSpawn(gentity_t *ent) {

spawn_t *s;

gitem_t *item;

if (!ent->classname) {

G_Printf (“G_CallSpawn: NULL classname\n”);

return qfalse;

}

// check item spawn functions

240 7. Defend the Flag

for (item=bg_itemlist+1 ; item->classname ; item++) {

if (!strcmp(item->classname, ent->classname)) {

G_SpawnItem(ent, item);

return qtrue;

}

}

// check normal spawn functions

for (s=spawns ; s->name ; s++) {

if (!strcmp(s->name, ent->classname)) {

// found it

s->spawn(ent);

return qtrue;

}

}

G_Printf (“%s doesn’t have a spawn function\n”, ent->classname);

241Tricking Q3: Reusing Spawn Points

Stringing Entities Along

Entity strings are simply the key/value pairs that represent
specific information about level entities that are encoded
within a map’s BSP file.All level entities that are placed in a
BSP by a level designer are parsed out as a set of curly-braced
names and values. For example, a set of entity strings for a
player’s deathmatch spawn point might look like this:

{

“classname” “info_player_deathmatch”

“angle” “360”

“origin” “432 -208 32”

}

In this set of entity strings, the classname is info_player_
deathmatch, its angle in the world is 360, and its location in
the world is 432 × −208 × 32.All three entity strings belong
to the same entity (info_player_deathmatch) as indicated by
the opening and closing curly braces.

return qfalse;

}

G_CallSpawn first looks at the ent->classname of the item entity that was
passed to it. If the classname is empty, the function returns with an
error. Otherwise, the function moves on to begin looping through the
bg_itemlist array (starting at index 1 instead of 0, because, as I men-
tioned earlier, the first index of the array is reserved and never used
by a valid item). For every item in bg_itemlist that has a valid class-
name, a comparison is made between the classname found in the
array and the classname of the current item. If a match is discovered,
G_SpawnItem creates the entity and places it in the map, saving its
entity-specific information found in the bg_itemlist array.

A follow-up loop is handled that loops over the spawns array, dealing
with the setup of such things as player spawn points and triggers—
valid entities in the map that aren’t necessarily associated with models,
sound effects, images, and the like. If G_CallSpawn makes it all the way
to the end of the function and has still not found an appropriate
spawn function for the entity that was passed to it, it alerts the player
with a message that the entity has no spawn function, and the func-
tion exits.

Jimmying Item Entities
into a Map
Because DTF will utilize the new team_DTF_sigil item entity, you need to
find a way to call its spawn function in G_CallSpawn. The trick is that the
maps will already be compiled, and their level entities will be in a com-
plete and unmodifiable state. The solution is to programmatically find
appropriate item entities, and replace them with the team_DTF_sigil
item. Because DTF will be played much like CTF (and use the same
models as the CTF flags), it makes sense that the first item entities to
overthrow will be team_CTF_redflag and team_CTF_blueflag.

The first step in this process will be to properly register the three item
entity states that a sigil can be during a game of DTF. If you recall,
when you made the addition of the sigils to bg_itemlist, you created
three entries: team_DTF_sigil, team_DTF_sigil_red, and
team_DTF_sigil_blue. These item entities were also assigned powerup_t
flags to uniquely identify them, as PW_SIGILWHITE, PW_SIGILRED, and

242 7. Defend the Flag

PW_SIGILBLUE, respectively. Remember when you were looking at
G_CheckTeamItems, and I explained that an item could be registered by
setting its location in the itemRegistered array to true? Well, because
pre-existing CTF maps will not have the DTF sigils in them, this will be
the technique you will use.

The first thing you will need to do is call RegisterItem within
G_CallSpawn to prepare the three sigil item types for spawn processes.
This will properly flag the three sigil entities in the itemRegistered
array; that way, Q3 will know how to handle them, even if they don’t
already exist in the map being loaded. Right after the check to see if
G_CallSpawn’s passed-in ent variable has a valid classname, make the
following code adjustment:

G_Printf (“G_CallSpawn: NULL classname\n”);

return qfalse;

}

if (g_gametype.integer == GT_DTF)

{

RegisterItem(BG_FindItemForPowerup(PW_SIGILWHITE));

RegisterItem(BG_FindItemForPowerup(PW_SIGILRED));

RegisterItem(BG_FindItemForPowerup(PW_SIGILBLUE));

}

Here, g_gametype.integer is checked for a value of GT_DTF, the flag that
indicates your Defend the Flag game type. If DTF is detected, all three
sigil item states (white, red, and blue) are flagged in the
itemRegistered array with a call to RegisterItem, using the index that is
returned from BG_FindItemForPowerup. This new function,
BG_FindItemForPowerup, traverses the entire bg_itemlist array, looking
for a match to the passed-in item entity. It’s defined near line 957 in
bg_misc.c:

gitem_t *BG_FindItemForPowerup(powerup_t pw) {

int i;

for (i = 0 ; i < bg_numItems ; i++) {

if ((bg_itemlist[i].giType == IT_POWERUP ||

bg_itemlist[i].giType == IT_TEAM ||

bg_itemlist[i].giType == IT_PERSISTANT_POWERUP) &&

243Tricking Q3: Reusing Spawn Points

bg_itemlist[i].giTag == pw) {

return &bg_itemlist[i];

}

}

return NULL;

}

As expected, the function takes a passed-in powerup_t variable called
pw, and begins stepping through the entire bg_itemlist array, compar-
ing pw against the giTag found in the current iteration through the
loop, returning the found item when a match is discovered. By look-
ing at this code, however, you’ll notice that only the IT_POWERUP,
IT_TEAM, and IT_PERSISTANT_POWERUP categories are even considered.
The IT_SIGIL flag categorizes the DTF sigils, so you will need to add
this giType check as well. Modify the if statement within the for loop,
so that it reads as follows:

if ((bg_itemlist[i].giType == IT_POWERUP ||

bg_itemlist[i].giType == IT_TEAM ||

bg_itemlist[i].giType == IT_PERSISTANT_POWERUP ||

bg_itemlist[i].giType == IT_SIGIL) &&

bg_itemlist[i].giTag == pw) {

Excellent. With the addition of the IT_SIGIL flag to the giType valida-
tion, the new DTF sigils will be included in the scan for a powerup
item match.

Yanking Out CTF Flags
Now that the DTF sigils are valid registered item entities within Q3, it’s
time to pull the ol’ switcheroo on existing items. Jump back to
G_CallSpawn in the g_spawn.c file. As mentioned earlier, near line 368,
a loop begins over the bg_itemlist array, looking for the proper item
that matches the entity passed to G_CallSpawn. This will be where you
hijack the CTF flags and convert them to DTF sigils. Make the follow-
ing changes to that loop:

// check item spawn functions

for (item=bg_itemlist+1 ; item->classname ; item++) {

if (!strcmp(item->classname, ent->classname)) {

244 7. Defend the Flag

// if a CTF flag is found, and the game type is DTF

// convert the flag point to a sigil point

if (item->giType == IT_TEAM && g_gametype.integer ==

GT_DTF) {

item = BG_FindItemForPowerup(PW_SIGILWHITE);

ent->classname = item->classname;

}

G_SpawnItem(ent, item);

return qtrue;

}

}

This code demonstrates how a CTF flag point conversion is achieved.
After the item->classname matches the value found in ent->classname, a
check is performed on the item’s giType. If the giType of the matched
item is IT_TEAM (the category to which the CTF flags are assigned), and
the g_gametype.integer is found to be GT_DTF, the matched item is
assigned a new value—that of the team_DTF_sigil item entity, as refer-
enced by the PW_SIGILWHITE powerup_t flag. The entity’s classname is
then overwritten by the new item’s classname (team_DTF_sigil). At this
point, the entity passed to G_CallSpawn is no longer the entity parsed
from the map’s entity strings. The item retains all the original entity’s
information, such as location and angle, as found in the map, but
because its classname is converted to team_DTF_sigil and it obtains all
the other values of the team_DTF_sigil item entity (such as IT_TEAM for
the giType), the result is one brand spanking new team_DTF_sigil item
entity. This is then spawned into the map with G_SpawnItem. And,
because you know IT_TEAM will come up twice (once for each CTF
flag), the result of this code will be two new sigil points.

Creating a Third Sigil
Spawn Point
As with all CTF maps, there are two flag spawn points: one for the red
flag, and one for the blue. Additionally, any maps that are built for the
Team Arena Expansion Pack have a third flag spawn point: one for
the white flag. Conveniently, all three flags are categorized in the
IT_TEAM giType. You won’t, however, always have the benefit of using a
Team Arena map; players will ultimately want to use standard CTF

245Tricking Q3: Reusing Spawn Points

maps when they play your mod. So, you will need to come up with a
way to dynamically generate a third spawn point for your last sigil.

In order to come up with an algorithm that will help you determine
where to create the third spawn point, you need to decide on a set of
rules to use. Based on what you already know about the layout of a
CTF map, and what your objective will be for a final DTF conversion,
these are the rules that will apply:

■ If three sigils aren’t already detected, a third sigil spawn point
will be generated.

■ The third sigil spawn point should find the general center point
between the first two sigils, and look in that area for an existing
entity to take over.

■ Existing entities can be armor or health packs.
■ If no health packs or armor are found in the level, a weapon

spawn point will be picked as a last resort (because every map
must have a weapon somewhere).

Now that you have rules in place to generate a third sigil, let’s see
what it will take to implement those rules in a function.

First, take a step back to G_SpawnEntitiesFromString in g_spawn.c,
which you’ll recall is one of the main init functions for a game of Q3.
After the call to G_ParseSpawnVars, make the following changes:

// parse ents

while(G_ParseSpawnVars()) {

G_SpawnGEntityFromSpawnVars();

}

// make sure dtf maps have a 3rd sigil

if (g_gametype.integer == GT_DTF)

G_ValidateSigils();

Here, the game type is once again verified to be GT_DTF; as a result, a
new function called G_ValidateSigils will execute. The body of
G_ValidateSigils is handled next, so go ahead and place the following
function definition directly above G_SpawnEntitiesFromString (so it
doesn’t have to be prototyped):

void G_ValidateSigils()

{

246 7. Defend the Flag

gentity_t *it_ent;

it_ent = G_Spawn();

it_ent->think = ValidateSigilsInMap;

it_ent->nextthink = level.time + 500;

}

This tiny function simply creates a new entity called it_ent, and
spawns it into the map with G_Spawn. Note that the newly created
entity’s think function is explicitly set to ValidateSigilsInMap, a func-
tion you will write next. The final line of code tells Q3 that this new
entity will perform its think function exactly half a second from
spawning.

To lay out ValidateSigilsInMap, you will need to jump back to
g_team.c, because it will reference the teamgame variable that is accessi-
ble only in that file. This function is tricky and complicated, so I’ll
take it a few blocks of code at a time. Start by opening g_team.c,
scrolling down to about line 207, where Init_Sigils ends, and begin
the new function:

#define FRADIUS 800

void ValidateSigilsInMap(gentity_t *ent)

{

vec3_t start, end, temp, mins, maxs, tvec, offset = {FRADIUS,

FRADIUS, FRADIUS};

int numEnts, i, touch[MAX_GENTITIES], dist = FRADIUS;

gentity_t *tent, *targ;

float vlen;

qboolean foundItem = qfalse, foundPreferredItem = qfalse;

gitem_t *item;

// if 3rd sigil exists, this function doesn’t need to run

if (teamgame.sigil[2].entity)

return;

VectorCopy(teamgame.sigil[0].entity->r.currentOrigin, start);

VectorCopy(teamgame.sigil[1].entity->r.currentOrigin, end);

This function begins by looking at the entity pointer of the third sigil
(which would be held in teamgame.sigil[2].entity). If it is not NULL,
the function exits, because there is no need to create a third sigil; it

247Tricking Q3: Reusing Spawn Points

already exists. If, however, there is still the need for a third sigil, the
positions of the existing two sigils are copied into two vec3_t variables,
named start and end. These locations on the map allow you to gauge
a rough determination of where the center is. The next bit of code
handles that:

VectorSubtract(start, end, temp);

VectorScale(temp, 0.5, temp);

VectorAdd(end, temp, temp);

VectorCopy(temp, mins);

VectorCopy(temp, maxs);

VectorAdd(maxs, offset, maxs);

VectorScale(offset, -1, offset);

VectorAdd(mins, offset, mins);

In this snippet of code, the sigil’s locations are subtracted, and the
result is saved to temp. Next, the distance in temp is multiplied or scaled
by 0.5, effectively cutting the distance in half. VectorAdd is then called,
adding the scaled temp vec3_t back to end to get an “offset” value,
which will be the center position between the two sigils.

After the center point has been found, an appropriate range must be
created around that point. That range will be scanned for a possible
candidate to use as a replacement for a sigil. You accomplish this by
copying the center point vector into mins and maxs, then creating a
positive and negative offset, equal to the size of a pre-defined range
held in FRADIUS. As you can see, the outer limit of the range is created
by the call to VectorAdd, adding the offset vector to maxs, while the
inner limit of the range is created by adding the offset to mins after off-
set has been made negative by multiplying it by −1.

After you have the range, you can make a call to trap_EntitiesInBox to
look for a possible valid entity, the very same function you used way
back in Chapter 3, “More Weaponry Work,” for the gravity well:

numEnts = trap_EntitiesInBox(mins, maxs, touch, MAX_GENTITIES);

for (i=0 ; i<numEnts ; i++)

{

tent = &g_entities[touch[i]];

if (!tent->item)

248 7. Defend the Flag

continue;

if (!(tent->item->giType == IT_HEALTH || tent->item->giType ==

IT_ARMOR || tent->item->giType == IT_WEAPON))

continue;

VectorSubtract(temp, tent->r.currentOrigin, tvec);

vlen = abs(VectorLength(tvec));

if (vlen > FRADIUS)

continue;

When numEnts is assigned the result of trap_EntitiesInBox, the loop
can begin, looking at every entity that was found in the check. If the
entity is not in use, it can’t be converted. If the entity is not an
IT_HEALTH, IT_ARMOR, or IT_WEAPON item type, it cannot be converted.

The next bit of code improves upon the technique used back in the
gravity-well tutorial. A new distance vector, tvec, is assigned the differ-
ence between the current entity’s origin and the center point of the
range (still held in temp). Because tvec can be positive or negative at
this point, the length of the vector is determined by a call to
VectorLength, and the result is passed to the abs function. This returns
the positive value for a positive or negative number. This final value is
saved to vlen.

Picking the Preferred Item
The next bit of code is the most complicated part, so I’ll take it slow
and cover each detail carefully:

if ((foundItem && !foundPreferredItem) &&

(tent->item->giType == IT_HEALTH || tent->item->giType ==

IT_ARMOR)) {

foundPreferredItem = qtrue;

dist = abs(VectorLength(tvec));

targ = tent;

} else {

if (vlen < dist) {

if (tent->item->giType == IT_HEALTH ||

tent->item->giType == IT_ARMOR ||

249Tricking Q3: Reusing Spawn Points

(tent->item->giType == IT_WEAPON &&

!foundPreferredItem)) {

foundItem = qtrue;

dist = abs(VectorLength(tvec));

targ = tent;

if (tent->item->giType == IT_HEALTH || tent-

>item->giType == IT_ARMOR)

foundPreferredItem = qtrue;

}

}

}

}

In the scan of the entities found, you would like to convert a health
pack or armor into the third sigil. These are what you will refer to as
the preferred item. If, however, you cannot find either within the range,
you will have to fall back on a simple weapon as your replacement. For
each iteration through the loop of entities, you will check two flags
with which you monitor these findings: foundItem and
foundPreferredItem.

In the first part of this code snippet, you check to see if you have
already found a non-preferred item (in a previous iteration through
the loop). If this is true, look at the current entity in the loop and see
if it is either a health pack (IT_HEALTH) or armor (IT_ARMOR). If it is, you
have found your preferred item; set the foundPreferredItem flag to
true, update the dist variable to hold the absolute distance of the tvec
vec3_t, and assign tent to targ so that targ can be referenced as your
final switchable item.

If, in the current iteration of the loop, you have not found a valid
item, the first thing to do is check whether the vlen variable is less
than the current value of dist. dist is used in the comparison in this
case because ValidateSigilsInMap modifies the value, further refining
the distance that can be checked for valid entities. If the distance is
valid for the entity, the entity is checked to see if it is either

■ A health pack
■ Armor
■ A weapon (assuming no preferred item was found previously)

250 7. Defend the Flag

If any of those checks are true, then a valid item has been detected.
foundItem is flagged as true, the dist value is updated in the same
manner as before, and the targ variable is assigned the current entity.
A final check on the item is performed to see whether it was a health
pack or armor, and if so, foundItemPreferred is flagged as true.

The last part of the function checks the foundItem value, and if it is
true, the final assignments to the targ entity occur. This changes the
item into a sigil, and finishes by removing the entity that actually per-
forms the conversion process:

if (foundItem)

{

item = BG_FindItemForPowerup(PW_SIGILWHITE);

targ->s.modelindex = item - bg_itemlist;

targ->classname = item->classname;

targ->item = item;

targ->s.powerups = PW_SIGILWHITE;

teamgame.sigil[2].entity = targ;

}

// kill the entity that does the spawn conversions

G_FreeEntity(ent);

}

Note that in the preceding snippet, you assign the new converted
entity to teamgame.sigil[2].entity; this will be important later on as
you start communicating the status of the sigils to the cgame code.

The last upkeep you need to perform is prototyping this function,
because it is called from g_spawn.c. Open g_team.h and, at the end of
the file (after the declaration of Sigil_Touch), add the following line:

void ValidateSigilsInMap(gentity_t *ent); // dtf

Perfect! All the code is now in place for the new DTF game type! Go
ahead and build your cgamex86.dll and qagamex86.dll, drop them in
your MyMod folder, and load Q3 with a g_gametype of 5. Launch a CTF
map, such as q3ctf1. You might also want to bump the capturelimit
of the game up to something a little more reasonable, like 100. A
command-line shortcut for this would be as follows:

quake3.exe +set fs_game MyMod +set sv_pure 0 +set g_gametype 5 +set

capturelimit 100 +map q3ctf1

251Tricking Q3: Reusing Spawn Points

You should see your new Defend The Flag described in the loading win-
dow; when the game begins, go ahead and add yourself (and a few
bots) to different teams. Try picking up the flags; you should see your
new sigil behavior in action when the flags aren’t picked up, but
instead change color. You should also notice the score slowly incre-
menting over time as you touch flags.

Summary
In this chapter, you jumped through some hoops necessary to build a
new game type into Q3. You defined a new item entity type, the sigil,
and learned how to reuse existing item data by borrowing the initial-
ization requirements for the CTF flags. You also learned how to create
new behavior for the sigil items, allowing them to change color when
touched and increment team scores through the use of a think func-
tion. You also got a taste for tricking Q3 into reusing old spawn points
for your new sigils, either by statically replacing specific items like the
CTF flags, or by dynamically replacing an item using its location in the
map as a guide.

252 7. Defend the Flag

CHAPTER 8

Where to
Go Next

Well, you have finally reached the end. You’ve come a long way
from that first rocket-launcher modification, and it is my hope

that during the process you’ve uncovered some exciting elements in
modding the Q3 code base. My goal was to present you with the
important basics of Q3 mod development, and throughout these chap-
ters you were shown a wide variety of fundamentals that are integral to
any Q3 engine–based game. By working directly with the game and
cgame, you should now have a much firmer grasp on the client/server
concepts that are implemented in Q3. That experience will carry over
into many other forms of game development, because online gaming
is definitely a trend that won’t be going away soon.

At this point, you should have enough familiarity with the Q3 code
base to continue exploring its intricacies in greater detail. There were,
however, many areas that, due to the size of this book, couldn’t be cov-
ered in great detail, such as working with bots. I think that as you
extend your understanding of the code base from now on, you should
have a much easier time understanding what is going on; you have the
tools necessary to begin educating yourself.

Open-sourcing game logic is becoming more important to developers
as of late, and I encourage you to download and sift through as much
source code as you can get your hands on (as of this writing, the
source to Return to Castle Wolfenstein and Soldier of Fortune II, two other
Q3 engine–based games, have been made public). It also won’t hurt to
further your knowledge of C and C++, and get better acquainted with
physics and trigonometry. In this next section, I’ll give you a summary
of what kinds of mods are being developed today, by fans that hunger
for development like you. I’ll also give you a break-down of other
components that are important to mod development, outside of the C
source.

254 8. Where To Go Next

Deathmatch, CTF, and
Other Game Types
Some programmers these days believe that nothing is new, and that
each game that hits the shelf is simply a remake or an update of an
idea that someone has already used. Whether or not you agree with
this statement is your own business. Although I certainly see a trend of
games falling into particular genres, what excites me about game evo-
lution is the refinement that takes place in the process. In some cases,
it is perfectly acceptable to leave well enough alone; if a certain style
of game works, there is no sense in changing it. However, there are
still many games that leave room for improvement, and this analogy
can be applied directly to the style of game types that are offered in
Q3, namely deathmatch and Capture the Flag (CTF). Mod developers
continually build on what currently exists, changing rules, updating
weapons, and so on, and many of these experiments in coding
alchemy often result in gold. Let’s take a moment to take a look at
some of the more popular game types played in FPS games, and how
they have been refined over time.

Vanilla Deathmatch
In a deathmatch mod, players are pitted against one another in a free-
for-all battle to the death. This type of mod focuses on the skill of the
individual, and how he ranks against others in the arena. Deathmatch
mods almost always give the individual a full arsenal of weaponry, and
impose no limits on how they wield these weapons in battle. Frag
counts (the total number of kills made) are generally high, and quick
to grow, and the winner is the one who comes out with the most frags
by the end of the match. In most deathmatch mods, the end of the
match is triggered by either a fixed time limit or by a certain score.

Deathmatch mods appeal to many gamers because of their focus on
individual ability. Some players feel that pure deathmatch allows them
to perfect their gaming skills, leaving them free to focus on killing
every other player on the map. To them, strategy comes from deter-
mining where their opponent will hide or surprise them with the next
attack. Deathmatch is also about hand-eye coordination, so that every

255Deathmatch, CTF, and Other Game Types

movement and aim is perfectly executed (pardon the pun). Most
deathmatch mods truly shine when individuals are pitted one-on-one,
such as in the Rocket Arena Q3A mod. The game becomes quite an
adrenaline rush when you are constantly trying to outsmart and out-
shoot another player.

Deathmatch mods can definitely be built upon simply by changing the
interaction of the player to the game. An example of this is the queue
that is implemented in Rocket Arena Q3A; in this game, two players bat-
tle while remaining users wait their turn. Other mods, such as Rune
Quake, change deathmatch by offering additional powerups and
weapons to the player during the game. These simple additions may
give the player an additional edge that he might not have otherwise,
and can sometimes mean the difference between a second-place finish
and a first-place win.

When developing deathmatch-style mods, there are a number of fac-
tors to consider. First and foremost: Are the rules you implement
going to detract from the fast pace of the game? I’m sure the develop-
ers of Rocket Arena initially struggled with the idea of the queue
because it ultimately forced players to wait, doing nothing but watch-
ing. After all, newcomers to a Rocket Arena server might not be up to
speed with how the mod works; when they realize they must wait in
line to play, they may decide to leave. Obviously, turning away players
is not the first thing a mod author strives to do.

Another issue is balance. When adding a new powerup to the game, a
few things need to be considered. Will this powerup grant the player
too much strength? Will it make him too weak? The last thing any mod
programmer wants to see is one player running around in his new
mod, annihilating every other player, simply because he discovered
that one super-duper powerup that granted him unlimited power. As
any developer you talk to will attest, balance is key. In the end, you will
never be able to satisfy all players, but if you do your best to please the
majority, you will have succeeded in your implementation.

Games Without Frontiers: CTF
The second type of game play that has gained popularity in recent
years is the team-based mod. Various team-based mods began popping
up here and there after the release of the initial Quake back in July

256 8. Where To Go Next

of 1996, but none have had a greater impact on the genre than the
creation of Capture the Flag by Dave “Zoid” Kirsch. In his own words,
Kirsch felt that existing team-based play was weak, and consisted only
of “not shooting players the same color as you.” CTF, on the other
hand, required a little thing called teamwork.

At its core, the game was still Quake, and players were still able to blow
each other to smithereens. The success or failure of the team, how-
ever, was not based on the number of frags accrued, but instead, by
the number of captures a team had successfully completed. To capture
a flag, players needed to race into their opponents’ territory, grab the
flag from its post, and sprint home—trying desperately not to be
killed.

If a player brought an enemy flag to his home flag, that player would
score a capture. A death, on the other hand, resulted in the flag being
dropped; the flag could then be picked up by another team member
or sent back home by the enemy’s touch. Thus, a new scoring system
had to be implemented, one that rewarded the player for capturing
the enemy’s flag as well as acknowledging when a player successfully
defended his own flag from capture or returning the flag if it had
been stolen.

In his initial release of Threewave CTF in October 1996, Kirsch imple-
mented existing models of keys from Quake as the flags, and he con-
verted four sigils, also pre-existing models in Quake, into runes that
would grant the user speed, power, defense, or regeneration when
picked up. Swarms of players began flocking to new CTF servers, and
it proved to be quite an addictive mod. The popularity of CTF grew to
such extremes that Kirsch himself ended working for ID, implement-
ing CTF into both Quake II and Q3.

When designing a mod like CTF,
the rules of the game are rela-
tively easy to implement; the dif-
ficulty lies in the balance of the
levels, and how they are
designed. Some CTF levels allow
for multiple entrances to each
flag room (where the team’s flag
is hidden); quite often, too

257Deathmatch, CTF, and Other Game Types

NOTE
Coincidentally, Kirsch not only
programmed the code for CTF,
but also designed several of the
first CTF levels.As a result, he
had the benefit of being able to
share his design vision by exam-
ple instead of by direction.

many (or too few) paths to the flag room can make a CTF level virtu-
ally unplayable. This, of course, is in the hands of the level designer,
and as the mod author, it is your responsibility to nip these issues in
the bud before your mod is released to the public.

A Class Act: Team Fortress
Another popular team-based mod is Team Fortress. Led by developer
Robin Walker, a group of Quake fanatics decided to build upon the
success of CTF by pushing it one step further and implementing
player classes. That way, not only did players have to work together to
defeat their opponents, they were granted different abilities in the
process. These new abilities ranged from being able to heal fellow
teammates with a medical kit, to the ability to disguise themselves as
members of the opposing team.

This is an exciting style of mod to create; as you can imagine, there
are even more items to think about when designing it. Not only do
the CTF level-design issues apply, but another problem arises: Are the
classes properly balanced? (See, I told you balance would come up
again.) By breaking out the players into multiple classes, each with its
own specific strengths and weakness, imbalance may occur if you
don’t pay close attention to how they are used. For example, a player
class that is granted heavy weaponry capable of doing twice (or more)
the damage as a normal player is clearly going to be more powerful
than any other class. The quickest solution to this is to slow the player
class’s movement. If a player can’t walk as quickly, he will have to work
extra hard to stay alive so he can use that powerful weaponry.

And what about the case of the spy class mentioned earlier, in which
a player is capable of resembling the enemy? There is plenty of room
for imbalance there. In TF, the solution was to lighten the class’s
weaponry somewhat. In addition, if the player were to fire his weapon
at any time while in disguise, he would instantly blow his cover. This
forces someone playing the spy class to play smart, and not just bla-
tantly put on a disguise and trot over to the enemy’s bunker. (I’ll
admit it looks pretty fishy when one of my own team members
magically appears in the enemy’s bunker and starts running toward
my base.)

258 8. Where To Go Next

Squad Tactics: Counter-Strike
Urban Terror may be the current hot mod for Q3, but it wouldn’t even
exist if it weren’t for the path laid down by one of the most original
squad-based mods around. That mod is Counter-Strike, and it was created
by Minh “Gooseman” Le for the Half-Life engine. Unlike CTF or TF, in
which there is a common goal of capturing a flag, CS gives each team
a unique goal. As well, in CTF and TF, play is continuous; when you
die, you re-spawn and get right back into the fray. In squad-based
mods like CS, however, you sit out for the remainder of the round
when you die. This forces a whole new set of priorities onto the
player; success is earned by strategizing, using military-style tactics—
a far cry from blasting a roomful of aliens with a plasma rifle. Also,
unlike TF, CS does not implement a class system; instead, it allows
players to purchase guns and ammo based on their previous successes,
which earn them money. In my opnion, CS is probably one of the
most realistic implementations of a mod to date, because it focuses on
player movement, locational damage, and even uses weapons modeled
closely after real-life counterparts.

In CS, two teams are pitted against each other—the evil terrorists
and the heroic counter-terrorists—in a variety of missions. In one

259Deathmatch, CTF, and Other Game Types

TIP
Play testing is the key to discovering balance issues, and
often allows you to see things from a different point of
view.When id Software was developing the mechanics
behind the rocket launcher in the original Quake, it had
absolutely no idea that players would start using it for
rocket jumping. Rocket jumping is the act of pointing the
rocket launcher at the ground, firing, and then jumping a
split-second later, blasting the user up into the air.This
technique allowed many experienced players to get them-
selves into very high areas of levels no player could reach
by normal means. In response, id began to use rocket
jumping to test new level designs, and continues to do so.

scenario, a player on the terrorist team is given a bomb, and his team-
mates must help escort him to a bombsite and plant the bomb. The
counter-terrorists, of course, are assigned the task of preventing this
bomb from being planted. If the bomb is set, it is up to the counter-
terrorists to disarm the bomb. In another scenario, the terrorists hold
hostages in a specific room in a map. The counter-terrorists must
charge in and rescue the hostages by any means necessary—be it off-
ing the terrorists or safely escorting the hostages to a safe point in the
map.

CS is an extremely popular squad-based mod, but it wasn’t always so.
Just as there are issues in CTF and TF, so too do problems plague
mods like CS. In fact, the first releases of CS were very unbalanced,
due to the weapon-purchasing system mentioned earlier. The initial
implementation was “Winners get money; losers get nothing.”
Although that sounds perfectly valid in theory, game play is a different
story. Players soon found that after losing only a few rounds to an
opposing team, the game was essentially over; the winners had
amassed so much money and heavy weaponry that the losers simply
could not catch up. (Keep in mind that every time a player died, he
would lose all his money and additional weaponry!) A losing team
armed with nothing but pistols, no matter how skillful, could not com-
pete against a team stocked with sniper rifles, machines guns, and
smoke grenades.

The eventual solution was that more events cause money to be
earned, even if it is simply placing a successful shot on an opponent.
In addition, even when a team loses a round, it still earns a small
amount of money. This kept the win-
ners strong, but did not penalize
the losing team for long, because
they could eventually purchase
weapons that would get them back
into the game for keeps. Earned
money was also distributed among
the team, so players could help
each other out.

As you can see, there are certainly a
lot more issues to consider when
developing a squad-based mod.

260 8. Where To Go Next

NOTE
Robin Walker’s Team Fortress
mod, along with Minh Le’s
Counter-Strike mod, gained
such popularity that both
mods were snatched up by
Valve Software in order to
implement future versions
into its next generation of
game technology.

However, if your goal is to encourage teamwork, strategy, and offer
some inventive ways of handling weapons, skills, and powerups, it’s
definitely a game type to tackle.

Structure of a Mod
It’s time to take a look at the physical structure of mod. This is the
breakdown of all its parts—a detailed analysis of each type of file and
the role it will play in the mod. Although you have been dealing
directly with the brains behind the mod (the game logic wrapped
neatly into DLLs), there are many external parts, each playing an
important role. In order to see this structure, I will demystify that
sacred and holy ground that is known as the PK3 archive file.

The PK3 File: Unlocking
Its Secrets
PK3 is simply a file format that id Software decided to use to store all
the external data necessary to load and run Q3. Not only does the
PK3 file format impose a bit of organization to the massive amount of
files involved, it also provides an additional layer of security to Q3: If a
server is running in pure mode, client data files must match the
server’s data files, forcing only those data files inside the PK3 archives
to be used.

In reality, a PK3 file is simply a standard ZIP file, which can be han-
dled by any popular zipping program. My personal choice is WinZip.
If you look in the /quake3/baseq3/ directory, you should see a list of
files with the PK3 extension. With the current 1.31 Point Release
installed, I see pak0.pk3 all the way up to pak7.pk3. As you can see,
the first one, pak0.pk3, is a whop-
per of a file, ringing in at a hefty
457MB (479,493,658 bytes!). To
crack open this file, simply
rename the extension so that the
file is named pak0.zip, and then
open it with a file-compression
utility.

261Structure of a Mod

TIP
Some configurations of Win32
operating systems have built-in
support for ZIP archives, so you
may be able to view the file
simply by double-clicking it in
Windows Explorer.

On slower systems, it may take a few minutes to open an archive file this
size, so don’t worry if it is slow to view. Once the archive is visible, how-
ever, you will immediately see that there are many subfolders hidden
within the file. If you have the option to sort by folder or path, do so
(typically, you simply click on the column named “Path”). This way, you
can have a better view of the file-tree hierarchy as it sits in the PK3 file.

Because the PK3 file rests in a subfolder of the Q3 installation (remem-
ber, you got this from /quake3/baseq3/), all subfolders found within
the PK3 are relative to that main subfolder. You may recall this when
you dealt with shaders, icons, and sound files in Chapter 6. Table 8.1
shows the tree hierarchy and what important files are found there.

262 8. Where To Go Next

Table 8.1 The pak0.pk3 Folder Structure

Folder Files Found

(root) This directory contains configuration files for various players’
key bindings and server setup.

botfiles\ This directory contains base script files that are parsed by bots
to interact with players.

demos\ This directory contains demo files used to play back sessions of
previously recorded games.

env\ This directory contains images used as environment maps—the
areas of sky that are visible when the current level has no roof.

gfx\ This directory contains images used for fonts, blood spurts,
smoke trails, crosshairs, and such.

icons\ This directory contains images used to represent items on the
HUD, such as the selected weapon, ammo, flag status, and so on.

levelshots\ This directory contains screenshots of levels that are used dur-
ing the pre-load stage, so the player gets a visual of where they
will be fighting.

maps\ This directory contains the actual map files that are loaded and
played on by Q3 players.

menu\ This directory holds all the image art used to present the user
interface to the player. Here, you will find buttons, tabs, and
arrows, as well as medals and icons used in the scoreboard.

Undoubtedly, Q3 contains a lot of important data outside the code. By
peeking into this PK3 file, you’ll get the idea that it can really be an
intimidating task to develop a game, because so much content needs
to be provided. Now that you have discovered what files are actually
used in the production of Q3, let’s spend a bit of time on the most
important types of files found and the tools involved in their creation;
those being artwork, models, levels, and sound effects.

263Structure of a Mod

Folder Files Found

models\ This directory includes images and 3D model files that are used
to represent every polygonal figure you see in Q3. Every player,
ammo box, weapon, flying gib, and powerup will be found in this
folder.

music\ This directory holds the music you hear while you play Q3.

scripts\ This directory holds the shader scripts.

sound\ This directory contains all the sound effects you hear, such as
railgun shots, explosions, player screams, and the booming voice
of the announcer.

sprites\ This directory contains the images that are used as animations
to represent things like plasma blasts, bubbles in water, and the
“talk” cloud that hovers above a player’s head as he types a
message.

textures\ This folder holds all the textures that are applied to the sur-
faces of maps, re-creating the dark, metallic-gothic feel of Q3.
Animated textures are also found in this directory, such as bolts
of electricity that surround some pillars in various Q3 levels.

video\ This folder contains the in-game cinematic movies you get to
see as you progress through Q3.

vm\ This directory contains the Quake virtual machine files for the
three modules: game, cgame, and ui.

Art Is Life (and Death, in Q3)
No matter where you look in Q3, you are ultimately looking at an
artist’s view of the world. The artist is responsible for drawing every
texture, every explosion, and every icon you see on your HUD. That
means in order to come up with the art for Q3, you must have a num-
ber of tools at your disposal (as well as an actual talent for drawing).
The first of these tools is an image-editing application. This can be
anything from a shareware program such as Paint Shop Pro, all the
way up to a full-scale professional graphic-design application such as
Adobe Photoshop.

Typically, if you are creating art for Q3, you will be working with two
types of images. The first of these image types is the JPEG (Joint
Photographic Experts Group) format. This type of image offers you a
good range of compression (which means that the final image file is
fairly small) without too much of a loss of quality. The second type of
image format used in Q3 is the Targa file, or TGA for short. Targa files
are among the most frequently used image formats today because they
can store high-quality image data and support such features as the
alpha channel, which allows for transparency in Q3. Figure 8.1 shows a
TGA file, the Capture medal from Q3, being edited in Adobe
Photoshop.

Another tool used by artists is a piece of hardware called a scanner,
which allows you to convert a hand-drawn image on a piece of paper
or a photo into an image on a computer screen (this is known as digi-
tizing). This removes a lot of the grunt work often associated with
drawing art directly in a graphics-editing program. (If you’ve ever
tried to sketch something in a painting program with your mouse, I’m
sure you can relate!) Although many professional designers have
become adept at using the mouse while drawing, a scanner is defi-
nitely a good idea for budding and enthusiastic newcomers.

Modeling Without a Runway
Because the world of Q3 is rendered in a real 3D environment, objects
must have volume in order to look realistic. No, I don’t mean they
have to be loud; by volume, I mean they must have a physical height,
width, and depth. In the days of DooM, all characters were rendered
on-screen as two-dimensional images called sprites, which looked very

264 8. Where To Go Next

similar to a figure on piece of paper held up in front of your face. The
pieces of paper . . . er, sprites in DooM were coded to always face the
player, no matter what direction the player. It was a neat trick, but not
very realistic.

Enter the 3D world of Quake, in which characters are represented by
polygons. These polygons are placed together, like pieces of a puzzle,
to form basic three-dimensional shapes, or primitives. Some examples
of primitives are cubes, spheres, cones, and cylinders. Hundreds (and
sometimes thousands) of these primitives are then fitted together to
represent identifiable figures, called models that have height, width,
and depth. In addition to representing players, models can also depict
any other type of object in a game, be it a flag, monster, gun, or any-
thing else you can imagine. These models can be rotated, scaled
(made smaller or larger), and skinned (have images applied to the
outside surfaces of the model). Models in Q3 are created through the
use of a number of utilities, the most popular of which is Milkshape
3D. With this tool, you can create a three-dimensional figure that can
be imported into Q3.

In order to simulate real-life objects, models are animated in the very
same manner as cartoons. Model animation is achieved in a multitude

265Structure of a Mod

Figure 8.1 Editing a Targa file in Photoshop

of ways in today’s games; for Q3, animation occurs through the cre-
ation of multiple frames of the model in action. When this model is
placed in the game, Q3 then begins to calculate all the missing infor-
mation between each frame of animation. This causes the model to
distort or morph between frames, resulting in a smooth transition.
Figure 8.2 demonstrates the creation of a flag model in Milkshape 3D.

Brushing Up on Level Design
If the models in Q3 are rendered in true 3D, you should expect that
the world itself exists in a 3D environment as well. Walls, roofs, arches,
trap doors, tubes, and more are all perfectly rendered, thanks to an
ingenious design that has been perfected since the original Quake.
The world of Q3, amazing as it is, is built upon a fundamental coding
theory, called BSP tree, which has existed since at least as far back as
1980. BSP (Binary Space Partitioning) tree is the format used by Q3 to
represent the world to the player. Thankfully, the complicated defini-
tion of a BSP tree is not one that even a level designer needs to worry
about, because there are tools to assist in the development of these
levels. One specific tool is Q3Radiant.

266 8. Where To Go Next

Figure 8.2 A flag model loaded into Milkshape 3D

Q3Radiant was created by id Software to quickly develop levels that
players move through within Q3. The concept of a level is very simple:
You start with basic rectangular building blocks called brushes, and
place them next to each other to construct the foundation of a level.
These brushes can be further honed and tweaked to the designer’s
liking; for example, holes can be punched through them, and curved
surfaces (also referred to as patches) can be created. As well, brushes
can have certain properties
assigned to them, allowing
them to move, like doors
or elevators. Note, too,
that brushes need not be
solid; a pool of boiling lava
is also a brush.

A brush can even be invisi-
ble, such as a transparent
wall placed in front of a
door, so that when the
player moves toward the
door and touches the invis-
ible brush, it triggers an
event, like lights in that
room. These dynamic
brushes that can move or
trigger events are known as
brush entities. Figure 8.3
shows a level being built
from the ground up in
Q3Radiant.

Brushes are not the only makeup of a map; levels also contain entities
with which you, the programmer, are probably more familiar. Spots to
spawn players, ammo, and flags are all examples of entities that must
be positioned in a map. As well, lights must be placed throughout the
map, with both their color and intensity specified, to give a room just
the right mood. Level design not only takes the steadfast eye of an
architect, but a strong familiarity with Q3Radiant. It can be quite
intimidating to come up with level designs that are both detailed and
lifelike, while at the same time fun to play in Q3.

267Structure of a Mod

NOTE
Level design is not without its share
of troubles. One thing a level design-
er must do when creating maps for
Q3 is to make absolutely certain the
level is sealed tight. Even the maps
that seem to be open, allowing the
player to see the sky, are still sealed.
(Even the sky is a brush!) If for any
reason a particular wall or door isn’t
perfectly flush with every other adja-
cent brush, a leak can occur.
Q3Radiant can help designers find
leaks and eliminate them, but back
in the days of Quake, leaks had to be
found by hand, giving many a map-
maker late-night bouts of insomnia
and vertigo.

Creating Sound Effects Using
Household Items
Sound plays an equally important role in the structure of a mod. Any
Q3 player will tell you that having a set of headphones on while play-
ing Q3 is vital; sound cues constantly tell the player what is happening
to the left, right, and behind him. Because effects are dynamically
mixed and played in stereo, they can pass from one speaker to the
other, or be played into both ears at the same time. They can grow in
intensity, and dissipate into nothingness.

All sound files in Q3 are created using a certain resolution and sample
rate. Resolution refers to the number of bits used to represent a sample
of sound data. Typically, there are two choices: 8-bit and 16-bit. Most
Q3 sound files use 16-bit resolution, which means there are 2 bytes of
data per sample (remember, 8 bits in a byte!). Obviously, doubling the
data sampled (an 8-bit resolution would yield a 1-byte sample) means
that the size of the sound file will be bigger, but the quality of the
sound will also be twice as clear.

268 8. Where To Go Next

Figure 8.3 A Q3 map being constructed in Q3Radiant

The second property of a sound file, the sample rate, refers to how
many times per second a sample of data is acquired. This sample rate
is measured in Hz, or hertz. For Q3, the sample rate is 22kHz, or
22,050Hz. Comparatively, CD audio tracks are typically recorded at
44kHz, or 44,100Hz. Additionally, a sound file may have multiple
channels in which the data resides. This creates the effect of stereo:
one continuous piece of sound that plays differently in each ear.
Because Q3 is constantly mixing sound effects together and playing
them throughout the game, the sound data is recorded in mono,
meaning there is only one channel of sound. This saves file size, and
makes more sense, because Q3 will play the sound in the proper
speaker when the time comes.

Sound effects can be created with any kind of sound-editing utility, such
as Cool Edit 2000, shown in Figure 8.4. In addition, you will probably
want a microphone that will allow you to record your voice or hand-
generated sound effects. Tools like Cool Edit 2000 allow you to modify
the sound after it has been recorded, enabling you to achieve some

269Structure of a Mod

Figure 8.4 Looking at a sample of sound data from Q3 in Cool Edit 2000

pretty crazy effects. It just so happens that I used Cool Edit 2000 to cre-
ate the sound effect of the triple award you added in Chapter 6.

As shown in this section, a lot of external data accompanies Q3 when
it loads and runs. All these assets are vital to Q3, and equally vital to
mod development. The more detail you can add, the more control
you will ultimately be able to leverage across Q3 as you stage a devel-
opment effort. In Appendux B on the CD-ROM, I’ll provide tons of
resources for you to further your research into one or all of the cate-
gories listed in this section. In the end, it is up to you to decide what
you want to change in your mod.

Summary
In this chapter, you looked at a gamer’s perspective of game types
available for play in common FPS games like Q3. The wide array of
online gaming servers today is dominated by deathmatch and various
team-based styles of game play. You also looked at the guts of Q3, the
hidden secrets lurking within a PK3 archive—all the data necessary to
make Q3 run, act, look, feel, and sound like it does is stored in a PK3
file. You are now armed to the teeth with all the information you need
to continue your adventure into the world of mod development. Good
luck, and above all . . . have fun!

270 8. Where To Go Next

CHAPTER 9

UI
Programming

Previous chapters have focused on modifying the game code and
changing game features such as how weapons behave, how play-

ers move, and how visual effects are created. In this chapter, you’ll
make a departure from the game logic, and take a look at another
important unit of the Q3 source: the ui module, which controls the
user interface. The most exciting and innovative game in the world is
nothing if the user cannot configure it to his liking. In this chapter, I
plan to show you the various elements that comprise the ui code, and
demonstrate how they interact with one another, building the menu
systems that you use when you set up your player’s preferences, con-
trols, display settings, and so on.

Basic UI Concepts
In order to modify the ui code, a few introductions are in order. First,
you must understand the basic system upon which the user interface is
built. Many of the objects you will be looking at in the ui code resem-
ble similar sorts of implementations across many Win32-based applica-
tions. The user interface typically consists of menus—virtual pages of
controls that have various formats applied to them, which, in turn,
affect how those particular controls are displayed onscreen. As well,
controls can have events assigned
to them, causing certain func-
tions to execute when a control
is made active or inactive, or is
being changed by the user.
Once you are familiar with the
specific terminology behind
these descriptions, you’ll have
an easier time visualizing your
own user-interface designs.

2 9. UI Programming

NOTE
Although I’ll be referring to the
user-interface code as ui
throughout this chapter, I’ll be
dealing specifically with the
q3_ui project, so be sure that the
files you modify are in this pro-
ject. Otherwise, you will be mod-
ifying the user-interface code for
the Team Arena Expansion Pack!

Controls: Nuts and Bolts of UI
As in many Win32 applications, a user interface is simply a collection
of controls that are organized across one or more pages or layouts.
These layouts allow the user to manipulate settings on the system on
which the UI is based. If you’ve ever filled out a form on Web, or
played around with your computer system’s settings, you will have
undoubtedly used multiple controls in the process. Boxes in which
you can type text, sliders, drop-down menus, and buttons are all
examples of controls.

As expected, Q3 has its own set of controls that are implemented
across a various set of menus, which allow players to configure the
game to their particular tastes. There are seven controls in total. Table
9.1 lists these controls by their native C-style struct declarations,
followed by descriptions of the controls.

3Basic UI Concepts

Table 9.1 Q3 UI Controls

Name Description

menufield_s This control allows text to be entered via a rectan-
gular box.

menuslider_s This control features a bar that represents a range of
values.A slider arrow or thumb can then be used to
select various values along the range.

menulist_s This control shows a list of items to be scrolled
through, allowing a specific item to be selected.

menuradiobutton_s This control is used to specify that specific data be
either active or inactive.

menubitmap_s This control is used to represent buttons or images.

menutext_s This control allows read-only text to be displayed
on-screen; it does not allow the user to change the
text.

menuaction_s This control allows for a larger amount of text to be
displayed on-screen, also in a read-only format.

The developers at id designed the user-interface code to mirror many
familiar techniques already used in Win32-based development. To see
some of these controls in action, take a peek at Figure 9.1, which
shows one menu in Q3’s user interface.

In this image, there is an instance of the menufield_s control, which
allows the user to type the name of his player. There is also an exam-
ple of the menulist_s control, which allows the user to select one of
many handicaps (or none at all). There are many layouts of menus in
the ui code that follow this same simple rule: Allow the user to make
changes to the game through the use of controls.

Formatting Controls
Although it may sound fine and dandy to have a control that allows
the user to type some arbitrary text into it, you have to admit that text
controls aren’t terribly exciting. Your apathy will likely be com-
pounded when you take into consideration the fact that, functionally,

4 9. UI Programming

Figure 9.1 The player settings menu in Q3

there isn’t a lot of room for
customization of controls. As
is traditional in most UI-pro-
gramming APIs, however,
controls can be altered or
formatted in certain ways to
meet the demands of the
programmer; Q3’s UI is no
exception.

Each control available to you
in the ui code can have a
certain formatting style asso-
ciated with it. This is done
through the use of bit flags,
with which you have some
experience by now. Typically,
formatting bit flags can be
applied to controls in two
ways: during initialization,
meaning that the format is
applied to the control for its
entire duration, or during
existence, meaning that the
format can change the style
of the control on-the-fly
while the user interacts with
it. Take a look at Table 9.2,
which lists the existing menu-formatting flags.

Now you should be able to see how controls can be tweaked and mod-
ified so that they are more flexible for the developer.

Controls Have One Thing
in menucommon_s
Each of the controls in the ui code is built upon a generic set of data
(which, amusingly enough, is defined with the variable name generic
in each control). The data that is common to each control is held in a

5Basic UI Concepts

NOTE
API stands for Application
Programming Interface.An API rep-
resents a common set of functions
that a specific application can use
to complete lower-level tasks, often
easing the programmer’s workload.
Because the Q3 ui code encapsu-
lates or hides a lot of the dirty work
necessary to set up a menu system,
it fits the definition of an API.

NOTE
Some of these formatting flags do
not apply to all controls, such as
QMF_LEFT_JUSTIFY, QMF_CENTER_
JUSTIFY, and QMF_RIGHT_JUSTIFY.
Also, some bit flags cannot be
mixed and matched with each
other. QMF_HIGHLIGHT, for example,
cannot be combined with QMF_BLINK;
a control is either highlighted or is
blinking, never both at once.

6 9. UI Programming

Table 9.2 Menu-Formatting Flags

Name Description

QMF_BLINK This flag causes text to flash on and off.

QMF_SMALLFONT This flag causes text to be drawn in a small font.

QMF_LEFT_JUSTIFY This flag positions the control flush to the left.

QMF_CENTER_JUSTIFY This flag centers the control.

QMF_RIGHT_JUSTIFY This flag positions the control flush to the right.

QMF_NUMBERSONLY This flag restricts data entry to numerical values only.

QMF_HIGHLIGHT This flag renders the control brighter, giving it more
presence on the menu.

QMF_HIGHLIGHT_IF_FOCUS This flag renders the control brighter if it is the con-
trol being activated by the user.

QMF_PULSEIFFOCUS This flag causes the control to fade in and out if it is
the control being activated by the user.

QMF_HASMOUSEFOCUS This flag is read-only, and exists on any control that
currently has the mouse pointer hovering over it.

QMF_MOUSEONLY This flag disallows the control from being activated
by the keyboard.

QMF_HIDDEN This flag hides the control from view.

QMF_GRAYED This flag renders the control in a darker color, signi-
fying that it is an unusable control.

QMF_INACTIVE This flag disallows user input. It is applied by default
to controls carrying the QMF_GRAYED flag.

QMF_NODDEFAULTINIT This flag prevents Q3 from automatically handling
initialization of the control. It is used by controls
not already defined in the Q3 UI.

QMF_PULSE This flag causes the control to fade in and out.

QMF_LOWERCASE This flag causes text entered into the control to be
all lowercase.

QMF_UPPERCASE This flag causes text entered into the control to be
all uppercase.

QMF_SILENT This flag indicates to Q3 that no sound is to be
played when the control is activated.

struct called menucommon_s, which is declared on line 143 on
ui_local.h. Here is that structure of data:

typedef struct

{

int type;

const char *name;

int id;

int x, y;

int left;

int top;

int right;

int bottom;

menuframework_s *parent;

int menuPosition;

unsigned flags;

void (*callback)(void *self, int event);

void (*statusbar)(void *self);

void (*ownerdraw)(void *self);

} menucommon_s;

As is indicative of this struct, a control in the ui will be of a certain
type, and will have a name to describe the control. An ID is also used
to help identify the control and keep it unique in a menu (because
there is no constraint on the number of similar controls per menu).
The x and y members relate to where the control resides on the
screen. The next four members, left, top, right, and bottom, represent
the bounding box for the control, which can be used to detect
whether the user’s mouse has
entered a specific control’s
area. You can see the flags
member, which represents the
formatting flags that can be
applied to the control.

The final three members are
pointers to functions. The first,
callback, represents the activity
that the control will carry out
when it is used. statusbar, the

7Basic UI Concepts

NOTE
I skipped over the *parent point-
er because I have not yet dealt
with the menuframework_s
struct, but I will be covering it
shortly.As for menuPosition, it is
a variable that does not need to
be set or updated by you in any
capacity, so it is safe to ignore.

next member, is used to display additional data if the control detects a
mouse pointer in its bounding box. The final member, ownerdraw, is
used to extend the flexibility of the control, via a custom function.

The common data held in menucommon_s serves as a basis for each
control, which can then be built upon with specific unique data for
each individual control. Later in this chapter you will look at the spe-
cific data for each control.

The Menu Framework
Now that you have a handle on the structure of a control, you need to
know how to place that control into a menu. In the ui code, controls
are added to menus through the use of a struct called menuframework_s.
The menuframework_s struct sits alongside the controls that are
needed on a given menu; by combining menuframework_s with a spe-
cific set of controls, you can instantiate your own user interface. The
core of menuframework_s is declared on line 127 of ui_local.h.

typedef struct _tag_menuframework

{

int cursor;

int cursor_prev;

int nitems;

void *items[MAX_MENUITEMS];

void (*draw) (void);

sfxHandle_t (*key) (int key);

qboolean wrapAround;

qboolean fullscreen;

qboolean showlogo;

} menuframework_s;

You will want to concern yourself with the initialization of three mem-
bers in this struct. The first variable is wrapAround, which is a qboolean
that determines whether the menu allows the user to scroll through
its list of controls indefinitely. For example, suppose a user was cycling
through a list of menu choices with his arrow keys and he reached the

8 9. UI Programming

last menu item. If wrapAround were set to qtrue, then first item on the
menu would be selected the next time the user pressed his down-
arrow key. A value of qfalse, on the other hand, represents a hard
beginning and ending to a list of controls.

The second member to be initialized is fullscreen, which is a
qboolean that specifies how the menu handles the activity in the game
when accessed. If fullscreen is set to qtrue, the menu will pause the
game currently being played. A setting of qfalse will allow the game to
continue in the background while the menu is being accessed.

The final member of importance is the function pointer draw. This
function is used to allow more controls to be added to the current
menu for rendering. It is worth mentioning that additional controls
drawn by this function would have to be cached ahead of time. Let’s
take a look at a current menu in Q3 using the menuframework_s
struct. I’ll pick an easy menu for you to visualize: the main menu that
is presented when you first load Q3.

typedef struct {

menuframework_s menu;

menutext_s singleplayer;

menutext_s multiplayer;

menutext_s setup;

menutext_s demos;

menutext_s cinematics;

menutext_s teamArena;

menutext_s mods;

menutext_s exit;

qhandle_t bannerModel;

} mainmenu_t;

This (as found on line 28 of ui_menu.c) is the menu construct for the
very first interface. As you can see, menuframework_s is the very first
member of the mainmenu_t struct. Every menu is designed in this
manner—you’ll want to remember that when it comes time to make
your own menu. Following the menuframework_s member is a series
of controls; in this case, they all happen to be menutext_s—except for
the last member, which is a qhandle_t.

9The Menu Framework

Let’s take a look at this menu-
text_s control and see what
makes it tick. The declaration of
a menutext_s struct is on line 227
of ui_local.h.

typedef struct
{

menucommon_s generic;
char* string;
int style;
float* color;

} menutext_s;

Not too complicated, by the looks of things. A menutext_s control, as
mentioned earlier, is used to display some static or unmodifiable text on
the screen. The menutext_s control is actually quite flexible despite its
simplicity, and comes in three popular flavors. The first of these styles
is a straight-up, no-nonsense string of text, without any crazy options
or special effects. The characters used to render the text are a fixed
width, and the font-size bit flags applied to the style member deter-
mines their size. For this vanilla text control, the generic.type variable
is set to MTYPE_TEXT.

You can also use the menutext_s control to render text to the screen
in a banner style, which simply draws the text larger and with a pro-
portional font. This is the perfect type of control to use as the name
of a menu’s section, or the header of an important part of your menu.
To achieve this effect, you assign generic.type a value of MTYPE_BTEXT.

The final flavor of the menutext_s control is the MTYPE_PTEXT type.
When generic.type is set to this value, the text control again acts like a
banner, rendering the text in a larger, proportional font. The main
difference with this style is that the control also responds to user input
via the keyboard or mouse pointer.

The entire list of required values that will properly initialize a
menutext_s control is found in Table 9.3. If you look at the initializa-
tion of the main menu’s choices starting on line 256 of ui_menu.c,
you can see these variables in action.

In the following code snippet, the menutext_s control for the Single
Player menu is set up:

10 9. UI Programming

TIP
If you have a sharp memory,
you’ll recall that a qhandle_t
was covered in the Chapter 6.
The qhandle_t in this struct
references the shimmering 3D
logo that hovers along the top
of the menu, spelling out the
words “Quake III Arena.”

y = 134;

s_main.singleplayer.generic.type = MTYPE_PTEXT;

s_main.singleplayer.generic.flags =

QMF_CENTER_JUSTIFY|QMF_PULSEIFFOCUS;

s_main.singleplayer.generic.x = 320;

s_main.singleplayer.generic.y = y;

s_main.singleplayer.generic.id = ID_SINGLEPLAYER;

s_main.singleplayer.generic.callback = Main_MenuEvent;

s_main.singleplayer.string = “SINGLE PLAYER”;

s_main.singleplayer.color = color_red;

s_main.singleplayer.style = style;

Here, the control is set to be of type MTYPE_PTEXT, which will allow the
user to select it with keyboard navigation or by clicking on it with the
mouse pointer. The flags specify that the control will pulse if it is cur-
rently active, and that the text is to be centered. The x and y location
of the control are set to 320 and 134, respectively (note that y is set in

11The Menu Framework

Table 9.3 Required Inits for menutext_s

Variable Value

generic.type This member is set to either MTYPE_TEXT, MTYPE_BTEXT, or
MTYPE_PTEXT.

generic.x This member sets the control’s x location on the screen.

generic.y This member sets the control’s y location on the screen.

generic.flags QMF_GRAYED is allowed on MTYPE_TEXT and MTYPE_BTEXT. If
the type is MTYPE_PTEXT, it can also be QMF_PULSEIFFOCUS,
QMF_CENTER_JUSTIFY, and QMF_RIGHT_JUSTIFY.

string This member contains the text label that is rendered to
the left of the control.

style This member holds bit flags that modify the text align-
ment and size. Size flags are ignored for MTYPE_BTEXT.

color This member holds the color of the text that will be ren-
dered. QMF_GRAYED overrides this value.

the first line). The string of text to be displayed is “SINGLE PLAYER,”
and it will be drawn in red.

Note that the style member is set to the value of a local variable, also
called style. Scrolling up a few lines to 232, you can see the declara-
tion and assignment of this local variable.

int style = UI_CENTER | UI_DROPSHADOW;

The style of a menutext_s has additional bit flags that can be assigned to
it to assist in formatting and layout. These flags are listed in Table 9.4.

12 9. UI Programming

Coloring Without Crayons

Because color is handled frequently throughout the ui code,
the programmers at ID went ahead and defined some vari-
ables to represent the most commonly used colors in the
menu system, as is shown by the assignment of the color_red
variable in the preceding code.You can find all the defined col-
ors starting on line 23 of ui_qmenu.c. Each color is of type
vec4_t, which is simply a four-dimensional array holding
numerical values that represent the amount of red, green,
blue, and transparency in the color you want to render.

To create your own color definitions, simply divide each com-
ponent of the color’s RGB value (which ranges from 0 to 255)
by 255. (RGB values for colors can often be determined
through the use of graphic-editing tools such as Photoshop,
and also by HTML editors, because they use RGB formats to
specify colors in Web sites.) For example, the color red has an
RGB value of (255,0,0), which translates to (1.0, 0.0, 0.0), while
a deep purple (128,0,128) translates to (0.5, 0.0, 0.5).
Additionally, you can specify the level of transparency of the
text, which makes the color “see-through” when placed on
top of other backgrounds. 1.0 is completely opaque, whereas
0.0 is fully transparent.

These extra flags allow generic
text controls to be formatted in
other ways, but there is a key piece
of information to remember: The
flags applied to style must match
those applied to generic.flags.
For example, in the previous snip-
pet that describes the Single
Player menu, the generic.flags
value contains QMF_CENTER_JUSTIFY,
while the style value contains UI_CENTER. If QMF_LEFT_JUSTIFY were to be
used with UI_CENTER, some crazy alignment would occur, so it’s worth
mentioning that keeping consistency between generic.flags and

13The Menu Framework

Table 9.4 Generic Text-Formatting Flags

Name Description

UI_LEFT This flag draws the control starting at its x, y location.

UI_CENTER This flag draws the control so that its center is nearest
its x, y location.

UI_RIGHT This flag draws the control so that it ends at the x, y
location.

UI_SMALLFONT This flag draws the control with a small, fixed-width font,
held in SMALLCHAR_WIDTH and SMALLCHAR_HEIGHT (8 × 16).

UI_BIGFONT This flag draws the control with a medium sized, fixed-width
font, held in BIGCHAR_WIDTH and BIGCHAR_HEIGHT (16 × 16).

UI_GIANTFONT This flag draws the control with a large sized, fixed-width
font, held in GIANTCHAR_WIDTH and GIANTCHAR_HEIGHT
(32 × 48).

UI_DROPSHADOW This flag draws a shadow below the text.

UI_BLINK This flag allows the control to flash on and off. Unlike a
pulse, there is no gradual transition between the bright and
dark flashes.

UI_PULSE This flag allows the control to fade in and out.

NOTE
There is also a remaining
flag, UI_INVERSE, which has
been changed throughout
various releases of Q3 so that
it no longer inverts text, but
instead reduces brightness.

style will save you hours of headaches trying to align your controls
properly.

Breathing Life into a Menu
A menu framework cannot exist by definition alone; a menu interacts
with the user, receiving input and turning it into data for Q3 to inter-
pret. To make a menu come to life, you must give it the ability to han-
dle events that a user will invoke by clicking on buttons, typing text,
cycling through options, and so forth. Because a user interface is
nothing if it doesn’t respond to input, you need a way to facilitate
input by the user. This is done using a callback function. If you’ll recall,
during the listing of the Single Player control there was a reference to
a member called callback (which, coincidentally, was listed in the
menucommon_s struct). The callback member is simply a pointer to a
function, which tells Q3 what function will run when a user activates
the control.

Let’s continue with the Single Player control as an example. Line 261
of ui_menu.c handles this initial assignment:

s_main.singleplayer.generic.callback = Main_MenuEvent;

Here, callback is set to use the Main_MenuEvent function when it is acti-
vated. Main_MenuEvent, as it happens, is a giant switch statement that
hands control of the main menu system to another menu, based on
the control that was activated. It does this by looking at the unique
identifier (id) of the control that calls Main_MenuEvent. The id variable
is also a member of menucommon_s, and each control in the Q3 UI has a
unique combination of an id and a callback. It is perfectly viable to
have one control with a specific id have different callback functions;
the same is true for one callback function to be called by controls of
different id. For the Single Player control, the id is set on line 260.

s_main.singleplayer.generic.id = ID_SINGLEPLAYER;

The variable ID_SINGLEPLAYER is declared at the top of ui_menu.c, and
has a value of 10. To see what actually happens in Main_MenuEvent, let’s
take a look at its listing at line 67 of ui_menu.c.

void Main_MenuEvent (void* ptr, int event) {

if(event != QM_ACTIVATED) {

14 9. UI Programming

return;

}

switch(((menucommon_s*)ptr)->id) {

case ID_SINGLEPLAYER:

UI_SPLevelMenu();

break;

case ID_MULTIPLAYER:

UI_ArenaServersMenu();

break;

case ID_SETUP:

UI_SetupMenu();

break;

case ID_DEMOS:

UI_DemosMenu();

break;

case ID_CINEMATICS:

UI_CinematicsMenu();

break;

case ID_MODS:

UI_ModsMenu();

break;

case ID_TEAMARENA:

trap_Cvar_Set(“fs_game”, “missionpack”);

trap_Cmd_ExecuteText(EXEC_APPEND, “vid_restart;”);

break;

case ID_EXIT:

UI_ConfirmMenu(“EXIT GAME?”, NULL, MainMenu_ExitAction);

break;

}

}

15The Menu Framework

Main_MenuEvent requires the following two parameters to be passed
into it:

■ A void pointer. This is a special type of C pointer that can point
to any type of data. The benefit of using a void pointer is that
any kind of data can theoretically be passed to this function,
albeit with a price. The price is that the value of the data being
pointed to cannot be determined simply by dereferencing it
with the asterisk (as in *ptr = myvalue). A void pointer must be
temporarily converted or cast to the data type being pointed to,
which means the programmer (you) needs to know what type of
data it is. Fortunately, you know what it will be in the ui: menu-
common_s, the generic struct that makes up every single con-
trol.

■ An integer. This represents the event that was invoked by the
control. All controls in the Q3 UI have three events:
QM_GOTFOCUS, QM_LOSTFOCUS, and QM_ACTIVATED. All three of these
variables are defined on line 123 of ui_local.h. The QM_GOTFOCUS
and QM_LOSTFOCUS events are self-explanatory; they are invoked
when a control is first made active, and when it is skipped by
after having been made active, respectively. These events can be
handy for building custom menus that cause additional anima-
tions, sounds, or other effects when the user visits a control.
The main event (if you’ll pardon the pun) is QM_ACTIVATED,
which is invoked when the control is currently taking input
from the user.

At the beginning of this function, the event variable is checked to see
whether it is not QM_ACTIVATED, exiting the function if this evaluation is
true. Then the switch block begins, based on the id of the control that
called it. Notice the value of the control’s id being accessed by deref-
erencing the pointer (adding the * to ptr), after casting the pointer to
the data type menucommon_s. Next, various case statements are set,
based on the value that was found in the id. Because you know that
the Single Player control’s id is ID_SINGLEPLAYER, the UI_SPLevelMenu
function takes over.

Tweaking Q3
In order to start putting the menu framework to good use, you will
now start creating your own framework from scratch. The new menu

16 9. UI Programming

you’ll build will allow a user to tweak various settings in Q3 that other-
wise need to be changed by direct manipulation through the console.
These include settings for such features as shadow quality, allowing
the view to be in third person, adjusting the player’s field of view,
and typing in a text string to represent the player’s gender. Each of
these options can be implemented using one of the seven types of
controls available, so this is a good opportunity to get better
acquainted with them.

In order to add a new menu, the first step is to set aside a new ID for
the menu control that will be added to the main menu. Start by open-
ing ui_menu.c, and looking at the defines near the top of the page.
You should see something like the following:

#define ID_SINGLEPLAYER 10
#define ID_MULTIPLAYER 11
#define ID_SETUP 12
#define ID_DEMOS 13
#define ID_CINEMATICS 14
#define ID_TEAMARENA 15
#define ID_MODS 16
#define ID_EXIT 17

These variables represent the various choices of the main menu (see
Figure 9.2), which are Single Player, Multiplayer, Setup, Demos,
Cinematics, Team Arena (if it’s installed), Mods, and Exit.

Go ahead and add an ID for the new Tweaks menu you will build.
Bump the ID_EXIT value up by one (18) and slide a define for
ID_TWEAKS in at 17, so that the defines look like this near the end:

#define ID_MODS 16

#define ID_TWEAKS 17 // our new tweaks menu

#define ID_EXIT 18

You will now be able to refer to the menu by its unique identifier. Next,
you want to slip a new menutext_s into the list of current menutext_s
controls that form the members of mainmenu_t (which you looked at
earlier in this chapter). Scroll down to line 39 and squeeze a new
menutext_s control declaration in between mods and exit, like so:

menutext_s mods;

menutext_s tweaks; // our new tweaks menu control

menutext_s exit;

17The Menu Framework

Perfect. You now have a control that will allow the user to enter your
new menu. The next item on your to-do list is to set up the control’s
default values for its various members. This includes the required ini-
tializations of the members held in the menucommon_s struct (which
is the generic variable), and any specific values that are required for
the control in question. In the case of the menutext_s, those will be
string, color, and style.

Setting the Stage for a Menu
Scroll down to line 341; this should put you hip-deep in the middle of
UI_MainMenu, the function that sets up all the necessary data for the
controls in the main menu, and then activates the menu, bringing it
up for the user to access. Because every menu follows in the footsteps
of the main menu, a lot can be learned from how it works. In a nut-
shell, UI_MainMenu executes in the following manner:

1. It clears the memory in the variable that will hold the menu.

2. It caches any images, sounds, or other necessary data.

18 9. UI Programming

Figure 9.2 The Q3 main menu

3. It initializes the menu.

4. It initializes all controls used in the menu.

5. It adds controls to the menu.

6. It pushes the menu to the screen.

Every menu in the UI is created in this manner, so let’s see what the
specifics are to achieve each step. First, clearing the memory of
the variable that will hold the menu is done on line 252 of
ui_menu.c.

memset(&s_main, 0 ,sizeof(mainmenu_t));

You’ve worked with memset a few times already; it is a C function that
allows you to set all the memory in a variable’s space to a certain
value, which is most commonly 0. This effect clears the variable of any
unnecessary values that may be lurking. Notice that the third parame-
ter of memset is sizeof(mainmenu_t), which you should recognize as the
struct that s_main is declared as.

The second step is to cache images and sounds that will be used in
the menu. This is performed on the very next line, with a call to
MainMenu_Cache. It just so happens that MainMenu_Cache is in the same
file, up near line 120:

void MainMenu_Cache(void) {

s_main.bannerModel = trap_R_RegisterModel(MAIN_BANNER_MODEL);

}

Because the only real graphical data that needs to be cached is the
animated “Quake III Arena” text across the top of the screen, the con-
tent of this function is a mere one-liner. You should recall from our
discussion of mainmenu_t that bannerModel is a qhandle_t, which you
have used before in creating references to sounds, icons, shaders, and
the like.

After the caching is completed, the next step is to initialize the menu.
As mentioned earlier in this chapter, you will want to make sure the
three main members of menuframework_s are set up appropriately.
Line 256 demonstrates this.

s_main.menu.draw = Main_MenuDraw;

s_main.menu.fullscreen = qtrue;

s_main.menu.wrapAround = qtrue;

19The Menu Framework

The draw property is set to
run the function
Main_MenuDraw, which handles
the custom logo, assigning
coordinate points locations
for rendering, and ending
with a call to Menu_Draw.

The fullscreen member is
set to qtrue, meaning it will
take full control of Q3, pausing
any game currently in progress on the client. wrapAround is initialized
to qtrue as well, meaning the active control will cycle continuously if
the user continues to move down past the last choice (which would be
Exit).

After the menu is initialized, all of its controls must suffer the same
fate. Starting on line 261, each control has a chunk of code dedicated
to setting up all the various values that are required for the control to
come to life in the menu. Jump down to line 341, and add your new
control here, just after the Mods control is finished being initialized.

s_main.mods.style = style;

// setup the new menu

y += MAIN_MENU_VERTICAL_SPACING;

s_main.tweaks.generic.type = MTYPE_PTEXT;

s_main.tweaks.generic.flags =

QMF_CENTER_JUSTIFY|QMF_PULSEIFFOCUS;

s_main.tweaks.generic.x = 320;

s_main.tweaks.generic.y = y;

s_main.tweaks.generic.id = ID_TWEAKS;

s_main.tweaks.generic.callback = Main_MenuEvent;

s_main.tweaks.string = “TWEAKS”;

s_main.tweaks.color = color_red;

s_main.tweaks.style = style;

Now, a new control will be used to access your Tweaks menu. It uses
the current y variable, plus an additional MAIN_MENU_VERTICAL_SPACING
adjustment, to keep it in sync with the spacing used for the previous
controls. The generic members are set next: generic.type is set to
MTYPE_PTEXT, generic.flags receives QMF_CENTER_JUSTIFY and

20 9. UI Programming

TIP
All menus are drawn as if being
rendered to a 640 × 480 resolution.
If you happen to be viewing Q3 in
a higher resolution, the ui code
will automatically adjust positions
and resize controls for you.

QMF_PULSEIFFOCUS, generic.x gets 320, generic.y gets the same local y
value you set earlier, and id gets the ID_TWEAKS variable you defined at
the beginning of this section. Then, it’s on to the specific values of a
menutext_s control: string gets the value “TWEAKS”, which will be its
label in the menu, color is assigned the color_red variable, and style
assumes the same style variable applied to all controls in this menu,
namely UI_CENTER and UI_DROPSHADOW (set on line 238).

But what about that sneaky callback function? Here, it is set to
Main_MenuEvent, just like all the others. I have a feeling that
Main_MenuEvent isn’t quite ready to handle the new Tweak menu yet,
though. Scroll up to around line 104, where power over the UI is
passed to various menus based on the control that is clicked, and
under the case for ID_TEAMARENA, make the following additions:

case ID_TWEAKS:

UI_TweaksMenu(); // handing control off to tweaks menu

break;

Now the Main_MenuEvent knows how to handle your new menu. It will
check to see if the ID of the control that was activated was ID_TWEAKS,
and if so, will pass control to UI_TweaksMenu (a function you will write
later).

Pushing a Menu Will
Only Make It Mad
The hard stuff is over for this menu. The last two items required to
make it come to life are to add all the initialized controls to the menu
and then push the menu to the screen so that the user may access it.
The controls are added with a series of calls to a function called
Menu_AddItem, which takes two parameters, a menuframework_s, and a
control. Looking down at line 364, you can see Menu_AddItem being
called multiple times:

Menu_AddItem(&s_main.menu, &s_main.singleplayer);

Menu_AddItem(&s_main.menu, &s_main.multiplayer);

Menu_AddItem(&s_main.menu, &s_main.setup);

Menu_AddItem(&s_main.menu, &s_main.demos);

Menu_AddItem(&s_main.menu, &s_main.cinematics);

if (teamArena) {

Menu_AddItem(&s_main.menu, &s_main.teamArena);

21The Menu Framework

}

Menu_AddItem(&s_main.menu, &s_main.mods);

Menu_AddItem(&s_main.menu, &s_main.exit);

One by one, each control is added to the menu by specifying the menu
member of s_main, and then the control that is currently being added.
Go ahead and use this format to add your new control in, right
between mods and exit:

Menu_AddItem(&s_main.menu, &s_main.mods);

Menu_AddItem(&s_main.menu, &s_main.tweaks); // adding the new

control!

Menu_AddItem(&s_main.menu, &s_main.exit);

Now for the final step. This is very complicated, so pay extremely close
attention.

UI_PushMenu (&s_main.menu);

OK, so I was being a little sarcastic. The menu is brought to the screen
for user accessibility by simply calling the function UI_PushMenu, pass-
ing in the menuframework_s variable that refers to the menu that
needs to be active: s_main. Q3 handles all the rest for you. Pretty slick,
eh? Now that the control to access the new Tweaks menu is ready to
go, you need to build the actual menu . . . and seeing as how you just
stepped through all the requirements to create a menu, you should be
raring to go.

Building a New UI Menu
In this section, you will look at what it takes to create a user-interface
menu from scratch by building a new menu framework, laying in cus-
tom controls, and creating a callback handler function to handle any
user interaction that will take place in the menu. After the new menu
is built, you’ll have a solid structure on which to base further addi-
tions, such as new controls or updates to the layout.

Starting ui_tweaks.c
Each of the menus in Q3 has its own setup file; the main menu’s code
resides in ui_menu.c, the preferences are held in ui_preferences.c,
the sound configuration menu has its parts in ui_sound.c, and so on.

22 9. UI Programming

Because you are adding a brand-new menu, you should place it within
a new file as well. To do this, click the toolbar button in Visual Studio
that looks like a piece of paper with a corner folded over. This is the
New Text File icon, shown in Figure 9.3.

You will want to save this new text file right away so you can add it to
the existing ui code (and remember, this means you will add it to the
q3_ui project). Go ahead and save the file by pressing Ctrl+S, or by
clicking the Save toolbar button (the one with a disk on it), shown in
Figure 9.4.

You are prompted to name the new file, and to specify where you want
to save it. Type ui_tweaks.c and save it in the /quake3/code/q3_ui/
folder (if you aren’t currently in that folder, use the Save In drop-
down list to select that folder path). Then, slick the Save button to
commit the new file to your hard drive. Excellent! Now all you need
to do is add the new file to the q3_ui project. You can add a new file to
the project simply by right-clicking the Source Files folder, and select-
ing Add Files to Folder from the pop-up menu that appears, as shown
in Figure 9.5.

A dialog box should open, allowing you to look through folders for
files to be added to the project. Find your new ui_tweaks.c file in
the /quake3/code/q3_ui/ folder, and add it now. When this task is

23Building a New UI Menu

Figure 9.4 The Save button

Figure 9.5 Right-clicking the Source Files folder

Figure 9.3 The New Text
File button

completed, the file should be listed in the Source Files folder, near
the bottom, next to ui_teamorders.c and ui_video.c. Any code that
exists in this file will now be compiled along with the rest of the ui
code when the final DLL is being built.

Now that you have a new menu file, let’s start dropping some code
into it. First, you will want to include the ui_locals.h header, because it
includes variables and declarations for all common UI functionality.
The first few lines of your new ui_tweaks.c file should read as follows:

//

// ui_tweaks.c

//

#include “ui_local.h”

Next, you will set up some
defines that will represent the
first controls and graphics
added to this menu. You’ll start
with the bare necessities first,
and add extras later. Most of the
menus in the Q3 user interface
have a curved left and right
bracket image that surround the
menu choices, so to keep consis-
tency, you’ll use them as well.
Also, you need to add a button
to allow the user to back out of
your menu if he wants to navigate to another menu. The Back button
consists of two images: a bright version, for when the user’s mouse is
hovering over it, and a dim version, for when it sits idle on the screen.
The four defines for the brackets and the back button images go next,
after the #include “ui_local.h” line:

#define ART_BACK0 “menu/art/back_0”

#define ART_BACK1 “menu/art/back_1”

#define ART_FRAMEL “menu/art/frame2_l”

#define ART_FRAMER “menu/art/frame1_r”

ART_BACK0 and ART_BACK1 are the references to the Back button images,
while ART_FRAMEL and ART_FRAMER reference the left and right bracket
images.

24 9. UI Programming

TIP
As you can see, I’ve gone ahead
and added a C comment at the
top, letting everyone know what
the name of this file happens to
be.There’s nothing wrong with
being courteous when coding,
and comments always help
other programmers understand
what you were thinking when
you created your code.

Defining the Menu Struct
For the initial Tweaks menu, you’ll allow the user to change a client
Cvar called cg_thirdPerson, which determines the point of view of the
player in Q3. By default, this variable is off, with a value of 0. If it is set
to 1, the player’s view shifts so that the player’s model in the game is
visible, in what is often referred to as a chase-cam view (shown in
Figure 9.6).

25Building a New UI Menu

TIP
When referencing images in a file hierarchy such as
/menu/art/, if no file extension is specified, then the format
TGA is assumed. So, in the code above, back_0.tga,
back_1.tga, frame2_l.tga and frame1_r.tga are the actual
names of the files used.You are also free to specify a differ-
ent file extension if you want to use a file type other than
TGA, such as menu/art/back_0.jpg.

Figure 9.6 Third-person view enabled in Q3

Because there are only two values that the cg_thirdPerson variable can be
(on or off), the perfect control for the job is the radio-button control,
menuradiobutton_s. The radio button (or “option” button), if you’ll recall,
is a round dot that is either filled to represent being selected or “on,” or
cleared out to represent being deselected or “off.” Now that you have two
identifiable controls (the third-person radio button and the Back but-
ton), add the defines for those two controls next, after ART_FRAMER, so that
they read like so:

#define ID_BACK 10

#define ID_THIRDPERSON 11

Good work, the IDs are in place. The next task is to lay out a new
struct that will house the Tweaks menu variable. This will be the decla-
ration of the tweaks_t struct, which follows the defines listed previously:

typedef struct {

menuframework_s menu;

menubitmap_s framel;

menubitmap_s framer;

menutext_s banner;

menuradiobutton_s thirdPerson;

menubitmap_s back;

} tweaks_t;

static tweaks_t s_tweaks;

The first member of a menu struct must always be the menuframe-
work_s, so it is first in this list of members. Two menubitmap_s con-
trols are used to house the left and right bracket images. The title of
the menu, “Tweaks,” is to be held in a menutext_s control. Then, the
thirdPerson variable is declared to be of type menuradiobutton_s, as
discussed earlier. Finally, one additional menubitmap_s control is
added to reference the Back button. Once the struct is complete, a
global static variable is declared to be of type tweaks_t, called s_tweaks.

Getting a Handle on Menu Events
The next function that is needed is the event-handling method. When
the user manipulates a control, you’ll want to have the proper com-
mand called within Q3 to respond. Currently, only two controls will

26 9. UI Programming

ever be accessed: the Back button and the radio button allowing the
user to set his cg_thirdPerson preference. Go ahead and add the fol-
lowing function after your variable definition for s_tweaks:

/*
===============
UI_Tweaks_MenuEvent
===============
*/
static void UI_Tweaks_MenuEvent(void *ptr, int event) {

if(event != QM_ACTIVATED) {
return;

}

switch (((menucommon_s*)ptr)->id) {

case ID_THIRDPERSON:
trap_Cvar_SetValue(“cg_thirdPerson”,

s_tweaks.thirdPerson.curvalue);
break;

case ID_BACK:
UI_PopMenu();
break;

}
}

This is the body of the function UI_Tweaks_MenuEvent, which, like
Main_MenuEvent, will take a void pointer and an integer, representing the
event invoked by the control. A sanity check on the event variable is per-
formed, to confirm that it is indeed QM_ACTIVATED. Then the switch block
begins, looking at the value of the void pointer ptr (which is cast to a
menucommon_s data type before being dereferenced). The first case is
the ID_THIRDPERSON control ID. If the control is activated, a call to
trap_Cvar_SetValue is made, assigning the current value of the radio but-
ton (held in the curvalue member) to the Cvar cg_thirdPerson. You’ll see
more of curvalue and the rest of the menuradiobutton_s control in a bit.

The only other control you have is identified by ID_BACK, the Back but-
ton. If it is clicked, you simply remove the Tweaks menu from view,
which will place the user at the previous menu (in this case, the main
menu). This is done by a simple call to UI_PopMenu.

27Building a New UI Menu

Initializing the Menu Controls
The function that handles the initialization of the menu and its con-
trols is a doozy, so I’ll take it step-by-step. Go ahead and add the lines
that I walk through in this section, following all the previous code
you’ve added to ui_tweaks.c. The function, UI_Tweaks_MenuInit, will
start as follows:

/*
===============
UI_Tweaks_MenuInit
===============
*/
static void UI_Tweaks_MenuInit(void) {

UI_TweaksMenu_Cache();

memset(&s_tweaks, 0 ,sizeof(tweaks_t));

s_tweaks.menu.wrapAround = qtrue;
s_tweaks.menu.fullscreen = qtrue;

The function opens simply by making a call to UI_TweaksMenu_Cache, a
function that you will write later, handling the setup of the various
graphical objects in this menu. Next, the memory of the s_tweaks vari-
able is cleared with a call to memset. Following that, the wrapAround
property of the s_tweaks.menu is set to qtrue, and the fullscreen prop-
erty is also set to qtrue.

Next, the title of the menu that will be rendered as a banner across
the top of the screen is initialized, with the following code:

s_tweaks.banner.generic.type = MTYPE_BTEXT;

s_tweaks.banner.generic.x = 320;

s_tweaks.banner.generic.y = 16;

s_tweaks.banner.string = “TWEAKS”;

s_tweaks.banner.style = UI_CENTER;

This code should be fairly straightforward to you by now; MTYPE_BTEXT means the
text will be large and in a banner-style font, the x and y location will be 320 × 16
on the screen, the text will read “TWEAKS”, and the style will be UI_CENTER,
which will be centered at its x, y location.

The next control will be the menuradiobutton_s control; take a peek
at Table 9.5 to see what its required initializations are.

28 9. UI Programming

Armed with the information in Table 9.5, you can next initialize the
radio button with the following code:

s_tweaks.thirdPerson.generic.type = MTYPE_RADIOBUTTON;

s_tweaks.thirdPerson.generic.flags = QMF_PULSEIFFOCUS |

QMF_SMALLFONT;

s_tweaks.thirdPerson.generic.x = 320;

s_tweaks.thirdPerson.generic.y = 130;

s_tweaks.thirdPerson.generic.name = “Use Third-Person View”;

s_tweaks.thirdPerson.generic.id = ID_THIRDPERSON;

s_tweaks.thirdPerson.generic.callback = UI_Tweaks_MenuEvent;

s_tweaks.thirdPerson.curvalue = trap_Cvar_VariableValue(

“cg_thirdPerson”) != 0;

Here you see the type is MTYPE_RADIOBUTTON, and the formatting flags
are QMF_PULSEIFFOCUS and QMF_SMALLFONT. The x and y location on the
page will be 320 × 130 and the text displayed next to the control will
be “Use Third-Person View.” The ID is set (of course) because this
control will need to be identified when it is activated, so its generic.id
member is set to ID_THIRDPERSON. The callback function that will han-
dle the button’s event is UI_Tweaks_MenuEvent, the function you wrote
earlier. Finally, the curvalue (whether the button is on or off) is set to
the value of trap_Cvar_VariableValue, a system-call function that
returns the value of a Cvar. In this particular instance, if the value of

29Building a New UI Menu

Table 9.5 Required Inits for menuradiobutton_s

Variable Value

generic.type This member is set to MTYPE_RADIOBUTTON.

generic.x This member sets the control’s x location on the screen.

generic.y This member sets the control’s y location on the screen.

generic.name This member holds the text display to the left of the but-
ton.

curvalue This member equals the current value of the button: 1 if
the button is “on” and 0 if the button is “off.”

the function return does not equal 0, curvalue will receive a value of 1;
otherwise, it will receive a 0.

The final three controls are bitmaps. Two are static, meaning they just
sit and look pretty; they do not animate or respond to user input in
anyway, those being the left and right bracket graphics. The third con-
trol is the Back button image, and it will interact with the user. All
three are of control data type menubitmap_s, which has its most
important members listed in Table 9.6.

30 9. UI Programming

Table 9.6 Required Inits for menubitmap_s

Variable Value

generic.type This member is set to MTYPE_BITMAP.

generic.x This member sets the control’s x location on the screen.

generic.y This member sets the control’s y location on the screen.

generic.flags If the bitmap is static and non-interactive, this member is
set to QMF_INACTIVE; otherwise, standard formatting flags
can be applied.

generic.name This member is assigned to the image filename and path
to load the image. Setting this will automatically handle
setting shader as well.

shader This member is assigned to the filename and path of the
shader, if needed.

errorpic This member is assigned to the image filename and path
to load if the main image in generic.name cannot be
found or loaded.

focuspic This member is assigned to the image filename and path
to load if the control is active by the keyboard or mouse
pointer.

focusshader This member is assigned to the filename and path of the
shader to be used when the control is active, if needed.

focuscolor This member specifies the color of the image when it is
made active.

width This member specifies the width of the image.

height This member specifies the height of the image.

Because using an image in a menu requires the most flexibility, there
are a good number of members that can be assigned values, as the list-
ing denotes. Luckily, you are going to be using as many of the defaults
as necessary. Go ahead and add the following code to initialize the
three remaining controls:

s_tweaks.framel.generic.type = MTYPE_BITMAP;

s_tweaks.framel.generic.name = ART_FRAMEL;

s_tweaks.framel.generic.flags = QMF_INACTIVE;

s_tweaks.framel.generic.x = 0;

s_tweaks.framel.generic.y = 78;

s_tweaks.framel.width = 256;

s_tweaks.framel.height = 329;

s_tweaks.framer.generic.type = MTYPE_BITMAP;

s_tweaks.framer.generic.name = ART_FRAMER;

s_tweaks.framer.generic.flags = QMF_INACTIVE;

s_tweaks.framer.generic.x = 376;

s_tweaks.framer.generic.y = 76;

s_tweaks.framer.width = 256;

s_tweaks.framer.height = 334;

s_tweaks.back.generic.type = MTYPE_BITMAP;

s_tweaks.back.generic.name = ART_BACK0;

s_tweaks.back.generic.flags = QMF_LEFT_JUSTIFY|

QMF_PULSEIFFOCUS;

s_tweaks.back.generic.id = ID_BACK;

s_tweaks.back.generic.callback = UI_Tweaks_MenuEvent;

s_tweaks.back.generic.x = 0;

s_tweaks.back.generic.y = 480-64;

s_tweaks.back.width = 128;

s_tweaks.back.height = 64;

s_tweaks.back.focuspic = ART_BACK1;

Notice that the main difference between the controls here is that the
first two have their generic.flags members set to QMF_INACTIVE.
Because they are seen as inactive controls in the ui code, they do not
require the id or callback assignments that active controls do. The
third control will definitely be interactive, so its generic.flags has stan-
dard formatting flags assigned to it—QMF_LEFT_JUSTIFY and QMF_PUL-
SEIFFOCUS. The id is set to ID_BACK, and the callback function is set to

31Building a New UI Menu

UI_Tweaks_MenuEvent. It also has a focuspic member set to ART_BACK1,
the image to be drawn over top of the main image, ART_BACK0, when
the control has focus from the user. Note also that all three controls
have their appropriate width and height members specified.

Phew, you’re almost done with this init function! The last step
required in initialization is to add all these controls to the
s_tweaks.menu variable, so add the following code at the very end of
your UI_Tweaks_MenuInit function:

Menu_AddItem(&s_tweaks.menu, &s_tweaks.banner);

Menu_AddItem(&s_tweaks.menu, &s_tweaks.thirdPerson);

Menu_AddItem(&s_tweaks.menu, &s_tweaks.framel);

Menu_AddItem(&s_tweaks.menu, &s_tweaks.framer);

Menu_AddItem(&s_tweaks.menu, &s_tweaks.back);

}

Perfection! Now you have a completed initialization function. This
menu is almost ready to go.

The Cache and Push
Your remaining tasks are simple: Write a function to handle the caching
of the graphical data and a function that will push the menu to the
screen, when active. Let’s start with the caching function, which you’ll
recall from an earlier code reference will be named UI_TweaksMenu_Cache:

/*

=================

UI_TweaksMenu_Cache

=================

*/

void UI_TweaksMenu_Cache(void) {

trap_R_RegisterShaderNoMip(ART_BACK0);

trap_R_RegisterShaderNoMip(ART_BACK1);

trap_R_RegisterShaderNoMip(ART_FRAMEL);

trap_R_RegisterShaderNoMip(ART_FRAMER);

}

The UI_TweaksMenu_Cache function is fast and simple. It passes the four
defined image variables (the two Back buttons and the two bracket
images) to the system-call function trap_R_RegisterShaderNoMip, which

32 9. UI Programming

you should remember from Chapter 6. This function is called at the
start of your giant initialization function, UI_Tweaks_MenuInit.

I can see the end in sight! The last function to write, called
UI_TweaksMenu (which you’ll recall is the menu to which that control is
handed off by the Main_MenuEvent function back in ui_menu.c), will
push the menu to the screen. Quick! Slap this code in at the end of
the ui_tweaks.c file, and pronto!

/*

===============

UI_TweaksMenu

===============

*/

void UI_TweaksMenu(void) {

UI_Tweaks_MenuInit();

UI_PushMenu(&s_tweaks.menu);

}

The role of this function is to first call the giant initialization function,
UI_Tweaks_MenuInit, and then to push the menu to the screen with
UI_PushMenu.

You’ve crossed the finish line! You now have all the necessary code in
place to handle a brand new menu.

Cleaning Up
Before the DLL is built, you must take care of a few items to make the
C compiler happy. For starters, two of your functions must be proto-
typed. UI_TweaksMenu_Cache is called from UI_Tweaks_MenuInit before it
is defined in the file ui_tweaks.c. Additionally, UI_TweaksMenu itself is
called from another file, ui_menu.c. So, to declare both functions
ahead of time, open ui_local.h, scroll down to line 310 (right after the
prototypes for InGame_Cache and UI_InGameMenu), and enter the follow-
ing lines of code:

//

// ui_tweaks.c

//

extern void UI_TweaksMenu_Cache(void);

extern void UI_TweaksMenu(void);

33Building a New UI Menu

Now when you attempt to
build your new DLL, the
compiler will know how to
handle these functions.

The moment of truth is
upon you. Go ahead and
select Batch Build from
Visual Studio’s Build menu
and uncheck everything
except the following:

q3_ui - Win32 Release

That’s the one you want to
build! Click the Build but-
ton, and let her rip! If all
goes well, your Build Dialog
result (the window near the
bottom of the IDE that display compile information) should finish
with the following:

ui_teamorders.c

ui_tweaks.c

ui_video.c

Linking...

Creating library Release/uix86.lib and object Release/uix86.exp

Creating browse info file...

uix86.dll - 0 error(s), 0 warning(s)

Can you see your new ui_tweaks.c in that list? There it is! Now, browse
over to your /quake3/code/Release/ folder and you should see a
uix86.dll. Go ahead and drop it in your MyMod folder, and launch
Q3, remembering to set fs_game to MyMod and sv_pure to 0. You should
see the Tweaks menu somewhere in your list, as shown in Figure 9.7.

Try going into it by clicking on it with the mouse or selecting it with
the keyboard arrow controls. You should be able to enter the new
Tweaks menu and select the new Use Third-Person View option (see
Figure 9.8).

You now have another notch in your belt—you’ve successfully com-
pleted the necessary steps to create a menu framework and add it to

34 9. UI Programming

TIP
A console command called ui_cache
automatically runs all the UI-related
caching functions in sequence. If you
want, you can add your menu’s
caching function to this list as well.
Open the file ui_atoms.c, scroll to
line 881 to the function UI_Cache_f,
and insert UI_TweaksMenu_Cache any-
where you wish. It will then be
included in the global caching execu-
tion when the ui_cache command is
typed into the console. I’ve gone
ahead and done it for you in the
code for this chapter on the CD.

35Building a New UI Menu

Figure 9.7 The all-new Q3 main menubject

Figure 9.8 The Tweaks menu

the existing menu system with the Q3 user interface. From there,
you’ve added a new control to that menu, allowing the user to manip-
ulate a Cvar, without having to bother with remembering the name of
the variable in question. From here on in, things just get easier with
the ui code.

Working with More
Controls
Now that you’ve had a chance to play around with the menu system in
the ui code and have gotten familiar with the ins and outs of creating a
menu framework, adding controls, and integrating the new menu with
existing menus, let’s take some time to investigate the remaining con-
trols and what functionality they can offer you in the quest to build the
perfect interface to your next exciting project. I went over the basic
controls menubitmap_s, menuradiobutton_s, and menutext_s in the
previous section. What follows is a look at menufield_s, a control for
text input, and menuslider_s, a control for allowing a degree of value
via a slider. Finally, you’ll look at menulist_s, a control that lets a user
cycle through a series of choices.

menufield_s of Dreams
If you want to allow players to type free-form text into your interface,
menufield_s is the control you want. This control is used quite fre-
quently throughout the ui code for such functions as allowing the
player to name his online character and setting server-related infor-
mation, like the name of the server, the time limit, and the frag limit.
It is also used for specifying connection data, such as the IP address or
host name of the online server to which the player wishes to connect,
as well as the port.

The menufield_s control is nothing magical, nor is it difficult to
understand. It is simply rendered on the screen as a single-line text
box that can receive input through the typing of any character on the
keyboard. It typically has a fixed width, which is dictated by the
designer of the interface (you), and it also has an internal maximum
number of characters it can hold. If the user types more characters
into a menufield_s control than what can be physically shown by the

36 9. UI Programming

control, the characters scroll to the left automatically, to indicate to
the user that more characters are being accepted. The guts of the
menufield_s control look like this, as seen on line 170 of ui_local.h:

typedef struct

{

menucommon_s generic;

mfield_t field;

} menufield_s;

Like all controls, the first member is a generic variable of data type
menucommon_s. The only other member is a variable called field, of
type mfield_t. The declaration of the mfield_t struct takes place
directly above the declaration menufield_s, and it reads as follows:

typedef struct {

int cursor;

int scroll;

int widthInChars;

char buffer[MAX_EDIT_LINE];

int maxchars;

} mfield_t;

Three of these members are specific to what you will use when you
place the control in a menu. The widthInChars member is an integer
that represents the physical width of the control, as it is drawn to the
screen. This is the value you will tweak to change the size of the
textbox when it is placed in your menu. The buffer member is a char
array, which C programmers should recognize as a standard way of
storing text strings. The array’s size or upper limit is set to
MAX_EDIT_LINE, a defined variable equal to 256. Although the size of
the array is capped at 256, the variable maxchars is the value that the
control uses to physically limit the control’s maximum number of
characters to be stored in the textbox. So if you want a menufield_s to
allow only 20 characters to be typed, you can set maxchars to 20 and
the user will not be allowed type any more than that into the control.
You can also skip setting maxchars; the default, MAX_EDIT_LINE (256) will
be used in its place.

As with the previous controls, there are a certain number of required
initializations that must take place in order to properly handle a
menufield_s control. Table 9.7 lists these required initializations.

37Working with More Controls

See, I told you that there was nothing complicated here. Go ahead
and add a menufield_s control to your existing menu. Another Cvar
you are free to mess with is the sex Cvar, which holds the gender of
the player. Typically, the sex Cvar isn’t used all that much. It contains
a standard string for a value (typically “Male” or “Female”), which
means you could easily modify it with a menufield_s control.

First, you will want to set aside a new unique identifier for the new
control. That takes place back in ui_tweaks.c, way up at line 12. Right
after the defines of ID_BACK and ID_THIRDPERSON, add a new define,
ID_SEX:

#define ID_BACK 10

#define ID_THIRDPERSON 11

#define ID_SEX 12

38 9. UI Programming

Table 9.7 Required Inits for menufield_s

Variable Value

generic.type This member is assigned a value of MTYPE_FIELD.

generic.x This member sets the control’s x location on the
screen.

generic.y This member sets the control’s y location on the
screen.

generic.name If a string is assigned to this variable, it will be placed
to the left of the control when rendered to the
screen; the physical textbox will remain at its x, y
location, regardless.

field.widthInChars This member holds the physical character width dis-
played by the control.

field.buffer This member holds a proper zero-terminated char
array string.

field.maxchars This member holds the maximum number of charac-
ters the control can accept.

The new textbox will definitely be accepting input from the user, so it
will need an ID assigned to it. This define will set the stage for that
assignment.

Next, because you’re adding a new control to the Tweaks menu, you
will need to set aside a place for it within the tweaks_t struct (which
defines your s_tweaks menu variable). On line 14, where the tweaks_t
struct is declared, add the menufield_s control after the thirdPerson
variable, and call the new control sex. The amended tweaks_t struct
should read as follows:

typedef struct {

menuframework_s menu;

menubitmap_s framel;

menubitmap_s framer;

menutext_s banner;

menuradiobutton_s thirdPerson;

menufield_s sex;

menubitmap_s back;

} tweaks_t;

Now that you have a place for the menufield_s control, you’ll need to
properly initialize it. As memory serves, the initializations for all the
controls are wrapped up in UI_Tweaks_MenuInit. Scroll down to line 77,
where the setup of the radio button for thirdPerson ends, and add the
following lines of code:

s_tweaks.sex.generic.type = MTYPE_FIELD;

s_tweaks.sex.generic.flags = QMF_SMALLFONT;

s_tweaks.sex.generic.x = 320;

s_tweaks.sex.generic.y = 150;

s_tweaks.sex.generic.name = “Gender”;

s_tweaks.sex.generic.id = ID_SEX;

s_tweaks.sex.field.widthInChars = 18;

s_tweaks.sex.field.maxchars = 30;

For this particular control, you start with a generic.type of
MTYPE_FIELD, and a generic.flags of QMF_SMALLFONT. The x and y loca-
tion is 320 × 150, slightly lower on the screen than the previous con-
trol. The label of the field is “Gender” (just to be politically correct),

39Working with More Controls

which is held in generic.name. As for the generic.id of the control, it is
set to ID_SEX. The actual size of the textbox that will be accessible to
the user will be 18 characters wide. This value is stored in
widthInChars. The maxchars will be 30—ample room to hold one word.

Notice a surprisingly vacant member initialization from this set: the
assignment of the generic.callback member. If the control is accessed,
you certainly want it to be able to set a value that is typed in the
textbox to a variable, but how can you do that without a callback func-
tion to handle any events the control might invoke? You do this using
a new technique: redirecting the callback function that is invoked by
the menu when a keypress occurs.

Trapping the Keyboard Red-Handed
Sometimes it isn’t necessary for a control to call an update function
every single time it changes. The menufield_s control is the perfect
example; if you were typing a 256-character string into the control,
would you really need the overhead of a function being called every
single keypress? Chances are, those extra calls are really unneeded
(and any C programmer will tell you that the more processor usage
you can avoid, the better). A better method would be to let the con-
trol remain idle while characters are entered into it, and then call a
final update function when the control is finished being used.

The menuframework_s struct, held in s_team.menu contains a member
called key, which is a pointer to a function, much in the same way that
think is within a gentity_t, or the callback function is within menu-
common_s. This particular function is invoked whenever a keypress is
detected within the menu currently being accessed. It could be any
key: a letter, a number, the Enter key, the Esc key, or any other valid
key you see on the keyboard. By default, the key function simply
returns the key that was pressed to
the calling function, so that appro-
priate steps can be taken by the
function that called it. You can, how-
ever, create a function and point
your menu’s key member to it,
thereby forcing the new function to
be called whenever a keypress is
detected.

40 9. UI Programming

TIP
The default key function is
Menu_DefaultKey, and you
can read its definition in
ui_qmenu.c, way down at
line 1563.

Let’s go ahead and write a new function that will trap a keypress from
the Tweaks menu and hold the information necessary to call an
update to your new menufield_s control. Above your definition of
UI_Tweaks_MenuEvent on line 51, scroll up a few lines and add the fol-
lowing function:

/*

=================

TweaksSettings_MenuKey

=================

*/

static sfxHandle_t TweaksSettings_MenuKey(int key) {

if(key == K_MOUSE2 || key == K_ESCAPE) {

TweaksSettings_SaveChanges();

}

return Menu_DefaultKey(&s_tweaks.menu, key);

}

Because the default key function of a menu is Menu_DefaultKey, and
that function returns a variable of type sfxHandle_t, your new key
handler must also return that, as this definition of
TweaksSettings_MenuKey shows. This function is really a no-brainer; the
function requires an integer called key (which will hold the value of
the key that was pressed) and simply checks to see if that key matches
one of two predefined variables, K_MOUSE2, for the second mouse but-
ton, or K_ESCAPE, for the Esc key. If either of those two keys is trapped,
the TweakSettings_SaveChanges function is called, and then,
TweaksSettings_MenuKey exits properly by returning the value from
Menu_DefaultKey. Note that the
final call to Menu_DefaultKey
passes in your s_tweaks.menu
variable, along with the trapped
keypress held in key.

Now that you have a function
trapping keys, let’s write the
function to save the value cur-
rently stored in the menufield_s
control. Above the

41Working with More Controls

TIP
Every single key on the keyboard
has an appropriate variable
declared for it, like K_MOUSE2 and
K_ESCAPE.You can find the entire
listing in keycodes.h, starting on
line 12.There are also variables
defined for joystick buttons as
well, all falling into a declaration
of the keyNum_t enum.

TweaksSettings_MenuKey function, add the following function definition
for TweaksSettings_SaveChanges:

/*

===========================

TweaksSettings_SaveChanges

===========================

*/

static void TweaksSettings_SaveChanges(void) {

trap_Cvar_Set(“sex”, s_tweaks.sex.field.buffer);

}

This straightforward function makes a call to trap_Cvar_set (which
you should recognize as a system-call function), setting the Cvar sex to
the value currently held in s_tweaks.sex.field.buffer. Now you have a
function that will commit the changes typed into the menufield_s con-
trol to memory.

Covering All the Bases
Because your new menufield_s control works in somewhat of an
unorthodox manner (it commits data when the second mouse button
or Esc key is pressed, instead of every time the control changes), you
need to make sure you cover all your bases. In other words, there is
one remaining way that a user could slip out of the menu without
pressing the activating the K_MOUSE2 or K_ESCAPE variables, and that is
by clicking the Back button directly. Presently, if a user were to type a
new value into the Gender textbox and then click the Back button
(which would signal K_MOUSE1, not K_MOUSE2), the changes made in the
sex control would disappear.

To solve that problem, let’s take a quick trip back to
UI_Tweaks_MenuEvent, the function that handles the events for the
remaining controls in your menu. Jump down to line 67, where the
ID_BACK case is held, and make the following changes:

case ID_BACK:

TweaksSettings_SaveChanges(); // make sure that text control

is updated!

UI_PopMenu();

break;

42 9. UI Programming

The problem is solved with a simple call to TweaksSettings_SaveChanges,
just before the menu disappears from view. Now all you need to worry
about is making sure the control is added to the Tweaks menu, and
pre-populating the textbox with the current value held in the sex Cvar.
To accomplish both tasks, scroll down to line 139 near the end of
UI_Tweaks_MenuInit, where all the controls are added to the menu, and
make the following additions:

Menu_AddItem(&s_tweaks.menu, &s_tweaks.banner);

Menu_AddItem(&s_tweaks.menu, &s_tweaks.thirdPerson);

Menu_AddItem(&s_tweaks.menu, &s_tweaks.sex); // new menufield_s!

Menu_AddItem(&s_tweaks.menu, &s_tweaks.framel);

Menu_AddItem(&s_tweaks.menu, &s_tweaks.framer);

Menu_AddItem(&s_tweaks.menu, &s_tweaks.back);

// safe string-copy “sex” cvar into menufield_s control

Q_strncpyz(s_tweaks.sex.field.buffer,

UI_Cvar_VariableString(“sex”), sizeof(s_tweaks.sex.field.buffer));

As you can see, right after the thirdPerson control is added, an addi-
tional call to Menu_AddItem allows the sex control to be added. Then,
after all the controls are added to the s_tweaks.menu variable, a call to
Q_strncpyz is made. Q_strncpyz is a custom function that performs a
safe string copy from one variable to another, ensuring that there is a
trailing zero at the end of the char array. The variable that will hold
the copied string is the first parameter, s_tweaks.sex.field.buffer,
which is a member in the menufield_s control. The value to be copied
is obtained by making a call to UI_Cvar_VariableString, a system-call
function that returns a console variable in the form of a string; the
requested Cvar in this call is sex.

With all the changes in place, you should be able to build your new
uix86.dll and give it a try. Once you have Q3 loaded up, enter the
Tweaks menu again and notice that the new control that reads “Gender.”
This is a free-form text box, so you can type whatever you want into it.
Figure 9.9 shows me getting a little silly with the new control.

The menufield_s is not all that difficult to implement, as you have
seen here. It offers a wide range of flexibility because it can also be
constrained to allow only numbers to be entered, through the use of
the QMF_NUMBERSONLY flag. As well, the menufield_s control supports the

43Working with More Controls

standard Copy and Paste shortcut keys; try copying some text into
memory with Ctrl+C and then selecting your new text control and
pressing Ctrl+V. The text should paste in, even if it came from a pro-
gram outside Q3, such as Notepad.

The menuslider_s Control:
Great for Parties
Without a doubt, the menuslider_s control defines coolness. It works just
like a volume control on a stereo: it has a knob, often referred to as a
thumb, that slides along a bar. Typically, the bar is narrow on one end
and wide at the other, indicating that a value grows as the slider is
moved from left to right. If you master the dark art of the menuslider_s
control, you’re sure to win friends and influence people. Let’s add one
to the Tweaks menu, modifying yet another Cvar, called cg_fov. This is a
wacky Cvar that lets you control your player’s field of view.

By default, the player’s field of view, or FOV, is 90 degrees. Because the
90-degree range of view in a 3D world has to be cast onto a 2D surface

44 9. UI Programming

Figure 9.9 Entering a new gender in the Tweaks menu

(your monitor), certain alterations are made so that the view fits appro-
priately. If the FOV were to increase dramatically, say to 130 degrees, the
player would have a much larger range of view. However, because the 2D
surface dimensions of the monitor are still the same, the alterations that
are made to the final view are much greater, causing a stretched look.
Similarly, reducing the FOV to below 90 degrees achieves a zoom effect,
where the player sees less of the original view, but at a much closer dis-
tance (because the smaller view is stretched to fit on the same 2D moni-
tor space). You can have a lot of fun with changing the FOV, so let’s add
a control to the Tweaks menu to do just that.

The guts of the menuslider_s control are simple and non-threatening,
so much so that I’m going to place the definition here, right before
your eyes:

typedef struct

{

menucommon_s generic;

float minvalue;

float maxvalue;

float curvalue;

float range;

} menuslider_s;

Hopefully, that doesn’t scare you too much. It starts with a
menucommon_s variable, generic (as all good controls do), and
then contains a series of floats. The first is minvalue, which holds the
minimum value that the slider represents when the thumb is all the
way to the left. The next float, maxvalue, represents the maximum
value represented by the control, when the thumb is all the way to the
right. As you might guess, maxvalue must be greater than minvalue. If
you guessed that curvalue represents the current value of the slider,
wherever the thumb is pointing, you’ve earned yourself another 50
bonus points.

The final float, range, is used to describe the increment that the slider
uses to get from minvalue to maxvalue. So, for example, if you have a
range of 1 assigned to your menuslider_s, the slider will only be capa-
ble of being set to whole numbers between your minvalue and
maxvalue, like 1, 10, 15, 50, and so on (if your maxvalue was greater than

45Working with More Controls

50). However, a range of 0.5 would allow the thumb to be set to values
of 1.0, 1.5, 10.5, 20.0, 30.5, and so on.

Dropping the menuslider_s in
By now you should be familiar with stepping through the motions.
Add a new ID_FOV variable definition at the top of ui_tweaks.c, under
the previously defined variables.

#define ID_BACK 10

#define ID_THIRDPERSON 11

#define ID_SEX 12

#define ID_FOV 13

Next, add the control to the tweaks_t struct, calling it fov, and declar-
ing it of type menuslider_s. An excerpt from tweaks_t should read like
this:

menuradiobutton_s thirdPerson;

menufield_s sex;

menuslider_s fov;

The next change is an addition to the switch block in the
UI_Tweaks_MenuEvent handling function. Right after the case for the
ID_THIRDPERSON value, add a similar block to handle the new ID_FOV
value.

case ID_THIRDPERSON:

trap_Cvar_SetValue(“cg_thirdPerson”, s_tweaks.thirdPerson.cur-

value);

break;

case ID_FOV:

trap_Cvar_SetValue(“cg_fov”, s_tweaks.fov.curvalue);

break;

There isn’t anything secret happening here. Just as with the
cg_thirdPerson Cvar, the cg_fov Cvar is set to the value currently held
in s_tweaks.fov.curvalue, which will be the region to which the slider
control currently points. Because I happen to be talking about mem-
bers of the menuslider_s control, take a quick peek at Table 9.8,
which lists the variable assignments necessary to use a menuslider_s
control.

46 9. UI Programming

With Table 9.8 as a guide, hop down to line 118 in ui_tweaks.c, where
all the Tweaks menu’s controls are initialized, and add in the initial-
ization for the fov control:

s_tweaks.fov.generic.type = MTYPE_SLIDER;

s_tweaks.fov.generic.name = “Field of View:”;

s_tweaks.fov.generic.flags = QMF_PULSEIFFOCUS |

QMF_SMALLFONT;

s_tweaks.fov.generic.callback = UI_Tweaks_MenuEvent;

s_tweaks.fov.generic.id = ID_FOV;

s_tweaks.fov.generic.x = 320;

s_tweaks.fov.generic.y = 170;

s_tweaks.fov.minvalue = 1;

s_tweaks.fov.maxvalue = 160;

s_tweaks.fov.curvalue =

trap_Cvar_VariableValue(“cg_fov”);

You should have no problem identifying the values being assigned to
the fov control here. The text that will describe the control reads
“Field of View:” and, as you can see, the scope of the slider is from 1

47Working with More Controls

Table 9.8 Required Inits for menuslider_s

Variable Value

generic.type This member is assigned a value of MTYPE_SLIDER.

generic.x This member sets the control’s x location on the screen.

generic.y This member sets the control’s y location on the screen.

generic.name This member holds the control’s label, a text string drawn
to the left of the control that does not change its x, y
position.

minvalue This member holds the slider’s minimum value, which
must be less than maxvalue.

maxvalue This member holds the slider’s maximum value.

curvalue This member holds the slider’s current value, as indicated
by the thumb arrow on the slider.

to 160 (held in minvalue and maxvalue). This is because any value lower
than 1 or higher than 160 assigned to cg_fov is automatically rounded
to those numbers, respectively. The current value of the slider is set by
reading in the current value of the cg_fov Cvar with a call to
trap_Cvar_VariableValue.

The last addition is physically adding the control to the menu, and
you do that on line 159, right after the thirdPerson and sex controls
are added. Use the following snippet as a guide:

Menu_AddItem(&s_tweaks.menu, &s_tweaks.thirdPerson);

Menu_AddItem(&s_tweaks.menu, &s_tweaks.sex); // new menufield_s!

Menu_AddItem(&s_tweaks.menu, &s_tweaks.fov); // new menuslider_s!

And with that, you are done. Save your work, compile your uix86.dll,
throw it in your MyMod folder, and fire up Q3. After entering the
Tweaks menu, you should see your new Field of View control, as
shown in Figure 9.10.

By default, the cg_fov value is 90, so the thumb should be somewhere
near the middle of the slider. Try sliding it all the way to the right and

48 9. UI Programming

Figure 9.10 Modifying the player’s field of view in the Tweaks menu

then starting up a game of
Q3. I’ll admit, it’s a bit dis-
orienting. I used to play
the original Quake with a
FOV setting of 130, so you
can imagine what craziness
I saw during a standard
deathmatch.

Ultimate
Power:
menulist_s
The final control you’ll be
looking at in this chapter is
the menulist_s control. The menulist_s control divvies out power to the
user in the form of a list of elements that can be selected. This is
the perfect control for a menu to allow someone to cycle through a
specific set of items, in the event that he is unaware of all the values
ahead of time. This saves the user from having to look up a value, or
numerical representation of a variable, when he wants to make an
adjustment in Q3’s user interface. For this section, you will add a
menulist_s control that allows a user to select what type of shadow
details he wishes to see.

In Q3, there are four settings for shadow details hidden away from the
user in the Cvar cg_shadows. 0 denotes a value of off; when cg_shadows
equals 0, there are simply no shadows rendered by the engine. If
cg_shadows is set to 1, every moving or animated object that isn’t a part
of the level structure gains a soft shadow. If you look beneath the
player’s feet, you should see a inconspicuous, circular blur. The exact
same shadow is applied to all objects; it is simply resized based on the
object it is shadowing. When cg_shadows is set to 2, however, things get
pretty neat. Suddenly, all the shadows are dynamically built, based on
the shape of the object that is being shadowed. So, the shadow of a
player actually looks like the player, and moves as the player animates.
Shadows of weapons and powerups also reflect the shape of their own-
ers. Finally, if the cg_shadows Cvar is set to 3, the complex shadows
become darker, and faster to render.

49Working with More Controls

NOTE
Allowing the player’s field of view to
be adjustable has come under fire
recently—some players (who don’t
adjust their FOV) feel that doing so is
cheating, because a wider FOV
reveals more of the world.When Q3
was developed, the cg_fov Cvar was
not considered a “cheating” console
variable; an option was added, howev-
er, for servers to prevent clients from
adjusting their FOV during play.

Let’s start by getting the gist of the menulist_s control. This control
typically comes in two flavors, the Spin version and the List version.
The Spin version works by drawing only one element of the list at a
time; as the user clicks on it, the list cycles or spins from one element
to the next. This version is perfect for tight-fitting quarters, where you
need to conserve room in the layout of your menu. The other style,
List, allows you to draw many elements in the list at once. The List ver-
sion also allows you to use the control like a grid, containing not only
multiple rows for each element in your list, but multiple columns for
each row, giving the control a two-dimensional feel. Figure 9.11 shows
one of the best uses of the List version of a menulist_s control, the
server browser from within Q3.

Cold-Working the Spin Control
For this tutorial, you will use the simple and easy-to-implement Spin
version of the menulist_s control. Before you start dropping code into
your ui_tweaks.c file, however, let’s take a moment to get a feel for the
control.

The menulist_s struct is declared on line 187 of ui_local.h, and if you
head over there, you should see something like the following snippet
of code:

typedef struct

{

50 9. UI Programming

NOTE
cg_shadows 2 is rendered by the Q3 engine using something
called a stencil buffer. In a nutshell, a stencil buffer allows
pixels to be drawn to the screen based on a user-defined
value that references another set of pixels. Because the
model of a player already exists in the 3D world, another ver-
sion of that model (a squashed-flat 2D surface, for example)
can be drawn using a stencil buffer, referencing the original
model for shape, size, and dimensions. Using a stencil buffer
is a fairly intensive task, and unless you have the latest and
greatest hardware, you may experience some performance
loss after turning cg_shadows to 2 in this tutorial.

menucommon_s generic;

int oldvalue;
int curvalue;
int numitems;
int top;

const char **itemnames;

int width;
int height;
int columns;
int seperation;

} menulist_s;

It should be no surprise that generic is the first member of the struct.
(If it is a surprise, I get to take 50 of your bonus points away.) As you
can see, there are a good number of integer declarations, such as old-
value, curvalue, numitems, top, and as well, width, height, columns, and
seperation. There is also a const char pointer, which itself is a pointer
to itemnames. A pointer-to-a-pointer sounds complicated, but it really

51Working with More Controls

Figure 9.11 The server browser using a menulist_s control

isn’t if you already understand what a pointer is. It is simply a variable
that points to another variable that’s doing some pointing of its own.
Because standard C-style strings are typically held in a pointer-to-a-
char, or char*, it makes
sense, that if you have a list
of strings, and you want to
be able to reference any
particular string at one
time, you will want to have
a pointer to char*, which
equates to a char**.

For the Spin version of the
menulist_s control, you’ll
need to initialize a certain
set of members in the
struct. Table 9.9 lists them.

52 9. UI Programming

Table 9.9 Required Inits for menulist_s

Variable Value

generic.type This member is set to MTYPE_SPINCONTROL.

generic.x This member sets the control’s x location on the screen.

generic.y This member sets the control’s y location on the screen.

generic.name This member holds the text label that is drawn to the
left of the control.

itemnames This member holds the list of elements to be cycled
through by the control.

curvalue This member references the currently selected element
in the list, which maps to an index in the array held by
itemnames.

numitems This member holds the total number of elements in the
list. For the MTYPE_SPINCONTROL style of menulist_s, this
member does not need to be initialized or set; it is all
handled automatically.

TIP
The const keyword stands for “con-
stant,” meaning the value will be
unchangeable. It is always good prac-
tice to write functions, structs, and
so forth so that if they hold C-style
strings that cannot be changed, they
are declared as const. Many string-
manipulation functions require a
const char* for exactly this reason,
such as strcpy (copy one string to
another) and strcat (add one string
to the end of another string).

No surprises here, eh? Well, perhaps one: that funky pointer-to-a-
pointer called itemnames. You need to provide a list of elements to the
menulist_s control to allow the user to cycle through the list. This will
be the first bit of code you lay into ui_tweaks.c for this final tutorial.

Scroll up to line 15, where the ID defines end, add a new one for the
shadow control, and append the following code to it:

#define ID_FOV 13

#define ID_SHADOW 14

static const char *shadow_types[] = {

“No Shadows”,

“Standard”,

“Complex”,

“Dark Complex”,

0

};

After you have a new ID_SHADOW variable defined as 14, create the list
for the menulist_s control by declaring a static const char* array
called shadow_types. In the declaration of shadow_types, assign the val-
ues that will be used in the list. They are “No Shadows”, “Standard”,
“Complex”, and “Dark Complex”, which will give you elements 0–3.
(Remember, arrays in C start at 0, not 1!) Make a mental note that
these elements map directly to the
four values of cg_shadows that I
explained earlier. The last element
in the list is a 0, and indicates to the
ui code that this list is now complete.

Don’t forget to add your new control
to the tweaks_t struct declaration,
like so:

menufield_s sex;

menuslider_s fov;

menulist_s shadowDetail;

menubitmap_s back;

} tweaks_t;

For this tutorial, I call the menulist_s control shadowDetail. Make sure
you set aside a way for the Tweaks menu event handler to deal with

53Working with More Controls

CAUTION
You must always specify 0
as your final element in a
list that is supplied to a
menulist_s control. If you
don’t . . . beware!

someone clicking on the menulist_s control. Do that in
UI_Tweaks_MenuEvent, on line 83, right after ID_FOV handler:

trap_Cvar_SetValue(“cg_fov”, s_tweaks.fov.curvalue);

break;

case ID_SHADOW:

trap_Cvar_SetValue(“cg_shadows”, s_tweaks.shadowDetail.curvalue);

trap_Cvar_SetValue(“r_stencilbits”, 8);

trap_Cmd_ExecuteText(EXEC_APPEND, “vid_restart;”);

break;

Here, you actually execute a couple of functions if the ID_SHADOW ID
passes into the event handler. First, the cg_shadows Cvar is set to the
current value of the menulist_s control. Remember, curvalue refer-
ences the index of the array, not the text string in that index. So if the
menulist_s control currently reads “No Shadows,” then curvalue will
actually equal 0 (and 0 is what will be passed back to the cg_shadows
Cvar). Then, another Cvar called r_stencilbits is set to a value of 8.
This is a requirement of the complex shadow type (when cg_shadows
equals 2), so just to be quick and dirty, you can go ahead and set it to
8 in each case. Finally, a system-call function named
trap_Cmd_ExecuteText is called, passing in EXEC_APPEND as the first para-
meter and vid_restart as the second. vid_restart is actually a console
command that forces Q3 to re-initialize the 3D rendering engine from
scratch, which is required when shadow types and stencil-buffer
depths change.

The menulist_s control will need to be initialized; you know what you
have to do. Hop down to line 145 in ui_tweaks.c, and add the follow-
ing code after the fov control ends to get your shadowDetail control
freaky-fresh and fly:

s_tweaks.fov.maxvalue = 160;

s_tweaks.fov.curvalue = trap_Cvar_VariableValue

(“cg_fov”);

s_tweaks.shadowDetail.generic.type = MTYPE_SPINCONTROL;

s_tweaks.shadowDetail.generic.name = “Shadow Detail:”;

s_tweaks.shadowDetail.generic.flags = QMF_PULSEIFFOCUS |

QMF_SMALLFONT;

s_tweaks.shadowDetail.generic.callback = UI_Tweaks_MenuEvent;

54 9. UI Programming

s_tweaks.shadowDetail.generic.id = ID_SHADOW;

s_tweaks.shadowDetail.generic.x = 320;

s_tweaks.shadowDetail.generic.y = 190;

s_tweaks.shadowDetail.itemnames = shadow_types;

s_tweaks.shadowDetail.curvalue = trap_Cvar_VariableValue(

“cg_shadows”);

Let’s go over the nitty gritty: MTYPE_SPINCONTROL is your generic.type,
while the label of the control will read “Shadow Detail:” (set in
generic.name). The generic.flags, generic.callback, and generic.id
should be clear, as well as the generic.x and generic.y values. As
expected, the itemnames member is assigned to the static const char*
array you created, holding each value in the list of shadow types.
Finally, the currently selected element in the list is assigned to
curvalue, and is polled by returning the value of
trap_Cvar_VariableValue, looking at the Cvar cg_shadows.

Don’t forget to cross your t’s and dot your i’s; the menulist_s control
will do no good to you if you don’t add it to the context of the
s_tweaks.menu variable. Line 186 will be your final code adjustment:

Menu_AddItem(&s_tweaks.menu, &s_tweaks.fov); // new menuslider_s!

Menu_AddItem(&s_tweaks.menu, &s_tweaks.shadowDetail); // new

menulist_s!

Menu_AddItem(&s_tweaks.menu, &s_tweaks.framel);

Congratulations, you are now the owner of a brand-new baby . . . er . . .
menulist_s control. Fire up the compiler, build a new uix86.dll, copy it
to MyMod, and load Q3. If all goes well, entering the Tweaks menu
should reveal a new Shadow Detail: control (see Figure 9.12).

If you click on the menulist_s control, Q3 will blink and grind for a
moment as it restarts the video renderer (remember the call to
vid_restart?). Then the Q3 menu should be visible once again, and if
you return to “Tweaks” a second time you should see the next value in
the list. Try setting the value to “Complex” and then firing up a level.
Take a look at the shadows underneath the weapons and powerups;
you’ll see that they match the shape and size of the objects. As men-
tioned earlier, detailed shadows required specific stencil-buffering
capabilities that some video cards lack, so if you don’t see the shadows
with Complex or Complex Dark, you can always go back to Standard,
or turn shadows off completely with No Shadows.

55Working with More Controls

Summary
This was one epic chapter! You now have the ability and tools to con-
tinue in your exploration of the ui code. You should understand that
all menus begin with a menu framework, and each menu contains a
set of controls that allow the user to interact with the interface. Each
control is unique and specifically tasked for different uses—
menulist_s allows users to cycle through multiple elements, while
menuradiobutton_s allows users to turn a value on or off. I encourage
you to revisit the ui code and try working with more control settings,
layouts, and investigating how the existing Q3 menu system is imple-
mented. There is no better way to learn than by seeing how those
before you have created.

56 9. UI Programming

Figure 9.12 The new Shadow Detail control in the Tweaks menu

CHAPTER 10

Enhancing
DTF

By now you’ve successfully implemented a new game type into Q3
using new rules, new item behaviors, and new scoring systems.

That may not, however, be enough to satisfy players. For example, in
your new DTF game type, how can a player tell which sigils are cur-
rently held by the red team as opposed to the blue team? You’ve also
introduced an element of randomness to your mod by dynamically
creating a third sigil spawn point, and many players already familiar
with CTF maps are going to wonder, “Where the heck is the third
flag?” In this chapter, I’m going to show you how you can polish your
mod, offer ways to solve the problems possed here, and assist you with
the setup of DTF from within the Q3 user interface.

Adding Sigil Status
to the HUD
When I first started discussing the DTF game type, I used Unreal
Tournament’s Domination as a basis of reference. I also included an
image which showed how the game displayed the status of the three
control points. Down the left side of the player’s HUD, three icons are
rendered that indicate, by their shape and color, both the control
point and who controls it. You can accomplish a similar layout using
the three icons to represent standard CTF flags in their “at home”
state simply by changing the color of each icon based on which team
holds each sigil.

Filling in the Missing Game Code
The first task you need to complete is filling in the missing code that
you began to lay out in Chapter 7. A few functions were left empty
and a few variables went undeclared because they weren’t needed at
the time; they dealt specifically with communicating information from
the game module to the cgame module. Now that you will need to tell
cgame what the status of the three sigils are, this code must be in place.

58 10. Enhancing DTF

Start by heading back to g_team.c and jumping to line 185. You
should see two variable definitions, like so:

static char ctfFlagStatusRemap[] = { ‘0’, ‘1’, ‘*’, ‘*’, ‘2’ };

static char oneFlagStatusRemap[] = { ‘0’, ‘1’, ‘2’, ‘3’, ‘4’ };

These two character arrays contain a single char for each value, map-
ping to a status that a flag could have referenced by the flagStatus_t
enum. For example, in standard CTF, flags can be FLAG_ATBASE,
FLAG_TAKEN, or FLAG_DROPPED, the values of those variables being 0, 1, and
4, respectively. Because a flag’s status is wrapped up in a config string
(which I will get to later), it will be communicated in the form of a sin-
gle character. The character is simply a char of the numerical equiva-
lent; that is, 1 is ‘1’, 2 is ‘2’, and so on. One char will exist for every
appropriate index in flagStatus_t. Although this sounds like an unortho-
dox way of handling values, the methodology will soon be made clear.

You use sigilStatus_t to represent the three statuses of a sigil in DTF:
SIGIL_ISWHITE, SIGIL_ISRED, or SIGIL_ISBLUE. Because these variables
actually hold the values 0, 1, and 2, you’ll need to create a char array
that includes the ASCII representations of these three values. Above
the declaration of these two char arrays, create a new one, like so:

static char dtfSigilStatusRemap[] = { ‘0’, ‘1’, ‘2’ }; // maps to

sigilStatus_t

Now that you have a char array that will remap your enum values into
actual characters, let’s put them to use in the function we left behind
in Chapter 7: Team_SetSigilStatus.

After all the hacking, inserting, modifying, and such that g_team.c has
gone through, functions will more than likely have been moved
around in this file. If you’ve followed along in the book from previous
chapters, Team_SetSigilStatus should be located near line 287 now.
This function was left empty because it handles the communication of
the sigil statuses to the cgame code, something you didn’t need in
Chapter 7. You do now, though! Go ahead and fill in the missing code
so that the function reads like this:

void Team_SetSigilStatus(int sigilNum, sigilStatus_t status) {
qboolean modified = qfalse;

// update only the sigil modified
if(teamgame.sigil[sigilNum].status != status];

59Adding Sigil Status to the HUD

teamgame.sigil[1].status = status;

modified = qtrue;

}

if(modified) {

char st[4];

// send all 3 sigils’ status to the configstring

st[0] = dtfSigilStatusRemap[teamgame.sigil[0].status];

st[1] = dtfSigilStatusRemap[teamgame.sigil[1].status];

st[2] = dtfSigilStatusRemap[teamgame.sigil[2].status];

st[3] = 0;

trap_SetConfigstring(CS_SIGILSTATUS, st);

}

}

This function borrows functionality from its sister function,
Team_SetFlagStatus, which is used by standard Q3. In this function, the
sigil that is having its status set is referenced by sigilNum, an integer
passed into Team_SetSigilStatus that represents the index of the
teamgame.sigil array. This means that the only valid values can be 0, 1,
and 2. The status variable is also passed in, which represents one of
the three sigilStatus_t values. If the specific sigil’s status does not
match the status passed in, the new status is assigned to the sigil, and a
flag that the sigil was modified is set to true.

In the second half of the function, the modified flag is examined to
see whether a sigil’s status was changed. If so, a new char array called
st, with a length of 4, is created. Then, for the first three indexes of st
(0 through 2), the status of the sigil found in the same index is used as
the index of your new dtfSigilStatusRemap variable, which is assigned
back to st. Ugh! Does that sound complicated? Let me set it down in
layman’s terms:

■ Each element in st is a char, like ‘1’ (not the value 1).
■ Each element in dtfSigilStatusRemap is a char, like ‘1’.
■ Each element in dtfSigilStatusRemap is accessed by a numerical

index, such as 0, 1, or 2.
■ Each status of the teamgame.sigil array is a value, represented by

the enum sigilStatus_t (which can either be 0, 1, or 2).

60 10. Enhancing DTF

■ Therefore, the value of any status in the teamgame.sigil array
can be used as an index to dtfSigilRemap, producing a char,
such as ‘1’, which can be assigned back to st.

Phew! Hopefully those notes clarify what you are doing—essentially,
you’re assigning characters, which are ASCII representations of values,
to a variable called st. The last element of the st array is set to 0 to
indicate that the array has ended.

The final line of this function makes a system-function call:

trap_SetConfigstring(CS_SIGILSTATUS, st);

This passes the st variable from the game code to the cgame code, with
the flag of CS_SIGILSTATUS, indicating that the variable’s values will be
used for determining the status of sigils. So now the question remains:
Where did CS_SIGILSTATUS come from, and what the heck is a config
string?

Making the Config
String Work for You
In Q3, the game and cgame code must keep communication going
between them. One of the techniques used to allow values to be
passed back and forth between the modules is the implementation of
the config string. Basically, a config string consists of an array of charac-
ters that are ASCII representations of numerical values. This section
will show you that by using a clever bit of math, the characters in a
config string can be converted to numbers quickly and efficiently,
without any extra function calls.

In order to set up a config string, you will first need to declare your
new config-string identifier. Open bg_public.h and scroll to line 65,
where you should see a number of config strings already being
declared. After CS_ITEMS is declared, go ahead and add a new line, and
add your missing CS_SIGILSTATUS variable:

#define CS_SIGILSTATUS 29 // dtf configstring

That wasn’t so hard! Now, your Team_SetSigilStatus function will be
able to appropriately identify the st variable being passed to cgame,
because the entire code base now knows what CS_SIGILSTATUS refers to.

Before you jump over to cgame, can you think of one other place that
you will want to use CS_SIGILSTATUS? If you guessed Sigil_Touch, you

61Adding Sigil Status to the HUD

are correct, sir! Sigil_Touch has the responsibility of updating the sigils
on the server side of things when players touch them. Naturally, it’s
also going to need to communicate those statuses back to the client-
side portion of the code.

Jump back to g_team.c and scroll to line 1046, which is where you
should find Sigil_Touch. Start by declaring a new variable, an integer
named sigilNum, at the start of the function:

int Sigil_Touch(gentity_t *ent, gentity_t *other) {

gclient_t *cl = other->client;

int sigilNum = 0;

sigilNum is going to be used to figure out which sigil was passed to
Sigil_Touch, via the ent parameter. Next, after the overflow protect on
ent->count is performed, add this snippet:

// find the index of the sigil referred by ent

while (sigilNum < MAX_SIGILS && teamgame.sigil[sigilNum].

entity != ent)

sigilNum++;

Because Team_SetSigilStatus requires an integer (the proper index for
teamgame.sigil), and the only reference to a sigil is via the ent variable,
the proper index is retrieved by accruing an integer representing the
index in the teamgame.sigil array and comparing it with the passed-in
ent variable.

The last change you need to make to Sigil_Touch is within each of the
two changes that sigil undergoes when being converted to either red
or blue. Make this change by making a call to Team_SetSigilStatus as
the first line of code within both sigil conversion blocks. The code for
converting a sigil to red should read as follows:

if (cl->sess.sessionTeam == TEAM_RED && ent->s.powerups

!= PW_SIGILRED)

{

Team_SetSigilStatus(sigilNum, SIGIL_ISRED);

whereas that for converting a sigil to blue should read like this:

else if (cl->sess.sessionTeam == TEAM_BLUE && ent->s.powerups

!= PW_SIGILBLUE)

{

Team_SetSigilStatus(sigilNum, SIGIL_ISBLUE);

62 10. Enhancing DTF

Note that the previously incremented integer sigilNum is used in both
cases, indicating the proper index of the sigil array, within the
teamgame variable.

Nice work. You now have all the game code in place to handle commu-
nicating the status of the three sigils back to the cgame code, via the
use of a config string. Actually parsing out the values of the config
string on the cgame side will be a different story altogether. . . .

Prepping cgame
for the HUD Update
In order to allow cgame to understand what data is coming down
from game, a few preparations are in order. This new config string
will be used to update the scoreboard that you will draw for players
of DTF, so you will have to go through the motions necessary to set
that information up ahead of time. The new scoreboard will need
icons that represent the status of the sigils; in addition, cgame will
need to know what sigils are. Take a moment now and get all your
ducks in a row.

Your first stop is cg_local.h. You’ll need to create a handle to the icon
that will represent a sigil in its initial white state. The red and blue
states already exist; you’ll reuse the shaders that are created for the
CTF flags. Scroll down to line 652, and after the redFlagShader and
blueFlagShader arrays are declared, add one called sigilShader:

qhandle_t redFlagShader[3];

qhandle_t blueFlagShader[3];

qhandle_t flagShader[4];

qhandle_t sigilShader; // dtf icon of sigil in white state

You may be wondering why the redFlagShader and blueFlagShader vari-
ables are declared as arrays. This is done because in CTF, the icons
that represent flags come in multiple flavors. There is a standard flag
icon, one with an X through it (to indicate the flag was stolen) and
one with a ? through it (to indicate that it was dropped somewhere in
the map). You do not need multiple icons for your shader; the stan-
dard white flag icon will do nicely.

The next step involves getting your new handle pre-cached when a
GT_DTF game type is initializing in Q3. You may recall that the pre-
caching functions are handled in cg_main.c. Open that file and scroll

63Adding Sigil Status to the HUD

down to about line 883, where various CTF-related shaders are initial-
ized, as long as the game type is GT_CTF. You will want use the same ini-
tializations for your HUD, because they include the initialization of
the redFlagShader and blueFlagShader variables I was just discussing.
Find the line of code that reads

if (cgs.gametype == GT_CTF || cg_buildScript.integer) {

and change it to the following:

if (cgs.gametype == GT_CTF || cgs.gametype == GT_DTF ||

cg_buildScript.integer) {

This will allow the shaders to be initialized in both GT_CTF and GT_DTF.
You aren’t quite done yet, however—the sigilShader handle is still
not initialized. Jump down a few lines to 892, where the
blueFlagShader is set up, and add your sigilShader definition like so:

cgs.media.blueFlagShader[2] = trap_R_RegisterShaderNoMip(

“icons/iconf_blu3”);

cgs.media.sigilShader = trap_R_RegisterShaderNoMip(

“icons/iconf_neutral1”);

Excellent; the white flag icon is now in place, representing your initial
sigil status as it first appears in the game. Now that you have memory
set aside for all three icons that will represent the status of the game’s
sigils within DTF, it is time to inform cgame what a sigil really is. To do
this, return to cg_local.h and scroll to line 1008, which should put you
right in the heart of the cgs_t struct declaration. Recall that cgs_t is
the data type of cgs, the global client-side game variable that holds
everything from the current game type and frag limit to the pre-
cached shaders used in the HUD, as well as a direct connection to the
state of the game as it exists on the server, for synchronization.

Around line 1008, you should see declarations of integers that will
represent the status of the red and blue flags, as well as the white flag
(in the Mission Pack). Go ahead and add a new line, and declare an
integer for the status of your sigils. Because there are three sigils in a
game of DTF, you have full clearance from me to declare the variable
as an array:

int redflag, blueflag; // flag status from configstrings

int flagStatus;

int sigil[MAX_SIGILS]; // dtf sigil status from configstrings

64 10. Enhancing DTF

Once the sigil array is declared within the cgs_t struct, you are free
to access it via cgs.sigil. Go ahead and do that now by properly set-
ting them to −1 when a new game first starts up. The function that
first sets up the cgame code is CG_Init, found in cg_main.c at around
line 1840. Dive into that function now and scroll farther down, near
line 1868, where the red, blue, and white flags are already being ini-
tialized. Add a line of code to set the three sigils in the same fashion,
like so:

cgs.redflag = cgs.blueflag = -1; // For compatibily, default to

unset for

cgs.flagStatus = -1;

cgs.sigil[0] = cgs.sigil[1] = cgs.sigil[2] = -1; // dtf sigils

reset

You might remember that you perform a similar action on the game
side of things, within Team_InitGame. It’s important to keep data as syn-
chronous as possible between game and cgame.

Parsing Out Config
Strings in cgame
Your structure for dealing with the sigils in the cgame code is now in
place. The next task to perform is the actual parsing out of the values
held in the config string once they come over from game. When I
began to describe config strings earlier in this chapter, I alluded to a
fancy technique used to extract the required data from them.
Following is the secret of that technique.

One of the ways in which a programmer can use the various letters,
numbers, and symbols that a computer supports is by referring to an
organized table called ASCII. The ASCII table starts off with a set of
funny symbols, including happy faces, musical notes, and pointing
arrows, eventually leading into punctuation marks. Then, starting at
the 49th element, the characters 0 through 9 come up, followed by the
letters of the alphabet. Because the characters that represent the num-
bers 0 through 9 are sequential, and they are ordered in an array, the
distance from a given number back to the 0 character will always equal
that specific number, as long as the number is from 0 to 9.

For example, suppose you have a char variable holding the character
5. If you subtract the character 0 from it, you will get a numeric repre-

65Adding Sigil Status to the HUD

sentation of the distance,
which is 5! Because config
strings are a conglomera-
tion of characters that rep-
resent numbers, this
simple and tricky tech-
nique is the fastest way to
extract numerical data
from them.

Let’s try this fly math out
in the function
CG_SetConfigValues, located
in cg_servercmds.c.
CG_SetConfigValues is
responsible for initializing a
good deal of similar client-side variables via the config string. Open
cg_servercmds.c and scroll to line 188, where the config strings are
parsed out for CTF:

if(cgs.gametype == GT_CTF) {
s = CG_ConfigString(CS_FLAGSTATUS);
cgs.redflag = s[0] - ‘0’;
cgs.blueflag = s[1] - ‘0’;

}

Here, the cgs.gametype variable is queried for a value of GT_CTF. If a
game of CTF is detected, a variable s (which is a pointer of type const
char) is assigned the value of CG_ConfigString, using CS_FLAGSTATUS as
the ID of the requested config string. Then, the cgs.redflag and
cgs.blueflag variables are assigned their status by looking at the match-
ing index of the char array, as pulled from CG_ConfigString. Notice that
in both cases, the char found in each index of the s char array has the
character ‘0’ subtracted from it, returning a numerical representation
back to cgs.redflag and cgs.blueflag. This final number will represent
the flag’s status, either 0, 1, or 4 (remember the remap?).

Go ahead and make the following addition, directly after the code
listed previously:

else if (cgs.gametype == GT_DTF) {

s = CG_ConfigString(CS_SIGILSTATUS);

cgs.sigil[0] = s[0] - ‘0’;

66 10. Enhancing DTF

NOTE
This technique of converting chars
into integers is fast (and cool) but
will not work for any value above
nine.Those values include two char-
acters (such as 10), making them
strings or char arrays.The solution to
this problem is simply to extract the
char array from the config string
with a call to CG_ConfigString, and
then, pass that new value to atoi, a
standard C function that converts
strings to integers.

cgs.sigil[1] = s[1] - ‘0’;

cgs.sigil[2] = s[2] - ‘0’;

}

No surprises here; you perform exactly the same task for DTF as was
performed for CTF. The only difference is that you use CS_SIGILSTATUS
as your identifier of the requested config string, and there is a third
cgs.sigil to assign. Other than that, you’re practically stealing code at
this point! Don’t feel guilty; learning by example is a good way to see
how other coders implement solutions.

In the same file, there’s a second function called
CG_ConfigStringModified, which is called by Q3 when a server com-
mand is issued by the game code. It alerts cgame that config strings
have changed. A good example of this is when one of the new DTF sig-
ils is touched; you’ll recall that in game, the function
Team_SetSigilStatus creates an updated config string and passes it to
cgame, via trap_SetConfigString. Hop down to line 330, in the midst of
CG_ConfigStringModified, and add this code snippet after GT_CTF and
CT_1FCTF are dealt with:

else if (num == CS_SIGILSTATUS) {

if (cgs.gametype == GT_DTF) {

cgs.sigil[0] = str[0] - ‘0’;

cgs.sigil[1] = str[1] - ‘0’;

cgs.sigil[2] = str[2] - ‘0’;

}

}

Here, num represents the ID of the config string being queried. If the
ID is CS_SIGILSTATUS, then you can perform the necessary updates to
the cgame version of the sigils. As before, str (which is now the refer-
ence to the value held in the config string) has the ‘0’ character sub-
tracted from each of its indexes, and is assigned to the appropriate
cgs.sigil variables.

The Sigil Status HUD
Comes to Life
At this point, you’re successfully keeping cgame in sync with game, so that
both modules know the status of the sigils. The last task is to physically
create the scoreboard and render it to the player’s HUD, showing the

67Adding Sigil Status to the HUD

appropriate status of each sigil. Start by opening cg_draw.c and scrolling
to line 527. This will put you in the heart of CG_DrawStatusBar, the func-
tion responsible for drawing the HUD. After the check performed on
cg_drawStatus.integer, add a new function call, like so:

if (cg_drawStatus.integer == 0) {

return;

}

// draw the dtf sigils

if (cgs.gametype == GT_DTF)

CG_DrawSigilHUD();

Here, a very simple check is made on cgs.gametype, and if the value is
GT_DTF, then a call is made to CG_DrawSigilHUD, a function you will write
next. Drawing icons to the HUD is a fairly straightforward task, done
by using a function called CG_DrawPic, which is defined as follows:

void CG_DrawPic(float x, float y, float width, float height, qhandle_t

hShader)

The function CG_DrawPic uses an x and y location to position the
image on the HUD, as well as a width and height to resize the image
on-the-fly (if needed). It also takes a handle to a shader. This function
automatically translates your positions into the appropriate 640 × 480
coordinate system, so it is extremely easy to use. Here is the body of
CG_DrawSigilHUD, which you can place in cg_draw.c directly above
CG_DrawStatusBar:

void CG_DrawSigilHUD(void) {

int i, x=10, y=120;

for (i=0; i<MAX_SIGILS; i++) {

switch (cgs.sigil[i])

{

case SIGIL_ISWHITE:

CG_DrawPic(x, y, 24, 24, cgs.media.sigilShader);

break;

case SIGIL_ISRED:

CG_DrawPic(x, y, 24, 24, cgs.media.redFlagShader[0]);

break;

68 10. Enhancing DTF

case SIGIL_ISBLUE:

CG_DrawPic(x, y, 24, 24, cgs.media.blueFlagShader[0]);

break;

}

y+= 80;

}

}

In this function, an initial coordinate is set to 10 × 120, which will
position the drawing to the far left of the screen, a bit down from the
top. Then, a loop is performed over the three sigils, switching off the
status of each sigil in the loop. CG_DrawPic is called, passing in the cur-
rent x and y values and resizing the image to 24 × 24 (because the
original flag status icons are 32 × 32). Finally, the appropriate shader
is passed based on the status of the sigil. sigilShader is used for
SIGIL_ISWHITE, while redFlagShader[0] and blueFlagShader[0] are used
for SIGIL_ISRED and SIGIL_ISBLUE, respectively. Remember that you’re
reusing the flag status icons from CTF, hence the reference to the
redFlagShader and blueFlagShader arrays.

As the loop iterates, the value of the y location is incremented by 80,
which pushes each icon 80 pixels down the side of the screen, creat-
ing all three icons in a vertical row. If you build your cgamex86.dll
and qagamex86.dll files and launch Q3 with them, turning on the
GT_DTF game type, you should see the icons display in a vertical row, as
shown in Figure 10.1

Very nice. Your work is starting to feel like a polished mod. Not only
do you offer a new game type and a new way of dealing with flags, you
also offer the player an updated HUD, which better communicates
the status of the game. Players can now get a quick visual of the flags
and determine how many are held by their team.

Adding a Flag Locator
With the status of each sigil in place on the HUD, players can get a
quick update by glancing at the left side of the screen to see how
many flags their team holds. Because you have introduced the possi-
bility of a third flag into the mix, however, players will want to know

69Adding a Flag Locator

which one is which. Simply showing a red flag icon is not enough; is it
the flag in the red base, the blue base, or in the middle of the map?
The solution to this predicament is to build a flag locator that will act
as a point of reference for the player in his quest to hold all three
flags. The locator will draw tiny flag icons on the HUD, and will rotate
around the player’s view screen like a compass, always pointing to the
flags. This will assist players in figuring out where they need to be.

Getting to Know Cvars
The flag locator that will be built in this tutorial is a new and exciting
addition to the HUD. That said, not all players will want to use it. For
this reason, you will use Cvars to make this update a modifiable selec-
tion for the user. I briefly mentioned Cvars way back in Chapter 5; you
should recall that Cvars is short for console variables. A Cvar is a special
set of variables that give the player a direct hook right into the code
so that they can turn things on or off, or set specific options to new
values. Cvars help make Q3 more configurable, which in turn gives
more power back to the player.

70 10. Enhancing DTF

Figure 10.1 The new DTF HUD

Cvars typically come in all flavors. Some hold numerical values, while
others hold strings. There are fixed sets of Cvars that are hard-coded
into the Q3 EXE file, meaning that they will always be present in any
game or mod. Then, there are module-specific Cvars that are defined
in the game source: game Cvars are typically identified by a g_, cgame
Cvars start with cg_, and UI Cvars have ui_ at the beginning. Let’s take
a look at what makes up the data portion of a Cvar by examining its
creation in cgame (because your flag locator will ultimately end up
here).

Line 1064 of cg_local.h marks the declaration of all the client-side
Cvars currently in Q3. Each one is declared with the extern keyword,
meaning the variable will be accessible to other files in the code base.
The data type of each Cvar is a vmCvar_t ; the declaration of that type
can be found line 934 of q_shared.h:

#define MAX_CVAR_VALUE_STRING 256

typedef int cvarHandle_t;

typedef struct {

cvarHandle_t handle;

int modificationCount;

float value;

int integer;

char string[MAX_CVAR_VALUE_STRING];

} vmCvar_t;

It’s not a very complicated variable type, but it’s important nonethe-
less. Typically, you will access the value of a particular Cvar by refer-
encing either its value, integer, or string members, depending on the
type of data it holds.

Once a Cvar is declared, it needs to be poured into the main list of
Cvars that Q3 keeps a record of during each game. You do this by
adding the Cvar to an array called cvarTable, which itself is of data
type cvarTable_t :

typedef struct {

vmCvar_t *vmCvar;

char *cvarName;

char *defaultString;

71Adding a Flag Locator

int cvarFlags;

} cvarTable_t;

The cvarTable_t struct is declared on line 180 of cg_main.c (for cgame
Cvars). Within it, a pointer to a vmCvar_t exists, which will map to the
declaration of the variable mentioned earlier. cvarName is a char
pointer, which will hold the name of the Cvar as it would be read from
or written to the console (such as cg_shadows). The next member,
defaultString, is another char pointer that holds the default value of
the Cvar when it is first fed into Q3. It could be anything, from a num-
ber, such as 1, to a complete word, such as a player’s name (as in
Casey|M). Finally, the cvarFlags variable is an integer that can hold a
combination of different Cvar-related flags, which tells Q3 how to han-
dle the Cvar once it is a part of the game. Table 10.1 lists the available
flags.

For the most part, any of the Cvars you create will use only one or two
of the flags listed in Table 10.1 (three at the most!). To see an exam-
ple of an entry in the cvarTable array, take a look at this snippet that
initializes cg_fov, the Cvar you played with in Chapter 9:

{ &cg_fov, “cg_fov”, “90”, CVAR_ARCHIVE },

In this element of the cvarTable array, the cg_fov variable is assigned
with a matching “cg_fov” string (which is how users will see the vari-
able displayed in the console). The default value is 90, and the
CVAR_ARCHIVE flag is used,
meaning that Q3 will write
the current value of cg_fov
to the player’s config.cfg
file, to be used when the
game is launched at a later
time.

After all the necessary
Cvars are added to the
cvarTable array, the array is
fed directly into Q3, regis-
tering each Cvar and mak-
ing it official. This is done
via the CG_RegisterCvars
function in cgame. Cvar

72 10. Enhancing DTF

TIP
Not to be confused with config
strings, config.cfg is a physical file,
written to the hard drive by Q3, that
holds a series of Cvars and their
appropriate values.This file is also
parsed by Q3 when a new game is
launched, overriding the program-
matic default values with those
found in the file. Each game directo-
ry within /quake3/ should have its
own config.cfg file, including your
MyMod folder.

initialization is not arbitrary; it goes through the exact same motions
in game and ui as well, first being declared as a vmCvar_t variable, then
placing that variable in an element of some global Cvar array, after
which the entire array is registered by a specific function. That’s Cvars
in a nutshell.

73Adding a Flag Locator

Table 10.1 Cvar Flags

Flag Value

CVAR_ARCHIVE This flag causes the Cvar to be saved and written to
a config file when Q3 exits.

CVAR_USERINFO This flag indicates that the Cvar should be communi-
cated to the server when changed.

CVAR_SERVERINFO This flag describes a Cvar that handles some server-
related information, such as game type, frag limit, and
so on.

CVAR_SYSTEMINFO This flag describes a Cvar holding miscellaneous sys-
tem-related information.

CVAR_INIT This flag prevents the Cvar from being updated via
the console. It can still be set by the command line,
however.

CVAR_LATCH This flag latches the Cvar to the actual game code,
meaning it will not be accessible or modifiable unless
the C code in the game properly initializes it.

CVAR_ROM This flag stands for read-only; any Cvar having this flag
will not be modifiable at all.

CVAR_USER_CREATED This flag is assigned to Cvars manually by the player
using the set command in the console.

CVAR_TEMP This flag describes a Cvar that is temporary; it will
not be saved by Q3 when the game exits.

CVAR_CHEAT This flag denotes the Cvar as a cheating variable; it
will not be modifiable unless cheats are enabled on
the server.

CVAR_NORESTART This flag indicates that the Cvar will not be reset
when cvar_restart is issued to the console.

Adding a Cvar for
the Flag Locator
Now that you’re a certified expert in the use of Cvars, you can start
this flag-locator tutorial by creating a Cvar that the player will use to
toggle the display on or off. Start by opening cg_local.h and scrolling
to about line 1154, which puts you in the midst of similar Cvar decla-
rations. Remember, this is the extern declaration of the variable, noti-
fying the other files of its eventual existence. You’ll need to make the
formal declaration within the file that uses it. Start by adding its
extern declaration after cg_trueLightning:

extern vmCvar_t cg_trueLightning;

extern vmCvar_t cg_sigilLocator; // dtf locator

This extern declaration tells the compiler to keep its eyes open for
cg_sigilLocator being used in other files during compilation. The
other declaration of the variable will take place on line 164 of
cg_main.c, where the rest of the client-side Cvars are officially
declared. Just as before, make your new Cvar’s declaration right after
cg_trueLightning:

vmCvar_t cg_trueLightning;

vmCvar_t cg_sigilLocator; // dtf locator

With this declaration in place within cg_main.c, you’re now free to
properly initialize and register your Cvar by placing it the cvarTable
array, found near line 188. Go ahead and add it to the very end of the
array (and don’t forget to add a comma at the end of the previous ele-
ment, because cg_trueLightning is no longer the last element in the
array!).

{ &cg_trueLightning, “cg_trueLightning”, “0.0”, CVAR_ARCHIVE},

{ &cg_sigilLocator, “cg_sigilLocator”, “1”, CVAR_ARCHIVE} // dtf

sigil locator

This code tells Q3 that cg_sigilLocator is the name of the new Cvar,
it’ll default to 1, and its setting will be saved into the config.cfg file
when Q3 exits. That’s it! Adding Cvars to Q3 is an extremely easy
process; I encourage you to add more where applicable. The more
options you can give the user, the better the odds that your mod will
appeal to a wide variety of people, because they will be able to tweak
your mod to their liking.

74 10. Enhancing DTF

Adding the Flag-Locator
Functions
Two functions are involved in drawing the flag locator to the screen.
The first of these functions is CG_DrawSigilLocations, which determines
whether it is appropriate to draw icons on the screen, and if so, what
game entities it will point to. I will explain the body of this function in
parts, so that you can follow along without getting lost. Start by plac-
ing the function opener on line 2476 of cg_draw.c, just after the func-
tion CG_DrawWarmup:

static void CG_DrawSigilLocations(void) {

snapshot_t *snap;

int i;

vec3_t origin, end;

int redSigil, blueSigil, whiteSigil;

if (cgs.gametype != GT_DTF)

return;

if (cg.snap->ps.persistant[PERS_TEAM] == TEAM_SPECTATOR)

return;

In this first bit of code, some local variables are declared, including
snap, a pointer to a data type named snapshot_t. As discussed in
Chapter 5, when a server is in the process of sending information to
clients, it wraps pertinent info into a snapshot, which are sent at regu-
lar intervals. That way, a client can attempt to synchronize the local-
ized information to which the snapshot refers. Typically, this is used
for prediction purposes; based on various criteria, a programmer may
want to look at the current snapshot of the game, as opposed to the
predicted next snapshot. In CG_DrawSigilLocations, similar logic will be
used, as you will see shortly.

As the function begins, various tests are performed to see whether the
game is in a valid state to draw the flag locator. Because it will check-
only for the DTF sigils, a check is performed on the cgs.gametype vari-
able, comparing it to GT_DTF, and returning if they are not equal.
Additionally, if the player’s team is that of a spectator, the function
should also not be drawn.

75Adding a Flag Locator

The next bit of code refers to the snap variable mentioned above:

if (cg.nextSnap && (!cg.nextFrameTeleport && !cg.thisFrameTeleport))

snap = cg.nextSnap;

else

snap = cg.snap;

VectorCopy(cg.snap->ps.origin,origin);

redSigil = ITEM_INDEX(BG_FindItemForPowerup(PW_SIGILRED));

blueSigil = ITEM_INDEX(BG_FindItemForPowerup(PW_SIGILBLUE));

whiteSigil = ITEM_INDEX(BG_FindItemForPowerup(PW_SIGILWHITE));

This bit of code tells the Q3 code the following: “If the player has a
valid predicted state, and did not teleport or move a great distance,
then use the predicted state of the player; otherwise, use the current
state.” This simply gives the flag locator a better chance at guessing
where the flags will be, based on how the player is moving. The
VectorCopy line then begins the process by copying the player’s cur-
rent position into the variable origin.

The variables redSigil, blueSigil, and whiteSigil are assigned values
returned from BG_FindItemForPowerup, using their respective powerup_t
values as the input parameters. The final result is then wrapped in the
ITEM_INDEX macro, which ultimately returns the modelindex for each
item. This is important, as you will see with the next bit of code:

for (i = 0; i < snap->numEntities; i++)

{

centity_t *target = &cg_entities[snap->entities[i].number];

if (target->currentState.eType != ET_ITEM)

continue;

if (target->currentState.modelindex != redSigil

&& target->currentState.modelindex != blueSigil

&& target->currentState.modelindex != whiteSigil)

continue;

In this part of the function, a loop begins, looking at each of the enti-
ties available to the cgame code. The temporary centity_t variable
target is used to examine each entity as the loop iterates. First, the
target’s currentState.eType value is examined to see if it equals

76 10. Enhancing DTF

ET_ITEM. ET_ITEM is defined within the enum entityType_t, and is one of
the precious few values communicated from game to cgame.

Unfortunately, due to the simplistic way in which the sigils were imple-
mented in this mod, the only way to determine whether the items
being looked at are, in fact, sigils, you must refer to their modelindex.
Each target->currentState.modelindex value is checked see whether it
matches any of the redSigil, blueSigil, or whiteSigil variables (which,
as you know, carry the appropriate modelindex numerical values thanks
to the assignment made earlier in the function). If no match is found,
the loop iterates to the next entity.

In the lucky event that there is a match, however, the following logic
will execute, wrapping up the function:

VectorCopy(target->lerpOrigin,end);

if (target->currentState.modelindex == redSigil)

CG_DrawSigilLocationInfo(origin, end,

cgs.media.redFlagShader[0], colorRed);

else if (target->currentState.modelindex == blueSigil)

CG_DrawSigilLocationInfo(origin, end,

cgs.media.blueFlagShader[0], colorBlue);

else if (target->currentState.modelindex == whiteSigil)

CG_DrawSigilLocationInfo(origin, end,

cgs.media.sigilShader, colorWhite);

}

}

Because you put the player’s location in the origin variable, and you
want to draw an imaginary line from the player to the sigil, the sigil’s
location is placed into the end variable with a call to VectorCopy. Then
a final if-then-else block is performed, passing the appropriate sigil
shader to a new function called CG_DrawSigilLocationInfo. You should
recognize the shaders as the same ones used to draw the sigil status
HUD update earlier in this chapter. Notice also that each call to the
new function adds a final color parameter.

The Quick-and-Dirty
CG_DrawSigilLocationInfo
The guts of CG_DrawSigilLocationInfo are what make the flag locator
work. Within this function, all that crazy trigonometry you learned in

77Adding a Flag Locator

high school comes into play. (Don’t feel bad if your trig is a little
rough; I don’t remember much of anything from high school, either.)
For this function, I will try to stick to describing what syntax is used
and leave it up to you to research why specific trigonometric functions
are employed. (After all, this is Q3 Programming, not Math 101.)

The goal of this function can be described as follows: you want to be
able to draw an imaginary, invisible line between a starting position
(the player) and an ending position (a sigil), and then draw an icon
on the screen that points in that same direction. As the player rotates,
so too will the icon, much like a compass pointing north. You will also
want to show a numerical range indicating how far the player is to the
target. This will probably be the single most complicated function in
the entire book, so I’ll break it down piece by piece.

Start by opening the new function above CG_DrawSigilLocations, using
the following snippet:

void CG_DrawSigilLocationInfo(vec3_t origin, vec3_t target, qhandle_t
shader, vec4_t color)
{

int x = 320, y = 240;
int w = 320, h = 240;
float angle, distance;
vec3_t temp, angles;

VectorSubtract(origin, target, temp);
distance=VectorLength(temp);

CG_DrawSigilLocationInfo opens by declaring variables x and y to hold
the center point of the screen (recall that in Q3, all coordinates are
based on 640 × 480, regardless of screen resolution), and variables w
and h to hold half the screen’s dimensions. In both cases, the values
are 320 × 240. The first task executed in this function is to determine
the distance between the origin in the target, which is performed by
calling VectorSubtract using origin and target as the parameters, and
saving the result to temp. The temp vec3_t is then passed to
VectorLength to return a distance.

VectorNormalize(temp);
vectoangles(temp,angles);

angles[YAW]=AngleSubtract(cg.snap->ps.viewangles[YAW],angles[YAW]);

78 10. Enhancing DTF

This next bit of code passes the temp vec3_t (which was the vector
holding the difference between origin and target) to VectorNormalize,
rounding the distance out to 1. That normalized vector is then passed
to vectoangles, creating an angle of the vector, to be held in angles. As
declared previously, angles is of data type vec3_t, but in this instance,
it is really used as a three-dimensional array to hold three types of
angles: pitch, yaw, and roll. Pitch is the angle of the player looking up
or down, whereas yaw is the angle of the player looking left or right.
Roll refers to the degree that you are tilted over (to the left or right.)
Most often, roll is modified when a player has fallen over on his side
after being killed. The angle type you care about here is yaw.

The next line of code shows a call to AngleSubtract, which determines
the difference between them, resulting in a value that ranges any-
where from −180 to 180. In this usage of the function, AngleSubtract
assists you in converting the base angle in the original vector to the
relative angle of the player. The result of this difference is committed
back to angles[YAW].

angle=(angles[YAW] + 180.0f)/360.0f;

angle -=0.25;

angle *= (2*M_PI);

These next three lines use the variable angle, which is a float. First, the
yaw of angles is converted to radians by adding 180.0 and then divid-
ing the result by 360, returning the result to angle. Next, 0.25 is sub-
tracted from angle; this is done because the Q3 coordinate system
starts at −90 degrees, whereas radians start at 0. Subtracting 0.25 from
angle has the effect of rotating the angle a quarter turn. angle is then
multiplied by pi times two (3.14159 * 2).

w=sqrt((w*w)+(h*h));

x +=cos(angle)*w;

y +=sin(angle)*w;

In these next three lines, the w variable (currently holding half the
width of the screen, 320) is passed to the sqrt (square root) function,
using width2 plus height2 as the value. The The result of this square
root is returned to w. Next, the center point of the screen (held in x
and y) is offset by using cos (cosine) and sin (sine) trigonometric
functions, passing angle in as the input parameter, and multiplying the
result by the new w variable.

79Adding a Flag Locator

The resulting coordinates held in x and y represent circular position-
ing on the HUD. The last time I checked, however, the HUD was a
square, so certain adjustments are made to x and y so that the circular
coordinates are made to fit inside the square HUD:

if (x<15)

x=15;

else {

if (x>605)

x=605;

}

if (y<20)

y=20;

else {

if (y>440)

y=440;

}

Very simply, if x is less than 15 or greater than 605, it is capped back
to each (respectively). In the same manner, if y is less than 20 or
greater than 440, it is also constrained. Finally, with the proper x and y
location ready for plotting to the HUD, the function concludes by
drawing the HUD icons and a numerical distance, like so:

CG_DrawPic(x, y, 20, 20, shader);

CG_DrawStringExt(x-50, y+20, va(“%10.2f”,distance/100.0), color,

qtrue, qfalse, TINYCHAR_WIDTH, TINYCHAR_HEIGHT, 0);

}

As you can see, shader is used in the call to CG_DrawPic, as it was origi-
nally passed to CG_DrawSigilLocationInfo. In the CG_DrawStringExt call,
the coordinates are offset slightly to render the text below the shader
icons and slightly to the left (to give a more centered appearance).
The old distance variable, which was used earlier in the function to
determine the length from the origin to the target, is used here as
the actual text to be displayed on screen (it is abbreviated somewhat
by dividing the value by 100).

The variable color specifies the color of the text, as it was passed from
CG_DrawSigilLocations. The next qtrue parameter tells CG_DrawStringExt
to force that color to be used, while the following qfalse parameter

80 10. Enhancing DTF

opts out of drawing a drop shadow behind the text. Finally,
TINYCHAR_WIDTH and TINYCHAR_HEIGHT are used to reference the dimen-
sions of the text, translating to 8 × 8 pixels, and the final value, 0, indi-
cates that there is no maximum number of characters to be displayed.

Phew! If you made it through that last function and can still feel your
legs, you’ve survived a hefty math lesson! As you get into more exciting
and innovative code, you will undoubtedly be using more trigonometry
and physics, so it might not hurt to read up on those subjects.

Now that you have all the necessary code in place to generate the flag
locator, let’s make one final addition to actually bring this new addi-
tion to life. Hop all the way down to line 2656, putting you deep into
CG_Draw2D, the function responsible for drawing two-dimensional
effects on the HUD. After the call to CG_DrawLagometer, check the
integer member of your new Cvar to see if it is 1. If so, make a call to
the flag-locator function:

CG_DrawLagometer();

if (cg_sigilLocator.integer == 1)

CG_DrawSigilLocations();

Sigil to Player: I’m Over Here!
I know you’re eager to build your DLLs and test the flag locator out,
but you need to make one more quick change. Currently, sigils act
like idle items in Q3; the game doesn’t do anything special to
announce their presence. Players simply find them, touch them, and
carry on playing as usual. However, the flag locator will constantly
need to know where the sigils are, regardless of their distance from
the player. Thus you need a way to indicate to Q3 that sigils are to
announce their presence, so that functions such as the flag locator
can pick up their signal. You’ll do this by adding the flag
SVC_BROADCAST to the sigil’s entityShared_t member svFlags.

The first two sigils are created during G_CallSpawn, so open g_spawn.c
and scroll to line 284. After ent->classname is assigned to
item->classname, add the SVC_BROADCAST flag, like so:

ent->classname = item->classname;

ent->r.svFlags = SVF_BROADCAST;

81Adding a Flag Locator

The third sigil is generated dynamically, in ValidateSigilsInMap. That
function is in g_team.c, so open that file, hop down to line 279, and
after targ->item is assigned to item, make the same flag assignment:

targ->item = item;

targ->r.svFlags = SVF_BROADCAST;

With that, you can wipe the sweat from your furrowed brow; the flag
locator is complete. Go ahead and build the qagamex86.dll and
cgamex86.dll, drop them in your MyMod folder, and fire up Q3 with
this command line:

quake3.exe +set fs_game MyMod +set sv_pure 0 +set g_gametype 5 +set

cg_sigilLocator 1 +map q3ctf1

You should see flag icons somewhere around the perimeter of your
screen, indicating the color of each flag as well as the distance to each
flag. The location of each icon gives you a general direction you can
start heading toward (see Figure 10.2).

This addition to DTF is extremely cool. The new flag locator will act as
a compass and help new players find flags in maps that they haven’t

82 10. Enhancing DTF

Figure 10.2 The newly added flag locator in DTF

played in before, as well as assist experienced players with finding the
dynamically generated third point in pre-existing CTF maps. And,
because you implemented it using a Cvar, players are free to turn the
flag locator off if it gets too distracting, by typing cg_sigilLocator 0 in
the console.

Adding DTF to the UI
The final bit of polish you can apply to your new DTF mod is an addi-
tion to the user interface. DTF reuses existing CTF maps, so you’ll
want to be able to allow players to select any of the CTF maps when
they create a new game from the menu system. As well, you will want
to allow players to enable or disable new options in a game of DTF,
such as the recently implemented flag locator. In this section, you’ll
revisit the ui code and make adjustments so that players can quickly
and easily set up a game of DTF from the in-game menu.

Specifying the Setup of DTF
In order to build DTF support into the Q3 user interface, you should
first list any items that players must specify at startup. For example,
when a player starts a new game server in Q3, he will enter the multi-
player menu and then click on the Create button to view the Game
Server menu (see Figure 10.3).

From here, the player must be able to cycle through the available
game types and choose Defend the Flag from the list. When the player
clicks the Next button, he will see a new screen that allows him to
specify certain game-related info, such as the time limit, capture limit,
server name, and so forth. You should, however, give him two new
options on this page. The first option will be to enable or disable the
flag locator that you just created. As cool as you and I might think the
flag locator is, some players may be annoyed by it or find it too dis-
tracting, so it’s always a good idea to give players the ability to disable
a feature you’ve added.

The second new option you’ll allow a player to modify on this page
deals with spawn points. Typically, CTF spawn points are segregated to
each team. Red players spawn in and around the red base, while blue
players spawn in and around the blue base. Because you are using
CTF maps for DTF, these team-based spawn points will carry over.

83Adding DTF to the UI

They may not always be appropriate, however, because the sigils in
DTF don’t really belong to any team the way flags do in CTF. The goal
of DTF is to actively get players to hold all three sigils, and if red play-
ers are constantly spawning near what used to be the red flag, they
pretty much have full control over that sigil for the duration of the
game (ditto blue players and their old blue-flag spawn point). It
makes more sense to allow players to spawn randomly in the map in a
game of DTF, using the deathmatch spawn points; therefore, you
should offer the option to use DM spawning versus CTF team-based
spawning.

Handling Two Different
Spawning Styles
Let’s start this update by opening g_local.h and scrolling down to line
747. As discussed in the previous section, this is where the series of
Cvars that apply to game code are declared. Go ahead and add a new
extern declaration of a Cvar, called g_dtfspawnstyle, like so:

84 10. Enhancing DTF

Figure 10.3 The Game Server menu in Q3

extern vmCvar_t g_proxMineTimeout;

extern vmCvar_t g_dtfspawnstyle; // dtf or ctf spawn points?

Additionally, make its local declaration in g_main.c, on line 77:

vmCvar_t g_proxMineTimeout;

#endif

vmCvar_t g_dtfspawnstyle; // dtf or ctf spawn points?

Just like any other Cvar, players can access this variable from the con-
sole simply by typing g_dtfspawnstyle and then a value. The update
you will build to the UI, however, will prevent the user from having to
know the specific name of the Cvar.

Now that the Cvar exists, you will need to have it initialized when Q3
fires up. Open g_main.c and head to line 157, which places you back
in the middle of the gameCvarTable array declaration. After the element
g_proxMineTimeout is defined, add an element for g_dtfspawnstyle:

{ &g_proxMineTimeout, “g_proxMineTimeout”, “20000”, 0, 0, qfalse },

#endif

{ &g_dtfspawnstyle, “g_dtfspawnstyle”, “0”, CVAR_SERVERINFO |

CVAR_ARCHIVE | CVAR_NORESTART, 0, qtrue },

As you learned in the previous section, this element initializes the
Cvar g_dtfspawnstyle into the array, with the string “g_dtfspawnstyle”
(which is what is typed into the console to access it), and it has a
default value of 0 set. It also receives the flags CVAR_SERVERINFO,
CVAR_ARCHIVE, and CVAR_NORESTART. Finally, its modificationCount is reset
to 0, and trackChange is set to true, making Q3 announce when the
Cvar is updated. Your new Cvar is now in the game; the next step is to
see how team spawns are controlled.

Open the g_client.c file and scroll down to line 1049, putting yourself
into the body of the function ClientSpawn. This is the function that’s
called whenever a new player is first placed into a map, as well as
when a player has died and needs to be re-spawned. On line 1049, you
should see the following logic:

} else if (g_gametype.integer >= GT_CTF) {

// all base oriented team games use the CTF spawn points

spawnPoint = SelectCTFSpawnPoint (

client->sess.sessionTeam,

client->pers.teamState.state,

spawn_origin, spawn_angles);

85Adding DTF to the UI

This tells you that if the Cvar g_gametype’s integer value is greater than
or equal to GT_CTF, then a spawn point is generated through a call to
the function SelectCTFSpawnPoint. Otherwise, standard spawn genera-
tion is used. Numerically, GT_DTF is a higher value than GT_CTF, which
means that this function will be called for DTF as well. However, you’ll
want a CTF spawn point only if the new g_dtfspawnstyle Cvar is equal
to 1 (and the current game type is DTF). To implement that rule,
change the preceding code to read like this:

} else if ((g_gametype.integer == GT_DTF &&

g_dtfspawnstyle.integer == 1) ||

(g_gametype.integer >= GT_CTF && g_gametype.integer !=

GT_DTF)) {

Now, if a game of DTF is in progress, and g_dtfspawnstyle has a value
of 1—or the current game type is GT_CTF or greater (but not GT_DTF)—
then a CTF spawn point will be used. Otherwise, the standard, random
DM spawns will be used.

Making DTF Selectable
The first part of implementing DTF into the Q3 user interface
requires that you establish Defend the Flag as a selectable game type. To
do this, you must inform the ui of this new game type through the use
of initialization. Start by opening ui_startserver.c, which is the file
responsible for the Game Server creation menus. Line 76 is where you
will find your first bit of code to modify: the declaration of the game-
type_items array, which feeds the available game types to the Game
Server’s menulist_s control. Go ahead and add an entry for Defend the
Flag, right after the one for Capture the Flag.

static const char *gametype_items[] = {

“Free For All”,

“Team Deathmatch”,

“Tournament”,

“Capture the Flag”,

“Defend the Flag”,

0

};

This updated list will now populate the Spin control at the bottom of the
first Game Server menu screen, allowing players to choose DTF as their

86 10. Enhancing DTF

game type. The gametype_items array is also used in other places to dis-
play the game type, such as in the level-shot window found on the sec-
ond Game Server menu. The next two lines of code in ui_startserver.c
are additional array declarations used to map the appropriate game flags
(like GT_DTF) to their string descriptions in gametype_items. Go ahead and
modify the next two lines so that they read as follows:

static int gametype_remap[] = {GT_FFA, GT_TEAM, GT_TOURNAMENT, GT_CTF,

GT_DTF};

static int gametype_remap2[] = {0, 2, 0, 1, 3, 4};

Here, you have simply added a GT_DTF element to the end of game-
type_remap, and because it falls in the fourth index of that array, the
number 4 is added to the end of gametype_remap2. So, when the
description of the game type is required, such as is the case in the
final line of code in ServerOptions_LevelshotDraw:

UI_DrawString(x, y,

gametype_items[gametype_remap2[s_serveroptions.gametype]],

UI_CENTER|UI_SMALLFONT, color_orange);

the string can be obtained by pulling from the index of
gametype_remap2 that equals the current s_serveroptions.gametype
value—which should equal GT_DTF. Because GT_DTF really equals 5, the
fifth element in gametype_remap2 equals 4, mapping back to “Defend the
Flag” in gametype_items.

CTF Maps are OK in My Book
It’s no secret at this point that your awesome coding ability allows Q3
to reuse CTF maps in DTF, dynamically changing flag points into sigil
points, and so on. The UI, however, doesn’t know that. When a player
selects DTF as his game type, you will want to indicate to the UI that
CTF maps are still applicable and should be offered to the player as a
possible location for his next battle. Q3 determines which maps are
appropriate for the specified game type in a function called
StartServer_GametypeEvent. In this function (found on line 226 of
ui_startserver.c), bit flags for the current game are generated off of
the gametype_remap array (I told you it was used!), using the current
value of the Spin control (representing the list of games) as the index:

matchbits = 1 << gametype_remap[s_startserver.gametype.curvalue];

87Adding DTF to the UI

Then, another set of bit flags are generated, based on the type of map
found during a parse of all available maps in Q3:

gamebits = GametypeBits(Info_ValueForKey(info, “type”));

Some examples of what a map’s “type” could be include “team”,
“single”, “tourney”, and “ctf”. The call to GametypeBits performs the
physical generation of the bit flags based on the map’s “type”, so let’s
jump to line 130 in ui_startserver.c, which should put you at the end
of this function. The last comparison of the map’s “type” is to that of
“ctf”:

if(Q_stricmp(token, “ctf”) == 0) {

bits |= 1 << GT_CTF;

continue;

}

Because all CTF maps will also be playable in DTF, indicating this fact
to Q3 is as simple as adding an additional bit flag, bit-shifted off of
GT_DTF’s value:

if(Q_stricmp(token, “ctf”) == 0) {

bits |= 1 << GT_CTF;

bits |= 1 << GT_DTF; // dtf can play ctf maps

continue;

}

Now, when a user selects Defend the Flag at the bottom of the first
Game Server menu, only CTF maps should be listed and selectable.

Adding DTF Options
to the Game Server Menu
The first page of the Game Server menu is complete. Players can now
successfully cycle through the list of game types during the creation of
a new game and specify Defend the Flag as their game of choice. Also,
by selecting DTF they will be given a proper list of CTF maps from
which to choose. The final adjustment you’ll need to make is to mod-
ify the second Game Server screen, which will allow players to alter
DTF-specific options, including the flag locator and spawn style.

Because you’re an expert in ui modification by now, you should know
that the first change will be to add two new controls to the

88 10. Enhancing DTF

serveroptions_t struct, the data type of s_serveroptions, which controls
the second Game Server menu. Jump down to line 617, which puts
you into the declaration of serveroptions_t. After hostname, add a
menulist_s control and a menuradiobutton_s control, like so:

menufield_s hostname;
menulist_s dtfspawnstyle; // dtf spawn style
menuradiobutton_s sigillocator; // dtf sigil locator

The new variables dtfspawnstyle and sigillocator will house your two
additional controls used for DTF games. Because dtfspawnstyle is a
menulist_s, you’ll also want a const char array of possible values
through which the control can cycle. Hop down to line 673 after the
other const char arrays for the Game Server menu are declared, and
add a new one after botSkill_list:

“Nightmare!”,

0

};

// for dtfspawnstyle

static const char *dtfspawn_list[] = {

“DM Spawns”,

“CTF Team Spawns”,

0

};

Here, the const char array simply holds two values: “DM Spawns”,
which will be displayed when the g_dtfspawnstyle Cvar is 0, and “CTF
Team Spawns” when its value is 1.

The next step is to initialize these new controls. To do that, jump
down to line 1250. Here, the function ServerOptions_MenuInit is in
the process of initializing all the controls used for the second Game
Server menu. The first change you’ll want to make is to ensure that
capturelimit is an available score type in DTF, as it is in CTF. On line
1250, you should see the following code:

if(s_serveroptions.gametype != GT_CTF) {

This indicates that Q3 will use fraglimit as an available score type, as
opposed to capturelimit, if the game is not GT_CTF. To add GT_DTF to
this exclusion, modify the code as follows:

89Adding DTF to the UI

if(s_serveroptions.gametype != GT_CTF && s_serveroptions.gametype !=
GT_DTF) {

Success! capturelimit is now the scoring typing for DTF as well as CTF.

The last control on the page is the Hostname control, used to identify
the name of the game server being created. The two new DTF controls
can be placed under Hostname, so on line 1320, after the hostname
variable is initialized, add the following code:

if (s_serveroptions.gametype == GT_DTF) {

y += BIGCHAR_HEIGHT+2;

s_serveroptions.dtfspawnstyle.generic.type =

MTYPE_SPINCONTROL;

s_serveroptions.dtfspawnstyle.generic.flags =

QMF_PULSEIFFOCUS|QMF_SMALLFONT;

s_serveroptions.dtfspawnstyle.generic.x =

OPTIONS_X;

s_serveroptions.dtfspawnstyle.generic.y =

y;

s_serveroptions.dtfspawnstyle.generic.name =

“Spawn Style:”;

s_serveroptions.dtfspawnstyle.itemnames =

dtfspawn_list;

y += BIGCHAR_HEIGHT+2;

s_serveroptions.sigillocator.generic.type =

MTYPE_RADIOBUTTON;

s_serveroptions.sigillocator.generic.flags =

QMF_PULSEIFFOCUS|QMF_SMALLFONT;

s_serveroptions.sigillocator.generic.x =

OPTIONS_X;

s_serveroptions.sigillocator.generic.y =

y;

s_serveroptions.sigillocator.generic.name =

“Flag Locator:”;

}

An item worthy of mention in this code snippet is the lack of
generic.id and generic.callback assignments for each control. This is
done for a reason, which I will get into shortly. Note that each control
has its appropriate generic.type set, as well as its generic.name label.

90 10. Enhancing DTF

The dtfspawnstyle control also has its const char array assigned to it,
as indicated by generic.itemnames being set to dtfspawn_list.

Don’t forget to add the new controls to the menu. Hop down further
to line around 1456, and after the hostname control is added, make the
following adjustments:

Menu_AddItem(&s_serveroptions.menu, &s_serveroptions.hostname);

}

if (s_serveroptions.gametype == GT_DTF)

{

Menu_AddItem(&s_serveroptions.menu, &s_serveroptions.

dtfspawnstyle);

Menu_AddItem(&s_serveroptions.menu, &s_serveroptions.

sigillocator);

}

You’ll also want to make sure that the capturelimit control is added in
DTF, because you previously specified in the initialization that you
wanted capturelimit in a DTF game. That code occurs up near line
1438, and should be modified to read as follows:

if(s_serveroptions.gametype != GT_CTF && s_serveroptions.gametype

!= GT_DTF) {

Menu_AddItem(&s_serveroptions.menu, &s_serveroptions.

fraglimit);

}

Before, the check was simply made to see if s_serveroptions.gametype
was not equal to GT_CTF; your addition will exclude GT_DTF as well (the
result is that neither CTF nor DTF will gain the fraglimit control).

The last bit of code modification will involve actually setting the values
of the new controls to the game being created. As I mentioned earlier,
the generic.id and generic.callback functions were not specified for
the new controls (nor did you define an ID_ variable to identify each
control). Back in Chapter 9, it was made painfully clear that if your
controls were to accept user input and change variables in the game,
they would need to call some kind of function, identifying themselves
in the process. How, then, will these new controls work? The answer
lies within ServerOptions_Start.

91Adding DTF to the UI

The Game Server menu is set up a little differently from other menus
you’ve worked with, in that it doesn’t commit any selections until the
game is told to start. There may be many reasons why the Game Server
menu was designed this way, probably for ease of development.
Regardless, all the game-related variables that are configured during
setup are saved in ServerOptions_Start when the user launches the new
server. To add your new controls to this function, scroll to line 717,
where various local variables are declared for use in this function. After
flaglimit, add two integers to represent the values of your new controls:

int flaglimit;

int dtfspawnstyle; // dtf

int sigillocator; // dtf

Next, you should see that, a few lines down, the majority of those vari-
ables are set by polling the current values of all the controls in the
Game Server menu. After the skill variable is assigned, you must add
assignments for your new integers, looking at each of the new con-
trols’ curvalue:

skill = s_serveroptions.botSkill.curvalue + 1;

dtfspawnstyle = s_serveroptions.dtfspawnstyle.curvalue; // dtf

sigillocator = s_serveroptions.sigillocator.curvalue; // dtf

Nothing too complicated is going on here; you’re simply looking at
the current value of each control and assigning it to the new integer
variables you declared above. Your final (and I mean final!) task is to
commit the values of those integers to the actual Cvars that control
the matching logic in game and cgame. Scroll down to line 776, and
look at the series of function calls being made. The system-call func-
tion trap_Cvar_SetValue is called in succession, assigning the value of
each local integer to an appropriate Cvar. Take a deep breath and
make your final adjustment, adding assignments for g_dtfspawnstyle
and cg_sigilLocation, right after capturelimit:

trap_Cvar_SetValue (“capturelimit”, Com_Clamp(0, flaglimit,

flaglimit));

trap_Cvar_SetValue (“g_dtfspawnstyle”, Com_Clamp(0, dtfspawnstyle,

dtfspawnstyle));

trap_Cvar_SetValue (“cg_sigilLocator”, Com_Clamp(0, sigillocator,

sigillocator));

92 10. Enhancing DTF

Hooray! Your modification to the UI to support DTF is complete!
You’re now free to build your uix86.dll and qagamex86.dll, drop them
in your MyMod folder, and fire up the new menu system. Select the
Multiplayer menu, click the Create button, and cycle through the
game types until Defend the Flag is displayed. Select a map, and click
Next. You should see the new controls listed near the bottom-right
corner of the screen (see Figure 10.4).

93Adding DTF to the UI

TIP
In the code that sets the Cvars, you may have noticed a call
to a function called Com_Clamp. Com_Clamp is used to specify a
minimum and maximum value (parameters one and two),
so that a third parameter does not exceed either.

Figure 10.4 The Game Server menu with additional DTF controls

Summary
In this chapter, you took steps to improve upon the existing DTF mod-
ification. By creating a new flag-status indicator on the HUD, as well as
a flag locator, you have further increased the value and dynamics of
this modification, refining the game type and building on the
strengths of its new rules. Players who will be running through already
familiar CTF maps will greatly benefit from the indicator that identi-
fies which flags are held by which team, and the flag locator will assist
them in tracking new flags down. As well, adding the DTF game type
to the user interface makes it easier for players to quickly get in and
set up new games, without having to read up on specific rules or
names of Cvars. As great a tool as documentation is, some gamers pre-
fer to get in as fast as possible; making adjustments to the ui code to
support DTF only makes it easier for players in the long run.

94 10. Enhancing DTF

APPENDIX A

Debugging
Your Mod
in Visual

Studio

Aprogrammer requires an extensive set of tools to get his job
done; working with C can often be a frustrating and confusing

process. Bugs that pop up in your code can lead to nightmarish days
and endless nights as you try to decipher the simplest of problems.
Working with Q3’s code base is no different. One of the best tools
available to a programmer when working in Visual Studio is the
debugger, which lets you stop your program as it runs, watch the val-
ues of variables and the flow of logic, locate the dastardly bug, and
squash it. Following is a description of how to set up the debugger in
Visual Studio so that you can use it for your Q3 mod development and
testing. Start by loading the Q3 source project into Visual Studio.
Then do the following:

1. Open the Project menu and choose Settings. (Alternatively,
press Alt+F7.)

2. The Project Settings dialog opens, with the subprojects game,
cgame, q3_ui, and so on visible on the left side, and a tabbed
interface on the right. On the left, near the top, select the
Settings For drop-down menu and select Win32 Debug.

3. Highlight all the subprojects (game, cgame, q3_ui, and ui) by
holding down Ctrl while you click on each subproject (see
Figure A.1).

4. On the right side of the Project Settings dialog box, click the
Debug tab.

5. You should see a Category drop-down menu; make sure it is set
to General.

6. In the Executable For . . . text box, type the full path to your Q3
executable (or use the right-arrow button next to the text box
to browse your hard drive to find it).

7. In the Working Directory text box, type the full path to your Q3
executable, minus the name of the executable file. So if you
said your executable file was at c:\quake3\quake3, your working
directory should only be c:\quake3\.

96 A. Debugging Your Mod in Visual Studio

8. In the Program Arguments text box, type +set fs_game MyMod
+set sv_pure 0. (You should recognize these parameters as the
ones you used during all the development throughout this
book; if you use a different subfolder for your specific mod,
make the appropriate specification instead of MyMod.) Figure
A.2 shows the results of these entries.

97Debugging Your Mod in Visual Studio

Figure A.1 Creating your
first IDirect3D8 object

Figure A.1 Creating your first IDirect3D8 object

9. In the Debug tab, click the Category drop-down menu and
choose Additional DLLs. The text boxes are replaced with a
gray box labeled “Modules”; this is where you can specify any
DLLs that are required during debugging.

10. You cannot add DLLs to all subprojects at once, so start by high-
lighting cgame on the left. The gray Modules box on the right
should now be white, indicating that you can add DLLs.

11. Click the Add a New DLL button (the small dashed box next to
the red X to the far right of the Modules label; the red X is the
Remove a DLL button).

12. A new text box appears next to a new check box. Type the full
path to the specific DLL you want to add (or browse your hard
drive to locate it by clicking the button marked with an ellipsis).
You should specify all three Q3 DLLs in your MyMod folder—
qagamex86.dll, cgamex86.dll and uix86.dll—as shown in
Figure A.3.

13. After all three DLLs are specified, repeat the process for game,
q3_ui, and ui.

14. Click the Link tab.

15. Make sure the Category drop-down list is set to General.

98 A. Debugging Your Mod in Visual Studio

Figure A.3 Specifying additional DLLs for a project debug session

16. In the Output File Name text box, type the full path to the final
DLL that will be built when you compile.

17. Repeat step 16 for each subproject in turn, because they all
build to different file
names. When you’re
finished, you’ll have
specified the full path
for cgamex86.dll for
cgame, qagamex86.dll
for game, and uix86.dll
for both q3_ui and ui
(see Figure A.4).

18. Click the OK button in the lower-right portion of the dialog
box.

To actually debug your code, you will need to set breakpoints in your
code, and possibly use watches to look at current values of variables. A
breakpoint refers to a specific line number within code that stops exe-
cution of the program when Visual Studio reaches it. You are able to
set multiple breakpoints, if needed. Once a breakpoint is hit, the
debugged program pauses, and Visual Studio takes control, highlight-
ing the line of code that execution stopped at. A watch is used to tell
Visual Studio that you want to observe the value of a specific variable

99Debugging Your Mod in Visual Studio

NOTE
Make sure your output path
matches your Q3 directory and
your specific mod directory, which
in this example is “MyMod.”

Figure A.4 The link tab, with an output
file name specified

as a program executes. You’re able to drag-and-drop variables right
into the watch window, as well as type them in manually.

To quickly try this out, open g_items.c and scroll to line 398, where
you should find the opening to the function Touch_Item. Set a break-
point on this function by clicking the Open Hand icon on your Visual
Studio toolbar (see Figure A.5), or by simply pressing F9.

The result of this key press is that a maroon dot is placed to the left of
the line of code on which you set your breakpoint. Pressing F9 again
will remove the dot. With the maroon dot in place, do the following:

1. Start a new debug session
by clicking the Go button
(see Figure A.6) or by
pressing F5.

2. Visual Studio launches Q3,
as shown in Figure A.7.
With a live debug session
in progress, load a map
and touch an item.

3. The Q3 window disap-
pears, and Visual Studio
takes over, using a bright
yellow arrow to point to
the line in your code where
the program has paused. You can now step through the code,
line by line, by clicking the Step Into button (see Figure A.8) or
by pressing F11.

100 A. Debugging Your Mod in Visual Studio

Figure A.5 The Breakpoint button

Figure A.6 The Go button

TIP
I highly recommend going to
the Q3 system settings and dis-
abling full-screen mode so that
you can debug Q3 while it runs
in a window.This will make
switching back to Visual Studio
extremely easy when a break-
point is hit.You can toggle the
full-screen option in Q3’s
System menu, under Graphics.

4. To examine the specific values of variables during this pause in
the execution of Q3, simply highlight it and drag it into the
Watch debug window. (To make this window visible, press
Alt+3.) As shown in Figure A.9, the Watch debug window has
two columns, Name and Value, which refer to the variable and its
contents. Because Touch_Item’s first input parameter is ent,
which should represent the touched item in question, select the
word ent and drag it to the Watch window. It should populate
into a tree hierarchy, which you can break out by clicking the +
sign next to each complex variable.

5. When you are ready to return to Q3, simply click the Go button
or press F5, or stop debugging altogether by opening the Debug
menu and choosing Stop Debugging or pressing Shift+F5.

101Debugging Your Mod in Visual Studio

Figure A.8 The Step Into button

Figure A.7 A Q3 debug session in action

I encourage you to spend time getting to know the debugger and
reading up on the subject, if possible. There are many more details
that the debugger can manage; if wielded properly, it is a powerful
tool for fixing code. A good starting point is Microsoft’s MSDN web-
site, which offers detailed information on Visual Studio’s debugger, at
http://msdn.microsoft.com/library/default.asp?url=/library/en-
us/vsdebug/html/vchowViewingModifyingData.asp.

102 A. Debugging Your Mod in Visual Studio

Figure A.9 The Watch debug window

APPENDIX B

Resources

In order to guide your exploration effort, furthering your level of
expertise in the art of modding, I have assembled a list of Web sites

that I think will benefit you greatly. They cover a wide range, from
code-related sites, to general mod development, to game-business
information sites, and beyond.

Code3Arena: http://www.planetquake.com/code3arena/

This is the site where many Q3-mod programmers (including myself)
got their start, thanks to the dedication and tenacity of its contribu-
tors. Here, you will find many tutorials on weapon upgrades, HUD
improvements, game rule changes, and more. They also document
many Q3-modding concepts, such as entities, vectors, Cvars, and
the UI.

Quake DeveLS: http://www.planetquake.com/qdevels/

Although this Web site focuses on programming mods for Quake II,
many of the concepts and tutorials apply to Q3 mod programming
as well.

Quake III Arena Shader Manual: http://www.heppler.com/shader/

The fine art of working with shaders is a must for all Q3 programmers;
this Web site contains the best documentation on the Net for such
purposes. Coincidentally, Paul Jaquays and Brian Hook, two of the
original developers on Q3, wrote it.

Milkshape 3D: http://www.milkshape3d.com/

One of the most widely used tools for creating 3D models can be
found here, at Chumbalum Soft’s Web site. Not only can you purchase
the full tool at this site, you can also find tutorials about getting
started with modeling.

104 B. Resources

Radiant: http://www.qeradiant.com/

Radiant’s Web site is the portal for level-design information and tools.
Here you will find downloads, tutorials, manuals, and even forums in
which to participate if you want to explore the mystery of level design
for Q3 and similar games.

Polycount: http://www.planetquake.com/polycount/

This Web site is about the coolest online resource around to satisfy
your 3D-modeling curiosity. Pay Polycount a visit to get caught up on
the latest news, tutorials, and tools used by budding 3D modelers.
There is a pretty hefty archive of user-created models to download as
well.

GameDev.net: http://www.gamedev.net/

Without a doubt, one of the largest and most extensive Web sites on
the Net dedicated to game development is GameDev.net. You’ll find a
vast array of forums, as well as articles, news items, recommended
books, and more.

FilePlanet: http://www.fileplanet.com/

FilePlanet is one of the largest online hubs for downloading game
demos, movies, patches, mods, and more. Not only can you find a
wide variety of professional and user-built mods at this site, FilePlanet
will also help you get your files out to the public when the time comes
for you to make your hard work available.

Syntrillium Software: http://www.syntrillium.com/

If you want to start experimenting with creating and editing audio for
your mods, look no further than Cool Edit 2000. You can manipulate
all kinds of audio data formats with this tool, including MP3s, and
apply all kinds of sound effects and filters to recreate that perfect
robotic voice or massive explosion you need.

105Resources

This page intentionally left blank

Index

A
absmax game coordinate, 127

absmin game coordinate, 127

absolute coordinates, 130

accuracyFactor, 61, 67

for shooting while moving, 68, 70

accuracy_hits variable, 101

accuracy variable, 55

adjusing, 58–62

add function, 34

Adobe Photoshop, 264

Targa files, editing, 265

analog controls, 122

animations, 265–266

Apocalypse Void, 119

arc variable, 168

area of effect for gravity wells, 88–89

armor regeneration, 177–179, 182–184

arrays, 56

size of function, 84

static array, 157

artwork, 264

Asteroids, 126

authoritative update, 140–141

awards, 184–193

caching, 194–195

calling, 196–200

changes in, 197–198

ClientThink_Real and, 192–193

displaying awards, 193–196

flags for, 186–187

logging awards, 187

B
bandwidth, 65

Batch Build dialog box, 174

batch files, 29

BBSs (bulletin board systems), 2

beam weapons, 51, 156–166

BG_CanItemBeGrabbed, 229–230

BG_FindItemForPowerup, 214

bg_itemlist, 216

bg_pmove.c file, 109

PM_CheckJump in, 112–113

binary format, 188–189

bit flags

for awards, 186–187

PMF_JETPACK flag, 115–116

uniqueness of, 117

bits, 188–189

bitwise and assignment operator, 63

bitwise exclusive or assignment
operator, 63

bitwise operators, 62–63

bitwise or assignment operator, 63

body parts

hit flags for, 124–126

scanning, 128–130

boolean variables, 40, 55

271

bouncing grenades, 74–75

bounding boxes, 84, 126–128

break keyword, 165

brushes, 267–268

BSP files, 241

BSP tree, 266–267

buckshot, 54

bush entities, 267

bytes, 188–189

C
caching

award icons, 194–195

sound effects, 195–196

caching data, 178

CalculateRanks, 236

Capture-and-Hold, 202

Capture the Flag, 186, 255, 256–258. See
also Defend the Flag

definition for red flag, 217–218

Carmack, John, 15–16, 18, 151

centity_t, 171–172

CG_AddWeaponWithPowerups, 181

cgame code, 65, 143. See also Defend the
Flag

assisting game code, 145

entities, list of, 146

files, 31–32

responsibility of, 145–147

for reward notification, 184–193

shaders, initializing, 183

for shooting while moving, 70, 72

sound effects, playing, 237–238

CG_CheckLocalSounds, 196

CG_EntityEvent, 170–174

CG_LightningArc, 168

cgMedia_t, 179

CG_PlayerSprites, 197–198

CG_RegisterGraphics, 178

cgs, 178–179

meaning of, 194

CG_ShotgunPattern function, 63–66

cg.snap property, 66–67

CG_TransitionEntity, 172–173

cg variable, 66–67

ChainLightning_Fire, 160

for regenerating armor, 182–184

chain-lightning gun, 156–166

armor regeneration and, 177–179,
182–184

content mask for, 163

firing, 165–166

path to target, checking, 162–165

reward notification, 184–193

tracking hit targets, 161

validating new target, 165

vectors for, 162

visual effects, creating, 174–175

Weapon_LightningFire function,
157–160

channels of sound file, 269

chars, 4

circles for targets, 88

C language, 4–5, 14. See also VC++

bits and bytes in, 189

ClientCommand function, 116

client counting variable, 192

client events, 166–175

centity_t struct, 171–172

enumerating, 167–170

clientNum, 66, 104

clientPersistant_t, 40, 100

272 Index

code, 104–105

clients, 135

dumb client, 139–140

client/server applications, 134–135

architecture for, 135–137

cgame code and, 145–147

latency issues, 136–139

clientSession_t, 100–101

coding, 105

client-side code, 65

cg variable, 66–67

client spawns, 95

ClientThink_Real, 105–107

for awards, 192–193

jumping with, 109–112

cluster grenades. See grenades

Cmd_SetHoming_f, 41

Cmd_Stats_f, 116–117

Cmd_ToggleJetpack_f, 116–117

collision detection, 84, 126–128

colors. See Defend the Flag

Com_Error, 230

compiling projects, 27–28

console commands, 39

creating, 40–41

for jetpack, 116

constant variable, declaring, 109

content mask, 163

continue keyword, 161

in loop, 165

controls, types of, 122

Cool Edit 2000, 269

copying source directory, 21

CounterStrike, 6, 259–261

locational damage system, 124

CrossProduct, 65, 66

for shooting while moving, 72

crouching players, 59

curly braces, 217

customShader member, 182

Cvars

g_gametype, 206

list of, 150

setting, 150

D
damage. See also locational damage

bounding boxes and, 127–128

to players, 124–126

shotgun damage, 56–58

damage_armor variable, 101

deathmatch mods, 255–256

debug symbols, 25

decimal format, 188–189

Defend the Flag, 202–252

BG_CanItemBeGrabbed, 229–230

BG_FindItemForPowerup, 214

bg_itemlist, 216

CalculateRanks, 236

capturelimit variable, 206

colors

of flags, 212

use of, 226

converting CTF flags to sigils,
244–245

flagStatus_t, 211–212

gametype_t, 206–208

G_CallSpawn, 240–242

G_CheckTeamItems, 225–226

gitem_t, 215–218

G_Spawn, 247

GT_DTF, 223

273Index

Defend the Flag (continued)

initializing sigils, 220–225

itemType_t, 209–211

IT_SIGIL flag, adding, 244

level.gentities, 239

locations of sigils, 248

picking up sigils, 230–231

Pickup_Team, 232

powerup_t, 213–215

preferred item, picking, 249–252

preparing Q3 for, 205–206

red and blue flags, modifying,
209–211

registering entity states for sigils,
242–244

RegisterItem call, 243–244

respawn integer, 232

reused code, 204–205

scoring, 235–236

sigils

actions of, 214

at beginning of team game,
224–225

converting CTF flags to, 244–245

gitem_t, 215–218

initializing, 220–225

locations of, 248

new behavior, creating, 227–238

as new items, 218–220

picking up, 230–231

registering entity states for,
242–244

team_CTF_blueflag item, 218–220

teamgame.sigil, 221–222

think function/nextthink time,
234

third spawn point, creating,
245–249

transforming flags into, 215–227

ValidateSigilsInMap, 247–248,
250–251

warning about, 225–227

sigilStatus_t, 212

Sigil_Think, 235–236

Sigil_Touch, 232–234

prototyping, 234–235

sound effects, changing, 236–238

spawn points, 238–252

launching entities into map,
239–242

process of spawning, 239–242

RegisterItem call, 243–244

third spawn point, creating,
245–249

SP_worldspawn, 240

status of flags, 211–212

team-based styles of play, 207

team_CTF_blueflag item, 218–220

teamgame variable, 221

Team_InitGame, 220–221, 222–223

Team_SetSigilStatus, 223–224

third spawn point, creating, 245–249

Touch_Item, 228–231

BG_CanItemBeGrabbed, 229–230

wiring sigils for, 231–235

trap_EntitiesInBox, 248–249

tvec, 249–250

ValidateSigilsInMap, 247–248,
250–251

warning about sigils, 225–227

digital controls, 122

digitizing images, 264

274 Index

dir floats, 96

Distance function, 87

DLLs (dynamically linkable libraries),
16–18

compiling projects and, 27–28

security of, 151

for shotgun, 67

Domination, 202–203, 220

DooM, 2

peer-to-peer networks for, 135

sprites, 264–265

updated version of, 14

DOS version of Quake, 16–18

downloading within game, 68

ducked players, 59

dumb client, 139–140

E
eFlags, 104

for awards, 186–187

entities, 29

in cgame code, 146

definition of, 37–38

limit on number of, 38

entityState_t, 173, 180

entry strings, 241

enums, 4

for awards, 187

for client events, 167–170

error-printing function, 230

EV_LIGHTNINGARC, 165–166

EV_MISSILE_HIT, 165

Excellent award, 190–191

handles, 196

explode variable, 89

F
feetAt variable, 130

Find in Files command, 59

findradius function, 44

fire_grenade function, 74, 78–82

fire_rocket function, 34–35

for homing missile function, 45–46

first-person shooters, 50

flag model in Milkshape 3D, 366

flags, 29, 96. See also bit flags

award flags, 186–187

bitwise operators, 62–63

content mask flags, 163

damage flags, 58

grenades, bouncing, 75

grouping flags, 62

hit flags, 124–126

means-of-death flags, 191–192

PMF_TIME_KNOCKBACK flag, 90

pmove flags, 59, 60

for preferred items, 250

trType_t flags, 75

flagStatus_t, 211–212

flight. See jetpacks

flight powerup, 119–123

floats, 4, 35

variables and, 56

forward/backward movement, 71

forward variable, 73–74

foundItem flag, 250, 251

foundPreferedItem flag, 250

fraglimit variable, 149–150

frames, 266

FTP (File Transfer Protocol), 138

275Index

functions, 4–5

format of, 33–34

shotgun, 53–54

G
g (acceleration due to gravity), 107

g_active.c, 106

game code, 143

in client/server model, 144–145

consistency with, 145

game project files, 30–31

gamex86.dll, 17

gauge of shotgun ammunition, 54

G_CheckTeamItems, 225–226

gclient_s, 97–101

gentity_s, 98

gentity_t, 73–74

G_ExplodeMissile, 76–77, 80

g_gametype, 206

giTag member, 217

gitem_t, 210, 215–218

definition of, 216

giType member, 217

G_LocDamage, 128–130, 131

glowing players, creating, 179–182

g_missile.c, 74

G_Missile Impact, 80

GoTo Definition Of option, 114

gravity

changing player gravity, 107–108

increasing effects of, 108

PM_StepSlideMove and, 122

gravity wells, 82–91

collision, testing for, 89–90

targets for, 83–89

trap_EntitiesInBox, 83–87

grenades

bouncing of, 74–75

changing behavior of, 78–82

fire_grenade function, 78–82

modifying, 72–82

splash damage, 75

think and nextthink variables, 76–78

think function, 76–78, 90–91

VectorSet function, 77–78

GT_DTF, 207–208, 223

GT_FFA, 206

GT_HARVESTER, 207

GT_OBELISK, 207

GT_1FCTF, 207

GT_SINGLE_PLAYER, 206–207

GT_TEAM, 207

GT_TOURNAMENT, 206

GVORTEX_RADIUS, 87, 91

GVORTEX_TIMING, 87, 90, 91

GVORTEX_VELOCITY, 87, 91

H
Half-Life, 6, 259

handles, 193–196

in pushReward, 196–197

hard-coded states, 109

Harvester, 207

haste rune, 106–107

headshots

hit flags, assigning, 124–126

locational damage and, 130

switching values, 131–132

health struct, 96

hexadecimal format, 188–189

276 Index

Hilton, Chris, 160

history of Quake, 15–16

hit flags, 124–126

switching values, 131–132

hitscan weapons, 50–51

homing missile, 33–36

coding for, 38–47

input, getting the, 39–41

smoothing movement of, 47

targeting a player, 41–47

think function counter, adding, 48

homing_status variable, 105

hosts. See servers

HTTP (HyperTextTransfer Protocol),
138

I
icons, 184–200

handles, 193–196

over head of player, 197–198

for reward notification, 184–193

ID Software, 2–3

FTP site, 15–16

image-editing applications, 264

Impressive award, 190

infinite loop, 160

inflictorHeight variable, 130

input, damage function requiring, 56–57

installing

Quake III, 19–21

VC++, 22–25

integers, 4, 35

Internet

Quake III site, 19

VC++ service packs, 25

WANs (wide area networks) and, 134

interpolation, 140–143

inverse bitwise operator, 62

Invisibility powerup, 108

invisible boxes, 84

invisible brushes, 267

IT_AMMO, 210

ITEM_INDEX macro, 234

items, 210

preferred item, 249–252

Touch_Item, 228–231

itemType_t, 209–211

IT_WEAPON, 210

J
Jacques, Anthony, 220

Java, 52–53

jetpacks

adding, 115–123

engaging, disengaging, 123

PMF_JETPACK flag, 115–116

testing, 119

joystick buttons, 39

JPEG format, 264

jumping

modifying velocity, 114–115

velocity of player, 108–109

JUMP_VELOCITY, 109

modifying, 114–115

K
keystrokes, 39

typedef, saving with, 98

Kirsch, Dave, 238, 257

277Index

L
lag. See latency issue

LANs (local area networks), 134

lasthurt_loc variable, 132

lastkilled_client variable, 101

latency issue, 136–139. See also updates

description of, 138–139

interpolation, 140–143

low latency, 139–140

Le, Minh, 259

left-hand coordinate system, 56

left/right movement, 71

leg shots

hit flags, assigning, 124–126

locating shot for, 130

switching values, 131–132

level design, 266–267

level.gentities, 239

lightning gun. See chain-lightning gun

lights, placement of, 267

Linux, 14

loading up mods, 28–29

locational damage, 124–132

hit flags, 124–126

scanning body parts, 128–130

LogAccuracyHit function, 58

looking up terms, 114

M
MacOS, 14

MaxCarnage mod, 160

MAX_GENTITIES function, 88

means-of-death flags, 191–192

medalTriple handle, 194–195

medal_triple.tga, 198

melee weapons, 52

memory addresses, 5

for player movement, 111–112

memory-clear of variable, 170

memset call, 170, 222

Microsoft Visual C++ Version 6, 5–6

Milkshape 3D, 366

mip-mapping, 195

missile weapons, 51. See also homing
missile

mission pack for Quake III, 101

mixing sound effects, 269

models, 94–95, 264–266

skinned models, 94–95

textured models, 94–95

MOD_LIGHTNING, 191–192

mods

currently available mods, 6–12

defined, 2–3

reasons for creating, 3–4

structure of, 261–270

morphing, 266

mouse controls, 39

ui code and, 147–148

movement

bg_pmove.c file, 109

player movement, changing, 105–115

shooting while moving, 68–72

movement Dir, 104

MP3 player in Rocket Arena Q3A, 8

MSDN, installing, 25

MyMod.bat, 29

MyMod directory, 21

Release folder, 28

278 Index

N
name char pointer, 96

negative values of x, y, and z, 56

networks

computers on, 134–135

peer-to-peer networks, 135

nextthink variable, 37

of Defend the Flag sigils, 234

for grenades, 74, 76–78

O
Obelisk, 207

One Flag CTF, 207, 211

ops, previous frame of player in, 197

otherEntNum, 66

P
packets, 137

lag affecting, 139

ping, 146

User Datagram Protocol (UDP), 138

Painkeep Arena, 9–10

gravity wells in, 83

Paint Shop Pro, 264

pak0.pk3 folder structure, 262–263

patches, 267

peer-to-peer networks, 135

Perpendicular Vector, 65

PERS_EXCELLENT_COUNT, 197

persistent array, 187, 190

persistent client data, storing, 40

PERS_TRIPLE_COUNT, 190, 192, 197

Pickup_Team, 232

Pickup_Weapon, 232

ping, 146

PK3 archives, 153–154, 261–263

pak0.pk3 folder structure, 262–263

shaders in, 176

planning functions, 33

player_die function

awards and, 190

means-of-death flags, 191–192

players, 94–96. See also jetpacks

body parts, assigning, 124–126

glowing players, creating, 179–182

movement, changing, 105–115

multiple respawns of, 95

state of, 102–105

structure, 96–97

ui code and, 147–148

playerState_t, 100

gravity member, 107–108

jumping member, 108–112

powerups member, 108

speed member, 106–107

player_t, 96

play testing, 259

PM_Accelerate, 122

PM_AirMove, 118

PM_CheckJump, 112–113, 113

PM_CmdScale, 121

PMF_DUCKED flag, 59, 61

PMF_JETPACK flag, 115–116

PM_AirMove, adding, 118

toggling, 117

pm_flags, 104

PM_FlyMove, 120–121

borrowing code from, 119–123

PM_Friction, 121

279Index

PMF_TIME_KNOCKBACK flag, 90

Pmove function, 112–114

pmoves

flags, 59, 60

interpolation with, 142

PmoveSingle, 112–113

pmove_t, 109, 110–111

PM_StepSlideMove, 122

pm variable, 113

PM_WalkMove, 113

point, 224

pointer notation, 97

pointers, 5

to structs, 97

Point Release 1.31, 20

polygons, 94

positive values of x, y, and z, 56

powerups. See also shaders

adding, 177

in Defend the Flag, 213–215

of playerState_t, 108

quad powerup shader, 176

powerup_t, 213–215

predictions, 141–142

cgame and, 146–147

predict variable, 237

preferred item, 249–252

preprocessor directives, 101

primitives, 265

ps struct, 66

current value of player state in, 197

pure servers, 68

pushReward, 196–197

PW_ARMORDRAIN, 177, 183

PW_FLIGHT flag, 119–120

Q
qhandle_t, 178, 179

q_shared.h file, 102

q3asm, 151

Q3Radiant, 266–268

quad shaders, 176

glowing players, creating, 179–182

Quake. See also Quake Virtual Machine
(QVM)

DOS version, 16

install directory, 16

Win32 version, 16

Quake III

pure servers, 68

rocket launcher, 26–27

QuakeC language, 15–16

QuakeCon, 238

Quake III Fortress, 8–9

Quake Virtual Machine (QVM), 18,
150–154

building QVM, 152–153

communication through, 151

deploying, 21

private memory space, 151

queues, 8

R
realism, 124

refEntity_t, 168–169, 180

RegisterItem call, 243–244

resolution of sound, 268

respawn integer, 232

Return to Castle Wolfenstein, 51, 52,
254

reward notification. See awards

280 Index

REWARD_SPRITE_TIME, 192

Rocket Arena, 7–8, 256

rocket jumping, 259

RT_LIGHTNING, 170

Rune Quake, 11–12, 256

S
sample rate, 268–269

scanners, 264

sChainTarget, 161–162

scoring. See also awards

in Defend the Flag with Sigil_Think,
235–236

security with QVMs, 151

servers, 135

server-side code, 65

sessions, players and, 95

sfxHandle_t, 194

shaders, 175–184. See also quad shaders

for armor regeneration, 177–179,
182–184

cgame code for initializing, 183

glowing players, creating, 179–182

quad powerup shader, 176

triple.shader, 198–199

shotgun

accuracy, adjusting, 58–62

damage variable, 56–58

flash of muzzle, 54

functions, 53–54

moving, shooting while, 68–72

top-down approach with, 52–53

understanding of, 53–55

ShotgunPattern function, 54, 63–66

ShotgunPellet function, 54, 56–58

sigils. See Defend the Flag

sigilStatus_t, 212

Sigil_Touch. See Defend the Flag

sine, 176

sin keyword, 176

size of function, 84

skinned models, 94–95

snapshots. See updates

Soldier of Fortune II, 254

sound effects

adding, 184–200

caching, 195–196

calling, 196–200

Cool Edit 2000, 269

for Defend the Flag, 236–238

handles for, 193–196

with household items, 268–270

mixing, 269

rewards and, 184

source

building the, 25–27

directory, 21–22

files, 22

for Quake III, 21

spawn points. See Defend the Flag

speed, 106

changing speed property, 107

haste rune, 106–107

sprites, 264–266

SP_worldspawn, 240

static array, 157

strcmp function, 80–81

string compare, 80

structs, 4

for players, 96–97

pointers to, 97

281Index

switch block, 171

switching values, 131–132

system calls, 83

T
Targa files (TGA), 264

Adobe Photoshop, editing in, 265

targets

of chain-lightning gun, 156

circle of, 88

for gravity wells, 83–89

for homing missile, 41–47

targHeight variable, 130

Team Arena Expansion Pack, 144

lightning effect, 157

ui code and, 148

Team Arena Mission Pack, One Flag
CTF, 207

team-based mods, 256–258

team_CTF_blueflag item, 218–220

Team Fortress, 258–259

teamgame variable, 221

Team_InitGame, 220–221, 222–223

Team_SetSigilStatus, 223–224

team variables, 180

TeleportPlayer function, 90

textured models, 94–95

think function, 35, 36–37

ClientThink_real function, 105–107

of Defend the Flag sigils, 234

for grenades, 76–78, 90–91

thinking weapons, 29

3D engines, 3

3D surfaces, mip-mapping, 195

Threewave CTF, 257

time, measurement of, 36

top-down approach, 52–53

Touch_Item. See Defend the Flag

trace_t struct, 164

Transmission Control Protocol (TCP),
138

trap_EntitiesInBox, 83–87, 248–249

trap_R_RegisterShader, 195

trap_Trace, 42–43

chain-lightning gun path target,
162–165

with gravity wells, 83

ShotgunPellet function and, 56–57

TR_GRAVITY flag, 75

triangles, 94

Tribes, 203

triple.shader, 198–199

tripleSound handle, 194

triple.wav, 198

TR_LINEAR flag, 75

trType_t flags, 75

turbulence, 184

tvec, 249–250

typedef keyword, 98

typedefs, 5

U
ui code, 143

modification of, 147

responsibilities of, 147–148

uninstalling Quake III, 20

Unreal Tournament, 203, 220

updates, 140–143

authoritative update, 140–141

pmove updates, 142

Urban Terror, 6–7, 202–203

282 Index

locational damage system, 124

User Datagram Protocol (UDP), 138

user interface files, 33

user interface (ui) code. See ui code

usermd_t, 109, 111–112

V
ValidateSigilsInMap, 250–251

Valve Software, 6

variable assignment notation, 106

VC++

Batch Build dialog box, 174

compiler, 5–6

projects in, 144

Service Packs for, 25

top-down approach, 52–53

using, 22–25

VectorCopy, 122, 170, 173

VectorLength, 89–90

VectorNormalize, 74, 122

VectorNormalize2, 65

vectors, 55–56

for chain-lightning gun, 162

tvec, 249–250

VectorSet, 77–78

VectorSubtract, 162

velocity variable, 70

movement and, 71

velocity vector, 104

Visual C++. See VC++

Visual Studio Enterprise, 22

W
Walker, Robin, 258, 260

WANs (wide area networks), 134

Weapon_LightningFire, 157–160

weapons, 104

thinking weapons, 29

types of, 50–52

while loop, 44

for Weapon_LightningFire, 157–160

Win32

defined, 14

Quake version, 16–18

ZIP archives, support for, 261

WinZip, 261

wishdir, 122

wishvel, 122

Wolfenstein 3D, 52

Z
0.2f, 73

ZIP files, 261

PK3 archives as, 154

283Index

License Agreement/Notice of Limited Warranty

By opening the sealed disc container in this book, you agree to the following terms
and conditions. If, upon reading the following license agreement and notice of limited
warranty, you cannot agree to the terms and conditions set forth, return the unused
book with unopened disc to the place where you purchased it for a refund.

License:
The enclosed software is copyrighted by the copyright holder(s) indicated on the
software disc. You are licensed to copy the software onto a single computer for use
by a single user and to a backup disc. You may not reproduce, make copies, or
distribute copies or rent or lease the software in whole or in part, except with written
permission of the copyright holder(s). You may transfer the enclosed disc only
together with this license, and only if you destroy all other copies of the software and
the transferee agrees to the terms of the license. You may not decompile, reverse
assemble, or reverse engineer the software.

Notice of Limited Warranty:
The enclosed disc is warranted by Premier Press, Inc. to be free of physical defects
in materials and workmanship for a period of sixty (60) days from end user’s
purchase of the book/disc combination. During the sixty-day term of the limited
warranty, Premier Press will provide a replacement disc upon the return of a
defective disc.

Limited Liability:
THE SOLE REMEDY FOR BREACH OF THIS LIMITED WARRANTY SHALL
CONSIST ENTIRELY OF REPLACEMENT OF THE DEFECTIVE DISC. IN NO
EVENT SHALL PREMIER PRESS OR THE AUTHORS BE LIABLE FOR ANY
OTHER DAMAGES, INCLUDING LOSS OR CORRUPTION OF DATA, CHANGES IN
THE FUNCTIONAL CHARACTERISTICS OF THE HARDWARE OR OPERATING
SYSTEM, DELETERIOUS INTERACTION WITH OTHER SOFTWARE, OR ANY
OTHER SPECIAL, INCIDENTAL, OR CONSEQUENTIAL DAMAGES THAT MAY
ARISE, EVEN IF PREMIER AND/OR THE AUTHORS HAVE PREVIOUSLY BEEN
NOTIFIED THAT THE POSSIBILITY OF SUCH DAMAGES EXISTS.

Disclaimer of Warranties:
PREMIER AND THE AUTHORS SPECIFICALLY DISCLAIM ANY AND ALL OTHER
WARRANTIES, EITHER EXPRESS OR IMPLIED, INCLUDING WARRANTIES OF
MERCHANTABILITY, SUITABILITY TO A PARTICULAR TASK OR PURPOSE, OR
FREEDOM FROM ERRORS. SOME STATES DO NOT ALLOW FOR EXCLUSION
OF IMPLIED WARRANTIES OR LIMITATION OF INCIDENTAL OR CONSEQUEN-
TIAL DAMAGES, SO THESE LIMITATIONS MIGHT NOT APPLY TO YOU.

Other:
This Agreement is governed by the laws of the State of Indiana without regard to
choice of law principles. The United Convention of Contracts for the International
Sale of Goods is specifically disclaimed. This Agreement constitutes the entire
agreement between you and Premier Press regarding use of the software.

	CONTENTS
	LETTER FROM THE SERIES EDITOR
	INTRODUCTION
	CHAPTER 1 INTRODUCTION TO PROGRAMMING MODS
	What Is a Mod?
	Why Create a Mod Instead of Just Writing a Game?
	The Tools of the Trade
	Using C
	Using the VC++ Compiler

	What Mods Are Currently Available?
	Urban Terror
	Rocket Arena Q3A
	Quake III Fortress (Q3F)
	Painkeep Arena
	Rune Quake

	Summary

	CHAPTER 2 C PROGRAMMING IN QUAKE III
	The History of Quake and Its Code
	The Move from DOS to Win32
	Hello Quake III, Goodbye DLL! (Sort Of)

	Getting Set Up
	Installing Q3 and the Source
	The Source Directory
	Using Visual C++

	Building the Source
	Compiling the Project
	Loading Up Your Mod

	Looking at the Quake III Code
	On Your Marks, Get Set
	The Q3 Source
	Planning

	A Simple Mod: The Homing Missile
	I Think, Therefore I NextThink . . .
	Entities: Building Blocks in Q3
	Changing the Missile's Behavior
	Smoothing the Missile
	A Final Note

	Summary

	CHAPTER 3 MORE WEAPONRY WORK
	Understanding Weapon Types
	Modifying the Shotgun
	Understanding the Top-Down Approach
	Knowing the Shotgun Inside and Out
	The Physics of Vectors
	Intricacies of Damage
	Adjusting the Shotgun's Accuracy
	The Shotgun's Dirty Secret
	Synchronicity in the Client Code
	Adding Polish: Shooting While Moving

	Modifying Grenades: The Cluster Grenade
	Further g.weapon.c Detective Work
	Why a Grenade Bounces (and Rockets Don't)
	Using What You Know: think and nextthink
	Making the Cluster Grenade Behave

	A Further Adjusting Gravity Wells
	Into the Vortex
	Testing for Collision
	Making Gravity Work for You

	Summary

	CHAPTER 4 MANIPULATING THE PLAYER
	The Quake III Player and His World
	Player Structure
	The Guts of gclient_s
	State of the Player

	Changing the Player's Movement
	Playing with ps.speed
	Gravity Kills
	The Case of the Missing client
	Solving the Jumping Mystery
	The Move to Pmove
	Modifying Jump Velocity

	Giving the Player a Jetpack
	Creating a New pmove Flag
	Defying Gravity
	A Surprise Effect
	Borrowing Code from PM_FlyMove

	Implementing Locational Damage
	Creating Hit Flags
	The Bounding Box
	Scanning Body Parts
	My Feet Are . . . Where Now?
	Switching Off the Hits

	Summary

	CHAPTER 5 QUAKE COMMUNICATION
	The Client/Server Relationship
	Leaving Peering in the Past
	Lag in a Nutshell
	The Quest for Low Latency
	The Process of Updates

	Bridging game, cgame, and ui
	The Server Is God
	The Main Event
	Interfacing with the User
	Modifying Variables on-the-Fly

	The Quake Virtual Machine
	Getting the Best of Both (Quake) Worlds
	Build Your Own QVM

	Summary

	CHAPTER 6 CLIENT PROGRAMMING
	Revisiting Weapons: Chain Lightning
	Trace Your Path
	Be Like Zeus

	Creating Client Events
	Enumerating an Event
	The Communication of entityState_t
	Chain Lightning Lives

	Working with Shaders
	A Shady Modification: Armor Regeneration
	Making the Player Glow
	Regenerating Armor

	Adding New Icons and Sound Effects
	Making It Count
	Getting Up in the Player's Face
	Cache Memory

	Summary

	CHAPTER 7 DEFEND THE FLAG
	The Rules
	What You Will Reuse
	What You Will Create

	Preparing Q3 for DTF
	Your Journey Begins at gametype_t
	itemType_t: Birth of the Sigil
	Fleshing Out the Sigil
	Bending the Rules with powerup_t

	Tranforming Flags into Sigils
	Every Item Is a gitem_t
	Sigils Become New Items
	Initializing Sigils for DTF
	Warning Q3 about Sigils (Or Lack Thereof)

	Creating the New Sigil Behavior
	Getting Touchy-Feely with Touch_Item
	Wiring Sigil-Touch for Touch_Item
	Keeping Score with Sigil_Think
	Keeping cgame in Check

	Tricking Q3: Reusing Spawn Points
	The Process of Spawning Level Entities
	Jimmying Item Entities into a Map
	Yanking Out CTF Flags
	Creating a Third Sigil Spawn Point
	Picking the Preferred Item

	Summary

	CHAPTER 8 WHERE TO GO NEXT
	Deathmatch, CTF, and Other Game Types
	Vanilla Deathmatch
	Games Without Frontiers: CTF
	A Class Act: Team Fortress
	Squad Tactics: Counter-Strike

	Structure of a Mod
	The PK3 File: Unlocking Its Secrets
	Art Is Life (and Death, in Q3)
	Modeling Without a Runway
	Brushing Up on Level Design
	Creating Sound Effects Using Household Items

	Summary

	CHAPTER 9 UI PROGRAMMING
	Basic UI Concepts
	Controls: Nuts and Bolts of UI
	Formatting Controls
	Controls Have One Thing in menucommon_s

	The Menu Framework
	Breathing Life into a Menu
	Tweaking Q3
	Setting the Stage for a Menu
	Pushing a Menu Will Only Make It Mad

	Building a New UI Menu
	Starting ui_tweaks.c
	Defining the Menu Struct
	Getting a Handle on Menu Events
	Initializing the Menu Controls
	The Cache and Push
	Cleaning Up

	Working with More Controls
	menufield_s of Dreams
	The menuslider_s Control: Great for Parties
	Ultimate Power: menulist_s

	Summary

	CHAPTER 10 ENHANCING DTF
	Adding Sigil Status to the HUD
	Filling in the Missing Game Code
	Making the Config String Work for You
	Prepping cgame for the HUD Update
	Parsing Out Config Strings in cgame
	The Sigil Status HUD Comes to Life

	Adding a Flag Locator
	Getting to Know Cvars
	Adding a Cvar for the Flag Locator
	Adding the Flag-Locator Functions
	The Quick-and-Dirty CG_DrawSigilLocationInfo
	Sigil to Player: I'm Over Here!

	Adding DTF to the UI
	Specifying the Setup of DTF
	Handling Two Different Spawning Styles
	Making DTF Selectable
	CTF Maps are OK in My Book
	Adding DTF Options to the Game Server Menu

	Summary

	APPENDIX A: DEBUGGING YOUR MOD IN VISUAL STUDIO
	APPENDIX B: RESOURCES
	INDEX
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	Z

