

Focus On
SDL

Ernest Pazera

00 FO SDL Frontmatter 10/21/02 11:52 AM Page i

Team LRN

© 2003 by Premier Press, a division of Course Technology. All rights reserved. No part
of this book may be reproduced or transmitted in any form or by any means, electronic
or mechanical, including photocopying, recording, or by any information storage or
retrieval system without written permission from Premier Press, except for the inclusion
of brief quotations in a review.

The Premier Press logo and related trade dress are trademarks of Premier
Press, Inc. and may not be used without written permission. All other trade-
marks are the property of their respective owners.

Publisher: Stacy L. Hiquet

Marketing Manager: Heather Buzzingham

Managing Editor: Heather Talbot

Acquisitions Editor: Emi Smith

Project Editor/Copy Editor: Cathleen Snyder

Technical Reviewer: André LaMothe
Interior Layout: Shawn Morningstar

Cover Design: Mike Tanamachi

Indexer: Sharon Shock

Proofreader: Jenny Davidson

Microsoft, Windows, DirectDraw, DirectMusic, DirectPlay, DirectSound, DirectX,
Visual C++, Xbox, and/or other Microsoft products referenced herein are either
registered trademarks or trademarks of Microsoft Corporation in the U.S. and/or
other countries. All other trademarks are the property of their respective owners.

Important: Premier Press cannot provide software support. Please contact the
appropriate software manufacturer’s technical support line or Web site for assistance.

Premier Press and the author have attempted throughout this book to distinguish
proprietary trademarks from descriptive terms by following the capitalization style
used by the manufacturer.

Information contained in this book has been obtained by Premier Press from sources
believed to be reliable. However, because of the possibility of human or mechanical
error by our sources, Premier Press, or others, the Publisher does not guarantee the
accuracy, adequacy, or completeness of any information and is not responsible for any
errors or omissions or the results obtained from use of such information. Readers
should be particularly aware of the fact that the Internet is an ever-changing entity.
Some facts may have changed since this book went to press.

ISBN: 1-59200-030-4
Library of Congress Catalog Card Number: 2002111223
Printed in the United States of America
03 04 05 06 07 BH 10 9 8 7 6 5 4 3 2 1

Premier Press, a division of Course Technology
2645 Erie Avenue, Suite 41

Cincinnati, Ohio 45208

00 FO SDL Frontmatter 10/21/02 11:52 AM Page ii

Team LRN

For Teri, Mark, Laura B., Laura W., Chris B.,
Nick, Sara A., Jeff B., Jaco, Jason H., Jason P.,
Tony, Reggie, Will, Martin, Joey, Amy, Kenton,

Denise, Ruthie, Rain, Peggy, Sarah (with an H),
Mike G., Mike C., Little Miss Dani, Dani R.,

Sharon, Rex, Jill, Rick, Paul T., Paul E., Bobbi,
Tim, Jessica, Ramon, Terri, Ann, Nathan, Jeremy,
Nate (“Ref”), the folks at Frank’s Diner not already

mentioned, the folks at Common Grounds not already
mentioned, and the folks at Paddy O’s not already

mentioned. Yes, even Rent-A-Bob.

00 FO SDL Frontmatter 10/21/02 11:52 AM Page iii

Team LRN

Acknowledgements

I would like to thank André LaMothe, all of the folks at Premier
Press, all the folks at GameDev.net, and all of the people who have

worked on developing SDL and related libraries, as well as all of the
people who developed the games on the CD-ROM.

00 FO SDL Frontmatter 10/21/02 11:52 AM Page iv

Team LRN

About the Author

Ernest Pazera was a programmer living his life in the Midwest when
suddenly people started asking him to write books. Once he was
allowed to do so, he kind of got addicted to it, so this is his fourth
book. We are trying to get Mr. Pazera some professional help for his
illness. We apologize for yet another book by Mr. Pazera showing up
on the bookshelf, but please buy it anyway. We will continue to monitor
his medication, and hopefully, in time, he will make a full recovery.

00 FO SDL Frontmatter 10/21/02 11:52 AM Page v

Team LRN

Contents

Letter from the Series Editor viii

Introduction . ix

Part One
The Core of SDL 1

CHAPTER 1 Setting Up Your System for SDL. 3

CHAPTER 2 SDL: The Big Picture. 19

CHAPTER 3 SDL Video 31

CHAPTER 4 SDL Event Handling

and the Window Manager 87

CHAPTER 5 SDL Audio and CD-ROM 119

CHAPTER 6 SDL Joysticks 137

CHAPTER 7 SDL Threads and Timers. 149

Part Two
Add-On Libraries 165

CHAPTER 8 SDL_image. 167

CHAPTER 9 SDL_ttf . 171

CHAPTER 10 SDL_net 181

CHAPTER 11 SDL_mixer 193

00 FO SDL Frontmatter 10/21/02 11:52 AM Page vi

Team LRN

Part Three
SDL Game Application
Framework in C++. 217
CHAPTER 12 Framework Overview 219

CHAPTER 13 Core Components 225

CHAPTER 14 Video Components 243

CHAPTER 15 Audio Components 267

CHAPTER 16 Networking Components 279

CHAPTER 17 User Interface Components 291

CHAPTER 18 The Road Ahead 309

Index . 313

viiContents

00 FO SDL Frontmatter 10/21/02 11:52 AM Page vii

Team LRN

Letter from the
Series Editor

If you’re going to write games on the PC, there’s only one
choice for high-performance graphics—DirectX, right? Wrong!
In fact, amazingly enough, there is another API not written by
Microsoft that is simpler than DirectX and is supported on a
number of platforms, including Windows and Linux. The
name of the API/SDK is the Simple DirectMedia Layer, or SDL
for short. The cool thing about SDL is that if you use standard
ANSI C/C++ along with it, you can port your games and appli-
cations to other platforms in a matter of hours or a day at
most. This is the real power of SDL—portability. Focus On SDL
will get you up and running with the SDL system almost imme-
diately. This book will bring you up to speed with this elegant
and clear API in no time. Ernest Pazera takes you through
each important SDL core module, from graphics and sounds
to networking. Once you have the basic SDL system under
your belt, he proceeds to create a high-level wrapper class
around the system to give you more flexibility. Of course, it’s
up to you whether you want to use it or just stick to the basics.

In conclusion, I highly recommend this book if you are a
graphics or media programmer on any platform and you
want an API that allows you to port quickly from platform to
platform. In fact, I think this may be the only book on the
subject that focuses 100% on SDL, rather than on SDL as just
another API in a larger context.

Sincerely,

André LaMothe
Series Editor for the Premier Game Development Series

00 FO SDL Frontmatter 10/21/02 11:52 AM Page viii

Team LRN

Introduction

I am a programmer who, after programming for about 13 years, sud-
denly had opportunity to write books. The one you are holding in your
hands is the fourth book I have written. Moreover, I tend to be the
author who picks the “odd little topics.” My other books include Isometric
Game Programming with DirectX 7.0 (Premier Press, Inc. 0-7615-3089-4,
2001), the Game Developer’s Guide to the Cybiko (Wordware Publishing,
2001), and Focus On 2D in Direct3D (Premier Press, Inc., 2002).

After writing four books, I think I’ve learned my “style” of writing and
how I approach various topics. I don’t make lots of very game-like
demos when I’m talking about whatever API I happen to be writing
about that month. Instead, I write very simple code that demonstrates
a particular aspect of the API, so that the code for the new topic is
easily isolated and understood by the readers.

I am also a very object-oriented programmer. When I write real code
in C++, I use the three pillars of encapsulation, inheritance, and poly-
morphism. Much of the code in this book is, as I call it, “book code.”
Book code is a bit watered down and simplified to make it more
understandable to readers with varying levels of experience. If I were
to write code for a book the way I really write code, even I would have
a hard time following it.

Who You Are
You are the primary reason I write books. You are the reader. You and
you alone determine whether or not I have done my job sufficiently.
You looked at this book on a bookshelf or at some online bookstore
and said, “SDL? What is that?” Or maybe you already knew about SDL
and you wanted something to help you on your path besides the SDL
documentation, which is quality documentation but still rather dry
when you really think about it.

Maybe you are tired of DirectX. I hear you. Perhaps you want to use
OpenGL, but you want to use a nice cross-platform API for “the other

00 FO SDL Frontmatter 10/21/02 11:52 AM Page ix

Team LRN

stuff” that OpenGL doesn’t do, such as sound and input. In any case,
you have decided that learning what SDL is all about can’t really hurt,
and you might even enjoy it. I certainly hope so.

What You Should
Already Know
This is a small book, folks. Books on game programming no longer
cover every single aspect like they once did. That task is impossible
because the subject matter has become too vast.

Also, this book does not teach computer programming in general.
You should already be rather comfortable with programming and C++.
By no means do you have to be at an expert level, but you should
know the basics.

Why You Are Here
You are here to explore the API known as SDL (Simple DirectMedia
Layer), a cross-platform multimedia API. SDL is an open source library
that takes care of most of the tasks that typically belong to the domain
of DirectX. The added bonus is that with SDL, you can compile the
same code for Windows or Linux and it works the same way. SDL also
removes the need for all of the code that typically exists in a Windows
program, such as code for setting up window classes, creating windows,
and creating window procedures. SDL hides all of that for you so you
don’t have to worry about it.

In other words, I am here to make your job shorter and easier.
With SDL, you can be up and running with a small program in less
than 20 lines, whereas a regular program for Windows would be five
or six times that long. That’s pretty cool, I think.

So let’s get started.

x Introduction

00 FO SDL Frontmatter 10/21/02 11:52 AM Page x

Team LRN

PART ONE

The Core
of SDL

01 FO SDL chapter 01 10/21/02 8:27 AM Page 1

Team LRN

1 Setting Up Your
System for SDL

2 SDL: The Big Picture

3 SDL Video

4 SDL Event Handling
and the Window Manager

5 SDL Audio and CD-ROM

6 SDL Joysticks

7 SDL Threads and Timers

01 FO SDL chapter 01 10/21/02 8:27 AM Page 2

Team LRN

CHAPTER 1

Setting
Up Your
System

for SDL

01 FO SDL chapter 01 10/21/02 8:28 AM Page 3

Team LRN

You will be up and running and using SDL before the end of the
chapter. The application that you will create will hardly be impres-

sive, but it will use SDL, and then you’ll be on your way to creating
platform-independent games with the wonderful library that is SDL.

Just so you and I are both on the same page (no pun intended), although
this book is about SDL, it is not geared specifically toward cross-platform
programmers. It is geared primarily to the Windows programmer, and
the compiler used throughout the book is Visual C++—either VC++ 6.0
or VC++.NET will suffice. This is not to say that the book is completely
unusable for programmers for other platforms (indeed, code in SDL
should compile on almost anything), nor is it to say that users of other
development tools are completely out of luck. The SDL developer
distributions come with instructions for setting up SDL on almost any
platform and development environment you can imagine. This book
is intended for mainstream hobbyist game developers, and the vast
market share points to Windows and Visual C++. I do not intend to
slight anyone’s personal preference of platform and compiler, but if I
were to include all of the specifics for all platforms and compilers, it
would take me years to write the book, which would be three times as
long and expensive, not to mention confusing as all heck.

So that’s where I am coming from. Let’s begin!

Installing the Libraries
on Your System
Naturally, before you can make use of the SDL libraries, you must first
have them somewhere in storage so that your development environment
can see them. Under normal circumstances, this would require a trip to
the SDL Web site at http://www.libsdl.org. Since this book contains a
CD-ROM, it would be irresponsible for me not to include the libraries
on it. You will find a file named SDL-devel-1.2.3-VC6.zip in the LIBS
directory of the CD. Copy it to your hard drive and use WinZip (or your

4 1. Setting Up Your System for SDL

01 FO SDL chapter 01 10/21/02 8:28 AM Page 4

Team LRN

favorite archive utility) to extract the files to somewhere convenient and
easy to remember. For the purposes of this discussion, I will assume that
you are going to place the files into C:\SDLDEV\SDL-1.2.3\ . Later you
can store other libraries and/or future versions in C:\SDLDEV, and
everything will be nice and organized so you won’t have to hunt around
on your hard drive to find where you put something!

After you have extracted the files, take a look at the contents of the
folder—always a good thing to do when you’re getting to know a new
library or API (see Figure 1.1).

There are three subfolders—docs, include, and lib—and a number of
files. You should take some time to explore most of these files and get
familiar with them, especially the ones with the term “README” in
the title. They are called README for a reason!

In the docs folder, as one might expect, you can find documentation
on the various SDL functions. It is pretty well organized and detailed,
and is an excellent resource when you need to look up the parameters
for a particular function. I virtually never write anything using SDL
without having the documentation open somewhere on my desktop.

5Installing the Libraries on Your System

Figure 1.1 Contents of C:\SDLDEV\SDL-1.2.3

01 FO SDL chapter 01 10/21/02 8:28 AM Page 5

Team LRN

Always have your references
handy!

In the include folder, to no
one’s surprise, you can
find the header files for
SDL. There are a number
of them and, as luck would
have it, knowing what any
particular one does for you
is not terribly important.
When you start creating
SDL-based projects, there
is only one header file that
you need to #include, and
that is SDL.h!

Finally, in the lib folder,
you can find the actual
SDL binaries. There are

three files—SDL.lib,
SDLmain.lib, and SDL.dll. The .lib files are static libraries to which
you will link your application, and SDL.dll is a dynamic link library
that you must place in the same directory as your application (or into
a system directory somewhere). I’ll talk more about that a little later
in the chapter, when you create a project.

Setting Up the VC++
Environment
Okay, you have the SDL binaries, include files, and documentation on
your machine somewhere, so now what?

Now it is time to set up the VC++ environment so that you can use
SDL. The first thing you need to do is let VC++ know where it can
find the .lib and .h files for SDL. If you already have experience in
doing that sort of thing, go ahead and skip the next few pages. If not,
read on.

First, start VC++. With no project loaded, select Tools, Options, as
shown in Figure 1.2.

6 1. Setting Up Your System for SDL

NOTE
If you have read the README files
that accompany SDL (like I said you
should), then you have undoubtedly
come across the term GNU LGPL.
As a Windows programmer, you
have probably seen similar notices
before—more likely the GNU GPL,
since the LGPL is rarely used. Both
of these are licenses that deal with
free software. Now, don’t misinter-
pret the word “free” here.The free
of which we are speaking is the same
sort of free that we mean when we
say “free speech,” not “free lunch.”
As we all know, there ain’t no such
thing as a free lunch!

01 FO SDL chapter 01 10/21/02 8:28 AM Page 6

Team LRN

The Options dialog box will appear. Select the Directories tab, as
shown in Figure 1.3.

7Setting Up the VC++ Environment

Figure 1.2 Selecting Options from the Tools menu

Figure 1.3 The Options dialog box for VC++,
with the Directories tab selected

01 FO SDL chapter 01 10/21/02 8:28 AM Page 7

Team LRN

In Figure 1.3, the Options dialog box is set up for adding new directo-
ries to the list used to search for include files—in other words, files
ending with .h. You need to add the path to the SDL include files to
this list. To do so, simply click on the first available blank line in the
list, and you should see something like Figure 1.4.

Here you can either type in the directory or click on the button with
the ellipsis to browse for it. Whichever method you choose, get the
directory containing all of the SDL include files into the text box, as
shown in Figure 1.5.

8 1. Setting Up Your System for SDL

Figure 1.4 Adding a new entry to the list of directories

Figure 1.5 A new path

01 FO SDL chapter 01 10/21/02 8:28 AM Page 8

Team LRN

This next part is strictly optional, but I like to do it anyway. I always
prefer to have the SDL include files first in the list. Click anywhere
else on the list of directories so that the text box and the ellipsis but-
ton are no longer shown. Then click on the Up arrow until the SDL
directory is the first in the list, as shown in Figure 1.6.

Now that you have done this, you must do the same thing for the .lib
files. Select Library Files from the Show Directories For drop-down list
(see Figure 1.7).

9Setting Up the VC++ Environment

Figure 1.6 SDL include files are first.

Figure 1.7 Selecting library directories

01 FO SDL chapter 01 10/21/02 8:28 AM Page 9

Team LRN

From here, the process is exactly the same as adding a directory to the
list of include files. Get the path that has the SDL.lib and SDLmain.lib
directories onto this list to set up the development environment. When
you are finished, your list should look something like Figure 1.8.

In Chapters 8 through 11, you will add additional libraries and include
files to the list. The process is the same for all of these. When you get
to that point, I will refer you back to this chapter for the procedure.

You only have to set up your environment one time. The only reason
why you would have to do it over again would be if you reinstalled
VC++ or got rid of the paths you just added to the dialog box. Of
course, you are going to love SDL so much that you will never want
to use anything else!

Creating an SDL Project
The environment is set up, so it is time to create an SDL project. I’m
going to take you through the procedure that you will need to repeat
each and every time you create a project that uses SDL.

1. The first thing to do, naturally, is create a project. Select File,
New; choose WIN32 Application; and name it FOSDL1_1, as
shown in Figure 1.9. After you click OK, you will be prompted
for what type of WIN32 project you would like to create. Select
Empty Project, and then click Finish.

10 1. Setting Up Your System for SDL

Figure 1.8 Paths for library files are set up.

01 FO SDL chapter 01 10/21/02 8:28 AM Page 10

Team LRN

11Creating an SDL Project

Figure 1.9 Creating your first SDL-based application

2. Next, you need to copy SDL.dll from the SDL libs directory to
your project’s current directory. Alternatively, you can put
SDL.dll in a system directory somewhere, but I prefer not to
mess with that if I can avoid it. After you have done this, your
project folder should look like Figure 1.10.

3. Now select Project, Settings and select the Link tab in the dialog
box that appears, as shown in Figure 1.11.

4. In the Object/Library Modules text box, type sdl.lib and
sdlmain.lib. Make sure you use spaces to separate each item in
the text box. I typically add these files at the beginning of the
list, but it really doesn’t matter. When you have finished, the
dialog box should look like Figure 1.12.

5. Next, select the C/C++ tab. From the Category drop-down
menu, select the Code Generation option (see Figure 1.13).

6. From the Use Run-Time Library drop-down menu, select
Multithreaded DLL, as shown in Figure 1.14.

7. Finally, click on the OK button. You are all set to go! This might
seem like a lot of hassle just to get a project started, but in time
it will become second nature to you, and you’ll find yourself
getting through it rather quickly.

01 FO SDL chapter 01 10/21/02 8:28 AM Page 11

Team LRN

12 1. Setting Up Your System for SDL

Figure 1.10 Your project folder, after copying SDL.dll into it

Figure 1.11 The Project Settings dialog box

01 FO SDL chapter 01 10/21/02 8:28 AM Page 12

Team LRN

Testing the Environment
So, you’ve got the environment and a project set up. The only thing
left to do is create a small application to test it all out. Create a new
.cpp file, name it something clever like fosdl1_1.cpp, and make sure it
is added to your project in the Source Files directory in File view of
the IDE. (Just right-click and select Add Files to Folder.)

13Testing the Environment

Figure 1.12 Adding the SDL lib files

Figure 1.13 The C/C++ tab, Code Generation category

01 FO SDL chapter 01 10/21/02 8:28 AM Page 13

Team LRN

Place the following code into the source file. If you aren’t interested
in typing all of it, you can find the code on the CD-ROM in the
Examples directory.

#include “sdl.h”

#include <stdio.h>

int main(int argc, char* argv[])

{

if (SDL_Init(SDL_INIT_VIDEO)==-1)

{

fprintf(stderr,”Could not initialize SDL!\n”);

}

else

{

fprintf(stdout,”SDL initialized properly!\n”);

SDL_Quit();

}

return(0);

}

For the sake of brevity, I deliberately removed all of the comments
from this file. Although you are not even at square one as far as SDL
is concerned, most of this code should be relatively obvious. In this
short program, you attempt to initialize SDL. Depending on whether

14 1. Setting Up Your System for SDL

Figure 1.14 Using the Multithreaded DLL run-time

01 FO SDL chapter 01 10/21/02 8:28 AM Page 14

Team LRN

or not you are successful, you report either to stdout or stderr. (SDL
automatically maps these to files entitled stdout.txt and stderr.txt,
respectively.)

Now the only thing to do is compile and run the code. If all has gone
well, it should compile just fine. If it doesn’t, make sure that you’ve
followed all of the steps for setting up the environment and the pro-
ject. Once you run the project, you will get a file called either
stdout.txt or stderr.txt. If you get stderr.txt, your system isn’t properly
set up to run SDL, and you should scour the SDL mailing list archives
to find out what the problem is and how you can fix it.

While this example program does absolutely nothing to thrill or
amaze, it performs the important task of checking to see whether or
not you are properly set up to develop with SDL.

A Simple SDL Application
For your next endeavor, you will write a small SDL-based application.
Like the first program, this one won’t do much, but at least something
will be visible. I’m not going to go over the functions involved just yet.
Each function will be discussed in its own appropriate chapter.

This example is entitled FOSDL1_2, and you can find it on the CD-ROM
if you don’t feel like typing in the code. To save space, I have removed
all blank lines and comments. The copy of this program on the CD-ROM
contains the full commenting and is formatted better.

#include “sdl.h”

#include <stdio.h>

#include <stdlib.h>

SDL_Surface* g_pMainSurface = NULL;

SDL_Event g_Event;

int main(int argc, char* argv[])

{

if (SDL_Init(SDL_INIT_VIDEO)==-1)

{

fprintf(stderr,”Could not initialize SDL!\n”);

exit(1);

}

else

{

15A Simple SDL Application

01 FO SDL chapter 01 10/21/02 8:28 AM Page 15

Team LRN

fprintf(stdout,”SDL initialized properly!\n”);

atexit(SDL_Quit);

}

g_pMainSurface = SDL_SetVideoMode(640,480,0,SDL_ANYFORMAT);

if(!g_pMainSurface)

{

fprintf(stderr,”Could not create main surface!\n”);

exit(1);

}

for(;;)

{

if(SDL_WaitEvent(&g_Event)==0)

{

fprintf(stderr,”Error while waiting for an event!\n”);

exit(1);

}

//check the type of event

if(g_Event.type==SDL_QUIT)

{

fprintf(stdout,”Quit event has occurred.\n”);

break;

}

}

fprintf(stdout,”Terminating program normally.\n”);

return(0);

}

Compile and run this program, and you will see something that looks
like Figure 1.15. In addition, there will be some text in stdout.txt that
tells you what happened (via all of the fprintf calls).

Now you have a simple shell program with which you can start working
to make bigger and better things. In the next few chapters, I will
explain all of the functions you used in this example. Actually, all of the
functions’ names accurately describe what they do, so you should have a
halfway decent grasp of what is going on just by looking at the code.
This is why I’m starting out simply. First I give you one or two functions
to look at, and then I slowly add more. Before you know it, you’ll know
all of the SDL functions…or you’ll at least be familiar with them.

16 1. Setting Up Your System for SDL

01 FO SDL chapter 01 10/21/02 8:28 AM Page 16

Team LRN

Summary
As you can see, I’m not
messing around here.
You are already up and
running, creating SDL-
based applications. It isn’t
a difficult API to use. The
rest of the book will give
you the information you
need to get the most out
of all of what SDL has to
offer, which is a consider-
able amount.

17Summary

Figure 1.15 The output of FOSDL1_2

NOTE
You might be asking,“Where’s
WinMain?” A valid question.There
isn’t one; you aren’t making a
Windows application.You have prob-
ably also noticed that there are no
calls to functions like CreateWindowEx.
This is not to say that these func-
tions aren’t being used somewhere
deep inside of the WIN32 SDL
implementation, but they are not
exposed to you as a programmer.
This is a good thing because it frees
you from having to know anything
dependent on the operating system
in order to program using SDL.

01 FO SDL chapter 01 10/21/02 8:28 AM Page 17

Team LRN

01 FO SDL chapter 01 10/21/02 8:28 AM Page 18

Team LRN

CHAPTER 2

SDL:
The Big
Picture

02 FO SDL chapter 02 10/21/02 10:10 AM Page 19

Team LRN

In Chapter 1, you got your feet wet and dug right into creating SDL
applications. In this chapter, you will take a look at the capabilities

of SDL on a conceptual level. When you are comfortable developing
with SDL, you’ll get as much mileage out of it as you need. More
important, it’s completely cross platform, so you can write your SDL
application in Windows and compile it for Linux and it’ll work—
usually with very few snags.

SDL Subsystems
at a Glance
Just like DirectX has subsystems such as DirectDraw, Direct3D,
DirectSound, DirectMusic, DirectInput, and DirectPlay, SDL has its own
subsystems for handling various aspects of a multimedia application.
Table 2.1 briefly describes the seven subsystems of SDL. It also contains
a column describing the DirectX equivalent of each subsystem.

As you can see, SDL does everything that DirectDraw, DirectInput,
and DirectSound do, plus some extra stuff for playing music from a
CD-ROM, threading, and timing. Figure 2.1 shows the basic layout of
both SDL and DirectX side by side, as well as the obvious similarities
between the two APIs.

But what about the other components of DirectX, namely Direct3D,
DirectPlay, and DirectMusic? Well, SDL can tie into OpenGL if you
want 3D rendering. For the same sort of functionality as DirectPlay,
you can use SDL_net (detailed in Chapter 10). DirectMusic doesn’t
have an exact SDL equivalent, but you can do some interesting things
with SDL_mixer (detailed in Chapter 11).

Now I will speak more in depth about each of these subsystems and
how they can be of use to you.

20 2. SDL: The Big Picture

02 FO SDL chapter 02 10/21/02 10:10 AM Page 20

Team LRN

Video
In every SDL application, you will use the video and event handling
subsystems at the very least. Without something to look at and a way to
send it input, you really don’t have much of an application, right?

21SDL Subsystems at a Glance

Table 2.1 SDL Subsystems

Subsystem Description DirectX Equivalent

Video Encapsulates the video display DirectDraw

Event Handling Encapsulates event handling DirectInput

Joystick Encapsulates using joysticks DirectInput

Audio Encapsulates working with DirectSound
audio hardware

CD-ROM Streams music from a normal CD N/A

Threads Multi-threading helper functions N/A

Timers Timing helper functions N/A

Figure 2.1 SDL and DirectX side by side

02 FO SDL chapter 02 10/21/02 10:10 AM Page 21

Team LRN

DirectDraw is the DirectX equivalent for the video subsystem; in fact,
the implementation for WIN32 uses a version of DirectDraw under-
neath the hood. If you actually dig through the source code for SDL
(which is available for download at http://www.libsdl.org or can be
found on the CD-ROM), you can really see how the video subsystem
was put together. I’m not going to do any major analysis of this; I’m
just telling you in case you are interested in those kinds of things.

Like DirectDraw, SDL’s video subsystem deals primarily with surfaces
but also has structures for rectangles, colors, palettes, and overlays
(which are useful if you want to stream video data). It has support
for transparent color keys, alpha blending, and run-length encoding.
There are also a few functions for creating mouse cursors—nothing
too fancy, but they do the job. Additionally, the video subsystem can
be used in either a windowed mode or full-screen mode, and the dif-
ference is just a simple function call.

You will take a much closer look at the video subsystem in Chapter 3,
“SDL Video.”

Event Handling
In my opinion, the most important subsystem of SDL is the event-
handling subsystem. Without it, you might as well be watching television
because the program will have exactly the same amount of interactivity.

The event-handling subsystem is roughly the equivalent of DirectInput,
but it is also the equivalent of a standard WIN32 message pump. With
the event-handling subsystem, you can check for events and deal with
them as they occur, as well as read the current state of the keyboard
or mouse.

The event-handling subsystem of SDL is, in my opinion, much easier
to use than a WIN32 message pump/window procedure. For one
thing, there isn’t any typecasting, which seems to happen all too
frequently when you are dealing with WIN32 messages.

You will take a good look at the event-handling subsystem when you
get to Chapter 4, “SDL Event Handling and the Window Manager.”

22 2. SDL: The Big Picture

02 FO SDL chapter 02 10/21/02 10:10 AM Page 22

Team LRN

Joystick
I suppose that, in theory, the joystick subsystem should be a part of
the input-handling subsystem, since joysticks are input devices. (The
SDL meaning of “joystick” is essentially any input device that is not a
keyboard or a pointing device such as a mouse.)

However, in the case of keyboards and pointing devices, you are
normally hard-pressed to find a system that doesn’t have one of each.
The more popular operating systems practically require both to be
attached to the system, so dealing with input from them has become
the standard.

This is not the case in the world of joysticks. Each joystick has a differ-
ent number of buttons, axes, point-of-view hats, dials, levers, switches,
and pretty much anything else you can imagine. Hence, SDL devotes an
entire subsystem to these odd input devices. However, the input they
generate is handled through the event-handling subsystem. Go figure.
I’ll talk in more detail about the joystick subsystem in Chapter 6,
“SDL Joysticks.”

Audio
Of all of the SDL subsystems, I am least pleased with the audio subsys-
tem. It is simply not sophisticated enough for most needs. The
DirectX equivalent, DirectSound, is much better equipped.

However, all is not lost. There is an add-on library called SDL_Mixer,
which—at least in my opinion—is what SDL’s audio subsystem should
have been in the first place. I understand why the subsystem is the way
it is, though. SDL is meant to be simple, and mixing sounds is just not
all that simple. Ergo, the audio subsystem is perhaps a bit sub-par. I’ll
talk more about the audio subsystem in Chapter 5, “SDL Audio and
CD-ROM.”

CD-ROM
The CD-ROM subsystem is just a cool thing to have. You won’t find
one of these in DirectX. With SDL, you can play around with the
CD-ROM drive. You can open it, close it, and make it play songs. You
can even get information about the CD in the drive. This is very cool

23SDL Subsystems at a Glance

02 FO SDL chapter 02 10/21/02 10:10 AM Page 23

Team LRN

and quite useful if you are creating a game that has a data section and
a music section that is meant to be played in the background. I’ll talk
more about this subsystem in Chapter 5.

Threads
The idea of multi-threading is hardly new, but it is often dismissed as
unimportant in books like this. The SDL threading subsystem is a
cross-platform way of programming multi-threaded applications.

A small warning here, however. While the code will work on whatever
platform you compile it for, not all operating systems treat threads the
same way, so you might want to do some testing on other operating
systems before you go hog-wild with the threads.

The SDL threads subsystem can also handle mutexes, semaphores,
and condition variables. I’ll discuss this subsystem at greater length in
Chapter 7, “SDL Threads and Timers.”

Timers
As you know, precise timing is important to any high-performance
application, such as a game. Certainly not all games are this way, but
as a general rule, timing is important. To that end, SDL has a subsys-
tem specifically for dealing with time and timers. It can count clock
ticks for you, and you can even set it up to call a certain function
periodically.

Like the threads, timers can have issues when they are ported to other
operating systems, so be careful if cross-platform programming is
important to you. I’ll discuss this subsystem at greater length in
Chapter 7.

SDL Initialization
In a way, you could call initialization another subsystem of SDL. It
would be best described as one subsystem to rule them all. Without
proper initialization of SDL, none of the other subsystems will work.
I already partially introduced you to the initialization functions back
in Chapter 1, but I did not say much about them; now I will take the
time to introduce you to them.

24 2. SDL: The Big Picture

02 FO SDL chapter 02 10/21/02 10:10 AM Page 24

Team LRN

There are six functions that you should know about before you begin
any sort of real work with SDL. These functions are listed in Table 2.2,
along with a brief description of what each one does.

The next few sections describe each of these functions.

SDL_Init and SDL_InitSubSystem
To start with, take a look at the initialization functions—SDL_Init and
SDL_InitSubSystem. Here is what the prototypes look like.

int SDL_Init(Uint32 flags);

int SDL_InitSubSystem(Uint32 flags);

Both functions look pretty much the same, don’t they? Each returns
an int, and each takes a single Uint32 parameter called flags.

The SDL_Init function should be the very first function that is called.
If this function is not called, no other SDL function will operate.
When you call this function, you specify which of the SDL subsystems
you intend to use in the application. Table 2.3 shows the identifiers
for each of the subsystems.

25SDL Initialization

Table 2.2 SDL Initialization Functions

Function Description

SDL_Init Initializes one or more SDL subsystems.

SDL_InitSubSystem Initializes particular SDL subsystems. (This can only
be used after SDL_Init.)

SDL_Quit Shuts down all SDL subsystems.

SDL_QuitSubSystem Shuts down particular subsystems without shutting
down SDL totally.

SDL_WasInit Checks to see what subsystems are currently
initialized.

SDL_GetError Retrieves the last internal error reported by SDL.

02 FO SDL chapter 02 10/21/02 10:10 AM Page 25

Team LRN

But what about the event-handling system and the thread system?
Well, those don’t need to be initialized. Technically, event handling is
initialized when you initialize the video subsystem.

26 2. SDL: The Big Picture

NOTE
What the heck is a Uint32? Well, since SDL is a cross-
platform library, they had to come up with a way to rep-
resent data types in a platform-independent manner. In
C and C++, an int is whatever size a machine word is.
That is, an int is whatever size the computer handles
most easily. In many cases this is 32 bits, but other sizes
are possible. In SDL, you deal with a number of types
that begin with either an S or a U.The S represents a
signed value (either positive or negative numbers can be
represented), and the U represents an unsigned value
(only non-negative numbers can be represented).The S
or U is followed by int, and is then followed by the size of
the type in bits—8, 16, 32, or 64.This sort of convention
actually makes reading code a lot easier because you can
tell from the data type exactly how big the type is and
whether it is signed in a compact manner.

Table 2.3 Subsystem Identifiers

Identifier Subsystem

SDL_INIT_TIMER The timer subsystem will be initialized.

SDL_INIT_AUDIO The audio subsystem will be initialized.

SDL_INIT_VIDEO The video subsystem will be initialized.

SDL_INIT_CDROM The CD-ROM subsystem will be initialized.

SDL_INIT_JOYSTICK The joystick subsystem will be initialized.

SDL_INIT_EVERYTHING All subsystems will be initialized.

02 FO SDL chapter 02 10/21/02 10:10 AM Page 26

Team LRN

You might be tempted to always use SDL_INIT_EVERYTHING. You can do
that, or you can simply add extra systems later using SDL_InitSubSystem.
In many applications, you might have no need for joysticks or the CD-
ROM portions of SDL.

Here’s a quick snippet of code that initializes the video and audio
SDL subsystems.

SDL_Init(SDL_INIT_VIDEO | SDL_INIT_AUDIO);

To initialize more than one system, you simply use the bitwise or oper-
ator, as shown in the preceding line of code. The return value of
SDL_Init will be 0 if everything went smoothly and -1 if there was an
error. Always check your return values! Yes, there will be times when I will
show you code that does not check the return values, but that is to
make the code easier to look at and read. It is just easier to teach
things that way. In reality, the preceding snippet of code should look
like this.

//initialize audio and video

if(SDL_Init(SDL_INIT_VIDEO | SDL_INIT_AUDIO)==-1)

{

//an error occurred, so do something about it

}

I think you’ll agree that the second time around, it’s not as easy to
read.

After you have done your initial call to SDL_Init, you can initialize
other subsytems using SDL_InitSubSystem. Suppose you determine a
bit later in the program that you really need to initialize the joystick
subsystem. You can do this with a simple call to SDL_InitSubSystem.

//initialize joystick subsystem

if(SDL_InitSubSystem(SDL_INIT_JOYSTICK)==-1)

{

//error!

}

As you might expect, SDL_InitSubSystem works in exactly the same manner
as SDL_Init does, as far as its parameter and return value are concerned.

27SDL Initialization

02 FO SDL chapter 02 10/21/02 10:10 AM Page 27

Team LRN

SDL_Quit and SDL_QuitSubSystem
Since you now know how to initialize SDL subsystems, it is time to take
a look at how to shut them down. This is done using the SDL_Quit and
SDL_QuitSubSystem functions. Here are the prototypes.

void SDL_Quit(void);

void SDL_QuitSubSystem(Uint32 flags);

The first function, SDL_Quit, is extremely easy to use. It takes no para-
meter and returns no value. It simply shuts down all SDL subsystems.
As such, it is typically the last thing you call in your program, as in the
following code.

//initialize SDL

SDL_Init(SDL_INIT_EVERYTHING);

//rest of program goes here

//shut down SDL

SDL_Quit();

This is a valid way to go about things, but it is typically not done this
way with SDL. Normally, this is what the code would look like:

//initialize SDL

SDL_Init(SDL_INIT_EVERYTHING);

//set up to shut down SDL at exit

atexit(SDL_Quit);

//rest of program goes here

If you have never used the atexit function before, it is pretty neat. It
adds a function (any old function, provided that it takes no parame-
ters and returns no value). When the program terminates (either nor-
mally or by calling the exit function), it will call each of the functions
added to the list of functions sent by atexit in the reverse order of
how they were sent. The benefit of doing things this way is that if you
detect an error somewhere, you can use the exit function and not
worry about cleaning up after SDL—the program will do that for you.

The SDL_QuitSubSystem function, on the other hand, has more in com-
mon with SDL_InitSubSystem. It will only shut down the subsystems that
you specify; it doesn’t completely shut down SDL itself. If, for exam-
ple, you wanted to shut down only the CD-ROM subsystem at some
point in your program, you would use the following code.

SDL_QuitSubSystem(SDL_INIT_CDROM);

28 2. SDL: The Big Picture

02 FO SDL chapter 02 10/21/02 10:10 AM Page 28

Team LRN

This function has no return value, so you don’t have to worry about
checking anything. If you really want to ensure that the subsystem was
shut down, you can use SDL_WasInit to determine its state.

SDL_WasInit and SDL_GetError
Speaking of SDL_WasInit, it is the function you can use to determine
whether or not a given subsystem or subsystems are initialized. Here’s
what the prototype looks like:

Uint32 SDL_WasInit(Uint32 flags);

This function takes a single parameter, a Uint32 called flags, and
returns a Uint32. It takes a Uint32 that represents all of the initialized
subsystems (each of the SDL_INIT_* values is a bit flag), performs a bit-
wise or with the value passed as the flags parameter, and returns the
new value to the caller. If you are looking for a particular subsystem—
for example, video—you pass SDL_INIT_VIDEO. The return value will
either be SDL_INIT_VIDEO (video is initialized) or 0 (video is not initial-
ized). If you pass SDL_INIT_VIDEO | SDL_INIT_AUDIO, the return value will
be 0 (neither), SDL_INIT_VIDEO (video was initialized, but not audio),
SDL_INIT_AUDIO (audio was initialized, but not video), or SDL_INIT_VIDEO
| SDL_INIT_AUDIO (both were initialized). Typically, when you are look-
ing at which subsystems are initialized, you call this function one time
with SDL_INIT_EVERYTHING as the flags parameter, and then do bitwise
checks with each of the other SDL_INIT_* values on the value returned.

The final function I will cover in this chapter is SDL_GetError. If some-
thing Very Bad happens (and Very Bad things can and do happen),
an SDL function call will fail. For example, if SDL_Init fails, it returns a
-1. I don’t know about you, but a -1 just isn’t very descriptive to me. I
would like to know not only that the initialization failed, but also why
it failed. That’s where SDL_GetError comes in. When something fails, it
puts a string into an internal buffer somewhere, which you can access
using SDL_GetError. Here is the prototype.

char *SDL_GetError(void);

A simple enough function, it takes no parameters and returns a char*.
Normally, you will want to write this string to a file log somewhere, as
shown in the following code snippet.

fprintf(stderr,”%s\n”,SDL_GetError()); //report the error

And that’s all there is to it.

29SDL Initialization

02 FO SDL chapter 02 10/21/02 10:10 AM Page 29

Team LRN

Summary
You now have a good general overview of what SDL has to offer. You
can initialize any or all of SDL’s subsystems, shut them down, check to
see whether they were initialized, and retrieve an error message
should something fail. While most of this information is rather simple
and, for the most part, common sense, it is a solid foundation upon
which you will build bigger, better, and more robust SDL applications.

Are you looking at the initialization functions and saying to yourself,
“Gosh, these are really simple. Are all SDL functions this simple?” The
answer is yes. SDL was built to be simple. If you are used to DirectX,
then you are used to going through cartwheels and back flips to get
everything initialized. With SDL, it’s just a single function call.

30 2. SDL: The Big Picture

02 FO SDL chapter 02 10/21/02 10:10 AM Page 30

Team LRN

CHAPTER 3

SDL
Video

03 FO SDL chapter 03 10/21/02 10:16 AM Page 31

Team LRN

Welcome to SDL’s video subsystem. For a typical human being,
70% of input is gathered from sight, so the SDL video subsys-

tem is the most important one to know. This subsystem is used to cre-
ate 2D graphics, just like DirectDraw, GDI, and other similar libraries.
If you want to create 3D graphics, the SDL video subsystem ties in
nicely with OpenGL.

The Video Subsystem
at a Glance
In GDI, you have RECT, COLORREF, HDC, HBITMAP, and so on. In DirectDraw,
you have IDirectDraw, IDirectDrawSurface, IDirectDrawClipper, and so on.
In SDL, it is no different. There are seven different structures in SDL
for dealing with the display. Each has its own well-defined purpose,
and each is easy enough to work with in general. All of these objects
are logically organized. You’ll take a look at them on a conceptual
level now, and in more depth later in the chapter.

SDL_Rect
With very few exceptions, games and other applications run on a full
screen or in a rectangular viewport, so pretty much any method of cre-
ating computer graphics on a raster display involves rectangles in some
way. Therefore, every API and library used to create graphics has some
sort of structure for containing a rectangular area. This is exactly what
SDL_Rect does. It stores the upper-left coordinate (in pixels) and the
width and height (also in pixels) of a rectangle.

Now for the downside. Although SDL_Rect is a fundamental type used
quite heavily in SDL’s video subsystem, there are no functions for work-
ing with it. That is, unlike the WIN32 RECT type, which has a number of
functions such as IntersectRect and UnionRect, SDL_Rect has none. I
assume that this is because SDL is a multimedia library, and the users
of said library should be smart enough to write their own rectangle
functions if they so desire.

The equivalent in WIN32 is, as I stated earlier, the RECT structure.

32 3. SDL Video

03 FO SDL chapter 03 10/21/02 10:16 AM Page 32

Team LRN

SDL_Color
SDL_Color is another “helper” structure, much like SDL_Rect. It is useful
for storing color information in a format-independent manner.
SDL_Color’s primary use is in palette management, but a creative user
of SDL typically finds other uses for this structure as well.

In WIN32, there are several equivalents of SDL_Color, including
COLORREF, PALETTEENTRY, RGBTRIPLE, and RGBQUAD.

SDL_Palette
You will primarily be concerned with 16-bit or higher graphics, so you
won’t often give a second thought to the 8-bit graphics days and color
indirection using palettes. However, there are times when a palettized
display is the way to go, so you will take a closer look at SDL_Palette
later on in this chapter, in the “Palettes” section.

The WIN32 equivalent to SDL_Palette is the HPALETTE GDI object; in
DirectDraw, the equivalent is IDirectDrawPalette.

SDL_PixelFormat
Since video cards vary so widely, there is a strong need for a structure
that can represent exactly how the display hardware is currently repre-
senting colors. Information stored in an SDL_PixelFormat includes bits
per pixel, bits for each channel, and whether the display is in an RGB
mode or is using color indirection through palettes. SDL_PixelFormat
describes exactly what sort of pixel data is stored in an SDL_Surface.

The DirectDraw equivalent to SDL_PixelFormat is DDPIXELFORMAT, as you
might expect.

SDL_Surface
Naturally, the stock and trade of SDL’s video subsystem is SDL_Surface.
This structure abstracts a rectangular block of pixels. Of course, there
is only one SDL_Surface that represents the actual display area. All of the
other surfaces are buffers for storing pixel data that will eventually be
shown on the main display. It is a very ephemeral thing.

The DirectDraw equivalent to SDL_Surface is IDirectDrawSurface.

33The Video Subsystem at a Glance

03 FO SDL chapter 03 10/21/02 10:16 AM Page 33

Team LRN

SDL_VideoInfo
In theory, the ideal way to make a video game would be to tell the
computer to set up the best video mode possible and have the display
hardware scale all of your graphics to fit properly. Unfortunately,
while doing this is possible, it isn’t very efficient. In a few years, it
might be a completely different story. A structure such as SDL_VideoInfo
exists so you can examine the capabilities of a given display mode. It
comes in useful; trust me.

The closest approximation of a DirectDraw equivalent for SDL_VideoInfo
is getting the video capabilities using IDirectDraw7::GetCaps.

SDL_Overlay
Conceptually, SDL_Overlay is a structure very similar to SDL_Surface. Only
the type of data taken is different. Overlays are used for streaming
video data (such as from an .mpg or a similar video file). You can use
this for effects such as cut-scenes, opening cinematics, and so on. In
DirectDraw, an overlay is really just a different type of surface, and it is
handled much the same as other surfaces.

Core Structures
As you can see, SDL’s video subsystem is not overly complicated.
There are only seven different types of “objects,” each with a well-
defined role. About half of them aren’t even used that frequently.

Now that you’re up to speed with what objects exist, it is time to take a
closer look at each of them, starting with the most fundamental
ones—SDL_Rect and SDL_Color.

SDL_Rect
The SDL video subsystem, being 2D in nature, deals primarily with
copying rectangular blocks of pixels from one SDL_Surface to another.
This has been the way of dealing with raster displays since their incep-
tion. It is The Way Things are Done.

34 3. SDL Video

03 FO SDL chapter 03 10/21/02 10:16 AM Page 34

Team LRN

Naturally, every API or library for dealing with 2D graphics needs to
have a structure that can contain a rectangular area. The term “rec-
tangular area” has a special meaning when you are dealing with raster
displays. In this case, you are talking about rectangles whose sides con-
sist of horizontal and vertical segments. In other words, a side of the
rectangle mimics the orientation of the screen. In SDL, this structure
is SDL_Rect, and it looks like this:

typedef struct{

Sint16 x, y;

Uint16 w, h;

} SDL_Rect;

Since the rectangle is aligned so that each of the edges are parallel to
either the top or left edge of the screen, you need only two points to
define it. Within the SDL_Rect structure, these points are defined as
(x,y) and (x+w,y+h). The other two points are (x+w,y) and (x,y+h). Check
out Figure 3.1 to see examples of what SDL_Rect can and cannot repre-
sent as far as rectangles are concerned.

The x and y members of SDL_Rect are Sint16 values, so they can range
anywhere from -32,768 to +32,767. This is (at least in the conceivable
future) more than enough to represent any resolution display mode.

The w and h members are Uint16 values, so they can be anywhere in
the range of 0 to 65,535. Again, more than you should ever need to
represent rectangular areas on surfaces.

Storing the width and height (in w and h) is a good thing, because you
can easily move the SDL_Rect around in 2D space simply by changing

35Core Structures

Figure 3.1 Rectangles that can and cannot be represented by SDL_Rect

03 FO SDL chapter 03 10/21/02 10:16 AM Page 35

Team LRN

the x and y values. In some APIs, such as WIN32 GDI, the structure for
representing a rectangle stores both the left and right edges, which
means that to move the rectangle horizontally while maintaining the
same size, you need to change both values.

Now a few words about the SDL coordinate system. If you have
worked with other raster display APIs in the past, you know that they
almost always have the pixel location (0,0) in the upper-left corner of
the screen. SDL is no different. The x value starts at the left edge with
0 and increases to the right, and the y value starts at the top edge with
0 and increases downward. This is upside down from the Cartesian
coordinate system that you were taught in algebra class. For a graphi-
cal explanation of this difference, see Figure 3.2.

Personally, I’ve been working with raster displays for so long that I
simply gave up a number of years ago and started doing all of my
math upside down. While I’m not actually suggesting that you start
doing this, it has been helpful to me. Being able to think in both sys-
tems will help you immensely.

The more common questions to ask about a rectangular area such as
SDL_Rect are, “What points are inside this rectangle?” and, “What points
are outside?” As a result of both of these questions, “Is Point A inside
or outside?”

36 3. SDL Video

Figure 3.2 The difference between screen coordinates and standard
Cartesian coordinates

03 FO SDL chapter 03 10/21/02 10:16 AM Page 36

Team LRN

Suppose for a moment that you have a structure that represents a single
2D point, like this:

typedef struct {

Sint16 x, y;

} Point;

Suppose you have a Point named A and an SDL_Rect named R, like this:

Point A;

SDL_Rect R;

Somewhere in your code, both A and R are given values (in other
words, they have all of their members filled in with values). At some
point later in the code, you find yourself needing to determine
whether A is inside or outside of R.

Since R.x and R.y represent the upper-left corner of the rectangle R,
you know that if A.x is less than R.x or A.y is less than R.y, then A must
be outside of R. If A.x is greater than or equal to R.x and A.y is greater
than or equal to R.y, then A might be in R, but you still have to per-
form further tests.

Because of the way that SDL_Rect is structured, the right edge (R.x +
R.w) and the bottom edge (R.y + R.h) are not inside the rectangle.
There is an actual explanation for this. You can look at the horizontal
and vertical lines of pixels on a display in one of two ways. You can
look at them as though positions 0, 1, 2, 3, and so on are lines passing
through the very center of a column or row of pixels (see Figure 3.3).

37Core Structures

Figure 3.3 Lines passing through the
center of rows and columns of pixels

03 FO SDL chapter 03 10/21/02 10:16 AM Page 37

Team LRN

You can also look at them as though the lines pass through the space
between the pixels (see Figure 3.4). In this case, we are choosing the
second method to represent the coordinate system as far as the rec-
tangles are concerned, and the first method as far as the points are
concerned.

So in order for A to be in R, it must pass the first two tests, and then
the second two tests. A.x has to be less than R.x + R.w, and A.y has to
be less than R.y + R.h. In code form, you can test whether A is inside R
using the following snippet.

if (A.x >= R.x && A.y >= R.y && A.x < (R.x + R.w) && A.y < (R.y +

R.h))

{

//point A is inside R

}

else

{

//point A is not inside R

}

One final note about SDL_Rect before I move on. If a rectangle has w
and h both equal to 0, then it is empty. By empty I mean that there is
not a single pixel within the rectangle, ergo there is no inside. By con-
vention, empty rectangles will also have x and y values of 0.

38 3. SDL Video

Figure 3.4 Lines passing between
rows and columns of pixels

03 FO SDL chapter 03 10/21/02 10:16 AM Page 38

Team LRN

SDL_Color
Another fundamental object in SDL’s video subsystem is SDL_Color.
Here’s what it looks like:

typedef struct{

Uint8 r;

Uint8 g;

Uint8 b;

Uint8 unused;

} SDL_Color;

The r, g, and b members represent the red, green, and blue intensity of
a particular color, respectively. The range for these values is 0 through
255, with 0 meaning a lack of intensity on that channel and 255 mean-
ing the maximum intensity for that channel. The unused member does
not represent a color at all; it also ranges from 0 to 255. If you want,
you can use it to store alpha information or something else.

Other than in palettes, SDL_Color is not used directly by SDL’s video
subsystem. There are places where you might use an SDL_Color, but it
is not required.

Although you are likely entirely comfortable working with the RGB color
space, it would be remiss of me not to at least take a little bit of time to
talk about it, since it is fundamental to the way SDL represents color.

The RGB color space is three-dimensional. The dimensions are red (R),
green (G), and blue (B). Each dimension is clamped so that only values
between 0.0 and 1.0 are represented along each axis. As far as SDL_Color
is concerned, 0.0 is represented by 0 and 1.0 is represented by 255,
giving you 254 values in between these extremes and a total of 256 dif-
ferent values. Since there are three color axes, there are 256×256×256
different values that can be represented by an SDL_Color, for a grand
total of 16,777,216 different and distinct colors. That’s a lot of colors.

Naturally, not all video modes have a format that allows all of these
colors to be represented. The number of bits per pixel might be 8, 16,
24, or 32. In the 24- or 32-bit modes, all of the colors in the RGB color
space can be represented. In 16-bit modes, each of the color axes are
truncated somewhat, typically down to 5 bits for red, 5 or 6 bits for
green, and 5 bits for blue. In this case, the lowest few bits of the axis
are insignificant and ignored.

39Core Structures

03 FO SDL chapter 03 10/21/02 10:16 AM Page 39

Team LRN

In 8-bit modes, it gets even weirder. Since there are only 256 possible
colors, truncating bits from each axis does little good because no mat-
ter how you slice it, the picture will be rather poor quality. Instead, we
come up with 256 values that represent full SDL_Colors and map each
value of the pixel to one of these 256 24-bit colors. This is called
color indirection and it uses a palette, also known as a color look-up table
(CLUT). With color indirection, you can get some interesting effects
that are not possible with normal RGB modes. I’ll talk more about
palettized modes a bit later in this chapter.

Retrieving Information
about the Video
Subsystem
This section would be better titled “SDL_VideoInfo and How to Use
It.” Also, I know you are tired of me blabbing theory at you for count-
less pages, so you’re finally going to do another example program. Yay!

To start with, take a look at the SDL_VideoInfo structure.

typedef struct{

Uint32 hw_available:1;

Uint32 wm_available:1;

Uint32 blit_hw:1;

Uint32 blit_hw_CC:1;

Uint32 blit_hw_A:1;

Uint32 blit_sw:1;

Uint32 blit_sw_CC:1;

Uint32 blit_sw_A:1;

Uint32 blit_fill:1;

Uint32 video_mem;

SDL_PixelFormat *vfmt;

} SDL_VideoInfo;

As you can see, most of the members of SDL_VideoInfo are bit flags.
They will either be 0 or 1, and they act much like a Boolean variable,
with 0 meaning not present and 1 meaning present. There are nine of
these bit fields and the names are somewhat cryptic, so take a look at
Table 3.1, which attempts to explain each of them.

40 3. SDL Video

03 FO SDL chapter 03 10/21/02 10:16 AM Page 40

Team LRN

As you can see, the bit flags aren’t really all that cryptically named,
they’re just abbreviated. The terms hw and sw simply mean hardware
and software, CC and A stand for color keys and alpha, and so on.
Having longer, more descriptive names really wouldn’t be too helpful
and would simply give you more to type.

The other two members of SDL_VideoInfo are video_mem and vfmt. The
video_mem member is, as you might imagine, the amount of video
memory available. Keep in mind that this is the total amount available
measured in kilobytes, not how much is left.

SDL_PixelFormat
The vfmt member is a pointer to an SDL_PixelFormat. Now is as good a
time as any to talk about this structure. You’ll be using it later to set
and get pixel values. Here’s what it looks like:

41Retrieving Information

Table 3.1 Bit Flag Members of SDL_VideoInfo

Member Meaning (if ==1)

hw_available It is possible to create surfaces in hardware.

wm_available A window manager is available.

blit_hw Blits from hardware surfaces to hardware surfaces are
accelerated.

blit_hw_CC Blits from hardware surfaces to hardware surfaces using
color keys are accelerated.

blit_hw_A Blits from hardware surfaces to hardware surfaces using
alpha information are accelerated.

blit_sw Blits from software surfaces to hardware surfaces are
accelerated.

blit_sw_CC Blits from software surfaces to hardware surfaces with
color keys are accelerated.

blit_sw_A Blits from software surfaces to hardware surfaces with
alpha information are accelerated.

blit_fill Color fills are accelerated.

03 FO SDL chapter 03 10/21/02 10:16 AM Page 41

Team LRN

typedef struct{

SDL_Palette *palette;

Uint8 BitsPerPixel;

Uint8 BytesPerPixel;

Uint32 Rmask, Gmask, Bmask, Amask;

Uint8 Rshift, Gshift, Bshift, Ashift;

Uint8 Rloss, Gloss, Bloss, Aloss;

Uint32 colorkey;

Uint8 alpha;

} SDL_PixelFormat;

There are many members here and believe it or not, nearly all of
them are useful (unlike a number of the values in DirectDraw’s
DDPIXELFORMAT structure, which to this day boggle my mind).

I am not going to discuss the palette member of SDL_PixelFormat at this
moment. I want to put the entire discussion of palettes in one place,
and that place is a little later on in the chapter.

Next you have BitsPerPixel and BytesPerPixel. These are pretty well-
named members; they tell you how many bits and bytes it takes to rep-
resent a single pixel in this pixel format. Typical values for BitsPerPixel
are 8, 16, 24, and 32, and typical values for BytesPerPixel are 1, 2, 3,
and 4. If the BitsPerPixel member is 8, there will be a palette.
Otherwise, the various other members starting with R, G, and B will
have values other than zero (in other words, it is an RGB mode
instead of a color indirection mode).

The next 12 members are various masks and shift values. These are
meant to work together for RGB modes to convert either to or from a
24-bit pixel value (in other words, an SDL_Color value). There are three
types of values represented here—a mask (Rmask, Gmask, Bmask, or Amask),
a shift value (Rshift, Gshift, Bshift, or Ashift), and a loss value (Rloss,
Gloss, Bloss, or Aloss). Naturally, R stands for red, G stands for green,
and B stands for blue. A stands for alpha. I’ll talk a bit about alpha
later, but keep in mind that when I’m talking about the other color
components, the same idea applies for alpha.

So Rmask, Rshift, and Rloss work together somehow. (The same applies
for the G and B members, but I’ll only talk about red and you can
extrapolate from there.) For just a moment, take a look at how a
typical 16-bit pixel format is put together (see Figure 3.5).

42 3. SDL Video

03 FO SDL chapter 03 10/21/02 10:16 AM Page 42

Team LRN

In Figure 3.5, you see that the top five bits (bits 11 through 15) are
the red bits, the bottom five bits (bits 0 through 4) are the blue bits,
and the six bits in the middle (bits 5 through 10) are the green bits.
If you made a binary number with a 1 in each red bit and a 0 in all
non-red bits, you would get a red mask, like this:

1111 1000 0000 0000 b

Since binary numbers are a little hard to work with, change the repre-
sentation to hexadecimal (which your compiler can work with), like this:

F800

This is the value you would get from Rmask if the pixel format you were
looking at were the same as the one I showed you in Figure 3.5. The
value of Rmask represents the value at which a pixel is 100% red and
0% green and blue (still ignoring alpha for the moment). In other
words, if you had an SDL_Color with an r value of 255 and g and b
values of 0, it would map to the value stored in Rmask.

To determine Rshift, take the Rmask and keep shifting it right by one
bit until there is a 1 in bit 0. In the example you are working with, you
would have to shift right 11 times, so Rshift would be 11.

Finally, Rloss is the difference between the 8-bit representation of a
color channel and the actual representation of the color in the for-
mat. In this case only 5 bits of red exist, so you have “lost” 3 bits; thus
Rloss would be 3.

How you have arrived at these values, however, is academic. SDL fig-
ures it all out for you, so you don’t even have to know how the color
is represented to convert from an SDL_Color value into the native pixel
format. Neat, huh? I’ll be showing you just how to do this when you
take a look at setting and getting individual pixels.

Finally, there are two additional members of SDL_PixelFormat—color
key and alpha. The color key is the native pixel format representation

43Retrieving Information

Figure 3.5 A 16-bit RGB color format

03 FO SDL chapter 03 10/21/02 10:16 AM Page 43

Team LRN

of the color that is transparent. I will speak more about color keys
later on in the chapter, along with alpha, the last member of
SDL_PixelFormat.

Grabbing Information
Now that you have been formally introduced to SDL_VideoInfo and
SDL_PixelFormat, it’s time to actually take a look at the information they
contain. To do that, you need to look at the SDL_GetVideoInfo function.

SDL_VideoInfo *SDL_GetVideoInfo(void);

This function takes no parameters and returns a pointer to an
SDL_VideoInfo. The pointer returned by this function does not need to
be freed, deleted, or otherwise deallocated. The information you
access with this pointer is read-only.

It’s time for a new example. You can find the code for this example in
FOSDL3_1 in the Examples folder of the CD-ROM. The code is as fol-
lows (minus comments, error checking, and blank lines that do exist
in the code on the CD).

#include “sdl.h”

#include <stdlib.h>

const SDL_VideoInfo* g_pVideoInfo = NULL;

int main(int argc, char* argv[])

{

SDL_Init(SDL_INIT_VIDEO);

atexit(SDL_Quit);

g_pVideoInfo = SDL_GetVideoInfo();

fprintf(stdout, “\nVideo Information:\n”);

fprintf(stdout, “hw_available? %d\n”, g_pVideoInfo->hw_available);

fprintf(stdout, “wm_available? %d\n”, g_pVideoInfo->wm_available);

fprintf(stdout, “blit_hw? %d\n”, g_pVideoInfo->blit_hw);

fprintf(stdout, “blit_hw_CC? %d\n”, g_pVideoInfo->blit_hw_CC);

fprintf(stdout, “blit_hw_A? %d\n”, g_pVideoInfo->blit_hw_A);

fprintf(stdout, “blit_sw? %d\n”, g_pVideoInfo->blit_sw);

fprintf(stdout, “blit_sw_CC? %d\n”, g_pVideoInfo->blit_sw_CC);

fprintf(stdout, “blit_sw_A? %d\n”, g_pVideoInfo->blit_sw_A);

fprintf(stdout, “blit_fill? %d\n”, g_pVideoInfo->blit_fill);

fprintf(stdout, “video memory(in K)? %d\n”, g_pVideoInfo-

>video_mem);

44 3. SDL Video

03 FO SDL chapter 03 10/21/02 10:16 AM Page 44

Team LRN

fprintf(stdout, “bits per pixel? %d\n”, g_pVideoInfo->vfmt-

>BitsPerPixel);

return(0);

}

As you can see, it is a rather simple program. You simply initialize SDL,
grab the SDL_VideoInfo pointer, and then start printing the results to
stdout. On my machine, the following information is sent to stdout.txt.

Video Information:

hw_available? 1

wm_available? 1

blit_hw? 1

blit_hw_CC? 1

blit_hw_A? 0

blit_sw? 1

blit_sw_CC? 1

blit_sw_A? 0

blit_fill? 1

video memory(in K)? 36864

bits per pixel? 16

My system has pretty good
support for hardware-
accelerated blitting (no
alpha acceleration, but
that’s expected). I could
have gone whole hog and
reported every single
member of SDL_PixelFormat
along with this other infor-
mation, but generally the
bits per pixel is enough.
That is more important to
me than the actual repre-
sentation of the pixel on
the screen.

45Retrieving Information

NOTE
Just a little note regarding whatever
you happen to get back as the bits
per pixel in your own stdout.txt file.
It might not match the actual bits
per pixel at which your screen is
currently set.When you call
SDL_GetVideoInfo prior to setting
the display mode (which you haven’t
quite gotten to yet), SDL will report
the “best” mode’s information
(translation—the mode with the
most capabilities, at least in theory).
If you get a result other than the
mode at which your video display is
currently set, that’s why.

03 FO SDL chapter 03 10/21/02 10:16 AM Page 45

Team LRN

Creating and Destroying
SDL Surfaces
So far you’ve been working with SDL’s video subsystem, but you haven’t
actually seen anything yet. It’s about time you do, don’t you think?

You are now going to start using SDL_Surface, the basic building block
of any SDL application that uses graphics. Here’s what the structure
looks like:

typedef struct SDL_Surface {

Uint32 flags;

SDL_PixelFormat *format;

int w, h;

Uint16 pitch;

void *pixels;

SDL_Rect clip_rect;

int refcount;

} SDL_Surface;

To be completely honest, there are more members than what I’ve
shown here. However, these are the only ones that you will need to use
SDL_Surface. If SDL had been written for C++ instead of for both C and
C++, the members shown would be public and the rest would be private.

When you get to creating surfaces, you will more fully explore the flags
member. It has to do with whether the surface was created in hardware
or software, whether or not to make a double buffer, and so on.

The format member is a pointer to an SDL_PixelFormat that describes,
to no one’s surprise, the manner in which the surface’s pixels are
formatted.

The w and h members are the surface’s width and height. Don’t ask
me why they are ints instead of Uint16 or something. It’s not like a
surface with a negative width or height is even possible.

The pitch member has something to do with the width and the bytes
per pixel of the surface, but it also deals with how video cards allocate
memory for surfaces. Suppose for a moment that you create a
640×480 surface that has 16 bits per pixel, or 2 bytes per pixel. In an
ideal world, each row of pixels would take up 2×640, or 1280 bytes,
and from the first location in the pixel array (index 0) to the location

46 3. SDL Video

03 FO SDL chapter 03 10/21/02 10:16 AM Page 46

Team LRN

in the pixel array that represents the pixel directly below it, the offset
would be 1280 bytes. However, because of the way video cards work,
this might not be so. If you based your calculations on width and bytes
per pixel, you’d have a screwed-up image in no time. For instance, the
number of bytes between the first location and the one below it might
be something like 1,536. Why? Ask the video card manufacturers and
designers. I’m just a programmer. And so I introduce the idea of
pitch. From the first pixel location in a row, it is pitch bytes to get to
the pixel location directly below it.

The pixels member is a pointer to the array of pixels that makes up
this surface. The reason it is a void* is that there is no standard way to
represent pixel data. On an 8-bit surface, you cast this to a Uint8*. On
a 16-bit surface, you cast to a Uint16*, and so on.

The clip_rect member is an SDL_Rect. The values stored here limit the
area on the SDL_Surface on which you can blit. SDL supports only rec-
tangular clipping areas and only one rectangle at a time.

Finally you have refcount, which is a little odd to explain, but if you
have worked with DirectX and/or COM in the past, then you already
know what it does. Suffice it to say that when a surface is created,
refcount becomes 1. When you later free a surface, it becomes 0 (in
other words, it is reduced by one). Only when refcount is 0 is the mem-
ory allocated to the surface actually freed. If for some reason you have
a number of things that depend on a particular SDL_Surface existing,
you might want to increase refcount when you create an object that
needs that particular surface, and then free the surface when you
destroy that object. That way, you ensure that the surface exists as long
as it is needed by other objects that depend on it.

Other than pixels and refcount, the members of SDL_Surface are read-
only. You manipulate the data pointed to by pixels in order to create
pixel-by-pixel graphics (such as lines or circles), and you manipulate
refcount as described in the preceding paragraph. Other than that,
SDL_Surface is just an informational structure.

Setting the Display Mode
The first surface you need to create in any SDL application is the dis-
play surface. This is the only surface that the user of your application
will actually see. To set up the display surface, you call SDL_SetVideoMode.

47Creating and Destroying SDL Surfaces

03 FO SDL chapter 03 10/21/02 10:16 AM Page 47

Team LRN

SDL_Surface *SDL_SetVideoMode(int width, int height, int bpp, Uint32

flags);

This function takes three parameters and returns a pointer to an
SDL_Surface. The return value represents the display surface. If you get
a NULL, then the function failed.

The parameters are self-explanatory for the most part. The width and
height parameters, for instance, specify how wide and how tall you
want the screen or window to be, respectively. The bpp parameter tells
SDL how many bits per pixel you want the surface to have.

This leaves the flags parameter, which you’ll notice is also a member
of SDL_Surface if you look back a bit. Coincidence? I think not. The
flags parameter is a number of bit flags ored together that tell SDL
exactly how you want your surface created. Table 3.2 contains the vari-
ous flags and brief descriptions of them.

48 3. SDL Video

Table 3.2 Bit Flags for the Flags Parameter

Bit Flag Meaning

SDL_SWSURFACE The surface is to be created in the main memory.

SDL_HWSURFACE The surface is to be created in the video memory.

SDL_ASYNCBLIT You want to use asynchronous blitting.

SDL_ANYFORMAT You want to use the pixel format of the actual display
surface.

SDL_HWPALETTE You want to use all 256 colors of the palette.

SDL_DOUBLEBUF You want to use a double buffer.

SDL_FULLSCREEN You want the application to be full-screen.

SDL_OPENGL You are using SDL with OpenGL.

SDL_OPENGLBLIT You are using SDL with OpenGL but would like to render
with SDL.

SDL_RESIZABLE You want a resizable window.

SDL_NOFRAME If windowed, you do not want to have the standard
window decoration around the display surface. In
full-screen, this is the default.

03 FO SDL chapter 03 10/21/02 10:16 AM Page 48

Team LRN

As you can see, these flags give you a lot of options, but don’t be
fooled into thinking that just because you specified certain flags, you
are going to get the surface you requested. SDL will try damned hard
to give you what you ask for; failing that, it’ll try its best to emulate
what you requested. If you ask for a 100 pixel by 100 pixel full-screen
surface, you will wind up with a larger resolution full-screen surface,
but you will find that you can only write to the middle 100×100-pixel
area. SDL aims to please.

After you call SDL_SetVideoMode, you can check the flags member of
the returned surface to see which flags SDL was able to accomplish.
So you can go ahead and ask for what you want, and then find out
later what you actually got. This is unlike DirectDraw in that with
DirectDraw, you have to first determine whether a particular configu-
ration is allowed, and then make it happen.

Window or Full Screen?
Depending on the game that you are designing, you have a number of
choices to make about how it presents information to the player. One
of these choices is about whether or not to make the application take
up the entire screen or simply occupy a window on the desktop. One
option is to allow the player to choose the version with which he is
most comfortable.

In SDL, creating a windowed environment is just as easy as creating a
full-screen environment; both use a single call to SDL_SetVideoMode. In
the case of a window, you use 0 for the bpp parameter and SDL_ANYFORMAT
(as well as any other flags you might desire) in the flags parameter.
If, for example, you wanted to make a 640×480 window, this is the call
you would make.

SDL_SetVideoMode(640,480,0,SDL_ANYFORMAT);

If you wanted to make the application run full-screen in 640×480
mode at 16 bits per pixel, the call would look like this:

SDL_SetVideoMode(640,480,16,SDL_FULLSCREEN);

That is really the only difference between the two, as far as SDL is
concerned. As a programmer, you don’t really have to worry about
anything. SDL sets up the environment for you, and you can just go
ahead and render.

49Creating and Destroying SDL Surfaces

03 FO SDL chapter 03 10/21/02 10:16 AM Page 49

Team LRN

But what about the other
flags listed in Table 3.2?
At this point, they aren’t
very important. Simply
knowing that they exist
will suffice. You can exper-
iment with them a little
later. Right now, you’re just
getting up and running.

If you want to play around with SDL_SetVideoMode for a while, I put
together a quick example program on the CD-ROM that you can use.
Simply change the parameters to SDL_SetVideoMode.

A final item: You don’t have to do anything to clean up the surface
that is created with SDL_SetVideoMode. When SDL_Quit is called, it does all
of the cleanup for you.

FOSDL3_2 is the example
that sets up the main dis-
play surface in windowed
format. Be sure to check
it out, because this small
program forms the founda-
tion for all other example
programs throughout the
book.

RGB Surfaces
Naturally, you are going to need more than one surface for any sort of
application that actually does something. For one thing, you need a
place to store all of the graphical data that your game needs, such as
tiles, sprites, and buttons.

In SDL, you can use one of two functions to create an off-screen sur-
face. You can use either SDL_CreateRGBSurface or SDL_CreateRGBSurfaceFrom.
These are the most flexible ways to create surfaces. Here are the
prototypes.

SDL_Surface *SDL_CreateRGBSurface(Uint32 flags, int width, int height,

int depth, Uint32 Rmask, Uint32 Gmask, Uint32 Bmask, Uint32 Amask);

50 3. SDL Video

TIP
Typically, in full-screen mode you will
also want to specify the SDL_DOUBLEBUF
flag, so that you can use double
buffering and page flipping.

TIP
If for whatever reason you are in a
piece of code that does not know
what variable points to the main
display surface, you can use the
SDL_GetVideoSurface() function to
retrieve the pointer to the main
display surface.

03 FO SDL chapter 03 10/21/02 10:16 AM Page 50

Team LRN

SDL_Surface *SDL_CreateRGBSurfaceFrom(void *pixels, int width, int

height, int depth, int pitch, Uint32 Rmask, Uint32 Gmask, Uint32 Bmask,

Uint32 Amask);

As you can see, these two functions are rather similar. First, take a look
at SDL_CreateRGBSurface, and then I’ll explain SDL_CreateRGBSurfaceFrom.

SDL_CreateRGBSurface has many parameters in common with
SDL_SetVideoMode, such as flags, width, height, and depth (a.k.a. bpp).
For the flags parameter, there is only a limited subset allowed—
SDL_SWSURFACE, SDL_HWSURFACE, SDL_SRCCOLORKEY, and SDL_ALPHA. You have
not learned about SDL_SRCCOLORKEY or SDL_ALPHA yet, but you will before
the end of the chapter.

The Rmask, Gmask, Bmask, and Amask should look familiar; they deal with
the pixel format. You can pretty much make up any old format you
like, and SDL will try its hardest to accommodate you.

Suppose you wanted to make a 16-bit surface with 5 bits of red, 6 bits
of green, and 5 bits of blue. Suppose you wanted this surface to be
100 pixels by 100 pixels. Finally, suppose you wanted this surface to
be in video memory (so SDL_HWSURFACE would be indicated in the flags
parameter). This is what the line of code would look like.

SDL_Surface pSurface = SDL_CreateRGBSurface(SDL_HWSURFACE, 100, 100, 16,

0xF800, 0x07E, 0x1F);

If there is a problem the function will return NULL, and you can use
SDL_GetError to enlighten you about why it failed.

Whenever you are finished with the surface, you must call
SDL_FreeSurface. Here’s the prototype.

void SDL_FreeSurface(SDL_Surface *surface);

This function returns no
value and takes as its single
parameter a pointer to the
surface for which you want
to free the resources. The
resources are actually only
freed if the reference count
of the surface drops to 0.

51Creating and Destroying SDL Surfaces

NOTE
Any SDL function that creates a
surface must be called after you call
SDL_SetVideoMode.

03 FO SDL chapter 03 10/21/02 10:16 AM Page 51

Team LRN

Now take a look at SDL_CreateRGBSurfaceFrom. Here again is the prototype.

SDL_Surface *SDL_CreateRGBSurfaceFrom(void *pixels, int width, int

height, int depth, int pitch, Uint32 Rmask, Uint32 Gmask, Uint32 Bmask,

Uint32 Amask);

For the most part, the parameters here are the same as for
SDL_CreateRGBSurface. The notable differences are the lack of a flags
parameter (a surface created with this function is always in the main
memory) and the addition of the pixels and pitch parameters. Other
than these differences, the usage of the parameters is the same.

The pixels parameter is a pointer to the pixel data that you want to use
for the surface. You are responsible for allocating and freeing this
memory. It will not be deallocated when SDL_FreeSurface is called.
Naturally, the data pointed to by pixels should be large enough for the
entire size of the surface and should use the pixel format specified by
Rmask, Gmask, Bmask, and Amask. It should also follow the pitch specified
in the appropriate parameter.

In other words, SDL_CreateRGBSurfaceFrom is the super hard-core surface
creation function. You probably won’t use it much, but it’s good to
know that it’s there.

Loading Bitmaps
Typically, you won’t need to use SDL_CreateRGBSurface or
SDL_CreateRGBSurfaceFrom very often. You will have bitmapped graphics
saved to a file somewhere, and for the game you simply want to load
them in and go. SDL has supplied a function just for this occasion
called SDL_LoadBMP. It is somewhat limited in its use because it will only
load .bmp files, but it’s better than nothing. For the ability to load
other types of images, such as JPGs, you can use SDL_image, which
I will talk about in Chapter 8. For now, just stick to .bmp files.

Here is the prototype for SDL_LoadBMP.

SDL_Surface *SDL_LoadBMP(const char *file);

This function takes a single parameter named file, which is a string
that specifies which file you want to load. The value returned by this
function is a pointer to a new surface that contains the loaded bitmap
file. If this function fails, the return value is NULL.

52 3. SDL Video

03 FO SDL chapter 03 10/21/02 10:16 AM Page 52

Team LRN

Converting Surfaces
There will be times when you have one surface in some format and
you want to copy a portion of it over to another surface with a differ-
ent format. That is the basis of all 2D graphics on raster displays, after
all…copying little rectangular blocks of pixels hither and thither.

However, when the surfaces have two different formats, it means that
the pixel data needs to be converted from one format to another.
While this conversion is not particularly difficult, it does take some
time; if this conversion is happening most of the time, the application
can slow down rather quickly.

So how can you minimize or eliminate this problem? The answer is to
keep as much of the pixel data as possible in the same format (typically
the same format as the display surface).

Here’s a scenario: You have two surface pointers, pSurf1 and pSurf2.
You intend to copy data from pSurf2 onto pSurf1. This will occur rather
frequently and you want it to be as fast as possible, so you’d like to
ensure that pSurf2 is the same format as pSurf1. To do this, you use
SDL_ConvertSurface. Here’s the prototype.

SDL_Surface *SDL_ConvertSurface(SDL_Surface *src, SDL_PixelFormat *fmt,

Uint32 flags);

This function takes three parameters and returns a pointer to a newly
created surface (if it’s successful) or NULL (if it fails). The src parameter is
the surface that you want to convert to another format (in this scenario,
pSurf2). The fmt parameter is the pixel format into which you want to
convert the surface (in other words, pSurf1->format). Finally, the flags
parameter here has the same meaning as it did in SDL_CreateRGBSurface.

The result of this conversion is a new surface that allows data to be
quickly transferred to the destination surface without any conversion.
Good stuff.

Another conversion function does much the same thing and uses
SDL_ConvertSurface internally. It is called SDL_DisplayFormat and, as you
might imagine, it converts a surface into the same format as the display
surface. Because the display surface tends to be the final destination of
graphics, it’s a format in which you will want most (if not all) of your
surfaces.

SDL_Surface *SDL_DisplayFormat(SDL_Surface *surface);

53Creating and Destroying SDL Surfaces

03 FO SDL chapter 03 10/21/02 10:16 AM Page 53

Team LRN

This function takes a single parameter (a pointer to a surface) and
returns a pointer to a new surface that has the same format as the dis-
play surface. You can then free the original surface because you don’t
need it any more.

Working with SDL Surfaces
Knowing how to create surfaces is all well and good, but what good is
creating them if you don’t know how to do anything with them? I don’t
know about you, but I don’t find blank screens particularly interesting.
Therefore, you are going to start filling them up with data in the form
of pixels. There are primarily three ways to change pixel data on a
surface—by using color fills, setting individual pixels, or blitting.

Color fills, which are detailed in the “Filled Rectangles” section that
follows, are typically only used to clear the screen or a large rectangu-
lar portion of the screen. They are still important, nonetheless.

If you want to get hard core, you can set individual pixels. If you can
set a single pixel, you can do anything graphics-wise, such as drawing
lines, circles, ellipses, polygons, and whatever else you can imagine.
SDL has no functions for drawing these primitives, so if you want
them you have to implement them yourself. The ability to retrieve the
value of individual pixels goes hand-in-hand with setting them. Both
topics are detailed in the “Setting and Getting Pixels” section.

Finally, there is blitting, which is more heavily used than either of the
other two methods. The basis of blitting is quite simple: You transfer a
rectangular block of pixels from one surface to another. Heck, you can
even do it yourself once you know how to set and get pixel data. Of
course, because blitting is typically hardware-accelerated, you won’t want
to do it yourself. This topic is covered in detail in the “Blitting” section.

Filled Rectangles
The first thing that you’re going to learn is how to render color-filled
rectangles using SDL_FillRect.

int SDL_FillRect(SDL_Surface *dst, SDL_Rect *dstrect, Uint32 color);

This function returns an int. If successful, the value returned will be 0.
If it fails, the return value will be -1.

54 3. SDL Video

03 FO SDL chapter 03 10/21/02 10:16 AM Page 54

Team LRN

There are three parameters. The first (dst) is a pointer to an SDL_Surface
on which you are drawing the filled rectangle. The second (dstrect) is a
pointer to an SDL_Rect that describes the rectangular area that you want
to fill. The third (color) is a Uint32 that represents the color with which
you want to fill the rectangle. The only problem is, that color has to be
in the native pixel format for the surface (which is why this function
doesn’t take an SDL_Color).

Fortunately, there is a handy little function for taking an SDL_Color (or
at least all of the components of it) and converting it into the native
pixel format for the surface. This function is called SDL_MapRGB.

Uint32 SDL_MapRGB(SDL_PixelFormat *fmt, Uint8 r, Uint8 g, Uint8 b);

This function takes four parameters. fmt is a pointer to an
SDL_PixelFormat for the surface to which you are mapping a color. The
r, g, and b parameters are (naturally) the red, green, and blue compo-
nents of that color. The value returned by this function is the closest
approximation of the color specified in that particular pixel format.

So I guess it’s time for another example. This is going to be nice and
simple, but at least you’re going to actually see something. You can
find this example on the CD as FOSDL3_3. As usual, the version you
see here has been stripped of comments and error checking to save
space. The version on the CD is complete.

#include “sdl.h”

#include <stdlib.h>

const int SCREEN_WIDTH=640;

const int SCREEN_HEIGHT=480;

SDL_Surface* g_pDisplaySurface = NULL;

SDL_Event g_Event;

SDL_Rect g_Rect;

Uint8 g_Red, g_Green, g_Blue;

Uint32 g_Color;

int main(int argc, char* argv[])

{

SDL_Init(SDL_INIT_VIDEO);

atexit(SDL_Quit);

g_pDisplaySurface =

SDL_SetVideoMode(SCREEN_WIDTH,SCREEN_HEIGHT,0,SDL_ANYFORMAT);

55Working with SDL Surfaces

03 FO SDL chapter 03 10/21/02 10:16 AM Page 55

Team LRN

for(;;)

{

if(SDL_PollEvent(&g_Event)==0)

{

g_Red=rand()%256;

g_Green=rand()%256;

g_Blue=rand()%256;

g_Color=SDL_MapRGB(g_pDisplaySurface-

>format,g_Red,g_Green,g_Blue);

g_Rect.x=rand()%SCREEN_WIDTH;

g_Rect.y=rand()%SCREEN_HEIGHT;

g_Rect.w=rand()%(SCREEN_WIDTH-g_Rect.x);

g_Rect.h=rand()%(SCREEN_HEIGHT-g_Rect.y);

SDL_FillRect(g_pDisplaySurface,&g_Rect,g_Color);

SDL_UpdateRect(g_pDisplaySurface,0,0,0,0);

}

else

{

if(g_Event.type==SDL_QUIT) break;

}

}

return(0);

}

This program will randomly draw filled rectangles of random colors to
a window. Figure 3.6 shows the output of this example.

There are a couple of functions used in this example that I have not
covered yet. One of these is SDL_PollEvent, which is covered in Chapter
4, “SDL Event Handling and the Window Manager.” The other is
SDL_UpdateRect, which is explained later in the chapter. This function is
necessary to update the display surface; otherwise, it remains the same.
If you are interested in doing an experiment, comment that line out
and recompile the example. You will see that you simply get a black
window. The rectangles are still being drawn, but you don’t see them.

Setting and Getting Pixels
In theory, you can set an individual pixel using SDL_FillRect, simply by
specifying a rectangle with a width and height of 1. This, however, is not
a great idea. If you have a need to set individual pixels, the better way

56 3. SDL Video

03 FO SDL chapter 03 10/21/02 10:16 AM Page 56

Team LRN

to go is to access the frame buffer directly. If you recall, I discussed the
pixels member of SDL_Surface earlier, so you know that it is a pointer to
the pixel data for the surface. This member is how you will access indi-
vidual pixels on a surface.

Of course, it is never that simple (at least not in every case). Depending
on where your surface exists (either in the video memory or the main
memory), you may or may not have to lock the surface. Because of how
SDL works, the actual surface format might be different than the sur-
face format you see from the programming end (in other words, when
SDL accommodates you with an impossible pixel format that doesn’t
exist on any video card).

When you want to do direct manipulation of pixel data on a surface,
you go through a number of steps.

1. Determine whether the surface needs to be locked.

2. Lock the surface if necessary.

3. Manipulate the pixel data.

4. Unlock the surface if necessary.

57Working with SDL Surfaces

Figure 3.6 The output of FOSDL3_3

03 FO SDL chapter 03 10/21/02 10:16 AM Page 57

Team LRN

Step 1 is rather easy. To determine whether a surface needs to be
locked, you use the SDL_MUSTLOCK macro. If you had a surface pointer
named pSurface, this is what it would look like.

if(SDL_MUSTLOCK(pSurface))

{

//surface needs to be locked

}

If you do need to lock the surface, you use the SDL_LockSurface function,
shown here.

int SDL_LockSurface(SDL_Surface *surface);

This function takes a single parameter (surface) that is a pointer to an
SDL_Surface. The value returned will be 0 if the function is successful
and -1 if it failed and could not lock the surface.

You then manipulate any pixel data that you want and follow it with a
call to SDL_UnlockSurface.

void SDL_UnlockSurface(SDL_Surface *surface);

This function returns no
value and takes a single
parameter, a pointer to an
SDL_Surface.

Now that you know how to
lock and unlock a surface,
you can expand on our
little object lesson with
pSurface.

//lock surface if needed

if(SDL_MUSTLOCK(pSurface)) SDL_LockSurface(pSurface);

//manipulate pixels here

//unlock surface if needed

if(SDL_MUSTLOCK(pSurface)) SDL_UnlockSurface(pSurface);

Naturally, you will want to do some error checking during the call to
SDL_LockSurface, but for brevity I left it out.

58 3. SDL Video

NOTE
Calls to SDL_LockSurface and
SDL_UnlockSurface are recursive.
If you call SDL_LockSurface three
times in succession, you then need
to call SDL_UnlockSurface three times
in succession, or the surface will
remain locked.

03 FO SDL chapter 03 10/21/02 10:16 AM Page 58

Team LRN

The only thing left is to
manipulate the individual
pixels. That is the tricky
part because a pixel might
take up 1, 2, 3, or 4 bytes.
Fortunately there is a gen-
eral solution for writing to
any format.

First, you need to get your
color into the native pixel
format. For this step, you
can simply use SDL_MapRGB.

Sure, you could convert it yourself using the information in the sur-
face’s pixel format, but why do that when a perfectly good function
already exists?

Second, you need to determine where exactly in the frame buffer the
pixel you want to write is. This is easily calculated by y times the pitch
of the surface plus x times the bytes per pixel of the surface.

Finally, you need to copy the appropriate number of bytes from the
variable storing the color onto the frame buffer. You can accomplish
this with a call to memcpy from the variable containing the color to the
memory location.

Here’s how to do it in code.

//r,g,b are red, green, and blue components of a color we wish to write

//pSurface is the surface we are writing to

//x and y are the location of the pixel we are writing

//declare the color variable

Uint32 Color;

//convert color

Color=SDL_MapRGB(pSurface->format,r,g,b);

//pointer that we can modify

char* pData;

//grab the frame buffer

pData=(char*)pSurface->pixels;

//vertical offset

pData+=(y*pSurface->pitch);

//horizontal offset

59Working with SDL Surfaces

CAUTION
Calling SDL_LockSurface might,
depending on which surface is being
locked, cause certain system locks,
so you should avoid any system calls
when a lock is occurring.You should
spend as little time as possible with
a surface locked to avoid system
freezes or decreased performance.

03 FO SDL chapter 03 10/21/02 10:16 AM Page 59

Team LRN

pData+=(x*pSurface->format->BytesPerPixel);

//copy color

memcpy(pData,&Color,pSurface->format->BytesPerPixel);

If you want to see this code in action, you can load the project on the
CD called FOSDL3_4. This example operates for the most part identi-
cally to the random rectangles example, except that the rectangle-
making code has been replaced with pixel-plotting code. For a peek
at what FOSDL3_4 looks like, refer to Figure 3.7.

If you can set one pixel, you can set a thousand pixels…or 100,000
pixels. You can draw lines, ellipses, boxes, polygons, and anything else
because everything is made up of pixels. Of course, you won’t get any
help from SDL, but there are tons and tons of resources on the
Internet and in other books that explain the algorithms for drawing
any old graphical primitive you could ever want.

Blitting
The third method of creating graphics with SDL is by blitting. The
word “blit” comes from the words “Block Transfer”—in the past it was
typically abbreviated BLT (hold the tomato). Because BLT has no

60 3. SDL Video

Figure 3.7 The output of FOSDL3_4

03 FO SDL chapter 03 10/21/02 10:16 AM Page 60

Team LRN

vowels in it, it was unpronounceable, so insert an “i” to make the word
“blit” and continue on with life.

In order to blit, you need two surfaces (one source and one destina-
tion) and two rectangles (one each for the source and destination).
Once you’ve got this information, you can call SDL_BlitSurface.

int SDL_BlitSurface(SDL_Surface *src, SDL_Rect *srcrect, SDL_Surface

*dst, SDL_Rect *dstrect);

This function takes four parameters—a pointer to the source surface
(src), a pointer to the source rectangle (srcrect), a pointer to the
destination surface (dst), and a pointer to the destination rectangle
(dstrect). Note that srcrect and dstrect do not necessarily have to
point to rectangles that are the same size (in other words, the same
width and height), and these parameters can be NULL to indicate that
the entire surface is to be used either as the source or the destination.

The return value of SDL_BlitSurface is an int. If the return value is 0,
then everything is cool. If the return value is -1, there is an error; if it
is –2, one of the surfaces is in video memory, which was lost, and you
need to restore it.

On to another example, this time demonstrating blitting. The full
code for this example is under FOSDL3_5 in the Examples folder on
the CD. As usual, the code below is stripped of commenting and error
checking to save space.

#include “sdl.h”

#include <stdlib.h>

const int SCREEN_WIDTH=640;

const int SCREEN_HEIGHT=480;

SDL_Surface* g_pDisplaySurface = NULL;

SDL_Surface* g_pBitmapSurface = NULL;

SDL_Event g_Event;

SDL_Rect g_SrcRect,g_DstRect;

int main(int argc, char* argv[])

{

SDL_Init(SDL_INIT_VIDEO);

g_pDisplaySurface = SDL_SetVideoMode(SCREEN_WIDTH,

SCREEN_HEIGHT, 0, SDL_ANYFORMAT);

g_pBitmapSurface=SDL_LoadBMP(“ball.bmp”);

g_SrcRect.w=g_DstRect.w=g_pBitmapSurface->w;

61Working with SDL Surfaces

03 FO SDL chapter 03 10/21/02 10:16 AM Page 61

Team LRN

g_SrcRect.h=g_DstRect.h=g_pBitmapSurface->h;

g_SrcRect.x=g_SrcRect.y=0;

for(;;)

{

if(SDL_PollEvent(&g_Event)==0)

{

g_DstRect.x=rand()%(SCREEN_WIDTH-g_DstRect.w);

g_DstRect.y=rand()%(SCREEN_HEIGHT-g_DstRect.h);

SDL_BlitSurface(g_pBitmapSurface,

&g_SrcRect,g_pDisplaySurface,

&g_DstRect);

SDL_UpdateRect(g_pDisplaySurface,0,0,0,0);

}

else

{

if(g_Event.type==SDL_QUIT) break;

}

}

return(0);

}

As you might imagine, this example blits an image of a ball (stored
in a file named ball.bmp) to random locations on the screen. After
a couple of seconds, the screen looks something like Figure 3.8.

Color Keys (Transparency)
As you saw in example FOSDL3_5, the default behavior of
SDL_BlitSurface is to simply copy a rectangular block of pixels from
one surface to another. However, that is typically not good enough.
More often than not, you’ll have portions of the image that should
be invisible when you blit, thus leaving that pixel unchanged when
blitting occurs. This is done by setting a transparent color key. You
can select a single color that will be ignored when blitting from one
surface to another. A good color to choose is magenta (full red and
full blue, no green) because it is not often used. In the image used for
FOSDL3_5, the transparent pixels are represented by black.

To set a color key, you use the SDL_SetColorKey function, yet another
SDL function that is named for exactly what it does.

int SDL_SetColorKey(SDL_Surface *surface, Uint32 flag, Uint32 key);

62 3. SDL Video

03 FO SDL chapter 03 10/21/02 10:16 AM Page 62

Team LRN

This function returns an int. In typical SDL style, 0 means success and
-1 means an error. The function has three parameters—a pointer to
the surface for which you are setting the color key (surface), a set of
flags (flag), and a value to use as the transparent color (key).

There are two different flags that you can use in the flag parameter.
One is SDL_SRCCOLORKEY, and the other is SDL_RLEACCEL. The SDL_RLEACCEL
flag is not used by itself, so you have three different values that you
can pass in the flag parameter: 0, SDL_SRCCOLORKEY, and SDL_SRCCOLORKEY
| SDL_RLEACCEL.

If you pass a 0, then any color key you might have had on that
surface will be cleared. If you pass SDL_SRCCOLORKEY, the key holds the
value that will be set as the transparent color. The color has to be in
the native pixel format, so it is a good idea to use SDL_MapRGB here.
If you pass SDL_SRCCOLORKEY | SDL_RLEACCEL, you set the color key and
set up the surface to use RLE (Run Length Encoded) acceleration.
(In other words, you encode the image so it blits faster by skipping
over transparent pixels.)

63Working with SDL Surfaces

Figure 3.8 The output of FOSDL3_5

03 FO SDL chapter 03 10/21/02 10:17 AM Page 63

Team LRN

Just so you can see the difference, take a look at FOSDL3_6 on the
CD. It is virtually identical to FOSDL3_5; I only added a single line
to the program to set the color key. Because it is so similar, I’m not
putting the full source in the book. The only difference is the follow-
ing line, added right after the line that loads the image of the ball.

SDL_SetColorKey(g_pBitmapSurface,SDL_SRCCOLORKEY,0);

This one line makes a big difference, as you can see in Figure 3.9.

If you ever need to know whether the source color key is set for a sur-
face, you can examine the flags member of the SDL_Surface represent-
ing it. SDL_SRCCOLORKEY will be present if there is a color key. Similarly,
SDL_RLEACCEL will be present if you specified RLE acceleration. If
SDL_SRCCOLORKEY is present, the color key member of the surface’s pixel
format will have the color key.

64 3. SDL Video

Figure 3.9 The output of FOSDL3_6

03 FO SDL chapter 03 10/21/02 10:17 AM Page 64

Team LRN

Clipping Output
It is quite likely that there will come a time when you need to write
graphics only to a certain portion of the screen, while keeping the
area around it free of graphics. SDL can help you with this. You can
write to the entire screen (or the entire window, if you are running in
windowed mode), but you can specify any rectangular area as the only
area to which you can write until you set another rectangular area.
This is quite useful if, for example, you have some sort of status panel
on one side of the screen, and the rest of the screen is used for the
game’s play area.

In any case, this is something you should know how to do even if you
never use it. To set a single rectangular area as your output area on a
surface, you call the SDL_SetClipRect function. ClipRect is short for
“Clipping Rectangle.”

void SDL_SetClipRect(SDL_Surface *surface, SDL_Rect *rect);

This function returns no value. It takes two parameters—a pointer to
a surface for which you are setting the clipping area (surface) and a
pointer to a rectangle that describes the clipping rectangle (rect).
If you use NULL for rect, the entire area of the surface will be the new
clipping area.

The clipping area only affects blitting operations that use the surface
as the destination. Color fills and pixel plotting are unaffected. To
retrieve the clipping rectangle of a surface, you use the SDL_GetClipRect
function.

void SDL_GetClipRect(SDL_Surface *surface, SDL_Rect *rect);

This has the same parameter list as SDL_SetClipRect except that in this
case, rect is filled in with the current clipping rectangle used by the
surface.

Here is another quick
example, built from
FOSDL3_6. The new
example can be found
in FOSDL3_7; it contains
an addition of only a few
lines.

65Working with SDL Surfaces

TIP
It’s okay to set a clipping area that
exceeds the bounds of a surface
because SDL will fix it so the clip-
ping rectangle fits entirely on the
surface.

03 FO SDL chapter 03 10/21/02 10:17 AM Page 65

Team LRN

g_ClipRect.x=32;

g_ClipRect.y=32;

g_ClipRect.w=SCREEN_WIDTH-64;

g_ClipRect.h=SCREEN_HEIGHT-64;

SDL_SetClipRect(g_pDisplaySurface,&g_ClipRect);

Essentially, this rectangle chops off 32 pixels from each edge of the
display surface. The output of FOSDL3_7 looks like Figure 3.10.

Other Topics
At this point, you have all of the basics for SDL’s video subsystem.
However, I glossed over some of the less fundamental aspects of the
subsystem, and this is the part of the chapter where I will rectify that.
The next few topics don’t really have much to do with one another,
but I would be remiss not to cover them because they are part of the
subsystem.

66 3. SDL Video

Figure 3.10 The output of FOSDL3_7

03 FO SDL chapter 03 10/21/02 10:17 AM Page 66

Team LRN

Palettes
I briefly mentioned palettes when I covered SDL_PixelFormat. Palettes
are a way of using color indirection for 8-bit surfaces.

In the age of video cards capable of 32 bits per pixel at good speeds,
you might wonder why in the world you would ever limit yourself to
256 colors. There are a number of reasons.

First, even though video hardware gets better each year, a surface that
has 32 bits per pixel takes up four times as much memory as one that
only has 8 bits per pixel, so you can copy the same size 8-bit surface in
a quarter of the time it would take you to transfer the 32-bit surface.
To rephrase: 8-bit surfaces take up less space and transfer quicker.
However, depending on the architecture, the hardware might actually
transfer 32-bits faster than 8-bits in some cases!

Second, there are some devices, most notably laptops and handhelds
but also older hardware, that just do better with 8 bits per pixel. If you
are developing mass-market games, you don’t want to limit your market.

Third, 8-bit surfaces are the only way to achieve certain cool effects.
I’m talking about palette animation, otherwise known as color cycling.
You can create the illusion of movement without blitting a single pixel
just by switching colors around in the palette.

Of course, there are the downsides, the big one being that you only
have 256 colors with which to work. This not only limits the number
of colors on the screen, but it also makes it difficult to generate art.

In any case, a palette in SDL is represented by an SDL_Palette struc-
ture, which looks like this:

typedef struct{

int ncolors;

SDL_Color *colors;

} SDL_Palette;

This structure is quite simple. The two members are ncolors, which
contains an int that specifies how many colors are in the palette (typi-
cally 256, but you could make your own smaller palettes for switching
out colors) and colors, which is a pointer to an array of SDL_Color vari-
ables. These SDL_Color variables contain all of the colors in the palette.

67Other Topics

03 FO SDL chapter 03 10/21/02 10:17 AM Page 67

Team LRN

To create a surface that has a palette, you need to specify 8 bits per
pixel during the creation of that surface. If you are working in full-
screen mode, you will also want to use the SDL_HWPALETTE flag because it
will give you better control over the colors in the palette. Here’s why: If
the desktop is running in an 8-bit mode, the operating system typically
reserves a handful of colors so it can display itself properly. In Windows,
this handful is 20 colors—the first and last ten in the palette. That
leaves 236 colors that you can set in the physical palette and remain
“Windows safe.” However, there is also a logical palette that consists
of 256 colors that you can use on your surface. When it comes time to
display the surface, the colors in the logical palette will map onto the
closest color in the physical palette and be shown in that color.

Sound like a pain in the butt? It is. If you are stuck using palettes and
you plan to have your game run in a window, you have your work cut
out for you. I suggest that if you need to use palettes, you also use
full-screen.

If you have a surface with a palette, you’ll need to know how to set the
colors in that palette. SDL has two functions for this; the first is
SDL_SetPalette.

int SDL_SetPalette(SDL_Surface *surface, int flags, SDL_Color *colors,

int firstcolor, int ncolors);

This function returns an int. If SDL was able to set all of the colors as
specified in the function call, it will return 1. If it was unable to set all
of the colors, it will return 0. In the case of SDL_SetPalette, a returned
value of 0 is not necessarily an error—it means that it couldn’t set all
of the colors, but it did set as many as it could. If you specified
SDL_HWPALETTE, this function will always return 1. If you are trying to call
this function on a non-8-bit surface, it will naturally return 0.

The first parameter (surface) is a pointer to a surface for which you
are setting palette colors. The second parameter (flags) is one or
both of SDL_LOGPAL (logical palette) and SDL_PHYSPAL (physical palette).
These two flags can be combined. The third parameter (colors) is a
pointer to an array of SDL_Color values. The fourth parameter
(firstcolor) is the first color in the palette you want to set. Finally,
the last parameter (ncolors) is how many colors you want to set.

The other function you can use to set colors in a palette is called
SDL_SetColors.

68 3. SDL Video

03 FO SDL chapter 03 10/21/02 10:17 AM Page 68

Team LRN

int SDL_SetColors(SDL_Surface *surface, SDL_Color *colors, int first-

color, int ncolors);

As you can see, this function looks very much like SDL_SetPalette, with
only the flags parameter missing. In fact, other than that, the opera-
tion of this function is identical to SDL_SetPalette, with an assumed
flags value of SDL_LOGPAL|SDL_PHYSPAL. If you are in full-screen mode
with SDL_HWPALETTE set, there is no reason not to use SDL_SetColors, but
if you really like typing you can always use SDL_SetPalette.

Here is a quick example of using palettes. The example is named
FOSDL3_8 on the CD and can be found in the usual place. This exam-
ple sets a full-screen 640×480 8-bit mode, sets up a grayscale palette,
and then draws a number of filled rectangles—one of each color.

For the most part, this example is identical to the others you’ve seen
in this chapter. The only difference is the setup of the palette and the
drawing of the rectangles, which is shown here.

//set up colors

int index;//loop variable

for(index=0;index<256;index++)

{

//make a shade of gray

g_PaletteColors[index].r=index;

g_PaletteColors[index].g=index;

g_PaletteColors[index].b=index;

}

//set the palette

SDL_SetColors(g_pDisplaySurface,g_PaletteColors,0,256);

//do color fills

SDL_Rect FillRect;

for(index=0;index<256;index++)

{

FillRect.x=index;

FillRect.y=index;

FillRect.w=SCREEN_WIDTH-index;

FillRect.h=SCREEN_HEIGHT-index;

SDL_FillRect(g_pDisplaySurface,&FillRect,index);

}

//update the screen

SDL_UpdateRect(g_pDisplaySurface,0,0,0,0);

69Other Topics

03 FO SDL chapter 03 10/21/02 10:17 AM Page 69

Team LRN

In an ideal world I would show you what this looks like here, but 8-bit
surfaces being what they are, the screen captures are almost always
garbled. If you want to see this example, you’ll have to run it.

That’s really about it for palettes. It’s all about how to make a surface
with one and how to manipulate the colors.

Updating the Display
All along, you have used SDL_UpdateRect to update the screen without
really understanding why you are doing so. SDL has two basic ways to
deal with screen updates. One is dirty rectangle screen updates (in
which you use a function like SDL_UpdateRect), and the other is double
buffering (which is used in full-screen mode).

In dirty rectangle updates (the default for SDL), you can specify one
or more rectangles that you want to have updated. You can do this
with one of two functions—SDL_UpdateRect or SDL_UpdateRects. Yes, the
“s” makes a difference.

void SDL_UpdateRect(SDL_Surface *screen, Sint32 x, Sint32 y, Sint32 w,

Sint32 h);

void SDL_UpdateRects(SDL_Surface *screen, int numrects, SDL_Rect *rects);

In SDL_UpdateRect, there are five parameters. First is a pointer to the
surface you want to update (screen), followed by x, y, w, and h, which
describe the single rectangle you want to update. If these four values
are 0, the entire surface is updated (which is what you have been
doing so far).

In SDL_UpdateRects, there are only three parameters. The first (screen)
is again a pointer to a surface. The second (numrects) is how many
rectangles are in the array pointed to by the third parameter (rects).
Those rectangles are updated for the surface. This is a good function
to use if only certain portions of the screen have actually changed
since the last update. There is no combining of rectangles when you
use this function. The rectangles in the list are totally up to you, so if
you overdraw a number of times you only have yourself to blame when
your performance drops.

Finally, there is SDL_Flip. This is intended for use with full-screen double-
buffered modes (in other words, modes set with SDL_DOUBLEBUF as one
of the flags). However, because SDL aims to please, calling SDL_Flip

70 3. SDL Video

03 FO SDL chapter 03 10/21/02 10:17 AM Page 70

Team LRN

when you’re not double buffering simply calls SDL_UpdateRect (screen, 0,
0, 0, 0), so it’s not a requirement to double buffer.

int SDL_Flip(SDL_Surface *screen);

Unlike SDL_UpdateRect and SDL_UpdateRects, this function returns a
value. If it is successful, it returns 0. If it fails, it returns -1. The only
parameter is a pointer to a surface (screen).

If you are double buffering, you will typically want to update the
entire screen every frame prior to calling SDL_Flip—in other words,
completely redraw the entire screen. If you are not using double
buffering, you can just redraw those portions of the screen that need
it prior to updating.

Alpha Blending
And now for perhaps the most attractive feature of SDL—alpha blend-
ing. Even if hardware support for alpha blending doesn’t exist, SDL
will do its best to emulate it for you. Naturally anything emulated will
be a bit slower, but the fact is that SDL will do it for you so you don’t
have to implement it yourself.

In case you are unfamiliar with what alpha blending is, it’s a way of
doing translucent blitting. This is useful for a variety of effects, includ-
ing glass, ghost images, teleporter effects, fading out a defeated enemy,
and just about anything else you can imagine. It also has a decent
“wow” factor for the user of your application. If something slowly fades
out rather than just disappearing instantly, it looks much cooler.

Alpha values range from 0% to 100%, with the actual values based on
how the alpha is being done. At 0%, which means zero literally, the
blit will be completely transparent. At 100%, the blit will be com-
pletely opaque (just like the blits we have done in this chapter).

Essentially, the mathematics behind an alpha blend look like the fol-
lowing equation.

(Resulting_Color)=(Alpha)*(Source_Color)+(1.0-Alpha)*(Destination_Color)

This equation works based on Alpha being between 0.0 (0%) and 1.0
(100%). When you are using byte values (as you do in SDL), 0 is 0%
and 255 is 100% or 1.0.

71Other Topics

03 FO SDL chapter 03 10/21/02 10:17 AM Page 71

Team LRN

You can do alpha blits in one of two ways. You can specify a single
alpha value for an entire surface or you can specify an alpha value for
each pixel on the surface.

Per-Surface Alpha
To specify a per-surface alpha value, you simply need to call SDL_SetAlpha.

int SDL_SetAlpha(SDL_Surface *surface, Uint32 flag, Uint8 alpha);

If this function looks familiar, don’t be surprised. It is essentially the
same layout as SDL_SetColorKey. The return value of this function is an
int. It will be 0 if it is successful and -1 if it fails. The first parameter
(surface) is the surface for which you are setting a single alpha value.
The second parameter (flag) is any combination of SDL_SRCALPHA and
SDL_RLEACCEL. If SDL_SRCALPHA is present, an alpha value for the surface
will be set. If it is not present, the alpha value for the surface will be
cleared. If SDL_RLEACCEL is ored with SDL_SRCALPHA, the surface will be
optimized for run length encoded acceleration (which is much the
same as using SDL_RLEACCEL with a color key).

The third parameter (alpha) is an alpha value to use for the surface. It
ranges from 0 to 255. You can also use SDL_ALPHA_TRANSPARENT for 0 and
SDL_ALPHA_OPAQUE for 255. Another important value is 128, which has
special optimizations compared to other values.

To examine whether or not a surface has an alpha value, check the
flags member of SDL_Surface. If SDL_SRCALPHA is present, the alpha mem-
ber of the surface’s pixel format will be the per-surface alpha value.

And now for a quick example using per-surface alpha values. You can
find this example under FOSDL3_9 in the Examples directory on the
CD. This example is essentially the same as FOSDL3_6 (the color-
keyed blitting demo) except that the surface with the ball image is
given a random per-surface alpha value before it gets blitted. You can
see the output of this example program in Figure 3.11.

This little example also demonstrates that you can use per-surface
alpha values with color keys. This is not required, of course.

Per-Pixel Alpha
For more control over your alpha values, you can create surfaces that
have a per-pixel alpha value. You can do this using either

72 3. SDL Video

03 FO SDL chapter 03 10/21/02 10:17 AM Page 72

Team LRN

SDL_CreateRGBSurface or SDL_CreateRGBSurfaceFrom. Simply put some sort of
alpha mask into the Amask parameters. This will cause the SDL_SRCALPHA
flag to be set automatically.

Once you have created a surface with an alpha mask, you can lock it
and set individual pixels much as you did with the non-alpha surface
except that instead of using SDL_MapRGB to create a native pixel value,
you must use SDL_MapRGBA. Also, instead of using SDL_GetRGB to unpack
the pixel, you use SDL_GetRGBA. Both prototypes, shown here, operate
much like you would expect them to (in other words, they work
almost identically to SDL_MapRGB and SDL_GetRGB, with the addition of
the alpha channel).

Uint32 SDL_MapRGBA(SDL_PixelFormat *fmt, Uint8 r, Uint8 g, Uint8 b,

Uint8 a);

void SDL_GetRGBA(Uint32 pixel, SDL_PixelFormat *fmt, Uint8 *r, Uint8

*g, Uint8 *b, Uint8 *a);

If you use per-pixel alpha values for your surfaces, you cannot use a
color key or a per-surface alpha value. That’s okay, though, because
with per-pixel alpha, you can simply specify an alpha value of 0 for
the transparent pixels.

73Other Topics

Figure 3.11 The output of FOSDL3_9

03 FO SDL chapter 03 10/21/02 10:17 AM Page 73

Team LRN

Optimizing Alpha Surfaces
There is one last really handy function that deals with alpha surfaces
(as well as with color-keyed surfaces). It is called SDL_DisplayFormatAlpha,
and it is shown here.

SDL_Surface *SDL_DisplayFormatAlpha(SDL_Surface *surface);

This function takes a pointer to a surface and returns a pointer to a
surface. (The returned surface is created in the process.) The pointer
you get out is not the same as the pointer you put in. This function
works very much like SDL_DisplayFormat.

The function creates a new surface that is optimized for blitting to the
display surface, but the new surface contains an alpha channel based
on a per-pixel alpha value, a per-surface alpha value, a color key, or a
combination of a per-surface alpha value and a color key. Essentially, it
takes a surface on which you are using alpha or a color key and cre-
ates a surface that can be blitted to the display more quickly.

If you use this function on a surface with a color key, all of the trans-
parent pixels get an alpha value of 0 and all of the non-transparent
pixels get an alpha value of 255. If you do a lot of alpha-based render-
ing, you’ll probably get a lot of mileage out of SDL_DisplayFormatAlpha.

Overlays
And now we come to the part on overlays. An overlay is used to render
data from a video file (such as an .mpg) onto a surface. Video data is
formatted completely differently from surfaces, and the SDL_Overlay
structure exists so you can easily draw this data onto surfaces.

First, take a look at the SDL_Overlay structure, shown here.

typedef struct{

Uint32 format;

int w, h;

int planes;

Uint16 *pitches;

Uint8 **pixels;

Uint32 hw_overlay:1;

} SDL_Overlay;

The first member (format) is unlike a surface’s format in that it is only
a single Uint32 value, specifying one of the flags shown in Table 3.3.

74 3. SDL Video

03 FO SDL chapter 03 10/21/02 10:17 AM Page 74

Team LRN

Of course, none of these constants will mean anything to you until
you have a good understanding of how the various YUV formats work.
Because this is the only portion of the book dedicated to overlays, I
suggest that you take a gander at http://www.webartz.com/fourcc/
indexyuv.htm if this topic interests you. There you will find everything
you ever wanted to know about YUV formats. Typically, the format you
use will depend on the sort of media from which you are rendering.
You will have to research the format that you are using.

The w and h members of SDL_Overlay are the width and height. It’s
good that at least a few members of this structure are at least some-
what familiar, right?

The planes member specifies how many bit planes there are for this
overlay. The number of planes depends on which format is being
used. Think of planes as individual images that, when taken together,
make up the full image.

The pitches member is an array that stores the pitch for each plane.
Naturally, there is one pitch for each plane, demonstrating yet again
that each plane is like its own image.

The pixels member is an array of pointers for the planes. There is one
pointer for each plane, and a pitch corresponds to each pixel pointer.

75Other Topics

Table 3.3 Overlay Formats

Constant Value Meaning

SDL_YV12_OVERLAY 0x32315659 Planar mode:Y+V+U

SDL_IYUV_OVERLAY 0x56555949 Planar mode:Y+U+V

SDL_YUY2_OVERLAY 0x32595559 Packed mode:Y0+U0+Y1+V0

SDL_UYVY_OVERLAY 0x59565955 Packed mode: U0+Y0+V0+Y1

SDL_YVYU_OVERLAY 0x55595659 Packed mode:Y0+V0+Y1+U0

03 FO SDL chapter 03 10/21/02 10:17 AM Page 75

Team LRN

And finally there is a bit flag named hw_overlay. It will be 1 if the over-
lay exists in hardware and 0 if it does not. Naturally, an overlay in
video memory will perform better than an overlay not in video mem-
ory, but as far as programming is concerned there is really no differ-
ence in your code.

Creating an Overlay
Creating an overlay is rather easy. You simply call SDL_CreateYUVOverlay.

SDL_Overlay *SDL_CreateYUVOverlay(int width, int height, Uint32 format,

SDL_Surface *display);

This function returns a pointer to an SDL_Overlay. If you get a NULL
returned, there was an error. There are four parameters. The first two
(width and height) are the width and height of the overlay. (I know
that comes as a shock to you.) The third parameter (format) is one of
the format constants found in Table 3.3. The last parameter (display)
is a pointer to a surface on which this overlay will be rendered.

Destroying an Overlay
On the flip side, to destroy an overlay (or rather, to free it), you use
the SDL_FreeYUVOverlay function.

void SDL_FreeYUVOverlay(SDL_Overlay *overlay);

This function returns no value and takes as its sole parameter a
pointer to an overlay created using SDL_CreateYUVOverlay.

Locking and Unlocking an Overlay
As you can see, overlays behave very much like surfaces; you just use
different functions to work with them. This goes for accessing the data
within the overlay’s planes, too. To access an overlay’s pixel data
(either for writing or reading), you must first lock it, then do whatever
accessing you need to do, and then unlock it.

The functions for locking and unlocking are aptly named
SDL_LockYUVOverlay and SDL_UnlockYUVOverlay, respectively.

int SDL_LockYUVOverlay(SDL_Overlay *overlay);

void SDL_UnlockYUVOverlay(SDL_Overlay *overlay);

76 3. SDL Video

03 FO SDL chapter 03 10/21/02 10:17 AM Page 76

Team LRN

In both functions, there is only one parameter—a pointer to the over-
lay that you want to lock. In the case of SDL_LockYUVOverlay, the return
value will be 0 if everything went well or -1 if there was an error.
SDL_UnlockYUVOverlay returns no value.

Between the calls to SDL_LockYUVOverlay and SDL_UnlockYUVOverlay, you
manipulate the planes however you want by accessing one of the
pointers stored in the pixels member of the SDL_Overlay structure.
Just like with surfaces, you must pay attention to the pitch of the
plane, stored in the pitches array of the SDL_Overlay structure.

Drawing an Overlay
And finally, you would probably like to be able to draw the overlay
onto the surface that you indicated during the call to
SDL_CreateYUVOverlay. You do this using SDL_DisplayYUVOverlay.

int SDL_DisplayYUVOverlay(SDL_Overlay *overlay, SDL_Rect *dstrect);

This function returns 0 if it was successful, as stated in the SDL docu-
mentation. Ergo, you can assume that a non-zero return value must be
an error. That would be my assumption, anyway. The documentation
doesn’t say either way.

While in-depth coverage of using overlays is beyond the scope of this
book, I have written a simple example program using overlays called
FOSDL3_10, which you can find on the CD. It creates an overlay that
each frame fills with random data. The overlay is then displayed, result-
ing in kind of a TV snow effect. Because the machine I am working on
has hardware overlays, I was unable to provide a figure for this example.

Checking Video Modes
If you plan to create full-screen applications with SDL (and I think it
is highly likely that you will at some point), you might find it useful to
check the availability of a particular resolution or to grab a list of
modes with a particular number of bits per pixel.

If you already have a particular resolution in mind (say 640×480 with
16 bits per pixel), you can use the SDL_VideoModeOK function.

int SDL_VideoModeOK(int width, int height, int bpp, Uint32 flags);

77Other Topics

03 FO SDL chapter 03 10/21/02 10:17 AM Page 77

Team LRN

The first three parameters (width, height, and bpp) are for the width,
height, and bits per pixel on which you are checking. The final flags
parameter contains the flags you want to use during the call to
SDL_SetVideoMode.

If the return value is 0, there is no mode that indicates the height and
width. If it is not 0, then the returned value is the number of bits per
pixel that is the closest to the value given in bpp (which is often the
same value).

As long as you stick to common sizes (640×480, 800×600, and
1024×768) and common bits-per-pixel values (8 and 16), you probably
won’t need to use SDL_VideoModeOK.

Checking individual modes is fine in some circumstances, but in others
you might want to look at a list of display modes based on a particular
pixel format. To do this, you use SDL_ListModes.

SDL_Rect **SDL_ListModes(SDL_PixelFormat *format, Uint32 flags);

This function takes a pointer to an SDL_PixelFormat (called format) and
a Uint32 called flags (the same sort of flags as you would use during a
call to SDL_SetVideoMode). If the format parameter is NULL, SDL will use
the format currently used on the display.

The return value can be 0, meaning that no resolutions use that pixel
format, or –1, indicating that any resolution can be used with that for-
mat. If the value is anything else, it is a list of pointers to SDL_Rects that
shows the various resolutions that you can use with that format. This
list is terminated by a NULL value and is sorted from largest to smallest.

Gamma
We’ve had alpha, there is no beta, so now we’ve got gamma.
Video hardware abounds with Greek letters. Adjusting gamma values,
when the hardware supports it, can create some interesting effects.
Unfortunately, you cannot rely on gamma support being present, and
this is one of the few things that SDL does not emulate.

What is gamma? Put simply, it adjusts each color channel and each
value in the channel in whatever way you want. Suppose you wanted to
create a negative image. You could do it pixel by pixel and set the red
value to (255 - current red), the green value to (255 - current green),
and the blue value to (255 - current blue). Or you could set up a

78 3. SDL Video

03 FO SDL chapter 03 10/21/02 10:17 AM Page 78

Team LRN

gamma ramp (essentially a table of values) that maps a 0 in green to a
255 in green, a 255 in green to a 0 in green, and likewise all of the
other shades of green to the appropriate negative values. You could
then do the same thing for red and blue. You would not have to
change the image at all.

Similarly, you could fade to white by slowly increasing the gamma values
for red, green, and blue, and by decreasing fade to black. A gamma
ramp is very much like using a palette for each color channel.

This all probably sounds confusing and weird, so take a look at a func-
tion for doing this and then I’ll show you an example, which will make
everything clear.

If you want a particular ratio to be applied equally to each value in a
color channel, you can use SDL_SetGamma.

int SDL_SetGamma(float redgamma, float greengamma, float bluegamma);

Each of these parameter values is a floating point. There is one para-
meter for each of the red, green, and blue channels. These values work
as multipliers, so if you specify 1.0, it means you want colors in that
channel to be shown normally. If you specify 0.5, you want them dimin-
ished by 50%; if you specify 2.0, you want them doubled. Naturally, you
can’t get any redder than a full red of 255; the same is true for green
and blue, so all values higher than 255 are treated as 255.

Now for a short example. You can find it in the Examples folder of the
CD-ROM under FOSDL3_11. It is a simple example that sets a full-
screen mode (640×480 at 16 bits per pixel), sets the screen to be filled
with random pixels, then fades to black and back again, over and over.
If your hardware doesn’t support gamma it will quit almost immedi-
ately, reporting the lack of gamma support to stdout.txt.

If you want to be more hard core about your gamma values, you can
use SDL_SetGammaRamp instead.

int SDL_SetGammaRamp(Uint16 *redtable, Uint16 *greentable, Uint16

*bluetable);

In this function, instead of setting a single multiplier value, you send
three pointers to Uint16 arrays. Each pointer must point to an array of
256 Uint16 values. If this function fails, the return value will be -1,
meaning that gamma is not supported. Using this function, you could
easily create a negative image. If you want a particular color channel’s

79Other Topics

03 FO SDL chapter 03 10/21/02 10:17 AM Page 79

Team LRN

lookup table to remain unchanged, you can simply specify NULL for
that channel.

If you are interested in seeing what the current gamma ramp looks
like, you can use SDL_GetGammaRamp.

int SDL_GetGammaRamp(Uint16 *redtable, Uint16 *greentable, Uint16

*bluetable);

This function behaves almost identically to SDL_SetGammaRamp except that
the pointers passed retrieve the values of the current gamma ramp
rather than setting them. If a -1 is returned, there is no gamma support.

Cursors
You have probably noticed that when an SDL application is running,
there is a default cursor that looks a little different than the standard
Windows cursor. If you haven’t noticed this, then by all means run an
SDL application now and take a look at it. Go ahead…I’ll wait.

As you can see, it looks like a negative of the standard Windows cur-
sor. Naturally, SDL has functions you can use to change the appear-
ance of the cursor.

In theory, this means I have to introduce you to a new structure called
SDL_Cursor. However, because of the various ways in which the different
platforms treat cursors, the only way to refer to an SDL_Cursor is through
a pointer. You never actually deal with anything inside the structure.

To create a cursor, you use SDL_CreateCursor, shown here.

SDL_Cursor *SDL_CreateCursor(Uint8 *data, Uint8 *mask, int w, int h,

int hot_x, int hot_y);

This function returns a pointer to an SDL_Cursor. The data and mask
parameters contain the pixel data for the cursor, but I’ll get back to
them in just a moment. The w and h parameters are the width and
height of the cursor. The width has to be a multiple of eight. Finally,
hot_x and hot_y specify the “hot spot” of the cursor (in other words,
the portion of the cursor that is actually pointing somewhere).

The data and mask are monochrome representations of the cursor
image. A single bit represents one pixel in the cursor (which is why
the width of the cursor must be a multiple of 8). Therefore, data and
mask are two monochrome images that are combined to give you the

80 3. SDL Video

03 FO SDL chapter 03 10/21/02 10:17 AM Page 80

Team LRN

cursor you want. Each must point to a block of data that is large
enough to contain the entire cursor image. The width of a cursor in
bytes is equal to the actual width of the cursor divided by 8, and the
height is just the value specified for h in the function call. Therefore,
the formula for the necessary size of an array is

arraysize = h * w / 8

When a cursor is drawn, the mask is drawn first. If a given bit is 0, then
the pixel on screen is left as is. If a given bit is 1, then the pixel is made
black.

After the mask has been drawn, the information pointed to by the
data is drawn. If the bit is 1, the pixel on the screen is left alone. If the
bit is 0, then white is XORed on the screen. If the pixel was already
made black by the mask, it will turn out white; otherwise whatever
color already existed there will be inverted.

In text form, that explanation is a little difficult to get all in one shot,
so a table of values and colors should be helpful (see Table 3.4).

As a short exercise, take an image and convert it into the appropriate
data for use as a cursor. In Figure 3.12, the white and black pixels
should be those colors when the cursor is being used, and the gray
pixels should be transparent. There are no inverted color pixels in
this particular image.

The image is 32×32, so the width is okay. I’m going to make the mask
first, and then the data. To make the mask, simply look at each pixel.

81Other Topics

Table 3.4 Data and Mask Bits for Cursors

Data Bit Mask Bit Color

0 0 Original color (transparent pixel)

0 1 White

1 0 Inverted original color

1 1 Black

03 FO SDL chapter 03 10/21/02 10:17 AM Page 81

Team LRN

If it is intended to be transparent or inverted, place a 0 for that pixel.
Otherwise, place a 1.

00000000000000111111000000000000000
0000000000111111111111111111111100000000000
00000000111111111111111111111111111111000000000
0000000111111111111111111111111111111111100000000
000001111111111000011111100001111111111000000
000011111111110000011111100000111111111100000
00001111110000000111111000000011111100000
00011111100000000111111000000001111110000
0011111111000000001111110000000011111111000
00111111000000000111111000000000111111000
01111110000000000111111000000000011111100
01111110000000000111111000000000011111100
01111110000000000000000000000011111100
1111111100000000000000000000000111111110
11111111111111111111111100000001111111111111111111111110
11111111111111111111111100000001111111111111111111111110
11111111111111111111111100000001111111111111111111111110
1111111100000000000000000000000111111110
01111110000000000000000000000011111100
01111110000000000111111000000000011111100
01111110000000000111111000000000011111100
00111111000000000111111000000000111111000
0011111111000000001111110000000011111111000
00011111100000000111111000000001111110000
00001111110000000111111000000011111100000
000011111111110000011111100000111111111100000
000001111111111000011111100001111111111000000
0000000111111111111111111111111111111111100000000
00000000111111111111111111111111111111000000000
0000000000111111111111111111111100000000000
00000000000000111111000000000000000
00000000000000000000000000000000

82 3. SDL Video

Figure 3.12 An example cursor

03 FO SDL chapter 03 10/21/02 10:17 AM Page 82

Team LRN

Now, you convert from this form (which is in binary) into the hexa-
decimal equivalent so that the computer can read it more easily.
Unfortunately, this isn’t quite as easy as it sounds because the bits on
the left are lower values than the ones on the right, so you can take
each set of eight bits and simply reverse them.

00C00100

00FC1F00

00FF7F00

80FFFF00

E0C3E103

F0C1C107

70C00107

38C0010E

3CC0011E

1CC0011C

0EC00138

0EC00138

0E000038

0F000078

FF0FF87F

FF0FF87F

FF0FF87F

0F000078

0E000038

0EC00138

0EC00138

1CC0011C

3CC0011E

38C0010E

70C00107

F0C1C107

E0C3E103

80FFFF00

00FF7F00

00FC1F00

00C00100

00000000

Because there are eight hex digits per row, and there are two hex dig-
its per byte, you know that each row takes up four bytes, which easily

83Other Topics

03 FO SDL chapter 03 10/21/02 10:17 AM Page 83

Team LRN

fit into a Uint32. You can now take these values exactly as they are, put 0x
in front of each row, and set up an array of Uint32 to contain your mask.

Now you can do the same thing for the data layer, except this time
you only place a 1 for a black or inverted pixel.

00000000000000111111000000000000000
0000000000111111110001111111100000000000
00000000111100001101100001111000000000
00000001100111111111101111111111001100000000
000001111001000011011000011001111000000
0000110011110000011011000001111001100000
00001101100000001101100000001101100000
00011011000000001101100000000110110000
00110011000000001101100000000110011000
00110110000000001101100000000011011000
01101100000000001101100000000001101100
011011000000000011111100000000001101100
011011000000000000000000000001101100
110011000000000000000000000001100110
110111111111111111111110000000111111111111111111110110
110000000000110000000110000000000110
110111111111111111111110000000111111111111111111110110
110011000000000000000000000001100110
011011000000000000000000000001101100
011011000000000011111100000000001101100
01101100000000001101100000000001101100
00110110000000001101100000000011011000
00110011000000001101100000000110011000
00011011000000001101100000000110110000
00001101100000001101100000001101100000
0000110011110000011011000001111001100000
0000011110011000011011000011001111000000
00000001100111111111101111111111001100000000
00000000111100001101100001111000000000
0000000000111111110001111111100000000000
00000000000000111111000000000000000
00000000000000000000000000000000

Next, do the exact same contraction into hexadecimal digits (again,
taking each byte backward), like this:

00C00100

003C1E00

00436100

807C9F00

84 3. SDL Video

03 FO SDL chapter 03 10/21/02 10:17 AM Page 84

Team LRN

60422103

9041C104

50400105

2840010A

24400112

14400114

0A400128

0AC00128

0A000028

09000048

FD0FF85F

01080840

FD0FF85F

09000048

0A000028

0AC00128

0A400128

14400114

24400112

2840010A

50400105

9041C104

60422103

807C9F00

00436100

003C1E00

00C00100

00000000

Now it is time to put this to the test. On the CD you will find an exam-
ple called FOSDL3_12 that contains a demo program that uses this
very cursor. There are a couple of functions in the program that I am
about to cover, namely SDL_FreeCursor and SDL_SetCursor.

First, take a look at SDL_FreeCursor. You use this function whenever you
no longer need a cursor that you created with SDL_CreateCursor.

void SDL_FreeCursor(SDL_Cursor *cursor);

This function returns no value and takes a single parameter—a
pointer to the SDL_Cursor that you want to free. The function is simple
enough, and I will speak no more of it.

85Other Topics

03 FO SDL chapter 03 10/21/02 10:17 AM Page 85

Team LRN

The other function used in the example program is SDL_SetCursor. As
you might infer from the name, it sets the currently active cursor.

void SDL_SetCursor(SDL_Cursor *cursor);

This function returns no value and takes a pointer to an SDL_Cursor as
its parameter. If the cursor is currently visible, it will immediately
change to its new appearance.

If you wanted to grab the current cursor in use in your application,
you could use the SDL_GetCursor function.

SDL_Cursor *SDL_GetCursor(void);

This function takes no parameters and returns a pointer to an
SDL_Cursor—the cursor currently in use. This is handy if you only want
to switch cursors temporarily and then switch back later.

Finally, you can turn the cursor on and off using SDL_ShowCursor.

int SDL_ShowCursor(int toggle);

This function takes a single integer value as its parameter, which can
be SDL_ENABLE, SDL_DISABLE, or SDL_QUERY. In the case of SDL_ENABLE and
SDL_DISABLE, the value sets the visible or invisible state of the cursor. In
the case of SDL_QUERY, no change occurs. The function returns the cur-
rent state of the cursor—either SDL_ENABLE or SDL_DISABLE.

The SDL cursor functions are quite simple. While the cursors are
rather primitive (only four values per pixel, one being transparent),
they are still useful, especially if you want to change from the standard
arrow cursor with which SDL starts. In full-screen mode, though, I
imagine you will generally want to emulate your own cursors so that
you can have more colors.

Summary
This was a long, long chapter, but for good reason. The video subsys-
tem of SDL provides you with a rich set of functionality with which to
generate graphics. This is a good thing, since vision accounts for 70%
of most people’s sensory input. Because most of the rest of the exam-
ples in the book have a heavy graphical basis, it is good that we spent
this chapter on the video system.

86 3. SDL Video

03 FO SDL chapter 03 10/21/02 10:17 AM Page 86

Team LRN

CHAPTER 4

SDL
Event

Handling
and the
Window

Manager

04 FO SDL chapter 04 10/21/02 10:23 AM Page 87

Team LRN

While the information concerning the video subsystem in
Chapter 3 is what most people consider the most important

aspect of a game (and indeed graphics are very important), a game
cannot exist unless there is some manner of interaction. In a com-
puter game, this means some form of user input, and in SDL it means
event handling. So, arguably, event handling is even more important
than graphics. Perhaps “important” isn’t the proper word, though. I
think a better term would be “fundamental.”

This chapter is about two different SDL subsystems. First is the event-
handling subsystem, which covers how SDL treats input from various
sources. The second is the window manager, a rather small subsystem
that is important only if your game runs inside a window. If you are
going to create full-screen games every time, the window manager is
less of a factor. Nevertheless, I will cover it in this chapter.

The Event-Handling
Subsystem at a Glance
First, take a look at SDL’s event-handling subsystem. Over the years,
I have seen a number of different event-handling schemes, and most
of them (especially the WIN32 way of doing it) are a bit kludgy and
require way too much type casting. SDL’s scheme is the best I have
seen, and I think you will like it too.

I will describe briefly what an event is, just so that you and I are both
on the same page. (Hah! Page. Get it? You’re reading a book, which
consists of pages. It’s author humor. You’re supposed to laugh.)

Anyway, an event is simply something that happens, such as a key
press, a key release, or mouse movement. Pretty much anything that
occurs to the computer that you might want to react to is an event.

Depending on the event, you will want to know not only what event
occurred, but also some extra data about the event to help you decide

88 4. SDL Event Handling and the Window Manager

04 FO SDL chapter 04 10/21/02 10:23 AM Page 88

Team LRN

what to make the program do. For example, when a key is pressed,
you want to know not only that a key was pressed, but also which key
was pressed.

Types of Events
There are 16 different types of events that you can receive using SDL.
For organization and presentation purposes, I’ve divided these 16
events into four categories—keyboard, mouse, joystick, and system.

Keyboard Events
Keyboard events take two forms—key presses and key releases. There
is also a way to set up SDL so that once a key has been pressed, it will
periodically repeat the key press event. This is useful if you are mak-
ing any sort of widget into which the user will input textual data.

In addition to the simple “a key has been pressed” or “a key has been
released” data, a keyboard event also contains other information, such
as which key has been pressed. This information includes a scan code,
a special SDL key identifier, and (optionally) the ASCII or Unicode
equivalent for that key. It also contains the shift state of the keyboard,
such as whether Shift, Ctrl, or Alt is being held down. You will have all
of the information you could possibly need to react to keyboard events.

Mouse Events
The mouse generates three different events. One is a mouse motion
event, which occurs any time the mouse is moved. The other two are
mouse button events—one for when a mouse button is pressed, and
the other for when a mouse button is released.

In a mouse motion event, the extra data includes the current state of
the mouse buttons (which is important if you are using the mouse to
drag items from one place to another), the position of the mouse, and
how far the mouse has moved since the last mouse event.

In mouse button events, the extra data includes which button has
changed its state, the state of all of the buttons, and the position at
which this button change occurred.

89The Event-Handling Subsystem at a Glance

04 FO SDL chapter 04 10/21/02 10:23 AM Page 89

Team LRN

Joystick Events
Although joysticks are covered in Chapter 6, “SDL Joysticks,” the
events they generate are covered here. Joysticks generate events just
like any other input device. They can generate up to five different
events, depending on the joystick. These events include axis events,
button events (one for a press and one for a release), hat events, and
trackball events. Naturally, if the joystick in question doesn’t have a
hat or trackball, it won’t generate those types of events.

Most of the joystick events are quite similar. Since there is no telling
how many joysticks a user can have on their system, the extra informa-
tion with the event always includes which device and which axis, but-
ton, hat, or trackball generated the event. Also, there is always a value
to which the axis, button, hat, or trackball has changed, and that
information is also stored with the joystick event.

System Events
The system events are sort of a catchall category. In this category I
have placed those events that do not rely directly on user input,
although most of them do depend on it indirectly.

There are six different types of system events, which vary quite widely
in their aspects (unlike keyboard, mouse, and joystick events). These
events are active, quit, window manager, video resize, video expose,
and user events.

Active events deal with systems that can run more than one application
at a time, which was difficult to do not long ago, but recently has
become a staple of personal computing. Human beings can only really
do one thing at a time, so a single application is considered the
“active” application and typically has input focus and mouse focus.
Having the focus of a particular input device means that only that
application will receive data from that input device. Active events
occur when an application gains or loses any of these focuses (or foci,
depending on how much of a Latin nerd you are).

A quit event naturally occurs only when the user quits the application.
When SDL is in a windowed environment, a quit event occurs when
the user closes the window. In full-screen mode, you have to provide
the user with some other way to quit. Quit events have no extra infor-
mation stored with them.

90 4. SDL Event Handling and the Window Manager

04 FO SDL chapter 04 10/21/02 10:23 AM Page 90

Team LRN

Window manager events are platform-specific events from the window
manager (of course!). This type of event is a catchall for any event not
covered elsewhere. The event itself has no extra data concerning which
event occurred, but there are methods for retrieving this information.

A video resize event occurs if you are running your SDL application in a
window and you have it set up so that the window can be resized. The
information stored with this event specifies how wide and tall the win-
dow has become after resizing.

A video expose event occurs when the system has changed the screen, so your
application must be redrawn. This event contains no additional data.

Finally, a user event is defined by you, the programmer. You can use it for
any sort of message you want. You get three pieces of additional data—
an int and two void* pointers—that you can use for whatever you like.

Methods of Gathering Input
Now that you have an overview of what sort of information you can get
from the event-handling subsystem, you need to know how to go about
getting that information. There are essentially three ways to grab
event/input information from the SDL event-handling subsystem—by
waiting, polling, or directly gathering.

Waiting
In most non-game applications, the program typically does absolutely
nothing most of the time; it just sits there and waits for an event to occur.
This is the event-driven model of input gathering. Although you probably
won’t want to use this in most games, it is typically the method of input
gathering that you will use if you make editors for your game levels.

With this method, most of the program’s time is spent waiting for
something to happen. Once something occurs, the program reacts to
it, typically redraws the screen or performs the appropriate task, and
then goes back to waiting, ad infinitum.

Polling
Many games use the polling method of input gathering. The program
checks often to see whether an event has occurred. If one has, the
program reacts to it and looks for more events. If no event has

91The Event-Handling Subsystem at a Glance

04 FO SDL chapter 04 10/21/02 10:23 AM Page 91

Team LRN

occurred, the application will do something else for a moment (move
the bad guys around, do animations, and so on) and then look for
another event. With polling, you won’t miss any data because you are
still responding to events.

Direct
The third way of gathering data is directly from the input devices them-
selves. At any time, you can see whether a particular key is up or down
on the keyboard, where the mouse is, the state of the mouse buttons,
and the various input states of joysticks. This is the totally hard-core way
of gathering input; if it is done improperly, you can miss input.

Even if you are using the direct method of gathering information
about input devices, you still need to poll the event queue.

The Event-Handling
Subsystem in Depth
Now that you’ve got the gist of how the event-handling system in SDL
works, you can explore it in greater depth and actually look at the
structures and functions involved in making your application respond
to events.

Types of Events
Just as I did when I briefly explained the types of events that SDL can
read, I will divide the discussion of the structures involved into the
same four categories. In the in-depth discussion there is also a fifth
category that concerns the actual SDL_Event structure, which ties all of
the other events together into a single struct.

Keyboard Events
As you learned earlier, there are two types of keyboard events that can
occur—key presses and key releases. When one of these occurs, the
information about what key was pressed or released is placed into an
SDL_KeyboardEvent structure.

typedef struct{

Uint8 type;

92 4. SDL Event Handling and the Window Manager

04 FO SDL chapter 04 10/21/02 10:23 AM Page 92

Team LRN

Uint8 state;

SDL_keysym keysym;

} SDL_KeyboardEvent;

In this structure (and, to be honest, in all SDL structures that deal
with events), type is the first member and it is a Uint8. All event struc-
tures have this as the first member. It tells you what kind of event has
occurred. In the case of keyboard events, this value will be either
SDL_KEYPRESSED or SDL_KEYRELEASED.

The state member is pretty much just a duplicate of the type. It will be
either SDL_PRESSED or SDL_RELEASED. You can pretty much ignore it.

The third member is another structure that contains pertinent infor-
mation about which key was pressed or released. This is what the
SDL_keysym structure looks like.

typedef struct{

Uint8 scancode;

SDLKey sym;

SDLMod mod;

Uint16 unicode;

} SDL_keysym;

Generally, you should ignore the scancode member. It contains a hardware-
dependent code that corresponds to the key that was pressed or
released. Because you are using SDL and you likely want to maintain
a high level of portability, using anything hardware-dependent is a
Bad Thing.

Instead, you should use the sym member. It is of the SDLKey type, which
contains SDL’s code for what key was pressed. All of the constants are
named logically. For letters A through Z, the constants are SDLK_a
through SDLK_z. Yes, the letter is lowercase. Similarly, for 0 through 9,
the constants are SDLK_0 through SDLK_9. In addition, for the function
keys (of which SDL provides 15), the constants are SDLK_F1 through
SDLK_F15. The numeric keypad numbers are SDLK_KP0 through SDLK_KP9.
Table 4.1 summarizes these constants.

Table 4.2 shows the remaining SDLKey constants. (The reason the con-
stants in Table 4.1 were not included is because I really prefer tables
that are not more than three pages long!)

93The Event-Handling Subsystem in Depth

04 FO SDL chapter 04 10/21/02 10:23 AM Page 93

Team LRN

94 4. SDL Event Handling and the Window Manager

Table 4.1 Common SDLKey Constants

Key Range Constant

A through Z SDLK_a through SDLK_z

0 through 9 SDLK_0 through SDLK_9

F1 through F15 SDLK_F1 through SDLK_F15

Keypad 0 through 9 SDLK_KP0 through SDLK_KP9

Table 4.2 Other SDLKey Constants

Constant Key Character

SDLK_BACKSPACE Backspace

SDLK_TAB Tab

SDLK_CLEAR Clear

SDLK_RETURN Return

SDLK_PAUSE Pause

SDLK_ESCAPE Esc

SDLK_SPACE Space

SDLK_EXCLAIM Exclamation mark !

SDLK_QUOTEDBL Double quotes “

SDLK_HASH Hash

SDLK_DOLLAR Dollar sign $

SDLK_AMPERSAND Ampersand &

SDLK_QUOTE Quote ‘

SDLK_LEFTPAREN Left parenthesis (

SDLK_RIGHTPAREN Right parenthesis)

04 FO SDL chapter 04 10/21/02 10:23 AM Page 94

Team LRN

95The Event-Handling Subsystem in Depth

Table 4.2 Other SDLKey Constants

Constant Key Character

SDLK_ASTERISK Asterisk *

SDLK_PLUS Plus sign +

SDLK_COMMA Comma ,

SDLK_MINUS Minus sign −

SDLK_PERIOD Period .

SDLK_SLASH Forward slash /

SDLK_COLON Colon :

SDLK_SEMICOLON Semicolon ;

SDLK_LESS Less-than symbol <

SDLK_EQUALS Equals sign =

SDLK_GREATER Greater-than symbol >

SDLK_QUESTION Question mark ?

SDLK_AT At sign @

SDLK_LEFTBRACKET Left bracket [

SDLK_BACKSLASH Backslash \

SDLK_RIGHTBRACKET Right bracket]

SDLK_CARET Caret ^

SDLK_UNDERSCORE Underscore _

SDLK_BACKQUOTE Grave

SDLK_DELETE Delete

SDLK_KP_PERIOD Keypad period .

SDLK_KP_DIVIDE Keypad division symbol /

SDLK_KP_MULTIPLY Keypad multiplication symbol *

SDLK_KP_MINUS Keypad minus sign −

SDLK_KP_PLUS Keypad plus sign +

SDLK_KP_ENTER Keypad Enter

04 FO SDL chapter 04 10/21/02 10:23 AM Page 95

Team LRN

96 4. SDL Event Handling and the Window Manager

Table 4.2 Other SDLKey Constants

Constant Key Character

SDLK_KP_EQUALS Keypad equals sign =

SDLK_UP Up arrow

SDLK_DOWN Down arrow

SDLK_RIGHT Right arrow

SDLK_LEFT Left arrow

SDLK_INSERT Insert

SDLK_HOME Home

SDLK_END End

SDLK_PAGEUP Page up

SDLK_PAGEDOWN Page down

SDLK_NUMLOCK Num lock

SDLK_CAPSLOCK Caps lock

SDLK_SCROLLOCK Scroll lock

SDLK_RSHIFT Right Shift

SDLK_LSHIFT Left Shift

SDLK_RCTRL Right Ctrl

SDLK_LCTRL Left Ctrl

SDLK_RALT Right Alt

SDLK_LALT Left Alt

SDLK_RMETA Right meta

SDLK_LMETA Left meta

SDLK_LSUPER Left Windows key

SDLK_RSUPER Right Windows key

SDLK_MODE Mode shift

SDLK_HELP Help

SDLK_PRINT Print screen

04 FO SDL chapter 04 10/21/02 10:23 AM Page 96

Team LRN

Now, you might look at this list and see keys shown that do not exist on
your keyboard. One thing that you must keep in mind is that not all
keyboards look like yours, and SDL was written to support as many key-
board types as possible. Most of the keys are available on any old key-
board but you can’t guarantee that, so just be careful which keys you
respond to. (It’s another portability issue, but also a localization issue.)

After the sym member comes the mod member, which is a combination
of bit flags that specify which modifier keys (such as Shift, Ctrl, and
Alt) are pressed. Table 4.3 shows the bit flags.

It is important to note here that KMOD_CTRL, KMOD_SHIFT, and KMOD_ALT are
not their own values. Rather, they are combinations; for example,
KMOD_CTRL is a combination of KMOD_LCTRL and KMOD_RCTRL.

When checking for a particular modifier, you take the mod value stored
in the event, do a bitwise and (&), and check for non-zero.

The final member of SDL_keysym is a Uint16 called unicode. It contains
the ASCII or Unicode value of the key being pressed or released (but
not by default—it needs to be enabled to work). If the value stored in
unicode is less than 128 (0x80), then it is an ASCII code. If it is greater
than or equal to 0x80, it is a Unicode value. This is yet another local-
ization thing.

As I stated, SDL does not translate key presses into the character
equivalents by default. You need to enable this feature, using the
SDL_EnableUNICODE function.

97The Event-Handling Subsystem in Depth

Table 4.2 Other SDLKey Constants

Constant Key Character

SDLK_SYSREQ SysRq

SDLK_BREAK Break

SDLK_MENU Menu

SDLK_POWER Power

SDLK_EURO Euro

04 FO SDL chapter 04 10/21/02 10:23 AM Page 97

Team LRN

int SDL_EnableUNICODE(int enable);

The single parameter (enable) is one of three values. If enable is 1, then
translation to character values is enabled. If enable is 0, then it is dis-
abled. If enable is -1, then the enabled state is unchanged and the func-
tion will return the previous enabled state (either 0 or 1). The -1 value
is useful for querying whether or not translation is currently enabled.

Another aspect of keyboard input that you can enable or disable at
your whim is key repeating. In many applications that deal with text,
holding down a key will eventually generate additional characters. If
that is the behavior you want your application to have, then you must
use SDL_EnableKeyRepeat.

int SDL_EnableKeyRepeat(int delay, int interval);

The two parameters, delay and interval, specify how long after the key
is pressed to wait to start the repeat and how often the character

98 4. SDL Event Handling and the Window Manager

Table 4.3 Keyboard Modifier Constants

Constant Meaning

KMOD_NONE No modifiers applicable.

KMOD_NUM Num Lock is down.

KMOD_CAPS Caps Lock is down.

KMOD_LCTRL Left Ctrl is down.

KMOD_RCTRL Right Ctrl is down.

KMOD_RSHIFT Right Shift is down.

KMOD_LSHIFT Left Shift is down.

KMOD_RALT Right Alt is down.

KMOD_LALT Left Alt is down.

KMOD_CTRL A Ctrl key is down.

KMOD_SHIFT A Shift key is down.

KMOD_ALT An Alt key is down.

04 FO SDL chapter 04 10/21/02 10:23 AM Page 98

Team LRN

should repeat, respectively. The value returned by this function will
either be 0, indicating no problem, or –1, indicating an error.

The SDL documentation suggests SDL_DEFAULT_REPEAT_DELAY and
SDL_DEFAULT_REPEAT_INTERVAL for the values of delay and interval.

Mouse Events
The mouse events come in two flavors—mouse motion and mouse
button. The two flavors each have their own structures for dealing
with the events.

Mouse Motion Events
A mouse motion event is stored in an SDL_MouseMotionEvent, which looks
like this.

typedef struct{

Uint8 type;

Uint8 state;

Uint16 x, y;

Sint16 xrel, yrel;

} SDL_MouseMotionEvent;

As with all SDL event structures, the type member specifies what type
of event has occurred. In the case of a mouse motion event, this con-
stant will only ever be SDL_MOUSEMOTION.

The state member is a combination of bit flags that tells you which
mouse buttons are currently pressed, if any. Table 4.4 shows these bit
flags.

99The Event-Handling Subsystem in Depth

Table 4.4 Mouse Button State Bit Flags

Flag Meaning

SDL_BUTTON_LMASK The left button is currently pressed.

SDL_BUTTON_MMASK The middle button is currently pressed.

SDL_BUTTON_RMASK The right button is currently pressed.

04 FO SDL chapter 04 10/21/02 10:23 AM Page 99

Team LRN

If you prefer, you can also use the SDL_BUTTON macro. By placing a 1, 2,
or 3 into the macro, you will get the same values as SDL_BUTTON_LMASK,
SDL_BUTTON_MMASK, and SDL_BUTTON_RMASK, respectively. Additionally,
instead of 1, 2, and 3, you can use SDL_BUTTON_LEFT, SDL_BUTTON_MIDDLE,
and SDL_BUTTON_RIGHT. I personally prefer constants like SDL_BUTTON_LMASK
because they involve less typing.

The x and y members of SDL_MouseMotionEvent are (naturally) the x and
y position of the mouse. The xrel and yrel members are the relative
motion of the mouse since the last event. In some cases, the absolute
position of the mouse (x and y) is the most important; other times,
only the relative position (xrel and yrel) is important.

Mouse Button Events
The other two types of mouse-generated events are button presses and
button releases. Because they are similar in nature, both of them are
stored in an SDL_MouseButtonEvent.

typedef struct{

Uint8 type;

Uint8 button;

Uint8 state;

Uint16 x, y;

} SDL_MouseButtonEvent;

The type member, as always, stores the type of event. In the case
of a mouse button event, this value will be SDL_MOUSEBUTTONDOWN or
SDL_MOUSEBUTTONUP.

The button member will be one of the following three values—
SDL_BUTTON_ LEFT, SDL_BUTTON_MIDDLE, or SDL_BUTTON_RIGHT.

The state member tells you whether the button stored in the button
member has been pressed or released. The value will be SDL_PRESSED or
SDL_RELEASED. Of course, you can get the same information from the
type member.

Finally, the x and y members tell you the absolute position of the
mouse when the button was pressed.

Joystick Events
To refresh your memory, the five types of joystick-generated events are
axis, button up, button down, hat, and ball. Each one of these has its

100 4. SDL Event Handling and the Window Manager

04 FO SDL chapter 04 10/21/02 10:23 AM Page 100

Team LRN

own structure. Again, while the events for joysticks are explained in this
chapter, making use of actual joysticks is not covered until Chapter 6.

Joystick Axis Motion Event
A typical joystick will have two axes—vertical and horizontal. A joystick
can also have other axes, including rudder controls, dials, and any
other type of input widget that represents a changeable linear value
(unlike a button, which is either on or off).

When an axis on a joystick is moved, a joystick axis motion event
occurs. The data for this event is stored in an SDL_JoyAxisEvent.

typedef struct{

Uint8 type;

Uint8 which;

Uint8 axis;

Sint16 value;

} SDL_JoyAxisEvent;

The type member specifies the type of event that has occurred.
In the case of a joystick axis motion event, this value will always be
SDL_JOYAXISMOTION.

The which member is common to all joystick events. Because a variable
number of joysticks can be attached to the system, you need a way to
differentiate which joystick is generating an event. I will discuss this
more in Chapter 6, but suffice it to say that the which member tells you
which joystick generated the event.

The axis member tells you which axis on the joystick was moved. Because
a joystick can have a number of axes, this member is quite important.

Finally, the value member lets you know the new value of that joystick’s
axis.

Joystick Button Events
There are two different button events for joysticks. Because you have
already taken a look at how keyboard and mouse button events are
handled, this should not be a shock to you. When a button on a joy-
stick is pressed or released, a joystick button event is triggered and the
information for the event is stored in an SDL_JoyButtonEvent structure.

typedef struct{

Uint8 type;

101The Event-Handling Subsystem in Depth

04 FO SDL chapter 04 10/21/02 10:23 AM Page 101

Team LRN

Uint8 which;

Uint8 button;

Uint8 state;

} SDL_JoyButtonEvent;

Now things should start to fall into place. The type member will be
either SDL_JOYBUTTONDOWN or SDL_JOYBUTTONUP. The which member is again
an identifier for the joystick that generated the event. The button
member specifies which button on the joystick was pressed or
released. Finally, the state member tells you the state of the button
(either SDL_PRESSED or SDL_RELEASED).

Joystick Hat Position Change Event
Now for the point-of-view hat events. Not all joysticks have hats, but
many of the cooler (in other words, more expensive and odd-looking)
ones do. Typically, a hat is placed on top of a joystick and can be
moved into one of nine positions. When the user changes the position
of the hat, a joystick hat position change event occurs. The informa-
tion for this event is stored in an SDL_JoyHatEvent.

typedef struct{

Uint8 type;

Uint8 which;

Uint8 hat;

Uint8 value;

} SDL_JoyHatEvent;

The type and which members have their usual meanings. The type
member is SDL_JOYHATMOTION. The which member has the joystick identi-
fier. The hat member tells you which hat was moved. Normally there is
only one hat, but you never know with some of the crazier devices out
there. Finally, the value member is a set of bit flags that tells you the
new position of the hat. Table 4.5 lists the bit flags.

The flags account for five of the nine possible values. The other four
values are combinations of these flags (see Table 4.6).

Although common sense probably dictates this, you cannot have a hat
that indicates both up and down at the same time, nor can you have
one that indicates both left and right at the same time.

102 4. SDL Event Handling and the Window Manager

04 FO SDL chapter 04 10/21/02 10:23 AM Page 102

Team LRN

Joystick Ball Motion Event
The final type of joystick-generated event is the ball motion event,
which occurs on joysticks that have trackballs. This is different from
using a trackball instead of a mouse. Both are pointing devices and
both will generate mouse events. However, the joystick ball motion
event is only for trackballs that are integrated into a non-keyboard
and non-mouse input device.

The information in a joystick ball motion event is packed into an
SDL_JoyBallEvent—and yes, I agree that the name of the structure does
sound a little suggestive.

103The Event-Handling Subsystem in Depth

Table 4.5 Joystick Hat Bit Flags

Flag Meaning

SDL_HAT_CENTERED The hat is centered (neutral position).

SDL_HAT_UP The hat is pointing up.

SDL_HAT_RIGHT The hat is pointing right.

SDL_HAT_DOWN The hat is pointing down.

SDL_HAT_LEFT The hat is pointing left.

Table 4.6 Joystick Hat Combined Flags

Flag Value

SDL_HAT_RIGHTUP SDL_HAT_RIGHT|SDL_HAT_UP

SDL_HAT_RIGHTDOWN SDL_HAT_RIGHT|SDL_HAT_DOWN

SDL_HAT_LEFTUP SDL_HAT_LEFT|SDL_HAT_UP

SDL_HAT_LEFTDOWN SDL_HAT_LEFT|SDL_HAT_DOWN

04 FO SDL chapter 04 10/21/02 10:23 AM Page 103

Team LRN

typedef struct{

Uint8 type;

Uint8 which;

Uint8 ball;

Sint16 xrel, yrel;

} SDL_JoyBallEvent;

The type member is SDL_JOYBALLMOTION. The which member is (again)
the identifier for which joystick generated the event. The ball mem-
ber tells you which ball was moved. Finally, xrel and yrel tell you how
far on the horizontal and vertical axes the trackball was moved. This is
the only event with two pieces of information in it. I’m not entirely
sure why the joystick ball motion events weren’t consolidated into the
axis motion events.

System Events
The remaining six events that I arbitrarily lump into the system cate-
gory don’t really have any sort of relationship to one another, which is
why they are all in the same category in the first place…I couldn’t find
a better place for them.

Several of the events, notably the quit, expose, and window manager
events, are quite similar in that there is no additional information
stored with them. In the case of the window manager event, however,
you can glean additional information.

Quit and Expose Events
Quit and expose events are represented by two different structures,
although the structures are identical except for their names. A quit
event is stored in an SDL_QuitEvent structure, and an expose event is
stored in an SDL_ExposeEvent.

typedef struct{

Uint8 type

} SDL_QuitEvent;

typedef struct{

Uint8 type

} SDL_ExposeEvent;

As you can see, both of these events store only one piece of information—
the type of event that occurred. There is no additional information

104 4. SDL Event Handling and the Window Manager

04 FO SDL chapter 04 10/21/02 10:23 AM Page 104

Team LRN

for either of these events. In the case of a quit event, the type member
has a value of SDL_QUIT; in the case of an expose event, the value is
SDL_VIDEOEXPOSE.

Although these two events are similar in aspect, they are not similar in
meaning. When your application receives a quit event, you should ter-
minate the application. When you receive an expose event, you should
redraw the display.

Resize Events
If your application is running in a windowed environment, and you
specified the flag that tells SDL you’d like a resizable window, it is
quite likely that you will need to respond to resize events at some
point. These are stored in an SDL_ResizeEvent structure.

typedef struct{

Uint8 type;

int w, h;

} SDL_ResizeEvent;

The type member has a value of SDL_VIDEORESIZE. The w and h members
indicate the new width and height of the window. That’s all I have to
say about that; resize events are pretty simple.

Activation Events
Although I am pretty much treating activation events as a single event,
they are in reality six related events (three sets of event pairs). You will
get an activation event if your application gains or loses input focus
(keyboard input) or mouse focus, or when minimization or restora-
tion occurs. If and when any of these things occur, the information is
stored in an SDL_ActiveEvent structure.

typedef struct{

Uint8 type;

Uint8 gain;

Uint8 state;

} SDL_ActiveEvent;

The type member is always SDL_ACTIVEEVENT. The gain is either 0 or 1. If
it is 0, something was lost; if it is 1, something was gained.

The state member tells you which item was lost or gained. If you gain
or lose mouse focus, it is SDL_APPMOUSEFOCUS. If you gain or lose keyboard

105The Event-Handling Subsystem in Depth

04 FO SDL chapter 04 10/21/02 10:24 AM Page 105

Team LRN

input, it is SDL_APPINPUTFOCUS. If the application is iconified (in other
words, minimized) or restored, it is SDL_APPACTIVE.

Window Manager Events
If you want, you can receive events from the window manager. This is
unnecessary most of the time, and SDL has these events disabled. The
event is stored in an SDL_SysWMEvent structure.

typedef struct {

Uint8 type;

} SDL_SysWMEvent;

Like the quit and expose events,
this event structure contains only
the type of event that occurred.
The type member will always be
SDL_SysWM. You need to use
another function to receive
extended information about the
actual event.

I will talk more about window manager events for the Windows platform
later in this chapter, in the “Window Manager Subsystem” section.

User Events
You can define your own events with the SDL_UserEvent structure. This
is a generic structure that provides you with a way to store three pieces
of information.

typedef struct{

Uint8 type;

int code;

void *data1;

void *data2;

} SDL_UserEvent;

The type member can be in the range of SDL_USEREVENT through
SDL_NUMEVENTS-1. In the current version of SDL, these values are 24 and
31, respectively, which gives you a chance to define up to eight user
event types.

The meanings and values of the code, data1, and data2 members are
completely up to you.

106 4. SDL Event Handling and the Window Manager

CAUTION
If you decide to respond to
window manager events, you
will sacrifice a great deal of
your application’s portability!

04 FO SDL chapter 04 10/21/02 10:24 AM Page 106

Team LRN

The SDL_Event Structure
Finally, the one event structure to rule them all: SDL_Event! This is the
main event structure (the only one received by the various event func-
tions), and it contains all other types of events.

typedef union{

Uint8 type;

SDL_ActiveEvent active;

SDL_KeyboardEvent key;

SDL_MouseMotionEvent motion;

SDL_MouseButtonEvent button;

SDL_JoyAxisEvent jaxis;

SDL_JoyBallEvent jball;

SDL_JoyHatEvent jhat;

SDL_JoyButtonEvent jbutton;

SDL_ResizeEvent resize;

SDL_ExposeEvent expose;

SDL_QuitEvent quit;

SDL_UserEvent user;

SDL_SywWMEvent syswm;

} SDL_Event;

As you can see, this is not actually a structure—it is a union, so each of
the event structures occupies the same memory. This is why the type
parameter is always included as the first member of an event structure.
When you read in an SDL_Event, you check its type member, which tells
you what event it is and thus which other member you should be
looking at. In my opinion, this is one of the best ways to handle input.
Sure, in certain cases some bytes get wasted, such as with a quit or
expose event, but all of the other event structures are rather small
(the largest being SDL_MouseMotionEvent, with 10 bytes).

Methods of Gathering Input
Now that you’ve spent a while looking at how events are represented
in SDL, it is time to learn how to process them. As I stated earlier,
there are three distinct ways to get information from input devices—
by waiting, polling, and directly gathering. Each method is suited for
different types of applications. See Figures 4.1 through 4.3 for a
graphical view of the three different ways to process input.

107The Event-Handling Subsystem in Depth

04 FO SDL chapter 04 10/21/02 10:24 AM Page 107

Team LRN

Waiting
Conceptually, the simplest method of gathering input is to wait for it.
Using this method, your application spends most of its time doing
absolutely nothing…it simply waits for some event to occur. When an
event does occur, the application processes it and then goes back to
waiting. This is typical for non-game applications.

108 4. SDL Event Handling and the Window Manager

Figure 4.1 Waiting for events

Figure 4.2 Polling for events

04 FO SDL chapter 04 10/21/02 10:24 AM Page 108

Team LRN

If you simply want your program to sit and wait for an event to occur,
you use the SDL_WaitEvent function.

int SDL_WaitEvent(SDL_Event *event);

To use this function, you supply a pointer to an SDL_Event structure.
When the next event occurs, this structure will be filled in with the
information about that event, and will then return. If this function
returns a 1, everything is fine and the event was copied into the
SDL_Event structure and then removed from the event queue. If some-
thing went wrong, the function will return 0.

If for some reason you put NULL as the parameter for this function,
SDL will simply wait for an event and then return. The state of the
event queue will remain unchanged.

A typical event-handling loop using SDL_WaitEvent looks like this:

//declare an event variable

SDL_Event event;

//do this forever...

for(;;)

{

//wait for an event

SDL_WaitEvent(&event);

//process the event

109The Event Handling Subsystem in Depth

Figure 4.3 Directly gathering input

04 FO SDL chapter 04 10/21/02 10:24 AM Page 109

Team LRN

//if there is a quit event...

if(event.type==SDL_QUIT)

{

//...break out of the infinite loop

break;

}

//if there is a key press event...

if(event.type==SDL_KEYDOWN)

{

//...handle the key press event here

}

//other handlers for the other events go here

}

If you want, you could also put your event dispatching into a switch,
instead of using a series of if statements. Or, you could put together
everything into an if…else if…else if…else block. The structure is com-
pletely up to you.

For a simple example of an event loop that uses SDL_WaitEvent, be sure
to check out FOSDL4_1 in the Examples folder on the CD-ROM. This
example sets up a window and then waits for events. For the most
common events, it reports what event occurred.

Polling
Another method of gathering input is to periodically poll the event
queue. If you find that no event has occurred, have the program do
something else for a moment and then check for events again. This is
more typical for game applications, especially those that have back-
ground processing such as animation.

To check to see whether an event has occurred without waiting for
one to occur, you use the SDL_PollEvent function.

int SDL_PollEvent(SDL_Event *event);

This function operates much like SDL_WaitEvent except that when it
returns a 0, the function does not indicate an error. It simply indicates
that no event was found in the queue. If NULL is passed in the event
parameter, the next event is not removed from the queue.

110 4. SDL Event Handling and the Window Manager

04 FO SDL chapter 04 10/21/02 10:24 AM Page 110

Team LRN

For event loops using SDL_PollEvent, typically you will take one of two
paths. You might follow these steps.

1. Check for an event.

2. If there is an event, process it and then return to Step 1.

3. If there is not an event, do something else for a little while and
then return to Step 1.

This is not the only way to go about things, of course. You might fol-
low these steps instead.

1. Check for an event.

2. If there is an event, process it.

3. Do something else for a little while.

4. Return to Step 1.

In the first scheme (which I personally prefer over the second), the pro-
gram will continue to process events as long as there are events left in the
queue. Only when the event queue is empty will anything else happen.

In the second scheme something else happens between events, regard-
less of whether there are any. I dislike this scheme because it can intro-
duce input lag—in other words, when the state of the game is behind
the current state of the input queue. I do not suggest using this scheme.

If you’d like to see a quick example of an event loop using SDL_PollEvent,
check out FOSDL4_2 in the Examples folder on the CD-ROM. It is very
much like FOSDL4_1; the only difference is the use of SDL_PollEvent.
Because this application writes continually to stdout.txt, don’t run it for
very long or you will have a very large stdout.txt file!

Direct
A third method of gathering input is directly from the devices them-
selves. Of course, you will still have to use some method of clearing
out the event queue, such as using SDL_PollEvent.

You are now going to learn how to grab input directly from the keyboard,
mouse, and system. You can find the stuff on joysticks in Chapter 6.

Keyboard
To grab the current state of the keyboard, use the SDL_GetKeyState function.

Uint8 *SDL_GetKeyState(int *numkeys);

111The Event-Handling Subsystem in Depth

04 FO SDL chapter 04 10/21/02 10:24 AM Page 111

Team LRN

The numkeys parameter is a pointer to an int that has the number of
keys for which you would like to get the state. Passing a NULL will cause
SDL to give you back all of the keys. The return value is a pointer to
an array of Uint8s. You should not deallocate this pointer because SDL
maintains it internally.

You can index the array with the various SDLK_* constants (refer to
Tables 4.1 and 4.2 earlier in the chapter). So if you are looking to
check for the state of the A key, here is what you would do.

Uint8* kbarray;

//grab the keyboard state

kbarray=SDL_GetKeyState(NULL);

if(kbarray[SDLK_a]==1)

{

//the A key is down

}

In the array, the value 1 indicates that the key is down, and 0 indicates
that the key is up.

Because of how SDL works, you should call the SDL_PumpEvents function
before you ever call SDL_GetKeyState.

void SDL_PumpEvents(void);

This function takes any input waiting to be added to the event queue,
updates any input device states (such as key states), and then adds the
event to the queue. Under normal circumstances, you don’t have to
call this function because other functions such as SDL_WaitInput and
SDL_PollInput call it for you. However, it is crucial to call this function if
you are reading information directly from input devices.

Another piece of information you can grab about the keyboard is the
modifier state, which I talked about earlier when I discussed keyboard
events. You can retrieve the current state of the modifier keys with a
call to SDL_GetModState.

SDLMod SDL_GetModState(void);

This function takes no parameters and returns a set of bit flags. (Refer
back to Table 4.3 for a review of these bit flags.) If you are simply using
the keyboard as a many-buttoned gamepad, then you probably won’t
care about the mod state. If that’s the case, just look at the key states.

112 4. SDL Event Handling and the Window Manager

04 FO SDL chapter 04 10/21/02 10:24 AM Page 112

Team LRN

If you want, you can also change the modifier state of the keyboard
using the SDL_SetModState function.

void SDL_SetModState(SDLMod modstate);

This function takes a combination of the bit flags shown in Table 4.3
and returns no value. The modifier state of the keyboard is changed
to the supplied value.

Now for a function for which I just could not find a good place. It is
called SDL_GetKeyName, and it returns SDL’s name for a particular key
based on the SDLK_* constant for that key.

char *SDL_GetKeyName(SDLKey key);

I had to get that one in somewhere, and here was as good a place as any.

Mouse
You can retrieve the current state of the mouse for either the relative
or absolute value. To get the absolute position of the mouse, you use
SDL_GetMouseState; to get the relative position, you use
SDL_GetRelativeMouseState. Both functions look quite similar.

Uint8 SDL_GetMouseState(int *x, int *y);

Uint8 SDL_GetRelativeMouseState(int *x, int *y);

Each function takes two parameters, int pointers, which get filled in
with the absolute or relative x and y positions of the mouse, depending
on which function you use. You can place a NULL into either of these
parameters, and the values of the mouse’s axes will not be returned.

The return values of these functions are the button states of the mouse,
and you can use the SDL_BUTTON constants and macro to determine which
buttons are pressed.

As with the keyboard state, you will want to call SDL_PumpEvents prior to
calling either of these functions.

System
You can get information about the state of the system, such as whether
the application is active and whether or not the application has key-
board or mouse focus, by using SDL_GetAppState.

Uint8 SDL_GetAppState(void);

113The Event-Handling Subsystem in Depth

04 FO SDL chapter 04 10/21/02 10:24 AM Page 113

Team LRN

This function takes no parameters and returns a Uint8. The value
returned is a combination of the active SDL_APPACTIVE,
SDL_APPINPUTFOCUS, and SDL_APPMOUSEFOCUS bit flags.

Trapping Events
Now that you can wait for events, poll events, and get information
directly from the input devices, I’m going to show you one more way
to deal with input. You can set up an event trap, which SDL calls a
filter. This is a very powerful mechanism supplied by SDL.

First, I’m going to tell you exactly how this idea works. You can create
your own function to handle events, so you can almost totally forget
about the need to call SDL_PollEvent or SDL_WaitEvent. You need to cre-
ate this function to follow a certain prototype because later you must
send a function pointer to another function. Here’s what the function
pointer type looks like.

typedef int (*SDL_EventFilter)(const SDL_Event *event);

To follow this prototype, you can make a function that, for example,
looks like this.

int MyEventFilter(const SDL_Event* event);

When you create this function, the event parameter is a constant
pointer to an SDL_Event that contains information about an event that
is about to be posted to the event queue. You can handle it in what-
ever way you need. If you decide to return 1, the event will still be
posted to the queue; if you return 0, it won’t be. You can use such a
function to handle almost any event. However, it is a good idea to let
the SDL_QUIT events go through and be handled by the application.

To set up your own function as an event filter, you use the
SDL_SetEventFilter function.

void SDL_SetEventFilter(SDL_EventFilter filter);

The filter parameter is a pointer to a function with which you want to
trap events. If you pass a NULL, then event filtering is turned off. You
can also retrieve the current event filter using SDL_GetEventFilter.

SDL_EventFilter SDL_GetEventFilter(void);

This function takes no parameter and returns a pointer to the current
event filter (or NULL if there is none).

114 4. SDL Event Handling and the Window Manager

04 FO SDL chapter 04 10/21/02 10:24 AM Page 114

Team LRN

Sending Events
User events will not occur unless you make them, so you need a way
to send events to the event queue. The function for doing this is
SDL_PushEvent.

int SDL_PushEvent(SDL_Event *event);

This function takes a pointer to an SDL_Event that contains the informa-
tion about the event you want to add to the queue and returns an int.
If the returned value is 0, everything went well and the event was added
to the queue. If it is -1, the event could not be added to the queue.

You can add any sort of event to the queue; you simply have to fill out
the appropriate part of the SDL_Event structure and then call
SDL_PushEvent. However, if you use SDL_PushEvent, the event filter will not
trap the event, and it will go directly to the event queue to be read by
SDL_WaitEvent or SDL_PollEvent.

The Window Manager
Subsystem
Now for a short section on the window manager, and then we can wrap
up this chapter. The window manager allows you to do a few things,
such as set the caption of the window in which your application is
running, set the icon that is displayed in the corner of the application
window, and set the keyboard and mouse capture state of the system.

In this section you will also find information regarding window man-
ager events and how to handle them (at least on WIN32 systems).

Captions
Even if you are running in full-screen mode, you probably want to title
the application something other than SDL_app, which is the default
when you run it. This is even more important in a windowed environ-
ment. To set the caption of your application, use SDL_WM_SetCaption.

void SDL_WM_SetCaption(const char *title, const char *icon);

This function takes two parameters, both pointers to strings, called
title and icon. The SDL documentation states that title becomes the

115The Window Manager Subsystem

04 FO SDL chapter 04 10/21/02 10:24 AM Page 115

Team LRN

application caption and icon becomes the iconic caption. In WIN32,
there is really no difference, so icon ends up not being used.

You can also retrieve the caption and icon caption for the application
by using SDL_WM_GetCaption.

void SDL_WM_GetCaption(char **title, char **icon);

This function takes two pointers to pointers to character arrays that get
filled in with pointers to strings containing the captions. There is not
much to the window manager caption thing. Two functions, and that’s it.

Icons
You can set an icon for the application window using SDL_WM_SetIcon.
Sure, this isn’t an earth-shattering capability, but it can and does make
the application look more professional and finished.

void SDL_WM_SetIcon(SDL_Surface *icon, Uint8 *mask);

This function takes two parameters. The first (icon) is a pointer to an
SDL_Surface that contains the image for use as the icon. In WIN32, this
image has to be 32×32 pixels in size. The second parameter (mask) is a
pointer to an array of Uint8s that contains a bit mask for the image,
much the same as how bit masks are used for SDL_Cursors. If you use
NULL for the mask, the entire surface is used for the icon. This function
must be called prior to calling SDL_SetVideoMode.

Speaking of icons and words that have icon in them, you can mini-
mize (or iconify) an application using SDL_WM_IconifyWindow.

int SDL_WM_IconifyWindow(void);

When this function is called, SDL attempts to minimize the applica-
tion. If it cannot do so, the function will return 0. If this is successful,
the function will return a non-zero and the application will soon
receive an active event with SDL_APPACTIVE.

Input Grab
Earlier I mentioned input focus and mouse focus. SDL has the ability
to grab or capture input from these devices. When you decide to grab
the input, the SDL application is the only application to receive events
from them. This is not necessarily a bad thing, especially for games.
Games are greedy little applications that don’t like to share the system.

116 4. SDL Event Handling and the Window Manager

04 FO SDL chapter 04 10/21/02 10:24 AM Page 116

Team LRN

The function for grabbing input is SDL_WM_GrabInput.

SDL_GrabMode SDL_WM_GrabInput(SDL_GrabMode mode);

This function takes as a parameter the new desired grab mode and
returns the current grab mode. The grab mode constants are:
SDL_GRAB_ON, SDL_GRAB_OFF, or SDL_GRAB_QUERY. In the case of SDL_GRAB_ON
and SDL_GRAB_OFF, that becomes the new mode. In the cases of
SDL_GRAB_QUERY, the mode remains unchanged and the current mode
is returned.

Events
Finally, you get to window manager events. Again, I must warn you
that these are platform-specific; if you decide to respond to them, you
will be limiting your portability.

Now that I’ve said that, take a look at window manager events as far as
WIN32 is concerned. In order to even look at window manager events,
you need to enable them using SDL_EventState.

Uint8 SDL_EventState(Uint8 type, int state);

This function takes two parameters—a type of event (passed in the type
parameter) and a state of responding to that event. You can supply any
type of event, but in the case of window manager events you would put
SDL_SYSWMEVENT.

The state parameter contains one of three values—SDL_ENABLE,
SDL_IGNORE, or SDL_QUERY. If the value is SDL_ENABLE, that type of event will
be posted to the queue. If the value is SDL_IGNORE, it won’t be posted to
the queue. If the value is SDL_QUERY, the current state will be returned
by SDL_EventState.

After you have turned on window manager events, you receive them as
part of your event loop like other types of events. As you saw earlier,
the only information about a window manager event that you get in
an SDL_Event structure is simply that an event occurred. To find out
more information about it, you need to use SDL_GetWMInfo.

int SDL_GetWMInfo(SDL_SysWMinfo *info);

The parameter to this function is a pointer to an SDL_SysWMInfo structure.
The exact contents of this structure depend on what platform you are
compiling for, which is why it’s not necessarily a good idea to respond

117The Window Manager Subsystem

04 FO SDL chapter 04 10/21/02 10:24 AM Page 117

Team LRN

to these events, but anyway…. In WIN32, this is what SDL_SysWMInfo
looks like:

typedef struct {

SDL_version version;

HWND window; /* The Win32 display window */

} SDL_SysWMinfo;

This function has two members—the version of SDL and an HWND that
is the main display window for the application. If you really need to tie
WIN32-specific code with this window handle, this is the way to do it.
However, I really don’t suggest it.

Summary
So now you’ve seen two more of the subsystems of SDL—the
event-handling subsystem and the window manager subsystem.
The event-handling subsystem is, at least in my opinion, the most
important. The window manager is less important, but the ability to
set the caption and icon are important for a polished look and feel.

These subsystems will be used often to make later examples more
interactive (and game-like). For the most part, the only two things you
need to make a computer game are a way to display graphics and the
ability to get and respond to input from the user, both of which you
now have. The rest is just bells and whistles.

118 4. SDL Event Handling and the Window Manager

04 FO SDL chapter 04 10/21/02 10:24 AM Page 118

Team LRN

CHAPTER 5

SDL
Audio and

CD-ROM

05 FO SDL chapter 05 10/21/02 10:27 AM Page 119

Team LRN

This chapter is about the two subsystems of SDL that deal with mak-
ing noise—the audio and the CD subsystems. Using them, you can

make your applications play .WAV files, tracks from a CD, and so on.

The SDL Audio Subsystem
After looking at the video and event-handling subsystems of SDL, the
audio subsystem will seem a little crude by comparison. This is not
surprising, however, because SDL is meant to work on many platforms,
and there has been nowhere near the effort to standardize audio hard-
ware that there has been to standardize video hardware. To use SDL’s
audio subsystem, you need to know quite a bit about how sound works.

Audio Structures
There are only two structures in SDL’s audio subsystem: SDL_AudioSpec
and SDL_AudioCVT. These cryptic-sounding structures stand for “audio
specification” and “audio convert.”

SDL_AudioSpec contains information such as the format of the sound
buffer, the number of channels, the bits per channel, and so on.
Here’s what it looks like:

typedef struct{

int freq;

Uint16 format;

Uint8 channels;

Uint8 silence;

Uint16 samples;

Uint32 size;

void (*callback)(void *userdata, Uint8 *stream, int len);

void *userdata;

} SDL_AudioSpec;

The first member (freq) contains the audio frequency in samples per
second, which directly affects how many bytes per second are

120 5. SDL Audio and CD-ROM

05 FO SDL chapter 05 10/21/02 10:27 AM Page 120

Team LRN

streamed through your audio hardware. The size of a sample varies,
depending on the format and number of channels.

In theory, the frequency can be any number, but typical values are
11025, 22050, and 44100 (in other words, 11-kHz, 22-kHz, and 44-kHz
sounds). Perhaps the most commonly supported frequency is 22 kHz.

The format member is how the sound is formatted. It can be 8-bit or
16-bit, signed or unsigned, and in the case of 16-bit sounds, either big
endian or little endian. Table 5.1 shows the possible formats.

The channels member will be either 1 or 2 for mono or stereo sound,
respectively. Depending on the format, which specifies either one or
two bytes per channel per sample, the size of a sample can be 1 (8-bit
mono format), 2 (8-bit stereo or 16-bit mono), or 4 (16-bit stereo).

The silence member is a calculated value that will generate silence
when written to the sound buffer. This helps when you are trying to
avoid the snap, crackle, pop of the sound buffer.

121The SDL Audio Subsystem

Table 5.1 SDL_AudioSpec Formats

Constant Meaning

AUDIO_U8 Each channel consists of a stream of Uint8s.

AUDIO_S8 Each channel consists of a stream of Sint8s.

AUDIO_U16LSB Each channel consists of a stream of little endian Uint16s.

AUDIO_U16MSB Each channel consists of a stream of big endian Uint16s.

AUDIO_U16 This is the same as AUDIO_U16LSB.

AUDIO_U16SYS Depending on the system, this might be either
AUDIO_U16LSB or AUDIO_U16MSB.

AUDIO_S16LSB Each channel consists of a stream of little endian Sint16s.

AUDIO_S16MSB Each channel consists of a stream of big endian Sint16s.

AUDIO_S16 This is the same as AUDIO_S16LSB.

AUDIO_S16SYS Depending on the system, this might be either
AUDIO_S16LSB or AUDIO_S16MSB.

05 FO SDL chapter 05 10/21/02 10:27 AM Page 121

Team LRN

The samples member is the size of the audio buffer measured in samples.
The size parameter is the size of the audio buffer measured in bytes.

The callback member is a pointer to a user-defined function. You have
to create one of these in order to play any audio. I told you the audio
system was hard core. I’ll get back to how to create such a function a
little later.

Finally, userdata is a pointer to data that gets passed to the audio call-
back function.

SDL_AudioCVT contains information to convert sound from one format
to another. I’m not going to show this structure and explain each
member because most of the members are built and used only by
SDL. Suffice it to say that converting audio from one format to
another is a tricky business, but this structure manages to do it just
fine. If you really want to take a look at this structure, you can find it
in the SDL documentation.

Audio Functions
Before I move on to the audio functions, I have to explain how you
must initialize SDL to use the audio subsystem, in particular for
WIN32. Because of the Windows implementation of SDL (which, gen-
erally speaking, relies on DirectX), you must initialize both systems
when you call SDL_Init, or else you’ll have problems. Just letting you
know. Now on to the functions.

Open, Pause, and Close
Just like with the video subsystem, you must do a little more setup
after you initialize the audio subsystem. In the case of video, it was a
call to SDL_SetVideoMode. In the case of audio, it is a call to SDL_OpenAudio.

int SDL_OpenAudio(SDL_AudioSpec *desired, SDL_AudioSpec *obtained);

This function takes two parameters—a pointer to a desired
SDL_AudioSpec (which you fill out yourself) and a pointer to another
SDL_AudioSpec that is filled in with the actual audio specification that is
obtained. You can put a NULL in the obtained parameter, and SDL will
do its best to emulate the format you placed into the desired parame-
ter. The return value of this function will be 0 if it is successful and -1
if there was an error.

122 5. SDL Audio and CD-ROM

05 FO SDL chapter 05 10/21/02 10:27 AM Page 122

Team LRN

Now take a closer look at the callback member of SDL_AudioSpec. To
refresh your memory, here’s what it looks like.

void (*callback)(void *userdata, Uint8 *stream, int len);

This is a pointer to a function that returns no value and takes three
parameters—a void* (userdata, the same as the member of the same
name in SDL_AudioSpec), a Uint8* (stream), and an int (len). The stream
and len parameters refer to the audio buffer that you need to fill
during this callback. You fill in len bytes.

I know this all might seem a little weird (it did to me when I first
looked at this subsystem), so I’ll cover two more functions and then
you’ll do a quick example.

After you are done messing around with sound, you call
SDL_CloseAudio, which looks like this:

void SDL_CloseAudio(void);

A simpler function could not exist. This function takes no parameters
and returns no values. It is the proper bookend to the call to
SDL_OpenAudio.

The final function that I absolutely must cover before doing any
example is SDL_PauseAudio, which allows you to turn sounds on and off.
Here’s what it looks like.

void SDL_PauseAudio(int pause_on);

This function returns no value and takes an int as its sole parameter.
If the pause_on parameter is 1, the sound is paused. If it is 0, the sound
is not paused.

Now for the example, which you can find in FOSDL5_1 on the CD.

#include “sdl.h”

#include <stdlib.h>

const int SCREEN_WIDTH=640;

const int SCREEN_HEIGHT=480;

SDL_Surface* g_pDisplaySurface = NULL;

SDL_Event g_Event;

SDL_AudioSpec* g_SpecDesired;

SDL_AudioSpec* g_SpecObtained;

void FOSDLAudioCallback(void* userdata,Uint8* buffer,int len);

int main(int argc, char* argv[])

123The SDL Audio Subsystem

05 FO SDL chapter 05 10/21/02 10:27 AM Page 123

Team LRN

{

SDL_Init(SDL_INIT_VIDEO|SDL_INIT_AUDIO);

atexit(SDL_Quit);

g_pDisplaySurface =

SDL_SetVideoMode(SCREEN_WIDTH,SCREEN_HEIGHT,0,SDL_ANYFORMAT);

g_SpecDesired=new SDL_AudioSpec;

g_SpecObtained=new SDL_AudioSpec;

g_SpecDesired->freq=22050;

g_SpecDesired->format=AUDIO_S16LSB;

g_SpecDesired->channels=1;

g_SpecDesired->samples=8192;

g_SpecDesired->callback=FOSDLAudioCallback;

g_SpecDesired->userdata=NULL;

SDL_OpenAudio(g_SpecDesired,g_SpecObtained);

delete g_SpecDesired;

SDL_PauseAudio(0);

for(;;)

{

if(SDL_PollEvent(&g_Event)==0)

{

SDL_UpdateRect(g_pDisplaySurface,0,0,0,0);

}

else

{

if(g_Event.type==SDL_QUIT) break;

}

}

SDL_CloseAudio();

delete g_SpecObtained;

return(0);

}

void FOSDLAudioCallback(void* userdata,Uint8* buffer,int len)

{

int index;

for(index=0;index<len;index++)

{

buffer[index]=rand()%256;

}

}

124 5. SDL Audio and CD-ROM

05 FO SDL chapter 05 10/21/02 10:27 AM Page 124

Team LRN

As usual, the version of code listed here lacks error checking and
comments. The full version, coded the way it should be, is on the CD.
Some of the more important highlights of this example are the use of
the three audio functions I have discussed. First, the program sets up
a desired audio spec, and then it opens the audio device. Next, it
turns off audio pausing. The rest of the program simply performs
screen updates in the absence of an event. The FOSDLAudioCallback
function is doing all of the actual work. It simply writes random bytes
into the buffer. When you run this program, you will hear random
sounds. It’s kind of painful, really. This is the audio version of the
random pixel demo.

One last function for this section, and then I’ll move on. To check the
status of the audio playback, you use the SDL_GetAudioStatus function.

SDL_audiostatus SDL_GetAudioStatus(void);

This function takes no parameters and returns one of the following
values: SDL_AUDIO_STOPPED, SDL_AUDIO_PLAYING, or SDL_AUDIO_PAUSED. What
each one means should be reasonably obvious.

Lock and Unlock
The theory behind the audio callback function is to give you, the pro-
grammer, ultimate control over what goes into the sound buffer. In
actuality, it makes you into a monkey shoveling coal into a furnace.
The userdata member of SDL_AudioSpec is also passed into the callback
function. It is a void*, so you can make it point to pretty much any-
thing you want, such as audio data that you are streaming into the
sound buffer one shovel-full at a time. Sound like a pain? It is.

Naturally, you will eventually want to change the data contained in
whatever structure you are pointing to with userdata, unless you really
want to stream the same small bit of sound data onto the sound buffer
repeatedly. First, you use SDL_LockAudio to tell the callback to stop
being called, and then you call SDL_UnlockAudio to tell the callback to
resume. You want to do this because the audio callback likely is run-
ning in a different thread, and you don’t want to change the data
when another thread might be reading it. This can cause much havoc,
including system locks and other types of spectacular crashes.

125The SDL Audio Subsystem

05 FO SDL chapter 05 10/21/02 10:27 AM Page 125

Team LRN

Fortunately, both SDL_LockAudio and SDL_UnlockAudio are extremely simple
functions to remember. Take a look:

void SDL_LockAudio(void);

void SDL_UnlockAudio(void);

No parameters, no return values—it doesn’t get any easier. Naturally,
you don’t want to keep the audio callback locked out for longer than
necessary or you’ll quickly be soundless, and that’s just not cool.

WAV Files
Wouldn’t it be nice if you had some actual data to put into the sound
buffer, rather than filling it with random and painful noise? SDL’s
audio facilities, while a bit crude, do give you the ability to load in
WAV files. The function for doing so is called SDL_LoadWAV.

SDL_AudioSpec *SDL_LoadWAV(const char *file, SDL_AudioSpec *spec, Uint8

**audio_buf, Uint32 *audio_len);

This function takes four parameters. The first (file) is a string that
contains the name of the file from which you wish to load the WAV
file. The second parameter (spec) is a blank SDL_AudioSpec, which this
function fills with information about the WAV file, such as the format
and number of channels. The third parameter (audio_buf) is filled in
with a pointer to the audio data for the sound, and the last parameter
(audio_len) is the length of the data pointed to by audio_buf, in bytes.
This function returns the generated audio spec (the same as spec), or
NULL if there was an error.

When you are done with a WAV file’s data, you destroy it with a call to
SDL_FreeWAV.

void SDL_FreeWAV(Uint8 *audio_buf);

The sole parameter, audio_buf, is the same pointer you retrieved from
SDL_LoadWAV.

And now for an example that will play an actual sound. You can find
this example under FOSDL5_2 on the CD. Because of how the audio
subsystem works, I had to find a way that I could stream a sound into
the audio buffer and hold a spare sound to start playing immediately
afterward. This is somewhat primitive, but here’s what I came up with.

//type for streaming wav data to sound buffer
typedef struct
{

126 5. SDL Audio and CD-ROM

05 FO SDL chapter 05 10/21/02 10:27 AM Page 126

Team LRN

//pointer to current sound’s data
Uint8* m_CurrentSound;
//length of current sound
int m_CurrentSoundLength;
//pointer to next sound’s data
Uint8* m_NextSound;
//length of next sound
int m_NextSoundLength;

} FOSDL_AudioStream;

This structure contains two pointers—one for the currently playing
sound and one for the sound that will be played next. Also there are
two lengths, each indicating how much is left of a sound. When the
callback function finishes with the first sound, it will switch to the next
one and clear out the next sound’s data. Because of this, the main
event loop constantly has to check to see whether the next sound has
been cleared and, if so, load in another sound to queue.

Since I haven’t covered conversion of audio formats yet (they’re com-
ing up next), I had to create the primary sound buffer to match the
data that it would be getting from the WAV file. Had I not done this,
the sound would be garbled.

The callback function is also an interesting piece of work. Up until
today, I’d never in my life actually had to stream data to the hardware
sound buffer. In my opinion, this is a bit of a messy process. I spent a
good hour refining it so that it didn’t lock up my machine. Here’s
what my callback looks like.

//audio callback
void FOSDLAudioCallback(void* userdata,Uint8* buffer,int len)
{

//cast user data to stream data
FOSDL_AudioStream* pstrm;
pstrm=(FOSDL_AudioStream*)userdata;

//continue while len > 0 and at least one sound is non-empty
while(len>0 && (pstrm->m_CurrentSoundLength>0 || pstrm-

>m_NextSoundLength>0))
{

//check for current sound being NULL
if(pstrm->m_CurrentSoundLength==0)

{

127The SDL Audio Subsystem

05 FO SDL chapter 05 10/21/02 10:27 AM Page 127

Team LRN

//copy next sound to current sound

pstrm->m_CurrentSound=pstrm->m_NextSound;

pstrm->m_CurrentSoundLength=pstrm->m_NextSoundLength;

//clear next sound

pstrm->m_NextSound=NULL;

pstrm->m_NextSoundLength=0;

}

//while len>0 and length of current sound>0, stream to buffer

while(len>0 && pstrm->m_CurrentSoundLength>0)

{

//stream a byte to audio buffer

(buffer++)=(pstrm->m_CurrentSound++);

//decrease lengths

len—;

pstrm->m_CurrentSoundLength—;

}

}

}

If you follow it along, the function does customary checks to ensure
that there is still sound data left to stream. When there is, it streams
data one byte at a time. This short function is far from being a full-
featured audio streaming engine, but some of the fundamental concepts
are there. Check out FOSDL5_2 to see (or rather, hear) it work.

Converting and Mixing
Something should have bothered you a little bit about the discussion
of loading and playing WAV files. I had to open the audio device to
use the same format as the WAV data I was streaming to it. In the real
world, you don’t have this luxury. There has to be a way to take the
data you will stream and convert it to the format in which it will be
played. SDL can help you here.

First, you have to make a converter. This is the SDL_AudioCVT structure’s
sole purpose—to keep information vital for one sound format to be
converted into another. While the actual details of the conversion are
not important, knowing how to make it happen is. To build a con-
verter, you use the SDL_BuildAudioCVT function.

int SDL_BuildAudioCVT(SDL_AudioCVT *cvt, Uint16 src_format, Uint8 src_chan-

nels, int src_rate, Uint16 dst_format, Uint8 dst_channels, int dst_rate);

128 5. SDL Audio and CD-ROM

05 FO SDL chapter 05 10/21/02 10:27 AM Page 128

Team LRN

This function takes a number of parameters. The first, cvt, is a pointer
to an SDL_AudioCVT that will be filled in with the data necessary to
convert sounds. The next three, src_format, src_channels, and src_rate,
specify what sort of data will be put into the converter. You can get
these from the SDL_AudioSpec generated by SDL_LoadWAV.

The dst_format, dst_channels, and dst_rate specify what the output of
the converter will be. You can get this data from the obtained audio
specification after the call to SDL_OpenAudio. If this function can create
the converter, it will return 1. If it cannot, it will return -1.

You must be aware of at least a few of the members of SDL_AudioCVT.
These are named buf, len, len_mult, and len_ratio.

The buf member is a pointer into which you place the data that you
want to convert. After the conversion, it contains the newly converted
data. The len member is the original length of your audio data, before
conversion. The len_mult member helps you allocate enough size for
buf. You should allocate at least len*len_mult bytes so that there is
enough room to do the conversion. Finally, len_ratio, when multiplied
by len after the conversion has taken place, will give you the number
of bytes taken up by the sound after it has been converted.

Sound like a lot of trouble? I agree. After you have set up the buf and
len members of SDL_AudioCVT, you call SDL_ConvertAudio.

int SDL_ConvertAudio(SDL_AudioCVT *cvt);

This function takes only a pointer to the SDL_AudioCVT structure. If it is
able to convert the data, it returns 0. If it cannot, it returns -1.

One final function, and then we’re done (or rather, I’ve had it) with
the audio subsystem of SDL. You use the SDL_MixAudio function when
you want to mix two sounds together into a single stream.

void SDL_MixAudio(Uint8 *dst, Uint8 *src, Uint32 len, int volume);

This function simply takes two pointers to audio data (dst and src), a
length of the data you want to mix (len), and a volume. The volume
can range from 0 to SDL_MIX_MAXVOLUME. The SDL documentation does
not suggest using this function to mix more than two streams. Use it
at your own risk.

129The SDL Audio Subsystem

05 FO SDL chapter 05 10/21/02 10:27 AM Page 129

Team LRN

Why You Don’t Want
to Use the SDL Audio
Subsystem
Compared to other parts of SDL, the audio subsystem is very low
level—it must be in order to accommodate all of the platforms on
which it performs. There are much better things to use than the
functions I’ve detailed here, which is why I have glossed over some
of them a bit. In Chapter 11, I will talk about SDL_mixer, which is a
much better alternative (although it uses this subsystem at its core).

The SDL CD Subsystem
You’re sitting there, playing a game, and there is music playing from
the CD. Background music like this has been a mainstay in the video
game industry for years. However, you have to find specialized APIs to
get it to work on your system.

SDL to the rescue. With SDL, you can play music from CDs. If you
wanted, you could even make a CD player console with SDL. (I don’t
really see why you’d want to do this since there are many of these
types of applications available for free on the Internet, but you could.)

The SDL CD subsystem consists of two structures and 11 functions. I
divide the functions into two groups—one that is informational and
one that is comprised of functions that cause the CD player to actually
do something.

CD Structures
As usual, I’ll start with the structures. There are two of these, and they
are purely informational. The first structure is SDL_CD.

typedef struct{

int id;

CDstatus status;

int numtracks;

int cur_track;

int cur_frame;

SDL_CDtrack track[SDL_MAX_TRACKS+1];

} SDL_CD;

130 5. SDL Audio and CD-ROM

05 FO SDL chapter 05 10/21/02 10:27 AM Page 130

Team LRN

There are a number of members here. The first one, id, is a private
identifier for the CD-ROM drive. Typically this will have no impor-
tance whatsoever to your application.

The second parameter, status, tells you the status of the CD drive. It
will be one of the constants listed in Table 5.2.

The numtracks member specifies how many tracks are on the CD. If
you’ve ever listened to a CD in your life, you are well aware that CD
music is arranged in tracks; typically, one song is on a track. Tracks are
an easy way to index the musical data.

The cur_track member tells you which track the CD is currently
playing, and the cur_frame member tells you which frame the CD is
currently playing. A frame is the atomic unit of measurement on a
CD, much like a byte is the atomic unit of memory on a computer.

The final member is an array called track. It points to an array of
SDL_CDTrack structures. This structure, shown here, gives you informa-
tion about all of the tracks on the CD.

typedef struct{

Uint8 id;

Uint8 type;

Uint32 length;

Uint32 offset;

} SDL_CDtrack;

131The SDL CD Subsystem

Table 5.2 CD-ROM Status Constants

Constant Meaning

CD_TRAYEMPTY There is no CD in the tray.

CD_STOPPED The CD is not playing.

CD_PLAYING The CD is playing.

CD_PAUSED The CD has been paused.

CD_ERROR There has been an error.

05 FO SDL chapter 05 10/21/02 10:27 AM Page 131

Team LRN

The id member of SDL_CDTrack is the track number on the CD. It
ranges from 0 to 99, with 0 being the first track on the CD.

The type member tells you what sort of track this is. Since a CD can
contain both computer-readable data and music data, this member
will be either SDL_AUDIO_TRACK or SDL_DATA_TRACK. Naturally, you cannot
play a data track.

The length and offset members measure the length of the track and
where it begins, respectively. This measurement is in frames. Of
course, this unit of measurement is completely useless to human
beings; we are used to minutes and seconds. As luck would have it,
SDL has a constant that will convert frames to seconds. It is called
CD_FPS, which stands for frames per second. Dividing the length by
CD_FPS will give you the length of a track in seconds, which is easily
converted into minutes and seconds.

CD Functions
Again, I divide the CD functions in SDL into two groups—informational
and CD playing. There are only two informational functions; the
other nine actually deal with playing the CD.

Informational Functions
Before you do anything with the CD subsystem of SDL, you need to know
two things—how many CD drives there are and what their names are.

Before you can use any SDL CD-ROM function, you must initialize the
subsystem by including SDL_INIT_CDROM as part of the call to SDL_Init.
Then you can check how many CD-ROM drives are attached to the
machine with a call to SDL_CDNumDrives.

int SDL_CDNumDrives(void);

This function takes no parameters and returns the number of CD-ROM
drives attached to the computer. Next, you can find out the name of
the CD-ROM drive by calling SDL_CDName.

const char *SDL_CDName(int drive);

This function takes the number of the drive, which ranges from 0 to
one less than the value returned by SDL_CDNumDrives. The return value
is a string containing the name of the CD drive.

132 5. SDL Audio and CD-ROM

05 FO SDL chapter 05 10/21/02 10:27 AM Page 132

Team LRN

Now a quick example. FOSDL5_3 contains the code for this demo. It
doesn’t really do much; it simply initializes the CD-ROM subsystem
and writes how many CD drives there are and the name of each drive.
The code looks something like this:

#include “sdl.h”

int main(int argc, char* argv[])

{

SDL_Init(SDL_INIT_CDROM);

atexit(SDL_Quit);

fprintf(stdout,”Number of CD drives:%d\n”,SDL_CDNumDrives());

for(int index=0;index<SDL_CDNumDrives();index++)

{

fprintf(stdout,”The name of CD Drive#%d is

%s.\n”,index,SDL_CDName(index));

}

return(0);

}

On my machine, this program writes the following to stdout.txt:

Number of CD drives:1

The name of CD Drive#0 is D:\.

Your output will vary, depending on the configuration of your system.

CD Playing Functions
Now that you can find out what CD-ROM drives are available, you’ll
want to get information about the tracks available on the CD. To do
this, you use SDL_CDOpen.

SDL_CD *SDL_CDOpen(int drive);

This function takes a drive number, just like SDL_CDName did, and
returns a pointer to an SDL_CD that will contain all of the information
about that CD-ROM. Drive 0 is the default drive for the system.

After you are done with the CD, you call SDL_CDClose.

void SDL_CDClose(SDL_CD *cdrom);

This function returns no value and takes as its single parameter a
pointer to the SDL_CD structure you got from opening it with SDL_CDOpen.

133The SDL CD Subsystem

05 FO SDL chapter 05 10/21/02 10:27 AM Page 133

Team LRN

Through experimentation I have determined that, at least on my
machine, simply calling SDL_CDOpen won’t give you the information you
need about the number of tracks on a given CD. To get that informa-
tion, you need to call SDL_CDStatus.

CDstatus SDL_CDStatus(SDL_CD *cdrom);

This function takes an SDL_CD pointer (the same one returned from
SDL_CDOpen) and returns the status of the CD. These are the same sta-
tuses that were shown back in Table 5.2.

Now you have enough information to be able to look at the contents
of a CD. Example program FOSDL5_4 on the CD shows how you
might do this. It shows how many tracks are on the CD and lists each
track’s information.

And now you’re actually going to play a CD. There are two different
functions that you can use to do this. The first one is called SDL_CDPlay.

int SDL_CDPlay(SDL_CD *cdrom, int start, int length);

This function takes a pointer to an SDL_CD structure (cdrom), a frame at
which to begin (start), and a number of frames to play (length). It
returns 0 if everything went fine and -1 if there was an error. You can
get the start and length parameters from looking at the audio tracks
on the CD.

Of course, if you are going to play a CD, you also want to be able to
stop it. The function for doing that is SDL_CDStop.

int SDL_CDStop(SDL_CD *cdrom);

This function takes a pointer to an SDL_CD structure that contains the
information about the CD you are using. The return value is 0 for
success and -1 for failure.

In FOSDL5_5, I have created a small application that will randomly
shuffle the songs on a CD. It’s actually a pretty neat little program and
a low-memory footprint compared to commercial programs that do
the same thing. Check it out on the CD-ROM. (I’m actually using the
program as I’m writing this.)

There is another function that you can use to play music from a CD. It
is called SDL_CDPlayTracks, and it looks like this:

int SDL_CDPlayTracks(SDL_CD *cdrom, int start_track, int start_frame,

int ntracks, int nframes);

134 5. SDL Audio and CD-ROM

05 FO SDL chapter 05 10/21/02 10:27 AM Page 134

Team LRN

This function takes a number of parameters. The first (cdrom) is a
pointer to the SDL_CD structure representing the CD drive. The second
parameter (start_track) is the starting track to begin playing. The
third parameter (start_frame) is the first frame of the starting track to
begin playing. This is in relation to the starting track, so if you want to
begin at the start of the track, put 0. The fourth parameter (ntracks) is
how many tracks you want to play. The final parameter (nframes) is
how many frames of the last track you want to play. If you want to play
the entire track, put the length of that track. SDL_CDPlayTracks returns 0
if there is no problem. If an error occurs, you’ll get a -1.

You could easily rewrite FOSDL5_5 to use SDL_CDPlayTracks instead of
SDL_Play. In fact, you’d only have to change a single line.

In order to have a full-featured CD playing program, there are just a
few other things that you must be able to do. One is to pause and
resume CD playing, and the other is to eject the CD. All three of the
functions for doing these things are rather similar.

int SDL_CDPause(SDL_CD *cdrom);

int SDL_CDResume(SDL_CD *cdrom);

int SDL_CDEject(SDL_CD *cdrom);

Each of these functions takes a pointer to an SDL_CD structure, and the
return values are 0 for success or -1 for an error. The SDL_CDPause func-
tion pauses the playing CD. SDL_CDResume restarts the play. Finally,
SDL_CDEject ejects the CD tray.

Summary
After reading this chapter, you probably guessed that I’m not a big
fan of the SDL audio subsystem. This would be true—I’m not. Luckily,
there is a promising SDL add-on library in development at the time
of this writing called SDL_sound.

On the other hand, I do really like the CD subsystem. It has all of the
features anyone would need to play music from a CD, with such a sim-
ple interface that doing it takes mere minutes.

In Chapter 11, you will take a look at SDL_mixer, which is much better
than the audio subsystem of SDL.

135Summary

05 FO SDL chapter 05 10/21/02 10:27 AM Page 135

Team LRN

05 FO SDL chapter 05 10/21/02 10:27 AM Page 136

Team LRN

CHAPTER 6

SDL
Joysticks

06 FO SDL chapter 06 10/21/02 10:31 AM Page 137

Team LRN

In Chapter 4, I talked a bit about joysticks, primarily about the events
related to them. This chapter deals with joysticks themselves, and

how to set them up so that you can read events from them.

Joysticks at a Glance
As far as SDL is concerned, a joystick is any game controller attached to
your machine that is not the system’s keyboard or mouse. This can be
anything from a game pad to a flight yoke to a racecar steering wheel.

As you learned in Chapter 4, SDL divides the type of information that
you can get from a joystick into four categories, each represented by its
own type of event. These four types are axes, buttons, hats, and balls.

An axis has a range of values. Most joysticks have at least two axes—
one horizontal and one vertical. Typically, these axes are used to con-
trol the position or speed of something on the screen. A button has
two states—up and down. They are commonly used to trigger some
sort of event, such as a gun firing. A hat has eight states. It typically is
used to change the point of view within the game. Finally, a ball typi-
cally is used to select options, although it has other uses as well.

Of course, I don’t intend to tell you how to use an axis, button, hat, or
ball on a joystick. I’m a proponent of being unconventional and creative.

There is only one structure to know about in the joystick subsystem of
SDL. It is called SDL_Joystick, and the members are hidden from you
as a programmer. You can get all the information you need to know
through functions.

As far as functions in the SDL joystick subsystem go, there are three
types. One type of function opens and closes access to a particular joy-
stick attached to the system. It also enumerates joysticks so that you
can examine which ones are attached to the system.

Another type of function allows you to examine various types of infor-
mation you can get from the joystick, such as how many axes, buttons,
and so on the joystick has.

138 6. SDL Joysticks

06 FO SDL chapter 06 10/21/02 10:31 AM Page 138

Team LRN

The third type of function allows you to check on the state of the joy-
stick’s buttons, axes, hats, and balls. This is similar to the “direct
access” method of gathering input from the keyboard or mouse.

Gathering Information
about Joysticks Attached
to the System
Before you can use joysticks in an application, you have to ask a num-
ber of questions. How many joysticks are attached to the system? What
are the names of these joysticks? How many axes do each of these joy-
sticks have? How many buttons? How many hats and/or trackballs?

To answer the question of how many joysticks are attached to the sys-
tem, you call SDL_NumJoysticks.

int SDL_NumJoysticks(void);

This function takes no parameters and returns how many joysticks are
attached to the system. That was an easy question to answer.

To learn the names of the joysticks, which can be important if you
offer customizable controls as part of your game, you call
SDL_JoystickName.

const char *SDL_JoystickName(int index);

This function takes an index into the joystick list. Valid values are 0 to
one less than the value returned by SDL_NumJoysticks. This function
returns a string that contains the name of the joystick.

To answer any of the other questions, such as how many axes, buttons,
hats, or balls are on the joystick, you first must open access to the joy-
stick. You do this with SDL_JoystickOpen.

SDL_Joystick *SDL_JoystickOpen(int index);

This function takes an index into the joystick list, just as
SDL_JoystickName did. The returned value is a pointer to an SDL_Joystick
structure. The implementation details for SDL_Joystick are not impor-
tant. You simply need to have a pointer to an SDL_Joystick in order to
work with a joystick.

139Gathering Information about Joysticks

06 FO SDL chapter 06 10/21/02 10:31 AM Page 139

Team LRN

For every open, there is a close. When you are done with a joystick
that you have opened, you need to close it, just like everything else in
SDL. The function for doing so is called (you guessed it!)
SDL_JoystickClose.

void SDL_JoystickClose(SDL_Joystick *joystick);

This function returns no value and takes a pointer to an SDL_Joystick.
It closes access to the joystick.

Finally, you might like to check whether a particular joystick in the list
is currently opened. To do so, you use SDL_JoystickOpened.

int SDL_JoystickOpened(int index);

This function takes an index into the joystick list, similar to
SDL_JoystickOpen, and returns either 1 (indicating that the joystick is
opened) or 0 (indicating that the joystick has not been opened).

Once you have your SDL_Joystick pointer, you can ask how many axes,
buttons, hats, or trackballs the joystick has by using one of the follow-
ing four functions. Figure 6.1 shows a picture of a joystick with its
anatomy labeled.

140 6. SDL Joysticks

Figure 6.1 Joystick anatomy

Hat
Buttons

Axes

06 FO SDL chapter 06 10/21/02 10:31 AM Page 140

Team LRN

int SDL_JoystickNumAxes(SDL_Joystick *joystick);

int SDL_JoystickNumButtons(SDL_Joystick *joystick);

int SDL_JoystickNumHats(SDL_Joystick *joystick);

int SDL_JoystickNumBalls(SDL_Joystick *joystick);

Each of these functions, which are all named appropriately, take only a
pointer to an SDL_Joystick (the one you obtained from SDL_JoystickOpen)
and return the number of input widgets of that particular type the joy-
stick has.

Naturally, as with any subsystem of SDL, you must first initialize it in
your call to SDL_Init by using the SDL_INIT_JOYSTICK bit flag.

Now for a short example. You can find it on the CD-ROM under
FOSDL6_1, in the Examples folder.

#include “sdl.h”

#include <stdlib.h>

SDL_Joystick* g_pStick;

int main(int argc, char* argv[])

{

SDL_Init(SDL_INIT_JOYSTICK);

atexit(SDL_Quit);

if(SDL_NumJoysticks()==0)

{

fprintf(stdout,”There are no joysticks attached to the system.\n”);

}

else

{

fprintf(stdout,”Number of Joysticks: %d\n\n”,SDL_NumJoysticks());

for(int index=0;index<SDL_NumJoysticks();index++)

{

fprintf(stdout,”Joystick Index: %d\n”,index);

fprintf(stdout,”Joystick Name: %s\n”,SDL_JoystickName(index));

g_pStick=SDL_JoystickOpen(index);

fprintf(stdout,”Number of axes:

%d\n”,SDL_JoystickNumAxes(g_pStick));

fprintf(stdout,”Number of buttons:

%d\n”,SDL_JoystickNumButtons(g_pStick));

fprintf(stdout,”Number of hats:

%d\n”,SDL_JoystickNumHats(g_pStick));

fprintf(stdout,”Number of balls:

141Gathering Information about Joysticks

06 FO SDL chapter 06 10/21/02 10:31 AM Page 141

Team LRN

%d\n”,SDL_JoystickNumBalls(g_pStick));

SDL_JoystickClose(g_pStick);

fprintf(stdout,”\n”);

}

}

fprintf(stdout,”\nTerminating program normally.\n”);

return(0);

}

This program is very simple. It examines how many joysticks are
attached to the system, goes through and opens each one, and returns
information about each of the input widgets. When I ran the example
on my system, this is what it spit out.

Number of Joysticks: 1

Joystick Index: 0

Joystick Name: Microsoft PC-joystick driver

Number of axes: 2

Number of buttons: 6

Number of hats: 0

Number of balls: 0

As you can see, I have only one joystick attached to my system. It’s
actually a game pad, but I’m using a default Microsoft driver. It has
two axes, six buttons, and no hats or trackballs. If I had a number of
other joystick-type input devices attached, they also would have been
listed here.

The joystick subsystem is rather simple to use to look at the devices
attached to the system. As you will read in a moment, it is just as easy
to get data from joysticks.

Getting Data from
Joysticks or Other
Input Devices
When you are getting joystick data, you have two choices. These
choices are not mutually exclusive and can be used together, but you
will want to primarily use one or the other.

142 6. SDL Joysticks

06 FO SDL chapter 06 10/21/02 10:31 AM Page 142

Team LRN

One choice, as I discussed in Chapter 4, is to use events. I won’t
bother recounting the event structures dealing with joysticks here
because they were covered back in Chapter 4. However, you do need
to enable joystick events if you plan to use them. The function for
doing so is called SDL_JoystickEventState.

int SDL_JoystickEventState(int state);

This function takes an int value—SDL_ENABLE, SDL_IGNORE, or SDL_QUERY.
Passing SDL_ENABLE or SDL_IGNORE will turn on or off, respectively, the joy-
stick event polling state. This is the suggested way to handle joystick
input. Passing SDL_QUERY will cause this function to return the current
state of joystick event polling.

When joystick event polling is enabled, joystick events will be read
automatically whenever there is a call to SDL_PollEvent or SDL_WaitEvent.
If you choose not to use joystick events, you will have to update joy-
stick information manually, using SDL_JoystickUpdate.

void SDL_JoystickUpdate(void);

This function takes no parameters and returns no values. It updates
all opened joysticks. It gets called automatically when you have joystick
event polling enabled.

After you have updated the joysticks, you can read directly the values for
the input widgets on the joysticks using one of the accessor functions.

If you want to read the value of a particular axis, you use
SDL_JoystickGetAxis.

Sint16 SDL_JoystickGetAxis(SDL_Joystick *joystick, int axis);

This function takes two parameters. The first (joystick) is a pointer to
an SDL_Joystick. The second (axis) is the number of the axis you want
to read. The returned value is the current position of the axis, which
can range from –32,768 to 32,767.

To read the state of a button on a joystick, you use
SDL_JoystickGetButton.

Uint8 SDL_JoystickGetButton(SDL_Joystick *joystick, int button);

This function takes a pointer to an SDL_Joystick (called joystick) and a
button index (button). It returns 0 if the button is not pressed and 1 if
it is.

143Getting Data from Joysticks or Other Input Devices

06 FO SDL chapter 06 10/21/02 10:31 AM Page 143

Team LRN

For point-of-view hats, the accessor function is SDL_JoystickGetHat.

Uint8 SDL_JoystickGetHat(SDL_Joystick *joystick, int hat);

This function takes a pointer to an SDL_Joystick (joystick) and the
index of the hat (hat). It returns the current position of the hat. Just
like hat events (detailed in Chapter 4), this returned value is a combi-
nation of bit flags.

Finally, you can retrieve how far a trackball has moved since the last
update with a call to SDL_JoystickGetBall.

int SDL_JoystickGetBall(SDL_Joystick *joystick, int ball, int *dx, int *dy);

Since trackballs have two return values, this function is a bit of an odd-
ball compared to the other accessor functions. The first two parameters
(joystick and ball) are again pointers to the SDL_Joystick you are look-
ing at and the ball from which you want data. The dx and dy parameters
are pointers to ints that are filled with the relative motion of the track-
ball. The return value is 0 if successful and -1 if there was an error.

Here is another short example, just to demonstrate getting information
from a joystick, and then you’ll be done with joysticks. The example is
called FOSDL6_2.

#include “sdl.h”

#include <stdlib.h>

const int SCREEN_WIDTH=640;

const int SCREEN_HEIGHT=480;

SDL_Surface* g_pDisplaySurface = NULL;

SDL_Event g_Event;

SDL_Joystick* g_pStick;

int g_nStickButtons;

int g_StickAxis[2];

SDL_Rect g_FillRect;

int main(int argc, char* argv[])

{

SDL_Init(SDL_INIT_VIDEO|SDL_INIT_JOYSTICK);

atexit(SDL_Quit);

g_pDisplaySurface =

SDL_SetVideoMode(SCREEN_WIDTH,SCREEN_HEIGHT,0,SDL_ANYFORMAT);

g_pStick=SDL_JoystickOpen(0);

g_nStickButtons=SDL_JoystickNumButtons(g_pStick);

SDL_JoystickEventState(SDL_ENABLE);

144 6. SDL Joysticks

06 FO SDL chapter 06 10/21/02 10:31 AM Page 144

Team LRN

for(;;)

{

if(SDL_PollEvent(&g_Event)==0)

{

g_FillRect.x=g_FillRect.y=0;

g_FillRect.w=SCREEN_WIDTH;

g_FillRect.h=SCREEN_HEIGHT;

SDL_FillRect(g_pDisplaySurface,&g_FillRect,SDL_MapRGB(g_pDisplaySurface-

>format,0,0,0));

g_FillRect.x=g_FillRect.y=0;

g_FillRect.w=256;

g_FillRect.h=256;

SDL_FillRect(g_pDisplaySurface,&g_FillRect,SDL_MapRGB(g_pDisplaySurface-

>format,0,128,0));

g_FillRect.x=g_StickAxis[0]+128-2;

g_FillRect.y=g_StickAxis[1]+128-2;

g_FillRect.w=g_FillRect.h=5;

SDL_FillRect(g_pDisplaySurface,&g_FillRect,SDL_MapRGB(g_pDisplaySurface-

>format,255,255,255));

for(int index=0;index<g_nStickButtons;index++)

{

g_FillRect.x=256;

g_FillRect.y=16*index;

g_FillRect.w=g_FillRect.h=16;

if(SDL_JoystickGetButton(g_pStick,index))

{

SDL_FillRect(g_pDisplaySurface,&g_FillRect,SDL_MapRGB(g_pDisplaySurface-

>format,255,0,0));

}

else

{

SDL_FillRect(g_pDisplaySurface,&g_FillRect,SDL_MapRGB(g_pDisplaySurface-

>format,128,128,128));

}

}

SDL_UpdateRect(g_pDisplaySurface,0,0,0,0);

145Getting Data from Joysticks or Other Input Devices

06 FO SDL chapter 06 10/21/02 10:31 AM Page 145

Team LRN

}

else

{

if(g_Event.type==SDL_QUIT) break;

if(g_Event.type==SDL_JOYAXISMOTION)

{

if(g_Event.jaxis.axis<2)

{

g_StickAxis[g_Event.jaxis.axis]=g_Event.jaxis.value>>8;

}

}

}

}

SDL_JoystickClose(g_pStick);

return(0);

}

This example uses a combination of event polling and accessor func-
tions to get joystick input. There is a graphical display that shows the
position of the first two axes of the joystick and all of the buttons. Not
bad for a five-minute program. Figure 6.2 shows the output of this
program as I was testing it.

146 6. SDL Joysticks

Figure 6.2 Output of FOSDL6_2

06 FO SDL chapter 06 10/21/02 10:31 AM Page 146

Team LRN

Summary
That wraps up the joystick subsystem. There really isn’t all that much
to it. Generally speaking, you just need to open up the joystick, enable
events, and respond from there as with any other sort of event.

147Summary

06 FO SDL chapter 06 10/21/02 10:31 AM Page 147

Team LRN

06 FO SDL chapter 06 10/21/02 10:31 AM Page 148

Team LRN

CHAPTER 7

SDL
Threads

and
Timers

07 FO SDL chapter 07 10/21/02 10:34 AM Page 149

Team LRN

You have looked at a number of the SDL subsystems. Thus far, all
of the subsystems could be perceived by one of the five senses.

Video and the window manager can be perceived by sight, audio and
CD playing can be perceived by hearing, and event handling and joy-
sticks can be perceived by touch.

In this chapter, you come to two subsystems that cannot be perceived
by any of the senses. I’m talking about threads and timers. I discuss
these two subsystems as though they were one, since they are very
similar in terms of what you can accomplish with them.

Multitasking and multithreading have been buzzwords of the com-
puter world for quite a while. For example, at this very moment, in
addition to my word processor I have open my e-mail, the table of
contents for this book, the file folder in which the book’s files are
stored, the SDL online documentation, and ICQ. In recent years, we
have come to take this ability to multitask for granted, but it was not
so long ago that such things were virtually impossible.

Each “task” that I have open on my machine can have subtasks,
which do their little part to work for the team. These might be semi-
autonomous threads, shoveling coal in the background, or they might
be periodically time-based. In any case, they can be intrinsic to a
successful game or application.

SDL Threads and Timers
at a Glance
In threads and timers, you have five distinct types of entities. They are
threads, timers, mutexes, semaphores, and condition variables. Two of
these entities, threads and timers, deal with running other code concur-
rently with the main thread (the application or game). The other three
deal with communication between the main thread and the other
threads, and between the other threads themselves.

150 7. SDL Threads and Timers

07 FO SDL chapter 07 10/21/02 10:34 AM Page 150

Team LRN

A thread is a semi-autonomous running piece of code. If your main
thread were a super villain, each of the threads would be a henchman.
Most of the time, henchmen have nothing to do so they sit around,
play solitaire, drink coffee, and grumble with the other henchmen
about how poorly they are treated and paid by the super villain. This
is also true of threads. Most of the time they do nothing but wait for a
particular condition. When that condition occurs, the thread goes
into action, takes care of whatever business is required, and then goes
back to waiting again.

A timer is a periodic event. For example, if you needed to create a
blinking cursor, you could set up a timer that goes off every 100 mil-
liseconds (ms) to change a Boolean variable from false to true or true
to false. You could then read that variable and know whether or not
the cursor was visible.

A mutex is a simple way to communicate between threads. It exists in
one of two states—locked or unlocked. When a mutex has been locked
by one thread, and another thread tries to lock it, the second thread
will have to sit and wait until the first thread unlocks the mutex. In this
way, threads can work together sequentially on a task.

A semaphore (named for a form of flag communication still used by
the navies of the world) is similar in concept to a mutex, except that it
can have more values than just locked or unlocked. It has a numeric
value that, depending on whether it is positive, negative, or zero,
allows threads to either wait or do whatever it is they are doing.
Semaphores are a more robust way to schedule events than mutexes.

Finally, a condition variable works with mutexes. It tells threads when
to begin their tasks. Condition variables are just another way to com-
municate between threads.

I know that some of these entities, such as mutexes, semaphores, and
condition variables, might seem a little odd if you are unfamiliar with
multithreaded programming. Although this book is not about multi-
threading (a much larger topic than I could possibly cover in a small
book like this), I shall try my best to give you a decent overview of how
you can use these entities.

151SDL Threads and Timers at a Glance

07 FO SDL chapter 07 10/21/02 10:34 AM Page 151

Team LRN

Timers
I’ll begin with the easiest entity to program—the timer. A timer is
nothing more than a function that is called after a certain period of
time has elapsed. Typically, the function doesn’t do much before
returning. To create a timer, you use SDL_AddTimer.

SDL_TimerID SDL_AddTimer(Uint32 interval, SDL_NewTimerCallback callback,

void *param);

This function takes three
parameters. First is
interval, which is the num-
ber of milliseconds that
should pass between calls
to the timer function. The
second is callback, which is

a pointer to the timer func-
tion that needs to be called each interval. The last is param, which is a
pointer to whatever data the timer will need each time it is called.
This function returns an SDL_TimerID, which you should keep some-
where so that you can later remove the timer.

The callback function must look like this:

Uint32 TimerCallback(Uint32 interval, void *param);

You can name the function
however you like, of course.
The parameters are
interval, which contains the
current interval in use by
the timer, and param, which
is the same pointer that is
passed to SDL_AddTimer.
Your function must return
a Uint32. This value will be
the new interval.

When you want to remove a timer, you call SDL_RemoveTimer.

SDL_bool SDL_RemoveTimer(SDL_TimerID id);

152 7. SDL Threads and Timers

NOTE
Before using timers, you have to ini-
tialize them with the SDL_INIT_TIMER
bit flag during your call to SDL_Init.

TIP
Just because you specified a 23-ms
timer interval (to pick a number out
of the air), don’t expect that the
timer interval is actually 23 ms.
Systems vary, but the granularity of
the timer is typically 10 ms, so when
you want to create a timer, round up
or down to the nearest 10 ms.

07 FO SDL chapter 07 10/21/02 10:34 AM Page 152

Team LRN

This function takes as its sole parameter the ID of the timer you want to
remove. This is the same ID that is returned by the call to SDL_AddTimer.
The return value is an SDL_bool, the value of which will be either SDL_TRUE
or SDL_FALSE, indicating whether or not the timer was successfully
removed.

You will find an example called FOSDL7_1 on the CD. In this exam-
ple, a timer is used to clear the screen to a random color every sec-
ond. Of course, the timer itself does not manipulate the video;
instead, it sets a Boolean flag that the main application checks for and
clears when there are no events occurring.

The ability to set up timers is not the only way that SDL can help you
with timing. There are also functions for checking how much time has
passed since SDL was initialized, as well as a function that you can use
simply to wait for a specified period of time.

To check how many milliseconds have passed since SDL was initialized,
you can call SDL_GetTicks.

Uint32 SDL_GetTicks(void);

This function takes no parameters and returns the number of millisec-
onds since library initialization occurred. Typically, if you want to wait
a specified number of milliseconds (for example, 500), you would do
something like this:

//grab initial time

Uint32 time_initial=SDL_GetTicks();

//wait until 500 ms have passed

while((SDL_GetTicks()-time_initial)<500);

Or, you can tell SDL to wait for a specified number of milliseconds
with a call to SDL_Delay.

void SDL_Delay(Uint32 ms);

With this function, you supply a number of milliseconds as the para-
meter, and the function will wait that many milliseconds before
returning. The equivalent code using SDL_GetTicks is

SDL_Delay(500);

In games, timing often becomes critical, so the use of timers and
other timing functions becomes rather important.

153Timers

07 FO SDL chapter 07 10/21/02 10:34 AM Page 153

Team LRN

Threads
Timers are neat, but they are limited. Threads provide a much more pow-
erful way to have more than one thing happening at a time in your pro-
grams. (Of course, this isn’t really true on a single-processor system; only
a single thread can be executing at any one time.) However, because
threads are more powerful, you need to be more careful with them.

A thread will run concurrently with your main application, at least in
theory. It shares with the main application all global memory, file
descriptors, and so on. The problem comes in when you try to keep
your thread from messing with something that it shouldn’t be messing
with, such as video memory or sound. For one thing, a thread should
never, ever mess with video memory. When a thread is running, there
should be some sort of mechanism by which the thread communicates
with the main application, and there should be a way for the main
application to regulate a thread’s actions.

Before you get to those issues, however, take a look at how to create a
thread. The function for doing so is called SDL_CreateThread.

SDL_Thread *SDL_CreateThread(int (*fn)(void *), void *data);

This function takes two parameters. The first (fn) is a pointer to a
function that makes up the thread. The second is a void* that is the
data passed to the thread’s function. The return value of this function
is a pointer to an SDL_Thread.

The thread function, which you create yourself, looks like this:

int FOSDL_ThreadFunction(void* data);

This function takes a pointer to a void*. This parameter is the same as
the data parameter passed to SDL_CreateThread. The return value of this
function is an int and can mean whatever you want it to mean. When
this function returns, the thread dies.

If for any reason you need to stop the thread and you cannot wait for
its function to return, you can use SDL_KillThread. Yes, it sounds a little
bit violent, but nobody yet has picketed for the rights of threads.

void SDL_KillThread(SDL_Thread *thread);

This function takes the SDL_Thread pointer of a thread and proceeds to
destroy that thread.

154 7. SDL Threads and Timers

07 FO SDL chapter 07 10/21/02 10:34 AM Page 154

Team LRN

If you are more patient and less likely to go about slaying threads hap-
hazardly, you can use SDL_WaitThread to wait until a thread’s function
terminates, allowing it to die in peace.

void SDL_WaitThread(SDL_Thread *thread, int *status);

This function takes a pointer to an SDL_Thread (thread) and a pointer to
an int (status) and returns no value. The function waits for the thread
to terminate. When it does, the value returned by the thread’s func-
tion is placed into the int pointed to by status. If you don’t particu-
larly care about the return value, you can pass NULL as status, and the
return value will be ignored.

Each thread, in addition to having an SDL_Thread pointer, also has a
32-bit thread ID, which you can use to organize threads and commu-
nication between them. To grab the thread ID of the current thread
(from within a thread’s function), you use SDL_ThreadID.

Uint32 SDL_ThreadID(void);

This function simply returns the 32-bit identifier for the thread. It
takes no parameters. To retrieve the thread’s ID from outside of the
thread itself, you first need to have the SDL_Thread pointer, and then
you can call SDL_GetThreadID.

Uint32 SDL_GetThreadID(SDL_Thread *thread);

This function takes a
pointer to an SDL_Thread
and returns that thread’s
32-bit identifier.

I’ll get to an example
using threads in a little
while. First, you need to
learn how to control and
communicate with them.

Mutexes
The simplest form of thread regulation is performed using a mutex.
As I discussed earlier, a mutex, once created, is in one of two states—

155Mutexes

NOTE
Threads, as well as mutexes, sema-
phores, and condition variables, are
not automatically included when you
#include sdl.h.You also have to
#include SDL_thread.h in order to
use them. On the other hand, you
don’t have to initialize them with a
bit flag sent to SDL_Init.

07 FO SDL chapter 07 10/21/02 10:34 AM Page 155

Team LRN

locked or unlocked. Once a mutex is locked, nothing else can lock it
again until it is unlocked by whatever had previously locked it.

Creating a mutex is quite simple. You just make a call to SDL_CreateMutex.

SDL_mutex *SDL_CreateMutex(void);

This function takes no parameters and returns an SDL_mutex pointer.
It’s as easy as that. Poof! You’ve got a mutex.

When you want to destroy the mutex later, it’s just as easy. You simply
call SDL_DestroyMutex, and all of the mutexes of the world run in fear!

void SDL_DestroyMutex(SDL_mutex *mutex);

This function takes a pointer to an SDL_mutex and destroys that mutex.

To lock a mutex, you call SDL_mutexP. This function deviates from the
normal SDL “apt name” theme, but who am I to judge? Here’s what
the function looks like.

int SDL_mutexP(SDL_mutex *mutex);

This function takes a pointer to a mutex and returns 0 for success and
-1 if an error occurred. There is also a handy macro called
SDL_LockMutex that you can use in place of SDL_mutexP, so the following
two lines of code are equivalent.

SDL_mutexP(pMutex);

SDL_LockMutex(pMutex);

I much prefer the second option, since it makes the code easier to
read, but the choice is ultimately up to you.

SDL_mutexP does one of two things, depending on the current state of the
mutex it is being called upon to lock. If the mutex is currently unlocked,
SDL_mutexP will lock it and return. If the mutex is currently locked,
SDL_mutexP will wait until it is unlocked, then relock it and return.

On the flip side, there is SDL_mutexV, which unlocks a mutex.

int SDL_mutexV(SDL_mutex *mutex);

This function, like SDL_mutexP, takes a pointer to a mutex and returns 0
if successful or -1 for an error. This function unlocks a mutex; it doesn’t
really matter if the mutex was locked prior to the call to SDL_mutexV.
There is also a handy macro for this function, called SDL_UnlockMutex.

156 7. SDL Threads and Timers

07 FO SDL chapter 07 10/21/02 10:34 AM Page 156

Team LRN

In FOSDL7_2 (which you can find in the Examples folder on the CD),
there is a short example that uses threads and a mutex. This is a very
simple example, but it demonstrates what you can do with a thread
and a mutex.

I won’t post the entire program here because much of it is just the
simple SDL shell you have been looking at throughout the book.
However, I will show you two snippets that deal with threads.

The following code exists in the main application, prior to moving
into the event loop.

g_pMutex=SDL_CreateMutex();

SDL_LockMutex(g_pMutex);

g_pThread=SDL_CreateThread(FOSDL_ThreadFunction,NULL);

SDL_UnlockMutex(g_pMutex);

SDL_WaitThread(g_pThread,NULL);

Here I create a mutex, lock it, and then proceed to create the thread.
After I have created the thread, the mutex is unlocked, and the appli-
cation waits for the thread to terminate.

The other part in this program that deals with threads is the thread
function itself, shown here.

int FOSDL_ThreadFunction(void* data)

{

fprintf(stdout,”Thread %d: Initialized!\n”,SDL_ThreadID());

fprintf(stdout,”Thread %d: Attempting to lock mutex.\n”,SDL_ThreadID());

SDL_LockMutex(g_pMutex);

fprintf(stdout,”Thread %d: Mutex is locked.\n”,SDL_ThreadID());

fprintf(stdout,”Thread %d: Unlocking mutex.\n”,SDL_ThreadID());

SDL_UnlockMutex(g_pMutex);

fprintf(stdout,”Thread %d: Terminating.\n”,SDL_ThreadID());

return(0);

}

This thread doesn’t do much; it simply reports to stdout whatever it
happens to be doing at the time. Its first task is to lock the mutex but,
as you recall, the mutex is already locked by the main application
before this thread is created, so the thread must wait until the applica-
tion unlocks it before continuing. Then the thread unlocks the mutex
and terminates.

157Mutexes

07 FO SDL chapter 07 10/21/02 10:34 AM Page 157

Team LRN

As you can see, a mutex is a great way to create a thread but not have
it actually start until the main application says so. This is sort of like an
“on your mark…get set…” type of mutex, with the unlocking of the
mutex being the “go.”

Semaphores
The limitation of the mutex is that it only has two states, locked and
unlocked. This is good for simple multithreading applications, but
insufficient for more than two threads performing tasks at the same
time. And so there are semaphores. As you will see, semaphores can
act very much like mutexes but with more flexibility.

A semaphore, like a mutex, has an internal state. However, instead of
just having two states, it can have as many states as you like (although
this implementation has a total of 2^32 states, the maximum that will
fit into a Uint32). When the state is 0, the semaphore behaves like a
locked mutex, and any further attempt to lock it will wait until the
semaphore has been unlocked by whatever has locked it.

To create a semaphore, you use the SDL_CreateSemaphore function.

SDL_sem *SDL_CreateSemaphore(Uint32 initial_value);

This function takes the initial value for the state of the semaphore and
returns a pointer to an SDL_sem.

To destroy a semaphore, you call SDL_DestroySemaphore.

void SDL_DestroySemaphore(SDL_sem *sem);

This function takes a pointer to an SDL_sem, previously created by
SDL_CreateSemaphore, and returns no value.

Semaphores do not use the terms lock and unlock; instead, they use
wait and post. Don’t be fooled—these terms are equivalent to lock and
unlock when you are dealing with mutexes. When you wait on a sema-
phore, if the current value is greater than 0, it is decreased by one and
the function returns. If the value of the semaphore is 0, the wait will
bide its time until the value is greater than 0, and then it will decre-
ment the value and return. When you post a semaphore, its value goes
up by one (allowing something that is waiting for it to do something).

To wait on a semaphore, you use the SDL_SemWait function.

158 7. SDL Threads and Timers

07 FO SDL chapter 07 10/21/02 10:34 AM Page 158

Team LRN

int SDL_SemWait(SDL_sem *sem);

This function takes a pointer to a semaphore and returns 0 if it is suc-
cessful or -1 if it fails. The function waits until the semaphore pointed to
by sem has a positive value, then it decrements the value and returns.

If the thread you have waiting for a semaphore has something else it
can do in the meantime, you might want to use SDL_SemTryWait instead.

int SDL_SemTryWait(SDL_sem *sem);

This function similarly takes a pointer to a semaphore and returns
either 0 or –1, depending on the success. However, instead of waiting
until the semaphore has a positive value, it will return immediately. If
the semaphore has a 0 value, it will return SDL_MUTEX_TIMEOUT. If a 0 is
returned, then the semaphore’s value is decreased by one.

Finally, you can wait for a semaphore with a timeout value. To do this,
you use SDL_SemWaitTimeout.

int SDL_SemWaitTimeout(SDL_sem *sem, Uint32 timeout);

This function takes two parameters—a pointer to an SDL_sem (sem) and
a timeout value in milliseconds (timeout). This function will return 0
for success, -1 for an error, or SDL_MUTEX_TIMEOUT, which represents the
number of milliseconds elapsed and the fact that the function was not
able to decrement the semaphore’s value.

After waiting on a semaphore, conceptually doing the same thing as
locking a mutex, you will want to increment the value of the sema-
phore by calling SDL_SemPost.

int SDL_SemPost(SDL_sem *sem);

This function takes a pointer to an SDL_sem and returns 0 or –1,
depending on success or failure.

Finally, you can examine the value of a semaphore using the SDL_SemValue
function.

Uint32 SDL_SemValue(SDL_sem *sem);

This function takes a pointer to an SDL_sem and returns the current
value held by that semaphore.

Now for a quick semaphore example. You can find this example on
the CD under FOSDL7_3. I will show only the portions that deal with
threads and semaphores.

159Semaphores

07 FO SDL chapter 07 10/21/02 10:34 AM Page 159

Team LRN

The first bit deals with creating the semaphores and threads. Here’s
what the code looks like.

//create semaphore

g_pSemaphore=SDL_CreateSemaphore(0);

//create three threads

g_pThread[0]=SDL_CreateThread(FOSDL_ThreadFunction,(void*)1);

g_pThread[1]=SDL_CreateThread(FOSDL_ThreadFunction,(void*)2);

g_pThread[2]=SDL_CreateThread(FOSDL_ThreadFunction,(void*)3);

//wait for a second

SDL_Delay(1000);

//post to the semaphore

SDL_SemPost(g_pSemaphore);

This bit of code creates a semaphore with an initial value of 0, which
means that anything waiting for the semaphore will have to wait until
it gets posted. Then the code creates three threads. (I’ll get to the
thread function in a moment.) After that, the main application waits
for a second, so that all of the threads can be initialized, and then
posts to the semaphore so that the threads can start running.

The thread function, which is identical for all three threads, is shown
here.

//thread function

int FOSDL_ThreadFunction(void* data)

{

//grab thread number

int threadnumber=(int)data;

//wait for semaphore

fprintf(stdout,”Thread %d: Initialized.\n”,threadnumber);

fprintf(stdout,”Thread %d: Waiting for semaphore.\n”,threadnumber);

SDL_SemWait(g_pSemaphore);

//post to semaphore

fprintf(stdout,”Thread %d: Done waiting for semaphore.\n”,thread-

number);

fprintf(stdout,”Thread %d: Posting semaphore.\n”,threadnumber);

SDL_SemPost(g_pSemaphore);

//wait for semaphore again before terminating

fprintf(stdout,”Thread %d: Waiting for semaphore before terminating.

\n”,threadnumber);

160 7. SDL Threads and Timers

07 FO SDL chapter 07 10/21/02 10:34 AM Page 160

Team LRN

SDL_SemWait(g_pSemaphore);

//terminate

fprintf(stdout,”Thread %d: Terminating.\n”,threadnumber);

SDL_SemPost(g_pSemaphore);

//return 0

return(0);

}

Each thread waits for the semaphore twice, once on startup and once
on termination. It reports the progress of the function to stdout.txt.
The basic rundown of the sequence of events follows.

1. Thread 1 is created and begins waiting for the semaphore.

2. Thread 2 is created and begins waiting for the semaphore.

3. Thread 3 is created and begins waiting for the semaphore.

4. The main application posts to the semaphore.

5. Thread 1 finishes waiting for the semaphore, posts to it, and
waits for it again.

6. Thread 2 finishes waiting for the semaphore, posts to it, and
waits for it again.

7. Thread 3 finishes waiting for the semaphore, posts to it, and
waits for it again.

8. Thread 1 finishes waiting for the semaphore, posts to it, and
then terminates.

9. Thread 2 finishes waiting for the semaphore, posts to it, and
then terminates.

10. Thread 3 finishes waiting for the semaphore, posts to it, and
then terminates.

As you see, you can do some fancy scheduling of threads using a sema-
phore. You could also post twice from the main application, and then
two of the three threads would be doing something at the same time.
It’s enough to make your head swim.

Condition Variables
Finally, we come to condition variables. Condition variables work
together with mutexes to keep things properly timed between threads.

161Condition Variables

07 FO SDL chapter 07 10/21/02 10:34 AM Page 161

Team LRN

Unlike mutexes and semaphores, condition variables don’t have any
states whatsoever. I’ll show you what I mean in a few moments. First,
you need to know how to create and destroy condition variables.

To create a condition variable, you call SDL_CreateCond.

SDL_cond *SDL_CreateCond(void);

This function takes no parameters and returns a pointer to an
SDL_cond. That’s really about it. Since a condition doesn’t have an inter-
nal value (like a semaphore) and can neither be locked nor unlocked
(like a mutex), you just need this pointer to be able to use the condi-
tion variable.

When you are done with a condition variable, you destroy it by calling
SDL_DestroyCond.

void SDL_DestroyCond(SDL_cond *cond);

This function takes a pointer to an SDL_cond and returns no value. It
destroys the condition variable that you created earlier with a call to
SDL_CreateCond.

Okay, that’s all well and good, but then how do you use condition vari-
ables? As I stated earlier, you use condition variables in conjunction
with mutexes. You wait for a condition variable to give off a signal,
which causes a mutex to become unlocked. To wait for a condition
variable to signal, you use either SDL_CondWait or SDL_CondWaitTimeout.

int SDL_CondWait(SDL_cond *cond, SDL_mutex *mut);

int SDL_CondWaitTimeout(SDL_cond *cond, SDL_mutex *mutex, Uint32 ms);

In both cases, the mut parameters are pointers to an SDL_mutex, and this
mutex must be locked prior to the call to SDL_CondWait or
SDL_CondWaitTimeout. When the condition variable pointed to by the
cond parameter is signaled, the mutex is unlocked and the function
returns. In the case of SDL_CondWaitTimeout, if the number of millisec-
onds specified in the ms parameter passes before a signal occurs, the
function returns but the mutex remains locked. When this function
returns, you get a 0 if a signal occurred, a -1 if there was an error, or
SDL_MUTEX_TIMEDOUT (for SDL_CondWaitTimeout).

You can have any number of threads waiting for a condition variable
to be signaled. When signaling, you choose whether you want only
one of the threads waiting for the condition variable to continue

162 7. SDL Threads and Timers

07 FO SDL chapter 07 10/21/02 10:34 AM Page 162

Team LRN

doing something or whether you want all of them to start. If you just
want one thread (the next one waiting for the condition variable) to
start, you use SDL_CondSignal. If you want them all to start again, you
use SDL_CondBroadcast.

int SDL_CondSignal(SDL_cond *cond);

int SDL_CondBroadcast(SDL_cond *cond);

In both cases, these functions take pointers to an SDL_cond and cause
one or more signals. SDL_CondSignal will cause the first mutex waiting
on the condition to be unlocked. SDL_CondBroadcast will cause all of the
mutexes waiting on the condition to be unlocked. The functions
return 0 if successful and -1 if there is an error.

Condition variables are sort of weird. For one thing, they don’t con-
tain a value, as you might assume that anything called a variable
would. However, proper use of condition variables can greatly
enhance the organization of a multithreaded application.

Portability Problems
Just a quick caveat about threads, timers, and portability. Under WIN32,
they are no problem to use (and in fact they make several jobs a lot eas-
ier). Just keep in mind that multithreaded programs might have issues
when you attempt to port them to another operating system. You have
been warned.

Summary
Well, this has been an odd little chapter. Threads and timers are power-
ful assets to any developer’s arsenal, and programming multithreaded
applications is rather system-specific for most operating systems. SDL,
although it has not completely perfected the ability to do cross-platform
multithreading, is darn close, and that’s a Good Thing.

Now we have covered every last subsystem of SDL. I left very little
uncovered, and I’m sure you’ll run into those few things in the SDL
documentation. But now you need to move on to other things, such as
some of the add-on SDL libraries that help out with common tasks.

163Summary

07 FO SDL chapter 07 10/21/02 10:34 AM Page 163

Team LRN

07 FO SDL chapter 07 10/21/02 10:34 AM Page 164

Team LRN

PART TWO

Add-On
Libraries

08 FO SDL chapter 08 10/21/02 10:38 AM Page 165

Team LRN

8 SDL_image

9 SDL_ttf

10 SDL_net

11 SDL_mixer

08 FO SDL chapter 08 10/21/02 10:38 AM Page 166

Team LRN

CHAPTER 8

SDL_image

08 FO SDL chapter 08 10/21/02 10:38 AM Page 167

Team LRN

And now for something completely different! A chapter that talks
about only one function. Yes, you heard right! This chapter is

about SDL_image, an add-on library that you can use with SDL. There
is only one function within this library that you will have a use for,
even though the library includes several functions.

What, you might ask, do SDL_image and the function in question do?
Simply put, they allow you to load an image from almost any type of
file, including BMP, PNM, XPM, LBM, PCX, GIF, JPEG, PNG, and
TGA. In SDL itself, you are only allowed to load BMP files. As we all
know, BMP files can be on the large side, so it is nice to have the abil-
ity to load something else.

Installation and Setup
Before you can use SDL_image, you need to install it and set it up.
There is a file called SDL_image-devel-1.2.2-VC6.zip under the LIBS
directory on the CD-ROM. This file contains the libraries and include
files for SDL_image. You should unzip it somewhere clever. I chose to
unzip it into a folder called C:\SDLDEV\SDL_image-1.2.2, with the
folder that contains the libraries and include files for SDL itself. I like to
keep things organized like that. Of course, you should always check for
the latest version of SDL_image at http://www.libsdl.org/libraries.php.

Next, make sure that VC++ can see the appropriate directories for
SDL_image’s library and include files (under Tools, Options). This is
similar to the process you went through to set up the environment for
SDL in Chapter 1.

Finally, when you want to use SDL_image, you have to make sure that you
are linking to sdl_image.lib in addition to the usual sdl.lib and
sdl_main.lib. Furthermore, you will need to have jpeg.dll, libpng1.dll,
zlib.dll, and sdl_image.dll available to your application, either in the appli-
cation folder itself or in a system folder somewhere. For now, I suggest
putting these DLLs into the same folder as the project you are writing.

168 8. SDL_image

08 FO SDL chapter 08 10/21/02 10:38 AM Page 168

Team LRN

Does this sound like a lot of work just to be able to load image files
other than BMPs? Perhaps it is, but if you have a large number of
BMPs, their size will dwarf the paltry 346 KB that are taken up by all
of the DLLs combined. Using a smaller file format will actually cut the
size of your application’s resources even though you are adding four
extra DLLs.

Using SDL_image
As I stated, there is really only one function from SDL_image that you
should need to use. It is called IMG_Load.

SDL_Surface * IMG_Load(const char *file);

This function takes a string that holds the name of a graphics file that
you want to load. If successful, it will return a pointer to an SDL_Surface
that contains that newly loaded image. If there is some sort of prob-
lem, the function will return NULL.

This function looks very much like SDL_LoadBitmap. The only difference
is that it can load images other than those with a .bmp extension.

As a quick example, take a look at FOSDL8_1 on the CD-ROM. It
loads a sample image (the SDL now! logo from http://www.libsdl.org)
and puts it in the application window. This image is in GIF format,
thus demonstrating that SDL_image can load non-BMP image files.
Take a look at Figure 8.1 to see what the application looks like.

Summary
There isn’t much to say about SDL_image, since I discussed only one
function. There are other functions that you can take a look at in
SDL_image.h, but for the life of me I don’t know of any good reason
to call any of them.

169Summary

08 FO SDL chapter 08 10/21/02 10:38 AM Page 169

Team LRN

170 8. SDL_image

Figure 8.1 Output of FOSDL8_1

08 FO SDL chapter 08 10/21/02 10:38 AM Page 170

Team LRN

CHAPTER 9

SDL_ttf

09 FO SDL chapter 09 10/21/02 10:39 AM Page 171

Team LRN

SDL does many things for you. It allows you to manipulate graph-
ics, play sounds, gather input from a variety of input devices, and

do things with threads and timers. One function that it truly lacks,
though, is the ability to draw text on the screen.

Now, I have my own theories about how important text and fonts are
to a game. I personally think that in many cases, text is overused.
One of the big issues is localization. Not everyone speaks English, so
it is a good idea to minimize the amount of text that is used on the
screen and replace text items with icons. Of course, I’ve seen this sort
of thing taken too far as well. In any case, there is a time and a place
for text, and if you are using SDL, you will want to use SDL_ttf.

Setup and Installation
Installing and setting up SDL_ttf is much like installing and setting up
SDL or SDL_image. There is a file called SDL_ttf-devel-2.0.5-VC6.zip
under the LIBS folder on the CD-ROM. Unzip this file somewhere
suitable (such as C:\SDLDEV\SDL_TTF-2.0.5), and then add the
include and library files to the list of directories for VC++. The process
is similar to the process for adding the SDL libs and include files that
you read about in Chapter 1. Always be certain to check for updates
to SDL_ttf on http://www.libsdl.org/projects/SDL_ttf.

Additionally, you will need
to place SDL_ttf.dll either
in a system directory or
into your project directory
when you write a program
that uses SDL_ttf.

172 9. SDL_ttf

NOTE
If you are particularly hard core, you
might want to build SDL_ttf yourself.
If this is the case, you will also need
FreeType 2.0 or later.You can find the
software at http://www.freetype.org.

09 FO SDL chapter 09 10/21/02 10:39 AM Page 172

Team LRN

Using SDL_ttf
The SDL_ttf library has 31 callable functions. I divide these functions
roughly into four categories—initialization, creation/destruction,
information, and rendering. All SDL_ttf functions start with TTF_.

Initialization
Like SDL itself, SDL_ttf first needs to be initialized. The function for
doing this is TTF_Init. Likewise, after the program ends, it needs to be
uninitialized by calling TTF_Quit.

int TTF_Init(void);

void TTF_Quit(void);

TTF_Init will return 0 if all went well and -1 if an error occurred.
TTF_Quit does not return any value. You will likely want to initialize
SDL_ttf in much the same way you initialized SDL.

if(TTF_Init()==0)

{

atexit(TTF_Quit);

}

It’s nice to keep things all together like this, so you don’t have to
remember to put the call to TTF_Quit at the end of the program.

Creation and Destruction
The creation and destruction functions deal with making and unmak-
ing fonts. The structure that keeps font information is called TTF_Font.
The implementation details are completely hidden, however, so you
only ever have to deal with pointers to TTF_Font objects.

There are two ways to create a font—by calling TTF_OpenFont or by calling
TTF_OpenFontIndex.

TTF_Font * TTF_OpenFont(const char *file, int ptsize);

TTF_Font * TTF_OpenFontIndex(const char *file, int ptsize, long index);

In both cases, these functions return pointers to a newly created
TTF_Font object. The first parameter of each is a string that specifies
the file name of a TTF file to load. The second parameter of each
is the point size you desire for the font. If you have ever worked with a

173Using SDL_ttf

09 FO SDL chapter 09 10/21/02 10:39 AM Page 173

Team LRN

word processor, you should be familiar with point sizes of fonts. If you
aren’t, one point is 1/72 of an inch. Since computer monitors vary
widely, it has been established that 72 pixels make up an inch,
although the actual measurement may vary. Therefore, point size
equals pixel size, at least as far as computer graphics are concerned.

In the case of TTF_OpenFontIndex, there is a third parameter called index.
This is for TTF files with more than one font in them; the index speci-
fies which font you want to load.

Like everything else in SDL, you need to destroy a font when you are
done using it by calling TTF_CloseFont.

void TTF_CloseFont(TTF_Font *font);

This function takes a pointer to a TTF_Font object and destroys it.
There is no return value.

Information
Now, without getting into a big discussion about fonts and how typeset-
ters do their jobs, I will tell you that a font has a number of informative
statistics that might be useful to know at times. To make use of any of
this information, you need to know just a small amount of font jargon.

The first (and simplest) bit of jargon is the size of the font. This is the
height that characters in the font can be. It is usually equal to the
point size of the font (which you specify in your call to TTF_OpenFont or
TTF_OpenFontIndex). If this number is not quite the same as the point
size, it will be very close. To retrieve the size of a font, you call
TTF_FontHeight.

int TTF_FontHeight(TTF_Font *font);

This function takes a pointer to a TTF_Font and returns an int that rep-
resents the height or size of the font in pixels.

If you have ever written something down on ruled paper (and chances
are that you have), you know that some letters, such as g, q, and p, dip
down below the line, while other letters, such as m, n, and b, stay
above it. The line upon which you are writing is called the base line.
Various letters that have portions written above the line have an ascent,
and letters that have portions below the line have a descent. For all of
the letters of a font to fit properly when they are outputted, the font

174 9. SDL_ttf

09 FO SDL chapter 09 10/21/02 10:39 AM Page 174

Team LRN

has a total ascent and descent to accommodate all of the letters. The
ascent value plus the descent value equals the height of the font. For
a better picture of the anatomy of a font, take a look at Figure 9.1.

To retrieve the ascent of a font, you use the TTF_FontAscent function; to
retrieve the descent of a font, you use TTF_FontDescent.

int TTF_FontAscent(TTF_Font *font);

int TTF_FontDescent(TTF_Font *font);

Each of these functions takes a pointer to a TTF_Font object and
returns the applicable information about the font. Most of the time,
you won’t really care about the ascent or descent of the font you are
working with, but for those times when you really need to know, the
functions are there for you.

Another more useful feature of fonts is the style, which includes
whether or not the font is bold, italicized, or underlined. To retrieve
the current style of a font, you use TTF_GetFontStyle. To set the current
style of a font, you use TTF_SetFontStyle.

int TTF_GetFontStyle(TTF_Font *font);

void TTF_SetFontStyle(TTF_Font *font, int style);

TTF_GetFontStyle takes a pointer to a TTF_Font object and returns a
combination of bit flags that represent the style of the font. This com-
bination of bit flags can include TTF_STYLE_BOLD, TTF_STYLE_ITALIC, and
TTF_STYLE_UNDERLINE. If none of these styles are present, the value will
be TTF_STYLE_NORMAL (otherwise known as 0 or no style).

175Using SDL_ttf

Figure 9.1 Anatomy of a font

09 FO SDL chapter 09 10/21/02 10:40 AM Page 175

Team LRN

TTF_SetFontStyle takes a pointer to a TTF_Font object and a combination
of these same bit flags and returns no value. It sets the font style
appropriately.

Another useful bit of information is how much space to skip between
lines of text. If you are only drawing a single line of text this won’t be
of any importance, but it can be helpful when you are dealing with
large pieces of text that have multiple lines. The function for retriev-
ing the amount of space recommended between lines of text is called
TTF_FontLineSkip.

int TTF_FontLineSkip(TTF_Font *font);

This function takes a pointer to a TTF_Font object and returns the num-
ber of pixels that should be skipped between lines of text.

A glyph is a generic term for an element of a font. It can be a letter, a
numeral, a punctuation mark, or none of the above, as in many of the
Dingbat-type fonts. Each glyph has a number of metrics associated
with it. To grab the metrics for a particular glyph, you use
TTF_GlyphMetrics.

int TTF_GlyphMetrics(TTF_Font *font, Uint16 ch,int *minx, int *maxx,int

*miny, int *maxy, int *advance);

This function takes a number of parameters. The first parameter is a
pointer to a TTF_Font (font), which is par for the course as far as
SDL_ttf is concerned. The second parameter (ch) is an index into font
glyphs. In a typical font, this is the ASCII or Unicode value of a glyph
in the font. The rest of the parameters (minx, maxx, miny, maxy, and
advance) are pointers to ints that are filled with the appropriate values
upon the function’s return. This function is handy for determining
the size of an individual glyph.

And while we are on the topic of measuring the sizes of things, know-
ing how much space a string of text will take up is often quite useful.
There are three functions for doing this, depending on how your
strings are represented. They are TTF_SizeText, TTF_SizeUTF8, and
TTF_SizeUNICODE.

int TTF_SizeText(TTF_Font *font, const char *text, int *w, int *h);

int TTF_SizeUTF8(TTF_Font *font, const char *text, int *w, int *h);

int TTF_SizeUNICODE(TTF_Font *font, const Uint16 *text, int *w, int

*h);

176 9. SDL_ttf

09 FO SDL chapter 09 10/21/02 10:40 AM Page 176

Team LRN

These functions take a
pointer to a TTF_Font
(font), a string containing
the text you want to size
(text), and two pointers to
ints that are filled with the
width and height needed
for the string to be ren-
dered.

Rendering
The remaining functions in SDL_ttf are concerned with rendering
either individual glyphs or text. Glyphs and text can be rendered one
of three ways—solid, shaded, or blended. Generally speaking, the
result is almost the same no matter which way you render. Rendering
text or glyphs solid is the fastest way, but it has the lowest quality (how-
ever, the quality is still not bad at all). Rendering shaded gives you a
little higher quality, but it is not quite as fast as solid. Finally, blended
is the highest quality and is the slowest.

To render solid text or glyphs, you use one of the following four func-
tions.

SDL_Surface * TTF_RenderGlyph_Solid(TTF_Font *font,Uint16 ch, SDL_Color

fg);

SDL_Surface * TTF_RenderText_Solid(TTF_Font *font,const char *text,

SDL_Color fg);

SDL_Surface * TTF_RenderUTF8_Solid(TTF_Font *font,const char *text,

SDL_Color fg);

SDL_Surface * TTF_RenderUNICODE_Solid(TTF_Font *font,const Uint16

*text, SDL_Color fg);

As usual, the first parameter is a pointer to a TTF_Font. The second
parameter is either the number of the glyph you want to render (in
TTF_RenderGlyph_Solid) or a pointer to a string that you want to render
(in all other cases). The final parameter (fg) is the color in which you
would like the text or glyph rendered. The return value is a pointer to
a newly created 8-bit SDL_Surface. On this surface, color index 0 is the
transparent background, and color index 1 is the color specified in fg.

177Using SDL_ttf

NOTE
We will essentially ignore UTF8 and
UNICODE functions, but it is important
to know that they do exist when
localization becomes an issue.
Within this book, I will simply use
the standard text functions that
contain strings with ASCII values.

09 FO SDL chapter 09 10/21/02 10:40 AM Page 177

Team LRN

After solid rendering, the rest of the rendering functions are a breeze
because they all follow much the same pattern. Here are the shaded
functions.

SDL_Surface * TTF_RenderGlyph_Shaded(TTF_Font *font,Uint16 ch,

SDL_Color fg, SDL_Color bg);

SDL_Surface * TTF_RenderText_Shaded(TTF_Font *font,const char *text,

SDL_Color fg, SDL_Color bg);

SDL_Surface * TTF_RenderUTF8_Shaded(TTF_Font *font,const char *text,

SDL_Color fg, SDL_Color bg);

SDL_Surface * TTF_RenderUNICODE_Shaded(TTF_Font *font,const Uint16

*text, SDL_Color fg, SDL_Color bg);

As you can see, they are quite similar to the equivalent solid rendering
functions, except for the addition of another SDL_Color parameter
called bg. This extra parameter specifies the background color for the
surface that will be created. (It becomes color index 0.) The rest of the
colors on the surface are various shades between fg and bg, creating a
more smoothly rendered, anti-aliased look for the text. (This shading
is why this takes a little more time than solid rendering.) The only real
problem with shaded rendering is that there is no transparent color, so
it is only suitable for rendering onto a solid-color background.

And finally, you have the blended functions.

SDL_Surface * TTF_RenderGlyph_Blended(TTF_Font *font,Uint16 ch,

SDL_Color fg);

SDL_Surface * TTF_RenderText_Blended(TTF_Font *font,const char *text,

SDL_Color fg);

SDL_Surface * TTF_RenderUTF8_Blended(TTF_Font *font,const char *text,

SDL_Color fg);

SDL_Surface * TTF_RenderUNICODE_Blended(TTF_Font *font,const Uint16

*text, SDL_Color fg);

Other than the names of the functions, these have the same parame-
ters as the equivalent solid rendering functions. The difference lies in
what kind of surface is created in response to the function call.
Whereas solid rendering will give you an 8-bit palettized surface,
blended rendering will give you a 32-bit surface with per-pixel alpha
information. This makes for very high-quality font rendering,
although it is a bit slower than either the solid or blended rendering.

178 9. SDL_ttf

09 FO SDL chapter 09 10/21/02 10:40 AM Page 178

Team LRN

Once you have rendered your text, thus creating a new surface, you
simply use that surface as you would any other, blitting it to the frame
buffer and so on.

As you might imagine, creating a surface every time you want text
drawn is not the most efficient way to render text, so this might not be
the method you would choose if your application were text heavy.
However, SDL_ttf is low-level enough that you can simply store all of
the glyphs on their own surfaces and render from them. If you only
have a few static pieces of text, SDL_ttf is not a bad thing to use.

There are a couple of quick examples on the CD-ROM, entitled
FOSDL9_1 through FOSDL9_3. The three example programs demon-
strate solid, shaded, and blended text rendering. The three examples
look very similar, and you probably won’t even see what the difference
is unless you take a screen shot and zoom in to see the anti-aliasing.

For your viewing pleasure, Figure 9.2 shows the screen from FOSDL9_3.
As I stated earlier, FOSDL9_1 and FOSDL9_2 look much the same.

179Using SDL_ttf

Figure 9.2 Screen from FOSDL9_3

09 FO SDL chapter 09 10/21/02 10:40 AM Page 179

Team LRN

Summary
It’s nice to know that for all of your font rendering needs, you can
turn to SDL_ttf. In the past, I’ve had to roll my own font-rendering
engine more than once, and I think it’s really cool that I don’t have to
do that anymore. In addition, SDL_ttf is incredibly simple to learn
and use, much like the rest of SDL.

180 9. SDL_ttf

09 FO SDL chapter 09 10/21/02 10:40 AM Page 180

Team LRN

CHAPTER 10

SDL_net

10 FO SDL chapter 10 10/21/02 10:42 AM Page 181

Team LRN

Welcome to perhaps my favorite of all of the SDL add-on
libraries—SDL_net. Even if you have never done network

programming, you should find it very easy to use because once again,
the creators of this library have taken the word “simple” to heart.

In this chapter, you will take a look at SDL_net and put together a
simple application that demonstrates a small portion of what SDL_net
can do for you. Taking the information above and beyond that level is,
naturally, up to you.

As a comparison, when you were learning to use the video subsystem
of SDL, once you knew how to plot a single pixel, the entire world of
video was yours for the taking. In networking, once you know how to
send a packet (which is just a simple stream of bytes) from one
machine to another, the entire networking system is yours.

A Few Networking Basics
There are a couple of terms that you really need to know before you
can delve into SDL_net. If you are an Internet junkie or you play
online multiplayer games (like me), most of these terms should be at
least somewhat familiar to you.

The first term is IP address. The IP stands for Internet Protocol and is
just a standard way to identify a computer on the Internet. Your IP
address is written as a series of four numbers separated by dots, such as
127.0.0.1. Each of the numbers is in the 0 through 255 range, meaning
that an IP address is really just four bytes. Your IP address identifies
your computer and, to some extent, where you are in the world.

The second term is socket. A socket is simply a connection from one
computer to another, or from one IP address to another. The socket
allows you to communicate with other machines and surf the Internet.

The third and fourth terms are client and server. These deal more with
what kind of role a computer plays in the network. A server typically
does not have a user sitting in front of it, and a client does. A server’s

182 10. SDL_net

10 FO SDL chapter 10 10/21/02 10:42 AM Page 182

Team LRN

role is to process and respond to requests for information. A client is
simply a machine that makes those requests of a server.

The last term is host. A host is the machine that is central to a game
(or really anything that deals with a network) and holds the informa-
tion that other clients request. (The host can be a client as well.)

Now for a few words on how various types of networks work. The sim-
plest form of network, shown in Figure 10.1, contains two computers,
A and B, connected to each other.

In Figure 10.1, either A or B might be a server or both might be
clients. One connection exists between them, which is all that is
required. For simplicity, suppose that they are both client machines,
so this is a peer-to-peer network. A peer-to-peer network is simply a
network in which there are no servers.

You can continue to add more machines to come up with the network in
Figure 10.2, which has four machines—A, B, C, and D.

183A Few Networking Basics

Figure 10.1 The simplest possible network

Figure 10.2 A four-machine peer-to-peer network

10 FO SDL chapter 10 10/21/02 10:42 AM Page 183

Team LRN

As you can see in the diagram, each machine has a separate connec-
tion to the other three machines, for a total of six connections. As you
add more machines, there are even more connections. In case you
were interested, a peer-to-peer network with N machines in it has a
number of connections equal to (N)×(N−1)/2. Even in a modest ten-
machine network, this is 45 connections; at 20 machines, there are
190 connections. The lesson here is that peer-to-peer is only a good
idea if there are very few computers in the network, usually no more
than eight to ten.

In a larger network, it is best to have a client-server setup, as shown in
Figure 10.3.

In the diagram, computer A is the server, and all of the other machines
connect only to it. The client machines send data to A, which in turn
updates the information on the other machines as needed. This
requires you to give one machine the role of server (and typically, that
is the only role the machine plays), but in return you get fewer connec-
tions. There are six machines in the diagram and only five connections—
one for each client machine. In a peer-to-peer network with the same
number of machines, you would have 15 connections.

184 10. SDL_net

Figure 10.3 A client-server network

10 FO SDL chapter 10 10/21/02 10:42 AM Page 184

Team LRN

Now comes the trade-off. Since a given client machine in the setup only
speaks with the server, communication between client machines is indi-
rect. Information first has to be sent to the server and is then passed
along to other clients. Thus, the message has to be sent twice instead of
just once, which is slightly less efficient than sending information directly.

Of course there are other considerations, such as the placement of
the host. As I said earlier, the host machine has all of the information
for the game being played. If for some reason it drops off the net-
work, all of the other machines are then dropped because there is no
place from which to get information. In a client-server setup, the
server acts as the host machine; if a client drops off, the other clients
are not disrupted. (Of course, if the server goes down all of the clients
are out of luck anyway, but that’s just how things go; servers tend to be
more robust machines anyway.)

The long and short of it is that when you are designing a game that
has multiplayer capabilities, you need to decide what sort of scheme
to use. For a game in which people connect directly to one another
over the Internet or through a local network, peer-to-peer is often
fine. However, if you want a nice lobby-style chat room where people
can hook up and play a game, you’ll probably want to go with a client-
server setup. Often, you will need to include the ability to use both.

Setup and Installation
For convenience, I have included SDL_net on the CD. You can find it
in the LIBS folder, in a file called SDL_net-devel-1.2.4-VC6.zip. You
simply unzip it somewhere (I chose C:\SDLDEV\SDL_net-1.2.4), and
then add the directories to VC++’s include and library directories,
much as you did for SDL itself.

Since newer versions (revisions, really) of SDL_net crop up quite often,
you might want to check http://www.libsdl.org for a more recent version.

SDL_net at a Glance
There are four distinct portions of SDL_net, each associated with a
different fundamental structure. These are IP address, TCP socket,
UDP socket, and socket sets.

185SDL_net at a Glance

10 FO SDL chapter 10 10/21/02 10:42 AM Page 185

Team LRN

IP Address
An IP address keeps track of the computers to which you are talking.
Each computer is identified by a 4-byte IP address and a port number
(a 16-bit identifier) over which communication takes place. An IP
address is abstracted in SDL_net with the IPaddress structure.

TCP Socket
You use a TCP (Transfer Control Protocol) socket to make a connection
between two computers (IP addresses). There are basically two types
of TCP sockets—servers and clients. Using TCP guarantees that you
will receive the messages in the order that they were sent. TCP sockets
are abstracted in SDL_net by the _TCPSocket structure, but are more
commonly referenced by the TCPSocket pointer type.

UDP Socket
UDP (User Datagram Protocol) sockets are similar to TCP sockets. The
main difference is that a UDP socket does not guarantee delivery of
packets in the order they were sent. UDP sockets are abstracted in
SDL_net by the _UDPSocket structure, but are more commonly refer-
enced by the UDPSocket pointer type.

Socket Sets
Socket sets are very much what they sound like—collections of sock-
ets. They are typically used by the server to listen for any incoming
data from clients. The socket sets are abstracted in SDL_net by the
type _SDLNet_SocketSet, but are more commonly referenced by the
pointer type SDLNet_SocketSet.

SDL_net in Depth
Now that you have briefly looked at how SDL_net works, take a more in-
depth view of how the structures and functions look and how to use them.

Initialization
Like SDL, you need to initialize SDL_net before you can use it. The
function for doing this is SDLNet_Init.

int SDLNet_Init(void);

186 10. SDL_net

10 FO SDL chapter 10 10/21/02 10:42 AM Page 186

Team LRN

You’ll get non-zero if SDL_net fails to initialize. When you are done
with SDL_net, you use SDLNet_Quit.

void SDLNet_Quit(void);

Typically, you do the atexit trick when initializing SDL_net, like this:

if(!SDLNet_Init())

{

atexit(SDLNet_Quit);

}

Initialization is a piece of cake. It’s the rest of the functions that are
harder, and they aren’t even that much more difficult.

IPaddress
An IP address represents the location of your computer as well as
other computers to which a networking application is talking. The
IPaddress structure looks like this:

typedef struct {

Uint32 host; /* 32-bit IPv4 host address */

Uint16 port; /* 16-bit protocol port */

} IPaddress;

The host member is a Uint32 that contains the four bytes that identify
a computer. There are also special values—INADDR_ANY(0) and
INADDR_NONE(0xFFFFFFFF). You use INADDR_ANY for server sockets and
INADDR_NONE when a host cannot be resolved.

The port member is a Uint16 and can in theory be any number.
Certain ports are used by certain types of applications, such as 80 for
Web browsers, 21 for FTP programs, and 6667 for chat applications.
You just want to stay away from the numbers commonly used by other
types of applications.

There are two functions in SDL_net that deal with IP addresses alone.
(There are other functions, but they deal with sockets; we’ll get to
them in due time.) The first function is SDLNet_ResolveHost. You use
this function to find the IP address of a server to which you will con-
nect or to create the IP address for making a server.

int SDLNet_ResolveHost(IPaddress *address, char *host, Uint16 port);

187SDL_net in Depth

10 FO SDL chapter 10 10/21/02 10:42 AM Page 187

Team LRN

This function returns an int. If it returns 0, the IP address could not
be resolved. The first parameter (address) is a pointer to an IPAddress
structure. This is filled with the data from the resolved host. The sec-
ond parameter (host) is a string containing the address to which you
want to connect. This could be anything from 192.168.0.1 (if you are
connecting to something on a LAN) to www.gamedev.net, or any
other way of describing someplace to connect. The last parameter
(port) is the port to try to see whether the host is listening on it.

When creating an IPaddress for a server socket, you put NULL as the
host, which makes the IPaddress’s host member equal to INADDR_ANY.

If you want to retrieve the string identifier associated with a particular
IP, you use SDLNet_ResolveIP.

char * SDLNet_ResolveIP(IPaddress *ip);

This function takes a pointer to an IPaddress structure and returns a
string identifier. If ip->host is INADDR_ANY, this will return the name of
your computer on your LAN. If not, SDL_net will find the name of
whatever the IP address points to and retrieve it.

Now for a quick sample program so you can look at these things
before I move on to sockets. You can find this example under
FOSDL10_1 on the CD.

#include “sdl.h”

#include “sdl_net.h”

#include <stdlib.h>

int main(int argc,char* argv[])

{

if(SDL_Init(SDL_INIT_EVERYTHING)==-1)

{

return(0);

}

atexit(SDL_Quit);

if(SDLNet_Init())

{

return(0);

}

atexit(SDLNet_Quit);

IPaddress ip;

SDLNet_ResolveHost(&ip,NULL,16);

188 10. SDL_net

10 FO SDL chapter 10 10/21/02 10:42 AM Page 188

Team LRN

fprintf(stdout,”Local Host: %s\n”,SDLNet_ResolveIP(&ip));

SDLNet_ResolveHost(&ip,”www.gamedev.net”,16);

fprintf(stdout,”Remote Host: %s\n”,SDLNet_ResolveIP(&ip));

return(0);

}

This example simply resolves a NULL host and reports the name of your
computer to stdout, and then resolves www.gamedev.net, resolves that
name from the IP again, and reports it again to stdout.txt.

TCPSocket
A TCPSocket is a pointer type, defined as follows in SDL_net.h.

typedef struct _TCPsocket *TCPsocket;

The _TCPSocket structure has its definition hidden from programmers,
which is fine. You don’t really need to know how it works. If for some
reason you want to know, you can check out the source code for
SDL_net, downloadable from http://www.libsdl.org.

Before you can start sending data to another computer, you must first
open a socket. The computer with which you open up the socket must
have a server socket, so at some point you will also need to open a server
socket. You use the same function to create both types of sockets—
SDLNet_TCP_Open.

TCPsocket SDLNet_TCP_Open(IPaddress *ip);

This function takes a pointer to an IP address (ip) and returns a
TCPSocket. If the return value is NULL, something went wrong. If ip.host
is either INADDR_NONE or INADDR_ANY, a server socket will be created. If
not, the function will attempt to connect to the server.

Naturally, if you open a socket you must close it later. The function for
doing this is SDLNet_TCP_Close.

void SDLNet_TCP_Close(TCPsocket sock);

This function takes a TCPSocket and returns no value. It closes an open
TCP socket; whether or not it is a server socket is immaterial.

Now for a few words about the differing roles of server sockets (those
created with an INADDR_ANY or INADDR_NONE host) and non-server sockets,
a.k.a. client sockets. Suppose, for example, that you were making a
chat application in which you can choose within the program to be a

189SDL_net in Depth

10 FO SDL chapter 10 10/21/02 10:42 AM Page 189

Team LRN

server or to connect to a remote server. On the server end, you need a
server socket as well as a number of client sockets, one for each of the
other computers connected to your server. As a client, you only need a
single client socket with which to communicate with the server.

Why is this? Because the only thing that a server socket does is listen
for requests from other computers to join the session. You do not use
server sockets to send or receive data. When a server socket has data
that is ready to be read in, you use SDLNet_TCP_Accept.

TCPsocket SDLNet_TCP_Accept(TCPsocket server);

This function takes a TCPSocket (it must be a server socket) and returns
a TCPSocket. This returned value is a connection to a remote computer
that used SDLNet_TCP_Open to connect to the computer with the server
socket.

After you have done this to connect to a new computer, you can find
out the IP address of that computer by calling SDLNet_GetPeerAddress.

IPaddress * SDLNet_TCP_GetPeerAddress(TCPsocket sock);

This function takes a TCPsocket and returns a pointer to an IPaddress.
If a server socket is supplied to this function, it will return NULL.

And now for the functions that actually allow for communication. The
first one is SDLNet_TCP_Send.

int SDLNet_TCP_Send(TCPsocket sock, void *data, int len);

This function takes a non-server TCPsocket (sock), a void* that points to
data (data), and an int that specifies the length of the data to be sent
(len). This function returns the amount of data actually sent. If the
return value is not equal to len, there was an error.

On the flip side, there is SDLNet_TCP_Recv, which receives data from
another computer.

int SDLNet_TCP_Recv(TCPsocket sock, void *data, int maxlen);

This function takes a non-server TCPsocket (sock), a pointer to a buffer
that has been allocated for data (data), and the maximum length of
that buffer (maxlen). The value returned by this function represents
how much actual data was read in, which will be less than or equal to
maxlen. If it is 0 or less, there was an error.

190 10. SDL_net

10 FO SDL chapter 10 10/21/02 10:42 AM Page 190

Team LRN

Believe it or not, with merely eight functions and two structures, you
can make almost any sort of networked application you can imagine.
SDL_net makes it that easy.

UDPsocket
SDL_net also has functions that allow you to use UDP to send mes-
sages over a network. I’m not going to cover them here because I
think that TCPsockets do the job perfectly well.

SDLNet_SocketSet
The last type you are going to look at in SDL_net is the SDLNet_SocketSet.
Socket sets are used with either TCP or UDP sockets (it really does not
matter which) to look for data coming to that socket. SDLNet_SocketSet,
like TCPsocket, is just a pointer type, and the actual struct is hidden from
view. There is also another type associated with SDLNet_SocketSet called
SDLNet_GenericSocket.

typedef struct {

int ready;

} *SDLNet_GenericSocket;

This type is meant to cast other types of sockets and is used to store
any type of socket in a socket set.

To use a socket set, you must first allocate it. This is done using
SDLNet_AllocSocketSet.

SDLNet_SocketSet SDLNet_AllocSocketSet(int maxsockets);

This function takes as a parameter the number of sockets you want to
have in the set and returns the socket set.

Naturally, when you are done, you want to deallocate the socket set
using SDLNet_FreeSocketSet.

void SDLNet_FreeSocketSet(SDLNet_SocketSet set);

This function returns no value and takes as its parameter a socket set
that you want to deallocate.

To add a socket to a socket set, you use SDLNet_AddSocket.

int SDLNet_AddSocket(SDLNet_SocketSet set, SDLNet_GenericSocket sock);

191SDL_net in Depth

10 FO SDL chapter 10 10/21/02 10:42 AM Page 191

Team LRN

This function takes a socket set (set) and an SDLNet_GenericSocket
(sock). Even though this function takes an SDLNet_GenericSocket, you can
add other types of sockets to it through casting. SDL_net has a couple
of macros to help you in this matter. If you are adding a TCPsocket, you
can use SDLNet_TCP_AddSocket instead. For UDP, it is similar.

To remove a socket from a set, you use SDLNet_DelSocket.

int SDLNet_DelSocket(SDLNet_SocketSet set, SDLNet_GenericSocket sock);

This function takes a socket set (set) and a generic socket (sock) and
removes that socket from the socket set. Like SDLNet_AddSocket, you can
replace it with SDLNet_TCP_DelSocket if you are dealing strictly with
TCPsockets, to avoid casting.

Now for the actual important task done by socket sets…checking the
sockets for data. You accomplish this with a call to SDLNet_CheckSockets.

int SDLNet_CheckSockets(SDLNet_SocketSet set, Uint32 timeout);

This function takes a socket set (set) and a Uint32 timeout value (timeout).
The timeout value can be 0, which means that the socket set will just
do a quick poll. The return value is the number of sockets in the set
that have data ready, or -1 if there was an error.

After you call SDLNet_CheckSockets, you can see whether an individual
socket has data ready by calling SDLNet_SocketReady, which isn’t really a
function; it’s a macro.

#define SDLNet_SocketReady(sock) \

((sock != NULL) && ((SDLNet_GenericSocket)sock)->ready)

You’ll have an example that uses SDL_net in Chapter 16, “Networking
Components.” For now, you just need to become familiar with these
functions. There is also a decent example in the SDL_net source code
(which you can find at http://www.libsdl.org)—one that makes a very
simple chat program.

Summary
As you have seen, SDL_net is really quite simple. With it, you can
make multiplayer games on multiple platforms a reality, which I can
tell you is no small feat. I will talk more about networked applications
in Chapter 16, so don’t despair.

192 10. SDL_net

10 FO SDL chapter 10 10/21/02 10:42 AM Page 192

Team LRN

CHAPTER 11

SDL_mixer

11 FO SDL chapter 11 10/21/02 10:43 AM Page 193

Team LRN

Back in the Bronze Age, sound was not as important to games as it
is today. Back then, we pumped everything through a television

speaker (and the TVs of the day weren’t that great), or worse—
through a PC speaker, which had a hard time even going “beep.”

With SDL, there is indeed an audio subsystem, which you looked at
back in Chapter 5. Unfortunately, it is not nearly as developed as some
of the other SDL subsystems. Fortunately, someone came along, saw this
lacking feature, and decided that SDL_mixer would be a good idea.

Why SDL_mixer
Is Better Than the
SDL Audio Subsystem
SDL_mixer is much better than the audio subsystem. It has built-in
functionality for handling multiple sound effects at the same time, as
well as music. Plus, if you are really hard core, you can specify your own
way to mix music and hook various events (such as sound endings) into
your program with function pointers.

The big benefit is not that you can mix your audio data yourself—it is
that you don’t have to do so. Also, SDL_mixer has support for loading
WAV files, VOC files, and a number of different music formats.

Setup and Installation
Before you begin using SDL_mixer, you need to install the library.
Under the LIBS directory on the CD, there is a file named
SDL_mixer-devel-1.2.4-VC6.zip. If you unzip this file somewhere suit-
able (such as C:\SDLDEV\SDL_mixer), you can set up your develop-
ment environment.

To do this, you add C:\SDLDEV\SDL_mixer\include to the list of include
directories under Tools, Options, and add C:\SDLDEV\SDL_mixer\lib to

194 11. SDL_mixer

11 FO SDL chapter 11 10/21/02 10:43 AM Page 194

Team LRN

the list of library directories. This is similar to the process for setting up
SDL itself, as well as the other add-on libraries.

When you create a project that uses SDL_mixer, you must add
SDL_mixer.lib to the list of libraries to which you want to link, and you
must have SDL_mixer.dll somewhere that the program can find it
(either in the workspace directory or in a system directory somewhere).

SDL_mixer at a Glance
Just to get going, take a brief look at the many functions of
SDL_mixer, divided up by general area of interest. For a graphical
view, see Figure 11.1.

Initialization
There are two initialization functions for SDL_mixer. One opens up
the audio device (relying on the audio subsystem of SDL, which must
be initialized prior to the function call), and the other closes it.
Initialization functions for SDL and its brethren are never a big sweat.

Chunks
All sound effects are abstracted as chunks. You will only ever work with
pointers to chunks. Chunks can be loaded from files on disk or from
memory. Typically, you will load from either a WAV or a VOC file.

195SDL_mixer at a Glance

Figure 11.1 Graphical overview of SDL_mixer

11 FO SDL chapter 11 10/21/02 10:43 AM Page 195

Team LRN

Channels
A channel allows more than one sound effect to be played at a time.
Each channel can play a different chunk at one time. You get to pick
the number of channels that are available to you, and you can change
this number on the fly. You can play a channel, thus associating a
chunk with it. There are a number of options for playing chunks,
including a specific number of loops, a specific amount of time to
play, and whether or not to fade in the chunk. You can also use a spe-
cific channel number to play a sound or let SDL_mixer look for a free
one. Once the sound is playing, you can pause, resume, or halt a
channel. When halting channels, you can also choose to fade the
channel out over time. You can even specify a callback to trigger
whenever a channel is done playing.

Groups
You can section off your channels into a number of groups, and then
use a specific group of channels as a pool from which to pull when
you want a specific type of sound to be played. For example, you
might want to separate channels that are used to play sound effects,
such as explosions, from the channels used to play voice effects. You
can also use groups to treat channels collectively. You can cause all of
the channels in a group to stop or fade out. Groups are handy for
organizing your channels.

Music
Music is treated somewhat like sound effects (and somewhat not). For
one thing, you can only have one piece of music playing at a time; it is
not separated into channels and groups. There are functions for load-
ing music from a variety of file types, including MP3. Once you have
loaded a piece of music, you can play, pause, resume, stop, fade in or
out, and change the position within the music.

Effects
For those of you who are especially hard core, you can deal with spe-
cial effects that change the way your chunks sound. You can use some
of the built-in effects or define your own. You’ll take a look at the
built-in effects near the end of this chapter, as well as a rough outline

196 11. SDL_mixer

11 FO SDL chapter 11 10/21/02 10:43 AM Page 196

Team LRN

of how you might use your own, but this is a book on SDL, not sound
engineering.

SDL_mixer in Depth
Now that you have a good conceptual overview of how SDL_mixer is
constructed, take a look at the SDL_mixer functions in greater detail.
All SDL_mixer functions start with Mix_ to differentiate them from
SDL functions and other add-on library functions. Prior to using any
SDL_mixer function, you must call SDL_Init with SDL_INIT_AUDIO as one
of the bit flags. SDL_mixer does not replace the audio subsystem; it
simply adds more functionality.

Initialization
Like any other SDL add-on library, you must initialize SDL_mixer
before you can use it. However, there is no Mix_Init function; you simply
start doing stuff. The first thing you will want to do is call Mix_OpenAudio.

int Mix_OpenAudio(int frequency, Uint16 format, int channels, int

chunksize);

This opens the audio device and initializes the rest of the SDL_mixer
API. This must be the first SDL_mixer function called in an applica-
tion. The four parameters are frequency (in Hz), format (any of the
constants for audio format discussed back in Chapter 5), number of
channels (either 1 for mono or 2 for stereo), and the chunk size (for
which the SDL documentation suggests that you use 4096). The func-
tion returns -1 for an error or 0 for success. This function does essen-
tially the same job as SDL_OpenAudioSpec.

There are a couple of constants, notably MIX_DEFAULT_FREQUENCY (which
equals 22050) and MIX_DEFAULT_FORMAT (which equals AUDIO_S16SYS), that
you can use if you aren’t too picky about frequency and format.
MIX_DEFAULT_CHANNELS is the same as 2.

Naturally, once you are done with SDL_mixer, you call Mix_CloseAudio.

void Mix_CloseAudio(void);

No parameters, no return values—this function simply closes the
audio device. You can even make this function yet another that you
add to the atexit chain.

197SDL_mixer in Depth

11 FO SDL chapter 11 10/21/02 10:44 AM Page 197

Team LRN

Since you can’t actually be sure that the audio device was opened with
the frequency, format, number of channels, and so on that you speci-
fied, you will probably find it useful to call Mix_QuerySpec after you call
Mix_OpenAudio.

int Mix_QuerySpec(int *frequency,Uint16 *format,int *channels);

This function will return 0
if there is an error and
non-zero on success.
The values pointed to by
frequency, format, and
channels are filled with the
appropriate data for the cur-
rently open audio stream.

Chunks
All of the sound data that you use in your application will be chunks,
which are abstracted as a structure called Mix_Chunk.

typedef struct {

int allocated;

Uint8 *abuf;

Uint32 alen;

Uint8 volume;

} Mix_Chunk;

This is a relatively simple structure. It has a flag that tells you the
chunk has been allocated (allocated), a Uint8 buffer for the audio data
(abuf), a Uint32 that specifies the length of the buffer (alen), and a
Uint8 that specifies the volume of the chunk (volume).

You will likely never work with Mix_Chunk directly; more often than not,
you will work only with Mix_Chunk pointers. Of course, you can work
with Mix_Chunk directly if you so desire. That is why the structure is
available to you. Most of the time, you will simply load chunks in from
WAV files. The function for doing so is Mix_LoadWAV.

Mix_Chunk *Mix_LoadWAV(char *file);

This function takes a string containing a file name and returns a
Mix_Chunk pointer. If an error occurs, the return value will be NULL.

198 11. SDL_mixer

TIP
You can access SDL_SetError and
SDL_GetError through Mix_SetError
and Mix_GetError.The functionality
remains unchanged.

11 FO SDL chapter 11 10/21/02 10:44 AM Page 198

Team LRN

Alternatively, you can load a WAV file that has already been loaded in
the memory with a call to Mix_QuickLoad_WAV.

Mix_Chunk *Mix_QuickLoad_WAV(Uint8 *mem);

The mem parameter is a Uint8 pointer that points to memory that con-
tains the contents of a WAV file. There are some severe warnings in
the documentation for SDL_mixer that make me think you might not
want to use this function unless you are very sure of yourself.

Another hard-core function is Mix_QuickLoad_RAW.

Mix_Chunk *Mix_QuickLoad_RAW(Uint8 *mem, Uint32 len);

This function takes a pointer to raw data in memory (mem) and the
length of the raw data (len). This is definitely a “you-should-really-
know-what-you-are-doing-first” sort of function.

As with everything in SDL or its add-on libraries, after you are done with
a chunk you need to free it. To do so, you use the Mix_FreeChunk function.

void Mix_FreeChunk(Mix_Chunk *chunk);

This function takes a pointer to a chunk and returns no value. If the
buffer for the chunk was allocated, it will be freed. If the chunk buffer
was not allocated, it won’t be freed.

Finally, if you want to set or get the volume for a chunk, you use
Mix_VolumeChunk.

int Mix_VolumeChunk(Mix_Chunk *chunk, int volume);

This function takes a pointer to a chunk (chunk) and an int with a vol-
ume level (with a valid range of 0 to MIX_MAX_VOLUME, which equals 128).

Channels
Before you can start playing sounds you need to look at channel func-
tions, because all sound-effect mixing is based on channels. Channels
are used for sound effects only; music is unaffected.

Allocation
The first and most important decision you need to make is how many
channels you want to have available. If there are a large number of
sound effects that might be playing simultaneously, you might want a

199SDL_mixer in Depth

11 FO SDL chapter 11 10/21/02 10:44 AM Page 199

Team LRN

nice, high number. If the number of sounds is relatively sparse, a
lower number is more appropriate.

You use Mix_AllocateChannels to pick the number of channels available
for sound-effect mixing.

int Mix_AllocateChannels(int numchans);

This function takes the number of channels (numchans) that you want
to allocate and returns the number of channels allocated. You can call
this function as often as you want, changing the number of channels
available at a given time. However, it is not a good idea to do this too
frequently. If you specify a lower number of channels than the last
call, the higher-number channels will be stopped. Allocating zero
channels will stop all channels.

Playing Channels
The whole point of SDL_mixer is to play sounds and, more impor-
tantly, to properly mix them, so you naturally would expect a function
or two dedicated to playing sounds. SDL_mixer has four such func-
tions. The first of these is called Mix_PlayChannel.

int Mix_PlayChannel(int channel, Mix_Chunk *chunk, int loops);

This function takes the channel number on which to play the sound
(channel), a Mix_Chunk pointer (chunk) that represents the sound to be
played, and the number of times to loop the sound (loops). If you put a
-1 in the channel parameter, SDL_mixer will search for an available chan-
nel and use it. If you put -1 in loops, the sound will loop forever. If you
want a sound to play only a single time, place 0 in the loops parameter.

You can also play a channel for a specified number of milliseconds
using Mix_PlayChannelTimed.

int Mix_PlayChannelTimed(int channel, Mix_Chunk *chunk, int loops, int ticks);

The parameter list is much the same as for Mix_PlayChannel, with the
addition of the ticks parameter, which specifies the number of mil-
liseconds you want the sound to be played. Naturally, if looping the
correct number of times falls short of this time limit, the sound will
end normally. You can put -1 in the ticks parameter to cause the chan-
nel to play indefinitely (subject to the length of all of the loops). A -1
for loops or channel means the same thing as it does for Mix_PlayChannel.

200 11. SDL_mixer

11 FO SDL chapter 11 10/21/02 10:44 AM Page 200

Team LRN

Another way to play sounds is to cause them to fade in. This can be a
nice effect, especially during some sort of transition. There is also fad-
ing out, which I will cover a little later in this chapter. The first func-
tion I’m going to show you is Mix_FadeInChannel.

int Mix_FadeInChannel(int channel, Mix_Chunk *chunk, int loops, int ms);

This function takes a channel number (channel), a pointer to a Mix_Chunk
(chunk), and a number of loops (loops), just like Mix_PlayChannel. In addi-
tion, there is an ms parameter, which specifies the number of millisec-
onds from the start of the sound (at a volume of 0) to full volume. A -1
for loops or channel means the same thing as it does for Mix_PlayChannel.

Another option is to set a period of time for the sound to play. The
function for doing this is Mix_FadeInChannelTimed.

int Mix_FadeInChannelTimed(int channel, Mix_Chunk *chunk, int loops,

int ms, int ticks);

All of the parameters except for ticks operate in the same manner as
the same parameters in Mix_FadeInChannel. The ticks parameter oper-
ates exactly the same as it did for Mix_PlayChannelTimed.

Now for a quick little example, in the form of FOSDL11_1. In this
example, one sound (a WAV file containing a song) is played continu-
ously. Whenever a key is pressed, another song is played along with it.
The really neat part of the whole thing is that the format of both
sounds differs from the format of the audio device. Sweet.

Pausing and Resuming
Any complete audio API needs a way to pause and resume sound
effects. SDL_mixer has functions for both—Mix_Pause and Mix_Resume.

void Mix_Pause(int channel);

void Mix_Resume(int channel);

Each of these channels takes a channel number as a parameter, and
neither function returns a value. If -1 is set as the channel parameter,
then all channels are paused or resumed as they apply to the function
being called. These functions are easy enough that I don’t need to
include an example.

201SDL_mixer in Depth

11 FO SDL chapter 11 10/21/02 10:44 AM Page 201

Team LRN

Stopping
One might think that the trivial task of stopping a sound would
require only a single function. This is not the case. SDL_mixer has
four entire functions dedicated to this task. Naturally, they don’t all
stop sounds the same way (and one of them doesn’t stop sounds at all;
it simply determines what to do once a sound stops).

The first of these functions, Mix_HaltChannel, is most like what you
would expect for a function for stopping sounds.

int Mix_HaltChannel(int channel);

This function takes a channel number (channel) to stop playing. If you
place a -1 in channel, all channels will be stopped. The function
returns 0. Yes, always—so the return value is completely useless, and
you might as well pretend that this function returns void.

The next function on the list is Mix_ExpireChannel. This function speci-
fies a particular delay before causing a channel to stop playing.

int Mix_ExpireChannel(int channel, int ticks);

The function takes a channel number (channel) and a number of mil-
liseconds (ticks) before the channel should be halted. It returns the
number of channels that are going to expire. Putting -1 in channel
causes all channels to expire.

You can also cause a sound to fade out prior to halting by calling
Mix_FadeOutChannel.

int Mix_FadeOutChannel(int which, int ms);

This function takes a channel number to fade out (which) and a num-
ber of milliseconds over which to do the fade (ms). If which is -1, all
channels will be faded out.

Finally, there is Mix_ChannelFinished.

void Mix_ChannelFinished(void (*channel_finished)(int channel));

This function takes a pointer to a callback function with a single int
parameter that returns void (channel_finished). The function to which
this points will be called whenever a channel is halted, either naturally
or through a call to one of the stopping functions. The documenta-
tion warns never to call an SDL_mixer function or SDL_LockAudio from
the callback.

202 11. SDL_mixer

11 FO SDL chapter 11 10/21/02 10:44 AM Page 202

Team LRN

Information Functions
While playing sound effects, there are a number of questions that you
no doubt might like to ask about a particular channel. Is a sound play-
ing? Is this channel paused? Is this channel being faded? If so, how?
What chunk is being played on this channel?

SDL_mixer has functions to answer each of these questions. I will start
with the “Is this channel playing?” question, which is answered by
Mix_Playing.

int Mix_Playing(int channel);

This function takes a channel number (channel) and returns whether
or not it is currently playing something. A return value of 0 means
that a channel is not playing, and 1 means that it is. If you pass -1 in
the channel parameter, the number of channels being played at the
moment will be returned instead.

The “Is this channel paused?” question is answered by Mix_Paused.

int Mix_Paused(int channel);

Like Mix_Playing, this function takes a channel number (channel) and
returns a 0 if the sound is not playing or a 1 if it is playing. If a -1 is
passed for the channel parameter, the number of paused channels is
returned.

To see whether or not a particular channel is fading (-1 is not valid in
this case), you use Mix_FadingChannel.

Mix_Fading Mix_FadingChannel(int which);

This function takes a channel number (which) and returns one of
three constants. MIX_NO_FADING means the channel isn’t being faded
either way. MIX_FADING_OUT means that the channel is fading out, and
MIX_FADING_IN means that the channel is fading in.

The final question, “What chunk is a channel playing?” is answered by
Mix_GetChunk.

Mix_Chunk* Mix_GetChunk(int channel);

This function takes a channel number (channel) and returns the
chunk most recently played on it. The channel is not necessarily play-
ing at the moment; you should use Mix_Playing to check for that.

203SDL_mixer in Depth

11 FO SDL chapter 11 10/21/02 10:44 AM Page 203

Team LRN

Groups
It is often useful and advisable to place channels into a group and
reserve one group of channels for sound effects (SFX) and one group
of channels for voice effects (VOX), or something similar so that you
can divvy up the channels for different tasks.

But before doing that, you will want to set up a reserve of channels
that will not be used by default when a chunk is played using the -1
channel. To do this, you use Mix_ReserveChannels.

int Mix_ReserveChannels(int num);

This function takes a number of channels in the range of 0 to num−1
to reserve. The return value is the number of reserved channels,
which should be the same as num provided that many channels were
originally allocated.

The next step is to place channels into a group. You can either do this
individually by channel number or by a range of channels. To do this
with a single channel, you call Mix_GroupChannel.

int Mix_GroupChannel(int which, int tag);

This function takes a channel number (which) and a group number
(tag). It returns 1 if it is successful and 0 if it is not. The channel num-
ber is tagged as a part of that group. If you tag a channel to be of
group -1, it essentially removes the group.

If you wanted to reserve eight channels, four each for SFX and VOX, you
could use Mix_GroupChannel.

Mix_ReserveChannels(8);//reserve eight channels

Mix_GroupChannel(0,1);//group 1 is SFX

Mix_GroupChannel(1,1);

Mix_GroupChannel(2,1);

Mix_GroupChannel(3,1);

Mix_GroupChannel(4,2);//group 2 is VOX

Mix_GroupChannel(5,2);

Mix_GroupChannel(6,2);

Mix_GroupChannel(7,2);

Of course if you are assigning ranges like this, it is much more efficient
to call Mix_GroupChannels.

int Mix_GroupChannels(int from, int to, int tag);

204 11. SDL_mixer

11 FO SDL chapter 11 10/21/02 10:44 AM Page 204

Team LRN

This function takes a starting channel (from), an ending channel (to),
and a group number to assign (tag). The return value is the number
of channels added to the group. To rewrite the short snippet of code
just presented, you would simply do this:

Mix_ReserveChannels(8);//reserve eight channels

Mix_GroupChannels(0,3,1);//group 1 is SFX

Mix_GroupChannels(4,7,2);//group 2 is VOX

Okay, so you can set up groups. That doesn’t do you a darn bit of
good unless you can somehow make use of these groupings. For one
thing, you might want to know how to determine the number of chan-
nels in a particular group. For that, you can ask Mix_GroupCount.

int Mix_GroupCount(int tag);

This function takes a group number (tag) and returns the number of
channels in that group. If there are no channels, it will return 0. If tag
is -1, it will return the total number of channels.

It would also be useful to know whether a channel in the group is
available to play a sound. For this, you look to Mix_GroupAvailable.

int Mix_GroupAvailable(int tag);

This function takes a group number (tag) and returns an available
channel within that group. If no available channel can be found, it
will return -1.

And how about what channel in the group has been playing for the
longest or shortest amount of time? This is useful if you have a limited
number of channels and you need to stop the oldest channel to play a
new sound. The functions for checking this are Mix_GroupOldest and
Mix_GroupNewer.

int Mix_GroupOldest(int tag);

int Mix_GroupNewer(int tag);

Each of these functions takes a group number (tag). In the case of
Mix_GroupOldest, the longest-playing channel is returned. (-1 is
returned if there are no channels in the group or if no channels in
the group are playing.) In the case of Mix_GroupNewer, the shortest-
playing channel is returned. (-1 is returned if no channels exist in
the group or if no channels are playing.)

205SDL_mixer in Depth

11 FO SDL chapter 11 10/21/02 10:44 AM Page 205

Team LRN

Finally, some really useful items—the ability to fade out or halt an
entire group (if you suddenly want your SFX or VOX to stop because the
user has turned them off). To fade out a group of channels over time,
you use Mix_FadeOutGroup.

int Mix_FadeOutGroup(int tag, int ms);

The tag parameter specifies which group you want to fade out, and ms
specifies the number of milliseconds you want it to take. This function
returns the number of channels that will be faded out.

To halt all of the channels in a group, you use Mix_HaltGroup.

int Mix_HaltGroup(int tag);

This function takes a group number (tag) to halt. All of the channels
in that group are halted. This function always returns 0 so don’t
bother checking it.

Music
Music in SDL_mixer is treated differently than sound effects. It is not
played on a channel (or rather, there is a single channel reserved
exclusively for music), and none of the sound effect functions affect
it. You use the Mix_Music type when dealing with music, which does not
reveal any implementation details to the programmer and is always
referred to with a pointer.

Loading and Freeing
Like chunks, you have to load music from a file and free it when you
are finished. The only real difference in setting up to play music is
that you don’t have to allocate any mixer channels, since the music
portion of SDL_mixer doesn’t require them.

To load a piece of music, you call Mix_LoadMUS.

Mix_Music *Mix_LoadMUS(const char *file);

This function takes a string containing a file name (file) and returns
a pointer to a Mix_Music object. A NULL will be returned if there is an
error. The types of music files allowed is varied. You can have MIDI,
MP3, MOD, WAV, or others.

When you are finished with the piece of music, you have to free it by
calling Mix_FreeMusic.

206 11. SDL_mixer

11 FO SDL chapter 11 10/21/02 10:44 AM Page 206

Team LRN

void Mix_FreeMusic(Mix_Music *music);

This function takes a pointer to Mix_Music and frees it. It returns no value.

Playing Music
Of course, the first thing you’ll want to do once you have the ability to
load music is to play it. There are several functions for doing so. The
first of these functions is Mix_PlayMusic.

int Mix_PlayMusic(Mix_Music *music, int loops);

This function takes a pointer to a Mix_Music (music) and a number of
loops (loops) to play it. Using -1 for the loops parameter will cause per-
petual looping. This function returns -1 if there is an error and 0 if
there is no error. Unlike with sound effects, putting 0 for loops will
cause the music to never play.

If you would rather fade in the music gradually (the folks who wrote
SDL_mixer seem to really like fades), you can use Mix_FadeInMusic.

int Mix_FadeInMusic(Mix_Music *music, int loops, int ms);

This function takes a pointer to a Mix_Music (music), a number of loops
(loops), and a number of milliseconds (ms) over which to fade the music.
Again, 0 will cause the music not to be played at all, and -1 will cause infi-
nite loops. This function returns -1 for an error and 0 for success.

Yet another way to play music is to start at a given position for the first
loop of the music. You use Mix_FadeInMusicPos to do this.

int Mix_FadeInMusicPos(Mix_Music *music, int loops, int ms, double position);

This function takes a pointer to a Mix_Music (music), a number of loops
to play it (loops), a number of milliseconds over which to fade it in (ms),
and a starting position (position). It returns 0 on success and -1 on fail-
ure. If loops is -1, it plays forever. If it is 0, it never plays. The position
parameter has different meanings depending on what type of music you
are playing. Normally it means the number of seconds, but not always.

Finally, if you want to be totally hard core about it, you can mix your
own darn music. This is not suggested unless you really know what you
are doing. The function for doing so is Mix_HookMusic.

void Mix_HookMusic(void (*mix_func)(void *udata, Uint8 *stream, int len),

void *arg);

207SDL_mixer in Depth

11 FO SDL chapter 11 10/21/02 10:44 AM Page 207

Team LRN

This function takes a pointer to a function (mix_func) that takes a void*, a
Uint8*, an int that returns no value, and a void* named arg that is passed
to this mixer function. When more music needs to be loaded, you call
the callback function and do whatever to mix in additional music.

I don’t know about you, but the entire reason for me to use
SDL_mixer is so that I don’t have to mix my own sounds and music.
But I guess it’s a nice thing to have, just in case.

Anyway, FOSDL11_2 on the CD is a little example program that loads
in a music file (an .xm MOD file) and plays it perpetually. It’s kind of
neat and only requires about four actual function calls to make the
music stuff work.

Music Settings
Like channels, you can pause and resume music. In addition, you can
restart music from the beginning, change the volume, and set the cur-
rent position within the piece of music. You can also set up an external
music player if you want.

First, take a look at how to pause and resume music. The functions for
doing so are Mix_PauseMusic and Mix_ResumeMusic.

void Mix_PauseMusic();

void Mix_ResumeMusic();

Neither of these functions takes a parameter or returns a value.
Mix_PauseMusic causes music to be suspended in a paused state, and
Mix_ResumeMusic restores the playing state of the music.

If you suddenly feel a need to start the music over from the begin-
ning, you call Mix_RewindMusic.

void Mix_RewindMusic();

This function takes no parameters and returns no value.

If you want to set the current position of the music to anywhere but
the beginning, you can call Mix_SetMusicPosition.

int Mix_SetMusicPosition(double position);

This function takes a double called position. The meaning of this
parameter depends on the type of music being played. If it is a MOD
file, position is the pattern number and fractions are dropped. If it is

208 11. SDL_mixer

11 FO SDL chapter 11 10/21/02 10:44 AM Page 208

Team LRN

an OGG file, position is the number of seconds from the beginning of
the music. If it is an MP3 file, position is the number of seconds to
jump forward. (You cannot jump backward.)

If you want to change the volume at which the music is playing, you
use Mix_VolumeMusic.

int Mix_VolumeMusic(int volume);

The volume parameter should be in the range of 0 to MIX_MAX_VOLUME. If
it is -1, the volume will not be changed. The return value is the previ-
ous volume of the music, so this function operates as both a setter and
a getter.

Finally, you use Mix_SetMusicCMD to set up another program to play your
music for you.

int Mix_SetMusicCMD(const char *command);

This function takes a string, which contains a command line expres-
sion for playing music. It returns -1 if there is an error and 0 if there is
none. I’m not going to go any further into how to use this function.

Stopping Music
To stop music, you can choose to simply stop it immediately or to fade
it out. Additionally, you can set up a callback function to notify you
when the music has ended.

To stop music that is currently playing, you use Mix_HaltMusic.

int Mix_HaltMusic();

This function takes no parameter and always returns 0.

If you prefer to fade out the music over time, you can use
Mix_FadeOutMusic.

int Mix_FadeOutMusic(int ms);

This function takes a number of milliseconds (ms) over which to fade
out the music. If an error occurs, this function returns -1; otherwise, it
returns 0.

Finally, you can set up a callback to notify you when music has finished
playing. The function for doing so is Mix_HookMusicFinished.

void Mix_HookMusicFinished(void (*music_finished)());

209SDL_mixer in Depth

11 FO SDL chapter 11 10/21/02 10:44 AM Page 209

Team LRN

This function takes a single parameter, a pointer to a function that
returns no value and takes no parameters. Mix_HookMusicFinished returns
no value. Whenever the music stops, the callback function is called.

Gathering Information
Just like with channels, there are a number of questions that you will
need to ask of music within your code. What sort of music is playing?
Is music currently playing? Is the music currently paused? Is the music
being faded? If so, how? What callback function is called when the
music finishes playing?

The type of music playing (MOD, OGG, or MP3) can be important,
especially if you are trying to set the position of the music using
Mix_SetMusicPosition. To find out the music type, you can call
Mix_GetMusicType.

Mix_MusicType Mix_GetMusicType(const Mix_Music *music);

This function takes a single parameter—a pointer to a Mix_Music object
(which can be NULL if you are trying to determine what type of music is
currently playing). It returns the type of music, which is one of the fol-
lowing constants: MUS_CMD, MUS_WAV, MUS_MOD, MUS_MID, MUS_OGG, MUS_MP3, or
MUS_NONE. If the return value is MUS_CMD, it means that the external
player is operating. If the value is MUS_NONE, no music is playing (if you
passed NULL to Mix_GetMusicType). In all other cases, the constants indi-
cate from what kind of file the music came.

If you want to see whether music is currently playing, you use the
Mix_PlayingMusic function.

int Mix_PlayingMusic();

This function takes no parameters and returns 1 if music is playing
and 0 if no music is playing.

If you are interested in seeing whether the music is currently paused,
you use Mix_PausedMusic.

int Mix_PausedMusic();

This function takes no parameters and returns 0 if the music has not
been paused and 1 if it has. It works very much like Mix_PlayingMusic.

If you want to know whether music is being faded and how,
Mix_FadingMusic is the function for you.

210 11. SDL_mixer

11 FO SDL chapter 11 10/21/02 10:44 AM Page 210

Team LRN

Mix_Fading Mix_FadingMusic();

This function takes no parameters and returns MIX_NO_FADING,
MIX_FADING_OUT, or MIX_FADING_IN. It works much like Mix_FadingChannel.

Finally, to determine what callback is fired off when the music is fin-
ished, you can use the Mix_GetMusicHookData function.

void *Mix_GetMusicHookData();

This function takes no parameters and returns a pointer to the func-
tion that is called when music ends.

Effects
The last topic on the list is special effects. This portion of SDL_mixer
is broken down into two parts. One part is stock effects, such as pan-
ning and other positional 3D sound effects, and the other part deals
with setting up your own special effects. Effects are carried out on
individual channels (or on all channels at once by specifying
MIX_CHANNEL_POST as the channel number).

An important facet of all special effects deals with the idea of registra-
tion. When each effect is set up, it is registered on a particular channel,
meaning essentially that it affects that channel. This state remains until
the effect is unregistered.

Stock Effects
With stock effects (those built into SDL_mixer), you can set the pan-
ning (in other words, set the volume from each of the speakers sepa-
rately), set the distance at which the sound is heard (which essentially
just decreases the volume of the sound), set the position from which
the sound comes (which is really just a clever trick with panning), and
reverse the left and right stereo channels.

If you want to set the panning, you use Mix_SetPanning.

int Mix_SetPanning(int channel, Uint8 left, Uint8 right);

This function takes a channel number (channel), a volume to use for
the left speaker (left), and a volume to use for the right speaker
(right). The volume levels range from 0 (silent) to 255 (loud). This
function will return non-zero if it is successful and 0 if there is an
error. To unregister this effect, call it with 255 in both left and right.

211SDL_mixer in Depth

11 FO SDL chapter 11 10/21/02 10:44 AM Page 211

Team LRN

If you want to make a channel sound as though the noise is coming
from far away, you use Mix_SetDistance.

int Mix_SetDistance(int channel, Uint8 distance);

This function takes a channel number (channel) and a desired distance
(distance). It returns 0 if there is an error and non-zero otherwise.
The distance ranges from 0 (nearest or loudest) to 255 (farthest or
quietest). To unregister this effect, call it with a distance of 0.

You can also use Mix_SetPosition to achieve a rough simulation of 3D
sound.

int Mix_SetPosition(int channel, Sint16 angle, Uint8 distance);

This function takes a channel number (channel), an angle at which
the sound is supposed to appear (angle), and a distance (distance). It
returns non-zero on success and 0 on error. The angle parameter is 0 if
you want the sound to come from right in front of you, 90 if you want it
to appear to come from your right, 180 if you want it to appear to come
from behind you, and 270 if you want it to appear to come from your
left. To unregister this effect, call it with an angle and distance of 0.

Figure 11.2 shows the angles of the 3D sound.

212 11. SDL_mixer

Figure 11.2 Sound angles and distance effects

11 FO SDL chapter 11 10/21/02 10:44 AM Page 212

Team LRN

Finally, there are times when you might want to reverse a stereo sound
and have the left portion of the sound come from the right speaker
and vice versa. You can use Mix_SetReverseStereo to achieve this effect.

int Mix_SetReverseStereo(int channel, int flip);

This function takes a channel number (channel) and a flip flag. If flip
is non-zero, the effect is turned on; if it is 0, the effect is turned off
and is unregistered. This function returns non-zero on success and 0
on error.

Hard-Core Special Effect Functions
If you want, you can use SDL_mixer to create your own special effects.
You can register special effect functions on individual channels (or
onto the post-mix phase), unregister effects, unregister all effects on a
channel, and even set up your own post-mix mixer.

Before I get to the functions for registering and unregistering effects,
you should take a look at how it is done. I’m not actually going to
explain the theory behind what you need to do to create a special
effect because I am not a sound engineer, but I will show you the
functions you’ll need if you really want to do something like that.

First, take a look at a type called Mix_EffectFunc_t, which is used for
mixing special effects.

typedef void (*Mix_EffectFunc_t)(int chan, void *stream, int len, void

*udata);

As you can see, this is a function pointer type. It takes a channel num-
ber (chan), a pointer to a stream of sound data (stream), a length in
bytes of that stream (len), and a pointer to some user data (udata).
The udata parameter typically points to some sort of temporary data
workspace that is used to make the special effect happen. The stream,
chan, and len parameters manipulate the data going to that channel’s
stream. The idea here is much like putting your own sound data into
the data stream, as you did back in Chapter 5.

If the user data pointer is being used for temporary storage, you will
want some way to clean it up after a sound has finished playing. There
is also a function pointer type to supply a callback function for doing
this. The data type is Mix_EffectDone_t.

213SDL_mixer in Depth

11 FO SDL chapter 11 10/21/02 10:44 AM Page 213

Team LRN

typedef void (*Mix_EffectDone_t)(int chan, void *udata);

This function pointer type points to functions that take a channel
number (chan) and a pointer to user data (udata). The goal of the
function is to clean up any temporary data that might have been used
by the special effect.

Now that we have cleared that up, you can look at the function for
registering a special effect on a channel—Mix_RegisterEffect.

int Mix_RegisterEffect(int chan, Mix_EffectFunc_t f, Mix_EffectDone_t

d, void *arg);

This function takes a channel number (chan), a special effect function
(f), an effect finished function (d), and a user data pointer (arg). The
arg parameter will be sent along to the effect callback and the effect
done callback. Yes, I agree that it is bad form to use something like f
and d for parameter names, but I was not consulted when SDL_mixer
was created. This function returns non-zero on success and 0 on failure.

To unregister an effect from a channel, you use Mix_UnregisterEffect.

int Mix_UnregisterEffect(int channel, Mix_EffectFunc_t f);

This function takes a pointer to an effect function callback and unreg-
isters it from the channel. This function returns 0 on error and non-
zero otherwise.

If you suddenly want to get rid of all effects on a channel, you use
Mix_UnregisterAllEffects.

int Mix_UnregisterAllEffects(int channel);

This function removes all of the effects from a channel (including the
stock effects). It returns non-zero for success and 0 for failure.

Finally, for the super hard core, you can set a post-mix operation,
which takes place after all other special effects and normal mixing
have occurred. You use the Mix_SetPostMix function to do this.

void Mix_SetPostMix(void (*mix_func)(void *udata, Uint8 *stream, int

len),void *arg);

This function takes a function pointer to a mixing function (mix_func)
and a user data pointer (arg). The callback function takes a user data
pointer (udata) that is fed from arg, a stream pointer (stream), and a
length in bytes of the stream (len).

214 11. SDL_mixer

11 FO SDL chapter 11 10/21/02 10:44 AM Page 214

Team LRN

Summary
And that is SDL_mixer. While it is actually rather easy to use, it has
much power that you can use to customize the manner in which
sounds are played in your application or game. Plus, it is a damn sight
better than the audio subsystem of SDL by itself…thank goodness.

215Summary

11 FO SDL chapter 11 10/21/02 10:44 AM Page 215

Team LRN

11 FO SDL chapter 11 10/21/02 10:44 AM Page 216

Team LRN

PART THREE

SDL Game
Application
Framework
in C++

12 FO SDL chapter 12 10/21/02 10:47 AM Page 217

Team LRN

12 Framework Overview

13 Core Components

14 Video Components

15 Audio Components

16 Networking Components

17 User Interface Components

18 The Road Ahead

12 FO SDL chapter 12 10/21/02 10:47 AM Page 218

Team LRN

CHAPTER 12

Framework
Overview

12 FO SDL chapter 12 10/21/02 10:47 AM Page 219

Team LRN

In the five chapters following this one, I will show you an example
object-oriented framework that you can use to rapidly develop

games and applications. None of the material shown in these chapters
is a part of SDL or any related library, although the code certainly
makes heavy use of SDL and the other libraries I have covered up to
this point.

Because there are five chapters dedicated to the framework, each
chapter is dedicated to a particular group of components. Some com-
ponents are simpler than others (naturally), others are more funda-
mental to the way the framework works, and still others are optional.

So why is the framework even here in the first place? To make game
development faster once the framework is complete. At the end of
each chapter, there will be an example application using the new part
of the framework.

The five sections of the framework are the core, video, audio, net-
working, and user interface components. The rest of this chapter con-
tains a brief overview of each.

Core Components
The core components of the framework are absolutely fundamental to
its operation, so I am covering them first. Five classes comprise the core
components—the message handling class (CMessageHandler), the applica-
tion class (CApplication), the event-handling class (CEventHandler), the
thread-managing class (CThread), and the timer-managing class (CTimer).
Figure 12.1 shows the basic structure of the core components. Not a
single one of these classes is meant to be used as is; instead, each one
is meant to have classes that do something useful derived from it. Core
components are covered in Chapter 13.

220 12. Framework Overview

12 FO SDL chapter 12 10/21/02 10:47 AM Page 220

Team LRN

Video Components
The video components of the framework abstract some of the funda-
mental types for working with raster graphics, including points
(CPoint), rectangles (CRectangle), and colors (CColor). In addition,
there is a class that abstracts an SDL_Surface (CCanvas) and a couple of
classes that assist in the management of blittable areas of a surface
(CImage and CImageSet). Figure 12.2 shows the structure of the video
components, which are covered in Chapter 14.

Audio Components
The audio components of the framework are essential if you want a
nice, easy way to play sound effects and music. These classes abstract
SDL_mixer entities. There is a class for opening and closing the audio
device (CAudio), a class for loading and playing music (CMusic), a class for
loading sound effects (CSound), and a class for encapsulating a sound

221Audio Components

Figure 12.1 The core component structure

12 FO SDL chapter 12 10/21/02 10:47 AM Page 221

Team LRN

effect channel (CChannel). Together, they make up a reasonably com-
plete abstraction of SDL_mixer. I left out abstracting channel groups
and special effects because the channel groups were rendered unneces-
sary by the components I built and special effects are beyond the scope
of this book. The audio components are covered in Chapter 15.

Networking Components
The networking components of the framework are for multiplayer
capabilities. These classes abstract SDL_net entities. Components
include classes for abstracting IP addresses (CIPAddress) and classes for
abstracting TCP sockets (CTCPSocket, CHostSocket, and CClientSocket).
Static structures for keeping track of all of the sockets in use in the
networking application are also part of the CTCPSocket class.

222 12. Framework Overview

Figure 12.2 Structure of the video components

12 FO SDL chapter 12 10/21/02 10:47 AM Page 222

Team LRN

User Interface Components
Don’t forget user interface components, which are perhaps the most
important of all. The UI components don’t correspond directly to any
SDL entity, but they do use the video and event subsystems quite heav-
ily. The primary component is CControl, which is the base class for all
other controls. It provides a hierarchy for all child controls. The other
components are the child controls themselves—CButton, CTextBox,
CLabel, and CRadioButton—which abstract specific types of controls and
are based on CControl.

Summary
Now that you’ve got a small overview of what you’re going to be doing
for the next five chapters, let’s just get to it and start building a nice
application framework that you can use to make games.

223Summary

12 FO SDL chapter 12 10/21/02 10:47 AM Page 223

Team LRN

12 FO SDL chapter 12 10/21/02 10:47 AM Page 224

Team LRN

CHAPTER 13

Core
Components

13 FO SDL chapter 13 10/21/02 10:49 AM Page 225

Team LRN

You simply cannot build a house without first pouring a founda-
tion, and the same is true of any application framework. There

are certain tasks to which you simply must attend. In a typical SDL
application, certain function calls and tasks are mandatory. Figure
13.1 depicts a typical flow diagram for an SDL application.

As a developer, you know that all of these events must occur, and if
you start from scratch, you will write pretty much the same code each
time to accomplish them. One of the purposes of this framework is to
get rid of that repetitious code that exists in all applications, freeing
you to work with the useful code.

226 13. Core Components

Figure 13.1 Standard SDL application program flow

13 FO SDL chapter 13 10/21/02 10:49 AM Page 226

Team LRN

Core Components
at a Glance
There are five classes in the core components—CMessageHandler (a
message-handling class), CApplication (which directs the application as
a whole), CEventHandler (which handles events as they come in), CThread
(which manages a thread), and CTimer (which handles timers). Except
for CThread and CTimer, these classes manage the basic tasks in all pro-
grams. Figure 13.2 shows the basic hierarchy of the core classes.

Message-Handler Class:
CMessageHandler
CMessageHandler is a more abstract class than any of the others in the
core components. It’s the base class of all of the other classes. Its pur-
pose is to provide a mechanism by which classes can communicate
with one another through a hierarchy.

Each object of a class in the core components (except a CApplication
object) has a parent object and any number of child objects.
CMessageHandler allows a child object to send messages to and get
information from its parent. This process occurs by sending messages

227Core Components at a Glance

Figure 13.2 Class hierarchy of the core components

13 FO SDL chapter 13 10/21/02 10:49 AM Page 227

Team LRN

and a number of parameters (up to four) that provide extra informa-
tion about the message. (Each type of message has its own unique ID
number that cannot be shared with any other message.)

Another purpose of CMessageHandler is to assign unique message IDs.
These are referenced by an identifier, not by the raw number, so the
actual value of the identifier is not important to you as a programmer.
You just compare the message ID being sent to the identifier to find
out what sort of message has been sent. Message IDs are assigned with
a static member function call.

Application Class: CApplication
CApplication is a class derived from CMessageHandler. Its main purpose is
to give a definite flow to an application and eliminate the need for a
main function. CApplication is not intended to be instantiated. (The
default behavior does practically nothing.) It is an intermediate step
between CMessageHandler and CEventHandler.

CApplication also enforces only having a single instance of any
CApplication-derived class.

Event-Handler Class: CEventHandler
CEventHandler is derived from CApplication and ultimately from
CMessageHandler. It adds to CApplication by providing event handlers for
all of the SDL event types. This makes life easy because to change the
behavior of the application, all you have to do is modify a derived
class’ event-handling member function.

Thread Class: CThread
CThread is derived from CMessageHandler, so it can have a message han-
dler parent (typically the CApplication- or CEventHandler-derived object
for that application) and it can send messages to that parent. This
vastly simplifies communication to and from the main thread.

Timer Class: CTimer
CTimer is much like CThread. It is based on CMessageHandler, so it can easily
communicate with the main thread through messages. The only real
difference is that it is periodically triggered, rather than running con-
stantly as CThread does.

228 13. Core Components

13 FO SDL chapter 13 10/21/02 10:49 AM Page 228

Team LRN

Core Components in Depth
Now that you’ve taken a look at how the core components of the appli-
cation framework do their jobs and what roles they play, it is time to take
a closer look at how they work. I am not going to go into the implemen-
tation of these classes line by line; instead, I’ll show you the interface to
these classes.

Message Handler Class
CMessageHandler is the simplest of the five classes, but it is also the most
fundamental because all of the other classes are derived from it. Here
is what the class definition for CMessageHandler looks like.

//message id

typedef Uint32 MSGID;

//message parameters

typedef void* MSGPARM;

/*

==CMessageHandler==

Message notification class.

Base class of all other core components.

Provides a parent child relationship to derived objects.

Hungarian: mhX, *pmhX

*/

class CMessageHandler

{

private:

//parent message handler

CMessageHandler* m_pmhParent;

//next message id(static)

static MSGID s_NextMSGID;

public:

//constructor

CMessageHandler(CMessageHandler* pmhParent);

//destructor

virtual ~CMessageHandler();

//set parent

void SetParent(CMessageHandler* pmhNewParent);

229Core Components in Depth

13 FO SDL chapter 13 10/21/02 10:49 AM Page 229

Team LRN

//get parent

CMessageHandler* GetParent();

//has parent?

bool HasParent();

//send message

bool SendMessage(MSGID MsgID,MSGPARM Parm1=NULL,MSGPARM

Parm2=NULL,MSGPARM Parm3=NULL,MSGPARM Parm4=NULL);

//process message(pure virtual)

virtual bool OnMessage(MSGID MsgID,MSGPARM Parm1,MSGPARM

Parm2,MSGPARM Parm3,MSGPARM Parm4);

//get next message id(static)

static MSGID GetNextMSGID();

//msgid: add child(static): Parm1=Parent, Parm2=Child

static MSGID MSGID_AddChild;

//msgid: remove child(static): Parm1=Parent, Parm2=Child

static MSGID MSGID_RemoveChild;

//add child handler

virtual void OnAddChild(CMessageHandler* pmhChild);

//remove child handler

virtual void OnRemoveChild(CMessageHandler* pmhChild);

};

There are essentially three aspects to CMessageHandler—message ID
assignment, parent management, and message handling. There are
also the constructor and destructor, which I will discuss separately.

Message ID Assignment
Many different APIs and other frameworks use message identifiers. In
standard WIN32 programming, all of the various WM_* constants are
much like this; in SDL, there are a number of enumerations just like
this. The reason for having such a scheme is to make it easy to differ-
entiate one type of message from another.

Unfortunately, this sort of thing generally requires a great deal of
bookkeeping on the part of the programmer. You have to lay out cer-
tain message IDs and reserve others; when creating new message IDs,
you have to ensure that none are duplicated.

I have eliminated that problem by storing the “next” message ID in a
global variable (or rather, a static member of CMessageHandler, which
amounts to the same thing). The next message ID is assigned to an

230 13. Core Components

13 FO SDL chapter 13 10/21/02 10:49 AM Page 230

Team LRN

identifier (another static member), and the following message ID is
increased by one. To check whether a particular message ID has been
encountered, you simply use an if statement. (Since the variables are
not constants you cannot use a switch statement, but if…else if…else

blocks are more efficient anyway.)

The static member that stores the next message ID is called
s_NextMSGID. Initially, its value is 0…not that it really matters. To assign
a new message ID, you use CMessageHandler::GetNextMSGID.

MSGID CMessageHandler::GetNextMSGID();

This function takes no parameters and returns the next message ID
available. The first message ID to be assigned is 0, and so forth. For an
example of how to use this function, take a look at the static members
MSGID_AddChild and MSG_RemoveChild. In MessageHandler.cpp (see
FOSDL13_1 on the CD-ROM), the following two lines give values to
these static members.

MSGID CMessageHandler::MSGID_AddChild=CMessageHandler::GetNextMSGID();

MSGID CMessageHandler::MSGID_RemoveChild=CMessageHandler::GetNextMSGID();

If these were the only two message IDs in the program, one would
have a value of 0 and the other would have a value of 1. The actual
value assigned does not matter. (Did I already say that?) If there were
other message IDs assigned in other source files, then these message
numbers might or might not be 0 and 1, depending on the compiler.

A minor caveat…. These message IDs are variables, not constants, so
you have to be sure not to assign them values. If you really want to be
safe, you can make static getter functions, but that’s more typing than
I typically like to do.

Since pretty much every other class in the core components derives from
CMessageHandler, using CMessageHandler::GetNextMSGID is not a problem—
you don’t even have to include anything extra.

Parent Management
Another important aspect of CMessageHandler concerns the assignment
of a parent object to another object. A pointer to this parent is stored
in m_pmhParent, which is a private member. (In other words, I don’t
want the user of the class to have access to it for reasons that will
become clear in a moment.)

231Core Components in Depth

13 FO SDL chapter 13 10/21/02 10:49 AM Page 231

Team LRN

There are three functions concerned with parent management for
CMessageHandler: SetParent, GetParent, and HasParent. First, here’s SetParent.

void CMessageHandler::SetParent(CMessageHandler* pmhNewParent);

This function returns no value and takes as its sole parameter a
pointer to a new CMessageHandler (or derived class) to assign as the
object’s parent. The function does more than simply assign a new
value for m_pmhParent. First, it checks to see whether the object already
has a parent. If it does, the function sends a MSGID_RemoveChild to the
old parent. The new value for m_pmhParent is assigned, and then (if the
new parent is not NULL), the function sends a MSGID_AddChild message to
the new parent.

The second function, GetParent, is rather straightforward.

CMessageHandler* CMessageHandler::GetParent();

This function simply returns the current value of m_pmhParent. It takes
no parameters.

The third and final function is HasParent, which is used by SetParent to
determine whether or not an object has a valid parent.

bool CMessageHandler::HasParent();

This function returns true if m_pmhParent is not NULL and false if it is
NULL. I considered calling this function IsOrphan, but I wanted to keep
the whole “Parent” theme going.

Message Handling
Perhaps the most important aspect of CMessageHandler is the one for
which it was named—message handling. Each object in the hierarchy
does a particular job, but there must be a way to communicate with
other objects. With the whole parent-child idea, communication has
to be two-way. The SendMessage function allows this.

bool CMessageHandler::SendMessage(MSGID MsgID,MSGPARM Parm1=NULL,MSGPARM

Parm2=NULL,MSGPARM Parm3=NULL,MSGPARM Parm4=NULL);

This function takes five parameters—a MSGID (called MsgID) that speci-
fies which message is being sent and four MSGPARM values (Parm1 through
Parm4). The meaning of these values depends on what message is being
sent. The function returns true if the message was handled. If you
need to return extended information (other than true or false), you

232 13. Core Components

13 FO SDL chapter 13 10/21/02 10:49 AM Page 232

Team LRN

can simply put a pointer to something into one of the parameters and
have the handler fill it with a return value.

When SendMessage is called, CMessageHandler tries to handle the message
itself by calling OnMessage. (You will take a look at this function in a
moment.) Failing that, the message is sent along to the parent, if the
object has one. If no parent exists, then false is returned.

When a CMessageHandler attempts to handle a message on its own, it uses
the OnMessage function (which is virtual and likely to be overridden in
derived classes).

bool CMessageHandler::OnMessage(MSGID MsgID,MSGPARM Parm1,MSGPARM

Parm2,MSGPARM Parm3,MSGPARM Parm4);

As you can see, OnMessage has the same parameter list as SendMessage, as
well as the same return type. OnMessage’s purpose is to dispatch messages
to the appropriate handler. There are already two messages defined for
CMessageHandler—MSGID_AddChild and MSGID_RemoveChild. If either of these
messages occurs, calls are made to OnAddChild or OnRemoveChild. If neither
message occurs, the function simply returns false.

What this means to you is that when you derive classes from CMessageHandler
and you override OnMessage, you must call CMessageHandler::OnMessage if you
don’t find the messages for which you are looking. This is the mechanism
that allows default processing of messages.

The two specific message handlers are OnAddChild and OnRemoveChild;
both look rather similar.

void CMessageHandler::OnAddChild(CMessageHandler* pmhChild);

void CMessageHandler::OnRemoveChild(CMessageHandler* pmhChild);

Neither of these functions returns a value, and both take as parameters
pointers to a CMessageHandler that is being added or removed as a child
(depending on which of the functions is called). The CMessageHandler
implementation for these functions does absolutely nothing. Both
functions are virtual and are meant to be overridden if a child class
needs to keep track of child objects.

Constructor and Destructor
Finally, you have the constructor and destructor. The constructor
assigns an initial value to m_pmhParent by calling SetParent. The destructor

233Core Components in Depth

13 FO SDL chapter 13 10/21/02 10:49 AM Page 233

Team LRN

sets the parent to NULL (allowing for the final sending of
MSGID_RemoveChild). Here’s what the constructor looks like.

CMessagHandler::CMessageHandler(CMessageHandler* pmhParent);

The constructor simply takes a pointer to another CMessageHandler to
use as the initial value for the parent. The destructor looks just like
every other destructor that ever existed, so I won’t bother to show it.

As you can see, CMessageHandler has absolutely nothing to do with SDL
itself, yet it includes sdl.h at the top of MessageHandler.h. Why?
Because somewhere within sdl.h, NULL is given a value. Otherwise,
I would’ve had to use 0. Silly, eh?

Application Class
The second class in the core components is CApplication, which is
derived from CMessageHandler. The entire goal of CApplication is to elimi-
nate the need to write a main function. (There will still be a main function,
of course, but it will be hidden in the implementation of CApplication.)

/*

==CApplication==

Singleton.

Base class for all other application classes.

*/

class CApplication : public CMessageHandler

{

private:

//singleton pointer

static CApplication* s_pTheApplication;

//set singleton pointer

static void SetApplication(CApplication* pTheApp);

public:

//constructor

CApplication();

//destructor

virtual ~CApplication();

//initialization

virtual bool OnInit(int argc,char* argv[]);

//event occurrence

virtual void OnEvent(SDL_Event* pEvent);

234 13. Core Components

13 FO SDL chapter 13 10/21/02 10:49 AM Page 234

Team LRN

//idle behavior

virtual void OnIdle();

//cleanup

virtual void OnExit();

//execution of application

static int Execute(int argc,char* argv[]);

//get singleton

static CApplication* GetApplication();

};

The odd thing about CApplication is that it is a singleton. You can natu-
rally only have one application object at a time. This is enforced by
the static member s_pTheApplication. The static member functions
GetApplication and SetApplication are concerned with setting and
retrieving this value. SetApplication is called during CApplication’s con-
structor. If the value has already been set, the program will terminate
with an error message in stderr.txt.

The main function, shown below, calls only one function—
CApplication::Execute.

//main function

int main(int argc,char* argv[])

{

//run the application

return(CApplication::Execute(argc,argv));

}

CApplication::Execute first checks to see that s_pTheApplication has a
value other than NULL. If the value is NULL, then no application has
been instantiated, and the program terminates immediately after
sending an error message to stderr.txt.

Once the value of s_pTheApplication has been checked, Execute attempts
to initialize the application by calling the OnInit member function of
whatever s_pTheApplication points to. If OnInit returns false, then the
application terminates because it can’t be initialized. (It is assumed
that any failure to initialize will be reported during the call to OnInit.)

Next, the event/idle loop begins. First, SDL polls for events. If an
event other than a quit event occurs, it is sent to OnEvent. If no event
occurs, OnIdle is called instead. This keeps occurring until a quit event
happens, at which point Execute breaks out of the loop.

235Core Components in Depth

13 FO SDL chapter 13 10/21/02 10:49 AM Page 235

Team LRN

After the loop is finished, OnExit is called and any cleanup is done.
Finally, the application terminates normally.

CApplication, as you can see, is a pretty small class. Most of the time
you will want to override OnInit, OnExit, and OnEvent at the very least,
and usually OnIdle as well.

This brings up the question of how you instantiate a CApplication
object. Since there is no main function to write, there has to be some
manner of instantiating a CApplication object. First, you will never
instantiate a CApplication object because CApplication doesn’t really do
much. Instead, you will derive a class from CApplication, and then
instantiate that instead. The instantiation will occur in the global
scope. Suppose you derived a class from CApplication called
CTestApplication. Somewhere in TestApplication.cpp you would
have the following line.

CTestApplication TheApp;

The constructor will take it from there. Neat, huh?

CApplication, like CMessageHandler, doesn’t really do much. However, at
least now there is some sort of tie-in with SDL. Mainly this has to do
with initialization (CApplication initializes all systems of SDL) and
event grabbing.

Event-Handler Class
The event-handler class is derived from CApplication. It includes new
member functions that take care of handling events. In CApplication,
there is only a single event-handling function—OnEvent (which
CEventHandler overrides, of course). CEventHandler takes the information
from the event and dispatches it to the appropriate member function.
Here’s what the class looks like.

/*

==CEventHandler==

Event dispatching application class

*/

class CEventHandler : public CApplication

{

public:

//constructor

236 13. Core Components

13 FO SDL chapter 13 10/21/02 10:49 AM Page 236

Team LRN

CEventHandler();

//destructor

virtual ~CEventHandler();

//event handling

virtual void OnEvent(SDL_Event* pEvent);

//event filtering

virtual bool FilterEvent(SDL_Event* pEvent);

//active events

//keyboard(input)

virtual void OnInputFocus();

virtual void OnInputBlur();

//mouse

virtual void OnMouseFocus();

virtual void OnMouseBlur();

//application active

virtual void OnMinimize();

virtual void OnRestore();

//keyboard events

virtual void OnKeyDown(SDLKey sym,SDLMod mod,Uint16 unicode);

virtual void OnKeyUp(SDLKey sym,SDLMod mod,Uint16 unicode);

//mouse events

virtual void OnMouseMove(Uint16 x,Uint16 y,Sint16 relx,Sint16

rely,bool bLeft,bool bRight,bool bMiddle);

virtual void OnLButtonDown(Uint16 x,Uint16 y);

virtual void OnLButtonUp(Uint16 x,Uint16 y);

virtual void OnRButtonDown(Uint16 x,Uint16 y);

virtual void OnRButtonUp(Uint16 x,Uint16 y);

virtual void OnMButtonDown(Uint16 x,Uint16 y);

virtual void OnMButtonUp(Uint16 x,Uint16 y);

//joystick events

virtual void OnJoyAxis(Uint8 which,Uint8 axis,Sint16 value);

virtual void OnJoyButtonDown(Uint8 which,Uint8 button);

virtual void OnJoyButtonUp(Uint8 which,Uint8 button);

virtual void OnJoyHat(Uint8 which,Uint8 hat,Uint8 value);

virtual void OnJoyBall(Uint8 which,Uint8 ball,Sint16 xrel,Sint16

yrel);

//resize event

virtual void OnResize(int w,int h);

//expose event

237Core Components in Depth

13 FO SDL chapter 13 10/21/02 10:49 AM Page 237

Team LRN

virtual void OnExpose();

//user event

virtual void OnUser(Uint8 type,int code,void* data1,void* data2);

};

Other than the constructor, destructor, OnEvent, and FilterEvent, the
rest of the member functions are concerned with handling specific
types of events. The parameters are the same as the members of the
various types of events that you receive in a normal application. Since
I have already covered events extensively, I won’t go through them all
again. Each event handler in CEventHandler’s implementation does
absolutely nothing. They are just stubs that are meant to be overridden
in derived classes.

Two events do not have handlers—SysWM and Quit. CApplication handles
Quit events internally, and SysWM events are simply ignored. Certain
events (such as mouse button presses and active events) have been
split into several different specific events just to make life even easier—
one for each button, one for each type of focus, and so on.

The other member functions, specifically OnEvent and FilterEvent, play
specific roles. The behavior of OnEvent (which did absolutely nothing
in CApplication) has been changed so that the type of event triggers
the specific event-handling function. The FilterEvent member
function occurs before the event is dispatched. FilterEvent, in
CEventHandler’s implementation, simply returns false. If true is
returned, the event is not dispatched (in other words, it has been
filtered). This is meant to assist in event trapping with later compo-
nents of the application framework.

The constructor and destructor don’t actually do anything; they are
included for completeness.

Thread Class
The next core component is the CThread class. It is derived from
CMessageHandler and it encapsulates a thread. You must be careful with
this class because multi-threaded programming can easily be disastrous.
CThread is a simplistic class that is meant only for simplistic tasks. To
make a more robust class, you would need to put a great deal more
thought into it.

238 13. Core Components

13 FO SDL chapter 13 10/21/02 10:49 AM Page 238

Team LRN

/*

==CThread==

Base class for all user defined thread classes

*/

class CThread : public CMessageHandler

{

private:

//pointer to the thread

SDL_Thread* m_pThread;

//thread ID

Uint32 m_ThreadID;

//running flag

bool m_bRunning;

//suspended flag

bool m_bPaused;

protected:

//start the thread(should be called by derived classes constructor)

void Start();

//thread function

static int ThreadFunction(void* data);

//onstart handler

virtual void OnStart();

//onstop handler

virtual void OnStop();

//onpause handler

virtual void OnPause();

//onresume handler

virtual void OnResume();

public:

//constructor

CThread(CMessageHandler* pmhParent);

//destructor

virtual ~CThread();

//get thread pointer

SDL_Thread* GetThread();

//get thread id

Uint32 GetThreadID();

//stop the thread

void Stop();

//set paused state

239Core Components in Depth

13 FO SDL chapter 13 10/21/02 10:49 AM Page 239

Team LRN

void Pause();

void Resume();

//check paused state

bool IsPaused();

//check running state

bool IsRunning();

//thread procedure

int OnExecute();

};

CThread only adds four data members—m_pThread (a pointer to an
SDL_Thread), m_ThreadID (the ID of the running thread), m_bRunning
(an indicator of whether or not the thread is running), and
m_bPaused (an indicator of whether or not the thread is paused).

You can access the two SDL-related members (m_pThread and m_ThreadID)
with GetThread and GetThreadID, respectively.

You can access the status (running or not and paused or not) with
IsRunning and IsPaused. To change the paused state, you use Pause or
Resume. To change the running state, you use Start or Stop. Only Stop
has public access.

There are also event handlers built into CThread, namely OnStart,
OnStop, OnPause, and OnResume. These can be called from threads outside
of the thread running the CThread object, so you should be careful. In
the CThread implementation, these handlers do nothing.

CThread’s main work is done through OnExecute (a virtual function),
which customizes what a CThread-derived object does. The mechanism
that allows this to work is ThreadFunction, a static member function
used to create all threads.

CThread itself is not useful if instantiated. The thread terminates almost
immediately after it is started, and there is no way to start it. You must
create a derived class that calls Start during the constructor.

Timer Class
CTimer, the last of the core components, encapsulates a timer object. It
is similar to CThread in many ways, although it is generally much safer
to use. Like CThread, using CTimer itself is silly…the class does nothing.

240 13. Core Components

13 FO SDL chapter 13 10/21/02 10:49 AM Page 240

Team LRN

/*

==CTimer==

Base class for all timer classes.

*/

class CTimer : public CMessageHandler

{

private:

//timer id

SDL_TimerID m_TimerID;

//interval

Uint32 m_Interval;

//timer procedure

static Uint32 TimerProc(Uint32 interval,void* param);

public:

//constructor

CTimer(CMessageHandler* pmhParent,Uint32 interval);

//destructor

virtual ~CTimer();

//get interval

Uint32 GetInterval();

//set interval

void SetInterval(Uint32 Interval);

//get timer id

SDL_TimerID GetTimerID();

//start timer

void Start();

//stop timer

void Stop();

//on timer handler

virtual void OnTimer();

};

The cool thing about CTimer is that you can start, stop, and restart it
with ease. There are two additional members that give you informa-
tion about the timer—the interval (m_Interval) and the timer ID
(m_TimerID). If the timer ID is zero, the timer is stopped. (You can call
GetTimerID to find out the value of the timer ID, and then check it
against 0.) Otherwise, the timer is in operation.

You can use SetInterval to change the interval at which the timer fires,
and you can use GetInterval to retrieve the current interval.

241Core Components in Depth

13 FO SDL chapter 13 10/21/02 10:49 AM Page 241

Team LRN

Each time the timer pulses, the OnTimer member function is called.
This function is meant to be overridden in a derived class; in the
CTimer implementation it does absolutely nothing.

Component Test
Now it is time to put your money where your mouth is and do a test of
the core components. You can find this component test in
FOSDL13_1 on the CD-ROM.

In the example, all of the core components are used either directly or
indirectly to derive three new classes—CTestEventHandler (which derives
from CEventHandler directly and CApplication and CMessageHandler indi-
rectly), CTestThread (which derives from CThread directly and
CMessageHandler indirectly), and CTestTimer (which derives from CTimer
directly and CMessageHandler indirectly).

CTestTimer and CTestThread don’t do much. They both simply write
strings to stdout.txt. CTestThread only writes a single string before it is
done, and CTimer pulses every 1000 ms and writes to stdout.txt. (In
other words, don’t let the test application run for days on end.)

CTestEventHandler is a simplistic drawing program. I only had to over-
ride a few functions—OnLButtonDown, OnMouseMove, and OnKeyDown. With
the left mouse button pressed, this application allows you to draw
white dots on the screen. To clear the screen, hit any key.

To test the message-handling aspects of the core components, I placed
two new MSGIDs—one for clearing the screen and one for drawing a
pixel—so the only function that actually deals with screen drawing is
OnMessage.

So the core components work, and now you can move on to bigger
and better things.

Summary
A thousand-mile journey starts with a single step. Hopefully that step
is toward a car or an airplane, because walking a thousand miles
seems a bit extreme. Anyway, you’ve got some fundamental classes to
work with now, and you can start adding in more specific classes for
dealing with more SDL objects. The book is about SDL, after all.

242 13. Core Components

13 FO SDL chapter 13 10/21/02 10:49 AM Page 242

Team LRN

CHAPTER 14

Video
Components

14 FO SDL chapter 14 10/21/02 10:56 AM Page 243

Team LRN

Now that you’ve gotten the core components out of the way, you
can start making some components that are actually useful. I am

speaking, of course, about video components.

Some people might say that there really is no need to encapsulate
SDL’s video components into classes. To a certain degree, I agree with
them. The SDL video components are already quite object-oriented
and well organized. But I truly prefer working with classes to functions.

There is also quite a bit of functionality that was left out of SDL. There
is no class to abstract a point on the screen. Also, there are no functions
that make dealing with SDL_Rect very easy, and the same thing goes for
SDL_Color. In the case of SDL_Color, there isn’t even a function that
uses this structure unless you are using palettes.

Video Components
at a Glance
I have come up with seven classes to use for video components, most of
which abstract some structure in SDL. I have divided the components
into two broad categories—basic classes (CPoint, CRectangle, and CColor)
and graphical classes (CCanvas, CImage, and CImageSet). Although you’ve
already seen this in Chapter 12, Figure 14.1 shows a diagram of the
classes in the video components and their relationship to one another.

This list could be rounded out easily with classes for abstract palettes,
overlays, and video information, but I’ll leave the design of those
classes to you since you won’t need them for the task at hand. Let’s
get right to it and talk a bit about the various video components and
their roles, starting with the basic classes.

Basic Classes
The three basic classes are CPoint, CRectangle, and CColor. With the
exception of CPoint, each of these abstract a specific SDL structure,

244 14. Video Components

14 FO SDL chapter 14 10/21/02 10:56 AM Page 244

Team LRN

namely SDL_Rect and SDL_Color. I added CPoint myself. I like having
a class to abstract a 2D coordinate; it just makes life easier.

CPoint
CPoint abstracts a 2D coordinate. It has only two parts—x and y and
the appropriate setter and getter functions for each. In addition,
there are a number of operators defined for CPoint—all of the arith-
metic operators (+, −, *, and /), as well as the associated assignment
operators (+ =, −=, *=, and /=). Multiplication and division only take
scalar values. There are also comparison operators (== and !=) to
make checking points against one another relatively easy. Finally,
there are distance calculation functions to tell you the absolute dis-
tance of a point from the origin or the distance (or squared distance)
between two points.

CRectangle
CRectangle abstracts an SDL_Rect. I have added member functions and
constructors to CRectangle that make setting up a rectangle rather easy.
CRectangle can be built either by raw coordinate data or from CPoints.
Additionally, there are conversion operators to convert CRectangle into
either an SDL_Rect or an SDL_Rect*, so you can use CRectangle any
place you need one of these types. (This will come in handy when you
create CCanvas a little later.)

245Video Components at a Glance

Figure 14.1 Structure of the video components

14 FO SDL chapter 14 10/21/02 10:56 AM Page 245

Team LRN

Additionally, there are several operators associated with CRectangle.
Moving a rectangle around is as easy as adding or subtracting a CPoint.
There are also + and − operators for rectangles (and + = and −=), which
can be used to find the union (+) or intersection (−) of two rectangles.

Finally, there are getter functions if you want to know the right and
bottom coordinates enveloped by a rectangle, as well as functions that
will tell you whether a point is within a rectangle. This is a nice, full-
featured rectangle class, folks.

CColor
SDL_Color has been somewhat ignored as an SDL structure. No func-
tion in SDL itself deals with SDL_Color outside of the palette func-
tions. This makes me think that this little structure is underutilized.
CColor intends to fix that.

CColor abstracts SDL_Color and gives you getters, setters, and other
accessor functions for the red, green, and blue components. (With
the “unused” member, this class easily could be extended to include
alpha information if you so desired.) There are also conversion opera-
tors to exchange CColor with either SDL_Color or SDL_Color*. In
addition, there are numerous arithmetic (+, −, *, and /) and bitwise
(|, &, and ^) operators to assist in the creation and modification of
colors, as well as the equivalent assignment operators.

Finally, there are a number of static member functions for typical
stock colors that you might want to use, such as red, green, blue, yel-
low, magenta, cyan, black, and white, as well as light and dark versions
of these colors.

Graphical Classes
There are three graphical classes—CCanvas, CImage, and CImageSet.
This section contains brief descriptions of each. For the relationship
between these components, please refer back to Figure 14.1.

CCanvas
CCanvas abstracts an SDL_Surface object. Included among the member
functions are the tasks you typically want to accomplish with an
SDL_Surface, such as filling rectangles, locking and unlocking, setting
pixels, and blitting. There is also a mechanism to add rectangles to a

246 14. Video Components

14 FO SDL chapter 14 10/21/02 10:56 AM Page 246

Team LRN

list for dirty rectangle updating (something for which SDL is really
good). There are also a few static member “factory” functions for
creating the most common type of surfaces.

CImage
CImage assists with blit management. It contains a pointer to a CCanvas
object, along with a CRectangle describing an area that will often be
used for blitting. In addition, it contains a CPoint for offsetting the des-
tination rectangle, providing something of an anchor point. (There
are plenty of images in which you would prefer to use a point of refer-
ence other than the upper-left.) Once a CImage has been set up, it can
be used many times to blit images onto a canvas using only a single
coordinate for reference.

CImageSet
CImageSet is nothing more than a managed collection of CImage objects,
so it mainly abstracts a vector of CImage*. There are member functions
for adding, finding, and removing images from the set, as well as a
function to access an image by its index in the list.

Video Components in Depth

Basic Classes
The basic video classes are CPoint, CRectangle, and CColor. They are
used extensively in the other graphical classes.

CPoint
The CPoint class is a very simple abstraction of a coordinate pair x and y.
It has most of the operations you would want to do with a 2D point.

//point class

class CPoint

{

private:

//x and y

int m_x ;

int m_y ;

247Video Components in Depth

14 FO SDL chapter 14 10/21/02 10:56 AM Page 247

Team LRN

public:

//constructor

CPoint (int x = 0 , int y = 0) ;

CPoint (CPoint& pt) ;

//destructor

virtual ~CPoint () ;

//properties

int& X () ;

int& Y () ;

int GetX () const ;

int GetY () const ;

void SetX (int x) ;

void SetY (int y) ;

//setter

CPoint& Set (int x , int y) ;

CPoint& Copy (CPoint& pt) ;

//move

CPoint& Move (int dx , int dy) ;

CPoint& Add (CPoint& pt) ;

CPoint& Subtract (CPoint& pt) ;

//scale

CPoint& Scale (int scalar) ;

//distance

int Distance (CPoint& pt) ;

//operators

//assignment

CPoint& operator = (CPoint& pt) ;

CPoint& operator += (CPoint& pt) ;

CPoint& operator -= (CPoint& pt) ;

CPoint& operator *= (int scalar) ;

CPoint& operator /= (int scalar) ;

//unary

CPoint operator - () ;

CPoint operator + () ;

//arithmetic

CPoint operator + (CPoint& pt) ;

CPoint operator - (CPoint& pt) ;

CPoint operator * (int scalar) ;

CPoint operator / (int scalar) ;

//comparison

248 14. Video Components

14 FO SDL chapter 14 10/21/02 10:56 AM Page 248

Team LRN

bool operator == (CPoint& pt) ;

bool operator != (CPoint& pt) ;

};

CPoint operator * (int scalar , CPoint& pt) ;

The constructors create a point based on a pair of x,y values (both
parameters are optional and default to 0) or from another CPoint
object, like this:

CPoint pt1(10,10);//create a point with coordinate (10,10)

CPoint pt2(pt1);//copy pt1 into pt2

The getters, setters, and accessors (GetX, GetY, SetX, SetY, x, and y), are
generally self-explanatory. x and y return references to the x and y val-
ues of the point, so you can modify it like this:

CPoint pt;

pt.X()=10;//set x to 10

pt.Y()=10;//set y to 10

Since x and y return a reference, you can also use them like GetX and
GetY. In fact, this might make you question why you even need to have
SetX and GetX when the x function can do both. The reason is, when you
are working with a const CPoint object (it happens, believe me), you can-
not return a modifiable reference to one of the members of that object.

You can also perform operations on the CPoint objects using member
functions such as Set, Copy, Move, Add, Subtract, and Scale. Brief exam-
ples of each of these are shown here.

CPoint pt;

pt.Set(10,10);//set point to 10,10

CPoint pt2;

pt2.Copy(pt);//copy pt to pt2

pt.Move(10,10);//move by +10,+10, making pt equal to 20,20

pt.Add(pt2);//add contents of pt2(10,10), to pt(20,20), to come up with

(30,30)

pt.Subtract(pt2);//subtract contents of pt2(10,10) to pt(30,30) to come

up with (20,20)

pt.scale(2);//multiply x and y by 2, to come up with (40,40)

There are also operators that you can use instead of these member
functions. The operators include =, +=, − =, *=, /=, +, −, *, and /. In
the case of *=, *, /, and /=, the second operand is a scalar; in all other

249Video Components in Depth

14 FO SDL chapter 14 10/21/02 10:56 AM Page 249

Team LRN

cases, it is another CPoint. There is also an external operator * that
takes a scalar first and a CPoint second, so you can do either 2*pt or
pt*2 and the compiler won’t complain.

Additionally, there are unary + and − operators for CPoint. The unary +
really doesn’t do anything to the point, but the − operator multiplies
the point by a scalar −1.

There are only two relational operators, == and !=, so that you can
check for equality or lack of equality between points. Two points are
equal when both xs and ys are equal.

Finally, there is a Distance member function, which tells you the dis-
tance between two points. Since this uses integers, it is rounded off to
the next lower integer.

CRectangle
CRectangle does a good job of abstracting an SDL_Rect structure and adds
some much-needed functionality to that rather plain, vanilla structure.

//CRectangle—abstract an SDL_Rect

class CRectangle

{

private:

//internal representation of a SDL_Rect

SDL_Rect m_rect ;

public:

//constructors—direct member assignment

CRectangle (Sint16 x = 0 , Sint16 y = 0 , Uint16 w = 0 , Uint16

h = 0) ;

//copy from SDL_Rect

CRectangle (SDL_Rect rc) ;

//copy from SDL_Rect*

CRectangle (SDL_Rect* prc) ;

//copy from another CRectangle

CRectangle (CRectangle& rc) ;

virtual ~CRectangle () ;

//accessors for x, y, h, and w

Sint16& X () ;

Sint16& Y () ;

Uint16& W () ;

Uint16& H () ;

250 14. Video Components

14 FO SDL chapter 14 10/21/02 10:56 AM Page 250

Team LRN

//getters

Sint16 GetX() const;

Sint16 GetY() const;

Uint16 GetW() const;

Uint16 GetH() const;

//setters

void SetX(Sint16 x);

void SetY(Sint16 y);

void SetW(Uint16 w);

void SetH(Uint16 h);//conversion operators

//convert to SDL_Rect

operator SDL_Rect () ;

//convert to SDL_Rect*

operator SDL_Rect* () ;

//convert to CPoint

operator CPoint () ;

//set values for members

CRectangle& Set (Sint16 x , Sint16 y , Uint16 w , Uint16 h) ;

//copy member values from another CRectangle

CRectangle& Copy (CRectangle& rc) ;

//set to an empty rectangle

CRectangle& SetEmpty () ;

//check for emptiness

bool IsEmpty () ;

//offset rectangle by coordinates or point

CRectangle& Offset (Sint16 dx , Sint16 dy) ;

CRectangle& Offset (CPoint& pt) ;

//move to a position, either coordinates or point

CRectangle& Move (Sint16 x , Sint16 y) ;

CRectangle& Move (CPoint& pt) ;

//intersect with another rectangle

CRectangle& Intersect (CRectangle& rc) ;

//create union with another rectangle

CRectangle& Union (CRectangle& rc) ;

//check if a point is within the rectangle

bool Contains (Sint16 x , Sint16 y) ;

bool Contains (CPoint& pt) ;

//assignment operators

CRectangle& operator = (CRectangle& rc) ;

CRectangle& operator += (CPoint& pt) ;

251Video Components in Depth

14 FO SDL chapter 14 10/21/02 10:56 AM Page 251

Team LRN

CRectangle& operator -= (CPoint& pt) ;

CRectangle& operator += (CRectangle& rc) ;

CRectangle& operator -= (CRectangle& rc) ;

//arithmetic operators

CRectangle operator + (CPoint& pt) ;

CRectangle operator - (CPoint& pt) ;

CRectangle operator + (CRectangle& rc) ;

CRectangle operator - (CRectangle& rc) ;

//comparisons

bool operator == (CRectangle& rc) ;

bool operator != (CRectangle& rc) ;

//clip or wrap points

CPoint Clip (CPoint pt) ;

CPoint Wrap (CPoint pt) ;

};

//add/subtract point and rectangle

CRectangle operator + (CPoint& pt , CRectangle& rc) ;

CRectangle operator - (CPoint& pt , CRectangle& rc) ;

There are four separate constructors—plenty of ways to make a
CRectangle object. Two constructors are ones you would expect—one that
takes each of the member variables and one that copies from another
CRectangle object. The other two copy from either an SDL_Rect or an
SDL_Rect*, so you have plenty of options for constructing a CRectangle.

SDL_Rect rc;//standard SDL_Rect

rc.x=rc.y=0;//x and y at (0,0)

rc.w=rc.h=10;//width and height at 10

CRectangle rc1(0,0,10,10);//construct by members

CRectangle rc2(rc1);//copy from another CRectangle

CRectangle rc3(rc);//copy from SDL_Rect

CRectangle rc4(&rc);//copy from SDL_Rect*

Also, there are the standard setters, getters, and accessors—SetX, SetY,
SetW, SetH, GetX, GetY, GetW, GetH, X, Y, W, and H. These all play essentially
the same roles as they do in CPoint.

Because CRectangle abstracts an SDL_Rect object, there are conversion
operators so you can use a CRectangle wherever you need an SDL_Rect
or SDL_Rect*. Also, you can use a CRectangle any place you need a
CPoint. (It only uses the x and y components of the rectangle.) No, you
cannot use CRectangle in CPoint math.

252 14. Video Components

14 FO SDL chapter 14 10/21/02 10:56 AM Page 252

Team LRN

Set, Copy, Move, Offset, SetEmpty, IsEmpty, Intersect, and Union round out
the CRectangle member functions. Set behaves much like the member-
wise constructor. SetEmpty sets a CRectangle’s members to 0. IsEmpty tests
for emptiness. Move changes the x and y positions to new positions.
(You can either specify coordinates or a CPoint.) Offset moves the rec-
tangle relative to its old position. (Again, you can use coordinates or a
CPoint.) Intersect takes another rectangle and determines the largest
rectangle contained within both of the rectangles, and Union takes
another rectangle and determines the smallest rectangle that will fit
both of the rectangles.

You can also use Contains (with either a coordinate or a CPoint—your
choice) to check whether a point is within a rectangle. Another set of
functions dealing with CPoint includes Clip (which brings a point to
the closest point inside a rectangle if it is not already inside) and Wrap
(which makes the CRectangle something like a torus and brings the
CPoint into the CRectangle by subtracting or adding height and width to
the position of the point until it is within the rectangle).

There are also several operators that deal with rectangles. The =, ==,
and != operators are essentially self-explanatory; they are used for
assignment and a check for equality (all members must be the same) or
inequality. The +, −, +=, and − = operators are a little more strange. You
can add to or subtract from a CRectangle either a CPoint (in which case
you move the rectangle by the coordinates stored in the CPoint) or
another CRectangle. When you add two CRectangles, it results in a union
of those two rectangles. When you subtract, it results in the intersection.

CColor
CColor, as a class, is rather large for something as simplistic as color
representation. Nevertheless, in the quest to make life easier for every-
one, I made it as full-featured as I know how without going too far
overboard. Here’s what the class definition looks like.

/*

==CColor==

Abstracts SDL_Color

*/

class CColor

{

private:

253Video Components in Depth

14 FO SDL chapter 14 10/21/02 10:56 AM Page 253

Team LRN

//actual color representation

SDL_Color m_Color;

public:

//standard constructor

CColor(Uint8 r=0,Uint8 g=0,Uint8 b=0);

//copy constructor

CColor(const CColor& Color);

//destructor

virtual ~CColor();

//get rgb

Uint8 GetR() const;

Uint8 GetG() const;

Uint8 GetB() const;

//set rgb

void SetR(Uint8 r);

void SetG(Uint8 g);

void SetB(Uint8 b);

//rgb accessors

Uint8& R();

Uint8& G();

Uint8& B();

//conversion operators

operator SDL_Color();

operator SDL_Color*();

//assignment operators

CColor& operator=(CColor& Color);

CColor& operator+=(CColor& Color);

CColor& operator-=(CColor& Color);

CColor& operator*=(CColor& Color);

CColor& operator*=(int Multiplier);

CColor& operator/=(int Divisor);

CColor& operator|=(CColor& Color);

CColor& operator&=(CColor& Color);

CColor& operator^=(CColor& Color);

//primary colors

static CColor Red(Uint8 shade=255);

static CColor Green(Uint8 shade=255);

static CColor Blue(Uint8 shade=255);

//secondary colors

static CColor Yellow(Uint8 shade=255);

254 14. Video Components

14 FO SDL chapter 14 10/21/02 10:56 AM Page 254

Team LRN

static CColor Cyan(Uint8 shade=255);

static CColor Magenta(Uint8 shade=255);

//dark colors

static CColor DarkRed(Uint8 shade=128);

static CColor DarkGreen(Uint8 shade=128);

static CColor DarkBlue(Uint8 shade=128);

static CColor DarkYellow(Uint8 shade=128);

static CColor DarkCyan(Uint8 shade=128);

static CColor DarkMagenta(Uint8 shade=128);

//light colors

static CColor LightRed(Uint8 gray=128,Uint8 shade=255);

static CColor LightGreen(Uint8 gray=128,Uint8 shade=255);

static CColor LightBlue(Uint8 gray=128,Uint8 shade=255);

static CColor LightYellow(Uint8 gray=128,Uint8 shade=255);

static CColor LightCyan(Uint8 gray=128,Uint8 shade=255);

static CColor LightMagenta(Uint8 gray=128,Uint8 shade=255);

//grayscale

static CColor White(Uint8 shade=255);

static CColor LightGray(Uint8 shade=192);

static CColor DarkGray(Uint8 shade=128);

static CColor Black(Uint8 shade=0);

};

//arithmetic operators

CColor operator+(CColor& Color1,CColor& Color2);

CColor operator-(CColor& Color1,CColor& Color2);

CColor operator*(CColor& Color1,CColor& Color2);

CColor operator*(CColor& Color,int Multiplier);

CColor operator/(CColor& Color,int Divisor);

//bitwise operators

CColor operator|(CColor& Color1,CColor& Color2);

CColor operator&(CColor& Color1,CColor& Color2);

CColor operator^(CColor& Color1,CColor& Color2);

CColor operator~(CColor& Color);

//comparison operators

bool operator==(CColor& Color1,CColor& Color2);

bool operator!=(CColor& Color1,CColor& Color2);

I divide the members of CColor into three categories—accessor func-
tions, operators, and stock color functions.

255Video Components in Depth

14 FO SDL chapter 14 10/21/02 10:56 AM Page 255

Team LRN

The accessor functions—GetR, GetG, GetB, SetR, SetG, SetB, R, G, and B—
are mostly self-explanatory. The Get functions retrieve the values of
red, green, and blue, and the Set functions assign new values. The
remaining member functions (without either Set or Get) directly
access the component of the color, so you can assign it without a Set
function, like this:

CColor color;

Color.R()=255;

I typically refer to this sort of member function as a property; I sort of
stole the idea from the Visual Basic property mechanism.

The operators are likewise relatively self-explanatory. When you use
them, the various components are added, subtracted, bitwise ORed, bit-
wise ANDed, or bitwise XORed to create a new value for that color compo-
nent. The only oddballs are multiplication and division. One form of
multiplication causes all values to be multiplied by a single scalar value.
The sole version of division also works this way. The second form of
multiplication takes two colors, multiplies their color components
together, and then divides the result by 255. As far as colors are con-
cerned, 255*255 is equal to 255. In a way, this is like treating a color
component of 0 as 0.0 and a color component of 255 as 1.0, and then
doing the floating-point multiplication—treating colors sort of like a
3D vector and doing a dot product. There are uses for this, believe me.

The stock color functions, such as Red, Green, Blue, Yellow, Cyan, Magenta,
Black, and White, allow you to assign stock colors, so creating colors can
be quite easy. Each of the primary and secondary colors (as well as
white) takes a shade parameter that defaults to 255, so the following
code creates the exact same color twice.

CColor Color1, Color2;

Color1=CColor::White();

Color2=CColor::White(255);

The stock colors that create light versions of the standard colors, such
as LightRed and LightGreen, take two parameters, both of which are
optional. The first parameter is a gray shade upon which to base the
light color, and the second is the shade of the primary color to use.
The following code creates the same color twice.

CColor Color1,Color2;

256 14. Video Components

14 FO SDL chapter 14 10/21/02 10:56 AM Page 256

Team LRN

Color1=CColor::LightRed();

Color1=CColor::White(128)|CColor::Red(255);

Both statements will create a color that has a red component of 255
and green and blue components of 128. I think you get the idea, so
I’ll move on.

Of particular importance are the constructors. There are two of
these—one that takes each of the red, green, and blue components
and one that will copy another color. Typically you will use the former
more often than the latter. The latter is primarily intended for use
with STL containers.

Specifying a particular RGB color is as easy as this:

CColor Color;

Color=CColor(255,0,0);//red

This might not seem terribly significant at the moment, but it will be
when you get to CCanvas and you are passing CColor values but you
don’t want to actually create a variable for one.

Graphical Classes
The graphical classes are CCanvas, CImage, and CImageSet. You’re going to
take a look at the full class definitions for these classes, but as with the
basic classes you won’t look too much into the actual implementation.

CCanvas
CCanvas abstracts an SDL_Surface*—it’s as simple as that. Much of the
functionality of SDL_Surface objects has been built into CCanvas,
including a pixel-setting and pixel-getting set of functions, which SDL
does not have.

//CCanvas class

class CCanvas

{

private:

//a list of update rectangles

list < SDL_Rect* > m_lstUpdateRects ;

protected:

//pointer to an SDL_Surface

SDL_Surface* m_pSurface ;

257Video Components in Depth

14 FO SDL chapter 14 10/21/02 10:56 AM Page 257

Team LRN

public:

//constructor

CCanvas (SDL_Surface* pSurface = NULL) ;

//destructor

virtual ~CCanvas () ;

//getter/setter for the SDL_Surface*

SDL_Surface* GetSurface () ;

void SetSurface (SDL_Surface* pSurface) ;

//lock and unlock (for direct pixel access)

bool Lock () ;

void Unlock () ;

//get/set pixel (canvas should be locked)

CColor GetPixel (int x , int y) ;

void SetPixel (int x , int y , CColor& color) ;

//match color with closest

CColor MatchColor (CColor color) ;

//width and height retrieval

int GetWidth () ;

int GetHeight () ;

//add an update rectangle

void AddUpdateRect (CRectangle& pUpdateRect) ;

//clear all update rectangles

void ClearUpdateRects () ;

//update any rectangles in the queue

void UpdateRects () ;

//flip surface. normally, this just updates the entire surface

bool Flip () ;

//set a color key

bool SetColorKey (CColor& color) ;

//retrieve the color key

CColor GetColorKey () ;

//clear the color key

bool ClearColorKey () ;

//set the clipping rectangle

void SetClipRect (CRectangle* pRect) ;

//get the clipping rectangle

CRectangle GetClipRect () ;

//solid color fill a rectangle

bool FillRect (CRectangle& rect , CColor& color) ;

//clear entire surface to a color

258 14. Video Components

14 FO SDL chapter 14 10/21/02 10:56 AM Page 258

Team LRN

bool Clear (CColor& color) ;

//blit to this surface from another surface

bool Blit (CRectangle& rectDst , CCanvas& cnvSrc , CRectangle&

rectSrc) ;

//factory methods

//create an rgb surface of a particular format

static CCanvas* CreateRGB (Uint32 flags , int width , int

height, int depth, Uint32 Rmask, Uint32 Gmask, Uint32 Bmask, Uint32

Amask) ;

//create an rgb surface of the display format

static CCanvas* CreateRGBCompatible (Uint32 flags , int width ,

int height) ;

//load a bitmap

static CCanvas* LoadBMP (string sFileName) ;

//load a bitmap, convert it to the display format

static CCanvas* LoadBMPCompatible (string sFileName) ;

} ;

CCanvas has only two data members. One is a list of update rectangles
(contained by a linked list of SDL_Rect*), and the other is an
SDL_Surface* variable, which is used for all calls to SDL functions.

There is only one constructor to CCanvas, and it takes a pointer to an
SDL_Surface. This is an optional parameter that defaults to NULL. You
can have a CCanvas with a NULL surface, although this makes the CCanvas
less useful than it could be. You can also have two CCanvas objects with
the same pointer, because there are the GetSurface and SetSurface func-
tions to access this member.

You can retrieve the width and height of the surface using GetWidth
and GetHeight. This retrieves the values straight from the SDL_Surface
so you don’t have to store them anywhere.

As far as graphics primitives go, the only one I bothered to include
was the pixel. If you really want to, you can add other primitives such
as lines, ellipses, and polygons. The pixel is the atomic unit of each of
these anyway. Before you set pixels, you must call Lock. After you are
done setting pixels, you call Unlock. You use SetPixel and GetPixel to set
or get pixels, respectively.

//pCanvas is assumed to be a CCanvas* that has been properly initialized

if(pCanvas->Lock())

{

259Video Components in Depth

14 FO SDL chapter 14 10/21/02 10:56 AM Page 259

Team LRN

//successful lock

//set pixel

pCanvas->SetPixel(100,100,CColor(255,255,255));

//unlock

pCanvas->Unlock();

}

else

{

//canvas could not lock

}

Notice I have used a CColor rather than mapping the RGB color manually.

Surfaces are used mostly for blits, and that functionality has been built
into CCanvas with the Blit member function. The CCanvas object on
which you call this member function is the destination canvas.

//pCanvas1 and pCanvas2 is a valid pointer to CCanvas object

pCanvas1->Blit(CRectangle(0,0,100,100),pCanvas2,CRectangle(0,0,100,100));

Notice the use of CRectangle objects, rather than SDL_Rects.

If you want transparency, look no farther than SetColorKey, along with
its kindred functions GetColorKey and ClearColorKey. These functions
deal with CColor objects.

You can also change the clipping area using SetClipRect and retrieve it
using GetClipRect. These functions deal with CRectangle objects.

To update dirty rectangles, you use AddUpdateRect to add a rectangle to
the update list, ClearUpdateRects to clear out the update rectangle list,
and UpdateRects to update all of the rectangles on the list. If you don’t
want to use dirty rectangle updating, you can use Flip instead, which
updates the entire surface or flips to the back buffer, depending on
the configuration of the surface.

To clear the surface, you use the Clear member function with a color,
and the entire surface is cleared to be that color. If you just want a
filled rectangle somewhere, you call FillRect, which takes a CRectangle
and a CColor and does its job.

Finally, the factory methods (CreateRGB, CreateRGBCompatible, LoadBMP,
and LoadBMPCompatible) are static member functions that create new
CCanvas objects. If the term Compatible is used in the call, the function
will first make the requested canvas and then convert it to the display

260 14. Video Components

14 FO SDL chapter 14 10/21/02 10:56 AM Page 260

Team LRN

pixel format. Each of these functions takes parameters similar to the
calls to SDL that create these types of surfaces.

CImage
A CImage abstracts a portion of a CCanvas. There is not much data contained
within CImage itself. Mostly it relies on CCanvas functionality to do its job.

//CImage—abstracts a blittable portion of a canvas

class CImage

{

private:

//pointer to canvas

CCanvas* m_pcnvSrc ;

//source rectangle

CRectangle m_rcSrc ;

//destination rectangle

CRectangle m_rcDst ;

public:

//construct from source canvas, source rectangle,and offset point

CImage (CCanvas* pcnvSource , CRectangle rcSource , CPoint

ptOffset) ;

//destroy image

virtual ~CImage () ;

//retrieve pointer to canvas

CCanvas* GetCanvas () ;

//set new canvas

void SetCanvas (CCanvas* pcnvSource) ;

//access source rectangle

CRectangle& SrcRect () ;

//access destination rectangle

CRectangle& DstRect () ;

//blit image onto a canvas

void Put (CCanvas* pcnvDest , CPoint ptDst) ;

};

CImage has three member functions—a pointer to a CCanvas and two
CRectangles, one for the source rectangle and one for the destination
rectangle if the image were being blitted at (0,0). The destination rec-
tangle will often have a negative x and y.

261Video Components in Depth

14 FO SDL chapter 14 10/21/02 10:56 AM Page 261

Team LRN

To construct a CImage object, you supply a pointer to a canvas, a source
rectangle, and an anchor point. Typically, the anchor point will be (0,0),
but if you want the image to be referenced based on any point other
than the upper-left corner, you will likely want to use a different value.

//create image that centers a 100x100 image at position (50,50)

CImage* pimg=new CImage(pCanvas,CRectangle(0,0,100,100),CPoint(50,50));

There are standard setter and getter functions for the CCanvas
pointer—SetCanvas and GetCanvas, respectively. For the source and
destination rectangles, there are simply accessors—SrcRect and DstRect.

The real work of CImage is done by the Put member function. It takes a
pointer to a destination canvas and a CPoint that specifies where to put
the image.

CImageSet
A CImageSet is nothing but a container for your images. You can add
and remove images as you see fit. You can also look for images and
reference them by index. The purpose of CImageSet is to make it easier
to deal with large numbers of images.

//CImageSet—controls any number of images

class CImageSet

{

private :

//container for images

vector < CImage* > m_vecImages ;

public:

//construct empty image set

CImageSet();

virtual ~CImageSet();

//add an image

void AddImage (CImage* pimg) ;

//check for an image in the list

bool HasImage (CImage* pimg) ;

//find an image

int FindImage (CImage* pimg) ;

//remove an image

void RemoveImage (CImage* pimg) ;

//retrieve an image from the list by index

262 14. Video Components

14 FO SDL chapter 14 10/21/02 10:56 AM Page 262

Team LRN

CImage* GetImage (int index) ;

//access image list directly

vector < CImage* >& ImageList () ;

//retrieve number of images in the set

int ImageCount () ;

};

A CImageSet only has one member—a vector of CImage* variables. A
CImageSet contains no images when it is initially constructed. You can
always get the number of images in the set by calling ImageCount. You
can also manually reference the image list by calling ImageList.

AddImage will add a new image to the end of the list. RemoveImage will
take an image out of the list. (Be careful—RemoveImage changes the
indices of all images after the image that is being removed.)

You can use HasImage to see whether a particular image is in the list.
Also, you can call FindImage to find the index for a particular image.
It returns -1 if the image is not found.

If you have the index of an image, you use GetImage to retrieve a
pointer to it. From there you can use the Put member function to put
the image onto a canvas somewhere.

Component Test
For the component test, I also added an additional class, CMainCanvas,
to the set of graphical classes to make construction of the main win-
dow easier. Since the SDL_Surface is freed during CCanvas’s destructor,
I did not want the same thing to happen for the main window (since
it should not happen for the main surface), but I also didn’t want to
put special case code into the program itself.

The component test for this chapter is a simple program based mostly
on the component test for Chapter 13. Instead of allowing pixel drawing
with the mouse, however, it places on the screen a small circular image
that follows the mouse. You can find the program in FOSDL 14_1 and
see a quick snapshot of it in Figure 14.2.

Since we are already getting quite a few files into our little application
framework, it’s not a bad idea to take a look at all of the files and
objects with which we are concerned. Table 14.1 lists all of the files
required to compile FOSDL14_1.

263Component Test

14 FO SDL chapter 14 10/21/02 10:57 AM Page 263

Team LRN

264 14. Video Components

Figure 14.2 The output of FOSDL14_1

Table 14.1 File List

Class Header Source Purpose

CApplication Application.h Application.cpp Base class for application-
type objects

CCanvas Canvas.h Canvas.cpp Abstracts an SDL_Surface
structure

CColor Color.h Color.cpp Abstracts an SDL_Color
structure

CCursor Cursor.h Cursor.cpp Abstracts an SDL_Cursor
structure

CEventHandler EventHandler.h EventHandler.cpp Base class for event-
handling applications

14 FO SDL chapter 14 10/21/02 10:57 AM Page 264

Team LRN

Summary
You will use all of the video components you saw in this chapter in
Chapter 17, “User Interface Components,” when you start creating the
user interface components. They are quite useful and are even easier
to use than the SDL functions, if such a thing is possible. Or maybe I
just like being object-oriented….

265Summary

Table 14.1 File List (continued)

Class Header Source Purpose

CImage Image.h Image.cpp Abstracts a rec-
tangular area of a
CCanvas object

CImageSet ImageSet.h ImageSet.cpp Abstracts a col-
lection of CImage
objects

CMainCanvas MainCanvas.h MainCanvas.cpp Abstracts the
main display sur-
face

CMessageHandler MessageHandler.h MessageHandler.cpp Base class for
CApplication,
CThread, and
CTimer

CPoint Point.h Point.cpp Abstracts a two-
dimensional coor-
dinate

CRectangle Rectangle.h Rectangle.cpp Abstracts an
SDL_Rect

CTestEventHandler TestEventHandler.h TestEventHandler.cpp Test case for
application class

CThread Thread.h Thread.cpp Abstracts a
thread

CTimer Timer.h Timer.cpp Abstracts a timer

14 FO SDL chapter 14 10/21/02 10:57 AM Page 265

Team LRN

14 FO SDL chapter 14 10/21/02 10:57 AM Page 266

Team LRN

CHAPTER 16

Networking
Components

16 FO SDL chapter 16 10/21/02 11:07 AM Page 279

Team LRN

You might have been disappointed back in Chapter 10 because it
didn’t include any examples of using SDL_net. Prepare for your

disappointment to end because once you have built the networking
components of the framework, there will indeed be an example of
how to use them. In this chapter, I will show you some networking
classes, which will make it very simple to create an application that
communicates with TCP/IP.

Networking Components
at a Glance
There are five networking components in the framework. These are
CNet, CIPAddress, CTCPSocket, CHostSocket, and CClientSocket.

CNet
CNet is a simple wrapper that calls SDLnet_Init and SDLnet_Quit. That is
the entire purpose of this class—to initialize and uninitialize SDL_net
for you.

CIPAddress
CIPAddress abstracts the IPaddress type of SDL_net. It is a rather simple
class with very few member functions. (Heck, there are only two mem-
bers of IPaddress, so how complicated could such a class be?)
CIPAddress is used to keep track of the IP addresses of computers in
the network, hence the name.

CTCPSocket
CTCPSocket abstracts SDL_net’s TCPSocket pointer type. It works equally
well for both client sockets and server sockets, which is why the
CHostSocket and CClientSocket exist as child classes of this class. This
class contains all the functionality you need to write and read data to
and from other machines.

280 16. Networking Components

16 FO SDL chapter 16 10/21/02 11:07 AM Page 280

Team LRN

CHostSocket
CHostSocket is a child class of CTCPSocket. It is intended to be used as a
server socket, and it contains a collection of CChildSockets to represent
other computers in the network. This makes it very easy to broadcast
messages to all of the clients of a particular host socket.

CClientSocket
CClientSocket is a child class of CTCPSocket; it abstracts a connection to
another computer. A CHostSocket contains a number of these types of
sockets to represent their connections to client computers. All of the
real work of a networking application is done through client sockets.

Networking Components
in Depth
Now take a look at each of the networking components in depth to
see how to use them.

CNet
CNet is by and large the simplest class of all of the networking compo-
nents. For one thing, it doesn’t need instantiation because all of its
member functions are static. Also, there are only two member func-
tions in the first place.

//CNet class

//initializes and quits SDL_net

//singleton

class CNet

{

public:

//initialize SDL_net

static void Init();

//quit SDL_net

static void Quit();

};

Using CNet is rather simple. You call CNet::Init() when you want to ini-
tialize SDL_net and CNet::Quit() when you are done using SDL_net.
Couldn’t be simpler.

281Networking Components in Depth

16 FO SDL chapter 16 10/21/02 11:07 AM Page 281

Team LRN

CIPAddress
CIPAddress is the first of the networking components that is meant to
be instantiated. It encapsulates the IPaddress structure.

//CIPAddress class

//encapsulates IPaddress structure

class CIPAddress

{

private:

//internal representation

IPaddress m_IP;

public:

//constructor

CIPAddress(char* host,Uint16 port);

//construct from an IPaddress

CIPAddress(IPaddress* pipaddress);

//destructor

virtual ~CIPAddress();

//get host

Uint32 GetHost();

//get port

Uint16 GetPort();

//resolve the IP address

char* Resolve();

//conversion operator

operator IPaddress*();

};

There are two ways to construct a CIPAddress object. One is by supplying
a host name (such as 192.168.0.1 or www.gamedev.net) and a port
number and allowing SDL_net to resolve the host. Placing a NULL in the
host parameter will create an IP suitable for making a server socket.

The other method of constructing a CIPAddress object is to pass a
pointer to an IPaddress structure. CIPAddress will copy the members
from this pointer into its internal representation.

You can get the host (a Uint32 value) by calling GetHost, and you can
get the port (a Uint16 value) by calling GetPort. There is also a conver-
sion operator that allows you to use a CIPAddress object any place you
would use an IPaddress*.

282 16. Networking Components

16 FO SDL chapter 16 10/21/02 11:07 AM Page 282

Team LRN

Finally, you can resolve the host of a CIPAddress object by calling
Resolve. It returns a string that should not be freed.

CTCPSocket
CTCPSocket is actually pretty neat. It encapsulates a TCPsocket and does all
of the operations you would want to do with a socket. Since there are a
billion ways to format and read or write data to and from a socket, I
decided to stick with a simple standard—strings. Sure, this gives the
application more work to do because it has to parse the string data
into some readable form, but it is pretty flexible at the same time.

CTCPSocket is designed primarily as a base class for the other socket
classes and is really not meant to be instantiated, although it can still
be useful if you do instantiate it.

//CTCPSocket class

//encapsulates TCPsocket

class CTCPSocket

{

private :

//internal representation

TCPsocket m_Socket ;

//static list of all sockets

static list < CTCPSocket* > s_lstSockets ;

public:

//uses SDLNet_TCP_Open

CTCPSocket (CIPAddress* pIPAddress) ;

//create from an already existing TCPSocket

CTCPSocket (TCPsocket socket) ;

//uses SDLNet_TCP_Accept

CTCPSocket (CTCPSocket* pSocket) ;

//close socket

virtual ~CTCPSocket();

//retrieve master socket list

static list < CTCPSocket* >& SocketList () ;

//accessors

TCPsocket& Socket () ;

//conversion operator

operator TCPsocket () ;

//get the IP address

283Networking Components in Depth

16 FO SDL chapter 16 10/21/02 11:07 AM Page 283

Team LRN

CIPAddress GetIP () ;

//get the status of the socket

bool GetStatus () ;

//send a string

bool Send (string sData) ;

//receive a string

string Receive () ;

//is there data to be read?

bool Ready () ;

//check this socket

void Check () ;

//when a check proves that a socket is ready, call this function

virtual void OnReady () ;

//check all sockets

static void CheckAll () ;

};

The internal representation of CTCPSocket is, of course, nothing more
than a TCPsocket held in the member m_Socket. You can use CTCPSocket
to create either a client socket (from an already existing server socket)
or a server socket; it has constructors for both. In addition, you can
create a CTCPSocket object from an already existing TCPsocket pointer.

//open a socket

socket=new CTCPSocket(&ip);//ip is a CIPAddress

//use existing socket

socket=new CTCPSocket(sock);//sock is a TCPsocket

//accept new socket from a server socket

socket=new CTCPSocket(hostsock);//hostsock is a server socket

In addition, CTCPSocket keeps track of all existing sockets in a static list
called s_lstSockets. This is incredibly handy because then the program
doesn’t have to keep track of all of the sockets (although you will still
want to keep track of the more important sockets). You can access the
list of all sockets with a call to SocketList(). This member function
returns a reference to the list of sockets, so you can manipulate it as
you like.

You can also get direct access to the TCPsocket underneath the
CTCPSocket by calling Socket(). A CTCPSocket has a conversion operator
for this as well.

284 16. Networking Components

16 FO SDL chapter 16 10/21/02 11:07 AM Page 284

Team LRN

You can get the IP address associated with a socket by calling GetIP().
Since the IP address acts as a unique ID number within the network,
you will often store data associated with a particular IP address to keep
things nice and organized.

The GetStatus() member function will let you know whether the socket
is NULL. This is a check you can use to see whether the socket could be
opened. It returns true if the socket is not NULL.

You can send or receive information with a CTCPSocket object by using
Send and Receive. For simplicity’s sake, I have used strings as the data to
be sent or received. If you want to use this sort of scheme for passing
data back and forth between computers, you will probably want to set
aside some special characters to delimit commands.

To check sockets to see whether data has come in on one or more of
them, you use the Check member function, which checks an individual
socket to see if data is pending. Also, there is a CheckAll static member
function, which goes through the list of all sockets and checks each one.

To see whether a socket has data ready, use the Ready member func-
tion. It returns true if data is pending and false if it is not. Of course,
you’ll never have to do this yourself because it is all done for you in a
call to Check.

If, during a call to Check, it turns out that the socket is ready, then a
call to OnReady occurs. This is a virtual function that acts somewhat like
an event handler, the event being that the socket now has data waiting
to be read and processed.

CHostSocket
While CTCPSocket is great at abstracting sockets in general, CHostSocket
is better at abstracting server sockets. This class is derived from
CTCPSocket and looks like this:

//CHostSocket class

//abstracts a server socket

class CHostSocket : public CTCPSocket

{

public:

//constructor

CHostSocket(CIPAddress* pip);

285Networking Components in Depth

16 FO SDL chapter 16 10/21/02 11:07 AM Page 285

Team LRN

//destructor

virtual ~CHostSocket();

//when ready with data

void OnReady();

//creation

static CHostSocket* Create(Uint16 port);

//message ids

static MSGID MSGID_NewClient;//parm1=CHostSocket*

};

As you can see, it is not nearly as long-winded as the declaration for
CTCPSocket. Ah, the beauty of inheritance. The constructor used takes a
pointer to a CIPAddress, but you don’t have to use it directly. Instead,
you call the static member function Create and supply a port number,
and Create puts together an IP address and creates the socket for you.

Other than Create and the destructor, the only other member function
is an override of OnReady. Since there might be a dozen different things
you want to do when a host socket is ready (meaning that a new con-
nection is being made), the implementation of CHostSocket’s OnReady
member function simply sends a message (MSGID_NewClient) to the
application. You then deal with the message in the main application’s
OnMessage handler. The message ID will be MSGID_NewClient, and the first
parameter will be a pointer to the host socket.

CClientSocket
CClientSocket is even simpler than CHostSocket because most of the func-
tionality is already present. CClientSocket is also derived from CTCPSocket.

//CClientSocket

//abstracts a client socket

class CClientSocket : public CTCPSocket

{

public:

//constructor

CClientSocket(CTCPSocket* pSocket);

//destructor

virtual ~CClientSocket();

//on ready handler

void OnReady();

//message id

286 16. Networking Components

16 FO SDL chapter 16 10/21/02 11:07 AM Page 286

Team LRN

static MSGID MSGID_SocketData;//parm1=CTCPSocket*;parm2=char*

};

As you can see, there isn’t much to this class. The constructor takes a
pointer to a CTCPSocket (one that is the host socket, presumably), and a
new connection is formed with a new machine. The destructor doesn’t
even do anything.

When the OnReady member function of CClientSocket is called, it sends a
message (MSGID_SocketData) to the application. The first parameter is a
pointer to the socket, and the second parameter is a string containing
the data.

Of course, this is not the only way you could do this, but it’s nice and
simple.

Component Test
The component test for the networking components is rather plain and
simple. It consists of two applications—FOSDL16_1 and FOSDL16_2.
FOSDL16_1 is the server application, and FOSDL16_2 is the client appli-
cation. Naturally, you will need two networked computers to check it out.

FOSDL16_1 initializes the application, sets up networking, and creates
a host socket. Then it just sits there and waits for a connection. When
one occurs, it sends a MSGID_NewClient message, which is handled by
creating a new client socket. If a client socket receives a message, the
message is written to stdout.txt. It’s not particularly feature-packed,
but it does work over a network.

In FOSDL16_2, there is simply a CTCPSocket that connects to a server
socket. (Depending on what kind of network you run the example on,
you might want to change the IP in the source of FOSDL16_2 to some-
thing more valid. It is currently hard-coded to 192.168.0.1, which is nor-
mal for most LANs.) After the socket is created, it sends a single message
to the server. If you have a need to change the IP address in the pro-
gram, you can find the line that does it in CTestEventHandler.cpp, in
the body of the CTestEventHandler::OnInit function.

These programs don’t do much, but they do demonstrate just how
easy it truly is to send data from one machine to another. Remember,
if you can send a single simple text message, you can send anything.
This is the networking equivalent of pixel plotting.

287Component Test

16 FO SDL chapter 16 10/21/02 11:07 AM Page 287

Team LRN

If you want to check out FOSDL16_1 and FOSDL16_2, they are on the
CD. You will want to run FOSDL16_1 first on the computer acting as
the server, and FOSDL16_2 on the computer you are using as a client.
Without FOSDL16_1 running somewhere, FOSDL16_2 has nothing to
which to connect. Figure 16.1 shows the basic idea behind what these
two programs do.

Now for an updated file list, which applies equally to FOSDL16_1 and
FOSDL16_2.

288 16. Networking Components

Figure 16.1 Block diagram of how FOSDL16_1 and FOSDL16_2 work

Table 16.1 Updated File List

Class Header Source Purpose

CApplication Application.h Application.cpp Base class for application-
type objects

CAudio Audio.h Audio.cpp Initializer/manager for audio
usage

CCanvas Canvas.h Canvas.cpp Abstracts an SDL_Surface
structure

16 FO SDL chapter 16 10/21/02 11:07 AM Page 288

Team LRN

289Component Test

Table 16.1 Updated File List (continued)

Class Header Source Purpose

CChannel Channel.h Channel.cpp Abstracts a sound channel

CClientSocket ClientSocket.h ClientSocket.cpp Abstracts a client socket

CColor Color.h Color.cpp Abstracts an SDL_Color
structure

CCursor Cursor.h Cursor.cpp Abstracts an SDL_Cursor
structure

CEventHandler EventHandler.h EventHandler.cpp Base class for event-handling
applications

CHostSocket HostSocket.h HostSocket.cpp Abstracts a host socket

CImage Image.h Image.cpp Abstracts a rectangular area
of a CCanvas object

CImageSet ImageSet.h ImageSet.cpp Abstracts a collection of
CImage objects

CIPAddress IPAddress.h IPAddress.cpp Abstracts an IP address

CMainCanvas MainCanvas.h MainCanvas.cpp Abstracts the main display
surface

CMessageHandler MessageHandler.h MessageHandler.cpp Base class for CApplication,
CThread, and CTimer

CMusic Music.h Music.cpp Abstracts a piece of music

CNet Net.h Net.cpp Initializer for networking
components

CPoint Point.h Point.cpp Abstracts a two-dimensional
coordinate

CRectangle Rectangle.h Rectangle.cpp Abstracts an SDL_Rect

CSound Sound.h Sound.cpp Abstracts a sound chunk

CTCPSocket TCPSocket.h TCPSocket.cpp Abstracts a TCP socket

CTestEventHandler TestEventHandler.hTestEventHandler.cpp Test case for application
class

CThread Thread.h Thread.cpp Abstracts a thread

CTimer Timer.h Timer.cpp Abstracts a timer

16 FO SDL chapter 16 10/21/02 11:07 AM Page 289

Team LRN

Summary
This has been a simple little trip into the wild and woolly world of net-
work programming. With SDL_net and components built from it, it is
not terribly difficult to get something up and running. Of course, this
is not the end of the story. Lots of books have been written on net-
working and programming networked applications, and you should
probably get one if you are serious about doing this kind of program-
ming. This is Focus on SDL, not Focus on Network Programming, so I natu-
rally cannot give this topic the depth of study that it deserves, but at
least you’ve got a small amount of leg-up.

For further reading on network and multiplayer game programming,
please refer to Multiplayer Game Programming (Premier Press, Inc.,
2001). I hear it’s one of the best-edited books ever.

290 16. Networking Components

16 FO SDL chapter 16 10/21/02 11:07 AM Page 290

Team LRN

CHAPTER 17

User
Interface

Components

17 FO SDL chapter 17 10/21/02 11:10 AM Page 291

Team LRN

You simply cannot underestimate the value of a good user inter-
face system. A game is, after all, something with which a player

interacts. Unfortunately, many people don’t give much thought to
how their user interface works, so it detracts from the player’s experi-
ence because they are constantly wrestling with the controls.

Don’t do that. Instead, you should come up with a user interface of
which the player is hardly (if at all) aware. This is not an easy thing to
do. Therefore, this chapter (the last of the chapters detailing the com-
ponents of the application framework) concerns itself with the classes
that deal with user interfaces. A user interface seems to be a very sim-
ple thing on the surface, but you will see that it is rich with complexity.

UI Components at a
Glance and Hierarchy
The basic component of user interface is called a control. A control
can be anything from a button to a text box to a label to an option
button to a window. For the sake of this discussion, a control is a small
portion of the screen (usually), which is rectangular in shape and with
which the user interacts through an input device such as a mouse or
keyboard. Most times, the controls are the only way the user can inter-
act with the application, and vice versa.

The communication is two-way. The application displays the controls
on the screen, the user manipulates them with an input device, and
the application then gives feedback so the user knows that he has
actually done something. The method of communication from appli-
cation to user is primarily visual (in other words, the appearance of
the control changes), but it can also include other feedback, such as a
sound being played when a button is pressed. Figure 17.1 shows an
example of communication between an application and a user. Ideally,
the cycle is as short as possible from the moment the user generates
some sort of input until the time he gets feedback. Figure 17.2 shows
an example of a UI.

292 17. User Interface Components

17 FO SDL chapter 17 10/21/02 11:10 AM Page 292

Team LRN

Also, a user interface system is necessarily hierarchical in nature. A
control (such as a window) can contain other controls, and those con-
trols can contain other controls, ad nauseam. This is best represented

293UI Components at a Glance and Hierarchy

Figure 17.1 User interface for an application

Figure 17.2 A sample UI system

17 FO SDL chapter 17 10/21/02 11:10 AM Page 293

Team LRN

as a parent/child relationship, so you will need to implement this sort
of relationship when it comes time to create the control classes.
Typically, there will only be two or three levels of parent/child rela-
tionships, but there are times when more are needed. It is always a
good idea to design things to be as flexible as possible. Using the image
in Figure 17.2, I created the hierarchical block diagram of parent/child
relationships for that particular UI system (see Figure 17.3).

Since you have this parent/child relationship, you will need a single
control that is the parent of all other controls. This control will serve
a special role in that the rest of your application will deal only with
the main control, not individually with other controls. Think of it as
a user interface manager.

A user interface system has to do a number of things in order to be
effective; I will cover each task separately.

Displaying
User interface elements are visually oriented by nature. You see a but-
ton, you move the mouse cursor to it, you click the left mouse button,
and you see the illusion of the button being pressed. In reality the
screen remains two dimensional, but your eyes are fooled.

Displaying an individual control is no big deal. You only need an
image to display (stored within the control as a canvas) and a position

294 17. User Interface Components

Figure 17.3 Parent/child relationship between UI controls

17 FO SDL chapter 17 10/21/02 11:10 AM Page 294

Team LRN

on the screen to display it. Of course, it’s not quite that simple
because the user interface system is a hierarchy of parent and child
controls. When a control redraws itself, it first draws any background
image it has, and then it draws all of its children, which can in turn
draw their children and so on.

Typically, the main control’s canvas is the main display canvas,
although it doesn’t absolutely need to be this way. After everything
else in the game has been drawn, you tell the main control to draw
itself, which refreshes all of the controls.

This introduces the concept of layering, because controls can quite
possibly overlap. When a control is drawing its child controls, it will
start with one, and then draw the next one, and so on until all con-
trols are drawn. The master control typically will not do any drawing
of its own.

This also introduces the idea of coordinate systems. Each control is
positioned somewhere on its parent (with the main control simply
using the coordinate system of the surface to which it is attached).
The upper-left corner of any control is treated as the origin (0,0) for
all of its children. A child control only knows about its parent’s coordi-
nate system and cares nothing for the global coordinate system that
encompasses the entire screen. However, by starting with a child and
adding all of the coordinates of its chain of parents, you can derive
the global coordinates of each of its edges.

Event Filtering
Another important task of any user interface system is to detect when
user input should be processed. If the user is not interacting with a
control, then the data from the event should follow the usual course
of event handling in the application.

Before the application attempts to handle an event, you first send the
event to the user interface system and see whether any of the controls
handle it. You only send the event to the application itself if it is not
handled by any of the controls.

However, you have to check for controls handling events in the
reverse order of the way they are drawn because the control that you
perceive to be “in front” of all other controls must be the one with
which you are interacting.

295UI Components at a Glance and Hierarchy

17 FO SDL chapter 17 10/21/02 11:10 AM Page 295

Team LRN

Also, there are times when you need to direct mouse or keyboard
events to one particular control. This is the concept of input capturing,
or input focus. For example, if you have two text boxes on the screen
and you are typing from the keyboard, you expect only one box to
contain text, not both. You can then say that an individual text box
has keyboard focus. The same idea applies for the mouse.

Upkeep
As you are handling events within the user interface system, if one of
the controls in a list were to cease to exist because it was deleted, that
would be a Bad Thing. The system works iteratively and recursively, so
input might be lost to a control because it got skipped in the list.

Similarly, if you were to change the order of the controls in their vari-
ous child lists during this time, a control might miss its opportunity to
get input or it might get input twice.

To combat this problem, you keep a list of controls that need to be
destroyed and controls that need to be moved to the end of the dis-
play list all at one time; this upkeep to the system is done just prior to
attempting to handle events. It keeps things running smoothly and
eliminates many problems.

Notification
Finally, a user interface system needs a way to notify its parent and/or
the application of what happened. This is very similar to what is done
with CMessageHandler, just in a separate system. When a button is
pressed, it sends information down the line to be handled eventually
by the application, which knows what to do when a particular button
is pressed. Or, a message from a button might trigger a response and
another notification message from its parent control, in which case
the message is used to eventually notify the application with another
message and becomes meaningful.

Typically, something as simple as a button doesn’t know what it does
or how it affects things. That is not the button’s job—it is simply there
to be pressed. It is up to the button’s parent to decide what to do.

296 17. User Interface Components

17 FO SDL chapter 17 10/21/02 11:10 AM Page 296

Team LRN

Base Control Class in Depth
Now you can take a look at a rather simple and straightforward base
class for the user interface system called CControl. Not a very creative
name, I admit, but you get the idea.

class CControl

{

private:

//parent

CControl* m_pParent;

//list of child controls

std::list<CControl*> m_lstChildren;

//list of windows to bring to front

static std::list<CControl*> s_lstUpdate;

//list of windows to close

static std::list<CControl*> s_lstClose;

//canvas used by window

CCanvas* m_pCanvas;

//position

CPoint m_ptPosition;

//id

Uint32 m_ID;

//static pointer to main control

static CControl* s_pMainControl;

//keyboard focus

static CControl* s_pKeyboardFocus;

//mouse focus

static CControl* s_pMouseFocus;

//mouse hovering

static CControl* s_pMouseHover;

public:

//master control constructor

CControl(CCanvas* pCanvas);

//child control constructor

CControl(CControl* pParent,CRectangle rcDimensions,Uint32 id);

//destructor

virtual ~CControl();

//set parent

void SetParent(CControl* pmhNewParent);

297Base Control Class in Depth

17 FO SDL chapter 17 10/21/02 11:10 AM Page 297

Team LRN

//get parent

CControl* GetParent();

//has parent?

bool HasParent();

//set ID

void SetID(Uint32 id);

//get id

Uint32 GetID();

//send message

bool SendMessage(MSGID MsgID,MSGPARM Parm1=NULL,MSGPARM

Parm2=NULL,MSGPARM Parm3=NULL,MSGPARM Parm4=NULL);

//process message(virtual)

virtual bool OnMessage(MSGID MsgID,MSGPARM Parm1,MSGPARM

Parm2,MSGPARM Parm3,MSGPARM Parm4);

//add child handler

void AddChild(CControl* pControl);

//remove child handler

void RemoveChild(CControl* pControl);

//bring to front

void BringToFront();

//close

void Close();

//update all

static void Update();

//redraw entire system

static void Redraw();

//draw control

void Draw();

//customize redrawing

virtual void OnDraw();

//event handling

virtual bool OnEvent(SDL_Event* pEvent);

//keyboard events

virtual bool OnKeyDown(SDLKey sym,SDLMod mod,Uint16 unicode);

virtual bool OnKeyUp(SDLKey sym,SDLMod mod,Uint16 unicode);

//mouse events

virtual bool OnMouseMove(Uint16 x,Uint16 y,Sint16 relx,Sint16

rely,bool bLeft,bool bRight,bool bMiddle);

virtual bool OnLButtonDown(Uint16 x,Uint16 y);

virtual bool OnLButtonUp(Uint16 x,Uint16 y);

298 17. User Interface Components

17 FO SDL chapter 17 10/21/02 11:10 AM Page 298

Team LRN

virtual bool OnRButtonDown(Uint16 x,Uint16 y);

virtual bool OnRButtonUp(Uint16 x,Uint16 y);

virtual bool OnMButtonDown(Uint16 x,Uint16 y);

virtual bool OnMButtonUp(Uint16 x,Uint16 y);

//static event filter

static bool FilterEvent(SDL_Event* pEvent);

//get position

CPoint GetPosition();

//get width and height

Uint16 GetWidth();

Uint16 GetHeight();

//get edges in global coords

Uint16 GetLeft();

Uint16 GetRight();

Uint16 GetTop();

Uint16 GetBottom();

//set position

void SetPosition(CPoint ptPosition);

//get canvas

CCanvas* GetCanvas();

//get main control

static CControl* GetMainControl();

//get keyboard focus control

static CControl* GetKeyboardFocus();

//set keyboard focus control

static void SetKeyboardFocus(CControl* pControl);

//get mouse focus control

static CControl* GetMouseFocus();

//set mouse focus control

static void SetMouseFocus(CControl* pControl);

//get mouse hover control

static CControl* GetMouseHover();

//set mouse focus control

static void SetMouseHover(CControl* pControl);

//check for focuses

bool IsMainControl();

bool HasKeyboardFocus();

bool HasMouseFocus();

bool HasMouseHover();

};

299Base Control Class in Depth

17 FO SDL chapter 17 10/21/02 11:10 AM Page 299

Team LRN

As you can see, CControl seems to borrow from a number of other
classes, such as the message-handling aspects of CMessageHandler, the
event-handling capabilities of CEventHandler, and so on. This is because
CControl does so many different things.

The CControl class is not particularly useful; all it does is return
defaults. To have a control that actually does something, you need to
derive a new class from CControl. So, really, CControl is a foundational
base class for all other controls.

As far as members of CControl go, I divide them into two parts—those
that have values for each control and those that simply keep track of
the system. The members concerned with an individual control’s data
include a pointer to its parent (m_pParent), a list of its children
(m_lstChildren), a pointer to a CCanvas (m_pCanvas), the control’s position
in parent coordinates (m_ptPosition), and a numeric ID number (m_ID).
The ID number helps differentiate controls from the same class.

As far as the static members are concerned, there is a list of controls
that need to be moved to the end of the display list (s_lstUpdate), as
well as a list of controls that need to be destroyed (s_lstClose).
Additionally, there are static members for each of the types of focus
(s_pKeyboardFocus and s_pMouseFocus) and a static member for the main
control (s_pMainControl). Finally, there is a special static member for
seeing which control the mouse is currently hovering over
(s_pMouseHover). This is quite handy for making controls that light up
when you hover over them.

Constructors
You can construct a CControl in one of two ways. The first method creates
the main control, as shown here.

CControl::CControl(CCanvas* pCanvas);

This constructor takes only a pointer to a canvas. Since the main con-
trol has no parent, always has an ID of 0, and ends up being the same
size as the canvas, there is no need to supply additional information.

The second way to construct CControl is to make a child control, as
shown here.

CControl::CControl(CControl* pParent,CRectangle rcDimensions,Uint32 id);

300 17. User Interface Components

17 FO SDL chapter 17 10/21/02 11:10 AM Page 300

Team LRN

This constructor takes not only a pointer to a parent, but also the
dimensions of the control (in parent coordinates, of course), as well
as an ID number that you can use for whatever you need.

Member Access
Naturally, a number of CControl’s member functions are concerned
with accessing the various members of CControlU, either directly or
indirectly. Of particular importance is the manipulation of a control’s
parent and children. To set a parent for a CControl, you use SetParent.

void CControl::SetParent(CControl* pParent);

Of course, if you want to retrieve a control’s parent, you use GetParent.

CControl* CControl::GetParent();

Not all controls will have parents; such controls are called orphans.
There are several uses for orphan controls. First and foremost, the
main control has no parent, so it is an orphan. Second, you might
want to create and keep track of commonly used groupings of con-
trols and add and remove them from the user interface system as
appropriate.

To see whether something has a parent, use the HasParent member
function.

bool CControl::HasParent();

This function will return true if the parent is not NULL. (Another name
I considered for this member function was IsOrphan, but that was a lit-
tle too esoteric.)

There is also a child list of controls that needs updating from time to
time. The member functions to accomplish this are AddChild and
RemoveChild, as shown here.

void CControl::AddChild(CControl* pControl);

void CControl::RemoveChild(CControl* pControl);

You should not call these member functions yourself because they are
called whenever SetParent is called, and everything is updated prop-
erly. As you might expect, these member functions add or remove a
control from a child list, as appropriate.

301Base Control Class in Depth

17 FO SDL chapter 17 10/21/02 11:10 AM Page 301

Team LRN

The remaining member accessor functions don’t really need much
explanation because they directly set or get a particular attribute
about a control, so here they are.

void CControl::SetID(Uint32 id);

Uint32 CControl::GetID();

CPoint CControl::GetPosition();

void CControl:: SetPosition(CPoint ptPosition);

Uint16 CControl::GetWidth();

Uint16 CControl::GetHeight();

Uint16 CControl::GetLeft();

Uint16 CControl::GetRight();

Uint16 CControl::GetTop();

Uint16 CControl::GetBottom();

CCanvas* CControl::GetCanvas();

Using these functions, you can retrieve or set the ID of the control; set
or get the position of the control; determine the width, height, left,
right, top, or bottom of a control; or gain access to the canvas used by
the control.

Displaying
The display of all user interface controls depends on three functions—
Draw, OnDraw, and Redraw.

The Draw function is a non-static, non-virtual function that is called for
each control in the hierarchy.

void CControl::Draw();

Draw calls OnDraw (which you will look at in a minute), and then loops
through all of the child controls owned by this control. Finally, after

drawing all of the children,
Draw updates the parent’s
canvas. The OnDraw function
is a non-static virtual
function. You will use it
to customize a control’s
appearance.

void CControl::OnDraw();

302 17. User Interface Components

NOTE
Virtual functions help out quite a bit
when you are developing a hierarchi-
cal system like this one because they
allow you to customize the behavior
of the various control classes.

17 FO SDL chapter 17 10/21/02 11:10 AM Page 302

Team LRN

During this function, you do whatever drawing is needed to update
the appearance of the control. In theory, the only thing you need to
do to draw the entire hierarchy of controls is call the Draw member
function of the main control, right? Most certainly. For convenience,
the Redraw static member function does just that.

void CControl::Redraw();

This function simply calls the main control’s Draw member function
and does a few other things to keep up the control system.

Event Filtering
The event-handling system is rather like the one in CEventHandler. In
fact, most of the event-handling functions were stolen from
CEventHandler directly, with a slight modification of the return type.

First and foremost is OnEvent, which is called for every control in the
hierarchy until one finally handles the event.

bool CControl::OnEvent(SDL_Event* pEvent);

When this member function is called, the control goes from the end
of the child list to the beginning, calling the children’s OnEvent func-
tion along the way. If the event doesn’t get handled along that route,
the function will attempt to dispatch the event to one of the event
handlers shown in the following code. These are identical, for the
most part, to the equivalent handlers in CEventHandler.

bool CControl::OnKeyDown(SDLKey sym,SDLMod mod,Uint16 unicode);

bool CControl::OnKeyUp(SDLKey sym,SDLMod mod,Uint16 unicode);

bool CControl::OnMouseMove(Uint16 x,Uint16 y,Sint16 relx,Sint16

rely,bool bLeft,bool bRight,bool bMiddle);

bool CControl::OnLButtonDown(Uint16 x,Uint16 y);

bool CControl::OnLButtonUp(Uint16 x,Uint16 y);

bool CControl::OnRButtonDown(Uint16 x,Uint16 y);

bool CControl::OnRButtonUp(Uint16 x,Uint16 y);

bool CControl::OnMButtonDown(Uint16 x,Uint16 y);

bool CControl::OnMButtonUp(Uint16 x,Uint16 y);

The user interface system is only concerned with keyboard and mouse
events, as you can see. The default implementation doesn’t really do
much. The mouse handlers, however, attempt to detect whether the
mouse is physically within the control.

303Base Control Class in Depth

17 FO SDL chapter 17 10/21/02 11:10 AM Page 303

Team LRN

To tie the user interface system into an application, you simply use the
FilterEvent member function. This function is static and does some
pre-processing of the event (such as direct routing whenever there is
a mouse or keyboard focus in effect), and then simply sends it to the
main control’s OnEvent function.

bool CControl::FilterEvent(SDL_Event* pEvent);

If this function returns true, then the event has been intercepted by
the user interface system, so it should not be processed by the applica-
tion itself.

The class also needs a way to access the special controls, such as the
main control, the various input focus controls, and the control over
which the mouse was hovering.

CControl* CControl::GetMainControl();

CControl* CControl::GetKeyboardFocus();

CControl* CControl::GetMouseFocus();

CControl* CControl::GetMouseHover();

During the course of a program, there needs to be a way to change
the focus controls and the mouse hover control. The following func-
tions fulfill that task.

void CControl::SetKeyboardFocus(CControl* pControl);

void CControl::SetMouseFocus(CControl* pControl);

void CControl::SetMouseHover(CControl* pControl);

Finally, it would be really convenient if a control could tell you
whether it is the main control, one of the focus controls, or the mouse
hover control.

bool CControl::IsMainControl();

bool CControl::HasKeyboardFocus();

bool CControl::HasMouseFocus();

bool CControl::HasMouseHover();

The event-handling section of CControl is the largest because it has to
do a lot.

Upkeep
The upkeep portions of CControl are much simpler. The two static lists—
one for closing and destroying controls and the other for bringing

304 17. User Interface Components

17 FO SDL chapter 17 10/21/02 11:10 AM Page 304

Team LRN

controls from the beginning of the display list to the end—are manage-
able with only three functions, and the implementation is completely
hidden from the user of the class.

The first of these functions is BringToFront; its task is to add the control
to the update list, which eventually results in the control being
brought to the top of the Z order.

void CControl::BringToFront();

The second of these functions is simply called Close; it adds the control
to the close list, which eventually results in the control being destroyed.

void CControl::Close();

Finally, the Update function, a static member function, goes through
the update and close lists and updates or closes the controls, clearing
out the list for reuse as it proceeds.

void CControl::Update();

As you can see, managing the UI system is not that complicated once
you’ve got a decently laid out design.

Notification
The notification portion of CControl is identical to the mechanism
used in CMessageHandler, so I won’t spend any time describing how it
works. Instead, I’ll just list the functions.

bool CControl::SendMessage(MSGID MsgID,MSGPARM Parm1,MSGPARM Parm2,

MSGPARM Parm3,MSGPARM Parm4);

bool CControl::OnMessage(MSGID MsgID,MSGPARM Parm1,MSGPARM Parm2,

MSGPARM Parm3,MSGPARM Parm4);

An Example Control
For the sake of discussion, I will create an example program (FOSDL17_1,
if you are interested) that makes an example control—a push button,
which is perhaps the most common type of UI control in existence.

For the declaration of CControl, CButton is a great deal shorter,
although it is hardly tiny simply due to the sheer number of necessary
members and member functions.

305An Example Control

17 FO SDL chapter 17 10/21/02 11:10 AM Page 305

Team LRN

class CButton : public CControl

{

private:

//caption for button

std::string m_sCaption;

//colors for button

CColor m_colFace;

CColor m_colText;

CColor m_colHilite;

CColor m_colShadow;

//canvas for text

CCanvas* m_pcnvText;

//pressed state

bool m_bPressed;

//button font

static TTF_Font* s_ButtonFont;

public:

//construction

CButton(CControl* pParent,CRectangle rcDimensions,Uint32

id,std::string sCaption,CColor colFace=CColor(192,192,192),CColor

colText=CColor(0,0,0),CColor colHilite=CColor(255,255,255),CColor

colShadow=CColor(128,128,128));

//destruction

virtual ~CButton();

//customize redrawing

virtual void OnDraw();

//left button handlers

virtual bool OnLButtonDown(Uint16 x,Uint16 y);

virtual bool OnLButtonUp(Uint16 x,Uint16 y);

//set caption

void SetCaption(std::string sCaption);

//get caption

std::string GetCaption();

//set button font

static void SetButtonFont(TTF_Font* pFont);

static TTF_Font* GetButtonFont();

//message for clicking button

static MSGID MSGID_ButtonClick;//parm1=id

};

306 17. User Interface Components

17 FO SDL chapter 17 10/21/02 11:10 AM Page 306

Team LRN

By far the largest function in CButton is the constructor because you
have to supply so much information about a button before you can
create it. There are a caption and four different colors so that you can
completely customize the appearance of the button. The four colors
do have default grayscale values.

Since you need text to render a button, there is a static member
called s_ButtonFont, which you can set and retrieve using SetButtonFont
and GetButtonFont, respectively. You can set and retrieve the caption,
which creates a surface with the text on it, using SetCaption and
GetCaption, respectively.

To override the behavior of CControl to make it into a CButton, you
need only OnDraw, OnLButtonDown, and OnLButtonUp. Simplicity itself, since
CControl does all of the major work.

Finally, when a button is pressed and then released, a notification mes-
sage (MSGID_ButtonClick) is sent through the control pipeline for inter-
ception. To see FOSDL17_1 in action, you can look at Figure 17.4.

307An Example Control

Figure 17.4 A UI button

17 FO SDL chapter 17 10/21/02 11:10 AM Page 307

Team LRN

Summary
As you can see, a user interface system is a non-trivial task to accom-
plish, but it can be done and done well if you put enough thought
into what you are doing. Of course, that applies to anything you do in
programming. Well, except for drinking soda, which you definitely do
a lot of while programming (at least I do). You don’t really have to put
a lot of thought into drinking soda.

308 17. User Interface Components

17 FO SDL chapter 17 10/21/02 11:10 AM Page 308

Team LRN

CHAPTER 18

The Road
Ahead

18 FO SDL chapter 18 10/21/02 11:12 AM Page 309

Team LRN

And so, inevitably, we reach this point—the end of the book. I
know that I had a swell time writing it, and I hope you enjoyed

reading it, maybe learned something, or at the very least found a use
for it other than propping up a table leg that doesn’t quite sit right.

Where You Have Been
Although this book is on the smaller side, as all of the books in the
Focus On series are, you have come a long way since Chapter 1. You
have seen the ins and outs of all of the SDL subsystems, from video to
audio to threads and timers to event handling. This gives you a solid
foundation in SDL that, even on its own, is enough for you to start
developing SDL applications.

Of course, you couldn’t stop there. The add-on libraries of SDL_mixer,
SDL_ttf, and SDL_image are just too darn helpful not to use, and they
are just as easy to work with as SDL itself. In fact, sometimes they’re
even easier—such as using SDL_mixer’s powerful capabilities instead
of merely the audio subsystem of SDL (which I still say is way too primi-
tive to be of much use without some sort of add-on library).

Finally, you saw an SDL-based application framework built from nothing.
The particularly spiffy thing about the framework is that it will compile
on any platform that SDL supports, provided you have a C++ compiler.
Just compiling works most of the time; to really try it out and tweak
things still takes a bit of time, but that’s not nearly as big of a deal.

Where You Can
Go from Here
Well, for one thing, you could create some SDL-based games. Also,
SDL and its add-on libraries are always being expanded and there are
plenty of add-on libraries that I did not cover, so you might want to
check them out.

310 18. The Road Ahead

18 FO SDL chapter 18 10/21/02 11:12 AM Page 310

Team LRN

Also, if you like SDL but would prefer to use a 3D API, you know that
SDL can integrate rather well with OpenGL. There are several
resources that you can use to go in that direction. I suggest OpenGL
Game Programming (Premier Press, 2001) by Dave Astle and Kevin
Hawkins. Sure, there is a bunch of stuff that is WIN32-specific, but you
can skip those parts. Besides, those guys are friends of mine, so I am
morally obligated to plug their book.

As many have done before you, you might spot a piece of SDL that
needs enhancement. This is how most of the add-on SDL libraries came
to be. That’s one of the beautiful things about SDL—it is a living body
of work to which many people contributed over time. Sure, some add-
on libraries aren’t the greatest, but not everything that is gold glitters.

Summary
So hey, have a good time programming in SDL. It’s a lot of fun, gener-
ally very easy, and you can make things look just as professional as the
multimillion-dollar houses out there. If you choose to write games for
yourself and your friends, if you are going the shareware route (it can
and does work for many people), or if you are working your way into
the industry, the best of luck to you.

311Summary

18 FO SDL chapter 18 10/21/02 11:12 AM Page 311

Team LRN

18 FO SDL chapter 18 10/21/02 11:12 AM Page 312

Team LRN

Index

A
activation events, 105–106
Add function, 249
add-on libraries

SDL_image function, 168–169
SDL_Mixer

initialization, 195
installation and setup, 194–195

SDL_net function
initialization, 186–187
IPaddress structure, 186
SDLNet_SocketSet structure, 186
TCPSocket structure, 186
UPDSocket structure, 186

SDL_ttf function
creation and destruction, 173–174
installation and setup, 172
rendering, 177–178

AddImage function, 263
AddUpdateRect function, 260
allocation, channels and, 199–200
Aloss value, 42
alpha blending

alpha surfaces, optimizing, 74
per-pixel, 72–73
per-surface alpha, 72

Amask value, 42, 51, 73
applications

simple, creating, 15–16
for system setup test, 13–15

Ashift value, 42
accessor functions, 256
atexit function, 28
audio subsystem

CD subsystems
informational functions, 132–133
playing functions, 133–135
structures of, 130–132

close function, 122–125
converting and mixing, 128–129
initializing, 27
lock/unlock functions, 125–126
open functions, 122–125
pause functions, 122–125
wav files, 126–128

axis motion event, joysticks, 101

B
ball motion event, joystick, 103–104
bit flags

defined, 40
for flags parameter, 48
mouse button, 99–100
SDL_INIT_JOYSTICK, 141–142
SDL_VideoInfo members, 41

bitmaps, loading, 52
BitPerPixel function, 42
blit_fill bit flag member, 41
blit_hw bit flag member, 41
blit_hw_A bit flag member, 41
blit_hw_CC bit flag member, 41
blit_sw bit flag member, 41
blit_sw_CC bit flag member, 41
blitting

clipping output, 65–66
color keys (transparency), 62–64

Bloss value, 42
Bmask value, 42, 51
BringToFont function, 305
Bshift value, 42
buttons

joystick events, 101–102
mouse button events, 99–100

BytesPerPixel function, 42

C
CApplication class, 220, 227–228, 234–236
captions, window manager subsystem events,

115–116
CAudio class, 221, 268–270
CButton class, 223
CCanvas class, 221, 246–247, 257–261
CChannel class, 222, 269, 274–276
CClientSocket class, 222, 281, 286–287
CColor class, 221, 246, 253–257
CControl class, 223, 297–300
CD-ROM

libraries, 4
LIBS directory, 4
status constants, list of, 131

CD-ROM subsystem, 23–24
CD subsystem

informational functions, 132–133
playing functions, 133–135
structures of, 130–132

19 FO SDL Index 10/21/02 11:17 AM Page 313

Team LRN

CEventHandler class, 220, 227–228, 236–238
ChannelCount function, 275
channels

allocation, 199–200
playing, 200–201

channels member, 121
CHostSocket class, 222, 281, 285–286
chunks, 198–199
CImage class, 221, 247, 261–262
CImageSet class, 221, 247, 262–263
CIPAddress class, 222, 280, 282–283
CLabel class, 223
classes

CApplication, 220, 227–228, 234–236
CAudio, 221, 268–270
CButton, 223
CCanvas, 221, 246–247, 257–261
CChannel, 222, 269, 274–276
CClientSocket, 222, 281, 286–287
CColor, 221, 246, 253–257
CControl, 223, 297–300
CEventHandler, 220, 227–228, 236–238
CHostSocket, 222, 281, 285–286
CImage, 221, 247, 261–262
CImageSet, 221, 247
CIPAddress, 222, 280, 282–283
CLabel, 223
CMessageHandler, 220, 227–230
CMusic, 221, 269, 272–274
CNet, 280–281
CPoint, 221, 245, 247–250
CRadioButton, 223
CRectangle, 221, 245–246, 250–253
CSound, 221, 269, 271–272
CTCPSocket, 222, 280, 283–285
CTextBox, 223
CThread, 220, 227–228, 238–240
CTimer, 220, 227–228
OnButtonDown, 242
OnKeyDown, 242
OnMouseMove, 242
Timer, 240–242

ClearColorKey function, 260
client-server networks, 184
Clip function, 253
clipping output, 65–66
clip_rect member, 47
close functions (audio subsystems), 122–125
CMessageHandler class, 220, 227–230
CMusic class, 221, 269, 272–274
CNet class, 280–281
Code Generation option, 11

color
COLORREF function, 33
PALETTEENTRY function, 33
RGB color space, 39
RGBQUAD function, 33
RGBTRIPLE function, 33
SDL_SetColorKey function, 62–64

color keys, 62–64
COLORREF function, 33
condition variables, 161–163
controls

defined, 292
displaying, 294–295
notification, 296
order of, changing, 296

converting
mixing and (audio subsystem), 128–129
surfaces, 53–54

coordinates, screen versus cartesian, 36
CPoint class, 221, 245, 247–250
CRadioButton class, 223
Create function, 286
CreateRGB function, 260
CRectangle class, 221, 245–246, 250–253
CSound class, 221, 269, 271–272
CTCPSocket class, 222, 280, 283–285
CTextBox class, 223
CThread class, 220, 227–228, 238–240
CTimer class, 220, 227–228
cursors

data and mask bits for, 81
SDL_Cursor function, 80
SDL_FreeCursor function, 85
SDL_GetCursor function, 86
SDL_SetCursor function, 85–86
SDL_ShowCursor function, 86

D
delay parameter, 98
direct method of gathering input, 92, 111
Direct3D, 20
DirectDraw, 20, 22
DirectInput, 20
DirectMusic, 20
directories

libraries, selecting, 9
new entries, adding, 8
searching, 8
Source Files, 13

DirectPlay, 20
DirectSound, 20
DirectX, 20, 22
display mode, video subsystem, 47–50
display structures, video subsystems, 32–34

314 Index

19 FO SDL Index 10/21/02 11:17 AM Page 314

Team LRN

displaying controls, 294–295
docs folder, contents of, 5
double buffering, 70–71
Draw function, 302
dst parameter, 55, 61
dst_channels value, 129
dst_format value, 129
dst_rate value, 129
DstRect function, 262
dstrect parameter, 55, 61

E
effects

special effects, 213–214
stock effects, 211–213

Empty Project option (project setup), 10
errors, SDL_GetError function, 29
event filtering, 295–296
event-handling subsystem

direct method of gathering input, 92, 111
joystick events

axis motion event, 101
ball motion event, 103–104
button events, 101–102
hat position change event, 102–103

keyboard events
current state of, retrieving, 111–113
modifier constants, list of, 98
SDLKey constants, list of, 94–97
structure of, 92–93

mouse events
button state bit flags, 99–100
current state of, retrieving, 113
mouse button events, 100
mouse motion events, 99–100

polling method of gathering input, 91–92,
110–111

sending events, 115
system events

activation events, 105–106
active events, 90
current state of, retrieving, 113–114
expose events, 104–105
quit events, 90, 104–105
resize events, 105
user events, 91, 106
video exposure events, 91
video resize events, 91
window manager events, 91, 106, 115–118

trapping events, 114
waiting method of gathering input, 91, 108–110

exit function, 28
expose events, 104–105

F
FadeIn function, 275
fading out, 71
files

.cpp, 13

.h, 8

.lib, 9
filled rectangles, 54–56
FillRect function, 260
filter parameter, 114
FilterEvent function, 238, 304
FindImage function, 263
flags, bit flags

for flags parameter, 48
mouse button, 99–100
SDL_INIT_JOYSTICK, 141–142
SDL_VideoInfo members, 41

fmt parameter, 53
folders

docs, 5
include, 6
lib, 6

fonts. See TTF_Font functions
format member, 46
FOSDLAudioCallback function, 125
fprintf function, 16
functions

accessor, 256
Add, 249
AddImage, 263
AddUpdateRect, 260
atexit, 28
BitsPerPixel, 42
BringToFont, 305
BytesPerPixel, 42
ChannelCount, 275
CImageSet, 262–263
ClearColorKey, 260
Clip, 253
COLORREF, 33
Copy, 249, 253
Create, 286
Draw, 302
DstRect, 262
exit, 28
FadeIn, 275
FillRect, 260
FilterEvent, 238, 304
FindImage, 263
FOSDLAudioCallback, 125
fprintf, 16
GetApplication, 235
GetB, 256

315Index

19 FO SDL Index 10/21/02 11:17 AM Page 315

Team LRN

functions (continued)
GetChannel, 275
GetChunk, 271–272
GetClipRect, 260
GetColorKey, 260
GetFormat, 270
GetFrequency, 270
GetG, 256
GetHeight, 259
GetHost, 282
GetImage, 263
GetInterval, 241
GetMusic, 273
GetParent, 232
GetPixel, 259
GetPort, 282
GetR, 256
GetSurface, 259
GetThread, 240
GetThreadID, 240
GetVolume, 271
GetWidth, 259
HasImage, 263
ImageCount, 263
ImageList, 263
IMG_Load, 169
Intersect, 253
IntersectRect, 32
IsEmpty, 253
IsPaused, 240
IsRunning, 240
IsValid, 273
main, 234
memcpy, 59
Mix_AllocateChannels, 200
Mix_Chunk, 198–199
Mix_CloseAudio, 197
MIX_DEFAULT_FORMAT, 197
MIX_DEFAULT_FREQUENCY, 197
Mix_EffectDone_t, 213
Mix_EffectFunc_t, 213
Mix_FadeInChannel, 201
Mix_FadeInMusic, 207
Mix_FadeOutGroup, 206
Mix_FadeOutMusic, 209
Mix_FadingMusic, 210
MIX_FADING_OUT, 203
Mix_FreeChunk, 199
Mix_GetMusicHookData, 211
Mix_GetMusicType, 210
Mix_GroupAvailable, 205
Mix_GroupChannels, 204
Mix_GroupCount, 205
Mix_GroupNewer, 205

Mix_GroupOldest, 205
Mix_HaltChannel, 202
Mix_HaltGroup, 206
Mix_HaltMusic, 209
Mix_HookMusic, 207
Mix_HookMusicFinished, 209–210
Mix_Init, 197
Mix_LoadMUS, 206
Mix_LoadWAV, 198
Mix_Music, 206–208
MIX_NO_FADING, 203
Mix_Pause, 201
Mix_PausedMusic, 210
Mix_PauseMusic, 208
Mix_PlayChannel, 200
Mix_PlayChannelTimed, 201
Mix_Playing, 203
Mix_PlayingMusic, 210
Mix_QuerySpec, 198
Mix_QuickLoad_WAV, 199
Mix_ReserveChannels, 204
Mix_Resume, 201
Mix_ResumeMusic, 208
Mix_RewindMusic, 208
Mix_SetDistance, 212
Mix_SetMusicCMD, 209
Mix_SetMusicPosition, 208, 210
Mix_SetPanning, 211
Mix_SetPosition, 212
Mix_SetPostMix, 214
Mix_SetReverseStereo, 213
Mix_UnregisterAllEffects, 214
Mix_UnregisterEffect, 214
Mix_VolumeChunk, 199
Mix_VolumeMusic, 209
Move, 249, 253
Offset, 253
OnAddChild, 233
OnDraw, 302
OnEvent, 235, 238, 303
OnExecute, 240
OnExit, 236
OnInit, 236
OnMessage, 233
OnPause, 240
OnReady, 286–287
OnRemoveChild, 233
OnResume, 240
OnStop, 240
PALETTEENTRY, 33
Play, 275
properties as, 256
Redraw, 302
refcount, 47

316 Index

19 FO SDL Index 10/21/02 11:17 AM Page 316

Team LRN

RemoveImage, 263
RGBQUAD, 33
RGBTRIPLE, 33
Scale, 249
SDL_ACTIVEEVENT, 105
SDL_AddTimer, 152
SDL_ALPHA, 51
SDL_ANYFORMAT, 48
SDL_APPINPUTFOCUS, 106, 114
SDL_APPMOUSEFOCUS, 105, 114
SDL_ASYNBLIT, 48
SDL_AudioCVT, 120, 122, 128
SDL_AudioSpec, 120–121
SDL_BlitSurface, 61
SDL_bool, 153
SDL_BuildAudioCVT, 128–129
SDL_BUTTON_LEFT, 100
SDL_BUTTON_LMASK, 99–100
SDL_BUTTON_MIDDLE, 100
SDL_BUTTON_MMASK, 99–100
SDL_BUTTON_RIGHT, 100
SDL_BUTTON_RMASK, 99–100
SDL_CD, 130–132
SDL_CDName, 132–133
SDL_CDNumDrives, 132–133
SDL_CDOpen, 133–134
SDL_CDPause, 135
SDL_CDPlay, 134
SDL_CDPlayTracks, 135
SDL_CDTrack, 131–132
SDL_CloseAudio, 123
SDL_Color, 33, 39, 67
SDL_CondBroadcast, 163
SDL_CondSignal, 163
SDL_CondWait, 162
SDL_CondWaitTimeout, 162
SDL_ConvertSurface, 53
SDL_CreateCond, 162
SDL_CreateMutex, 156
SDL_CreateRGBSurface, 50–52
SDL_CreateRGBSurfaceFrom, 50–52
SDL_CreateSemaphore, 158
SDL_CreateThread, 154
SDL_CreateYUVOverlay, 76–77
SDL_Cursor, 80
SDL_DEFAULT_REPEAT_DELAY, 99
SDL_DISABLE, 86
SDL_DisplayFormat, 53
SDL_DisplayFormatAlpha, 74
SDL_DOUBLEBUF, 48, 70–71
SDL_ENABLE, 86
SDL_EnableKeyRepeat, 98
SDL_EnableUNICODE, 97
SDL_Event, 92

SDL_ExposeEvent function, 104–105
SDL_FillRect, 54–56
SDL_Flip, 70–71
SDL_FreeCursor, 85
SDL_FreeSurface, 51
SDL_FreeYUVOverlay, 76
SDL_FULLSCREEN, 48
SDL_GetAppState, 113–114
SDL_GetCursor, 86
SDL_GetError, 29, 51
SDL_GetEventFilter, 114
SDL_GetGammaRamp, 80
SDL_GetKeyState, 111–113
SDL_GetMouseState, 113
SDL_GetRelativeMouseState, 113
SDL_GetRGB, 73
SDL_GetRGBA, 73
SDL_GetThreadID, 155
SDL_GetTicks, 153
SDL_GetVideoInfo, 44–45
SDL_GetWMInfo, 117
SDL_HWPALETTE, 48
SDL_HWSURFACE, 48, 51
SDL_image

IMG_Load function, 169
installation and setup, 168–169

SDL_Init, 25–27
SDL_INIT_AUDIO, 26
SDL_INIT_CDROM, 26
SDL_INIT_EVERYTHING, 26–27
SDL_INIT_JOYSTICK, 26
SDL_InitSubSystem, 25–27
SDL_INIT_TIMER, 26
SDL_INIT_VIDEO, 26
SDL_JoyAxisEvent, 101
SDL_JOYAXISMOTION, 101
SDL_JoyBallEvent, 103–104
SDL_JoyButtonEvent, 101–102
SDL_JoyHatEvent, 102–103
SDL_Joystick, 138–139
SDL_JoystickClose, 140
SDL_JoystickEventState, 143
SDL_JoystickGetHat, 144
SDL_JoystickName, 139
SDL_JoystickOpened, 140
SDL_JoystickUpdate, 143
SDL_KEYPRESSED, 93
SDL_KEYRELEASED, 93
SDL_KillThread, 154
SDL_LoadBitmap, 169
SDL_LoadBMP, 52
SDL_LoadWav, 126–128
SDL_LockAudio, 125–126
SDL_LockSurface, 58

317Index

19 FO SDL Index 10/21/02 11:17 AM Page 317

Team LRN

functions (continued)
SDL_LockYUVOverlay, 76–77
SDL_LOGPAL, 68
SDL_MapRGB, 55, 73
SDL_MixAudio, 129
SDL_Mixer, 135

initialization, 195, 197–198
installation and setup, 194–195

SDL_MIX_MAXVOLUME, 129
SDL_MOUSEBUTTONDOWN, 100
SDL_MouseButtonEvent, 100
SDL_MOUSEBUTTONUP, 100
SDL_MouseMotionEvent, 99–100
SDL_MUSTLOCK, 58
SDL_mutexP, 156
SDL_MUTEX_TIMEOUT, 159, 162
SDL_mutexV, 156
SDL_net

initialization, 186–187
installation and setup, 185
IPaddress structure, 186
SDLNet_SocketSet structure, 186
TCPSocket structure, 186
UDPSocket structure, 186

SDLNet_AddSocket, 191–192
SDLNet_AllocSocketSet, 191
SDLNet_CheckSockets, 192
SDLNet_FreeSocketSet, 191
SDLNet_GenericSocket, 191
SDLNET_Init, 186–187
SDLNet_Quit, 187
SDLNet_SocketReady, 192
SDLNet_SocketSet, 191
SDLNet_TCP_Accept, 190
SDLNet_TCP_Close, 189
SDLNet_TCP_Open, 190
SDLNet_TCP_Recv, 190
SDL_NOFRAME, 48
SDL_NUMEVENTS-1, 106
SDL_OpenAudio, 122
SDL_OpenAudioSpec, 197
SDL_OPENGL, 48
SDL_OPENGLBLIT, 48
SDL_Overlay, 34, 74–76
SDL_Palette, 33, 67
SDL_PauseAudio, 123
SDL_PHYSPAL, 68
SDL_PixelFormat function, 33, 41–43, 55
SDL_PollEvent, 56, 110–111, 114–115
SDL_PRESSED, 100
SDL_PumpEvents, 112–113
SDL_PushEvent, 115
SDL_QUERY, 86
SDL_Quit, 27–28, 50

SDL_QuitEvent, 104
SDL_QuitSubSystem, 27–28
SDL_Rect, 32, 35–38
SDL_RELEASED, 100
SDL_RemoveTimer, 152–153
SDL_RESIZABLE, 48
SDL_ResizeEvent, 105
SDL_RLEACCEL, 63, 72
SDL_sem, 158
SDL_SemTryWait, 159
SDL_SemValue, 159
SDL_SemWait, 158
SDL_SetClipRect, 65
SDL_SetColorKey, 62–64
SDL_SetColors, 68
SDL_SetCursor, 85–86
SDL_SetGamma, 79
SDL_SetModeState, 113
SDL_SetPalette, 68
SDL_SetVideoMode, 47–50, 78
SDL_ShowCursor, 86
SDL_sound, 135
SDL_SRCALPHA, 72
SDL_SRCCOLORKEY, 51, 63
SDL_Surface, 33–34
SDL_SWSURFACE, 48
SDL_SysWMEvent, 106, 117
SDL_TimerID, 152
SDL_ttf

creation and destruction, 173–174
information, 174–177
initialization, 173
installation and setup, 172

SDL_UnlockAudio, 125–126
SDL_UnlockMutex, 156
SDL_UnlockYUVOverlay, 76–77
SDL_UpdateRect, 56, 70–71
SDL_UserEvent, 106
SDL_VideoInfo, 33–34

SDL_GetVideoInfo function, 44–45
structure of, 40

SDL_VideoModeOK, 77
SDL_WaitEvent, 109–110, 114–115
SDL_WaitInput, 112
SDL_WaitThread, 155
SDL_WasInit, 29
SDL_WM_GetCaption, 116
SDL_WM_GrapInput, 117
SDL_WM_IconifyWindow, 116
SDL_WM_SetCaption, 115
SDL_WM_SetIcon, 116
SendMessage, 232–233
Set, 249, 253
SetB, 256

318 Index

19 FO SDL Index 10/21/02 11:17 AM Page 318

Team LRN

SetColorKey, 260
SetEmpty, 253
SetG, 256
SetInterval, 241
SetParent, 233–234
SetPixel, 259
SetR, 256
SetSurface, 259
SetVolume, 271
SLD_DEFAULT_REPEAT_INTERVAL, 99
SrcRect, 262
stderr, 15
stdout, 15
Stop, 275
Subtract, 249
TTF_Quit, 173
TTF_CloseFont, 174
TTF_FontAscent, 175
TTF_FontHeight, 174
TTF_FontLineSkip, 176
TTF_GetFontStyle, 175
TTF_GlyphMetrics, 176
TTF_OpenFont, 173
TTF_OpenFontIndex, 174
TTF_RenderGlyph_Solid, 177–178
TTF_SetFontStyle, 176
TTF_SizeText, 176
TTF_SizeUNICODE, 176
TTF_SizeUTF8, 176
Union, 253
UnionRect, 32
vfmt, 41
video_mem, 41

G
gamma values, adjusting, 78–80
GetApplication function, 235
GetB function, 256
GetChannel function, 275
GetChunk function, 271–272
GetClipRect function, 260
GetColorKey function, 260
GetFormat function, 270
GetFrequency function, 270
GetG function, 256
GetHeight function, 259
GetHost function, 282
GetImage function, 263
GetInterval function, 241
GetMusic function, 273
GetParent function, 232
GetPixel function, 259
GetPort function, 282
GetR function, 256
GetSurface function, 259

GetThread function, 240
GetThreadID function, 240
GetVolume function, 271
GetWidth function, 259
Gloss value, 42
Gmask value, 42, 51
Gshift value, 42

H
.h files, 8
h member, 46
HasImage function, 263
height parameter, 48
hex digits, 83–84
hw_available bit flag member, 41
hw_overlay bit flag, 76

I
icons, windows manager system events, 116
ImageCount function, 263
ImageList function, 263
IMG_Load function, 169
include folder, contents of, 6
initialization

functions, list of, 25
SDL_Mixer function, 195, 197–198
SDL_net function, 186–187
SDL_ttf function, 173

input capturing, 296
input focus, 296
input grab, window manager system events, 116–117
installing

libraries, 4–6
SDL_image function, 168–169
SDL_Mixer function, 194–195
SDL_net function, 185
SDL_ttf, 172

Intersect function, 253
IntersectRect function, 32
interval parameter, 98, 152
IP address, 182, 187–189
IsEmpty function, 253
IsPaused function, 240
IsRunning function, 240
IsValid function, 273

J
joystick subsystem

axis motion event, 101
ball motion event, 103–104
button events, 101–102
events, 142–146
gathering information about, 139–142
hat position change event, 102–103
initializing, 27

319Index

19 FO SDL Index 10/21/02 11:17 AM Page 319

Team LRN

K
key presses, 89, 92–93
key releases, 89, 92–93
keyboard events

current state of, retrieving, 111–113
modifier constants, list of, 98
SDLKey constants, list of, 94–97
structure of, 92–93

keyboard focus, 296
KMOD_ALT combination key value, 97
KMOD_CTRL combination key value, 97
KMOD_LCTRL combination key value, 97
KMOD_RCTRL combination key value, 97
KMOD_SHIFT combination key value, 97

L
len_mult value, 129
len_ratio value, 129
.lib files, 9
libraries

add-on
SDL_image function, 168–169
SDL_Mixer, 193–210
SDL_Mixer function, 23, 211–214
SDL_net function, 182–192
SDL_ttf function, 172–179

directories, selecting, 9
installing, 4–6
paths for, setting up, 10

Link tab (Project Settings dialog box), 11–12
loading

bitmaps, 52
music, 206–207

lock functions (audio subsystem), 125–126
locking overlays, 76
loops, 200
loss values, 42–43

M
main function, 234
masks

Amask value, 42, 51, 73
Bmask value, 42, 51
data and mask bits for cursors, 81
Gmask value, 42, 51
Rmask value, 42–43, 51

member access, 301–302
memcpy function, 59
message handler class

constructor and destructor functions, 233–234
message handling, 232–233
message ID assignment, 230–231
parent management, 231–232

Mix_AllocateChannels function, 200

Mix_Chunk function, 198–199
Mix_CloseAudio function, 197
MIX_DEFAULT_FORMAT function, 197
MIX_DEFAULT_FREQUENCY function, 197
Mix_EffectDone_t function, 213
Mix_EffectFunc_t function, 213
Mix_FadeInChannel function, 201
Mix_FadeInMusic function, 207
Mix_FadeOutGroup function, 206
Mix_FadeOutMusic function, 209
Mix_FadingMusic function, 210
MIX_FADING_OUT function, 203
Mix_FreeChunk function, 199
Mix_GetMusicHookData function, 211
Mix_GetMusicType function, 210
Mix_GroupAvailable function, 205
Mix_GroupChannels function, 204
Mix_GroupCount function, 205
Mix_GroupNewer function, 205
Mix_GroupOldest function, 205
Mix_HaltChannel function, 202
Mix_HaltGroup function, 206
Mix_HaltMusic function, 209
Mix_HookMusic function, 207
Mix_HookMusicFinished function, 209–210
Mix_Init function, 197
Mix_LoadMUS function, 206
Mix_LoadWAV function, 198
Mix_Music function, 206–208
MIX_NO_FADING function, 203
Mix_Pause function, 201
Mix_PausedMusic function, 210
Mix_PauseMusic function, 208
Mix_PlayChannel function, 200
Mix_PlayChannelTimed function, 201
Mix_Playing function, 203
Mix_PlayingMusic function, 210
Mix_QuerySpec function, 198
Mix_QuickLoad_WAV function, 199
Mix_ReserveChannels function, 204
Mix_Resume function, 201
Mix_ResumeMusic function, 208
Mix_RewindMusic function, 208
Mix_SetDistance function, 212
Mix_SetMusicCMD function, 209
Mix_SetMusicPosition function, 208, 210
Mix_SetPanning function, 211
Mix_SetPosition function, 212
Mix_SetPostMix function, 214
Mix_SetReverseStereo function, 213
Mix_UnregisterAllEffects function, 214
Mix_UnregisterEffect function, 214
Mix_VolumeChunk function, 199
Mix_VolumeMusic function, 209

320 Index

19 FO SDL Index 10/21/02 11:17 AM Page 320

Team LRN

mouse events
button state bit flags, 99–100
current state of, retrieving, 113
mouse button events, 100
mouse motion events, 99–100

Move function, 249, 253
music

loading and freeing, 206–207
playing, 207–208
settings, 208–209
stopping, 209–210

mutexes, 155–158

N
ncolors member, 67
networks

client-server, 184
peer-to-peer, 183

notification, controls and, 296
numchans channel, 200
numrects parameter, 70
numtracks member, 131

O
Offset function, 253
offset member, 131–132
OnAddChild function, 233
OnButtonDown class, 242
OnDraw function, 302
OnEvent function, 235, 238, 303
OnExecute function, 240
OnExit function, 236
OnInit function, 236
OnKeyDown class, 242
OnMessage function, 233
OnMouseMove class, 242
OnPause function, 240
OnReady function, 286–287
OnRemoveChild function, 233
OnResume function, 240
OnStop function, 240
open functions (audio subsystem), 122–125
overlays

creating, 76
destroying, 76
drawing, 77
formats, list of, 75
locking and unlocking, 76

P
PALETTEENTRY function, 33
palettes

creating surfaces with, 68
SDL_Palette function, 33

SDL_SetPalette function, 68
video and, 67–70

parent management, 231–232
paths, libraries, setting up, 10
pause functions (audio subsystem), 122–125, 201
peer-to-peer network, 183
per-pixel alpha blending, 72–73
pitch member, 46
pitches member, 75
pixels

BitsPerPixel function, 42
BytesPerPixel function, 42
DDPIXELFORMAT function, 33
per-pixel alpha blending, 72–73

planes member, 75
Play function, 275
playing functions (CD subsystem), 133–135

channels, 200–201
music, 207–208

polling method of gathering input, 91–92, 110–111
portability problems, threads, 163
projects, setting up, 10–13
properties, as functions, 256

Q
quit events, 90, 104–105

R
rectangles

clipping rectangle, 65–66
filled, 54–56

Redraw function, 302
refcount function, 47
RemoveImage function, 263
rendering, 177–178
resize events, 105
RGB color format

16-bit, 43
SDL_MapRGB function, 55

RGB color space, 39
RGB surfaces, 50–52
RGBQUAD function, 33
RGBTRIPLE function, 33
RLE (Run Length Encoded) acceleration, 63
Rloss value, 42–43
Rmask value, 42–43, 51
Rshift value, 42–43

S
sample member, 122
Scale function, 249
SDL Web site, 4, 22
SDL_ACTIVEEVENT function, 105
SDL_AddTimer function, 152

321Index

19 FO SDL Index 10/21/02 11:17 AM Page 321

Team LRN

SDL_ALPHA function, 51
SDL_ANYFORMAT function, 48
SDL_APPINPUTFOCUS function, 106, 114
SDL_APPMOUSEFOCUS function, 105, 114
SDL_ASYNCBLIT function, 48
SDL_AudioCVT function, 120, 122, 128
SDL_AudioSpec function, 120–121
SDL_BlitSurface function, 61
SDL_bool function, 153
SDL_BuildAudioCVT function, 128–129
SDL_BUTTON_LEFT function, 100
SDL_BUTTON_LMASK function, 99–100
SDL_BUTTON_MIDDLE function, 100
SDL_BUTTON_MMASK function, 99–100
SDL_BUTTON_RIGHT function, 100
SDL_BUTTON_RMASK function, 99–100
SDL_CD function, 130–132
SDL_CDName function, 132–133
SDL_CDNumDrives function, 132–133
SDL_CDOpen function, 133–134
SDL_CDPause function, 135
SDL_CDPlay function, 134
SDL_CDPlayTracks function, 135
SDL_CDTrack function, 131–132
SDL_CloseAudio function, 123
SDL_Color function, 33, 39, 67
SDL_CondBroadcast function, 163
SDL_CondSignal function, 163
SDL_CondWait function, 162
SDL_CondWaitTimeout function, 162
SDL_ConvertSurface function, 53
SDL_CreateCond function, 162
SDL_CreateMutex function, 156
SDL_CreateRGBSurface function, 50–52
SDL_CreateRGBSurfaceFrom function, 50–52
SDL_CreateSemaphore function, 158
SDL_CreateThread function, 154
SDL_CreateYUVOverlay function, 76–77
SDL_Cursor function, 80
SDL_DEFAULT_REPEAT_DELAY function, 99
SDL_DEFAULT_REPEAT_INTERVAL function, 99
SDL_DISABLE function, 86
SDL_DisplayFormat function, 53
SDL_DisplayFormatAlpha function, 74
SDL_DOUBLEBUF function, 48, 70–71
SDL_ENABLE function, 86
SDL_EnableKeyRepeat function, 98
SDL_EnableUNICODE function, 97
SDL_Event function, 92
SDL_ExposeEvent function, 104–105
SDL_FillRect function, 54–56
SDL_Flip function, 70–71
SDL_FreeCursor function, 85
SDL_FreeSurface function, 51

SDL_FreeYUVOverlay function, 76
SDL_FULLSCREEN function, 48
SDL_GetAppState function, 113–114
SDL_GetCursor function, 86
SDL_GetError function, 29, 51
SDL_GetEventFilter function, 114
SDL_GetGammaRamp function, 80
SDL_GetKeyState function, 111–113
SDL_GetMouseState function, 113
SDL_GetRelativeMouseState function, 113
SDL_GetRGB function, 73
SDL_GetRGBA function, 73
SDL_GetThreadID function, 155
SDL_GetTicks function, 153
SDL_GetVideoInfo function, 44–45
SDL_GetWMInfo function, 117
SDL_HWPALETTE function, 48
SDL_HWSURFACE function, 48, 51
SDL_image function, 168–169
SDL_Init function, 25–27
SDL_INIT_AUDIO function, 26
SDL_INIT_CDROM function, 26
SDL_INIT_EVERYTHING function, 26–27
SDL_INIT_JOYSTICK function, 26, 141–142
SDL_InitSubSystem function, 25–27
SDL_INIT_TIMER function, 26
SDL_INIT_VIDEO function, 26
SDL_IYUV_OVERLAY format, 75
SDL_JoyAxisEvent function, 101
SDL_JOYAXISMOTION function, 101
SDL_JoyBallEvent function, 103–104
SDL_JoyButtonEvent function, 101–102
SDL_JoyHatEvent function, 102–103
SDL_Joystick function, 138–139
SDL_JoystickClose function, 140
SDL_JoystickEventState function, 143
SDL_JoystickGetHat function, 144
SDL_JoystickName function, 139
SDL_JoystickOpened function, 140
SDL_JoystickUpdate function, 143
SDLKey contants, list of, 94–97
SDL_KEYPRESSED function, 93
SDL_KillThread function, 154
SDL_LoadBitmap function, 169
SDL_LoadBMP function, 52
SDL_LoadWav function, 126–128
SDL_LockAudio function, 125–126
SDL_LockSurface function, 58
SDL_LockYUVOverlay function, 76–77
SDL_LOGPAL function, 68
SDL_MapRGB function, 55, 73
SDL_MixAudio function, 129
SDL_Mixer add-on library, 23

322 Index

19 FO SDL Index 10/21/02 11:17 AM Page 322

Team LRN

SDL_Mixer function, 135
initialization, 195, 197–198
installation and setup, 194–195

SDL_MIX_MAXVOLUME function, 129
SDL_MOUSEBUTTONDOWN function, 100
SDL_MouseButtonEvent function, 100
SDL_MOUSEBUTTONUP function, 100
SDL_MouseMotionEvent function, 99–100
SDL_MUSTLOCK function, 58
SDL_mutexP function, 156
SDL_MUTEX_TIMEOUT function, 159, 162
SDL_mutexV function, 156
SDL_net function

initialization, 186–187
installation and setup, 185
IPaddress structure, 186
SDLNet_SocketSet structure, 186
TCPSocket structure, 186
UDPSocket structure, 186

SDLNet_AddSocket function, 191–192
SDLNet_AllocSocketSet function, 191
SDLNet_CheckSockets function, 192
SDLNet_FreeSocketSet function, 191
SDLNet_GenericSocket function, 191
SDLNet_Init function, 186–187
SDLNet_Quit function, 187
SDLNet_SocketReady function, 192
SDLNet_SocketSet function, 191
SDLNet_TCP_Accept function, 190
SDLNet_TCP_Close function, 189
SDLNet_TCP_Open function, 190
SDLNet_TCP_Recv function, 190
SDL_NOFRAME function, 48
SDL_NUMEVENTS-1 function, 106
SDL_OpenAudio function, 122
SDL_OpenAudioSpec function, 197
SDL_OPENGL function, 48
SDL_OPENGLBLIT function, 48
SDL_Overlay function, 34, 74–76
SDL_Palette function, 33, 67
SDL_PauseAudio function, 123
SDL_PHYSPAL function, 68
SDL_PixelFormat function, 33, 41–43, 55
SDL_PollEvent function, 56, 110–111, 114–115
SDL_PRESSED function, 100
SDL_PumpEvents function, 112–113
SDL_PushEvent function, 115
SDL_QUERY function, 86
SDL_Quit function, 27–28, 50
SDL_QuitEvent function, 104
SDL_QuitSubSystem function, 27–28
SDL_Rect function, 32, 37–38

coordinate systems, 36
rectangles represented by, 35
Sint16 values, 35

SDL_RELEASED function, 93, 100
SDL_RemoveTimer function, 152–153
SDL_RESIZABLE function, 48
SDL_ResizeEvent function, 105
SDL_RLEACCEL function, 63, 72
SDL_sem function, 158
SDL_SemTryWait function, 159
SDL_SemValue function, 159
SDL_SemWait function, 158
SDL_SetClipRect function, 65
SDL_SetColorKey function, 62–64
SDL_SetColors function, 68
SDL_SetCursor function, 85–86
SDL_SetGamma function, 79
SDL_SetModState function, 113
SDL_SetPalette function, 68
SDL_SetVideoMode function, 47–50, 78
SDL_ShowCursor function, 86
SDL_sound function, 135
SDL_SRCALPHA function, 72
SDL_SRCCOLORKEY function, 51, 63
SDL_Surface function, 33–34
SDL_SWSURFACE function, 48, 51
SDL_SysWMEvent function, 106, 117
SDL_TimerID function, 152
SDL_ttf function

creation and destruction functions, 173–174
information functions, 174–177
initialization, 173
installation and setup, 172

SDL_UnlockAudio function, 125–126
SDL_UnlockMutex function, 156
SDL_UnlockYUVOverlay function, 76–77
SDL_UpdateRect function, 56, 70–71
SDL_UserEvent function, 106
SDL_UYVY_OVERLAY format, 75
SDL_VideoInfo function, 33–34

SDL_GetVideoInfo function, 44–45
structure of, 40

SDL_VideoModeOK function, 77
SDL_WaitEvent function, 109–110, 114–115
SDL_WaitInput function, 112
SDL_WaitThread function, 155
SDL_WasInit function, 29
SDL_WM_GetCaption function, 116
SDL_WM_GrabInput function, 117
SDL_WM_IconifyWindow, 116
SDL_WM_SetCaption function, 115
SDL_WM_SetIcon function, 116
SDL_YUY2_OVERLAY format, 75
SDL_YV12_OVERLAY format, 75
SDL_YVYU_OVERLAY format, 75
semaphores, 158–161
sending events, 115

323Index

19 FO SDL Index 10/21/02 11:17 AM Page 323

Team LRN

SendMessage function, 232–233
Set function, 249, 253
SetB function, 256
SetColorKey function, 260
SetEmpty function, 253
SetG function, 256
SetInterval function, 241
SetParent function, 233–234
SetPixel function, 259
SetR function, 256
SetSurface function, 259
setup

installing_ttf, 172
SDL_image function, 168–169
SDL_Mixer function, 194–195
SDL_net function, 185
system setup

applications, creating for testing, 13–15
applications, creating simple, 15–16
libraries, installing, 4–6
project setup, 10–13
VC++ environment, setting up, 6–9

SetVolume function, 271
SFX functions, 204
shift values, 42–43
silence member, 121
Sint16 values, 35
size parameter, 122
socket sets, 186, 191–192
sockets, defined, 182
Source Files directory, 13
special effects. See effects
src parameter, 53, 61
src_channels value, 129
src_format value, 129
src_rate value, 129
SrcRect function, 262
srcrect parameter, 61
status parameter, 131
stderr function, 15
stdout function, 15, 157
stock effects, 211–213
Stop function, 275
stopping music, 209–210
subsystems

audio, 23
CD subsystem, 130–135
close functions, 122–125
converting and mixing, 128–129
lock/unlock functions, 125–126
open functions, 122–125
pause functions, 122–125
structures of, 120–122
wav files, 126–128

CD-ROM, 23–24
display structures, 32–34
event-handling, 22

direct method of gathering input, 92, 111
joystick events, 101–104
keyboard events, 89, 92–98, 111–113
mouse events, 89, 99–100, 113
polling method of gathering input,

91–92, 110–111
quit events, 90
sending events, 115
system events, 90, 104–106, 113–114
trapping events, 114
user events, 91
video exposure events, 91
video resize events, 91
waiting method of gathering input, 91,

108–110
window manager events, 91

identifiers, list of, 26
joysticks, 23

events, 142–146
gathering information about, 139–142
names of, 139
number attached, 139

threads, 24
creating, 154
portability problems, 163
stopping, 154
waiting, 155

timers, 24, 150–151
creating, 152
milliseconds, checking, 153
removing, 152–153

video, 21–22
alpha blending, 71–74
bitmaps, loading, 52
clipping output, 65
core structures, 34–40
display, updating, 70–71
display mode, setting up, 47–50
display structures, 32–34
gamma values, adjusting, 78–80
information contained in, grabbing, 44–45
retrieving information about, 40–44
RGB surfaces, 50–52
SDL surfaces, creating and destroying,

46–47
surfaces, converting, 53–54
video modes, checking, 77–78

Subtract function, 249
surfaces

converting, 53–54
with palettes, creating, 68

324 Index

19 FO SDL Index 10/21/02 11:17 AM Page 324

Team LRN

system events
activation events, 105–106
active events, 90
current state of, retrieving, 113–114
expose events, 104–105
quit events, 90, 104–105
resize events, 105
user events, 91, 106
video resize events, 91
window manager events, 91, 106

captions, 115–116
icons, 116
input grab, 116–117

system setup
applications

creating simple, 15–16
testing, 13–15

libraries, installing, 4–6
project setup, 10–13
VC++ environment, setting up, 6–9

T
TCP (Transfer Control Protocol), 186
TCPSocket structure, 189–191
thread class, 238–240
thread subsystem

creating, 154
portability problems, 163
stopping, 154
waiting, 155

TIF_Quit function, 173
Timer class, 240–242
timer subsystem

creating, 152
milliseconds, checking, 153
removing, 152–153

track member, 131
trackballs, joystick events and, 103–104
transparency, 62–64
trapping events, 114
TTF_CloseFont function, 174
TTF_FontAscent function, 175
TTF_FontHeight function, 174
TTF_FontLineSkip function, 176
TTF_GetFontStyle function, 175
TTF_GlyphMetrics function, 176
TTF_OpenFont function, 173
TTF_OpenFontIndex function, 174
TTF_RenderGlyph_Solid function, 177–178
TTF_SetFontStyle function, 176
TTF_SizeText function, 176
TTF_SizeUNICODE function, 176
TTF_SizeUTF8 function, 176

U
UDP (User Datagram Protocol), 186
UI components

displaying, 294–295
event filtering, 295–296

Uint8 value, 123
Uint16 value, 46, 79, 187
Uint32 value, 29, 74, 84
Union function, 253
UnionRect function, 32
unlock functions (audio subsystem), 125–126
User Datagram Protocol (UDP), 186
user events, 91, 106
userdata member, 122

V
variables, condition variables, 161–163
VC++ environment, setting, 6–9
vfmt function, 41
video exposure events, 91
video resize events, 91
video subsystem

alpha blending, 71–74
bitmaps, loading, 52
clipping output, 65
core structures, 34–40
display, updating, 70–71
display mode, setting up, 47–50
display structures, 32–34
gamma values, adjusting, 78–80
information contained in, grabbing, 44–45
initializing, 27
retrieving information about, 40–44
RGB surfaces, 50–52
SDL surfaces, creating and destroying, 46–47
surfaces, converting, 53–54
video modes, checking, 77–78

video_mem function, 41
void* value, 47
VOX functions, 204

W
waiting method of gathering input, 91, 108–110
wav files, 126–128
WIN32 message pump, 22
window manager events, 91, 106

captions, 115–116
icons, 116
input grab, 116–117

wm_available bit flag member, 41

X
x values, SDL_Rect function, 36

Y
y values, SDL_Rect function, 36

325Index

19 FO SDL Index 10/21/02 11:17 AM Page 325

Team LRN

License Agreement/Notice of Limited Warranty

By opening the sealed disc container in this book, you agree to the following terms
and conditions. If, upon reading the following license agreement and notice of
limited warranty, you cannot agree to the terms and conditions set forth, return the
unused book with unopened disc to the place where you purchased it for a refund.

License:
The enclosed software is copyrighted by the copyright holder(s) indicated on the
software disc. You are licensed to copy the software onto a single computer for use by
a single user and to a backup disc. You may not reproduce, make copies, or distribute
copies or rent or lease the software in whole or in part, except with written permission
of the copyright holder(s). You may transfer the enclosed disc only together with this
license, and only if you destroy all other copies of the software and the transferee
agrees to the terms of the license. You may not decompile, reverse assemble, or
reverse engineer the software.

Notice of Limited Warranty:
The enclosed disc is warranted by Premier Press, Inc. to be free of physical defects in
materials and workmanship for a period of sixty (60) days from end user’s purchase
of the book/disc combination. During the sixty-day term of the limited warranty,
Premier Press will provide a replacement disc upon the return of a defective disc.

Limited Liability:
THE SOLE REMEDY FOR BREACH OF THIS LIMITED WARRANTY SHALL
CONSIST ENTIRELY OF REPLACEMENT OF THE DEFECTIVE DISC. IN NO
EVENT SHALL PREMIER PRESS OR THE AUTHORS BE LIABLE FOR ANY
OTHER DAMAGES, INCLUDING LOSS OR CORRUPTION OF DATA, CHANGES
IN THE FUNCTIONAL CHARACTERISTICS OF THE HARDWARE OR OPERATING
SYSTEM, DELETERIOUS INTERACTION WITH OTHER SOFTWARE, OR ANY
OTHER SPECIAL, INCIDENTAL, OR CONSEQUENTIAL DAMAGES THAT MAY
ARISE, EVEN IF PREMIER AND/OR THE AUTHORS HAVE PREVIOUSLY BEEN
NOTIFIED THAT THE POSSIBILITY OF SUCH DAMAGES EXISTS.

Disclaimer of Warranties:
PREMIER AND THE AUTHORS SPECIFICALLY DISCLAIM ANY AND ALL OTHER
WARRANTIES, EITHER EXPRESS OR IMPLIED, INCLUDING WARRANTIES OF
MERCHANTABILITY, SUITABILITY TO A PARTICULAR TASK OR PURPOSE, OR
FREEDOM FROM ERRORS. SOME STATES DO NOT ALLOW FOR EXCLUSION
OF IMPLIED WARRANTIES OR LIMITATION OF INCIDENTAL OR CONSEQUEN-
TIAL DAMAGES, SO THESE LIMITATIONS MIGHT NOT APPLY TO YOU.

Other:
This Agreement is governed by the laws of the State of Indiana without regard to
choice of law principles. The United Convention of Contracts for the International
Sale of Goods is specifically disclaimed. This Agreement constitutes the entire
agreement between you and Premier Press regarding use of the software.

19 FO SDL Index 10/21/02 11:17 AM Page 326

Team LRN

